xref: /openbmc/linux/drivers/net/wireless/intel/iwlwifi/iwl-nvm-parse.c (revision 5f2cf757f9c56255470c23a2a4a5574a34edad4b)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright (C) 2005-2014, 2018-2022 Intel Corporation
4  * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5  * Copyright (C) 2016-2017 Intel Deutschland GmbH
6  */
7 #include <linux/types.h>
8 #include <linux/slab.h>
9 #include <linux/export.h>
10 #include <linux/etherdevice.h>
11 #include <linux/pci.h>
12 #include <linux/firmware.h>
13 
14 #include "iwl-drv.h"
15 #include "iwl-modparams.h"
16 #include "iwl-nvm-parse.h"
17 #include "iwl-prph.h"
18 #include "iwl-io.h"
19 #include "iwl-csr.h"
20 #include "fw/acpi.h"
21 #include "fw/api/nvm-reg.h"
22 #include "fw/api/commands.h"
23 #include "fw/api/cmdhdr.h"
24 #include "fw/img.h"
25 #include "mei/iwl-mei.h"
26 
27 /* NVM offsets (in words) definitions */
28 enum nvm_offsets {
29 	/* NVM HW-Section offset (in words) definitions */
30 	SUBSYSTEM_ID = 0x0A,
31 	HW_ADDR = 0x15,
32 
33 	/* NVM SW-Section offset (in words) definitions */
34 	NVM_SW_SECTION = 0x1C0,
35 	NVM_VERSION = 0,
36 	RADIO_CFG = 1,
37 	SKU = 2,
38 	N_HW_ADDRS = 3,
39 	NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,
40 
41 	/* NVM calibration section offset (in words) definitions */
42 	NVM_CALIB_SECTION = 0x2B8,
43 	XTAL_CALIB = 0x316 - NVM_CALIB_SECTION,
44 
45 	/* NVM REGULATORY -Section offset (in words) definitions */
46 	NVM_CHANNELS_SDP = 0,
47 };
48 
49 enum ext_nvm_offsets {
50 	/* NVM HW-Section offset (in words) definitions */
51 	MAC_ADDRESS_OVERRIDE_EXT_NVM = 1,
52 
53 	/* NVM SW-Section offset (in words) definitions */
54 	NVM_VERSION_EXT_NVM = 0,
55 	N_HW_ADDRS_FAMILY_8000 = 3,
56 
57 	/* NVM PHY_SKU-Section offset (in words) definitions */
58 	RADIO_CFG_FAMILY_EXT_NVM = 0,
59 	SKU_FAMILY_8000 = 2,
60 
61 	/* NVM REGULATORY -Section offset (in words) definitions */
62 	NVM_CHANNELS_EXTENDED = 0,
63 	NVM_LAR_OFFSET_OLD = 0x4C7,
64 	NVM_LAR_OFFSET = 0x507,
65 	NVM_LAR_ENABLED = 0x7,
66 };
67 
68 /* SKU Capabilities (actual values from NVM definition) */
69 enum nvm_sku_bits {
70 	NVM_SKU_CAP_BAND_24GHZ		= BIT(0),
71 	NVM_SKU_CAP_BAND_52GHZ		= BIT(1),
72 	NVM_SKU_CAP_11N_ENABLE		= BIT(2),
73 	NVM_SKU_CAP_11AC_ENABLE		= BIT(3),
74 	NVM_SKU_CAP_MIMO_DISABLE	= BIT(5),
75 };
76 
77 /*
78  * These are the channel numbers in the order that they are stored in the NVM
79  */
80 static const u16 iwl_nvm_channels[] = {
81 	/* 2.4 GHz */
82 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
83 	/* 5 GHz */
84 	36, 40, 44, 48, 52, 56, 60, 64,
85 	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
86 	149, 153, 157, 161, 165
87 };
88 
89 static const u16 iwl_ext_nvm_channels[] = {
90 	/* 2.4 GHz */
91 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
92 	/* 5 GHz */
93 	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
94 	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
95 	149, 153, 157, 161, 165, 169, 173, 177, 181
96 };
97 
98 static const u16 iwl_uhb_nvm_channels[] = {
99 	/* 2.4 GHz */
100 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
101 	/* 5 GHz */
102 	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
103 	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
104 	149, 153, 157, 161, 165, 169, 173, 177, 181,
105 	/* 6-7 GHz */
106 	1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69,
107 	73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129,
108 	133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 177, 181, 185,
109 	189, 193, 197, 201, 205, 209, 213, 217, 221, 225, 229, 233
110 };
111 
112 #define IWL_NVM_NUM_CHANNELS		ARRAY_SIZE(iwl_nvm_channels)
113 #define IWL_NVM_NUM_CHANNELS_EXT	ARRAY_SIZE(iwl_ext_nvm_channels)
114 #define IWL_NVM_NUM_CHANNELS_UHB	ARRAY_SIZE(iwl_uhb_nvm_channels)
115 #define NUM_2GHZ_CHANNELS		14
116 #define NUM_5GHZ_CHANNELS		37
117 #define FIRST_2GHZ_HT_MINUS		5
118 #define LAST_2GHZ_HT_PLUS		9
119 #define N_HW_ADDR_MASK			0xF
120 
121 /* rate data (static) */
122 static struct ieee80211_rate iwl_cfg80211_rates[] = {
123 	{ .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
124 	{ .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
125 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
126 	{ .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
127 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
128 	{ .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
129 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
130 	{ .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
131 	{ .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
132 	{ .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
133 	{ .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
134 	{ .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
135 	{ .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
136 	{ .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
137 	{ .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
138 };
139 #define RATES_24_OFFS	0
140 #define N_RATES_24	ARRAY_SIZE(iwl_cfg80211_rates)
141 #define RATES_52_OFFS	4
142 #define N_RATES_52	(N_RATES_24 - RATES_52_OFFS)
143 
144 /**
145  * enum iwl_nvm_channel_flags - channel flags in NVM
146  * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
147  * @NVM_CHANNEL_IBSS: usable as an IBSS channel
148  * @NVM_CHANNEL_ACTIVE: active scanning allowed
149  * @NVM_CHANNEL_RADAR: radar detection required
150  * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
151  * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
152  *	on same channel on 2.4 or same UNII band on 5.2
153  * @NVM_CHANNEL_UNIFORM: uniform spreading required
154  * @NVM_CHANNEL_20MHZ: 20 MHz channel okay
155  * @NVM_CHANNEL_40MHZ: 40 MHz channel okay
156  * @NVM_CHANNEL_80MHZ: 80 MHz channel okay
157  * @NVM_CHANNEL_160MHZ: 160 MHz channel okay
158  * @NVM_CHANNEL_DC_HIGH: DC HIGH required/allowed (?)
159  */
160 enum iwl_nvm_channel_flags {
161 	NVM_CHANNEL_VALID		= BIT(0),
162 	NVM_CHANNEL_IBSS		= BIT(1),
163 	NVM_CHANNEL_ACTIVE		= BIT(3),
164 	NVM_CHANNEL_RADAR		= BIT(4),
165 	NVM_CHANNEL_INDOOR_ONLY		= BIT(5),
166 	NVM_CHANNEL_GO_CONCURRENT	= BIT(6),
167 	NVM_CHANNEL_UNIFORM		= BIT(7),
168 	NVM_CHANNEL_20MHZ		= BIT(8),
169 	NVM_CHANNEL_40MHZ		= BIT(9),
170 	NVM_CHANNEL_80MHZ		= BIT(10),
171 	NVM_CHANNEL_160MHZ		= BIT(11),
172 	NVM_CHANNEL_DC_HIGH		= BIT(12),
173 };
174 
175 /**
176  * enum iwl_reg_capa_flags - global flags applied for the whole regulatory
177  * domain.
178  * @REG_CAPA_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
179  *	2.4Ghz band is allowed.
180  * @REG_CAPA_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
181  *	5Ghz band is allowed.
182  * @REG_CAPA_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
183  *	for this regulatory domain (valid only in 5Ghz).
184  * @REG_CAPA_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
185  *	for this regulatory domain (valid only in 5Ghz).
186  * @REG_CAPA_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
187  * @REG_CAPA_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
188  * @REG_CAPA_40MHZ_FORBIDDEN: 11n channel with a width of 40Mhz is forbidden
189  *	for this regulatory domain (valid only in 5Ghz).
190  * @REG_CAPA_DC_HIGH_ENABLED: DC HIGH allowed.
191  * @REG_CAPA_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
192  */
193 enum iwl_reg_capa_flags {
194 	REG_CAPA_BF_CCD_LOW_BAND	= BIT(0),
195 	REG_CAPA_BF_CCD_HIGH_BAND	= BIT(1),
196 	REG_CAPA_160MHZ_ALLOWED		= BIT(2),
197 	REG_CAPA_80MHZ_ALLOWED		= BIT(3),
198 	REG_CAPA_MCS_8_ALLOWED		= BIT(4),
199 	REG_CAPA_MCS_9_ALLOWED		= BIT(5),
200 	REG_CAPA_40MHZ_FORBIDDEN	= BIT(7),
201 	REG_CAPA_DC_HIGH_ENABLED	= BIT(9),
202 	REG_CAPA_11AX_DISABLED		= BIT(10),
203 };
204 
205 /**
206  * enum iwl_reg_capa_flags_v2 - global flags applied for the whole regulatory
207  * domain (version 2).
208  * @REG_CAPA_V2_STRADDLE_DISABLED: Straddle channels (144, 142, 138) are
209  *	disabled.
210  * @REG_CAPA_V2_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
211  *	2.4Ghz band is allowed.
212  * @REG_CAPA_V2_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
213  *	5Ghz band is allowed.
214  * @REG_CAPA_V2_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
215  *	for this regulatory domain (valid only in 5Ghz).
216  * @REG_CAPA_V2_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
217  *	for this regulatory domain (valid only in 5Ghz).
218  * @REG_CAPA_V2_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
219  * @REG_CAPA_V2_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
220  * @REG_CAPA_V2_WEATHER_DISABLED: Weather radar channels (120, 124, 128, 118,
221  *	126, 122) are disabled.
222  * @REG_CAPA_V2_40MHZ_ALLOWED: 11n channel with a width of 40Mhz is allowed
223  *	for this regulatory domain (uvalid only in 5Ghz).
224  * @REG_CAPA_V2_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
225  */
226 enum iwl_reg_capa_flags_v2 {
227 	REG_CAPA_V2_STRADDLE_DISABLED	= BIT(0),
228 	REG_CAPA_V2_BF_CCD_LOW_BAND	= BIT(1),
229 	REG_CAPA_V2_BF_CCD_HIGH_BAND	= BIT(2),
230 	REG_CAPA_V2_160MHZ_ALLOWED	= BIT(3),
231 	REG_CAPA_V2_80MHZ_ALLOWED	= BIT(4),
232 	REG_CAPA_V2_MCS_8_ALLOWED	= BIT(5),
233 	REG_CAPA_V2_MCS_9_ALLOWED	= BIT(6),
234 	REG_CAPA_V2_WEATHER_DISABLED	= BIT(7),
235 	REG_CAPA_V2_40MHZ_ALLOWED	= BIT(8),
236 	REG_CAPA_V2_11AX_DISABLED	= BIT(10),
237 };
238 
239 /*
240 * API v2 for reg_capa_flags is relevant from version 6 and onwards of the
241 * MCC update command response.
242 */
243 #define REG_CAPA_V2_RESP_VER	6
244 
245 /**
246  * struct iwl_reg_capa - struct for global regulatory capabilities, Used for
247  * handling the different APIs of reg_capa_flags.
248  *
249  * @allow_40mhz: 11n channel with a width of 40Mhz is allowed
250  *	for this regulatory domain (valid only in 5Ghz).
251  * @allow_80mhz: 11ac channel with a width of 80Mhz is allowed
252  *	for this regulatory domain (valid only in 5Ghz).
253  * @allow_160mhz: 11ac channel with a width of 160Mhz is allowed
254  *	for this regulatory domain (valid only in 5Ghz).
255  * @disable_11ax: 11ax is forbidden for this regulatory domain.
256  */
257 struct iwl_reg_capa {
258 	u16 allow_40mhz;
259 	u16 allow_80mhz;
260 	u16 allow_160mhz;
261 	u16 disable_11ax;
262 };
263 
264 static inline void iwl_nvm_print_channel_flags(struct device *dev, u32 level,
265 					       int chan, u32 flags)
266 {
267 #define CHECK_AND_PRINT_I(x)	\
268 	((flags & NVM_CHANNEL_##x) ? " " #x : "")
269 
270 	if (!(flags & NVM_CHANNEL_VALID)) {
271 		IWL_DEBUG_DEV(dev, level, "Ch. %d: 0x%x: No traffic\n",
272 			      chan, flags);
273 		return;
274 	}
275 
276 	/* Note: already can print up to 101 characters, 110 is the limit! */
277 	IWL_DEBUG_DEV(dev, level,
278 		      "Ch. %d: 0x%x:%s%s%s%s%s%s%s%s%s%s%s%s\n",
279 		      chan, flags,
280 		      CHECK_AND_PRINT_I(VALID),
281 		      CHECK_AND_PRINT_I(IBSS),
282 		      CHECK_AND_PRINT_I(ACTIVE),
283 		      CHECK_AND_PRINT_I(RADAR),
284 		      CHECK_AND_PRINT_I(INDOOR_ONLY),
285 		      CHECK_AND_PRINT_I(GO_CONCURRENT),
286 		      CHECK_AND_PRINT_I(UNIFORM),
287 		      CHECK_AND_PRINT_I(20MHZ),
288 		      CHECK_AND_PRINT_I(40MHZ),
289 		      CHECK_AND_PRINT_I(80MHZ),
290 		      CHECK_AND_PRINT_I(160MHZ),
291 		      CHECK_AND_PRINT_I(DC_HIGH));
292 #undef CHECK_AND_PRINT_I
293 }
294 
295 static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, enum nl80211_band band,
296 				 u32 nvm_flags, const struct iwl_cfg *cfg)
297 {
298 	u32 flags = IEEE80211_CHAN_NO_HT40;
299 
300 	if (band == NL80211_BAND_2GHZ && (nvm_flags & NVM_CHANNEL_40MHZ)) {
301 		if (ch_num <= LAST_2GHZ_HT_PLUS)
302 			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
303 		if (ch_num >= FIRST_2GHZ_HT_MINUS)
304 			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
305 	} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
306 		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
307 			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
308 		else
309 			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
310 	}
311 	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
312 		flags |= IEEE80211_CHAN_NO_80MHZ;
313 	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
314 		flags |= IEEE80211_CHAN_NO_160MHZ;
315 
316 	if (!(nvm_flags & NVM_CHANNEL_IBSS))
317 		flags |= IEEE80211_CHAN_NO_IR;
318 
319 	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
320 		flags |= IEEE80211_CHAN_NO_IR;
321 
322 	if (nvm_flags & NVM_CHANNEL_RADAR)
323 		flags |= IEEE80211_CHAN_RADAR;
324 
325 	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
326 		flags |= IEEE80211_CHAN_INDOOR_ONLY;
327 
328 	/* Set the GO concurrent flag only in case that NO_IR is set.
329 	 * Otherwise it is meaningless
330 	 */
331 	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
332 	    (flags & IEEE80211_CHAN_NO_IR))
333 		flags |= IEEE80211_CHAN_IR_CONCURRENT;
334 
335 	return flags;
336 }
337 
338 static enum nl80211_band iwl_nl80211_band_from_channel_idx(int ch_idx)
339 {
340 	if (ch_idx >= NUM_2GHZ_CHANNELS + NUM_5GHZ_CHANNELS) {
341 		return NL80211_BAND_6GHZ;
342 	}
343 
344 	if (ch_idx >= NUM_2GHZ_CHANNELS)
345 		return NL80211_BAND_5GHZ;
346 	return NL80211_BAND_2GHZ;
347 }
348 
349 static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
350 				struct iwl_nvm_data *data,
351 				const void * const nvm_ch_flags,
352 				u32 sbands_flags, bool v4)
353 {
354 	int ch_idx;
355 	int n_channels = 0;
356 	struct ieee80211_channel *channel;
357 	u32 ch_flags;
358 	int num_of_ch;
359 	const u16 *nvm_chan;
360 
361 	if (cfg->uhb_supported) {
362 		num_of_ch = IWL_NVM_NUM_CHANNELS_UHB;
363 		nvm_chan = iwl_uhb_nvm_channels;
364 	} else if (cfg->nvm_type == IWL_NVM_EXT) {
365 		num_of_ch = IWL_NVM_NUM_CHANNELS_EXT;
366 		nvm_chan = iwl_ext_nvm_channels;
367 	} else {
368 		num_of_ch = IWL_NVM_NUM_CHANNELS;
369 		nvm_chan = iwl_nvm_channels;
370 	}
371 
372 	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
373 		enum nl80211_band band =
374 			iwl_nl80211_band_from_channel_idx(ch_idx);
375 
376 		if (v4)
377 			ch_flags =
378 				__le32_to_cpup((const __le32 *)nvm_ch_flags + ch_idx);
379 		else
380 			ch_flags =
381 				__le16_to_cpup((const __le16 *)nvm_ch_flags + ch_idx);
382 
383 		if (band == NL80211_BAND_5GHZ &&
384 		    !data->sku_cap_band_52ghz_enable)
385 			continue;
386 
387 		/* workaround to disable wide channels in 5GHz */
388 		if ((sbands_flags & IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ) &&
389 		    band == NL80211_BAND_5GHZ) {
390 			ch_flags &= ~(NVM_CHANNEL_40MHZ |
391 				     NVM_CHANNEL_80MHZ |
392 				     NVM_CHANNEL_160MHZ);
393 		}
394 
395 		if (ch_flags & NVM_CHANNEL_160MHZ)
396 			data->vht160_supported = true;
397 
398 		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR) &&
399 		    !(ch_flags & NVM_CHANNEL_VALID)) {
400 			/*
401 			 * Channels might become valid later if lar is
402 			 * supported, hence we still want to add them to
403 			 * the list of supported channels to cfg80211.
404 			 */
405 			iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
406 						    nvm_chan[ch_idx], ch_flags);
407 			continue;
408 		}
409 
410 		channel = &data->channels[n_channels];
411 		n_channels++;
412 
413 		channel->hw_value = nvm_chan[ch_idx];
414 		channel->band = band;
415 		channel->center_freq =
416 			ieee80211_channel_to_frequency(
417 				channel->hw_value, channel->band);
418 
419 		/* Initialize regulatory-based run-time data */
420 
421 		/*
422 		 * Default value - highest tx power value.  max_power
423 		 * is not used in mvm, and is used for backwards compatibility
424 		 */
425 		channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
426 
427 		/* don't put limitations in case we're using LAR */
428 		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR))
429 			channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
430 							       ch_idx, band,
431 							       ch_flags, cfg);
432 		else
433 			channel->flags = 0;
434 
435 		/* TODO: Don't put limitations on UHB devices as we still don't
436 		 * have NVM for them
437 		 */
438 		if (cfg->uhb_supported)
439 			channel->flags = 0;
440 		iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
441 					    channel->hw_value, ch_flags);
442 		IWL_DEBUG_EEPROM(dev, "Ch. %d: %ddBm\n",
443 				 channel->hw_value, channel->max_power);
444 	}
445 
446 	return n_channels;
447 }
448 
449 static void iwl_init_vht_hw_capab(struct iwl_trans *trans,
450 				  struct iwl_nvm_data *data,
451 				  struct ieee80211_sta_vht_cap *vht_cap,
452 				  u8 tx_chains, u8 rx_chains)
453 {
454 	const struct iwl_cfg *cfg = trans->cfg;
455 	int num_rx_ants = num_of_ant(rx_chains);
456 	int num_tx_ants = num_of_ant(tx_chains);
457 
458 	vht_cap->vht_supported = true;
459 
460 	vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
461 		       IEEE80211_VHT_CAP_RXSTBC_1 |
462 		       IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
463 		       3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
464 		       IEEE80211_VHT_MAX_AMPDU_1024K <<
465 		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
466 
467 	if (!trans->cfg->ht_params->stbc)
468 		vht_cap->cap &= ~IEEE80211_VHT_CAP_RXSTBC_MASK;
469 
470 	if (data->vht160_supported)
471 		vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ |
472 				IEEE80211_VHT_CAP_SHORT_GI_160;
473 
474 	if (cfg->vht_mu_mimo_supported)
475 		vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;
476 
477 	if (cfg->ht_params->ldpc)
478 		vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
479 
480 	if (data->sku_cap_mimo_disabled) {
481 		num_rx_ants = 1;
482 		num_tx_ants = 1;
483 	}
484 
485 	if (num_tx_ants > 1)
486 		vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
487 	else
488 		vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
489 
490 	switch (iwlwifi_mod_params.amsdu_size) {
491 	case IWL_AMSDU_DEF:
492 		if (trans->trans_cfg->mq_rx_supported)
493 			vht_cap->cap |=
494 				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
495 		else
496 			vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
497 		break;
498 	case IWL_AMSDU_2K:
499 		if (trans->trans_cfg->mq_rx_supported)
500 			vht_cap->cap |=
501 				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
502 		else
503 			WARN(1, "RB size of 2K is not supported by this device\n");
504 		break;
505 	case IWL_AMSDU_4K:
506 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
507 		break;
508 	case IWL_AMSDU_8K:
509 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
510 		break;
511 	case IWL_AMSDU_12K:
512 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
513 		break;
514 	default:
515 		break;
516 	}
517 
518 	vht_cap->vht_mcs.rx_mcs_map =
519 		cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
520 			    IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
521 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
522 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
523 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
524 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
525 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
526 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);
527 
528 	if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
529 		vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
530 		/* this works because NOT_SUPPORTED == 3 */
531 		vht_cap->vht_mcs.rx_mcs_map |=
532 			cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
533 	}
534 
535 	vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
536 
537 	vht_cap->vht_mcs.tx_highest |=
538 		cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE);
539 }
540 
541 static const u8 iwl_vendor_caps[] = {
542 	0xdd,			/* vendor element */
543 	0x06,			/* length */
544 	0x00, 0x17, 0x35,	/* Intel OUI */
545 	0x08,			/* type (Intel Capabilities) */
546 	/* followed by 16 bits of capabilities */
547 #define IWL_VENDOR_CAP_IMPROVED_BF_FDBK_HE	BIT(0)
548 	IWL_VENDOR_CAP_IMPROVED_BF_FDBK_HE,
549 	0x00
550 };
551 
552 static const struct ieee80211_sband_iftype_data iwl_he_eht_capa[] = {
553 	{
554 		.types_mask = BIT(NL80211_IFTYPE_STATION),
555 		.he_cap = {
556 			.has_he = true,
557 			.he_cap_elem = {
558 				.mac_cap_info[0] =
559 					IEEE80211_HE_MAC_CAP0_HTC_HE,
560 				.mac_cap_info[1] =
561 					IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
562 					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
563 				.mac_cap_info[2] =
564 					IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP,
565 				.mac_cap_info[3] =
566 					IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
567 					IEEE80211_HE_MAC_CAP3_RX_CTRL_FRAME_TO_MULTIBSS,
568 				.mac_cap_info[4] =
569 					IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU |
570 					IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39,
571 				.mac_cap_info[5] =
572 					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40 |
573 					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41 |
574 					IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU |
575 					IEEE80211_HE_MAC_CAP5_HE_DYNAMIC_SM_PS |
576 					IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX,
577 				.phy_cap_info[1] =
578 					IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK |
579 					IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A |
580 					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
581 				.phy_cap_info[2] =
582 					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US |
583 					IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ,
584 				.phy_cap_info[3] =
585 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK |
586 					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
587 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK |
588 					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
589 				.phy_cap_info[4] =
590 					IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE |
591 					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 |
592 					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8,
593 				.phy_cap_info[6] =
594 					IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMING_FB |
595 					IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB |
596 					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
597 				.phy_cap_info[7] =
598 					IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_SUPP |
599 					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI,
600 				.phy_cap_info[8] =
601 					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
602 					IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
603 					IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
604 					IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU |
605 					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242,
606 				.phy_cap_info[9] =
607 					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
608 					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB |
609 					(IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED <<
610 					IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS),
611 				.phy_cap_info[10] =
612 					IEEE80211_HE_PHY_CAP10_HE_MU_M1RU_MAX_LTF,
613 			},
614 			/*
615 			 * Set default Tx/Rx HE MCS NSS Support field.
616 			 * Indicate support for up to 2 spatial streams and all
617 			 * MCS, without any special cases
618 			 */
619 			.he_mcs_nss_supp = {
620 				.rx_mcs_80 = cpu_to_le16(0xfffa),
621 				.tx_mcs_80 = cpu_to_le16(0xfffa),
622 				.rx_mcs_160 = cpu_to_le16(0xfffa),
623 				.tx_mcs_160 = cpu_to_le16(0xfffa),
624 				.rx_mcs_80p80 = cpu_to_le16(0xffff),
625 				.tx_mcs_80p80 = cpu_to_le16(0xffff),
626 			},
627 			/*
628 			 * Set default PPE thresholds, with PPET16 set to 0,
629 			 * PPET8 set to 7
630 			 */
631 			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
632 		},
633 		.eht_cap = {
634 			.has_eht = true,
635 			.eht_cap_elem = {
636 				.mac_cap_info[0] =
637 					IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS |
638 					IEEE80211_EHT_MAC_CAP0_OM_CONTROL |
639 					IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 |
640 					IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2,
641 				.phy_cap_info[0] =
642 					IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ |
643 					IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI |
644 					IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO |
645 					IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMEE |
646 					IEEE80211_EHT_PHY_CAP0_BEAMFORMEE_SS_80MHZ_MASK,
647 				.phy_cap_info[1] =
648 					IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_80MHZ_MASK  |
649 					IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_160MHZ_MASK |
650 					IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_320MHZ_MASK,
651 				.phy_cap_info[3] =
652 					IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK |
653 					IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK |
654 					IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK |
655 					IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK |
656 					IEEE80211_EHT_PHY_CAP3_TRIG_SU_BF_FDBK |
657 					IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK |
658 					IEEE80211_EHT_PHY_CAP3_TRIG_CQI_FDBK,
659 
660 				.phy_cap_info[4] =
661 					IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO |
662 					IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP |
663 					IEEE80211_EHT_PHY_CAP4_EHT_MU_PPDU_4_EHT_LTF_08_GI,
664 				.phy_cap_info[5] =
665 					IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK |
666 					IEEE80211_EHT_PHY_CAP5_TX_LESS_242_TONE_RU_SUPP |
667 					IEEE80211_EHT_PHY_CAP5_RX_LESS_242_TONE_RU_SUPP |
668 					IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT,
669 				.phy_cap_info[6] =
670 					IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK |
671 					IEEE80211_EHT_PHY_CAP6_EHT_DUP_6GHZ_SUPP,
672 				.phy_cap_info[8] =
673 					IEEE80211_EHT_PHY_CAP8_RX_1024QAM_WIDER_BW_DL_OFDMA |
674 					IEEE80211_EHT_PHY_CAP8_RX_4096QAM_WIDER_BW_DL_OFDMA,
675 			},
676 
677 			/* For all MCS and bandwidth, set 2 NSS for both Tx and
678 			 * Rx - note we don't set the only_20mhz, but due to this
679 			 * being a union, it gets set correctly anyway.
680 			 */
681 			.eht_mcs_nss_supp = {
682 				.bw._80 = {
683 					.rx_tx_mcs9_max_nss = 0x22,
684 					.rx_tx_mcs11_max_nss = 0x22,
685 					.rx_tx_mcs13_max_nss = 0x22,
686 				},
687 				.bw._160 = {
688 					.rx_tx_mcs9_max_nss = 0x22,
689 					.rx_tx_mcs11_max_nss = 0x22,
690 					.rx_tx_mcs13_max_nss = 0x22,
691 				},
692 				.bw._320 = {
693 					.rx_tx_mcs9_max_nss = 0x22,
694 					.rx_tx_mcs11_max_nss = 0x22,
695 					.rx_tx_mcs13_max_nss = 0x22,
696 				},
697 			},
698 
699 			/*
700 			 * PPE thresholds for NSS = 2, and RU index bitmap set
701 			 * to 0xc.
702 			 */
703 			.eht_ppe_thres = {0xc1, 0x0e, 0xe0 }
704 		},
705 	},
706 	{
707 		.types_mask = BIT(NL80211_IFTYPE_AP),
708 		.he_cap = {
709 			.has_he = true,
710 			.he_cap_elem = {
711 				.mac_cap_info[0] =
712 					IEEE80211_HE_MAC_CAP0_HTC_HE,
713 				.mac_cap_info[1] =
714 					IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
715 					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
716 				.mac_cap_info[3] =
717 					IEEE80211_HE_MAC_CAP3_OMI_CONTROL,
718 				.phy_cap_info[1] =
719 					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
720 				.phy_cap_info[2] =
721 					IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ |
722 					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US,
723 				.phy_cap_info[3] =
724 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK |
725 					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
726 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK |
727 					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
728 				.phy_cap_info[6] =
729 					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
730 				.phy_cap_info[7] =
731 					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI,
732 				.phy_cap_info[8] =
733 					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
734 					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242,
735 				.phy_cap_info[9] =
736 					IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED
737 					<< IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS,
738 			},
739 			/*
740 			 * Set default Tx/Rx HE MCS NSS Support field.
741 			 * Indicate support for up to 2 spatial streams and all
742 			 * MCS, without any special cases
743 			 */
744 			.he_mcs_nss_supp = {
745 				.rx_mcs_80 = cpu_to_le16(0xfffa),
746 				.tx_mcs_80 = cpu_to_le16(0xfffa),
747 				.rx_mcs_160 = cpu_to_le16(0xfffa),
748 				.tx_mcs_160 = cpu_to_le16(0xfffa),
749 				.rx_mcs_80p80 = cpu_to_le16(0xffff),
750 				.tx_mcs_80p80 = cpu_to_le16(0xffff),
751 			},
752 			/*
753 			 * Set default PPE thresholds, with PPET16 set to 0,
754 			 * PPET8 set to 7
755 			 */
756 			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
757 		},
758 		.eht_cap = {
759 			.has_eht = true,
760 			.eht_cap_elem = {
761 				.mac_cap_info[0] =
762 					IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS |
763 					IEEE80211_EHT_MAC_CAP0_OM_CONTROL |
764 					IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 |
765 					IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2,
766 				.phy_cap_info[0] =
767 					IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ |
768 					IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI,
769 				.phy_cap_info[5] =
770 					IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT,
771 			},
772 
773 			/* For all MCS and bandwidth, set 2 NSS for both Tx and
774 			 * Rx - note we don't set the only_20mhz, but due to this
775 			 * being a union, it gets set correctly anyway.
776 			 */
777 			.eht_mcs_nss_supp = {
778 				.bw._80 = {
779 					.rx_tx_mcs9_max_nss = 0x22,
780 					.rx_tx_mcs11_max_nss = 0x22,
781 					.rx_tx_mcs13_max_nss = 0x22,
782 				},
783 				.bw._160 = {
784 					.rx_tx_mcs9_max_nss = 0x22,
785 					.rx_tx_mcs11_max_nss = 0x22,
786 					.rx_tx_mcs13_max_nss = 0x22,
787 				},
788 				.bw._320 = {
789 					.rx_tx_mcs9_max_nss = 0x22,
790 					.rx_tx_mcs11_max_nss = 0x22,
791 					.rx_tx_mcs13_max_nss = 0x22,
792 				},
793 			},
794 
795 			/*
796 			 * PPE thresholds for NSS = 2, and RU index bitmap set
797 			 * to 0xc.
798 			 */
799 			.eht_ppe_thres = {0xc1, 0x0e, 0xe0 }
800 		},
801 	},
802 };
803 
804 static void iwl_init_he_6ghz_capa(struct iwl_trans *trans,
805 				  struct iwl_nvm_data *data,
806 				  struct ieee80211_supported_band *sband,
807 				  u8 tx_chains, u8 rx_chains)
808 {
809 	struct ieee80211_sta_ht_cap ht_cap;
810 	struct ieee80211_sta_vht_cap vht_cap = {};
811 	struct ieee80211_sband_iftype_data *iftype_data;
812 	u16 he_6ghz_capa = 0;
813 	u32 exp;
814 	int i;
815 
816 	if (sband->band != NL80211_BAND_6GHZ)
817 		return;
818 
819 	/* grab HT/VHT capabilities and calculate HE 6 GHz capabilities */
820 	iwl_init_ht_hw_capab(trans, data, &ht_cap, NL80211_BAND_5GHZ,
821 			     tx_chains, rx_chains);
822 	WARN_ON(!ht_cap.ht_supported);
823 	iwl_init_vht_hw_capab(trans, data, &vht_cap, tx_chains, rx_chains);
824 	WARN_ON(!vht_cap.vht_supported);
825 
826 	he_6ghz_capa |=
827 		u16_encode_bits(ht_cap.ampdu_density,
828 				IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START);
829 	exp = u32_get_bits(vht_cap.cap,
830 			   IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK);
831 	he_6ghz_capa |=
832 		u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP);
833 	exp = u32_get_bits(vht_cap.cap, IEEE80211_VHT_CAP_MAX_MPDU_MASK);
834 	he_6ghz_capa |=
835 		u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN);
836 	/* we don't support extended_ht_cap_info anywhere, so no RD_RESPONDER */
837 	if (vht_cap.cap & IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN)
838 		he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS;
839 	if (vht_cap.cap & IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN)
840 		he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS;
841 
842 	IWL_DEBUG_EEPROM(trans->dev, "he_6ghz_capa=0x%x\n", he_6ghz_capa);
843 
844 	/* we know it's writable - we set it before ourselves */
845 	iftype_data = (void *)(uintptr_t)sband->iftype_data;
846 	for (i = 0; i < sband->n_iftype_data; i++)
847 		iftype_data[i].he_6ghz_capa.capa = cpu_to_le16(he_6ghz_capa);
848 }
849 
850 static void
851 iwl_nvm_fixup_sband_iftd(struct iwl_trans *trans,
852 			 struct iwl_nvm_data *data,
853 			 struct ieee80211_supported_band *sband,
854 			 struct ieee80211_sband_iftype_data *iftype_data,
855 			 u8 tx_chains, u8 rx_chains,
856 			 const struct iwl_fw *fw)
857 {
858 	bool is_ap = iftype_data->types_mask & BIT(NL80211_IFTYPE_AP);
859 
860 	if (!data->sku_cap_11be_enable || iwlwifi_mod_params.disable_11be)
861 		iftype_data->eht_cap.has_eht = false;
862 
863 	/* Advertise an A-MPDU exponent extension based on
864 	 * operating band
865 	 */
866 	if (sband->band == NL80211_BAND_6GHZ && iftype_data->eht_cap.has_eht)
867 		iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
868 			IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_2;
869 	else if (sband->band != NL80211_BAND_2GHZ)
870 		iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
871 			IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_1;
872 	else
873 		iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
874 			IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3;
875 
876 	switch (sband->band) {
877 	case NL80211_BAND_2GHZ:
878 		iftype_data->he_cap.he_cap_elem.phy_cap_info[0] |=
879 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G;
880 		iftype_data->eht_cap.eht_cap_elem.mac_cap_info[0] |=
881 			u8_encode_bits(IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_11454,
882 				       IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_MASK);
883 		break;
884 	case NL80211_BAND_6GHZ:
885 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[0] |=
886 			IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ;
887 		fallthrough;
888 	case NL80211_BAND_5GHZ:
889 		iftype_data->he_cap.he_cap_elem.phy_cap_info[0] |=
890 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
891 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G;
892 		break;
893 	default:
894 		WARN_ON(1);
895 		break;
896 	}
897 
898 	if ((tx_chains & rx_chains) == ANT_AB) {
899 		iftype_data->he_cap.he_cap_elem.phy_cap_info[2] |=
900 			IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ;
901 		iftype_data->he_cap.he_cap_elem.phy_cap_info[5] |=
902 			IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 |
903 			IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2;
904 		if (!is_ap) {
905 			iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |=
906 				IEEE80211_HE_PHY_CAP7_MAX_NC_2;
907 
908 			if (iftype_data->eht_cap.has_eht) {
909 				/*
910 				 * Set the number of sounding dimensions for each
911 				 * bandwidth to 1 to indicate the maximal supported
912 				 * value of TXVECTOR parameter NUM_STS of 2
913 				 */
914 				iftype_data->eht_cap.eht_cap_elem.phy_cap_info[2] |= 0x49;
915 
916 				/*
917 				 * Set the MAX NC to 1 to indicate sounding feedback of
918 				 * 2 supported by the beamfomee.
919 				 */
920 				iftype_data->eht_cap.eht_cap_elem.phy_cap_info[4] |= 0x10;
921 			}
922 		}
923 	} else {
924 		if (iftype_data->eht_cap.has_eht) {
925 			struct ieee80211_eht_mcs_nss_supp *mcs_nss =
926 				&iftype_data->eht_cap.eht_mcs_nss_supp;
927 
928 			memset(mcs_nss, 0x11, sizeof(*mcs_nss));
929 		}
930 
931 		if (!is_ap) {
932 			/* If not 2x2, we need to indicate 1x1 in the
933 			 * Midamble RX Max NSTS - but not for AP mode
934 			 */
935 			iftype_data->he_cap.he_cap_elem.phy_cap_info[1] &=
936 				~IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS;
937 			iftype_data->he_cap.he_cap_elem.phy_cap_info[2] &=
938 				~IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS;
939 			iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |=
940 				IEEE80211_HE_PHY_CAP7_MAX_NC_1;
941 		}
942 	}
943 
944 	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210 && !is_ap)
945 		iftype_data->he_cap.he_cap_elem.phy_cap_info[2] |=
946 			IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO;
947 
948 	switch (CSR_HW_RFID_TYPE(trans->hw_rf_id)) {
949 	case IWL_CFG_RF_TYPE_GF:
950 	case IWL_CFG_RF_TYPE_MR:
951 	case IWL_CFG_RF_TYPE_MS:
952 		iftype_data->he_cap.he_cap_elem.phy_cap_info[9] |=
953 			IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU;
954 		if (!is_ap)
955 			iftype_data->he_cap.he_cap_elem.phy_cap_info[9] |=
956 				IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU;
957 		break;
958 	}
959 
960 	if (CSR_HW_REV_TYPE(trans->hw_rev) == IWL_CFG_MAC_TYPE_GL &&
961 	    iftype_data->eht_cap.has_eht) {
962 		iftype_data->eht_cap.eht_cap_elem.mac_cap_info[0] &=
963 			~(IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS |
964 			  IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 |
965 			  IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2);
966 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[3] &=
967 			~(IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO |
968 			  IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK |
969 			  IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK |
970 			  IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK |
971 			  IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK |
972 			  IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK);
973 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[4] &=
974 			~(IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO |
975 			  IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP);
976 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[5] &=
977 			~IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK;
978 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[6] &=
979 			~(IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK |
980 			  IEEE80211_EHT_PHY_CAP6_EHT_DUP_6GHZ_SUPP);
981 	}
982 
983 	if (fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_BROADCAST_TWT))
984 		iftype_data->he_cap.he_cap_elem.mac_cap_info[2] |=
985 			IEEE80211_HE_MAC_CAP2_BCAST_TWT;
986 
987 	if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_22000 &&
988 	    !is_ap) {
989 		iftype_data->vendor_elems.data = iwl_vendor_caps;
990 		iftype_data->vendor_elems.len = ARRAY_SIZE(iwl_vendor_caps);
991 	}
992 
993 	if (!trans->cfg->ht_params->stbc) {
994 		iftype_data->he_cap.he_cap_elem.phy_cap_info[2] &=
995 			~IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ;
996 		iftype_data->he_cap.he_cap_elem.phy_cap_info[7] &=
997 			~IEEE80211_HE_PHY_CAP7_STBC_RX_ABOVE_80MHZ;
998 	}
999 }
1000 
1001 static void iwl_init_he_hw_capab(struct iwl_trans *trans,
1002 				 struct iwl_nvm_data *data,
1003 				 struct ieee80211_supported_band *sband,
1004 				 u8 tx_chains, u8 rx_chains,
1005 				 const struct iwl_fw *fw)
1006 {
1007 	struct ieee80211_sband_iftype_data *iftype_data;
1008 	int i;
1009 
1010 	/* should only initialize once */
1011 	if (WARN_ON(sband->iftype_data))
1012 		return;
1013 
1014 	BUILD_BUG_ON(sizeof(data->iftd.low) != sizeof(iwl_he_eht_capa));
1015 	BUILD_BUG_ON(sizeof(data->iftd.high) != sizeof(iwl_he_eht_capa));
1016 	BUILD_BUG_ON(sizeof(data->iftd.uhb) != sizeof(iwl_he_eht_capa));
1017 
1018 	switch (sband->band) {
1019 	case NL80211_BAND_2GHZ:
1020 		iftype_data = data->iftd.low;
1021 		break;
1022 	case NL80211_BAND_5GHZ:
1023 		iftype_data = data->iftd.high;
1024 		break;
1025 	case NL80211_BAND_6GHZ:
1026 		iftype_data = data->iftd.uhb;
1027 		break;
1028 	default:
1029 		WARN_ON(1);
1030 		return;
1031 	}
1032 
1033 	memcpy(iftype_data, iwl_he_eht_capa, sizeof(iwl_he_eht_capa));
1034 
1035 	sband->iftype_data = iftype_data;
1036 	sband->n_iftype_data = ARRAY_SIZE(iwl_he_eht_capa);
1037 
1038 	for (i = 0; i < sband->n_iftype_data; i++)
1039 		iwl_nvm_fixup_sband_iftd(trans, data, sband, &iftype_data[i],
1040 					 tx_chains, rx_chains, fw);
1041 
1042 	iwl_init_he_6ghz_capa(trans, data, sband, tx_chains, rx_chains);
1043 }
1044 
1045 static void iwl_init_sbands(struct iwl_trans *trans,
1046 			    struct iwl_nvm_data *data,
1047 			    const void *nvm_ch_flags, u8 tx_chains,
1048 			    u8 rx_chains, u32 sbands_flags, bool v4,
1049 			    const struct iwl_fw *fw)
1050 {
1051 	struct device *dev = trans->dev;
1052 	const struct iwl_cfg *cfg = trans->cfg;
1053 	int n_channels;
1054 	int n_used = 0;
1055 	struct ieee80211_supported_band *sband;
1056 
1057 	n_channels = iwl_init_channel_map(dev, cfg, data, nvm_ch_flags,
1058 					  sbands_flags, v4);
1059 	sband = &data->bands[NL80211_BAND_2GHZ];
1060 	sband->band = NL80211_BAND_2GHZ;
1061 	sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
1062 	sband->n_bitrates = N_RATES_24;
1063 	n_used += iwl_init_sband_channels(data, sband, n_channels,
1064 					  NL80211_BAND_2GHZ);
1065 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ,
1066 			     tx_chains, rx_chains);
1067 
1068 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1069 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1070 				     fw);
1071 
1072 	sband = &data->bands[NL80211_BAND_5GHZ];
1073 	sband->band = NL80211_BAND_5GHZ;
1074 	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
1075 	sband->n_bitrates = N_RATES_52;
1076 	n_used += iwl_init_sband_channels(data, sband, n_channels,
1077 					  NL80211_BAND_5GHZ);
1078 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ,
1079 			     tx_chains, rx_chains);
1080 	if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
1081 		iwl_init_vht_hw_capab(trans, data, &sband->vht_cap,
1082 				      tx_chains, rx_chains);
1083 
1084 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1085 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1086 				     fw);
1087 
1088 	/* 6GHz band. */
1089 	sband = &data->bands[NL80211_BAND_6GHZ];
1090 	sband->band = NL80211_BAND_6GHZ;
1091 	/* use the same rates as 5GHz band */
1092 	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
1093 	sband->n_bitrates = N_RATES_52;
1094 	n_used += iwl_init_sband_channels(data, sband, n_channels,
1095 					  NL80211_BAND_6GHZ);
1096 
1097 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1098 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1099 				     fw);
1100 	else
1101 		sband->n_channels = 0;
1102 	if (n_channels != n_used)
1103 		IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
1104 			    n_used, n_channels);
1105 }
1106 
1107 static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
1108 		       const __le16 *phy_sku)
1109 {
1110 	if (cfg->nvm_type != IWL_NVM_EXT)
1111 		return le16_to_cpup(nvm_sw + SKU);
1112 
1113 	return le32_to_cpup((const __le32 *)(phy_sku + SKU_FAMILY_8000));
1114 }
1115 
1116 static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
1117 {
1118 	if (cfg->nvm_type != IWL_NVM_EXT)
1119 		return le16_to_cpup(nvm_sw + NVM_VERSION);
1120 	else
1121 		return le32_to_cpup((const __le32 *)(nvm_sw +
1122 						     NVM_VERSION_EXT_NVM));
1123 }
1124 
1125 static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
1126 			     const __le16 *phy_sku)
1127 {
1128 	if (cfg->nvm_type != IWL_NVM_EXT)
1129 		return le16_to_cpup(nvm_sw + RADIO_CFG);
1130 
1131 	return le32_to_cpup((const __le32 *)(phy_sku + RADIO_CFG_FAMILY_EXT_NVM));
1132 
1133 }
1134 
1135 static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
1136 {
1137 	int n_hw_addr;
1138 
1139 	if (cfg->nvm_type != IWL_NVM_EXT)
1140 		return le16_to_cpup(nvm_sw + N_HW_ADDRS);
1141 
1142 	n_hw_addr = le32_to_cpup((const __le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000));
1143 
1144 	return n_hw_addr & N_HW_ADDR_MASK;
1145 }
1146 
1147 static void iwl_set_radio_cfg(const struct iwl_cfg *cfg,
1148 			      struct iwl_nvm_data *data,
1149 			      u32 radio_cfg)
1150 {
1151 	if (cfg->nvm_type != IWL_NVM_EXT) {
1152 		data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
1153 		data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
1154 		data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
1155 		data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
1156 		return;
1157 	}
1158 
1159 	/* set the radio configuration for family 8000 */
1160 	data->radio_cfg_type = EXT_NVM_RF_CFG_TYPE_MSK(radio_cfg);
1161 	data->radio_cfg_step = EXT_NVM_RF_CFG_STEP_MSK(radio_cfg);
1162 	data->radio_cfg_dash = EXT_NVM_RF_CFG_DASH_MSK(radio_cfg);
1163 	data->radio_cfg_pnum = EXT_NVM_RF_CFG_FLAVOR_MSK(radio_cfg);
1164 	data->valid_tx_ant = EXT_NVM_RF_CFG_TX_ANT_MSK(radio_cfg);
1165 	data->valid_rx_ant = EXT_NVM_RF_CFG_RX_ANT_MSK(radio_cfg);
1166 }
1167 
1168 static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest)
1169 {
1170 	const u8 *hw_addr;
1171 
1172 	hw_addr = (const u8 *)&mac_addr0;
1173 	dest[0] = hw_addr[3];
1174 	dest[1] = hw_addr[2];
1175 	dest[2] = hw_addr[1];
1176 	dest[3] = hw_addr[0];
1177 
1178 	hw_addr = (const u8 *)&mac_addr1;
1179 	dest[4] = hw_addr[1];
1180 	dest[5] = hw_addr[0];
1181 }
1182 
1183 static void iwl_set_hw_address_from_csr(struct iwl_trans *trans,
1184 					struct iwl_nvm_data *data)
1185 {
1186 	__le32 mac_addr0 = cpu_to_le32(iwl_read32(trans,
1187 						  CSR_MAC_ADDR0_STRAP(trans)));
1188 	__le32 mac_addr1 = cpu_to_le32(iwl_read32(trans,
1189 						  CSR_MAC_ADDR1_STRAP(trans)));
1190 
1191 	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1192 	/*
1193 	 * If the OEM fused a valid address, use it instead of the one in the
1194 	 * OTP
1195 	 */
1196 	if (is_valid_ether_addr(data->hw_addr))
1197 		return;
1198 
1199 	mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_OTP(trans)));
1200 	mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_OTP(trans)));
1201 
1202 	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1203 }
1204 
1205 static void iwl_set_hw_address_family_8000(struct iwl_trans *trans,
1206 					   const struct iwl_cfg *cfg,
1207 					   struct iwl_nvm_data *data,
1208 					   const __le16 *mac_override,
1209 					   const __be16 *nvm_hw)
1210 {
1211 	const u8 *hw_addr;
1212 
1213 	if (mac_override) {
1214 		static const u8 reserved_mac[] = {
1215 			0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
1216 		};
1217 
1218 		hw_addr = (const u8 *)(mac_override +
1219 				 MAC_ADDRESS_OVERRIDE_EXT_NVM);
1220 
1221 		/*
1222 		 * Store the MAC address from MAO section.
1223 		 * No byte swapping is required in MAO section
1224 		 */
1225 		memcpy(data->hw_addr, hw_addr, ETH_ALEN);
1226 
1227 		/*
1228 		 * Force the use of the OTP MAC address in case of reserved MAC
1229 		 * address in the NVM, or if address is given but invalid.
1230 		 */
1231 		if (is_valid_ether_addr(data->hw_addr) &&
1232 		    memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0)
1233 			return;
1234 
1235 		IWL_ERR(trans,
1236 			"mac address from nvm override section is not valid\n");
1237 	}
1238 
1239 	if (nvm_hw) {
1240 		/* read the mac address from WFMP registers */
1241 		__le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans,
1242 						WFMP_MAC_ADDR_0));
1243 		__le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans,
1244 						WFMP_MAC_ADDR_1));
1245 
1246 		iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1247 
1248 		return;
1249 	}
1250 
1251 	IWL_ERR(trans, "mac address is not found\n");
1252 }
1253 
1254 static int iwl_set_hw_address(struct iwl_trans *trans,
1255 			      const struct iwl_cfg *cfg,
1256 			      struct iwl_nvm_data *data, const __be16 *nvm_hw,
1257 			      const __le16 *mac_override)
1258 {
1259 	if (cfg->mac_addr_from_csr) {
1260 		iwl_set_hw_address_from_csr(trans, data);
1261 	} else if (cfg->nvm_type != IWL_NVM_EXT) {
1262 		const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR);
1263 
1264 		/* The byte order is little endian 16 bit, meaning 214365 */
1265 		data->hw_addr[0] = hw_addr[1];
1266 		data->hw_addr[1] = hw_addr[0];
1267 		data->hw_addr[2] = hw_addr[3];
1268 		data->hw_addr[3] = hw_addr[2];
1269 		data->hw_addr[4] = hw_addr[5];
1270 		data->hw_addr[5] = hw_addr[4];
1271 	} else {
1272 		iwl_set_hw_address_family_8000(trans, cfg, data,
1273 					       mac_override, nvm_hw);
1274 	}
1275 
1276 	if (!is_valid_ether_addr(data->hw_addr)) {
1277 		IWL_ERR(trans, "no valid mac address was found\n");
1278 		return -EINVAL;
1279 	}
1280 
1281 	if (!trans->csme_own)
1282 		IWL_INFO(trans, "base HW address: %pM, OTP minor version: 0x%x\n",
1283 			 data->hw_addr, iwl_read_prph(trans, REG_OTP_MINOR));
1284 
1285 	return 0;
1286 }
1287 
1288 static bool
1289 iwl_nvm_no_wide_in_5ghz(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1290 			const __be16 *nvm_hw)
1291 {
1292 	/*
1293 	 * Workaround a bug in Indonesia SKUs where the regulatory in
1294 	 * some 7000-family OTPs erroneously allow wide channels in
1295 	 * 5GHz.  To check for Indonesia, we take the SKU value from
1296 	 * bits 1-4 in the subsystem ID and check if it is either 5 or
1297 	 * 9.  In those cases, we need to force-disable wide channels
1298 	 * in 5GHz otherwise the FW will throw a sysassert when we try
1299 	 * to use them.
1300 	 */
1301 	if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_7000) {
1302 		/*
1303 		 * Unlike the other sections in the NVM, the hw
1304 		 * section uses big-endian.
1305 		 */
1306 		u16 subsystem_id = be16_to_cpup(nvm_hw + SUBSYSTEM_ID);
1307 		u8 sku = (subsystem_id & 0x1e) >> 1;
1308 
1309 		if (sku == 5 || sku == 9) {
1310 			IWL_DEBUG_EEPROM(trans->dev,
1311 					 "disabling wide channels in 5GHz (0x%0x %d)\n",
1312 					 subsystem_id, sku);
1313 			return true;
1314 		}
1315 	}
1316 
1317 	return false;
1318 }
1319 
1320 struct iwl_nvm_data *
1321 iwl_parse_mei_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1322 		       const struct iwl_mei_nvm *mei_nvm,
1323 		       const struct iwl_fw *fw)
1324 {
1325 	struct iwl_nvm_data *data;
1326 	u32 sbands_flags = 0;
1327 	u8 rx_chains = fw->valid_rx_ant;
1328 	u8 tx_chains = fw->valid_rx_ant;
1329 
1330 	if (cfg->uhb_supported)
1331 		data = kzalloc(struct_size(data, channels,
1332 					   IWL_NVM_NUM_CHANNELS_UHB),
1333 					   GFP_KERNEL);
1334 	else
1335 		data = kzalloc(struct_size(data, channels,
1336 					   IWL_NVM_NUM_CHANNELS_EXT),
1337 					   GFP_KERNEL);
1338 	if (!data)
1339 		return NULL;
1340 
1341 	BUILD_BUG_ON(ARRAY_SIZE(mei_nvm->channels) !=
1342 		     IWL_NVM_NUM_CHANNELS_UHB);
1343 	data->nvm_version = mei_nvm->nvm_version;
1344 
1345 	iwl_set_radio_cfg(cfg, data, mei_nvm->radio_cfg);
1346 	if (data->valid_tx_ant)
1347 		tx_chains &= data->valid_tx_ant;
1348 	if (data->valid_rx_ant)
1349 		rx_chains &= data->valid_rx_ant;
1350 
1351 	data->sku_cap_mimo_disabled = false;
1352 	data->sku_cap_band_24ghz_enable = true;
1353 	data->sku_cap_band_52ghz_enable = true;
1354 	data->sku_cap_11n_enable =
1355 		!(iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL);
1356 	data->sku_cap_11ac_enable = true;
1357 	data->sku_cap_11ax_enable =
1358 		mei_nvm->caps & MEI_NVM_CAPS_11AX_SUPPORT;
1359 
1360 	data->lar_enabled = mei_nvm->caps & MEI_NVM_CAPS_LARI_SUPPORT;
1361 
1362 	data->n_hw_addrs = mei_nvm->n_hw_addrs;
1363 	/* If no valid mac address was found - bail out */
1364 	if (iwl_set_hw_address(trans, cfg, data, NULL, NULL)) {
1365 		kfree(data);
1366 		return NULL;
1367 	}
1368 
1369 	if (data->lar_enabled &&
1370 	    fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT))
1371 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1372 
1373 	iwl_init_sbands(trans, data, mei_nvm->channels, tx_chains, rx_chains,
1374 			sbands_flags, true, fw);
1375 
1376 	return data;
1377 }
1378 IWL_EXPORT_SYMBOL(iwl_parse_mei_nvm_data);
1379 
1380 struct iwl_nvm_data *
1381 iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1382 		   const struct iwl_fw *fw,
1383 		   const __be16 *nvm_hw, const __le16 *nvm_sw,
1384 		   const __le16 *nvm_calib, const __le16 *regulatory,
1385 		   const __le16 *mac_override, const __le16 *phy_sku,
1386 		   u8 tx_chains, u8 rx_chains)
1387 {
1388 	struct iwl_nvm_data *data;
1389 	bool lar_enabled;
1390 	u32 sku, radio_cfg;
1391 	u32 sbands_flags = 0;
1392 	u16 lar_config;
1393 	const __le16 *ch_section;
1394 
1395 	if (cfg->uhb_supported)
1396 		data = kzalloc(struct_size(data, channels,
1397 					   IWL_NVM_NUM_CHANNELS_UHB),
1398 					   GFP_KERNEL);
1399 	else if (cfg->nvm_type != IWL_NVM_EXT)
1400 		data = kzalloc(struct_size(data, channels,
1401 					   IWL_NVM_NUM_CHANNELS),
1402 					   GFP_KERNEL);
1403 	else
1404 		data = kzalloc(struct_size(data, channels,
1405 					   IWL_NVM_NUM_CHANNELS_EXT),
1406 					   GFP_KERNEL);
1407 	if (!data)
1408 		return NULL;
1409 
1410 	data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
1411 
1412 	radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku);
1413 	iwl_set_radio_cfg(cfg, data, radio_cfg);
1414 	if (data->valid_tx_ant)
1415 		tx_chains &= data->valid_tx_ant;
1416 	if (data->valid_rx_ant)
1417 		rx_chains &= data->valid_rx_ant;
1418 
1419 	sku = iwl_get_sku(cfg, nvm_sw, phy_sku);
1420 	data->sku_cap_band_24ghz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
1421 	data->sku_cap_band_52ghz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
1422 	data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
1423 	if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
1424 		data->sku_cap_11n_enable = false;
1425 	data->sku_cap_11ac_enable = data->sku_cap_11n_enable &&
1426 				    (sku & NVM_SKU_CAP_11AC_ENABLE);
1427 	data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE;
1428 
1429 	data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
1430 
1431 	if (cfg->nvm_type != IWL_NVM_EXT) {
1432 		/* Checking for required sections */
1433 		if (!nvm_calib) {
1434 			IWL_ERR(trans,
1435 				"Can't parse empty Calib NVM sections\n");
1436 			kfree(data);
1437 			return NULL;
1438 		}
1439 
1440 		ch_section = cfg->nvm_type == IWL_NVM_SDP ?
1441 			     &regulatory[NVM_CHANNELS_SDP] :
1442 			     &nvm_sw[NVM_CHANNELS];
1443 
1444 		/* in family 8000 Xtal calibration values moved to OTP */
1445 		data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB);
1446 		data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1);
1447 		lar_enabled = true;
1448 	} else {
1449 		u16 lar_offset = data->nvm_version < 0xE39 ?
1450 				 NVM_LAR_OFFSET_OLD :
1451 				 NVM_LAR_OFFSET;
1452 
1453 		lar_config = le16_to_cpup(regulatory + lar_offset);
1454 		data->lar_enabled = !!(lar_config &
1455 				       NVM_LAR_ENABLED);
1456 		lar_enabled = data->lar_enabled;
1457 		ch_section = &regulatory[NVM_CHANNELS_EXTENDED];
1458 	}
1459 
1460 	/* If no valid mac address was found - bail out */
1461 	if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) {
1462 		kfree(data);
1463 		return NULL;
1464 	}
1465 
1466 	if (lar_enabled &&
1467 	    fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT))
1468 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1469 
1470 	if (iwl_nvm_no_wide_in_5ghz(trans, cfg, nvm_hw))
1471 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ;
1472 
1473 	iwl_init_sbands(trans, data, ch_section, tx_chains, rx_chains,
1474 			sbands_flags, false, fw);
1475 	data->calib_version = 255;
1476 
1477 	return data;
1478 }
1479 IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
1480 
1481 static u32 iwl_nvm_get_regdom_bw_flags(const u16 *nvm_chan,
1482 				       int ch_idx, u16 nvm_flags,
1483 				       struct iwl_reg_capa reg_capa,
1484 				       const struct iwl_cfg *cfg)
1485 {
1486 	u32 flags = NL80211_RRF_NO_HT40;
1487 
1488 	if (ch_idx < NUM_2GHZ_CHANNELS &&
1489 	    (nvm_flags & NVM_CHANNEL_40MHZ)) {
1490 		if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
1491 			flags &= ~NL80211_RRF_NO_HT40PLUS;
1492 		if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
1493 			flags &= ~NL80211_RRF_NO_HT40MINUS;
1494 	} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
1495 		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
1496 			flags &= ~NL80211_RRF_NO_HT40PLUS;
1497 		else
1498 			flags &= ~NL80211_RRF_NO_HT40MINUS;
1499 	}
1500 
1501 	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
1502 		flags |= NL80211_RRF_NO_80MHZ;
1503 	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
1504 		flags |= NL80211_RRF_NO_160MHZ;
1505 
1506 	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
1507 		flags |= NL80211_RRF_NO_IR;
1508 
1509 	if (nvm_flags & NVM_CHANNEL_RADAR)
1510 		flags |= NL80211_RRF_DFS;
1511 
1512 	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
1513 		flags |= NL80211_RRF_NO_OUTDOOR;
1514 
1515 	/* Set the GO concurrent flag only in case that NO_IR is set.
1516 	 * Otherwise it is meaningless
1517 	 */
1518 	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
1519 	    (flags & NL80211_RRF_NO_IR))
1520 		flags |= NL80211_RRF_GO_CONCURRENT;
1521 
1522 	/*
1523 	 * reg_capa is per regulatory domain so apply it for every channel
1524 	 */
1525 	if (ch_idx >= NUM_2GHZ_CHANNELS) {
1526 		if (!reg_capa.allow_40mhz)
1527 			flags |= NL80211_RRF_NO_HT40;
1528 
1529 		if (!reg_capa.allow_80mhz)
1530 			flags |= NL80211_RRF_NO_80MHZ;
1531 
1532 		if (!reg_capa.allow_160mhz)
1533 			flags |= NL80211_RRF_NO_160MHZ;
1534 	}
1535 	if (reg_capa.disable_11ax)
1536 		flags |= NL80211_RRF_NO_HE;
1537 
1538 	return flags;
1539 }
1540 
1541 static struct iwl_reg_capa iwl_get_reg_capa(u16 flags, u8 resp_ver)
1542 {
1543 	struct iwl_reg_capa reg_capa;
1544 
1545 	if (resp_ver >= REG_CAPA_V2_RESP_VER) {
1546 		reg_capa.allow_40mhz = flags & REG_CAPA_V2_40MHZ_ALLOWED;
1547 		reg_capa.allow_80mhz = flags & REG_CAPA_V2_80MHZ_ALLOWED;
1548 		reg_capa.allow_160mhz = flags & REG_CAPA_V2_160MHZ_ALLOWED;
1549 		reg_capa.disable_11ax = flags & REG_CAPA_V2_11AX_DISABLED;
1550 	} else {
1551 		reg_capa.allow_40mhz = !(flags & REG_CAPA_40MHZ_FORBIDDEN);
1552 		reg_capa.allow_80mhz = flags & REG_CAPA_80MHZ_ALLOWED;
1553 		reg_capa.allow_160mhz = flags & REG_CAPA_160MHZ_ALLOWED;
1554 		reg_capa.disable_11ax = flags & REG_CAPA_11AX_DISABLED;
1555 	}
1556 	return reg_capa;
1557 }
1558 
1559 struct ieee80211_regdomain *
1560 iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg,
1561 		       int num_of_ch, __le32 *channels, u16 fw_mcc,
1562 		       u16 geo_info, u16 cap, u8 resp_ver)
1563 {
1564 	int ch_idx;
1565 	u16 ch_flags;
1566 	u32 reg_rule_flags, prev_reg_rule_flags = 0;
1567 	const u16 *nvm_chan;
1568 	struct ieee80211_regdomain *regd, *copy_rd;
1569 	struct ieee80211_reg_rule *rule;
1570 	enum nl80211_band band;
1571 	int center_freq, prev_center_freq = 0;
1572 	int valid_rules = 0;
1573 	bool new_rule;
1574 	int max_num_ch;
1575 	struct iwl_reg_capa reg_capa;
1576 
1577 	if (cfg->uhb_supported) {
1578 		max_num_ch = IWL_NVM_NUM_CHANNELS_UHB;
1579 		nvm_chan = iwl_uhb_nvm_channels;
1580 	} else if (cfg->nvm_type == IWL_NVM_EXT) {
1581 		max_num_ch = IWL_NVM_NUM_CHANNELS_EXT;
1582 		nvm_chan = iwl_ext_nvm_channels;
1583 	} else {
1584 		max_num_ch = IWL_NVM_NUM_CHANNELS;
1585 		nvm_chan = iwl_nvm_channels;
1586 	}
1587 
1588 	if (num_of_ch > max_num_ch) {
1589 		IWL_DEBUG_DEV(dev, IWL_DL_LAR,
1590 			      "Num of channels (%d) is greater than expected. Truncating to %d\n",
1591 			      num_of_ch, max_num_ch);
1592 		num_of_ch = max_num_ch;
1593 	}
1594 
1595 	if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES))
1596 		return ERR_PTR(-EINVAL);
1597 
1598 	IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n",
1599 		      num_of_ch);
1600 
1601 	/* build a regdomain rule for every valid channel */
1602 	regd = kzalloc(struct_size(regd, reg_rules, num_of_ch), GFP_KERNEL);
1603 	if (!regd)
1604 		return ERR_PTR(-ENOMEM);
1605 
1606 	/* set alpha2 from FW. */
1607 	regd->alpha2[0] = fw_mcc >> 8;
1608 	regd->alpha2[1] = fw_mcc & 0xff;
1609 
1610 	/* parse regulatory capability flags */
1611 	reg_capa = iwl_get_reg_capa(cap, resp_ver);
1612 
1613 	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
1614 		ch_flags = (u16)__le32_to_cpup(channels + ch_idx);
1615 		band = iwl_nl80211_band_from_channel_idx(ch_idx);
1616 		center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx],
1617 							     band);
1618 		new_rule = false;
1619 
1620 		if (!(ch_flags & NVM_CHANNEL_VALID)) {
1621 			iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1622 						    nvm_chan[ch_idx], ch_flags);
1623 			continue;
1624 		}
1625 
1626 		reg_rule_flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx,
1627 							     ch_flags, reg_capa,
1628 							     cfg);
1629 
1630 		/* we can't continue the same rule */
1631 		if (ch_idx == 0 || prev_reg_rule_flags != reg_rule_flags ||
1632 		    center_freq - prev_center_freq > 20) {
1633 			valid_rules++;
1634 			new_rule = true;
1635 		}
1636 
1637 		rule = &regd->reg_rules[valid_rules - 1];
1638 
1639 		if (new_rule)
1640 			rule->freq_range.start_freq_khz =
1641 						MHZ_TO_KHZ(center_freq - 10);
1642 
1643 		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10);
1644 
1645 		/* this doesn't matter - not used by FW */
1646 		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
1647 		rule->power_rule.max_eirp =
1648 			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
1649 
1650 		rule->flags = reg_rule_flags;
1651 
1652 		/* rely on auto-calculation to merge BW of contiguous chans */
1653 		rule->flags |= NL80211_RRF_AUTO_BW;
1654 		rule->freq_range.max_bandwidth_khz = 0;
1655 
1656 		prev_center_freq = center_freq;
1657 		prev_reg_rule_flags = reg_rule_flags;
1658 
1659 		iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1660 					    nvm_chan[ch_idx], ch_flags);
1661 
1662 		if (!(geo_info & GEO_WMM_ETSI_5GHZ_INFO) ||
1663 		    band == NL80211_BAND_2GHZ)
1664 			continue;
1665 
1666 		reg_query_regdb_wmm(regd->alpha2, center_freq, rule);
1667 	}
1668 
1669 	/*
1670 	 * Certain firmware versions might report no valid channels
1671 	 * if booted in RF-kill, i.e. not all calibrations etc. are
1672 	 * running. We'll get out of this situation later when the
1673 	 * rfkill is removed and we update the regdomain again, but
1674 	 * since cfg80211 doesn't accept an empty regdomain, add a
1675 	 * dummy (unusable) rule here in this case so we can init.
1676 	 */
1677 	if (!valid_rules) {
1678 		valid_rules = 1;
1679 		rule = &regd->reg_rules[valid_rules - 1];
1680 		rule->freq_range.start_freq_khz = MHZ_TO_KHZ(2412);
1681 		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(2413);
1682 		rule->freq_range.max_bandwidth_khz = MHZ_TO_KHZ(1);
1683 		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
1684 		rule->power_rule.max_eirp =
1685 			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
1686 	}
1687 
1688 	regd->n_reg_rules = valid_rules;
1689 
1690 	/*
1691 	 * Narrow down regdom for unused regulatory rules to prevent hole
1692 	 * between reg rules to wmm rules.
1693 	 */
1694 	copy_rd = kmemdup(regd, struct_size(regd, reg_rules, valid_rules),
1695 			  GFP_KERNEL);
1696 	if (!copy_rd)
1697 		copy_rd = ERR_PTR(-ENOMEM);
1698 
1699 	kfree(regd);
1700 	return copy_rd;
1701 }
1702 IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);
1703 
1704 #define IWL_MAX_NVM_SECTION_SIZE	0x1b58
1705 #define IWL_MAX_EXT_NVM_SECTION_SIZE	0x1ffc
1706 #define MAX_NVM_FILE_LEN	16384
1707 
1708 void iwl_nvm_fixups(u32 hw_id, unsigned int section, u8 *data,
1709 		    unsigned int len)
1710 {
1711 #define IWL_4165_DEVICE_ID	0x5501
1712 #define NVM_SKU_CAP_MIMO_DISABLE BIT(5)
1713 
1714 	if (section == NVM_SECTION_TYPE_PHY_SKU &&
1715 	    hw_id == IWL_4165_DEVICE_ID && data && len >= 5 &&
1716 	    (data[4] & NVM_SKU_CAP_MIMO_DISABLE))
1717 		/* OTP 0x52 bug work around: it's a 1x1 device */
1718 		data[3] = ANT_B | (ANT_B << 4);
1719 }
1720 IWL_EXPORT_SYMBOL(iwl_nvm_fixups);
1721 
1722 /*
1723  * Reads external NVM from a file into mvm->nvm_sections
1724  *
1725  * HOW TO CREATE THE NVM FILE FORMAT:
1726  * ------------------------------
1727  * 1. create hex file, format:
1728  *      3800 -> header
1729  *      0000 -> header
1730  *      5a40 -> data
1731  *
1732  *   rev - 6 bit (word1)
1733  *   len - 10 bit (word1)
1734  *   id - 4 bit (word2)
1735  *   rsv - 12 bit (word2)
1736  *
1737  * 2. flip 8bits with 8 bits per line to get the right NVM file format
1738  *
1739  * 3. create binary file from the hex file
1740  *
1741  * 4. save as "iNVM_xxx.bin" under /lib/firmware
1742  */
1743 int iwl_read_external_nvm(struct iwl_trans *trans,
1744 			  const char *nvm_file_name,
1745 			  struct iwl_nvm_section *nvm_sections)
1746 {
1747 	int ret, section_size;
1748 	u16 section_id;
1749 	const struct firmware *fw_entry;
1750 	const struct {
1751 		__le16 word1;
1752 		__le16 word2;
1753 		u8 data[];
1754 	} *file_sec;
1755 	const u8 *eof;
1756 	u8 *temp;
1757 	int max_section_size;
1758 	const __le32 *dword_buff;
1759 
1760 #define NVM_WORD1_LEN(x) (8 * (x & 0x03FF))
1761 #define NVM_WORD2_ID(x) (x >> 12)
1762 #define EXT_NVM_WORD2_LEN(x) (2 * (((x) & 0xFF) << 8 | (x) >> 8))
1763 #define EXT_NVM_WORD1_ID(x) ((x) >> 4)
1764 #define NVM_HEADER_0	(0x2A504C54)
1765 #define NVM_HEADER_1	(0x4E564D2A)
1766 #define NVM_HEADER_SIZE	(4 * sizeof(u32))
1767 
1768 	IWL_DEBUG_EEPROM(trans->dev, "Read from external NVM\n");
1769 
1770 	/* Maximal size depends on NVM version */
1771 	if (trans->cfg->nvm_type != IWL_NVM_EXT)
1772 		max_section_size = IWL_MAX_NVM_SECTION_SIZE;
1773 	else
1774 		max_section_size = IWL_MAX_EXT_NVM_SECTION_SIZE;
1775 
1776 	/*
1777 	 * Obtain NVM image via request_firmware. Since we already used
1778 	 * request_firmware_nowait() for the firmware binary load and only
1779 	 * get here after that we assume the NVM request can be satisfied
1780 	 * synchronously.
1781 	 */
1782 	ret = request_firmware(&fw_entry, nvm_file_name, trans->dev);
1783 	if (ret) {
1784 		IWL_ERR(trans, "ERROR: %s isn't available %d\n",
1785 			nvm_file_name, ret);
1786 		return ret;
1787 	}
1788 
1789 	IWL_INFO(trans, "Loaded NVM file %s (%zu bytes)\n",
1790 		 nvm_file_name, fw_entry->size);
1791 
1792 	if (fw_entry->size > MAX_NVM_FILE_LEN) {
1793 		IWL_ERR(trans, "NVM file too large\n");
1794 		ret = -EINVAL;
1795 		goto out;
1796 	}
1797 
1798 	eof = fw_entry->data + fw_entry->size;
1799 	dword_buff = (const __le32 *)fw_entry->data;
1800 
1801 	/* some NVM file will contain a header.
1802 	 * The header is identified by 2 dwords header as follow:
1803 	 * dword[0] = 0x2A504C54
1804 	 * dword[1] = 0x4E564D2A
1805 	 *
1806 	 * This header must be skipped when providing the NVM data to the FW.
1807 	 */
1808 	if (fw_entry->size > NVM_HEADER_SIZE &&
1809 	    dword_buff[0] == cpu_to_le32(NVM_HEADER_0) &&
1810 	    dword_buff[1] == cpu_to_le32(NVM_HEADER_1)) {
1811 		file_sec = (const void *)(fw_entry->data + NVM_HEADER_SIZE);
1812 		IWL_INFO(trans, "NVM Version %08X\n", le32_to_cpu(dword_buff[2]));
1813 		IWL_INFO(trans, "NVM Manufacturing date %08X\n",
1814 			 le32_to_cpu(dword_buff[3]));
1815 
1816 		/* nvm file validation, dword_buff[2] holds the file version */
1817 		if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_8000 &&
1818 		    trans->hw_rev_step == SILICON_C_STEP &&
1819 		    le32_to_cpu(dword_buff[2]) < 0xE4A) {
1820 			ret = -EFAULT;
1821 			goto out;
1822 		}
1823 	} else {
1824 		file_sec = (const void *)fw_entry->data;
1825 	}
1826 
1827 	while (true) {
1828 		if (file_sec->data > eof) {
1829 			IWL_ERR(trans,
1830 				"ERROR - NVM file too short for section header\n");
1831 			ret = -EINVAL;
1832 			break;
1833 		}
1834 
1835 		/* check for EOF marker */
1836 		if (!file_sec->word1 && !file_sec->word2) {
1837 			ret = 0;
1838 			break;
1839 		}
1840 
1841 		if (trans->cfg->nvm_type != IWL_NVM_EXT) {
1842 			section_size =
1843 				2 * NVM_WORD1_LEN(le16_to_cpu(file_sec->word1));
1844 			section_id = NVM_WORD2_ID(le16_to_cpu(file_sec->word2));
1845 		} else {
1846 			section_size = 2 * EXT_NVM_WORD2_LEN(
1847 						le16_to_cpu(file_sec->word2));
1848 			section_id = EXT_NVM_WORD1_ID(
1849 						le16_to_cpu(file_sec->word1));
1850 		}
1851 
1852 		if (section_size > max_section_size) {
1853 			IWL_ERR(trans, "ERROR - section too large (%d)\n",
1854 				section_size);
1855 			ret = -EINVAL;
1856 			break;
1857 		}
1858 
1859 		if (!section_size) {
1860 			IWL_ERR(trans, "ERROR - section empty\n");
1861 			ret = -EINVAL;
1862 			break;
1863 		}
1864 
1865 		if (file_sec->data + section_size > eof) {
1866 			IWL_ERR(trans,
1867 				"ERROR - NVM file too short for section (%d bytes)\n",
1868 				section_size);
1869 			ret = -EINVAL;
1870 			break;
1871 		}
1872 
1873 		if (WARN(section_id >= NVM_MAX_NUM_SECTIONS,
1874 			 "Invalid NVM section ID %d\n", section_id)) {
1875 			ret = -EINVAL;
1876 			break;
1877 		}
1878 
1879 		temp = kmemdup(file_sec->data, section_size, GFP_KERNEL);
1880 		if (!temp) {
1881 			ret = -ENOMEM;
1882 			break;
1883 		}
1884 
1885 		iwl_nvm_fixups(trans->hw_id, section_id, temp, section_size);
1886 
1887 		kfree(nvm_sections[section_id].data);
1888 		nvm_sections[section_id].data = temp;
1889 		nvm_sections[section_id].length = section_size;
1890 
1891 		/* advance to the next section */
1892 		file_sec = (const void *)(file_sec->data + section_size);
1893 	}
1894 out:
1895 	release_firmware(fw_entry);
1896 	return ret;
1897 }
1898 IWL_EXPORT_SYMBOL(iwl_read_external_nvm);
1899 
1900 struct iwl_nvm_data *iwl_get_nvm(struct iwl_trans *trans,
1901 				 const struct iwl_fw *fw)
1902 {
1903 	struct iwl_nvm_get_info cmd = {};
1904 	struct iwl_nvm_data *nvm;
1905 	struct iwl_host_cmd hcmd = {
1906 		.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
1907 		.data = { &cmd, },
1908 		.len = { sizeof(cmd) },
1909 		.id = WIDE_ID(REGULATORY_AND_NVM_GROUP, NVM_GET_INFO)
1910 	};
1911 	int  ret;
1912 	bool empty_otp;
1913 	u32 mac_flags;
1914 	u32 sbands_flags = 0;
1915 	/*
1916 	 * All the values in iwl_nvm_get_info_rsp v4 are the same as
1917 	 * in v3, except for the channel profile part of the
1918 	 * regulatory.  So we can just access the new struct, with the
1919 	 * exception of the latter.
1920 	 */
1921 	struct iwl_nvm_get_info_rsp *rsp;
1922 	struct iwl_nvm_get_info_rsp_v3 *rsp_v3;
1923 	bool v4 = fw_has_api(&fw->ucode_capa,
1924 			     IWL_UCODE_TLV_API_REGULATORY_NVM_INFO);
1925 	size_t rsp_size = v4 ? sizeof(*rsp) : sizeof(*rsp_v3);
1926 	void *channel_profile;
1927 
1928 	ret = iwl_trans_send_cmd(trans, &hcmd);
1929 	if (ret)
1930 		return ERR_PTR(ret);
1931 
1932 	if (WARN(iwl_rx_packet_payload_len(hcmd.resp_pkt) != rsp_size,
1933 		 "Invalid payload len in NVM response from FW %d",
1934 		 iwl_rx_packet_payload_len(hcmd.resp_pkt))) {
1935 		ret = -EINVAL;
1936 		goto out;
1937 	}
1938 
1939 	rsp = (void *)hcmd.resp_pkt->data;
1940 	empty_otp = !!(le32_to_cpu(rsp->general.flags) &
1941 		       NVM_GENERAL_FLAGS_EMPTY_OTP);
1942 	if (empty_otp)
1943 		IWL_INFO(trans, "OTP is empty\n");
1944 
1945 	nvm = kzalloc(struct_size(nvm, channels, IWL_NUM_CHANNELS), GFP_KERNEL);
1946 	if (!nvm) {
1947 		ret = -ENOMEM;
1948 		goto out;
1949 	}
1950 
1951 	iwl_set_hw_address_from_csr(trans, nvm);
1952 	/* TODO: if platform NVM has MAC address - override it here */
1953 
1954 	if (!is_valid_ether_addr(nvm->hw_addr)) {
1955 		IWL_ERR(trans, "no valid mac address was found\n");
1956 		ret = -EINVAL;
1957 		goto err_free;
1958 	}
1959 
1960 	IWL_INFO(trans, "base HW address: %pM\n", nvm->hw_addr);
1961 
1962 	/* Initialize general data */
1963 	nvm->nvm_version = le16_to_cpu(rsp->general.nvm_version);
1964 	nvm->n_hw_addrs = rsp->general.n_hw_addrs;
1965 	if (nvm->n_hw_addrs == 0)
1966 		IWL_WARN(trans,
1967 			 "Firmware declares no reserved mac addresses. OTP is empty: %d\n",
1968 			 empty_otp);
1969 
1970 	/* Initialize MAC sku data */
1971 	mac_flags = le32_to_cpu(rsp->mac_sku.mac_sku_flags);
1972 	nvm->sku_cap_11ac_enable =
1973 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AC_ENABLED);
1974 	nvm->sku_cap_11n_enable =
1975 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11N_ENABLED);
1976 	nvm->sku_cap_11ax_enable =
1977 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AX_ENABLED);
1978 	nvm->sku_cap_band_24ghz_enable =
1979 		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_2_4_ENABLED);
1980 	nvm->sku_cap_band_52ghz_enable =
1981 		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_5_2_ENABLED);
1982 	nvm->sku_cap_mimo_disabled =
1983 		!!(mac_flags & NVM_MAC_SKU_FLAGS_MIMO_DISABLED);
1984 	if (CSR_HW_RFID_TYPE(trans->hw_rf_id) == IWL_CFG_RF_TYPE_FM)
1985 		nvm->sku_cap_11be_enable = true;
1986 
1987 	/* Initialize PHY sku data */
1988 	nvm->valid_tx_ant = (u8)le32_to_cpu(rsp->phy_sku.tx_chains);
1989 	nvm->valid_rx_ant = (u8)le32_to_cpu(rsp->phy_sku.rx_chains);
1990 
1991 	if (le32_to_cpu(rsp->regulatory.lar_enabled) &&
1992 	    fw_has_capa(&fw->ucode_capa,
1993 			IWL_UCODE_TLV_CAPA_LAR_SUPPORT)) {
1994 		nvm->lar_enabled = true;
1995 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1996 	}
1997 
1998 	rsp_v3 = (void *)rsp;
1999 	channel_profile = v4 ? (void *)rsp->regulatory.channel_profile :
2000 			  (void *)rsp_v3->regulatory.channel_profile;
2001 
2002 	iwl_init_sbands(trans, nvm,
2003 			channel_profile,
2004 			nvm->valid_tx_ant & fw->valid_tx_ant,
2005 			nvm->valid_rx_ant & fw->valid_rx_ant,
2006 			sbands_flags, v4, fw);
2007 
2008 	iwl_free_resp(&hcmd);
2009 	return nvm;
2010 
2011 err_free:
2012 	kfree(nvm);
2013 out:
2014 	iwl_free_resp(&hcmd);
2015 	return ERR_PTR(ret);
2016 }
2017 IWL_EXPORT_SYMBOL(iwl_get_nvm);
2018