1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* 3 * Copyright (C) 2005-2014, 2018-2020 Intel Corporation 4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH 5 * Copyright (C) 2016-2017 Intel Deutschland GmbH 6 */ 7 #include <linux/types.h> 8 #include <linux/slab.h> 9 #include <linux/export.h> 10 #include <linux/etherdevice.h> 11 #include <linux/pci.h> 12 #include <linux/firmware.h> 13 14 #include "iwl-drv.h" 15 #include "iwl-modparams.h" 16 #include "iwl-nvm-parse.h" 17 #include "iwl-prph.h" 18 #include "iwl-io.h" 19 #include "iwl-csr.h" 20 #include "fw/acpi.h" 21 #include "fw/api/nvm-reg.h" 22 #include "fw/api/commands.h" 23 #include "fw/api/cmdhdr.h" 24 #include "fw/img.h" 25 26 /* NVM offsets (in words) definitions */ 27 enum nvm_offsets { 28 /* NVM HW-Section offset (in words) definitions */ 29 SUBSYSTEM_ID = 0x0A, 30 HW_ADDR = 0x15, 31 32 /* NVM SW-Section offset (in words) definitions */ 33 NVM_SW_SECTION = 0x1C0, 34 NVM_VERSION = 0, 35 RADIO_CFG = 1, 36 SKU = 2, 37 N_HW_ADDRS = 3, 38 NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION, 39 40 /* NVM calibration section offset (in words) definitions */ 41 NVM_CALIB_SECTION = 0x2B8, 42 XTAL_CALIB = 0x316 - NVM_CALIB_SECTION, 43 44 /* NVM REGULATORY -Section offset (in words) definitions */ 45 NVM_CHANNELS_SDP = 0, 46 }; 47 48 enum ext_nvm_offsets { 49 /* NVM HW-Section offset (in words) definitions */ 50 MAC_ADDRESS_OVERRIDE_EXT_NVM = 1, 51 52 /* NVM SW-Section offset (in words) definitions */ 53 NVM_VERSION_EXT_NVM = 0, 54 N_HW_ADDRS_FAMILY_8000 = 3, 55 56 /* NVM PHY_SKU-Section offset (in words) definitions */ 57 RADIO_CFG_FAMILY_EXT_NVM = 0, 58 SKU_FAMILY_8000 = 2, 59 60 /* NVM REGULATORY -Section offset (in words) definitions */ 61 NVM_CHANNELS_EXTENDED = 0, 62 NVM_LAR_OFFSET_OLD = 0x4C7, 63 NVM_LAR_OFFSET = 0x507, 64 NVM_LAR_ENABLED = 0x7, 65 }; 66 67 /* SKU Capabilities (actual values from NVM definition) */ 68 enum nvm_sku_bits { 69 NVM_SKU_CAP_BAND_24GHZ = BIT(0), 70 NVM_SKU_CAP_BAND_52GHZ = BIT(1), 71 NVM_SKU_CAP_11N_ENABLE = BIT(2), 72 NVM_SKU_CAP_11AC_ENABLE = BIT(3), 73 NVM_SKU_CAP_MIMO_DISABLE = BIT(5), 74 }; 75 76 /* 77 * These are the channel numbers in the order that they are stored in the NVM 78 */ 79 static const u16 iwl_nvm_channels[] = { 80 /* 2.4 GHz */ 81 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 82 /* 5 GHz */ 83 36, 40, 44 , 48, 52, 56, 60, 64, 84 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 85 149, 153, 157, 161, 165 86 }; 87 88 static const u16 iwl_ext_nvm_channels[] = { 89 /* 2.4 GHz */ 90 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 91 /* 5 GHz */ 92 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 93 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 94 149, 153, 157, 161, 165, 169, 173, 177, 181 95 }; 96 97 static const u16 iwl_uhb_nvm_channels[] = { 98 /* 2.4 GHz */ 99 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 100 /* 5 GHz */ 101 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 102 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 103 149, 153, 157, 161, 165, 169, 173, 177, 181, 104 /* 6-7 GHz */ 105 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 106 73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129, 107 133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 177, 181, 185, 108 189, 193, 197, 201, 205, 209, 213, 217, 221, 225, 229, 233 109 }; 110 111 #define IWL_NVM_NUM_CHANNELS ARRAY_SIZE(iwl_nvm_channels) 112 #define IWL_NVM_NUM_CHANNELS_EXT ARRAY_SIZE(iwl_ext_nvm_channels) 113 #define IWL_NVM_NUM_CHANNELS_UHB ARRAY_SIZE(iwl_uhb_nvm_channels) 114 #define NUM_2GHZ_CHANNELS 14 115 #define NUM_5GHZ_CHANNELS 37 116 #define FIRST_2GHZ_HT_MINUS 5 117 #define LAST_2GHZ_HT_PLUS 9 118 #define N_HW_ADDR_MASK 0xF 119 120 /* rate data (static) */ 121 static struct ieee80211_rate iwl_cfg80211_rates[] = { 122 { .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, }, 123 { .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1, 124 .flags = IEEE80211_RATE_SHORT_PREAMBLE, }, 125 { .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2, 126 .flags = IEEE80211_RATE_SHORT_PREAMBLE, }, 127 { .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3, 128 .flags = IEEE80211_RATE_SHORT_PREAMBLE, }, 129 { .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, }, 130 { .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, }, 131 { .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, }, 132 { .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, }, 133 { .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, }, 134 { .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, }, 135 { .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, }, 136 { .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, }, 137 }; 138 #define RATES_24_OFFS 0 139 #define N_RATES_24 ARRAY_SIZE(iwl_cfg80211_rates) 140 #define RATES_52_OFFS 4 141 #define N_RATES_52 (N_RATES_24 - RATES_52_OFFS) 142 143 /** 144 * enum iwl_nvm_channel_flags - channel flags in NVM 145 * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo 146 * @NVM_CHANNEL_IBSS: usable as an IBSS channel 147 * @NVM_CHANNEL_ACTIVE: active scanning allowed 148 * @NVM_CHANNEL_RADAR: radar detection required 149 * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed 150 * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS 151 * on same channel on 2.4 or same UNII band on 5.2 152 * @NVM_CHANNEL_UNIFORM: uniform spreading required 153 * @NVM_CHANNEL_20MHZ: 20 MHz channel okay 154 * @NVM_CHANNEL_40MHZ: 40 MHz channel okay 155 * @NVM_CHANNEL_80MHZ: 80 MHz channel okay 156 * @NVM_CHANNEL_160MHZ: 160 MHz channel okay 157 * @NVM_CHANNEL_DC_HIGH: DC HIGH required/allowed (?) 158 */ 159 enum iwl_nvm_channel_flags { 160 NVM_CHANNEL_VALID = BIT(0), 161 NVM_CHANNEL_IBSS = BIT(1), 162 NVM_CHANNEL_ACTIVE = BIT(3), 163 NVM_CHANNEL_RADAR = BIT(4), 164 NVM_CHANNEL_INDOOR_ONLY = BIT(5), 165 NVM_CHANNEL_GO_CONCURRENT = BIT(6), 166 NVM_CHANNEL_UNIFORM = BIT(7), 167 NVM_CHANNEL_20MHZ = BIT(8), 168 NVM_CHANNEL_40MHZ = BIT(9), 169 NVM_CHANNEL_80MHZ = BIT(10), 170 NVM_CHANNEL_160MHZ = BIT(11), 171 NVM_CHANNEL_DC_HIGH = BIT(12), 172 }; 173 174 /** 175 * enum iwl_reg_capa_flags - global flags applied for the whole regulatory 176 * domain. 177 * @REG_CAPA_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the 178 * 2.4Ghz band is allowed. 179 * @REG_CAPA_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the 180 * 5Ghz band is allowed. 181 * @REG_CAPA_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed 182 * for this regulatory domain (valid only in 5Ghz). 183 * @REG_CAPA_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed 184 * for this regulatory domain (valid only in 5Ghz). 185 * @REG_CAPA_MCS_8_ALLOWED: 11ac with MCS 8 is allowed. 186 * @REG_CAPA_MCS_9_ALLOWED: 11ac with MCS 9 is allowed. 187 * @REG_CAPA_40MHZ_FORBIDDEN: 11n channel with a width of 40Mhz is forbidden 188 * for this regulatory domain (valid only in 5Ghz). 189 * @REG_CAPA_DC_HIGH_ENABLED: DC HIGH allowed. 190 * @REG_CAPA_11AX_DISABLED: 11ax is forbidden for this regulatory domain. 191 */ 192 enum iwl_reg_capa_flags { 193 REG_CAPA_BF_CCD_LOW_BAND = BIT(0), 194 REG_CAPA_BF_CCD_HIGH_BAND = BIT(1), 195 REG_CAPA_160MHZ_ALLOWED = BIT(2), 196 REG_CAPA_80MHZ_ALLOWED = BIT(3), 197 REG_CAPA_MCS_8_ALLOWED = BIT(4), 198 REG_CAPA_MCS_9_ALLOWED = BIT(5), 199 REG_CAPA_40MHZ_FORBIDDEN = BIT(7), 200 REG_CAPA_DC_HIGH_ENABLED = BIT(9), 201 REG_CAPA_11AX_DISABLED = BIT(10), 202 }; 203 204 /** 205 * enum iwl_reg_capa_flags_v2 - global flags applied for the whole regulatory 206 * domain (version 2). 207 * @REG_CAPA_V2_STRADDLE_DISABLED: Straddle channels (144, 142, 138) are 208 * disabled. 209 * @REG_CAPA_V2_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the 210 * 2.4Ghz band is allowed. 211 * @REG_CAPA_V2_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the 212 * 5Ghz band is allowed. 213 * @REG_CAPA_V2_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed 214 * for this regulatory domain (valid only in 5Ghz). 215 * @REG_CAPA_V2_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed 216 * for this regulatory domain (valid only in 5Ghz). 217 * @REG_CAPA_V2_MCS_8_ALLOWED: 11ac with MCS 8 is allowed. 218 * @REG_CAPA_V2_MCS_9_ALLOWED: 11ac with MCS 9 is allowed. 219 * @REG_CAPA_V2_WEATHER_DISABLED: Weather radar channels (120, 124, 128, 118, 220 * 126, 122) are disabled. 221 * @REG_CAPA_V2_40MHZ_ALLOWED: 11n channel with a width of 40Mhz is allowed 222 * for this regulatory domain (uvalid only in 5Ghz). 223 * @REG_CAPA_V2_11AX_DISABLED: 11ax is forbidden for this regulatory domain. 224 */ 225 enum iwl_reg_capa_flags_v2 { 226 REG_CAPA_V2_STRADDLE_DISABLED = BIT(0), 227 REG_CAPA_V2_BF_CCD_LOW_BAND = BIT(1), 228 REG_CAPA_V2_BF_CCD_HIGH_BAND = BIT(2), 229 REG_CAPA_V2_160MHZ_ALLOWED = BIT(3), 230 REG_CAPA_V2_80MHZ_ALLOWED = BIT(4), 231 REG_CAPA_V2_MCS_8_ALLOWED = BIT(5), 232 REG_CAPA_V2_MCS_9_ALLOWED = BIT(6), 233 REG_CAPA_V2_WEATHER_DISABLED = BIT(7), 234 REG_CAPA_V2_40MHZ_ALLOWED = BIT(8), 235 REG_CAPA_V2_11AX_DISABLED = BIT(13), 236 }; 237 238 /* 239 * API v2 for reg_capa_flags is relevant from version 6 and onwards of the 240 * MCC update command response. 241 */ 242 #define REG_CAPA_V2_RESP_VER 6 243 244 /** 245 * struct iwl_reg_capa - struct for global regulatory capabilities, Used for 246 * handling the different APIs of reg_capa_flags. 247 * 248 * @allow_40mhz: 11n channel with a width of 40Mhz is allowed 249 * for this regulatory domain (valid only in 5Ghz). 250 * @allow_80mhz: 11ac channel with a width of 80Mhz is allowed 251 * for this regulatory domain (valid only in 5Ghz). 252 * @allow_160mhz: 11ac channel with a width of 160Mhz is allowed 253 * for this regulatory domain (valid only in 5Ghz). 254 * @disable_11ax: 11ax is forbidden for this regulatory domain. 255 */ 256 struct iwl_reg_capa { 257 u16 allow_40mhz; 258 u16 allow_80mhz; 259 u16 allow_160mhz; 260 u16 disable_11ax; 261 }; 262 263 static inline void iwl_nvm_print_channel_flags(struct device *dev, u32 level, 264 int chan, u32 flags) 265 { 266 #define CHECK_AND_PRINT_I(x) \ 267 ((flags & NVM_CHANNEL_##x) ? " " #x : "") 268 269 if (!(flags & NVM_CHANNEL_VALID)) { 270 IWL_DEBUG_DEV(dev, level, "Ch. %d: 0x%x: No traffic\n", 271 chan, flags); 272 return; 273 } 274 275 /* Note: already can print up to 101 characters, 110 is the limit! */ 276 IWL_DEBUG_DEV(dev, level, 277 "Ch. %d: 0x%x:%s%s%s%s%s%s%s%s%s%s%s%s\n", 278 chan, flags, 279 CHECK_AND_PRINT_I(VALID), 280 CHECK_AND_PRINT_I(IBSS), 281 CHECK_AND_PRINT_I(ACTIVE), 282 CHECK_AND_PRINT_I(RADAR), 283 CHECK_AND_PRINT_I(INDOOR_ONLY), 284 CHECK_AND_PRINT_I(GO_CONCURRENT), 285 CHECK_AND_PRINT_I(UNIFORM), 286 CHECK_AND_PRINT_I(20MHZ), 287 CHECK_AND_PRINT_I(40MHZ), 288 CHECK_AND_PRINT_I(80MHZ), 289 CHECK_AND_PRINT_I(160MHZ), 290 CHECK_AND_PRINT_I(DC_HIGH)); 291 #undef CHECK_AND_PRINT_I 292 } 293 294 static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, enum nl80211_band band, 295 u32 nvm_flags, const struct iwl_cfg *cfg) 296 { 297 u32 flags = IEEE80211_CHAN_NO_HT40; 298 299 if (band == NL80211_BAND_2GHZ && (nvm_flags & NVM_CHANNEL_40MHZ)) { 300 if (ch_num <= LAST_2GHZ_HT_PLUS) 301 flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 302 if (ch_num >= FIRST_2GHZ_HT_MINUS) 303 flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 304 } else if (nvm_flags & NVM_CHANNEL_40MHZ) { 305 if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0) 306 flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 307 else 308 flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 309 } 310 if (!(nvm_flags & NVM_CHANNEL_80MHZ)) 311 flags |= IEEE80211_CHAN_NO_80MHZ; 312 if (!(nvm_flags & NVM_CHANNEL_160MHZ)) 313 flags |= IEEE80211_CHAN_NO_160MHZ; 314 315 if (!(nvm_flags & NVM_CHANNEL_IBSS)) 316 flags |= IEEE80211_CHAN_NO_IR; 317 318 if (!(nvm_flags & NVM_CHANNEL_ACTIVE)) 319 flags |= IEEE80211_CHAN_NO_IR; 320 321 if (nvm_flags & NVM_CHANNEL_RADAR) 322 flags |= IEEE80211_CHAN_RADAR; 323 324 if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY) 325 flags |= IEEE80211_CHAN_INDOOR_ONLY; 326 327 /* Set the GO concurrent flag only in case that NO_IR is set. 328 * Otherwise it is meaningless 329 */ 330 if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) && 331 (flags & IEEE80211_CHAN_NO_IR)) 332 flags |= IEEE80211_CHAN_IR_CONCURRENT; 333 334 return flags; 335 } 336 337 static enum nl80211_band iwl_nl80211_band_from_channel_idx(int ch_idx) 338 { 339 if (ch_idx >= NUM_2GHZ_CHANNELS + NUM_5GHZ_CHANNELS) { 340 return NL80211_BAND_6GHZ; 341 } 342 343 if (ch_idx >= NUM_2GHZ_CHANNELS) 344 return NL80211_BAND_5GHZ; 345 return NL80211_BAND_2GHZ; 346 } 347 348 static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg, 349 struct iwl_nvm_data *data, 350 const void * const nvm_ch_flags, 351 u32 sbands_flags, bool v4) 352 { 353 int ch_idx; 354 int n_channels = 0; 355 struct ieee80211_channel *channel; 356 u32 ch_flags; 357 int num_of_ch; 358 const u16 *nvm_chan; 359 360 if (cfg->uhb_supported) { 361 num_of_ch = IWL_NVM_NUM_CHANNELS_UHB; 362 nvm_chan = iwl_uhb_nvm_channels; 363 } else if (cfg->nvm_type == IWL_NVM_EXT) { 364 num_of_ch = IWL_NVM_NUM_CHANNELS_EXT; 365 nvm_chan = iwl_ext_nvm_channels; 366 } else { 367 num_of_ch = IWL_NVM_NUM_CHANNELS; 368 nvm_chan = iwl_nvm_channels; 369 } 370 371 for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) { 372 enum nl80211_band band = 373 iwl_nl80211_band_from_channel_idx(ch_idx); 374 375 if (v4) 376 ch_flags = 377 __le32_to_cpup((__le32 *)nvm_ch_flags + ch_idx); 378 else 379 ch_flags = 380 __le16_to_cpup((__le16 *)nvm_ch_flags + ch_idx); 381 382 if (band == NL80211_BAND_5GHZ && 383 !data->sku_cap_band_52ghz_enable) 384 continue; 385 386 /* workaround to disable wide channels in 5GHz */ 387 if ((sbands_flags & IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ) && 388 band == NL80211_BAND_5GHZ) { 389 ch_flags &= ~(NVM_CHANNEL_40MHZ | 390 NVM_CHANNEL_80MHZ | 391 NVM_CHANNEL_160MHZ); 392 } 393 394 if (ch_flags & NVM_CHANNEL_160MHZ) 395 data->vht160_supported = true; 396 397 if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR) && 398 !(ch_flags & NVM_CHANNEL_VALID)) { 399 /* 400 * Channels might become valid later if lar is 401 * supported, hence we still want to add them to 402 * the list of supported channels to cfg80211. 403 */ 404 iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM, 405 nvm_chan[ch_idx], ch_flags); 406 continue; 407 } 408 409 channel = &data->channels[n_channels]; 410 n_channels++; 411 412 channel->hw_value = nvm_chan[ch_idx]; 413 channel->band = band; 414 channel->center_freq = 415 ieee80211_channel_to_frequency( 416 channel->hw_value, channel->band); 417 418 /* Initialize regulatory-based run-time data */ 419 420 /* 421 * Default value - highest tx power value. max_power 422 * is not used in mvm, and is used for backwards compatibility 423 */ 424 channel->max_power = IWL_DEFAULT_MAX_TX_POWER; 425 426 /* don't put limitations in case we're using LAR */ 427 if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR)) 428 channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx], 429 ch_idx, band, 430 ch_flags, cfg); 431 else 432 channel->flags = 0; 433 434 /* TODO: Don't put limitations on UHB devices as we still don't 435 * have NVM for them 436 */ 437 if (cfg->uhb_supported) 438 channel->flags = 0; 439 iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM, 440 channel->hw_value, ch_flags); 441 IWL_DEBUG_EEPROM(dev, "Ch. %d: %ddBm\n", 442 channel->hw_value, channel->max_power); 443 } 444 445 return n_channels; 446 } 447 448 static void iwl_init_vht_hw_capab(struct iwl_trans *trans, 449 struct iwl_nvm_data *data, 450 struct ieee80211_sta_vht_cap *vht_cap, 451 u8 tx_chains, u8 rx_chains) 452 { 453 const struct iwl_cfg *cfg = trans->cfg; 454 int num_rx_ants = num_of_ant(rx_chains); 455 int num_tx_ants = num_of_ant(tx_chains); 456 unsigned int max_ampdu_exponent = (cfg->max_vht_ampdu_exponent ?: 457 IEEE80211_VHT_MAX_AMPDU_1024K); 458 459 vht_cap->vht_supported = true; 460 461 vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 | 462 IEEE80211_VHT_CAP_RXSTBC_1 | 463 IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE | 464 3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT | 465 max_ampdu_exponent << 466 IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT; 467 468 if (data->vht160_supported) 469 vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ | 470 IEEE80211_VHT_CAP_SHORT_GI_160; 471 472 if (cfg->vht_mu_mimo_supported) 473 vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE; 474 475 if (cfg->ht_params->ldpc) 476 vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC; 477 478 if (data->sku_cap_mimo_disabled) { 479 num_rx_ants = 1; 480 num_tx_ants = 1; 481 } 482 483 if (num_tx_ants > 1) 484 vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC; 485 else 486 vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN; 487 488 switch (iwlwifi_mod_params.amsdu_size) { 489 case IWL_AMSDU_DEF: 490 if (trans->trans_cfg->mq_rx_supported) 491 vht_cap->cap |= 492 IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454; 493 else 494 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895; 495 break; 496 case IWL_AMSDU_2K: 497 if (trans->trans_cfg->mq_rx_supported) 498 vht_cap->cap |= 499 IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454; 500 else 501 WARN(1, "RB size of 2K is not supported by this device\n"); 502 break; 503 case IWL_AMSDU_4K: 504 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895; 505 break; 506 case IWL_AMSDU_8K: 507 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991; 508 break; 509 case IWL_AMSDU_12K: 510 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454; 511 break; 512 default: 513 break; 514 } 515 516 vht_cap->vht_mcs.rx_mcs_map = 517 cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 | 518 IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 | 519 IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 | 520 IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 | 521 IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 | 522 IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 | 523 IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 | 524 IEEE80211_VHT_MCS_NOT_SUPPORTED << 14); 525 526 if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) { 527 vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN; 528 /* this works because NOT_SUPPORTED == 3 */ 529 vht_cap->vht_mcs.rx_mcs_map |= 530 cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2); 531 } 532 533 vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map; 534 535 vht_cap->vht_mcs.tx_highest |= 536 cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE); 537 } 538 539 static const struct ieee80211_sband_iftype_data iwl_he_capa[] = { 540 { 541 .types_mask = BIT(NL80211_IFTYPE_STATION), 542 .he_cap = { 543 .has_he = true, 544 .he_cap_elem = { 545 .mac_cap_info[0] = 546 IEEE80211_HE_MAC_CAP0_HTC_HE | 547 IEEE80211_HE_MAC_CAP0_TWT_REQ, 548 .mac_cap_info[1] = 549 IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US | 550 IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8, 551 .mac_cap_info[2] = 552 IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP, 553 .mac_cap_info[3] = 554 IEEE80211_HE_MAC_CAP3_OMI_CONTROL | 555 IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_VHT_2, 556 .mac_cap_info[4] = 557 IEEE80211_HE_MAC_CAP4_AMDSU_IN_AMPDU | 558 IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39, 559 .mac_cap_info[5] = 560 IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40 | 561 IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41 | 562 IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU | 563 IEEE80211_HE_MAC_CAP5_HE_DYNAMIC_SM_PS | 564 IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX, 565 .phy_cap_info[0] = 566 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G | 567 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G | 568 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G, 569 .phy_cap_info[1] = 570 IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK | 571 IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A | 572 IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD, 573 .phy_cap_info[2] = 574 IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US, 575 .phy_cap_info[3] = 576 IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM | 577 IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 | 578 IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM | 579 IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1, 580 .phy_cap_info[4] = 581 IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE | 582 IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 | 583 IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8, 584 .phy_cap_info[5] = 585 IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 | 586 IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2, 587 .phy_cap_info[6] = 588 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT, 589 .phy_cap_info[7] = 590 IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_AR | 591 IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI | 592 IEEE80211_HE_PHY_CAP7_MAX_NC_1, 593 .phy_cap_info[8] = 594 IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI | 595 IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G | 596 IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU | 597 IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU | 598 IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_2x996, 599 .phy_cap_info[9] = 600 IEEE80211_HE_PHY_CAP9_NON_TRIGGERED_CQI_FEEDBACK | 601 IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB | 602 IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB | 603 IEEE80211_HE_PHY_CAP9_NOMIMAL_PKT_PADDING_RESERVED, 604 }, 605 /* 606 * Set default Tx/Rx HE MCS NSS Support field. 607 * Indicate support for up to 2 spatial streams and all 608 * MCS, without any special cases 609 */ 610 .he_mcs_nss_supp = { 611 .rx_mcs_80 = cpu_to_le16(0xfffa), 612 .tx_mcs_80 = cpu_to_le16(0xfffa), 613 .rx_mcs_160 = cpu_to_le16(0xfffa), 614 .tx_mcs_160 = cpu_to_le16(0xfffa), 615 .rx_mcs_80p80 = cpu_to_le16(0xffff), 616 .tx_mcs_80p80 = cpu_to_le16(0xffff), 617 }, 618 /* 619 * Set default PPE thresholds, with PPET16 set to 0, 620 * PPET8 set to 7 621 */ 622 .ppe_thres = {0x61, 0x1c, 0xc7, 0x71}, 623 }, 624 }, 625 { 626 .types_mask = BIT(NL80211_IFTYPE_AP), 627 .he_cap = { 628 .has_he = true, 629 .he_cap_elem = { 630 .mac_cap_info[0] = 631 IEEE80211_HE_MAC_CAP0_HTC_HE, 632 .mac_cap_info[1] = 633 IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US | 634 IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8, 635 .mac_cap_info[2] = 636 IEEE80211_HE_MAC_CAP2_BSR, 637 .mac_cap_info[3] = 638 IEEE80211_HE_MAC_CAP3_OMI_CONTROL | 639 IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_VHT_2, 640 .mac_cap_info[4] = 641 IEEE80211_HE_MAC_CAP4_AMDSU_IN_AMPDU, 642 .mac_cap_info[5] = 643 IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU, 644 .phy_cap_info[0] = 645 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G | 646 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G | 647 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G, 648 .phy_cap_info[1] = 649 IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD, 650 .phy_cap_info[2] = 651 IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US, 652 .phy_cap_info[3] = 653 IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM | 654 IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 | 655 IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM | 656 IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1, 657 .phy_cap_info[4] = 658 IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE | 659 IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 | 660 IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8, 661 .phy_cap_info[5] = 662 IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 | 663 IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2, 664 .phy_cap_info[6] = 665 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT, 666 .phy_cap_info[7] = 667 IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI | 668 IEEE80211_HE_PHY_CAP7_MAX_NC_1, 669 .phy_cap_info[8] = 670 IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI | 671 IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G | 672 IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU | 673 IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU | 674 IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_2x996, 675 .phy_cap_info[9] = 676 IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB | 677 IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB | 678 IEEE80211_HE_PHY_CAP9_NOMIMAL_PKT_PADDING_RESERVED, 679 }, 680 /* 681 * Set default Tx/Rx HE MCS NSS Support field. 682 * Indicate support for up to 2 spatial streams and all 683 * MCS, without any special cases 684 */ 685 .he_mcs_nss_supp = { 686 .rx_mcs_80 = cpu_to_le16(0xfffa), 687 .tx_mcs_80 = cpu_to_le16(0xfffa), 688 .rx_mcs_160 = cpu_to_le16(0xfffa), 689 .tx_mcs_160 = cpu_to_le16(0xfffa), 690 .rx_mcs_80p80 = cpu_to_le16(0xffff), 691 .tx_mcs_80p80 = cpu_to_le16(0xffff), 692 }, 693 /* 694 * Set default PPE thresholds, with PPET16 set to 0, 695 * PPET8 set to 7 696 */ 697 .ppe_thres = {0x61, 0x1c, 0xc7, 0x71}, 698 }, 699 }, 700 }; 701 702 static void iwl_init_he_6ghz_capa(struct iwl_trans *trans, 703 struct iwl_nvm_data *data, 704 struct ieee80211_supported_band *sband, 705 u8 tx_chains, u8 rx_chains) 706 { 707 struct ieee80211_sta_ht_cap ht_cap; 708 struct ieee80211_sta_vht_cap vht_cap = {}; 709 struct ieee80211_sband_iftype_data *iftype_data; 710 u16 he_6ghz_capa = 0; 711 u32 exp; 712 int i; 713 714 if (sband->band != NL80211_BAND_6GHZ) 715 return; 716 717 /* grab HT/VHT capabilities and calculate HE 6 GHz capabilities */ 718 iwl_init_ht_hw_capab(trans, data, &ht_cap, NL80211_BAND_5GHZ, 719 tx_chains, rx_chains); 720 WARN_ON(!ht_cap.ht_supported); 721 iwl_init_vht_hw_capab(trans, data, &vht_cap, tx_chains, rx_chains); 722 WARN_ON(!vht_cap.vht_supported); 723 724 he_6ghz_capa |= 725 u16_encode_bits(ht_cap.ampdu_density, 726 IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START); 727 exp = u32_get_bits(vht_cap.cap, 728 IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK); 729 he_6ghz_capa |= 730 u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP); 731 exp = u32_get_bits(vht_cap.cap, IEEE80211_VHT_CAP_MAX_MPDU_MASK); 732 he_6ghz_capa |= 733 u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN); 734 /* we don't support extended_ht_cap_info anywhere, so no RD_RESPONDER */ 735 if (vht_cap.cap & IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN) 736 he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS; 737 if (vht_cap.cap & IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN) 738 he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS; 739 740 IWL_DEBUG_EEPROM(trans->dev, "he_6ghz_capa=0x%x\n", he_6ghz_capa); 741 742 /* we know it's writable - we set it before ourselves */ 743 iftype_data = (void *)sband->iftype_data; 744 for (i = 0; i < sband->n_iftype_data; i++) 745 iftype_data[i].he_6ghz_capa.capa = cpu_to_le16(he_6ghz_capa); 746 } 747 748 static void iwl_init_he_hw_capab(struct iwl_trans *trans, 749 struct iwl_nvm_data *data, 750 struct ieee80211_supported_band *sband, 751 u8 tx_chains, u8 rx_chains) 752 { 753 struct ieee80211_sband_iftype_data *iftype_data; 754 755 /* should only initialize once */ 756 if (WARN_ON(sband->iftype_data)) 757 return; 758 759 BUILD_BUG_ON(sizeof(data->iftd.low) != sizeof(iwl_he_capa)); 760 BUILD_BUG_ON(sizeof(data->iftd.high) != sizeof(iwl_he_capa)); 761 762 switch (sband->band) { 763 case NL80211_BAND_2GHZ: 764 iftype_data = data->iftd.low; 765 break; 766 case NL80211_BAND_5GHZ: 767 case NL80211_BAND_6GHZ: 768 iftype_data = data->iftd.high; 769 break; 770 default: 771 WARN_ON(1); 772 return; 773 } 774 775 memcpy(iftype_data, iwl_he_capa, sizeof(iwl_he_capa)); 776 777 sband->iftype_data = iftype_data; 778 sband->n_iftype_data = ARRAY_SIZE(iwl_he_capa); 779 780 /* If not 2x2, we need to indicate 1x1 in the Midamble RX Max NSTS */ 781 if ((tx_chains & rx_chains) != ANT_AB) { 782 int i; 783 784 for (i = 0; i < sband->n_iftype_data; i++) { 785 iftype_data[i].he_cap.he_cap_elem.phy_cap_info[1] &= 786 ~IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS; 787 iftype_data[i].he_cap.he_cap_elem.phy_cap_info[2] &= 788 ~IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS; 789 iftype_data[i].he_cap.he_cap_elem.phy_cap_info[7] &= 790 ~IEEE80211_HE_PHY_CAP7_MAX_NC_MASK; 791 } 792 } 793 iwl_init_he_6ghz_capa(trans, data, sband, tx_chains, rx_chains); 794 } 795 796 static void iwl_init_sbands(struct iwl_trans *trans, 797 struct iwl_nvm_data *data, 798 const void *nvm_ch_flags, u8 tx_chains, 799 u8 rx_chains, u32 sbands_flags, bool v4) 800 { 801 struct device *dev = trans->dev; 802 const struct iwl_cfg *cfg = trans->cfg; 803 int n_channels; 804 int n_used = 0; 805 struct ieee80211_supported_band *sband; 806 807 n_channels = iwl_init_channel_map(dev, cfg, data, nvm_ch_flags, 808 sbands_flags, v4); 809 sband = &data->bands[NL80211_BAND_2GHZ]; 810 sband->band = NL80211_BAND_2GHZ; 811 sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS]; 812 sband->n_bitrates = N_RATES_24; 813 n_used += iwl_init_sband_channels(data, sband, n_channels, 814 NL80211_BAND_2GHZ); 815 iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ, 816 tx_chains, rx_chains); 817 818 if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax) 819 iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains); 820 821 sband = &data->bands[NL80211_BAND_5GHZ]; 822 sband->band = NL80211_BAND_5GHZ; 823 sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS]; 824 sband->n_bitrates = N_RATES_52; 825 n_used += iwl_init_sband_channels(data, sband, n_channels, 826 NL80211_BAND_5GHZ); 827 iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ, 828 tx_chains, rx_chains); 829 if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac) 830 iwl_init_vht_hw_capab(trans, data, &sband->vht_cap, 831 tx_chains, rx_chains); 832 833 if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax) 834 iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains); 835 836 /* 6GHz band. */ 837 sband = &data->bands[NL80211_BAND_6GHZ]; 838 sband->band = NL80211_BAND_6GHZ; 839 /* use the same rates as 5GHz band */ 840 sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS]; 841 sband->n_bitrates = N_RATES_52; 842 n_used += iwl_init_sband_channels(data, sband, n_channels, 843 NL80211_BAND_6GHZ); 844 845 if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax) 846 iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains); 847 else 848 sband->n_channels = 0; 849 if (n_channels != n_used) 850 IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n", 851 n_used, n_channels); 852 } 853 854 static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw, 855 const __le16 *phy_sku) 856 { 857 if (cfg->nvm_type != IWL_NVM_EXT) 858 return le16_to_cpup(nvm_sw + SKU); 859 860 return le32_to_cpup((__le32 *)(phy_sku + SKU_FAMILY_8000)); 861 } 862 863 static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw) 864 { 865 if (cfg->nvm_type != IWL_NVM_EXT) 866 return le16_to_cpup(nvm_sw + NVM_VERSION); 867 else 868 return le32_to_cpup((__le32 *)(nvm_sw + 869 NVM_VERSION_EXT_NVM)); 870 } 871 872 static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw, 873 const __le16 *phy_sku) 874 { 875 if (cfg->nvm_type != IWL_NVM_EXT) 876 return le16_to_cpup(nvm_sw + RADIO_CFG); 877 878 return le32_to_cpup((__le32 *)(phy_sku + RADIO_CFG_FAMILY_EXT_NVM)); 879 880 } 881 882 static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw) 883 { 884 int n_hw_addr; 885 886 if (cfg->nvm_type != IWL_NVM_EXT) 887 return le16_to_cpup(nvm_sw + N_HW_ADDRS); 888 889 n_hw_addr = le32_to_cpup((__le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000)); 890 891 return n_hw_addr & N_HW_ADDR_MASK; 892 } 893 894 static void iwl_set_radio_cfg(const struct iwl_cfg *cfg, 895 struct iwl_nvm_data *data, 896 u32 radio_cfg) 897 { 898 if (cfg->nvm_type != IWL_NVM_EXT) { 899 data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg); 900 data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg); 901 data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg); 902 data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg); 903 return; 904 } 905 906 /* set the radio configuration for family 8000 */ 907 data->radio_cfg_type = EXT_NVM_RF_CFG_TYPE_MSK(radio_cfg); 908 data->radio_cfg_step = EXT_NVM_RF_CFG_STEP_MSK(radio_cfg); 909 data->radio_cfg_dash = EXT_NVM_RF_CFG_DASH_MSK(radio_cfg); 910 data->radio_cfg_pnum = EXT_NVM_RF_CFG_FLAVOR_MSK(radio_cfg); 911 data->valid_tx_ant = EXT_NVM_RF_CFG_TX_ANT_MSK(radio_cfg); 912 data->valid_rx_ant = EXT_NVM_RF_CFG_RX_ANT_MSK(radio_cfg); 913 } 914 915 static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest) 916 { 917 const u8 *hw_addr; 918 919 hw_addr = (const u8 *)&mac_addr0; 920 dest[0] = hw_addr[3]; 921 dest[1] = hw_addr[2]; 922 dest[2] = hw_addr[1]; 923 dest[3] = hw_addr[0]; 924 925 hw_addr = (const u8 *)&mac_addr1; 926 dest[4] = hw_addr[1]; 927 dest[5] = hw_addr[0]; 928 } 929 930 static void iwl_set_hw_address_from_csr(struct iwl_trans *trans, 931 struct iwl_nvm_data *data) 932 { 933 __le32 mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_STRAP)); 934 __le32 mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_STRAP)); 935 936 iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr); 937 /* 938 * If the OEM fused a valid address, use it instead of the one in the 939 * OTP 940 */ 941 if (is_valid_ether_addr(data->hw_addr)) 942 return; 943 944 mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_OTP)); 945 mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_OTP)); 946 947 iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr); 948 } 949 950 static void iwl_set_hw_address_family_8000(struct iwl_trans *trans, 951 const struct iwl_cfg *cfg, 952 struct iwl_nvm_data *data, 953 const __le16 *mac_override, 954 const __be16 *nvm_hw) 955 { 956 const u8 *hw_addr; 957 958 if (mac_override) { 959 static const u8 reserved_mac[] = { 960 0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00 961 }; 962 963 hw_addr = (const u8 *)(mac_override + 964 MAC_ADDRESS_OVERRIDE_EXT_NVM); 965 966 /* 967 * Store the MAC address from MAO section. 968 * No byte swapping is required in MAO section 969 */ 970 memcpy(data->hw_addr, hw_addr, ETH_ALEN); 971 972 /* 973 * Force the use of the OTP MAC address in case of reserved MAC 974 * address in the NVM, or if address is given but invalid. 975 */ 976 if (is_valid_ether_addr(data->hw_addr) && 977 memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0) 978 return; 979 980 IWL_ERR(trans, 981 "mac address from nvm override section is not valid\n"); 982 } 983 984 if (nvm_hw) { 985 /* read the mac address from WFMP registers */ 986 __le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans, 987 WFMP_MAC_ADDR_0)); 988 __le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans, 989 WFMP_MAC_ADDR_1)); 990 991 iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr); 992 993 return; 994 } 995 996 IWL_ERR(trans, "mac address is not found\n"); 997 } 998 999 static int iwl_set_hw_address(struct iwl_trans *trans, 1000 const struct iwl_cfg *cfg, 1001 struct iwl_nvm_data *data, const __be16 *nvm_hw, 1002 const __le16 *mac_override) 1003 { 1004 if (cfg->mac_addr_from_csr) { 1005 iwl_set_hw_address_from_csr(trans, data); 1006 } else if (cfg->nvm_type != IWL_NVM_EXT) { 1007 const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR); 1008 1009 /* The byte order is little endian 16 bit, meaning 214365 */ 1010 data->hw_addr[0] = hw_addr[1]; 1011 data->hw_addr[1] = hw_addr[0]; 1012 data->hw_addr[2] = hw_addr[3]; 1013 data->hw_addr[3] = hw_addr[2]; 1014 data->hw_addr[4] = hw_addr[5]; 1015 data->hw_addr[5] = hw_addr[4]; 1016 } else { 1017 iwl_set_hw_address_family_8000(trans, cfg, data, 1018 mac_override, nvm_hw); 1019 } 1020 1021 if (!is_valid_ether_addr(data->hw_addr)) { 1022 IWL_ERR(trans, "no valid mac address was found\n"); 1023 return -EINVAL; 1024 } 1025 1026 IWL_INFO(trans, "base HW address: %pM\n", data->hw_addr); 1027 1028 return 0; 1029 } 1030 1031 static bool 1032 iwl_nvm_no_wide_in_5ghz(struct iwl_trans *trans, const struct iwl_cfg *cfg, 1033 const __be16 *nvm_hw) 1034 { 1035 /* 1036 * Workaround a bug in Indonesia SKUs where the regulatory in 1037 * some 7000-family OTPs erroneously allow wide channels in 1038 * 5GHz. To check for Indonesia, we take the SKU value from 1039 * bits 1-4 in the subsystem ID and check if it is either 5 or 1040 * 9. In those cases, we need to force-disable wide channels 1041 * in 5GHz otherwise the FW will throw a sysassert when we try 1042 * to use them. 1043 */ 1044 if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_7000) { 1045 /* 1046 * Unlike the other sections in the NVM, the hw 1047 * section uses big-endian. 1048 */ 1049 u16 subsystem_id = be16_to_cpup(nvm_hw + SUBSYSTEM_ID); 1050 u8 sku = (subsystem_id & 0x1e) >> 1; 1051 1052 if (sku == 5 || sku == 9) { 1053 IWL_DEBUG_EEPROM(trans->dev, 1054 "disabling wide channels in 5GHz (0x%0x %d)\n", 1055 subsystem_id, sku); 1056 return true; 1057 } 1058 } 1059 1060 return false; 1061 } 1062 1063 struct iwl_nvm_data * 1064 iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg, 1065 const struct iwl_fw *fw, 1066 const __be16 *nvm_hw, const __le16 *nvm_sw, 1067 const __le16 *nvm_calib, const __le16 *regulatory, 1068 const __le16 *mac_override, const __le16 *phy_sku, 1069 u8 tx_chains, u8 rx_chains) 1070 { 1071 struct iwl_nvm_data *data; 1072 bool lar_enabled; 1073 u32 sku, radio_cfg; 1074 u32 sbands_flags = 0; 1075 u16 lar_config; 1076 const __le16 *ch_section; 1077 1078 if (cfg->uhb_supported) 1079 data = kzalloc(struct_size(data, channels, 1080 IWL_NVM_NUM_CHANNELS_UHB), 1081 GFP_KERNEL); 1082 else if (cfg->nvm_type != IWL_NVM_EXT) 1083 data = kzalloc(struct_size(data, channels, 1084 IWL_NVM_NUM_CHANNELS), 1085 GFP_KERNEL); 1086 else 1087 data = kzalloc(struct_size(data, channels, 1088 IWL_NVM_NUM_CHANNELS_EXT), 1089 GFP_KERNEL); 1090 if (!data) 1091 return NULL; 1092 1093 data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw); 1094 1095 radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku); 1096 iwl_set_radio_cfg(cfg, data, radio_cfg); 1097 if (data->valid_tx_ant) 1098 tx_chains &= data->valid_tx_ant; 1099 if (data->valid_rx_ant) 1100 rx_chains &= data->valid_rx_ant; 1101 1102 sku = iwl_get_sku(cfg, nvm_sw, phy_sku); 1103 data->sku_cap_band_24ghz_enable = sku & NVM_SKU_CAP_BAND_24GHZ; 1104 data->sku_cap_band_52ghz_enable = sku & NVM_SKU_CAP_BAND_52GHZ; 1105 data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE; 1106 if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL) 1107 data->sku_cap_11n_enable = false; 1108 data->sku_cap_11ac_enable = data->sku_cap_11n_enable && 1109 (sku & NVM_SKU_CAP_11AC_ENABLE); 1110 data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE; 1111 1112 data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw); 1113 1114 if (cfg->nvm_type != IWL_NVM_EXT) { 1115 /* Checking for required sections */ 1116 if (!nvm_calib) { 1117 IWL_ERR(trans, 1118 "Can't parse empty Calib NVM sections\n"); 1119 kfree(data); 1120 return NULL; 1121 } 1122 1123 ch_section = cfg->nvm_type == IWL_NVM_SDP ? 1124 ®ulatory[NVM_CHANNELS_SDP] : 1125 &nvm_sw[NVM_CHANNELS]; 1126 1127 /* in family 8000 Xtal calibration values moved to OTP */ 1128 data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB); 1129 data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1); 1130 lar_enabled = true; 1131 } else { 1132 u16 lar_offset = data->nvm_version < 0xE39 ? 1133 NVM_LAR_OFFSET_OLD : 1134 NVM_LAR_OFFSET; 1135 1136 lar_config = le16_to_cpup(regulatory + lar_offset); 1137 data->lar_enabled = !!(lar_config & 1138 NVM_LAR_ENABLED); 1139 lar_enabled = data->lar_enabled; 1140 ch_section = ®ulatory[NVM_CHANNELS_EXTENDED]; 1141 } 1142 1143 /* If no valid mac address was found - bail out */ 1144 if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) { 1145 kfree(data); 1146 return NULL; 1147 } 1148 1149 if (lar_enabled && 1150 fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT)) 1151 sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR; 1152 1153 if (iwl_nvm_no_wide_in_5ghz(trans, cfg, nvm_hw)) 1154 sbands_flags |= IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ; 1155 1156 iwl_init_sbands(trans, data, ch_section, tx_chains, rx_chains, 1157 sbands_flags, false); 1158 data->calib_version = 255; 1159 1160 return data; 1161 } 1162 IWL_EXPORT_SYMBOL(iwl_parse_nvm_data); 1163 1164 static u32 iwl_nvm_get_regdom_bw_flags(const u16 *nvm_chan, 1165 int ch_idx, u16 nvm_flags, 1166 struct iwl_reg_capa reg_capa, 1167 const struct iwl_cfg *cfg) 1168 { 1169 u32 flags = NL80211_RRF_NO_HT40; 1170 1171 if (ch_idx < NUM_2GHZ_CHANNELS && 1172 (nvm_flags & NVM_CHANNEL_40MHZ)) { 1173 if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS) 1174 flags &= ~NL80211_RRF_NO_HT40PLUS; 1175 if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS) 1176 flags &= ~NL80211_RRF_NO_HT40MINUS; 1177 } else if (nvm_flags & NVM_CHANNEL_40MHZ) { 1178 if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0) 1179 flags &= ~NL80211_RRF_NO_HT40PLUS; 1180 else 1181 flags &= ~NL80211_RRF_NO_HT40MINUS; 1182 } 1183 1184 if (!(nvm_flags & NVM_CHANNEL_80MHZ)) 1185 flags |= NL80211_RRF_NO_80MHZ; 1186 if (!(nvm_flags & NVM_CHANNEL_160MHZ)) 1187 flags |= NL80211_RRF_NO_160MHZ; 1188 1189 if (!(nvm_flags & NVM_CHANNEL_ACTIVE)) 1190 flags |= NL80211_RRF_NO_IR; 1191 1192 if (nvm_flags & NVM_CHANNEL_RADAR) 1193 flags |= NL80211_RRF_DFS; 1194 1195 if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY) 1196 flags |= NL80211_RRF_NO_OUTDOOR; 1197 1198 /* Set the GO concurrent flag only in case that NO_IR is set. 1199 * Otherwise it is meaningless 1200 */ 1201 if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) && 1202 (flags & NL80211_RRF_NO_IR)) 1203 flags |= NL80211_RRF_GO_CONCURRENT; 1204 1205 /* 1206 * reg_capa is per regulatory domain so apply it for every channel 1207 */ 1208 if (ch_idx >= NUM_2GHZ_CHANNELS) { 1209 if (!reg_capa.allow_40mhz) 1210 flags |= NL80211_RRF_NO_HT40; 1211 1212 if (!reg_capa.allow_80mhz) 1213 flags |= NL80211_RRF_NO_80MHZ; 1214 1215 if (!reg_capa.allow_160mhz) 1216 flags |= NL80211_RRF_NO_160MHZ; 1217 } 1218 if (reg_capa.disable_11ax) 1219 flags |= NL80211_RRF_NO_HE; 1220 1221 return flags; 1222 } 1223 1224 static struct iwl_reg_capa iwl_get_reg_capa(u16 flags, u8 resp_ver) 1225 { 1226 struct iwl_reg_capa reg_capa; 1227 1228 if (resp_ver >= REG_CAPA_V2_RESP_VER) { 1229 reg_capa.allow_40mhz = flags & REG_CAPA_V2_40MHZ_ALLOWED; 1230 reg_capa.allow_80mhz = flags & REG_CAPA_V2_80MHZ_ALLOWED; 1231 reg_capa.allow_160mhz = flags & REG_CAPA_V2_160MHZ_ALLOWED; 1232 reg_capa.disable_11ax = flags & REG_CAPA_V2_11AX_DISABLED; 1233 } else { 1234 reg_capa.allow_40mhz = !(flags & REG_CAPA_40MHZ_FORBIDDEN); 1235 reg_capa.allow_80mhz = flags & REG_CAPA_80MHZ_ALLOWED; 1236 reg_capa.allow_160mhz = flags & REG_CAPA_160MHZ_ALLOWED; 1237 reg_capa.disable_11ax = flags & REG_CAPA_11AX_DISABLED; 1238 } 1239 return reg_capa; 1240 } 1241 1242 struct ieee80211_regdomain * 1243 iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg, 1244 int num_of_ch, __le32 *channels, u16 fw_mcc, 1245 u16 geo_info, u16 cap, u8 resp_ver) 1246 { 1247 int ch_idx; 1248 u16 ch_flags; 1249 u32 reg_rule_flags, prev_reg_rule_flags = 0; 1250 const u16 *nvm_chan; 1251 struct ieee80211_regdomain *regd, *copy_rd; 1252 struct ieee80211_reg_rule *rule; 1253 enum nl80211_band band; 1254 int center_freq, prev_center_freq = 0; 1255 int valid_rules = 0; 1256 bool new_rule; 1257 int max_num_ch; 1258 struct iwl_reg_capa reg_capa; 1259 1260 if (cfg->uhb_supported) { 1261 max_num_ch = IWL_NVM_NUM_CHANNELS_UHB; 1262 nvm_chan = iwl_uhb_nvm_channels; 1263 } else if (cfg->nvm_type == IWL_NVM_EXT) { 1264 max_num_ch = IWL_NVM_NUM_CHANNELS_EXT; 1265 nvm_chan = iwl_ext_nvm_channels; 1266 } else { 1267 max_num_ch = IWL_NVM_NUM_CHANNELS; 1268 nvm_chan = iwl_nvm_channels; 1269 } 1270 1271 if (WARN_ON(num_of_ch > max_num_ch)) 1272 num_of_ch = max_num_ch; 1273 1274 if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES)) 1275 return ERR_PTR(-EINVAL); 1276 1277 IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n", 1278 num_of_ch); 1279 1280 /* build a regdomain rule for every valid channel */ 1281 regd = kzalloc(struct_size(regd, reg_rules, num_of_ch), GFP_KERNEL); 1282 if (!regd) 1283 return ERR_PTR(-ENOMEM); 1284 1285 /* set alpha2 from FW. */ 1286 regd->alpha2[0] = fw_mcc >> 8; 1287 regd->alpha2[1] = fw_mcc & 0xff; 1288 1289 /* parse regulatory capability flags */ 1290 reg_capa = iwl_get_reg_capa(cap, resp_ver); 1291 1292 for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) { 1293 ch_flags = (u16)__le32_to_cpup(channels + ch_idx); 1294 band = iwl_nl80211_band_from_channel_idx(ch_idx); 1295 center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx], 1296 band); 1297 new_rule = false; 1298 1299 if (!(ch_flags & NVM_CHANNEL_VALID)) { 1300 iwl_nvm_print_channel_flags(dev, IWL_DL_LAR, 1301 nvm_chan[ch_idx], ch_flags); 1302 continue; 1303 } 1304 1305 reg_rule_flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx, 1306 ch_flags, reg_capa, 1307 cfg); 1308 1309 /* we can't continue the same rule */ 1310 if (ch_idx == 0 || prev_reg_rule_flags != reg_rule_flags || 1311 center_freq - prev_center_freq > 20) { 1312 valid_rules++; 1313 new_rule = true; 1314 } 1315 1316 rule = ®d->reg_rules[valid_rules - 1]; 1317 1318 if (new_rule) 1319 rule->freq_range.start_freq_khz = 1320 MHZ_TO_KHZ(center_freq - 10); 1321 1322 rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10); 1323 1324 /* this doesn't matter - not used by FW */ 1325 rule->power_rule.max_antenna_gain = DBI_TO_MBI(6); 1326 rule->power_rule.max_eirp = 1327 DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER); 1328 1329 rule->flags = reg_rule_flags; 1330 1331 /* rely on auto-calculation to merge BW of contiguous chans */ 1332 rule->flags |= NL80211_RRF_AUTO_BW; 1333 rule->freq_range.max_bandwidth_khz = 0; 1334 1335 prev_center_freq = center_freq; 1336 prev_reg_rule_flags = reg_rule_flags; 1337 1338 iwl_nvm_print_channel_flags(dev, IWL_DL_LAR, 1339 nvm_chan[ch_idx], ch_flags); 1340 1341 if (!(geo_info & GEO_WMM_ETSI_5GHZ_INFO) || 1342 band == NL80211_BAND_2GHZ) 1343 continue; 1344 1345 reg_query_regdb_wmm(regd->alpha2, center_freq, rule); 1346 } 1347 1348 regd->n_reg_rules = valid_rules; 1349 1350 /* 1351 * Narrow down regdom for unused regulatory rules to prevent hole 1352 * between reg rules to wmm rules. 1353 */ 1354 copy_rd = kmemdup(regd, struct_size(regd, reg_rules, valid_rules), 1355 GFP_KERNEL); 1356 if (!copy_rd) 1357 copy_rd = ERR_PTR(-ENOMEM); 1358 1359 kfree(regd); 1360 return copy_rd; 1361 } 1362 IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info); 1363 1364 #define IWL_MAX_NVM_SECTION_SIZE 0x1b58 1365 #define IWL_MAX_EXT_NVM_SECTION_SIZE 0x1ffc 1366 #define MAX_NVM_FILE_LEN 16384 1367 1368 void iwl_nvm_fixups(u32 hw_id, unsigned int section, u8 *data, 1369 unsigned int len) 1370 { 1371 #define IWL_4165_DEVICE_ID 0x5501 1372 #define NVM_SKU_CAP_MIMO_DISABLE BIT(5) 1373 1374 if (section == NVM_SECTION_TYPE_PHY_SKU && 1375 hw_id == IWL_4165_DEVICE_ID && data && len >= 5 && 1376 (data[4] & NVM_SKU_CAP_MIMO_DISABLE)) 1377 /* OTP 0x52 bug work around: it's a 1x1 device */ 1378 data[3] = ANT_B | (ANT_B << 4); 1379 } 1380 IWL_EXPORT_SYMBOL(iwl_nvm_fixups); 1381 1382 /* 1383 * Reads external NVM from a file into mvm->nvm_sections 1384 * 1385 * HOW TO CREATE THE NVM FILE FORMAT: 1386 * ------------------------------ 1387 * 1. create hex file, format: 1388 * 3800 -> header 1389 * 0000 -> header 1390 * 5a40 -> data 1391 * 1392 * rev - 6 bit (word1) 1393 * len - 10 bit (word1) 1394 * id - 4 bit (word2) 1395 * rsv - 12 bit (word2) 1396 * 1397 * 2. flip 8bits with 8 bits per line to get the right NVM file format 1398 * 1399 * 3. create binary file from the hex file 1400 * 1401 * 4. save as "iNVM_xxx.bin" under /lib/firmware 1402 */ 1403 int iwl_read_external_nvm(struct iwl_trans *trans, 1404 const char *nvm_file_name, 1405 struct iwl_nvm_section *nvm_sections) 1406 { 1407 int ret, section_size; 1408 u16 section_id; 1409 const struct firmware *fw_entry; 1410 const struct { 1411 __le16 word1; 1412 __le16 word2; 1413 u8 data[]; 1414 } *file_sec; 1415 const u8 *eof; 1416 u8 *temp; 1417 int max_section_size; 1418 const __le32 *dword_buff; 1419 1420 #define NVM_WORD1_LEN(x) (8 * (x & 0x03FF)) 1421 #define NVM_WORD2_ID(x) (x >> 12) 1422 #define EXT_NVM_WORD2_LEN(x) (2 * (((x) & 0xFF) << 8 | (x) >> 8)) 1423 #define EXT_NVM_WORD1_ID(x) ((x) >> 4) 1424 #define NVM_HEADER_0 (0x2A504C54) 1425 #define NVM_HEADER_1 (0x4E564D2A) 1426 #define NVM_HEADER_SIZE (4 * sizeof(u32)) 1427 1428 IWL_DEBUG_EEPROM(trans->dev, "Read from external NVM\n"); 1429 1430 /* Maximal size depends on NVM version */ 1431 if (trans->cfg->nvm_type != IWL_NVM_EXT) 1432 max_section_size = IWL_MAX_NVM_SECTION_SIZE; 1433 else 1434 max_section_size = IWL_MAX_EXT_NVM_SECTION_SIZE; 1435 1436 /* 1437 * Obtain NVM image via request_firmware. Since we already used 1438 * request_firmware_nowait() for the firmware binary load and only 1439 * get here after that we assume the NVM request can be satisfied 1440 * synchronously. 1441 */ 1442 ret = request_firmware(&fw_entry, nvm_file_name, trans->dev); 1443 if (ret) { 1444 IWL_ERR(trans, "ERROR: %s isn't available %d\n", 1445 nvm_file_name, ret); 1446 return ret; 1447 } 1448 1449 IWL_INFO(trans, "Loaded NVM file %s (%zu bytes)\n", 1450 nvm_file_name, fw_entry->size); 1451 1452 if (fw_entry->size > MAX_NVM_FILE_LEN) { 1453 IWL_ERR(trans, "NVM file too large\n"); 1454 ret = -EINVAL; 1455 goto out; 1456 } 1457 1458 eof = fw_entry->data + fw_entry->size; 1459 dword_buff = (__le32 *)fw_entry->data; 1460 1461 /* some NVM file will contain a header. 1462 * The header is identified by 2 dwords header as follow: 1463 * dword[0] = 0x2A504C54 1464 * dword[1] = 0x4E564D2A 1465 * 1466 * This header must be skipped when providing the NVM data to the FW. 1467 */ 1468 if (fw_entry->size > NVM_HEADER_SIZE && 1469 dword_buff[0] == cpu_to_le32(NVM_HEADER_0) && 1470 dword_buff[1] == cpu_to_le32(NVM_HEADER_1)) { 1471 file_sec = (void *)(fw_entry->data + NVM_HEADER_SIZE); 1472 IWL_INFO(trans, "NVM Version %08X\n", le32_to_cpu(dword_buff[2])); 1473 IWL_INFO(trans, "NVM Manufacturing date %08X\n", 1474 le32_to_cpu(dword_buff[3])); 1475 1476 /* nvm file validation, dword_buff[2] holds the file version */ 1477 if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_8000 && 1478 CSR_HW_REV_STEP(trans->hw_rev) == SILICON_C_STEP && 1479 le32_to_cpu(dword_buff[2]) < 0xE4A) { 1480 ret = -EFAULT; 1481 goto out; 1482 } 1483 } else { 1484 file_sec = (void *)fw_entry->data; 1485 } 1486 1487 while (true) { 1488 if (file_sec->data > eof) { 1489 IWL_ERR(trans, 1490 "ERROR - NVM file too short for section header\n"); 1491 ret = -EINVAL; 1492 break; 1493 } 1494 1495 /* check for EOF marker */ 1496 if (!file_sec->word1 && !file_sec->word2) { 1497 ret = 0; 1498 break; 1499 } 1500 1501 if (trans->cfg->nvm_type != IWL_NVM_EXT) { 1502 section_size = 1503 2 * NVM_WORD1_LEN(le16_to_cpu(file_sec->word1)); 1504 section_id = NVM_WORD2_ID(le16_to_cpu(file_sec->word2)); 1505 } else { 1506 section_size = 2 * EXT_NVM_WORD2_LEN( 1507 le16_to_cpu(file_sec->word2)); 1508 section_id = EXT_NVM_WORD1_ID( 1509 le16_to_cpu(file_sec->word1)); 1510 } 1511 1512 if (section_size > max_section_size) { 1513 IWL_ERR(trans, "ERROR - section too large (%d)\n", 1514 section_size); 1515 ret = -EINVAL; 1516 break; 1517 } 1518 1519 if (!section_size) { 1520 IWL_ERR(trans, "ERROR - section empty\n"); 1521 ret = -EINVAL; 1522 break; 1523 } 1524 1525 if (file_sec->data + section_size > eof) { 1526 IWL_ERR(trans, 1527 "ERROR - NVM file too short for section (%d bytes)\n", 1528 section_size); 1529 ret = -EINVAL; 1530 break; 1531 } 1532 1533 if (WARN(section_id >= NVM_MAX_NUM_SECTIONS, 1534 "Invalid NVM section ID %d\n", section_id)) { 1535 ret = -EINVAL; 1536 break; 1537 } 1538 1539 temp = kmemdup(file_sec->data, section_size, GFP_KERNEL); 1540 if (!temp) { 1541 ret = -ENOMEM; 1542 break; 1543 } 1544 1545 iwl_nvm_fixups(trans->hw_id, section_id, temp, section_size); 1546 1547 kfree(nvm_sections[section_id].data); 1548 nvm_sections[section_id].data = temp; 1549 nvm_sections[section_id].length = section_size; 1550 1551 /* advance to the next section */ 1552 file_sec = (void *)(file_sec->data + section_size); 1553 } 1554 out: 1555 release_firmware(fw_entry); 1556 return ret; 1557 } 1558 IWL_EXPORT_SYMBOL(iwl_read_external_nvm); 1559 1560 struct iwl_nvm_data *iwl_get_nvm(struct iwl_trans *trans, 1561 const struct iwl_fw *fw) 1562 { 1563 struct iwl_nvm_get_info cmd = {}; 1564 struct iwl_nvm_data *nvm; 1565 struct iwl_host_cmd hcmd = { 1566 .flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL, 1567 .data = { &cmd, }, 1568 .len = { sizeof(cmd) }, 1569 .id = WIDE_ID(REGULATORY_AND_NVM_GROUP, NVM_GET_INFO) 1570 }; 1571 int ret; 1572 bool empty_otp; 1573 u32 mac_flags; 1574 u32 sbands_flags = 0; 1575 /* 1576 * All the values in iwl_nvm_get_info_rsp v4 are the same as 1577 * in v3, except for the channel profile part of the 1578 * regulatory. So we can just access the new struct, with the 1579 * exception of the latter. 1580 */ 1581 struct iwl_nvm_get_info_rsp *rsp; 1582 struct iwl_nvm_get_info_rsp_v3 *rsp_v3; 1583 bool v4 = fw_has_api(&fw->ucode_capa, 1584 IWL_UCODE_TLV_API_REGULATORY_NVM_INFO); 1585 size_t rsp_size = v4 ? sizeof(*rsp) : sizeof(*rsp_v3); 1586 void *channel_profile; 1587 1588 ret = iwl_trans_send_cmd(trans, &hcmd); 1589 if (ret) 1590 return ERR_PTR(ret); 1591 1592 if (WARN(iwl_rx_packet_payload_len(hcmd.resp_pkt) != rsp_size, 1593 "Invalid payload len in NVM response from FW %d", 1594 iwl_rx_packet_payload_len(hcmd.resp_pkt))) { 1595 ret = -EINVAL; 1596 goto out; 1597 } 1598 1599 rsp = (void *)hcmd.resp_pkt->data; 1600 empty_otp = !!(le32_to_cpu(rsp->general.flags) & 1601 NVM_GENERAL_FLAGS_EMPTY_OTP); 1602 if (empty_otp) 1603 IWL_INFO(trans, "OTP is empty\n"); 1604 1605 nvm = kzalloc(struct_size(nvm, channels, IWL_NUM_CHANNELS), GFP_KERNEL); 1606 if (!nvm) { 1607 ret = -ENOMEM; 1608 goto out; 1609 } 1610 1611 iwl_set_hw_address_from_csr(trans, nvm); 1612 /* TODO: if platform NVM has MAC address - override it here */ 1613 1614 if (!is_valid_ether_addr(nvm->hw_addr)) { 1615 IWL_ERR(trans, "no valid mac address was found\n"); 1616 ret = -EINVAL; 1617 goto err_free; 1618 } 1619 1620 IWL_INFO(trans, "base HW address: %pM\n", nvm->hw_addr); 1621 1622 /* Initialize general data */ 1623 nvm->nvm_version = le16_to_cpu(rsp->general.nvm_version); 1624 nvm->n_hw_addrs = rsp->general.n_hw_addrs; 1625 if (nvm->n_hw_addrs == 0) 1626 IWL_WARN(trans, 1627 "Firmware declares no reserved mac addresses. OTP is empty: %d\n", 1628 empty_otp); 1629 1630 /* Initialize MAC sku data */ 1631 mac_flags = le32_to_cpu(rsp->mac_sku.mac_sku_flags); 1632 nvm->sku_cap_11ac_enable = 1633 !!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AC_ENABLED); 1634 nvm->sku_cap_11n_enable = 1635 !!(mac_flags & NVM_MAC_SKU_FLAGS_802_11N_ENABLED); 1636 nvm->sku_cap_11ax_enable = 1637 !!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AX_ENABLED); 1638 nvm->sku_cap_band_24ghz_enable = 1639 !!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_2_4_ENABLED); 1640 nvm->sku_cap_band_52ghz_enable = 1641 !!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_5_2_ENABLED); 1642 nvm->sku_cap_mimo_disabled = 1643 !!(mac_flags & NVM_MAC_SKU_FLAGS_MIMO_DISABLED); 1644 1645 /* Initialize PHY sku data */ 1646 nvm->valid_tx_ant = (u8)le32_to_cpu(rsp->phy_sku.tx_chains); 1647 nvm->valid_rx_ant = (u8)le32_to_cpu(rsp->phy_sku.rx_chains); 1648 1649 if (le32_to_cpu(rsp->regulatory.lar_enabled) && 1650 fw_has_capa(&fw->ucode_capa, 1651 IWL_UCODE_TLV_CAPA_LAR_SUPPORT)) { 1652 nvm->lar_enabled = true; 1653 sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR; 1654 } 1655 1656 rsp_v3 = (void *)rsp; 1657 channel_profile = v4 ? (void *)rsp->regulatory.channel_profile : 1658 (void *)rsp_v3->regulatory.channel_profile; 1659 1660 iwl_init_sbands(trans, nvm, 1661 channel_profile, 1662 nvm->valid_tx_ant & fw->valid_tx_ant, 1663 nvm->valid_rx_ant & fw->valid_rx_ant, 1664 sbands_flags, v4); 1665 1666 iwl_free_resp(&hcmd); 1667 return nvm; 1668 1669 err_free: 1670 kfree(nvm); 1671 out: 1672 iwl_free_resp(&hcmd); 1673 return ERR_PTR(ret); 1674 } 1675 IWL_EXPORT_SYMBOL(iwl_get_nvm); 1676