1 /****************************************************************************** 2 * 3 * This file is provided under a dual BSD/GPLv2 license. When using or 4 * redistributing this file, you may do so under either license. 5 * 6 * GPL LICENSE SUMMARY 7 * 8 * Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved. 9 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH 10 * Copyright(c) 2016 - 2017 Intel Deutschland GmbH 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of version 2 of the GNU General Public License as 14 * published by the Free Software Foundation. 15 * 16 * This program is distributed in the hope that it will be useful, but 17 * WITHOUT ANY WARRANTY; without even the implied warranty of 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 19 * General Public License for more details. 20 * 21 * You should have received a copy of the GNU General Public License 22 * along with this program; if not, write to the Free Software 23 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110, 24 * USA 25 * 26 * The full GNU General Public License is included in this distribution 27 * in the file called COPYING. 28 * 29 * Contact Information: 30 * Intel Linux Wireless <linuxwifi@intel.com> 31 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 32 * 33 * BSD LICENSE 34 * 35 * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved. 36 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH 37 * Copyright(c) 2016 - 2017 Intel Deutschland GmbH 38 * All rights reserved. 39 * 40 * Redistribution and use in source and binary forms, with or without 41 * modification, are permitted provided that the following conditions 42 * are met: 43 * 44 * * Redistributions of source code must retain the above copyright 45 * notice, this list of conditions and the following disclaimer. 46 * * Redistributions in binary form must reproduce the above copyright 47 * notice, this list of conditions and the following disclaimer in 48 * the documentation and/or other materials provided with the 49 * distribution. 50 * * Neither the name Intel Corporation nor the names of its 51 * contributors may be used to endorse or promote products derived 52 * from this software without specific prior written permission. 53 * 54 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 55 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 56 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 57 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 58 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 59 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 60 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 61 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 62 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 63 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 64 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 65 *****************************************************************************/ 66 #include <linux/types.h> 67 #include <linux/slab.h> 68 #include <linux/export.h> 69 #include <linux/etherdevice.h> 70 #include <linux/pci.h> 71 #include <linux/acpi.h> 72 #include "iwl-drv.h" 73 #include "iwl-modparams.h" 74 #include "iwl-nvm-parse.h" 75 #include "iwl-prph.h" 76 #include "iwl-io.h" 77 #include "iwl-csr.h" 78 79 /* NVM offsets (in words) definitions */ 80 enum wkp_nvm_offsets { 81 /* NVM HW-Section offset (in words) definitions */ 82 HW_ADDR = 0x15, 83 84 /* NVM SW-Section offset (in words) definitions */ 85 NVM_SW_SECTION = 0x1C0, 86 NVM_VERSION = 0, 87 RADIO_CFG = 1, 88 SKU = 2, 89 N_HW_ADDRS = 3, 90 NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION, 91 92 /* NVM calibration section offset (in words) definitions */ 93 NVM_CALIB_SECTION = 0x2B8, 94 XTAL_CALIB = 0x316 - NVM_CALIB_SECTION 95 }; 96 97 enum ext_nvm_offsets { 98 /* NVM HW-Section offset (in words) definitions */ 99 MAC_ADDRESS_OVERRIDE_EXT_NVM = 1, 100 101 /* NVM SW-Section offset (in words) definitions */ 102 NVM_VERSION_EXT_NVM = 0, 103 RADIO_CFG_FAMILY_EXT_NVM = 0, 104 SKU_FAMILY_8000 = 2, 105 N_HW_ADDRS_FAMILY_8000 = 3, 106 107 /* NVM REGULATORY -Section offset (in words) definitions */ 108 NVM_CHANNELS_EXTENDED = 0, 109 NVM_LAR_OFFSET_OLD = 0x4C7, 110 NVM_LAR_OFFSET = 0x507, 111 NVM_LAR_ENABLED = 0x7, 112 }; 113 114 /* SKU Capabilities (actual values from NVM definition) */ 115 enum nvm_sku_bits { 116 NVM_SKU_CAP_BAND_24GHZ = BIT(0), 117 NVM_SKU_CAP_BAND_52GHZ = BIT(1), 118 NVM_SKU_CAP_11N_ENABLE = BIT(2), 119 NVM_SKU_CAP_11AC_ENABLE = BIT(3), 120 NVM_SKU_CAP_MIMO_DISABLE = BIT(5), 121 }; 122 123 /* 124 * These are the channel numbers in the order that they are stored in the NVM 125 */ 126 static const u8 iwl_nvm_channels[] = { 127 /* 2.4 GHz */ 128 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 129 /* 5 GHz */ 130 36, 40, 44 , 48, 52, 56, 60, 64, 131 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 132 149, 153, 157, 161, 165 133 }; 134 135 static const u8 iwl_ext_nvm_channels[] = { 136 /* 2.4 GHz */ 137 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 138 /* 5 GHz */ 139 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 140 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 141 149, 153, 157, 161, 165, 169, 173, 177, 181 142 }; 143 144 #define IWL_NUM_CHANNELS ARRAY_SIZE(iwl_nvm_channels) 145 #define IWL_NUM_CHANNELS_EXT ARRAY_SIZE(iwl_ext_nvm_channels) 146 #define NUM_2GHZ_CHANNELS 14 147 #define NUM_2GHZ_CHANNELS_EXT 14 148 #define FIRST_2GHZ_HT_MINUS 5 149 #define LAST_2GHZ_HT_PLUS 9 150 #define LAST_5GHZ_HT 165 151 #define LAST_5GHZ_HT_FAMILY_8000 181 152 #define N_HW_ADDR_MASK 0xF 153 154 /* rate data (static) */ 155 static struct ieee80211_rate iwl_cfg80211_rates[] = { 156 { .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, }, 157 { .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1, 158 .flags = IEEE80211_RATE_SHORT_PREAMBLE, }, 159 { .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2, 160 .flags = IEEE80211_RATE_SHORT_PREAMBLE, }, 161 { .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3, 162 .flags = IEEE80211_RATE_SHORT_PREAMBLE, }, 163 { .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, }, 164 { .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, }, 165 { .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, }, 166 { .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, }, 167 { .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, }, 168 { .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, }, 169 { .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, }, 170 { .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, }, 171 }; 172 #define RATES_24_OFFS 0 173 #define N_RATES_24 ARRAY_SIZE(iwl_cfg80211_rates) 174 #define RATES_52_OFFS 4 175 #define N_RATES_52 (N_RATES_24 - RATES_52_OFFS) 176 177 /** 178 * enum iwl_nvm_channel_flags - channel flags in NVM 179 * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo 180 * @NVM_CHANNEL_IBSS: usable as an IBSS channel 181 * @NVM_CHANNEL_ACTIVE: active scanning allowed 182 * @NVM_CHANNEL_RADAR: radar detection required 183 * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed 184 * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS 185 * on same channel on 2.4 or same UNII band on 5.2 186 * @NVM_CHANNEL_WIDE: 20 MHz channel okay (?) 187 * @NVM_CHANNEL_40MHZ: 40 MHz channel okay (?) 188 * @NVM_CHANNEL_80MHZ: 80 MHz channel okay (?) 189 * @NVM_CHANNEL_160MHZ: 160 MHz channel okay (?) 190 */ 191 enum iwl_nvm_channel_flags { 192 NVM_CHANNEL_VALID = BIT(0), 193 NVM_CHANNEL_IBSS = BIT(1), 194 NVM_CHANNEL_ACTIVE = BIT(3), 195 NVM_CHANNEL_RADAR = BIT(4), 196 NVM_CHANNEL_INDOOR_ONLY = BIT(5), 197 NVM_CHANNEL_GO_CONCURRENT = BIT(6), 198 NVM_CHANNEL_WIDE = BIT(8), 199 NVM_CHANNEL_40MHZ = BIT(9), 200 NVM_CHANNEL_80MHZ = BIT(10), 201 NVM_CHANNEL_160MHZ = BIT(11), 202 }; 203 204 #define CHECK_AND_PRINT_I(x) \ 205 ((ch_flags & NVM_CHANNEL_##x) ? # x " " : "") 206 207 static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, bool is_5ghz, 208 u16 nvm_flags, const struct iwl_cfg *cfg) 209 { 210 u32 flags = IEEE80211_CHAN_NO_HT40; 211 u32 last_5ghz_ht = LAST_5GHZ_HT; 212 213 if (cfg->ext_nvm) 214 last_5ghz_ht = LAST_5GHZ_HT_FAMILY_8000; 215 216 if (!is_5ghz && (nvm_flags & NVM_CHANNEL_40MHZ)) { 217 if (ch_num <= LAST_2GHZ_HT_PLUS) 218 flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 219 if (ch_num >= FIRST_2GHZ_HT_MINUS) 220 flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 221 } else if (ch_num <= last_5ghz_ht && (nvm_flags & NVM_CHANNEL_40MHZ)) { 222 if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0) 223 flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 224 else 225 flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 226 } 227 if (!(nvm_flags & NVM_CHANNEL_80MHZ)) 228 flags |= IEEE80211_CHAN_NO_80MHZ; 229 if (!(nvm_flags & NVM_CHANNEL_160MHZ)) 230 flags |= IEEE80211_CHAN_NO_160MHZ; 231 232 if (!(nvm_flags & NVM_CHANNEL_IBSS)) 233 flags |= IEEE80211_CHAN_NO_IR; 234 235 if (!(nvm_flags & NVM_CHANNEL_ACTIVE)) 236 flags |= IEEE80211_CHAN_NO_IR; 237 238 if (nvm_flags & NVM_CHANNEL_RADAR) 239 flags |= IEEE80211_CHAN_RADAR; 240 241 if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY) 242 flags |= IEEE80211_CHAN_INDOOR_ONLY; 243 244 /* Set the GO concurrent flag only in case that NO_IR is set. 245 * Otherwise it is meaningless 246 */ 247 if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) && 248 (flags & IEEE80211_CHAN_NO_IR)) 249 flags |= IEEE80211_CHAN_IR_CONCURRENT; 250 251 return flags; 252 } 253 254 static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg, 255 struct iwl_nvm_data *data, 256 const __le16 * const nvm_ch_flags, 257 bool lar_supported) 258 { 259 int ch_idx; 260 int n_channels = 0; 261 struct ieee80211_channel *channel; 262 u16 ch_flags; 263 bool is_5ghz; 264 int num_of_ch, num_2ghz_channels; 265 const u8 *nvm_chan; 266 267 if (!cfg->ext_nvm) { 268 num_of_ch = IWL_NUM_CHANNELS; 269 nvm_chan = &iwl_nvm_channels[0]; 270 num_2ghz_channels = NUM_2GHZ_CHANNELS; 271 } else { 272 num_of_ch = IWL_NUM_CHANNELS_EXT; 273 nvm_chan = &iwl_ext_nvm_channels[0]; 274 num_2ghz_channels = NUM_2GHZ_CHANNELS_EXT; 275 } 276 277 for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) { 278 ch_flags = __le16_to_cpup(nvm_ch_flags + ch_idx); 279 280 if (ch_idx >= num_2ghz_channels && 281 !data->sku_cap_band_52GHz_enable) 282 continue; 283 284 if (ch_flags & NVM_CHANNEL_160MHZ) 285 data->vht160_supported = true; 286 287 if (!lar_supported && !(ch_flags & NVM_CHANNEL_VALID)) { 288 /* 289 * Channels might become valid later if lar is 290 * supported, hence we still want to add them to 291 * the list of supported channels to cfg80211. 292 */ 293 IWL_DEBUG_EEPROM(dev, 294 "Ch. %d Flags %x [%sGHz] - No traffic\n", 295 nvm_chan[ch_idx], 296 ch_flags, 297 (ch_idx >= num_2ghz_channels) ? 298 "5.2" : "2.4"); 299 continue; 300 } 301 302 channel = &data->channels[n_channels]; 303 n_channels++; 304 305 channel->hw_value = nvm_chan[ch_idx]; 306 channel->band = (ch_idx < num_2ghz_channels) ? 307 NL80211_BAND_2GHZ : NL80211_BAND_5GHZ; 308 channel->center_freq = 309 ieee80211_channel_to_frequency( 310 channel->hw_value, channel->band); 311 312 /* Initialize regulatory-based run-time data */ 313 314 /* 315 * Default value - highest tx power value. max_power 316 * is not used in mvm, and is used for backwards compatibility 317 */ 318 channel->max_power = IWL_DEFAULT_MAX_TX_POWER; 319 is_5ghz = channel->band == NL80211_BAND_5GHZ; 320 321 /* don't put limitations in case we're using LAR */ 322 if (!lar_supported) 323 channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx], 324 ch_idx, is_5ghz, 325 ch_flags, cfg); 326 else 327 channel->flags = 0; 328 329 IWL_DEBUG_EEPROM(dev, 330 "Ch. %d [%sGHz] flags 0x%x %s%s%s%s%s%s%s%s%s%s(%ddBm): Ad-Hoc %ssupported\n", 331 channel->hw_value, 332 is_5ghz ? "5.2" : "2.4", 333 ch_flags, 334 CHECK_AND_PRINT_I(VALID), 335 CHECK_AND_PRINT_I(IBSS), 336 CHECK_AND_PRINT_I(ACTIVE), 337 CHECK_AND_PRINT_I(RADAR), 338 CHECK_AND_PRINT_I(INDOOR_ONLY), 339 CHECK_AND_PRINT_I(GO_CONCURRENT), 340 CHECK_AND_PRINT_I(WIDE), 341 CHECK_AND_PRINT_I(40MHZ), 342 CHECK_AND_PRINT_I(80MHZ), 343 CHECK_AND_PRINT_I(160MHZ), 344 channel->max_power, 345 ((ch_flags & NVM_CHANNEL_IBSS) && 346 !(ch_flags & NVM_CHANNEL_RADAR)) 347 ? "" : "not "); 348 } 349 350 return n_channels; 351 } 352 353 static void iwl_init_vht_hw_capab(const struct iwl_cfg *cfg, 354 struct iwl_nvm_data *data, 355 struct ieee80211_sta_vht_cap *vht_cap, 356 u8 tx_chains, u8 rx_chains) 357 { 358 int num_rx_ants = num_of_ant(rx_chains); 359 int num_tx_ants = num_of_ant(tx_chains); 360 unsigned int max_ampdu_exponent = (cfg->max_vht_ampdu_exponent ?: 361 IEEE80211_VHT_MAX_AMPDU_1024K); 362 363 vht_cap->vht_supported = true; 364 365 vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 | 366 IEEE80211_VHT_CAP_RXSTBC_1 | 367 IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE | 368 3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT | 369 max_ampdu_exponent << 370 IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT; 371 372 if (data->vht160_supported) 373 vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ | 374 IEEE80211_VHT_CAP_SHORT_GI_160; 375 376 if (cfg->vht_mu_mimo_supported) 377 vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE; 378 379 if (cfg->ht_params->ldpc) 380 vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC; 381 382 if (data->sku_cap_mimo_disabled) { 383 num_rx_ants = 1; 384 num_tx_ants = 1; 385 } 386 387 if (num_tx_ants > 1) 388 vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC; 389 else 390 vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN; 391 392 switch (iwlwifi_mod_params.amsdu_size) { 393 case IWL_AMSDU_DEF: 394 if (cfg->mq_rx_supported) 395 vht_cap->cap |= 396 IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454; 397 else 398 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895; 399 break; 400 case IWL_AMSDU_4K: 401 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895; 402 break; 403 case IWL_AMSDU_8K: 404 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991; 405 break; 406 case IWL_AMSDU_12K: 407 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454; 408 break; 409 default: 410 break; 411 } 412 413 vht_cap->vht_mcs.rx_mcs_map = 414 cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 | 415 IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 | 416 IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 | 417 IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 | 418 IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 | 419 IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 | 420 IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 | 421 IEEE80211_VHT_MCS_NOT_SUPPORTED << 14); 422 423 if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) { 424 vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN; 425 /* this works because NOT_SUPPORTED == 3 */ 426 vht_cap->vht_mcs.rx_mcs_map |= 427 cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2); 428 } 429 430 vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map; 431 } 432 433 void iwl_init_sbands(struct device *dev, const struct iwl_cfg *cfg, 434 struct iwl_nvm_data *data, const __le16 *nvm_ch_flags, 435 u8 tx_chains, u8 rx_chains, bool lar_supported) 436 { 437 int n_channels; 438 int n_used = 0; 439 struct ieee80211_supported_band *sband; 440 441 n_channels = iwl_init_channel_map(dev, cfg, data, nvm_ch_flags, 442 lar_supported); 443 sband = &data->bands[NL80211_BAND_2GHZ]; 444 sband->band = NL80211_BAND_2GHZ; 445 sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS]; 446 sband->n_bitrates = N_RATES_24; 447 n_used += iwl_init_sband_channels(data, sband, n_channels, 448 NL80211_BAND_2GHZ); 449 iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, NL80211_BAND_2GHZ, 450 tx_chains, rx_chains); 451 452 sband = &data->bands[NL80211_BAND_5GHZ]; 453 sband->band = NL80211_BAND_5GHZ; 454 sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS]; 455 sband->n_bitrates = N_RATES_52; 456 n_used += iwl_init_sband_channels(data, sband, n_channels, 457 NL80211_BAND_5GHZ); 458 iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, NL80211_BAND_5GHZ, 459 tx_chains, rx_chains); 460 if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac) 461 iwl_init_vht_hw_capab(cfg, data, &sband->vht_cap, 462 tx_chains, rx_chains); 463 464 if (n_channels != n_used) 465 IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n", 466 n_used, n_channels); 467 } 468 IWL_EXPORT_SYMBOL(iwl_init_sbands); 469 470 static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw, 471 const __le16 *phy_sku) 472 { 473 if (!cfg->ext_nvm) 474 return le16_to_cpup(nvm_sw + SKU); 475 476 return le32_to_cpup((__le32 *)(phy_sku + SKU_FAMILY_8000)); 477 } 478 479 static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw) 480 { 481 if (!cfg->ext_nvm) 482 return le16_to_cpup(nvm_sw + NVM_VERSION); 483 else 484 return le32_to_cpup((__le32 *)(nvm_sw + 485 NVM_VERSION_EXT_NVM)); 486 } 487 488 static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw, 489 const __le16 *phy_sku) 490 { 491 if (!cfg->ext_nvm) 492 return le16_to_cpup(nvm_sw + RADIO_CFG); 493 494 return le32_to_cpup((__le32 *)(phy_sku + RADIO_CFG_FAMILY_EXT_NVM)); 495 496 } 497 498 static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw) 499 { 500 int n_hw_addr; 501 502 if (!cfg->ext_nvm) 503 return le16_to_cpup(nvm_sw + N_HW_ADDRS); 504 505 n_hw_addr = le32_to_cpup((__le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000)); 506 507 return n_hw_addr & N_HW_ADDR_MASK; 508 } 509 510 static void iwl_set_radio_cfg(const struct iwl_cfg *cfg, 511 struct iwl_nvm_data *data, 512 u32 radio_cfg) 513 { 514 if (!cfg->ext_nvm) { 515 data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg); 516 data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg); 517 data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg); 518 data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg); 519 return; 520 } 521 522 /* set the radio configuration for family 8000 */ 523 data->radio_cfg_type = EXT_NVM_RF_CFG_TYPE_MSK(radio_cfg); 524 data->radio_cfg_step = EXT_NVM_RF_CFG_STEP_MSK(radio_cfg); 525 data->radio_cfg_dash = EXT_NVM_RF_CFG_DASH_MSK(radio_cfg); 526 data->radio_cfg_pnum = EXT_NVM_RF_CFG_FLAVOR_MSK(radio_cfg); 527 data->valid_tx_ant = EXT_NVM_RF_CFG_TX_ANT_MSK(radio_cfg); 528 data->valid_rx_ant = EXT_NVM_RF_CFG_RX_ANT_MSK(radio_cfg); 529 } 530 531 static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest) 532 { 533 const u8 *hw_addr; 534 535 hw_addr = (const u8 *)&mac_addr0; 536 dest[0] = hw_addr[3]; 537 dest[1] = hw_addr[2]; 538 dest[2] = hw_addr[1]; 539 dest[3] = hw_addr[0]; 540 541 hw_addr = (const u8 *)&mac_addr1; 542 dest[4] = hw_addr[1]; 543 dest[5] = hw_addr[0]; 544 } 545 546 void iwl_set_hw_address_from_csr(struct iwl_trans *trans, 547 struct iwl_nvm_data *data) 548 { 549 __le32 mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_STRAP)); 550 __le32 mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_STRAP)); 551 552 iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr); 553 /* 554 * If the OEM fused a valid address, use it instead of the one in the 555 * OTP 556 */ 557 if (is_valid_ether_addr(data->hw_addr)) 558 return; 559 560 mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_OTP)); 561 mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_OTP)); 562 563 iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr); 564 } 565 IWL_EXPORT_SYMBOL(iwl_set_hw_address_from_csr); 566 567 static void iwl_set_hw_address_family_8000(struct iwl_trans *trans, 568 const struct iwl_cfg *cfg, 569 struct iwl_nvm_data *data, 570 const __le16 *mac_override, 571 const __le16 *nvm_hw) 572 { 573 const u8 *hw_addr; 574 575 if (mac_override) { 576 static const u8 reserved_mac[] = { 577 0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00 578 }; 579 580 hw_addr = (const u8 *)(mac_override + 581 MAC_ADDRESS_OVERRIDE_EXT_NVM); 582 583 /* 584 * Store the MAC address from MAO section. 585 * No byte swapping is required in MAO section 586 */ 587 memcpy(data->hw_addr, hw_addr, ETH_ALEN); 588 589 /* 590 * Force the use of the OTP MAC address in case of reserved MAC 591 * address in the NVM, or if address is given but invalid. 592 */ 593 if (is_valid_ether_addr(data->hw_addr) && 594 memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0) 595 return; 596 597 IWL_ERR(trans, 598 "mac address from nvm override section is not valid\n"); 599 } 600 601 if (nvm_hw) { 602 /* read the mac address from WFMP registers */ 603 __le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans, 604 WFMP_MAC_ADDR_0)); 605 __le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans, 606 WFMP_MAC_ADDR_1)); 607 608 iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr); 609 610 return; 611 } 612 613 IWL_ERR(trans, "mac address is not found\n"); 614 } 615 616 static int iwl_set_hw_address(struct iwl_trans *trans, 617 const struct iwl_cfg *cfg, 618 struct iwl_nvm_data *data, const __le16 *nvm_hw, 619 const __le16 *mac_override) 620 { 621 if (cfg->mac_addr_from_csr) { 622 iwl_set_hw_address_from_csr(trans, data); 623 } else if (!cfg->ext_nvm) { 624 const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR); 625 626 /* The byte order is little endian 16 bit, meaning 214365 */ 627 data->hw_addr[0] = hw_addr[1]; 628 data->hw_addr[1] = hw_addr[0]; 629 data->hw_addr[2] = hw_addr[3]; 630 data->hw_addr[3] = hw_addr[2]; 631 data->hw_addr[4] = hw_addr[5]; 632 data->hw_addr[5] = hw_addr[4]; 633 } else { 634 iwl_set_hw_address_family_8000(trans, cfg, data, 635 mac_override, nvm_hw); 636 } 637 638 if (!is_valid_ether_addr(data->hw_addr)) { 639 IWL_ERR(trans, "no valid mac address was found\n"); 640 return -EINVAL; 641 } 642 643 IWL_INFO(trans, "base HW address: %pM\n", data->hw_addr); 644 645 return 0; 646 } 647 648 struct iwl_nvm_data * 649 iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg, 650 const __le16 *nvm_hw, const __le16 *nvm_sw, 651 const __le16 *nvm_calib, const __le16 *regulatory, 652 const __le16 *mac_override, const __le16 *phy_sku, 653 u8 tx_chains, u8 rx_chains, bool lar_fw_supported) 654 { 655 struct device *dev = trans->dev; 656 struct iwl_nvm_data *data; 657 bool lar_enabled; 658 u32 sku, radio_cfg; 659 u16 lar_config; 660 const __le16 *ch_section; 661 662 if (!cfg->ext_nvm) 663 data = kzalloc(sizeof(*data) + 664 sizeof(struct ieee80211_channel) * 665 IWL_NUM_CHANNELS, 666 GFP_KERNEL); 667 else 668 data = kzalloc(sizeof(*data) + 669 sizeof(struct ieee80211_channel) * 670 IWL_NUM_CHANNELS_EXT, 671 GFP_KERNEL); 672 if (!data) 673 return NULL; 674 675 data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw); 676 677 radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku); 678 iwl_set_radio_cfg(cfg, data, radio_cfg); 679 if (data->valid_tx_ant) 680 tx_chains &= data->valid_tx_ant; 681 if (data->valid_rx_ant) 682 rx_chains &= data->valid_rx_ant; 683 684 sku = iwl_get_sku(cfg, nvm_sw, phy_sku); 685 data->sku_cap_band_24GHz_enable = sku & NVM_SKU_CAP_BAND_24GHZ; 686 data->sku_cap_band_52GHz_enable = sku & NVM_SKU_CAP_BAND_52GHZ; 687 data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE; 688 if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL) 689 data->sku_cap_11n_enable = false; 690 data->sku_cap_11ac_enable = data->sku_cap_11n_enable && 691 (sku & NVM_SKU_CAP_11AC_ENABLE); 692 data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE; 693 694 data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw); 695 696 if (!cfg->ext_nvm) { 697 /* Checking for required sections */ 698 if (!nvm_calib) { 699 IWL_ERR(trans, 700 "Can't parse empty Calib NVM sections\n"); 701 kfree(data); 702 return NULL; 703 } 704 /* in family 8000 Xtal calibration values moved to OTP */ 705 data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB); 706 data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1); 707 lar_enabled = true; 708 ch_section = &nvm_sw[NVM_CHANNELS]; 709 } else { 710 u16 lar_offset = data->nvm_version < 0xE39 ? 711 NVM_LAR_OFFSET_OLD : 712 NVM_LAR_OFFSET; 713 714 lar_config = le16_to_cpup(regulatory + lar_offset); 715 data->lar_enabled = !!(lar_config & 716 NVM_LAR_ENABLED); 717 lar_enabled = data->lar_enabled; 718 ch_section = ®ulatory[NVM_CHANNELS_EXTENDED]; 719 } 720 721 /* If no valid mac address was found - bail out */ 722 if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) { 723 kfree(data); 724 return NULL; 725 } 726 727 iwl_init_sbands(dev, cfg, data, ch_section, tx_chains, rx_chains, 728 lar_fw_supported && lar_enabled); 729 data->calib_version = 255; 730 731 return data; 732 } 733 IWL_EXPORT_SYMBOL(iwl_parse_nvm_data); 734 735 static u32 iwl_nvm_get_regdom_bw_flags(const u8 *nvm_chan, 736 int ch_idx, u16 nvm_flags, 737 const struct iwl_cfg *cfg) 738 { 739 u32 flags = NL80211_RRF_NO_HT40; 740 u32 last_5ghz_ht = LAST_5GHZ_HT; 741 742 if (cfg->ext_nvm) 743 last_5ghz_ht = LAST_5GHZ_HT_FAMILY_8000; 744 745 if (ch_idx < NUM_2GHZ_CHANNELS && 746 (nvm_flags & NVM_CHANNEL_40MHZ)) { 747 if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS) 748 flags &= ~NL80211_RRF_NO_HT40PLUS; 749 if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS) 750 flags &= ~NL80211_RRF_NO_HT40MINUS; 751 } else if (nvm_chan[ch_idx] <= last_5ghz_ht && 752 (nvm_flags & NVM_CHANNEL_40MHZ)) { 753 if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0) 754 flags &= ~NL80211_RRF_NO_HT40PLUS; 755 else 756 flags &= ~NL80211_RRF_NO_HT40MINUS; 757 } 758 759 if (!(nvm_flags & NVM_CHANNEL_80MHZ)) 760 flags |= NL80211_RRF_NO_80MHZ; 761 if (!(nvm_flags & NVM_CHANNEL_160MHZ)) 762 flags |= NL80211_RRF_NO_160MHZ; 763 764 if (!(nvm_flags & NVM_CHANNEL_ACTIVE)) 765 flags |= NL80211_RRF_NO_IR; 766 767 if (nvm_flags & NVM_CHANNEL_RADAR) 768 flags |= NL80211_RRF_DFS; 769 770 if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY) 771 flags |= NL80211_RRF_NO_OUTDOOR; 772 773 /* Set the GO concurrent flag only in case that NO_IR is set. 774 * Otherwise it is meaningless 775 */ 776 if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) && 777 (flags & NL80211_RRF_NO_IR)) 778 flags |= NL80211_RRF_GO_CONCURRENT; 779 780 return flags; 781 } 782 783 struct ieee80211_regdomain * 784 iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg, 785 int num_of_ch, __le32 *channels, u16 fw_mcc) 786 { 787 int ch_idx; 788 u16 ch_flags, prev_ch_flags = 0; 789 const u8 *nvm_chan = cfg->ext_nvm ? 790 iwl_ext_nvm_channels : iwl_nvm_channels; 791 struct ieee80211_regdomain *regd; 792 int size_of_regd; 793 struct ieee80211_reg_rule *rule; 794 enum nl80211_band band; 795 int center_freq, prev_center_freq = 0; 796 int valid_rules = 0; 797 bool new_rule; 798 int max_num_ch = cfg->ext_nvm ? 799 IWL_NUM_CHANNELS_EXT : IWL_NUM_CHANNELS; 800 801 if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES)) 802 return ERR_PTR(-EINVAL); 803 804 if (WARN_ON(num_of_ch > max_num_ch)) 805 num_of_ch = max_num_ch; 806 807 IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n", 808 num_of_ch); 809 810 /* build a regdomain rule for every valid channel */ 811 size_of_regd = 812 sizeof(struct ieee80211_regdomain) + 813 num_of_ch * sizeof(struct ieee80211_reg_rule); 814 815 regd = kzalloc(size_of_regd, GFP_KERNEL); 816 if (!regd) 817 return ERR_PTR(-ENOMEM); 818 819 for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) { 820 ch_flags = (u16)__le32_to_cpup(channels + ch_idx); 821 band = (ch_idx < NUM_2GHZ_CHANNELS) ? 822 NL80211_BAND_2GHZ : NL80211_BAND_5GHZ; 823 center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx], 824 band); 825 new_rule = false; 826 827 if (!(ch_flags & NVM_CHANNEL_VALID)) { 828 IWL_DEBUG_DEV(dev, IWL_DL_LAR, 829 "Ch. %d Flags %x [%sGHz] - No traffic\n", 830 nvm_chan[ch_idx], 831 ch_flags, 832 (ch_idx >= NUM_2GHZ_CHANNELS) ? 833 "5.2" : "2.4"); 834 continue; 835 } 836 837 /* we can't continue the same rule */ 838 if (ch_idx == 0 || prev_ch_flags != ch_flags || 839 center_freq - prev_center_freq > 20) { 840 valid_rules++; 841 new_rule = true; 842 } 843 844 rule = ®d->reg_rules[valid_rules - 1]; 845 846 if (new_rule) 847 rule->freq_range.start_freq_khz = 848 MHZ_TO_KHZ(center_freq - 10); 849 850 rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10); 851 852 /* this doesn't matter - not used by FW */ 853 rule->power_rule.max_antenna_gain = DBI_TO_MBI(6); 854 rule->power_rule.max_eirp = 855 DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER); 856 857 rule->flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx, 858 ch_flags, cfg); 859 860 /* rely on auto-calculation to merge BW of contiguous chans */ 861 rule->flags |= NL80211_RRF_AUTO_BW; 862 rule->freq_range.max_bandwidth_khz = 0; 863 864 prev_ch_flags = ch_flags; 865 prev_center_freq = center_freq; 866 867 IWL_DEBUG_DEV(dev, IWL_DL_LAR, 868 "Ch. %d [%sGHz] %s%s%s%s%s%s%s%s%s(0x%02x): Ad-Hoc %ssupported\n", 869 center_freq, 870 band == NL80211_BAND_5GHZ ? "5.2" : "2.4", 871 CHECK_AND_PRINT_I(VALID), 872 CHECK_AND_PRINT_I(ACTIVE), 873 CHECK_AND_PRINT_I(RADAR), 874 CHECK_AND_PRINT_I(WIDE), 875 CHECK_AND_PRINT_I(40MHZ), 876 CHECK_AND_PRINT_I(80MHZ), 877 CHECK_AND_PRINT_I(160MHZ), 878 CHECK_AND_PRINT_I(INDOOR_ONLY), 879 CHECK_AND_PRINT_I(GO_CONCURRENT), 880 ch_flags, 881 ((ch_flags & NVM_CHANNEL_ACTIVE) && 882 !(ch_flags & NVM_CHANNEL_RADAR)) 883 ? "" : "not "); 884 } 885 886 regd->n_reg_rules = valid_rules; 887 888 /* set alpha2 from FW. */ 889 regd->alpha2[0] = fw_mcc >> 8; 890 regd->alpha2[1] = fw_mcc & 0xff; 891 892 return regd; 893 } 894 IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info); 895 896 #ifdef CONFIG_ACPI 897 #define WRDD_METHOD "WRDD" 898 #define WRDD_WIFI (0x07) 899 #define WRDD_WIGIG (0x10) 900 901 static u32 iwl_wrdd_get_mcc(struct device *dev, union acpi_object *wrdd) 902 { 903 union acpi_object *mcc_pkg, *domain_type, *mcc_value; 904 u32 i; 905 906 if (wrdd->type != ACPI_TYPE_PACKAGE || 907 wrdd->package.count < 2 || 908 wrdd->package.elements[0].type != ACPI_TYPE_INTEGER || 909 wrdd->package.elements[0].integer.value != 0) { 910 IWL_DEBUG_EEPROM(dev, "Unsupported wrdd structure\n"); 911 return 0; 912 } 913 914 for (i = 1 ; i < wrdd->package.count ; ++i) { 915 mcc_pkg = &wrdd->package.elements[i]; 916 917 if (mcc_pkg->type != ACPI_TYPE_PACKAGE || 918 mcc_pkg->package.count < 2 || 919 mcc_pkg->package.elements[0].type != ACPI_TYPE_INTEGER || 920 mcc_pkg->package.elements[1].type != ACPI_TYPE_INTEGER) { 921 mcc_pkg = NULL; 922 continue; 923 } 924 925 domain_type = &mcc_pkg->package.elements[0]; 926 if (domain_type->integer.value == WRDD_WIFI) 927 break; 928 929 mcc_pkg = NULL; 930 } 931 932 if (mcc_pkg) { 933 mcc_value = &mcc_pkg->package.elements[1]; 934 return mcc_value->integer.value; 935 } 936 937 return 0; 938 } 939 940 int iwl_get_bios_mcc(struct device *dev, char *mcc) 941 { 942 acpi_handle root_handle; 943 acpi_handle handle; 944 struct acpi_buffer wrdd = {ACPI_ALLOCATE_BUFFER, NULL}; 945 acpi_status status; 946 u32 mcc_val; 947 948 root_handle = ACPI_HANDLE(dev); 949 if (!root_handle) { 950 IWL_DEBUG_EEPROM(dev, 951 "Could not retrieve root port ACPI handle\n"); 952 return -ENOENT; 953 } 954 955 /* Get the method's handle */ 956 status = acpi_get_handle(root_handle, (acpi_string)WRDD_METHOD, 957 &handle); 958 if (ACPI_FAILURE(status)) { 959 IWL_DEBUG_EEPROM(dev, "WRD method not found\n"); 960 return -ENOENT; 961 } 962 963 /* Call WRDD with no arguments */ 964 status = acpi_evaluate_object(handle, NULL, NULL, &wrdd); 965 if (ACPI_FAILURE(status)) { 966 IWL_DEBUG_EEPROM(dev, "WRDC invocation failed (0x%x)\n", 967 status); 968 return -ENOENT; 969 } 970 971 mcc_val = iwl_wrdd_get_mcc(dev, wrdd.pointer); 972 kfree(wrdd.pointer); 973 if (!mcc_val) 974 return -ENOENT; 975 976 mcc[0] = (mcc_val >> 8) & 0xff; 977 mcc[1] = mcc_val & 0xff; 978 mcc[2] = '\0'; 979 return 0; 980 } 981 IWL_EXPORT_SYMBOL(iwl_get_bios_mcc); 982 #endif 983