1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright (C) 2005-2014, 2018-2021 Intel Corporation
4  * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5  * Copyright (C) 2016-2017 Intel Deutschland GmbH
6  */
7 #include <linux/types.h>
8 #include <linux/slab.h>
9 #include <linux/export.h>
10 #include <linux/etherdevice.h>
11 #include <linux/pci.h>
12 #include <linux/firmware.h>
13 
14 #include "iwl-drv.h"
15 #include "iwl-modparams.h"
16 #include "iwl-nvm-parse.h"
17 #include "iwl-prph.h"
18 #include "iwl-io.h"
19 #include "iwl-csr.h"
20 #include "fw/acpi.h"
21 #include "fw/api/nvm-reg.h"
22 #include "fw/api/commands.h"
23 #include "fw/api/cmdhdr.h"
24 #include "fw/img.h"
25 
26 /* NVM offsets (in words) definitions */
27 enum nvm_offsets {
28 	/* NVM HW-Section offset (in words) definitions */
29 	SUBSYSTEM_ID = 0x0A,
30 	HW_ADDR = 0x15,
31 
32 	/* NVM SW-Section offset (in words) definitions */
33 	NVM_SW_SECTION = 0x1C0,
34 	NVM_VERSION = 0,
35 	RADIO_CFG = 1,
36 	SKU = 2,
37 	N_HW_ADDRS = 3,
38 	NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,
39 
40 	/* NVM calibration section offset (in words) definitions */
41 	NVM_CALIB_SECTION = 0x2B8,
42 	XTAL_CALIB = 0x316 - NVM_CALIB_SECTION,
43 
44 	/* NVM REGULATORY -Section offset (in words) definitions */
45 	NVM_CHANNELS_SDP = 0,
46 };
47 
48 enum ext_nvm_offsets {
49 	/* NVM HW-Section offset (in words) definitions */
50 	MAC_ADDRESS_OVERRIDE_EXT_NVM = 1,
51 
52 	/* NVM SW-Section offset (in words) definitions */
53 	NVM_VERSION_EXT_NVM = 0,
54 	N_HW_ADDRS_FAMILY_8000 = 3,
55 
56 	/* NVM PHY_SKU-Section offset (in words) definitions */
57 	RADIO_CFG_FAMILY_EXT_NVM = 0,
58 	SKU_FAMILY_8000 = 2,
59 
60 	/* NVM REGULATORY -Section offset (in words) definitions */
61 	NVM_CHANNELS_EXTENDED = 0,
62 	NVM_LAR_OFFSET_OLD = 0x4C7,
63 	NVM_LAR_OFFSET = 0x507,
64 	NVM_LAR_ENABLED = 0x7,
65 };
66 
67 /* SKU Capabilities (actual values from NVM definition) */
68 enum nvm_sku_bits {
69 	NVM_SKU_CAP_BAND_24GHZ		= BIT(0),
70 	NVM_SKU_CAP_BAND_52GHZ		= BIT(1),
71 	NVM_SKU_CAP_11N_ENABLE		= BIT(2),
72 	NVM_SKU_CAP_11AC_ENABLE		= BIT(3),
73 	NVM_SKU_CAP_MIMO_DISABLE	= BIT(5),
74 };
75 
76 /*
77  * These are the channel numbers in the order that they are stored in the NVM
78  */
79 static const u16 iwl_nvm_channels[] = {
80 	/* 2.4 GHz */
81 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
82 	/* 5 GHz */
83 	36, 40, 44 , 48, 52, 56, 60, 64,
84 	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
85 	149, 153, 157, 161, 165
86 };
87 
88 static const u16 iwl_ext_nvm_channels[] = {
89 	/* 2.4 GHz */
90 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
91 	/* 5 GHz */
92 	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
93 	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
94 	149, 153, 157, 161, 165, 169, 173, 177, 181
95 };
96 
97 static const u16 iwl_uhb_nvm_channels[] = {
98 	/* 2.4 GHz */
99 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
100 	/* 5 GHz */
101 	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
102 	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
103 	149, 153, 157, 161, 165, 169, 173, 177, 181,
104 	/* 6-7 GHz */
105 	1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69,
106 	73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129,
107 	133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 177, 181, 185,
108 	189, 193, 197, 201, 205, 209, 213, 217, 221, 225, 229, 233
109 };
110 
111 #define IWL_NVM_NUM_CHANNELS		ARRAY_SIZE(iwl_nvm_channels)
112 #define IWL_NVM_NUM_CHANNELS_EXT	ARRAY_SIZE(iwl_ext_nvm_channels)
113 #define IWL_NVM_NUM_CHANNELS_UHB	ARRAY_SIZE(iwl_uhb_nvm_channels)
114 #define NUM_2GHZ_CHANNELS		14
115 #define NUM_5GHZ_CHANNELS		37
116 #define FIRST_2GHZ_HT_MINUS		5
117 #define LAST_2GHZ_HT_PLUS		9
118 #define N_HW_ADDR_MASK			0xF
119 
120 /* rate data (static) */
121 static struct ieee80211_rate iwl_cfg80211_rates[] = {
122 	{ .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
123 	{ .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
124 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
125 	{ .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
126 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
127 	{ .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
128 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
129 	{ .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
130 	{ .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
131 	{ .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
132 	{ .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
133 	{ .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
134 	{ .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
135 	{ .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
136 	{ .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
137 };
138 #define RATES_24_OFFS	0
139 #define N_RATES_24	ARRAY_SIZE(iwl_cfg80211_rates)
140 #define RATES_52_OFFS	4
141 #define N_RATES_52	(N_RATES_24 - RATES_52_OFFS)
142 
143 /**
144  * enum iwl_nvm_channel_flags - channel flags in NVM
145  * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
146  * @NVM_CHANNEL_IBSS: usable as an IBSS channel
147  * @NVM_CHANNEL_ACTIVE: active scanning allowed
148  * @NVM_CHANNEL_RADAR: radar detection required
149  * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
150  * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
151  *	on same channel on 2.4 or same UNII band on 5.2
152  * @NVM_CHANNEL_UNIFORM: uniform spreading required
153  * @NVM_CHANNEL_20MHZ: 20 MHz channel okay
154  * @NVM_CHANNEL_40MHZ: 40 MHz channel okay
155  * @NVM_CHANNEL_80MHZ: 80 MHz channel okay
156  * @NVM_CHANNEL_160MHZ: 160 MHz channel okay
157  * @NVM_CHANNEL_DC_HIGH: DC HIGH required/allowed (?)
158  */
159 enum iwl_nvm_channel_flags {
160 	NVM_CHANNEL_VALID		= BIT(0),
161 	NVM_CHANNEL_IBSS		= BIT(1),
162 	NVM_CHANNEL_ACTIVE		= BIT(3),
163 	NVM_CHANNEL_RADAR		= BIT(4),
164 	NVM_CHANNEL_INDOOR_ONLY		= BIT(5),
165 	NVM_CHANNEL_GO_CONCURRENT	= BIT(6),
166 	NVM_CHANNEL_UNIFORM		= BIT(7),
167 	NVM_CHANNEL_20MHZ		= BIT(8),
168 	NVM_CHANNEL_40MHZ		= BIT(9),
169 	NVM_CHANNEL_80MHZ		= BIT(10),
170 	NVM_CHANNEL_160MHZ		= BIT(11),
171 	NVM_CHANNEL_DC_HIGH		= BIT(12),
172 };
173 
174 /**
175  * enum iwl_reg_capa_flags - global flags applied for the whole regulatory
176  * domain.
177  * @REG_CAPA_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
178  *	2.4Ghz band is allowed.
179  * @REG_CAPA_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
180  *	5Ghz band is allowed.
181  * @REG_CAPA_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
182  *	for this regulatory domain (valid only in 5Ghz).
183  * @REG_CAPA_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
184  *	for this regulatory domain (valid only in 5Ghz).
185  * @REG_CAPA_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
186  * @REG_CAPA_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
187  * @REG_CAPA_40MHZ_FORBIDDEN: 11n channel with a width of 40Mhz is forbidden
188  *	for this regulatory domain (valid only in 5Ghz).
189  * @REG_CAPA_DC_HIGH_ENABLED: DC HIGH allowed.
190  * @REG_CAPA_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
191  */
192 enum iwl_reg_capa_flags {
193 	REG_CAPA_BF_CCD_LOW_BAND	= BIT(0),
194 	REG_CAPA_BF_CCD_HIGH_BAND	= BIT(1),
195 	REG_CAPA_160MHZ_ALLOWED		= BIT(2),
196 	REG_CAPA_80MHZ_ALLOWED		= BIT(3),
197 	REG_CAPA_MCS_8_ALLOWED		= BIT(4),
198 	REG_CAPA_MCS_9_ALLOWED		= BIT(5),
199 	REG_CAPA_40MHZ_FORBIDDEN	= BIT(7),
200 	REG_CAPA_DC_HIGH_ENABLED	= BIT(9),
201 	REG_CAPA_11AX_DISABLED		= BIT(10),
202 };
203 
204 /**
205  * enum iwl_reg_capa_flags_v2 - global flags applied for the whole regulatory
206  * domain (version 2).
207  * @REG_CAPA_V2_STRADDLE_DISABLED: Straddle channels (144, 142, 138) are
208  *	disabled.
209  * @REG_CAPA_V2_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
210  *	2.4Ghz band is allowed.
211  * @REG_CAPA_V2_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
212  *	5Ghz band is allowed.
213  * @REG_CAPA_V2_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
214  *	for this regulatory domain (valid only in 5Ghz).
215  * @REG_CAPA_V2_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
216  *	for this regulatory domain (valid only in 5Ghz).
217  * @REG_CAPA_V2_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
218  * @REG_CAPA_V2_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
219  * @REG_CAPA_V2_WEATHER_DISABLED: Weather radar channels (120, 124, 128, 118,
220  *	126, 122) are disabled.
221  * @REG_CAPA_V2_40MHZ_ALLOWED: 11n channel with a width of 40Mhz is allowed
222  *	for this regulatory domain (uvalid only in 5Ghz).
223  * @REG_CAPA_V2_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
224  */
225 enum iwl_reg_capa_flags_v2 {
226 	REG_CAPA_V2_STRADDLE_DISABLED	= BIT(0),
227 	REG_CAPA_V2_BF_CCD_LOW_BAND	= BIT(1),
228 	REG_CAPA_V2_BF_CCD_HIGH_BAND	= BIT(2),
229 	REG_CAPA_V2_160MHZ_ALLOWED	= BIT(3),
230 	REG_CAPA_V2_80MHZ_ALLOWED	= BIT(4),
231 	REG_CAPA_V2_MCS_8_ALLOWED	= BIT(5),
232 	REG_CAPA_V2_MCS_9_ALLOWED	= BIT(6),
233 	REG_CAPA_V2_WEATHER_DISABLED	= BIT(7),
234 	REG_CAPA_V2_40MHZ_ALLOWED	= BIT(8),
235 	REG_CAPA_V2_11AX_DISABLED	= BIT(10),
236 };
237 
238 /*
239 * API v2 for reg_capa_flags is relevant from version 6 and onwards of the
240 * MCC update command response.
241 */
242 #define REG_CAPA_V2_RESP_VER	6
243 
244 /**
245  * struct iwl_reg_capa - struct for global regulatory capabilities, Used for
246  * handling the different APIs of reg_capa_flags.
247  *
248  * @allow_40mhz: 11n channel with a width of 40Mhz is allowed
249  *	for this regulatory domain (valid only in 5Ghz).
250  * @allow_80mhz: 11ac channel with a width of 80Mhz is allowed
251  *	for this regulatory domain (valid only in 5Ghz).
252  * @allow_160mhz: 11ac channel with a width of 160Mhz is allowed
253  *	for this regulatory domain (valid only in 5Ghz).
254  * @disable_11ax: 11ax is forbidden for this regulatory domain.
255  */
256 struct iwl_reg_capa {
257 	u16 allow_40mhz;
258 	u16 allow_80mhz;
259 	u16 allow_160mhz;
260 	u16 disable_11ax;
261 };
262 
263 static inline void iwl_nvm_print_channel_flags(struct device *dev, u32 level,
264 					       int chan, u32 flags)
265 {
266 #define CHECK_AND_PRINT_I(x)	\
267 	((flags & NVM_CHANNEL_##x) ? " " #x : "")
268 
269 	if (!(flags & NVM_CHANNEL_VALID)) {
270 		IWL_DEBUG_DEV(dev, level, "Ch. %d: 0x%x: No traffic\n",
271 			      chan, flags);
272 		return;
273 	}
274 
275 	/* Note: already can print up to 101 characters, 110 is the limit! */
276 	IWL_DEBUG_DEV(dev, level,
277 		      "Ch. %d: 0x%x:%s%s%s%s%s%s%s%s%s%s%s%s\n",
278 		      chan, flags,
279 		      CHECK_AND_PRINT_I(VALID),
280 		      CHECK_AND_PRINT_I(IBSS),
281 		      CHECK_AND_PRINT_I(ACTIVE),
282 		      CHECK_AND_PRINT_I(RADAR),
283 		      CHECK_AND_PRINT_I(INDOOR_ONLY),
284 		      CHECK_AND_PRINT_I(GO_CONCURRENT),
285 		      CHECK_AND_PRINT_I(UNIFORM),
286 		      CHECK_AND_PRINT_I(20MHZ),
287 		      CHECK_AND_PRINT_I(40MHZ),
288 		      CHECK_AND_PRINT_I(80MHZ),
289 		      CHECK_AND_PRINT_I(160MHZ),
290 		      CHECK_AND_PRINT_I(DC_HIGH));
291 #undef CHECK_AND_PRINT_I
292 }
293 
294 static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, enum nl80211_band band,
295 				 u32 nvm_flags, const struct iwl_cfg *cfg)
296 {
297 	u32 flags = IEEE80211_CHAN_NO_HT40;
298 
299 	if (band == NL80211_BAND_2GHZ && (nvm_flags & NVM_CHANNEL_40MHZ)) {
300 		if (ch_num <= LAST_2GHZ_HT_PLUS)
301 			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
302 		if (ch_num >= FIRST_2GHZ_HT_MINUS)
303 			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
304 	} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
305 		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
306 			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
307 		else
308 			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
309 	}
310 	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
311 		flags |= IEEE80211_CHAN_NO_80MHZ;
312 	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
313 		flags |= IEEE80211_CHAN_NO_160MHZ;
314 
315 	if (!(nvm_flags & NVM_CHANNEL_IBSS))
316 		flags |= IEEE80211_CHAN_NO_IR;
317 
318 	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
319 		flags |= IEEE80211_CHAN_NO_IR;
320 
321 	if (nvm_flags & NVM_CHANNEL_RADAR)
322 		flags |= IEEE80211_CHAN_RADAR;
323 
324 	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
325 		flags |= IEEE80211_CHAN_INDOOR_ONLY;
326 
327 	/* Set the GO concurrent flag only in case that NO_IR is set.
328 	 * Otherwise it is meaningless
329 	 */
330 	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
331 	    (flags & IEEE80211_CHAN_NO_IR))
332 		flags |= IEEE80211_CHAN_IR_CONCURRENT;
333 
334 	return flags;
335 }
336 
337 static enum nl80211_band iwl_nl80211_band_from_channel_idx(int ch_idx)
338 {
339 	if (ch_idx >= NUM_2GHZ_CHANNELS + NUM_5GHZ_CHANNELS) {
340 		return NL80211_BAND_6GHZ;
341 	}
342 
343 	if (ch_idx >= NUM_2GHZ_CHANNELS)
344 		return NL80211_BAND_5GHZ;
345 	return NL80211_BAND_2GHZ;
346 }
347 
348 static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
349 				struct iwl_nvm_data *data,
350 				const void * const nvm_ch_flags,
351 				u32 sbands_flags, bool v4)
352 {
353 	int ch_idx;
354 	int n_channels = 0;
355 	struct ieee80211_channel *channel;
356 	u32 ch_flags;
357 	int num_of_ch;
358 	const u16 *nvm_chan;
359 
360 	if (cfg->uhb_supported) {
361 		num_of_ch = IWL_NVM_NUM_CHANNELS_UHB;
362 		nvm_chan = iwl_uhb_nvm_channels;
363 	} else if (cfg->nvm_type == IWL_NVM_EXT) {
364 		num_of_ch = IWL_NVM_NUM_CHANNELS_EXT;
365 		nvm_chan = iwl_ext_nvm_channels;
366 	} else {
367 		num_of_ch = IWL_NVM_NUM_CHANNELS;
368 		nvm_chan = iwl_nvm_channels;
369 	}
370 
371 	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
372 		enum nl80211_band band =
373 			iwl_nl80211_band_from_channel_idx(ch_idx);
374 
375 		if (v4)
376 			ch_flags =
377 				__le32_to_cpup((__le32 *)nvm_ch_flags + ch_idx);
378 		else
379 			ch_flags =
380 				__le16_to_cpup((__le16 *)nvm_ch_flags + ch_idx);
381 
382 		if (band == NL80211_BAND_5GHZ &&
383 		    !data->sku_cap_band_52ghz_enable)
384 			continue;
385 
386 		/* workaround to disable wide channels in 5GHz */
387 		if ((sbands_flags & IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ) &&
388 		    band == NL80211_BAND_5GHZ) {
389 			ch_flags &= ~(NVM_CHANNEL_40MHZ |
390 				     NVM_CHANNEL_80MHZ |
391 				     NVM_CHANNEL_160MHZ);
392 		}
393 
394 		if (ch_flags & NVM_CHANNEL_160MHZ)
395 			data->vht160_supported = true;
396 
397 		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR) &&
398 		    !(ch_flags & NVM_CHANNEL_VALID)) {
399 			/*
400 			 * Channels might become valid later if lar is
401 			 * supported, hence we still want to add them to
402 			 * the list of supported channels to cfg80211.
403 			 */
404 			iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
405 						    nvm_chan[ch_idx], ch_flags);
406 			continue;
407 		}
408 
409 		channel = &data->channels[n_channels];
410 		n_channels++;
411 
412 		channel->hw_value = nvm_chan[ch_idx];
413 		channel->band = band;
414 		channel->center_freq =
415 			ieee80211_channel_to_frequency(
416 				channel->hw_value, channel->band);
417 
418 		/* Initialize regulatory-based run-time data */
419 
420 		/*
421 		 * Default value - highest tx power value.  max_power
422 		 * is not used in mvm, and is used for backwards compatibility
423 		 */
424 		channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
425 
426 		/* don't put limitations in case we're using LAR */
427 		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR))
428 			channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
429 							       ch_idx, band,
430 							       ch_flags, cfg);
431 		else
432 			channel->flags = 0;
433 
434 		/* TODO: Don't put limitations on UHB devices as we still don't
435 		 * have NVM for them
436 		 */
437 		if (cfg->uhb_supported)
438 			channel->flags = 0;
439 		iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
440 					    channel->hw_value, ch_flags);
441 		IWL_DEBUG_EEPROM(dev, "Ch. %d: %ddBm\n",
442 				 channel->hw_value, channel->max_power);
443 	}
444 
445 	return n_channels;
446 }
447 
448 static void iwl_init_vht_hw_capab(struct iwl_trans *trans,
449 				  struct iwl_nvm_data *data,
450 				  struct ieee80211_sta_vht_cap *vht_cap,
451 				  u8 tx_chains, u8 rx_chains)
452 {
453 	const struct iwl_cfg *cfg = trans->cfg;
454 	int num_rx_ants = num_of_ant(rx_chains);
455 	int num_tx_ants = num_of_ant(tx_chains);
456 
457 	vht_cap->vht_supported = true;
458 
459 	vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
460 		       IEEE80211_VHT_CAP_RXSTBC_1 |
461 		       IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
462 		       3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
463 		       IEEE80211_VHT_MAX_AMPDU_1024K <<
464 		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
465 
466 	if (data->vht160_supported)
467 		vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ |
468 				IEEE80211_VHT_CAP_SHORT_GI_160;
469 
470 	if (cfg->vht_mu_mimo_supported)
471 		vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;
472 
473 	if (cfg->ht_params->ldpc)
474 		vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
475 
476 	if (data->sku_cap_mimo_disabled) {
477 		num_rx_ants = 1;
478 		num_tx_ants = 1;
479 	}
480 
481 	if (num_tx_ants > 1)
482 		vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
483 	else
484 		vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
485 
486 	switch (iwlwifi_mod_params.amsdu_size) {
487 	case IWL_AMSDU_DEF:
488 		if (trans->trans_cfg->mq_rx_supported)
489 			vht_cap->cap |=
490 				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
491 		else
492 			vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
493 		break;
494 	case IWL_AMSDU_2K:
495 		if (trans->trans_cfg->mq_rx_supported)
496 			vht_cap->cap |=
497 				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
498 		else
499 			WARN(1, "RB size of 2K is not supported by this device\n");
500 		break;
501 	case IWL_AMSDU_4K:
502 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
503 		break;
504 	case IWL_AMSDU_8K:
505 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
506 		break;
507 	case IWL_AMSDU_12K:
508 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
509 		break;
510 	default:
511 		break;
512 	}
513 
514 	vht_cap->vht_mcs.rx_mcs_map =
515 		cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
516 			    IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
517 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
518 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
519 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
520 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
521 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
522 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);
523 
524 	if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
525 		vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
526 		/* this works because NOT_SUPPORTED == 3 */
527 		vht_cap->vht_mcs.rx_mcs_map |=
528 			cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
529 	}
530 
531 	vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
532 
533 	vht_cap->vht_mcs.tx_highest |=
534 		cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE);
535 }
536 
537 static const struct ieee80211_sband_iftype_data iwl_he_capa[] = {
538 	{
539 		.types_mask = BIT(NL80211_IFTYPE_STATION),
540 		.he_cap = {
541 			.has_he = true,
542 			.he_cap_elem = {
543 				.mac_cap_info[0] =
544 					IEEE80211_HE_MAC_CAP0_HTC_HE |
545 					IEEE80211_HE_MAC_CAP0_TWT_REQ,
546 				.mac_cap_info[1] =
547 					IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
548 					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
549 				.mac_cap_info[2] =
550 					IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP,
551 				.mac_cap_info[3] =
552 					IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
553 					IEEE80211_HE_MAC_CAP3_RX_CTRL_FRAME_TO_MULTIBSS,
554 				.mac_cap_info[4] =
555 					IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU |
556 					IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39,
557 				.mac_cap_info[5] =
558 					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40 |
559 					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41 |
560 					IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU |
561 					IEEE80211_HE_MAC_CAP5_HE_DYNAMIC_SM_PS |
562 					IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX,
563 				.phy_cap_info[0] =
564 					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G |
565 					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
566 					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G,
567 				.phy_cap_info[1] =
568 					IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK |
569 					IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A |
570 					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
571 				.phy_cap_info[2] =
572 					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US |
573 					IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ,
574 				.phy_cap_info[3] =
575 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM |
576 					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
577 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM |
578 					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
579 				.phy_cap_info[4] =
580 					IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE |
581 					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 |
582 					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8,
583 				.phy_cap_info[6] =
584 					IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMING_FB |
585 					IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB |
586 					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
587 				.phy_cap_info[7] =
588 					IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_SUPP |
589 					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI,
590 				.phy_cap_info[8] =
591 					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
592 					IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
593 					IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
594 					IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU |
595 					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242,
596 				.phy_cap_info[9] =
597 					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
598 					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB |
599 					IEEE80211_HE_PHY_CAP9_NOMIMAL_PKT_PADDING_RESERVED,
600 				.phy_cap_info[10] =
601 					IEEE80211_HE_PHY_CAP10_HE_MU_M1RU_MAX_LTF,
602 			},
603 			/*
604 			 * Set default Tx/Rx HE MCS NSS Support field.
605 			 * Indicate support for up to 2 spatial streams and all
606 			 * MCS, without any special cases
607 			 */
608 			.he_mcs_nss_supp = {
609 				.rx_mcs_80 = cpu_to_le16(0xfffa),
610 				.tx_mcs_80 = cpu_to_le16(0xfffa),
611 				.rx_mcs_160 = cpu_to_le16(0xfffa),
612 				.tx_mcs_160 = cpu_to_le16(0xfffa),
613 				.rx_mcs_80p80 = cpu_to_le16(0xffff),
614 				.tx_mcs_80p80 = cpu_to_le16(0xffff),
615 			},
616 			/*
617 			 * Set default PPE thresholds, with PPET16 set to 0,
618 			 * PPET8 set to 7
619 			 */
620 			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
621 		},
622 	},
623 	{
624 		.types_mask = BIT(NL80211_IFTYPE_AP),
625 		.he_cap = {
626 			.has_he = true,
627 			.he_cap_elem = {
628 				.mac_cap_info[0] =
629 					IEEE80211_HE_MAC_CAP0_HTC_HE,
630 				.mac_cap_info[1] =
631 					IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
632 					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
633 				.mac_cap_info[3] =
634 					IEEE80211_HE_MAC_CAP3_OMI_CONTROL,
635 				.phy_cap_info[0] =
636 					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G |
637 					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G,
638 				.phy_cap_info[1] =
639 					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
640 				.phy_cap_info[2] =
641 					IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ |
642 					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US,
643 				.phy_cap_info[3] =
644 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM |
645 					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
646 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM |
647 					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
648 				.phy_cap_info[6] =
649 					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
650 				.phy_cap_info[7] =
651 					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI,
652 				.phy_cap_info[8] =
653 					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
654 					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242,
655 				.phy_cap_info[9] =
656 					IEEE80211_HE_PHY_CAP9_NOMIMAL_PKT_PADDING_RESERVED,
657 			},
658 			/*
659 			 * Set default Tx/Rx HE MCS NSS Support field.
660 			 * Indicate support for up to 2 spatial streams and all
661 			 * MCS, without any special cases
662 			 */
663 			.he_mcs_nss_supp = {
664 				.rx_mcs_80 = cpu_to_le16(0xfffa),
665 				.tx_mcs_80 = cpu_to_le16(0xfffa),
666 				.rx_mcs_160 = cpu_to_le16(0xfffa),
667 				.tx_mcs_160 = cpu_to_le16(0xfffa),
668 				.rx_mcs_80p80 = cpu_to_le16(0xffff),
669 				.tx_mcs_80p80 = cpu_to_le16(0xffff),
670 			},
671 			/*
672 			 * Set default PPE thresholds, with PPET16 set to 0,
673 			 * PPET8 set to 7
674 			 */
675 			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
676 		},
677 	},
678 };
679 
680 static void iwl_init_he_6ghz_capa(struct iwl_trans *trans,
681 				  struct iwl_nvm_data *data,
682 				  struct ieee80211_supported_band *sband,
683 				  u8 tx_chains, u8 rx_chains)
684 {
685 	struct ieee80211_sta_ht_cap ht_cap;
686 	struct ieee80211_sta_vht_cap vht_cap = {};
687 	struct ieee80211_sband_iftype_data *iftype_data;
688 	u16 he_6ghz_capa = 0;
689 	u32 exp;
690 	int i;
691 
692 	if (sband->band != NL80211_BAND_6GHZ)
693 		return;
694 
695 	/* grab HT/VHT capabilities and calculate HE 6 GHz capabilities */
696 	iwl_init_ht_hw_capab(trans, data, &ht_cap, NL80211_BAND_5GHZ,
697 			     tx_chains, rx_chains);
698 	WARN_ON(!ht_cap.ht_supported);
699 	iwl_init_vht_hw_capab(trans, data, &vht_cap, tx_chains, rx_chains);
700 	WARN_ON(!vht_cap.vht_supported);
701 
702 	he_6ghz_capa |=
703 		u16_encode_bits(ht_cap.ampdu_density,
704 				IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START);
705 	exp = u32_get_bits(vht_cap.cap,
706 			   IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK);
707 	he_6ghz_capa |=
708 		u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP);
709 	exp = u32_get_bits(vht_cap.cap, IEEE80211_VHT_CAP_MAX_MPDU_MASK);
710 	he_6ghz_capa |=
711 		u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN);
712 	/* we don't support extended_ht_cap_info anywhere, so no RD_RESPONDER */
713 	if (vht_cap.cap & IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN)
714 		he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS;
715 	if (vht_cap.cap & IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN)
716 		he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS;
717 
718 	IWL_DEBUG_EEPROM(trans->dev, "he_6ghz_capa=0x%x\n", he_6ghz_capa);
719 
720 	/* we know it's writable - we set it before ourselves */
721 	iftype_data = (void *)sband->iftype_data;
722 	for (i = 0; i < sband->n_iftype_data; i++)
723 		iftype_data[i].he_6ghz_capa.capa = cpu_to_le16(he_6ghz_capa);
724 }
725 
726 static void
727 iwl_nvm_fixup_sband_iftd(struct iwl_trans *trans,
728 			 struct ieee80211_supported_band *sband,
729 			 struct ieee80211_sband_iftype_data *iftype_data,
730 			 u8 tx_chains, u8 rx_chains,
731 			 const struct iwl_fw *fw)
732 {
733 	bool is_ap = iftype_data->types_mask & BIT(NL80211_IFTYPE_AP);
734 
735 	/* Advertise an A-MPDU exponent extension based on
736 	 * operating band
737 	 */
738 	if (sband->band != NL80211_BAND_2GHZ)
739 		iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
740 			IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_1;
741 	else
742 		iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
743 			IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3;
744 
745 	if (is_ap && iwlwifi_mod_params.nvm_file)
746 		iftype_data->he_cap.he_cap_elem.phy_cap_info[0] |=
747 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G;
748 
749 	if ((tx_chains & rx_chains) == ANT_AB) {
750 		iftype_data->he_cap.he_cap_elem.phy_cap_info[2] |=
751 			IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ;
752 		iftype_data->he_cap.he_cap_elem.phy_cap_info[5] |=
753 			IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 |
754 			IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2;
755 		if (!is_ap)
756 			iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |=
757 				IEEE80211_HE_PHY_CAP7_MAX_NC_2;
758 	} else if (!is_ap) {
759 		/* If not 2x2, we need to indicate 1x1 in the
760 		 * Midamble RX Max NSTS - but not for AP mode
761 		 */
762 		iftype_data->he_cap.he_cap_elem.phy_cap_info[1] &=
763 			~IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS;
764 		iftype_data->he_cap.he_cap_elem.phy_cap_info[2] &=
765 			~IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS;
766 		iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |=
767 			IEEE80211_HE_PHY_CAP7_MAX_NC_1;
768 	}
769 
770 	switch (CSR_HW_RFID_TYPE(trans->hw_rf_id)) {
771 	case IWL_CFG_RF_TYPE_GF:
772 	case IWL_CFG_RF_TYPE_MR:
773 		iftype_data->he_cap.he_cap_elem.phy_cap_info[9] |=
774 			IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU;
775 		if (!is_ap)
776 			iftype_data->he_cap.he_cap_elem.phy_cap_info[9] |=
777 				IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU;
778 		break;
779 	}
780 
781 	if (fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_BROADCAST_TWT))
782 		iftype_data->he_cap.he_cap_elem.mac_cap_info[2] |=
783 			IEEE80211_HE_MAC_CAP2_BCAST_TWT;
784 }
785 
786 static void iwl_init_he_hw_capab(struct iwl_trans *trans,
787 				 struct iwl_nvm_data *data,
788 				 struct ieee80211_supported_band *sband,
789 				 u8 tx_chains, u8 rx_chains,
790 				 const struct iwl_fw *fw)
791 {
792 	struct ieee80211_sband_iftype_data *iftype_data;
793 	int i;
794 
795 	/* should only initialize once */
796 	if (WARN_ON(sband->iftype_data))
797 		return;
798 
799 	BUILD_BUG_ON(sizeof(data->iftd.low) != sizeof(iwl_he_capa));
800 	BUILD_BUG_ON(sizeof(data->iftd.high) != sizeof(iwl_he_capa));
801 
802 	switch (sband->band) {
803 	case NL80211_BAND_2GHZ:
804 		iftype_data = data->iftd.low;
805 		break;
806 	case NL80211_BAND_5GHZ:
807 	case NL80211_BAND_6GHZ:
808 		iftype_data = data->iftd.high;
809 		break;
810 	default:
811 		WARN_ON(1);
812 		return;
813 	}
814 
815 	memcpy(iftype_data, iwl_he_capa, sizeof(iwl_he_capa));
816 
817 	sband->iftype_data = iftype_data;
818 	sband->n_iftype_data = ARRAY_SIZE(iwl_he_capa);
819 
820 	for (i = 0; i < sband->n_iftype_data; i++)
821 		iwl_nvm_fixup_sband_iftd(trans, sband, &iftype_data[i],
822 					 tx_chains, rx_chains, fw);
823 
824 	iwl_init_he_6ghz_capa(trans, data, sband, tx_chains, rx_chains);
825 }
826 
827 static void iwl_init_sbands(struct iwl_trans *trans,
828 			    struct iwl_nvm_data *data,
829 			    const void *nvm_ch_flags, u8 tx_chains,
830 			    u8 rx_chains, u32 sbands_flags, bool v4,
831 			    const struct iwl_fw *fw)
832 {
833 	struct device *dev = trans->dev;
834 	const struct iwl_cfg *cfg = trans->cfg;
835 	int n_channels;
836 	int n_used = 0;
837 	struct ieee80211_supported_band *sband;
838 
839 	n_channels = iwl_init_channel_map(dev, cfg, data, nvm_ch_flags,
840 					  sbands_flags, v4);
841 	sband = &data->bands[NL80211_BAND_2GHZ];
842 	sband->band = NL80211_BAND_2GHZ;
843 	sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
844 	sband->n_bitrates = N_RATES_24;
845 	n_used += iwl_init_sband_channels(data, sband, n_channels,
846 					  NL80211_BAND_2GHZ);
847 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ,
848 			     tx_chains, rx_chains);
849 
850 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
851 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
852 				     fw);
853 
854 	sband = &data->bands[NL80211_BAND_5GHZ];
855 	sband->band = NL80211_BAND_5GHZ;
856 	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
857 	sband->n_bitrates = N_RATES_52;
858 	n_used += iwl_init_sband_channels(data, sband, n_channels,
859 					  NL80211_BAND_5GHZ);
860 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ,
861 			     tx_chains, rx_chains);
862 	if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
863 		iwl_init_vht_hw_capab(trans, data, &sband->vht_cap,
864 				      tx_chains, rx_chains);
865 
866 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
867 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
868 				     fw);
869 
870 	/* 6GHz band. */
871 	sband = &data->bands[NL80211_BAND_6GHZ];
872 	sband->band = NL80211_BAND_6GHZ;
873 	/* use the same rates as 5GHz band */
874 	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
875 	sband->n_bitrates = N_RATES_52;
876 	n_used += iwl_init_sband_channels(data, sband, n_channels,
877 					  NL80211_BAND_6GHZ);
878 
879 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
880 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
881 				     fw);
882 	else
883 		sband->n_channels = 0;
884 	if (n_channels != n_used)
885 		IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
886 			    n_used, n_channels);
887 }
888 
889 static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
890 		       const __le16 *phy_sku)
891 {
892 	if (cfg->nvm_type != IWL_NVM_EXT)
893 		return le16_to_cpup(nvm_sw + SKU);
894 
895 	return le32_to_cpup((__le32 *)(phy_sku + SKU_FAMILY_8000));
896 }
897 
898 static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
899 {
900 	if (cfg->nvm_type != IWL_NVM_EXT)
901 		return le16_to_cpup(nvm_sw + NVM_VERSION);
902 	else
903 		return le32_to_cpup((__le32 *)(nvm_sw +
904 					       NVM_VERSION_EXT_NVM));
905 }
906 
907 static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
908 			     const __le16 *phy_sku)
909 {
910 	if (cfg->nvm_type != IWL_NVM_EXT)
911 		return le16_to_cpup(nvm_sw + RADIO_CFG);
912 
913 	return le32_to_cpup((__le32 *)(phy_sku + RADIO_CFG_FAMILY_EXT_NVM));
914 
915 }
916 
917 static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
918 {
919 	int n_hw_addr;
920 
921 	if (cfg->nvm_type != IWL_NVM_EXT)
922 		return le16_to_cpup(nvm_sw + N_HW_ADDRS);
923 
924 	n_hw_addr = le32_to_cpup((__le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000));
925 
926 	return n_hw_addr & N_HW_ADDR_MASK;
927 }
928 
929 static void iwl_set_radio_cfg(const struct iwl_cfg *cfg,
930 			      struct iwl_nvm_data *data,
931 			      u32 radio_cfg)
932 {
933 	if (cfg->nvm_type != IWL_NVM_EXT) {
934 		data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
935 		data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
936 		data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
937 		data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
938 		return;
939 	}
940 
941 	/* set the radio configuration for family 8000 */
942 	data->radio_cfg_type = EXT_NVM_RF_CFG_TYPE_MSK(radio_cfg);
943 	data->radio_cfg_step = EXT_NVM_RF_CFG_STEP_MSK(radio_cfg);
944 	data->radio_cfg_dash = EXT_NVM_RF_CFG_DASH_MSK(radio_cfg);
945 	data->radio_cfg_pnum = EXT_NVM_RF_CFG_FLAVOR_MSK(radio_cfg);
946 	data->valid_tx_ant = EXT_NVM_RF_CFG_TX_ANT_MSK(radio_cfg);
947 	data->valid_rx_ant = EXT_NVM_RF_CFG_RX_ANT_MSK(radio_cfg);
948 }
949 
950 static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest)
951 {
952 	const u8 *hw_addr;
953 
954 	hw_addr = (const u8 *)&mac_addr0;
955 	dest[0] = hw_addr[3];
956 	dest[1] = hw_addr[2];
957 	dest[2] = hw_addr[1];
958 	dest[3] = hw_addr[0];
959 
960 	hw_addr = (const u8 *)&mac_addr1;
961 	dest[4] = hw_addr[1];
962 	dest[5] = hw_addr[0];
963 }
964 
965 static void iwl_set_hw_address_from_csr(struct iwl_trans *trans,
966 					struct iwl_nvm_data *data)
967 {
968 	__le32 mac_addr0 = cpu_to_le32(iwl_read32(trans,
969 						  CSR_MAC_ADDR0_STRAP(trans)));
970 	__le32 mac_addr1 = cpu_to_le32(iwl_read32(trans,
971 						  CSR_MAC_ADDR1_STRAP(trans)));
972 
973 	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
974 	/*
975 	 * If the OEM fused a valid address, use it instead of the one in the
976 	 * OTP
977 	 */
978 	if (is_valid_ether_addr(data->hw_addr))
979 		return;
980 
981 	mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_OTP(trans)));
982 	mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_OTP(trans)));
983 
984 	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
985 }
986 
987 static void iwl_set_hw_address_family_8000(struct iwl_trans *trans,
988 					   const struct iwl_cfg *cfg,
989 					   struct iwl_nvm_data *data,
990 					   const __le16 *mac_override,
991 					   const __be16 *nvm_hw)
992 {
993 	const u8 *hw_addr;
994 
995 	if (mac_override) {
996 		static const u8 reserved_mac[] = {
997 			0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
998 		};
999 
1000 		hw_addr = (const u8 *)(mac_override +
1001 				 MAC_ADDRESS_OVERRIDE_EXT_NVM);
1002 
1003 		/*
1004 		 * Store the MAC address from MAO section.
1005 		 * No byte swapping is required in MAO section
1006 		 */
1007 		memcpy(data->hw_addr, hw_addr, ETH_ALEN);
1008 
1009 		/*
1010 		 * Force the use of the OTP MAC address in case of reserved MAC
1011 		 * address in the NVM, or if address is given but invalid.
1012 		 */
1013 		if (is_valid_ether_addr(data->hw_addr) &&
1014 		    memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0)
1015 			return;
1016 
1017 		IWL_ERR(trans,
1018 			"mac address from nvm override section is not valid\n");
1019 	}
1020 
1021 	if (nvm_hw) {
1022 		/* read the mac address from WFMP registers */
1023 		__le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans,
1024 						WFMP_MAC_ADDR_0));
1025 		__le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans,
1026 						WFMP_MAC_ADDR_1));
1027 
1028 		iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1029 
1030 		return;
1031 	}
1032 
1033 	IWL_ERR(trans, "mac address is not found\n");
1034 }
1035 
1036 static int iwl_set_hw_address(struct iwl_trans *trans,
1037 			      const struct iwl_cfg *cfg,
1038 			      struct iwl_nvm_data *data, const __be16 *nvm_hw,
1039 			      const __le16 *mac_override)
1040 {
1041 	if (cfg->mac_addr_from_csr) {
1042 		iwl_set_hw_address_from_csr(trans, data);
1043 	} else if (cfg->nvm_type != IWL_NVM_EXT) {
1044 		const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR);
1045 
1046 		/* The byte order is little endian 16 bit, meaning 214365 */
1047 		data->hw_addr[0] = hw_addr[1];
1048 		data->hw_addr[1] = hw_addr[0];
1049 		data->hw_addr[2] = hw_addr[3];
1050 		data->hw_addr[3] = hw_addr[2];
1051 		data->hw_addr[4] = hw_addr[5];
1052 		data->hw_addr[5] = hw_addr[4];
1053 	} else {
1054 		iwl_set_hw_address_family_8000(trans, cfg, data,
1055 					       mac_override, nvm_hw);
1056 	}
1057 
1058 	if (!is_valid_ether_addr(data->hw_addr)) {
1059 		IWL_ERR(trans, "no valid mac address was found\n");
1060 		return -EINVAL;
1061 	}
1062 
1063 	IWL_INFO(trans, "base HW address: %pM\n", data->hw_addr);
1064 
1065 	return 0;
1066 }
1067 
1068 static bool
1069 iwl_nvm_no_wide_in_5ghz(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1070 			const __be16 *nvm_hw)
1071 {
1072 	/*
1073 	 * Workaround a bug in Indonesia SKUs where the regulatory in
1074 	 * some 7000-family OTPs erroneously allow wide channels in
1075 	 * 5GHz.  To check for Indonesia, we take the SKU value from
1076 	 * bits 1-4 in the subsystem ID and check if it is either 5 or
1077 	 * 9.  In those cases, we need to force-disable wide channels
1078 	 * in 5GHz otherwise the FW will throw a sysassert when we try
1079 	 * to use them.
1080 	 */
1081 	if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_7000) {
1082 		/*
1083 		 * Unlike the other sections in the NVM, the hw
1084 		 * section uses big-endian.
1085 		 */
1086 		u16 subsystem_id = be16_to_cpup(nvm_hw + SUBSYSTEM_ID);
1087 		u8 sku = (subsystem_id & 0x1e) >> 1;
1088 
1089 		if (sku == 5 || sku == 9) {
1090 			IWL_DEBUG_EEPROM(trans->dev,
1091 					 "disabling wide channels in 5GHz (0x%0x %d)\n",
1092 					 subsystem_id, sku);
1093 			return true;
1094 		}
1095 	}
1096 
1097 	return false;
1098 }
1099 
1100 struct iwl_nvm_data *
1101 iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1102 		   const struct iwl_fw *fw,
1103 		   const __be16 *nvm_hw, const __le16 *nvm_sw,
1104 		   const __le16 *nvm_calib, const __le16 *regulatory,
1105 		   const __le16 *mac_override, const __le16 *phy_sku,
1106 		   u8 tx_chains, u8 rx_chains)
1107 {
1108 	struct iwl_nvm_data *data;
1109 	bool lar_enabled;
1110 	u32 sku, radio_cfg;
1111 	u32 sbands_flags = 0;
1112 	u16 lar_config;
1113 	const __le16 *ch_section;
1114 
1115 	if (cfg->uhb_supported)
1116 		data = kzalloc(struct_size(data, channels,
1117 					   IWL_NVM_NUM_CHANNELS_UHB),
1118 					   GFP_KERNEL);
1119 	else if (cfg->nvm_type != IWL_NVM_EXT)
1120 		data = kzalloc(struct_size(data, channels,
1121 					   IWL_NVM_NUM_CHANNELS),
1122 					   GFP_KERNEL);
1123 	else
1124 		data = kzalloc(struct_size(data, channels,
1125 					   IWL_NVM_NUM_CHANNELS_EXT),
1126 					   GFP_KERNEL);
1127 	if (!data)
1128 		return NULL;
1129 
1130 	data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
1131 
1132 	radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku);
1133 	iwl_set_radio_cfg(cfg, data, radio_cfg);
1134 	if (data->valid_tx_ant)
1135 		tx_chains &= data->valid_tx_ant;
1136 	if (data->valid_rx_ant)
1137 		rx_chains &= data->valid_rx_ant;
1138 
1139 	sku = iwl_get_sku(cfg, nvm_sw, phy_sku);
1140 	data->sku_cap_band_24ghz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
1141 	data->sku_cap_band_52ghz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
1142 	data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
1143 	if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
1144 		data->sku_cap_11n_enable = false;
1145 	data->sku_cap_11ac_enable = data->sku_cap_11n_enable &&
1146 				    (sku & NVM_SKU_CAP_11AC_ENABLE);
1147 	data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE;
1148 
1149 	data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
1150 
1151 	if (cfg->nvm_type != IWL_NVM_EXT) {
1152 		/* Checking for required sections */
1153 		if (!nvm_calib) {
1154 			IWL_ERR(trans,
1155 				"Can't parse empty Calib NVM sections\n");
1156 			kfree(data);
1157 			return NULL;
1158 		}
1159 
1160 		ch_section = cfg->nvm_type == IWL_NVM_SDP ?
1161 			     &regulatory[NVM_CHANNELS_SDP] :
1162 			     &nvm_sw[NVM_CHANNELS];
1163 
1164 		/* in family 8000 Xtal calibration values moved to OTP */
1165 		data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB);
1166 		data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1);
1167 		lar_enabled = true;
1168 	} else {
1169 		u16 lar_offset = data->nvm_version < 0xE39 ?
1170 				 NVM_LAR_OFFSET_OLD :
1171 				 NVM_LAR_OFFSET;
1172 
1173 		lar_config = le16_to_cpup(regulatory + lar_offset);
1174 		data->lar_enabled = !!(lar_config &
1175 				       NVM_LAR_ENABLED);
1176 		lar_enabled = data->lar_enabled;
1177 		ch_section = &regulatory[NVM_CHANNELS_EXTENDED];
1178 	}
1179 
1180 	/* If no valid mac address was found - bail out */
1181 	if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) {
1182 		kfree(data);
1183 		return NULL;
1184 	}
1185 
1186 	if (lar_enabled &&
1187 	    fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT))
1188 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1189 
1190 	if (iwl_nvm_no_wide_in_5ghz(trans, cfg, nvm_hw))
1191 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ;
1192 
1193 	iwl_init_sbands(trans, data, ch_section, tx_chains, rx_chains,
1194 			sbands_flags, false, fw);
1195 	data->calib_version = 255;
1196 
1197 	return data;
1198 }
1199 IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
1200 
1201 static u32 iwl_nvm_get_regdom_bw_flags(const u16 *nvm_chan,
1202 				       int ch_idx, u16 nvm_flags,
1203 				       struct iwl_reg_capa reg_capa,
1204 				       const struct iwl_cfg *cfg)
1205 {
1206 	u32 flags = NL80211_RRF_NO_HT40;
1207 
1208 	if (ch_idx < NUM_2GHZ_CHANNELS &&
1209 	    (nvm_flags & NVM_CHANNEL_40MHZ)) {
1210 		if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
1211 			flags &= ~NL80211_RRF_NO_HT40PLUS;
1212 		if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
1213 			flags &= ~NL80211_RRF_NO_HT40MINUS;
1214 	} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
1215 		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
1216 			flags &= ~NL80211_RRF_NO_HT40PLUS;
1217 		else
1218 			flags &= ~NL80211_RRF_NO_HT40MINUS;
1219 	}
1220 
1221 	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
1222 		flags |= NL80211_RRF_NO_80MHZ;
1223 	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
1224 		flags |= NL80211_RRF_NO_160MHZ;
1225 
1226 	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
1227 		flags |= NL80211_RRF_NO_IR;
1228 
1229 	if (nvm_flags & NVM_CHANNEL_RADAR)
1230 		flags |= NL80211_RRF_DFS;
1231 
1232 	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
1233 		flags |= NL80211_RRF_NO_OUTDOOR;
1234 
1235 	/* Set the GO concurrent flag only in case that NO_IR is set.
1236 	 * Otherwise it is meaningless
1237 	 */
1238 	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
1239 	    (flags & NL80211_RRF_NO_IR))
1240 		flags |= NL80211_RRF_GO_CONCURRENT;
1241 
1242 	/*
1243 	 * reg_capa is per regulatory domain so apply it for every channel
1244 	 */
1245 	if (ch_idx >= NUM_2GHZ_CHANNELS) {
1246 		if (!reg_capa.allow_40mhz)
1247 			flags |= NL80211_RRF_NO_HT40;
1248 
1249 		if (!reg_capa.allow_80mhz)
1250 			flags |= NL80211_RRF_NO_80MHZ;
1251 
1252 		if (!reg_capa.allow_160mhz)
1253 			flags |= NL80211_RRF_NO_160MHZ;
1254 	}
1255 	if (reg_capa.disable_11ax)
1256 		flags |= NL80211_RRF_NO_HE;
1257 
1258 	return flags;
1259 }
1260 
1261 static struct iwl_reg_capa iwl_get_reg_capa(u16 flags, u8 resp_ver)
1262 {
1263 	struct iwl_reg_capa reg_capa;
1264 
1265 	if (resp_ver >= REG_CAPA_V2_RESP_VER) {
1266 		reg_capa.allow_40mhz = flags & REG_CAPA_V2_40MHZ_ALLOWED;
1267 		reg_capa.allow_80mhz = flags & REG_CAPA_V2_80MHZ_ALLOWED;
1268 		reg_capa.allow_160mhz = flags & REG_CAPA_V2_160MHZ_ALLOWED;
1269 		reg_capa.disable_11ax = flags & REG_CAPA_V2_11AX_DISABLED;
1270 	} else {
1271 		reg_capa.allow_40mhz = !(flags & REG_CAPA_40MHZ_FORBIDDEN);
1272 		reg_capa.allow_80mhz = flags & REG_CAPA_80MHZ_ALLOWED;
1273 		reg_capa.allow_160mhz = flags & REG_CAPA_160MHZ_ALLOWED;
1274 		reg_capa.disable_11ax = flags & REG_CAPA_11AX_DISABLED;
1275 	}
1276 	return reg_capa;
1277 }
1278 
1279 struct ieee80211_regdomain *
1280 iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg,
1281 		       int num_of_ch, __le32 *channels, u16 fw_mcc,
1282 		       u16 geo_info, u16 cap, u8 resp_ver)
1283 {
1284 	int ch_idx;
1285 	u16 ch_flags;
1286 	u32 reg_rule_flags, prev_reg_rule_flags = 0;
1287 	const u16 *nvm_chan;
1288 	struct ieee80211_regdomain *regd, *copy_rd;
1289 	struct ieee80211_reg_rule *rule;
1290 	enum nl80211_band band;
1291 	int center_freq, prev_center_freq = 0;
1292 	int valid_rules = 0;
1293 	bool new_rule;
1294 	int max_num_ch;
1295 	struct iwl_reg_capa reg_capa;
1296 
1297 	if (cfg->uhb_supported) {
1298 		max_num_ch = IWL_NVM_NUM_CHANNELS_UHB;
1299 		nvm_chan = iwl_uhb_nvm_channels;
1300 	} else if (cfg->nvm_type == IWL_NVM_EXT) {
1301 		max_num_ch = IWL_NVM_NUM_CHANNELS_EXT;
1302 		nvm_chan = iwl_ext_nvm_channels;
1303 	} else {
1304 		max_num_ch = IWL_NVM_NUM_CHANNELS;
1305 		nvm_chan = iwl_nvm_channels;
1306 	}
1307 
1308 	if (WARN_ON(num_of_ch > max_num_ch))
1309 		num_of_ch = max_num_ch;
1310 
1311 	if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES))
1312 		return ERR_PTR(-EINVAL);
1313 
1314 	IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n",
1315 		      num_of_ch);
1316 
1317 	/* build a regdomain rule for every valid channel */
1318 	regd = kzalloc(struct_size(regd, reg_rules, num_of_ch), GFP_KERNEL);
1319 	if (!regd)
1320 		return ERR_PTR(-ENOMEM);
1321 
1322 	/* set alpha2 from FW. */
1323 	regd->alpha2[0] = fw_mcc >> 8;
1324 	regd->alpha2[1] = fw_mcc & 0xff;
1325 
1326 	/* parse regulatory capability flags */
1327 	reg_capa = iwl_get_reg_capa(cap, resp_ver);
1328 
1329 	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
1330 		ch_flags = (u16)__le32_to_cpup(channels + ch_idx);
1331 		band = iwl_nl80211_band_from_channel_idx(ch_idx);
1332 		center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx],
1333 							     band);
1334 		new_rule = false;
1335 
1336 		if (!(ch_flags & NVM_CHANNEL_VALID)) {
1337 			iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1338 						    nvm_chan[ch_idx], ch_flags);
1339 			continue;
1340 		}
1341 
1342 		reg_rule_flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx,
1343 							     ch_flags, reg_capa,
1344 							     cfg);
1345 
1346 		/* we can't continue the same rule */
1347 		if (ch_idx == 0 || prev_reg_rule_flags != reg_rule_flags ||
1348 		    center_freq - prev_center_freq > 20) {
1349 			valid_rules++;
1350 			new_rule = true;
1351 		}
1352 
1353 		rule = &regd->reg_rules[valid_rules - 1];
1354 
1355 		if (new_rule)
1356 			rule->freq_range.start_freq_khz =
1357 						MHZ_TO_KHZ(center_freq - 10);
1358 
1359 		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10);
1360 
1361 		/* this doesn't matter - not used by FW */
1362 		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
1363 		rule->power_rule.max_eirp =
1364 			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
1365 
1366 		rule->flags = reg_rule_flags;
1367 
1368 		/* rely on auto-calculation to merge BW of contiguous chans */
1369 		rule->flags |= NL80211_RRF_AUTO_BW;
1370 		rule->freq_range.max_bandwidth_khz = 0;
1371 
1372 		prev_center_freq = center_freq;
1373 		prev_reg_rule_flags = reg_rule_flags;
1374 
1375 		iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1376 					    nvm_chan[ch_idx], ch_flags);
1377 
1378 		if (!(geo_info & GEO_WMM_ETSI_5GHZ_INFO) ||
1379 		    band == NL80211_BAND_2GHZ)
1380 			continue;
1381 
1382 		reg_query_regdb_wmm(regd->alpha2, center_freq, rule);
1383 	}
1384 
1385 	/*
1386 	 * Certain firmware versions might report no valid channels
1387 	 * if booted in RF-kill, i.e. not all calibrations etc. are
1388 	 * running. We'll get out of this situation later when the
1389 	 * rfkill is removed and we update the regdomain again, but
1390 	 * since cfg80211 doesn't accept an empty regdomain, add a
1391 	 * dummy (unusable) rule here in this case so we can init.
1392 	 */
1393 	if (!valid_rules) {
1394 		valid_rules = 1;
1395 		rule = &regd->reg_rules[valid_rules - 1];
1396 		rule->freq_range.start_freq_khz = MHZ_TO_KHZ(2412);
1397 		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(2413);
1398 		rule->freq_range.max_bandwidth_khz = MHZ_TO_KHZ(1);
1399 		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
1400 		rule->power_rule.max_eirp =
1401 			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
1402 	}
1403 
1404 	regd->n_reg_rules = valid_rules;
1405 
1406 	/*
1407 	 * Narrow down regdom for unused regulatory rules to prevent hole
1408 	 * between reg rules to wmm rules.
1409 	 */
1410 	copy_rd = kmemdup(regd, struct_size(regd, reg_rules, valid_rules),
1411 			  GFP_KERNEL);
1412 	if (!copy_rd)
1413 		copy_rd = ERR_PTR(-ENOMEM);
1414 
1415 	kfree(regd);
1416 	return copy_rd;
1417 }
1418 IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);
1419 
1420 #define IWL_MAX_NVM_SECTION_SIZE	0x1b58
1421 #define IWL_MAX_EXT_NVM_SECTION_SIZE	0x1ffc
1422 #define MAX_NVM_FILE_LEN	16384
1423 
1424 void iwl_nvm_fixups(u32 hw_id, unsigned int section, u8 *data,
1425 		    unsigned int len)
1426 {
1427 #define IWL_4165_DEVICE_ID	0x5501
1428 #define NVM_SKU_CAP_MIMO_DISABLE BIT(5)
1429 
1430 	if (section == NVM_SECTION_TYPE_PHY_SKU &&
1431 	    hw_id == IWL_4165_DEVICE_ID && data && len >= 5 &&
1432 	    (data[4] & NVM_SKU_CAP_MIMO_DISABLE))
1433 		/* OTP 0x52 bug work around: it's a 1x1 device */
1434 		data[3] = ANT_B | (ANT_B << 4);
1435 }
1436 IWL_EXPORT_SYMBOL(iwl_nvm_fixups);
1437 
1438 /*
1439  * Reads external NVM from a file into mvm->nvm_sections
1440  *
1441  * HOW TO CREATE THE NVM FILE FORMAT:
1442  * ------------------------------
1443  * 1. create hex file, format:
1444  *      3800 -> header
1445  *      0000 -> header
1446  *      5a40 -> data
1447  *
1448  *   rev - 6 bit (word1)
1449  *   len - 10 bit (word1)
1450  *   id - 4 bit (word2)
1451  *   rsv - 12 bit (word2)
1452  *
1453  * 2. flip 8bits with 8 bits per line to get the right NVM file format
1454  *
1455  * 3. create binary file from the hex file
1456  *
1457  * 4. save as "iNVM_xxx.bin" under /lib/firmware
1458  */
1459 int iwl_read_external_nvm(struct iwl_trans *trans,
1460 			  const char *nvm_file_name,
1461 			  struct iwl_nvm_section *nvm_sections)
1462 {
1463 	int ret, section_size;
1464 	u16 section_id;
1465 	const struct firmware *fw_entry;
1466 	const struct {
1467 		__le16 word1;
1468 		__le16 word2;
1469 		u8 data[];
1470 	} *file_sec;
1471 	const u8 *eof;
1472 	u8 *temp;
1473 	int max_section_size;
1474 	const __le32 *dword_buff;
1475 
1476 #define NVM_WORD1_LEN(x) (8 * (x & 0x03FF))
1477 #define NVM_WORD2_ID(x) (x >> 12)
1478 #define EXT_NVM_WORD2_LEN(x) (2 * (((x) & 0xFF) << 8 | (x) >> 8))
1479 #define EXT_NVM_WORD1_ID(x) ((x) >> 4)
1480 #define NVM_HEADER_0	(0x2A504C54)
1481 #define NVM_HEADER_1	(0x4E564D2A)
1482 #define NVM_HEADER_SIZE	(4 * sizeof(u32))
1483 
1484 	IWL_DEBUG_EEPROM(trans->dev, "Read from external NVM\n");
1485 
1486 	/* Maximal size depends on NVM version */
1487 	if (trans->cfg->nvm_type != IWL_NVM_EXT)
1488 		max_section_size = IWL_MAX_NVM_SECTION_SIZE;
1489 	else
1490 		max_section_size = IWL_MAX_EXT_NVM_SECTION_SIZE;
1491 
1492 	/*
1493 	 * Obtain NVM image via request_firmware. Since we already used
1494 	 * request_firmware_nowait() for the firmware binary load and only
1495 	 * get here after that we assume the NVM request can be satisfied
1496 	 * synchronously.
1497 	 */
1498 	ret = request_firmware(&fw_entry, nvm_file_name, trans->dev);
1499 	if (ret) {
1500 		IWL_ERR(trans, "ERROR: %s isn't available %d\n",
1501 			nvm_file_name, ret);
1502 		return ret;
1503 	}
1504 
1505 	IWL_INFO(trans, "Loaded NVM file %s (%zu bytes)\n",
1506 		 nvm_file_name, fw_entry->size);
1507 
1508 	if (fw_entry->size > MAX_NVM_FILE_LEN) {
1509 		IWL_ERR(trans, "NVM file too large\n");
1510 		ret = -EINVAL;
1511 		goto out;
1512 	}
1513 
1514 	eof = fw_entry->data + fw_entry->size;
1515 	dword_buff = (__le32 *)fw_entry->data;
1516 
1517 	/* some NVM file will contain a header.
1518 	 * The header is identified by 2 dwords header as follow:
1519 	 * dword[0] = 0x2A504C54
1520 	 * dword[1] = 0x4E564D2A
1521 	 *
1522 	 * This header must be skipped when providing the NVM data to the FW.
1523 	 */
1524 	if (fw_entry->size > NVM_HEADER_SIZE &&
1525 	    dword_buff[0] == cpu_to_le32(NVM_HEADER_0) &&
1526 	    dword_buff[1] == cpu_to_le32(NVM_HEADER_1)) {
1527 		file_sec = (void *)(fw_entry->data + NVM_HEADER_SIZE);
1528 		IWL_INFO(trans, "NVM Version %08X\n", le32_to_cpu(dword_buff[2]));
1529 		IWL_INFO(trans, "NVM Manufacturing date %08X\n",
1530 			 le32_to_cpu(dword_buff[3]));
1531 
1532 		/* nvm file validation, dword_buff[2] holds the file version */
1533 		if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_8000 &&
1534 		    CSR_HW_REV_STEP(trans->hw_rev) == SILICON_C_STEP &&
1535 		    le32_to_cpu(dword_buff[2]) < 0xE4A) {
1536 			ret = -EFAULT;
1537 			goto out;
1538 		}
1539 	} else {
1540 		file_sec = (void *)fw_entry->data;
1541 	}
1542 
1543 	while (true) {
1544 		if (file_sec->data > eof) {
1545 			IWL_ERR(trans,
1546 				"ERROR - NVM file too short for section header\n");
1547 			ret = -EINVAL;
1548 			break;
1549 		}
1550 
1551 		/* check for EOF marker */
1552 		if (!file_sec->word1 && !file_sec->word2) {
1553 			ret = 0;
1554 			break;
1555 		}
1556 
1557 		if (trans->cfg->nvm_type != IWL_NVM_EXT) {
1558 			section_size =
1559 				2 * NVM_WORD1_LEN(le16_to_cpu(file_sec->word1));
1560 			section_id = NVM_WORD2_ID(le16_to_cpu(file_sec->word2));
1561 		} else {
1562 			section_size = 2 * EXT_NVM_WORD2_LEN(
1563 						le16_to_cpu(file_sec->word2));
1564 			section_id = EXT_NVM_WORD1_ID(
1565 						le16_to_cpu(file_sec->word1));
1566 		}
1567 
1568 		if (section_size > max_section_size) {
1569 			IWL_ERR(trans, "ERROR - section too large (%d)\n",
1570 				section_size);
1571 			ret = -EINVAL;
1572 			break;
1573 		}
1574 
1575 		if (!section_size) {
1576 			IWL_ERR(trans, "ERROR - section empty\n");
1577 			ret = -EINVAL;
1578 			break;
1579 		}
1580 
1581 		if (file_sec->data + section_size > eof) {
1582 			IWL_ERR(trans,
1583 				"ERROR - NVM file too short for section (%d bytes)\n",
1584 				section_size);
1585 			ret = -EINVAL;
1586 			break;
1587 		}
1588 
1589 		if (WARN(section_id >= NVM_MAX_NUM_SECTIONS,
1590 			 "Invalid NVM section ID %d\n", section_id)) {
1591 			ret = -EINVAL;
1592 			break;
1593 		}
1594 
1595 		temp = kmemdup(file_sec->data, section_size, GFP_KERNEL);
1596 		if (!temp) {
1597 			ret = -ENOMEM;
1598 			break;
1599 		}
1600 
1601 		iwl_nvm_fixups(trans->hw_id, section_id, temp, section_size);
1602 
1603 		kfree(nvm_sections[section_id].data);
1604 		nvm_sections[section_id].data = temp;
1605 		nvm_sections[section_id].length = section_size;
1606 
1607 		/* advance to the next section */
1608 		file_sec = (void *)(file_sec->data + section_size);
1609 	}
1610 out:
1611 	release_firmware(fw_entry);
1612 	return ret;
1613 }
1614 IWL_EXPORT_SYMBOL(iwl_read_external_nvm);
1615 
1616 struct iwl_nvm_data *iwl_get_nvm(struct iwl_trans *trans,
1617 				 const struct iwl_fw *fw)
1618 {
1619 	struct iwl_nvm_get_info cmd = {};
1620 	struct iwl_nvm_data *nvm;
1621 	struct iwl_host_cmd hcmd = {
1622 		.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
1623 		.data = { &cmd, },
1624 		.len = { sizeof(cmd) },
1625 		.id = WIDE_ID(REGULATORY_AND_NVM_GROUP, NVM_GET_INFO)
1626 	};
1627 	int  ret;
1628 	bool empty_otp;
1629 	u32 mac_flags;
1630 	u32 sbands_flags = 0;
1631 	/*
1632 	 * All the values in iwl_nvm_get_info_rsp v4 are the same as
1633 	 * in v3, except for the channel profile part of the
1634 	 * regulatory.  So we can just access the new struct, with the
1635 	 * exception of the latter.
1636 	 */
1637 	struct iwl_nvm_get_info_rsp *rsp;
1638 	struct iwl_nvm_get_info_rsp_v3 *rsp_v3;
1639 	bool v4 = fw_has_api(&fw->ucode_capa,
1640 			     IWL_UCODE_TLV_API_REGULATORY_NVM_INFO);
1641 	size_t rsp_size = v4 ? sizeof(*rsp) : sizeof(*rsp_v3);
1642 	void *channel_profile;
1643 
1644 	ret = iwl_trans_send_cmd(trans, &hcmd);
1645 	if (ret)
1646 		return ERR_PTR(ret);
1647 
1648 	if (WARN(iwl_rx_packet_payload_len(hcmd.resp_pkt) != rsp_size,
1649 		 "Invalid payload len in NVM response from FW %d",
1650 		 iwl_rx_packet_payload_len(hcmd.resp_pkt))) {
1651 		ret = -EINVAL;
1652 		goto out;
1653 	}
1654 
1655 	rsp = (void *)hcmd.resp_pkt->data;
1656 	empty_otp = !!(le32_to_cpu(rsp->general.flags) &
1657 		       NVM_GENERAL_FLAGS_EMPTY_OTP);
1658 	if (empty_otp)
1659 		IWL_INFO(trans, "OTP is empty\n");
1660 
1661 	nvm = kzalloc(struct_size(nvm, channels, IWL_NUM_CHANNELS), GFP_KERNEL);
1662 	if (!nvm) {
1663 		ret = -ENOMEM;
1664 		goto out;
1665 	}
1666 
1667 	iwl_set_hw_address_from_csr(trans, nvm);
1668 	/* TODO: if platform NVM has MAC address - override it here */
1669 
1670 	if (!is_valid_ether_addr(nvm->hw_addr)) {
1671 		IWL_ERR(trans, "no valid mac address was found\n");
1672 		ret = -EINVAL;
1673 		goto err_free;
1674 	}
1675 
1676 	IWL_INFO(trans, "base HW address: %pM\n", nvm->hw_addr);
1677 
1678 	/* Initialize general data */
1679 	nvm->nvm_version = le16_to_cpu(rsp->general.nvm_version);
1680 	nvm->n_hw_addrs = rsp->general.n_hw_addrs;
1681 	if (nvm->n_hw_addrs == 0)
1682 		IWL_WARN(trans,
1683 			 "Firmware declares no reserved mac addresses. OTP is empty: %d\n",
1684 			 empty_otp);
1685 
1686 	/* Initialize MAC sku data */
1687 	mac_flags = le32_to_cpu(rsp->mac_sku.mac_sku_flags);
1688 	nvm->sku_cap_11ac_enable =
1689 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AC_ENABLED);
1690 	nvm->sku_cap_11n_enable =
1691 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11N_ENABLED);
1692 	nvm->sku_cap_11ax_enable =
1693 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AX_ENABLED);
1694 	nvm->sku_cap_band_24ghz_enable =
1695 		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_2_4_ENABLED);
1696 	nvm->sku_cap_band_52ghz_enable =
1697 		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_5_2_ENABLED);
1698 	nvm->sku_cap_mimo_disabled =
1699 		!!(mac_flags & NVM_MAC_SKU_FLAGS_MIMO_DISABLED);
1700 
1701 	/* Initialize PHY sku data */
1702 	nvm->valid_tx_ant = (u8)le32_to_cpu(rsp->phy_sku.tx_chains);
1703 	nvm->valid_rx_ant = (u8)le32_to_cpu(rsp->phy_sku.rx_chains);
1704 
1705 	if (le32_to_cpu(rsp->regulatory.lar_enabled) &&
1706 	    fw_has_capa(&fw->ucode_capa,
1707 			IWL_UCODE_TLV_CAPA_LAR_SUPPORT)) {
1708 		nvm->lar_enabled = true;
1709 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1710 	}
1711 
1712 	rsp_v3 = (void *)rsp;
1713 	channel_profile = v4 ? (void *)rsp->regulatory.channel_profile :
1714 			  (void *)rsp_v3->regulatory.channel_profile;
1715 
1716 	iwl_init_sbands(trans, nvm,
1717 			channel_profile,
1718 			nvm->valid_tx_ant & fw->valid_tx_ant,
1719 			nvm->valid_rx_ant & fw->valid_rx_ant,
1720 			sbands_flags, v4, fw);
1721 
1722 	iwl_free_resp(&hcmd);
1723 	return nvm;
1724 
1725 err_free:
1726 	kfree(nvm);
1727 out:
1728 	iwl_free_resp(&hcmd);
1729 	return ERR_PTR(ret);
1730 }
1731 IWL_EXPORT_SYMBOL(iwl_get_nvm);
1732