1 /******************************************************************************
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved.
9  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
10  * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
11  * Copyright(c) 2018 - 2019 Intel Corporation
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of version 2 of the GNU General Public License as
15  * published by the Free Software Foundation.
16  *
17  * This program is distributed in the hope that it will be useful, but
18  * WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20  * General Public License for more details.
21  *
22  * The full GNU General Public License is included in this distribution
23  * in the file called COPYING.
24  *
25  * Contact Information:
26  *  Intel Linux Wireless <linuxwifi@intel.com>
27  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
28  *
29  * BSD LICENSE
30  *
31  * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
32  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
33  * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
34  * Copyright(c) 2018 - 2019 Intel Corporation
35  * All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  *
41  *  * Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  *  * Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in
45  *    the documentation and/or other materials provided with the
46  *    distribution.
47  *  * Neither the name Intel Corporation nor the names of its
48  *    contributors may be used to endorse or promote products derived
49  *    from this software without specific prior written permission.
50  *
51  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
52  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
53  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
54  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
55  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
56  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
57  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
58  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
59  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
60  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
61  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
62  *****************************************************************************/
63 #include <linux/types.h>
64 #include <linux/slab.h>
65 #include <linux/export.h>
66 #include <linux/etherdevice.h>
67 #include <linux/pci.h>
68 #include <linux/firmware.h>
69 
70 #include "iwl-drv.h"
71 #include "iwl-modparams.h"
72 #include "iwl-nvm-parse.h"
73 #include "iwl-prph.h"
74 #include "iwl-io.h"
75 #include "iwl-csr.h"
76 #include "fw/acpi.h"
77 #include "fw/api/nvm-reg.h"
78 #include "fw/api/commands.h"
79 #include "fw/api/cmdhdr.h"
80 #include "fw/img.h"
81 
82 /* NVM offsets (in words) definitions */
83 enum nvm_offsets {
84 	/* NVM HW-Section offset (in words) definitions */
85 	SUBSYSTEM_ID = 0x0A,
86 	HW_ADDR = 0x15,
87 
88 	/* NVM SW-Section offset (in words) definitions */
89 	NVM_SW_SECTION = 0x1C0,
90 	NVM_VERSION = 0,
91 	RADIO_CFG = 1,
92 	SKU = 2,
93 	N_HW_ADDRS = 3,
94 	NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,
95 
96 	/* NVM calibration section offset (in words) definitions */
97 	NVM_CALIB_SECTION = 0x2B8,
98 	XTAL_CALIB = 0x316 - NVM_CALIB_SECTION,
99 
100 	/* NVM REGULATORY -Section offset (in words) definitions */
101 	NVM_CHANNELS_SDP = 0,
102 };
103 
104 enum ext_nvm_offsets {
105 	/* NVM HW-Section offset (in words) definitions */
106 	MAC_ADDRESS_OVERRIDE_EXT_NVM = 1,
107 
108 	/* NVM SW-Section offset (in words) definitions */
109 	NVM_VERSION_EXT_NVM = 0,
110 	RADIO_CFG_FAMILY_EXT_NVM = 0,
111 	SKU_FAMILY_8000 = 2,
112 	N_HW_ADDRS_FAMILY_8000 = 3,
113 
114 	/* NVM REGULATORY -Section offset (in words) definitions */
115 	NVM_CHANNELS_EXTENDED = 0,
116 	NVM_LAR_OFFSET_OLD = 0x4C7,
117 	NVM_LAR_OFFSET = 0x507,
118 	NVM_LAR_ENABLED = 0x7,
119 };
120 
121 /* SKU Capabilities (actual values from NVM definition) */
122 enum nvm_sku_bits {
123 	NVM_SKU_CAP_BAND_24GHZ		= BIT(0),
124 	NVM_SKU_CAP_BAND_52GHZ		= BIT(1),
125 	NVM_SKU_CAP_11N_ENABLE		= BIT(2),
126 	NVM_SKU_CAP_11AC_ENABLE		= BIT(3),
127 	NVM_SKU_CAP_MIMO_DISABLE	= BIT(5),
128 };
129 
130 /*
131  * These are the channel numbers in the order that they are stored in the NVM
132  */
133 static const u16 iwl_nvm_channels[] = {
134 	/* 2.4 GHz */
135 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
136 	/* 5 GHz */
137 	36, 40, 44 , 48, 52, 56, 60, 64,
138 	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
139 	149, 153, 157, 161, 165
140 };
141 
142 static const u16 iwl_ext_nvm_channels[] = {
143 	/* 2.4 GHz */
144 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
145 	/* 5 GHz */
146 	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
147 	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
148 	149, 153, 157, 161, 165, 169, 173, 177, 181
149 };
150 
151 static const u16 iwl_uhb_nvm_channels[] = {
152 	/* 2.4 GHz */
153 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
154 	/* 5 GHz */
155 	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
156 	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
157 	149, 153, 157, 161, 165, 169, 173, 177, 181,
158 	/* 6-7 GHz */
159 	1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69,
160 	73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129,
161 	133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 177, 181, 185,
162 	189, 193, 197, 201, 205, 209, 213, 217, 221, 225, 229, 233
163 };
164 
165 #define IWL_NVM_NUM_CHANNELS		ARRAY_SIZE(iwl_nvm_channels)
166 #define IWL_NVM_NUM_CHANNELS_EXT	ARRAY_SIZE(iwl_ext_nvm_channels)
167 #define IWL_NVM_NUM_CHANNELS_UHB	ARRAY_SIZE(iwl_uhb_nvm_channels)
168 #define NUM_2GHZ_CHANNELS		14
169 #define FIRST_2GHZ_HT_MINUS		5
170 #define LAST_2GHZ_HT_PLUS		9
171 #define N_HW_ADDR_MASK			0xF
172 
173 /* rate data (static) */
174 static struct ieee80211_rate iwl_cfg80211_rates[] = {
175 	{ .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
176 	{ .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
177 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
178 	{ .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
179 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
180 	{ .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
181 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
182 	{ .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
183 	{ .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
184 	{ .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
185 	{ .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
186 	{ .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
187 	{ .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
188 	{ .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
189 	{ .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
190 };
191 #define RATES_24_OFFS	0
192 #define N_RATES_24	ARRAY_SIZE(iwl_cfg80211_rates)
193 #define RATES_52_OFFS	4
194 #define N_RATES_52	(N_RATES_24 - RATES_52_OFFS)
195 
196 /**
197  * enum iwl_nvm_channel_flags - channel flags in NVM
198  * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
199  * @NVM_CHANNEL_IBSS: usable as an IBSS channel
200  * @NVM_CHANNEL_ACTIVE: active scanning allowed
201  * @NVM_CHANNEL_RADAR: radar detection required
202  * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
203  * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
204  *	on same channel on 2.4 or same UNII band on 5.2
205  * @NVM_CHANNEL_UNIFORM: uniform spreading required
206  * @NVM_CHANNEL_20MHZ: 20 MHz channel okay
207  * @NVM_CHANNEL_40MHZ: 40 MHz channel okay
208  * @NVM_CHANNEL_80MHZ: 80 MHz channel okay
209  * @NVM_CHANNEL_160MHZ: 160 MHz channel okay
210  * @NVM_CHANNEL_DC_HIGH: DC HIGH required/allowed (?)
211  */
212 enum iwl_nvm_channel_flags {
213 	NVM_CHANNEL_VALID		= BIT(0),
214 	NVM_CHANNEL_IBSS		= BIT(1),
215 	NVM_CHANNEL_ACTIVE		= BIT(3),
216 	NVM_CHANNEL_RADAR		= BIT(4),
217 	NVM_CHANNEL_INDOOR_ONLY		= BIT(5),
218 	NVM_CHANNEL_GO_CONCURRENT	= BIT(6),
219 	NVM_CHANNEL_UNIFORM		= BIT(7),
220 	NVM_CHANNEL_20MHZ		= BIT(8),
221 	NVM_CHANNEL_40MHZ		= BIT(9),
222 	NVM_CHANNEL_80MHZ		= BIT(10),
223 	NVM_CHANNEL_160MHZ		= BIT(11),
224 	NVM_CHANNEL_DC_HIGH		= BIT(12),
225 };
226 
227 /**
228  * enum iwl_reg_capa_flags - global flags applied for the whole regulatory
229  * domain.
230  * @REG_CAPA_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
231  *	2.4Ghz band is allowed.
232  * @REG_CAPA_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
233  *	5Ghz band is allowed.
234  * @REG_CAPA_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
235  *	for this regulatory domain (valid only in 5Ghz).
236  * @REG_CAPA_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
237  *	for this regulatory domain (valid only in 5Ghz).
238  * @REG_CAPA_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
239  * @REG_CAPA_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
240  * @REG_CAPA_40MHZ_FORBIDDEN: 11n channel with a width of 40Mhz is forbidden
241  *	for this regulatory domain (valid only in 5Ghz).
242  * @REG_CAPA_DC_HIGH_ENABLED: DC HIGH allowed.
243  */
244 enum iwl_reg_capa_flags {
245 	REG_CAPA_BF_CCD_LOW_BAND	= BIT(0),
246 	REG_CAPA_BF_CCD_HIGH_BAND	= BIT(1),
247 	REG_CAPA_160MHZ_ALLOWED		= BIT(2),
248 	REG_CAPA_80MHZ_ALLOWED		= BIT(3),
249 	REG_CAPA_MCS_8_ALLOWED		= BIT(4),
250 	REG_CAPA_MCS_9_ALLOWED		= BIT(5),
251 	REG_CAPA_40MHZ_FORBIDDEN	= BIT(7),
252 	REG_CAPA_DC_HIGH_ENABLED	= BIT(9),
253 };
254 
255 static inline void iwl_nvm_print_channel_flags(struct device *dev, u32 level,
256 					       int chan, u32 flags)
257 {
258 #define CHECK_AND_PRINT_I(x)	\
259 	((flags & NVM_CHANNEL_##x) ? " " #x : "")
260 
261 	if (!(flags & NVM_CHANNEL_VALID)) {
262 		IWL_DEBUG_DEV(dev, level, "Ch. %d: 0x%x: No traffic\n",
263 			      chan, flags);
264 		return;
265 	}
266 
267 	/* Note: already can print up to 101 characters, 110 is the limit! */
268 	IWL_DEBUG_DEV(dev, level,
269 		      "Ch. %d: 0x%x:%s%s%s%s%s%s%s%s%s%s%s%s\n",
270 		      chan, flags,
271 		      CHECK_AND_PRINT_I(VALID),
272 		      CHECK_AND_PRINT_I(IBSS),
273 		      CHECK_AND_PRINT_I(ACTIVE),
274 		      CHECK_AND_PRINT_I(RADAR),
275 		      CHECK_AND_PRINT_I(INDOOR_ONLY),
276 		      CHECK_AND_PRINT_I(GO_CONCURRENT),
277 		      CHECK_AND_PRINT_I(UNIFORM),
278 		      CHECK_AND_PRINT_I(20MHZ),
279 		      CHECK_AND_PRINT_I(40MHZ),
280 		      CHECK_AND_PRINT_I(80MHZ),
281 		      CHECK_AND_PRINT_I(160MHZ),
282 		      CHECK_AND_PRINT_I(DC_HIGH));
283 #undef CHECK_AND_PRINT_I
284 }
285 
286 static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, enum nl80211_band band,
287 				 u32 nvm_flags, const struct iwl_cfg *cfg)
288 {
289 	u32 flags = IEEE80211_CHAN_NO_HT40;
290 
291 	if (band == NL80211_BAND_2GHZ && (nvm_flags & NVM_CHANNEL_40MHZ)) {
292 		if (ch_num <= LAST_2GHZ_HT_PLUS)
293 			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
294 		if (ch_num >= FIRST_2GHZ_HT_MINUS)
295 			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
296 	} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
297 		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
298 			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
299 		else
300 			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
301 	}
302 	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
303 		flags |= IEEE80211_CHAN_NO_80MHZ;
304 	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
305 		flags |= IEEE80211_CHAN_NO_160MHZ;
306 
307 	if (!(nvm_flags & NVM_CHANNEL_IBSS))
308 		flags |= IEEE80211_CHAN_NO_IR;
309 
310 	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
311 		flags |= IEEE80211_CHAN_NO_IR;
312 
313 	if (nvm_flags & NVM_CHANNEL_RADAR)
314 		flags |= IEEE80211_CHAN_RADAR;
315 
316 	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
317 		flags |= IEEE80211_CHAN_INDOOR_ONLY;
318 
319 	/* Set the GO concurrent flag only in case that NO_IR is set.
320 	 * Otherwise it is meaningless
321 	 */
322 	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
323 	    (flags & IEEE80211_CHAN_NO_IR))
324 		flags |= IEEE80211_CHAN_IR_CONCURRENT;
325 
326 	return flags;
327 }
328 
329 static enum nl80211_band iwl_nl80211_band_from_channel_idx(int ch_idx)
330 {
331 	if (ch_idx >= NUM_2GHZ_CHANNELS)
332 		return NL80211_BAND_5GHZ;
333 	return NL80211_BAND_2GHZ;
334 }
335 
336 static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
337 				struct iwl_nvm_data *data,
338 				const void * const nvm_ch_flags,
339 				u32 sbands_flags, bool v4)
340 {
341 	int ch_idx;
342 	int n_channels = 0;
343 	struct ieee80211_channel *channel;
344 	u32 ch_flags;
345 	int num_of_ch;
346 	const u16 *nvm_chan;
347 
348 	if (cfg->uhb_supported) {
349 		num_of_ch = IWL_NVM_NUM_CHANNELS_UHB;
350 		nvm_chan = iwl_uhb_nvm_channels;
351 	} else if (cfg->nvm_type == IWL_NVM_EXT) {
352 		num_of_ch = IWL_NVM_NUM_CHANNELS_EXT;
353 		nvm_chan = iwl_ext_nvm_channels;
354 	} else {
355 		num_of_ch = IWL_NVM_NUM_CHANNELS;
356 		nvm_chan = iwl_nvm_channels;
357 	}
358 
359 	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
360 		enum nl80211_band band =
361 			iwl_nl80211_band_from_channel_idx(ch_idx);
362 
363 		if (v4)
364 			ch_flags =
365 				__le32_to_cpup((__le32 *)nvm_ch_flags + ch_idx);
366 		else
367 			ch_flags =
368 				__le16_to_cpup((__le16 *)nvm_ch_flags + ch_idx);
369 
370 		if (band == NL80211_BAND_5GHZ &&
371 		    !data->sku_cap_band_52ghz_enable)
372 			continue;
373 
374 		/* workaround to disable wide channels in 5GHz */
375 		if ((sbands_flags & IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ) &&
376 		    band == NL80211_BAND_5GHZ) {
377 			ch_flags &= ~(NVM_CHANNEL_40MHZ |
378 				     NVM_CHANNEL_80MHZ |
379 				     NVM_CHANNEL_160MHZ);
380 		}
381 
382 		if (ch_flags & NVM_CHANNEL_160MHZ)
383 			data->vht160_supported = true;
384 
385 		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR) &&
386 		    !(ch_flags & NVM_CHANNEL_VALID)) {
387 			/*
388 			 * Channels might become valid later if lar is
389 			 * supported, hence we still want to add them to
390 			 * the list of supported channels to cfg80211.
391 			 */
392 			iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
393 						    nvm_chan[ch_idx], ch_flags);
394 			continue;
395 		}
396 
397 		channel = &data->channels[n_channels];
398 		n_channels++;
399 
400 		channel->hw_value = nvm_chan[ch_idx];
401 		channel->band = band;
402 		channel->center_freq =
403 			ieee80211_channel_to_frequency(
404 				channel->hw_value, channel->band);
405 
406 		/* Initialize regulatory-based run-time data */
407 
408 		/*
409 		 * Default value - highest tx power value.  max_power
410 		 * is not used in mvm, and is used for backwards compatibility
411 		 */
412 		channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
413 
414 		/* don't put limitations in case we're using LAR */
415 		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR))
416 			channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
417 							       ch_idx, band,
418 							       ch_flags, cfg);
419 		else
420 			channel->flags = 0;
421 
422 		iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
423 					    channel->hw_value, ch_flags);
424 		IWL_DEBUG_EEPROM(dev, "Ch. %d: %ddBm\n",
425 				 channel->hw_value, channel->max_power);
426 	}
427 
428 	return n_channels;
429 }
430 
431 static void iwl_init_vht_hw_capab(struct iwl_trans *trans,
432 				  struct iwl_nvm_data *data,
433 				  struct ieee80211_sta_vht_cap *vht_cap,
434 				  u8 tx_chains, u8 rx_chains)
435 {
436 	const struct iwl_cfg *cfg = trans->cfg;
437 	int num_rx_ants = num_of_ant(rx_chains);
438 	int num_tx_ants = num_of_ant(tx_chains);
439 	unsigned int max_ampdu_exponent = (cfg->max_vht_ampdu_exponent ?:
440 					   IEEE80211_VHT_MAX_AMPDU_1024K);
441 
442 	vht_cap->vht_supported = true;
443 
444 	vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
445 		       IEEE80211_VHT_CAP_RXSTBC_1 |
446 		       IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
447 		       3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
448 		       max_ampdu_exponent <<
449 		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
450 
451 	if (data->vht160_supported)
452 		vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ |
453 				IEEE80211_VHT_CAP_SHORT_GI_160;
454 
455 	if (cfg->vht_mu_mimo_supported)
456 		vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;
457 
458 	if (cfg->ht_params->ldpc)
459 		vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
460 
461 	if (data->sku_cap_mimo_disabled) {
462 		num_rx_ants = 1;
463 		num_tx_ants = 1;
464 	}
465 
466 	if (num_tx_ants > 1)
467 		vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
468 	else
469 		vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
470 
471 	switch (iwlwifi_mod_params.amsdu_size) {
472 	case IWL_AMSDU_DEF:
473 		if (trans->trans_cfg->mq_rx_supported)
474 			vht_cap->cap |=
475 				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
476 		else
477 			vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
478 		break;
479 	case IWL_AMSDU_2K:
480 		if (trans->trans_cfg->mq_rx_supported)
481 			vht_cap->cap |=
482 				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
483 		else
484 			WARN(1, "RB size of 2K is not supported by this device\n");
485 		break;
486 	case IWL_AMSDU_4K:
487 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
488 		break;
489 	case IWL_AMSDU_8K:
490 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
491 		break;
492 	case IWL_AMSDU_12K:
493 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
494 		break;
495 	default:
496 		break;
497 	}
498 
499 	vht_cap->vht_mcs.rx_mcs_map =
500 		cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
501 			    IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
502 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
503 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
504 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
505 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
506 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
507 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);
508 
509 	if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
510 		vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
511 		/* this works because NOT_SUPPORTED == 3 */
512 		vht_cap->vht_mcs.rx_mcs_map |=
513 			cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
514 	}
515 
516 	vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
517 
518 	vht_cap->vht_mcs.tx_highest |=
519 		cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE);
520 }
521 
522 static struct ieee80211_sband_iftype_data iwl_he_capa[] = {
523 	{
524 		.types_mask = BIT(NL80211_IFTYPE_STATION),
525 		.he_cap = {
526 			.has_he = true,
527 			.he_cap_elem = {
528 				.mac_cap_info[0] =
529 					IEEE80211_HE_MAC_CAP0_HTC_HE |
530 					IEEE80211_HE_MAC_CAP0_TWT_REQ,
531 				.mac_cap_info[1] =
532 					IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
533 					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
534 				.mac_cap_info[2] =
535 					IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP |
536 					IEEE80211_HE_MAC_CAP2_ACK_EN,
537 				.mac_cap_info[3] =
538 					IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
539 					IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_VHT_2,
540 				.mac_cap_info[4] =
541 					IEEE80211_HE_MAC_CAP4_AMDSU_IN_AMPDU |
542 					IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39,
543 				.mac_cap_info[5] =
544 					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40 |
545 					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41 |
546 					IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU |
547 					IEEE80211_HE_MAC_CAP5_HE_DYNAMIC_SM_PS |
548 					IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX,
549 				.phy_cap_info[0] =
550 					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G |
551 					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
552 					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G,
553 				.phy_cap_info[1] =
554 					IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK |
555 					IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A |
556 					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
557 				.phy_cap_info[2] =
558 					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US,
559 				.phy_cap_info[3] =
560 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM |
561 					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
562 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM |
563 					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
564 				.phy_cap_info[4] =
565 					IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE |
566 					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 |
567 					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8,
568 				.phy_cap_info[5] =
569 					IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 |
570 					IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2,
571 				.phy_cap_info[6] =
572 					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
573 				.phy_cap_info[7] =
574 					IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_AR |
575 					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI |
576 					IEEE80211_HE_PHY_CAP7_MAX_NC_1,
577 				.phy_cap_info[8] =
578 					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
579 					IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
580 					IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
581 					IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU |
582 					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_2x996,
583 				.phy_cap_info[9] =
584 					IEEE80211_HE_PHY_CAP9_NON_TRIGGERED_CQI_FEEDBACK |
585 					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
586 					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB |
587 					IEEE80211_HE_PHY_CAP9_NOMIMAL_PKT_PADDING_RESERVED,
588 			},
589 			/*
590 			 * Set default Tx/Rx HE MCS NSS Support field.
591 			 * Indicate support for up to 2 spatial streams and all
592 			 * MCS, without any special cases
593 			 */
594 			.he_mcs_nss_supp = {
595 				.rx_mcs_80 = cpu_to_le16(0xfffa),
596 				.tx_mcs_80 = cpu_to_le16(0xfffa),
597 				.rx_mcs_160 = cpu_to_le16(0xfffa),
598 				.tx_mcs_160 = cpu_to_le16(0xfffa),
599 				.rx_mcs_80p80 = cpu_to_le16(0xffff),
600 				.tx_mcs_80p80 = cpu_to_le16(0xffff),
601 			},
602 			/*
603 			 * Set default PPE thresholds, with PPET16 set to 0,
604 			 * PPET8 set to 7
605 			 */
606 			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
607 		},
608 	},
609 	{
610 		.types_mask = BIT(NL80211_IFTYPE_AP),
611 		.he_cap = {
612 			.has_he = true,
613 			.he_cap_elem = {
614 				.mac_cap_info[0] =
615 					IEEE80211_HE_MAC_CAP0_HTC_HE,
616 				.mac_cap_info[1] =
617 					IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
618 					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
619 				.mac_cap_info[2] =
620 					IEEE80211_HE_MAC_CAP2_BSR |
621 					IEEE80211_HE_MAC_CAP2_ACK_EN,
622 				.mac_cap_info[3] =
623 					IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
624 					IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_VHT_2,
625 				.mac_cap_info[4] =
626 					IEEE80211_HE_MAC_CAP4_AMDSU_IN_AMPDU,
627 				.mac_cap_info[5] =
628 					IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU,
629 				.phy_cap_info[0] =
630 					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G |
631 					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
632 					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G,
633 				.phy_cap_info[1] =
634 					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
635 				.phy_cap_info[2] =
636 					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US,
637 				.phy_cap_info[3] =
638 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM |
639 					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
640 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM |
641 					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
642 				.phy_cap_info[4] =
643 					IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE |
644 					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 |
645 					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8,
646 				.phy_cap_info[5] =
647 					IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 |
648 					IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2,
649 				.phy_cap_info[6] =
650 					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
651 				.phy_cap_info[7] =
652 					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI |
653 					IEEE80211_HE_PHY_CAP7_MAX_NC_1,
654 				.phy_cap_info[8] =
655 					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
656 					IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
657 					IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
658 					IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU |
659 					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_2x996,
660 				.phy_cap_info[9] =
661 					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
662 					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB |
663 					IEEE80211_HE_PHY_CAP9_NOMIMAL_PKT_PADDING_RESERVED,
664 			},
665 			/*
666 			 * Set default Tx/Rx HE MCS NSS Support field.
667 			 * Indicate support for up to 2 spatial streams and all
668 			 * MCS, without any special cases
669 			 */
670 			.he_mcs_nss_supp = {
671 				.rx_mcs_80 = cpu_to_le16(0xfffa),
672 				.tx_mcs_80 = cpu_to_le16(0xfffa),
673 				.rx_mcs_160 = cpu_to_le16(0xfffa),
674 				.tx_mcs_160 = cpu_to_le16(0xfffa),
675 				.rx_mcs_80p80 = cpu_to_le16(0xffff),
676 				.tx_mcs_80p80 = cpu_to_le16(0xffff),
677 			},
678 			/*
679 			 * Set default PPE thresholds, with PPET16 set to 0,
680 			 * PPET8 set to 7
681 			 */
682 			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
683 		},
684 	},
685 };
686 
687 static void iwl_init_he_hw_capab(struct iwl_trans *trans,
688 				 struct iwl_nvm_data *data,
689 				 struct ieee80211_supported_band *sband,
690 				 u8 tx_chains, u8 rx_chains)
691 {
692 	sband->iftype_data = iwl_he_capa;
693 	sband->n_iftype_data = ARRAY_SIZE(iwl_he_capa);
694 
695 	/* If not 2x2, we need to indicate 1x1 in the Midamble RX Max NSTS */
696 	if ((tx_chains & rx_chains) != ANT_AB) {
697 		int i;
698 
699 		for (i = 0; i < sband->n_iftype_data; i++) {
700 			iwl_he_capa[i].he_cap.he_cap_elem.phy_cap_info[1] &=
701 				~IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS;
702 			iwl_he_capa[i].he_cap.he_cap_elem.phy_cap_info[2] &=
703 				~IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS;
704 			iwl_he_capa[i].he_cap.he_cap_elem.phy_cap_info[7] &=
705 				~IEEE80211_HE_PHY_CAP7_MAX_NC_MASK;
706 		}
707 	}
708 }
709 
710 static void iwl_init_sbands(struct iwl_trans *trans,
711 			    struct iwl_nvm_data *data,
712 			    const void *nvm_ch_flags, u8 tx_chains,
713 			    u8 rx_chains, u32 sbands_flags, bool v4)
714 {
715 	struct device *dev = trans->dev;
716 	const struct iwl_cfg *cfg = trans->cfg;
717 	int n_channels;
718 	int n_used = 0;
719 	struct ieee80211_supported_band *sband;
720 
721 	n_channels = iwl_init_channel_map(dev, cfg, data, nvm_ch_flags,
722 					  sbands_flags, v4);
723 	sband = &data->bands[NL80211_BAND_2GHZ];
724 	sband->band = NL80211_BAND_2GHZ;
725 	sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
726 	sband->n_bitrates = N_RATES_24;
727 	n_used += iwl_init_sband_channels(data, sband, n_channels,
728 					  NL80211_BAND_2GHZ);
729 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ,
730 			     tx_chains, rx_chains);
731 
732 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
733 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains);
734 
735 	sband = &data->bands[NL80211_BAND_5GHZ];
736 	sband->band = NL80211_BAND_5GHZ;
737 	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
738 	sband->n_bitrates = N_RATES_52;
739 	n_used += iwl_init_sband_channels(data, sband, n_channels,
740 					  NL80211_BAND_5GHZ);
741 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ,
742 			     tx_chains, rx_chains);
743 	if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
744 		iwl_init_vht_hw_capab(trans, data, &sband->vht_cap,
745 				      tx_chains, rx_chains);
746 
747 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
748 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains);
749 
750 	if (n_channels != n_used)
751 		IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
752 			    n_used, n_channels);
753 }
754 
755 static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
756 		       const __le16 *phy_sku)
757 {
758 	if (cfg->nvm_type != IWL_NVM_EXT)
759 		return le16_to_cpup(nvm_sw + SKU);
760 
761 	return le32_to_cpup((__le32 *)(phy_sku + SKU_FAMILY_8000));
762 }
763 
764 static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
765 {
766 	if (cfg->nvm_type != IWL_NVM_EXT)
767 		return le16_to_cpup(nvm_sw + NVM_VERSION);
768 	else
769 		return le32_to_cpup((__le32 *)(nvm_sw +
770 					       NVM_VERSION_EXT_NVM));
771 }
772 
773 static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
774 			     const __le16 *phy_sku)
775 {
776 	if (cfg->nvm_type != IWL_NVM_EXT)
777 		return le16_to_cpup(nvm_sw + RADIO_CFG);
778 
779 	return le32_to_cpup((__le32 *)(phy_sku + RADIO_CFG_FAMILY_EXT_NVM));
780 
781 }
782 
783 static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
784 {
785 	int n_hw_addr;
786 
787 	if (cfg->nvm_type != IWL_NVM_EXT)
788 		return le16_to_cpup(nvm_sw + N_HW_ADDRS);
789 
790 	n_hw_addr = le32_to_cpup((__le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000));
791 
792 	return n_hw_addr & N_HW_ADDR_MASK;
793 }
794 
795 static void iwl_set_radio_cfg(const struct iwl_cfg *cfg,
796 			      struct iwl_nvm_data *data,
797 			      u32 radio_cfg)
798 {
799 	if (cfg->nvm_type != IWL_NVM_EXT) {
800 		data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
801 		data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
802 		data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
803 		data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
804 		return;
805 	}
806 
807 	/* set the radio configuration for family 8000 */
808 	data->radio_cfg_type = EXT_NVM_RF_CFG_TYPE_MSK(radio_cfg);
809 	data->radio_cfg_step = EXT_NVM_RF_CFG_STEP_MSK(radio_cfg);
810 	data->radio_cfg_dash = EXT_NVM_RF_CFG_DASH_MSK(radio_cfg);
811 	data->radio_cfg_pnum = EXT_NVM_RF_CFG_FLAVOR_MSK(radio_cfg);
812 	data->valid_tx_ant = EXT_NVM_RF_CFG_TX_ANT_MSK(radio_cfg);
813 	data->valid_rx_ant = EXT_NVM_RF_CFG_RX_ANT_MSK(radio_cfg);
814 }
815 
816 static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest)
817 {
818 	const u8 *hw_addr;
819 
820 	hw_addr = (const u8 *)&mac_addr0;
821 	dest[0] = hw_addr[3];
822 	dest[1] = hw_addr[2];
823 	dest[2] = hw_addr[1];
824 	dest[3] = hw_addr[0];
825 
826 	hw_addr = (const u8 *)&mac_addr1;
827 	dest[4] = hw_addr[1];
828 	dest[5] = hw_addr[0];
829 }
830 
831 static void iwl_set_hw_address_from_csr(struct iwl_trans *trans,
832 					struct iwl_nvm_data *data)
833 {
834 	__le32 mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_STRAP));
835 	__le32 mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_STRAP));
836 
837 	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
838 	/*
839 	 * If the OEM fused a valid address, use it instead of the one in the
840 	 * OTP
841 	 */
842 	if (is_valid_ether_addr(data->hw_addr))
843 		return;
844 
845 	mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_OTP));
846 	mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_OTP));
847 
848 	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
849 }
850 
851 static void iwl_set_hw_address_family_8000(struct iwl_trans *trans,
852 					   const struct iwl_cfg *cfg,
853 					   struct iwl_nvm_data *data,
854 					   const __le16 *mac_override,
855 					   const __be16 *nvm_hw)
856 {
857 	const u8 *hw_addr;
858 
859 	if (mac_override) {
860 		static const u8 reserved_mac[] = {
861 			0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
862 		};
863 
864 		hw_addr = (const u8 *)(mac_override +
865 				 MAC_ADDRESS_OVERRIDE_EXT_NVM);
866 
867 		/*
868 		 * Store the MAC address from MAO section.
869 		 * No byte swapping is required in MAO section
870 		 */
871 		memcpy(data->hw_addr, hw_addr, ETH_ALEN);
872 
873 		/*
874 		 * Force the use of the OTP MAC address in case of reserved MAC
875 		 * address in the NVM, or if address is given but invalid.
876 		 */
877 		if (is_valid_ether_addr(data->hw_addr) &&
878 		    memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0)
879 			return;
880 
881 		IWL_ERR(trans,
882 			"mac address from nvm override section is not valid\n");
883 	}
884 
885 	if (nvm_hw) {
886 		/* read the mac address from WFMP registers */
887 		__le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans,
888 						WFMP_MAC_ADDR_0));
889 		__le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans,
890 						WFMP_MAC_ADDR_1));
891 
892 		iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
893 
894 		return;
895 	}
896 
897 	IWL_ERR(trans, "mac address is not found\n");
898 }
899 
900 static int iwl_set_hw_address(struct iwl_trans *trans,
901 			      const struct iwl_cfg *cfg,
902 			      struct iwl_nvm_data *data, const __be16 *nvm_hw,
903 			      const __le16 *mac_override)
904 {
905 	if (cfg->mac_addr_from_csr) {
906 		iwl_set_hw_address_from_csr(trans, data);
907 	} else if (cfg->nvm_type != IWL_NVM_EXT) {
908 		const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR);
909 
910 		/* The byte order is little endian 16 bit, meaning 214365 */
911 		data->hw_addr[0] = hw_addr[1];
912 		data->hw_addr[1] = hw_addr[0];
913 		data->hw_addr[2] = hw_addr[3];
914 		data->hw_addr[3] = hw_addr[2];
915 		data->hw_addr[4] = hw_addr[5];
916 		data->hw_addr[5] = hw_addr[4];
917 	} else {
918 		iwl_set_hw_address_family_8000(trans, cfg, data,
919 					       mac_override, nvm_hw);
920 	}
921 
922 	if (!is_valid_ether_addr(data->hw_addr)) {
923 		IWL_ERR(trans, "no valid mac address was found\n");
924 		return -EINVAL;
925 	}
926 
927 	IWL_INFO(trans, "base HW address: %pM\n", data->hw_addr);
928 
929 	return 0;
930 }
931 
932 static bool
933 iwl_nvm_no_wide_in_5ghz(struct iwl_trans *trans, const struct iwl_cfg *cfg,
934 			const __be16 *nvm_hw)
935 {
936 	/*
937 	 * Workaround a bug in Indonesia SKUs where the regulatory in
938 	 * some 7000-family OTPs erroneously allow wide channels in
939 	 * 5GHz.  To check for Indonesia, we take the SKU value from
940 	 * bits 1-4 in the subsystem ID and check if it is either 5 or
941 	 * 9.  In those cases, we need to force-disable wide channels
942 	 * in 5GHz otherwise the FW will throw a sysassert when we try
943 	 * to use them.
944 	 */
945 	if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_7000) {
946 		/*
947 		 * Unlike the other sections in the NVM, the hw
948 		 * section uses big-endian.
949 		 */
950 		u16 subsystem_id = be16_to_cpup(nvm_hw + SUBSYSTEM_ID);
951 		u8 sku = (subsystem_id & 0x1e) >> 1;
952 
953 		if (sku == 5 || sku == 9) {
954 			IWL_DEBUG_EEPROM(trans->dev,
955 					 "disabling wide channels in 5GHz (0x%0x %d)\n",
956 					 subsystem_id, sku);
957 			return true;
958 		}
959 	}
960 
961 	return false;
962 }
963 
964 struct iwl_nvm_data *
965 iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
966 		   const struct iwl_fw *fw,
967 		   const __be16 *nvm_hw, const __le16 *nvm_sw,
968 		   const __le16 *nvm_calib, const __le16 *regulatory,
969 		   const __le16 *mac_override, const __le16 *phy_sku,
970 		   u8 tx_chains, u8 rx_chains)
971 {
972 	struct iwl_nvm_data *data;
973 	bool lar_enabled;
974 	u32 sku, radio_cfg;
975 	u32 sbands_flags = 0;
976 	u16 lar_config;
977 	const __le16 *ch_section;
978 
979 	if (cfg->uhb_supported)
980 		data = kzalloc(struct_size(data, channels,
981 					   IWL_NVM_NUM_CHANNELS_UHB),
982 					   GFP_KERNEL);
983 	else if (cfg->nvm_type != IWL_NVM_EXT)
984 		data = kzalloc(struct_size(data, channels,
985 					   IWL_NVM_NUM_CHANNELS),
986 					   GFP_KERNEL);
987 	else
988 		data = kzalloc(struct_size(data, channels,
989 					   IWL_NVM_NUM_CHANNELS_EXT),
990 					   GFP_KERNEL);
991 	if (!data)
992 		return NULL;
993 
994 	data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
995 
996 	radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku);
997 	iwl_set_radio_cfg(cfg, data, radio_cfg);
998 	if (data->valid_tx_ant)
999 		tx_chains &= data->valid_tx_ant;
1000 	if (data->valid_rx_ant)
1001 		rx_chains &= data->valid_rx_ant;
1002 
1003 	sku = iwl_get_sku(cfg, nvm_sw, phy_sku);
1004 	data->sku_cap_band_24ghz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
1005 	data->sku_cap_band_52ghz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
1006 	data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
1007 	if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
1008 		data->sku_cap_11n_enable = false;
1009 	data->sku_cap_11ac_enable = data->sku_cap_11n_enable &&
1010 				    (sku & NVM_SKU_CAP_11AC_ENABLE);
1011 	data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE;
1012 
1013 	data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
1014 
1015 	if (cfg->nvm_type != IWL_NVM_EXT) {
1016 		/* Checking for required sections */
1017 		if (!nvm_calib) {
1018 			IWL_ERR(trans,
1019 				"Can't parse empty Calib NVM sections\n");
1020 			kfree(data);
1021 			return NULL;
1022 		}
1023 
1024 		ch_section = cfg->nvm_type == IWL_NVM_SDP ?
1025 			     &regulatory[NVM_CHANNELS_SDP] :
1026 			     &nvm_sw[NVM_CHANNELS];
1027 
1028 		/* in family 8000 Xtal calibration values moved to OTP */
1029 		data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB);
1030 		data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1);
1031 		lar_enabled = true;
1032 	} else {
1033 		u16 lar_offset = data->nvm_version < 0xE39 ?
1034 				 NVM_LAR_OFFSET_OLD :
1035 				 NVM_LAR_OFFSET;
1036 
1037 		lar_config = le16_to_cpup(regulatory + lar_offset);
1038 		data->lar_enabled = !!(lar_config &
1039 				       NVM_LAR_ENABLED);
1040 		lar_enabled = data->lar_enabled;
1041 		ch_section = &regulatory[NVM_CHANNELS_EXTENDED];
1042 	}
1043 
1044 	/* If no valid mac address was found - bail out */
1045 	if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) {
1046 		kfree(data);
1047 		return NULL;
1048 	}
1049 
1050 	if (lar_enabled &&
1051 	    fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT))
1052 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1053 
1054 	if (iwl_nvm_no_wide_in_5ghz(trans, cfg, nvm_hw))
1055 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ;
1056 
1057 	iwl_init_sbands(trans, data, ch_section, tx_chains, rx_chains,
1058 			sbands_flags, false);
1059 	data->calib_version = 255;
1060 
1061 	return data;
1062 }
1063 IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
1064 
1065 static u32 iwl_nvm_get_regdom_bw_flags(const u16 *nvm_chan,
1066 				       int ch_idx, u16 nvm_flags,
1067 				       u16 cap_flags,
1068 				       const struct iwl_cfg *cfg)
1069 {
1070 	u32 flags = NL80211_RRF_NO_HT40;
1071 
1072 	if (ch_idx < NUM_2GHZ_CHANNELS &&
1073 	    (nvm_flags & NVM_CHANNEL_40MHZ)) {
1074 		if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
1075 			flags &= ~NL80211_RRF_NO_HT40PLUS;
1076 		if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
1077 			flags &= ~NL80211_RRF_NO_HT40MINUS;
1078 	} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
1079 		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
1080 			flags &= ~NL80211_RRF_NO_HT40PLUS;
1081 		else
1082 			flags &= ~NL80211_RRF_NO_HT40MINUS;
1083 	}
1084 
1085 	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
1086 		flags |= NL80211_RRF_NO_80MHZ;
1087 	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
1088 		flags |= NL80211_RRF_NO_160MHZ;
1089 
1090 	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
1091 		flags |= NL80211_RRF_NO_IR;
1092 
1093 	if (nvm_flags & NVM_CHANNEL_RADAR)
1094 		flags |= NL80211_RRF_DFS;
1095 
1096 	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
1097 		flags |= NL80211_RRF_NO_OUTDOOR;
1098 
1099 	/* Set the GO concurrent flag only in case that NO_IR is set.
1100 	 * Otherwise it is meaningless
1101 	 */
1102 	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
1103 	    (flags & NL80211_RRF_NO_IR))
1104 		flags |= NL80211_RRF_GO_CONCURRENT;
1105 
1106 	/*
1107 	 * cap_flags is per regulatory domain so apply it for every channel
1108 	 */
1109 	if (ch_idx >= NUM_2GHZ_CHANNELS) {
1110 		if (cap_flags & REG_CAPA_40MHZ_FORBIDDEN)
1111 			flags |= NL80211_RRF_NO_HT40;
1112 
1113 		if (!(cap_flags & REG_CAPA_80MHZ_ALLOWED))
1114 			flags |= NL80211_RRF_NO_80MHZ;
1115 
1116 		if (!(cap_flags & REG_CAPA_160MHZ_ALLOWED))
1117 			flags |= NL80211_RRF_NO_160MHZ;
1118 	}
1119 
1120 	return flags;
1121 }
1122 
1123 struct ieee80211_regdomain *
1124 iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg,
1125 		       int num_of_ch, __le32 *channels, u16 fw_mcc,
1126 		       u16 geo_info, u16 cap)
1127 {
1128 	int ch_idx;
1129 	u16 ch_flags;
1130 	u32 reg_rule_flags, prev_reg_rule_flags = 0;
1131 	const u16 *nvm_chan;
1132 	struct ieee80211_regdomain *regd, *copy_rd;
1133 	struct ieee80211_reg_rule *rule;
1134 	enum nl80211_band band;
1135 	int center_freq, prev_center_freq = 0;
1136 	int valid_rules = 0;
1137 	bool new_rule;
1138 	int max_num_ch;
1139 
1140 	if (cfg->uhb_supported) {
1141 		max_num_ch = IWL_NVM_NUM_CHANNELS_UHB;
1142 		nvm_chan = iwl_uhb_nvm_channels;
1143 	} else if (cfg->nvm_type == IWL_NVM_EXT) {
1144 		max_num_ch = IWL_NVM_NUM_CHANNELS_EXT;
1145 		nvm_chan = iwl_ext_nvm_channels;
1146 	} else {
1147 		max_num_ch = IWL_NVM_NUM_CHANNELS;
1148 		nvm_chan = iwl_nvm_channels;
1149 	}
1150 
1151 	if (WARN_ON(num_of_ch > max_num_ch))
1152 		num_of_ch = max_num_ch;
1153 
1154 	if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES))
1155 		return ERR_PTR(-EINVAL);
1156 
1157 	IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n",
1158 		      num_of_ch);
1159 
1160 	/* build a regdomain rule for every valid channel */
1161 	regd = kzalloc(struct_size(regd, reg_rules, num_of_ch), GFP_KERNEL);
1162 	if (!regd)
1163 		return ERR_PTR(-ENOMEM);
1164 
1165 	/* set alpha2 from FW. */
1166 	regd->alpha2[0] = fw_mcc >> 8;
1167 	regd->alpha2[1] = fw_mcc & 0xff;
1168 
1169 	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
1170 		ch_flags = (u16)__le32_to_cpup(channels + ch_idx);
1171 		band = (ch_idx < NUM_2GHZ_CHANNELS) ?
1172 		       NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
1173 		center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx],
1174 							     band);
1175 		new_rule = false;
1176 
1177 		if (!(ch_flags & NVM_CHANNEL_VALID)) {
1178 			iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1179 						    nvm_chan[ch_idx], ch_flags);
1180 			continue;
1181 		}
1182 
1183 		reg_rule_flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx,
1184 							     ch_flags, cap,
1185 							     cfg);
1186 
1187 		/* we can't continue the same rule */
1188 		if (ch_idx == 0 || prev_reg_rule_flags != reg_rule_flags ||
1189 		    center_freq - prev_center_freq > 20) {
1190 			valid_rules++;
1191 			new_rule = true;
1192 		}
1193 
1194 		rule = &regd->reg_rules[valid_rules - 1];
1195 
1196 		if (new_rule)
1197 			rule->freq_range.start_freq_khz =
1198 						MHZ_TO_KHZ(center_freq - 10);
1199 
1200 		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10);
1201 
1202 		/* this doesn't matter - not used by FW */
1203 		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
1204 		rule->power_rule.max_eirp =
1205 			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
1206 
1207 		rule->flags = reg_rule_flags;
1208 
1209 		/* rely on auto-calculation to merge BW of contiguous chans */
1210 		rule->flags |= NL80211_RRF_AUTO_BW;
1211 		rule->freq_range.max_bandwidth_khz = 0;
1212 
1213 		prev_center_freq = center_freq;
1214 		prev_reg_rule_flags = reg_rule_flags;
1215 
1216 		iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1217 					    nvm_chan[ch_idx], ch_flags);
1218 
1219 		if (!(geo_info & GEO_WMM_ETSI_5GHZ_INFO) ||
1220 		    band == NL80211_BAND_2GHZ)
1221 			continue;
1222 
1223 		reg_query_regdb_wmm(regd->alpha2, center_freq, rule);
1224 	}
1225 
1226 	regd->n_reg_rules = valid_rules;
1227 
1228 	/*
1229 	 * Narrow down regdom for unused regulatory rules to prevent hole
1230 	 * between reg rules to wmm rules.
1231 	 */
1232 	copy_rd = kmemdup(regd, struct_size(regd, reg_rules, valid_rules),
1233 			  GFP_KERNEL);
1234 	if (!copy_rd)
1235 		copy_rd = ERR_PTR(-ENOMEM);
1236 
1237 	kfree(regd);
1238 	return copy_rd;
1239 }
1240 IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);
1241 
1242 #define IWL_MAX_NVM_SECTION_SIZE	0x1b58
1243 #define IWL_MAX_EXT_NVM_SECTION_SIZE	0x1ffc
1244 #define MAX_NVM_FILE_LEN	16384
1245 
1246 void iwl_nvm_fixups(u32 hw_id, unsigned int section, u8 *data,
1247 		    unsigned int len)
1248 {
1249 #define IWL_4165_DEVICE_ID	0x5501
1250 #define NVM_SKU_CAP_MIMO_DISABLE BIT(5)
1251 
1252 	if (section == NVM_SECTION_TYPE_PHY_SKU &&
1253 	    hw_id == IWL_4165_DEVICE_ID && data && len >= 5 &&
1254 	    (data[4] & NVM_SKU_CAP_MIMO_DISABLE))
1255 		/* OTP 0x52 bug work around: it's a 1x1 device */
1256 		data[3] = ANT_B | (ANT_B << 4);
1257 }
1258 IWL_EXPORT_SYMBOL(iwl_nvm_fixups);
1259 
1260 /*
1261  * Reads external NVM from a file into mvm->nvm_sections
1262  *
1263  * HOW TO CREATE THE NVM FILE FORMAT:
1264  * ------------------------------
1265  * 1. create hex file, format:
1266  *      3800 -> header
1267  *      0000 -> header
1268  *      5a40 -> data
1269  *
1270  *   rev - 6 bit (word1)
1271  *   len - 10 bit (word1)
1272  *   id - 4 bit (word2)
1273  *   rsv - 12 bit (word2)
1274  *
1275  * 2. flip 8bits with 8 bits per line to get the right NVM file format
1276  *
1277  * 3. create binary file from the hex file
1278  *
1279  * 4. save as "iNVM_xxx.bin" under /lib/firmware
1280  */
1281 int iwl_read_external_nvm(struct iwl_trans *trans,
1282 			  const char *nvm_file_name,
1283 			  struct iwl_nvm_section *nvm_sections)
1284 {
1285 	int ret, section_size;
1286 	u16 section_id;
1287 	const struct firmware *fw_entry;
1288 	const struct {
1289 		__le16 word1;
1290 		__le16 word2;
1291 		u8 data[];
1292 	} *file_sec;
1293 	const u8 *eof;
1294 	u8 *temp;
1295 	int max_section_size;
1296 	const __le32 *dword_buff;
1297 
1298 #define NVM_WORD1_LEN(x) (8 * (x & 0x03FF))
1299 #define NVM_WORD2_ID(x) (x >> 12)
1300 #define EXT_NVM_WORD2_LEN(x) (2 * (((x) & 0xFF) << 8 | (x) >> 8))
1301 #define EXT_NVM_WORD1_ID(x) ((x) >> 4)
1302 #define NVM_HEADER_0	(0x2A504C54)
1303 #define NVM_HEADER_1	(0x4E564D2A)
1304 #define NVM_HEADER_SIZE	(4 * sizeof(u32))
1305 
1306 	IWL_DEBUG_EEPROM(trans->dev, "Read from external NVM\n");
1307 
1308 	/* Maximal size depends on NVM version */
1309 	if (trans->cfg->nvm_type != IWL_NVM_EXT)
1310 		max_section_size = IWL_MAX_NVM_SECTION_SIZE;
1311 	else
1312 		max_section_size = IWL_MAX_EXT_NVM_SECTION_SIZE;
1313 
1314 	/*
1315 	 * Obtain NVM image via request_firmware. Since we already used
1316 	 * request_firmware_nowait() for the firmware binary load and only
1317 	 * get here after that we assume the NVM request can be satisfied
1318 	 * synchronously.
1319 	 */
1320 	ret = request_firmware(&fw_entry, nvm_file_name, trans->dev);
1321 	if (ret) {
1322 		IWL_ERR(trans, "ERROR: %s isn't available %d\n",
1323 			nvm_file_name, ret);
1324 		return ret;
1325 	}
1326 
1327 	IWL_INFO(trans, "Loaded NVM file %s (%zu bytes)\n",
1328 		 nvm_file_name, fw_entry->size);
1329 
1330 	if (fw_entry->size > MAX_NVM_FILE_LEN) {
1331 		IWL_ERR(trans, "NVM file too large\n");
1332 		ret = -EINVAL;
1333 		goto out;
1334 	}
1335 
1336 	eof = fw_entry->data + fw_entry->size;
1337 	dword_buff = (__le32 *)fw_entry->data;
1338 
1339 	/* some NVM file will contain a header.
1340 	 * The header is identified by 2 dwords header as follow:
1341 	 * dword[0] = 0x2A504C54
1342 	 * dword[1] = 0x4E564D2A
1343 	 *
1344 	 * This header must be skipped when providing the NVM data to the FW.
1345 	 */
1346 	if (fw_entry->size > NVM_HEADER_SIZE &&
1347 	    dword_buff[0] == cpu_to_le32(NVM_HEADER_0) &&
1348 	    dword_buff[1] == cpu_to_le32(NVM_HEADER_1)) {
1349 		file_sec = (void *)(fw_entry->data + NVM_HEADER_SIZE);
1350 		IWL_INFO(trans, "NVM Version %08X\n", le32_to_cpu(dword_buff[2]));
1351 		IWL_INFO(trans, "NVM Manufacturing date %08X\n",
1352 			 le32_to_cpu(dword_buff[3]));
1353 
1354 		/* nvm file validation, dword_buff[2] holds the file version */
1355 		if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_8000 &&
1356 		    CSR_HW_REV_STEP(trans->hw_rev) == SILICON_C_STEP &&
1357 		    le32_to_cpu(dword_buff[2]) < 0xE4A) {
1358 			ret = -EFAULT;
1359 			goto out;
1360 		}
1361 	} else {
1362 		file_sec = (void *)fw_entry->data;
1363 	}
1364 
1365 	while (true) {
1366 		if (file_sec->data > eof) {
1367 			IWL_ERR(trans,
1368 				"ERROR - NVM file too short for section header\n");
1369 			ret = -EINVAL;
1370 			break;
1371 		}
1372 
1373 		/* check for EOF marker */
1374 		if (!file_sec->word1 && !file_sec->word2) {
1375 			ret = 0;
1376 			break;
1377 		}
1378 
1379 		if (trans->cfg->nvm_type != IWL_NVM_EXT) {
1380 			section_size =
1381 				2 * NVM_WORD1_LEN(le16_to_cpu(file_sec->word1));
1382 			section_id = NVM_WORD2_ID(le16_to_cpu(file_sec->word2));
1383 		} else {
1384 			section_size = 2 * EXT_NVM_WORD2_LEN(
1385 						le16_to_cpu(file_sec->word2));
1386 			section_id = EXT_NVM_WORD1_ID(
1387 						le16_to_cpu(file_sec->word1));
1388 		}
1389 
1390 		if (section_size > max_section_size) {
1391 			IWL_ERR(trans, "ERROR - section too large (%d)\n",
1392 				section_size);
1393 			ret = -EINVAL;
1394 			break;
1395 		}
1396 
1397 		if (!section_size) {
1398 			IWL_ERR(trans, "ERROR - section empty\n");
1399 			ret = -EINVAL;
1400 			break;
1401 		}
1402 
1403 		if (file_sec->data + section_size > eof) {
1404 			IWL_ERR(trans,
1405 				"ERROR - NVM file too short for section (%d bytes)\n",
1406 				section_size);
1407 			ret = -EINVAL;
1408 			break;
1409 		}
1410 
1411 		if (WARN(section_id >= NVM_MAX_NUM_SECTIONS,
1412 			 "Invalid NVM section ID %d\n", section_id)) {
1413 			ret = -EINVAL;
1414 			break;
1415 		}
1416 
1417 		temp = kmemdup(file_sec->data, section_size, GFP_KERNEL);
1418 		if (!temp) {
1419 			ret = -ENOMEM;
1420 			break;
1421 		}
1422 
1423 		iwl_nvm_fixups(trans->hw_id, section_id, temp, section_size);
1424 
1425 		kfree(nvm_sections[section_id].data);
1426 		nvm_sections[section_id].data = temp;
1427 		nvm_sections[section_id].length = section_size;
1428 
1429 		/* advance to the next section */
1430 		file_sec = (void *)(file_sec->data + section_size);
1431 	}
1432 out:
1433 	release_firmware(fw_entry);
1434 	return ret;
1435 }
1436 IWL_EXPORT_SYMBOL(iwl_read_external_nvm);
1437 
1438 struct iwl_nvm_data *iwl_get_nvm(struct iwl_trans *trans,
1439 				 const struct iwl_fw *fw)
1440 {
1441 	struct iwl_nvm_get_info cmd = {};
1442 	struct iwl_nvm_data *nvm;
1443 	struct iwl_host_cmd hcmd = {
1444 		.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
1445 		.data = { &cmd, },
1446 		.len = { sizeof(cmd) },
1447 		.id = WIDE_ID(REGULATORY_AND_NVM_GROUP, NVM_GET_INFO)
1448 	};
1449 	int  ret;
1450 	bool empty_otp;
1451 	u32 mac_flags;
1452 	u32 sbands_flags = 0;
1453 	/*
1454 	 * All the values in iwl_nvm_get_info_rsp v4 are the same as
1455 	 * in v3, except for the channel profile part of the
1456 	 * regulatory.  So we can just access the new struct, with the
1457 	 * exception of the latter.
1458 	 */
1459 	struct iwl_nvm_get_info_rsp *rsp;
1460 	struct iwl_nvm_get_info_rsp_v3 *rsp_v3;
1461 	bool v4 = fw_has_api(&fw->ucode_capa,
1462 			     IWL_UCODE_TLV_API_REGULATORY_NVM_INFO);
1463 	size_t rsp_size = v4 ? sizeof(*rsp) : sizeof(*rsp_v3);
1464 	void *channel_profile;
1465 
1466 	ret = iwl_trans_send_cmd(trans, &hcmd);
1467 	if (ret)
1468 		return ERR_PTR(ret);
1469 
1470 	if (WARN(iwl_rx_packet_payload_len(hcmd.resp_pkt) != rsp_size,
1471 		 "Invalid payload len in NVM response from FW %d",
1472 		 iwl_rx_packet_payload_len(hcmd.resp_pkt))) {
1473 		ret = -EINVAL;
1474 		goto out;
1475 	}
1476 
1477 	rsp = (void *)hcmd.resp_pkt->data;
1478 	empty_otp = !!(le32_to_cpu(rsp->general.flags) &
1479 		       NVM_GENERAL_FLAGS_EMPTY_OTP);
1480 	if (empty_otp)
1481 		IWL_INFO(trans, "OTP is empty\n");
1482 
1483 	nvm = kzalloc(struct_size(nvm, channels, IWL_NUM_CHANNELS), GFP_KERNEL);
1484 	if (!nvm) {
1485 		ret = -ENOMEM;
1486 		goto out;
1487 	}
1488 
1489 	iwl_set_hw_address_from_csr(trans, nvm);
1490 	/* TODO: if platform NVM has MAC address - override it here */
1491 
1492 	if (!is_valid_ether_addr(nvm->hw_addr)) {
1493 		IWL_ERR(trans, "no valid mac address was found\n");
1494 		ret = -EINVAL;
1495 		goto err_free;
1496 	}
1497 
1498 	IWL_INFO(trans, "base HW address: %pM\n", nvm->hw_addr);
1499 
1500 	/* Initialize general data */
1501 	nvm->nvm_version = le16_to_cpu(rsp->general.nvm_version);
1502 	nvm->n_hw_addrs = rsp->general.n_hw_addrs;
1503 	if (nvm->n_hw_addrs == 0)
1504 		IWL_WARN(trans,
1505 			 "Firmware declares no reserved mac addresses. OTP is empty: %d\n",
1506 			 empty_otp);
1507 
1508 	/* Initialize MAC sku data */
1509 	mac_flags = le32_to_cpu(rsp->mac_sku.mac_sku_flags);
1510 	nvm->sku_cap_11ac_enable =
1511 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AC_ENABLED);
1512 	nvm->sku_cap_11n_enable =
1513 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11N_ENABLED);
1514 	nvm->sku_cap_11ax_enable =
1515 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AX_ENABLED);
1516 	nvm->sku_cap_band_24ghz_enable =
1517 		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_2_4_ENABLED);
1518 	nvm->sku_cap_band_52ghz_enable =
1519 		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_5_2_ENABLED);
1520 	nvm->sku_cap_mimo_disabled =
1521 		!!(mac_flags & NVM_MAC_SKU_FLAGS_MIMO_DISABLED);
1522 
1523 	/* Initialize PHY sku data */
1524 	nvm->valid_tx_ant = (u8)le32_to_cpu(rsp->phy_sku.tx_chains);
1525 	nvm->valid_rx_ant = (u8)le32_to_cpu(rsp->phy_sku.rx_chains);
1526 
1527 	if (le32_to_cpu(rsp->regulatory.lar_enabled) &&
1528 	    fw_has_capa(&fw->ucode_capa,
1529 			IWL_UCODE_TLV_CAPA_LAR_SUPPORT)) {
1530 		nvm->lar_enabled = true;
1531 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1532 	}
1533 
1534 	rsp_v3 = (void *)rsp;
1535 	channel_profile = v4 ? (void *)rsp->regulatory.channel_profile :
1536 			  (void *)rsp_v3->regulatory.channel_profile;
1537 
1538 	iwl_init_sbands(trans, nvm,
1539 			channel_profile,
1540 			nvm->valid_tx_ant & fw->valid_tx_ant,
1541 			nvm->valid_rx_ant & fw->valid_rx_ant,
1542 			sbands_flags, v4);
1543 
1544 	iwl_free_resp(&hcmd);
1545 	return nvm;
1546 
1547 err_free:
1548 	kfree(nvm);
1549 out:
1550 	iwl_free_resp(&hcmd);
1551 	return ERR_PTR(ret);
1552 }
1553 IWL_EXPORT_SYMBOL(iwl_get_nvm);
1554