1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright (C) 2005-2014, 2018-2023 Intel Corporation
4  * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5  * Copyright (C) 2016-2017 Intel Deutschland GmbH
6  */
7 #include <linux/types.h>
8 #include <linux/slab.h>
9 #include <linux/export.h>
10 #include <linux/etherdevice.h>
11 #include <linux/pci.h>
12 #include <linux/firmware.h>
13 
14 #include "iwl-drv.h"
15 #include "iwl-modparams.h"
16 #include "iwl-nvm-parse.h"
17 #include "iwl-prph.h"
18 #include "iwl-io.h"
19 #include "iwl-csr.h"
20 #include "fw/acpi.h"
21 #include "fw/api/nvm-reg.h"
22 #include "fw/api/commands.h"
23 #include "fw/api/cmdhdr.h"
24 #include "fw/img.h"
25 #include "mei/iwl-mei.h"
26 
27 /* NVM offsets (in words) definitions */
28 enum nvm_offsets {
29 	/* NVM HW-Section offset (in words) definitions */
30 	SUBSYSTEM_ID = 0x0A,
31 	HW_ADDR = 0x15,
32 
33 	/* NVM SW-Section offset (in words) definitions */
34 	NVM_SW_SECTION = 0x1C0,
35 	NVM_VERSION = 0,
36 	RADIO_CFG = 1,
37 	SKU = 2,
38 	N_HW_ADDRS = 3,
39 	NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,
40 
41 	/* NVM calibration section offset (in words) definitions */
42 	NVM_CALIB_SECTION = 0x2B8,
43 	XTAL_CALIB = 0x316 - NVM_CALIB_SECTION,
44 
45 	/* NVM REGULATORY -Section offset (in words) definitions */
46 	NVM_CHANNELS_SDP = 0,
47 };
48 
49 enum ext_nvm_offsets {
50 	/* NVM HW-Section offset (in words) definitions */
51 	MAC_ADDRESS_OVERRIDE_EXT_NVM = 1,
52 
53 	/* NVM SW-Section offset (in words) definitions */
54 	NVM_VERSION_EXT_NVM = 0,
55 	N_HW_ADDRS_FAMILY_8000 = 3,
56 
57 	/* NVM PHY_SKU-Section offset (in words) definitions */
58 	RADIO_CFG_FAMILY_EXT_NVM = 0,
59 	SKU_FAMILY_8000 = 2,
60 
61 	/* NVM REGULATORY -Section offset (in words) definitions */
62 	NVM_CHANNELS_EXTENDED = 0,
63 	NVM_LAR_OFFSET_OLD = 0x4C7,
64 	NVM_LAR_OFFSET = 0x507,
65 	NVM_LAR_ENABLED = 0x7,
66 };
67 
68 /* SKU Capabilities (actual values from NVM definition) */
69 enum nvm_sku_bits {
70 	NVM_SKU_CAP_BAND_24GHZ		= BIT(0),
71 	NVM_SKU_CAP_BAND_52GHZ		= BIT(1),
72 	NVM_SKU_CAP_11N_ENABLE		= BIT(2),
73 	NVM_SKU_CAP_11AC_ENABLE		= BIT(3),
74 	NVM_SKU_CAP_MIMO_DISABLE	= BIT(5),
75 };
76 
77 /*
78  * These are the channel numbers in the order that they are stored in the NVM
79  */
80 static const u16 iwl_nvm_channels[] = {
81 	/* 2.4 GHz */
82 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
83 	/* 5 GHz */
84 	36, 40, 44, 48, 52, 56, 60, 64,
85 	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
86 	149, 153, 157, 161, 165
87 };
88 
89 static const u16 iwl_ext_nvm_channels[] = {
90 	/* 2.4 GHz */
91 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
92 	/* 5 GHz */
93 	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
94 	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
95 	149, 153, 157, 161, 165, 169, 173, 177, 181
96 };
97 
98 static const u16 iwl_uhb_nvm_channels[] = {
99 	/* 2.4 GHz */
100 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
101 	/* 5 GHz */
102 	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
103 	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
104 	149, 153, 157, 161, 165, 169, 173, 177, 181,
105 	/* 6-7 GHz */
106 	1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69,
107 	73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129,
108 	133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 177, 181, 185,
109 	189, 193, 197, 201, 205, 209, 213, 217, 221, 225, 229, 233
110 };
111 
112 #define IWL_NVM_NUM_CHANNELS		ARRAY_SIZE(iwl_nvm_channels)
113 #define IWL_NVM_NUM_CHANNELS_EXT	ARRAY_SIZE(iwl_ext_nvm_channels)
114 #define IWL_NVM_NUM_CHANNELS_UHB	ARRAY_SIZE(iwl_uhb_nvm_channels)
115 #define NUM_2GHZ_CHANNELS		14
116 #define NUM_5GHZ_CHANNELS		37
117 #define FIRST_2GHZ_HT_MINUS		5
118 #define LAST_2GHZ_HT_PLUS		9
119 #define N_HW_ADDR_MASK			0xF
120 
121 /* rate data (static) */
122 static struct ieee80211_rate iwl_cfg80211_rates[] = {
123 	{ .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
124 	{ .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
125 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
126 	{ .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
127 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
128 	{ .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
129 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
130 	{ .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
131 	{ .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
132 	{ .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
133 	{ .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
134 	{ .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
135 	{ .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
136 	{ .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
137 	{ .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
138 };
139 #define RATES_24_OFFS	0
140 #define N_RATES_24	ARRAY_SIZE(iwl_cfg80211_rates)
141 #define RATES_52_OFFS	4
142 #define N_RATES_52	(N_RATES_24 - RATES_52_OFFS)
143 
144 /**
145  * enum iwl_nvm_channel_flags - channel flags in NVM
146  * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
147  * @NVM_CHANNEL_IBSS: usable as an IBSS channel
148  * @NVM_CHANNEL_ACTIVE: active scanning allowed
149  * @NVM_CHANNEL_RADAR: radar detection required
150  * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
151  * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
152  *	on same channel on 2.4 or same UNII band on 5.2
153  * @NVM_CHANNEL_UNIFORM: uniform spreading required
154  * @NVM_CHANNEL_20MHZ: 20 MHz channel okay
155  * @NVM_CHANNEL_40MHZ: 40 MHz channel okay
156  * @NVM_CHANNEL_80MHZ: 80 MHz channel okay
157  * @NVM_CHANNEL_160MHZ: 160 MHz channel okay
158  * @NVM_CHANNEL_DC_HIGH: DC HIGH required/allowed (?)
159  */
160 enum iwl_nvm_channel_flags {
161 	NVM_CHANNEL_VALID		= BIT(0),
162 	NVM_CHANNEL_IBSS		= BIT(1),
163 	NVM_CHANNEL_ACTIVE		= BIT(3),
164 	NVM_CHANNEL_RADAR		= BIT(4),
165 	NVM_CHANNEL_INDOOR_ONLY		= BIT(5),
166 	NVM_CHANNEL_GO_CONCURRENT	= BIT(6),
167 	NVM_CHANNEL_UNIFORM		= BIT(7),
168 	NVM_CHANNEL_20MHZ		= BIT(8),
169 	NVM_CHANNEL_40MHZ		= BIT(9),
170 	NVM_CHANNEL_80MHZ		= BIT(10),
171 	NVM_CHANNEL_160MHZ		= BIT(11),
172 	NVM_CHANNEL_DC_HIGH		= BIT(12),
173 };
174 
175 /**
176  * enum iwl_reg_capa_flags_v1 - global flags applied for the whole regulatory
177  * domain.
178  * @REG_CAPA_V1_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
179  *	2.4Ghz band is allowed.
180  * @REG_CAPA_V1_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
181  *	5Ghz band is allowed.
182  * @REG_CAPA_V1_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
183  *	for this regulatory domain (valid only in 5Ghz).
184  * @REG_CAPA_V1_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
185  *	for this regulatory domain (valid only in 5Ghz).
186  * @REG_CAPA_V1_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
187  * @REG_CAPA_V1_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
188  * @REG_CAPA_V1_40MHZ_FORBIDDEN: 11n channel with a width of 40Mhz is forbidden
189  *	for this regulatory domain (valid only in 5Ghz).
190  * @REG_CAPA_V1_DC_HIGH_ENABLED: DC HIGH allowed.
191  * @REG_CAPA_V1_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
192  */
193 enum iwl_reg_capa_flags_v1 {
194 	REG_CAPA_V1_BF_CCD_LOW_BAND	= BIT(0),
195 	REG_CAPA_V1_BF_CCD_HIGH_BAND	= BIT(1),
196 	REG_CAPA_V1_160MHZ_ALLOWED	= BIT(2),
197 	REG_CAPA_V1_80MHZ_ALLOWED	= BIT(3),
198 	REG_CAPA_V1_MCS_8_ALLOWED	= BIT(4),
199 	REG_CAPA_V1_MCS_9_ALLOWED	= BIT(5),
200 	REG_CAPA_V1_40MHZ_FORBIDDEN	= BIT(7),
201 	REG_CAPA_V1_DC_HIGH_ENABLED	= BIT(9),
202 	REG_CAPA_V1_11AX_DISABLED	= BIT(10),
203 }; /* GEO_CHANNEL_CAPABILITIES_API_S_VER_1 */
204 
205 /**
206  * enum iwl_reg_capa_flags_v2 - global flags applied for the whole regulatory
207  * domain (version 2).
208  * @REG_CAPA_V2_STRADDLE_DISABLED: Straddle channels (144, 142, 138) are
209  *	disabled.
210  * @REG_CAPA_V2_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
211  *	2.4Ghz band is allowed.
212  * @REG_CAPA_V2_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
213  *	5Ghz band is allowed.
214  * @REG_CAPA_V2_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
215  *	for this regulatory domain (valid only in 5Ghz).
216  * @REG_CAPA_V2_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
217  *	for this regulatory domain (valid only in 5Ghz).
218  * @REG_CAPA_V2_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
219  * @REG_CAPA_V2_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
220  * @REG_CAPA_V2_WEATHER_DISABLED: Weather radar channels (120, 124, 128, 118,
221  *	126, 122) are disabled.
222  * @REG_CAPA_V2_40MHZ_ALLOWED: 11n channel with a width of 40Mhz is allowed
223  *	for this regulatory domain (uvalid only in 5Ghz).
224  * @REG_CAPA_V2_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
225  */
226 enum iwl_reg_capa_flags_v2 {
227 	REG_CAPA_V2_STRADDLE_DISABLED	= BIT(0),
228 	REG_CAPA_V2_BF_CCD_LOW_BAND	= BIT(1),
229 	REG_CAPA_V2_BF_CCD_HIGH_BAND	= BIT(2),
230 	REG_CAPA_V2_160MHZ_ALLOWED	= BIT(3),
231 	REG_CAPA_V2_80MHZ_ALLOWED	= BIT(4),
232 	REG_CAPA_V2_MCS_8_ALLOWED	= BIT(5),
233 	REG_CAPA_V2_MCS_9_ALLOWED	= BIT(6),
234 	REG_CAPA_V2_WEATHER_DISABLED	= BIT(7),
235 	REG_CAPA_V2_40MHZ_ALLOWED	= BIT(8),
236 	REG_CAPA_V2_11AX_DISABLED	= BIT(10),
237 }; /* GEO_CHANNEL_CAPABILITIES_API_S_VER_2 */
238 
239 /**
240  * enum iwl_reg_capa_flags_v4 - global flags applied for the whole regulatory
241  * domain.
242  * @REG_CAPA_V4_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
243  *	for this regulatory domain (valid only in 5Ghz).
244  * @REG_CAPA_V4_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
245  *	for this regulatory domain (valid only in 5Ghz).
246  * @REG_CAPA_V4_MCS_12_ALLOWED: 11ac with MCS 12 is allowed.
247  * @REG_CAPA_V4_MCS_13_ALLOWED: 11ac with MCS 13 is allowed.
248  * @REG_CAPA_V4_11BE_DISABLED: 11be is forbidden for this regulatory domain.
249  * @REG_CAPA_V4_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
250  * @REG_CAPA_V4_320MHZ_ALLOWED: 11be channel with a width of 320Mhz is allowed
251  *	for this regulatory domain (valid only in 5GHz).
252  */
253 enum iwl_reg_capa_flags_v4 {
254 	REG_CAPA_V4_160MHZ_ALLOWED		= BIT(3),
255 	REG_CAPA_V4_80MHZ_ALLOWED		= BIT(4),
256 	REG_CAPA_V4_MCS_12_ALLOWED		= BIT(5),
257 	REG_CAPA_V4_MCS_13_ALLOWED		= BIT(6),
258 	REG_CAPA_V4_11BE_DISABLED		= BIT(8),
259 	REG_CAPA_V4_11AX_DISABLED		= BIT(13),
260 	REG_CAPA_V4_320MHZ_ALLOWED		= BIT(16),
261 }; /* GEO_CHANNEL_CAPABILITIES_API_S_VER_4 */
262 
263 /*
264 * API v2 for reg_capa_flags is relevant from version 6 and onwards of the
265 * MCC update command response.
266 */
267 #define REG_CAPA_V2_RESP_VER	6
268 
269 /* API v4 for reg_capa_flags is relevant from version 8 and onwards of the
270  * MCC update command response.
271  */
272 #define REG_CAPA_V4_RESP_VER	8
273 
274 /**
275  * struct iwl_reg_capa - struct for global regulatory capabilities, Used for
276  * handling the different APIs of reg_capa_flags.
277  *
278  * @allow_40mhz: 11n channel with a width of 40Mhz is allowed
279  *	for this regulatory domain.
280  * @allow_80mhz: 11ac channel with a width of 80Mhz is allowed
281  *	for this regulatory domain (valid only in 5 and 6 Ghz).
282  * @allow_160mhz: 11ac channel with a width of 160Mhz is allowed
283  *	for this regulatory domain (valid only in 5 and 6 Ghz).
284  * @allow_320mhz: 11be channel with a width of 320Mhz is allowed
285  *	for this regulatory domain (valid only in 6 Ghz).
286  * @disable_11ax: 11ax is forbidden for this regulatory domain.
287  * @disable_11be: 11be is forbidden for this regulatory domain.
288  */
289 struct iwl_reg_capa {
290 	bool allow_40mhz;
291 	bool allow_80mhz;
292 	bool allow_160mhz;
293 	bool allow_320mhz;
294 	bool disable_11ax;
295 	bool disable_11be;
296 };
297 
298 static inline void iwl_nvm_print_channel_flags(struct device *dev, u32 level,
299 					       int chan, u32 flags)
300 {
301 #define CHECK_AND_PRINT_I(x)	\
302 	((flags & NVM_CHANNEL_##x) ? " " #x : "")
303 
304 	if (!(flags & NVM_CHANNEL_VALID)) {
305 		IWL_DEBUG_DEV(dev, level, "Ch. %d: 0x%x: No traffic\n",
306 			      chan, flags);
307 		return;
308 	}
309 
310 	/* Note: already can print up to 101 characters, 110 is the limit! */
311 	IWL_DEBUG_DEV(dev, level,
312 		      "Ch. %d: 0x%x:%s%s%s%s%s%s%s%s%s%s%s%s\n",
313 		      chan, flags,
314 		      CHECK_AND_PRINT_I(VALID),
315 		      CHECK_AND_PRINT_I(IBSS),
316 		      CHECK_AND_PRINT_I(ACTIVE),
317 		      CHECK_AND_PRINT_I(RADAR),
318 		      CHECK_AND_PRINT_I(INDOOR_ONLY),
319 		      CHECK_AND_PRINT_I(GO_CONCURRENT),
320 		      CHECK_AND_PRINT_I(UNIFORM),
321 		      CHECK_AND_PRINT_I(20MHZ),
322 		      CHECK_AND_PRINT_I(40MHZ),
323 		      CHECK_AND_PRINT_I(80MHZ),
324 		      CHECK_AND_PRINT_I(160MHZ),
325 		      CHECK_AND_PRINT_I(DC_HIGH));
326 #undef CHECK_AND_PRINT_I
327 }
328 
329 static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, enum nl80211_band band,
330 				 u32 nvm_flags, const struct iwl_cfg *cfg)
331 {
332 	u32 flags = IEEE80211_CHAN_NO_HT40;
333 
334 	if (band == NL80211_BAND_2GHZ && (nvm_flags & NVM_CHANNEL_40MHZ)) {
335 		if (ch_num <= LAST_2GHZ_HT_PLUS)
336 			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
337 		if (ch_num >= FIRST_2GHZ_HT_MINUS)
338 			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
339 	} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
340 		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
341 			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
342 		else
343 			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
344 	}
345 	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
346 		flags |= IEEE80211_CHAN_NO_80MHZ;
347 	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
348 		flags |= IEEE80211_CHAN_NO_160MHZ;
349 
350 	if (!(nvm_flags & NVM_CHANNEL_IBSS))
351 		flags |= IEEE80211_CHAN_NO_IR;
352 
353 	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
354 		flags |= IEEE80211_CHAN_NO_IR;
355 
356 	if (nvm_flags & NVM_CHANNEL_RADAR)
357 		flags |= IEEE80211_CHAN_RADAR;
358 
359 	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
360 		flags |= IEEE80211_CHAN_INDOOR_ONLY;
361 
362 	/* Set the GO concurrent flag only in case that NO_IR is set.
363 	 * Otherwise it is meaningless
364 	 */
365 	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
366 	    (flags & IEEE80211_CHAN_NO_IR))
367 		flags |= IEEE80211_CHAN_IR_CONCURRENT;
368 
369 	return flags;
370 }
371 
372 static enum nl80211_band iwl_nl80211_band_from_channel_idx(int ch_idx)
373 {
374 	if (ch_idx >= NUM_2GHZ_CHANNELS + NUM_5GHZ_CHANNELS) {
375 		return NL80211_BAND_6GHZ;
376 	}
377 
378 	if (ch_idx >= NUM_2GHZ_CHANNELS)
379 		return NL80211_BAND_5GHZ;
380 	return NL80211_BAND_2GHZ;
381 }
382 
383 static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
384 				struct iwl_nvm_data *data,
385 				const void * const nvm_ch_flags,
386 				u32 sbands_flags, bool v4)
387 {
388 	int ch_idx;
389 	int n_channels = 0;
390 	struct ieee80211_channel *channel;
391 	u32 ch_flags;
392 	int num_of_ch;
393 	const u16 *nvm_chan;
394 
395 	if (cfg->uhb_supported) {
396 		num_of_ch = IWL_NVM_NUM_CHANNELS_UHB;
397 		nvm_chan = iwl_uhb_nvm_channels;
398 	} else if (cfg->nvm_type == IWL_NVM_EXT) {
399 		num_of_ch = IWL_NVM_NUM_CHANNELS_EXT;
400 		nvm_chan = iwl_ext_nvm_channels;
401 	} else {
402 		num_of_ch = IWL_NVM_NUM_CHANNELS;
403 		nvm_chan = iwl_nvm_channels;
404 	}
405 
406 	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
407 		enum nl80211_band band =
408 			iwl_nl80211_band_from_channel_idx(ch_idx);
409 
410 		if (v4)
411 			ch_flags =
412 				__le32_to_cpup((const __le32 *)nvm_ch_flags + ch_idx);
413 		else
414 			ch_flags =
415 				__le16_to_cpup((const __le16 *)nvm_ch_flags + ch_idx);
416 
417 		if (band == NL80211_BAND_5GHZ &&
418 		    !data->sku_cap_band_52ghz_enable)
419 			continue;
420 
421 		/* workaround to disable wide channels in 5GHz */
422 		if ((sbands_flags & IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ) &&
423 		    band == NL80211_BAND_5GHZ) {
424 			ch_flags &= ~(NVM_CHANNEL_40MHZ |
425 				     NVM_CHANNEL_80MHZ |
426 				     NVM_CHANNEL_160MHZ);
427 		}
428 
429 		if (ch_flags & NVM_CHANNEL_160MHZ)
430 			data->vht160_supported = true;
431 
432 		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR) &&
433 		    !(ch_flags & NVM_CHANNEL_VALID)) {
434 			/*
435 			 * Channels might become valid later if lar is
436 			 * supported, hence we still want to add them to
437 			 * the list of supported channels to cfg80211.
438 			 */
439 			iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
440 						    nvm_chan[ch_idx], ch_flags);
441 			continue;
442 		}
443 
444 		channel = &data->channels[n_channels];
445 		n_channels++;
446 
447 		channel->hw_value = nvm_chan[ch_idx];
448 		channel->band = band;
449 		channel->center_freq =
450 			ieee80211_channel_to_frequency(
451 				channel->hw_value, channel->band);
452 
453 		/* Initialize regulatory-based run-time data */
454 
455 		/*
456 		 * Default value - highest tx power value.  max_power
457 		 * is not used in mvm, and is used for backwards compatibility
458 		 */
459 		channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
460 
461 		/* don't put limitations in case we're using LAR */
462 		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR))
463 			channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
464 							       ch_idx, band,
465 							       ch_flags, cfg);
466 		else
467 			channel->flags = 0;
468 
469 		/* TODO: Don't put limitations on UHB devices as we still don't
470 		 * have NVM for them
471 		 */
472 		if (cfg->uhb_supported)
473 			channel->flags = 0;
474 		iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
475 					    channel->hw_value, ch_flags);
476 		IWL_DEBUG_EEPROM(dev, "Ch. %d: %ddBm\n",
477 				 channel->hw_value, channel->max_power);
478 	}
479 
480 	return n_channels;
481 }
482 
483 static void iwl_init_vht_hw_capab(struct iwl_trans *trans,
484 				  struct iwl_nvm_data *data,
485 				  struct ieee80211_sta_vht_cap *vht_cap,
486 				  u8 tx_chains, u8 rx_chains)
487 {
488 	const struct iwl_cfg *cfg = trans->cfg;
489 	int num_rx_ants = num_of_ant(rx_chains);
490 	int num_tx_ants = num_of_ant(tx_chains);
491 
492 	vht_cap->vht_supported = true;
493 
494 	vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
495 		       IEEE80211_VHT_CAP_RXSTBC_1 |
496 		       IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
497 		       3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
498 		       IEEE80211_VHT_MAX_AMPDU_1024K <<
499 		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
500 
501 	if (!trans->cfg->ht_params->stbc)
502 		vht_cap->cap &= ~IEEE80211_VHT_CAP_RXSTBC_MASK;
503 
504 	if (data->vht160_supported)
505 		vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ |
506 				IEEE80211_VHT_CAP_SHORT_GI_160;
507 
508 	if (cfg->vht_mu_mimo_supported)
509 		vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;
510 
511 	if (cfg->ht_params->ldpc)
512 		vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
513 
514 	if (data->sku_cap_mimo_disabled) {
515 		num_rx_ants = 1;
516 		num_tx_ants = 1;
517 	}
518 
519 	if (trans->cfg->ht_params->stbc && num_tx_ants > 1)
520 		vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
521 	else
522 		vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
523 
524 	switch (iwlwifi_mod_params.amsdu_size) {
525 	case IWL_AMSDU_DEF:
526 		if (trans->trans_cfg->mq_rx_supported)
527 			vht_cap->cap |=
528 				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
529 		else
530 			vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
531 		break;
532 	case IWL_AMSDU_2K:
533 		if (trans->trans_cfg->mq_rx_supported)
534 			vht_cap->cap |=
535 				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
536 		else
537 			WARN(1, "RB size of 2K is not supported by this device\n");
538 		break;
539 	case IWL_AMSDU_4K:
540 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
541 		break;
542 	case IWL_AMSDU_8K:
543 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
544 		break;
545 	case IWL_AMSDU_12K:
546 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
547 		break;
548 	default:
549 		break;
550 	}
551 
552 	vht_cap->vht_mcs.rx_mcs_map =
553 		cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
554 			    IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
555 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
556 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
557 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
558 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
559 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
560 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);
561 
562 	if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
563 		vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
564 		/* this works because NOT_SUPPORTED == 3 */
565 		vht_cap->vht_mcs.rx_mcs_map |=
566 			cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
567 	}
568 
569 	vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
570 
571 	vht_cap->vht_mcs.tx_highest |=
572 		cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE);
573 }
574 
575 static const u8 iwl_vendor_caps[] = {
576 	0xdd,			/* vendor element */
577 	0x06,			/* length */
578 	0x00, 0x17, 0x35,	/* Intel OUI */
579 	0x08,			/* type (Intel Capabilities) */
580 	/* followed by 16 bits of capabilities */
581 #define IWL_VENDOR_CAP_IMPROVED_BF_FDBK_HE	BIT(0)
582 	IWL_VENDOR_CAP_IMPROVED_BF_FDBK_HE,
583 	0x00
584 };
585 
586 static const struct ieee80211_sband_iftype_data iwl_he_eht_capa[] = {
587 	{
588 		.types_mask = BIT(NL80211_IFTYPE_STATION),
589 		.he_cap = {
590 			.has_he = true,
591 			.he_cap_elem = {
592 				.mac_cap_info[0] =
593 					IEEE80211_HE_MAC_CAP0_HTC_HE,
594 				.mac_cap_info[1] =
595 					IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
596 					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
597 				.mac_cap_info[2] =
598 					IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP,
599 				.mac_cap_info[3] =
600 					IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
601 					IEEE80211_HE_MAC_CAP3_RX_CTRL_FRAME_TO_MULTIBSS,
602 				.mac_cap_info[4] =
603 					IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU |
604 					IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39,
605 				.mac_cap_info[5] =
606 					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40 |
607 					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41 |
608 					IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU |
609 					IEEE80211_HE_MAC_CAP5_HE_DYNAMIC_SM_PS |
610 					IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX,
611 				.phy_cap_info[1] =
612 					IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK |
613 					IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A |
614 					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
615 				.phy_cap_info[2] =
616 					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US |
617 					IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ,
618 				.phy_cap_info[3] =
619 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK |
620 					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
621 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK |
622 					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
623 				.phy_cap_info[4] =
624 					IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE |
625 					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 |
626 					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8,
627 				.phy_cap_info[6] =
628 					IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMING_FB |
629 					IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB |
630 					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
631 				.phy_cap_info[7] =
632 					IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_SUPP |
633 					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI,
634 				.phy_cap_info[8] =
635 					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
636 					IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
637 					IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
638 					IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU |
639 					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242,
640 				.phy_cap_info[9] =
641 					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
642 					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB |
643 					(IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED <<
644 					IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS),
645 				.phy_cap_info[10] =
646 					IEEE80211_HE_PHY_CAP10_HE_MU_M1RU_MAX_LTF,
647 			},
648 			/*
649 			 * Set default Tx/Rx HE MCS NSS Support field.
650 			 * Indicate support for up to 2 spatial streams and all
651 			 * MCS, without any special cases
652 			 */
653 			.he_mcs_nss_supp = {
654 				.rx_mcs_80 = cpu_to_le16(0xfffa),
655 				.tx_mcs_80 = cpu_to_le16(0xfffa),
656 				.rx_mcs_160 = cpu_to_le16(0xfffa),
657 				.tx_mcs_160 = cpu_to_le16(0xfffa),
658 				.rx_mcs_80p80 = cpu_to_le16(0xffff),
659 				.tx_mcs_80p80 = cpu_to_le16(0xffff),
660 			},
661 			/*
662 			 * Set default PPE thresholds, with PPET16 set to 0,
663 			 * PPET8 set to 7
664 			 */
665 			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
666 		},
667 		.eht_cap = {
668 			.has_eht = true,
669 			.eht_cap_elem = {
670 				.mac_cap_info[0] =
671 					IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS |
672 					IEEE80211_EHT_MAC_CAP0_OM_CONTROL |
673 					IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 |
674 					IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2,
675 				.phy_cap_info[0] =
676 					IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ |
677 					IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI |
678 					IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO |
679 					IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMEE |
680 					IEEE80211_EHT_PHY_CAP0_BEAMFORMEE_SS_80MHZ_MASK,
681 				.phy_cap_info[1] =
682 					IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_80MHZ_MASK  |
683 					IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_160MHZ_MASK,
684 				.phy_cap_info[3] =
685 					IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK |
686 					IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK |
687 					IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK |
688 					IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK |
689 					IEEE80211_EHT_PHY_CAP3_TRIG_SU_BF_FDBK |
690 					IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK |
691 					IEEE80211_EHT_PHY_CAP3_TRIG_CQI_FDBK,
692 
693 				.phy_cap_info[4] =
694 					IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO |
695 					IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP |
696 					IEEE80211_EHT_PHY_CAP4_EHT_MU_PPDU_4_EHT_LTF_08_GI,
697 				.phy_cap_info[5] =
698 					IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK |
699 					IEEE80211_EHT_PHY_CAP5_TX_LESS_242_TONE_RU_SUPP |
700 					IEEE80211_EHT_PHY_CAP5_RX_LESS_242_TONE_RU_SUPP |
701 					IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT,
702 				.phy_cap_info[6] =
703 					IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK |
704 					IEEE80211_EHT_PHY_CAP6_EHT_DUP_6GHZ_SUPP,
705 				.phy_cap_info[8] =
706 					IEEE80211_EHT_PHY_CAP8_RX_1024QAM_WIDER_BW_DL_OFDMA |
707 					IEEE80211_EHT_PHY_CAP8_RX_4096QAM_WIDER_BW_DL_OFDMA,
708 			},
709 
710 			/* For all MCS and bandwidth, set 2 NSS for both Tx and
711 			 * Rx - note we don't set the only_20mhz, but due to this
712 			 * being a union, it gets set correctly anyway.
713 			 */
714 			.eht_mcs_nss_supp = {
715 				.bw._80 = {
716 					.rx_tx_mcs9_max_nss = 0x22,
717 					.rx_tx_mcs11_max_nss = 0x22,
718 					.rx_tx_mcs13_max_nss = 0x22,
719 				},
720 				.bw._160 = {
721 					.rx_tx_mcs9_max_nss = 0x22,
722 					.rx_tx_mcs11_max_nss = 0x22,
723 					.rx_tx_mcs13_max_nss = 0x22,
724 				},
725 				.bw._320 = {
726 					.rx_tx_mcs9_max_nss = 0x22,
727 					.rx_tx_mcs11_max_nss = 0x22,
728 					.rx_tx_mcs13_max_nss = 0x22,
729 				},
730 			},
731 
732 			/*
733 			 * PPE thresholds for NSS = 2, and RU index bitmap set
734 			 * to 0xc.
735 			 */
736 			.eht_ppe_thres = {0xc1, 0x0e, 0xe0 }
737 		},
738 	},
739 	{
740 		.types_mask = BIT(NL80211_IFTYPE_AP),
741 		.he_cap = {
742 			.has_he = true,
743 			.he_cap_elem = {
744 				.mac_cap_info[0] =
745 					IEEE80211_HE_MAC_CAP0_HTC_HE,
746 				.mac_cap_info[1] =
747 					IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
748 					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
749 				.mac_cap_info[3] =
750 					IEEE80211_HE_MAC_CAP3_OMI_CONTROL,
751 				.phy_cap_info[1] =
752 					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
753 				.phy_cap_info[2] =
754 					IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ |
755 					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US,
756 				.phy_cap_info[3] =
757 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK |
758 					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
759 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK |
760 					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
761 				.phy_cap_info[6] =
762 					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
763 				.phy_cap_info[7] =
764 					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI,
765 				.phy_cap_info[8] =
766 					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
767 					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242,
768 				.phy_cap_info[9] =
769 					IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED
770 					<< IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS,
771 			},
772 			/*
773 			 * Set default Tx/Rx HE MCS NSS Support field.
774 			 * Indicate support for up to 2 spatial streams and all
775 			 * MCS, without any special cases
776 			 */
777 			.he_mcs_nss_supp = {
778 				.rx_mcs_80 = cpu_to_le16(0xfffa),
779 				.tx_mcs_80 = cpu_to_le16(0xfffa),
780 				.rx_mcs_160 = cpu_to_le16(0xfffa),
781 				.tx_mcs_160 = cpu_to_le16(0xfffa),
782 				.rx_mcs_80p80 = cpu_to_le16(0xffff),
783 				.tx_mcs_80p80 = cpu_to_le16(0xffff),
784 			},
785 			/*
786 			 * Set default PPE thresholds, with PPET16 set to 0,
787 			 * PPET8 set to 7
788 			 */
789 			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
790 		},
791 		.eht_cap = {
792 			.has_eht = true,
793 			.eht_cap_elem = {
794 				.mac_cap_info[0] =
795 					IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS |
796 					IEEE80211_EHT_MAC_CAP0_OM_CONTROL |
797 					IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 |
798 					IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2,
799 				.phy_cap_info[0] =
800 					IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ |
801 					IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI,
802 				.phy_cap_info[5] =
803 					IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT,
804 			},
805 
806 			/* For all MCS and bandwidth, set 2 NSS for both Tx and
807 			 * Rx - note we don't set the only_20mhz, but due to this
808 			 * being a union, it gets set correctly anyway.
809 			 */
810 			.eht_mcs_nss_supp = {
811 				.bw._80 = {
812 					.rx_tx_mcs9_max_nss = 0x22,
813 					.rx_tx_mcs11_max_nss = 0x22,
814 					.rx_tx_mcs13_max_nss = 0x22,
815 				},
816 				.bw._160 = {
817 					.rx_tx_mcs9_max_nss = 0x22,
818 					.rx_tx_mcs11_max_nss = 0x22,
819 					.rx_tx_mcs13_max_nss = 0x22,
820 				},
821 				.bw._320 = {
822 					.rx_tx_mcs9_max_nss = 0x22,
823 					.rx_tx_mcs11_max_nss = 0x22,
824 					.rx_tx_mcs13_max_nss = 0x22,
825 				},
826 			},
827 
828 			/*
829 			 * PPE thresholds for NSS = 2, and RU index bitmap set
830 			 * to 0xc.
831 			 */
832 			.eht_ppe_thres = {0xc1, 0x0e, 0xe0 }
833 		},
834 	},
835 };
836 
837 static void iwl_init_he_6ghz_capa(struct iwl_trans *trans,
838 				  struct iwl_nvm_data *data,
839 				  struct ieee80211_supported_band *sband,
840 				  u8 tx_chains, u8 rx_chains)
841 {
842 	struct ieee80211_sta_ht_cap ht_cap;
843 	struct ieee80211_sta_vht_cap vht_cap = {};
844 	struct ieee80211_sband_iftype_data *iftype_data;
845 	u16 he_6ghz_capa = 0;
846 	u32 exp;
847 	int i;
848 
849 	if (sband->band != NL80211_BAND_6GHZ)
850 		return;
851 
852 	/* grab HT/VHT capabilities and calculate HE 6 GHz capabilities */
853 	iwl_init_ht_hw_capab(trans, data, &ht_cap, NL80211_BAND_5GHZ,
854 			     tx_chains, rx_chains);
855 	WARN_ON(!ht_cap.ht_supported);
856 	iwl_init_vht_hw_capab(trans, data, &vht_cap, tx_chains, rx_chains);
857 	WARN_ON(!vht_cap.vht_supported);
858 
859 	he_6ghz_capa |=
860 		u16_encode_bits(ht_cap.ampdu_density,
861 				IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START);
862 	exp = u32_get_bits(vht_cap.cap,
863 			   IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK);
864 	he_6ghz_capa |=
865 		u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP);
866 	exp = u32_get_bits(vht_cap.cap, IEEE80211_VHT_CAP_MAX_MPDU_MASK);
867 	he_6ghz_capa |=
868 		u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN);
869 	/* we don't support extended_ht_cap_info anywhere, so no RD_RESPONDER */
870 	if (vht_cap.cap & IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN)
871 		he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS;
872 	if (vht_cap.cap & IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN)
873 		he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS;
874 
875 	IWL_DEBUG_EEPROM(trans->dev, "he_6ghz_capa=0x%x\n", he_6ghz_capa);
876 
877 	/* we know it's writable - we set it before ourselves */
878 	iftype_data = (void *)(uintptr_t)sband->iftype_data;
879 	for (i = 0; i < sband->n_iftype_data; i++)
880 		iftype_data[i].he_6ghz_capa.capa = cpu_to_le16(he_6ghz_capa);
881 }
882 
883 static void
884 iwl_nvm_fixup_sband_iftd(struct iwl_trans *trans,
885 			 struct iwl_nvm_data *data,
886 			 struct ieee80211_supported_band *sband,
887 			 struct ieee80211_sband_iftype_data *iftype_data,
888 			 u8 tx_chains, u8 rx_chains,
889 			 const struct iwl_fw *fw)
890 {
891 	bool is_ap = iftype_data->types_mask & BIT(NL80211_IFTYPE_AP);
892 	bool no_320;
893 
894 	no_320 = !trans->trans_cfg->integrated &&
895 		 trans->pcie_link_speed < PCI_EXP_LNKSTA_CLS_8_0GB;
896 
897 	if (!data->sku_cap_11be_enable || iwlwifi_mod_params.disable_11be)
898 		iftype_data->eht_cap.has_eht = false;
899 
900 	/* Advertise an A-MPDU exponent extension based on
901 	 * operating band
902 	 */
903 	if (sband->band == NL80211_BAND_6GHZ && iftype_data->eht_cap.has_eht)
904 		iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
905 			IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_2;
906 	else if (sband->band != NL80211_BAND_2GHZ)
907 		iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
908 			IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_1;
909 	else
910 		iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
911 			IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3;
912 
913 	switch (sband->band) {
914 	case NL80211_BAND_2GHZ:
915 		iftype_data->he_cap.he_cap_elem.phy_cap_info[0] |=
916 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G;
917 		iftype_data->eht_cap.eht_cap_elem.mac_cap_info[0] |=
918 			u8_encode_bits(IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_11454,
919 				       IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_MASK);
920 		break;
921 	case NL80211_BAND_6GHZ:
922 		if (!no_320) {
923 			iftype_data->eht_cap.eht_cap_elem.phy_cap_info[0] |=
924 				IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ;
925 			iftype_data->eht_cap.eht_cap_elem.phy_cap_info[1] |=
926 				IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_320MHZ_MASK;
927 		}
928 		fallthrough;
929 	case NL80211_BAND_5GHZ:
930 		iftype_data->he_cap.he_cap_elem.phy_cap_info[0] |=
931 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
932 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G;
933 		break;
934 	default:
935 		WARN_ON(1);
936 		break;
937 	}
938 
939 	if ((tx_chains & rx_chains) == ANT_AB) {
940 		iftype_data->he_cap.he_cap_elem.phy_cap_info[2] |=
941 			IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ;
942 		iftype_data->he_cap.he_cap_elem.phy_cap_info[5] |=
943 			IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 |
944 			IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2;
945 		if (!is_ap) {
946 			iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |=
947 				IEEE80211_HE_PHY_CAP7_MAX_NC_2;
948 
949 			if (iftype_data->eht_cap.has_eht) {
950 				/*
951 				 * Set the number of sounding dimensions for each
952 				 * bandwidth to 1 to indicate the maximal supported
953 				 * value of TXVECTOR parameter NUM_STS of 2
954 				 */
955 				iftype_data->eht_cap.eht_cap_elem.phy_cap_info[2] |= 0x49;
956 
957 				/*
958 				 * Set the MAX NC to 1 to indicate sounding feedback of
959 				 * 2 supported by the beamfomee.
960 				 */
961 				iftype_data->eht_cap.eht_cap_elem.phy_cap_info[4] |= 0x10;
962 			}
963 		}
964 	} else {
965 		if (iftype_data->eht_cap.has_eht) {
966 			struct ieee80211_eht_mcs_nss_supp *mcs_nss =
967 				&iftype_data->eht_cap.eht_mcs_nss_supp;
968 
969 			memset(mcs_nss, 0x11, sizeof(*mcs_nss));
970 		}
971 
972 		if (!is_ap) {
973 			/* If not 2x2, we need to indicate 1x1 in the
974 			 * Midamble RX Max NSTS - but not for AP mode
975 			 */
976 			iftype_data->he_cap.he_cap_elem.phy_cap_info[1] &=
977 				~IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS;
978 			iftype_data->he_cap.he_cap_elem.phy_cap_info[2] &=
979 				~IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS;
980 			iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |=
981 				IEEE80211_HE_PHY_CAP7_MAX_NC_1;
982 		}
983 	}
984 
985 	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210 && !is_ap)
986 		iftype_data->he_cap.he_cap_elem.phy_cap_info[2] |=
987 			IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO;
988 
989 	switch (CSR_HW_RFID_TYPE(trans->hw_rf_id)) {
990 	case IWL_CFG_RF_TYPE_GF:
991 	case IWL_CFG_RF_TYPE_MR:
992 	case IWL_CFG_RF_TYPE_MS:
993 	case IWL_CFG_RF_TYPE_FM:
994 	case IWL_CFG_RF_TYPE_WH:
995 		iftype_data->he_cap.he_cap_elem.phy_cap_info[9] |=
996 			IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU;
997 		if (!is_ap)
998 			iftype_data->he_cap.he_cap_elem.phy_cap_info[9] |=
999 				IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU;
1000 		break;
1001 	}
1002 
1003 	if (CSR_HW_REV_TYPE(trans->hw_rev) == IWL_CFG_MAC_TYPE_GL &&
1004 	    iftype_data->eht_cap.has_eht) {
1005 		iftype_data->eht_cap.eht_cap_elem.mac_cap_info[0] &=
1006 			~(IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS |
1007 			  IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 |
1008 			  IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2);
1009 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[3] &=
1010 			~(IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO |
1011 			  IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK |
1012 			  IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK |
1013 			  IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK |
1014 			  IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK |
1015 			  IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK |
1016 			  IEEE80211_EHT_PHY_CAP3_TRIG_CQI_FDBK);
1017 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[4] &=
1018 			~(IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO |
1019 			  IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP);
1020 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[5] &=
1021 			~IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK;
1022 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[6] &=
1023 			~(IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK |
1024 			  IEEE80211_EHT_PHY_CAP6_EHT_DUP_6GHZ_SUPP);
1025 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[5] |=
1026 			IEEE80211_EHT_PHY_CAP5_SUPP_EXTRA_EHT_LTF;
1027 	}
1028 
1029 	if (fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_BROADCAST_TWT))
1030 		iftype_data->he_cap.he_cap_elem.mac_cap_info[2] |=
1031 			IEEE80211_HE_MAC_CAP2_BCAST_TWT;
1032 
1033 	if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_22000 &&
1034 	    !is_ap) {
1035 		iftype_data->vendor_elems.data = iwl_vendor_caps;
1036 		iftype_data->vendor_elems.len = ARRAY_SIZE(iwl_vendor_caps);
1037 	}
1038 
1039 	if (!trans->cfg->ht_params->stbc) {
1040 		iftype_data->he_cap.he_cap_elem.phy_cap_info[2] &=
1041 			~IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ;
1042 		iftype_data->he_cap.he_cap_elem.phy_cap_info[7] &=
1043 			~IEEE80211_HE_PHY_CAP7_STBC_RX_ABOVE_80MHZ;
1044 	}
1045 }
1046 
1047 static void iwl_init_he_hw_capab(struct iwl_trans *trans,
1048 				 struct iwl_nvm_data *data,
1049 				 struct ieee80211_supported_band *sband,
1050 				 u8 tx_chains, u8 rx_chains,
1051 				 const struct iwl_fw *fw)
1052 {
1053 	struct ieee80211_sband_iftype_data *iftype_data;
1054 	int i;
1055 
1056 	/* should only initialize once */
1057 	if (WARN_ON(sband->iftype_data))
1058 		return;
1059 
1060 	BUILD_BUG_ON(sizeof(data->iftd.low) != sizeof(iwl_he_eht_capa));
1061 	BUILD_BUG_ON(sizeof(data->iftd.high) != sizeof(iwl_he_eht_capa));
1062 	BUILD_BUG_ON(sizeof(data->iftd.uhb) != sizeof(iwl_he_eht_capa));
1063 
1064 	switch (sband->band) {
1065 	case NL80211_BAND_2GHZ:
1066 		iftype_data = data->iftd.low;
1067 		break;
1068 	case NL80211_BAND_5GHZ:
1069 		iftype_data = data->iftd.high;
1070 		break;
1071 	case NL80211_BAND_6GHZ:
1072 		iftype_data = data->iftd.uhb;
1073 		break;
1074 	default:
1075 		WARN_ON(1);
1076 		return;
1077 	}
1078 
1079 	memcpy(iftype_data, iwl_he_eht_capa, sizeof(iwl_he_eht_capa));
1080 
1081 	sband->iftype_data = iftype_data;
1082 	sband->n_iftype_data = ARRAY_SIZE(iwl_he_eht_capa);
1083 
1084 	for (i = 0; i < sband->n_iftype_data; i++)
1085 		iwl_nvm_fixup_sband_iftd(trans, data, sband, &iftype_data[i],
1086 					 tx_chains, rx_chains, fw);
1087 
1088 	iwl_init_he_6ghz_capa(trans, data, sband, tx_chains, rx_chains);
1089 }
1090 
1091 static void iwl_init_sbands(struct iwl_trans *trans,
1092 			    struct iwl_nvm_data *data,
1093 			    const void *nvm_ch_flags, u8 tx_chains,
1094 			    u8 rx_chains, u32 sbands_flags, bool v4,
1095 			    const struct iwl_fw *fw)
1096 {
1097 	struct device *dev = trans->dev;
1098 	const struct iwl_cfg *cfg = trans->cfg;
1099 	int n_channels;
1100 	int n_used = 0;
1101 	struct ieee80211_supported_band *sband;
1102 
1103 	n_channels = iwl_init_channel_map(dev, cfg, data, nvm_ch_flags,
1104 					  sbands_flags, v4);
1105 	sband = &data->bands[NL80211_BAND_2GHZ];
1106 	sband->band = NL80211_BAND_2GHZ;
1107 	sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
1108 	sband->n_bitrates = N_RATES_24;
1109 	n_used += iwl_init_sband_channels(data, sband, n_channels,
1110 					  NL80211_BAND_2GHZ);
1111 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ,
1112 			     tx_chains, rx_chains);
1113 
1114 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1115 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1116 				     fw);
1117 
1118 	sband = &data->bands[NL80211_BAND_5GHZ];
1119 	sband->band = NL80211_BAND_5GHZ;
1120 	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
1121 	sband->n_bitrates = N_RATES_52;
1122 	n_used += iwl_init_sband_channels(data, sband, n_channels,
1123 					  NL80211_BAND_5GHZ);
1124 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ,
1125 			     tx_chains, rx_chains);
1126 	if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
1127 		iwl_init_vht_hw_capab(trans, data, &sband->vht_cap,
1128 				      tx_chains, rx_chains);
1129 
1130 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1131 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1132 				     fw);
1133 
1134 	/* 6GHz band. */
1135 	sband = &data->bands[NL80211_BAND_6GHZ];
1136 	sband->band = NL80211_BAND_6GHZ;
1137 	/* use the same rates as 5GHz band */
1138 	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
1139 	sband->n_bitrates = N_RATES_52;
1140 	n_used += iwl_init_sband_channels(data, sband, n_channels,
1141 					  NL80211_BAND_6GHZ);
1142 
1143 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1144 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1145 				     fw);
1146 	else
1147 		sband->n_channels = 0;
1148 	if (n_channels != n_used)
1149 		IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
1150 			    n_used, n_channels);
1151 }
1152 
1153 static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
1154 		       const __le16 *phy_sku)
1155 {
1156 	if (cfg->nvm_type != IWL_NVM_EXT)
1157 		return le16_to_cpup(nvm_sw + SKU);
1158 
1159 	return le32_to_cpup((const __le32 *)(phy_sku + SKU_FAMILY_8000));
1160 }
1161 
1162 static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
1163 {
1164 	if (cfg->nvm_type != IWL_NVM_EXT)
1165 		return le16_to_cpup(nvm_sw + NVM_VERSION);
1166 	else
1167 		return le32_to_cpup((const __le32 *)(nvm_sw +
1168 						     NVM_VERSION_EXT_NVM));
1169 }
1170 
1171 static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
1172 			     const __le16 *phy_sku)
1173 {
1174 	if (cfg->nvm_type != IWL_NVM_EXT)
1175 		return le16_to_cpup(nvm_sw + RADIO_CFG);
1176 
1177 	return le32_to_cpup((const __le32 *)(phy_sku + RADIO_CFG_FAMILY_EXT_NVM));
1178 
1179 }
1180 
1181 static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
1182 {
1183 	int n_hw_addr;
1184 
1185 	if (cfg->nvm_type != IWL_NVM_EXT)
1186 		return le16_to_cpup(nvm_sw + N_HW_ADDRS);
1187 
1188 	n_hw_addr = le32_to_cpup((const __le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000));
1189 
1190 	return n_hw_addr & N_HW_ADDR_MASK;
1191 }
1192 
1193 static void iwl_set_radio_cfg(const struct iwl_cfg *cfg,
1194 			      struct iwl_nvm_data *data,
1195 			      u32 radio_cfg)
1196 {
1197 	if (cfg->nvm_type != IWL_NVM_EXT) {
1198 		data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
1199 		data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
1200 		data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
1201 		data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
1202 		return;
1203 	}
1204 
1205 	/* set the radio configuration for family 8000 */
1206 	data->radio_cfg_type = EXT_NVM_RF_CFG_TYPE_MSK(radio_cfg);
1207 	data->radio_cfg_step = EXT_NVM_RF_CFG_STEP_MSK(radio_cfg);
1208 	data->radio_cfg_dash = EXT_NVM_RF_CFG_DASH_MSK(radio_cfg);
1209 	data->radio_cfg_pnum = EXT_NVM_RF_CFG_FLAVOR_MSK(radio_cfg);
1210 	data->valid_tx_ant = EXT_NVM_RF_CFG_TX_ANT_MSK(radio_cfg);
1211 	data->valid_rx_ant = EXT_NVM_RF_CFG_RX_ANT_MSK(radio_cfg);
1212 }
1213 
1214 static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest)
1215 {
1216 	const u8 *hw_addr;
1217 
1218 	hw_addr = (const u8 *)&mac_addr0;
1219 	dest[0] = hw_addr[3];
1220 	dest[1] = hw_addr[2];
1221 	dest[2] = hw_addr[1];
1222 	dest[3] = hw_addr[0];
1223 
1224 	hw_addr = (const u8 *)&mac_addr1;
1225 	dest[4] = hw_addr[1];
1226 	dest[5] = hw_addr[0];
1227 }
1228 
1229 static void iwl_set_hw_address_from_csr(struct iwl_trans *trans,
1230 					struct iwl_nvm_data *data)
1231 {
1232 	__le32 mac_addr0 = cpu_to_le32(iwl_read32(trans,
1233 						  CSR_MAC_ADDR0_STRAP(trans)));
1234 	__le32 mac_addr1 = cpu_to_le32(iwl_read32(trans,
1235 						  CSR_MAC_ADDR1_STRAP(trans)));
1236 
1237 	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1238 	/*
1239 	 * If the OEM fused a valid address, use it instead of the one in the
1240 	 * OTP
1241 	 */
1242 	if (is_valid_ether_addr(data->hw_addr))
1243 		return;
1244 
1245 	mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_OTP(trans)));
1246 	mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_OTP(trans)));
1247 
1248 	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1249 }
1250 
1251 static void iwl_set_hw_address_family_8000(struct iwl_trans *trans,
1252 					   const struct iwl_cfg *cfg,
1253 					   struct iwl_nvm_data *data,
1254 					   const __le16 *mac_override,
1255 					   const __be16 *nvm_hw)
1256 {
1257 	const u8 *hw_addr;
1258 
1259 	if (mac_override) {
1260 		static const u8 reserved_mac[] = {
1261 			0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
1262 		};
1263 
1264 		hw_addr = (const u8 *)(mac_override +
1265 				 MAC_ADDRESS_OVERRIDE_EXT_NVM);
1266 
1267 		/*
1268 		 * Store the MAC address from MAO section.
1269 		 * No byte swapping is required in MAO section
1270 		 */
1271 		memcpy(data->hw_addr, hw_addr, ETH_ALEN);
1272 
1273 		/*
1274 		 * Force the use of the OTP MAC address in case of reserved MAC
1275 		 * address in the NVM, or if address is given but invalid.
1276 		 */
1277 		if (is_valid_ether_addr(data->hw_addr) &&
1278 		    memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0)
1279 			return;
1280 
1281 		IWL_ERR(trans,
1282 			"mac address from nvm override section is not valid\n");
1283 	}
1284 
1285 	if (nvm_hw) {
1286 		/* read the mac address from WFMP registers */
1287 		__le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans,
1288 						WFMP_MAC_ADDR_0));
1289 		__le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans,
1290 						WFMP_MAC_ADDR_1));
1291 
1292 		iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1293 
1294 		return;
1295 	}
1296 
1297 	IWL_ERR(trans, "mac address is not found\n");
1298 }
1299 
1300 static int iwl_set_hw_address(struct iwl_trans *trans,
1301 			      const struct iwl_cfg *cfg,
1302 			      struct iwl_nvm_data *data, const __be16 *nvm_hw,
1303 			      const __le16 *mac_override)
1304 {
1305 	if (cfg->mac_addr_from_csr) {
1306 		iwl_set_hw_address_from_csr(trans, data);
1307 	} else if (cfg->nvm_type != IWL_NVM_EXT) {
1308 		const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR);
1309 
1310 		/* The byte order is little endian 16 bit, meaning 214365 */
1311 		data->hw_addr[0] = hw_addr[1];
1312 		data->hw_addr[1] = hw_addr[0];
1313 		data->hw_addr[2] = hw_addr[3];
1314 		data->hw_addr[3] = hw_addr[2];
1315 		data->hw_addr[4] = hw_addr[5];
1316 		data->hw_addr[5] = hw_addr[4];
1317 	} else {
1318 		iwl_set_hw_address_family_8000(trans, cfg, data,
1319 					       mac_override, nvm_hw);
1320 	}
1321 
1322 	if (!is_valid_ether_addr(data->hw_addr)) {
1323 		IWL_ERR(trans, "no valid mac address was found\n");
1324 		return -EINVAL;
1325 	}
1326 
1327 	if (!trans->csme_own)
1328 		IWL_INFO(trans, "base HW address: %pM, OTP minor version: 0x%x\n",
1329 			 data->hw_addr, iwl_read_prph(trans, REG_OTP_MINOR));
1330 
1331 	return 0;
1332 }
1333 
1334 static bool
1335 iwl_nvm_no_wide_in_5ghz(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1336 			const __be16 *nvm_hw)
1337 {
1338 	/*
1339 	 * Workaround a bug in Indonesia SKUs where the regulatory in
1340 	 * some 7000-family OTPs erroneously allow wide channels in
1341 	 * 5GHz.  To check for Indonesia, we take the SKU value from
1342 	 * bits 1-4 in the subsystem ID and check if it is either 5 or
1343 	 * 9.  In those cases, we need to force-disable wide channels
1344 	 * in 5GHz otherwise the FW will throw a sysassert when we try
1345 	 * to use them.
1346 	 */
1347 	if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_7000) {
1348 		/*
1349 		 * Unlike the other sections in the NVM, the hw
1350 		 * section uses big-endian.
1351 		 */
1352 		u16 subsystem_id = be16_to_cpup(nvm_hw + SUBSYSTEM_ID);
1353 		u8 sku = (subsystem_id & 0x1e) >> 1;
1354 
1355 		if (sku == 5 || sku == 9) {
1356 			IWL_DEBUG_EEPROM(trans->dev,
1357 					 "disabling wide channels in 5GHz (0x%0x %d)\n",
1358 					 subsystem_id, sku);
1359 			return true;
1360 		}
1361 	}
1362 
1363 	return false;
1364 }
1365 
1366 struct iwl_nvm_data *
1367 iwl_parse_mei_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1368 		       const struct iwl_mei_nvm *mei_nvm,
1369 		       const struct iwl_fw *fw)
1370 {
1371 	struct iwl_nvm_data *data;
1372 	u32 sbands_flags = 0;
1373 	u8 rx_chains = fw->valid_rx_ant;
1374 	u8 tx_chains = fw->valid_rx_ant;
1375 
1376 	if (cfg->uhb_supported)
1377 		data = kzalloc(struct_size(data, channels,
1378 					   IWL_NVM_NUM_CHANNELS_UHB),
1379 					   GFP_KERNEL);
1380 	else
1381 		data = kzalloc(struct_size(data, channels,
1382 					   IWL_NVM_NUM_CHANNELS_EXT),
1383 					   GFP_KERNEL);
1384 	if (!data)
1385 		return NULL;
1386 
1387 	BUILD_BUG_ON(ARRAY_SIZE(mei_nvm->channels) !=
1388 		     IWL_NVM_NUM_CHANNELS_UHB);
1389 	data->nvm_version = mei_nvm->nvm_version;
1390 
1391 	iwl_set_radio_cfg(cfg, data, mei_nvm->radio_cfg);
1392 	if (data->valid_tx_ant)
1393 		tx_chains &= data->valid_tx_ant;
1394 	if (data->valid_rx_ant)
1395 		rx_chains &= data->valid_rx_ant;
1396 
1397 	data->sku_cap_mimo_disabled = false;
1398 	data->sku_cap_band_24ghz_enable = true;
1399 	data->sku_cap_band_52ghz_enable = true;
1400 	data->sku_cap_11n_enable =
1401 		!(iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL);
1402 	data->sku_cap_11ac_enable = true;
1403 	data->sku_cap_11ax_enable =
1404 		mei_nvm->caps & MEI_NVM_CAPS_11AX_SUPPORT;
1405 
1406 	data->lar_enabled = mei_nvm->caps & MEI_NVM_CAPS_LARI_SUPPORT;
1407 
1408 	data->n_hw_addrs = mei_nvm->n_hw_addrs;
1409 	/* If no valid mac address was found - bail out */
1410 	if (iwl_set_hw_address(trans, cfg, data, NULL, NULL)) {
1411 		kfree(data);
1412 		return NULL;
1413 	}
1414 
1415 	if (data->lar_enabled &&
1416 	    fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT))
1417 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1418 
1419 	iwl_init_sbands(trans, data, mei_nvm->channels, tx_chains, rx_chains,
1420 			sbands_flags, true, fw);
1421 
1422 	return data;
1423 }
1424 IWL_EXPORT_SYMBOL(iwl_parse_mei_nvm_data);
1425 
1426 struct iwl_nvm_data *
1427 iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1428 		   const struct iwl_fw *fw,
1429 		   const __be16 *nvm_hw, const __le16 *nvm_sw,
1430 		   const __le16 *nvm_calib, const __le16 *regulatory,
1431 		   const __le16 *mac_override, const __le16 *phy_sku,
1432 		   u8 tx_chains, u8 rx_chains)
1433 {
1434 	struct iwl_nvm_data *data;
1435 	bool lar_enabled;
1436 	u32 sku, radio_cfg;
1437 	u32 sbands_flags = 0;
1438 	u16 lar_config;
1439 	const __le16 *ch_section;
1440 
1441 	if (cfg->uhb_supported)
1442 		data = kzalloc(struct_size(data, channels,
1443 					   IWL_NVM_NUM_CHANNELS_UHB),
1444 					   GFP_KERNEL);
1445 	else if (cfg->nvm_type != IWL_NVM_EXT)
1446 		data = kzalloc(struct_size(data, channels,
1447 					   IWL_NVM_NUM_CHANNELS),
1448 					   GFP_KERNEL);
1449 	else
1450 		data = kzalloc(struct_size(data, channels,
1451 					   IWL_NVM_NUM_CHANNELS_EXT),
1452 					   GFP_KERNEL);
1453 	if (!data)
1454 		return NULL;
1455 
1456 	data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
1457 
1458 	radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku);
1459 	iwl_set_radio_cfg(cfg, data, radio_cfg);
1460 	if (data->valid_tx_ant)
1461 		tx_chains &= data->valid_tx_ant;
1462 	if (data->valid_rx_ant)
1463 		rx_chains &= data->valid_rx_ant;
1464 
1465 	sku = iwl_get_sku(cfg, nvm_sw, phy_sku);
1466 	data->sku_cap_band_24ghz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
1467 	data->sku_cap_band_52ghz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
1468 	data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
1469 	if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
1470 		data->sku_cap_11n_enable = false;
1471 	data->sku_cap_11ac_enable = data->sku_cap_11n_enable &&
1472 				    (sku & NVM_SKU_CAP_11AC_ENABLE);
1473 	data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE;
1474 
1475 	data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
1476 
1477 	if (cfg->nvm_type != IWL_NVM_EXT) {
1478 		/* Checking for required sections */
1479 		if (!nvm_calib) {
1480 			IWL_ERR(trans,
1481 				"Can't parse empty Calib NVM sections\n");
1482 			kfree(data);
1483 			return NULL;
1484 		}
1485 
1486 		ch_section = cfg->nvm_type == IWL_NVM_SDP ?
1487 			     &regulatory[NVM_CHANNELS_SDP] :
1488 			     &nvm_sw[NVM_CHANNELS];
1489 
1490 		/* in family 8000 Xtal calibration values moved to OTP */
1491 		data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB);
1492 		data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1);
1493 		lar_enabled = true;
1494 	} else {
1495 		u16 lar_offset = data->nvm_version < 0xE39 ?
1496 				 NVM_LAR_OFFSET_OLD :
1497 				 NVM_LAR_OFFSET;
1498 
1499 		lar_config = le16_to_cpup(regulatory + lar_offset);
1500 		data->lar_enabled = !!(lar_config &
1501 				       NVM_LAR_ENABLED);
1502 		lar_enabled = data->lar_enabled;
1503 		ch_section = &regulatory[NVM_CHANNELS_EXTENDED];
1504 	}
1505 
1506 	/* If no valid mac address was found - bail out */
1507 	if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) {
1508 		kfree(data);
1509 		return NULL;
1510 	}
1511 
1512 	if (lar_enabled &&
1513 	    fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT))
1514 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1515 
1516 	if (iwl_nvm_no_wide_in_5ghz(trans, cfg, nvm_hw))
1517 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ;
1518 
1519 	iwl_init_sbands(trans, data, ch_section, tx_chains, rx_chains,
1520 			sbands_flags, false, fw);
1521 	data->calib_version = 255;
1522 
1523 	return data;
1524 }
1525 IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
1526 
1527 static u32 iwl_nvm_get_regdom_bw_flags(const u16 *nvm_chan,
1528 				       int ch_idx, u16 nvm_flags,
1529 				       struct iwl_reg_capa reg_capa,
1530 				       const struct iwl_cfg *cfg)
1531 {
1532 	u32 flags = NL80211_RRF_NO_HT40;
1533 
1534 	if (ch_idx < NUM_2GHZ_CHANNELS &&
1535 	    (nvm_flags & NVM_CHANNEL_40MHZ)) {
1536 		if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
1537 			flags &= ~NL80211_RRF_NO_HT40PLUS;
1538 		if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
1539 			flags &= ~NL80211_RRF_NO_HT40MINUS;
1540 	} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
1541 		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
1542 			flags &= ~NL80211_RRF_NO_HT40PLUS;
1543 		else
1544 			flags &= ~NL80211_RRF_NO_HT40MINUS;
1545 	}
1546 
1547 	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
1548 		flags |= NL80211_RRF_NO_80MHZ;
1549 	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
1550 		flags |= NL80211_RRF_NO_160MHZ;
1551 
1552 	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
1553 		flags |= NL80211_RRF_NO_IR;
1554 
1555 	if (nvm_flags & NVM_CHANNEL_RADAR)
1556 		flags |= NL80211_RRF_DFS;
1557 
1558 	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
1559 		flags |= NL80211_RRF_NO_OUTDOOR;
1560 
1561 	/* Set the GO concurrent flag only in case that NO_IR is set.
1562 	 * Otherwise it is meaningless
1563 	 */
1564 	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
1565 	    (flags & NL80211_RRF_NO_IR))
1566 		flags |= NL80211_RRF_GO_CONCURRENT;
1567 
1568 	/*
1569 	 * reg_capa is per regulatory domain so apply it for every channel
1570 	 */
1571 	if (ch_idx >= NUM_2GHZ_CHANNELS) {
1572 		if (!reg_capa.allow_40mhz)
1573 			flags |= NL80211_RRF_NO_HT40;
1574 
1575 		if (!reg_capa.allow_80mhz)
1576 			flags |= NL80211_RRF_NO_80MHZ;
1577 
1578 		if (!reg_capa.allow_160mhz)
1579 			flags |= NL80211_RRF_NO_160MHZ;
1580 
1581 		if (!reg_capa.allow_320mhz)
1582 			flags |= NL80211_RRF_NO_320MHZ;
1583 	}
1584 
1585 	if (reg_capa.disable_11ax)
1586 		flags |= NL80211_RRF_NO_HE;
1587 
1588 	if (reg_capa.disable_11be)
1589 		flags |= NL80211_RRF_NO_EHT;
1590 
1591 	return flags;
1592 }
1593 
1594 static struct iwl_reg_capa iwl_get_reg_capa(u32 flags, u8 resp_ver)
1595 {
1596 	struct iwl_reg_capa reg_capa = {};
1597 
1598 	if (resp_ver >= REG_CAPA_V4_RESP_VER) {
1599 		reg_capa.allow_40mhz = true;
1600 		reg_capa.allow_80mhz = flags & REG_CAPA_V4_80MHZ_ALLOWED;
1601 		reg_capa.allow_160mhz = flags & REG_CAPA_V4_160MHZ_ALLOWED;
1602 		reg_capa.allow_320mhz = flags & REG_CAPA_V4_320MHZ_ALLOWED;
1603 		reg_capa.disable_11ax = flags & REG_CAPA_V4_11AX_DISABLED;
1604 		reg_capa.disable_11be = flags & REG_CAPA_V4_11BE_DISABLED;
1605 	} else if (resp_ver >= REG_CAPA_V2_RESP_VER) {
1606 		reg_capa.allow_40mhz = flags & REG_CAPA_V2_40MHZ_ALLOWED;
1607 		reg_capa.allow_80mhz = flags & REG_CAPA_V2_80MHZ_ALLOWED;
1608 		reg_capa.allow_160mhz = flags & REG_CAPA_V2_160MHZ_ALLOWED;
1609 		reg_capa.disable_11ax = flags & REG_CAPA_V2_11AX_DISABLED;
1610 	} else {
1611 		reg_capa.allow_40mhz = !(flags & REG_CAPA_V1_40MHZ_FORBIDDEN);
1612 		reg_capa.allow_80mhz = flags & REG_CAPA_V1_80MHZ_ALLOWED;
1613 		reg_capa.allow_160mhz = flags & REG_CAPA_V1_160MHZ_ALLOWED;
1614 		reg_capa.disable_11ax = flags & REG_CAPA_V1_11AX_DISABLED;
1615 	}
1616 	return reg_capa;
1617 }
1618 
1619 struct ieee80211_regdomain *
1620 iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg,
1621 		       int num_of_ch, __le32 *channels, u16 fw_mcc,
1622 		       u16 geo_info, u32 cap, u8 resp_ver)
1623 {
1624 	int ch_idx;
1625 	u16 ch_flags;
1626 	u32 reg_rule_flags, prev_reg_rule_flags = 0;
1627 	const u16 *nvm_chan;
1628 	struct ieee80211_regdomain *regd, *copy_rd;
1629 	struct ieee80211_reg_rule *rule;
1630 	enum nl80211_band band;
1631 	int center_freq, prev_center_freq = 0;
1632 	int valid_rules = 0;
1633 	bool new_rule;
1634 	int max_num_ch;
1635 	struct iwl_reg_capa reg_capa;
1636 
1637 	if (cfg->uhb_supported) {
1638 		max_num_ch = IWL_NVM_NUM_CHANNELS_UHB;
1639 		nvm_chan = iwl_uhb_nvm_channels;
1640 	} else if (cfg->nvm_type == IWL_NVM_EXT) {
1641 		max_num_ch = IWL_NVM_NUM_CHANNELS_EXT;
1642 		nvm_chan = iwl_ext_nvm_channels;
1643 	} else {
1644 		max_num_ch = IWL_NVM_NUM_CHANNELS;
1645 		nvm_chan = iwl_nvm_channels;
1646 	}
1647 
1648 	if (num_of_ch > max_num_ch) {
1649 		IWL_DEBUG_DEV(dev, IWL_DL_LAR,
1650 			      "Num of channels (%d) is greater than expected. Truncating to %d\n",
1651 			      num_of_ch, max_num_ch);
1652 		num_of_ch = max_num_ch;
1653 	}
1654 
1655 	if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES))
1656 		return ERR_PTR(-EINVAL);
1657 
1658 	IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n",
1659 		      num_of_ch);
1660 
1661 	/* build a regdomain rule for every valid channel */
1662 	regd = kzalloc(struct_size(regd, reg_rules, num_of_ch), GFP_KERNEL);
1663 	if (!regd)
1664 		return ERR_PTR(-ENOMEM);
1665 
1666 	/* set alpha2 from FW. */
1667 	regd->alpha2[0] = fw_mcc >> 8;
1668 	regd->alpha2[1] = fw_mcc & 0xff;
1669 
1670 	/* parse regulatory capability flags */
1671 	reg_capa = iwl_get_reg_capa(cap, resp_ver);
1672 
1673 	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
1674 		ch_flags = (u16)__le32_to_cpup(channels + ch_idx);
1675 		band = iwl_nl80211_band_from_channel_idx(ch_idx);
1676 		center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx],
1677 							     band);
1678 		new_rule = false;
1679 
1680 		if (!(ch_flags & NVM_CHANNEL_VALID)) {
1681 			iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1682 						    nvm_chan[ch_idx], ch_flags);
1683 			continue;
1684 		}
1685 
1686 		reg_rule_flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx,
1687 							     ch_flags, reg_capa,
1688 							     cfg);
1689 
1690 		/* we can't continue the same rule */
1691 		if (ch_idx == 0 || prev_reg_rule_flags != reg_rule_flags ||
1692 		    center_freq - prev_center_freq > 20) {
1693 			valid_rules++;
1694 			new_rule = true;
1695 		}
1696 
1697 		rule = &regd->reg_rules[valid_rules - 1];
1698 
1699 		if (new_rule)
1700 			rule->freq_range.start_freq_khz =
1701 						MHZ_TO_KHZ(center_freq - 10);
1702 
1703 		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10);
1704 
1705 		/* this doesn't matter - not used by FW */
1706 		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
1707 		rule->power_rule.max_eirp =
1708 			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
1709 
1710 		rule->flags = reg_rule_flags;
1711 
1712 		/* rely on auto-calculation to merge BW of contiguous chans */
1713 		rule->flags |= NL80211_RRF_AUTO_BW;
1714 		rule->freq_range.max_bandwidth_khz = 0;
1715 
1716 		prev_center_freq = center_freq;
1717 		prev_reg_rule_flags = reg_rule_flags;
1718 
1719 		iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1720 					    nvm_chan[ch_idx], ch_flags);
1721 
1722 		if (!(geo_info & GEO_WMM_ETSI_5GHZ_INFO) ||
1723 		    band == NL80211_BAND_2GHZ)
1724 			continue;
1725 
1726 		reg_query_regdb_wmm(regd->alpha2, center_freq, rule);
1727 	}
1728 
1729 	/*
1730 	 * Certain firmware versions might report no valid channels
1731 	 * if booted in RF-kill, i.e. not all calibrations etc. are
1732 	 * running. We'll get out of this situation later when the
1733 	 * rfkill is removed and we update the regdomain again, but
1734 	 * since cfg80211 doesn't accept an empty regdomain, add a
1735 	 * dummy (unusable) rule here in this case so we can init.
1736 	 */
1737 	if (!valid_rules) {
1738 		valid_rules = 1;
1739 		rule = &regd->reg_rules[valid_rules - 1];
1740 		rule->freq_range.start_freq_khz = MHZ_TO_KHZ(2412);
1741 		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(2413);
1742 		rule->freq_range.max_bandwidth_khz = MHZ_TO_KHZ(1);
1743 		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
1744 		rule->power_rule.max_eirp =
1745 			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
1746 	}
1747 
1748 	regd->n_reg_rules = valid_rules;
1749 
1750 	/*
1751 	 * Narrow down regdom for unused regulatory rules to prevent hole
1752 	 * between reg rules to wmm rules.
1753 	 */
1754 	copy_rd = kmemdup(regd, struct_size(regd, reg_rules, valid_rules),
1755 			  GFP_KERNEL);
1756 	if (!copy_rd)
1757 		copy_rd = ERR_PTR(-ENOMEM);
1758 
1759 	kfree(regd);
1760 	return copy_rd;
1761 }
1762 IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);
1763 
1764 #define IWL_MAX_NVM_SECTION_SIZE	0x1b58
1765 #define IWL_MAX_EXT_NVM_SECTION_SIZE	0x1ffc
1766 #define MAX_NVM_FILE_LEN	16384
1767 
1768 void iwl_nvm_fixups(u32 hw_id, unsigned int section, u8 *data,
1769 		    unsigned int len)
1770 {
1771 #define IWL_4165_DEVICE_ID	0x5501
1772 #define NVM_SKU_CAP_MIMO_DISABLE BIT(5)
1773 
1774 	if (section == NVM_SECTION_TYPE_PHY_SKU &&
1775 	    hw_id == IWL_4165_DEVICE_ID && data && len >= 5 &&
1776 	    (data[4] & NVM_SKU_CAP_MIMO_DISABLE))
1777 		/* OTP 0x52 bug work around: it's a 1x1 device */
1778 		data[3] = ANT_B | (ANT_B << 4);
1779 }
1780 IWL_EXPORT_SYMBOL(iwl_nvm_fixups);
1781 
1782 /*
1783  * Reads external NVM from a file into mvm->nvm_sections
1784  *
1785  * HOW TO CREATE THE NVM FILE FORMAT:
1786  * ------------------------------
1787  * 1. create hex file, format:
1788  *      3800 -> header
1789  *      0000 -> header
1790  *      5a40 -> data
1791  *
1792  *   rev - 6 bit (word1)
1793  *   len - 10 bit (word1)
1794  *   id - 4 bit (word2)
1795  *   rsv - 12 bit (word2)
1796  *
1797  * 2. flip 8bits with 8 bits per line to get the right NVM file format
1798  *
1799  * 3. create binary file from the hex file
1800  *
1801  * 4. save as "iNVM_xxx.bin" under /lib/firmware
1802  */
1803 int iwl_read_external_nvm(struct iwl_trans *trans,
1804 			  const char *nvm_file_name,
1805 			  struct iwl_nvm_section *nvm_sections)
1806 {
1807 	int ret, section_size;
1808 	u16 section_id;
1809 	const struct firmware *fw_entry;
1810 	const struct {
1811 		__le16 word1;
1812 		__le16 word2;
1813 		u8 data[];
1814 	} *file_sec;
1815 	const u8 *eof;
1816 	u8 *temp;
1817 	int max_section_size;
1818 	const __le32 *dword_buff;
1819 
1820 #define NVM_WORD1_LEN(x) (8 * (x & 0x03FF))
1821 #define NVM_WORD2_ID(x) (x >> 12)
1822 #define EXT_NVM_WORD2_LEN(x) (2 * (((x) & 0xFF) << 8 | (x) >> 8))
1823 #define EXT_NVM_WORD1_ID(x) ((x) >> 4)
1824 #define NVM_HEADER_0	(0x2A504C54)
1825 #define NVM_HEADER_1	(0x4E564D2A)
1826 #define NVM_HEADER_SIZE	(4 * sizeof(u32))
1827 
1828 	IWL_DEBUG_EEPROM(trans->dev, "Read from external NVM\n");
1829 
1830 	/* Maximal size depends on NVM version */
1831 	if (trans->cfg->nvm_type != IWL_NVM_EXT)
1832 		max_section_size = IWL_MAX_NVM_SECTION_SIZE;
1833 	else
1834 		max_section_size = IWL_MAX_EXT_NVM_SECTION_SIZE;
1835 
1836 	/*
1837 	 * Obtain NVM image via request_firmware. Since we already used
1838 	 * request_firmware_nowait() for the firmware binary load and only
1839 	 * get here after that we assume the NVM request can be satisfied
1840 	 * synchronously.
1841 	 */
1842 	ret = request_firmware(&fw_entry, nvm_file_name, trans->dev);
1843 	if (ret) {
1844 		IWL_ERR(trans, "ERROR: %s isn't available %d\n",
1845 			nvm_file_name, ret);
1846 		return ret;
1847 	}
1848 
1849 	IWL_INFO(trans, "Loaded NVM file %s (%zu bytes)\n",
1850 		 nvm_file_name, fw_entry->size);
1851 
1852 	if (fw_entry->size > MAX_NVM_FILE_LEN) {
1853 		IWL_ERR(trans, "NVM file too large\n");
1854 		ret = -EINVAL;
1855 		goto out;
1856 	}
1857 
1858 	eof = fw_entry->data + fw_entry->size;
1859 	dword_buff = (const __le32 *)fw_entry->data;
1860 
1861 	/* some NVM file will contain a header.
1862 	 * The header is identified by 2 dwords header as follow:
1863 	 * dword[0] = 0x2A504C54
1864 	 * dword[1] = 0x4E564D2A
1865 	 *
1866 	 * This header must be skipped when providing the NVM data to the FW.
1867 	 */
1868 	if (fw_entry->size > NVM_HEADER_SIZE &&
1869 	    dword_buff[0] == cpu_to_le32(NVM_HEADER_0) &&
1870 	    dword_buff[1] == cpu_to_le32(NVM_HEADER_1)) {
1871 		file_sec = (const void *)(fw_entry->data + NVM_HEADER_SIZE);
1872 		IWL_INFO(trans, "NVM Version %08X\n", le32_to_cpu(dword_buff[2]));
1873 		IWL_INFO(trans, "NVM Manufacturing date %08X\n",
1874 			 le32_to_cpu(dword_buff[3]));
1875 
1876 		/* nvm file validation, dword_buff[2] holds the file version */
1877 		if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_8000 &&
1878 		    trans->hw_rev_step == SILICON_C_STEP &&
1879 		    le32_to_cpu(dword_buff[2]) < 0xE4A) {
1880 			ret = -EFAULT;
1881 			goto out;
1882 		}
1883 	} else {
1884 		file_sec = (const void *)fw_entry->data;
1885 	}
1886 
1887 	while (true) {
1888 		if (file_sec->data > eof) {
1889 			IWL_ERR(trans,
1890 				"ERROR - NVM file too short for section header\n");
1891 			ret = -EINVAL;
1892 			break;
1893 		}
1894 
1895 		/* check for EOF marker */
1896 		if (!file_sec->word1 && !file_sec->word2) {
1897 			ret = 0;
1898 			break;
1899 		}
1900 
1901 		if (trans->cfg->nvm_type != IWL_NVM_EXT) {
1902 			section_size =
1903 				2 * NVM_WORD1_LEN(le16_to_cpu(file_sec->word1));
1904 			section_id = NVM_WORD2_ID(le16_to_cpu(file_sec->word2));
1905 		} else {
1906 			section_size = 2 * EXT_NVM_WORD2_LEN(
1907 						le16_to_cpu(file_sec->word2));
1908 			section_id = EXT_NVM_WORD1_ID(
1909 						le16_to_cpu(file_sec->word1));
1910 		}
1911 
1912 		if (section_size > max_section_size) {
1913 			IWL_ERR(trans, "ERROR - section too large (%d)\n",
1914 				section_size);
1915 			ret = -EINVAL;
1916 			break;
1917 		}
1918 
1919 		if (!section_size) {
1920 			IWL_ERR(trans, "ERROR - section empty\n");
1921 			ret = -EINVAL;
1922 			break;
1923 		}
1924 
1925 		if (file_sec->data + section_size > eof) {
1926 			IWL_ERR(trans,
1927 				"ERROR - NVM file too short for section (%d bytes)\n",
1928 				section_size);
1929 			ret = -EINVAL;
1930 			break;
1931 		}
1932 
1933 		if (WARN(section_id >= NVM_MAX_NUM_SECTIONS,
1934 			 "Invalid NVM section ID %d\n", section_id)) {
1935 			ret = -EINVAL;
1936 			break;
1937 		}
1938 
1939 		temp = kmemdup(file_sec->data, section_size, GFP_KERNEL);
1940 		if (!temp) {
1941 			ret = -ENOMEM;
1942 			break;
1943 		}
1944 
1945 		iwl_nvm_fixups(trans->hw_id, section_id, temp, section_size);
1946 
1947 		kfree(nvm_sections[section_id].data);
1948 		nvm_sections[section_id].data = temp;
1949 		nvm_sections[section_id].length = section_size;
1950 
1951 		/* advance to the next section */
1952 		file_sec = (const void *)(file_sec->data + section_size);
1953 	}
1954 out:
1955 	release_firmware(fw_entry);
1956 	return ret;
1957 }
1958 IWL_EXPORT_SYMBOL(iwl_read_external_nvm);
1959 
1960 struct iwl_nvm_data *iwl_get_nvm(struct iwl_trans *trans,
1961 				 const struct iwl_fw *fw)
1962 {
1963 	struct iwl_nvm_get_info cmd = {};
1964 	struct iwl_nvm_data *nvm;
1965 	struct iwl_host_cmd hcmd = {
1966 		.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
1967 		.data = { &cmd, },
1968 		.len = { sizeof(cmd) },
1969 		.id = WIDE_ID(REGULATORY_AND_NVM_GROUP, NVM_GET_INFO)
1970 	};
1971 	int  ret;
1972 	bool empty_otp;
1973 	u32 mac_flags;
1974 	u32 sbands_flags = 0;
1975 	/*
1976 	 * All the values in iwl_nvm_get_info_rsp v4 are the same as
1977 	 * in v3, except for the channel profile part of the
1978 	 * regulatory.  So we can just access the new struct, with the
1979 	 * exception of the latter.
1980 	 */
1981 	struct iwl_nvm_get_info_rsp *rsp;
1982 	struct iwl_nvm_get_info_rsp_v3 *rsp_v3;
1983 	bool v4 = fw_has_api(&fw->ucode_capa,
1984 			     IWL_UCODE_TLV_API_REGULATORY_NVM_INFO);
1985 	size_t rsp_size = v4 ? sizeof(*rsp) : sizeof(*rsp_v3);
1986 	void *channel_profile;
1987 
1988 	ret = iwl_trans_send_cmd(trans, &hcmd);
1989 	if (ret)
1990 		return ERR_PTR(ret);
1991 
1992 	if (WARN(iwl_rx_packet_payload_len(hcmd.resp_pkt) != rsp_size,
1993 		 "Invalid payload len in NVM response from FW %d",
1994 		 iwl_rx_packet_payload_len(hcmd.resp_pkt))) {
1995 		ret = -EINVAL;
1996 		goto out;
1997 	}
1998 
1999 	rsp = (void *)hcmd.resp_pkt->data;
2000 	empty_otp = !!(le32_to_cpu(rsp->general.flags) &
2001 		       NVM_GENERAL_FLAGS_EMPTY_OTP);
2002 	if (empty_otp)
2003 		IWL_INFO(trans, "OTP is empty\n");
2004 
2005 	nvm = kzalloc(struct_size(nvm, channels, IWL_NUM_CHANNELS), GFP_KERNEL);
2006 	if (!nvm) {
2007 		ret = -ENOMEM;
2008 		goto out;
2009 	}
2010 
2011 	iwl_set_hw_address_from_csr(trans, nvm);
2012 	/* TODO: if platform NVM has MAC address - override it here */
2013 
2014 	if (!is_valid_ether_addr(nvm->hw_addr)) {
2015 		IWL_ERR(trans, "no valid mac address was found\n");
2016 		ret = -EINVAL;
2017 		goto err_free;
2018 	}
2019 
2020 	IWL_INFO(trans, "base HW address: %pM\n", nvm->hw_addr);
2021 
2022 	/* Initialize general data */
2023 	nvm->nvm_version = le16_to_cpu(rsp->general.nvm_version);
2024 	nvm->n_hw_addrs = rsp->general.n_hw_addrs;
2025 	if (nvm->n_hw_addrs == 0)
2026 		IWL_WARN(trans,
2027 			 "Firmware declares no reserved mac addresses. OTP is empty: %d\n",
2028 			 empty_otp);
2029 
2030 	/* Initialize MAC sku data */
2031 	mac_flags = le32_to_cpu(rsp->mac_sku.mac_sku_flags);
2032 	nvm->sku_cap_11ac_enable =
2033 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AC_ENABLED);
2034 	nvm->sku_cap_11n_enable =
2035 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11N_ENABLED);
2036 	nvm->sku_cap_11ax_enable =
2037 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AX_ENABLED);
2038 	nvm->sku_cap_band_24ghz_enable =
2039 		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_2_4_ENABLED);
2040 	nvm->sku_cap_band_52ghz_enable =
2041 		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_5_2_ENABLED);
2042 	nvm->sku_cap_mimo_disabled =
2043 		!!(mac_flags & NVM_MAC_SKU_FLAGS_MIMO_DISABLED);
2044 	if (CSR_HW_RFID_TYPE(trans->hw_rf_id) == IWL_CFG_RF_TYPE_FM)
2045 		nvm->sku_cap_11be_enable = true;
2046 
2047 	/* Initialize PHY sku data */
2048 	nvm->valid_tx_ant = (u8)le32_to_cpu(rsp->phy_sku.tx_chains);
2049 	nvm->valid_rx_ant = (u8)le32_to_cpu(rsp->phy_sku.rx_chains);
2050 
2051 	if (le32_to_cpu(rsp->regulatory.lar_enabled) &&
2052 	    fw_has_capa(&fw->ucode_capa,
2053 			IWL_UCODE_TLV_CAPA_LAR_SUPPORT)) {
2054 		nvm->lar_enabled = true;
2055 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
2056 	}
2057 
2058 	rsp_v3 = (void *)rsp;
2059 	channel_profile = v4 ? (void *)rsp->regulatory.channel_profile :
2060 			  (void *)rsp_v3->regulatory.channel_profile;
2061 
2062 	iwl_init_sbands(trans, nvm,
2063 			channel_profile,
2064 			nvm->valid_tx_ant & fw->valid_tx_ant,
2065 			nvm->valid_rx_ant & fw->valid_rx_ant,
2066 			sbands_flags, v4, fw);
2067 
2068 	iwl_free_resp(&hcmd);
2069 	return nvm;
2070 
2071 err_free:
2072 	kfree(nvm);
2073 out:
2074 	iwl_free_resp(&hcmd);
2075 	return ERR_PTR(ret);
2076 }
2077 IWL_EXPORT_SYMBOL(iwl_get_nvm);
2078