xref: /openbmc/linux/drivers/net/wireless/intel/iwlwifi/iwl-nvm-parse.c (revision 72ed5d5624af384eaf74d84915810d54486a75e2)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright (C) 2005-2014, 2018-2022 Intel Corporation
4  * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5  * Copyright (C) 2016-2017 Intel Deutschland GmbH
6  */
7 #include <linux/types.h>
8 #include <linux/slab.h>
9 #include <linux/export.h>
10 #include <linux/etherdevice.h>
11 #include <linux/pci.h>
12 #include <linux/firmware.h>
13 
14 #include "iwl-drv.h"
15 #include "iwl-modparams.h"
16 #include "iwl-nvm-parse.h"
17 #include "iwl-prph.h"
18 #include "iwl-io.h"
19 #include "iwl-csr.h"
20 #include "fw/acpi.h"
21 #include "fw/api/nvm-reg.h"
22 #include "fw/api/commands.h"
23 #include "fw/api/cmdhdr.h"
24 #include "fw/img.h"
25 #include "mei/iwl-mei.h"
26 
27 /* NVM offsets (in words) definitions */
28 enum nvm_offsets {
29 	/* NVM HW-Section offset (in words) definitions */
30 	SUBSYSTEM_ID = 0x0A,
31 	HW_ADDR = 0x15,
32 
33 	/* NVM SW-Section offset (in words) definitions */
34 	NVM_SW_SECTION = 0x1C0,
35 	NVM_VERSION = 0,
36 	RADIO_CFG = 1,
37 	SKU = 2,
38 	N_HW_ADDRS = 3,
39 	NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,
40 
41 	/* NVM calibration section offset (in words) definitions */
42 	NVM_CALIB_SECTION = 0x2B8,
43 	XTAL_CALIB = 0x316 - NVM_CALIB_SECTION,
44 
45 	/* NVM REGULATORY -Section offset (in words) definitions */
46 	NVM_CHANNELS_SDP = 0,
47 };
48 
49 enum ext_nvm_offsets {
50 	/* NVM HW-Section offset (in words) definitions */
51 	MAC_ADDRESS_OVERRIDE_EXT_NVM = 1,
52 
53 	/* NVM SW-Section offset (in words) definitions */
54 	NVM_VERSION_EXT_NVM = 0,
55 	N_HW_ADDRS_FAMILY_8000 = 3,
56 
57 	/* NVM PHY_SKU-Section offset (in words) definitions */
58 	RADIO_CFG_FAMILY_EXT_NVM = 0,
59 	SKU_FAMILY_8000 = 2,
60 
61 	/* NVM REGULATORY -Section offset (in words) definitions */
62 	NVM_CHANNELS_EXTENDED = 0,
63 	NVM_LAR_OFFSET_OLD = 0x4C7,
64 	NVM_LAR_OFFSET = 0x507,
65 	NVM_LAR_ENABLED = 0x7,
66 };
67 
68 /* SKU Capabilities (actual values from NVM definition) */
69 enum nvm_sku_bits {
70 	NVM_SKU_CAP_BAND_24GHZ		= BIT(0),
71 	NVM_SKU_CAP_BAND_52GHZ		= BIT(1),
72 	NVM_SKU_CAP_11N_ENABLE		= BIT(2),
73 	NVM_SKU_CAP_11AC_ENABLE		= BIT(3),
74 	NVM_SKU_CAP_MIMO_DISABLE	= BIT(5),
75 };
76 
77 /*
78  * These are the channel numbers in the order that they are stored in the NVM
79  */
80 static const u16 iwl_nvm_channels[] = {
81 	/* 2.4 GHz */
82 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
83 	/* 5 GHz */
84 	36, 40, 44 , 48, 52, 56, 60, 64,
85 	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
86 	149, 153, 157, 161, 165
87 };
88 
89 static const u16 iwl_ext_nvm_channels[] = {
90 	/* 2.4 GHz */
91 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
92 	/* 5 GHz */
93 	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
94 	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
95 	149, 153, 157, 161, 165, 169, 173, 177, 181
96 };
97 
98 static const u16 iwl_uhb_nvm_channels[] = {
99 	/* 2.4 GHz */
100 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
101 	/* 5 GHz */
102 	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
103 	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
104 	149, 153, 157, 161, 165, 169, 173, 177, 181,
105 	/* 6-7 GHz */
106 	1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69,
107 	73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129,
108 	133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 177, 181, 185,
109 	189, 193, 197, 201, 205, 209, 213, 217, 221, 225, 229, 233
110 };
111 
112 #define IWL_NVM_NUM_CHANNELS		ARRAY_SIZE(iwl_nvm_channels)
113 #define IWL_NVM_NUM_CHANNELS_EXT	ARRAY_SIZE(iwl_ext_nvm_channels)
114 #define IWL_NVM_NUM_CHANNELS_UHB	ARRAY_SIZE(iwl_uhb_nvm_channels)
115 #define NUM_2GHZ_CHANNELS		14
116 #define NUM_5GHZ_CHANNELS		37
117 #define FIRST_2GHZ_HT_MINUS		5
118 #define LAST_2GHZ_HT_PLUS		9
119 #define N_HW_ADDR_MASK			0xF
120 
121 /* rate data (static) */
122 static struct ieee80211_rate iwl_cfg80211_rates[] = {
123 	{ .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
124 	{ .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
125 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
126 	{ .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
127 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
128 	{ .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
129 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
130 	{ .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
131 	{ .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
132 	{ .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
133 	{ .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
134 	{ .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
135 	{ .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
136 	{ .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
137 	{ .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
138 };
139 #define RATES_24_OFFS	0
140 #define N_RATES_24	ARRAY_SIZE(iwl_cfg80211_rates)
141 #define RATES_52_OFFS	4
142 #define N_RATES_52	(N_RATES_24 - RATES_52_OFFS)
143 
144 /**
145  * enum iwl_nvm_channel_flags - channel flags in NVM
146  * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
147  * @NVM_CHANNEL_IBSS: usable as an IBSS channel
148  * @NVM_CHANNEL_ACTIVE: active scanning allowed
149  * @NVM_CHANNEL_RADAR: radar detection required
150  * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
151  * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
152  *	on same channel on 2.4 or same UNII band on 5.2
153  * @NVM_CHANNEL_UNIFORM: uniform spreading required
154  * @NVM_CHANNEL_20MHZ: 20 MHz channel okay
155  * @NVM_CHANNEL_40MHZ: 40 MHz channel okay
156  * @NVM_CHANNEL_80MHZ: 80 MHz channel okay
157  * @NVM_CHANNEL_160MHZ: 160 MHz channel okay
158  * @NVM_CHANNEL_DC_HIGH: DC HIGH required/allowed (?)
159  */
160 enum iwl_nvm_channel_flags {
161 	NVM_CHANNEL_VALID		= BIT(0),
162 	NVM_CHANNEL_IBSS		= BIT(1),
163 	NVM_CHANNEL_ACTIVE		= BIT(3),
164 	NVM_CHANNEL_RADAR		= BIT(4),
165 	NVM_CHANNEL_INDOOR_ONLY		= BIT(5),
166 	NVM_CHANNEL_GO_CONCURRENT	= BIT(6),
167 	NVM_CHANNEL_UNIFORM		= BIT(7),
168 	NVM_CHANNEL_20MHZ		= BIT(8),
169 	NVM_CHANNEL_40MHZ		= BIT(9),
170 	NVM_CHANNEL_80MHZ		= BIT(10),
171 	NVM_CHANNEL_160MHZ		= BIT(11),
172 	NVM_CHANNEL_DC_HIGH		= BIT(12),
173 };
174 
175 /**
176  * enum iwl_reg_capa_flags - global flags applied for the whole regulatory
177  * domain.
178  * @REG_CAPA_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
179  *	2.4Ghz band is allowed.
180  * @REG_CAPA_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
181  *	5Ghz band is allowed.
182  * @REG_CAPA_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
183  *	for this regulatory domain (valid only in 5Ghz).
184  * @REG_CAPA_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
185  *	for this regulatory domain (valid only in 5Ghz).
186  * @REG_CAPA_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
187  * @REG_CAPA_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
188  * @REG_CAPA_40MHZ_FORBIDDEN: 11n channel with a width of 40Mhz is forbidden
189  *	for this regulatory domain (valid only in 5Ghz).
190  * @REG_CAPA_DC_HIGH_ENABLED: DC HIGH allowed.
191  * @REG_CAPA_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
192  */
193 enum iwl_reg_capa_flags {
194 	REG_CAPA_BF_CCD_LOW_BAND	= BIT(0),
195 	REG_CAPA_BF_CCD_HIGH_BAND	= BIT(1),
196 	REG_CAPA_160MHZ_ALLOWED		= BIT(2),
197 	REG_CAPA_80MHZ_ALLOWED		= BIT(3),
198 	REG_CAPA_MCS_8_ALLOWED		= BIT(4),
199 	REG_CAPA_MCS_9_ALLOWED		= BIT(5),
200 	REG_CAPA_40MHZ_FORBIDDEN	= BIT(7),
201 	REG_CAPA_DC_HIGH_ENABLED	= BIT(9),
202 	REG_CAPA_11AX_DISABLED		= BIT(10),
203 };
204 
205 /**
206  * enum iwl_reg_capa_flags_v2 - global flags applied for the whole regulatory
207  * domain (version 2).
208  * @REG_CAPA_V2_STRADDLE_DISABLED: Straddle channels (144, 142, 138) are
209  *	disabled.
210  * @REG_CAPA_V2_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
211  *	2.4Ghz band is allowed.
212  * @REG_CAPA_V2_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
213  *	5Ghz band is allowed.
214  * @REG_CAPA_V2_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
215  *	for this regulatory domain (valid only in 5Ghz).
216  * @REG_CAPA_V2_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
217  *	for this regulatory domain (valid only in 5Ghz).
218  * @REG_CAPA_V2_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
219  * @REG_CAPA_V2_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
220  * @REG_CAPA_V2_WEATHER_DISABLED: Weather radar channels (120, 124, 128, 118,
221  *	126, 122) are disabled.
222  * @REG_CAPA_V2_40MHZ_ALLOWED: 11n channel with a width of 40Mhz is allowed
223  *	for this regulatory domain (uvalid only in 5Ghz).
224  * @REG_CAPA_V2_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
225  */
226 enum iwl_reg_capa_flags_v2 {
227 	REG_CAPA_V2_STRADDLE_DISABLED	= BIT(0),
228 	REG_CAPA_V2_BF_CCD_LOW_BAND	= BIT(1),
229 	REG_CAPA_V2_BF_CCD_HIGH_BAND	= BIT(2),
230 	REG_CAPA_V2_160MHZ_ALLOWED	= BIT(3),
231 	REG_CAPA_V2_80MHZ_ALLOWED	= BIT(4),
232 	REG_CAPA_V2_MCS_8_ALLOWED	= BIT(5),
233 	REG_CAPA_V2_MCS_9_ALLOWED	= BIT(6),
234 	REG_CAPA_V2_WEATHER_DISABLED	= BIT(7),
235 	REG_CAPA_V2_40MHZ_ALLOWED	= BIT(8),
236 	REG_CAPA_V2_11AX_DISABLED	= BIT(10),
237 };
238 
239 /*
240 * API v2 for reg_capa_flags is relevant from version 6 and onwards of the
241 * MCC update command response.
242 */
243 #define REG_CAPA_V2_RESP_VER	6
244 
245 /**
246  * struct iwl_reg_capa - struct for global regulatory capabilities, Used for
247  * handling the different APIs of reg_capa_flags.
248  *
249  * @allow_40mhz: 11n channel with a width of 40Mhz is allowed
250  *	for this regulatory domain (valid only in 5Ghz).
251  * @allow_80mhz: 11ac channel with a width of 80Mhz is allowed
252  *	for this regulatory domain (valid only in 5Ghz).
253  * @allow_160mhz: 11ac channel with a width of 160Mhz is allowed
254  *	for this regulatory domain (valid only in 5Ghz).
255  * @disable_11ax: 11ax is forbidden for this regulatory domain.
256  */
257 struct iwl_reg_capa {
258 	u16 allow_40mhz;
259 	u16 allow_80mhz;
260 	u16 allow_160mhz;
261 	u16 disable_11ax;
262 };
263 
264 static inline void iwl_nvm_print_channel_flags(struct device *dev, u32 level,
265 					       int chan, u32 flags)
266 {
267 #define CHECK_AND_PRINT_I(x)	\
268 	((flags & NVM_CHANNEL_##x) ? " " #x : "")
269 
270 	if (!(flags & NVM_CHANNEL_VALID)) {
271 		IWL_DEBUG_DEV(dev, level, "Ch. %d: 0x%x: No traffic\n",
272 			      chan, flags);
273 		return;
274 	}
275 
276 	/* Note: already can print up to 101 characters, 110 is the limit! */
277 	IWL_DEBUG_DEV(dev, level,
278 		      "Ch. %d: 0x%x:%s%s%s%s%s%s%s%s%s%s%s%s\n",
279 		      chan, flags,
280 		      CHECK_AND_PRINT_I(VALID),
281 		      CHECK_AND_PRINT_I(IBSS),
282 		      CHECK_AND_PRINT_I(ACTIVE),
283 		      CHECK_AND_PRINT_I(RADAR),
284 		      CHECK_AND_PRINT_I(INDOOR_ONLY),
285 		      CHECK_AND_PRINT_I(GO_CONCURRENT),
286 		      CHECK_AND_PRINT_I(UNIFORM),
287 		      CHECK_AND_PRINT_I(20MHZ),
288 		      CHECK_AND_PRINT_I(40MHZ),
289 		      CHECK_AND_PRINT_I(80MHZ),
290 		      CHECK_AND_PRINT_I(160MHZ),
291 		      CHECK_AND_PRINT_I(DC_HIGH));
292 #undef CHECK_AND_PRINT_I
293 }
294 
295 static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, enum nl80211_band band,
296 				 u32 nvm_flags, const struct iwl_cfg *cfg)
297 {
298 	u32 flags = IEEE80211_CHAN_NO_HT40;
299 
300 	if (band == NL80211_BAND_2GHZ && (nvm_flags & NVM_CHANNEL_40MHZ)) {
301 		if (ch_num <= LAST_2GHZ_HT_PLUS)
302 			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
303 		if (ch_num >= FIRST_2GHZ_HT_MINUS)
304 			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
305 	} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
306 		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
307 			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
308 		else
309 			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
310 	}
311 	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
312 		flags |= IEEE80211_CHAN_NO_80MHZ;
313 	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
314 		flags |= IEEE80211_CHAN_NO_160MHZ;
315 
316 	if (!(nvm_flags & NVM_CHANNEL_IBSS))
317 		flags |= IEEE80211_CHAN_NO_IR;
318 
319 	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
320 		flags |= IEEE80211_CHAN_NO_IR;
321 
322 	if (nvm_flags & NVM_CHANNEL_RADAR)
323 		flags |= IEEE80211_CHAN_RADAR;
324 
325 	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
326 		flags |= IEEE80211_CHAN_INDOOR_ONLY;
327 
328 	/* Set the GO concurrent flag only in case that NO_IR is set.
329 	 * Otherwise it is meaningless
330 	 */
331 	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
332 	    (flags & IEEE80211_CHAN_NO_IR))
333 		flags |= IEEE80211_CHAN_IR_CONCURRENT;
334 
335 	return flags;
336 }
337 
338 static enum nl80211_band iwl_nl80211_band_from_channel_idx(int ch_idx)
339 {
340 	if (ch_idx >= NUM_2GHZ_CHANNELS + NUM_5GHZ_CHANNELS) {
341 		return NL80211_BAND_6GHZ;
342 	}
343 
344 	if (ch_idx >= NUM_2GHZ_CHANNELS)
345 		return NL80211_BAND_5GHZ;
346 	return NL80211_BAND_2GHZ;
347 }
348 
349 static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
350 				struct iwl_nvm_data *data,
351 				const void * const nvm_ch_flags,
352 				u32 sbands_flags, bool v4)
353 {
354 	int ch_idx;
355 	int n_channels = 0;
356 	struct ieee80211_channel *channel;
357 	u32 ch_flags;
358 	int num_of_ch;
359 	const u16 *nvm_chan;
360 
361 	if (cfg->uhb_supported) {
362 		num_of_ch = IWL_NVM_NUM_CHANNELS_UHB;
363 		nvm_chan = iwl_uhb_nvm_channels;
364 	} else if (cfg->nvm_type == IWL_NVM_EXT) {
365 		num_of_ch = IWL_NVM_NUM_CHANNELS_EXT;
366 		nvm_chan = iwl_ext_nvm_channels;
367 	} else {
368 		num_of_ch = IWL_NVM_NUM_CHANNELS;
369 		nvm_chan = iwl_nvm_channels;
370 	}
371 
372 	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
373 		enum nl80211_band band =
374 			iwl_nl80211_band_from_channel_idx(ch_idx);
375 
376 		if (v4)
377 			ch_flags =
378 				__le32_to_cpup((const __le32 *)nvm_ch_flags + ch_idx);
379 		else
380 			ch_flags =
381 				__le16_to_cpup((const __le16 *)nvm_ch_flags + ch_idx);
382 
383 		if (band == NL80211_BAND_5GHZ &&
384 		    !data->sku_cap_band_52ghz_enable)
385 			continue;
386 
387 		/* workaround to disable wide channels in 5GHz */
388 		if ((sbands_flags & IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ) &&
389 		    band == NL80211_BAND_5GHZ) {
390 			ch_flags &= ~(NVM_CHANNEL_40MHZ |
391 				     NVM_CHANNEL_80MHZ |
392 				     NVM_CHANNEL_160MHZ);
393 		}
394 
395 		if (ch_flags & NVM_CHANNEL_160MHZ)
396 			data->vht160_supported = true;
397 
398 		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR) &&
399 		    !(ch_flags & NVM_CHANNEL_VALID)) {
400 			/*
401 			 * Channels might become valid later if lar is
402 			 * supported, hence we still want to add them to
403 			 * the list of supported channels to cfg80211.
404 			 */
405 			iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
406 						    nvm_chan[ch_idx], ch_flags);
407 			continue;
408 		}
409 
410 		channel = &data->channels[n_channels];
411 		n_channels++;
412 
413 		channel->hw_value = nvm_chan[ch_idx];
414 		channel->band = band;
415 		channel->center_freq =
416 			ieee80211_channel_to_frequency(
417 				channel->hw_value, channel->band);
418 
419 		/* Initialize regulatory-based run-time data */
420 
421 		/*
422 		 * Default value - highest tx power value.  max_power
423 		 * is not used in mvm, and is used for backwards compatibility
424 		 */
425 		channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
426 
427 		/* don't put limitations in case we're using LAR */
428 		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR))
429 			channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
430 							       ch_idx, band,
431 							       ch_flags, cfg);
432 		else
433 			channel->flags = 0;
434 
435 		/* TODO: Don't put limitations on UHB devices as we still don't
436 		 * have NVM for them
437 		 */
438 		if (cfg->uhb_supported)
439 			channel->flags = 0;
440 		iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
441 					    channel->hw_value, ch_flags);
442 		IWL_DEBUG_EEPROM(dev, "Ch. %d: %ddBm\n",
443 				 channel->hw_value, channel->max_power);
444 	}
445 
446 	return n_channels;
447 }
448 
449 static void iwl_init_vht_hw_capab(struct iwl_trans *trans,
450 				  struct iwl_nvm_data *data,
451 				  struct ieee80211_sta_vht_cap *vht_cap,
452 				  u8 tx_chains, u8 rx_chains)
453 {
454 	const struct iwl_cfg *cfg = trans->cfg;
455 	int num_rx_ants = num_of_ant(rx_chains);
456 	int num_tx_ants = num_of_ant(tx_chains);
457 
458 	vht_cap->vht_supported = true;
459 
460 	vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
461 		       IEEE80211_VHT_CAP_RXSTBC_1 |
462 		       IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
463 		       3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
464 		       IEEE80211_VHT_MAX_AMPDU_1024K <<
465 		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
466 
467 	if (data->vht160_supported)
468 		vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ |
469 				IEEE80211_VHT_CAP_SHORT_GI_160;
470 
471 	if (cfg->vht_mu_mimo_supported)
472 		vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;
473 
474 	if (cfg->ht_params->ldpc)
475 		vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
476 
477 	if (data->sku_cap_mimo_disabled) {
478 		num_rx_ants = 1;
479 		num_tx_ants = 1;
480 	}
481 
482 	if (num_tx_ants > 1)
483 		vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
484 	else
485 		vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
486 
487 	switch (iwlwifi_mod_params.amsdu_size) {
488 	case IWL_AMSDU_DEF:
489 		if (trans->trans_cfg->mq_rx_supported)
490 			vht_cap->cap |=
491 				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
492 		else
493 			vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
494 		break;
495 	case IWL_AMSDU_2K:
496 		if (trans->trans_cfg->mq_rx_supported)
497 			vht_cap->cap |=
498 				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
499 		else
500 			WARN(1, "RB size of 2K is not supported by this device\n");
501 		break;
502 	case IWL_AMSDU_4K:
503 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
504 		break;
505 	case IWL_AMSDU_8K:
506 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
507 		break;
508 	case IWL_AMSDU_12K:
509 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
510 		break;
511 	default:
512 		break;
513 	}
514 
515 	vht_cap->vht_mcs.rx_mcs_map =
516 		cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
517 			    IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
518 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
519 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
520 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
521 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
522 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
523 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);
524 
525 	if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
526 		vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
527 		/* this works because NOT_SUPPORTED == 3 */
528 		vht_cap->vht_mcs.rx_mcs_map |=
529 			cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
530 	}
531 
532 	vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
533 
534 	vht_cap->vht_mcs.tx_highest |=
535 		cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE);
536 }
537 
538 static const u8 iwl_vendor_caps[] = {
539 	0xdd,			/* vendor element */
540 	0x06,			/* length */
541 	0x00, 0x17, 0x35,	/* Intel OUI */
542 	0x08,			/* type (Intel Capabilities) */
543 	/* followed by 16 bits of capabilities */
544 #define IWL_VENDOR_CAP_IMPROVED_BF_FDBK_HE	BIT(0)
545 	IWL_VENDOR_CAP_IMPROVED_BF_FDBK_HE,
546 	0x00
547 };
548 
549 static const struct ieee80211_sband_iftype_data iwl_he_eht_capa[] = {
550 	{
551 		.types_mask = BIT(NL80211_IFTYPE_STATION),
552 		.he_cap = {
553 			.has_he = true,
554 			.he_cap_elem = {
555 				.mac_cap_info[0] =
556 					IEEE80211_HE_MAC_CAP0_HTC_HE,
557 				.mac_cap_info[1] =
558 					IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
559 					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
560 				.mac_cap_info[2] =
561 					IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP,
562 				.mac_cap_info[3] =
563 					IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
564 					IEEE80211_HE_MAC_CAP3_RX_CTRL_FRAME_TO_MULTIBSS,
565 				.mac_cap_info[4] =
566 					IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU |
567 					IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39,
568 				.mac_cap_info[5] =
569 					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40 |
570 					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41 |
571 					IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU |
572 					IEEE80211_HE_MAC_CAP5_HE_DYNAMIC_SM_PS |
573 					IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX,
574 				.phy_cap_info[1] =
575 					IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK |
576 					IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A |
577 					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
578 				.phy_cap_info[2] =
579 					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US |
580 					IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ,
581 				.phy_cap_info[3] =
582 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK |
583 					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
584 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK |
585 					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
586 				.phy_cap_info[4] =
587 					IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE |
588 					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 |
589 					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8,
590 				.phy_cap_info[6] =
591 					IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMING_FB |
592 					IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB |
593 					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
594 				.phy_cap_info[7] =
595 					IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_SUPP |
596 					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI,
597 				.phy_cap_info[8] =
598 					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
599 					IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
600 					IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
601 					IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU |
602 					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242,
603 				.phy_cap_info[9] =
604 					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
605 					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB |
606 					(IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED <<
607 					IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS),
608 				.phy_cap_info[10] =
609 					IEEE80211_HE_PHY_CAP10_HE_MU_M1RU_MAX_LTF,
610 			},
611 			/*
612 			 * Set default Tx/Rx HE MCS NSS Support field.
613 			 * Indicate support for up to 2 spatial streams and all
614 			 * MCS, without any special cases
615 			 */
616 			.he_mcs_nss_supp = {
617 				.rx_mcs_80 = cpu_to_le16(0xfffa),
618 				.tx_mcs_80 = cpu_to_le16(0xfffa),
619 				.rx_mcs_160 = cpu_to_le16(0xfffa),
620 				.tx_mcs_160 = cpu_to_le16(0xfffa),
621 				.rx_mcs_80p80 = cpu_to_le16(0xffff),
622 				.tx_mcs_80p80 = cpu_to_le16(0xffff),
623 			},
624 			/*
625 			 * Set default PPE thresholds, with PPET16 set to 0,
626 			 * PPET8 set to 7
627 			 */
628 			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
629 		},
630 		.eht_cap = {
631 			.has_eht = true,
632 			.eht_cap_elem = {
633 				.mac_cap_info[0] =
634 					IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS |
635 					IEEE80211_EHT_MAC_CAP0_OM_CONTROL |
636 					IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 |
637 					IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2,
638 				.phy_cap_info[0] =
639 					IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ |
640 					IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI |
641 					IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO |
642 					IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMEE |
643 					IEEE80211_EHT_PHY_CAP0_BEAMFORMEE_SS_80MHZ_MASK,
644 				.phy_cap_info[1] =
645 					IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_80MHZ_MASK  |
646 					IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_160MHZ_MASK |
647 					IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_320MHZ_MASK,
648 				.phy_cap_info[3] =
649 					IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK |
650 					IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK |
651 					IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK |
652 					IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK |
653 					IEEE80211_EHT_PHY_CAP3_TRIG_SU_BF_FDBK |
654 					IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK |
655 					IEEE80211_EHT_PHY_CAP3_TRIG_CQI_FDBK,
656 
657 				.phy_cap_info[4] =
658 					IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO |
659 					IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP |
660 					IEEE80211_EHT_PHY_CAP4_EHT_MU_PPDU_4_EHT_LTF_08_GI,
661 				.phy_cap_info[5] =
662 					IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK |
663 					IEEE80211_EHT_PHY_CAP5_TX_LESS_242_TONE_RU_SUPP |
664 					IEEE80211_EHT_PHY_CAP5_RX_LESS_242_TONE_RU_SUPP |
665 					IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT,
666 				.phy_cap_info[6] =
667 					IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK |
668 					IEEE80211_EHT_PHY_CAP6_EHT_DUP_6GHZ_SUPP,
669 				.phy_cap_info[8] =
670 					IEEE80211_EHT_PHY_CAP8_RX_1024QAM_WIDER_BW_DL_OFDMA |
671 					IEEE80211_EHT_PHY_CAP8_RX_4096QAM_WIDER_BW_DL_OFDMA,
672 			},
673 
674 			/* For all MCS and bandwidth, set 2 NSS for both Tx and
675 			 * Rx - note we don't set the only_20mhz, but due to this
676 			 * being a union, it gets set correctly anyway.
677 			 */
678 			.eht_mcs_nss_supp = {
679 				.bw._80 = {
680 					.rx_tx_mcs9_max_nss = 0x22,
681 					.rx_tx_mcs11_max_nss = 0x22,
682 					.rx_tx_mcs13_max_nss = 0x22,
683 				},
684 				.bw._160 = {
685 					.rx_tx_mcs9_max_nss = 0x22,
686 					.rx_tx_mcs11_max_nss = 0x22,
687 					.rx_tx_mcs13_max_nss = 0x22,
688 				},
689 				.bw._320 = {
690 					.rx_tx_mcs9_max_nss = 0x22,
691 					.rx_tx_mcs11_max_nss = 0x22,
692 					.rx_tx_mcs13_max_nss = 0x22,
693 				},
694 			},
695 
696 			/*
697 			 * PPE thresholds for NSS = 2, and RU index bitmap set
698 			 * to 0xc.
699 			 */
700 			.eht_ppe_thres = {0xc1, 0x0e, 0xe0 }
701 		},
702 	},
703 	{
704 		.types_mask = BIT(NL80211_IFTYPE_AP),
705 		.he_cap = {
706 			.has_he = true,
707 			.he_cap_elem = {
708 				.mac_cap_info[0] =
709 					IEEE80211_HE_MAC_CAP0_HTC_HE,
710 				.mac_cap_info[1] =
711 					IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
712 					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
713 				.mac_cap_info[3] =
714 					IEEE80211_HE_MAC_CAP3_OMI_CONTROL,
715 				.phy_cap_info[1] =
716 					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
717 				.phy_cap_info[2] =
718 					IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ |
719 					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US,
720 				.phy_cap_info[3] =
721 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK |
722 					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
723 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK |
724 					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
725 				.phy_cap_info[6] =
726 					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
727 				.phy_cap_info[7] =
728 					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI,
729 				.phy_cap_info[8] =
730 					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
731 					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242,
732 				.phy_cap_info[9] =
733 					IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED
734 					<< IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS,
735 			},
736 			/*
737 			 * Set default Tx/Rx HE MCS NSS Support field.
738 			 * Indicate support for up to 2 spatial streams and all
739 			 * MCS, without any special cases
740 			 */
741 			.he_mcs_nss_supp = {
742 				.rx_mcs_80 = cpu_to_le16(0xfffa),
743 				.tx_mcs_80 = cpu_to_le16(0xfffa),
744 				.rx_mcs_160 = cpu_to_le16(0xfffa),
745 				.tx_mcs_160 = cpu_to_le16(0xfffa),
746 				.rx_mcs_80p80 = cpu_to_le16(0xffff),
747 				.tx_mcs_80p80 = cpu_to_le16(0xffff),
748 			},
749 			/*
750 			 * Set default PPE thresholds, with PPET16 set to 0,
751 			 * PPET8 set to 7
752 			 */
753 			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
754 		},
755 		.eht_cap = {
756 			.has_eht = true,
757 			.eht_cap_elem = {
758 				.mac_cap_info[0] =
759 					IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS |
760 					IEEE80211_EHT_MAC_CAP0_OM_CONTROL |
761 					IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 |
762 					IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2,
763 				.phy_cap_info[0] =
764 					IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ |
765 					IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI,
766 				.phy_cap_info[5] =
767 					IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT,
768 			},
769 
770 			/* For all MCS and bandwidth, set 2 NSS for both Tx and
771 			 * Rx - note we don't set the only_20mhz, but due to this
772 			 * being a union, it gets set correctly anyway.
773 			 */
774 			.eht_mcs_nss_supp = {
775 				.bw._80 = {
776 					.rx_tx_mcs9_max_nss = 0x22,
777 					.rx_tx_mcs11_max_nss = 0x22,
778 					.rx_tx_mcs13_max_nss = 0x22,
779 				},
780 				.bw._160 = {
781 					.rx_tx_mcs9_max_nss = 0x22,
782 					.rx_tx_mcs11_max_nss = 0x22,
783 					.rx_tx_mcs13_max_nss = 0x22,
784 				},
785 				.bw._320 = {
786 					.rx_tx_mcs9_max_nss = 0x22,
787 					.rx_tx_mcs11_max_nss = 0x22,
788 					.rx_tx_mcs13_max_nss = 0x22,
789 				},
790 			},
791 
792 			/*
793 			 * PPE thresholds for NSS = 2, and RU index bitmap set
794 			 * to 0xc.
795 			 */
796 			.eht_ppe_thres = {0xc1, 0x0e, 0xe0 }
797 		},
798 	},
799 };
800 
801 static void iwl_init_he_6ghz_capa(struct iwl_trans *trans,
802 				  struct iwl_nvm_data *data,
803 				  struct ieee80211_supported_band *sband,
804 				  u8 tx_chains, u8 rx_chains)
805 {
806 	struct ieee80211_sta_ht_cap ht_cap;
807 	struct ieee80211_sta_vht_cap vht_cap = {};
808 	struct ieee80211_sband_iftype_data *iftype_data;
809 	u16 he_6ghz_capa = 0;
810 	u32 exp;
811 	int i;
812 
813 	if (sband->band != NL80211_BAND_6GHZ)
814 		return;
815 
816 	/* grab HT/VHT capabilities and calculate HE 6 GHz capabilities */
817 	iwl_init_ht_hw_capab(trans, data, &ht_cap, NL80211_BAND_5GHZ,
818 			     tx_chains, rx_chains);
819 	WARN_ON(!ht_cap.ht_supported);
820 	iwl_init_vht_hw_capab(trans, data, &vht_cap, tx_chains, rx_chains);
821 	WARN_ON(!vht_cap.vht_supported);
822 
823 	he_6ghz_capa |=
824 		u16_encode_bits(ht_cap.ampdu_density,
825 				IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START);
826 	exp = u32_get_bits(vht_cap.cap,
827 			   IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK);
828 	he_6ghz_capa |=
829 		u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP);
830 	exp = u32_get_bits(vht_cap.cap, IEEE80211_VHT_CAP_MAX_MPDU_MASK);
831 	he_6ghz_capa |=
832 		u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN);
833 	/* we don't support extended_ht_cap_info anywhere, so no RD_RESPONDER */
834 	if (vht_cap.cap & IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN)
835 		he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS;
836 	if (vht_cap.cap & IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN)
837 		he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS;
838 
839 	IWL_DEBUG_EEPROM(trans->dev, "he_6ghz_capa=0x%x\n", he_6ghz_capa);
840 
841 	/* we know it's writable - we set it before ourselves */
842 	iftype_data = (void *)(uintptr_t)sband->iftype_data;
843 	for (i = 0; i < sband->n_iftype_data; i++)
844 		iftype_data[i].he_6ghz_capa.capa = cpu_to_le16(he_6ghz_capa);
845 }
846 
847 static void
848 iwl_nvm_fixup_sband_iftd(struct iwl_trans *trans,
849 			 struct iwl_nvm_data *data,
850 			 struct ieee80211_supported_band *sband,
851 			 struct ieee80211_sband_iftype_data *iftype_data,
852 			 u8 tx_chains, u8 rx_chains,
853 			 const struct iwl_fw *fw)
854 {
855 	bool is_ap = iftype_data->types_mask & BIT(NL80211_IFTYPE_AP);
856 
857 	if (!data->sku_cap_11be_enable || iwlwifi_mod_params.disable_11be)
858 		iftype_data->eht_cap.has_eht = false;
859 
860 	/* Advertise an A-MPDU exponent extension based on
861 	 * operating band
862 	 */
863 	if (sband->band != NL80211_BAND_2GHZ)
864 		iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
865 			IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_1;
866 	else
867 		iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
868 			IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3;
869 
870 	switch (sband->band) {
871 	case NL80211_BAND_2GHZ:
872 		iftype_data->he_cap.he_cap_elem.phy_cap_info[0] |=
873 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G;
874 		iftype_data->eht_cap.eht_cap_elem.mac_cap_info[0] |=
875 			u8_encode_bits(IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_11454,
876 				       IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_MASK);
877 		break;
878 	case NL80211_BAND_6GHZ:
879 		if (!is_ap || iwlwifi_mod_params.nvm_file)
880 			iftype_data->eht_cap.eht_cap_elem.phy_cap_info[0] |=
881 				IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ;
882 		fallthrough;
883 	case NL80211_BAND_5GHZ:
884 		iftype_data->he_cap.he_cap_elem.phy_cap_info[0] |=
885 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G;
886 		if (!is_ap || iwlwifi_mod_params.nvm_file)
887 			iftype_data->he_cap.he_cap_elem.phy_cap_info[0] |=
888 				IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G;
889 		break;
890 	default:
891 		WARN_ON(1);
892 		break;
893 	}
894 
895 	if ((tx_chains & rx_chains) == ANT_AB) {
896 		iftype_data->he_cap.he_cap_elem.phy_cap_info[2] |=
897 			IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ;
898 		iftype_data->he_cap.he_cap_elem.phy_cap_info[5] |=
899 			IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 |
900 			IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2;
901 		if (!is_ap) {
902 			iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |=
903 				IEEE80211_HE_PHY_CAP7_MAX_NC_2;
904 
905 			if (iftype_data->eht_cap.has_eht) {
906 				/*
907 				 * Set the number of sounding dimensions for each
908 				 * bandwidth to 1 to indicate the maximal supported
909 				 * value of TXVECTOR parameter NUM_STS of 2
910 				 */
911 				iftype_data->eht_cap.eht_cap_elem.phy_cap_info[2] |= 0x49;
912 
913 				/*
914 				 * Set the MAX NC to 1 to indicate sounding feedback of
915 				 * 2 supported by the beamfomee.
916 				 */
917 				iftype_data->eht_cap.eht_cap_elem.phy_cap_info[4] |= 0x10;
918 			}
919 		}
920 	} else {
921 		if (iftype_data->eht_cap.has_eht) {
922 			struct ieee80211_eht_mcs_nss_supp *mcs_nss =
923 				&iftype_data->eht_cap.eht_mcs_nss_supp;
924 
925 			memset(mcs_nss, 0x11, sizeof(*mcs_nss));
926 		}
927 
928 		if (!is_ap) {
929 			/* If not 2x2, we need to indicate 1x1 in the
930 			 * Midamble RX Max NSTS - but not for AP mode
931 			 */
932 			iftype_data->he_cap.he_cap_elem.phy_cap_info[1] &=
933 				~IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS;
934 			iftype_data->he_cap.he_cap_elem.phy_cap_info[2] &=
935 				~IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS;
936 			iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |=
937 				IEEE80211_HE_PHY_CAP7_MAX_NC_1;
938 		}
939 	}
940 
941 	switch (CSR_HW_RFID_TYPE(trans->hw_rf_id)) {
942 	case IWL_CFG_RF_TYPE_GF:
943 	case IWL_CFG_RF_TYPE_MR:
944 	case IWL_CFG_RF_TYPE_MS:
945 		iftype_data->he_cap.he_cap_elem.phy_cap_info[9] |=
946 			IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU;
947 		if (!is_ap)
948 			iftype_data->he_cap.he_cap_elem.phy_cap_info[9] |=
949 				IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU;
950 		break;
951 	}
952 
953 	if (CSR_HW_REV_TYPE(trans->hw_rev) == IWL_CFG_MAC_TYPE_GL &&
954 	    iftype_data->eht_cap.has_eht) {
955 		iftype_data->eht_cap.eht_cap_elem.mac_cap_info[0] &=
956 			~(IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS |
957 			  IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 |
958 			  IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2);
959 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[3] &=
960 			~(IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO |
961 			  IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK |
962 			  IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK |
963 			  IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK |
964 			  IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK |
965 			  IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK);
966 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[4] &=
967 			~(IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO |
968 			  IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP);
969 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[5] &=
970 			~IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK;
971 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[6] &=
972 			~(IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK |
973 			  IEEE80211_EHT_PHY_CAP6_EHT_DUP_6GHZ_SUPP);
974 	}
975 
976 	if (fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_BROADCAST_TWT))
977 		iftype_data->he_cap.he_cap_elem.mac_cap_info[2] |=
978 			IEEE80211_HE_MAC_CAP2_BCAST_TWT;
979 
980 	if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_22000 &&
981 	    !is_ap) {
982 		iftype_data->vendor_elems.data = iwl_vendor_caps;
983 		iftype_data->vendor_elems.len = ARRAY_SIZE(iwl_vendor_caps);
984 	}
985 }
986 
987 static void iwl_init_he_hw_capab(struct iwl_trans *trans,
988 				 struct iwl_nvm_data *data,
989 				 struct ieee80211_supported_band *sband,
990 				 u8 tx_chains, u8 rx_chains,
991 				 const struct iwl_fw *fw)
992 {
993 	struct ieee80211_sband_iftype_data *iftype_data;
994 	int i;
995 
996 	/* should only initialize once */
997 	if (WARN_ON(sband->iftype_data))
998 		return;
999 
1000 	BUILD_BUG_ON(sizeof(data->iftd.low) != sizeof(iwl_he_eht_capa));
1001 	BUILD_BUG_ON(sizeof(data->iftd.high) != sizeof(iwl_he_eht_capa));
1002 
1003 	switch (sband->band) {
1004 	case NL80211_BAND_2GHZ:
1005 		iftype_data = data->iftd.low;
1006 		break;
1007 	case NL80211_BAND_5GHZ:
1008 	case NL80211_BAND_6GHZ:
1009 		iftype_data = data->iftd.high;
1010 		break;
1011 	default:
1012 		WARN_ON(1);
1013 		return;
1014 	}
1015 
1016 	memcpy(iftype_data, iwl_he_eht_capa, sizeof(iwl_he_eht_capa));
1017 
1018 	sband->iftype_data = iftype_data;
1019 	sband->n_iftype_data = ARRAY_SIZE(iwl_he_eht_capa);
1020 
1021 	for (i = 0; i < sband->n_iftype_data; i++)
1022 		iwl_nvm_fixup_sband_iftd(trans, data, sband, &iftype_data[i],
1023 					 tx_chains, rx_chains, fw);
1024 
1025 	iwl_init_he_6ghz_capa(trans, data, sband, tx_chains, rx_chains);
1026 }
1027 
1028 static void iwl_init_sbands(struct iwl_trans *trans,
1029 			    struct iwl_nvm_data *data,
1030 			    const void *nvm_ch_flags, u8 tx_chains,
1031 			    u8 rx_chains, u32 sbands_flags, bool v4,
1032 			    const struct iwl_fw *fw)
1033 {
1034 	struct device *dev = trans->dev;
1035 	const struct iwl_cfg *cfg = trans->cfg;
1036 	int n_channels;
1037 	int n_used = 0;
1038 	struct ieee80211_supported_band *sband;
1039 
1040 	n_channels = iwl_init_channel_map(dev, cfg, data, nvm_ch_flags,
1041 					  sbands_flags, v4);
1042 	sband = &data->bands[NL80211_BAND_2GHZ];
1043 	sband->band = NL80211_BAND_2GHZ;
1044 	sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
1045 	sband->n_bitrates = N_RATES_24;
1046 	n_used += iwl_init_sband_channels(data, sband, n_channels,
1047 					  NL80211_BAND_2GHZ);
1048 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ,
1049 			     tx_chains, rx_chains);
1050 
1051 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1052 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1053 				     fw);
1054 
1055 	sband = &data->bands[NL80211_BAND_5GHZ];
1056 	sband->band = NL80211_BAND_5GHZ;
1057 	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
1058 	sband->n_bitrates = N_RATES_52;
1059 	n_used += iwl_init_sband_channels(data, sband, n_channels,
1060 					  NL80211_BAND_5GHZ);
1061 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ,
1062 			     tx_chains, rx_chains);
1063 	if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
1064 		iwl_init_vht_hw_capab(trans, data, &sband->vht_cap,
1065 				      tx_chains, rx_chains);
1066 
1067 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1068 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1069 				     fw);
1070 
1071 	/* 6GHz band. */
1072 	sband = &data->bands[NL80211_BAND_6GHZ];
1073 	sband->band = NL80211_BAND_6GHZ;
1074 	/* use the same rates as 5GHz band */
1075 	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
1076 	sband->n_bitrates = N_RATES_52;
1077 	n_used += iwl_init_sband_channels(data, sband, n_channels,
1078 					  NL80211_BAND_6GHZ);
1079 
1080 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1081 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1082 				     fw);
1083 	else
1084 		sband->n_channels = 0;
1085 	if (n_channels != n_used)
1086 		IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
1087 			    n_used, n_channels);
1088 }
1089 
1090 static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
1091 		       const __le16 *phy_sku)
1092 {
1093 	if (cfg->nvm_type != IWL_NVM_EXT)
1094 		return le16_to_cpup(nvm_sw + SKU);
1095 
1096 	return le32_to_cpup((const __le32 *)(phy_sku + SKU_FAMILY_8000));
1097 }
1098 
1099 static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
1100 {
1101 	if (cfg->nvm_type != IWL_NVM_EXT)
1102 		return le16_to_cpup(nvm_sw + NVM_VERSION);
1103 	else
1104 		return le32_to_cpup((const __le32 *)(nvm_sw +
1105 						     NVM_VERSION_EXT_NVM));
1106 }
1107 
1108 static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
1109 			     const __le16 *phy_sku)
1110 {
1111 	if (cfg->nvm_type != IWL_NVM_EXT)
1112 		return le16_to_cpup(nvm_sw + RADIO_CFG);
1113 
1114 	return le32_to_cpup((const __le32 *)(phy_sku + RADIO_CFG_FAMILY_EXT_NVM));
1115 
1116 }
1117 
1118 static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
1119 {
1120 	int n_hw_addr;
1121 
1122 	if (cfg->nvm_type != IWL_NVM_EXT)
1123 		return le16_to_cpup(nvm_sw + N_HW_ADDRS);
1124 
1125 	n_hw_addr = le32_to_cpup((const __le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000));
1126 
1127 	return n_hw_addr & N_HW_ADDR_MASK;
1128 }
1129 
1130 static void iwl_set_radio_cfg(const struct iwl_cfg *cfg,
1131 			      struct iwl_nvm_data *data,
1132 			      u32 radio_cfg)
1133 {
1134 	if (cfg->nvm_type != IWL_NVM_EXT) {
1135 		data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
1136 		data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
1137 		data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
1138 		data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
1139 		return;
1140 	}
1141 
1142 	/* set the radio configuration for family 8000 */
1143 	data->radio_cfg_type = EXT_NVM_RF_CFG_TYPE_MSK(radio_cfg);
1144 	data->radio_cfg_step = EXT_NVM_RF_CFG_STEP_MSK(radio_cfg);
1145 	data->radio_cfg_dash = EXT_NVM_RF_CFG_DASH_MSK(radio_cfg);
1146 	data->radio_cfg_pnum = EXT_NVM_RF_CFG_FLAVOR_MSK(radio_cfg);
1147 	data->valid_tx_ant = EXT_NVM_RF_CFG_TX_ANT_MSK(radio_cfg);
1148 	data->valid_rx_ant = EXT_NVM_RF_CFG_RX_ANT_MSK(radio_cfg);
1149 }
1150 
1151 static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest)
1152 {
1153 	const u8 *hw_addr;
1154 
1155 	hw_addr = (const u8 *)&mac_addr0;
1156 	dest[0] = hw_addr[3];
1157 	dest[1] = hw_addr[2];
1158 	dest[2] = hw_addr[1];
1159 	dest[3] = hw_addr[0];
1160 
1161 	hw_addr = (const u8 *)&mac_addr1;
1162 	dest[4] = hw_addr[1];
1163 	dest[5] = hw_addr[0];
1164 }
1165 
1166 static void iwl_set_hw_address_from_csr(struct iwl_trans *trans,
1167 					struct iwl_nvm_data *data)
1168 {
1169 	__le32 mac_addr0 = cpu_to_le32(iwl_read32(trans,
1170 						  CSR_MAC_ADDR0_STRAP(trans)));
1171 	__le32 mac_addr1 = cpu_to_le32(iwl_read32(trans,
1172 						  CSR_MAC_ADDR1_STRAP(trans)));
1173 
1174 	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1175 	/*
1176 	 * If the OEM fused a valid address, use it instead of the one in the
1177 	 * OTP
1178 	 */
1179 	if (is_valid_ether_addr(data->hw_addr))
1180 		return;
1181 
1182 	mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_OTP(trans)));
1183 	mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_OTP(trans)));
1184 
1185 	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1186 }
1187 
1188 static void iwl_set_hw_address_family_8000(struct iwl_trans *trans,
1189 					   const struct iwl_cfg *cfg,
1190 					   struct iwl_nvm_data *data,
1191 					   const __le16 *mac_override,
1192 					   const __be16 *nvm_hw)
1193 {
1194 	const u8 *hw_addr;
1195 
1196 	if (mac_override) {
1197 		static const u8 reserved_mac[] = {
1198 			0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
1199 		};
1200 
1201 		hw_addr = (const u8 *)(mac_override +
1202 				 MAC_ADDRESS_OVERRIDE_EXT_NVM);
1203 
1204 		/*
1205 		 * Store the MAC address from MAO section.
1206 		 * No byte swapping is required in MAO section
1207 		 */
1208 		memcpy(data->hw_addr, hw_addr, ETH_ALEN);
1209 
1210 		/*
1211 		 * Force the use of the OTP MAC address in case of reserved MAC
1212 		 * address in the NVM, or if address is given but invalid.
1213 		 */
1214 		if (is_valid_ether_addr(data->hw_addr) &&
1215 		    memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0)
1216 			return;
1217 
1218 		IWL_ERR(trans,
1219 			"mac address from nvm override section is not valid\n");
1220 	}
1221 
1222 	if (nvm_hw) {
1223 		/* read the mac address from WFMP registers */
1224 		__le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans,
1225 						WFMP_MAC_ADDR_0));
1226 		__le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans,
1227 						WFMP_MAC_ADDR_1));
1228 
1229 		iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1230 
1231 		return;
1232 	}
1233 
1234 	IWL_ERR(trans, "mac address is not found\n");
1235 }
1236 
1237 static int iwl_set_hw_address(struct iwl_trans *trans,
1238 			      const struct iwl_cfg *cfg,
1239 			      struct iwl_nvm_data *data, const __be16 *nvm_hw,
1240 			      const __le16 *mac_override)
1241 {
1242 	if (cfg->mac_addr_from_csr) {
1243 		iwl_set_hw_address_from_csr(trans, data);
1244 	} else if (cfg->nvm_type != IWL_NVM_EXT) {
1245 		const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR);
1246 
1247 		/* The byte order is little endian 16 bit, meaning 214365 */
1248 		data->hw_addr[0] = hw_addr[1];
1249 		data->hw_addr[1] = hw_addr[0];
1250 		data->hw_addr[2] = hw_addr[3];
1251 		data->hw_addr[3] = hw_addr[2];
1252 		data->hw_addr[4] = hw_addr[5];
1253 		data->hw_addr[5] = hw_addr[4];
1254 	} else {
1255 		iwl_set_hw_address_family_8000(trans, cfg, data,
1256 					       mac_override, nvm_hw);
1257 	}
1258 
1259 	if (!is_valid_ether_addr(data->hw_addr)) {
1260 		IWL_ERR(trans, "no valid mac address was found\n");
1261 		return -EINVAL;
1262 	}
1263 
1264 	if (!trans->csme_own)
1265 		IWL_INFO(trans, "base HW address: %pM, OTP minor version: 0x%x\n",
1266 			 data->hw_addr, iwl_read_prph(trans, REG_OTP_MINOR));
1267 
1268 	return 0;
1269 }
1270 
1271 static bool
1272 iwl_nvm_no_wide_in_5ghz(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1273 			const __be16 *nvm_hw)
1274 {
1275 	/*
1276 	 * Workaround a bug in Indonesia SKUs where the regulatory in
1277 	 * some 7000-family OTPs erroneously allow wide channels in
1278 	 * 5GHz.  To check for Indonesia, we take the SKU value from
1279 	 * bits 1-4 in the subsystem ID and check if it is either 5 or
1280 	 * 9.  In those cases, we need to force-disable wide channels
1281 	 * in 5GHz otherwise the FW will throw a sysassert when we try
1282 	 * to use them.
1283 	 */
1284 	if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_7000) {
1285 		/*
1286 		 * Unlike the other sections in the NVM, the hw
1287 		 * section uses big-endian.
1288 		 */
1289 		u16 subsystem_id = be16_to_cpup(nvm_hw + SUBSYSTEM_ID);
1290 		u8 sku = (subsystem_id & 0x1e) >> 1;
1291 
1292 		if (sku == 5 || sku == 9) {
1293 			IWL_DEBUG_EEPROM(trans->dev,
1294 					 "disabling wide channels in 5GHz (0x%0x %d)\n",
1295 					 subsystem_id, sku);
1296 			return true;
1297 		}
1298 	}
1299 
1300 	return false;
1301 }
1302 
1303 struct iwl_nvm_data *
1304 iwl_parse_mei_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1305 		       const struct iwl_mei_nvm *mei_nvm,
1306 		       const struct iwl_fw *fw)
1307 {
1308 	struct iwl_nvm_data *data;
1309 	u32 sbands_flags = 0;
1310 	u8 rx_chains = fw->valid_rx_ant;
1311 	u8 tx_chains = fw->valid_rx_ant;
1312 
1313 	if (cfg->uhb_supported)
1314 		data = kzalloc(struct_size(data, channels,
1315 					   IWL_NVM_NUM_CHANNELS_UHB),
1316 					   GFP_KERNEL);
1317 	else
1318 		data = kzalloc(struct_size(data, channels,
1319 					   IWL_NVM_NUM_CHANNELS_EXT),
1320 					   GFP_KERNEL);
1321 	if (!data)
1322 		return NULL;
1323 
1324 	BUILD_BUG_ON(ARRAY_SIZE(mei_nvm->channels) !=
1325 		     IWL_NVM_NUM_CHANNELS_UHB);
1326 	data->nvm_version = mei_nvm->nvm_version;
1327 
1328 	iwl_set_radio_cfg(cfg, data, mei_nvm->radio_cfg);
1329 	if (data->valid_tx_ant)
1330 		tx_chains &= data->valid_tx_ant;
1331 	if (data->valid_rx_ant)
1332 		rx_chains &= data->valid_rx_ant;
1333 
1334 	data->sku_cap_mimo_disabled = false;
1335 	data->sku_cap_band_24ghz_enable = true;
1336 	data->sku_cap_band_52ghz_enable = true;
1337 	data->sku_cap_11n_enable =
1338 		!(iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL);
1339 	data->sku_cap_11ac_enable = true;
1340 	data->sku_cap_11ax_enable =
1341 		mei_nvm->caps & MEI_NVM_CAPS_11AX_SUPPORT;
1342 
1343 	data->lar_enabled = mei_nvm->caps & MEI_NVM_CAPS_LARI_SUPPORT;
1344 
1345 	data->n_hw_addrs = mei_nvm->n_hw_addrs;
1346 	/* If no valid mac address was found - bail out */
1347 	if (iwl_set_hw_address(trans, cfg, data, NULL, NULL)) {
1348 		kfree(data);
1349 		return NULL;
1350 	}
1351 
1352 	if (data->lar_enabled &&
1353 	    fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT))
1354 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1355 
1356 	iwl_init_sbands(trans, data, mei_nvm->channels, tx_chains, rx_chains,
1357 			sbands_flags, true, fw);
1358 
1359 	return data;
1360 }
1361 IWL_EXPORT_SYMBOL(iwl_parse_mei_nvm_data);
1362 
1363 struct iwl_nvm_data *
1364 iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1365 		   const struct iwl_fw *fw,
1366 		   const __be16 *nvm_hw, const __le16 *nvm_sw,
1367 		   const __le16 *nvm_calib, const __le16 *regulatory,
1368 		   const __le16 *mac_override, const __le16 *phy_sku,
1369 		   u8 tx_chains, u8 rx_chains)
1370 {
1371 	struct iwl_nvm_data *data;
1372 	bool lar_enabled;
1373 	u32 sku, radio_cfg;
1374 	u32 sbands_flags = 0;
1375 	u16 lar_config;
1376 	const __le16 *ch_section;
1377 
1378 	if (cfg->uhb_supported)
1379 		data = kzalloc(struct_size(data, channels,
1380 					   IWL_NVM_NUM_CHANNELS_UHB),
1381 					   GFP_KERNEL);
1382 	else if (cfg->nvm_type != IWL_NVM_EXT)
1383 		data = kzalloc(struct_size(data, channels,
1384 					   IWL_NVM_NUM_CHANNELS),
1385 					   GFP_KERNEL);
1386 	else
1387 		data = kzalloc(struct_size(data, channels,
1388 					   IWL_NVM_NUM_CHANNELS_EXT),
1389 					   GFP_KERNEL);
1390 	if (!data)
1391 		return NULL;
1392 
1393 	data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
1394 
1395 	radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku);
1396 	iwl_set_radio_cfg(cfg, data, radio_cfg);
1397 	if (data->valid_tx_ant)
1398 		tx_chains &= data->valid_tx_ant;
1399 	if (data->valid_rx_ant)
1400 		rx_chains &= data->valid_rx_ant;
1401 
1402 	sku = iwl_get_sku(cfg, nvm_sw, phy_sku);
1403 	data->sku_cap_band_24ghz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
1404 	data->sku_cap_band_52ghz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
1405 	data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
1406 	if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
1407 		data->sku_cap_11n_enable = false;
1408 	data->sku_cap_11ac_enable = data->sku_cap_11n_enable &&
1409 				    (sku & NVM_SKU_CAP_11AC_ENABLE);
1410 	data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE;
1411 
1412 	data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
1413 
1414 	if (cfg->nvm_type != IWL_NVM_EXT) {
1415 		/* Checking for required sections */
1416 		if (!nvm_calib) {
1417 			IWL_ERR(trans,
1418 				"Can't parse empty Calib NVM sections\n");
1419 			kfree(data);
1420 			return NULL;
1421 		}
1422 
1423 		ch_section = cfg->nvm_type == IWL_NVM_SDP ?
1424 			     &regulatory[NVM_CHANNELS_SDP] :
1425 			     &nvm_sw[NVM_CHANNELS];
1426 
1427 		/* in family 8000 Xtal calibration values moved to OTP */
1428 		data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB);
1429 		data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1);
1430 		lar_enabled = true;
1431 	} else {
1432 		u16 lar_offset = data->nvm_version < 0xE39 ?
1433 				 NVM_LAR_OFFSET_OLD :
1434 				 NVM_LAR_OFFSET;
1435 
1436 		lar_config = le16_to_cpup(regulatory + lar_offset);
1437 		data->lar_enabled = !!(lar_config &
1438 				       NVM_LAR_ENABLED);
1439 		lar_enabled = data->lar_enabled;
1440 		ch_section = &regulatory[NVM_CHANNELS_EXTENDED];
1441 	}
1442 
1443 	/* If no valid mac address was found - bail out */
1444 	if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) {
1445 		kfree(data);
1446 		return NULL;
1447 	}
1448 
1449 	if (lar_enabled &&
1450 	    fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT))
1451 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1452 
1453 	if (iwl_nvm_no_wide_in_5ghz(trans, cfg, nvm_hw))
1454 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ;
1455 
1456 	iwl_init_sbands(trans, data, ch_section, tx_chains, rx_chains,
1457 			sbands_flags, false, fw);
1458 	data->calib_version = 255;
1459 
1460 	return data;
1461 }
1462 IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
1463 
1464 static u32 iwl_nvm_get_regdom_bw_flags(const u16 *nvm_chan,
1465 				       int ch_idx, u16 nvm_flags,
1466 				       struct iwl_reg_capa reg_capa,
1467 				       const struct iwl_cfg *cfg)
1468 {
1469 	u32 flags = NL80211_RRF_NO_HT40;
1470 
1471 	if (ch_idx < NUM_2GHZ_CHANNELS &&
1472 	    (nvm_flags & NVM_CHANNEL_40MHZ)) {
1473 		if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
1474 			flags &= ~NL80211_RRF_NO_HT40PLUS;
1475 		if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
1476 			flags &= ~NL80211_RRF_NO_HT40MINUS;
1477 	} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
1478 		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
1479 			flags &= ~NL80211_RRF_NO_HT40PLUS;
1480 		else
1481 			flags &= ~NL80211_RRF_NO_HT40MINUS;
1482 	}
1483 
1484 	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
1485 		flags |= NL80211_RRF_NO_80MHZ;
1486 	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
1487 		flags |= NL80211_RRF_NO_160MHZ;
1488 
1489 	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
1490 		flags |= NL80211_RRF_NO_IR;
1491 
1492 	if (nvm_flags & NVM_CHANNEL_RADAR)
1493 		flags |= NL80211_RRF_DFS;
1494 
1495 	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
1496 		flags |= NL80211_RRF_NO_OUTDOOR;
1497 
1498 	/* Set the GO concurrent flag only in case that NO_IR is set.
1499 	 * Otherwise it is meaningless
1500 	 */
1501 	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
1502 	    (flags & NL80211_RRF_NO_IR))
1503 		flags |= NL80211_RRF_GO_CONCURRENT;
1504 
1505 	/*
1506 	 * reg_capa is per regulatory domain so apply it for every channel
1507 	 */
1508 	if (ch_idx >= NUM_2GHZ_CHANNELS) {
1509 		if (!reg_capa.allow_40mhz)
1510 			flags |= NL80211_RRF_NO_HT40;
1511 
1512 		if (!reg_capa.allow_80mhz)
1513 			flags |= NL80211_RRF_NO_80MHZ;
1514 
1515 		if (!reg_capa.allow_160mhz)
1516 			flags |= NL80211_RRF_NO_160MHZ;
1517 	}
1518 	if (reg_capa.disable_11ax)
1519 		flags |= NL80211_RRF_NO_HE;
1520 
1521 	return flags;
1522 }
1523 
1524 static struct iwl_reg_capa iwl_get_reg_capa(u16 flags, u8 resp_ver)
1525 {
1526 	struct iwl_reg_capa reg_capa;
1527 
1528 	if (resp_ver >= REG_CAPA_V2_RESP_VER) {
1529 		reg_capa.allow_40mhz = flags & REG_CAPA_V2_40MHZ_ALLOWED;
1530 		reg_capa.allow_80mhz = flags & REG_CAPA_V2_80MHZ_ALLOWED;
1531 		reg_capa.allow_160mhz = flags & REG_CAPA_V2_160MHZ_ALLOWED;
1532 		reg_capa.disable_11ax = flags & REG_CAPA_V2_11AX_DISABLED;
1533 	} else {
1534 		reg_capa.allow_40mhz = !(flags & REG_CAPA_40MHZ_FORBIDDEN);
1535 		reg_capa.allow_80mhz = flags & REG_CAPA_80MHZ_ALLOWED;
1536 		reg_capa.allow_160mhz = flags & REG_CAPA_160MHZ_ALLOWED;
1537 		reg_capa.disable_11ax = flags & REG_CAPA_11AX_DISABLED;
1538 	}
1539 	return reg_capa;
1540 }
1541 
1542 struct ieee80211_regdomain *
1543 iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg,
1544 		       int num_of_ch, __le32 *channels, u16 fw_mcc,
1545 		       u16 geo_info, u16 cap, u8 resp_ver)
1546 {
1547 	int ch_idx;
1548 	u16 ch_flags;
1549 	u32 reg_rule_flags, prev_reg_rule_flags = 0;
1550 	const u16 *nvm_chan;
1551 	struct ieee80211_regdomain *regd, *copy_rd;
1552 	struct ieee80211_reg_rule *rule;
1553 	enum nl80211_band band;
1554 	int center_freq, prev_center_freq = 0;
1555 	int valid_rules = 0;
1556 	bool new_rule;
1557 	int max_num_ch;
1558 	struct iwl_reg_capa reg_capa;
1559 
1560 	if (cfg->uhb_supported) {
1561 		max_num_ch = IWL_NVM_NUM_CHANNELS_UHB;
1562 		nvm_chan = iwl_uhb_nvm_channels;
1563 	} else if (cfg->nvm_type == IWL_NVM_EXT) {
1564 		max_num_ch = IWL_NVM_NUM_CHANNELS_EXT;
1565 		nvm_chan = iwl_ext_nvm_channels;
1566 	} else {
1567 		max_num_ch = IWL_NVM_NUM_CHANNELS;
1568 		nvm_chan = iwl_nvm_channels;
1569 	}
1570 
1571 	if (num_of_ch > max_num_ch) {
1572 		IWL_DEBUG_DEV(dev, IWL_DL_LAR,
1573 			      "Num of channels (%d) is greater than expected. Truncating to %d\n",
1574 			      num_of_ch, max_num_ch);
1575 		num_of_ch = max_num_ch;
1576 	}
1577 
1578 	if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES))
1579 		return ERR_PTR(-EINVAL);
1580 
1581 	IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n",
1582 		      num_of_ch);
1583 
1584 	/* build a regdomain rule for every valid channel */
1585 	regd = kzalloc(struct_size(regd, reg_rules, num_of_ch), GFP_KERNEL);
1586 	if (!regd)
1587 		return ERR_PTR(-ENOMEM);
1588 
1589 	/* set alpha2 from FW. */
1590 	regd->alpha2[0] = fw_mcc >> 8;
1591 	regd->alpha2[1] = fw_mcc & 0xff;
1592 
1593 	/* parse regulatory capability flags */
1594 	reg_capa = iwl_get_reg_capa(cap, resp_ver);
1595 
1596 	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
1597 		ch_flags = (u16)__le32_to_cpup(channels + ch_idx);
1598 		band = iwl_nl80211_band_from_channel_idx(ch_idx);
1599 		center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx],
1600 							     band);
1601 		new_rule = false;
1602 
1603 		if (!(ch_flags & NVM_CHANNEL_VALID)) {
1604 			iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1605 						    nvm_chan[ch_idx], ch_flags);
1606 			continue;
1607 		}
1608 
1609 		reg_rule_flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx,
1610 							     ch_flags, reg_capa,
1611 							     cfg);
1612 
1613 		/* we can't continue the same rule */
1614 		if (ch_idx == 0 || prev_reg_rule_flags != reg_rule_flags ||
1615 		    center_freq - prev_center_freq > 20) {
1616 			valid_rules++;
1617 			new_rule = true;
1618 		}
1619 
1620 		rule = &regd->reg_rules[valid_rules - 1];
1621 
1622 		if (new_rule)
1623 			rule->freq_range.start_freq_khz =
1624 						MHZ_TO_KHZ(center_freq - 10);
1625 
1626 		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10);
1627 
1628 		/* this doesn't matter - not used by FW */
1629 		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
1630 		rule->power_rule.max_eirp =
1631 			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
1632 
1633 		rule->flags = reg_rule_flags;
1634 
1635 		/* rely on auto-calculation to merge BW of contiguous chans */
1636 		rule->flags |= NL80211_RRF_AUTO_BW;
1637 		rule->freq_range.max_bandwidth_khz = 0;
1638 
1639 		prev_center_freq = center_freq;
1640 		prev_reg_rule_flags = reg_rule_flags;
1641 
1642 		iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1643 					    nvm_chan[ch_idx], ch_flags);
1644 
1645 		if (!(geo_info & GEO_WMM_ETSI_5GHZ_INFO) ||
1646 		    band == NL80211_BAND_2GHZ)
1647 			continue;
1648 
1649 		reg_query_regdb_wmm(regd->alpha2, center_freq, rule);
1650 	}
1651 
1652 	/*
1653 	 * Certain firmware versions might report no valid channels
1654 	 * if booted in RF-kill, i.e. not all calibrations etc. are
1655 	 * running. We'll get out of this situation later when the
1656 	 * rfkill is removed and we update the regdomain again, but
1657 	 * since cfg80211 doesn't accept an empty regdomain, add a
1658 	 * dummy (unusable) rule here in this case so we can init.
1659 	 */
1660 	if (!valid_rules) {
1661 		valid_rules = 1;
1662 		rule = &regd->reg_rules[valid_rules - 1];
1663 		rule->freq_range.start_freq_khz = MHZ_TO_KHZ(2412);
1664 		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(2413);
1665 		rule->freq_range.max_bandwidth_khz = MHZ_TO_KHZ(1);
1666 		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
1667 		rule->power_rule.max_eirp =
1668 			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
1669 	}
1670 
1671 	regd->n_reg_rules = valid_rules;
1672 
1673 	/*
1674 	 * Narrow down regdom for unused regulatory rules to prevent hole
1675 	 * between reg rules to wmm rules.
1676 	 */
1677 	copy_rd = kmemdup(regd, struct_size(regd, reg_rules, valid_rules),
1678 			  GFP_KERNEL);
1679 	if (!copy_rd)
1680 		copy_rd = ERR_PTR(-ENOMEM);
1681 
1682 	kfree(regd);
1683 	return copy_rd;
1684 }
1685 IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);
1686 
1687 #define IWL_MAX_NVM_SECTION_SIZE	0x1b58
1688 #define IWL_MAX_EXT_NVM_SECTION_SIZE	0x1ffc
1689 #define MAX_NVM_FILE_LEN	16384
1690 
1691 void iwl_nvm_fixups(u32 hw_id, unsigned int section, u8 *data,
1692 		    unsigned int len)
1693 {
1694 #define IWL_4165_DEVICE_ID	0x5501
1695 #define NVM_SKU_CAP_MIMO_DISABLE BIT(5)
1696 
1697 	if (section == NVM_SECTION_TYPE_PHY_SKU &&
1698 	    hw_id == IWL_4165_DEVICE_ID && data && len >= 5 &&
1699 	    (data[4] & NVM_SKU_CAP_MIMO_DISABLE))
1700 		/* OTP 0x52 bug work around: it's a 1x1 device */
1701 		data[3] = ANT_B | (ANT_B << 4);
1702 }
1703 IWL_EXPORT_SYMBOL(iwl_nvm_fixups);
1704 
1705 /*
1706  * Reads external NVM from a file into mvm->nvm_sections
1707  *
1708  * HOW TO CREATE THE NVM FILE FORMAT:
1709  * ------------------------------
1710  * 1. create hex file, format:
1711  *      3800 -> header
1712  *      0000 -> header
1713  *      5a40 -> data
1714  *
1715  *   rev - 6 bit (word1)
1716  *   len - 10 bit (word1)
1717  *   id - 4 bit (word2)
1718  *   rsv - 12 bit (word2)
1719  *
1720  * 2. flip 8bits with 8 bits per line to get the right NVM file format
1721  *
1722  * 3. create binary file from the hex file
1723  *
1724  * 4. save as "iNVM_xxx.bin" under /lib/firmware
1725  */
1726 int iwl_read_external_nvm(struct iwl_trans *trans,
1727 			  const char *nvm_file_name,
1728 			  struct iwl_nvm_section *nvm_sections)
1729 {
1730 	int ret, section_size;
1731 	u16 section_id;
1732 	const struct firmware *fw_entry;
1733 	const struct {
1734 		__le16 word1;
1735 		__le16 word2;
1736 		u8 data[];
1737 	} *file_sec;
1738 	const u8 *eof;
1739 	u8 *temp;
1740 	int max_section_size;
1741 	const __le32 *dword_buff;
1742 
1743 #define NVM_WORD1_LEN(x) (8 * (x & 0x03FF))
1744 #define NVM_WORD2_ID(x) (x >> 12)
1745 #define EXT_NVM_WORD2_LEN(x) (2 * (((x) & 0xFF) << 8 | (x) >> 8))
1746 #define EXT_NVM_WORD1_ID(x) ((x) >> 4)
1747 #define NVM_HEADER_0	(0x2A504C54)
1748 #define NVM_HEADER_1	(0x4E564D2A)
1749 #define NVM_HEADER_SIZE	(4 * sizeof(u32))
1750 
1751 	IWL_DEBUG_EEPROM(trans->dev, "Read from external NVM\n");
1752 
1753 	/* Maximal size depends on NVM version */
1754 	if (trans->cfg->nvm_type != IWL_NVM_EXT)
1755 		max_section_size = IWL_MAX_NVM_SECTION_SIZE;
1756 	else
1757 		max_section_size = IWL_MAX_EXT_NVM_SECTION_SIZE;
1758 
1759 	/*
1760 	 * Obtain NVM image via request_firmware. Since we already used
1761 	 * request_firmware_nowait() for the firmware binary load and only
1762 	 * get here after that we assume the NVM request can be satisfied
1763 	 * synchronously.
1764 	 */
1765 	ret = request_firmware(&fw_entry, nvm_file_name, trans->dev);
1766 	if (ret) {
1767 		IWL_ERR(trans, "ERROR: %s isn't available %d\n",
1768 			nvm_file_name, ret);
1769 		return ret;
1770 	}
1771 
1772 	IWL_INFO(trans, "Loaded NVM file %s (%zu bytes)\n",
1773 		 nvm_file_name, fw_entry->size);
1774 
1775 	if (fw_entry->size > MAX_NVM_FILE_LEN) {
1776 		IWL_ERR(trans, "NVM file too large\n");
1777 		ret = -EINVAL;
1778 		goto out;
1779 	}
1780 
1781 	eof = fw_entry->data + fw_entry->size;
1782 	dword_buff = (const __le32 *)fw_entry->data;
1783 
1784 	/* some NVM file will contain a header.
1785 	 * The header is identified by 2 dwords header as follow:
1786 	 * dword[0] = 0x2A504C54
1787 	 * dword[1] = 0x4E564D2A
1788 	 *
1789 	 * This header must be skipped when providing the NVM data to the FW.
1790 	 */
1791 	if (fw_entry->size > NVM_HEADER_SIZE &&
1792 	    dword_buff[0] == cpu_to_le32(NVM_HEADER_0) &&
1793 	    dword_buff[1] == cpu_to_le32(NVM_HEADER_1)) {
1794 		file_sec = (const void *)(fw_entry->data + NVM_HEADER_SIZE);
1795 		IWL_INFO(trans, "NVM Version %08X\n", le32_to_cpu(dword_buff[2]));
1796 		IWL_INFO(trans, "NVM Manufacturing date %08X\n",
1797 			 le32_to_cpu(dword_buff[3]));
1798 
1799 		/* nvm file validation, dword_buff[2] holds the file version */
1800 		if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_8000 &&
1801 		    trans->hw_rev_step == SILICON_C_STEP &&
1802 		    le32_to_cpu(dword_buff[2]) < 0xE4A) {
1803 			ret = -EFAULT;
1804 			goto out;
1805 		}
1806 	} else {
1807 		file_sec = (const void *)fw_entry->data;
1808 	}
1809 
1810 	while (true) {
1811 		if (file_sec->data > eof) {
1812 			IWL_ERR(trans,
1813 				"ERROR - NVM file too short for section header\n");
1814 			ret = -EINVAL;
1815 			break;
1816 		}
1817 
1818 		/* check for EOF marker */
1819 		if (!file_sec->word1 && !file_sec->word2) {
1820 			ret = 0;
1821 			break;
1822 		}
1823 
1824 		if (trans->cfg->nvm_type != IWL_NVM_EXT) {
1825 			section_size =
1826 				2 * NVM_WORD1_LEN(le16_to_cpu(file_sec->word1));
1827 			section_id = NVM_WORD2_ID(le16_to_cpu(file_sec->word2));
1828 		} else {
1829 			section_size = 2 * EXT_NVM_WORD2_LEN(
1830 						le16_to_cpu(file_sec->word2));
1831 			section_id = EXT_NVM_WORD1_ID(
1832 						le16_to_cpu(file_sec->word1));
1833 		}
1834 
1835 		if (section_size > max_section_size) {
1836 			IWL_ERR(trans, "ERROR - section too large (%d)\n",
1837 				section_size);
1838 			ret = -EINVAL;
1839 			break;
1840 		}
1841 
1842 		if (!section_size) {
1843 			IWL_ERR(trans, "ERROR - section empty\n");
1844 			ret = -EINVAL;
1845 			break;
1846 		}
1847 
1848 		if (file_sec->data + section_size > eof) {
1849 			IWL_ERR(trans,
1850 				"ERROR - NVM file too short for section (%d bytes)\n",
1851 				section_size);
1852 			ret = -EINVAL;
1853 			break;
1854 		}
1855 
1856 		if (WARN(section_id >= NVM_MAX_NUM_SECTIONS,
1857 			 "Invalid NVM section ID %d\n", section_id)) {
1858 			ret = -EINVAL;
1859 			break;
1860 		}
1861 
1862 		temp = kmemdup(file_sec->data, section_size, GFP_KERNEL);
1863 		if (!temp) {
1864 			ret = -ENOMEM;
1865 			break;
1866 		}
1867 
1868 		iwl_nvm_fixups(trans->hw_id, section_id, temp, section_size);
1869 
1870 		kfree(nvm_sections[section_id].data);
1871 		nvm_sections[section_id].data = temp;
1872 		nvm_sections[section_id].length = section_size;
1873 
1874 		/* advance to the next section */
1875 		file_sec = (const void *)(file_sec->data + section_size);
1876 	}
1877 out:
1878 	release_firmware(fw_entry);
1879 	return ret;
1880 }
1881 IWL_EXPORT_SYMBOL(iwl_read_external_nvm);
1882 
1883 struct iwl_nvm_data *iwl_get_nvm(struct iwl_trans *trans,
1884 				 const struct iwl_fw *fw)
1885 {
1886 	struct iwl_nvm_get_info cmd = {};
1887 	struct iwl_nvm_data *nvm;
1888 	struct iwl_host_cmd hcmd = {
1889 		.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
1890 		.data = { &cmd, },
1891 		.len = { sizeof(cmd) },
1892 		.id = WIDE_ID(REGULATORY_AND_NVM_GROUP, NVM_GET_INFO)
1893 	};
1894 	int  ret;
1895 	bool empty_otp;
1896 	u32 mac_flags;
1897 	u32 sbands_flags = 0;
1898 	/*
1899 	 * All the values in iwl_nvm_get_info_rsp v4 are the same as
1900 	 * in v3, except for the channel profile part of the
1901 	 * regulatory.  So we can just access the new struct, with the
1902 	 * exception of the latter.
1903 	 */
1904 	struct iwl_nvm_get_info_rsp *rsp;
1905 	struct iwl_nvm_get_info_rsp_v3 *rsp_v3;
1906 	bool v4 = fw_has_api(&fw->ucode_capa,
1907 			     IWL_UCODE_TLV_API_REGULATORY_NVM_INFO);
1908 	size_t rsp_size = v4 ? sizeof(*rsp) : sizeof(*rsp_v3);
1909 	void *channel_profile;
1910 
1911 	ret = iwl_trans_send_cmd(trans, &hcmd);
1912 	if (ret)
1913 		return ERR_PTR(ret);
1914 
1915 	if (WARN(iwl_rx_packet_payload_len(hcmd.resp_pkt) != rsp_size,
1916 		 "Invalid payload len in NVM response from FW %d",
1917 		 iwl_rx_packet_payload_len(hcmd.resp_pkt))) {
1918 		ret = -EINVAL;
1919 		goto out;
1920 	}
1921 
1922 	rsp = (void *)hcmd.resp_pkt->data;
1923 	empty_otp = !!(le32_to_cpu(rsp->general.flags) &
1924 		       NVM_GENERAL_FLAGS_EMPTY_OTP);
1925 	if (empty_otp)
1926 		IWL_INFO(trans, "OTP is empty\n");
1927 
1928 	nvm = kzalloc(struct_size(nvm, channels, IWL_NUM_CHANNELS), GFP_KERNEL);
1929 	if (!nvm) {
1930 		ret = -ENOMEM;
1931 		goto out;
1932 	}
1933 
1934 	iwl_set_hw_address_from_csr(trans, nvm);
1935 	/* TODO: if platform NVM has MAC address - override it here */
1936 
1937 	if (!is_valid_ether_addr(nvm->hw_addr)) {
1938 		IWL_ERR(trans, "no valid mac address was found\n");
1939 		ret = -EINVAL;
1940 		goto err_free;
1941 	}
1942 
1943 	IWL_INFO(trans, "base HW address: %pM\n", nvm->hw_addr);
1944 
1945 	/* Initialize general data */
1946 	nvm->nvm_version = le16_to_cpu(rsp->general.nvm_version);
1947 	nvm->n_hw_addrs = rsp->general.n_hw_addrs;
1948 	if (nvm->n_hw_addrs == 0)
1949 		IWL_WARN(trans,
1950 			 "Firmware declares no reserved mac addresses. OTP is empty: %d\n",
1951 			 empty_otp);
1952 
1953 	/* Initialize MAC sku data */
1954 	mac_flags = le32_to_cpu(rsp->mac_sku.mac_sku_flags);
1955 	nvm->sku_cap_11ac_enable =
1956 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AC_ENABLED);
1957 	nvm->sku_cap_11n_enable =
1958 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11N_ENABLED);
1959 	nvm->sku_cap_11ax_enable =
1960 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AX_ENABLED);
1961 	nvm->sku_cap_band_24ghz_enable =
1962 		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_2_4_ENABLED);
1963 	nvm->sku_cap_band_52ghz_enable =
1964 		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_5_2_ENABLED);
1965 	nvm->sku_cap_mimo_disabled =
1966 		!!(mac_flags & NVM_MAC_SKU_FLAGS_MIMO_DISABLED);
1967 	if (CSR_HW_RFID_TYPE(trans->hw_rf_id) == IWL_CFG_RF_TYPE_FM)
1968 		nvm->sku_cap_11be_enable = true;
1969 
1970 	/* Initialize PHY sku data */
1971 	nvm->valid_tx_ant = (u8)le32_to_cpu(rsp->phy_sku.tx_chains);
1972 	nvm->valid_rx_ant = (u8)le32_to_cpu(rsp->phy_sku.rx_chains);
1973 
1974 	if (le32_to_cpu(rsp->regulatory.lar_enabled) &&
1975 	    fw_has_capa(&fw->ucode_capa,
1976 			IWL_UCODE_TLV_CAPA_LAR_SUPPORT)) {
1977 		nvm->lar_enabled = true;
1978 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1979 	}
1980 
1981 	rsp_v3 = (void *)rsp;
1982 	channel_profile = v4 ? (void *)rsp->regulatory.channel_profile :
1983 			  (void *)rsp_v3->regulatory.channel_profile;
1984 
1985 	iwl_init_sbands(trans, nvm,
1986 			channel_profile,
1987 			nvm->valid_tx_ant & fw->valid_tx_ant,
1988 			nvm->valid_rx_ant & fw->valid_rx_ant,
1989 			sbands_flags, v4, fw);
1990 
1991 	iwl_free_resp(&hcmd);
1992 	return nvm;
1993 
1994 err_free:
1995 	kfree(nvm);
1996 out:
1997 	iwl_free_resp(&hcmd);
1998 	return ERR_PTR(ret);
1999 }
2000 IWL_EXPORT_SYMBOL(iwl_get_nvm);
2001