xref: /openbmc/linux/drivers/net/wireless/intel/iwlwifi/iwl-nvm-parse.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 /******************************************************************************
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved.
9  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
10  * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
11  * Copyright(c) 2018 - 2019 Intel Corporation
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of version 2 of the GNU General Public License as
15  * published by the Free Software Foundation.
16  *
17  * This program is distributed in the hope that it will be useful, but
18  * WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20  * General Public License for more details.
21  *
22  * The full GNU General Public License is included in this distribution
23  * in the file called COPYING.
24  *
25  * Contact Information:
26  *  Intel Linux Wireless <linuxwifi@intel.com>
27  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
28  *
29  * BSD LICENSE
30  *
31  * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
32  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
33  * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
34  * Copyright(c) 2018 - 2019 Intel Corporation
35  * All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  *
41  *  * Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  *  * Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in
45  *    the documentation and/or other materials provided with the
46  *    distribution.
47  *  * Neither the name Intel Corporation nor the names of its
48  *    contributors may be used to endorse or promote products derived
49  *    from this software without specific prior written permission.
50  *
51  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
52  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
53  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
54  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
55  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
56  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
57  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
58  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
59  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
60  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
61  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
62  *****************************************************************************/
63 #include <linux/types.h>
64 #include <linux/slab.h>
65 #include <linux/export.h>
66 #include <linux/etherdevice.h>
67 #include <linux/pci.h>
68 #include <linux/firmware.h>
69 
70 #include "iwl-drv.h"
71 #include "iwl-modparams.h"
72 #include "iwl-nvm-parse.h"
73 #include "iwl-prph.h"
74 #include "iwl-io.h"
75 #include "iwl-csr.h"
76 #include "fw/acpi.h"
77 #include "fw/api/nvm-reg.h"
78 #include "fw/api/commands.h"
79 #include "fw/api/cmdhdr.h"
80 #include "fw/img.h"
81 
82 /* NVM offsets (in words) definitions */
83 enum nvm_offsets {
84 	/* NVM HW-Section offset (in words) definitions */
85 	SUBSYSTEM_ID = 0x0A,
86 	HW_ADDR = 0x15,
87 
88 	/* NVM SW-Section offset (in words) definitions */
89 	NVM_SW_SECTION = 0x1C0,
90 	NVM_VERSION = 0,
91 	RADIO_CFG = 1,
92 	SKU = 2,
93 	N_HW_ADDRS = 3,
94 	NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,
95 
96 	/* NVM calibration section offset (in words) definitions */
97 	NVM_CALIB_SECTION = 0x2B8,
98 	XTAL_CALIB = 0x316 - NVM_CALIB_SECTION,
99 
100 	/* NVM REGULATORY -Section offset (in words) definitions */
101 	NVM_CHANNELS_SDP = 0,
102 };
103 
104 enum ext_nvm_offsets {
105 	/* NVM HW-Section offset (in words) definitions */
106 	MAC_ADDRESS_OVERRIDE_EXT_NVM = 1,
107 
108 	/* NVM SW-Section offset (in words) definitions */
109 	NVM_VERSION_EXT_NVM = 0,
110 	RADIO_CFG_FAMILY_EXT_NVM = 0,
111 	SKU_FAMILY_8000 = 2,
112 	N_HW_ADDRS_FAMILY_8000 = 3,
113 
114 	/* NVM REGULATORY -Section offset (in words) definitions */
115 	NVM_CHANNELS_EXTENDED = 0,
116 	NVM_LAR_OFFSET_OLD = 0x4C7,
117 	NVM_LAR_OFFSET = 0x507,
118 	NVM_LAR_ENABLED = 0x7,
119 };
120 
121 /* SKU Capabilities (actual values from NVM definition) */
122 enum nvm_sku_bits {
123 	NVM_SKU_CAP_BAND_24GHZ		= BIT(0),
124 	NVM_SKU_CAP_BAND_52GHZ		= BIT(1),
125 	NVM_SKU_CAP_11N_ENABLE		= BIT(2),
126 	NVM_SKU_CAP_11AC_ENABLE		= BIT(3),
127 	NVM_SKU_CAP_MIMO_DISABLE	= BIT(5),
128 };
129 
130 /*
131  * These are the channel numbers in the order that they are stored in the NVM
132  */
133 static const u16 iwl_nvm_channels[] = {
134 	/* 2.4 GHz */
135 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
136 	/* 5 GHz */
137 	36, 40, 44 , 48, 52, 56, 60, 64,
138 	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
139 	149, 153, 157, 161, 165
140 };
141 
142 static const u16 iwl_ext_nvm_channels[] = {
143 	/* 2.4 GHz */
144 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
145 	/* 5 GHz */
146 	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
147 	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
148 	149, 153, 157, 161, 165, 169, 173, 177, 181
149 };
150 
151 static const u16 iwl_uhb_nvm_channels[] = {
152 	/* 2.4 GHz */
153 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
154 	/* 5 GHz */
155 	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
156 	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
157 	149, 153, 157, 161, 165, 169, 173, 177, 181,
158 	/* 6-7 GHz */
159 	1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69,
160 	73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129,
161 	133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 177, 181, 185,
162 	189, 193, 197, 201, 205, 209, 213, 217, 221, 225, 229, 233
163 };
164 
165 #define IWL_NVM_NUM_CHANNELS		ARRAY_SIZE(iwl_nvm_channels)
166 #define IWL_NVM_NUM_CHANNELS_EXT	ARRAY_SIZE(iwl_ext_nvm_channels)
167 #define IWL_NVM_NUM_CHANNELS_UHB	ARRAY_SIZE(iwl_uhb_nvm_channels)
168 #define NUM_2GHZ_CHANNELS		14
169 #define FIRST_2GHZ_HT_MINUS		5
170 #define LAST_2GHZ_HT_PLUS		9
171 #define N_HW_ADDR_MASK			0xF
172 
173 /* rate data (static) */
174 static struct ieee80211_rate iwl_cfg80211_rates[] = {
175 	{ .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
176 	{ .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
177 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
178 	{ .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
179 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
180 	{ .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
181 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
182 	{ .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
183 	{ .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
184 	{ .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
185 	{ .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
186 	{ .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
187 	{ .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
188 	{ .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
189 	{ .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
190 };
191 #define RATES_24_OFFS	0
192 #define N_RATES_24	ARRAY_SIZE(iwl_cfg80211_rates)
193 #define RATES_52_OFFS	4
194 #define N_RATES_52	(N_RATES_24 - RATES_52_OFFS)
195 
196 /**
197  * enum iwl_nvm_channel_flags - channel flags in NVM
198  * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
199  * @NVM_CHANNEL_IBSS: usable as an IBSS channel
200  * @NVM_CHANNEL_ACTIVE: active scanning allowed
201  * @NVM_CHANNEL_RADAR: radar detection required
202  * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
203  * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
204  *	on same channel on 2.4 or same UNII band on 5.2
205  * @NVM_CHANNEL_UNIFORM: uniform spreading required
206  * @NVM_CHANNEL_20MHZ: 20 MHz channel okay
207  * @NVM_CHANNEL_40MHZ: 40 MHz channel okay
208  * @NVM_CHANNEL_80MHZ: 80 MHz channel okay
209  * @NVM_CHANNEL_160MHZ: 160 MHz channel okay
210  * @NVM_CHANNEL_DC_HIGH: DC HIGH required/allowed (?)
211  */
212 enum iwl_nvm_channel_flags {
213 	NVM_CHANNEL_VALID		= BIT(0),
214 	NVM_CHANNEL_IBSS		= BIT(1),
215 	NVM_CHANNEL_ACTIVE		= BIT(3),
216 	NVM_CHANNEL_RADAR		= BIT(4),
217 	NVM_CHANNEL_INDOOR_ONLY		= BIT(5),
218 	NVM_CHANNEL_GO_CONCURRENT	= BIT(6),
219 	NVM_CHANNEL_UNIFORM		= BIT(7),
220 	NVM_CHANNEL_20MHZ		= BIT(8),
221 	NVM_CHANNEL_40MHZ		= BIT(9),
222 	NVM_CHANNEL_80MHZ		= BIT(10),
223 	NVM_CHANNEL_160MHZ		= BIT(11),
224 	NVM_CHANNEL_DC_HIGH		= BIT(12),
225 };
226 
227 /**
228  * enum iwl_reg_capa_flags - global flags applied for the whole regulatory
229  * domain.
230  * @REG_CAPA_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
231  *	2.4Ghz band is allowed.
232  * @REG_CAPA_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
233  *	5Ghz band is allowed.
234  * @REG_CAPA_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
235  *	for this regulatory domain (valid only in 5Ghz).
236  * @REG_CAPA_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
237  *	for this regulatory domain (valid only in 5Ghz).
238  * @REG_CAPA_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
239  * @REG_CAPA_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
240  * @REG_CAPA_40MHZ_FORBIDDEN: 11n channel with a width of 40Mhz is forbidden
241  *	for this regulatory domain (valid only in 5Ghz).
242  * @REG_CAPA_DC_HIGH_ENABLED: DC HIGH allowed.
243  */
244 enum iwl_reg_capa_flags {
245 	REG_CAPA_BF_CCD_LOW_BAND	= BIT(0),
246 	REG_CAPA_BF_CCD_HIGH_BAND	= BIT(1),
247 	REG_CAPA_160MHZ_ALLOWED		= BIT(2),
248 	REG_CAPA_80MHZ_ALLOWED		= BIT(3),
249 	REG_CAPA_MCS_8_ALLOWED		= BIT(4),
250 	REG_CAPA_MCS_9_ALLOWED		= BIT(5),
251 	REG_CAPA_40MHZ_FORBIDDEN	= BIT(7),
252 	REG_CAPA_DC_HIGH_ENABLED	= BIT(9),
253 };
254 
255 static inline void iwl_nvm_print_channel_flags(struct device *dev, u32 level,
256 					       int chan, u32 flags)
257 {
258 #define CHECK_AND_PRINT_I(x)	\
259 	((flags & NVM_CHANNEL_##x) ? " " #x : "")
260 
261 	if (!(flags & NVM_CHANNEL_VALID)) {
262 		IWL_DEBUG_DEV(dev, level, "Ch. %d: 0x%x: No traffic\n",
263 			      chan, flags);
264 		return;
265 	}
266 
267 	/* Note: already can print up to 101 characters, 110 is the limit! */
268 	IWL_DEBUG_DEV(dev, level,
269 		      "Ch. %d: 0x%x:%s%s%s%s%s%s%s%s%s%s%s%s\n",
270 		      chan, flags,
271 		      CHECK_AND_PRINT_I(VALID),
272 		      CHECK_AND_PRINT_I(IBSS),
273 		      CHECK_AND_PRINT_I(ACTIVE),
274 		      CHECK_AND_PRINT_I(RADAR),
275 		      CHECK_AND_PRINT_I(INDOOR_ONLY),
276 		      CHECK_AND_PRINT_I(GO_CONCURRENT),
277 		      CHECK_AND_PRINT_I(UNIFORM),
278 		      CHECK_AND_PRINT_I(20MHZ),
279 		      CHECK_AND_PRINT_I(40MHZ),
280 		      CHECK_AND_PRINT_I(80MHZ),
281 		      CHECK_AND_PRINT_I(160MHZ),
282 		      CHECK_AND_PRINT_I(DC_HIGH));
283 #undef CHECK_AND_PRINT_I
284 }
285 
286 static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, enum nl80211_band band,
287 				 u32 nvm_flags, const struct iwl_cfg *cfg)
288 {
289 	u32 flags = IEEE80211_CHAN_NO_HT40;
290 
291 	if (band == NL80211_BAND_2GHZ && (nvm_flags & NVM_CHANNEL_40MHZ)) {
292 		if (ch_num <= LAST_2GHZ_HT_PLUS)
293 			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
294 		if (ch_num >= FIRST_2GHZ_HT_MINUS)
295 			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
296 	} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
297 		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
298 			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
299 		else
300 			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
301 	}
302 	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
303 		flags |= IEEE80211_CHAN_NO_80MHZ;
304 	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
305 		flags |= IEEE80211_CHAN_NO_160MHZ;
306 
307 	if (!(nvm_flags & NVM_CHANNEL_IBSS))
308 		flags |= IEEE80211_CHAN_NO_IR;
309 
310 	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
311 		flags |= IEEE80211_CHAN_NO_IR;
312 
313 	if (nvm_flags & NVM_CHANNEL_RADAR)
314 		flags |= IEEE80211_CHAN_RADAR;
315 
316 	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
317 		flags |= IEEE80211_CHAN_INDOOR_ONLY;
318 
319 	/* Set the GO concurrent flag only in case that NO_IR is set.
320 	 * Otherwise it is meaningless
321 	 */
322 	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
323 	    (flags & IEEE80211_CHAN_NO_IR))
324 		flags |= IEEE80211_CHAN_IR_CONCURRENT;
325 
326 	return flags;
327 }
328 
329 static enum nl80211_band iwl_nl80211_band_from_channel_idx(int ch_idx)
330 {
331 	if (ch_idx >= NUM_2GHZ_CHANNELS)
332 		return NL80211_BAND_5GHZ;
333 	return NL80211_BAND_2GHZ;
334 }
335 
336 static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
337 				struct iwl_nvm_data *data,
338 				const void * const nvm_ch_flags,
339 				u32 sbands_flags, bool v4)
340 {
341 	int ch_idx;
342 	int n_channels = 0;
343 	struct ieee80211_channel *channel;
344 	u32 ch_flags;
345 	int num_of_ch;
346 	const u16 *nvm_chan;
347 
348 	if (cfg->uhb_supported) {
349 		num_of_ch = IWL_NVM_NUM_CHANNELS_UHB;
350 		nvm_chan = iwl_uhb_nvm_channels;
351 	} else if (cfg->nvm_type == IWL_NVM_EXT) {
352 		num_of_ch = IWL_NVM_NUM_CHANNELS_EXT;
353 		nvm_chan = iwl_ext_nvm_channels;
354 	} else {
355 		num_of_ch = IWL_NVM_NUM_CHANNELS;
356 		nvm_chan = iwl_nvm_channels;
357 	}
358 
359 	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
360 		enum nl80211_band band =
361 			iwl_nl80211_band_from_channel_idx(ch_idx);
362 
363 		if (v4)
364 			ch_flags =
365 				__le32_to_cpup((__le32 *)nvm_ch_flags + ch_idx);
366 		else
367 			ch_flags =
368 				__le16_to_cpup((__le16 *)nvm_ch_flags + ch_idx);
369 
370 		if (band == NL80211_BAND_5GHZ &&
371 		    !data->sku_cap_band_52ghz_enable)
372 			continue;
373 
374 		/* workaround to disable wide channels in 5GHz */
375 		if ((sbands_flags & IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ) &&
376 		    band == NL80211_BAND_5GHZ) {
377 			ch_flags &= ~(NVM_CHANNEL_40MHZ |
378 				     NVM_CHANNEL_80MHZ |
379 				     NVM_CHANNEL_160MHZ);
380 		}
381 
382 		if (ch_flags & NVM_CHANNEL_160MHZ)
383 			data->vht160_supported = true;
384 
385 		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR) &&
386 		    !(ch_flags & NVM_CHANNEL_VALID)) {
387 			/*
388 			 * Channels might become valid later if lar is
389 			 * supported, hence we still want to add them to
390 			 * the list of supported channels to cfg80211.
391 			 */
392 			iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
393 						    nvm_chan[ch_idx], ch_flags);
394 			continue;
395 		}
396 
397 		channel = &data->channels[n_channels];
398 		n_channels++;
399 
400 		channel->hw_value = nvm_chan[ch_idx];
401 		channel->band = band;
402 		channel->center_freq =
403 			ieee80211_channel_to_frequency(
404 				channel->hw_value, channel->band);
405 
406 		/* Initialize regulatory-based run-time data */
407 
408 		/*
409 		 * Default value - highest tx power value.  max_power
410 		 * is not used in mvm, and is used for backwards compatibility
411 		 */
412 		channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
413 
414 		/* don't put limitations in case we're using LAR */
415 		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR))
416 			channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
417 							       ch_idx, band,
418 							       ch_flags, cfg);
419 		else
420 			channel->flags = 0;
421 
422 		iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
423 					    channel->hw_value, ch_flags);
424 		IWL_DEBUG_EEPROM(dev, "Ch. %d: %ddBm\n",
425 				 channel->hw_value, channel->max_power);
426 	}
427 
428 	return n_channels;
429 }
430 
431 static void iwl_init_vht_hw_capab(struct iwl_trans *trans,
432 				  struct iwl_nvm_data *data,
433 				  struct ieee80211_sta_vht_cap *vht_cap,
434 				  u8 tx_chains, u8 rx_chains)
435 {
436 	const struct iwl_cfg *cfg = trans->cfg;
437 	int num_rx_ants = num_of_ant(rx_chains);
438 	int num_tx_ants = num_of_ant(tx_chains);
439 	unsigned int max_ampdu_exponent = (cfg->max_vht_ampdu_exponent ?:
440 					   IEEE80211_VHT_MAX_AMPDU_1024K);
441 
442 	vht_cap->vht_supported = true;
443 
444 	vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
445 		       IEEE80211_VHT_CAP_RXSTBC_1 |
446 		       IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
447 		       3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
448 		       max_ampdu_exponent <<
449 		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
450 
451 	if (data->vht160_supported)
452 		vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ |
453 				IEEE80211_VHT_CAP_SHORT_GI_160;
454 
455 	if (cfg->vht_mu_mimo_supported)
456 		vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;
457 
458 	if (cfg->ht_params->ldpc)
459 		vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
460 
461 	if (data->sku_cap_mimo_disabled) {
462 		num_rx_ants = 1;
463 		num_tx_ants = 1;
464 	}
465 
466 	if (num_tx_ants > 1)
467 		vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
468 	else
469 		vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
470 
471 	switch (iwlwifi_mod_params.amsdu_size) {
472 	case IWL_AMSDU_DEF:
473 		if (trans->trans_cfg->mq_rx_supported)
474 			vht_cap->cap |=
475 				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
476 		else
477 			vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
478 		break;
479 	case IWL_AMSDU_2K:
480 		if (trans->trans_cfg->mq_rx_supported)
481 			vht_cap->cap |=
482 				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
483 		else
484 			WARN(1, "RB size of 2K is not supported by this device\n");
485 		break;
486 	case IWL_AMSDU_4K:
487 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
488 		break;
489 	case IWL_AMSDU_8K:
490 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
491 		break;
492 	case IWL_AMSDU_12K:
493 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
494 		break;
495 	default:
496 		break;
497 	}
498 
499 	vht_cap->vht_mcs.rx_mcs_map =
500 		cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
501 			    IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
502 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
503 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
504 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
505 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
506 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
507 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);
508 
509 	if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
510 		vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
511 		/* this works because NOT_SUPPORTED == 3 */
512 		vht_cap->vht_mcs.rx_mcs_map |=
513 			cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
514 	}
515 
516 	vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
517 
518 	vht_cap->vht_mcs.tx_highest |=
519 		cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE);
520 }
521 
522 static struct ieee80211_sband_iftype_data iwl_he_capa[] = {
523 	{
524 		.types_mask = BIT(NL80211_IFTYPE_STATION),
525 		.he_cap = {
526 			.has_he = true,
527 			.he_cap_elem = {
528 				.mac_cap_info[0] =
529 					IEEE80211_HE_MAC_CAP0_HTC_HE |
530 					IEEE80211_HE_MAC_CAP0_TWT_REQ,
531 				.mac_cap_info[1] =
532 					IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
533 					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
534 				.mac_cap_info[2] =
535 					IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP |
536 					IEEE80211_HE_MAC_CAP2_ACK_EN,
537 				.mac_cap_info[3] =
538 					IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
539 					IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_VHT_2,
540 				.mac_cap_info[4] =
541 					IEEE80211_HE_MAC_CAP4_AMDSU_IN_AMPDU |
542 					IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39,
543 				.mac_cap_info[5] =
544 					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40 |
545 					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41 |
546 					IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU |
547 					IEEE80211_HE_MAC_CAP5_HE_DYNAMIC_SM_PS |
548 					IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX,
549 				.phy_cap_info[0] =
550 					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G |
551 					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
552 					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G,
553 				.phy_cap_info[1] =
554 					IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK |
555 					IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A |
556 					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
557 				.phy_cap_info[2] =
558 					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US,
559 				.phy_cap_info[3] =
560 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM |
561 					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
562 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM |
563 					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
564 				.phy_cap_info[4] =
565 					IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE |
566 					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 |
567 					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8,
568 				.phy_cap_info[5] =
569 					IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 |
570 					IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2,
571 				.phy_cap_info[6] =
572 					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
573 				.phy_cap_info[7] =
574 					IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_AR |
575 					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI |
576 					IEEE80211_HE_PHY_CAP7_MAX_NC_1,
577 				.phy_cap_info[8] =
578 					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
579 					IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
580 					IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
581 					IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU |
582 					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_2x996,
583 				.phy_cap_info[9] =
584 					IEEE80211_HE_PHY_CAP9_NON_TRIGGERED_CQI_FEEDBACK |
585 					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
586 					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB |
587 					IEEE80211_HE_PHY_CAP9_NOMIMAL_PKT_PADDING_RESERVED,
588 			},
589 			/*
590 			 * Set default Tx/Rx HE MCS NSS Support field.
591 			 * Indicate support for up to 2 spatial streams and all
592 			 * MCS, without any special cases
593 			 */
594 			.he_mcs_nss_supp = {
595 				.rx_mcs_80 = cpu_to_le16(0xfffa),
596 				.tx_mcs_80 = cpu_to_le16(0xfffa),
597 				.rx_mcs_160 = cpu_to_le16(0xfffa),
598 				.tx_mcs_160 = cpu_to_le16(0xfffa),
599 				.rx_mcs_80p80 = cpu_to_le16(0xffff),
600 				.tx_mcs_80p80 = cpu_to_le16(0xffff),
601 			},
602 			/*
603 			 * Set default PPE thresholds, with PPET16 set to 0,
604 			 * PPET8 set to 7
605 			 */
606 			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
607 		},
608 	},
609 	{
610 		.types_mask = BIT(NL80211_IFTYPE_AP),
611 		.he_cap = {
612 			.has_he = true,
613 			.he_cap_elem = {
614 				.mac_cap_info[0] =
615 					IEEE80211_HE_MAC_CAP0_HTC_HE,
616 				.mac_cap_info[1] =
617 					IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
618 					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
619 				.mac_cap_info[2] =
620 					IEEE80211_HE_MAC_CAP2_BSR |
621 					IEEE80211_HE_MAC_CAP2_ACK_EN,
622 				.mac_cap_info[3] =
623 					IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
624 					IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_VHT_2,
625 				.mac_cap_info[4] =
626 					IEEE80211_HE_MAC_CAP4_AMDSU_IN_AMPDU,
627 				.mac_cap_info[5] =
628 					IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU,
629 				.phy_cap_info[0] =
630 					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G |
631 					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
632 					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G,
633 				.phy_cap_info[1] =
634 					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
635 				.phy_cap_info[2] =
636 					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US,
637 				.phy_cap_info[3] =
638 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM |
639 					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
640 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM |
641 					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
642 				.phy_cap_info[4] =
643 					IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE |
644 					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 |
645 					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8,
646 				.phy_cap_info[5] =
647 					IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 |
648 					IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2,
649 				.phy_cap_info[6] =
650 					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
651 				.phy_cap_info[7] =
652 					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI |
653 					IEEE80211_HE_PHY_CAP7_MAX_NC_1,
654 				.phy_cap_info[8] =
655 					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
656 					IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
657 					IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
658 					IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU |
659 					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_2x996,
660 				.phy_cap_info[9] =
661 					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
662 					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB |
663 					IEEE80211_HE_PHY_CAP9_NOMIMAL_PKT_PADDING_RESERVED,
664 			},
665 			/*
666 			 * Set default Tx/Rx HE MCS NSS Support field.
667 			 * Indicate support for up to 2 spatial streams and all
668 			 * MCS, without any special cases
669 			 */
670 			.he_mcs_nss_supp = {
671 				.rx_mcs_80 = cpu_to_le16(0xfffa),
672 				.tx_mcs_80 = cpu_to_le16(0xfffa),
673 				.rx_mcs_160 = cpu_to_le16(0xfffa),
674 				.tx_mcs_160 = cpu_to_le16(0xfffa),
675 				.rx_mcs_80p80 = cpu_to_le16(0xffff),
676 				.tx_mcs_80p80 = cpu_to_le16(0xffff),
677 			},
678 			/*
679 			 * Set default PPE thresholds, with PPET16 set to 0,
680 			 * PPET8 set to 7
681 			 */
682 			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
683 		},
684 	},
685 };
686 
687 static void iwl_init_he_hw_capab(struct ieee80211_supported_band *sband,
688 				 u8 tx_chains, u8 rx_chains)
689 {
690 	sband->iftype_data = iwl_he_capa;
691 	sband->n_iftype_data = ARRAY_SIZE(iwl_he_capa);
692 
693 	/* If not 2x2, we need to indicate 1x1 in the Midamble RX Max NSTS */
694 	if ((tx_chains & rx_chains) != ANT_AB) {
695 		int i;
696 
697 		for (i = 0; i < sband->n_iftype_data; i++) {
698 			iwl_he_capa[i].he_cap.he_cap_elem.phy_cap_info[1] &=
699 				~IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS;
700 			iwl_he_capa[i].he_cap.he_cap_elem.phy_cap_info[2] &=
701 				~IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS;
702 			iwl_he_capa[i].he_cap.he_cap_elem.phy_cap_info[7] &=
703 				~IEEE80211_HE_PHY_CAP7_MAX_NC_MASK;
704 		}
705 	}
706 }
707 
708 static void iwl_init_sbands(struct iwl_trans *trans,
709 			    struct iwl_nvm_data *data,
710 			    const void *nvm_ch_flags, u8 tx_chains,
711 			    u8 rx_chains, u32 sbands_flags, bool v4)
712 {
713 	struct device *dev = trans->dev;
714 	const struct iwl_cfg *cfg = trans->cfg;
715 	int n_channels;
716 	int n_used = 0;
717 	struct ieee80211_supported_band *sband;
718 
719 	n_channels = iwl_init_channel_map(dev, cfg, data, nvm_ch_flags,
720 					  sbands_flags, v4);
721 	sband = &data->bands[NL80211_BAND_2GHZ];
722 	sband->band = NL80211_BAND_2GHZ;
723 	sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
724 	sband->n_bitrates = N_RATES_24;
725 	n_used += iwl_init_sband_channels(data, sband, n_channels,
726 					  NL80211_BAND_2GHZ);
727 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ,
728 			     tx_chains, rx_chains);
729 
730 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
731 		iwl_init_he_hw_capab(sband, tx_chains, rx_chains);
732 
733 	sband = &data->bands[NL80211_BAND_5GHZ];
734 	sband->band = NL80211_BAND_5GHZ;
735 	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
736 	sband->n_bitrates = N_RATES_52;
737 	n_used += iwl_init_sband_channels(data, sband, n_channels,
738 					  NL80211_BAND_5GHZ);
739 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ,
740 			     tx_chains, rx_chains);
741 	if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
742 		iwl_init_vht_hw_capab(trans, data, &sband->vht_cap,
743 				      tx_chains, rx_chains);
744 
745 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
746 		iwl_init_he_hw_capab(sband, tx_chains, rx_chains);
747 
748 	if (n_channels != n_used)
749 		IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
750 			    n_used, n_channels);
751 }
752 
753 static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
754 		       const __le16 *phy_sku)
755 {
756 	if (cfg->nvm_type != IWL_NVM_EXT)
757 		return le16_to_cpup(nvm_sw + SKU);
758 
759 	return le32_to_cpup((__le32 *)(phy_sku + SKU_FAMILY_8000));
760 }
761 
762 static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
763 {
764 	if (cfg->nvm_type != IWL_NVM_EXT)
765 		return le16_to_cpup(nvm_sw + NVM_VERSION);
766 	else
767 		return le32_to_cpup((__le32 *)(nvm_sw +
768 					       NVM_VERSION_EXT_NVM));
769 }
770 
771 static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
772 			     const __le16 *phy_sku)
773 {
774 	if (cfg->nvm_type != IWL_NVM_EXT)
775 		return le16_to_cpup(nvm_sw + RADIO_CFG);
776 
777 	return le32_to_cpup((__le32 *)(phy_sku + RADIO_CFG_FAMILY_EXT_NVM));
778 
779 }
780 
781 static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
782 {
783 	int n_hw_addr;
784 
785 	if (cfg->nvm_type != IWL_NVM_EXT)
786 		return le16_to_cpup(nvm_sw + N_HW_ADDRS);
787 
788 	n_hw_addr = le32_to_cpup((__le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000));
789 
790 	return n_hw_addr & N_HW_ADDR_MASK;
791 }
792 
793 static void iwl_set_radio_cfg(const struct iwl_cfg *cfg,
794 			      struct iwl_nvm_data *data,
795 			      u32 radio_cfg)
796 {
797 	if (cfg->nvm_type != IWL_NVM_EXT) {
798 		data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
799 		data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
800 		data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
801 		data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
802 		return;
803 	}
804 
805 	/* set the radio configuration for family 8000 */
806 	data->radio_cfg_type = EXT_NVM_RF_CFG_TYPE_MSK(radio_cfg);
807 	data->radio_cfg_step = EXT_NVM_RF_CFG_STEP_MSK(radio_cfg);
808 	data->radio_cfg_dash = EXT_NVM_RF_CFG_DASH_MSK(radio_cfg);
809 	data->radio_cfg_pnum = EXT_NVM_RF_CFG_FLAVOR_MSK(radio_cfg);
810 	data->valid_tx_ant = EXT_NVM_RF_CFG_TX_ANT_MSK(radio_cfg);
811 	data->valid_rx_ant = EXT_NVM_RF_CFG_RX_ANT_MSK(radio_cfg);
812 }
813 
814 static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest)
815 {
816 	const u8 *hw_addr;
817 
818 	hw_addr = (const u8 *)&mac_addr0;
819 	dest[0] = hw_addr[3];
820 	dest[1] = hw_addr[2];
821 	dest[2] = hw_addr[1];
822 	dest[3] = hw_addr[0];
823 
824 	hw_addr = (const u8 *)&mac_addr1;
825 	dest[4] = hw_addr[1];
826 	dest[5] = hw_addr[0];
827 }
828 
829 static void iwl_set_hw_address_from_csr(struct iwl_trans *trans,
830 					struct iwl_nvm_data *data)
831 {
832 	__le32 mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_STRAP));
833 	__le32 mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_STRAP));
834 
835 	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
836 	/*
837 	 * If the OEM fused a valid address, use it instead of the one in the
838 	 * OTP
839 	 */
840 	if (is_valid_ether_addr(data->hw_addr))
841 		return;
842 
843 	mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_OTP));
844 	mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_OTP));
845 
846 	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
847 }
848 
849 static void iwl_set_hw_address_family_8000(struct iwl_trans *trans,
850 					   const struct iwl_cfg *cfg,
851 					   struct iwl_nvm_data *data,
852 					   const __le16 *mac_override,
853 					   const __be16 *nvm_hw)
854 {
855 	const u8 *hw_addr;
856 
857 	if (mac_override) {
858 		static const u8 reserved_mac[] = {
859 			0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
860 		};
861 
862 		hw_addr = (const u8 *)(mac_override +
863 				 MAC_ADDRESS_OVERRIDE_EXT_NVM);
864 
865 		/*
866 		 * Store the MAC address from MAO section.
867 		 * No byte swapping is required in MAO section
868 		 */
869 		memcpy(data->hw_addr, hw_addr, ETH_ALEN);
870 
871 		/*
872 		 * Force the use of the OTP MAC address in case of reserved MAC
873 		 * address in the NVM, or if address is given but invalid.
874 		 */
875 		if (is_valid_ether_addr(data->hw_addr) &&
876 		    memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0)
877 			return;
878 
879 		IWL_ERR(trans,
880 			"mac address from nvm override section is not valid\n");
881 	}
882 
883 	if (nvm_hw) {
884 		/* read the mac address from WFMP registers */
885 		__le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans,
886 						WFMP_MAC_ADDR_0));
887 		__le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans,
888 						WFMP_MAC_ADDR_1));
889 
890 		iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
891 
892 		return;
893 	}
894 
895 	IWL_ERR(trans, "mac address is not found\n");
896 }
897 
898 static int iwl_set_hw_address(struct iwl_trans *trans,
899 			      const struct iwl_cfg *cfg,
900 			      struct iwl_nvm_data *data, const __be16 *nvm_hw,
901 			      const __le16 *mac_override)
902 {
903 	if (cfg->mac_addr_from_csr) {
904 		iwl_set_hw_address_from_csr(trans, data);
905 	} else if (cfg->nvm_type != IWL_NVM_EXT) {
906 		const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR);
907 
908 		/* The byte order is little endian 16 bit, meaning 214365 */
909 		data->hw_addr[0] = hw_addr[1];
910 		data->hw_addr[1] = hw_addr[0];
911 		data->hw_addr[2] = hw_addr[3];
912 		data->hw_addr[3] = hw_addr[2];
913 		data->hw_addr[4] = hw_addr[5];
914 		data->hw_addr[5] = hw_addr[4];
915 	} else {
916 		iwl_set_hw_address_family_8000(trans, cfg, data,
917 					       mac_override, nvm_hw);
918 	}
919 
920 	if (!is_valid_ether_addr(data->hw_addr)) {
921 		IWL_ERR(trans, "no valid mac address was found\n");
922 		return -EINVAL;
923 	}
924 
925 	IWL_INFO(trans, "base HW address: %pM\n", data->hw_addr);
926 
927 	return 0;
928 }
929 
930 static bool
931 iwl_nvm_no_wide_in_5ghz(struct iwl_trans *trans, const struct iwl_cfg *cfg,
932 			const __be16 *nvm_hw)
933 {
934 	/*
935 	 * Workaround a bug in Indonesia SKUs where the regulatory in
936 	 * some 7000-family OTPs erroneously allow wide channels in
937 	 * 5GHz.  To check for Indonesia, we take the SKU value from
938 	 * bits 1-4 in the subsystem ID and check if it is either 5 or
939 	 * 9.  In those cases, we need to force-disable wide channels
940 	 * in 5GHz otherwise the FW will throw a sysassert when we try
941 	 * to use them.
942 	 */
943 	if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_7000) {
944 		/*
945 		 * Unlike the other sections in the NVM, the hw
946 		 * section uses big-endian.
947 		 */
948 		u16 subsystem_id = be16_to_cpup(nvm_hw + SUBSYSTEM_ID);
949 		u8 sku = (subsystem_id & 0x1e) >> 1;
950 
951 		if (sku == 5 || sku == 9) {
952 			IWL_DEBUG_EEPROM(trans->dev,
953 					 "disabling wide channels in 5GHz (0x%0x %d)\n",
954 					 subsystem_id, sku);
955 			return true;
956 		}
957 	}
958 
959 	return false;
960 }
961 
962 struct iwl_nvm_data *
963 iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
964 		   const struct iwl_fw *fw,
965 		   const __be16 *nvm_hw, const __le16 *nvm_sw,
966 		   const __le16 *nvm_calib, const __le16 *regulatory,
967 		   const __le16 *mac_override, const __le16 *phy_sku,
968 		   u8 tx_chains, u8 rx_chains)
969 {
970 	struct iwl_nvm_data *data;
971 	bool lar_enabled;
972 	u32 sku, radio_cfg;
973 	u32 sbands_flags = 0;
974 	u16 lar_config;
975 	const __le16 *ch_section;
976 
977 	if (cfg->uhb_supported)
978 		data = kzalloc(struct_size(data, channels,
979 					   IWL_NVM_NUM_CHANNELS_UHB),
980 					   GFP_KERNEL);
981 	else if (cfg->nvm_type != IWL_NVM_EXT)
982 		data = kzalloc(struct_size(data, channels,
983 					   IWL_NVM_NUM_CHANNELS),
984 					   GFP_KERNEL);
985 	else
986 		data = kzalloc(struct_size(data, channels,
987 					   IWL_NVM_NUM_CHANNELS_EXT),
988 					   GFP_KERNEL);
989 	if (!data)
990 		return NULL;
991 
992 	data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
993 
994 	radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku);
995 	iwl_set_radio_cfg(cfg, data, radio_cfg);
996 	if (data->valid_tx_ant)
997 		tx_chains &= data->valid_tx_ant;
998 	if (data->valid_rx_ant)
999 		rx_chains &= data->valid_rx_ant;
1000 
1001 	sku = iwl_get_sku(cfg, nvm_sw, phy_sku);
1002 	data->sku_cap_band_24ghz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
1003 	data->sku_cap_band_52ghz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
1004 	data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
1005 	if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
1006 		data->sku_cap_11n_enable = false;
1007 	data->sku_cap_11ac_enable = data->sku_cap_11n_enable &&
1008 				    (sku & NVM_SKU_CAP_11AC_ENABLE);
1009 	data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE;
1010 
1011 	data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
1012 
1013 	if (cfg->nvm_type != IWL_NVM_EXT) {
1014 		/* Checking for required sections */
1015 		if (!nvm_calib) {
1016 			IWL_ERR(trans,
1017 				"Can't parse empty Calib NVM sections\n");
1018 			kfree(data);
1019 			return NULL;
1020 		}
1021 
1022 		ch_section = cfg->nvm_type == IWL_NVM_SDP ?
1023 			     &regulatory[NVM_CHANNELS_SDP] :
1024 			     &nvm_sw[NVM_CHANNELS];
1025 
1026 		/* in family 8000 Xtal calibration values moved to OTP */
1027 		data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB);
1028 		data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1);
1029 		lar_enabled = true;
1030 	} else {
1031 		u16 lar_offset = data->nvm_version < 0xE39 ?
1032 				 NVM_LAR_OFFSET_OLD :
1033 				 NVM_LAR_OFFSET;
1034 
1035 		lar_config = le16_to_cpup(regulatory + lar_offset);
1036 		data->lar_enabled = !!(lar_config &
1037 				       NVM_LAR_ENABLED);
1038 		lar_enabled = data->lar_enabled;
1039 		ch_section = &regulatory[NVM_CHANNELS_EXTENDED];
1040 	}
1041 
1042 	/* If no valid mac address was found - bail out */
1043 	if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) {
1044 		kfree(data);
1045 		return NULL;
1046 	}
1047 
1048 	if (lar_enabled &&
1049 	    fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT))
1050 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1051 
1052 	if (iwl_nvm_no_wide_in_5ghz(trans, cfg, nvm_hw))
1053 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ;
1054 
1055 	iwl_init_sbands(trans, data, ch_section, tx_chains, rx_chains,
1056 			sbands_flags, false);
1057 	data->calib_version = 255;
1058 
1059 	return data;
1060 }
1061 IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
1062 
1063 static u32 iwl_nvm_get_regdom_bw_flags(const u16 *nvm_chan,
1064 				       int ch_idx, u16 nvm_flags,
1065 				       u16 cap_flags,
1066 				       const struct iwl_cfg *cfg)
1067 {
1068 	u32 flags = NL80211_RRF_NO_HT40;
1069 
1070 	if (ch_idx < NUM_2GHZ_CHANNELS &&
1071 	    (nvm_flags & NVM_CHANNEL_40MHZ)) {
1072 		if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
1073 			flags &= ~NL80211_RRF_NO_HT40PLUS;
1074 		if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
1075 			flags &= ~NL80211_RRF_NO_HT40MINUS;
1076 	} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
1077 		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
1078 			flags &= ~NL80211_RRF_NO_HT40PLUS;
1079 		else
1080 			flags &= ~NL80211_RRF_NO_HT40MINUS;
1081 	}
1082 
1083 	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
1084 		flags |= NL80211_RRF_NO_80MHZ;
1085 	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
1086 		flags |= NL80211_RRF_NO_160MHZ;
1087 
1088 	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
1089 		flags |= NL80211_RRF_NO_IR;
1090 
1091 	if (nvm_flags & NVM_CHANNEL_RADAR)
1092 		flags |= NL80211_RRF_DFS;
1093 
1094 	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
1095 		flags |= NL80211_RRF_NO_OUTDOOR;
1096 
1097 	/* Set the GO concurrent flag only in case that NO_IR is set.
1098 	 * Otherwise it is meaningless
1099 	 */
1100 	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
1101 	    (flags & NL80211_RRF_NO_IR))
1102 		flags |= NL80211_RRF_GO_CONCURRENT;
1103 
1104 	/*
1105 	 * cap_flags is per regulatory domain so apply it for every channel
1106 	 */
1107 	if (ch_idx >= NUM_2GHZ_CHANNELS) {
1108 		if (cap_flags & REG_CAPA_40MHZ_FORBIDDEN)
1109 			flags |= NL80211_RRF_NO_HT40;
1110 
1111 		if (!(cap_flags & REG_CAPA_80MHZ_ALLOWED))
1112 			flags |= NL80211_RRF_NO_80MHZ;
1113 
1114 		if (!(cap_flags & REG_CAPA_160MHZ_ALLOWED))
1115 			flags |= NL80211_RRF_NO_160MHZ;
1116 	}
1117 
1118 	return flags;
1119 }
1120 
1121 struct ieee80211_regdomain *
1122 iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg,
1123 		       int num_of_ch, __le32 *channels, u16 fw_mcc,
1124 		       u16 geo_info, u16 cap)
1125 {
1126 	int ch_idx;
1127 	u16 ch_flags;
1128 	u32 reg_rule_flags, prev_reg_rule_flags = 0;
1129 	const u16 *nvm_chan;
1130 	struct ieee80211_regdomain *regd, *copy_rd;
1131 	struct ieee80211_reg_rule *rule;
1132 	enum nl80211_band band;
1133 	int center_freq, prev_center_freq = 0;
1134 	int valid_rules = 0;
1135 	bool new_rule;
1136 	int max_num_ch;
1137 
1138 	if (cfg->uhb_supported) {
1139 		max_num_ch = IWL_NVM_NUM_CHANNELS_UHB;
1140 		nvm_chan = iwl_uhb_nvm_channels;
1141 	} else if (cfg->nvm_type == IWL_NVM_EXT) {
1142 		max_num_ch = IWL_NVM_NUM_CHANNELS_EXT;
1143 		nvm_chan = iwl_ext_nvm_channels;
1144 	} else {
1145 		max_num_ch = IWL_NVM_NUM_CHANNELS;
1146 		nvm_chan = iwl_nvm_channels;
1147 	}
1148 
1149 	if (WARN_ON(num_of_ch > max_num_ch))
1150 		num_of_ch = max_num_ch;
1151 
1152 	if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES))
1153 		return ERR_PTR(-EINVAL);
1154 
1155 	IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n",
1156 		      num_of_ch);
1157 
1158 	/* build a regdomain rule for every valid channel */
1159 	regd = kzalloc(struct_size(regd, reg_rules, num_of_ch), GFP_KERNEL);
1160 	if (!regd)
1161 		return ERR_PTR(-ENOMEM);
1162 
1163 	/* set alpha2 from FW. */
1164 	regd->alpha2[0] = fw_mcc >> 8;
1165 	regd->alpha2[1] = fw_mcc & 0xff;
1166 
1167 	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
1168 		ch_flags = (u16)__le32_to_cpup(channels + ch_idx);
1169 		band = (ch_idx < NUM_2GHZ_CHANNELS) ?
1170 		       NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
1171 		center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx],
1172 							     band);
1173 		new_rule = false;
1174 
1175 		if (!(ch_flags & NVM_CHANNEL_VALID)) {
1176 			iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1177 						    nvm_chan[ch_idx], ch_flags);
1178 			continue;
1179 		}
1180 
1181 		reg_rule_flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx,
1182 							     ch_flags, cap,
1183 							     cfg);
1184 
1185 		/* we can't continue the same rule */
1186 		if (ch_idx == 0 || prev_reg_rule_flags != reg_rule_flags ||
1187 		    center_freq - prev_center_freq > 20) {
1188 			valid_rules++;
1189 			new_rule = true;
1190 		}
1191 
1192 		rule = &regd->reg_rules[valid_rules - 1];
1193 
1194 		if (new_rule)
1195 			rule->freq_range.start_freq_khz =
1196 						MHZ_TO_KHZ(center_freq - 10);
1197 
1198 		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10);
1199 
1200 		/* this doesn't matter - not used by FW */
1201 		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
1202 		rule->power_rule.max_eirp =
1203 			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
1204 
1205 		rule->flags = reg_rule_flags;
1206 
1207 		/* rely on auto-calculation to merge BW of contiguous chans */
1208 		rule->flags |= NL80211_RRF_AUTO_BW;
1209 		rule->freq_range.max_bandwidth_khz = 0;
1210 
1211 		prev_center_freq = center_freq;
1212 		prev_reg_rule_flags = reg_rule_flags;
1213 
1214 		iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1215 					    nvm_chan[ch_idx], ch_flags);
1216 
1217 		if (!(geo_info & GEO_WMM_ETSI_5GHZ_INFO) ||
1218 		    band == NL80211_BAND_2GHZ)
1219 			continue;
1220 
1221 		reg_query_regdb_wmm(regd->alpha2, center_freq, rule);
1222 	}
1223 
1224 	regd->n_reg_rules = valid_rules;
1225 
1226 	/*
1227 	 * Narrow down regdom for unused regulatory rules to prevent hole
1228 	 * between reg rules to wmm rules.
1229 	 */
1230 	copy_rd = kmemdup(regd, struct_size(regd, reg_rules, valid_rules),
1231 			  GFP_KERNEL);
1232 	if (!copy_rd)
1233 		copy_rd = ERR_PTR(-ENOMEM);
1234 
1235 	kfree(regd);
1236 	return copy_rd;
1237 }
1238 IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);
1239 
1240 #define IWL_MAX_NVM_SECTION_SIZE	0x1b58
1241 #define IWL_MAX_EXT_NVM_SECTION_SIZE	0x1ffc
1242 #define MAX_NVM_FILE_LEN	16384
1243 
1244 void iwl_nvm_fixups(u32 hw_id, unsigned int section, u8 *data,
1245 		    unsigned int len)
1246 {
1247 #define IWL_4165_DEVICE_ID	0x5501
1248 #define NVM_SKU_CAP_MIMO_DISABLE BIT(5)
1249 
1250 	if (section == NVM_SECTION_TYPE_PHY_SKU &&
1251 	    hw_id == IWL_4165_DEVICE_ID && data && len >= 5 &&
1252 	    (data[4] & NVM_SKU_CAP_MIMO_DISABLE))
1253 		/* OTP 0x52 bug work around: it's a 1x1 device */
1254 		data[3] = ANT_B | (ANT_B << 4);
1255 }
1256 IWL_EXPORT_SYMBOL(iwl_nvm_fixups);
1257 
1258 /*
1259  * Reads external NVM from a file into mvm->nvm_sections
1260  *
1261  * HOW TO CREATE THE NVM FILE FORMAT:
1262  * ------------------------------
1263  * 1. create hex file, format:
1264  *      3800 -> header
1265  *      0000 -> header
1266  *      5a40 -> data
1267  *
1268  *   rev - 6 bit (word1)
1269  *   len - 10 bit (word1)
1270  *   id - 4 bit (word2)
1271  *   rsv - 12 bit (word2)
1272  *
1273  * 2. flip 8bits with 8 bits per line to get the right NVM file format
1274  *
1275  * 3. create binary file from the hex file
1276  *
1277  * 4. save as "iNVM_xxx.bin" under /lib/firmware
1278  */
1279 int iwl_read_external_nvm(struct iwl_trans *trans,
1280 			  const char *nvm_file_name,
1281 			  struct iwl_nvm_section *nvm_sections)
1282 {
1283 	int ret, section_size;
1284 	u16 section_id;
1285 	const struct firmware *fw_entry;
1286 	const struct {
1287 		__le16 word1;
1288 		__le16 word2;
1289 		u8 data[];
1290 	} *file_sec;
1291 	const u8 *eof;
1292 	u8 *temp;
1293 	int max_section_size;
1294 	const __le32 *dword_buff;
1295 
1296 #define NVM_WORD1_LEN(x) (8 * (x & 0x03FF))
1297 #define NVM_WORD2_ID(x) (x >> 12)
1298 #define EXT_NVM_WORD2_LEN(x) (2 * (((x) & 0xFF) << 8 | (x) >> 8))
1299 #define EXT_NVM_WORD1_ID(x) ((x) >> 4)
1300 #define NVM_HEADER_0	(0x2A504C54)
1301 #define NVM_HEADER_1	(0x4E564D2A)
1302 #define NVM_HEADER_SIZE	(4 * sizeof(u32))
1303 
1304 	IWL_DEBUG_EEPROM(trans->dev, "Read from external NVM\n");
1305 
1306 	/* Maximal size depends on NVM version */
1307 	if (trans->cfg->nvm_type != IWL_NVM_EXT)
1308 		max_section_size = IWL_MAX_NVM_SECTION_SIZE;
1309 	else
1310 		max_section_size = IWL_MAX_EXT_NVM_SECTION_SIZE;
1311 
1312 	/*
1313 	 * Obtain NVM image via request_firmware. Since we already used
1314 	 * request_firmware_nowait() for the firmware binary load and only
1315 	 * get here after that we assume the NVM request can be satisfied
1316 	 * synchronously.
1317 	 */
1318 	ret = request_firmware(&fw_entry, nvm_file_name, trans->dev);
1319 	if (ret) {
1320 		IWL_ERR(trans, "ERROR: %s isn't available %d\n",
1321 			nvm_file_name, ret);
1322 		return ret;
1323 	}
1324 
1325 	IWL_INFO(trans, "Loaded NVM file %s (%zu bytes)\n",
1326 		 nvm_file_name, fw_entry->size);
1327 
1328 	if (fw_entry->size > MAX_NVM_FILE_LEN) {
1329 		IWL_ERR(trans, "NVM file too large\n");
1330 		ret = -EINVAL;
1331 		goto out;
1332 	}
1333 
1334 	eof = fw_entry->data + fw_entry->size;
1335 	dword_buff = (__le32 *)fw_entry->data;
1336 
1337 	/* some NVM file will contain a header.
1338 	 * The header is identified by 2 dwords header as follow:
1339 	 * dword[0] = 0x2A504C54
1340 	 * dword[1] = 0x4E564D2A
1341 	 *
1342 	 * This header must be skipped when providing the NVM data to the FW.
1343 	 */
1344 	if (fw_entry->size > NVM_HEADER_SIZE &&
1345 	    dword_buff[0] == cpu_to_le32(NVM_HEADER_0) &&
1346 	    dword_buff[1] == cpu_to_le32(NVM_HEADER_1)) {
1347 		file_sec = (void *)(fw_entry->data + NVM_HEADER_SIZE);
1348 		IWL_INFO(trans, "NVM Version %08X\n", le32_to_cpu(dword_buff[2]));
1349 		IWL_INFO(trans, "NVM Manufacturing date %08X\n",
1350 			 le32_to_cpu(dword_buff[3]));
1351 
1352 		/* nvm file validation, dword_buff[2] holds the file version */
1353 		if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_8000 &&
1354 		    CSR_HW_REV_STEP(trans->hw_rev) == SILICON_C_STEP &&
1355 		    le32_to_cpu(dword_buff[2]) < 0xE4A) {
1356 			ret = -EFAULT;
1357 			goto out;
1358 		}
1359 	} else {
1360 		file_sec = (void *)fw_entry->data;
1361 	}
1362 
1363 	while (true) {
1364 		if (file_sec->data > eof) {
1365 			IWL_ERR(trans,
1366 				"ERROR - NVM file too short for section header\n");
1367 			ret = -EINVAL;
1368 			break;
1369 		}
1370 
1371 		/* check for EOF marker */
1372 		if (!file_sec->word1 && !file_sec->word2) {
1373 			ret = 0;
1374 			break;
1375 		}
1376 
1377 		if (trans->cfg->nvm_type != IWL_NVM_EXT) {
1378 			section_size =
1379 				2 * NVM_WORD1_LEN(le16_to_cpu(file_sec->word1));
1380 			section_id = NVM_WORD2_ID(le16_to_cpu(file_sec->word2));
1381 		} else {
1382 			section_size = 2 * EXT_NVM_WORD2_LEN(
1383 						le16_to_cpu(file_sec->word2));
1384 			section_id = EXT_NVM_WORD1_ID(
1385 						le16_to_cpu(file_sec->word1));
1386 		}
1387 
1388 		if (section_size > max_section_size) {
1389 			IWL_ERR(trans, "ERROR - section too large (%d)\n",
1390 				section_size);
1391 			ret = -EINVAL;
1392 			break;
1393 		}
1394 
1395 		if (!section_size) {
1396 			IWL_ERR(trans, "ERROR - section empty\n");
1397 			ret = -EINVAL;
1398 			break;
1399 		}
1400 
1401 		if (file_sec->data + section_size > eof) {
1402 			IWL_ERR(trans,
1403 				"ERROR - NVM file too short for section (%d bytes)\n",
1404 				section_size);
1405 			ret = -EINVAL;
1406 			break;
1407 		}
1408 
1409 		if (WARN(section_id >= NVM_MAX_NUM_SECTIONS,
1410 			 "Invalid NVM section ID %d\n", section_id)) {
1411 			ret = -EINVAL;
1412 			break;
1413 		}
1414 
1415 		temp = kmemdup(file_sec->data, section_size, GFP_KERNEL);
1416 		if (!temp) {
1417 			ret = -ENOMEM;
1418 			break;
1419 		}
1420 
1421 		iwl_nvm_fixups(trans->hw_id, section_id, temp, section_size);
1422 
1423 		kfree(nvm_sections[section_id].data);
1424 		nvm_sections[section_id].data = temp;
1425 		nvm_sections[section_id].length = section_size;
1426 
1427 		/* advance to the next section */
1428 		file_sec = (void *)(file_sec->data + section_size);
1429 	}
1430 out:
1431 	release_firmware(fw_entry);
1432 	return ret;
1433 }
1434 IWL_EXPORT_SYMBOL(iwl_read_external_nvm);
1435 
1436 struct iwl_nvm_data *iwl_get_nvm(struct iwl_trans *trans,
1437 				 const struct iwl_fw *fw)
1438 {
1439 	struct iwl_nvm_get_info cmd = {};
1440 	struct iwl_nvm_data *nvm;
1441 	struct iwl_host_cmd hcmd = {
1442 		.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
1443 		.data = { &cmd, },
1444 		.len = { sizeof(cmd) },
1445 		.id = WIDE_ID(REGULATORY_AND_NVM_GROUP, NVM_GET_INFO)
1446 	};
1447 	int  ret;
1448 	bool empty_otp;
1449 	u32 mac_flags;
1450 	u32 sbands_flags = 0;
1451 	/*
1452 	 * All the values in iwl_nvm_get_info_rsp v4 are the same as
1453 	 * in v3, except for the channel profile part of the
1454 	 * regulatory.  So we can just access the new struct, with the
1455 	 * exception of the latter.
1456 	 */
1457 	struct iwl_nvm_get_info_rsp *rsp;
1458 	struct iwl_nvm_get_info_rsp_v3 *rsp_v3;
1459 	bool v4 = fw_has_api(&fw->ucode_capa,
1460 			     IWL_UCODE_TLV_API_REGULATORY_NVM_INFO);
1461 	size_t rsp_size = v4 ? sizeof(*rsp) : sizeof(*rsp_v3);
1462 	void *channel_profile;
1463 
1464 	ret = iwl_trans_send_cmd(trans, &hcmd);
1465 	if (ret)
1466 		return ERR_PTR(ret);
1467 
1468 	if (WARN(iwl_rx_packet_payload_len(hcmd.resp_pkt) != rsp_size,
1469 		 "Invalid payload len in NVM response from FW %d",
1470 		 iwl_rx_packet_payload_len(hcmd.resp_pkt))) {
1471 		ret = -EINVAL;
1472 		goto out;
1473 	}
1474 
1475 	rsp = (void *)hcmd.resp_pkt->data;
1476 	empty_otp = !!(le32_to_cpu(rsp->general.flags) &
1477 		       NVM_GENERAL_FLAGS_EMPTY_OTP);
1478 	if (empty_otp)
1479 		IWL_INFO(trans, "OTP is empty\n");
1480 
1481 	nvm = kzalloc(struct_size(nvm, channels, IWL_NUM_CHANNELS), GFP_KERNEL);
1482 	if (!nvm) {
1483 		ret = -ENOMEM;
1484 		goto out;
1485 	}
1486 
1487 	iwl_set_hw_address_from_csr(trans, nvm);
1488 	/* TODO: if platform NVM has MAC address - override it here */
1489 
1490 	if (!is_valid_ether_addr(nvm->hw_addr)) {
1491 		IWL_ERR(trans, "no valid mac address was found\n");
1492 		ret = -EINVAL;
1493 		goto err_free;
1494 	}
1495 
1496 	IWL_INFO(trans, "base HW address: %pM\n", nvm->hw_addr);
1497 
1498 	/* Initialize general data */
1499 	nvm->nvm_version = le16_to_cpu(rsp->general.nvm_version);
1500 	nvm->n_hw_addrs = rsp->general.n_hw_addrs;
1501 	if (nvm->n_hw_addrs == 0)
1502 		IWL_WARN(trans,
1503 			 "Firmware declares no reserved mac addresses. OTP is empty: %d\n",
1504 			 empty_otp);
1505 
1506 	/* Initialize MAC sku data */
1507 	mac_flags = le32_to_cpu(rsp->mac_sku.mac_sku_flags);
1508 	nvm->sku_cap_11ac_enable =
1509 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AC_ENABLED);
1510 	nvm->sku_cap_11n_enable =
1511 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11N_ENABLED);
1512 	nvm->sku_cap_11ax_enable =
1513 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AX_ENABLED);
1514 	nvm->sku_cap_band_24ghz_enable =
1515 		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_2_4_ENABLED);
1516 	nvm->sku_cap_band_52ghz_enable =
1517 		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_5_2_ENABLED);
1518 	nvm->sku_cap_mimo_disabled =
1519 		!!(mac_flags & NVM_MAC_SKU_FLAGS_MIMO_DISABLED);
1520 
1521 	/* Initialize PHY sku data */
1522 	nvm->valid_tx_ant = (u8)le32_to_cpu(rsp->phy_sku.tx_chains);
1523 	nvm->valid_rx_ant = (u8)le32_to_cpu(rsp->phy_sku.rx_chains);
1524 
1525 	if (le32_to_cpu(rsp->regulatory.lar_enabled) &&
1526 	    fw_has_capa(&fw->ucode_capa,
1527 			IWL_UCODE_TLV_CAPA_LAR_SUPPORT)) {
1528 		nvm->lar_enabled = true;
1529 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1530 	}
1531 
1532 	rsp_v3 = (void *)rsp;
1533 	channel_profile = v4 ? (void *)rsp->regulatory.channel_profile :
1534 			  (void *)rsp_v3->regulatory.channel_profile;
1535 
1536 	iwl_init_sbands(trans, nvm,
1537 			channel_profile,
1538 			nvm->valid_tx_ant & fw->valid_tx_ant,
1539 			nvm->valid_rx_ant & fw->valid_rx_ant,
1540 			sbands_flags, v4);
1541 
1542 	iwl_free_resp(&hcmd);
1543 	return nvm;
1544 
1545 err_free:
1546 	kfree(nvm);
1547 out:
1548 	iwl_free_resp(&hcmd);
1549 	return ERR_PTR(ret);
1550 }
1551 IWL_EXPORT_SYMBOL(iwl_get_nvm);
1552