1 // SPDX-License-Identifier: GPL-2.0-only
2 /******************************************************************************
3  *
4  * Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved.
5  * Copyright(c) 2015 Intel Deutschland GmbH
6  * Copyright (C) 2018 - 2019 Intel Corporation
7  *
8  * Portions of this file are derived from the ipw3945 project, as well
9  * as portions of the ieee80211 subsystem header files.
10  *
11  * Contact Information:
12  *  Intel Linux Wireless <linuxwifi@intel.com>
13  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
14  *
15  *****************************************************************************/
16 
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/init.h>
22 #include <linux/slab.h>
23 #include <linux/delay.h>
24 #include <linux/sched.h>
25 #include <linux/skbuff.h>
26 #include <linux/netdevice.h>
27 #include <linux/etherdevice.h>
28 #include <linux/if_arp.h>
29 
30 #include <net/mac80211.h>
31 
32 #include <asm/div64.h>
33 
34 #include "iwl-eeprom-read.h"
35 #include "iwl-eeprom-parse.h"
36 #include "iwl-io.h"
37 #include "iwl-trans.h"
38 #include "iwl-op-mode.h"
39 #include "iwl-drv.h"
40 #include "iwl-modparams.h"
41 #include "iwl-prph.h"
42 
43 #include "dev.h"
44 #include "calib.h"
45 #include "agn.h"
46 
47 
48 /******************************************************************************
49  *
50  * module boiler plate
51  *
52  ******************************************************************************/
53 
54 #define DRV_DESCRIPTION	"Intel(R) Wireless WiFi Link AGN driver for Linux"
55 MODULE_DESCRIPTION(DRV_DESCRIPTION);
56 MODULE_AUTHOR(DRV_COPYRIGHT " " DRV_AUTHOR);
57 MODULE_LICENSE("GPL");
58 
59 /* Please keep this array *SORTED* by hex value.
60  * Access is done through binary search.
61  * A warning will be triggered on violation.
62  */
63 static const struct iwl_hcmd_names iwl_dvm_cmd_names[] = {
64 	HCMD_NAME(REPLY_ALIVE),
65 	HCMD_NAME(REPLY_ERROR),
66 	HCMD_NAME(REPLY_ECHO),
67 	HCMD_NAME(REPLY_RXON),
68 	HCMD_NAME(REPLY_RXON_ASSOC),
69 	HCMD_NAME(REPLY_QOS_PARAM),
70 	HCMD_NAME(REPLY_RXON_TIMING),
71 	HCMD_NAME(REPLY_ADD_STA),
72 	HCMD_NAME(REPLY_REMOVE_STA),
73 	HCMD_NAME(REPLY_REMOVE_ALL_STA),
74 	HCMD_NAME(REPLY_TX),
75 	HCMD_NAME(REPLY_TXFIFO_FLUSH),
76 	HCMD_NAME(REPLY_WEPKEY),
77 	HCMD_NAME(REPLY_LEDS_CMD),
78 	HCMD_NAME(REPLY_TX_LINK_QUALITY_CMD),
79 	HCMD_NAME(COEX_PRIORITY_TABLE_CMD),
80 	HCMD_NAME(COEX_MEDIUM_NOTIFICATION),
81 	HCMD_NAME(COEX_EVENT_CMD),
82 	HCMD_NAME(TEMPERATURE_NOTIFICATION),
83 	HCMD_NAME(CALIBRATION_CFG_CMD),
84 	HCMD_NAME(CALIBRATION_RES_NOTIFICATION),
85 	HCMD_NAME(CALIBRATION_COMPLETE_NOTIFICATION),
86 	HCMD_NAME(REPLY_QUIET_CMD),
87 	HCMD_NAME(REPLY_CHANNEL_SWITCH),
88 	HCMD_NAME(CHANNEL_SWITCH_NOTIFICATION),
89 	HCMD_NAME(REPLY_SPECTRUM_MEASUREMENT_CMD),
90 	HCMD_NAME(SPECTRUM_MEASURE_NOTIFICATION),
91 	HCMD_NAME(POWER_TABLE_CMD),
92 	HCMD_NAME(PM_SLEEP_NOTIFICATION),
93 	HCMD_NAME(PM_DEBUG_STATISTIC_NOTIFIC),
94 	HCMD_NAME(REPLY_SCAN_CMD),
95 	HCMD_NAME(REPLY_SCAN_ABORT_CMD),
96 	HCMD_NAME(SCAN_START_NOTIFICATION),
97 	HCMD_NAME(SCAN_RESULTS_NOTIFICATION),
98 	HCMD_NAME(SCAN_COMPLETE_NOTIFICATION),
99 	HCMD_NAME(BEACON_NOTIFICATION),
100 	HCMD_NAME(REPLY_TX_BEACON),
101 	HCMD_NAME(WHO_IS_AWAKE_NOTIFICATION),
102 	HCMD_NAME(REPLY_TX_POWER_DBM_CMD),
103 	HCMD_NAME(QUIET_NOTIFICATION),
104 	HCMD_NAME(REPLY_TX_PWR_TABLE_CMD),
105 	HCMD_NAME(REPLY_TX_POWER_DBM_CMD_V1),
106 	HCMD_NAME(TX_ANT_CONFIGURATION_CMD),
107 	HCMD_NAME(MEASURE_ABORT_NOTIFICATION),
108 	HCMD_NAME(REPLY_BT_CONFIG),
109 	HCMD_NAME(REPLY_STATISTICS_CMD),
110 	HCMD_NAME(STATISTICS_NOTIFICATION),
111 	HCMD_NAME(REPLY_CARD_STATE_CMD),
112 	HCMD_NAME(CARD_STATE_NOTIFICATION),
113 	HCMD_NAME(MISSED_BEACONS_NOTIFICATION),
114 	HCMD_NAME(REPLY_CT_KILL_CONFIG_CMD),
115 	HCMD_NAME(SENSITIVITY_CMD),
116 	HCMD_NAME(REPLY_PHY_CALIBRATION_CMD),
117 	HCMD_NAME(REPLY_WIPAN_PARAMS),
118 	HCMD_NAME(REPLY_WIPAN_RXON),
119 	HCMD_NAME(REPLY_WIPAN_RXON_TIMING),
120 	HCMD_NAME(REPLY_WIPAN_RXON_ASSOC),
121 	HCMD_NAME(REPLY_WIPAN_QOS_PARAM),
122 	HCMD_NAME(REPLY_WIPAN_WEPKEY),
123 	HCMD_NAME(REPLY_WIPAN_P2P_CHANNEL_SWITCH),
124 	HCMD_NAME(REPLY_WIPAN_NOA_NOTIFICATION),
125 	HCMD_NAME(REPLY_WIPAN_DEACTIVATION_COMPLETE),
126 	HCMD_NAME(REPLY_RX_PHY_CMD),
127 	HCMD_NAME(REPLY_RX_MPDU_CMD),
128 	HCMD_NAME(REPLY_RX),
129 	HCMD_NAME(REPLY_COMPRESSED_BA),
130 	HCMD_NAME(REPLY_BT_COEX_PRIO_TABLE),
131 	HCMD_NAME(REPLY_BT_COEX_PROT_ENV),
132 	HCMD_NAME(REPLY_BT_COEX_PROFILE_NOTIF),
133 	HCMD_NAME(REPLY_D3_CONFIG),
134 	HCMD_NAME(REPLY_WOWLAN_PATTERNS),
135 	HCMD_NAME(REPLY_WOWLAN_WAKEUP_FILTER),
136 	HCMD_NAME(REPLY_WOWLAN_TSC_RSC_PARAMS),
137 	HCMD_NAME(REPLY_WOWLAN_TKIP_PARAMS),
138 	HCMD_NAME(REPLY_WOWLAN_KEK_KCK_MATERIAL),
139 	HCMD_NAME(REPLY_WOWLAN_GET_STATUS),
140 };
141 
142 static const struct iwl_hcmd_arr iwl_dvm_groups[] = {
143 	[0x0] = HCMD_ARR(iwl_dvm_cmd_names),
144 };
145 
146 static const struct iwl_op_mode_ops iwl_dvm_ops;
147 
148 void iwl_update_chain_flags(struct iwl_priv *priv)
149 {
150 	struct iwl_rxon_context *ctx;
151 
152 	for_each_context(priv, ctx) {
153 		iwlagn_set_rxon_chain(priv, ctx);
154 		if (ctx->active.rx_chain != ctx->staging.rx_chain)
155 			iwlagn_commit_rxon(priv, ctx);
156 	}
157 }
158 
159 /* Parse the beacon frame to find the TIM element and set tim_idx & tim_size */
160 static void iwl_set_beacon_tim(struct iwl_priv *priv,
161 			       struct iwl_tx_beacon_cmd *tx_beacon_cmd,
162 			       u8 *beacon, u32 frame_size)
163 {
164 	u16 tim_idx;
165 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)beacon;
166 
167 	/*
168 	 * The index is relative to frame start but we start looking at the
169 	 * variable-length part of the beacon.
170 	 */
171 	tim_idx = mgmt->u.beacon.variable - beacon;
172 
173 	/* Parse variable-length elements of beacon to find WLAN_EID_TIM */
174 	while ((tim_idx < (frame_size - 2)) &&
175 			(beacon[tim_idx] != WLAN_EID_TIM))
176 		tim_idx += beacon[tim_idx+1] + 2;
177 
178 	/* If TIM field was found, set variables */
179 	if ((tim_idx < (frame_size - 1)) && (beacon[tim_idx] == WLAN_EID_TIM)) {
180 		tx_beacon_cmd->tim_idx = cpu_to_le16(tim_idx);
181 		tx_beacon_cmd->tim_size = beacon[tim_idx+1];
182 	} else
183 		IWL_WARN(priv, "Unable to find TIM Element in beacon\n");
184 }
185 
186 int iwlagn_send_beacon_cmd(struct iwl_priv *priv)
187 {
188 	struct iwl_tx_beacon_cmd *tx_beacon_cmd;
189 	struct iwl_host_cmd cmd = {
190 		.id = REPLY_TX_BEACON,
191 	};
192 	struct ieee80211_tx_info *info;
193 	u32 frame_size;
194 	u32 rate_flags;
195 	u32 rate;
196 
197 	/*
198 	 * We have to set up the TX command, the TX Beacon command, and the
199 	 * beacon contents.
200 	 */
201 
202 	lockdep_assert_held(&priv->mutex);
203 
204 	if (!priv->beacon_ctx) {
205 		IWL_ERR(priv, "trying to build beacon w/o beacon context!\n");
206 		return 0;
207 	}
208 
209 	if (WARN_ON(!priv->beacon_skb))
210 		return -EINVAL;
211 
212 	/* Allocate beacon command */
213 	if (!priv->beacon_cmd)
214 		priv->beacon_cmd = kzalloc(sizeof(*tx_beacon_cmd), GFP_KERNEL);
215 	tx_beacon_cmd = priv->beacon_cmd;
216 	if (!tx_beacon_cmd)
217 		return -ENOMEM;
218 
219 	frame_size = priv->beacon_skb->len;
220 
221 	/* Set up TX command fields */
222 	tx_beacon_cmd->tx.len = cpu_to_le16((u16)frame_size);
223 	tx_beacon_cmd->tx.sta_id = priv->beacon_ctx->bcast_sta_id;
224 	tx_beacon_cmd->tx.stop_time.life_time = TX_CMD_LIFE_TIME_INFINITE;
225 	tx_beacon_cmd->tx.tx_flags = TX_CMD_FLG_SEQ_CTL_MSK |
226 		TX_CMD_FLG_TSF_MSK | TX_CMD_FLG_STA_RATE_MSK;
227 
228 	/* Set up TX beacon command fields */
229 	iwl_set_beacon_tim(priv, tx_beacon_cmd, priv->beacon_skb->data,
230 			   frame_size);
231 
232 	/* Set up packet rate and flags */
233 	info = IEEE80211_SKB_CB(priv->beacon_skb);
234 
235 	/*
236 	 * Let's set up the rate at least somewhat correctly;
237 	 * it will currently not actually be used by the uCode,
238 	 * it uses the broadcast station's rate instead.
239 	 */
240 	if (info->control.rates[0].idx < 0 ||
241 	    info->control.rates[0].flags & IEEE80211_TX_RC_MCS)
242 		rate = 0;
243 	else
244 		rate = info->control.rates[0].idx;
245 
246 	priv->mgmt_tx_ant = iwl_toggle_tx_ant(priv, priv->mgmt_tx_ant,
247 					      priv->nvm_data->valid_tx_ant);
248 	rate_flags = iwl_ant_idx_to_flags(priv->mgmt_tx_ant);
249 
250 	/* In mac80211, rates for 5 GHz start at 0 */
251 	if (info->band == NL80211_BAND_5GHZ)
252 		rate += IWL_FIRST_OFDM_RATE;
253 	else if (rate >= IWL_FIRST_CCK_RATE && rate <= IWL_LAST_CCK_RATE)
254 		rate_flags |= RATE_MCS_CCK_MSK;
255 
256 	tx_beacon_cmd->tx.rate_n_flags =
257 			iwl_hw_set_rate_n_flags(rate, rate_flags);
258 
259 	/* Submit command */
260 	cmd.len[0] = sizeof(*tx_beacon_cmd);
261 	cmd.data[0] = tx_beacon_cmd;
262 	cmd.dataflags[0] = IWL_HCMD_DFL_NOCOPY;
263 	cmd.len[1] = frame_size;
264 	cmd.data[1] = priv->beacon_skb->data;
265 	cmd.dataflags[1] = IWL_HCMD_DFL_NOCOPY;
266 
267 	return iwl_dvm_send_cmd(priv, &cmd);
268 }
269 
270 static void iwl_bg_beacon_update(struct work_struct *work)
271 {
272 	struct iwl_priv *priv =
273 		container_of(work, struct iwl_priv, beacon_update);
274 	struct sk_buff *beacon;
275 
276 	mutex_lock(&priv->mutex);
277 	if (!priv->beacon_ctx) {
278 		IWL_ERR(priv, "updating beacon w/o beacon context!\n");
279 		goto out;
280 	}
281 
282 	if (priv->beacon_ctx->vif->type != NL80211_IFTYPE_AP) {
283 		/*
284 		 * The ucode will send beacon notifications even in
285 		 * IBSS mode, but we don't want to process them. But
286 		 * we need to defer the type check to here due to
287 		 * requiring locking around the beacon_ctx access.
288 		 */
289 		goto out;
290 	}
291 
292 	/* Pull updated AP beacon from mac80211. will fail if not in AP mode */
293 	beacon = ieee80211_beacon_get(priv->hw, priv->beacon_ctx->vif);
294 	if (!beacon) {
295 		IWL_ERR(priv, "update beacon failed -- keeping old\n");
296 		goto out;
297 	}
298 
299 	/* new beacon skb is allocated every time; dispose previous.*/
300 	dev_kfree_skb(priv->beacon_skb);
301 
302 	priv->beacon_skb = beacon;
303 
304 	iwlagn_send_beacon_cmd(priv);
305  out:
306 	mutex_unlock(&priv->mutex);
307 }
308 
309 static void iwl_bg_bt_runtime_config(struct work_struct *work)
310 {
311 	struct iwl_priv *priv =
312 		container_of(work, struct iwl_priv, bt_runtime_config);
313 
314 	mutex_lock(&priv->mutex);
315 	if (test_bit(STATUS_EXIT_PENDING, &priv->status))
316 		goto out;
317 
318 	/* dont send host command if rf-kill is on */
319 	if (!iwl_is_ready_rf(priv))
320 		goto out;
321 
322 	iwlagn_send_advance_bt_config(priv);
323 out:
324 	mutex_unlock(&priv->mutex);
325 }
326 
327 static void iwl_bg_bt_full_concurrency(struct work_struct *work)
328 {
329 	struct iwl_priv *priv =
330 		container_of(work, struct iwl_priv, bt_full_concurrency);
331 	struct iwl_rxon_context *ctx;
332 
333 	mutex_lock(&priv->mutex);
334 
335 	if (test_bit(STATUS_EXIT_PENDING, &priv->status))
336 		goto out;
337 
338 	/* dont send host command if rf-kill is on */
339 	if (!iwl_is_ready_rf(priv))
340 		goto out;
341 
342 	IWL_DEBUG_INFO(priv, "BT coex in %s mode\n",
343 		       priv->bt_full_concurrent ?
344 		       "full concurrency" : "3-wire");
345 
346 	/*
347 	 * LQ & RXON updated cmds must be sent before BT Config cmd
348 	 * to avoid 3-wire collisions
349 	 */
350 	for_each_context(priv, ctx) {
351 		iwlagn_set_rxon_chain(priv, ctx);
352 		iwlagn_commit_rxon(priv, ctx);
353 	}
354 
355 	iwlagn_send_advance_bt_config(priv);
356 out:
357 	mutex_unlock(&priv->mutex);
358 }
359 
360 int iwl_send_statistics_request(struct iwl_priv *priv, u8 flags, bool clear)
361 {
362 	struct iwl_statistics_cmd statistics_cmd = {
363 		.configuration_flags =
364 			clear ? IWL_STATS_CONF_CLEAR_STATS : 0,
365 	};
366 
367 	if (flags & CMD_ASYNC)
368 		return iwl_dvm_send_cmd_pdu(priv, REPLY_STATISTICS_CMD,
369 					CMD_ASYNC,
370 					sizeof(struct iwl_statistics_cmd),
371 					&statistics_cmd);
372 	else
373 		return iwl_dvm_send_cmd_pdu(priv, REPLY_STATISTICS_CMD, 0,
374 					sizeof(struct iwl_statistics_cmd),
375 					&statistics_cmd);
376 }
377 
378 /**
379  * iwl_bg_statistics_periodic - Timer callback to queue statistics
380  *
381  * This callback is provided in order to send a statistics request.
382  *
383  * This timer function is continually reset to execute within
384  * REG_RECALIB_PERIOD seconds since the last STATISTICS_NOTIFICATION
385  * was received.  We need to ensure we receive the statistics in order
386  * to update the temperature used for calibrating the TXPOWER.
387  */
388 static void iwl_bg_statistics_periodic(struct timer_list *t)
389 {
390 	struct iwl_priv *priv = from_timer(priv, t, statistics_periodic);
391 
392 	if (test_bit(STATUS_EXIT_PENDING, &priv->status))
393 		return;
394 
395 	/* dont send host command if rf-kill is on */
396 	if (!iwl_is_ready_rf(priv))
397 		return;
398 
399 	iwl_send_statistics_request(priv, CMD_ASYNC, false);
400 }
401 
402 
403 static void iwl_print_cont_event_trace(struct iwl_priv *priv, u32 base,
404 					u32 start_idx, u32 num_events,
405 					u32 capacity, u32 mode)
406 {
407 	u32 i;
408 	u32 ptr;        /* SRAM byte address of log data */
409 	u32 ev, time, data; /* event log data */
410 	unsigned long reg_flags;
411 
412 	if (mode == 0)
413 		ptr = base + (4 * sizeof(u32)) + (start_idx * 2 * sizeof(u32));
414 	else
415 		ptr = base + (4 * sizeof(u32)) + (start_idx * 3 * sizeof(u32));
416 
417 	/* Make sure device is powered up for SRAM reads */
418 	if (!iwl_trans_grab_nic_access(priv->trans, &reg_flags))
419 		return;
420 
421 	/* Set starting address; reads will auto-increment */
422 	iwl_write32(priv->trans, HBUS_TARG_MEM_RADDR, ptr);
423 
424 	/*
425 	 * Refuse to read more than would have fit into the log from
426 	 * the current start_idx. This used to happen due to the race
427 	 * described below, but now WARN because the code below should
428 	 * prevent it from happening here.
429 	 */
430 	if (WARN_ON(num_events > capacity - start_idx))
431 		num_events = capacity - start_idx;
432 
433 	/*
434 	 * "time" is actually "data" for mode 0 (no timestamp).
435 	 * place event id # at far right for easier visual parsing.
436 	 */
437 	for (i = 0; i < num_events; i++) {
438 		ev = iwl_read32(priv->trans, HBUS_TARG_MEM_RDAT);
439 		time = iwl_read32(priv->trans, HBUS_TARG_MEM_RDAT);
440 		if (mode == 0) {
441 			trace_iwlwifi_dev_ucode_cont_event(
442 					priv->trans->dev, 0, time, ev);
443 		} else {
444 			data = iwl_read32(priv->trans, HBUS_TARG_MEM_RDAT);
445 			trace_iwlwifi_dev_ucode_cont_event(
446 					priv->trans->dev, time, data, ev);
447 		}
448 	}
449 	/* Allow device to power down */
450 	iwl_trans_release_nic_access(priv->trans, &reg_flags);
451 }
452 
453 static void iwl_continuous_event_trace(struct iwl_priv *priv)
454 {
455 	u32 capacity;   /* event log capacity in # entries */
456 	struct {
457 		u32 capacity;
458 		u32 mode;
459 		u32 wrap_counter;
460 		u32 write_counter;
461 	} __packed read;
462 	u32 base;       /* SRAM byte address of event log header */
463 	u32 mode;       /* 0 - no timestamp, 1 - timestamp recorded */
464 	u32 num_wraps;  /* # times uCode wrapped to top of log */
465 	u32 next_entry; /* index of next entry to be written by uCode */
466 
467 	base = priv->device_pointers.log_event_table;
468 	if (iwlagn_hw_valid_rtc_data_addr(base)) {
469 		iwl_trans_read_mem_bytes(priv->trans, base,
470 					 &read, sizeof(read));
471 		capacity = read.capacity;
472 		mode = read.mode;
473 		num_wraps = read.wrap_counter;
474 		next_entry = read.write_counter;
475 	} else
476 		return;
477 
478 	/*
479 	 * Unfortunately, the uCode doesn't use temporary variables.
480 	 * Therefore, it can happen that we read next_entry == capacity,
481 	 * which really means next_entry == 0.
482 	 */
483 	if (unlikely(next_entry == capacity))
484 		next_entry = 0;
485 	/*
486 	 * Additionally, the uCode increases the write pointer before
487 	 * the wraps counter, so if the write pointer is smaller than
488 	 * the old write pointer (wrap occurred) but we read that no
489 	 * wrap occurred, we actually read between the next_entry and
490 	 * num_wraps update (this does happen in practice!!) -- take
491 	 * that into account by increasing num_wraps.
492 	 */
493 	if (unlikely(next_entry < priv->event_log.next_entry &&
494 		     num_wraps == priv->event_log.num_wraps))
495 		num_wraps++;
496 
497 	if (num_wraps == priv->event_log.num_wraps) {
498 		iwl_print_cont_event_trace(
499 			priv, base, priv->event_log.next_entry,
500 			next_entry - priv->event_log.next_entry,
501 			capacity, mode);
502 
503 		priv->event_log.non_wraps_count++;
504 	} else {
505 		if (num_wraps - priv->event_log.num_wraps > 1)
506 			priv->event_log.wraps_more_count++;
507 		else
508 			priv->event_log.wraps_once_count++;
509 
510 		trace_iwlwifi_dev_ucode_wrap_event(priv->trans->dev,
511 				num_wraps - priv->event_log.num_wraps,
512 				next_entry, priv->event_log.next_entry);
513 
514 		if (next_entry < priv->event_log.next_entry) {
515 			iwl_print_cont_event_trace(
516 				priv, base, priv->event_log.next_entry,
517 				capacity - priv->event_log.next_entry,
518 				capacity, mode);
519 
520 			iwl_print_cont_event_trace(
521 				priv, base, 0, next_entry, capacity, mode);
522 		} else {
523 			iwl_print_cont_event_trace(
524 				priv, base, next_entry,
525 				capacity - next_entry,
526 				capacity, mode);
527 
528 			iwl_print_cont_event_trace(
529 				priv, base, 0, next_entry, capacity, mode);
530 		}
531 	}
532 
533 	priv->event_log.num_wraps = num_wraps;
534 	priv->event_log.next_entry = next_entry;
535 }
536 
537 /**
538  * iwl_bg_ucode_trace - Timer callback to log ucode event
539  *
540  * The timer is continually set to execute every
541  * UCODE_TRACE_PERIOD milliseconds after the last timer expired
542  * this function is to perform continuous uCode event logging operation
543  * if enabled
544  */
545 static void iwl_bg_ucode_trace(struct timer_list *t)
546 {
547 	struct iwl_priv *priv = from_timer(priv, t, ucode_trace);
548 
549 	if (test_bit(STATUS_EXIT_PENDING, &priv->status))
550 		return;
551 
552 	if (priv->event_log.ucode_trace) {
553 		iwl_continuous_event_trace(priv);
554 		/* Reschedule the timer to occur in UCODE_TRACE_PERIOD */
555 		mod_timer(&priv->ucode_trace,
556 			 jiffies + msecs_to_jiffies(UCODE_TRACE_PERIOD));
557 	}
558 }
559 
560 static void iwl_bg_tx_flush(struct work_struct *work)
561 {
562 	struct iwl_priv *priv =
563 		container_of(work, struct iwl_priv, tx_flush);
564 
565 	if (test_bit(STATUS_EXIT_PENDING, &priv->status))
566 		return;
567 
568 	/* do nothing if rf-kill is on */
569 	if (!iwl_is_ready_rf(priv))
570 		return;
571 
572 	IWL_DEBUG_INFO(priv, "device request: flush all tx frames\n");
573 	iwlagn_dev_txfifo_flush(priv);
574 }
575 
576 /*
577  * queue/FIFO/AC mapping definitions
578  */
579 
580 static const u8 iwlagn_bss_ac_to_fifo[] = {
581 	IWL_TX_FIFO_VO,
582 	IWL_TX_FIFO_VI,
583 	IWL_TX_FIFO_BE,
584 	IWL_TX_FIFO_BK,
585 };
586 
587 static const u8 iwlagn_bss_ac_to_queue[] = {
588 	0, 1, 2, 3,
589 };
590 
591 static const u8 iwlagn_pan_ac_to_fifo[] = {
592 	IWL_TX_FIFO_VO_IPAN,
593 	IWL_TX_FIFO_VI_IPAN,
594 	IWL_TX_FIFO_BE_IPAN,
595 	IWL_TX_FIFO_BK_IPAN,
596 };
597 
598 static const u8 iwlagn_pan_ac_to_queue[] = {
599 	7, 6, 5, 4,
600 };
601 
602 static void iwl_init_context(struct iwl_priv *priv, u32 ucode_flags)
603 {
604 	int i;
605 
606 	/*
607 	 * The default context is always valid,
608 	 * the PAN context depends on uCode.
609 	 */
610 	priv->valid_contexts = BIT(IWL_RXON_CTX_BSS);
611 	if (ucode_flags & IWL_UCODE_TLV_FLAGS_PAN)
612 		priv->valid_contexts |= BIT(IWL_RXON_CTX_PAN);
613 
614 	for (i = 0; i < NUM_IWL_RXON_CTX; i++)
615 		priv->contexts[i].ctxid = i;
616 
617 	priv->contexts[IWL_RXON_CTX_BSS].always_active = true;
618 	priv->contexts[IWL_RXON_CTX_BSS].is_active = true;
619 	priv->contexts[IWL_RXON_CTX_BSS].rxon_cmd = REPLY_RXON;
620 	priv->contexts[IWL_RXON_CTX_BSS].rxon_timing_cmd = REPLY_RXON_TIMING;
621 	priv->contexts[IWL_RXON_CTX_BSS].rxon_assoc_cmd = REPLY_RXON_ASSOC;
622 	priv->contexts[IWL_RXON_CTX_BSS].qos_cmd = REPLY_QOS_PARAM;
623 	priv->contexts[IWL_RXON_CTX_BSS].ap_sta_id = IWL_AP_ID;
624 	priv->contexts[IWL_RXON_CTX_BSS].wep_key_cmd = REPLY_WEPKEY;
625 	priv->contexts[IWL_RXON_CTX_BSS].bcast_sta_id = IWLAGN_BROADCAST_ID;
626 	priv->contexts[IWL_RXON_CTX_BSS].exclusive_interface_modes =
627 		BIT(NL80211_IFTYPE_ADHOC) | BIT(NL80211_IFTYPE_MONITOR);
628 	priv->contexts[IWL_RXON_CTX_BSS].interface_modes =
629 		BIT(NL80211_IFTYPE_STATION);
630 	priv->contexts[IWL_RXON_CTX_BSS].ap_devtype = RXON_DEV_TYPE_AP;
631 	priv->contexts[IWL_RXON_CTX_BSS].ibss_devtype = RXON_DEV_TYPE_IBSS;
632 	priv->contexts[IWL_RXON_CTX_BSS].station_devtype = RXON_DEV_TYPE_ESS;
633 	priv->contexts[IWL_RXON_CTX_BSS].unused_devtype = RXON_DEV_TYPE_ESS;
634 	memcpy(priv->contexts[IWL_RXON_CTX_BSS].ac_to_queue,
635 	       iwlagn_bss_ac_to_queue, sizeof(iwlagn_bss_ac_to_queue));
636 	memcpy(priv->contexts[IWL_RXON_CTX_BSS].ac_to_fifo,
637 	       iwlagn_bss_ac_to_fifo, sizeof(iwlagn_bss_ac_to_fifo));
638 
639 	priv->contexts[IWL_RXON_CTX_PAN].rxon_cmd = REPLY_WIPAN_RXON;
640 	priv->contexts[IWL_RXON_CTX_PAN].rxon_timing_cmd =
641 		REPLY_WIPAN_RXON_TIMING;
642 	priv->contexts[IWL_RXON_CTX_PAN].rxon_assoc_cmd =
643 		REPLY_WIPAN_RXON_ASSOC;
644 	priv->contexts[IWL_RXON_CTX_PAN].qos_cmd = REPLY_WIPAN_QOS_PARAM;
645 	priv->contexts[IWL_RXON_CTX_PAN].ap_sta_id = IWL_AP_ID_PAN;
646 	priv->contexts[IWL_RXON_CTX_PAN].wep_key_cmd = REPLY_WIPAN_WEPKEY;
647 	priv->contexts[IWL_RXON_CTX_PAN].bcast_sta_id = IWLAGN_PAN_BCAST_ID;
648 	priv->contexts[IWL_RXON_CTX_PAN].station_flags = STA_FLG_PAN_STATION;
649 	priv->contexts[IWL_RXON_CTX_PAN].interface_modes =
650 		BIT(NL80211_IFTYPE_STATION) | BIT(NL80211_IFTYPE_AP);
651 
652 	priv->contexts[IWL_RXON_CTX_PAN].ap_devtype = RXON_DEV_TYPE_CP;
653 	priv->contexts[IWL_RXON_CTX_PAN].station_devtype = RXON_DEV_TYPE_2STA;
654 	priv->contexts[IWL_RXON_CTX_PAN].unused_devtype = RXON_DEV_TYPE_P2P;
655 	memcpy(priv->contexts[IWL_RXON_CTX_PAN].ac_to_queue,
656 	       iwlagn_pan_ac_to_queue, sizeof(iwlagn_pan_ac_to_queue));
657 	memcpy(priv->contexts[IWL_RXON_CTX_PAN].ac_to_fifo,
658 	       iwlagn_pan_ac_to_fifo, sizeof(iwlagn_pan_ac_to_fifo));
659 	priv->contexts[IWL_RXON_CTX_PAN].mcast_queue = IWL_IPAN_MCAST_QUEUE;
660 
661 	BUILD_BUG_ON(NUM_IWL_RXON_CTX != 2);
662 }
663 
664 static void iwl_rf_kill_ct_config(struct iwl_priv *priv)
665 {
666 	struct iwl_ct_kill_config cmd;
667 	struct iwl_ct_kill_throttling_config adv_cmd;
668 	int ret = 0;
669 
670 	iwl_write32(priv->trans, CSR_UCODE_DRV_GP1_CLR,
671 		    CSR_UCODE_DRV_GP1_REG_BIT_CT_KILL_EXIT);
672 
673 	priv->thermal_throttle.ct_kill_toggle = false;
674 
675 	if (priv->lib->support_ct_kill_exit) {
676 		adv_cmd.critical_temperature_enter =
677 			cpu_to_le32(priv->hw_params.ct_kill_threshold);
678 		adv_cmd.critical_temperature_exit =
679 			cpu_to_le32(priv->hw_params.ct_kill_exit_threshold);
680 
681 		ret = iwl_dvm_send_cmd_pdu(priv,
682 				       REPLY_CT_KILL_CONFIG_CMD,
683 				       0, sizeof(adv_cmd), &adv_cmd);
684 		if (ret)
685 			IWL_ERR(priv, "REPLY_CT_KILL_CONFIG_CMD failed\n");
686 		else
687 			IWL_DEBUG_INFO(priv, "REPLY_CT_KILL_CONFIG_CMD "
688 				"succeeded, critical temperature enter is %d,"
689 				"exit is %d\n",
690 				priv->hw_params.ct_kill_threshold,
691 				priv->hw_params.ct_kill_exit_threshold);
692 	} else {
693 		cmd.critical_temperature_R =
694 			cpu_to_le32(priv->hw_params.ct_kill_threshold);
695 
696 		ret = iwl_dvm_send_cmd_pdu(priv,
697 				       REPLY_CT_KILL_CONFIG_CMD,
698 				       0, sizeof(cmd), &cmd);
699 		if (ret)
700 			IWL_ERR(priv, "REPLY_CT_KILL_CONFIG_CMD failed\n");
701 		else
702 			IWL_DEBUG_INFO(priv, "REPLY_CT_KILL_CONFIG_CMD "
703 				"succeeded, "
704 				"critical temperature is %d\n",
705 				priv->hw_params.ct_kill_threshold);
706 	}
707 }
708 
709 static int iwlagn_send_calib_cfg_rt(struct iwl_priv *priv, u32 cfg)
710 {
711 	struct iwl_calib_cfg_cmd calib_cfg_cmd;
712 	struct iwl_host_cmd cmd = {
713 		.id = CALIBRATION_CFG_CMD,
714 		.len = { sizeof(struct iwl_calib_cfg_cmd), },
715 		.data = { &calib_cfg_cmd, },
716 	};
717 
718 	memset(&calib_cfg_cmd, 0, sizeof(calib_cfg_cmd));
719 	calib_cfg_cmd.ucd_calib_cfg.once.is_enable = IWL_CALIB_RT_CFG_ALL;
720 	calib_cfg_cmd.ucd_calib_cfg.once.start = cpu_to_le32(cfg);
721 
722 	return iwl_dvm_send_cmd(priv, &cmd);
723 }
724 
725 
726 static int iwlagn_send_tx_ant_config(struct iwl_priv *priv, u8 valid_tx_ant)
727 {
728 	struct iwl_tx_ant_config_cmd tx_ant_cmd = {
729 	  .valid = cpu_to_le32(valid_tx_ant),
730 	};
731 
732 	if (IWL_UCODE_API(priv->fw->ucode_ver) > 1) {
733 		IWL_DEBUG_HC(priv, "select valid tx ant: %u\n", valid_tx_ant);
734 		return iwl_dvm_send_cmd_pdu(priv, TX_ANT_CONFIGURATION_CMD, 0,
735 					sizeof(struct iwl_tx_ant_config_cmd),
736 					&tx_ant_cmd);
737 	} else {
738 		IWL_DEBUG_HC(priv, "TX_ANT_CONFIGURATION_CMD not supported\n");
739 		return -EOPNOTSUPP;
740 	}
741 }
742 
743 static void iwl_send_bt_config(struct iwl_priv *priv)
744 {
745 	struct iwl_bt_cmd bt_cmd = {
746 		.lead_time = BT_LEAD_TIME_DEF,
747 		.max_kill = BT_MAX_KILL_DEF,
748 		.kill_ack_mask = 0,
749 		.kill_cts_mask = 0,
750 	};
751 
752 	if (!iwlwifi_mod_params.bt_coex_active)
753 		bt_cmd.flags = BT_COEX_DISABLE;
754 	else
755 		bt_cmd.flags = BT_COEX_ENABLE;
756 
757 	priv->bt_enable_flag = bt_cmd.flags;
758 	IWL_DEBUG_INFO(priv, "BT coex %s\n",
759 		(bt_cmd.flags == BT_COEX_DISABLE) ? "disable" : "active");
760 
761 	if (iwl_dvm_send_cmd_pdu(priv, REPLY_BT_CONFIG,
762 			     0, sizeof(struct iwl_bt_cmd), &bt_cmd))
763 		IWL_ERR(priv, "failed to send BT Coex Config\n");
764 }
765 
766 /**
767  * iwl_alive_start - called after REPLY_ALIVE notification received
768  *                   from protocol/runtime uCode (initialization uCode's
769  *                   Alive gets handled by iwl_init_alive_start()).
770  */
771 int iwl_alive_start(struct iwl_priv *priv)
772 {
773 	int ret = 0;
774 	struct iwl_rxon_context *ctx = &priv->contexts[IWL_RXON_CTX_BSS];
775 
776 	IWL_DEBUG_INFO(priv, "Runtime Alive received.\n");
777 
778 	/* After the ALIVE response, we can send host commands to the uCode */
779 	set_bit(STATUS_ALIVE, &priv->status);
780 
781 	if (iwl_is_rfkill(priv))
782 		return -ERFKILL;
783 
784 	if (priv->event_log.ucode_trace) {
785 		/* start collecting data now */
786 		mod_timer(&priv->ucode_trace, jiffies);
787 	}
788 
789 	/* download priority table before any calibration request */
790 	if (priv->lib->bt_params &&
791 	    priv->lib->bt_params->advanced_bt_coexist) {
792 		/* Configure Bluetooth device coexistence support */
793 		if (priv->lib->bt_params->bt_sco_disable)
794 			priv->bt_enable_pspoll = false;
795 		else
796 			priv->bt_enable_pspoll = true;
797 
798 		priv->bt_valid = IWLAGN_BT_ALL_VALID_MSK;
799 		priv->kill_ack_mask = IWLAGN_BT_KILL_ACK_MASK_DEFAULT;
800 		priv->kill_cts_mask = IWLAGN_BT_KILL_CTS_MASK_DEFAULT;
801 		iwlagn_send_advance_bt_config(priv);
802 		priv->bt_valid = IWLAGN_BT_VALID_ENABLE_FLAGS;
803 		priv->cur_rssi_ctx = NULL;
804 
805 		iwl_send_prio_tbl(priv);
806 
807 		/* FIXME: w/a to force change uCode BT state machine */
808 		ret = iwl_send_bt_env(priv, IWL_BT_COEX_ENV_OPEN,
809 					 BT_COEX_PRIO_TBL_EVT_INIT_CALIB2);
810 		if (ret)
811 			return ret;
812 		ret = iwl_send_bt_env(priv, IWL_BT_COEX_ENV_CLOSE,
813 					 BT_COEX_PRIO_TBL_EVT_INIT_CALIB2);
814 		if (ret)
815 			return ret;
816 	} else if (priv->lib->bt_params) {
817 		/*
818 		 * default is 2-wire BT coexexistence support
819 		 */
820 		iwl_send_bt_config(priv);
821 	}
822 
823 	/*
824 	 * Perform runtime calibrations, including DC calibration.
825 	 */
826 	iwlagn_send_calib_cfg_rt(priv, IWL_CALIB_CFG_DC_IDX);
827 
828 	ieee80211_wake_queues(priv->hw);
829 
830 	/* Configure Tx antenna selection based on H/W config */
831 	iwlagn_send_tx_ant_config(priv, priv->nvm_data->valid_tx_ant);
832 
833 	if (iwl_is_associated_ctx(ctx) && !priv->wowlan) {
834 		struct iwl_rxon_cmd *active_rxon =
835 				(struct iwl_rxon_cmd *)&ctx->active;
836 		/* apply any changes in staging */
837 		ctx->staging.filter_flags |= RXON_FILTER_ASSOC_MSK;
838 		active_rxon->filter_flags &= ~RXON_FILTER_ASSOC_MSK;
839 	} else {
840 		struct iwl_rxon_context *tmp;
841 		/* Initialize our rx_config data */
842 		for_each_context(priv, tmp)
843 			iwl_connection_init_rx_config(priv, tmp);
844 
845 		iwlagn_set_rxon_chain(priv, ctx);
846 	}
847 
848 	if (!priv->wowlan) {
849 		/* WoWLAN ucode will not reply in the same way, skip it */
850 		iwl_reset_run_time_calib(priv);
851 	}
852 
853 	set_bit(STATUS_READY, &priv->status);
854 
855 	/* Configure the adapter for unassociated operation */
856 	ret = iwlagn_commit_rxon(priv, ctx);
857 	if (ret)
858 		return ret;
859 
860 	/* At this point, the NIC is initialized and operational */
861 	iwl_rf_kill_ct_config(priv);
862 
863 	IWL_DEBUG_INFO(priv, "ALIVE processing complete.\n");
864 
865 	return iwl_power_update_mode(priv, true);
866 }
867 
868 /**
869  * iwl_clear_driver_stations - clear knowledge of all stations from driver
870  * @priv: iwl priv struct
871  *
872  * This is called during iwl_down() to make sure that in the case
873  * we're coming there from a hardware restart mac80211 will be
874  * able to reconfigure stations -- if we're getting there in the
875  * normal down flow then the stations will already be cleared.
876  */
877 static void iwl_clear_driver_stations(struct iwl_priv *priv)
878 {
879 	struct iwl_rxon_context *ctx;
880 
881 	spin_lock_bh(&priv->sta_lock);
882 	memset(priv->stations, 0, sizeof(priv->stations));
883 	priv->num_stations = 0;
884 
885 	priv->ucode_key_table = 0;
886 
887 	for_each_context(priv, ctx) {
888 		/*
889 		 * Remove all key information that is not stored as part
890 		 * of station information since mac80211 may not have had
891 		 * a chance to remove all the keys. When device is
892 		 * reconfigured by mac80211 after an error all keys will
893 		 * be reconfigured.
894 		 */
895 		memset(ctx->wep_keys, 0, sizeof(ctx->wep_keys));
896 		ctx->key_mapping_keys = 0;
897 	}
898 
899 	spin_unlock_bh(&priv->sta_lock);
900 }
901 
902 void iwl_down(struct iwl_priv *priv)
903 {
904 	int exit_pending;
905 
906 	IWL_DEBUG_INFO(priv, DRV_NAME " is going down\n");
907 
908 	lockdep_assert_held(&priv->mutex);
909 
910 	iwl_scan_cancel_timeout(priv, 200);
911 
912 	exit_pending =
913 		test_and_set_bit(STATUS_EXIT_PENDING, &priv->status);
914 
915 	iwl_clear_ucode_stations(priv, NULL);
916 	iwl_dealloc_bcast_stations(priv);
917 	iwl_clear_driver_stations(priv);
918 
919 	/* reset BT coex data */
920 	priv->bt_status = 0;
921 	priv->cur_rssi_ctx = NULL;
922 	priv->bt_is_sco = 0;
923 	if (priv->lib->bt_params)
924 		priv->bt_traffic_load =
925 			 priv->lib->bt_params->bt_init_traffic_load;
926 	else
927 		priv->bt_traffic_load = 0;
928 	priv->bt_full_concurrent = false;
929 	priv->bt_ci_compliance = 0;
930 
931 	/* Wipe out the EXIT_PENDING status bit if we are not actually
932 	 * exiting the module */
933 	if (!exit_pending)
934 		clear_bit(STATUS_EXIT_PENDING, &priv->status);
935 
936 	if (priv->mac80211_registered)
937 		ieee80211_stop_queues(priv->hw);
938 
939 	priv->ucode_loaded = false;
940 	iwl_trans_stop_device(priv->trans);
941 
942 	/* Set num_aux_in_flight must be done after the transport is stopped */
943 	atomic_set(&priv->num_aux_in_flight, 0);
944 
945 	/* Clear out all status bits but a few that are stable across reset */
946 	priv->status &= test_bit(STATUS_RF_KILL_HW, &priv->status) <<
947 				STATUS_RF_KILL_HW |
948 			test_bit(STATUS_FW_ERROR, &priv->status) <<
949 				STATUS_FW_ERROR |
950 			test_bit(STATUS_EXIT_PENDING, &priv->status) <<
951 				STATUS_EXIT_PENDING;
952 
953 	dev_kfree_skb(priv->beacon_skb);
954 	priv->beacon_skb = NULL;
955 }
956 
957 /*****************************************************************************
958  *
959  * Workqueue callbacks
960  *
961  *****************************************************************************/
962 
963 static void iwl_bg_run_time_calib_work(struct work_struct *work)
964 {
965 	struct iwl_priv *priv = container_of(work, struct iwl_priv,
966 			run_time_calib_work);
967 
968 	mutex_lock(&priv->mutex);
969 
970 	if (test_bit(STATUS_EXIT_PENDING, &priv->status) ||
971 	    test_bit(STATUS_SCANNING, &priv->status)) {
972 		mutex_unlock(&priv->mutex);
973 		return;
974 	}
975 
976 	if (priv->start_calib) {
977 		iwl_chain_noise_calibration(priv);
978 		iwl_sensitivity_calibration(priv);
979 	}
980 
981 	mutex_unlock(&priv->mutex);
982 }
983 
984 void iwlagn_prepare_restart(struct iwl_priv *priv)
985 {
986 	bool bt_full_concurrent;
987 	u8 bt_ci_compliance;
988 	u8 bt_load;
989 	u8 bt_status;
990 	bool bt_is_sco;
991 	int i;
992 
993 	lockdep_assert_held(&priv->mutex);
994 
995 	priv->is_open = 0;
996 
997 	/*
998 	 * __iwl_down() will clear the BT status variables,
999 	 * which is correct, but when we restart we really
1000 	 * want to keep them so restore them afterwards.
1001 	 *
1002 	 * The restart process will later pick them up and
1003 	 * re-configure the hw when we reconfigure the BT
1004 	 * command.
1005 	 */
1006 	bt_full_concurrent = priv->bt_full_concurrent;
1007 	bt_ci_compliance = priv->bt_ci_compliance;
1008 	bt_load = priv->bt_traffic_load;
1009 	bt_status = priv->bt_status;
1010 	bt_is_sco = priv->bt_is_sco;
1011 
1012 	iwl_down(priv);
1013 
1014 	priv->bt_full_concurrent = bt_full_concurrent;
1015 	priv->bt_ci_compliance = bt_ci_compliance;
1016 	priv->bt_traffic_load = bt_load;
1017 	priv->bt_status = bt_status;
1018 	priv->bt_is_sco = bt_is_sco;
1019 
1020 	/* reset aggregation queues */
1021 	for (i = IWLAGN_FIRST_AMPDU_QUEUE; i < IWL_MAX_HW_QUEUES; i++)
1022 		priv->queue_to_mac80211[i] = IWL_INVALID_MAC80211_QUEUE;
1023 	/* and stop counts */
1024 	for (i = 0; i < IWL_MAX_HW_QUEUES; i++)
1025 		atomic_set(&priv->queue_stop_count[i], 0);
1026 
1027 	memset(priv->agg_q_alloc, 0, sizeof(priv->agg_q_alloc));
1028 }
1029 
1030 static void iwl_bg_restart(struct work_struct *data)
1031 {
1032 	struct iwl_priv *priv = container_of(data, struct iwl_priv, restart);
1033 
1034 	if (test_bit(STATUS_EXIT_PENDING, &priv->status))
1035 		return;
1036 
1037 	if (test_and_clear_bit(STATUS_FW_ERROR, &priv->status)) {
1038 		mutex_lock(&priv->mutex);
1039 		iwlagn_prepare_restart(priv);
1040 		mutex_unlock(&priv->mutex);
1041 		iwl_cancel_deferred_work(priv);
1042 		if (priv->mac80211_registered)
1043 			ieee80211_restart_hw(priv->hw);
1044 		else
1045 			IWL_ERR(priv,
1046 				"Cannot request restart before registering with mac80211\n");
1047 	} else {
1048 		WARN_ON(1);
1049 	}
1050 }
1051 
1052 /*****************************************************************************
1053  *
1054  * driver setup and teardown
1055  *
1056  *****************************************************************************/
1057 
1058 static void iwl_setup_deferred_work(struct iwl_priv *priv)
1059 {
1060 	priv->workqueue = alloc_ordered_workqueue(DRV_NAME, 0);
1061 
1062 	INIT_WORK(&priv->restart, iwl_bg_restart);
1063 	INIT_WORK(&priv->beacon_update, iwl_bg_beacon_update);
1064 	INIT_WORK(&priv->run_time_calib_work, iwl_bg_run_time_calib_work);
1065 	INIT_WORK(&priv->tx_flush, iwl_bg_tx_flush);
1066 	INIT_WORK(&priv->bt_full_concurrency, iwl_bg_bt_full_concurrency);
1067 	INIT_WORK(&priv->bt_runtime_config, iwl_bg_bt_runtime_config);
1068 
1069 	iwl_setup_scan_deferred_work(priv);
1070 
1071 	if (priv->lib->bt_params)
1072 		iwlagn_bt_setup_deferred_work(priv);
1073 
1074 	timer_setup(&priv->statistics_periodic, iwl_bg_statistics_periodic, 0);
1075 
1076 	timer_setup(&priv->ucode_trace, iwl_bg_ucode_trace, 0);
1077 }
1078 
1079 void iwl_cancel_deferred_work(struct iwl_priv *priv)
1080 {
1081 	if (priv->lib->bt_params)
1082 		iwlagn_bt_cancel_deferred_work(priv);
1083 
1084 	cancel_work_sync(&priv->run_time_calib_work);
1085 	cancel_work_sync(&priv->beacon_update);
1086 
1087 	iwl_cancel_scan_deferred_work(priv);
1088 
1089 	cancel_work_sync(&priv->bt_full_concurrency);
1090 	cancel_work_sync(&priv->bt_runtime_config);
1091 
1092 	del_timer_sync(&priv->statistics_periodic);
1093 	del_timer_sync(&priv->ucode_trace);
1094 }
1095 
1096 static int iwl_init_drv(struct iwl_priv *priv)
1097 {
1098 	spin_lock_init(&priv->sta_lock);
1099 
1100 	mutex_init(&priv->mutex);
1101 
1102 	INIT_LIST_HEAD(&priv->calib_results);
1103 
1104 	priv->band = NL80211_BAND_2GHZ;
1105 
1106 	priv->plcp_delta_threshold = priv->lib->plcp_delta_threshold;
1107 
1108 	priv->iw_mode = NL80211_IFTYPE_STATION;
1109 	priv->current_ht_config.smps = IEEE80211_SMPS_STATIC;
1110 	priv->missed_beacon_threshold = IWL_MISSED_BEACON_THRESHOLD_DEF;
1111 	priv->agg_tids_count = 0;
1112 
1113 	priv->rx_statistics_jiffies = jiffies;
1114 
1115 	/* Choose which receivers/antennas to use */
1116 	iwlagn_set_rxon_chain(priv, &priv->contexts[IWL_RXON_CTX_BSS]);
1117 
1118 	iwl_init_scan_params(priv);
1119 
1120 	/* init bt coex */
1121 	if (priv->lib->bt_params &&
1122 	    priv->lib->bt_params->advanced_bt_coexist) {
1123 		priv->kill_ack_mask = IWLAGN_BT_KILL_ACK_MASK_DEFAULT;
1124 		priv->kill_cts_mask = IWLAGN_BT_KILL_CTS_MASK_DEFAULT;
1125 		priv->bt_valid = IWLAGN_BT_ALL_VALID_MSK;
1126 		priv->bt_on_thresh = BT_ON_THRESHOLD_DEF;
1127 		priv->bt_duration = BT_DURATION_LIMIT_DEF;
1128 		priv->dynamic_frag_thresh = BT_FRAG_THRESHOLD_DEF;
1129 	}
1130 
1131 	return 0;
1132 }
1133 
1134 static void iwl_uninit_drv(struct iwl_priv *priv)
1135 {
1136 	kfree(priv->scan_cmd);
1137 	kfree(priv->beacon_cmd);
1138 	kfree(rcu_dereference_raw(priv->noa_data));
1139 	iwl_calib_free_results(priv);
1140 #ifdef CONFIG_IWLWIFI_DEBUGFS
1141 	kfree(priv->wowlan_sram);
1142 #endif
1143 }
1144 
1145 static void iwl_set_hw_params(struct iwl_priv *priv)
1146 {
1147 	if (priv->cfg->ht_params)
1148 		priv->hw_params.use_rts_for_aggregation =
1149 			priv->cfg->ht_params->use_rts_for_aggregation;
1150 
1151 	/* Device-specific setup */
1152 	priv->lib->set_hw_params(priv);
1153 }
1154 
1155 
1156 
1157 /* show what optional capabilities we have */
1158 static void iwl_option_config(struct iwl_priv *priv)
1159 {
1160 #ifdef CONFIG_IWLWIFI_DEBUG
1161 	IWL_INFO(priv, "CONFIG_IWLWIFI_DEBUG enabled\n");
1162 #else
1163 	IWL_INFO(priv, "CONFIG_IWLWIFI_DEBUG disabled\n");
1164 #endif
1165 
1166 #ifdef CONFIG_IWLWIFI_DEBUGFS
1167 	IWL_INFO(priv, "CONFIG_IWLWIFI_DEBUGFS enabled\n");
1168 #else
1169 	IWL_INFO(priv, "CONFIG_IWLWIFI_DEBUGFS disabled\n");
1170 #endif
1171 
1172 #ifdef CONFIG_IWLWIFI_DEVICE_TRACING
1173 	IWL_INFO(priv, "CONFIG_IWLWIFI_DEVICE_TRACING enabled\n");
1174 #else
1175 	IWL_INFO(priv, "CONFIG_IWLWIFI_DEVICE_TRACING disabled\n");
1176 #endif
1177 }
1178 
1179 static int iwl_eeprom_init_hw_params(struct iwl_priv *priv)
1180 {
1181 	struct iwl_nvm_data *data = priv->nvm_data;
1182 
1183 	if (data->sku_cap_11n_enable &&
1184 	    !priv->cfg->ht_params) {
1185 		IWL_ERR(priv, "Invalid 11n configuration\n");
1186 		return -EINVAL;
1187 	}
1188 
1189 	if (!data->sku_cap_11n_enable && !data->sku_cap_band_24ghz_enable &&
1190 	    !data->sku_cap_band_52ghz_enable) {
1191 		IWL_ERR(priv, "Invalid device sku\n");
1192 		return -EINVAL;
1193 	}
1194 
1195 	IWL_DEBUG_INFO(priv,
1196 		       "Device SKU: 24GHz %s %s, 52GHz %s %s, 11.n %s %s\n",
1197 		       data->sku_cap_band_24ghz_enable ? "" : "NOT", "enabled",
1198 		       data->sku_cap_band_52ghz_enable ? "" : "NOT", "enabled",
1199 		       data->sku_cap_11n_enable ? "" : "NOT", "enabled");
1200 
1201 	priv->hw_params.tx_chains_num =
1202 		num_of_ant(data->valid_tx_ant);
1203 	if (priv->cfg->rx_with_siso_diversity)
1204 		priv->hw_params.rx_chains_num = 1;
1205 	else
1206 		priv->hw_params.rx_chains_num =
1207 			num_of_ant(data->valid_rx_ant);
1208 
1209 	IWL_DEBUG_INFO(priv, "Valid Tx ant: 0x%X, Valid Rx ant: 0x%X\n",
1210 		       data->valid_tx_ant,
1211 		       data->valid_rx_ant);
1212 
1213 	return 0;
1214 }
1215 
1216 static int iwl_nvm_check_version(struct iwl_nvm_data *data,
1217 				 struct iwl_trans *trans)
1218 {
1219 	if (data->nvm_version >= trans->cfg->nvm_ver ||
1220 	    data->calib_version >= trans->cfg->nvm_calib_ver) {
1221 		IWL_DEBUG_INFO(trans, "device EEPROM VER=0x%x, CALIB=0x%x\n",
1222 			       data->nvm_version, data->calib_version);
1223 		return 0;
1224 	}
1225 
1226 	IWL_ERR(trans,
1227 		"Unsupported (too old) EEPROM VER=0x%x < 0x%x CALIB=0x%x < 0x%x\n",
1228 		data->nvm_version, trans->cfg->nvm_ver,
1229 		data->calib_version,  trans->cfg->nvm_calib_ver);
1230 	return -EINVAL;
1231 }
1232 
1233 static struct iwl_op_mode *iwl_op_mode_dvm_start(struct iwl_trans *trans,
1234 						 const struct iwl_cfg *cfg,
1235 						 const struct iwl_fw *fw,
1236 						 struct dentry *dbgfs_dir)
1237 {
1238 	struct iwl_priv *priv;
1239 	struct ieee80211_hw *hw;
1240 	struct iwl_op_mode *op_mode;
1241 	u16 num_mac;
1242 	u32 ucode_flags;
1243 	struct iwl_trans_config trans_cfg = {};
1244 	static const u8 no_reclaim_cmds[] = {
1245 		REPLY_RX_PHY_CMD,
1246 		REPLY_RX_MPDU_CMD,
1247 		REPLY_COMPRESSED_BA,
1248 		STATISTICS_NOTIFICATION,
1249 		REPLY_TX,
1250 	};
1251 	int i;
1252 
1253 	/************************
1254 	 * 1. Allocating HW data
1255 	 ************************/
1256 	hw = iwl_alloc_all();
1257 	if (!hw) {
1258 		pr_err("%s: Cannot allocate network device\n", trans->name);
1259 		goto out;
1260 	}
1261 
1262 	op_mode = hw->priv;
1263 	op_mode->ops = &iwl_dvm_ops;
1264 	priv = IWL_OP_MODE_GET_DVM(op_mode);
1265 	priv->trans = trans;
1266 	priv->dev = trans->dev;
1267 	priv->cfg = cfg;
1268 	priv->fw = fw;
1269 
1270 	switch (priv->trans->trans_cfg->device_family) {
1271 	case IWL_DEVICE_FAMILY_1000:
1272 	case IWL_DEVICE_FAMILY_100:
1273 		priv->lib = &iwl_dvm_1000_cfg;
1274 		break;
1275 	case IWL_DEVICE_FAMILY_2000:
1276 		priv->lib = &iwl_dvm_2000_cfg;
1277 		break;
1278 	case IWL_DEVICE_FAMILY_105:
1279 		priv->lib = &iwl_dvm_105_cfg;
1280 		break;
1281 	case IWL_DEVICE_FAMILY_2030:
1282 	case IWL_DEVICE_FAMILY_135:
1283 		priv->lib = &iwl_dvm_2030_cfg;
1284 		break;
1285 	case IWL_DEVICE_FAMILY_5000:
1286 		priv->lib = &iwl_dvm_5000_cfg;
1287 		break;
1288 	case IWL_DEVICE_FAMILY_5150:
1289 		priv->lib = &iwl_dvm_5150_cfg;
1290 		break;
1291 	case IWL_DEVICE_FAMILY_6000:
1292 	case IWL_DEVICE_FAMILY_6000i:
1293 		priv->lib = &iwl_dvm_6000_cfg;
1294 		break;
1295 	case IWL_DEVICE_FAMILY_6005:
1296 		priv->lib = &iwl_dvm_6005_cfg;
1297 		break;
1298 	case IWL_DEVICE_FAMILY_6050:
1299 	case IWL_DEVICE_FAMILY_6150:
1300 		priv->lib = &iwl_dvm_6050_cfg;
1301 		break;
1302 	case IWL_DEVICE_FAMILY_6030:
1303 		priv->lib = &iwl_dvm_6030_cfg;
1304 		break;
1305 	default:
1306 		break;
1307 	}
1308 
1309 	if (WARN_ON(!priv->lib))
1310 		goto out_free_hw;
1311 
1312 	/*
1313 	 * Populate the state variables that the transport layer needs
1314 	 * to know about.
1315 	 */
1316 	trans_cfg.op_mode = op_mode;
1317 	trans_cfg.no_reclaim_cmds = no_reclaim_cmds;
1318 	trans_cfg.n_no_reclaim_cmds = ARRAY_SIZE(no_reclaim_cmds);
1319 
1320 	switch (iwlwifi_mod_params.amsdu_size) {
1321 	case IWL_AMSDU_DEF:
1322 	case IWL_AMSDU_4K:
1323 		trans_cfg.rx_buf_size = IWL_AMSDU_4K;
1324 		break;
1325 	case IWL_AMSDU_8K:
1326 		trans_cfg.rx_buf_size = IWL_AMSDU_8K;
1327 		break;
1328 	case IWL_AMSDU_12K:
1329 	default:
1330 		trans_cfg.rx_buf_size = IWL_AMSDU_4K;
1331 		pr_err("Unsupported amsdu_size: %d\n",
1332 		       iwlwifi_mod_params.amsdu_size);
1333 	}
1334 
1335 	trans_cfg.cmd_q_wdg_timeout = IWL_WATCHDOG_DISABLED;
1336 
1337 	trans_cfg.command_groups = iwl_dvm_groups;
1338 	trans_cfg.command_groups_size = ARRAY_SIZE(iwl_dvm_groups);
1339 
1340 	trans_cfg.cmd_fifo = IWLAGN_CMD_FIFO_NUM;
1341 	trans_cfg.cb_data_offs = offsetof(struct ieee80211_tx_info,
1342 					  driver_data[2]);
1343 
1344 	WARN_ON(sizeof(priv->transport_queue_stop) * BITS_PER_BYTE <
1345 		priv->trans->trans_cfg->base_params->num_of_queues);
1346 
1347 	ucode_flags = fw->ucode_capa.flags;
1348 
1349 	if (ucode_flags & IWL_UCODE_TLV_FLAGS_PAN) {
1350 		priv->sta_key_max_num = STA_KEY_MAX_NUM_PAN;
1351 		trans_cfg.cmd_queue = IWL_IPAN_CMD_QUEUE_NUM;
1352 	} else {
1353 		priv->sta_key_max_num = STA_KEY_MAX_NUM;
1354 		trans_cfg.cmd_queue = IWL_DEFAULT_CMD_QUEUE_NUM;
1355 	}
1356 
1357 	/* Configure transport layer */
1358 	iwl_trans_configure(priv->trans, &trans_cfg);
1359 
1360 	trans->rx_mpdu_cmd = REPLY_RX_MPDU_CMD;
1361 	trans->rx_mpdu_cmd_hdr_size = sizeof(struct iwl_rx_mpdu_res_start);
1362 	trans->command_groups = trans_cfg.command_groups;
1363 	trans->command_groups_size = trans_cfg.command_groups_size;
1364 
1365 	/* At this point both hw and priv are allocated. */
1366 
1367 	SET_IEEE80211_DEV(priv->hw, priv->trans->dev);
1368 
1369 	iwl_option_config(priv);
1370 
1371 	IWL_DEBUG_INFO(priv, "*** LOAD DRIVER ***\n");
1372 
1373 	/* is antenna coupling more than 35dB ? */
1374 	priv->bt_ant_couple_ok =
1375 		(iwlwifi_mod_params.antenna_coupling >
1376 			IWL_BT_ANTENNA_COUPLING_THRESHOLD) ?
1377 			true : false;
1378 
1379 	/* bt channel inhibition enabled*/
1380 	priv->bt_ch_announce = true;
1381 	IWL_DEBUG_INFO(priv, "BT channel inhibition is %s\n",
1382 		       (priv->bt_ch_announce) ? "On" : "Off");
1383 
1384 	/* these spin locks will be used in apm_ops.init and EEPROM access
1385 	 * we should init now
1386 	 */
1387 	spin_lock_init(&priv->statistics.lock);
1388 
1389 	/***********************
1390 	 * 2. Read REV register
1391 	 ***********************/
1392 	IWL_INFO(priv, "Detected %s, REV=0x%X\n",
1393 		priv->trans->name, priv->trans->hw_rev);
1394 
1395 	if (iwl_trans_start_hw(priv->trans))
1396 		goto out_free_hw;
1397 
1398 	/* Read the EEPROM */
1399 	if (iwl_read_eeprom(priv->trans, &priv->eeprom_blob,
1400 			    &priv->eeprom_blob_size)) {
1401 		IWL_ERR(priv, "Unable to init EEPROM\n");
1402 		goto out_free_hw;
1403 	}
1404 
1405 	/* Reset chip to save power until we load uCode during "up". */
1406 	iwl_trans_stop_device(priv->trans);
1407 
1408 	priv->nvm_data = iwl_parse_eeprom_data(priv->trans, priv->cfg,
1409 					       priv->eeprom_blob,
1410 					       priv->eeprom_blob_size);
1411 	if (!priv->nvm_data)
1412 		goto out_free_eeprom_blob;
1413 
1414 	if (iwl_nvm_check_version(priv->nvm_data, priv->trans))
1415 		goto out_free_eeprom;
1416 
1417 	if (iwl_eeprom_init_hw_params(priv))
1418 		goto out_free_eeprom;
1419 
1420 	/* extract MAC Address */
1421 	memcpy(priv->addresses[0].addr, priv->nvm_data->hw_addr, ETH_ALEN);
1422 	IWL_DEBUG_INFO(priv, "MAC address: %pM\n", priv->addresses[0].addr);
1423 	priv->hw->wiphy->addresses = priv->addresses;
1424 	priv->hw->wiphy->n_addresses = 1;
1425 	num_mac = priv->nvm_data->n_hw_addrs;
1426 	if (num_mac > 1) {
1427 		memcpy(priv->addresses[1].addr, priv->addresses[0].addr,
1428 		       ETH_ALEN);
1429 		priv->addresses[1].addr[5]++;
1430 		priv->hw->wiphy->n_addresses++;
1431 	}
1432 
1433 	/************************
1434 	 * 4. Setup HW constants
1435 	 ************************/
1436 	iwl_set_hw_params(priv);
1437 
1438 	if (!(priv->nvm_data->sku_cap_ipan_enable)) {
1439 		IWL_DEBUG_INFO(priv, "Your EEPROM disabled PAN\n");
1440 		ucode_flags &= ~IWL_UCODE_TLV_FLAGS_PAN;
1441 		/*
1442 		 * if not PAN, then don't support P2P -- might be a uCode
1443 		 * packaging bug or due to the eeprom check above
1444 		 */
1445 		priv->sta_key_max_num = STA_KEY_MAX_NUM;
1446 		trans_cfg.cmd_queue = IWL_DEFAULT_CMD_QUEUE_NUM;
1447 
1448 		/* Configure transport layer again*/
1449 		iwl_trans_configure(priv->trans, &trans_cfg);
1450 	}
1451 
1452 	/*******************
1453 	 * 5. Setup priv
1454 	 *******************/
1455 	for (i = 0; i < IWL_MAX_HW_QUEUES; i++) {
1456 		priv->queue_to_mac80211[i] = IWL_INVALID_MAC80211_QUEUE;
1457 		if (i < IWLAGN_FIRST_AMPDU_QUEUE &&
1458 		    i != IWL_DEFAULT_CMD_QUEUE_NUM &&
1459 		    i != IWL_IPAN_CMD_QUEUE_NUM)
1460 			priv->queue_to_mac80211[i] = i;
1461 		atomic_set(&priv->queue_stop_count[i], 0);
1462 	}
1463 
1464 	if (iwl_init_drv(priv))
1465 		goto out_free_eeprom;
1466 
1467 	/* At this point both hw and priv are initialized. */
1468 
1469 	/********************
1470 	 * 6. Setup services
1471 	 ********************/
1472 	iwl_setup_deferred_work(priv);
1473 	iwl_setup_rx_handlers(priv);
1474 
1475 	iwl_power_initialize(priv);
1476 	iwl_tt_initialize(priv);
1477 
1478 	snprintf(priv->hw->wiphy->fw_version,
1479 		 sizeof(priv->hw->wiphy->fw_version),
1480 		 "%s", fw->fw_version);
1481 
1482 	priv->new_scan_threshold_behaviour =
1483 		!!(ucode_flags & IWL_UCODE_TLV_FLAGS_NEWSCAN);
1484 
1485 	priv->phy_calib_chain_noise_reset_cmd =
1486 		fw->ucode_capa.standard_phy_calibration_size;
1487 	priv->phy_calib_chain_noise_gain_cmd =
1488 		fw->ucode_capa.standard_phy_calibration_size + 1;
1489 
1490 	/* initialize all valid contexts */
1491 	iwl_init_context(priv, ucode_flags);
1492 
1493 	/**************************************************
1494 	 * This is still part of probe() in a sense...
1495 	 *
1496 	 * 7. Setup and register with mac80211 and debugfs
1497 	 **************************************************/
1498 	if (iwlagn_mac_setup_register(priv, &fw->ucode_capa))
1499 		goto out_destroy_workqueue;
1500 
1501 	iwl_dbgfs_register(priv, dbgfs_dir);
1502 
1503 	return op_mode;
1504 
1505 out_destroy_workqueue:
1506 	iwl_tt_exit(priv);
1507 	iwl_cancel_deferred_work(priv);
1508 	destroy_workqueue(priv->workqueue);
1509 	priv->workqueue = NULL;
1510 	iwl_uninit_drv(priv);
1511 out_free_eeprom_blob:
1512 	kfree(priv->eeprom_blob);
1513 out_free_eeprom:
1514 	kfree(priv->nvm_data);
1515 out_free_hw:
1516 	ieee80211_free_hw(priv->hw);
1517 out:
1518 	op_mode = NULL;
1519 	return op_mode;
1520 }
1521 
1522 static void iwl_op_mode_dvm_stop(struct iwl_op_mode *op_mode)
1523 {
1524 	struct iwl_priv *priv = IWL_OP_MODE_GET_DVM(op_mode);
1525 
1526 	IWL_DEBUG_INFO(priv, "*** UNLOAD DRIVER ***\n");
1527 
1528 	iwlagn_mac_unregister(priv);
1529 
1530 	iwl_tt_exit(priv);
1531 
1532 	kfree(priv->eeprom_blob);
1533 	kfree(priv->nvm_data);
1534 
1535 	/*netif_stop_queue(dev); */
1536 	flush_workqueue(priv->workqueue);
1537 
1538 	/* ieee80211_unregister_hw calls iwlagn_mac_stop, which flushes
1539 	 * priv->workqueue... so we can't take down the workqueue
1540 	 * until now... */
1541 	destroy_workqueue(priv->workqueue);
1542 	priv->workqueue = NULL;
1543 
1544 	iwl_uninit_drv(priv);
1545 
1546 	dev_kfree_skb(priv->beacon_skb);
1547 
1548 	iwl_trans_op_mode_leave(priv->trans);
1549 	ieee80211_free_hw(priv->hw);
1550 }
1551 
1552 static const char * const desc_lookup_text[] = {
1553 	"OK",
1554 	"FAIL",
1555 	"BAD_PARAM",
1556 	"BAD_CHECKSUM",
1557 	"NMI_INTERRUPT_WDG",
1558 	"SYSASSERT",
1559 	"FATAL_ERROR",
1560 	"BAD_COMMAND",
1561 	"HW_ERROR_TUNE_LOCK",
1562 	"HW_ERROR_TEMPERATURE",
1563 	"ILLEGAL_CHAN_FREQ",
1564 	"VCC_NOT_STABLE",
1565 	"FH_ERROR",
1566 	"NMI_INTERRUPT_HOST",
1567 	"NMI_INTERRUPT_ACTION_PT",
1568 	"NMI_INTERRUPT_UNKNOWN",
1569 	"UCODE_VERSION_MISMATCH",
1570 	"HW_ERROR_ABS_LOCK",
1571 	"HW_ERROR_CAL_LOCK_FAIL",
1572 	"NMI_INTERRUPT_INST_ACTION_PT",
1573 	"NMI_INTERRUPT_DATA_ACTION_PT",
1574 	"NMI_TRM_HW_ER",
1575 	"NMI_INTERRUPT_TRM",
1576 	"NMI_INTERRUPT_BREAK_POINT",
1577 	"DEBUG_0",
1578 	"DEBUG_1",
1579 	"DEBUG_2",
1580 	"DEBUG_3",
1581 };
1582 
1583 static struct { char *name; u8 num; } advanced_lookup[] = {
1584 	{ "NMI_INTERRUPT_WDG", 0x34 },
1585 	{ "SYSASSERT", 0x35 },
1586 	{ "UCODE_VERSION_MISMATCH", 0x37 },
1587 	{ "BAD_COMMAND", 0x38 },
1588 	{ "NMI_INTERRUPT_DATA_ACTION_PT", 0x3C },
1589 	{ "FATAL_ERROR", 0x3D },
1590 	{ "NMI_TRM_HW_ERR", 0x46 },
1591 	{ "NMI_INTERRUPT_TRM", 0x4C },
1592 	{ "NMI_INTERRUPT_BREAK_POINT", 0x54 },
1593 	{ "NMI_INTERRUPT_WDG_RXF_FULL", 0x5C },
1594 	{ "NMI_INTERRUPT_WDG_NO_RBD_RXF_FULL", 0x64 },
1595 	{ "NMI_INTERRUPT_HOST", 0x66 },
1596 	{ "NMI_INTERRUPT_ACTION_PT", 0x7C },
1597 	{ "NMI_INTERRUPT_UNKNOWN", 0x84 },
1598 	{ "NMI_INTERRUPT_INST_ACTION_PT", 0x86 },
1599 	{ "ADVANCED_SYSASSERT", 0 },
1600 };
1601 
1602 static const char *desc_lookup(u32 num)
1603 {
1604 	int i;
1605 	int max = ARRAY_SIZE(desc_lookup_text);
1606 
1607 	if (num < max)
1608 		return desc_lookup_text[num];
1609 
1610 	max = ARRAY_SIZE(advanced_lookup) - 1;
1611 	for (i = 0; i < max; i++) {
1612 		if (advanced_lookup[i].num == num)
1613 			break;
1614 	}
1615 	return advanced_lookup[i].name;
1616 }
1617 
1618 #define ERROR_START_OFFSET  (1 * sizeof(u32))
1619 #define ERROR_ELEM_SIZE     (7 * sizeof(u32))
1620 
1621 static void iwl_dump_nic_error_log(struct iwl_priv *priv)
1622 {
1623 	struct iwl_trans *trans = priv->trans;
1624 	u32 base;
1625 	struct iwl_error_event_table table;
1626 
1627 	base = priv->device_pointers.error_event_table;
1628 	if (priv->cur_ucode == IWL_UCODE_INIT) {
1629 		if (!base)
1630 			base = priv->fw->init_errlog_ptr;
1631 	} else {
1632 		if (!base)
1633 			base = priv->fw->inst_errlog_ptr;
1634 	}
1635 
1636 	if (!iwlagn_hw_valid_rtc_data_addr(base)) {
1637 		IWL_ERR(priv,
1638 			"Not valid error log pointer 0x%08X for %s uCode\n",
1639 			base,
1640 			(priv->cur_ucode == IWL_UCODE_INIT)
1641 					? "Init" : "RT");
1642 		return;
1643 	}
1644 
1645 	/*TODO: Update dbgfs with ISR error stats obtained below */
1646 	iwl_trans_read_mem_bytes(trans, base, &table, sizeof(table));
1647 
1648 	if (ERROR_START_OFFSET <= table.valid * ERROR_ELEM_SIZE) {
1649 		IWL_ERR(trans, "Start IWL Error Log Dump:\n");
1650 		IWL_ERR(trans, "Status: 0x%08lX, count: %d\n",
1651 			priv->status, table.valid);
1652 	}
1653 
1654 	IWL_ERR(priv, "0x%08X | %-28s\n", table.error_id,
1655 		desc_lookup(table.error_id));
1656 	IWL_ERR(priv, "0x%08X | uPc\n", table.pc);
1657 	IWL_ERR(priv, "0x%08X | branchlink1\n", table.blink1);
1658 	IWL_ERR(priv, "0x%08X | branchlink2\n", table.blink2);
1659 	IWL_ERR(priv, "0x%08X | interruptlink1\n", table.ilink1);
1660 	IWL_ERR(priv, "0x%08X | interruptlink2\n", table.ilink2);
1661 	IWL_ERR(priv, "0x%08X | data1\n", table.data1);
1662 	IWL_ERR(priv, "0x%08X | data2\n", table.data2);
1663 	IWL_ERR(priv, "0x%08X | line\n", table.line);
1664 	IWL_ERR(priv, "0x%08X | beacon time\n", table.bcon_time);
1665 	IWL_ERR(priv, "0x%08X | tsf low\n", table.tsf_low);
1666 	IWL_ERR(priv, "0x%08X | tsf hi\n", table.tsf_hi);
1667 	IWL_ERR(priv, "0x%08X | time gp1\n", table.gp1);
1668 	IWL_ERR(priv, "0x%08X | time gp2\n", table.gp2);
1669 	IWL_ERR(priv, "0x%08X | time gp3\n", table.gp3);
1670 	IWL_ERR(priv, "0x%08X | uCode version\n", table.ucode_ver);
1671 	IWL_ERR(priv, "0x%08X | hw version\n", table.hw_ver);
1672 	IWL_ERR(priv, "0x%08X | board version\n", table.brd_ver);
1673 	IWL_ERR(priv, "0x%08X | hcmd\n", table.hcmd);
1674 	IWL_ERR(priv, "0x%08X | isr0\n", table.isr0);
1675 	IWL_ERR(priv, "0x%08X | isr1\n", table.isr1);
1676 	IWL_ERR(priv, "0x%08X | isr2\n", table.isr2);
1677 	IWL_ERR(priv, "0x%08X | isr3\n", table.isr3);
1678 	IWL_ERR(priv, "0x%08X | isr4\n", table.isr4);
1679 	IWL_ERR(priv, "0x%08X | isr_pref\n", table.isr_pref);
1680 	IWL_ERR(priv, "0x%08X | wait_event\n", table.wait_event);
1681 	IWL_ERR(priv, "0x%08X | l2p_control\n", table.l2p_control);
1682 	IWL_ERR(priv, "0x%08X | l2p_duration\n", table.l2p_duration);
1683 	IWL_ERR(priv, "0x%08X | l2p_mhvalid\n", table.l2p_mhvalid);
1684 	IWL_ERR(priv, "0x%08X | l2p_addr_match\n", table.l2p_addr_match);
1685 	IWL_ERR(priv, "0x%08X | lmpm_pmg_sel\n", table.lmpm_pmg_sel);
1686 	IWL_ERR(priv, "0x%08X | timestamp\n", table.u_timestamp);
1687 	IWL_ERR(priv, "0x%08X | flow_handler\n", table.flow_handler);
1688 }
1689 
1690 #define EVENT_START_OFFSET  (4 * sizeof(u32))
1691 
1692 /**
1693  * iwl_print_event_log - Dump error event log to syslog
1694  *
1695  */
1696 static int iwl_print_event_log(struct iwl_priv *priv, u32 start_idx,
1697 			       u32 num_events, u32 mode,
1698 			       int pos, char **buf, size_t bufsz)
1699 {
1700 	u32 i;
1701 	u32 base;       /* SRAM byte address of event log header */
1702 	u32 event_size; /* 2 u32s, or 3 u32s if timestamp recorded */
1703 	u32 ptr;        /* SRAM byte address of log data */
1704 	u32 ev, time, data; /* event log data */
1705 	unsigned long reg_flags;
1706 
1707 	struct iwl_trans *trans = priv->trans;
1708 
1709 	if (num_events == 0)
1710 		return pos;
1711 
1712 	base = priv->device_pointers.log_event_table;
1713 	if (priv->cur_ucode == IWL_UCODE_INIT) {
1714 		if (!base)
1715 			base = priv->fw->init_evtlog_ptr;
1716 	} else {
1717 		if (!base)
1718 			base = priv->fw->inst_evtlog_ptr;
1719 	}
1720 
1721 	if (mode == 0)
1722 		event_size = 2 * sizeof(u32);
1723 	else
1724 		event_size = 3 * sizeof(u32);
1725 
1726 	ptr = base + EVENT_START_OFFSET + (start_idx * event_size);
1727 
1728 	/* Make sure device is powered up for SRAM reads */
1729 	if (!iwl_trans_grab_nic_access(trans, &reg_flags))
1730 		return pos;
1731 
1732 	/* Set starting address; reads will auto-increment */
1733 	iwl_write32(trans, HBUS_TARG_MEM_RADDR, ptr);
1734 
1735 	/* "time" is actually "data" for mode 0 (no timestamp).
1736 	* place event id # at far right for easier visual parsing. */
1737 	for (i = 0; i < num_events; i++) {
1738 		ev = iwl_read32(trans, HBUS_TARG_MEM_RDAT);
1739 		time = iwl_read32(trans, HBUS_TARG_MEM_RDAT);
1740 		if (mode == 0) {
1741 			/* data, ev */
1742 			if (bufsz) {
1743 				pos += scnprintf(*buf + pos, bufsz - pos,
1744 						"EVT_LOG:0x%08x:%04u\n",
1745 						time, ev);
1746 			} else {
1747 				trace_iwlwifi_dev_ucode_event(trans->dev, 0,
1748 					time, ev);
1749 				IWL_ERR(priv, "EVT_LOG:0x%08x:%04u\n",
1750 					time, ev);
1751 			}
1752 		} else {
1753 			data = iwl_read32(trans, HBUS_TARG_MEM_RDAT);
1754 			if (bufsz) {
1755 				pos += scnprintf(*buf + pos, bufsz - pos,
1756 						"EVT_LOGT:%010u:0x%08x:%04u\n",
1757 						 time, data, ev);
1758 			} else {
1759 				IWL_ERR(priv, "EVT_LOGT:%010u:0x%08x:%04u\n",
1760 					time, data, ev);
1761 				trace_iwlwifi_dev_ucode_event(trans->dev, time,
1762 					data, ev);
1763 			}
1764 		}
1765 	}
1766 
1767 	/* Allow device to power down */
1768 	iwl_trans_release_nic_access(trans, &reg_flags);
1769 	return pos;
1770 }
1771 
1772 /**
1773  * iwl_print_last_event_logs - Dump the newest # of event log to syslog
1774  */
1775 static int iwl_print_last_event_logs(struct iwl_priv *priv, u32 capacity,
1776 				    u32 num_wraps, u32 next_entry,
1777 				    u32 size, u32 mode,
1778 				    int pos, char **buf, size_t bufsz)
1779 {
1780 	/*
1781 	 * display the newest DEFAULT_LOG_ENTRIES entries
1782 	 * i.e the entries just before the next ont that uCode would fill.
1783 	 */
1784 	if (num_wraps) {
1785 		if (next_entry < size) {
1786 			pos = iwl_print_event_log(priv,
1787 						capacity - (size - next_entry),
1788 						size - next_entry, mode,
1789 						pos, buf, bufsz);
1790 			pos = iwl_print_event_log(priv, 0,
1791 						  next_entry, mode,
1792 						  pos, buf, bufsz);
1793 		} else
1794 			pos = iwl_print_event_log(priv, next_entry - size,
1795 						  size, mode, pos, buf, bufsz);
1796 	} else {
1797 		if (next_entry < size) {
1798 			pos = iwl_print_event_log(priv, 0, next_entry,
1799 						  mode, pos, buf, bufsz);
1800 		} else {
1801 			pos = iwl_print_event_log(priv, next_entry - size,
1802 						  size, mode, pos, buf, bufsz);
1803 		}
1804 	}
1805 	return pos;
1806 }
1807 
1808 #define DEFAULT_DUMP_EVENT_LOG_ENTRIES (20)
1809 
1810 int iwl_dump_nic_event_log(struct iwl_priv *priv, bool full_log,
1811 			    char **buf)
1812 {
1813 	u32 base;       /* SRAM byte address of event log header */
1814 	u32 capacity;   /* event log capacity in # entries */
1815 	u32 mode;       /* 0 - no timestamp, 1 - timestamp recorded */
1816 	u32 num_wraps;  /* # times uCode wrapped to top of log */
1817 	u32 next_entry; /* index of next entry to be written by uCode */
1818 	u32 size;       /* # entries that we'll print */
1819 	u32 logsize;
1820 	int pos = 0;
1821 	size_t bufsz = 0;
1822 	struct iwl_trans *trans = priv->trans;
1823 
1824 	base = priv->device_pointers.log_event_table;
1825 	if (priv->cur_ucode == IWL_UCODE_INIT) {
1826 		logsize = priv->fw->init_evtlog_size;
1827 		if (!base)
1828 			base = priv->fw->init_evtlog_ptr;
1829 	} else {
1830 		logsize = priv->fw->inst_evtlog_size;
1831 		if (!base)
1832 			base = priv->fw->inst_evtlog_ptr;
1833 	}
1834 
1835 	if (!iwlagn_hw_valid_rtc_data_addr(base)) {
1836 		IWL_ERR(priv,
1837 			"Invalid event log pointer 0x%08X for %s uCode\n",
1838 			base,
1839 			(priv->cur_ucode == IWL_UCODE_INIT)
1840 					? "Init" : "RT");
1841 		return -EINVAL;
1842 	}
1843 
1844 	/* event log header */
1845 	capacity = iwl_trans_read_mem32(trans, base);
1846 	mode = iwl_trans_read_mem32(trans, base + (1 * sizeof(u32)));
1847 	num_wraps = iwl_trans_read_mem32(trans, base + (2 * sizeof(u32)));
1848 	next_entry = iwl_trans_read_mem32(trans, base + (3 * sizeof(u32)));
1849 
1850 	if (capacity > logsize) {
1851 		IWL_ERR(priv, "Log capacity %d is bogus, limit to %d "
1852 			"entries\n", capacity, logsize);
1853 		capacity = logsize;
1854 	}
1855 
1856 	if (next_entry > logsize) {
1857 		IWL_ERR(priv, "Log write index %d is bogus, limit to %d\n",
1858 			next_entry, logsize);
1859 		next_entry = logsize;
1860 	}
1861 
1862 	size = num_wraps ? capacity : next_entry;
1863 
1864 	/* bail out if nothing in log */
1865 	if (size == 0) {
1866 		IWL_ERR(trans, "Start IWL Event Log Dump: nothing in log\n");
1867 		return pos;
1868 	}
1869 
1870 	if (!(iwl_have_debug_level(IWL_DL_FW)) && !full_log)
1871 		size = (size > DEFAULT_DUMP_EVENT_LOG_ENTRIES)
1872 			? DEFAULT_DUMP_EVENT_LOG_ENTRIES : size;
1873 	IWL_ERR(priv, "Start IWL Event Log Dump: display last %u entries\n",
1874 		size);
1875 
1876 #ifdef CONFIG_IWLWIFI_DEBUG
1877 	if (buf) {
1878 		if (full_log)
1879 			bufsz = capacity * 48;
1880 		else
1881 			bufsz = size * 48;
1882 		*buf = kmalloc(bufsz, GFP_KERNEL);
1883 		if (!*buf)
1884 			return -ENOMEM;
1885 	}
1886 	if (iwl_have_debug_level(IWL_DL_FW) || full_log) {
1887 		/*
1888 		 * if uCode has wrapped back to top of log,
1889 		 * start at the oldest entry,
1890 		 * i.e the next one that uCode would fill.
1891 		 */
1892 		if (num_wraps)
1893 			pos = iwl_print_event_log(priv, next_entry,
1894 						capacity - next_entry, mode,
1895 						pos, buf, bufsz);
1896 		/* (then/else) start at top of log */
1897 		pos = iwl_print_event_log(priv, 0,
1898 					  next_entry, mode, pos, buf, bufsz);
1899 	} else
1900 		pos = iwl_print_last_event_logs(priv, capacity, num_wraps,
1901 						next_entry, size, mode,
1902 						pos, buf, bufsz);
1903 #else
1904 	pos = iwl_print_last_event_logs(priv, capacity, num_wraps,
1905 					next_entry, size, mode,
1906 					pos, buf, bufsz);
1907 #endif
1908 	return pos;
1909 }
1910 
1911 static void iwlagn_fw_error(struct iwl_priv *priv, bool ondemand)
1912 {
1913 	unsigned int reload_msec;
1914 	unsigned long reload_jiffies;
1915 
1916 	if (iwl_have_debug_level(IWL_DL_FW))
1917 		iwl_print_rx_config_cmd(priv, IWL_RXON_CTX_BSS);
1918 
1919 	/* uCode is no longer loaded. */
1920 	priv->ucode_loaded = false;
1921 
1922 	/* Set the FW error flag -- cleared on iwl_down */
1923 	set_bit(STATUS_FW_ERROR, &priv->status);
1924 
1925 	iwl_abort_notification_waits(&priv->notif_wait);
1926 
1927 	/* Keep the restart process from trying to send host
1928 	 * commands by clearing the ready bit */
1929 	clear_bit(STATUS_READY, &priv->status);
1930 
1931 	if (!ondemand) {
1932 		/*
1933 		 * If firmware keep reloading, then it indicate something
1934 		 * serious wrong and firmware having problem to recover
1935 		 * from it. Instead of keep trying which will fill the syslog
1936 		 * and hang the system, let's just stop it
1937 		 */
1938 		reload_jiffies = jiffies;
1939 		reload_msec = jiffies_to_msecs((long) reload_jiffies -
1940 					(long) priv->reload_jiffies);
1941 		priv->reload_jiffies = reload_jiffies;
1942 		if (reload_msec <= IWL_MIN_RELOAD_DURATION) {
1943 			priv->reload_count++;
1944 			if (priv->reload_count >= IWL_MAX_CONTINUE_RELOAD_CNT) {
1945 				IWL_ERR(priv, "BUG_ON, Stop restarting\n");
1946 				return;
1947 			}
1948 		} else
1949 			priv->reload_count = 0;
1950 	}
1951 
1952 	if (!test_bit(STATUS_EXIT_PENDING, &priv->status)) {
1953 		if (iwlwifi_mod_params.fw_restart) {
1954 			IWL_DEBUG_FW(priv,
1955 				     "Restarting adapter due to uCode error.\n");
1956 			queue_work(priv->workqueue, &priv->restart);
1957 		} else
1958 			IWL_DEBUG_FW(priv,
1959 				     "Detected FW error, but not restarting\n");
1960 	}
1961 }
1962 
1963 static void iwl_nic_error(struct iwl_op_mode *op_mode)
1964 {
1965 	struct iwl_priv *priv = IWL_OP_MODE_GET_DVM(op_mode);
1966 
1967 	IWL_ERR(priv, "Loaded firmware version: %s\n",
1968 		priv->fw->fw_version);
1969 
1970 	iwl_dump_nic_error_log(priv);
1971 	iwl_dump_nic_event_log(priv, false, NULL);
1972 
1973 	iwlagn_fw_error(priv, false);
1974 }
1975 
1976 static void iwl_cmd_queue_full(struct iwl_op_mode *op_mode)
1977 {
1978 	struct iwl_priv *priv = IWL_OP_MODE_GET_DVM(op_mode);
1979 
1980 	if (!iwl_check_for_ct_kill(priv)) {
1981 		IWL_ERR(priv, "Restarting adapter queue is full\n");
1982 		iwlagn_fw_error(priv, false);
1983 	}
1984 }
1985 
1986 #define EEPROM_RF_CONFIG_TYPE_MAX      0x3
1987 
1988 static void iwl_nic_config(struct iwl_op_mode *op_mode)
1989 {
1990 	struct iwl_priv *priv = IWL_OP_MODE_GET_DVM(op_mode);
1991 
1992 	/* SKU Control */
1993 	iwl_trans_set_bits_mask(priv->trans, CSR_HW_IF_CONFIG_REG,
1994 				CSR_HW_IF_CONFIG_REG_MSK_MAC_DASH |
1995 				CSR_HW_IF_CONFIG_REG_MSK_MAC_STEP,
1996 				(CSR_HW_REV_STEP(priv->trans->hw_rev) <<
1997 					CSR_HW_IF_CONFIG_REG_POS_MAC_STEP) |
1998 				(CSR_HW_REV_DASH(priv->trans->hw_rev) <<
1999 					CSR_HW_IF_CONFIG_REG_POS_MAC_DASH));
2000 
2001 	/* write radio config values to register */
2002 	if (priv->nvm_data->radio_cfg_type <= EEPROM_RF_CONFIG_TYPE_MAX) {
2003 		u32 reg_val =
2004 			priv->nvm_data->radio_cfg_type <<
2005 				CSR_HW_IF_CONFIG_REG_POS_PHY_TYPE |
2006 			priv->nvm_data->radio_cfg_step <<
2007 				CSR_HW_IF_CONFIG_REG_POS_PHY_STEP |
2008 			priv->nvm_data->radio_cfg_dash <<
2009 				CSR_HW_IF_CONFIG_REG_POS_PHY_DASH;
2010 
2011 		iwl_trans_set_bits_mask(priv->trans, CSR_HW_IF_CONFIG_REG,
2012 					CSR_HW_IF_CONFIG_REG_MSK_PHY_TYPE |
2013 					CSR_HW_IF_CONFIG_REG_MSK_PHY_STEP |
2014 					CSR_HW_IF_CONFIG_REG_MSK_PHY_DASH,
2015 					reg_val);
2016 
2017 		IWL_INFO(priv, "Radio type=0x%x-0x%x-0x%x\n",
2018 			 priv->nvm_data->radio_cfg_type,
2019 			 priv->nvm_data->radio_cfg_step,
2020 			 priv->nvm_data->radio_cfg_dash);
2021 	} else {
2022 		WARN_ON(1);
2023 	}
2024 
2025 	/* set CSR_HW_CONFIG_REG for uCode use */
2026 	iwl_set_bit(priv->trans, CSR_HW_IF_CONFIG_REG,
2027 		    CSR_HW_IF_CONFIG_REG_BIT_RADIO_SI |
2028 		    CSR_HW_IF_CONFIG_REG_BIT_MAC_SI);
2029 
2030 	/* W/A : NIC is stuck in a reset state after Early PCIe power off
2031 	 * (PCIe power is lost before PERST# is asserted),
2032 	 * causing ME FW to lose ownership and not being able to obtain it back.
2033 	 */
2034 	iwl_set_bits_mask_prph(priv->trans, APMG_PS_CTRL_REG,
2035 			       APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS,
2036 			       ~APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS);
2037 
2038 	if (priv->lib->nic_config)
2039 		priv->lib->nic_config(priv);
2040 }
2041 
2042 static void iwl_wimax_active(struct iwl_op_mode *op_mode)
2043 {
2044 	struct iwl_priv *priv = IWL_OP_MODE_GET_DVM(op_mode);
2045 
2046 	clear_bit(STATUS_READY, &priv->status);
2047 	IWL_ERR(priv, "RF is used by WiMAX\n");
2048 }
2049 
2050 static void iwl_stop_sw_queue(struct iwl_op_mode *op_mode, int queue)
2051 {
2052 	struct iwl_priv *priv = IWL_OP_MODE_GET_DVM(op_mode);
2053 	int mq = priv->queue_to_mac80211[queue];
2054 
2055 	if (WARN_ON_ONCE(mq == IWL_INVALID_MAC80211_QUEUE))
2056 		return;
2057 
2058 	if (atomic_inc_return(&priv->queue_stop_count[mq]) > 1) {
2059 		IWL_DEBUG_TX_QUEUES(priv,
2060 			"queue %d (mac80211 %d) already stopped\n",
2061 			queue, mq);
2062 		return;
2063 	}
2064 
2065 	set_bit(mq, &priv->transport_queue_stop);
2066 	ieee80211_stop_queue(priv->hw, mq);
2067 }
2068 
2069 static void iwl_wake_sw_queue(struct iwl_op_mode *op_mode, int queue)
2070 {
2071 	struct iwl_priv *priv = IWL_OP_MODE_GET_DVM(op_mode);
2072 	int mq = priv->queue_to_mac80211[queue];
2073 
2074 	if (WARN_ON_ONCE(mq == IWL_INVALID_MAC80211_QUEUE))
2075 		return;
2076 
2077 	if (atomic_dec_return(&priv->queue_stop_count[mq]) > 0) {
2078 		IWL_DEBUG_TX_QUEUES(priv,
2079 			"queue %d (mac80211 %d) already awake\n",
2080 			queue, mq);
2081 		return;
2082 	}
2083 
2084 	clear_bit(mq, &priv->transport_queue_stop);
2085 
2086 	if (!priv->passive_no_rx)
2087 		ieee80211_wake_queue(priv->hw, mq);
2088 }
2089 
2090 void iwlagn_lift_passive_no_rx(struct iwl_priv *priv)
2091 {
2092 	int mq;
2093 
2094 	if (!priv->passive_no_rx)
2095 		return;
2096 
2097 	for (mq = 0; mq < IWLAGN_FIRST_AMPDU_QUEUE; mq++) {
2098 		if (!test_bit(mq, &priv->transport_queue_stop)) {
2099 			IWL_DEBUG_TX_QUEUES(priv, "Wake queue %d\n", mq);
2100 			ieee80211_wake_queue(priv->hw, mq);
2101 		} else {
2102 			IWL_DEBUG_TX_QUEUES(priv, "Don't wake queue %d\n", mq);
2103 		}
2104 	}
2105 
2106 	priv->passive_no_rx = false;
2107 }
2108 
2109 static void iwl_free_skb(struct iwl_op_mode *op_mode, struct sk_buff *skb)
2110 {
2111 	struct iwl_priv *priv = IWL_OP_MODE_GET_DVM(op_mode);
2112 	struct ieee80211_tx_info *info;
2113 
2114 	info = IEEE80211_SKB_CB(skb);
2115 	iwl_trans_free_tx_cmd(priv->trans, info->driver_data[1]);
2116 	ieee80211_free_txskb(priv->hw, skb);
2117 }
2118 
2119 static bool iwl_set_hw_rfkill_state(struct iwl_op_mode *op_mode, bool state)
2120 {
2121 	struct iwl_priv *priv = IWL_OP_MODE_GET_DVM(op_mode);
2122 
2123 	if (state)
2124 		set_bit(STATUS_RF_KILL_HW, &priv->status);
2125 	else
2126 		clear_bit(STATUS_RF_KILL_HW, &priv->status);
2127 
2128 	wiphy_rfkill_set_hw_state(priv->hw->wiphy, state);
2129 
2130 	return false;
2131 }
2132 
2133 static const struct iwl_op_mode_ops iwl_dvm_ops = {
2134 	.start = iwl_op_mode_dvm_start,
2135 	.stop = iwl_op_mode_dvm_stop,
2136 	.rx = iwl_rx_dispatch,
2137 	.queue_full = iwl_stop_sw_queue,
2138 	.queue_not_full = iwl_wake_sw_queue,
2139 	.hw_rf_kill = iwl_set_hw_rfkill_state,
2140 	.free_skb = iwl_free_skb,
2141 	.nic_error = iwl_nic_error,
2142 	.cmd_queue_full = iwl_cmd_queue_full,
2143 	.nic_config = iwl_nic_config,
2144 	.wimax_active = iwl_wimax_active,
2145 };
2146 
2147 /*****************************************************************************
2148  *
2149  * driver and module entry point
2150  *
2151  *****************************************************************************/
2152 static int __init iwl_init(void)
2153 {
2154 
2155 	int ret;
2156 
2157 	ret = iwlagn_rate_control_register();
2158 	if (ret) {
2159 		pr_err("Unable to register rate control algorithm: %d\n", ret);
2160 		return ret;
2161 	}
2162 
2163 	ret = iwl_opmode_register("iwldvm", &iwl_dvm_ops);
2164 	if (ret) {
2165 		pr_err("Unable to register op_mode: %d\n", ret);
2166 		iwlagn_rate_control_unregister();
2167 	}
2168 
2169 	return ret;
2170 }
2171 module_init(iwl_init);
2172 
2173 static void __exit iwl_exit(void)
2174 {
2175 	iwl_opmode_deregister("iwldvm");
2176 	iwlagn_rate_control_unregister();
2177 }
2178 module_exit(iwl_exit);
2179