1 /******************************************************************************
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved.
9  * Copyright(c) 2015 Intel Mobile Communications GmbH
10  * Copyright(c) 2018 Intel Corporation
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of version 2 of the GNU General Public License as
14  * published by the Free Software Foundation.
15  *
16  * This program is distributed in the hope that it will be useful, but
17  * WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  * General Public License for more details.
20  *
21  * The full GNU General Public License is included in this distribution
22  * in the file called COPYING.
23  *
24  * Contact Information:
25  *  Intel Linux Wireless <linuxwifi@intel.com>
26  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27  *
28  * BSD LICENSE
29  *
30  * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
31  * Copyright(c) 2015 Intel Mobile Communications GmbH
32  * Copyright(c) 2018 Intel Corporation
33  * All rights reserved.
34  *
35  * Redistribution and use in source and binary forms, with or without
36  * modification, are permitted provided that the following conditions
37  * are met:
38  *
39  *  * Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  *  * Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in
43  *    the documentation and/or other materials provided with the
44  *    distribution.
45  *  * Neither the name Intel Corporation nor the names of its
46  *    contributors may be used to endorse or promote products derived
47  *    from this software without specific prior written permission.
48  *
49  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
50  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
51  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
52  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
53  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
54  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
55  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
56  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
57  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
58  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
59  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
60  *****************************************************************************/
61 #include <linux/types.h>
62 #include <linux/slab.h>
63 #include <linux/export.h>
64 #include "iwl-drv.h"
65 #include "iwl-modparams.h"
66 #include "iwl-eeprom-parse.h"
67 
68 /* EEPROM offset definitions */
69 
70 /* indirect access definitions */
71 #define ADDRESS_MSK                 0x0000FFFF
72 #define INDIRECT_TYPE_MSK           0x000F0000
73 #define INDIRECT_HOST               0x00010000
74 #define INDIRECT_GENERAL            0x00020000
75 #define INDIRECT_REGULATORY         0x00030000
76 #define INDIRECT_CALIBRATION        0x00040000
77 #define INDIRECT_PROCESS_ADJST      0x00050000
78 #define INDIRECT_OTHERS             0x00060000
79 #define INDIRECT_TXP_LIMIT          0x00070000
80 #define INDIRECT_TXP_LIMIT_SIZE     0x00080000
81 #define INDIRECT_ADDRESS            0x00100000
82 
83 /* corresponding link offsets in EEPROM */
84 #define EEPROM_LINK_HOST             (2*0x64)
85 #define EEPROM_LINK_GENERAL          (2*0x65)
86 #define EEPROM_LINK_REGULATORY       (2*0x66)
87 #define EEPROM_LINK_CALIBRATION      (2*0x67)
88 #define EEPROM_LINK_PROCESS_ADJST    (2*0x68)
89 #define EEPROM_LINK_OTHERS           (2*0x69)
90 #define EEPROM_LINK_TXP_LIMIT        (2*0x6a)
91 #define EEPROM_LINK_TXP_LIMIT_SIZE   (2*0x6b)
92 
93 /* General */
94 #define EEPROM_DEVICE_ID                    (2*0x08)	/* 2 bytes */
95 #define EEPROM_SUBSYSTEM_ID		    (2*0x0A)	/* 2 bytes */
96 #define EEPROM_MAC_ADDRESS                  (2*0x15)	/* 6  bytes */
97 #define EEPROM_BOARD_REVISION               (2*0x35)	/* 2  bytes */
98 #define EEPROM_BOARD_PBA_NUMBER             (2*0x3B+1)	/* 9  bytes */
99 #define EEPROM_VERSION                      (2*0x44)	/* 2  bytes */
100 #define EEPROM_SKU_CAP                      (2*0x45)	/* 2  bytes */
101 #define EEPROM_OEM_MODE                     (2*0x46)	/* 2  bytes */
102 #define EEPROM_RADIO_CONFIG                 (2*0x48)	/* 2  bytes */
103 #define EEPROM_NUM_MAC_ADDRESS              (2*0x4C)	/* 2  bytes */
104 
105 /* calibration */
106 struct iwl_eeprom_calib_hdr {
107 	u8 version;
108 	u8 pa_type;
109 	__le16 voltage;
110 } __packed;
111 
112 #define EEPROM_CALIB_ALL	(INDIRECT_ADDRESS | INDIRECT_CALIBRATION)
113 #define EEPROM_XTAL		((2*0x128) | EEPROM_CALIB_ALL)
114 
115 /* temperature */
116 #define EEPROM_KELVIN_TEMPERATURE	((2*0x12A) | EEPROM_CALIB_ALL)
117 #define EEPROM_RAW_TEMPERATURE		((2*0x12B) | EEPROM_CALIB_ALL)
118 
119 /* SKU Capabilities (actual values from EEPROM definition) */
120 enum eeprom_sku_bits {
121 	EEPROM_SKU_CAP_BAND_24GHZ	= BIT(4),
122 	EEPROM_SKU_CAP_BAND_52GHZ	= BIT(5),
123 	EEPROM_SKU_CAP_11N_ENABLE	= BIT(6),
124 	EEPROM_SKU_CAP_AMT_ENABLE	= BIT(7),
125 	EEPROM_SKU_CAP_IPAN_ENABLE	= BIT(8)
126 };
127 
128 /* radio config bits (actual values from EEPROM definition) */
129 #define EEPROM_RF_CFG_TYPE_MSK(x)   (x & 0x3)         /* bits 0-1   */
130 #define EEPROM_RF_CFG_STEP_MSK(x)   ((x >> 2)  & 0x3) /* bits 2-3   */
131 #define EEPROM_RF_CFG_DASH_MSK(x)   ((x >> 4)  & 0x3) /* bits 4-5   */
132 #define EEPROM_RF_CFG_PNUM_MSK(x)   ((x >> 6)  & 0x3) /* bits 6-7   */
133 #define EEPROM_RF_CFG_TX_ANT_MSK(x) ((x >> 8)  & 0xF) /* bits 8-11  */
134 #define EEPROM_RF_CFG_RX_ANT_MSK(x) ((x >> 12) & 0xF) /* bits 12-15 */
135 
136 
137 /*
138  * EEPROM bands
139  * These are the channel numbers from each band in the order
140  * that they are stored in the EEPROM band information. Note
141  * that EEPROM bands aren't the same as mac80211 bands, and
142  * there are even special "ht40 bands" in the EEPROM.
143  */
144 static const u8 iwl_eeprom_band_1[14] = { /* 2.4 GHz */
145 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
146 };
147 
148 static const u8 iwl_eeprom_band_2[] = {	/* 4915-5080MHz */
149 	183, 184, 185, 187, 188, 189, 192, 196, 7, 8, 11, 12, 16
150 };
151 
152 static const u8 iwl_eeprom_band_3[] = {	/* 5170-5320MHz */
153 	34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64
154 };
155 
156 static const u8 iwl_eeprom_band_4[] = {	/* 5500-5700MHz */
157 	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140
158 };
159 
160 static const u8 iwl_eeprom_band_5[] = {	/* 5725-5825MHz */
161 	145, 149, 153, 157, 161, 165
162 };
163 
164 static const u8 iwl_eeprom_band_6[] = {	/* 2.4 ht40 channel */
165 	1, 2, 3, 4, 5, 6, 7
166 };
167 
168 static const u8 iwl_eeprom_band_7[] = {	/* 5.2 ht40 channel */
169 	36, 44, 52, 60, 100, 108, 116, 124, 132, 149, 157
170 };
171 
172 #define IWL_NUM_CHANNELS	(ARRAY_SIZE(iwl_eeprom_band_1) + \
173 				 ARRAY_SIZE(iwl_eeprom_band_2) + \
174 				 ARRAY_SIZE(iwl_eeprom_band_3) + \
175 				 ARRAY_SIZE(iwl_eeprom_band_4) + \
176 				 ARRAY_SIZE(iwl_eeprom_band_5))
177 
178 /* rate data (static) */
179 static struct ieee80211_rate iwl_cfg80211_rates[] = {
180 	{ .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
181 	{ .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
182 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
183 	{ .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
184 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
185 	{ .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
186 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
187 	{ .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
188 	{ .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
189 	{ .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
190 	{ .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
191 	{ .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
192 	{ .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
193 	{ .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
194 	{ .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
195 };
196 #define RATES_24_OFFS	0
197 #define N_RATES_24	ARRAY_SIZE(iwl_cfg80211_rates)
198 #define RATES_52_OFFS	4
199 #define N_RATES_52	(N_RATES_24 - RATES_52_OFFS)
200 
201 /* EEPROM reading functions */
202 
203 static u16 iwl_eeprom_query16(const u8 *eeprom, size_t eeprom_size, int offset)
204 {
205 	if (WARN_ON(offset + sizeof(u16) > eeprom_size))
206 		return 0;
207 	return le16_to_cpup((__le16 *)(eeprom + offset));
208 }
209 
210 static u32 eeprom_indirect_address(const u8 *eeprom, size_t eeprom_size,
211 				   u32 address)
212 {
213 	u16 offset = 0;
214 
215 	if ((address & INDIRECT_ADDRESS) == 0)
216 		return address;
217 
218 	switch (address & INDIRECT_TYPE_MSK) {
219 	case INDIRECT_HOST:
220 		offset = iwl_eeprom_query16(eeprom, eeprom_size,
221 					    EEPROM_LINK_HOST);
222 		break;
223 	case INDIRECT_GENERAL:
224 		offset = iwl_eeprom_query16(eeprom, eeprom_size,
225 					    EEPROM_LINK_GENERAL);
226 		break;
227 	case INDIRECT_REGULATORY:
228 		offset = iwl_eeprom_query16(eeprom, eeprom_size,
229 					    EEPROM_LINK_REGULATORY);
230 		break;
231 	case INDIRECT_TXP_LIMIT:
232 		offset = iwl_eeprom_query16(eeprom, eeprom_size,
233 					    EEPROM_LINK_TXP_LIMIT);
234 		break;
235 	case INDIRECT_TXP_LIMIT_SIZE:
236 		offset = iwl_eeprom_query16(eeprom, eeprom_size,
237 					    EEPROM_LINK_TXP_LIMIT_SIZE);
238 		break;
239 	case INDIRECT_CALIBRATION:
240 		offset = iwl_eeprom_query16(eeprom, eeprom_size,
241 					    EEPROM_LINK_CALIBRATION);
242 		break;
243 	case INDIRECT_PROCESS_ADJST:
244 		offset = iwl_eeprom_query16(eeprom, eeprom_size,
245 					    EEPROM_LINK_PROCESS_ADJST);
246 		break;
247 	case INDIRECT_OTHERS:
248 		offset = iwl_eeprom_query16(eeprom, eeprom_size,
249 					    EEPROM_LINK_OTHERS);
250 		break;
251 	default:
252 		WARN_ON(1);
253 		break;
254 	}
255 
256 	/* translate the offset from words to byte */
257 	return (address & ADDRESS_MSK) + (offset << 1);
258 }
259 
260 static const u8 *iwl_eeprom_query_addr(const u8 *eeprom, size_t eeprom_size,
261 				       u32 offset)
262 {
263 	u32 address = eeprom_indirect_address(eeprom, eeprom_size, offset);
264 
265 	if (WARN_ON(address >= eeprom_size))
266 		return NULL;
267 
268 	return &eeprom[address];
269 }
270 
271 static int iwl_eeprom_read_calib(const u8 *eeprom, size_t eeprom_size,
272 				 struct iwl_nvm_data *data)
273 {
274 	struct iwl_eeprom_calib_hdr *hdr;
275 
276 	hdr = (void *)iwl_eeprom_query_addr(eeprom, eeprom_size,
277 					    EEPROM_CALIB_ALL);
278 	if (!hdr)
279 		return -ENODATA;
280 	data->calib_version = hdr->version;
281 	data->calib_voltage = hdr->voltage;
282 
283 	return 0;
284 }
285 
286 /**
287  * enum iwl_eeprom_channel_flags - channel flags in EEPROM
288  * @EEPROM_CHANNEL_VALID: channel is usable for this SKU/geo
289  * @EEPROM_CHANNEL_IBSS: usable as an IBSS channel
290  * @EEPROM_CHANNEL_ACTIVE: active scanning allowed
291  * @EEPROM_CHANNEL_RADAR: radar detection required
292  * @EEPROM_CHANNEL_WIDE: 20 MHz channel okay (?)
293  * @EEPROM_CHANNEL_DFS: dynamic freq selection candidate
294  */
295 enum iwl_eeprom_channel_flags {
296 	EEPROM_CHANNEL_VALID = BIT(0),
297 	EEPROM_CHANNEL_IBSS = BIT(1),
298 	EEPROM_CHANNEL_ACTIVE = BIT(3),
299 	EEPROM_CHANNEL_RADAR = BIT(4),
300 	EEPROM_CHANNEL_WIDE = BIT(5),
301 	EEPROM_CHANNEL_DFS = BIT(7),
302 };
303 
304 /**
305  * struct iwl_eeprom_channel - EEPROM channel data
306  * @flags: %EEPROM_CHANNEL_* flags
307  * @max_power_avg: max power (in dBm) on this channel, at most 31 dBm
308  */
309 struct iwl_eeprom_channel {
310 	u8 flags;
311 	s8 max_power_avg;
312 } __packed;
313 
314 
315 enum iwl_eeprom_enhanced_txpwr_flags {
316 	IWL_EEPROM_ENH_TXP_FL_VALID = BIT(0),
317 	IWL_EEPROM_ENH_TXP_FL_BAND_52G = BIT(1),
318 	IWL_EEPROM_ENH_TXP_FL_OFDM = BIT(2),
319 	IWL_EEPROM_ENH_TXP_FL_40MHZ = BIT(3),
320 	IWL_EEPROM_ENH_TXP_FL_HT_AP = BIT(4),
321 	IWL_EEPROM_ENH_TXP_FL_RES1 = BIT(5),
322 	IWL_EEPROM_ENH_TXP_FL_RES2 = BIT(6),
323 	IWL_EEPROM_ENH_TXP_FL_COMMON_TYPE = BIT(7),
324 };
325 
326 /**
327  * iwl_eeprom_enhanced_txpwr structure
328  * @flags: entry flags
329  * @channel: channel number
330  * @chain_a_max_pwr: chain a max power in 1/2 dBm
331  * @chain_b_max_pwr: chain b max power in 1/2 dBm
332  * @chain_c_max_pwr: chain c max power in 1/2 dBm
333  * @delta_20_in_40: 20-in-40 deltas (hi/lo)
334  * @mimo2_max_pwr: mimo2 max power in 1/2 dBm
335  * @mimo3_max_pwr: mimo3 max power in 1/2 dBm
336  *
337  * This structure presents the enhanced regulatory tx power limit layout
338  * in an EEPROM image.
339  */
340 struct iwl_eeprom_enhanced_txpwr {
341 	u8 flags;
342 	u8 channel;
343 	s8 chain_a_max;
344 	s8 chain_b_max;
345 	s8 chain_c_max;
346 	u8 delta_20_in_40;
347 	s8 mimo2_max;
348 	s8 mimo3_max;
349 } __packed;
350 
351 static s8 iwl_get_max_txpwr_half_dbm(const struct iwl_nvm_data *data,
352 				     struct iwl_eeprom_enhanced_txpwr *txp)
353 {
354 	s8 result = 0; /* (.5 dBm) */
355 
356 	/* Take the highest tx power from any valid chains */
357 	if (data->valid_tx_ant & ANT_A && txp->chain_a_max > result)
358 		result = txp->chain_a_max;
359 
360 	if (data->valid_tx_ant & ANT_B && txp->chain_b_max > result)
361 		result = txp->chain_b_max;
362 
363 	if (data->valid_tx_ant & ANT_C && txp->chain_c_max > result)
364 		result = txp->chain_c_max;
365 
366 	if ((data->valid_tx_ant == ANT_AB ||
367 	     data->valid_tx_ant == ANT_BC ||
368 	     data->valid_tx_ant == ANT_AC) && txp->mimo2_max > result)
369 		result = txp->mimo2_max;
370 
371 	if (data->valid_tx_ant == ANT_ABC && txp->mimo3_max > result)
372 		result = txp->mimo3_max;
373 
374 	return result;
375 }
376 
377 #define EEPROM_TXP_OFFS	(0x00 | INDIRECT_ADDRESS | INDIRECT_TXP_LIMIT)
378 #define EEPROM_TXP_ENTRY_LEN sizeof(struct iwl_eeprom_enhanced_txpwr)
379 #define EEPROM_TXP_SZ_OFFS (0x00 | INDIRECT_ADDRESS | INDIRECT_TXP_LIMIT_SIZE)
380 
381 #define TXP_CHECK_AND_PRINT(x) \
382 	((txp->flags & IWL_EEPROM_ENH_TXP_FL_##x) ? # x " " : "")
383 
384 static void
385 iwl_eeprom_enh_txp_read_element(struct iwl_nvm_data *data,
386 				struct iwl_eeprom_enhanced_txpwr *txp,
387 				int n_channels, s8 max_txpower_avg)
388 {
389 	int ch_idx;
390 	enum nl80211_band band;
391 
392 	band = txp->flags & IWL_EEPROM_ENH_TXP_FL_BAND_52G ?
393 		NL80211_BAND_5GHZ : NL80211_BAND_2GHZ;
394 
395 	for (ch_idx = 0; ch_idx < n_channels; ch_idx++) {
396 		struct ieee80211_channel *chan = &data->channels[ch_idx];
397 
398 		/* update matching channel or from common data only */
399 		if (txp->channel != 0 && chan->hw_value != txp->channel)
400 			continue;
401 
402 		/* update matching band only */
403 		if (band != chan->band)
404 			continue;
405 
406 		if (chan->max_power < max_txpower_avg &&
407 		    !(txp->flags & IWL_EEPROM_ENH_TXP_FL_40MHZ))
408 			chan->max_power = max_txpower_avg;
409 	}
410 }
411 
412 static void iwl_eeprom_enhanced_txpower(struct device *dev,
413 					struct iwl_nvm_data *data,
414 					const u8 *eeprom, size_t eeprom_size,
415 					int n_channels)
416 {
417 	struct iwl_eeprom_enhanced_txpwr *txp_array, *txp;
418 	int idx, entries;
419 	__le16 *txp_len;
420 	s8 max_txp_avg_halfdbm;
421 
422 	BUILD_BUG_ON(sizeof(struct iwl_eeprom_enhanced_txpwr) != 8);
423 
424 	/* the length is in 16-bit words, but we want entries */
425 	txp_len = (__le16 *)iwl_eeprom_query_addr(eeprom, eeprom_size,
426 						  EEPROM_TXP_SZ_OFFS);
427 	entries = le16_to_cpup(txp_len) * 2 / EEPROM_TXP_ENTRY_LEN;
428 
429 	txp_array = (void *)iwl_eeprom_query_addr(eeprom, eeprom_size,
430 						  EEPROM_TXP_OFFS);
431 
432 	for (idx = 0; idx < entries; idx++) {
433 		txp = &txp_array[idx];
434 		/* skip invalid entries */
435 		if (!(txp->flags & IWL_EEPROM_ENH_TXP_FL_VALID))
436 			continue;
437 
438 		IWL_DEBUG_EEPROM(dev, "%s %d:\t %s%s%s%s%s%s%s%s (0x%02x)\n",
439 				 (txp->channel && (txp->flags &
440 					IWL_EEPROM_ENH_TXP_FL_COMMON_TYPE)) ?
441 					"Common " : (txp->channel) ?
442 					"Channel" : "Common",
443 				 (txp->channel),
444 				 TXP_CHECK_AND_PRINT(VALID),
445 				 TXP_CHECK_AND_PRINT(BAND_52G),
446 				 TXP_CHECK_AND_PRINT(OFDM),
447 				 TXP_CHECK_AND_PRINT(40MHZ),
448 				 TXP_CHECK_AND_PRINT(HT_AP),
449 				 TXP_CHECK_AND_PRINT(RES1),
450 				 TXP_CHECK_AND_PRINT(RES2),
451 				 TXP_CHECK_AND_PRINT(COMMON_TYPE),
452 				 txp->flags);
453 		IWL_DEBUG_EEPROM(dev,
454 				 "\t\t chain_A: %d chain_B: %d chain_C: %d\n",
455 				 txp->chain_a_max, txp->chain_b_max,
456 				 txp->chain_c_max);
457 		IWL_DEBUG_EEPROM(dev,
458 				 "\t\t MIMO2: %d MIMO3: %d High 20_on_40: 0x%02x Low 20_on_40: 0x%02x\n",
459 				 txp->mimo2_max, txp->mimo3_max,
460 				 ((txp->delta_20_in_40 & 0xf0) >> 4),
461 				 (txp->delta_20_in_40 & 0x0f));
462 
463 		max_txp_avg_halfdbm = iwl_get_max_txpwr_half_dbm(data, txp);
464 
465 		iwl_eeprom_enh_txp_read_element(data, txp, n_channels,
466 				DIV_ROUND_UP(max_txp_avg_halfdbm, 2));
467 
468 		if (max_txp_avg_halfdbm > data->max_tx_pwr_half_dbm)
469 			data->max_tx_pwr_half_dbm = max_txp_avg_halfdbm;
470 	}
471 }
472 
473 static void iwl_init_band_reference(const struct iwl_cfg *cfg,
474 				    const u8 *eeprom, size_t eeprom_size,
475 				    int eeprom_band, int *eeprom_ch_count,
476 				    const struct iwl_eeprom_channel **ch_info,
477 				    const u8 **eeprom_ch_array)
478 {
479 	u32 offset = cfg->eeprom_params->regulatory_bands[eeprom_band - 1];
480 
481 	offset |= INDIRECT_ADDRESS | INDIRECT_REGULATORY;
482 
483 	*ch_info = (void *)iwl_eeprom_query_addr(eeprom, eeprom_size, offset);
484 
485 	switch (eeprom_band) {
486 	case 1:		/* 2.4GHz band */
487 		*eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_1);
488 		*eeprom_ch_array = iwl_eeprom_band_1;
489 		break;
490 	case 2:		/* 4.9GHz band */
491 		*eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_2);
492 		*eeprom_ch_array = iwl_eeprom_band_2;
493 		break;
494 	case 3:		/* 5.2GHz band */
495 		*eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_3);
496 		*eeprom_ch_array = iwl_eeprom_band_3;
497 		break;
498 	case 4:		/* 5.5GHz band */
499 		*eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_4);
500 		*eeprom_ch_array = iwl_eeprom_band_4;
501 		break;
502 	case 5:		/* 5.7GHz band */
503 		*eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_5);
504 		*eeprom_ch_array = iwl_eeprom_band_5;
505 		break;
506 	case 6:		/* 2.4GHz ht40 channels */
507 		*eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_6);
508 		*eeprom_ch_array = iwl_eeprom_band_6;
509 		break;
510 	case 7:		/* 5 GHz ht40 channels */
511 		*eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_7);
512 		*eeprom_ch_array = iwl_eeprom_band_7;
513 		break;
514 	default:
515 		*eeprom_ch_count = 0;
516 		*eeprom_ch_array = NULL;
517 		WARN_ON(1);
518 	}
519 }
520 
521 #define CHECK_AND_PRINT(x) \
522 	((eeprom_ch->flags & EEPROM_CHANNEL_##x) ? # x " " : "")
523 
524 static void iwl_mod_ht40_chan_info(struct device *dev,
525 				   struct iwl_nvm_data *data, int n_channels,
526 				   enum nl80211_band band, u16 channel,
527 				   const struct iwl_eeprom_channel *eeprom_ch,
528 				   u8 clear_ht40_extension_channel)
529 {
530 	struct ieee80211_channel *chan = NULL;
531 	int i;
532 
533 	for (i = 0; i < n_channels; i++) {
534 		if (data->channels[i].band != band)
535 			continue;
536 		if (data->channels[i].hw_value != channel)
537 			continue;
538 		chan = &data->channels[i];
539 		break;
540 	}
541 
542 	if (!chan)
543 		return;
544 
545 	IWL_DEBUG_EEPROM(dev,
546 			 "HT40 Ch. %d [%sGHz] %s%s%s%s%s(0x%02x %ddBm): Ad-Hoc %ssupported\n",
547 			 channel,
548 			 band == NL80211_BAND_5GHZ ? "5.2" : "2.4",
549 			 CHECK_AND_PRINT(IBSS),
550 			 CHECK_AND_PRINT(ACTIVE),
551 			 CHECK_AND_PRINT(RADAR),
552 			 CHECK_AND_PRINT(WIDE),
553 			 CHECK_AND_PRINT(DFS),
554 			 eeprom_ch->flags,
555 			 eeprom_ch->max_power_avg,
556 			 ((eeprom_ch->flags & EEPROM_CHANNEL_IBSS) &&
557 			  !(eeprom_ch->flags & EEPROM_CHANNEL_RADAR)) ? ""
558 								      : "not ");
559 
560 	if (eeprom_ch->flags & EEPROM_CHANNEL_VALID)
561 		chan->flags &= ~clear_ht40_extension_channel;
562 }
563 
564 #define CHECK_AND_PRINT_I(x)	\
565 	((eeprom_ch_info[ch_idx].flags & EEPROM_CHANNEL_##x) ? # x " " : "")
566 
567 static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
568 				struct iwl_nvm_data *data,
569 				const u8 *eeprom, size_t eeprom_size)
570 {
571 	int band, ch_idx;
572 	const struct iwl_eeprom_channel *eeprom_ch_info;
573 	const u8 *eeprom_ch_array;
574 	int eeprom_ch_count;
575 	int n_channels = 0;
576 
577 	/*
578 	 * Loop through the 5 EEPROM bands and add them to the parse list
579 	 */
580 	for (band = 1; band <= 5; band++) {
581 		struct ieee80211_channel *channel;
582 
583 		iwl_init_band_reference(cfg, eeprom, eeprom_size, band,
584 					&eeprom_ch_count, &eeprom_ch_info,
585 					&eeprom_ch_array);
586 
587 		/* Loop through each band adding each of the channels */
588 		for (ch_idx = 0; ch_idx < eeprom_ch_count; ch_idx++) {
589 			const struct iwl_eeprom_channel *eeprom_ch;
590 
591 			eeprom_ch = &eeprom_ch_info[ch_idx];
592 
593 			if (!(eeprom_ch->flags & EEPROM_CHANNEL_VALID)) {
594 				IWL_DEBUG_EEPROM(dev,
595 						 "Ch. %d Flags %x [%sGHz] - No traffic\n",
596 						 eeprom_ch_array[ch_idx],
597 						 eeprom_ch_info[ch_idx].flags,
598 						 (band != 1) ? "5.2" : "2.4");
599 				continue;
600 			}
601 
602 			channel = &data->channels[n_channels];
603 			n_channels++;
604 
605 			channel->hw_value = eeprom_ch_array[ch_idx];
606 			channel->band = (band == 1) ? NL80211_BAND_2GHZ
607 						    : NL80211_BAND_5GHZ;
608 			channel->center_freq =
609 				ieee80211_channel_to_frequency(
610 					channel->hw_value, channel->band);
611 
612 			/* set no-HT40, will enable as appropriate later */
613 			channel->flags = IEEE80211_CHAN_NO_HT40;
614 
615 			if (!(eeprom_ch->flags & EEPROM_CHANNEL_IBSS))
616 				channel->flags |= IEEE80211_CHAN_NO_IR;
617 
618 			if (!(eeprom_ch->flags & EEPROM_CHANNEL_ACTIVE))
619 				channel->flags |= IEEE80211_CHAN_NO_IR;
620 
621 			if (eeprom_ch->flags & EEPROM_CHANNEL_RADAR)
622 				channel->flags |= IEEE80211_CHAN_RADAR;
623 
624 			/* Initialize regulatory-based run-time data */
625 			channel->max_power =
626 				eeprom_ch_info[ch_idx].max_power_avg;
627 			IWL_DEBUG_EEPROM(dev,
628 					 "Ch. %d [%sGHz] %s%s%s%s%s%s(0x%02x %ddBm): Ad-Hoc %ssupported\n",
629 					 channel->hw_value,
630 					 (band != 1) ? "5.2" : "2.4",
631 					 CHECK_AND_PRINT_I(VALID),
632 					 CHECK_AND_PRINT_I(IBSS),
633 					 CHECK_AND_PRINT_I(ACTIVE),
634 					 CHECK_AND_PRINT_I(RADAR),
635 					 CHECK_AND_PRINT_I(WIDE),
636 					 CHECK_AND_PRINT_I(DFS),
637 					 eeprom_ch_info[ch_idx].flags,
638 					 eeprom_ch_info[ch_idx].max_power_avg,
639 					 ((eeprom_ch_info[ch_idx].flags &
640 							EEPROM_CHANNEL_IBSS) &&
641 					  !(eeprom_ch_info[ch_idx].flags &
642 							EEPROM_CHANNEL_RADAR))
643 						? "" : "not ");
644 		}
645 	}
646 
647 	if (cfg->eeprom_params->enhanced_txpower) {
648 		/*
649 		 * for newer device (6000 series and up)
650 		 * EEPROM contain enhanced tx power information
651 		 * driver need to process addition information
652 		 * to determine the max channel tx power limits
653 		 */
654 		iwl_eeprom_enhanced_txpower(dev, data, eeprom, eeprom_size,
655 					    n_channels);
656 	} else {
657 		/* All others use data from channel map */
658 		int i;
659 
660 		data->max_tx_pwr_half_dbm = -128;
661 
662 		for (i = 0; i < n_channels; i++)
663 			data->max_tx_pwr_half_dbm =
664 				max_t(s8, data->max_tx_pwr_half_dbm,
665 				      data->channels[i].max_power * 2);
666 	}
667 
668 	/* Check if we do have HT40 channels */
669 	if (cfg->eeprom_params->regulatory_bands[5] ==
670 				EEPROM_REGULATORY_BAND_NO_HT40 &&
671 	    cfg->eeprom_params->regulatory_bands[6] ==
672 				EEPROM_REGULATORY_BAND_NO_HT40)
673 		return n_channels;
674 
675 	/* Two additional EEPROM bands for 2.4 and 5 GHz HT40 channels */
676 	for (band = 6; band <= 7; band++) {
677 		enum nl80211_band ieeeband;
678 
679 		iwl_init_band_reference(cfg, eeprom, eeprom_size, band,
680 					&eeprom_ch_count, &eeprom_ch_info,
681 					&eeprom_ch_array);
682 
683 		/* EEPROM band 6 is 2.4, band 7 is 5 GHz */
684 		ieeeband = (band == 6) ? NL80211_BAND_2GHZ
685 				       : NL80211_BAND_5GHZ;
686 
687 		/* Loop through each band adding each of the channels */
688 		for (ch_idx = 0; ch_idx < eeprom_ch_count; ch_idx++) {
689 			/* Set up driver's info for lower half */
690 			iwl_mod_ht40_chan_info(dev, data, n_channels, ieeeband,
691 					       eeprom_ch_array[ch_idx],
692 					       &eeprom_ch_info[ch_idx],
693 					       IEEE80211_CHAN_NO_HT40PLUS);
694 
695 			/* Set up driver's info for upper half */
696 			iwl_mod_ht40_chan_info(dev, data, n_channels, ieeeband,
697 					       eeprom_ch_array[ch_idx] + 4,
698 					       &eeprom_ch_info[ch_idx],
699 					       IEEE80211_CHAN_NO_HT40MINUS);
700 		}
701 	}
702 
703 	return n_channels;
704 }
705 
706 int iwl_init_sband_channels(struct iwl_nvm_data *data,
707 			    struct ieee80211_supported_band *sband,
708 			    int n_channels, enum nl80211_band band)
709 {
710 	struct ieee80211_channel *chan = &data->channels[0];
711 	int n = 0, idx = 0;
712 
713 	while (idx < n_channels && chan->band != band)
714 		chan = &data->channels[++idx];
715 
716 	sband->channels = &data->channels[idx];
717 
718 	while (idx < n_channels && chan->band == band) {
719 		chan = &data->channels[++idx];
720 		n++;
721 	}
722 
723 	sband->n_channels = n;
724 
725 	return n;
726 }
727 
728 #define MAX_BIT_RATE_40_MHZ	150 /* Mbps */
729 #define MAX_BIT_RATE_20_MHZ	72 /* Mbps */
730 
731 void iwl_init_ht_hw_capab(const struct iwl_cfg *cfg,
732 			  struct iwl_nvm_data *data,
733 			  struct ieee80211_sta_ht_cap *ht_info,
734 			  enum nl80211_band band,
735 			  u8 tx_chains, u8 rx_chains)
736 {
737 	int max_bit_rate = 0;
738 
739 	tx_chains = hweight8(tx_chains);
740 	if (cfg->rx_with_siso_diversity)
741 		rx_chains = 1;
742 	else
743 		rx_chains = hweight8(rx_chains);
744 
745 	if (!(data->sku_cap_11n_enable) ||
746 	    (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL) ||
747 	    !cfg->ht_params) {
748 		ht_info->ht_supported = false;
749 		return;
750 	}
751 
752 	if (data->sku_cap_mimo_disabled)
753 		rx_chains = 1;
754 
755 	ht_info->ht_supported = true;
756 	ht_info->cap = IEEE80211_HT_CAP_DSSSCCK40;
757 
758 	if (cfg->ht_params->stbc) {
759 		ht_info->cap |= (1 << IEEE80211_HT_CAP_RX_STBC_SHIFT);
760 
761 		if (tx_chains > 1)
762 			ht_info->cap |= IEEE80211_HT_CAP_TX_STBC;
763 	}
764 
765 	if (cfg->ht_params->ldpc)
766 		ht_info->cap |= IEEE80211_HT_CAP_LDPC_CODING;
767 
768 	if ((cfg->mq_rx_supported &&
769 	     iwlwifi_mod_params.amsdu_size == IWL_AMSDU_DEF) ||
770 	     iwlwifi_mod_params.amsdu_size >= IWL_AMSDU_8K)
771 		ht_info->cap |= IEEE80211_HT_CAP_MAX_AMSDU;
772 
773 	ht_info->ampdu_factor = cfg->max_ht_ampdu_exponent;
774 	ht_info->ampdu_density = IEEE80211_HT_MPDU_DENSITY_4;
775 
776 	ht_info->mcs.rx_mask[0] = 0xFF;
777 	if (rx_chains >= 2)
778 		ht_info->mcs.rx_mask[1] = 0xFF;
779 	if (rx_chains >= 3)
780 		ht_info->mcs.rx_mask[2] = 0xFF;
781 
782 	if (cfg->ht_params->ht_greenfield_support)
783 		ht_info->cap |= IEEE80211_HT_CAP_GRN_FLD;
784 	ht_info->cap |= IEEE80211_HT_CAP_SGI_20;
785 
786 	max_bit_rate = MAX_BIT_RATE_20_MHZ;
787 
788 	if (cfg->ht_params->ht40_bands & BIT(band)) {
789 		ht_info->cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40;
790 		ht_info->cap |= IEEE80211_HT_CAP_SGI_40;
791 		max_bit_rate = MAX_BIT_RATE_40_MHZ;
792 	}
793 
794 	/* Highest supported Rx data rate */
795 	max_bit_rate *= rx_chains;
796 	WARN_ON(max_bit_rate & ~IEEE80211_HT_MCS_RX_HIGHEST_MASK);
797 	ht_info->mcs.rx_highest = cpu_to_le16(max_bit_rate);
798 
799 	/* Tx MCS capabilities */
800 	ht_info->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
801 	if (tx_chains != rx_chains) {
802 		ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_RX_DIFF;
803 		ht_info->mcs.tx_params |= ((tx_chains - 1) <<
804 				IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT);
805 	}
806 }
807 
808 static void iwl_init_sbands(struct device *dev, const struct iwl_cfg *cfg,
809 			    struct iwl_nvm_data *data,
810 			    const u8 *eeprom, size_t eeprom_size)
811 {
812 	int n_channels = iwl_init_channel_map(dev, cfg, data,
813 					      eeprom, eeprom_size);
814 	int n_used = 0;
815 	struct ieee80211_supported_band *sband;
816 
817 	sband = &data->bands[NL80211_BAND_2GHZ];
818 	sband->band = NL80211_BAND_2GHZ;
819 	sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
820 	sband->n_bitrates = N_RATES_24;
821 	n_used += iwl_init_sband_channels(data, sband, n_channels,
822 					  NL80211_BAND_2GHZ);
823 	iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, NL80211_BAND_2GHZ,
824 			     data->valid_tx_ant, data->valid_rx_ant);
825 
826 	sband = &data->bands[NL80211_BAND_5GHZ];
827 	sband->band = NL80211_BAND_5GHZ;
828 	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
829 	sband->n_bitrates = N_RATES_52;
830 	n_used += iwl_init_sband_channels(data, sband, n_channels,
831 					  NL80211_BAND_5GHZ);
832 	iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, NL80211_BAND_5GHZ,
833 			     data->valid_tx_ant, data->valid_rx_ant);
834 
835 	if (n_channels != n_used)
836 		IWL_ERR_DEV(dev, "EEPROM: used only %d of %d channels\n",
837 			    n_used, n_channels);
838 }
839 
840 /* EEPROM data functions */
841 
842 struct iwl_nvm_data *
843 iwl_parse_eeprom_data(struct device *dev, const struct iwl_cfg *cfg,
844 		      const u8 *eeprom, size_t eeprom_size)
845 {
846 	struct iwl_nvm_data *data;
847 	const void *tmp;
848 	u16 radio_cfg, sku;
849 
850 	if (WARN_ON(!cfg || !cfg->eeprom_params))
851 		return NULL;
852 
853 	data = kzalloc(sizeof(*data) +
854 		       sizeof(struct ieee80211_channel) * IWL_NUM_CHANNELS,
855 		       GFP_KERNEL);
856 	if (!data)
857 		return NULL;
858 
859 	/* get MAC address(es) */
860 	tmp = iwl_eeprom_query_addr(eeprom, eeprom_size, EEPROM_MAC_ADDRESS);
861 	if (!tmp)
862 		goto err_free;
863 	memcpy(data->hw_addr, tmp, ETH_ALEN);
864 	data->n_hw_addrs = iwl_eeprom_query16(eeprom, eeprom_size,
865 					      EEPROM_NUM_MAC_ADDRESS);
866 
867 	if (iwl_eeprom_read_calib(eeprom, eeprom_size, data))
868 		goto err_free;
869 
870 	tmp = iwl_eeprom_query_addr(eeprom, eeprom_size, EEPROM_XTAL);
871 	if (!tmp)
872 		goto err_free;
873 	memcpy(data->xtal_calib, tmp, sizeof(data->xtal_calib));
874 
875 	tmp = iwl_eeprom_query_addr(eeprom, eeprom_size,
876 				    EEPROM_RAW_TEMPERATURE);
877 	if (!tmp)
878 		goto err_free;
879 	data->raw_temperature = *(__le16 *)tmp;
880 
881 	tmp = iwl_eeprom_query_addr(eeprom, eeprom_size,
882 				    EEPROM_KELVIN_TEMPERATURE);
883 	if (!tmp)
884 		goto err_free;
885 	data->kelvin_temperature = *(__le16 *)tmp;
886 	data->kelvin_voltage = *((__le16 *)tmp + 1);
887 
888 	radio_cfg = iwl_eeprom_query16(eeprom, eeprom_size,
889 					     EEPROM_RADIO_CONFIG);
890 	data->radio_cfg_dash = EEPROM_RF_CFG_DASH_MSK(radio_cfg);
891 	data->radio_cfg_pnum = EEPROM_RF_CFG_PNUM_MSK(radio_cfg);
892 	data->radio_cfg_step = EEPROM_RF_CFG_STEP_MSK(radio_cfg);
893 	data->radio_cfg_type = EEPROM_RF_CFG_TYPE_MSK(radio_cfg);
894 	data->valid_rx_ant = EEPROM_RF_CFG_RX_ANT_MSK(radio_cfg);
895 	data->valid_tx_ant = EEPROM_RF_CFG_TX_ANT_MSK(radio_cfg);
896 
897 	sku = iwl_eeprom_query16(eeprom, eeprom_size,
898 				 EEPROM_SKU_CAP);
899 	data->sku_cap_11n_enable = sku & EEPROM_SKU_CAP_11N_ENABLE;
900 	data->sku_cap_amt_enable = sku & EEPROM_SKU_CAP_AMT_ENABLE;
901 	data->sku_cap_band_24ghz_enable = sku & EEPROM_SKU_CAP_BAND_24GHZ;
902 	data->sku_cap_band_52ghz_enable = sku & EEPROM_SKU_CAP_BAND_52GHZ;
903 	data->sku_cap_ipan_enable = sku & EEPROM_SKU_CAP_IPAN_ENABLE;
904 	if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
905 		data->sku_cap_11n_enable = false;
906 
907 	data->nvm_version = iwl_eeprom_query16(eeprom, eeprom_size,
908 					       EEPROM_VERSION);
909 
910 	/* check overrides (some devices have wrong EEPROM) */
911 	if (cfg->valid_tx_ant)
912 		data->valid_tx_ant = cfg->valid_tx_ant;
913 	if (cfg->valid_rx_ant)
914 		data->valid_rx_ant = cfg->valid_rx_ant;
915 
916 	if (!data->valid_tx_ant || !data->valid_rx_ant) {
917 		IWL_ERR_DEV(dev, "invalid antennas (0x%x, 0x%x)\n",
918 			    data->valid_tx_ant, data->valid_rx_ant);
919 		goto err_free;
920 	}
921 
922 	iwl_init_sbands(dev, cfg, data, eeprom, eeprom_size);
923 
924 	return data;
925  err_free:
926 	kfree(data);
927 	return NULL;
928 }
929 IWL_EXPORT_SYMBOL(iwl_parse_eeprom_data);
930 
931 /* helper functions */
932 int iwl_nvm_check_version(struct iwl_nvm_data *data,
933 			     struct iwl_trans *trans)
934 {
935 	if (data->nvm_version >= trans->cfg->nvm_ver ||
936 	    data->calib_version >= trans->cfg->nvm_calib_ver) {
937 		IWL_DEBUG_INFO(trans, "device EEPROM VER=0x%x, CALIB=0x%x\n",
938 			       data->nvm_version, data->calib_version);
939 		return 0;
940 	}
941 
942 	IWL_ERR(trans,
943 		"Unsupported (too old) EEPROM VER=0x%x < 0x%x CALIB=0x%x < 0x%x\n",
944 		data->nvm_version, trans->cfg->nvm_ver,
945 		data->calib_version,  trans->cfg->nvm_calib_ver);
946 	return -EINVAL;
947 }
948 IWL_EXPORT_SYMBOL(iwl_nvm_check_version);
949