1 /******************************************************************************
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved.
9  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
10  * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of version 2 of the GNU General Public License as
14  * published by the Free Software Foundation.
15  *
16  * This program is distributed in the hope that it will be useful, but
17  * WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  * General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
24  * USA
25  *
26  * The full GNU General Public License is included in this distribution
27  * in the file called COPYING.
28  *
29  * Contact Information:
30  *  Intel Linux Wireless <linuxwifi@intel.com>
31  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
32  *
33  * BSD LICENSE
34  *
35  * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
36  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
37  * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
38  * All rights reserved.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  *
44  *  * Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  *  * Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in
48  *    the documentation and/or other materials provided with the
49  *    distribution.
50  *  * Neither the name Intel Corporation nor the names of its
51  *    contributors may be used to endorse or promote products derived
52  *    from this software without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
55  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
56  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
57  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
58  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
60  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
61  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
62  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
63  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
64  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65  *****************************************************************************/
66 #include <linux/types.h>
67 #include <linux/slab.h>
68 #include <linux/export.h>
69 #include <linux/etherdevice.h>
70 #include <linux/pci.h>
71 #include <linux/acpi.h>
72 #include "iwl-drv.h"
73 #include "iwl-modparams.h"
74 #include "iwl-nvm-parse.h"
75 #include "iwl-prph.h"
76 #include "iwl-io.h"
77 #include "iwl-csr.h"
78 
79 /* NVM offsets (in words) definitions */
80 enum wkp_nvm_offsets {
81 	/* NVM HW-Section offset (in words) definitions */
82 	HW_ADDR = 0x15,
83 
84 	/* NVM SW-Section offset (in words) definitions */
85 	NVM_SW_SECTION = 0x1C0,
86 	NVM_VERSION = 0,
87 	RADIO_CFG = 1,
88 	SKU = 2,
89 	N_HW_ADDRS = 3,
90 	NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,
91 
92 	/* NVM calibration section offset (in words) definitions */
93 	NVM_CALIB_SECTION = 0x2B8,
94 	XTAL_CALIB = 0x316 - NVM_CALIB_SECTION
95 };
96 
97 enum family_8000_nvm_offsets {
98 	/* NVM HW-Section offset (in words) definitions */
99 	HW_ADDR0_WFPM_FAMILY_8000 = 0x12,
100 	HW_ADDR1_WFPM_FAMILY_8000 = 0x16,
101 	HW_ADDR0_PCIE_FAMILY_8000 = 0x8A,
102 	HW_ADDR1_PCIE_FAMILY_8000 = 0x8E,
103 	MAC_ADDRESS_OVERRIDE_FAMILY_8000 = 1,
104 
105 	/* NVM SW-Section offset (in words) definitions */
106 	NVM_SW_SECTION_FAMILY_8000 = 0x1C0,
107 	NVM_VERSION_FAMILY_8000 = 0,
108 	RADIO_CFG_FAMILY_8000 = 0,
109 	SKU_FAMILY_8000 = 2,
110 	N_HW_ADDRS_FAMILY_8000 = 3,
111 
112 	/* NVM REGULATORY -Section offset (in words) definitions */
113 	NVM_CHANNELS_FAMILY_8000 = 0,
114 	NVM_LAR_OFFSET_FAMILY_8000_OLD = 0x4C7,
115 	NVM_LAR_OFFSET_FAMILY_8000 = 0x507,
116 	NVM_LAR_ENABLED_FAMILY_8000 = 0x7,
117 
118 	/* NVM calibration section offset (in words) definitions */
119 	NVM_CALIB_SECTION_FAMILY_8000 = 0x2B8,
120 	XTAL_CALIB_FAMILY_8000 = 0x316 - NVM_CALIB_SECTION_FAMILY_8000
121 };
122 
123 /* SKU Capabilities (actual values from NVM definition) */
124 enum nvm_sku_bits {
125 	NVM_SKU_CAP_BAND_24GHZ		= BIT(0),
126 	NVM_SKU_CAP_BAND_52GHZ		= BIT(1),
127 	NVM_SKU_CAP_11N_ENABLE		= BIT(2),
128 	NVM_SKU_CAP_11AC_ENABLE		= BIT(3),
129 	NVM_SKU_CAP_MIMO_DISABLE	= BIT(5),
130 };
131 
132 /*
133  * These are the channel numbers in the order that they are stored in the NVM
134  */
135 static const u8 iwl_nvm_channels[] = {
136 	/* 2.4 GHz */
137 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
138 	/* 5 GHz */
139 	36, 40, 44 , 48, 52, 56, 60, 64,
140 	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
141 	149, 153, 157, 161, 165
142 };
143 
144 static const u8 iwl_nvm_channels_family_8000[] = {
145 	/* 2.4 GHz */
146 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
147 	/* 5 GHz */
148 	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
149 	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
150 	149, 153, 157, 161, 165, 169, 173, 177, 181
151 };
152 
153 #define IWL_NUM_CHANNELS		ARRAY_SIZE(iwl_nvm_channels)
154 #define IWL_NUM_CHANNELS_FAMILY_8000	ARRAY_SIZE(iwl_nvm_channels_family_8000)
155 #define NUM_2GHZ_CHANNELS		14
156 #define NUM_2GHZ_CHANNELS_FAMILY_8000	14
157 #define FIRST_2GHZ_HT_MINUS		5
158 #define LAST_2GHZ_HT_PLUS		9
159 #define LAST_5GHZ_HT			165
160 #define LAST_5GHZ_HT_FAMILY_8000	181
161 #define N_HW_ADDR_MASK			0xF
162 
163 /* rate data (static) */
164 static struct ieee80211_rate iwl_cfg80211_rates[] = {
165 	{ .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
166 	{ .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
167 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
168 	{ .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
169 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
170 	{ .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
171 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
172 	{ .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
173 	{ .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
174 	{ .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
175 	{ .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
176 	{ .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
177 	{ .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
178 	{ .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
179 	{ .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
180 };
181 #define RATES_24_OFFS	0
182 #define N_RATES_24	ARRAY_SIZE(iwl_cfg80211_rates)
183 #define RATES_52_OFFS	4
184 #define N_RATES_52	(N_RATES_24 - RATES_52_OFFS)
185 
186 /**
187  * enum iwl_nvm_channel_flags - channel flags in NVM
188  * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
189  * @NVM_CHANNEL_IBSS: usable as an IBSS channel
190  * @NVM_CHANNEL_ACTIVE: active scanning allowed
191  * @NVM_CHANNEL_RADAR: radar detection required
192  * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
193  * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
194  *	on same channel on 2.4 or same UNII band on 5.2
195  * @NVM_CHANNEL_WIDE: 20 MHz channel okay (?)
196  * @NVM_CHANNEL_40MHZ: 40 MHz channel okay (?)
197  * @NVM_CHANNEL_80MHZ: 80 MHz channel okay (?)
198  * @NVM_CHANNEL_160MHZ: 160 MHz channel okay (?)
199  */
200 enum iwl_nvm_channel_flags {
201 	NVM_CHANNEL_VALID = BIT(0),
202 	NVM_CHANNEL_IBSS = BIT(1),
203 	NVM_CHANNEL_ACTIVE = BIT(3),
204 	NVM_CHANNEL_RADAR = BIT(4),
205 	NVM_CHANNEL_INDOOR_ONLY = BIT(5),
206 	NVM_CHANNEL_GO_CONCURRENT = BIT(6),
207 	NVM_CHANNEL_WIDE = BIT(8),
208 	NVM_CHANNEL_40MHZ = BIT(9),
209 	NVM_CHANNEL_80MHZ = BIT(10),
210 	NVM_CHANNEL_160MHZ = BIT(11),
211 };
212 
213 #define CHECK_AND_PRINT_I(x)	\
214 	((ch_flags & NVM_CHANNEL_##x) ? # x " " : "")
215 
216 static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, bool is_5ghz,
217 				 u16 nvm_flags, const struct iwl_cfg *cfg)
218 {
219 	u32 flags = IEEE80211_CHAN_NO_HT40;
220 	u32 last_5ghz_ht = LAST_5GHZ_HT;
221 
222 	if (cfg->device_family == IWL_DEVICE_FAMILY_8000)
223 		last_5ghz_ht = LAST_5GHZ_HT_FAMILY_8000;
224 
225 	if (!is_5ghz && (nvm_flags & NVM_CHANNEL_40MHZ)) {
226 		if (ch_num <= LAST_2GHZ_HT_PLUS)
227 			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
228 		if (ch_num >= FIRST_2GHZ_HT_MINUS)
229 			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
230 	} else if (ch_num <= last_5ghz_ht && (nvm_flags & NVM_CHANNEL_40MHZ)) {
231 		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
232 			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
233 		else
234 			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
235 	}
236 	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
237 		flags |= IEEE80211_CHAN_NO_80MHZ;
238 	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
239 		flags |= IEEE80211_CHAN_NO_160MHZ;
240 
241 	if (!(nvm_flags & NVM_CHANNEL_IBSS))
242 		flags |= IEEE80211_CHAN_NO_IR;
243 
244 	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
245 		flags |= IEEE80211_CHAN_NO_IR;
246 
247 	if (nvm_flags & NVM_CHANNEL_RADAR)
248 		flags |= IEEE80211_CHAN_RADAR;
249 
250 	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
251 		flags |= IEEE80211_CHAN_INDOOR_ONLY;
252 
253 	/* Set the GO concurrent flag only in case that NO_IR is set.
254 	 * Otherwise it is meaningless
255 	 */
256 	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
257 	    (flags & IEEE80211_CHAN_NO_IR))
258 		flags |= IEEE80211_CHAN_IR_CONCURRENT;
259 
260 	return flags;
261 }
262 
263 static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
264 				struct iwl_nvm_data *data,
265 				const __le16 * const nvm_ch_flags,
266 				bool lar_supported)
267 {
268 	int ch_idx;
269 	int n_channels = 0;
270 	struct ieee80211_channel *channel;
271 	u16 ch_flags;
272 	bool is_5ghz;
273 	int num_of_ch, num_2ghz_channels;
274 	const u8 *nvm_chan;
275 
276 	if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
277 		num_of_ch = IWL_NUM_CHANNELS;
278 		nvm_chan = &iwl_nvm_channels[0];
279 		num_2ghz_channels = NUM_2GHZ_CHANNELS;
280 	} else {
281 		num_of_ch = IWL_NUM_CHANNELS_FAMILY_8000;
282 		nvm_chan = &iwl_nvm_channels_family_8000[0];
283 		num_2ghz_channels = NUM_2GHZ_CHANNELS_FAMILY_8000;
284 	}
285 
286 	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
287 		ch_flags = __le16_to_cpup(nvm_ch_flags + ch_idx);
288 
289 		if (ch_idx >= num_2ghz_channels &&
290 		    !data->sku_cap_band_52GHz_enable)
291 			continue;
292 
293 		if (ch_flags & NVM_CHANNEL_160MHZ)
294 			data->vht160_supported = true;
295 
296 		if (!lar_supported && !(ch_flags & NVM_CHANNEL_VALID)) {
297 			/*
298 			 * Channels might become valid later if lar is
299 			 * supported, hence we still want to add them to
300 			 * the list of supported channels to cfg80211.
301 			 */
302 			IWL_DEBUG_EEPROM(dev,
303 					 "Ch. %d Flags %x [%sGHz] - No traffic\n",
304 					 nvm_chan[ch_idx],
305 					 ch_flags,
306 					 (ch_idx >= num_2ghz_channels) ?
307 					 "5.2" : "2.4");
308 			continue;
309 		}
310 
311 		channel = &data->channels[n_channels];
312 		n_channels++;
313 
314 		channel->hw_value = nvm_chan[ch_idx];
315 		channel->band = (ch_idx < num_2ghz_channels) ?
316 				NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
317 		channel->center_freq =
318 			ieee80211_channel_to_frequency(
319 				channel->hw_value, channel->band);
320 
321 		/* Initialize regulatory-based run-time data */
322 
323 		/*
324 		 * Default value - highest tx power value.  max_power
325 		 * is not used in mvm, and is used for backwards compatibility
326 		 */
327 		channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
328 		is_5ghz = channel->band == NL80211_BAND_5GHZ;
329 
330 		/* don't put limitations in case we're using LAR */
331 		if (!lar_supported)
332 			channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
333 							       ch_idx, is_5ghz,
334 							       ch_flags, cfg);
335 		else
336 			channel->flags = 0;
337 
338 		IWL_DEBUG_EEPROM(dev,
339 				 "Ch. %d [%sGHz] flags 0x%x %s%s%s%s%s%s%s%s%s%s(%ddBm): Ad-Hoc %ssupported\n",
340 				 channel->hw_value,
341 				 is_5ghz ? "5.2" : "2.4",
342 				 ch_flags,
343 				 CHECK_AND_PRINT_I(VALID),
344 				 CHECK_AND_PRINT_I(IBSS),
345 				 CHECK_AND_PRINT_I(ACTIVE),
346 				 CHECK_AND_PRINT_I(RADAR),
347 				 CHECK_AND_PRINT_I(INDOOR_ONLY),
348 				 CHECK_AND_PRINT_I(GO_CONCURRENT),
349 				 CHECK_AND_PRINT_I(WIDE),
350 				 CHECK_AND_PRINT_I(40MHZ),
351 				 CHECK_AND_PRINT_I(80MHZ),
352 				 CHECK_AND_PRINT_I(160MHZ),
353 				 channel->max_power,
354 				 ((ch_flags & NVM_CHANNEL_IBSS) &&
355 				  !(ch_flags & NVM_CHANNEL_RADAR))
356 					? "" : "not ");
357 	}
358 
359 	return n_channels;
360 }
361 
362 static void iwl_init_vht_hw_capab(const struct iwl_cfg *cfg,
363 				  struct iwl_nvm_data *data,
364 				  struct ieee80211_sta_vht_cap *vht_cap,
365 				  u8 tx_chains, u8 rx_chains)
366 {
367 	int num_rx_ants = num_of_ant(rx_chains);
368 	int num_tx_ants = num_of_ant(tx_chains);
369 	unsigned int max_ampdu_exponent = (cfg->max_vht_ampdu_exponent ?:
370 					   IEEE80211_VHT_MAX_AMPDU_1024K);
371 
372 	vht_cap->vht_supported = true;
373 
374 	vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
375 		       IEEE80211_VHT_CAP_RXSTBC_1 |
376 		       IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
377 		       3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
378 		       max_ampdu_exponent <<
379 		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
380 
381 	if (data->vht160_supported)
382 		vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ |
383 				IEEE80211_VHT_CAP_SHORT_GI_160;
384 
385 	if (cfg->vht_mu_mimo_supported)
386 		vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;
387 
388 	if (cfg->ht_params->ldpc)
389 		vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
390 
391 	if (data->sku_cap_mimo_disabled) {
392 		num_rx_ants = 1;
393 		num_tx_ants = 1;
394 	}
395 
396 	if (num_tx_ants > 1)
397 		vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
398 	else
399 		vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
400 
401 	switch (iwlwifi_mod_params.amsdu_size) {
402 	case IWL_AMSDU_DEF:
403 		if (cfg->mq_rx_supported)
404 			vht_cap->cap |=
405 				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
406 		else
407 			vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
408 		break;
409 	case IWL_AMSDU_4K:
410 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
411 		break;
412 	case IWL_AMSDU_8K:
413 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
414 		break;
415 	case IWL_AMSDU_12K:
416 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
417 		break;
418 	default:
419 		break;
420 	}
421 
422 	vht_cap->vht_mcs.rx_mcs_map =
423 		cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
424 			    IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
425 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
426 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
427 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
428 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
429 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
430 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);
431 
432 	if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
433 		vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
434 		/* this works because NOT_SUPPORTED == 3 */
435 		vht_cap->vht_mcs.rx_mcs_map |=
436 			cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
437 	}
438 
439 	vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
440 }
441 
442 void iwl_init_sbands(struct device *dev, const struct iwl_cfg *cfg,
443 		     struct iwl_nvm_data *data, const __le16 *nvm_ch_flags,
444 		     u8 tx_chains, u8 rx_chains, bool lar_supported)
445 {
446 	int n_channels;
447 	int n_used = 0;
448 	struct ieee80211_supported_band *sband;
449 
450 	n_channels = iwl_init_channel_map(dev, cfg, data, nvm_ch_flags,
451 					  lar_supported);
452 	sband = &data->bands[NL80211_BAND_2GHZ];
453 	sband->band = NL80211_BAND_2GHZ;
454 	sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
455 	sband->n_bitrates = N_RATES_24;
456 	n_used += iwl_init_sband_channels(data, sband, n_channels,
457 					  NL80211_BAND_2GHZ);
458 	iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, NL80211_BAND_2GHZ,
459 			     tx_chains, rx_chains);
460 
461 	sband = &data->bands[NL80211_BAND_5GHZ];
462 	sband->band = NL80211_BAND_5GHZ;
463 	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
464 	sband->n_bitrates = N_RATES_52;
465 	n_used += iwl_init_sband_channels(data, sband, n_channels,
466 					  NL80211_BAND_5GHZ);
467 	iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, NL80211_BAND_5GHZ,
468 			     tx_chains, rx_chains);
469 	if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
470 		iwl_init_vht_hw_capab(cfg, data, &sband->vht_cap,
471 				      tx_chains, rx_chains);
472 
473 	if (n_channels != n_used)
474 		IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
475 			    n_used, n_channels);
476 }
477 IWL_EXPORT_SYMBOL(iwl_init_sbands);
478 
479 static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
480 		       const __le16 *phy_sku)
481 {
482 	if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
483 		return le16_to_cpup(nvm_sw + SKU);
484 
485 	return le32_to_cpup((__le32 *)(phy_sku + SKU_FAMILY_8000));
486 }
487 
488 static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
489 {
490 	if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
491 		return le16_to_cpup(nvm_sw + NVM_VERSION);
492 	else
493 		return le32_to_cpup((__le32 *)(nvm_sw +
494 					       NVM_VERSION_FAMILY_8000));
495 }
496 
497 static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
498 			     const __le16 *phy_sku)
499 {
500 	if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
501 		return le16_to_cpup(nvm_sw + RADIO_CFG);
502 
503 	return le32_to_cpup((__le32 *)(phy_sku + RADIO_CFG_FAMILY_8000));
504 
505 }
506 
507 static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
508 {
509 	int n_hw_addr;
510 
511 	if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
512 		return le16_to_cpup(nvm_sw + N_HW_ADDRS);
513 
514 	n_hw_addr = le32_to_cpup((__le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000));
515 
516 	return n_hw_addr & N_HW_ADDR_MASK;
517 }
518 
519 static void iwl_set_radio_cfg(const struct iwl_cfg *cfg,
520 			      struct iwl_nvm_data *data,
521 			      u32 radio_cfg)
522 {
523 	if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
524 		data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
525 		data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
526 		data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
527 		data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
528 		return;
529 	}
530 
531 	/* set the radio configuration for family 8000 */
532 	data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK_FAMILY_8000(radio_cfg);
533 	data->radio_cfg_step = NVM_RF_CFG_STEP_MSK_FAMILY_8000(radio_cfg);
534 	data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK_FAMILY_8000(radio_cfg);
535 	data->radio_cfg_pnum = NVM_RF_CFG_FLAVOR_MSK_FAMILY_8000(radio_cfg);
536 	data->valid_tx_ant = NVM_RF_CFG_TX_ANT_MSK_FAMILY_8000(radio_cfg);
537 	data->valid_rx_ant = NVM_RF_CFG_RX_ANT_MSK_FAMILY_8000(radio_cfg);
538 }
539 
540 static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest)
541 {
542 	const u8 *hw_addr;
543 
544 	hw_addr = (const u8 *)&mac_addr0;
545 	dest[0] = hw_addr[3];
546 	dest[1] = hw_addr[2];
547 	dest[2] = hw_addr[1];
548 	dest[3] = hw_addr[0];
549 
550 	hw_addr = (const u8 *)&mac_addr1;
551 	dest[4] = hw_addr[1];
552 	dest[5] = hw_addr[0];
553 }
554 
555 void iwl_set_hw_address_from_csr(struct iwl_trans *trans,
556 				 struct iwl_nvm_data *data)
557 {
558 	__le32 mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_STRAP));
559 	__le32 mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_STRAP));
560 
561 	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
562 	/*
563 	 * If the OEM fused a valid address, use it instead of the one in the
564 	 * OTP
565 	 */
566 	if (is_valid_ether_addr(data->hw_addr))
567 		return;
568 
569 	mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_OTP));
570 	mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_OTP));
571 
572 	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
573 }
574 IWL_EXPORT_SYMBOL(iwl_set_hw_address_from_csr);
575 
576 static void iwl_set_hw_address_family_8000(struct iwl_trans *trans,
577 					   const struct iwl_cfg *cfg,
578 					   struct iwl_nvm_data *data,
579 					   const __le16 *mac_override,
580 					   const __le16 *nvm_hw)
581 {
582 	const u8 *hw_addr;
583 
584 	if (mac_override) {
585 		static const u8 reserved_mac[] = {
586 			0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
587 		};
588 
589 		hw_addr = (const u8 *)(mac_override +
590 				 MAC_ADDRESS_OVERRIDE_FAMILY_8000);
591 
592 		/*
593 		 * Store the MAC address from MAO section.
594 		 * No byte swapping is required in MAO section
595 		 */
596 		memcpy(data->hw_addr, hw_addr, ETH_ALEN);
597 
598 		/*
599 		 * Force the use of the OTP MAC address in case of reserved MAC
600 		 * address in the NVM, or if address is given but invalid.
601 		 */
602 		if (is_valid_ether_addr(data->hw_addr) &&
603 		    memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0)
604 			return;
605 
606 		IWL_ERR(trans,
607 			"mac address from nvm override section is not valid\n");
608 	}
609 
610 	if (nvm_hw) {
611 		/* read the mac address from WFMP registers */
612 		__le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans,
613 						WFMP_MAC_ADDR_0));
614 		__le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans,
615 						WFMP_MAC_ADDR_1));
616 
617 		iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
618 
619 		return;
620 	}
621 
622 	IWL_ERR(trans, "mac address is not found\n");
623 }
624 
625 static int iwl_set_hw_address(struct iwl_trans *trans,
626 			      const struct iwl_cfg *cfg,
627 			      struct iwl_nvm_data *data, const __le16 *nvm_hw,
628 			      const __le16 *mac_override)
629 {
630 	if (cfg->mac_addr_from_csr) {
631 		iwl_set_hw_address_from_csr(trans, data);
632 	} else if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
633 		const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR);
634 
635 		/* The byte order is little endian 16 bit, meaning 214365 */
636 		data->hw_addr[0] = hw_addr[1];
637 		data->hw_addr[1] = hw_addr[0];
638 		data->hw_addr[2] = hw_addr[3];
639 		data->hw_addr[3] = hw_addr[2];
640 		data->hw_addr[4] = hw_addr[5];
641 		data->hw_addr[5] = hw_addr[4];
642 	} else {
643 		iwl_set_hw_address_family_8000(trans, cfg, data,
644 					       mac_override, nvm_hw);
645 	}
646 
647 	if (!is_valid_ether_addr(data->hw_addr)) {
648 		IWL_ERR(trans, "no valid mac address was found\n");
649 		return -EINVAL;
650 	}
651 
652 	return 0;
653 }
654 
655 struct iwl_nvm_data *
656 iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
657 		   const __le16 *nvm_hw, const __le16 *nvm_sw,
658 		   const __le16 *nvm_calib, const __le16 *regulatory,
659 		   const __le16 *mac_override, const __le16 *phy_sku,
660 		   u8 tx_chains, u8 rx_chains, bool lar_fw_supported)
661 {
662 	struct device *dev = trans->dev;
663 	struct iwl_nvm_data *data;
664 	bool lar_enabled;
665 	u32 sku, radio_cfg;
666 	u16 lar_config;
667 	const __le16 *ch_section;
668 
669 	if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
670 		data = kzalloc(sizeof(*data) +
671 			       sizeof(struct ieee80211_channel) *
672 			       IWL_NUM_CHANNELS,
673 			       GFP_KERNEL);
674 	else
675 		data = kzalloc(sizeof(*data) +
676 			       sizeof(struct ieee80211_channel) *
677 			       IWL_NUM_CHANNELS_FAMILY_8000,
678 			       GFP_KERNEL);
679 	if (!data)
680 		return NULL;
681 
682 	data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
683 
684 	radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku);
685 	iwl_set_radio_cfg(cfg, data, radio_cfg);
686 	if (data->valid_tx_ant)
687 		tx_chains &= data->valid_tx_ant;
688 	if (data->valid_rx_ant)
689 		rx_chains &= data->valid_rx_ant;
690 
691 	sku = iwl_get_sku(cfg, nvm_sw, phy_sku);
692 	data->sku_cap_band_24GHz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
693 	data->sku_cap_band_52GHz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
694 	data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
695 	if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
696 		data->sku_cap_11n_enable = false;
697 	data->sku_cap_11ac_enable = data->sku_cap_11n_enable &&
698 				    (sku & NVM_SKU_CAP_11AC_ENABLE);
699 	data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE;
700 
701 	data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
702 
703 	if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
704 		/* Checking for required sections */
705 		if (!nvm_calib) {
706 			IWL_ERR(trans,
707 				"Can't parse empty Calib NVM sections\n");
708 			kfree(data);
709 			return NULL;
710 		}
711 		/* in family 8000 Xtal calibration values moved to OTP */
712 		data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB);
713 		data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1);
714 		lar_enabled = true;
715 		ch_section = &nvm_sw[NVM_CHANNELS];
716 	} else {
717 		u16 lar_offset = data->nvm_version < 0xE39 ?
718 				 NVM_LAR_OFFSET_FAMILY_8000_OLD :
719 				 NVM_LAR_OFFSET_FAMILY_8000;
720 
721 		lar_config = le16_to_cpup(regulatory + lar_offset);
722 		data->lar_enabled = !!(lar_config &
723 				       NVM_LAR_ENABLED_FAMILY_8000);
724 		lar_enabled = data->lar_enabled;
725 		ch_section = &regulatory[NVM_CHANNELS_FAMILY_8000];
726 	}
727 
728 	/* If no valid mac address was found - bail out */
729 	if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) {
730 		kfree(data);
731 		return NULL;
732 	}
733 
734 	iwl_init_sbands(dev, cfg, data, ch_section, tx_chains, rx_chains,
735 			lar_fw_supported && lar_enabled);
736 	data->calib_version = 255;
737 
738 	return data;
739 }
740 IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
741 
742 static u32 iwl_nvm_get_regdom_bw_flags(const u8 *nvm_chan,
743 				       int ch_idx, u16 nvm_flags,
744 				       const struct iwl_cfg *cfg)
745 {
746 	u32 flags = NL80211_RRF_NO_HT40;
747 	u32 last_5ghz_ht = LAST_5GHZ_HT;
748 
749 	if (cfg->device_family == IWL_DEVICE_FAMILY_8000)
750 		last_5ghz_ht = LAST_5GHZ_HT_FAMILY_8000;
751 
752 	if (ch_idx < NUM_2GHZ_CHANNELS &&
753 	    (nvm_flags & NVM_CHANNEL_40MHZ)) {
754 		if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
755 			flags &= ~NL80211_RRF_NO_HT40PLUS;
756 		if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
757 			flags &= ~NL80211_RRF_NO_HT40MINUS;
758 	} else if (nvm_chan[ch_idx] <= last_5ghz_ht &&
759 		   (nvm_flags & NVM_CHANNEL_40MHZ)) {
760 		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
761 			flags &= ~NL80211_RRF_NO_HT40PLUS;
762 		else
763 			flags &= ~NL80211_RRF_NO_HT40MINUS;
764 	}
765 
766 	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
767 		flags |= NL80211_RRF_NO_80MHZ;
768 	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
769 		flags |= NL80211_RRF_NO_160MHZ;
770 
771 	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
772 		flags |= NL80211_RRF_NO_IR;
773 
774 	if (nvm_flags & NVM_CHANNEL_RADAR)
775 		flags |= NL80211_RRF_DFS;
776 
777 	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
778 		flags |= NL80211_RRF_NO_OUTDOOR;
779 
780 	/* Set the GO concurrent flag only in case that NO_IR is set.
781 	 * Otherwise it is meaningless
782 	 */
783 	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
784 	    (flags & NL80211_RRF_NO_IR))
785 		flags |= NL80211_RRF_GO_CONCURRENT;
786 
787 	return flags;
788 }
789 
790 struct ieee80211_regdomain *
791 iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg,
792 		       int num_of_ch, __le32 *channels, u16 fw_mcc)
793 {
794 	int ch_idx;
795 	u16 ch_flags, prev_ch_flags = 0;
796 	const u8 *nvm_chan = cfg->device_family == IWL_DEVICE_FAMILY_8000 ?
797 			     iwl_nvm_channels_family_8000 : iwl_nvm_channels;
798 	struct ieee80211_regdomain *regd;
799 	int size_of_regd;
800 	struct ieee80211_reg_rule *rule;
801 	enum nl80211_band band;
802 	int center_freq, prev_center_freq = 0;
803 	int valid_rules = 0;
804 	bool new_rule;
805 	int max_num_ch = cfg->device_family == IWL_DEVICE_FAMILY_8000 ?
806 			 IWL_NUM_CHANNELS_FAMILY_8000 : IWL_NUM_CHANNELS;
807 
808 	if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES))
809 		return ERR_PTR(-EINVAL);
810 
811 	if (WARN_ON(num_of_ch > max_num_ch))
812 		num_of_ch = max_num_ch;
813 
814 	IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n",
815 		      num_of_ch);
816 
817 	/* build a regdomain rule for every valid channel */
818 	size_of_regd =
819 		sizeof(struct ieee80211_regdomain) +
820 		num_of_ch * sizeof(struct ieee80211_reg_rule);
821 
822 	regd = kzalloc(size_of_regd, GFP_KERNEL);
823 	if (!regd)
824 		return ERR_PTR(-ENOMEM);
825 
826 	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
827 		ch_flags = (u16)__le32_to_cpup(channels + ch_idx);
828 		band = (ch_idx < NUM_2GHZ_CHANNELS) ?
829 		       NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
830 		center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx],
831 							     band);
832 		new_rule = false;
833 
834 		if (!(ch_flags & NVM_CHANNEL_VALID)) {
835 			IWL_DEBUG_DEV(dev, IWL_DL_LAR,
836 				      "Ch. %d Flags %x [%sGHz] - No traffic\n",
837 				      nvm_chan[ch_idx],
838 				      ch_flags,
839 				      (ch_idx >= NUM_2GHZ_CHANNELS) ?
840 				      "5.2" : "2.4");
841 			continue;
842 		}
843 
844 		/* we can't continue the same rule */
845 		if (ch_idx == 0 || prev_ch_flags != ch_flags ||
846 		    center_freq - prev_center_freq > 20) {
847 			valid_rules++;
848 			new_rule = true;
849 		}
850 
851 		rule = &regd->reg_rules[valid_rules - 1];
852 
853 		if (new_rule)
854 			rule->freq_range.start_freq_khz =
855 						MHZ_TO_KHZ(center_freq - 10);
856 
857 		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10);
858 
859 		/* this doesn't matter - not used by FW */
860 		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
861 		rule->power_rule.max_eirp =
862 			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
863 
864 		rule->flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx,
865 							  ch_flags, cfg);
866 
867 		/* rely on auto-calculation to merge BW of contiguous chans */
868 		rule->flags |= NL80211_RRF_AUTO_BW;
869 		rule->freq_range.max_bandwidth_khz = 0;
870 
871 		prev_ch_flags = ch_flags;
872 		prev_center_freq = center_freq;
873 
874 		IWL_DEBUG_DEV(dev, IWL_DL_LAR,
875 			      "Ch. %d [%sGHz] %s%s%s%s%s%s%s%s%s(0x%02x): Ad-Hoc %ssupported\n",
876 			      center_freq,
877 			      band == NL80211_BAND_5GHZ ? "5.2" : "2.4",
878 			      CHECK_AND_PRINT_I(VALID),
879 			      CHECK_AND_PRINT_I(ACTIVE),
880 			      CHECK_AND_PRINT_I(RADAR),
881 			      CHECK_AND_PRINT_I(WIDE),
882 			      CHECK_AND_PRINT_I(40MHZ),
883 			      CHECK_AND_PRINT_I(80MHZ),
884 			      CHECK_AND_PRINT_I(160MHZ),
885 			      CHECK_AND_PRINT_I(INDOOR_ONLY),
886 			      CHECK_AND_PRINT_I(GO_CONCURRENT),
887 			      ch_flags,
888 			      ((ch_flags & NVM_CHANNEL_ACTIVE) &&
889 			       !(ch_flags & NVM_CHANNEL_RADAR))
890 					 ? "" : "not ");
891 	}
892 
893 	regd->n_reg_rules = valid_rules;
894 
895 	/* set alpha2 from FW. */
896 	regd->alpha2[0] = fw_mcc >> 8;
897 	regd->alpha2[1] = fw_mcc & 0xff;
898 
899 	return regd;
900 }
901 IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);
902 
903 #ifdef CONFIG_ACPI
904 #define WRDD_METHOD		"WRDD"
905 #define WRDD_WIFI		(0x07)
906 #define WRDD_WIGIG		(0x10)
907 
908 static u32 iwl_wrdd_get_mcc(struct device *dev, union acpi_object *wrdd)
909 {
910 	union acpi_object *mcc_pkg, *domain_type, *mcc_value;
911 	u32 i;
912 
913 	if (wrdd->type != ACPI_TYPE_PACKAGE ||
914 	    wrdd->package.count < 2 ||
915 	    wrdd->package.elements[0].type != ACPI_TYPE_INTEGER ||
916 	    wrdd->package.elements[0].integer.value != 0) {
917 		IWL_DEBUG_EEPROM(dev, "Unsupported wrdd structure\n");
918 		return 0;
919 	}
920 
921 	for (i = 1 ; i < wrdd->package.count ; ++i) {
922 		mcc_pkg = &wrdd->package.elements[i];
923 
924 		if (mcc_pkg->type != ACPI_TYPE_PACKAGE ||
925 		    mcc_pkg->package.count < 2 ||
926 		    mcc_pkg->package.elements[0].type != ACPI_TYPE_INTEGER ||
927 		    mcc_pkg->package.elements[1].type != ACPI_TYPE_INTEGER) {
928 			mcc_pkg = NULL;
929 			continue;
930 		}
931 
932 		domain_type = &mcc_pkg->package.elements[0];
933 		if (domain_type->integer.value == WRDD_WIFI)
934 			break;
935 
936 		mcc_pkg = NULL;
937 	}
938 
939 	if (mcc_pkg) {
940 		mcc_value = &mcc_pkg->package.elements[1];
941 		return mcc_value->integer.value;
942 	}
943 
944 	return 0;
945 }
946 
947 int iwl_get_bios_mcc(struct device *dev, char *mcc)
948 {
949 	acpi_handle root_handle;
950 	acpi_handle handle;
951 	struct acpi_buffer wrdd = {ACPI_ALLOCATE_BUFFER, NULL};
952 	acpi_status status;
953 	u32 mcc_val;
954 
955 	root_handle = ACPI_HANDLE(dev);
956 	if (!root_handle) {
957 		IWL_DEBUG_EEPROM(dev,
958 				 "Could not retrieve root port ACPI handle\n");
959 		return -ENOENT;
960 	}
961 
962 	/* Get the method's handle */
963 	status = acpi_get_handle(root_handle, (acpi_string)WRDD_METHOD,
964 				 &handle);
965 	if (ACPI_FAILURE(status)) {
966 		IWL_DEBUG_EEPROM(dev, "WRD method not found\n");
967 		return -ENOENT;
968 	}
969 
970 	/* Call WRDD with no arguments */
971 	status = acpi_evaluate_object(handle, NULL, NULL, &wrdd);
972 	if (ACPI_FAILURE(status)) {
973 		IWL_DEBUG_EEPROM(dev, "WRDC invocation failed (0x%x)\n",
974 				 status);
975 		return -ENOENT;
976 	}
977 
978 	mcc_val = iwl_wrdd_get_mcc(dev, wrdd.pointer);
979 	kfree(wrdd.pointer);
980 	if (!mcc_val)
981 		return -ENOENT;
982 
983 	mcc[0] = (mcc_val >> 8) & 0xff;
984 	mcc[1] = mcc_val & 0xff;
985 	mcc[2] = '\0';
986 	return 0;
987 }
988 IWL_EXPORT_SYMBOL(iwl_get_bios_mcc);
989 #endif
990