1 // SPDX-License-Identifier: GPL-2.0-only
2 /******************************************************************************
3  *
4  * Copyright(c) 2003 - 2014, 2018 - 2020  Intel Corporation. All rights reserved.
5  * Copyright(c) 2015 Intel Deutschland GmbH
6  *
7  * Portions of this file are derived from the ipw3945 project, as well
8  * as portions of the ieee80211 subsystem header files.
9  *
10  * Contact Information:
11  *  Intel Linux Wireless <linuxwifi@intel.com>
12  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
13  *
14  *****************************************************************************/
15 
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/init.h>
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/sched.h>
24 #include <linux/skbuff.h>
25 #include <linux/netdevice.h>
26 #include <linux/etherdevice.h>
27 #include <linux/if_arp.h>
28 
29 #include <net/mac80211.h>
30 
31 #include <asm/div64.h>
32 
33 #include "iwl-eeprom-read.h"
34 #include "iwl-eeprom-parse.h"
35 #include "iwl-io.h"
36 #include "iwl-trans.h"
37 #include "iwl-op-mode.h"
38 #include "iwl-drv.h"
39 #include "iwl-modparams.h"
40 #include "iwl-prph.h"
41 
42 #include "dev.h"
43 #include "calib.h"
44 #include "agn.h"
45 
46 
47 /******************************************************************************
48  *
49  * module boiler plate
50  *
51  ******************************************************************************/
52 
53 #define DRV_DESCRIPTION	"Intel(R) Wireless WiFi Link AGN driver for Linux"
54 MODULE_DESCRIPTION(DRV_DESCRIPTION);
55 MODULE_AUTHOR(DRV_AUTHOR);
56 MODULE_LICENSE("GPL");
57 
58 /* Please keep this array *SORTED* by hex value.
59  * Access is done through binary search.
60  * A warning will be triggered on violation.
61  */
62 static const struct iwl_hcmd_names iwl_dvm_cmd_names[] = {
63 	HCMD_NAME(REPLY_ALIVE),
64 	HCMD_NAME(REPLY_ERROR),
65 	HCMD_NAME(REPLY_ECHO),
66 	HCMD_NAME(REPLY_RXON),
67 	HCMD_NAME(REPLY_RXON_ASSOC),
68 	HCMD_NAME(REPLY_QOS_PARAM),
69 	HCMD_NAME(REPLY_RXON_TIMING),
70 	HCMD_NAME(REPLY_ADD_STA),
71 	HCMD_NAME(REPLY_REMOVE_STA),
72 	HCMD_NAME(REPLY_REMOVE_ALL_STA),
73 	HCMD_NAME(REPLY_TX),
74 	HCMD_NAME(REPLY_TXFIFO_FLUSH),
75 	HCMD_NAME(REPLY_WEPKEY),
76 	HCMD_NAME(REPLY_LEDS_CMD),
77 	HCMD_NAME(REPLY_TX_LINK_QUALITY_CMD),
78 	HCMD_NAME(COEX_PRIORITY_TABLE_CMD),
79 	HCMD_NAME(COEX_MEDIUM_NOTIFICATION),
80 	HCMD_NAME(COEX_EVENT_CMD),
81 	HCMD_NAME(TEMPERATURE_NOTIFICATION),
82 	HCMD_NAME(CALIBRATION_CFG_CMD),
83 	HCMD_NAME(CALIBRATION_RES_NOTIFICATION),
84 	HCMD_NAME(CALIBRATION_COMPLETE_NOTIFICATION),
85 	HCMD_NAME(REPLY_QUIET_CMD),
86 	HCMD_NAME(REPLY_CHANNEL_SWITCH),
87 	HCMD_NAME(CHANNEL_SWITCH_NOTIFICATION),
88 	HCMD_NAME(REPLY_SPECTRUM_MEASUREMENT_CMD),
89 	HCMD_NAME(SPECTRUM_MEASURE_NOTIFICATION),
90 	HCMD_NAME(POWER_TABLE_CMD),
91 	HCMD_NAME(PM_SLEEP_NOTIFICATION),
92 	HCMD_NAME(PM_DEBUG_STATISTIC_NOTIFIC),
93 	HCMD_NAME(REPLY_SCAN_CMD),
94 	HCMD_NAME(REPLY_SCAN_ABORT_CMD),
95 	HCMD_NAME(SCAN_START_NOTIFICATION),
96 	HCMD_NAME(SCAN_RESULTS_NOTIFICATION),
97 	HCMD_NAME(SCAN_COMPLETE_NOTIFICATION),
98 	HCMD_NAME(BEACON_NOTIFICATION),
99 	HCMD_NAME(REPLY_TX_BEACON),
100 	HCMD_NAME(WHO_IS_AWAKE_NOTIFICATION),
101 	HCMD_NAME(REPLY_TX_POWER_DBM_CMD),
102 	HCMD_NAME(QUIET_NOTIFICATION),
103 	HCMD_NAME(REPLY_TX_PWR_TABLE_CMD),
104 	HCMD_NAME(REPLY_TX_POWER_DBM_CMD_V1),
105 	HCMD_NAME(TX_ANT_CONFIGURATION_CMD),
106 	HCMD_NAME(MEASURE_ABORT_NOTIFICATION),
107 	HCMD_NAME(REPLY_BT_CONFIG),
108 	HCMD_NAME(REPLY_STATISTICS_CMD),
109 	HCMD_NAME(STATISTICS_NOTIFICATION),
110 	HCMD_NAME(REPLY_CARD_STATE_CMD),
111 	HCMD_NAME(CARD_STATE_NOTIFICATION),
112 	HCMD_NAME(MISSED_BEACONS_NOTIFICATION),
113 	HCMD_NAME(REPLY_CT_KILL_CONFIG_CMD),
114 	HCMD_NAME(SENSITIVITY_CMD),
115 	HCMD_NAME(REPLY_PHY_CALIBRATION_CMD),
116 	HCMD_NAME(REPLY_WIPAN_PARAMS),
117 	HCMD_NAME(REPLY_WIPAN_RXON),
118 	HCMD_NAME(REPLY_WIPAN_RXON_TIMING),
119 	HCMD_NAME(REPLY_WIPAN_RXON_ASSOC),
120 	HCMD_NAME(REPLY_WIPAN_QOS_PARAM),
121 	HCMD_NAME(REPLY_WIPAN_WEPKEY),
122 	HCMD_NAME(REPLY_WIPAN_P2P_CHANNEL_SWITCH),
123 	HCMD_NAME(REPLY_WIPAN_NOA_NOTIFICATION),
124 	HCMD_NAME(REPLY_WIPAN_DEACTIVATION_COMPLETE),
125 	HCMD_NAME(REPLY_RX_PHY_CMD),
126 	HCMD_NAME(REPLY_RX_MPDU_CMD),
127 	HCMD_NAME(REPLY_RX),
128 	HCMD_NAME(REPLY_COMPRESSED_BA),
129 	HCMD_NAME(REPLY_BT_COEX_PRIO_TABLE),
130 	HCMD_NAME(REPLY_BT_COEX_PROT_ENV),
131 	HCMD_NAME(REPLY_BT_COEX_PROFILE_NOTIF),
132 	HCMD_NAME(REPLY_D3_CONFIG),
133 	HCMD_NAME(REPLY_WOWLAN_PATTERNS),
134 	HCMD_NAME(REPLY_WOWLAN_WAKEUP_FILTER),
135 	HCMD_NAME(REPLY_WOWLAN_TSC_RSC_PARAMS),
136 	HCMD_NAME(REPLY_WOWLAN_TKIP_PARAMS),
137 	HCMD_NAME(REPLY_WOWLAN_KEK_KCK_MATERIAL),
138 	HCMD_NAME(REPLY_WOWLAN_GET_STATUS),
139 };
140 
141 static const struct iwl_hcmd_arr iwl_dvm_groups[] = {
142 	[0x0] = HCMD_ARR(iwl_dvm_cmd_names),
143 };
144 
145 static const struct iwl_op_mode_ops iwl_dvm_ops;
146 
147 void iwl_update_chain_flags(struct iwl_priv *priv)
148 {
149 	struct iwl_rxon_context *ctx;
150 
151 	for_each_context(priv, ctx) {
152 		iwlagn_set_rxon_chain(priv, ctx);
153 		if (ctx->active.rx_chain != ctx->staging.rx_chain)
154 			iwlagn_commit_rxon(priv, ctx);
155 	}
156 }
157 
158 /* Parse the beacon frame to find the TIM element and set tim_idx & tim_size */
159 static void iwl_set_beacon_tim(struct iwl_priv *priv,
160 			       struct iwl_tx_beacon_cmd *tx_beacon_cmd,
161 			       u8 *beacon, u32 frame_size)
162 {
163 	u16 tim_idx;
164 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)beacon;
165 
166 	/*
167 	 * The index is relative to frame start but we start looking at the
168 	 * variable-length part of the beacon.
169 	 */
170 	tim_idx = mgmt->u.beacon.variable - beacon;
171 
172 	/* Parse variable-length elements of beacon to find WLAN_EID_TIM */
173 	while ((tim_idx < (frame_size - 2)) &&
174 			(beacon[tim_idx] != WLAN_EID_TIM))
175 		tim_idx += beacon[tim_idx+1] + 2;
176 
177 	/* If TIM field was found, set variables */
178 	if ((tim_idx < (frame_size - 1)) && (beacon[tim_idx] == WLAN_EID_TIM)) {
179 		tx_beacon_cmd->tim_idx = cpu_to_le16(tim_idx);
180 		tx_beacon_cmd->tim_size = beacon[tim_idx+1];
181 	} else
182 		IWL_WARN(priv, "Unable to find TIM Element in beacon\n");
183 }
184 
185 int iwlagn_send_beacon_cmd(struct iwl_priv *priv)
186 {
187 	struct iwl_tx_beacon_cmd *tx_beacon_cmd;
188 	struct iwl_host_cmd cmd = {
189 		.id = REPLY_TX_BEACON,
190 	};
191 	struct ieee80211_tx_info *info;
192 	u32 frame_size;
193 	u32 rate_flags;
194 	u32 rate;
195 
196 	/*
197 	 * We have to set up the TX command, the TX Beacon command, and the
198 	 * beacon contents.
199 	 */
200 
201 	lockdep_assert_held(&priv->mutex);
202 
203 	if (!priv->beacon_ctx) {
204 		IWL_ERR(priv, "trying to build beacon w/o beacon context!\n");
205 		return 0;
206 	}
207 
208 	if (WARN_ON(!priv->beacon_skb))
209 		return -EINVAL;
210 
211 	/* Allocate beacon command */
212 	if (!priv->beacon_cmd)
213 		priv->beacon_cmd = kzalloc(sizeof(*tx_beacon_cmd), GFP_KERNEL);
214 	tx_beacon_cmd = priv->beacon_cmd;
215 	if (!tx_beacon_cmd)
216 		return -ENOMEM;
217 
218 	frame_size = priv->beacon_skb->len;
219 
220 	/* Set up TX command fields */
221 	tx_beacon_cmd->tx.len = cpu_to_le16((u16)frame_size);
222 	tx_beacon_cmd->tx.sta_id = priv->beacon_ctx->bcast_sta_id;
223 	tx_beacon_cmd->tx.stop_time.life_time = TX_CMD_LIFE_TIME_INFINITE;
224 	tx_beacon_cmd->tx.tx_flags = TX_CMD_FLG_SEQ_CTL_MSK |
225 		TX_CMD_FLG_TSF_MSK | TX_CMD_FLG_STA_RATE_MSK;
226 
227 	/* Set up TX beacon command fields */
228 	iwl_set_beacon_tim(priv, tx_beacon_cmd, priv->beacon_skb->data,
229 			   frame_size);
230 
231 	/* Set up packet rate and flags */
232 	info = IEEE80211_SKB_CB(priv->beacon_skb);
233 
234 	/*
235 	 * Let's set up the rate at least somewhat correctly;
236 	 * it will currently not actually be used by the uCode,
237 	 * it uses the broadcast station's rate instead.
238 	 */
239 	if (info->control.rates[0].idx < 0 ||
240 	    info->control.rates[0].flags & IEEE80211_TX_RC_MCS)
241 		rate = 0;
242 	else
243 		rate = info->control.rates[0].idx;
244 
245 	priv->mgmt_tx_ant = iwl_toggle_tx_ant(priv, priv->mgmt_tx_ant,
246 					      priv->nvm_data->valid_tx_ant);
247 	rate_flags = iwl_ant_idx_to_flags(priv->mgmt_tx_ant);
248 
249 	/* In mac80211, rates for 5 GHz start at 0 */
250 	if (info->band == NL80211_BAND_5GHZ)
251 		rate += IWL_FIRST_OFDM_RATE;
252 	else if (rate >= IWL_FIRST_CCK_RATE && rate <= IWL_LAST_CCK_RATE)
253 		rate_flags |= RATE_MCS_CCK_MSK;
254 
255 	tx_beacon_cmd->tx.rate_n_flags =
256 			iwl_hw_set_rate_n_flags(rate, rate_flags);
257 
258 	/* Submit command */
259 	cmd.len[0] = sizeof(*tx_beacon_cmd);
260 	cmd.data[0] = tx_beacon_cmd;
261 	cmd.dataflags[0] = IWL_HCMD_DFL_NOCOPY;
262 	cmd.len[1] = frame_size;
263 	cmd.data[1] = priv->beacon_skb->data;
264 	cmd.dataflags[1] = IWL_HCMD_DFL_NOCOPY;
265 
266 	return iwl_dvm_send_cmd(priv, &cmd);
267 }
268 
269 static void iwl_bg_beacon_update(struct work_struct *work)
270 {
271 	struct iwl_priv *priv =
272 		container_of(work, struct iwl_priv, beacon_update);
273 	struct sk_buff *beacon;
274 
275 	mutex_lock(&priv->mutex);
276 	if (!priv->beacon_ctx) {
277 		IWL_ERR(priv, "updating beacon w/o beacon context!\n");
278 		goto out;
279 	}
280 
281 	if (priv->beacon_ctx->vif->type != NL80211_IFTYPE_AP) {
282 		/*
283 		 * The ucode will send beacon notifications even in
284 		 * IBSS mode, but we don't want to process them. But
285 		 * we need to defer the type check to here due to
286 		 * requiring locking around the beacon_ctx access.
287 		 */
288 		goto out;
289 	}
290 
291 	/* Pull updated AP beacon from mac80211. will fail if not in AP mode */
292 	beacon = ieee80211_beacon_get(priv->hw, priv->beacon_ctx->vif);
293 	if (!beacon) {
294 		IWL_ERR(priv, "update beacon failed -- keeping old\n");
295 		goto out;
296 	}
297 
298 	/* new beacon skb is allocated every time; dispose previous.*/
299 	dev_kfree_skb(priv->beacon_skb);
300 
301 	priv->beacon_skb = beacon;
302 
303 	iwlagn_send_beacon_cmd(priv);
304  out:
305 	mutex_unlock(&priv->mutex);
306 }
307 
308 static void iwl_bg_bt_runtime_config(struct work_struct *work)
309 {
310 	struct iwl_priv *priv =
311 		container_of(work, struct iwl_priv, bt_runtime_config);
312 
313 	mutex_lock(&priv->mutex);
314 	if (test_bit(STATUS_EXIT_PENDING, &priv->status))
315 		goto out;
316 
317 	/* dont send host command if rf-kill is on */
318 	if (!iwl_is_ready_rf(priv))
319 		goto out;
320 
321 	iwlagn_send_advance_bt_config(priv);
322 out:
323 	mutex_unlock(&priv->mutex);
324 }
325 
326 static void iwl_bg_bt_full_concurrency(struct work_struct *work)
327 {
328 	struct iwl_priv *priv =
329 		container_of(work, struct iwl_priv, bt_full_concurrency);
330 	struct iwl_rxon_context *ctx;
331 
332 	mutex_lock(&priv->mutex);
333 
334 	if (test_bit(STATUS_EXIT_PENDING, &priv->status))
335 		goto out;
336 
337 	/* dont send host command if rf-kill is on */
338 	if (!iwl_is_ready_rf(priv))
339 		goto out;
340 
341 	IWL_DEBUG_INFO(priv, "BT coex in %s mode\n",
342 		       priv->bt_full_concurrent ?
343 		       "full concurrency" : "3-wire");
344 
345 	/*
346 	 * LQ & RXON updated cmds must be sent before BT Config cmd
347 	 * to avoid 3-wire collisions
348 	 */
349 	for_each_context(priv, ctx) {
350 		iwlagn_set_rxon_chain(priv, ctx);
351 		iwlagn_commit_rxon(priv, ctx);
352 	}
353 
354 	iwlagn_send_advance_bt_config(priv);
355 out:
356 	mutex_unlock(&priv->mutex);
357 }
358 
359 int iwl_send_statistics_request(struct iwl_priv *priv, u8 flags, bool clear)
360 {
361 	struct iwl_statistics_cmd statistics_cmd = {
362 		.configuration_flags =
363 			clear ? IWL_STATS_CONF_CLEAR_STATS : 0,
364 	};
365 
366 	if (flags & CMD_ASYNC)
367 		return iwl_dvm_send_cmd_pdu(priv, REPLY_STATISTICS_CMD,
368 					CMD_ASYNC,
369 					sizeof(struct iwl_statistics_cmd),
370 					&statistics_cmd);
371 	else
372 		return iwl_dvm_send_cmd_pdu(priv, REPLY_STATISTICS_CMD, 0,
373 					sizeof(struct iwl_statistics_cmd),
374 					&statistics_cmd);
375 }
376 
377 /*
378  * iwl_bg_statistics_periodic - Timer callback to queue statistics
379  *
380  * This callback is provided in order to send a statistics request.
381  *
382  * This timer function is continually reset to execute within
383  * REG_RECALIB_PERIOD seconds since the last STATISTICS_NOTIFICATION
384  * was received.  We need to ensure we receive the statistics in order
385  * to update the temperature used for calibrating the TXPOWER.
386  */
387 static void iwl_bg_statistics_periodic(struct timer_list *t)
388 {
389 	struct iwl_priv *priv = from_timer(priv, t, statistics_periodic);
390 
391 	if (test_bit(STATUS_EXIT_PENDING, &priv->status))
392 		return;
393 
394 	/* dont send host command if rf-kill is on */
395 	if (!iwl_is_ready_rf(priv))
396 		return;
397 
398 	iwl_send_statistics_request(priv, CMD_ASYNC, false);
399 }
400 
401 
402 static void iwl_print_cont_event_trace(struct iwl_priv *priv, u32 base,
403 					u32 start_idx, u32 num_events,
404 					u32 capacity, u32 mode)
405 {
406 	u32 i;
407 	u32 ptr;        /* SRAM byte address of log data */
408 	u32 ev, time, data; /* event log data */
409 
410 	if (mode == 0)
411 		ptr = base + (4 * sizeof(u32)) + (start_idx * 2 * sizeof(u32));
412 	else
413 		ptr = base + (4 * sizeof(u32)) + (start_idx * 3 * sizeof(u32));
414 
415 	/* Make sure device is powered up for SRAM reads */
416 	if (!iwl_trans_grab_nic_access(priv->trans))
417 		return;
418 
419 	/* Set starting address; reads will auto-increment */
420 	iwl_write32(priv->trans, HBUS_TARG_MEM_RADDR, ptr);
421 
422 	/*
423 	 * Refuse to read more than would have fit into the log from
424 	 * the current start_idx. This used to happen due to the race
425 	 * described below, but now WARN because the code below should
426 	 * prevent it from happening here.
427 	 */
428 	if (WARN_ON(num_events > capacity - start_idx))
429 		num_events = capacity - start_idx;
430 
431 	/*
432 	 * "time" is actually "data" for mode 0 (no timestamp).
433 	 * place event id # at far right for easier visual parsing.
434 	 */
435 	for (i = 0; i < num_events; i++) {
436 		ev = iwl_read32(priv->trans, HBUS_TARG_MEM_RDAT);
437 		time = iwl_read32(priv->trans, HBUS_TARG_MEM_RDAT);
438 		if (mode == 0) {
439 			trace_iwlwifi_dev_ucode_cont_event(
440 					priv->trans->dev, 0, time, ev);
441 		} else {
442 			data = iwl_read32(priv->trans, HBUS_TARG_MEM_RDAT);
443 			trace_iwlwifi_dev_ucode_cont_event(
444 					priv->trans->dev, time, data, ev);
445 		}
446 	}
447 	/* Allow device to power down */
448 	iwl_trans_release_nic_access(priv->trans);
449 }
450 
451 static void iwl_continuous_event_trace(struct iwl_priv *priv)
452 {
453 	u32 capacity;   /* event log capacity in # entries */
454 	struct {
455 		u32 capacity;
456 		u32 mode;
457 		u32 wrap_counter;
458 		u32 write_counter;
459 	} __packed read;
460 	u32 base;       /* SRAM byte address of event log header */
461 	u32 mode;       /* 0 - no timestamp, 1 - timestamp recorded */
462 	u32 num_wraps;  /* # times uCode wrapped to top of log */
463 	u32 next_entry; /* index of next entry to be written by uCode */
464 
465 	base = priv->device_pointers.log_event_table;
466 	if (iwlagn_hw_valid_rtc_data_addr(base)) {
467 		iwl_trans_read_mem_bytes(priv->trans, base,
468 					 &read, sizeof(read));
469 		capacity = read.capacity;
470 		mode = read.mode;
471 		num_wraps = read.wrap_counter;
472 		next_entry = read.write_counter;
473 	} else
474 		return;
475 
476 	/*
477 	 * Unfortunately, the uCode doesn't use temporary variables.
478 	 * Therefore, it can happen that we read next_entry == capacity,
479 	 * which really means next_entry == 0.
480 	 */
481 	if (unlikely(next_entry == capacity))
482 		next_entry = 0;
483 	/*
484 	 * Additionally, the uCode increases the write pointer before
485 	 * the wraps counter, so if the write pointer is smaller than
486 	 * the old write pointer (wrap occurred) but we read that no
487 	 * wrap occurred, we actually read between the next_entry and
488 	 * num_wraps update (this does happen in practice!!) -- take
489 	 * that into account by increasing num_wraps.
490 	 */
491 	if (unlikely(next_entry < priv->event_log.next_entry &&
492 		     num_wraps == priv->event_log.num_wraps))
493 		num_wraps++;
494 
495 	if (num_wraps == priv->event_log.num_wraps) {
496 		iwl_print_cont_event_trace(
497 			priv, base, priv->event_log.next_entry,
498 			next_entry - priv->event_log.next_entry,
499 			capacity, mode);
500 
501 		priv->event_log.non_wraps_count++;
502 	} else {
503 		if (num_wraps - priv->event_log.num_wraps > 1)
504 			priv->event_log.wraps_more_count++;
505 		else
506 			priv->event_log.wraps_once_count++;
507 
508 		trace_iwlwifi_dev_ucode_wrap_event(priv->trans->dev,
509 				num_wraps - priv->event_log.num_wraps,
510 				next_entry, priv->event_log.next_entry);
511 
512 		if (next_entry < priv->event_log.next_entry) {
513 			iwl_print_cont_event_trace(
514 				priv, base, priv->event_log.next_entry,
515 				capacity - priv->event_log.next_entry,
516 				capacity, mode);
517 
518 			iwl_print_cont_event_trace(
519 				priv, base, 0, next_entry, capacity, mode);
520 		} else {
521 			iwl_print_cont_event_trace(
522 				priv, base, next_entry,
523 				capacity - next_entry,
524 				capacity, mode);
525 
526 			iwl_print_cont_event_trace(
527 				priv, base, 0, next_entry, capacity, mode);
528 		}
529 	}
530 
531 	priv->event_log.num_wraps = num_wraps;
532 	priv->event_log.next_entry = next_entry;
533 }
534 
535 /*
536  * iwl_bg_ucode_trace - Timer callback to log ucode event
537  *
538  * The timer is continually set to execute every
539  * UCODE_TRACE_PERIOD milliseconds after the last timer expired
540  * this function is to perform continuous uCode event logging operation
541  * if enabled
542  */
543 static void iwl_bg_ucode_trace(struct timer_list *t)
544 {
545 	struct iwl_priv *priv = from_timer(priv, t, ucode_trace);
546 
547 	if (test_bit(STATUS_EXIT_PENDING, &priv->status))
548 		return;
549 
550 	if (priv->event_log.ucode_trace) {
551 		iwl_continuous_event_trace(priv);
552 		/* Reschedule the timer to occur in UCODE_TRACE_PERIOD */
553 		mod_timer(&priv->ucode_trace,
554 			 jiffies + msecs_to_jiffies(UCODE_TRACE_PERIOD));
555 	}
556 }
557 
558 static void iwl_bg_tx_flush(struct work_struct *work)
559 {
560 	struct iwl_priv *priv =
561 		container_of(work, struct iwl_priv, tx_flush);
562 
563 	if (test_bit(STATUS_EXIT_PENDING, &priv->status))
564 		return;
565 
566 	/* do nothing if rf-kill is on */
567 	if (!iwl_is_ready_rf(priv))
568 		return;
569 
570 	IWL_DEBUG_INFO(priv, "device request: flush all tx frames\n");
571 	iwlagn_dev_txfifo_flush(priv);
572 }
573 
574 /*
575  * queue/FIFO/AC mapping definitions
576  */
577 
578 static const u8 iwlagn_bss_ac_to_fifo[] = {
579 	IWL_TX_FIFO_VO,
580 	IWL_TX_FIFO_VI,
581 	IWL_TX_FIFO_BE,
582 	IWL_TX_FIFO_BK,
583 };
584 
585 static const u8 iwlagn_bss_ac_to_queue[] = {
586 	0, 1, 2, 3,
587 };
588 
589 static const u8 iwlagn_pan_ac_to_fifo[] = {
590 	IWL_TX_FIFO_VO_IPAN,
591 	IWL_TX_FIFO_VI_IPAN,
592 	IWL_TX_FIFO_BE_IPAN,
593 	IWL_TX_FIFO_BK_IPAN,
594 };
595 
596 static const u8 iwlagn_pan_ac_to_queue[] = {
597 	7, 6, 5, 4,
598 };
599 
600 static void iwl_init_context(struct iwl_priv *priv, u32 ucode_flags)
601 {
602 	int i;
603 
604 	/*
605 	 * The default context is always valid,
606 	 * the PAN context depends on uCode.
607 	 */
608 	priv->valid_contexts = BIT(IWL_RXON_CTX_BSS);
609 	if (ucode_flags & IWL_UCODE_TLV_FLAGS_PAN)
610 		priv->valid_contexts |= BIT(IWL_RXON_CTX_PAN);
611 
612 	for (i = 0; i < NUM_IWL_RXON_CTX; i++)
613 		priv->contexts[i].ctxid = i;
614 
615 	priv->contexts[IWL_RXON_CTX_BSS].always_active = true;
616 	priv->contexts[IWL_RXON_CTX_BSS].is_active = true;
617 	priv->contexts[IWL_RXON_CTX_BSS].rxon_cmd = REPLY_RXON;
618 	priv->contexts[IWL_RXON_CTX_BSS].rxon_timing_cmd = REPLY_RXON_TIMING;
619 	priv->contexts[IWL_RXON_CTX_BSS].rxon_assoc_cmd = REPLY_RXON_ASSOC;
620 	priv->contexts[IWL_RXON_CTX_BSS].qos_cmd = REPLY_QOS_PARAM;
621 	priv->contexts[IWL_RXON_CTX_BSS].ap_sta_id = IWL_AP_ID;
622 	priv->contexts[IWL_RXON_CTX_BSS].wep_key_cmd = REPLY_WEPKEY;
623 	priv->contexts[IWL_RXON_CTX_BSS].bcast_sta_id = IWLAGN_BROADCAST_ID;
624 	priv->contexts[IWL_RXON_CTX_BSS].exclusive_interface_modes =
625 		BIT(NL80211_IFTYPE_ADHOC) | BIT(NL80211_IFTYPE_MONITOR);
626 	priv->contexts[IWL_RXON_CTX_BSS].interface_modes =
627 		BIT(NL80211_IFTYPE_STATION);
628 	priv->contexts[IWL_RXON_CTX_BSS].ap_devtype = RXON_DEV_TYPE_AP;
629 	priv->contexts[IWL_RXON_CTX_BSS].ibss_devtype = RXON_DEV_TYPE_IBSS;
630 	priv->contexts[IWL_RXON_CTX_BSS].station_devtype = RXON_DEV_TYPE_ESS;
631 	priv->contexts[IWL_RXON_CTX_BSS].unused_devtype = RXON_DEV_TYPE_ESS;
632 	memcpy(priv->contexts[IWL_RXON_CTX_BSS].ac_to_queue,
633 	       iwlagn_bss_ac_to_queue, sizeof(iwlagn_bss_ac_to_queue));
634 	memcpy(priv->contexts[IWL_RXON_CTX_BSS].ac_to_fifo,
635 	       iwlagn_bss_ac_to_fifo, sizeof(iwlagn_bss_ac_to_fifo));
636 
637 	priv->contexts[IWL_RXON_CTX_PAN].rxon_cmd = REPLY_WIPAN_RXON;
638 	priv->contexts[IWL_RXON_CTX_PAN].rxon_timing_cmd =
639 		REPLY_WIPAN_RXON_TIMING;
640 	priv->contexts[IWL_RXON_CTX_PAN].rxon_assoc_cmd =
641 		REPLY_WIPAN_RXON_ASSOC;
642 	priv->contexts[IWL_RXON_CTX_PAN].qos_cmd = REPLY_WIPAN_QOS_PARAM;
643 	priv->contexts[IWL_RXON_CTX_PAN].ap_sta_id = IWL_AP_ID_PAN;
644 	priv->contexts[IWL_RXON_CTX_PAN].wep_key_cmd = REPLY_WIPAN_WEPKEY;
645 	priv->contexts[IWL_RXON_CTX_PAN].bcast_sta_id = IWLAGN_PAN_BCAST_ID;
646 	priv->contexts[IWL_RXON_CTX_PAN].station_flags = STA_FLG_PAN_STATION;
647 	priv->contexts[IWL_RXON_CTX_PAN].interface_modes =
648 		BIT(NL80211_IFTYPE_STATION) | BIT(NL80211_IFTYPE_AP);
649 
650 	priv->contexts[IWL_RXON_CTX_PAN].ap_devtype = RXON_DEV_TYPE_CP;
651 	priv->contexts[IWL_RXON_CTX_PAN].station_devtype = RXON_DEV_TYPE_2STA;
652 	priv->contexts[IWL_RXON_CTX_PAN].unused_devtype = RXON_DEV_TYPE_P2P;
653 	memcpy(priv->contexts[IWL_RXON_CTX_PAN].ac_to_queue,
654 	       iwlagn_pan_ac_to_queue, sizeof(iwlagn_pan_ac_to_queue));
655 	memcpy(priv->contexts[IWL_RXON_CTX_PAN].ac_to_fifo,
656 	       iwlagn_pan_ac_to_fifo, sizeof(iwlagn_pan_ac_to_fifo));
657 	priv->contexts[IWL_RXON_CTX_PAN].mcast_queue = IWL_IPAN_MCAST_QUEUE;
658 
659 	BUILD_BUG_ON(NUM_IWL_RXON_CTX != 2);
660 }
661 
662 static void iwl_rf_kill_ct_config(struct iwl_priv *priv)
663 {
664 	struct iwl_ct_kill_config cmd;
665 	struct iwl_ct_kill_throttling_config adv_cmd;
666 	int ret = 0;
667 
668 	iwl_write32(priv->trans, CSR_UCODE_DRV_GP1_CLR,
669 		    CSR_UCODE_DRV_GP1_REG_BIT_CT_KILL_EXIT);
670 
671 	priv->thermal_throttle.ct_kill_toggle = false;
672 
673 	if (priv->lib->support_ct_kill_exit) {
674 		adv_cmd.critical_temperature_enter =
675 			cpu_to_le32(priv->hw_params.ct_kill_threshold);
676 		adv_cmd.critical_temperature_exit =
677 			cpu_to_le32(priv->hw_params.ct_kill_exit_threshold);
678 
679 		ret = iwl_dvm_send_cmd_pdu(priv,
680 				       REPLY_CT_KILL_CONFIG_CMD,
681 				       0, sizeof(adv_cmd), &adv_cmd);
682 		if (ret)
683 			IWL_ERR(priv, "REPLY_CT_KILL_CONFIG_CMD failed\n");
684 		else
685 			IWL_DEBUG_INFO(priv, "REPLY_CT_KILL_CONFIG_CMD "
686 				"succeeded, critical temperature enter is %d,"
687 				"exit is %d\n",
688 				priv->hw_params.ct_kill_threshold,
689 				priv->hw_params.ct_kill_exit_threshold);
690 	} else {
691 		cmd.critical_temperature_R =
692 			cpu_to_le32(priv->hw_params.ct_kill_threshold);
693 
694 		ret = iwl_dvm_send_cmd_pdu(priv,
695 				       REPLY_CT_KILL_CONFIG_CMD,
696 				       0, sizeof(cmd), &cmd);
697 		if (ret)
698 			IWL_ERR(priv, "REPLY_CT_KILL_CONFIG_CMD failed\n");
699 		else
700 			IWL_DEBUG_INFO(priv, "REPLY_CT_KILL_CONFIG_CMD "
701 				"succeeded, "
702 				"critical temperature is %d\n",
703 				priv->hw_params.ct_kill_threshold);
704 	}
705 }
706 
707 static int iwlagn_send_calib_cfg_rt(struct iwl_priv *priv, u32 cfg)
708 {
709 	struct iwl_calib_cfg_cmd calib_cfg_cmd;
710 	struct iwl_host_cmd cmd = {
711 		.id = CALIBRATION_CFG_CMD,
712 		.len = { sizeof(struct iwl_calib_cfg_cmd), },
713 		.data = { &calib_cfg_cmd, },
714 	};
715 
716 	memset(&calib_cfg_cmd, 0, sizeof(calib_cfg_cmd));
717 	calib_cfg_cmd.ucd_calib_cfg.once.is_enable = IWL_CALIB_RT_CFG_ALL;
718 	calib_cfg_cmd.ucd_calib_cfg.once.start = cpu_to_le32(cfg);
719 
720 	return iwl_dvm_send_cmd(priv, &cmd);
721 }
722 
723 
724 static int iwlagn_send_tx_ant_config(struct iwl_priv *priv, u8 valid_tx_ant)
725 {
726 	struct iwl_tx_ant_config_cmd tx_ant_cmd = {
727 	  .valid = cpu_to_le32(valid_tx_ant),
728 	};
729 
730 	if (IWL_UCODE_API(priv->fw->ucode_ver) > 1) {
731 		IWL_DEBUG_HC(priv, "select valid tx ant: %u\n", valid_tx_ant);
732 		return iwl_dvm_send_cmd_pdu(priv, TX_ANT_CONFIGURATION_CMD, 0,
733 					sizeof(struct iwl_tx_ant_config_cmd),
734 					&tx_ant_cmd);
735 	} else {
736 		IWL_DEBUG_HC(priv, "TX_ANT_CONFIGURATION_CMD not supported\n");
737 		return -EOPNOTSUPP;
738 	}
739 }
740 
741 static void iwl_send_bt_config(struct iwl_priv *priv)
742 {
743 	struct iwl_bt_cmd bt_cmd = {
744 		.lead_time = BT_LEAD_TIME_DEF,
745 		.max_kill = BT_MAX_KILL_DEF,
746 		.kill_ack_mask = 0,
747 		.kill_cts_mask = 0,
748 	};
749 
750 	if (!iwlwifi_mod_params.bt_coex_active)
751 		bt_cmd.flags = BT_COEX_DISABLE;
752 	else
753 		bt_cmd.flags = BT_COEX_ENABLE;
754 
755 	priv->bt_enable_flag = bt_cmd.flags;
756 	IWL_DEBUG_INFO(priv, "BT coex %s\n",
757 		(bt_cmd.flags == BT_COEX_DISABLE) ? "disable" : "active");
758 
759 	if (iwl_dvm_send_cmd_pdu(priv, REPLY_BT_CONFIG,
760 			     0, sizeof(struct iwl_bt_cmd), &bt_cmd))
761 		IWL_ERR(priv, "failed to send BT Coex Config\n");
762 }
763 
764 /*
765  * iwl_alive_start - called after REPLY_ALIVE notification received
766  *                   from protocol/runtime uCode (initialization uCode's
767  *                   Alive gets handled by iwl_init_alive_start()).
768  */
769 int iwl_alive_start(struct iwl_priv *priv)
770 {
771 	int ret = 0;
772 	struct iwl_rxon_context *ctx = &priv->contexts[IWL_RXON_CTX_BSS];
773 
774 	IWL_DEBUG_INFO(priv, "Runtime Alive received.\n");
775 
776 	/* After the ALIVE response, we can send host commands to the uCode */
777 	set_bit(STATUS_ALIVE, &priv->status);
778 
779 	if (iwl_is_rfkill(priv))
780 		return -ERFKILL;
781 
782 	if (priv->event_log.ucode_trace) {
783 		/* start collecting data now */
784 		mod_timer(&priv->ucode_trace, jiffies);
785 	}
786 
787 	/* download priority table before any calibration request */
788 	if (priv->lib->bt_params &&
789 	    priv->lib->bt_params->advanced_bt_coexist) {
790 		/* Configure Bluetooth device coexistence support */
791 		if (priv->lib->bt_params->bt_sco_disable)
792 			priv->bt_enable_pspoll = false;
793 		else
794 			priv->bt_enable_pspoll = true;
795 
796 		priv->bt_valid = IWLAGN_BT_ALL_VALID_MSK;
797 		priv->kill_ack_mask = IWLAGN_BT_KILL_ACK_MASK_DEFAULT;
798 		priv->kill_cts_mask = IWLAGN_BT_KILL_CTS_MASK_DEFAULT;
799 		iwlagn_send_advance_bt_config(priv);
800 		priv->bt_valid = IWLAGN_BT_VALID_ENABLE_FLAGS;
801 		priv->cur_rssi_ctx = NULL;
802 
803 		iwl_send_prio_tbl(priv);
804 
805 		/* FIXME: w/a to force change uCode BT state machine */
806 		ret = iwl_send_bt_env(priv, IWL_BT_COEX_ENV_OPEN,
807 					 BT_COEX_PRIO_TBL_EVT_INIT_CALIB2);
808 		if (ret)
809 			return ret;
810 		ret = iwl_send_bt_env(priv, IWL_BT_COEX_ENV_CLOSE,
811 					 BT_COEX_PRIO_TBL_EVT_INIT_CALIB2);
812 		if (ret)
813 			return ret;
814 	} else if (priv->lib->bt_params) {
815 		/*
816 		 * default is 2-wire BT coexexistence support
817 		 */
818 		iwl_send_bt_config(priv);
819 	}
820 
821 	/*
822 	 * Perform runtime calibrations, including DC calibration.
823 	 */
824 	iwlagn_send_calib_cfg_rt(priv, IWL_CALIB_CFG_DC_IDX);
825 
826 	ieee80211_wake_queues(priv->hw);
827 
828 	/* Configure Tx antenna selection based on H/W config */
829 	iwlagn_send_tx_ant_config(priv, priv->nvm_data->valid_tx_ant);
830 
831 	if (iwl_is_associated_ctx(ctx) && !priv->wowlan) {
832 		struct iwl_rxon_cmd *active_rxon =
833 				(struct iwl_rxon_cmd *)&ctx->active;
834 		/* apply any changes in staging */
835 		ctx->staging.filter_flags |= RXON_FILTER_ASSOC_MSK;
836 		active_rxon->filter_flags &= ~RXON_FILTER_ASSOC_MSK;
837 	} else {
838 		struct iwl_rxon_context *tmp;
839 		/* Initialize our rx_config data */
840 		for_each_context(priv, tmp)
841 			iwl_connection_init_rx_config(priv, tmp);
842 
843 		iwlagn_set_rxon_chain(priv, ctx);
844 	}
845 
846 	if (!priv->wowlan) {
847 		/* WoWLAN ucode will not reply in the same way, skip it */
848 		iwl_reset_run_time_calib(priv);
849 	}
850 
851 	set_bit(STATUS_READY, &priv->status);
852 
853 	/* Configure the adapter for unassociated operation */
854 	ret = iwlagn_commit_rxon(priv, ctx);
855 	if (ret)
856 		return ret;
857 
858 	/* At this point, the NIC is initialized and operational */
859 	iwl_rf_kill_ct_config(priv);
860 
861 	IWL_DEBUG_INFO(priv, "ALIVE processing complete.\n");
862 
863 	return iwl_power_update_mode(priv, true);
864 }
865 
866 /**
867  * iwl_clear_driver_stations - clear knowledge of all stations from driver
868  * @priv: iwl priv struct
869  *
870  * This is called during iwl_down() to make sure that in the case
871  * we're coming there from a hardware restart mac80211 will be
872  * able to reconfigure stations -- if we're getting there in the
873  * normal down flow then the stations will already be cleared.
874  */
875 static void iwl_clear_driver_stations(struct iwl_priv *priv)
876 {
877 	struct iwl_rxon_context *ctx;
878 
879 	spin_lock_bh(&priv->sta_lock);
880 	memset(priv->stations, 0, sizeof(priv->stations));
881 	priv->num_stations = 0;
882 
883 	priv->ucode_key_table = 0;
884 
885 	for_each_context(priv, ctx) {
886 		/*
887 		 * Remove all key information that is not stored as part
888 		 * of station information since mac80211 may not have had
889 		 * a chance to remove all the keys. When device is
890 		 * reconfigured by mac80211 after an error all keys will
891 		 * be reconfigured.
892 		 */
893 		memset(ctx->wep_keys, 0, sizeof(ctx->wep_keys));
894 		ctx->key_mapping_keys = 0;
895 	}
896 
897 	spin_unlock_bh(&priv->sta_lock);
898 }
899 
900 void iwl_down(struct iwl_priv *priv)
901 {
902 	int exit_pending;
903 
904 	IWL_DEBUG_INFO(priv, DRV_NAME " is going down\n");
905 
906 	lockdep_assert_held(&priv->mutex);
907 
908 	iwl_scan_cancel_timeout(priv, 200);
909 
910 	exit_pending =
911 		test_and_set_bit(STATUS_EXIT_PENDING, &priv->status);
912 
913 	iwl_clear_ucode_stations(priv, NULL);
914 	iwl_dealloc_bcast_stations(priv);
915 	iwl_clear_driver_stations(priv);
916 
917 	/* reset BT coex data */
918 	priv->bt_status = 0;
919 	priv->cur_rssi_ctx = NULL;
920 	priv->bt_is_sco = 0;
921 	if (priv->lib->bt_params)
922 		priv->bt_traffic_load =
923 			 priv->lib->bt_params->bt_init_traffic_load;
924 	else
925 		priv->bt_traffic_load = 0;
926 	priv->bt_full_concurrent = false;
927 	priv->bt_ci_compliance = 0;
928 
929 	/* Wipe out the EXIT_PENDING status bit if we are not actually
930 	 * exiting the module */
931 	if (!exit_pending)
932 		clear_bit(STATUS_EXIT_PENDING, &priv->status);
933 
934 	if (priv->mac80211_registered)
935 		ieee80211_stop_queues(priv->hw);
936 
937 	priv->ucode_loaded = false;
938 	iwl_trans_stop_device(priv->trans);
939 
940 	/* Set num_aux_in_flight must be done after the transport is stopped */
941 	atomic_set(&priv->num_aux_in_flight, 0);
942 
943 	/* Clear out all status bits but a few that are stable across reset */
944 	priv->status &= test_bit(STATUS_RF_KILL_HW, &priv->status) <<
945 				STATUS_RF_KILL_HW |
946 			test_bit(STATUS_FW_ERROR, &priv->status) <<
947 				STATUS_FW_ERROR |
948 			test_bit(STATUS_EXIT_PENDING, &priv->status) <<
949 				STATUS_EXIT_PENDING;
950 
951 	dev_kfree_skb(priv->beacon_skb);
952 	priv->beacon_skb = NULL;
953 }
954 
955 /*****************************************************************************
956  *
957  * Workqueue callbacks
958  *
959  *****************************************************************************/
960 
961 static void iwl_bg_run_time_calib_work(struct work_struct *work)
962 {
963 	struct iwl_priv *priv = container_of(work, struct iwl_priv,
964 			run_time_calib_work);
965 
966 	mutex_lock(&priv->mutex);
967 
968 	if (test_bit(STATUS_EXIT_PENDING, &priv->status) ||
969 	    test_bit(STATUS_SCANNING, &priv->status)) {
970 		mutex_unlock(&priv->mutex);
971 		return;
972 	}
973 
974 	if (priv->start_calib) {
975 		iwl_chain_noise_calibration(priv);
976 		iwl_sensitivity_calibration(priv);
977 	}
978 
979 	mutex_unlock(&priv->mutex);
980 }
981 
982 void iwlagn_prepare_restart(struct iwl_priv *priv)
983 {
984 	bool bt_full_concurrent;
985 	u8 bt_ci_compliance;
986 	u8 bt_load;
987 	u8 bt_status;
988 	bool bt_is_sco;
989 	int i;
990 
991 	lockdep_assert_held(&priv->mutex);
992 
993 	priv->is_open = 0;
994 
995 	/*
996 	 * __iwl_down() will clear the BT status variables,
997 	 * which is correct, but when we restart we really
998 	 * want to keep them so restore them afterwards.
999 	 *
1000 	 * The restart process will later pick them up and
1001 	 * re-configure the hw when we reconfigure the BT
1002 	 * command.
1003 	 */
1004 	bt_full_concurrent = priv->bt_full_concurrent;
1005 	bt_ci_compliance = priv->bt_ci_compliance;
1006 	bt_load = priv->bt_traffic_load;
1007 	bt_status = priv->bt_status;
1008 	bt_is_sco = priv->bt_is_sco;
1009 
1010 	iwl_down(priv);
1011 
1012 	priv->bt_full_concurrent = bt_full_concurrent;
1013 	priv->bt_ci_compliance = bt_ci_compliance;
1014 	priv->bt_traffic_load = bt_load;
1015 	priv->bt_status = bt_status;
1016 	priv->bt_is_sco = bt_is_sco;
1017 
1018 	/* reset aggregation queues */
1019 	for (i = IWLAGN_FIRST_AMPDU_QUEUE; i < IWL_MAX_HW_QUEUES; i++)
1020 		priv->queue_to_mac80211[i] = IWL_INVALID_MAC80211_QUEUE;
1021 	/* and stop counts */
1022 	for (i = 0; i < IWL_MAX_HW_QUEUES; i++)
1023 		atomic_set(&priv->queue_stop_count[i], 0);
1024 
1025 	memset(priv->agg_q_alloc, 0, sizeof(priv->agg_q_alloc));
1026 }
1027 
1028 static void iwl_bg_restart(struct work_struct *data)
1029 {
1030 	struct iwl_priv *priv = container_of(data, struct iwl_priv, restart);
1031 
1032 	if (test_bit(STATUS_EXIT_PENDING, &priv->status))
1033 		return;
1034 
1035 	if (test_and_clear_bit(STATUS_FW_ERROR, &priv->status)) {
1036 		mutex_lock(&priv->mutex);
1037 		iwlagn_prepare_restart(priv);
1038 		mutex_unlock(&priv->mutex);
1039 		iwl_cancel_deferred_work(priv);
1040 		if (priv->mac80211_registered)
1041 			ieee80211_restart_hw(priv->hw);
1042 		else
1043 			IWL_ERR(priv,
1044 				"Cannot request restart before registering with mac80211\n");
1045 	} else {
1046 		WARN_ON(1);
1047 	}
1048 }
1049 
1050 /*****************************************************************************
1051  *
1052  * driver setup and teardown
1053  *
1054  *****************************************************************************/
1055 
1056 static void iwl_setup_deferred_work(struct iwl_priv *priv)
1057 {
1058 	priv->workqueue = alloc_ordered_workqueue(DRV_NAME, 0);
1059 
1060 	INIT_WORK(&priv->restart, iwl_bg_restart);
1061 	INIT_WORK(&priv->beacon_update, iwl_bg_beacon_update);
1062 	INIT_WORK(&priv->run_time_calib_work, iwl_bg_run_time_calib_work);
1063 	INIT_WORK(&priv->tx_flush, iwl_bg_tx_flush);
1064 	INIT_WORK(&priv->bt_full_concurrency, iwl_bg_bt_full_concurrency);
1065 	INIT_WORK(&priv->bt_runtime_config, iwl_bg_bt_runtime_config);
1066 
1067 	iwl_setup_scan_deferred_work(priv);
1068 
1069 	if (priv->lib->bt_params)
1070 		iwlagn_bt_setup_deferred_work(priv);
1071 
1072 	timer_setup(&priv->statistics_periodic, iwl_bg_statistics_periodic, 0);
1073 
1074 	timer_setup(&priv->ucode_trace, iwl_bg_ucode_trace, 0);
1075 }
1076 
1077 void iwl_cancel_deferred_work(struct iwl_priv *priv)
1078 {
1079 	if (priv->lib->bt_params)
1080 		iwlagn_bt_cancel_deferred_work(priv);
1081 
1082 	cancel_work_sync(&priv->run_time_calib_work);
1083 	cancel_work_sync(&priv->beacon_update);
1084 
1085 	iwl_cancel_scan_deferred_work(priv);
1086 
1087 	cancel_work_sync(&priv->bt_full_concurrency);
1088 	cancel_work_sync(&priv->bt_runtime_config);
1089 
1090 	del_timer_sync(&priv->statistics_periodic);
1091 	del_timer_sync(&priv->ucode_trace);
1092 }
1093 
1094 static int iwl_init_drv(struct iwl_priv *priv)
1095 {
1096 	spin_lock_init(&priv->sta_lock);
1097 
1098 	mutex_init(&priv->mutex);
1099 
1100 	INIT_LIST_HEAD(&priv->calib_results);
1101 
1102 	priv->band = NL80211_BAND_2GHZ;
1103 
1104 	priv->plcp_delta_threshold = priv->lib->plcp_delta_threshold;
1105 
1106 	priv->iw_mode = NL80211_IFTYPE_STATION;
1107 	priv->current_ht_config.smps = IEEE80211_SMPS_STATIC;
1108 	priv->missed_beacon_threshold = IWL_MISSED_BEACON_THRESHOLD_DEF;
1109 	priv->agg_tids_count = 0;
1110 
1111 	priv->rx_statistics_jiffies = jiffies;
1112 
1113 	/* Choose which receivers/antennas to use */
1114 	iwlagn_set_rxon_chain(priv, &priv->contexts[IWL_RXON_CTX_BSS]);
1115 
1116 	iwl_init_scan_params(priv);
1117 
1118 	/* init bt coex */
1119 	if (priv->lib->bt_params &&
1120 	    priv->lib->bt_params->advanced_bt_coexist) {
1121 		priv->kill_ack_mask = IWLAGN_BT_KILL_ACK_MASK_DEFAULT;
1122 		priv->kill_cts_mask = IWLAGN_BT_KILL_CTS_MASK_DEFAULT;
1123 		priv->bt_valid = IWLAGN_BT_ALL_VALID_MSK;
1124 		priv->bt_on_thresh = BT_ON_THRESHOLD_DEF;
1125 		priv->bt_duration = BT_DURATION_LIMIT_DEF;
1126 		priv->dynamic_frag_thresh = BT_FRAG_THRESHOLD_DEF;
1127 	}
1128 
1129 	return 0;
1130 }
1131 
1132 static void iwl_uninit_drv(struct iwl_priv *priv)
1133 {
1134 	kfree(priv->scan_cmd);
1135 	kfree(priv->beacon_cmd);
1136 	kfree(rcu_dereference_raw(priv->noa_data));
1137 	iwl_calib_free_results(priv);
1138 #ifdef CONFIG_IWLWIFI_DEBUGFS
1139 	kfree(priv->wowlan_sram);
1140 #endif
1141 }
1142 
1143 static void iwl_set_hw_params(struct iwl_priv *priv)
1144 {
1145 	if (priv->cfg->ht_params)
1146 		priv->hw_params.use_rts_for_aggregation =
1147 			priv->cfg->ht_params->use_rts_for_aggregation;
1148 
1149 	/* Device-specific setup */
1150 	priv->lib->set_hw_params(priv);
1151 }
1152 
1153 
1154 
1155 /* show what optional capabilities we have */
1156 static void iwl_option_config(struct iwl_priv *priv)
1157 {
1158 #ifdef CONFIG_IWLWIFI_DEBUG
1159 	IWL_INFO(priv, "CONFIG_IWLWIFI_DEBUG enabled\n");
1160 #else
1161 	IWL_INFO(priv, "CONFIG_IWLWIFI_DEBUG disabled\n");
1162 #endif
1163 
1164 #ifdef CONFIG_IWLWIFI_DEBUGFS
1165 	IWL_INFO(priv, "CONFIG_IWLWIFI_DEBUGFS enabled\n");
1166 #else
1167 	IWL_INFO(priv, "CONFIG_IWLWIFI_DEBUGFS disabled\n");
1168 #endif
1169 
1170 #ifdef CONFIG_IWLWIFI_DEVICE_TRACING
1171 	IWL_INFO(priv, "CONFIG_IWLWIFI_DEVICE_TRACING enabled\n");
1172 #else
1173 	IWL_INFO(priv, "CONFIG_IWLWIFI_DEVICE_TRACING disabled\n");
1174 #endif
1175 }
1176 
1177 static int iwl_eeprom_init_hw_params(struct iwl_priv *priv)
1178 {
1179 	struct iwl_nvm_data *data = priv->nvm_data;
1180 
1181 	if (data->sku_cap_11n_enable &&
1182 	    !priv->cfg->ht_params) {
1183 		IWL_ERR(priv, "Invalid 11n configuration\n");
1184 		return -EINVAL;
1185 	}
1186 
1187 	if (!data->sku_cap_11n_enable && !data->sku_cap_band_24ghz_enable &&
1188 	    !data->sku_cap_band_52ghz_enable) {
1189 		IWL_ERR(priv, "Invalid device sku\n");
1190 		return -EINVAL;
1191 	}
1192 
1193 	IWL_DEBUG_INFO(priv,
1194 		       "Device SKU: 24GHz %s %s, 52GHz %s %s, 11.n %s %s\n",
1195 		       data->sku_cap_band_24ghz_enable ? "" : "NOT", "enabled",
1196 		       data->sku_cap_band_52ghz_enable ? "" : "NOT", "enabled",
1197 		       data->sku_cap_11n_enable ? "" : "NOT", "enabled");
1198 
1199 	priv->hw_params.tx_chains_num =
1200 		num_of_ant(data->valid_tx_ant);
1201 	if (priv->cfg->rx_with_siso_diversity)
1202 		priv->hw_params.rx_chains_num = 1;
1203 	else
1204 		priv->hw_params.rx_chains_num =
1205 			num_of_ant(data->valid_rx_ant);
1206 
1207 	IWL_DEBUG_INFO(priv, "Valid Tx ant: 0x%X, Valid Rx ant: 0x%X\n",
1208 		       data->valid_tx_ant,
1209 		       data->valid_rx_ant);
1210 
1211 	return 0;
1212 }
1213 
1214 static int iwl_nvm_check_version(struct iwl_nvm_data *data,
1215 				 struct iwl_trans *trans)
1216 {
1217 	if (data->nvm_version >= trans->cfg->nvm_ver ||
1218 	    data->calib_version >= trans->cfg->nvm_calib_ver) {
1219 		IWL_DEBUG_INFO(trans, "device EEPROM VER=0x%x, CALIB=0x%x\n",
1220 			       data->nvm_version, data->calib_version);
1221 		return 0;
1222 	}
1223 
1224 	IWL_ERR(trans,
1225 		"Unsupported (too old) EEPROM VER=0x%x < 0x%x CALIB=0x%x < 0x%x\n",
1226 		data->nvm_version, trans->cfg->nvm_ver,
1227 		data->calib_version,  trans->cfg->nvm_calib_ver);
1228 	return -EINVAL;
1229 }
1230 
1231 static struct iwl_op_mode *iwl_op_mode_dvm_start(struct iwl_trans *trans,
1232 						 const struct iwl_cfg *cfg,
1233 						 const struct iwl_fw *fw,
1234 						 struct dentry *dbgfs_dir)
1235 {
1236 	struct iwl_priv *priv;
1237 	struct ieee80211_hw *hw;
1238 	struct iwl_op_mode *op_mode;
1239 	u16 num_mac;
1240 	u32 ucode_flags;
1241 	struct iwl_trans_config trans_cfg = {};
1242 	static const u8 no_reclaim_cmds[] = {
1243 		REPLY_RX_PHY_CMD,
1244 		REPLY_RX_MPDU_CMD,
1245 		REPLY_COMPRESSED_BA,
1246 		STATISTICS_NOTIFICATION,
1247 		REPLY_TX,
1248 	};
1249 	int i;
1250 
1251 	/************************
1252 	 * 1. Allocating HW data
1253 	 ************************/
1254 	hw = iwl_alloc_all();
1255 	if (!hw) {
1256 		pr_err("%s: Cannot allocate network device\n", trans->name);
1257 		goto out;
1258 	}
1259 
1260 	op_mode = hw->priv;
1261 	op_mode->ops = &iwl_dvm_ops;
1262 	priv = IWL_OP_MODE_GET_DVM(op_mode);
1263 	priv->trans = trans;
1264 	priv->dev = trans->dev;
1265 	priv->cfg = cfg;
1266 	priv->fw = fw;
1267 
1268 	switch (priv->trans->trans_cfg->device_family) {
1269 	case IWL_DEVICE_FAMILY_1000:
1270 	case IWL_DEVICE_FAMILY_100:
1271 		priv->lib = &iwl_dvm_1000_cfg;
1272 		break;
1273 	case IWL_DEVICE_FAMILY_2000:
1274 		priv->lib = &iwl_dvm_2000_cfg;
1275 		break;
1276 	case IWL_DEVICE_FAMILY_105:
1277 		priv->lib = &iwl_dvm_105_cfg;
1278 		break;
1279 	case IWL_DEVICE_FAMILY_2030:
1280 	case IWL_DEVICE_FAMILY_135:
1281 		priv->lib = &iwl_dvm_2030_cfg;
1282 		break;
1283 	case IWL_DEVICE_FAMILY_5000:
1284 		priv->lib = &iwl_dvm_5000_cfg;
1285 		break;
1286 	case IWL_DEVICE_FAMILY_5150:
1287 		priv->lib = &iwl_dvm_5150_cfg;
1288 		break;
1289 	case IWL_DEVICE_FAMILY_6000:
1290 	case IWL_DEVICE_FAMILY_6000i:
1291 		priv->lib = &iwl_dvm_6000_cfg;
1292 		break;
1293 	case IWL_DEVICE_FAMILY_6005:
1294 		priv->lib = &iwl_dvm_6005_cfg;
1295 		break;
1296 	case IWL_DEVICE_FAMILY_6050:
1297 	case IWL_DEVICE_FAMILY_6150:
1298 		priv->lib = &iwl_dvm_6050_cfg;
1299 		break;
1300 	case IWL_DEVICE_FAMILY_6030:
1301 		priv->lib = &iwl_dvm_6030_cfg;
1302 		break;
1303 	default:
1304 		break;
1305 	}
1306 
1307 	if (WARN_ON(!priv->lib))
1308 		goto out_free_hw;
1309 
1310 	/*
1311 	 * Populate the state variables that the transport layer needs
1312 	 * to know about.
1313 	 */
1314 	trans_cfg.op_mode = op_mode;
1315 	trans_cfg.no_reclaim_cmds = no_reclaim_cmds;
1316 	trans_cfg.n_no_reclaim_cmds = ARRAY_SIZE(no_reclaim_cmds);
1317 
1318 	switch (iwlwifi_mod_params.amsdu_size) {
1319 	case IWL_AMSDU_DEF:
1320 	case IWL_AMSDU_4K:
1321 		trans_cfg.rx_buf_size = IWL_AMSDU_4K;
1322 		break;
1323 	case IWL_AMSDU_8K:
1324 		trans_cfg.rx_buf_size = IWL_AMSDU_8K;
1325 		break;
1326 	case IWL_AMSDU_12K:
1327 	default:
1328 		trans_cfg.rx_buf_size = IWL_AMSDU_4K;
1329 		pr_err("Unsupported amsdu_size: %d\n",
1330 		       iwlwifi_mod_params.amsdu_size);
1331 	}
1332 
1333 	trans_cfg.cmd_q_wdg_timeout = IWL_WATCHDOG_DISABLED;
1334 
1335 	trans_cfg.command_groups = iwl_dvm_groups;
1336 	trans_cfg.command_groups_size = ARRAY_SIZE(iwl_dvm_groups);
1337 
1338 	trans_cfg.cmd_fifo = IWLAGN_CMD_FIFO_NUM;
1339 	trans_cfg.cb_data_offs = offsetof(struct ieee80211_tx_info,
1340 					  driver_data[2]);
1341 
1342 	WARN_ON(sizeof(priv->transport_queue_stop) * BITS_PER_BYTE <
1343 		priv->trans->trans_cfg->base_params->num_of_queues);
1344 
1345 	ucode_flags = fw->ucode_capa.flags;
1346 
1347 	if (ucode_flags & IWL_UCODE_TLV_FLAGS_PAN) {
1348 		priv->sta_key_max_num = STA_KEY_MAX_NUM_PAN;
1349 		trans_cfg.cmd_queue = IWL_IPAN_CMD_QUEUE_NUM;
1350 	} else {
1351 		priv->sta_key_max_num = STA_KEY_MAX_NUM;
1352 		trans_cfg.cmd_queue = IWL_DEFAULT_CMD_QUEUE_NUM;
1353 	}
1354 
1355 	/* Configure transport layer */
1356 	iwl_trans_configure(priv->trans, &trans_cfg);
1357 
1358 	trans->rx_mpdu_cmd = REPLY_RX_MPDU_CMD;
1359 	trans->rx_mpdu_cmd_hdr_size = sizeof(struct iwl_rx_mpdu_res_start);
1360 	trans->command_groups = trans_cfg.command_groups;
1361 	trans->command_groups_size = trans_cfg.command_groups_size;
1362 
1363 	/* At this point both hw and priv are allocated. */
1364 
1365 	SET_IEEE80211_DEV(priv->hw, priv->trans->dev);
1366 
1367 	iwl_option_config(priv);
1368 
1369 	IWL_DEBUG_INFO(priv, "*** LOAD DRIVER ***\n");
1370 
1371 	/* bt channel inhibition enabled*/
1372 	priv->bt_ch_announce = true;
1373 	IWL_DEBUG_INFO(priv, "BT channel inhibition is %s\n",
1374 		       (priv->bt_ch_announce) ? "On" : "Off");
1375 
1376 	/* these spin locks will be used in apm_ops.init and EEPROM access
1377 	 * we should init now
1378 	 */
1379 	spin_lock_init(&priv->statistics.lock);
1380 
1381 	/***********************
1382 	 * 2. Read REV register
1383 	 ***********************/
1384 	IWL_INFO(priv, "Detected %s, REV=0x%X\n",
1385 		priv->trans->name, priv->trans->hw_rev);
1386 
1387 	if (iwl_trans_start_hw(priv->trans))
1388 		goto out_free_hw;
1389 
1390 	/* Read the EEPROM */
1391 	if (iwl_read_eeprom(priv->trans, &priv->eeprom_blob,
1392 			    &priv->eeprom_blob_size)) {
1393 		IWL_ERR(priv, "Unable to init EEPROM\n");
1394 		goto out_free_hw;
1395 	}
1396 
1397 	/* Reset chip to save power until we load uCode during "up". */
1398 	iwl_trans_stop_device(priv->trans);
1399 
1400 	priv->nvm_data = iwl_parse_eeprom_data(priv->trans, priv->cfg,
1401 					       priv->eeprom_blob,
1402 					       priv->eeprom_blob_size);
1403 	if (!priv->nvm_data)
1404 		goto out_free_eeprom_blob;
1405 
1406 	if (iwl_nvm_check_version(priv->nvm_data, priv->trans))
1407 		goto out_free_eeprom;
1408 
1409 	if (iwl_eeprom_init_hw_params(priv))
1410 		goto out_free_eeprom;
1411 
1412 	/* extract MAC Address */
1413 	memcpy(priv->addresses[0].addr, priv->nvm_data->hw_addr, ETH_ALEN);
1414 	IWL_DEBUG_INFO(priv, "MAC address: %pM\n", priv->addresses[0].addr);
1415 	priv->hw->wiphy->addresses = priv->addresses;
1416 	priv->hw->wiphy->n_addresses = 1;
1417 	num_mac = priv->nvm_data->n_hw_addrs;
1418 	if (num_mac > 1) {
1419 		memcpy(priv->addresses[1].addr, priv->addresses[0].addr,
1420 		       ETH_ALEN);
1421 		priv->addresses[1].addr[5]++;
1422 		priv->hw->wiphy->n_addresses++;
1423 	}
1424 
1425 	/************************
1426 	 * 4. Setup HW constants
1427 	 ************************/
1428 	iwl_set_hw_params(priv);
1429 
1430 	if (!(priv->nvm_data->sku_cap_ipan_enable)) {
1431 		IWL_DEBUG_INFO(priv, "Your EEPROM disabled PAN\n");
1432 		ucode_flags &= ~IWL_UCODE_TLV_FLAGS_PAN;
1433 		/*
1434 		 * if not PAN, then don't support P2P -- might be a uCode
1435 		 * packaging bug or due to the eeprom check above
1436 		 */
1437 		priv->sta_key_max_num = STA_KEY_MAX_NUM;
1438 		trans_cfg.cmd_queue = IWL_DEFAULT_CMD_QUEUE_NUM;
1439 
1440 		/* Configure transport layer again*/
1441 		iwl_trans_configure(priv->trans, &trans_cfg);
1442 	}
1443 
1444 	/*******************
1445 	 * 5. Setup priv
1446 	 *******************/
1447 	for (i = 0; i < IWL_MAX_HW_QUEUES; i++) {
1448 		priv->queue_to_mac80211[i] = IWL_INVALID_MAC80211_QUEUE;
1449 		if (i < IWLAGN_FIRST_AMPDU_QUEUE &&
1450 		    i != IWL_DEFAULT_CMD_QUEUE_NUM &&
1451 		    i != IWL_IPAN_CMD_QUEUE_NUM)
1452 			priv->queue_to_mac80211[i] = i;
1453 		atomic_set(&priv->queue_stop_count[i], 0);
1454 	}
1455 
1456 	if (iwl_init_drv(priv))
1457 		goto out_free_eeprom;
1458 
1459 	/* At this point both hw and priv are initialized. */
1460 
1461 	/********************
1462 	 * 6. Setup services
1463 	 ********************/
1464 	iwl_setup_deferred_work(priv);
1465 	iwl_setup_rx_handlers(priv);
1466 
1467 	iwl_power_initialize(priv);
1468 	iwl_tt_initialize(priv);
1469 
1470 	snprintf(priv->hw->wiphy->fw_version,
1471 		 sizeof(priv->hw->wiphy->fw_version),
1472 		 "%s", fw->fw_version);
1473 
1474 	priv->new_scan_threshold_behaviour =
1475 		!!(ucode_flags & IWL_UCODE_TLV_FLAGS_NEWSCAN);
1476 
1477 	priv->phy_calib_chain_noise_reset_cmd =
1478 		fw->ucode_capa.standard_phy_calibration_size;
1479 	priv->phy_calib_chain_noise_gain_cmd =
1480 		fw->ucode_capa.standard_phy_calibration_size + 1;
1481 
1482 	/* initialize all valid contexts */
1483 	iwl_init_context(priv, ucode_flags);
1484 
1485 	/**************************************************
1486 	 * This is still part of probe() in a sense...
1487 	 *
1488 	 * 7. Setup and register with mac80211 and debugfs
1489 	 **************************************************/
1490 	if (iwlagn_mac_setup_register(priv, &fw->ucode_capa))
1491 		goto out_destroy_workqueue;
1492 
1493 	iwl_dbgfs_register(priv, dbgfs_dir);
1494 
1495 	return op_mode;
1496 
1497 out_destroy_workqueue:
1498 	iwl_tt_exit(priv);
1499 	iwl_cancel_deferred_work(priv);
1500 	destroy_workqueue(priv->workqueue);
1501 	priv->workqueue = NULL;
1502 	iwl_uninit_drv(priv);
1503 out_free_eeprom_blob:
1504 	kfree(priv->eeprom_blob);
1505 out_free_eeprom:
1506 	kfree(priv->nvm_data);
1507 out_free_hw:
1508 	ieee80211_free_hw(priv->hw);
1509 out:
1510 	op_mode = NULL;
1511 	return op_mode;
1512 }
1513 
1514 static void iwl_op_mode_dvm_stop(struct iwl_op_mode *op_mode)
1515 {
1516 	struct iwl_priv *priv = IWL_OP_MODE_GET_DVM(op_mode);
1517 
1518 	IWL_DEBUG_INFO(priv, "*** UNLOAD DRIVER ***\n");
1519 
1520 	iwlagn_mac_unregister(priv);
1521 
1522 	iwl_tt_exit(priv);
1523 
1524 	kfree(priv->eeprom_blob);
1525 	kfree(priv->nvm_data);
1526 
1527 	/*netif_stop_queue(dev); */
1528 	flush_workqueue(priv->workqueue);
1529 
1530 	/* ieee80211_unregister_hw calls iwlagn_mac_stop, which flushes
1531 	 * priv->workqueue... so we can't take down the workqueue
1532 	 * until now... */
1533 	destroy_workqueue(priv->workqueue);
1534 	priv->workqueue = NULL;
1535 
1536 	iwl_uninit_drv(priv);
1537 
1538 	dev_kfree_skb(priv->beacon_skb);
1539 
1540 	iwl_trans_op_mode_leave(priv->trans);
1541 	ieee80211_free_hw(priv->hw);
1542 }
1543 
1544 static const char * const desc_lookup_text[] = {
1545 	"OK",
1546 	"FAIL",
1547 	"BAD_PARAM",
1548 	"BAD_CHECKSUM",
1549 	"NMI_INTERRUPT_WDG",
1550 	"SYSASSERT",
1551 	"FATAL_ERROR",
1552 	"BAD_COMMAND",
1553 	"HW_ERROR_TUNE_LOCK",
1554 	"HW_ERROR_TEMPERATURE",
1555 	"ILLEGAL_CHAN_FREQ",
1556 	"VCC_NOT_STABLE",
1557 	"FH_ERROR",
1558 	"NMI_INTERRUPT_HOST",
1559 	"NMI_INTERRUPT_ACTION_PT",
1560 	"NMI_INTERRUPT_UNKNOWN",
1561 	"UCODE_VERSION_MISMATCH",
1562 	"HW_ERROR_ABS_LOCK",
1563 	"HW_ERROR_CAL_LOCK_FAIL",
1564 	"NMI_INTERRUPT_INST_ACTION_PT",
1565 	"NMI_INTERRUPT_DATA_ACTION_PT",
1566 	"NMI_TRM_HW_ER",
1567 	"NMI_INTERRUPT_TRM",
1568 	"NMI_INTERRUPT_BREAK_POINT",
1569 	"DEBUG_0",
1570 	"DEBUG_1",
1571 	"DEBUG_2",
1572 	"DEBUG_3",
1573 };
1574 
1575 static struct { char *name; u8 num; } advanced_lookup[] = {
1576 	{ "NMI_INTERRUPT_WDG", 0x34 },
1577 	{ "SYSASSERT", 0x35 },
1578 	{ "UCODE_VERSION_MISMATCH", 0x37 },
1579 	{ "BAD_COMMAND", 0x38 },
1580 	{ "NMI_INTERRUPT_DATA_ACTION_PT", 0x3C },
1581 	{ "FATAL_ERROR", 0x3D },
1582 	{ "NMI_TRM_HW_ERR", 0x46 },
1583 	{ "NMI_INTERRUPT_TRM", 0x4C },
1584 	{ "NMI_INTERRUPT_BREAK_POINT", 0x54 },
1585 	{ "NMI_INTERRUPT_WDG_RXF_FULL", 0x5C },
1586 	{ "NMI_INTERRUPT_WDG_NO_RBD_RXF_FULL", 0x64 },
1587 	{ "NMI_INTERRUPT_HOST", 0x66 },
1588 	{ "NMI_INTERRUPT_ACTION_PT", 0x7C },
1589 	{ "NMI_INTERRUPT_UNKNOWN", 0x84 },
1590 	{ "NMI_INTERRUPT_INST_ACTION_PT", 0x86 },
1591 	{ "ADVANCED_SYSASSERT", 0 },
1592 };
1593 
1594 static const char *desc_lookup(u32 num)
1595 {
1596 	int i;
1597 	int max = ARRAY_SIZE(desc_lookup_text);
1598 
1599 	if (num < max)
1600 		return desc_lookup_text[num];
1601 
1602 	max = ARRAY_SIZE(advanced_lookup) - 1;
1603 	for (i = 0; i < max; i++) {
1604 		if (advanced_lookup[i].num == num)
1605 			break;
1606 	}
1607 	return advanced_lookup[i].name;
1608 }
1609 
1610 #define ERROR_START_OFFSET  (1 * sizeof(u32))
1611 #define ERROR_ELEM_SIZE     (7 * sizeof(u32))
1612 
1613 static void iwl_dump_nic_error_log(struct iwl_priv *priv)
1614 {
1615 	struct iwl_trans *trans = priv->trans;
1616 	u32 base;
1617 	struct iwl_error_event_table table;
1618 
1619 	base = priv->device_pointers.error_event_table;
1620 	if (priv->cur_ucode == IWL_UCODE_INIT) {
1621 		if (!base)
1622 			base = priv->fw->init_errlog_ptr;
1623 	} else {
1624 		if (!base)
1625 			base = priv->fw->inst_errlog_ptr;
1626 	}
1627 
1628 	if (!iwlagn_hw_valid_rtc_data_addr(base)) {
1629 		IWL_ERR(priv,
1630 			"Not valid error log pointer 0x%08X for %s uCode\n",
1631 			base,
1632 			(priv->cur_ucode == IWL_UCODE_INIT)
1633 					? "Init" : "RT");
1634 		return;
1635 	}
1636 
1637 	/*TODO: Update dbgfs with ISR error stats obtained below */
1638 	iwl_trans_read_mem_bytes(trans, base, &table, sizeof(table));
1639 
1640 	if (ERROR_START_OFFSET <= table.valid * ERROR_ELEM_SIZE) {
1641 		IWL_ERR(trans, "Start IWL Error Log Dump:\n");
1642 		IWL_ERR(trans, "Status: 0x%08lX, count: %d\n",
1643 			priv->status, table.valid);
1644 	}
1645 
1646 	IWL_ERR(priv, "0x%08X | %-28s\n", table.error_id,
1647 		desc_lookup(table.error_id));
1648 	IWL_ERR(priv, "0x%08X | uPc\n", table.pc);
1649 	IWL_ERR(priv, "0x%08X | branchlink1\n", table.blink1);
1650 	IWL_ERR(priv, "0x%08X | branchlink2\n", table.blink2);
1651 	IWL_ERR(priv, "0x%08X | interruptlink1\n", table.ilink1);
1652 	IWL_ERR(priv, "0x%08X | interruptlink2\n", table.ilink2);
1653 	IWL_ERR(priv, "0x%08X | data1\n", table.data1);
1654 	IWL_ERR(priv, "0x%08X | data2\n", table.data2);
1655 	IWL_ERR(priv, "0x%08X | line\n", table.line);
1656 	IWL_ERR(priv, "0x%08X | beacon time\n", table.bcon_time);
1657 	IWL_ERR(priv, "0x%08X | tsf low\n", table.tsf_low);
1658 	IWL_ERR(priv, "0x%08X | tsf hi\n", table.tsf_hi);
1659 	IWL_ERR(priv, "0x%08X | time gp1\n", table.gp1);
1660 	IWL_ERR(priv, "0x%08X | time gp2\n", table.gp2);
1661 	IWL_ERR(priv, "0x%08X | time gp3\n", table.gp3);
1662 	IWL_ERR(priv, "0x%08X | uCode version\n", table.ucode_ver);
1663 	IWL_ERR(priv, "0x%08X | hw version\n", table.hw_ver);
1664 	IWL_ERR(priv, "0x%08X | board version\n", table.brd_ver);
1665 	IWL_ERR(priv, "0x%08X | hcmd\n", table.hcmd);
1666 	IWL_ERR(priv, "0x%08X | isr0\n", table.isr0);
1667 	IWL_ERR(priv, "0x%08X | isr1\n", table.isr1);
1668 	IWL_ERR(priv, "0x%08X | isr2\n", table.isr2);
1669 	IWL_ERR(priv, "0x%08X | isr3\n", table.isr3);
1670 	IWL_ERR(priv, "0x%08X | isr4\n", table.isr4);
1671 	IWL_ERR(priv, "0x%08X | isr_pref\n", table.isr_pref);
1672 	IWL_ERR(priv, "0x%08X | wait_event\n", table.wait_event);
1673 	IWL_ERR(priv, "0x%08X | l2p_control\n", table.l2p_control);
1674 	IWL_ERR(priv, "0x%08X | l2p_duration\n", table.l2p_duration);
1675 	IWL_ERR(priv, "0x%08X | l2p_mhvalid\n", table.l2p_mhvalid);
1676 	IWL_ERR(priv, "0x%08X | l2p_addr_match\n", table.l2p_addr_match);
1677 	IWL_ERR(priv, "0x%08X | lmpm_pmg_sel\n", table.lmpm_pmg_sel);
1678 	IWL_ERR(priv, "0x%08X | timestamp\n", table.u_timestamp);
1679 	IWL_ERR(priv, "0x%08X | flow_handler\n", table.flow_handler);
1680 }
1681 
1682 #define EVENT_START_OFFSET  (4 * sizeof(u32))
1683 
1684 /*
1685  * iwl_print_event_log - Dump error event log to syslog
1686  */
1687 static int iwl_print_event_log(struct iwl_priv *priv, u32 start_idx,
1688 			       u32 num_events, u32 mode,
1689 			       int pos, char **buf, size_t bufsz)
1690 {
1691 	u32 i;
1692 	u32 base;       /* SRAM byte address of event log header */
1693 	u32 event_size; /* 2 u32s, or 3 u32s if timestamp recorded */
1694 	u32 ptr;        /* SRAM byte address of log data */
1695 	u32 ev, time, data; /* event log data */
1696 
1697 	struct iwl_trans *trans = priv->trans;
1698 
1699 	if (num_events == 0)
1700 		return pos;
1701 
1702 	base = priv->device_pointers.log_event_table;
1703 	if (priv->cur_ucode == IWL_UCODE_INIT) {
1704 		if (!base)
1705 			base = priv->fw->init_evtlog_ptr;
1706 	} else {
1707 		if (!base)
1708 			base = priv->fw->inst_evtlog_ptr;
1709 	}
1710 
1711 	if (mode == 0)
1712 		event_size = 2 * sizeof(u32);
1713 	else
1714 		event_size = 3 * sizeof(u32);
1715 
1716 	ptr = base + EVENT_START_OFFSET + (start_idx * event_size);
1717 
1718 	/* Make sure device is powered up for SRAM reads */
1719 	if (!iwl_trans_grab_nic_access(trans))
1720 		return pos;
1721 
1722 	/* Set starting address; reads will auto-increment */
1723 	iwl_write32(trans, HBUS_TARG_MEM_RADDR, ptr);
1724 
1725 	/* "time" is actually "data" for mode 0 (no timestamp).
1726 	* place event id # at far right for easier visual parsing. */
1727 	for (i = 0; i < num_events; i++) {
1728 		ev = iwl_read32(trans, HBUS_TARG_MEM_RDAT);
1729 		time = iwl_read32(trans, HBUS_TARG_MEM_RDAT);
1730 		if (mode == 0) {
1731 			/* data, ev */
1732 			if (bufsz) {
1733 				pos += scnprintf(*buf + pos, bufsz - pos,
1734 						"EVT_LOG:0x%08x:%04u\n",
1735 						time, ev);
1736 			} else {
1737 				trace_iwlwifi_dev_ucode_event(trans->dev, 0,
1738 					time, ev);
1739 				IWL_ERR(priv, "EVT_LOG:0x%08x:%04u\n",
1740 					time, ev);
1741 			}
1742 		} else {
1743 			data = iwl_read32(trans, HBUS_TARG_MEM_RDAT);
1744 			if (bufsz) {
1745 				pos += scnprintf(*buf + pos, bufsz - pos,
1746 						"EVT_LOGT:%010u:0x%08x:%04u\n",
1747 						 time, data, ev);
1748 			} else {
1749 				IWL_ERR(priv, "EVT_LOGT:%010u:0x%08x:%04u\n",
1750 					time, data, ev);
1751 				trace_iwlwifi_dev_ucode_event(trans->dev, time,
1752 					data, ev);
1753 			}
1754 		}
1755 	}
1756 
1757 	/* Allow device to power down */
1758 	iwl_trans_release_nic_access(trans);
1759 	return pos;
1760 }
1761 
1762 /*
1763  * iwl_print_last_event_logs - Dump the newest # of event log to syslog
1764  */
1765 static int iwl_print_last_event_logs(struct iwl_priv *priv, u32 capacity,
1766 				    u32 num_wraps, u32 next_entry,
1767 				    u32 size, u32 mode,
1768 				    int pos, char **buf, size_t bufsz)
1769 {
1770 	/*
1771 	 * display the newest DEFAULT_LOG_ENTRIES entries
1772 	 * i.e the entries just before the next ont that uCode would fill.
1773 	 */
1774 	if (num_wraps) {
1775 		if (next_entry < size) {
1776 			pos = iwl_print_event_log(priv,
1777 						capacity - (size - next_entry),
1778 						size - next_entry, mode,
1779 						pos, buf, bufsz);
1780 			pos = iwl_print_event_log(priv, 0,
1781 						  next_entry, mode,
1782 						  pos, buf, bufsz);
1783 		} else
1784 			pos = iwl_print_event_log(priv, next_entry - size,
1785 						  size, mode, pos, buf, bufsz);
1786 	} else {
1787 		if (next_entry < size) {
1788 			pos = iwl_print_event_log(priv, 0, next_entry,
1789 						  mode, pos, buf, bufsz);
1790 		} else {
1791 			pos = iwl_print_event_log(priv, next_entry - size,
1792 						  size, mode, pos, buf, bufsz);
1793 		}
1794 	}
1795 	return pos;
1796 }
1797 
1798 #define DEFAULT_DUMP_EVENT_LOG_ENTRIES (20)
1799 
1800 int iwl_dump_nic_event_log(struct iwl_priv *priv, bool full_log,
1801 			    char **buf)
1802 {
1803 	u32 base;       /* SRAM byte address of event log header */
1804 	u32 capacity;   /* event log capacity in # entries */
1805 	u32 mode;       /* 0 - no timestamp, 1 - timestamp recorded */
1806 	u32 num_wraps;  /* # times uCode wrapped to top of log */
1807 	u32 next_entry; /* index of next entry to be written by uCode */
1808 	u32 size;       /* # entries that we'll print */
1809 	u32 logsize;
1810 	int pos = 0;
1811 	size_t bufsz = 0;
1812 	struct iwl_trans *trans = priv->trans;
1813 
1814 	base = priv->device_pointers.log_event_table;
1815 	if (priv->cur_ucode == IWL_UCODE_INIT) {
1816 		logsize = priv->fw->init_evtlog_size;
1817 		if (!base)
1818 			base = priv->fw->init_evtlog_ptr;
1819 	} else {
1820 		logsize = priv->fw->inst_evtlog_size;
1821 		if (!base)
1822 			base = priv->fw->inst_evtlog_ptr;
1823 	}
1824 
1825 	if (!iwlagn_hw_valid_rtc_data_addr(base)) {
1826 		IWL_ERR(priv,
1827 			"Invalid event log pointer 0x%08X for %s uCode\n",
1828 			base,
1829 			(priv->cur_ucode == IWL_UCODE_INIT)
1830 					? "Init" : "RT");
1831 		return -EINVAL;
1832 	}
1833 
1834 	/* event log header */
1835 	capacity = iwl_trans_read_mem32(trans, base);
1836 	mode = iwl_trans_read_mem32(trans, base + (1 * sizeof(u32)));
1837 	num_wraps = iwl_trans_read_mem32(trans, base + (2 * sizeof(u32)));
1838 	next_entry = iwl_trans_read_mem32(trans, base + (3 * sizeof(u32)));
1839 
1840 	if (capacity > logsize) {
1841 		IWL_ERR(priv, "Log capacity %d is bogus, limit to %d "
1842 			"entries\n", capacity, logsize);
1843 		capacity = logsize;
1844 	}
1845 
1846 	if (next_entry > logsize) {
1847 		IWL_ERR(priv, "Log write index %d is bogus, limit to %d\n",
1848 			next_entry, logsize);
1849 		next_entry = logsize;
1850 	}
1851 
1852 	size = num_wraps ? capacity : next_entry;
1853 
1854 	/* bail out if nothing in log */
1855 	if (size == 0) {
1856 		IWL_ERR(trans, "Start IWL Event Log Dump: nothing in log\n");
1857 		return pos;
1858 	}
1859 
1860 	if (!(iwl_have_debug_level(IWL_DL_FW)) && !full_log)
1861 		size = (size > DEFAULT_DUMP_EVENT_LOG_ENTRIES)
1862 			? DEFAULT_DUMP_EVENT_LOG_ENTRIES : size;
1863 	IWL_ERR(priv, "Start IWL Event Log Dump: display last %u entries\n",
1864 		size);
1865 
1866 #ifdef CONFIG_IWLWIFI_DEBUG
1867 	if (buf) {
1868 		if (full_log)
1869 			bufsz = capacity * 48;
1870 		else
1871 			bufsz = size * 48;
1872 		*buf = kmalloc(bufsz, GFP_KERNEL);
1873 		if (!*buf)
1874 			return -ENOMEM;
1875 	}
1876 	if (iwl_have_debug_level(IWL_DL_FW) || full_log) {
1877 		/*
1878 		 * if uCode has wrapped back to top of log,
1879 		 * start at the oldest entry,
1880 		 * i.e the next one that uCode would fill.
1881 		 */
1882 		if (num_wraps)
1883 			pos = iwl_print_event_log(priv, next_entry,
1884 						capacity - next_entry, mode,
1885 						pos, buf, bufsz);
1886 		/* (then/else) start at top of log */
1887 		pos = iwl_print_event_log(priv, 0,
1888 					  next_entry, mode, pos, buf, bufsz);
1889 	} else
1890 		pos = iwl_print_last_event_logs(priv, capacity, num_wraps,
1891 						next_entry, size, mode,
1892 						pos, buf, bufsz);
1893 #else
1894 	pos = iwl_print_last_event_logs(priv, capacity, num_wraps,
1895 					next_entry, size, mode,
1896 					pos, buf, bufsz);
1897 #endif
1898 	return pos;
1899 }
1900 
1901 static void iwlagn_fw_error(struct iwl_priv *priv, bool ondemand)
1902 {
1903 	unsigned int reload_msec;
1904 	unsigned long reload_jiffies;
1905 
1906 	if (iwl_have_debug_level(IWL_DL_FW))
1907 		iwl_print_rx_config_cmd(priv, IWL_RXON_CTX_BSS);
1908 
1909 	/* uCode is no longer loaded. */
1910 	priv->ucode_loaded = false;
1911 
1912 	/* Set the FW error flag -- cleared on iwl_down */
1913 	set_bit(STATUS_FW_ERROR, &priv->status);
1914 
1915 	iwl_abort_notification_waits(&priv->notif_wait);
1916 
1917 	/* Keep the restart process from trying to send host
1918 	 * commands by clearing the ready bit */
1919 	clear_bit(STATUS_READY, &priv->status);
1920 
1921 	if (!ondemand) {
1922 		/*
1923 		 * If firmware keep reloading, then it indicate something
1924 		 * serious wrong and firmware having problem to recover
1925 		 * from it. Instead of keep trying which will fill the syslog
1926 		 * and hang the system, let's just stop it
1927 		 */
1928 		reload_jiffies = jiffies;
1929 		reload_msec = jiffies_to_msecs((long) reload_jiffies -
1930 					(long) priv->reload_jiffies);
1931 		priv->reload_jiffies = reload_jiffies;
1932 		if (reload_msec <= IWL_MIN_RELOAD_DURATION) {
1933 			priv->reload_count++;
1934 			if (priv->reload_count >= IWL_MAX_CONTINUE_RELOAD_CNT) {
1935 				IWL_ERR(priv, "BUG_ON, Stop restarting\n");
1936 				return;
1937 			}
1938 		} else
1939 			priv->reload_count = 0;
1940 	}
1941 
1942 	if (!test_bit(STATUS_EXIT_PENDING, &priv->status)) {
1943 		if (iwlwifi_mod_params.fw_restart) {
1944 			IWL_DEBUG_FW(priv,
1945 				     "Restarting adapter due to uCode error.\n");
1946 			queue_work(priv->workqueue, &priv->restart);
1947 		} else
1948 			IWL_DEBUG_FW(priv,
1949 				     "Detected FW error, but not restarting\n");
1950 	}
1951 }
1952 
1953 static void iwl_nic_error(struct iwl_op_mode *op_mode)
1954 {
1955 	struct iwl_priv *priv = IWL_OP_MODE_GET_DVM(op_mode);
1956 
1957 	IWL_ERR(priv, "Loaded firmware version: %s\n",
1958 		priv->fw->fw_version);
1959 
1960 	iwl_dump_nic_error_log(priv);
1961 	iwl_dump_nic_event_log(priv, false, NULL);
1962 
1963 	iwlagn_fw_error(priv, false);
1964 }
1965 
1966 static void iwl_cmd_queue_full(struct iwl_op_mode *op_mode)
1967 {
1968 	struct iwl_priv *priv = IWL_OP_MODE_GET_DVM(op_mode);
1969 
1970 	if (!iwl_check_for_ct_kill(priv)) {
1971 		IWL_ERR(priv, "Restarting adapter queue is full\n");
1972 		iwlagn_fw_error(priv, false);
1973 	}
1974 }
1975 
1976 #define EEPROM_RF_CONFIG_TYPE_MAX      0x3
1977 
1978 static void iwl_nic_config(struct iwl_op_mode *op_mode)
1979 {
1980 	struct iwl_priv *priv = IWL_OP_MODE_GET_DVM(op_mode);
1981 
1982 	/* SKU Control */
1983 	iwl_trans_set_bits_mask(priv->trans, CSR_HW_IF_CONFIG_REG,
1984 				CSR_HW_IF_CONFIG_REG_MSK_MAC_DASH |
1985 				CSR_HW_IF_CONFIG_REG_MSK_MAC_STEP,
1986 				(CSR_HW_REV_STEP(priv->trans->hw_rev) <<
1987 					CSR_HW_IF_CONFIG_REG_POS_MAC_STEP) |
1988 				(CSR_HW_REV_DASH(priv->trans->hw_rev) <<
1989 					CSR_HW_IF_CONFIG_REG_POS_MAC_DASH));
1990 
1991 	/* write radio config values to register */
1992 	if (priv->nvm_data->radio_cfg_type <= EEPROM_RF_CONFIG_TYPE_MAX) {
1993 		u32 reg_val =
1994 			priv->nvm_data->radio_cfg_type <<
1995 				CSR_HW_IF_CONFIG_REG_POS_PHY_TYPE |
1996 			priv->nvm_data->radio_cfg_step <<
1997 				CSR_HW_IF_CONFIG_REG_POS_PHY_STEP |
1998 			priv->nvm_data->radio_cfg_dash <<
1999 				CSR_HW_IF_CONFIG_REG_POS_PHY_DASH;
2000 
2001 		iwl_trans_set_bits_mask(priv->trans, CSR_HW_IF_CONFIG_REG,
2002 					CSR_HW_IF_CONFIG_REG_MSK_PHY_TYPE |
2003 					CSR_HW_IF_CONFIG_REG_MSK_PHY_STEP |
2004 					CSR_HW_IF_CONFIG_REG_MSK_PHY_DASH,
2005 					reg_val);
2006 
2007 		IWL_INFO(priv, "Radio type=0x%x-0x%x-0x%x\n",
2008 			 priv->nvm_data->radio_cfg_type,
2009 			 priv->nvm_data->radio_cfg_step,
2010 			 priv->nvm_data->radio_cfg_dash);
2011 	} else {
2012 		WARN_ON(1);
2013 	}
2014 
2015 	/* set CSR_HW_CONFIG_REG for uCode use */
2016 	iwl_set_bit(priv->trans, CSR_HW_IF_CONFIG_REG,
2017 		    CSR_HW_IF_CONFIG_REG_BIT_RADIO_SI |
2018 		    CSR_HW_IF_CONFIG_REG_BIT_MAC_SI);
2019 
2020 	/* W/A : NIC is stuck in a reset state after Early PCIe power off
2021 	 * (PCIe power is lost before PERST# is asserted),
2022 	 * causing ME FW to lose ownership and not being able to obtain it back.
2023 	 */
2024 	iwl_set_bits_mask_prph(priv->trans, APMG_PS_CTRL_REG,
2025 			       APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS,
2026 			       ~APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS);
2027 
2028 	if (priv->lib->nic_config)
2029 		priv->lib->nic_config(priv);
2030 }
2031 
2032 static void iwl_wimax_active(struct iwl_op_mode *op_mode)
2033 {
2034 	struct iwl_priv *priv = IWL_OP_MODE_GET_DVM(op_mode);
2035 
2036 	clear_bit(STATUS_READY, &priv->status);
2037 	IWL_ERR(priv, "RF is used by WiMAX\n");
2038 }
2039 
2040 static void iwl_stop_sw_queue(struct iwl_op_mode *op_mode, int queue)
2041 {
2042 	struct iwl_priv *priv = IWL_OP_MODE_GET_DVM(op_mode);
2043 	int mq = priv->queue_to_mac80211[queue];
2044 
2045 	if (WARN_ON_ONCE(mq == IWL_INVALID_MAC80211_QUEUE))
2046 		return;
2047 
2048 	if (atomic_inc_return(&priv->queue_stop_count[mq]) > 1) {
2049 		IWL_DEBUG_TX_QUEUES(priv,
2050 			"queue %d (mac80211 %d) already stopped\n",
2051 			queue, mq);
2052 		return;
2053 	}
2054 
2055 	set_bit(mq, &priv->transport_queue_stop);
2056 	ieee80211_stop_queue(priv->hw, mq);
2057 }
2058 
2059 static void iwl_wake_sw_queue(struct iwl_op_mode *op_mode, int queue)
2060 {
2061 	struct iwl_priv *priv = IWL_OP_MODE_GET_DVM(op_mode);
2062 	int mq = priv->queue_to_mac80211[queue];
2063 
2064 	if (WARN_ON_ONCE(mq == IWL_INVALID_MAC80211_QUEUE))
2065 		return;
2066 
2067 	if (atomic_dec_return(&priv->queue_stop_count[mq]) > 0) {
2068 		IWL_DEBUG_TX_QUEUES(priv,
2069 			"queue %d (mac80211 %d) already awake\n",
2070 			queue, mq);
2071 		return;
2072 	}
2073 
2074 	clear_bit(mq, &priv->transport_queue_stop);
2075 
2076 	if (!priv->passive_no_rx)
2077 		ieee80211_wake_queue(priv->hw, mq);
2078 }
2079 
2080 void iwlagn_lift_passive_no_rx(struct iwl_priv *priv)
2081 {
2082 	int mq;
2083 
2084 	if (!priv->passive_no_rx)
2085 		return;
2086 
2087 	for (mq = 0; mq < IWLAGN_FIRST_AMPDU_QUEUE; mq++) {
2088 		if (!test_bit(mq, &priv->transport_queue_stop)) {
2089 			IWL_DEBUG_TX_QUEUES(priv, "Wake queue %d\n", mq);
2090 			ieee80211_wake_queue(priv->hw, mq);
2091 		} else {
2092 			IWL_DEBUG_TX_QUEUES(priv, "Don't wake queue %d\n", mq);
2093 		}
2094 	}
2095 
2096 	priv->passive_no_rx = false;
2097 }
2098 
2099 static void iwl_free_skb(struct iwl_op_mode *op_mode, struct sk_buff *skb)
2100 {
2101 	struct iwl_priv *priv = IWL_OP_MODE_GET_DVM(op_mode);
2102 	struct ieee80211_tx_info *info;
2103 
2104 	info = IEEE80211_SKB_CB(skb);
2105 	iwl_trans_free_tx_cmd(priv->trans, info->driver_data[1]);
2106 	ieee80211_free_txskb(priv->hw, skb);
2107 }
2108 
2109 static bool iwl_set_hw_rfkill_state(struct iwl_op_mode *op_mode, bool state)
2110 {
2111 	struct iwl_priv *priv = IWL_OP_MODE_GET_DVM(op_mode);
2112 
2113 	if (state)
2114 		set_bit(STATUS_RF_KILL_HW, &priv->status);
2115 	else
2116 		clear_bit(STATUS_RF_KILL_HW, &priv->status);
2117 
2118 	wiphy_rfkill_set_hw_state(priv->hw->wiphy, state);
2119 
2120 	return false;
2121 }
2122 
2123 static const struct iwl_op_mode_ops iwl_dvm_ops = {
2124 	.start = iwl_op_mode_dvm_start,
2125 	.stop = iwl_op_mode_dvm_stop,
2126 	.rx = iwl_rx_dispatch,
2127 	.queue_full = iwl_stop_sw_queue,
2128 	.queue_not_full = iwl_wake_sw_queue,
2129 	.hw_rf_kill = iwl_set_hw_rfkill_state,
2130 	.free_skb = iwl_free_skb,
2131 	.nic_error = iwl_nic_error,
2132 	.cmd_queue_full = iwl_cmd_queue_full,
2133 	.nic_config = iwl_nic_config,
2134 	.wimax_active = iwl_wimax_active,
2135 };
2136 
2137 /*****************************************************************************
2138  *
2139  * driver and module entry point
2140  *
2141  *****************************************************************************/
2142 static int __init iwl_init(void)
2143 {
2144 
2145 	int ret;
2146 
2147 	ret = iwlagn_rate_control_register();
2148 	if (ret) {
2149 		pr_err("Unable to register rate control algorithm: %d\n", ret);
2150 		return ret;
2151 	}
2152 
2153 	ret = iwl_opmode_register("iwldvm", &iwl_dvm_ops);
2154 	if (ret) {
2155 		pr_err("Unable to register op_mode: %d\n", ret);
2156 		iwlagn_rate_control_unregister();
2157 	}
2158 
2159 	return ret;
2160 }
2161 module_init(iwl_init);
2162 
2163 static void __exit iwl_exit(void)
2164 {
2165 	iwl_opmode_deregister("iwldvm");
2166 	iwlagn_rate_control_unregister();
2167 }
2168 module_exit(iwl_exit);
2169