1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* 3 * Copyright (C) 2005-2014, 2018-2021 Intel Corporation 4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH 5 * Copyright (C) 2016-2017 Intel Deutschland GmbH 6 */ 7 #include <linux/types.h> 8 #include <linux/slab.h> 9 #include <linux/export.h> 10 #include <linux/etherdevice.h> 11 #include <linux/pci.h> 12 #include <linux/firmware.h> 13 14 #include "iwl-drv.h" 15 #include "iwl-modparams.h" 16 #include "iwl-nvm-parse.h" 17 #include "iwl-prph.h" 18 #include "iwl-io.h" 19 #include "iwl-csr.h" 20 #include "fw/acpi.h" 21 #include "fw/api/nvm-reg.h" 22 #include "fw/api/commands.h" 23 #include "fw/api/cmdhdr.h" 24 #include "fw/img.h" 25 26 /* NVM offsets (in words) definitions */ 27 enum nvm_offsets { 28 /* NVM HW-Section offset (in words) definitions */ 29 SUBSYSTEM_ID = 0x0A, 30 HW_ADDR = 0x15, 31 32 /* NVM SW-Section offset (in words) definitions */ 33 NVM_SW_SECTION = 0x1C0, 34 NVM_VERSION = 0, 35 RADIO_CFG = 1, 36 SKU = 2, 37 N_HW_ADDRS = 3, 38 NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION, 39 40 /* NVM calibration section offset (in words) definitions */ 41 NVM_CALIB_SECTION = 0x2B8, 42 XTAL_CALIB = 0x316 - NVM_CALIB_SECTION, 43 44 /* NVM REGULATORY -Section offset (in words) definitions */ 45 NVM_CHANNELS_SDP = 0, 46 }; 47 48 enum ext_nvm_offsets { 49 /* NVM HW-Section offset (in words) definitions */ 50 MAC_ADDRESS_OVERRIDE_EXT_NVM = 1, 51 52 /* NVM SW-Section offset (in words) definitions */ 53 NVM_VERSION_EXT_NVM = 0, 54 N_HW_ADDRS_FAMILY_8000 = 3, 55 56 /* NVM PHY_SKU-Section offset (in words) definitions */ 57 RADIO_CFG_FAMILY_EXT_NVM = 0, 58 SKU_FAMILY_8000 = 2, 59 60 /* NVM REGULATORY -Section offset (in words) definitions */ 61 NVM_CHANNELS_EXTENDED = 0, 62 NVM_LAR_OFFSET_OLD = 0x4C7, 63 NVM_LAR_OFFSET = 0x507, 64 NVM_LAR_ENABLED = 0x7, 65 }; 66 67 /* SKU Capabilities (actual values from NVM definition) */ 68 enum nvm_sku_bits { 69 NVM_SKU_CAP_BAND_24GHZ = BIT(0), 70 NVM_SKU_CAP_BAND_52GHZ = BIT(1), 71 NVM_SKU_CAP_11N_ENABLE = BIT(2), 72 NVM_SKU_CAP_11AC_ENABLE = BIT(3), 73 NVM_SKU_CAP_MIMO_DISABLE = BIT(5), 74 }; 75 76 /* 77 * These are the channel numbers in the order that they are stored in the NVM 78 */ 79 static const u16 iwl_nvm_channels[] = { 80 /* 2.4 GHz */ 81 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 82 /* 5 GHz */ 83 36, 40, 44 , 48, 52, 56, 60, 64, 84 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 85 149, 153, 157, 161, 165 86 }; 87 88 static const u16 iwl_ext_nvm_channels[] = { 89 /* 2.4 GHz */ 90 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 91 /* 5 GHz */ 92 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 93 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 94 149, 153, 157, 161, 165, 169, 173, 177, 181 95 }; 96 97 static const u16 iwl_uhb_nvm_channels[] = { 98 /* 2.4 GHz */ 99 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 100 /* 5 GHz */ 101 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 102 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 103 149, 153, 157, 161, 165, 169, 173, 177, 181, 104 /* 6-7 GHz */ 105 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 106 73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129, 107 133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 177, 181, 185, 108 189, 193, 197, 201, 205, 209, 213, 217, 221, 225, 229, 233 109 }; 110 111 #define IWL_NVM_NUM_CHANNELS ARRAY_SIZE(iwl_nvm_channels) 112 #define IWL_NVM_NUM_CHANNELS_EXT ARRAY_SIZE(iwl_ext_nvm_channels) 113 #define IWL_NVM_NUM_CHANNELS_UHB ARRAY_SIZE(iwl_uhb_nvm_channels) 114 #define NUM_2GHZ_CHANNELS 14 115 #define NUM_5GHZ_CHANNELS 37 116 #define FIRST_2GHZ_HT_MINUS 5 117 #define LAST_2GHZ_HT_PLUS 9 118 #define N_HW_ADDR_MASK 0xF 119 120 /* rate data (static) */ 121 static struct ieee80211_rate iwl_cfg80211_rates[] = { 122 { .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, }, 123 { .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1, 124 .flags = IEEE80211_RATE_SHORT_PREAMBLE, }, 125 { .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2, 126 .flags = IEEE80211_RATE_SHORT_PREAMBLE, }, 127 { .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3, 128 .flags = IEEE80211_RATE_SHORT_PREAMBLE, }, 129 { .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, }, 130 { .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, }, 131 { .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, }, 132 { .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, }, 133 { .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, }, 134 { .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, }, 135 { .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, }, 136 { .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, }, 137 }; 138 #define RATES_24_OFFS 0 139 #define N_RATES_24 ARRAY_SIZE(iwl_cfg80211_rates) 140 #define RATES_52_OFFS 4 141 #define N_RATES_52 (N_RATES_24 - RATES_52_OFFS) 142 143 /** 144 * enum iwl_nvm_channel_flags - channel flags in NVM 145 * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo 146 * @NVM_CHANNEL_IBSS: usable as an IBSS channel 147 * @NVM_CHANNEL_ACTIVE: active scanning allowed 148 * @NVM_CHANNEL_RADAR: radar detection required 149 * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed 150 * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS 151 * on same channel on 2.4 or same UNII band on 5.2 152 * @NVM_CHANNEL_UNIFORM: uniform spreading required 153 * @NVM_CHANNEL_20MHZ: 20 MHz channel okay 154 * @NVM_CHANNEL_40MHZ: 40 MHz channel okay 155 * @NVM_CHANNEL_80MHZ: 80 MHz channel okay 156 * @NVM_CHANNEL_160MHZ: 160 MHz channel okay 157 * @NVM_CHANNEL_DC_HIGH: DC HIGH required/allowed (?) 158 */ 159 enum iwl_nvm_channel_flags { 160 NVM_CHANNEL_VALID = BIT(0), 161 NVM_CHANNEL_IBSS = BIT(1), 162 NVM_CHANNEL_ACTIVE = BIT(3), 163 NVM_CHANNEL_RADAR = BIT(4), 164 NVM_CHANNEL_INDOOR_ONLY = BIT(5), 165 NVM_CHANNEL_GO_CONCURRENT = BIT(6), 166 NVM_CHANNEL_UNIFORM = BIT(7), 167 NVM_CHANNEL_20MHZ = BIT(8), 168 NVM_CHANNEL_40MHZ = BIT(9), 169 NVM_CHANNEL_80MHZ = BIT(10), 170 NVM_CHANNEL_160MHZ = BIT(11), 171 NVM_CHANNEL_DC_HIGH = BIT(12), 172 }; 173 174 /** 175 * enum iwl_reg_capa_flags - global flags applied for the whole regulatory 176 * domain. 177 * @REG_CAPA_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the 178 * 2.4Ghz band is allowed. 179 * @REG_CAPA_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the 180 * 5Ghz band is allowed. 181 * @REG_CAPA_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed 182 * for this regulatory domain (valid only in 5Ghz). 183 * @REG_CAPA_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed 184 * for this regulatory domain (valid only in 5Ghz). 185 * @REG_CAPA_MCS_8_ALLOWED: 11ac with MCS 8 is allowed. 186 * @REG_CAPA_MCS_9_ALLOWED: 11ac with MCS 9 is allowed. 187 * @REG_CAPA_40MHZ_FORBIDDEN: 11n channel with a width of 40Mhz is forbidden 188 * for this regulatory domain (valid only in 5Ghz). 189 * @REG_CAPA_DC_HIGH_ENABLED: DC HIGH allowed. 190 * @REG_CAPA_11AX_DISABLED: 11ax is forbidden for this regulatory domain. 191 */ 192 enum iwl_reg_capa_flags { 193 REG_CAPA_BF_CCD_LOW_BAND = BIT(0), 194 REG_CAPA_BF_CCD_HIGH_BAND = BIT(1), 195 REG_CAPA_160MHZ_ALLOWED = BIT(2), 196 REG_CAPA_80MHZ_ALLOWED = BIT(3), 197 REG_CAPA_MCS_8_ALLOWED = BIT(4), 198 REG_CAPA_MCS_9_ALLOWED = BIT(5), 199 REG_CAPA_40MHZ_FORBIDDEN = BIT(7), 200 REG_CAPA_DC_HIGH_ENABLED = BIT(9), 201 REG_CAPA_11AX_DISABLED = BIT(10), 202 }; 203 204 /** 205 * enum iwl_reg_capa_flags_v2 - global flags applied for the whole regulatory 206 * domain (version 2). 207 * @REG_CAPA_V2_STRADDLE_DISABLED: Straddle channels (144, 142, 138) are 208 * disabled. 209 * @REG_CAPA_V2_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the 210 * 2.4Ghz band is allowed. 211 * @REG_CAPA_V2_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the 212 * 5Ghz band is allowed. 213 * @REG_CAPA_V2_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed 214 * for this regulatory domain (valid only in 5Ghz). 215 * @REG_CAPA_V2_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed 216 * for this regulatory domain (valid only in 5Ghz). 217 * @REG_CAPA_V2_MCS_8_ALLOWED: 11ac with MCS 8 is allowed. 218 * @REG_CAPA_V2_MCS_9_ALLOWED: 11ac with MCS 9 is allowed. 219 * @REG_CAPA_V2_WEATHER_DISABLED: Weather radar channels (120, 124, 128, 118, 220 * 126, 122) are disabled. 221 * @REG_CAPA_V2_40MHZ_ALLOWED: 11n channel with a width of 40Mhz is allowed 222 * for this regulatory domain (uvalid only in 5Ghz). 223 * @REG_CAPA_V2_11AX_DISABLED: 11ax is forbidden for this regulatory domain. 224 */ 225 enum iwl_reg_capa_flags_v2 { 226 REG_CAPA_V2_STRADDLE_DISABLED = BIT(0), 227 REG_CAPA_V2_BF_CCD_LOW_BAND = BIT(1), 228 REG_CAPA_V2_BF_CCD_HIGH_BAND = BIT(2), 229 REG_CAPA_V2_160MHZ_ALLOWED = BIT(3), 230 REG_CAPA_V2_80MHZ_ALLOWED = BIT(4), 231 REG_CAPA_V2_MCS_8_ALLOWED = BIT(5), 232 REG_CAPA_V2_MCS_9_ALLOWED = BIT(6), 233 REG_CAPA_V2_WEATHER_DISABLED = BIT(7), 234 REG_CAPA_V2_40MHZ_ALLOWED = BIT(8), 235 REG_CAPA_V2_11AX_DISABLED = BIT(10), 236 }; 237 238 /* 239 * API v2 for reg_capa_flags is relevant from version 6 and onwards of the 240 * MCC update command response. 241 */ 242 #define REG_CAPA_V2_RESP_VER 6 243 244 /** 245 * struct iwl_reg_capa - struct for global regulatory capabilities, Used for 246 * handling the different APIs of reg_capa_flags. 247 * 248 * @allow_40mhz: 11n channel with a width of 40Mhz is allowed 249 * for this regulatory domain (valid only in 5Ghz). 250 * @allow_80mhz: 11ac channel with a width of 80Mhz is allowed 251 * for this regulatory domain (valid only in 5Ghz). 252 * @allow_160mhz: 11ac channel with a width of 160Mhz is allowed 253 * for this regulatory domain (valid only in 5Ghz). 254 * @disable_11ax: 11ax is forbidden for this regulatory domain. 255 */ 256 struct iwl_reg_capa { 257 u16 allow_40mhz; 258 u16 allow_80mhz; 259 u16 allow_160mhz; 260 u16 disable_11ax; 261 }; 262 263 static inline void iwl_nvm_print_channel_flags(struct device *dev, u32 level, 264 int chan, u32 flags) 265 { 266 #define CHECK_AND_PRINT_I(x) \ 267 ((flags & NVM_CHANNEL_##x) ? " " #x : "") 268 269 if (!(flags & NVM_CHANNEL_VALID)) { 270 IWL_DEBUG_DEV(dev, level, "Ch. %d: 0x%x: No traffic\n", 271 chan, flags); 272 return; 273 } 274 275 /* Note: already can print up to 101 characters, 110 is the limit! */ 276 IWL_DEBUG_DEV(dev, level, 277 "Ch. %d: 0x%x:%s%s%s%s%s%s%s%s%s%s%s%s\n", 278 chan, flags, 279 CHECK_AND_PRINT_I(VALID), 280 CHECK_AND_PRINT_I(IBSS), 281 CHECK_AND_PRINT_I(ACTIVE), 282 CHECK_AND_PRINT_I(RADAR), 283 CHECK_AND_PRINT_I(INDOOR_ONLY), 284 CHECK_AND_PRINT_I(GO_CONCURRENT), 285 CHECK_AND_PRINT_I(UNIFORM), 286 CHECK_AND_PRINT_I(20MHZ), 287 CHECK_AND_PRINT_I(40MHZ), 288 CHECK_AND_PRINT_I(80MHZ), 289 CHECK_AND_PRINT_I(160MHZ), 290 CHECK_AND_PRINT_I(DC_HIGH)); 291 #undef CHECK_AND_PRINT_I 292 } 293 294 static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, enum nl80211_band band, 295 u32 nvm_flags, const struct iwl_cfg *cfg) 296 { 297 u32 flags = IEEE80211_CHAN_NO_HT40; 298 299 if (band == NL80211_BAND_2GHZ && (nvm_flags & NVM_CHANNEL_40MHZ)) { 300 if (ch_num <= LAST_2GHZ_HT_PLUS) 301 flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 302 if (ch_num >= FIRST_2GHZ_HT_MINUS) 303 flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 304 } else if (nvm_flags & NVM_CHANNEL_40MHZ) { 305 if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0) 306 flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 307 else 308 flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 309 } 310 if (!(nvm_flags & NVM_CHANNEL_80MHZ)) 311 flags |= IEEE80211_CHAN_NO_80MHZ; 312 if (!(nvm_flags & NVM_CHANNEL_160MHZ)) 313 flags |= IEEE80211_CHAN_NO_160MHZ; 314 315 if (!(nvm_flags & NVM_CHANNEL_IBSS)) 316 flags |= IEEE80211_CHAN_NO_IR; 317 318 if (!(nvm_flags & NVM_CHANNEL_ACTIVE)) 319 flags |= IEEE80211_CHAN_NO_IR; 320 321 if (nvm_flags & NVM_CHANNEL_RADAR) 322 flags |= IEEE80211_CHAN_RADAR; 323 324 if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY) 325 flags |= IEEE80211_CHAN_INDOOR_ONLY; 326 327 /* Set the GO concurrent flag only in case that NO_IR is set. 328 * Otherwise it is meaningless 329 */ 330 if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) && 331 (flags & IEEE80211_CHAN_NO_IR)) 332 flags |= IEEE80211_CHAN_IR_CONCURRENT; 333 334 return flags; 335 } 336 337 static enum nl80211_band iwl_nl80211_band_from_channel_idx(int ch_idx) 338 { 339 if (ch_idx >= NUM_2GHZ_CHANNELS + NUM_5GHZ_CHANNELS) { 340 return NL80211_BAND_6GHZ; 341 } 342 343 if (ch_idx >= NUM_2GHZ_CHANNELS) 344 return NL80211_BAND_5GHZ; 345 return NL80211_BAND_2GHZ; 346 } 347 348 static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg, 349 struct iwl_nvm_data *data, 350 const void * const nvm_ch_flags, 351 u32 sbands_flags, bool v4) 352 { 353 int ch_idx; 354 int n_channels = 0; 355 struct ieee80211_channel *channel; 356 u32 ch_flags; 357 int num_of_ch; 358 const u16 *nvm_chan; 359 360 if (cfg->uhb_supported) { 361 num_of_ch = IWL_NVM_NUM_CHANNELS_UHB; 362 nvm_chan = iwl_uhb_nvm_channels; 363 } else if (cfg->nvm_type == IWL_NVM_EXT) { 364 num_of_ch = IWL_NVM_NUM_CHANNELS_EXT; 365 nvm_chan = iwl_ext_nvm_channels; 366 } else { 367 num_of_ch = IWL_NVM_NUM_CHANNELS; 368 nvm_chan = iwl_nvm_channels; 369 } 370 371 for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) { 372 enum nl80211_band band = 373 iwl_nl80211_band_from_channel_idx(ch_idx); 374 375 if (v4) 376 ch_flags = 377 __le32_to_cpup((__le32 *)nvm_ch_flags + ch_idx); 378 else 379 ch_flags = 380 __le16_to_cpup((__le16 *)nvm_ch_flags + ch_idx); 381 382 if (band == NL80211_BAND_5GHZ && 383 !data->sku_cap_band_52ghz_enable) 384 continue; 385 386 /* workaround to disable wide channels in 5GHz */ 387 if ((sbands_flags & IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ) && 388 band == NL80211_BAND_5GHZ) { 389 ch_flags &= ~(NVM_CHANNEL_40MHZ | 390 NVM_CHANNEL_80MHZ | 391 NVM_CHANNEL_160MHZ); 392 } 393 394 if (ch_flags & NVM_CHANNEL_160MHZ) 395 data->vht160_supported = true; 396 397 if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR) && 398 !(ch_flags & NVM_CHANNEL_VALID)) { 399 /* 400 * Channels might become valid later if lar is 401 * supported, hence we still want to add them to 402 * the list of supported channels to cfg80211. 403 */ 404 iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM, 405 nvm_chan[ch_idx], ch_flags); 406 continue; 407 } 408 409 channel = &data->channels[n_channels]; 410 n_channels++; 411 412 channel->hw_value = nvm_chan[ch_idx]; 413 channel->band = band; 414 channel->center_freq = 415 ieee80211_channel_to_frequency( 416 channel->hw_value, channel->band); 417 418 /* Initialize regulatory-based run-time data */ 419 420 /* 421 * Default value - highest tx power value. max_power 422 * is not used in mvm, and is used for backwards compatibility 423 */ 424 channel->max_power = IWL_DEFAULT_MAX_TX_POWER; 425 426 /* don't put limitations in case we're using LAR */ 427 if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR)) 428 channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx], 429 ch_idx, band, 430 ch_flags, cfg); 431 else 432 channel->flags = 0; 433 434 /* TODO: Don't put limitations on UHB devices as we still don't 435 * have NVM for them 436 */ 437 if (cfg->uhb_supported) 438 channel->flags = 0; 439 iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM, 440 channel->hw_value, ch_flags); 441 IWL_DEBUG_EEPROM(dev, "Ch. %d: %ddBm\n", 442 channel->hw_value, channel->max_power); 443 } 444 445 return n_channels; 446 } 447 448 static void iwl_init_vht_hw_capab(struct iwl_trans *trans, 449 struct iwl_nvm_data *data, 450 struct ieee80211_sta_vht_cap *vht_cap, 451 u8 tx_chains, u8 rx_chains) 452 { 453 const struct iwl_cfg *cfg = trans->cfg; 454 int num_rx_ants = num_of_ant(rx_chains); 455 int num_tx_ants = num_of_ant(tx_chains); 456 457 vht_cap->vht_supported = true; 458 459 vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 | 460 IEEE80211_VHT_CAP_RXSTBC_1 | 461 IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE | 462 3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT | 463 IEEE80211_VHT_MAX_AMPDU_1024K << 464 IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT; 465 466 if (data->vht160_supported) 467 vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ | 468 IEEE80211_VHT_CAP_SHORT_GI_160; 469 470 if (cfg->vht_mu_mimo_supported) 471 vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE; 472 473 if (cfg->ht_params->ldpc) 474 vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC; 475 476 if (data->sku_cap_mimo_disabled) { 477 num_rx_ants = 1; 478 num_tx_ants = 1; 479 } 480 481 if (num_tx_ants > 1) 482 vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC; 483 else 484 vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN; 485 486 switch (iwlwifi_mod_params.amsdu_size) { 487 case IWL_AMSDU_DEF: 488 if (trans->trans_cfg->mq_rx_supported) 489 vht_cap->cap |= 490 IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454; 491 else 492 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895; 493 break; 494 case IWL_AMSDU_2K: 495 if (trans->trans_cfg->mq_rx_supported) 496 vht_cap->cap |= 497 IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454; 498 else 499 WARN(1, "RB size of 2K is not supported by this device\n"); 500 break; 501 case IWL_AMSDU_4K: 502 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895; 503 break; 504 case IWL_AMSDU_8K: 505 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991; 506 break; 507 case IWL_AMSDU_12K: 508 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454; 509 break; 510 default: 511 break; 512 } 513 514 vht_cap->vht_mcs.rx_mcs_map = 515 cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 | 516 IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 | 517 IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 | 518 IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 | 519 IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 | 520 IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 | 521 IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 | 522 IEEE80211_VHT_MCS_NOT_SUPPORTED << 14); 523 524 if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) { 525 vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN; 526 /* this works because NOT_SUPPORTED == 3 */ 527 vht_cap->vht_mcs.rx_mcs_map |= 528 cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2); 529 } 530 531 vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map; 532 533 vht_cap->vht_mcs.tx_highest |= 534 cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE); 535 } 536 537 static const struct ieee80211_sband_iftype_data iwl_he_capa[] = { 538 { 539 .types_mask = BIT(NL80211_IFTYPE_STATION), 540 .he_cap = { 541 .has_he = true, 542 .he_cap_elem = { 543 .mac_cap_info[0] = 544 IEEE80211_HE_MAC_CAP0_HTC_HE | 545 IEEE80211_HE_MAC_CAP0_TWT_REQ, 546 .mac_cap_info[1] = 547 IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US | 548 IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8, 549 .mac_cap_info[2] = 550 IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP, 551 .mac_cap_info[3] = 552 IEEE80211_HE_MAC_CAP3_OMI_CONTROL | 553 IEEE80211_HE_MAC_CAP3_RX_CTRL_FRAME_TO_MULTIBSS, 554 .mac_cap_info[4] = 555 IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU | 556 IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39, 557 .mac_cap_info[5] = 558 IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40 | 559 IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41 | 560 IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU | 561 IEEE80211_HE_MAC_CAP5_HE_DYNAMIC_SM_PS | 562 IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX, 563 .phy_cap_info[0] = 564 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G | 565 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G | 566 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G, 567 .phy_cap_info[1] = 568 IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK | 569 IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A | 570 IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD, 571 .phy_cap_info[2] = 572 IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US | 573 IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ, 574 .phy_cap_info[3] = 575 IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM | 576 IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 | 577 IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM | 578 IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1, 579 .phy_cap_info[4] = 580 IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE | 581 IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 | 582 IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8, 583 .phy_cap_info[6] = 584 IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMING_FB | 585 IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB | 586 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT, 587 .phy_cap_info[7] = 588 IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_SUPP | 589 IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI, 590 .phy_cap_info[8] = 591 IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI | 592 IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G | 593 IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU | 594 IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU | 595 IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242, 596 .phy_cap_info[9] = 597 IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB | 598 IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB | 599 IEEE80211_HE_PHY_CAP9_NOMIMAL_PKT_PADDING_RESERVED, 600 .phy_cap_info[10] = 601 IEEE80211_HE_PHY_CAP10_HE_MU_M1RU_MAX_LTF, 602 }, 603 /* 604 * Set default Tx/Rx HE MCS NSS Support field. 605 * Indicate support for up to 2 spatial streams and all 606 * MCS, without any special cases 607 */ 608 .he_mcs_nss_supp = { 609 .rx_mcs_80 = cpu_to_le16(0xfffa), 610 .tx_mcs_80 = cpu_to_le16(0xfffa), 611 .rx_mcs_160 = cpu_to_le16(0xfffa), 612 .tx_mcs_160 = cpu_to_le16(0xfffa), 613 .rx_mcs_80p80 = cpu_to_le16(0xffff), 614 .tx_mcs_80p80 = cpu_to_le16(0xffff), 615 }, 616 /* 617 * Set default PPE thresholds, with PPET16 set to 0, 618 * PPET8 set to 7 619 */ 620 .ppe_thres = {0x61, 0x1c, 0xc7, 0x71}, 621 }, 622 }, 623 { 624 .types_mask = BIT(NL80211_IFTYPE_AP), 625 .he_cap = { 626 .has_he = true, 627 .he_cap_elem = { 628 .mac_cap_info[0] = 629 IEEE80211_HE_MAC_CAP0_HTC_HE, 630 .mac_cap_info[1] = 631 IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US | 632 IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8, 633 .mac_cap_info[3] = 634 IEEE80211_HE_MAC_CAP3_OMI_CONTROL, 635 .phy_cap_info[0] = 636 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G | 637 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G, 638 .phy_cap_info[1] = 639 IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD, 640 .phy_cap_info[2] = 641 IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ | 642 IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US, 643 .phy_cap_info[3] = 644 IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM | 645 IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 | 646 IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM | 647 IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1, 648 .phy_cap_info[6] = 649 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT, 650 .phy_cap_info[7] = 651 IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI, 652 .phy_cap_info[8] = 653 IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI | 654 IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242, 655 .phy_cap_info[9] = 656 IEEE80211_HE_PHY_CAP9_NOMIMAL_PKT_PADDING_RESERVED, 657 }, 658 /* 659 * Set default Tx/Rx HE MCS NSS Support field. 660 * Indicate support for up to 2 spatial streams and all 661 * MCS, without any special cases 662 */ 663 .he_mcs_nss_supp = { 664 .rx_mcs_80 = cpu_to_le16(0xfffa), 665 .tx_mcs_80 = cpu_to_le16(0xfffa), 666 .rx_mcs_160 = cpu_to_le16(0xfffa), 667 .tx_mcs_160 = cpu_to_le16(0xfffa), 668 .rx_mcs_80p80 = cpu_to_le16(0xffff), 669 .tx_mcs_80p80 = cpu_to_le16(0xffff), 670 }, 671 /* 672 * Set default PPE thresholds, with PPET16 set to 0, 673 * PPET8 set to 7 674 */ 675 .ppe_thres = {0x61, 0x1c, 0xc7, 0x71}, 676 }, 677 }, 678 }; 679 680 static void iwl_init_he_6ghz_capa(struct iwl_trans *trans, 681 struct iwl_nvm_data *data, 682 struct ieee80211_supported_band *sband, 683 u8 tx_chains, u8 rx_chains) 684 { 685 struct ieee80211_sta_ht_cap ht_cap; 686 struct ieee80211_sta_vht_cap vht_cap = {}; 687 struct ieee80211_sband_iftype_data *iftype_data; 688 u16 he_6ghz_capa = 0; 689 u32 exp; 690 int i; 691 692 if (sband->band != NL80211_BAND_6GHZ) 693 return; 694 695 /* grab HT/VHT capabilities and calculate HE 6 GHz capabilities */ 696 iwl_init_ht_hw_capab(trans, data, &ht_cap, NL80211_BAND_5GHZ, 697 tx_chains, rx_chains); 698 WARN_ON(!ht_cap.ht_supported); 699 iwl_init_vht_hw_capab(trans, data, &vht_cap, tx_chains, rx_chains); 700 WARN_ON(!vht_cap.vht_supported); 701 702 he_6ghz_capa |= 703 u16_encode_bits(ht_cap.ampdu_density, 704 IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START); 705 exp = u32_get_bits(vht_cap.cap, 706 IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK); 707 he_6ghz_capa |= 708 u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP); 709 exp = u32_get_bits(vht_cap.cap, IEEE80211_VHT_CAP_MAX_MPDU_MASK); 710 he_6ghz_capa |= 711 u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN); 712 /* we don't support extended_ht_cap_info anywhere, so no RD_RESPONDER */ 713 if (vht_cap.cap & IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN) 714 he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS; 715 if (vht_cap.cap & IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN) 716 he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS; 717 718 IWL_DEBUG_EEPROM(trans->dev, "he_6ghz_capa=0x%x\n", he_6ghz_capa); 719 720 /* we know it's writable - we set it before ourselves */ 721 iftype_data = (void *)sband->iftype_data; 722 for (i = 0; i < sband->n_iftype_data; i++) 723 iftype_data[i].he_6ghz_capa.capa = cpu_to_le16(he_6ghz_capa); 724 } 725 726 static void 727 iwl_nvm_fixup_sband_iftd(struct iwl_trans *trans, 728 struct ieee80211_supported_band *sband, 729 struct ieee80211_sband_iftype_data *iftype_data, 730 u8 tx_chains, u8 rx_chains, 731 const struct iwl_fw *fw) 732 { 733 bool is_ap = iftype_data->types_mask & BIT(NL80211_IFTYPE_AP); 734 735 /* Advertise an A-MPDU exponent extension based on 736 * operating band 737 */ 738 if (sband->band != NL80211_BAND_2GHZ) 739 iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |= 740 IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_1; 741 else 742 iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |= 743 IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3; 744 745 if (is_ap && iwlwifi_mod_params.nvm_file) 746 iftype_data->he_cap.he_cap_elem.phy_cap_info[0] |= 747 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G; 748 749 if ((tx_chains & rx_chains) == ANT_AB) { 750 iftype_data->he_cap.he_cap_elem.phy_cap_info[2] |= 751 IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ; 752 iftype_data->he_cap.he_cap_elem.phy_cap_info[5] |= 753 IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 | 754 IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2; 755 if (!is_ap) 756 iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |= 757 IEEE80211_HE_PHY_CAP7_MAX_NC_2; 758 } else if (!is_ap) { 759 /* If not 2x2, we need to indicate 1x1 in the 760 * Midamble RX Max NSTS - but not for AP mode 761 */ 762 iftype_data->he_cap.he_cap_elem.phy_cap_info[1] &= 763 ~IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS; 764 iftype_data->he_cap.he_cap_elem.phy_cap_info[2] &= 765 ~IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS; 766 iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |= 767 IEEE80211_HE_PHY_CAP7_MAX_NC_1; 768 } 769 770 switch (CSR_HW_RFID_TYPE(trans->hw_rf_id)) { 771 case IWL_CFG_RF_TYPE_GF: 772 case IWL_CFG_RF_TYPE_MR: 773 iftype_data->he_cap.he_cap_elem.phy_cap_info[9] |= 774 IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU; 775 if (!is_ap) 776 iftype_data->he_cap.he_cap_elem.phy_cap_info[9] |= 777 IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU; 778 break; 779 } 780 781 if (fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_BROADCAST_TWT)) 782 iftype_data->he_cap.he_cap_elem.mac_cap_info[2] |= 783 IEEE80211_HE_MAC_CAP2_BCAST_TWT; 784 } 785 786 static void iwl_init_he_hw_capab(struct iwl_trans *trans, 787 struct iwl_nvm_data *data, 788 struct ieee80211_supported_band *sband, 789 u8 tx_chains, u8 rx_chains, 790 const struct iwl_fw *fw) 791 { 792 struct ieee80211_sband_iftype_data *iftype_data; 793 int i; 794 795 /* should only initialize once */ 796 if (WARN_ON(sband->iftype_data)) 797 return; 798 799 BUILD_BUG_ON(sizeof(data->iftd.low) != sizeof(iwl_he_capa)); 800 BUILD_BUG_ON(sizeof(data->iftd.high) != sizeof(iwl_he_capa)); 801 802 switch (sband->band) { 803 case NL80211_BAND_2GHZ: 804 iftype_data = data->iftd.low; 805 break; 806 case NL80211_BAND_5GHZ: 807 case NL80211_BAND_6GHZ: 808 iftype_data = data->iftd.high; 809 break; 810 default: 811 WARN_ON(1); 812 return; 813 } 814 815 memcpy(iftype_data, iwl_he_capa, sizeof(iwl_he_capa)); 816 817 sband->iftype_data = iftype_data; 818 sband->n_iftype_data = ARRAY_SIZE(iwl_he_capa); 819 820 for (i = 0; i < sband->n_iftype_data; i++) 821 iwl_nvm_fixup_sband_iftd(trans, sband, &iftype_data[i], 822 tx_chains, rx_chains, fw); 823 824 iwl_init_he_6ghz_capa(trans, data, sband, tx_chains, rx_chains); 825 } 826 827 static void iwl_init_sbands(struct iwl_trans *trans, 828 struct iwl_nvm_data *data, 829 const void *nvm_ch_flags, u8 tx_chains, 830 u8 rx_chains, u32 sbands_flags, bool v4, 831 const struct iwl_fw *fw) 832 { 833 struct device *dev = trans->dev; 834 const struct iwl_cfg *cfg = trans->cfg; 835 int n_channels; 836 int n_used = 0; 837 struct ieee80211_supported_band *sband; 838 839 n_channels = iwl_init_channel_map(dev, cfg, data, nvm_ch_flags, 840 sbands_flags, v4); 841 sband = &data->bands[NL80211_BAND_2GHZ]; 842 sband->band = NL80211_BAND_2GHZ; 843 sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS]; 844 sband->n_bitrates = N_RATES_24; 845 n_used += iwl_init_sband_channels(data, sband, n_channels, 846 NL80211_BAND_2GHZ); 847 iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ, 848 tx_chains, rx_chains); 849 850 if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax) 851 iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains, 852 fw); 853 854 sband = &data->bands[NL80211_BAND_5GHZ]; 855 sband->band = NL80211_BAND_5GHZ; 856 sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS]; 857 sband->n_bitrates = N_RATES_52; 858 n_used += iwl_init_sband_channels(data, sband, n_channels, 859 NL80211_BAND_5GHZ); 860 iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ, 861 tx_chains, rx_chains); 862 if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac) 863 iwl_init_vht_hw_capab(trans, data, &sband->vht_cap, 864 tx_chains, rx_chains); 865 866 if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax) 867 iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains, 868 fw); 869 870 /* 6GHz band. */ 871 sband = &data->bands[NL80211_BAND_6GHZ]; 872 sband->band = NL80211_BAND_6GHZ; 873 /* use the same rates as 5GHz band */ 874 sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS]; 875 sband->n_bitrates = N_RATES_52; 876 n_used += iwl_init_sband_channels(data, sband, n_channels, 877 NL80211_BAND_6GHZ); 878 879 if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax) 880 iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains, 881 fw); 882 else 883 sband->n_channels = 0; 884 if (n_channels != n_used) 885 IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n", 886 n_used, n_channels); 887 } 888 889 static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw, 890 const __le16 *phy_sku) 891 { 892 if (cfg->nvm_type != IWL_NVM_EXT) 893 return le16_to_cpup(nvm_sw + SKU); 894 895 return le32_to_cpup((__le32 *)(phy_sku + SKU_FAMILY_8000)); 896 } 897 898 static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw) 899 { 900 if (cfg->nvm_type != IWL_NVM_EXT) 901 return le16_to_cpup(nvm_sw + NVM_VERSION); 902 else 903 return le32_to_cpup((__le32 *)(nvm_sw + 904 NVM_VERSION_EXT_NVM)); 905 } 906 907 static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw, 908 const __le16 *phy_sku) 909 { 910 if (cfg->nvm_type != IWL_NVM_EXT) 911 return le16_to_cpup(nvm_sw + RADIO_CFG); 912 913 return le32_to_cpup((__le32 *)(phy_sku + RADIO_CFG_FAMILY_EXT_NVM)); 914 915 } 916 917 static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw) 918 { 919 int n_hw_addr; 920 921 if (cfg->nvm_type != IWL_NVM_EXT) 922 return le16_to_cpup(nvm_sw + N_HW_ADDRS); 923 924 n_hw_addr = le32_to_cpup((__le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000)); 925 926 return n_hw_addr & N_HW_ADDR_MASK; 927 } 928 929 static void iwl_set_radio_cfg(const struct iwl_cfg *cfg, 930 struct iwl_nvm_data *data, 931 u32 radio_cfg) 932 { 933 if (cfg->nvm_type != IWL_NVM_EXT) { 934 data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg); 935 data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg); 936 data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg); 937 data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg); 938 return; 939 } 940 941 /* set the radio configuration for family 8000 */ 942 data->radio_cfg_type = EXT_NVM_RF_CFG_TYPE_MSK(radio_cfg); 943 data->radio_cfg_step = EXT_NVM_RF_CFG_STEP_MSK(radio_cfg); 944 data->radio_cfg_dash = EXT_NVM_RF_CFG_DASH_MSK(radio_cfg); 945 data->radio_cfg_pnum = EXT_NVM_RF_CFG_FLAVOR_MSK(radio_cfg); 946 data->valid_tx_ant = EXT_NVM_RF_CFG_TX_ANT_MSK(radio_cfg); 947 data->valid_rx_ant = EXT_NVM_RF_CFG_RX_ANT_MSK(radio_cfg); 948 } 949 950 static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest) 951 { 952 const u8 *hw_addr; 953 954 hw_addr = (const u8 *)&mac_addr0; 955 dest[0] = hw_addr[3]; 956 dest[1] = hw_addr[2]; 957 dest[2] = hw_addr[1]; 958 dest[3] = hw_addr[0]; 959 960 hw_addr = (const u8 *)&mac_addr1; 961 dest[4] = hw_addr[1]; 962 dest[5] = hw_addr[0]; 963 } 964 965 static void iwl_set_hw_address_from_csr(struct iwl_trans *trans, 966 struct iwl_nvm_data *data) 967 { 968 __le32 mac_addr0 = cpu_to_le32(iwl_read32(trans, 969 CSR_MAC_ADDR0_STRAP(trans))); 970 __le32 mac_addr1 = cpu_to_le32(iwl_read32(trans, 971 CSR_MAC_ADDR1_STRAP(trans))); 972 973 iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr); 974 /* 975 * If the OEM fused a valid address, use it instead of the one in the 976 * OTP 977 */ 978 if (is_valid_ether_addr(data->hw_addr)) 979 return; 980 981 mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_OTP(trans))); 982 mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_OTP(trans))); 983 984 iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr); 985 } 986 987 static void iwl_set_hw_address_family_8000(struct iwl_trans *trans, 988 const struct iwl_cfg *cfg, 989 struct iwl_nvm_data *data, 990 const __le16 *mac_override, 991 const __be16 *nvm_hw) 992 { 993 const u8 *hw_addr; 994 995 if (mac_override) { 996 static const u8 reserved_mac[] = { 997 0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00 998 }; 999 1000 hw_addr = (const u8 *)(mac_override + 1001 MAC_ADDRESS_OVERRIDE_EXT_NVM); 1002 1003 /* 1004 * Store the MAC address from MAO section. 1005 * No byte swapping is required in MAO section 1006 */ 1007 memcpy(data->hw_addr, hw_addr, ETH_ALEN); 1008 1009 /* 1010 * Force the use of the OTP MAC address in case of reserved MAC 1011 * address in the NVM, or if address is given but invalid. 1012 */ 1013 if (is_valid_ether_addr(data->hw_addr) && 1014 memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0) 1015 return; 1016 1017 IWL_ERR(trans, 1018 "mac address from nvm override section is not valid\n"); 1019 } 1020 1021 if (nvm_hw) { 1022 /* read the mac address from WFMP registers */ 1023 __le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans, 1024 WFMP_MAC_ADDR_0)); 1025 __le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans, 1026 WFMP_MAC_ADDR_1)); 1027 1028 iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr); 1029 1030 return; 1031 } 1032 1033 IWL_ERR(trans, "mac address is not found\n"); 1034 } 1035 1036 static int iwl_set_hw_address(struct iwl_trans *trans, 1037 const struct iwl_cfg *cfg, 1038 struct iwl_nvm_data *data, const __be16 *nvm_hw, 1039 const __le16 *mac_override) 1040 { 1041 if (cfg->mac_addr_from_csr) { 1042 iwl_set_hw_address_from_csr(trans, data); 1043 } else if (cfg->nvm_type != IWL_NVM_EXT) { 1044 const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR); 1045 1046 /* The byte order is little endian 16 bit, meaning 214365 */ 1047 data->hw_addr[0] = hw_addr[1]; 1048 data->hw_addr[1] = hw_addr[0]; 1049 data->hw_addr[2] = hw_addr[3]; 1050 data->hw_addr[3] = hw_addr[2]; 1051 data->hw_addr[4] = hw_addr[5]; 1052 data->hw_addr[5] = hw_addr[4]; 1053 } else { 1054 iwl_set_hw_address_family_8000(trans, cfg, data, 1055 mac_override, nvm_hw); 1056 } 1057 1058 if (!is_valid_ether_addr(data->hw_addr)) { 1059 IWL_ERR(trans, "no valid mac address was found\n"); 1060 return -EINVAL; 1061 } 1062 1063 IWL_INFO(trans, "base HW address: %pM\n", data->hw_addr); 1064 1065 return 0; 1066 } 1067 1068 static bool 1069 iwl_nvm_no_wide_in_5ghz(struct iwl_trans *trans, const struct iwl_cfg *cfg, 1070 const __be16 *nvm_hw) 1071 { 1072 /* 1073 * Workaround a bug in Indonesia SKUs where the regulatory in 1074 * some 7000-family OTPs erroneously allow wide channels in 1075 * 5GHz. To check for Indonesia, we take the SKU value from 1076 * bits 1-4 in the subsystem ID and check if it is either 5 or 1077 * 9. In those cases, we need to force-disable wide channels 1078 * in 5GHz otherwise the FW will throw a sysassert when we try 1079 * to use them. 1080 */ 1081 if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_7000) { 1082 /* 1083 * Unlike the other sections in the NVM, the hw 1084 * section uses big-endian. 1085 */ 1086 u16 subsystem_id = be16_to_cpup(nvm_hw + SUBSYSTEM_ID); 1087 u8 sku = (subsystem_id & 0x1e) >> 1; 1088 1089 if (sku == 5 || sku == 9) { 1090 IWL_DEBUG_EEPROM(trans->dev, 1091 "disabling wide channels in 5GHz (0x%0x %d)\n", 1092 subsystem_id, sku); 1093 return true; 1094 } 1095 } 1096 1097 return false; 1098 } 1099 1100 struct iwl_nvm_data * 1101 iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg, 1102 const struct iwl_fw *fw, 1103 const __be16 *nvm_hw, const __le16 *nvm_sw, 1104 const __le16 *nvm_calib, const __le16 *regulatory, 1105 const __le16 *mac_override, const __le16 *phy_sku, 1106 u8 tx_chains, u8 rx_chains) 1107 { 1108 struct iwl_nvm_data *data; 1109 bool lar_enabled; 1110 u32 sku, radio_cfg; 1111 u32 sbands_flags = 0; 1112 u16 lar_config; 1113 const __le16 *ch_section; 1114 1115 if (cfg->uhb_supported) 1116 data = kzalloc(struct_size(data, channels, 1117 IWL_NVM_NUM_CHANNELS_UHB), 1118 GFP_KERNEL); 1119 else if (cfg->nvm_type != IWL_NVM_EXT) 1120 data = kzalloc(struct_size(data, channels, 1121 IWL_NVM_NUM_CHANNELS), 1122 GFP_KERNEL); 1123 else 1124 data = kzalloc(struct_size(data, channels, 1125 IWL_NVM_NUM_CHANNELS_EXT), 1126 GFP_KERNEL); 1127 if (!data) 1128 return NULL; 1129 1130 data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw); 1131 1132 radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku); 1133 iwl_set_radio_cfg(cfg, data, radio_cfg); 1134 if (data->valid_tx_ant) 1135 tx_chains &= data->valid_tx_ant; 1136 if (data->valid_rx_ant) 1137 rx_chains &= data->valid_rx_ant; 1138 1139 sku = iwl_get_sku(cfg, nvm_sw, phy_sku); 1140 data->sku_cap_band_24ghz_enable = sku & NVM_SKU_CAP_BAND_24GHZ; 1141 data->sku_cap_band_52ghz_enable = sku & NVM_SKU_CAP_BAND_52GHZ; 1142 data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE; 1143 if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL) 1144 data->sku_cap_11n_enable = false; 1145 data->sku_cap_11ac_enable = data->sku_cap_11n_enable && 1146 (sku & NVM_SKU_CAP_11AC_ENABLE); 1147 data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE; 1148 1149 data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw); 1150 1151 if (cfg->nvm_type != IWL_NVM_EXT) { 1152 /* Checking for required sections */ 1153 if (!nvm_calib) { 1154 IWL_ERR(trans, 1155 "Can't parse empty Calib NVM sections\n"); 1156 kfree(data); 1157 return NULL; 1158 } 1159 1160 ch_section = cfg->nvm_type == IWL_NVM_SDP ? 1161 ®ulatory[NVM_CHANNELS_SDP] : 1162 &nvm_sw[NVM_CHANNELS]; 1163 1164 /* in family 8000 Xtal calibration values moved to OTP */ 1165 data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB); 1166 data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1); 1167 lar_enabled = true; 1168 } else { 1169 u16 lar_offset = data->nvm_version < 0xE39 ? 1170 NVM_LAR_OFFSET_OLD : 1171 NVM_LAR_OFFSET; 1172 1173 lar_config = le16_to_cpup(regulatory + lar_offset); 1174 data->lar_enabled = !!(lar_config & 1175 NVM_LAR_ENABLED); 1176 lar_enabled = data->lar_enabled; 1177 ch_section = ®ulatory[NVM_CHANNELS_EXTENDED]; 1178 } 1179 1180 /* If no valid mac address was found - bail out */ 1181 if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) { 1182 kfree(data); 1183 return NULL; 1184 } 1185 1186 if (lar_enabled && 1187 fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT)) 1188 sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR; 1189 1190 if (iwl_nvm_no_wide_in_5ghz(trans, cfg, nvm_hw)) 1191 sbands_flags |= IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ; 1192 1193 iwl_init_sbands(trans, data, ch_section, tx_chains, rx_chains, 1194 sbands_flags, false, fw); 1195 data->calib_version = 255; 1196 1197 return data; 1198 } 1199 IWL_EXPORT_SYMBOL(iwl_parse_nvm_data); 1200 1201 static u32 iwl_nvm_get_regdom_bw_flags(const u16 *nvm_chan, 1202 int ch_idx, u16 nvm_flags, 1203 struct iwl_reg_capa reg_capa, 1204 const struct iwl_cfg *cfg) 1205 { 1206 u32 flags = NL80211_RRF_NO_HT40; 1207 1208 if (ch_idx < NUM_2GHZ_CHANNELS && 1209 (nvm_flags & NVM_CHANNEL_40MHZ)) { 1210 if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS) 1211 flags &= ~NL80211_RRF_NO_HT40PLUS; 1212 if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS) 1213 flags &= ~NL80211_RRF_NO_HT40MINUS; 1214 } else if (nvm_flags & NVM_CHANNEL_40MHZ) { 1215 if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0) 1216 flags &= ~NL80211_RRF_NO_HT40PLUS; 1217 else 1218 flags &= ~NL80211_RRF_NO_HT40MINUS; 1219 } 1220 1221 if (!(nvm_flags & NVM_CHANNEL_80MHZ)) 1222 flags |= NL80211_RRF_NO_80MHZ; 1223 if (!(nvm_flags & NVM_CHANNEL_160MHZ)) 1224 flags |= NL80211_RRF_NO_160MHZ; 1225 1226 if (!(nvm_flags & NVM_CHANNEL_ACTIVE)) 1227 flags |= NL80211_RRF_NO_IR; 1228 1229 if (nvm_flags & NVM_CHANNEL_RADAR) 1230 flags |= NL80211_RRF_DFS; 1231 1232 if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY) 1233 flags |= NL80211_RRF_NO_OUTDOOR; 1234 1235 /* Set the GO concurrent flag only in case that NO_IR is set. 1236 * Otherwise it is meaningless 1237 */ 1238 if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) && 1239 (flags & NL80211_RRF_NO_IR)) 1240 flags |= NL80211_RRF_GO_CONCURRENT; 1241 1242 /* 1243 * reg_capa is per regulatory domain so apply it for every channel 1244 */ 1245 if (ch_idx >= NUM_2GHZ_CHANNELS) { 1246 if (!reg_capa.allow_40mhz) 1247 flags |= NL80211_RRF_NO_HT40; 1248 1249 if (!reg_capa.allow_80mhz) 1250 flags |= NL80211_RRF_NO_80MHZ; 1251 1252 if (!reg_capa.allow_160mhz) 1253 flags |= NL80211_RRF_NO_160MHZ; 1254 } 1255 if (reg_capa.disable_11ax) 1256 flags |= NL80211_RRF_NO_HE; 1257 1258 return flags; 1259 } 1260 1261 static struct iwl_reg_capa iwl_get_reg_capa(u16 flags, u8 resp_ver) 1262 { 1263 struct iwl_reg_capa reg_capa; 1264 1265 if (resp_ver >= REG_CAPA_V2_RESP_VER) { 1266 reg_capa.allow_40mhz = flags & REG_CAPA_V2_40MHZ_ALLOWED; 1267 reg_capa.allow_80mhz = flags & REG_CAPA_V2_80MHZ_ALLOWED; 1268 reg_capa.allow_160mhz = flags & REG_CAPA_V2_160MHZ_ALLOWED; 1269 reg_capa.disable_11ax = flags & REG_CAPA_V2_11AX_DISABLED; 1270 } else { 1271 reg_capa.allow_40mhz = !(flags & REG_CAPA_40MHZ_FORBIDDEN); 1272 reg_capa.allow_80mhz = flags & REG_CAPA_80MHZ_ALLOWED; 1273 reg_capa.allow_160mhz = flags & REG_CAPA_160MHZ_ALLOWED; 1274 reg_capa.disable_11ax = flags & REG_CAPA_11AX_DISABLED; 1275 } 1276 return reg_capa; 1277 } 1278 1279 struct ieee80211_regdomain * 1280 iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg, 1281 int num_of_ch, __le32 *channels, u16 fw_mcc, 1282 u16 geo_info, u16 cap, u8 resp_ver) 1283 { 1284 int ch_idx; 1285 u16 ch_flags; 1286 u32 reg_rule_flags, prev_reg_rule_flags = 0; 1287 const u16 *nvm_chan; 1288 struct ieee80211_regdomain *regd, *copy_rd; 1289 struct ieee80211_reg_rule *rule; 1290 enum nl80211_band band; 1291 int center_freq, prev_center_freq = 0; 1292 int valid_rules = 0; 1293 bool new_rule; 1294 int max_num_ch; 1295 struct iwl_reg_capa reg_capa; 1296 1297 if (cfg->uhb_supported) { 1298 max_num_ch = IWL_NVM_NUM_CHANNELS_UHB; 1299 nvm_chan = iwl_uhb_nvm_channels; 1300 } else if (cfg->nvm_type == IWL_NVM_EXT) { 1301 max_num_ch = IWL_NVM_NUM_CHANNELS_EXT; 1302 nvm_chan = iwl_ext_nvm_channels; 1303 } else { 1304 max_num_ch = IWL_NVM_NUM_CHANNELS; 1305 nvm_chan = iwl_nvm_channels; 1306 } 1307 1308 if (WARN_ON(num_of_ch > max_num_ch)) 1309 num_of_ch = max_num_ch; 1310 1311 if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES)) 1312 return ERR_PTR(-EINVAL); 1313 1314 IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n", 1315 num_of_ch); 1316 1317 /* build a regdomain rule for every valid channel */ 1318 regd = kzalloc(struct_size(regd, reg_rules, num_of_ch), GFP_KERNEL); 1319 if (!regd) 1320 return ERR_PTR(-ENOMEM); 1321 1322 /* set alpha2 from FW. */ 1323 regd->alpha2[0] = fw_mcc >> 8; 1324 regd->alpha2[1] = fw_mcc & 0xff; 1325 1326 /* parse regulatory capability flags */ 1327 reg_capa = iwl_get_reg_capa(cap, resp_ver); 1328 1329 for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) { 1330 ch_flags = (u16)__le32_to_cpup(channels + ch_idx); 1331 band = iwl_nl80211_band_from_channel_idx(ch_idx); 1332 center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx], 1333 band); 1334 new_rule = false; 1335 1336 if (!(ch_flags & NVM_CHANNEL_VALID)) { 1337 iwl_nvm_print_channel_flags(dev, IWL_DL_LAR, 1338 nvm_chan[ch_idx], ch_flags); 1339 continue; 1340 } 1341 1342 reg_rule_flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx, 1343 ch_flags, reg_capa, 1344 cfg); 1345 1346 /* we can't continue the same rule */ 1347 if (ch_idx == 0 || prev_reg_rule_flags != reg_rule_flags || 1348 center_freq - prev_center_freq > 20) { 1349 valid_rules++; 1350 new_rule = true; 1351 } 1352 1353 rule = ®d->reg_rules[valid_rules - 1]; 1354 1355 if (new_rule) 1356 rule->freq_range.start_freq_khz = 1357 MHZ_TO_KHZ(center_freq - 10); 1358 1359 rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10); 1360 1361 /* this doesn't matter - not used by FW */ 1362 rule->power_rule.max_antenna_gain = DBI_TO_MBI(6); 1363 rule->power_rule.max_eirp = 1364 DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER); 1365 1366 rule->flags = reg_rule_flags; 1367 1368 /* rely on auto-calculation to merge BW of contiguous chans */ 1369 rule->flags |= NL80211_RRF_AUTO_BW; 1370 rule->freq_range.max_bandwidth_khz = 0; 1371 1372 prev_center_freq = center_freq; 1373 prev_reg_rule_flags = reg_rule_flags; 1374 1375 iwl_nvm_print_channel_flags(dev, IWL_DL_LAR, 1376 nvm_chan[ch_idx], ch_flags); 1377 1378 if (!(geo_info & GEO_WMM_ETSI_5GHZ_INFO) || 1379 band == NL80211_BAND_2GHZ) 1380 continue; 1381 1382 reg_query_regdb_wmm(regd->alpha2, center_freq, rule); 1383 } 1384 1385 /* 1386 * Certain firmware versions might report no valid channels 1387 * if booted in RF-kill, i.e. not all calibrations etc. are 1388 * running. We'll get out of this situation later when the 1389 * rfkill is removed and we update the regdomain again, but 1390 * since cfg80211 doesn't accept an empty regdomain, add a 1391 * dummy (unusable) rule here in this case so we can init. 1392 */ 1393 if (!valid_rules) { 1394 valid_rules = 1; 1395 rule = ®d->reg_rules[valid_rules - 1]; 1396 rule->freq_range.start_freq_khz = MHZ_TO_KHZ(2412); 1397 rule->freq_range.end_freq_khz = MHZ_TO_KHZ(2413); 1398 rule->freq_range.max_bandwidth_khz = MHZ_TO_KHZ(1); 1399 rule->power_rule.max_antenna_gain = DBI_TO_MBI(6); 1400 rule->power_rule.max_eirp = 1401 DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER); 1402 } 1403 1404 regd->n_reg_rules = valid_rules; 1405 1406 /* 1407 * Narrow down regdom for unused regulatory rules to prevent hole 1408 * between reg rules to wmm rules. 1409 */ 1410 copy_rd = kmemdup(regd, struct_size(regd, reg_rules, valid_rules), 1411 GFP_KERNEL); 1412 if (!copy_rd) 1413 copy_rd = ERR_PTR(-ENOMEM); 1414 1415 kfree(regd); 1416 return copy_rd; 1417 } 1418 IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info); 1419 1420 #define IWL_MAX_NVM_SECTION_SIZE 0x1b58 1421 #define IWL_MAX_EXT_NVM_SECTION_SIZE 0x1ffc 1422 #define MAX_NVM_FILE_LEN 16384 1423 1424 void iwl_nvm_fixups(u32 hw_id, unsigned int section, u8 *data, 1425 unsigned int len) 1426 { 1427 #define IWL_4165_DEVICE_ID 0x5501 1428 #define NVM_SKU_CAP_MIMO_DISABLE BIT(5) 1429 1430 if (section == NVM_SECTION_TYPE_PHY_SKU && 1431 hw_id == IWL_4165_DEVICE_ID && data && len >= 5 && 1432 (data[4] & NVM_SKU_CAP_MIMO_DISABLE)) 1433 /* OTP 0x52 bug work around: it's a 1x1 device */ 1434 data[3] = ANT_B | (ANT_B << 4); 1435 } 1436 IWL_EXPORT_SYMBOL(iwl_nvm_fixups); 1437 1438 /* 1439 * Reads external NVM from a file into mvm->nvm_sections 1440 * 1441 * HOW TO CREATE THE NVM FILE FORMAT: 1442 * ------------------------------ 1443 * 1. create hex file, format: 1444 * 3800 -> header 1445 * 0000 -> header 1446 * 5a40 -> data 1447 * 1448 * rev - 6 bit (word1) 1449 * len - 10 bit (word1) 1450 * id - 4 bit (word2) 1451 * rsv - 12 bit (word2) 1452 * 1453 * 2. flip 8bits with 8 bits per line to get the right NVM file format 1454 * 1455 * 3. create binary file from the hex file 1456 * 1457 * 4. save as "iNVM_xxx.bin" under /lib/firmware 1458 */ 1459 int iwl_read_external_nvm(struct iwl_trans *trans, 1460 const char *nvm_file_name, 1461 struct iwl_nvm_section *nvm_sections) 1462 { 1463 int ret, section_size; 1464 u16 section_id; 1465 const struct firmware *fw_entry; 1466 const struct { 1467 __le16 word1; 1468 __le16 word2; 1469 u8 data[]; 1470 } *file_sec; 1471 const u8 *eof; 1472 u8 *temp; 1473 int max_section_size; 1474 const __le32 *dword_buff; 1475 1476 #define NVM_WORD1_LEN(x) (8 * (x & 0x03FF)) 1477 #define NVM_WORD2_ID(x) (x >> 12) 1478 #define EXT_NVM_WORD2_LEN(x) (2 * (((x) & 0xFF) << 8 | (x) >> 8)) 1479 #define EXT_NVM_WORD1_ID(x) ((x) >> 4) 1480 #define NVM_HEADER_0 (0x2A504C54) 1481 #define NVM_HEADER_1 (0x4E564D2A) 1482 #define NVM_HEADER_SIZE (4 * sizeof(u32)) 1483 1484 IWL_DEBUG_EEPROM(trans->dev, "Read from external NVM\n"); 1485 1486 /* Maximal size depends on NVM version */ 1487 if (trans->cfg->nvm_type != IWL_NVM_EXT) 1488 max_section_size = IWL_MAX_NVM_SECTION_SIZE; 1489 else 1490 max_section_size = IWL_MAX_EXT_NVM_SECTION_SIZE; 1491 1492 /* 1493 * Obtain NVM image via request_firmware. Since we already used 1494 * request_firmware_nowait() for the firmware binary load and only 1495 * get here after that we assume the NVM request can be satisfied 1496 * synchronously. 1497 */ 1498 ret = request_firmware(&fw_entry, nvm_file_name, trans->dev); 1499 if (ret) { 1500 IWL_ERR(trans, "ERROR: %s isn't available %d\n", 1501 nvm_file_name, ret); 1502 return ret; 1503 } 1504 1505 IWL_INFO(trans, "Loaded NVM file %s (%zu bytes)\n", 1506 nvm_file_name, fw_entry->size); 1507 1508 if (fw_entry->size > MAX_NVM_FILE_LEN) { 1509 IWL_ERR(trans, "NVM file too large\n"); 1510 ret = -EINVAL; 1511 goto out; 1512 } 1513 1514 eof = fw_entry->data + fw_entry->size; 1515 dword_buff = (__le32 *)fw_entry->data; 1516 1517 /* some NVM file will contain a header. 1518 * The header is identified by 2 dwords header as follow: 1519 * dword[0] = 0x2A504C54 1520 * dword[1] = 0x4E564D2A 1521 * 1522 * This header must be skipped when providing the NVM data to the FW. 1523 */ 1524 if (fw_entry->size > NVM_HEADER_SIZE && 1525 dword_buff[0] == cpu_to_le32(NVM_HEADER_0) && 1526 dword_buff[1] == cpu_to_le32(NVM_HEADER_1)) { 1527 file_sec = (void *)(fw_entry->data + NVM_HEADER_SIZE); 1528 IWL_INFO(trans, "NVM Version %08X\n", le32_to_cpu(dword_buff[2])); 1529 IWL_INFO(trans, "NVM Manufacturing date %08X\n", 1530 le32_to_cpu(dword_buff[3])); 1531 1532 /* nvm file validation, dword_buff[2] holds the file version */ 1533 if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_8000 && 1534 CSR_HW_REV_STEP(trans->hw_rev) == SILICON_C_STEP && 1535 le32_to_cpu(dword_buff[2]) < 0xE4A) { 1536 ret = -EFAULT; 1537 goto out; 1538 } 1539 } else { 1540 file_sec = (void *)fw_entry->data; 1541 } 1542 1543 while (true) { 1544 if (file_sec->data > eof) { 1545 IWL_ERR(trans, 1546 "ERROR - NVM file too short for section header\n"); 1547 ret = -EINVAL; 1548 break; 1549 } 1550 1551 /* check for EOF marker */ 1552 if (!file_sec->word1 && !file_sec->word2) { 1553 ret = 0; 1554 break; 1555 } 1556 1557 if (trans->cfg->nvm_type != IWL_NVM_EXT) { 1558 section_size = 1559 2 * NVM_WORD1_LEN(le16_to_cpu(file_sec->word1)); 1560 section_id = NVM_WORD2_ID(le16_to_cpu(file_sec->word2)); 1561 } else { 1562 section_size = 2 * EXT_NVM_WORD2_LEN( 1563 le16_to_cpu(file_sec->word2)); 1564 section_id = EXT_NVM_WORD1_ID( 1565 le16_to_cpu(file_sec->word1)); 1566 } 1567 1568 if (section_size > max_section_size) { 1569 IWL_ERR(trans, "ERROR - section too large (%d)\n", 1570 section_size); 1571 ret = -EINVAL; 1572 break; 1573 } 1574 1575 if (!section_size) { 1576 IWL_ERR(trans, "ERROR - section empty\n"); 1577 ret = -EINVAL; 1578 break; 1579 } 1580 1581 if (file_sec->data + section_size > eof) { 1582 IWL_ERR(trans, 1583 "ERROR - NVM file too short for section (%d bytes)\n", 1584 section_size); 1585 ret = -EINVAL; 1586 break; 1587 } 1588 1589 if (WARN(section_id >= NVM_MAX_NUM_SECTIONS, 1590 "Invalid NVM section ID %d\n", section_id)) { 1591 ret = -EINVAL; 1592 break; 1593 } 1594 1595 temp = kmemdup(file_sec->data, section_size, GFP_KERNEL); 1596 if (!temp) { 1597 ret = -ENOMEM; 1598 break; 1599 } 1600 1601 iwl_nvm_fixups(trans->hw_id, section_id, temp, section_size); 1602 1603 kfree(nvm_sections[section_id].data); 1604 nvm_sections[section_id].data = temp; 1605 nvm_sections[section_id].length = section_size; 1606 1607 /* advance to the next section */ 1608 file_sec = (void *)(file_sec->data + section_size); 1609 } 1610 out: 1611 release_firmware(fw_entry); 1612 return ret; 1613 } 1614 IWL_EXPORT_SYMBOL(iwl_read_external_nvm); 1615 1616 struct iwl_nvm_data *iwl_get_nvm(struct iwl_trans *trans, 1617 const struct iwl_fw *fw) 1618 { 1619 struct iwl_nvm_get_info cmd = {}; 1620 struct iwl_nvm_data *nvm; 1621 struct iwl_host_cmd hcmd = { 1622 .flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL, 1623 .data = { &cmd, }, 1624 .len = { sizeof(cmd) }, 1625 .id = WIDE_ID(REGULATORY_AND_NVM_GROUP, NVM_GET_INFO) 1626 }; 1627 int ret; 1628 bool empty_otp; 1629 u32 mac_flags; 1630 u32 sbands_flags = 0; 1631 /* 1632 * All the values in iwl_nvm_get_info_rsp v4 are the same as 1633 * in v3, except for the channel profile part of the 1634 * regulatory. So we can just access the new struct, with the 1635 * exception of the latter. 1636 */ 1637 struct iwl_nvm_get_info_rsp *rsp; 1638 struct iwl_nvm_get_info_rsp_v3 *rsp_v3; 1639 bool v4 = fw_has_api(&fw->ucode_capa, 1640 IWL_UCODE_TLV_API_REGULATORY_NVM_INFO); 1641 size_t rsp_size = v4 ? sizeof(*rsp) : sizeof(*rsp_v3); 1642 void *channel_profile; 1643 1644 ret = iwl_trans_send_cmd(trans, &hcmd); 1645 if (ret) 1646 return ERR_PTR(ret); 1647 1648 if (WARN(iwl_rx_packet_payload_len(hcmd.resp_pkt) != rsp_size, 1649 "Invalid payload len in NVM response from FW %d", 1650 iwl_rx_packet_payload_len(hcmd.resp_pkt))) { 1651 ret = -EINVAL; 1652 goto out; 1653 } 1654 1655 rsp = (void *)hcmd.resp_pkt->data; 1656 empty_otp = !!(le32_to_cpu(rsp->general.flags) & 1657 NVM_GENERAL_FLAGS_EMPTY_OTP); 1658 if (empty_otp) 1659 IWL_INFO(trans, "OTP is empty\n"); 1660 1661 nvm = kzalloc(struct_size(nvm, channels, IWL_NUM_CHANNELS), GFP_KERNEL); 1662 if (!nvm) { 1663 ret = -ENOMEM; 1664 goto out; 1665 } 1666 1667 iwl_set_hw_address_from_csr(trans, nvm); 1668 /* TODO: if platform NVM has MAC address - override it here */ 1669 1670 if (!is_valid_ether_addr(nvm->hw_addr)) { 1671 IWL_ERR(trans, "no valid mac address was found\n"); 1672 ret = -EINVAL; 1673 goto err_free; 1674 } 1675 1676 IWL_INFO(trans, "base HW address: %pM\n", nvm->hw_addr); 1677 1678 /* Initialize general data */ 1679 nvm->nvm_version = le16_to_cpu(rsp->general.nvm_version); 1680 nvm->n_hw_addrs = rsp->general.n_hw_addrs; 1681 if (nvm->n_hw_addrs == 0) 1682 IWL_WARN(trans, 1683 "Firmware declares no reserved mac addresses. OTP is empty: %d\n", 1684 empty_otp); 1685 1686 /* Initialize MAC sku data */ 1687 mac_flags = le32_to_cpu(rsp->mac_sku.mac_sku_flags); 1688 nvm->sku_cap_11ac_enable = 1689 !!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AC_ENABLED); 1690 nvm->sku_cap_11n_enable = 1691 !!(mac_flags & NVM_MAC_SKU_FLAGS_802_11N_ENABLED); 1692 nvm->sku_cap_11ax_enable = 1693 !!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AX_ENABLED); 1694 nvm->sku_cap_band_24ghz_enable = 1695 !!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_2_4_ENABLED); 1696 nvm->sku_cap_band_52ghz_enable = 1697 !!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_5_2_ENABLED); 1698 nvm->sku_cap_mimo_disabled = 1699 !!(mac_flags & NVM_MAC_SKU_FLAGS_MIMO_DISABLED); 1700 1701 /* Initialize PHY sku data */ 1702 nvm->valid_tx_ant = (u8)le32_to_cpu(rsp->phy_sku.tx_chains); 1703 nvm->valid_rx_ant = (u8)le32_to_cpu(rsp->phy_sku.rx_chains); 1704 1705 if (le32_to_cpu(rsp->regulatory.lar_enabled) && 1706 fw_has_capa(&fw->ucode_capa, 1707 IWL_UCODE_TLV_CAPA_LAR_SUPPORT)) { 1708 nvm->lar_enabled = true; 1709 sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR; 1710 } 1711 1712 rsp_v3 = (void *)rsp; 1713 channel_profile = v4 ? (void *)rsp->regulatory.channel_profile : 1714 (void *)rsp_v3->regulatory.channel_profile; 1715 1716 iwl_init_sbands(trans, nvm, 1717 channel_profile, 1718 nvm->valid_tx_ant & fw->valid_tx_ant, 1719 nvm->valid_rx_ant & fw->valid_rx_ant, 1720 sbands_flags, v4, fw); 1721 1722 iwl_free_resp(&hcmd); 1723 return nvm; 1724 1725 err_free: 1726 kfree(nvm); 1727 out: 1728 iwl_free_resp(&hcmd); 1729 return ERR_PTR(ret); 1730 } 1731 IWL_EXPORT_SYMBOL(iwl_get_nvm); 1732