1 // SPDX-License-Identifier: GPL-2.0-only
2 /******************************************************************************
3  *
4  * Copyright(c) 2003 - 2014, 2018 - 2020  Intel Corporation. All rights reserved.
5  * Copyright(c) 2015 Intel Deutschland GmbH
6  *
7  * Portions of this file are derived from the ipw3945 project, as well
8  * as portions of the ieee80211 subsystem header files.
9  *
10  * Contact Information:
11  *  Intel Linux Wireless <linuxwifi@intel.com>
12  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
13  *
14  *****************************************************************************/
15 
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/init.h>
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/sched.h>
24 #include <linux/skbuff.h>
25 #include <linux/netdevice.h>
26 #include <linux/etherdevice.h>
27 #include <linux/if_arp.h>
28 
29 #include <net/mac80211.h>
30 
31 #include <asm/div64.h>
32 
33 #include "iwl-eeprom-read.h"
34 #include "iwl-eeprom-parse.h"
35 #include "iwl-io.h"
36 #include "iwl-trans.h"
37 #include "iwl-op-mode.h"
38 #include "iwl-drv.h"
39 #include "iwl-modparams.h"
40 #include "iwl-prph.h"
41 
42 #include "dev.h"
43 #include "calib.h"
44 #include "agn.h"
45 
46 
47 /******************************************************************************
48  *
49  * module boiler plate
50  *
51  ******************************************************************************/
52 
53 #define DRV_DESCRIPTION	"Intel(R) Wireless WiFi Link AGN driver for Linux"
54 MODULE_DESCRIPTION(DRV_DESCRIPTION);
55 MODULE_AUTHOR(DRV_AUTHOR);
56 MODULE_LICENSE("GPL");
57 
58 /* Please keep this array *SORTED* by hex value.
59  * Access is done through binary search.
60  * A warning will be triggered on violation.
61  */
62 static const struct iwl_hcmd_names iwl_dvm_cmd_names[] = {
63 	HCMD_NAME(REPLY_ALIVE),
64 	HCMD_NAME(REPLY_ERROR),
65 	HCMD_NAME(REPLY_ECHO),
66 	HCMD_NAME(REPLY_RXON),
67 	HCMD_NAME(REPLY_RXON_ASSOC),
68 	HCMD_NAME(REPLY_QOS_PARAM),
69 	HCMD_NAME(REPLY_RXON_TIMING),
70 	HCMD_NAME(REPLY_ADD_STA),
71 	HCMD_NAME(REPLY_REMOVE_STA),
72 	HCMD_NAME(REPLY_REMOVE_ALL_STA),
73 	HCMD_NAME(REPLY_TX),
74 	HCMD_NAME(REPLY_TXFIFO_FLUSH),
75 	HCMD_NAME(REPLY_WEPKEY),
76 	HCMD_NAME(REPLY_LEDS_CMD),
77 	HCMD_NAME(REPLY_TX_LINK_QUALITY_CMD),
78 	HCMD_NAME(COEX_PRIORITY_TABLE_CMD),
79 	HCMD_NAME(COEX_MEDIUM_NOTIFICATION),
80 	HCMD_NAME(COEX_EVENT_CMD),
81 	HCMD_NAME(TEMPERATURE_NOTIFICATION),
82 	HCMD_NAME(CALIBRATION_CFG_CMD),
83 	HCMD_NAME(CALIBRATION_RES_NOTIFICATION),
84 	HCMD_NAME(CALIBRATION_COMPLETE_NOTIFICATION),
85 	HCMD_NAME(REPLY_QUIET_CMD),
86 	HCMD_NAME(REPLY_CHANNEL_SWITCH),
87 	HCMD_NAME(CHANNEL_SWITCH_NOTIFICATION),
88 	HCMD_NAME(REPLY_SPECTRUM_MEASUREMENT_CMD),
89 	HCMD_NAME(SPECTRUM_MEASURE_NOTIFICATION),
90 	HCMD_NAME(POWER_TABLE_CMD),
91 	HCMD_NAME(PM_SLEEP_NOTIFICATION),
92 	HCMD_NAME(PM_DEBUG_STATISTIC_NOTIFIC),
93 	HCMD_NAME(REPLY_SCAN_CMD),
94 	HCMD_NAME(REPLY_SCAN_ABORT_CMD),
95 	HCMD_NAME(SCAN_START_NOTIFICATION),
96 	HCMD_NAME(SCAN_RESULTS_NOTIFICATION),
97 	HCMD_NAME(SCAN_COMPLETE_NOTIFICATION),
98 	HCMD_NAME(BEACON_NOTIFICATION),
99 	HCMD_NAME(REPLY_TX_BEACON),
100 	HCMD_NAME(WHO_IS_AWAKE_NOTIFICATION),
101 	HCMD_NAME(REPLY_TX_POWER_DBM_CMD),
102 	HCMD_NAME(QUIET_NOTIFICATION),
103 	HCMD_NAME(REPLY_TX_PWR_TABLE_CMD),
104 	HCMD_NAME(REPLY_TX_POWER_DBM_CMD_V1),
105 	HCMD_NAME(TX_ANT_CONFIGURATION_CMD),
106 	HCMD_NAME(MEASURE_ABORT_NOTIFICATION),
107 	HCMD_NAME(REPLY_BT_CONFIG),
108 	HCMD_NAME(REPLY_STATISTICS_CMD),
109 	HCMD_NAME(STATISTICS_NOTIFICATION),
110 	HCMD_NAME(REPLY_CARD_STATE_CMD),
111 	HCMD_NAME(CARD_STATE_NOTIFICATION),
112 	HCMD_NAME(MISSED_BEACONS_NOTIFICATION),
113 	HCMD_NAME(REPLY_CT_KILL_CONFIG_CMD),
114 	HCMD_NAME(SENSITIVITY_CMD),
115 	HCMD_NAME(REPLY_PHY_CALIBRATION_CMD),
116 	HCMD_NAME(REPLY_WIPAN_PARAMS),
117 	HCMD_NAME(REPLY_WIPAN_RXON),
118 	HCMD_NAME(REPLY_WIPAN_RXON_TIMING),
119 	HCMD_NAME(REPLY_WIPAN_RXON_ASSOC),
120 	HCMD_NAME(REPLY_WIPAN_QOS_PARAM),
121 	HCMD_NAME(REPLY_WIPAN_WEPKEY),
122 	HCMD_NAME(REPLY_WIPAN_P2P_CHANNEL_SWITCH),
123 	HCMD_NAME(REPLY_WIPAN_NOA_NOTIFICATION),
124 	HCMD_NAME(REPLY_WIPAN_DEACTIVATION_COMPLETE),
125 	HCMD_NAME(REPLY_RX_PHY_CMD),
126 	HCMD_NAME(REPLY_RX_MPDU_CMD),
127 	HCMD_NAME(REPLY_RX),
128 	HCMD_NAME(REPLY_COMPRESSED_BA),
129 	HCMD_NAME(REPLY_BT_COEX_PRIO_TABLE),
130 	HCMD_NAME(REPLY_BT_COEX_PROT_ENV),
131 	HCMD_NAME(REPLY_BT_COEX_PROFILE_NOTIF),
132 	HCMD_NAME(REPLY_D3_CONFIG),
133 	HCMD_NAME(REPLY_WOWLAN_PATTERNS),
134 	HCMD_NAME(REPLY_WOWLAN_WAKEUP_FILTER),
135 	HCMD_NAME(REPLY_WOWLAN_TSC_RSC_PARAMS),
136 	HCMD_NAME(REPLY_WOWLAN_TKIP_PARAMS),
137 	HCMD_NAME(REPLY_WOWLAN_KEK_KCK_MATERIAL),
138 	HCMD_NAME(REPLY_WOWLAN_GET_STATUS),
139 };
140 
141 static const struct iwl_hcmd_arr iwl_dvm_groups[] = {
142 	[0x0] = HCMD_ARR(iwl_dvm_cmd_names),
143 };
144 
145 static const struct iwl_op_mode_ops iwl_dvm_ops;
146 
147 void iwl_update_chain_flags(struct iwl_priv *priv)
148 {
149 	struct iwl_rxon_context *ctx;
150 
151 	for_each_context(priv, ctx) {
152 		iwlagn_set_rxon_chain(priv, ctx);
153 		if (ctx->active.rx_chain != ctx->staging.rx_chain)
154 			iwlagn_commit_rxon(priv, ctx);
155 	}
156 }
157 
158 /* Parse the beacon frame to find the TIM element and set tim_idx & tim_size */
159 static void iwl_set_beacon_tim(struct iwl_priv *priv,
160 			       struct iwl_tx_beacon_cmd *tx_beacon_cmd,
161 			       u8 *beacon, u32 frame_size)
162 {
163 	u16 tim_idx;
164 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)beacon;
165 
166 	/*
167 	 * The index is relative to frame start but we start looking at the
168 	 * variable-length part of the beacon.
169 	 */
170 	tim_idx = mgmt->u.beacon.variable - beacon;
171 
172 	/* Parse variable-length elements of beacon to find WLAN_EID_TIM */
173 	while ((tim_idx < (frame_size - 2)) &&
174 			(beacon[tim_idx] != WLAN_EID_TIM))
175 		tim_idx += beacon[tim_idx+1] + 2;
176 
177 	/* If TIM field was found, set variables */
178 	if ((tim_idx < (frame_size - 1)) && (beacon[tim_idx] == WLAN_EID_TIM)) {
179 		tx_beacon_cmd->tim_idx = cpu_to_le16(tim_idx);
180 		tx_beacon_cmd->tim_size = beacon[tim_idx+1];
181 	} else
182 		IWL_WARN(priv, "Unable to find TIM Element in beacon\n");
183 }
184 
185 int iwlagn_send_beacon_cmd(struct iwl_priv *priv)
186 {
187 	struct iwl_tx_beacon_cmd *tx_beacon_cmd;
188 	struct iwl_host_cmd cmd = {
189 		.id = REPLY_TX_BEACON,
190 	};
191 	struct ieee80211_tx_info *info;
192 	u32 frame_size;
193 	u32 rate_flags;
194 	u32 rate;
195 
196 	/*
197 	 * We have to set up the TX command, the TX Beacon command, and the
198 	 * beacon contents.
199 	 */
200 
201 	lockdep_assert_held(&priv->mutex);
202 
203 	if (!priv->beacon_ctx) {
204 		IWL_ERR(priv, "trying to build beacon w/o beacon context!\n");
205 		return 0;
206 	}
207 
208 	if (WARN_ON(!priv->beacon_skb))
209 		return -EINVAL;
210 
211 	/* Allocate beacon command */
212 	if (!priv->beacon_cmd)
213 		priv->beacon_cmd = kzalloc(sizeof(*tx_beacon_cmd), GFP_KERNEL);
214 	tx_beacon_cmd = priv->beacon_cmd;
215 	if (!tx_beacon_cmd)
216 		return -ENOMEM;
217 
218 	frame_size = priv->beacon_skb->len;
219 
220 	/* Set up TX command fields */
221 	tx_beacon_cmd->tx.len = cpu_to_le16((u16)frame_size);
222 	tx_beacon_cmd->tx.sta_id = priv->beacon_ctx->bcast_sta_id;
223 	tx_beacon_cmd->tx.stop_time.life_time = TX_CMD_LIFE_TIME_INFINITE;
224 	tx_beacon_cmd->tx.tx_flags = TX_CMD_FLG_SEQ_CTL_MSK |
225 		TX_CMD_FLG_TSF_MSK | TX_CMD_FLG_STA_RATE_MSK;
226 
227 	/* Set up TX beacon command fields */
228 	iwl_set_beacon_tim(priv, tx_beacon_cmd, priv->beacon_skb->data,
229 			   frame_size);
230 
231 	/* Set up packet rate and flags */
232 	info = IEEE80211_SKB_CB(priv->beacon_skb);
233 
234 	/*
235 	 * Let's set up the rate at least somewhat correctly;
236 	 * it will currently not actually be used by the uCode,
237 	 * it uses the broadcast station's rate instead.
238 	 */
239 	if (info->control.rates[0].idx < 0 ||
240 	    info->control.rates[0].flags & IEEE80211_TX_RC_MCS)
241 		rate = 0;
242 	else
243 		rate = info->control.rates[0].idx;
244 
245 	priv->mgmt_tx_ant = iwl_toggle_tx_ant(priv, priv->mgmt_tx_ant,
246 					      priv->nvm_data->valid_tx_ant);
247 	rate_flags = iwl_ant_idx_to_flags(priv->mgmt_tx_ant);
248 
249 	/* In mac80211, rates for 5 GHz start at 0 */
250 	if (info->band == NL80211_BAND_5GHZ)
251 		rate += IWL_FIRST_OFDM_RATE;
252 	else if (rate >= IWL_FIRST_CCK_RATE && rate <= IWL_LAST_CCK_RATE)
253 		rate_flags |= RATE_MCS_CCK_MSK;
254 
255 	tx_beacon_cmd->tx.rate_n_flags =
256 			iwl_hw_set_rate_n_flags(rate, rate_flags);
257 
258 	/* Submit command */
259 	cmd.len[0] = sizeof(*tx_beacon_cmd);
260 	cmd.data[0] = tx_beacon_cmd;
261 	cmd.dataflags[0] = IWL_HCMD_DFL_NOCOPY;
262 	cmd.len[1] = frame_size;
263 	cmd.data[1] = priv->beacon_skb->data;
264 	cmd.dataflags[1] = IWL_HCMD_DFL_NOCOPY;
265 
266 	return iwl_dvm_send_cmd(priv, &cmd);
267 }
268 
269 static void iwl_bg_beacon_update(struct work_struct *work)
270 {
271 	struct iwl_priv *priv =
272 		container_of(work, struct iwl_priv, beacon_update);
273 	struct sk_buff *beacon;
274 
275 	mutex_lock(&priv->mutex);
276 	if (!priv->beacon_ctx) {
277 		IWL_ERR(priv, "updating beacon w/o beacon context!\n");
278 		goto out;
279 	}
280 
281 	if (priv->beacon_ctx->vif->type != NL80211_IFTYPE_AP) {
282 		/*
283 		 * The ucode will send beacon notifications even in
284 		 * IBSS mode, but we don't want to process them. But
285 		 * we need to defer the type check to here due to
286 		 * requiring locking around the beacon_ctx access.
287 		 */
288 		goto out;
289 	}
290 
291 	/* Pull updated AP beacon from mac80211. will fail if not in AP mode */
292 	beacon = ieee80211_beacon_get(priv->hw, priv->beacon_ctx->vif);
293 	if (!beacon) {
294 		IWL_ERR(priv, "update beacon failed -- keeping old\n");
295 		goto out;
296 	}
297 
298 	/* new beacon skb is allocated every time; dispose previous.*/
299 	dev_kfree_skb(priv->beacon_skb);
300 
301 	priv->beacon_skb = beacon;
302 
303 	iwlagn_send_beacon_cmd(priv);
304  out:
305 	mutex_unlock(&priv->mutex);
306 }
307 
308 static void iwl_bg_bt_runtime_config(struct work_struct *work)
309 {
310 	struct iwl_priv *priv =
311 		container_of(work, struct iwl_priv, bt_runtime_config);
312 
313 	mutex_lock(&priv->mutex);
314 	if (test_bit(STATUS_EXIT_PENDING, &priv->status))
315 		goto out;
316 
317 	/* dont send host command if rf-kill is on */
318 	if (!iwl_is_ready_rf(priv))
319 		goto out;
320 
321 	iwlagn_send_advance_bt_config(priv);
322 out:
323 	mutex_unlock(&priv->mutex);
324 }
325 
326 static void iwl_bg_bt_full_concurrency(struct work_struct *work)
327 {
328 	struct iwl_priv *priv =
329 		container_of(work, struct iwl_priv, bt_full_concurrency);
330 	struct iwl_rxon_context *ctx;
331 
332 	mutex_lock(&priv->mutex);
333 
334 	if (test_bit(STATUS_EXIT_PENDING, &priv->status))
335 		goto out;
336 
337 	/* dont send host command if rf-kill is on */
338 	if (!iwl_is_ready_rf(priv))
339 		goto out;
340 
341 	IWL_DEBUG_INFO(priv, "BT coex in %s mode\n",
342 		       priv->bt_full_concurrent ?
343 		       "full concurrency" : "3-wire");
344 
345 	/*
346 	 * LQ & RXON updated cmds must be sent before BT Config cmd
347 	 * to avoid 3-wire collisions
348 	 */
349 	for_each_context(priv, ctx) {
350 		iwlagn_set_rxon_chain(priv, ctx);
351 		iwlagn_commit_rxon(priv, ctx);
352 	}
353 
354 	iwlagn_send_advance_bt_config(priv);
355 out:
356 	mutex_unlock(&priv->mutex);
357 }
358 
359 int iwl_send_statistics_request(struct iwl_priv *priv, u8 flags, bool clear)
360 {
361 	struct iwl_statistics_cmd statistics_cmd = {
362 		.configuration_flags =
363 			clear ? IWL_STATS_CONF_CLEAR_STATS : 0,
364 	};
365 
366 	if (flags & CMD_ASYNC)
367 		return iwl_dvm_send_cmd_pdu(priv, REPLY_STATISTICS_CMD,
368 					CMD_ASYNC,
369 					sizeof(struct iwl_statistics_cmd),
370 					&statistics_cmd);
371 	else
372 		return iwl_dvm_send_cmd_pdu(priv, REPLY_STATISTICS_CMD, 0,
373 					sizeof(struct iwl_statistics_cmd),
374 					&statistics_cmd);
375 }
376 
377 /*
378  * iwl_bg_statistics_periodic - Timer callback to queue statistics
379  *
380  * This callback is provided in order to send a statistics request.
381  *
382  * This timer function is continually reset to execute within
383  * REG_RECALIB_PERIOD seconds since the last STATISTICS_NOTIFICATION
384  * was received.  We need to ensure we receive the statistics in order
385  * to update the temperature used for calibrating the TXPOWER.
386  */
387 static void iwl_bg_statistics_periodic(struct timer_list *t)
388 {
389 	struct iwl_priv *priv = from_timer(priv, t, statistics_periodic);
390 
391 	if (test_bit(STATUS_EXIT_PENDING, &priv->status))
392 		return;
393 
394 	/* dont send host command if rf-kill is on */
395 	if (!iwl_is_ready_rf(priv))
396 		return;
397 
398 	iwl_send_statistics_request(priv, CMD_ASYNC, false);
399 }
400 
401 
402 static void iwl_print_cont_event_trace(struct iwl_priv *priv, u32 base,
403 					u32 start_idx, u32 num_events,
404 					u32 capacity, u32 mode)
405 {
406 	u32 i;
407 	u32 ptr;        /* SRAM byte address of log data */
408 	u32 ev, time, data; /* event log data */
409 	unsigned long reg_flags;
410 
411 	if (mode == 0)
412 		ptr = base + (4 * sizeof(u32)) + (start_idx * 2 * sizeof(u32));
413 	else
414 		ptr = base + (4 * sizeof(u32)) + (start_idx * 3 * sizeof(u32));
415 
416 	/* Make sure device is powered up for SRAM reads */
417 	if (!iwl_trans_grab_nic_access(priv->trans, &reg_flags))
418 		return;
419 
420 	/* Set starting address; reads will auto-increment */
421 	iwl_write32(priv->trans, HBUS_TARG_MEM_RADDR, ptr);
422 
423 	/*
424 	 * Refuse to read more than would have fit into the log from
425 	 * the current start_idx. This used to happen due to the race
426 	 * described below, but now WARN because the code below should
427 	 * prevent it from happening here.
428 	 */
429 	if (WARN_ON(num_events > capacity - start_idx))
430 		num_events = capacity - start_idx;
431 
432 	/*
433 	 * "time" is actually "data" for mode 0 (no timestamp).
434 	 * place event id # at far right for easier visual parsing.
435 	 */
436 	for (i = 0; i < num_events; i++) {
437 		ev = iwl_read32(priv->trans, HBUS_TARG_MEM_RDAT);
438 		time = iwl_read32(priv->trans, HBUS_TARG_MEM_RDAT);
439 		if (mode == 0) {
440 			trace_iwlwifi_dev_ucode_cont_event(
441 					priv->trans->dev, 0, time, ev);
442 		} else {
443 			data = iwl_read32(priv->trans, HBUS_TARG_MEM_RDAT);
444 			trace_iwlwifi_dev_ucode_cont_event(
445 					priv->trans->dev, time, data, ev);
446 		}
447 	}
448 	/* Allow device to power down */
449 	iwl_trans_release_nic_access(priv->trans, &reg_flags);
450 }
451 
452 static void iwl_continuous_event_trace(struct iwl_priv *priv)
453 {
454 	u32 capacity;   /* event log capacity in # entries */
455 	struct {
456 		u32 capacity;
457 		u32 mode;
458 		u32 wrap_counter;
459 		u32 write_counter;
460 	} __packed read;
461 	u32 base;       /* SRAM byte address of event log header */
462 	u32 mode;       /* 0 - no timestamp, 1 - timestamp recorded */
463 	u32 num_wraps;  /* # times uCode wrapped to top of log */
464 	u32 next_entry; /* index of next entry to be written by uCode */
465 
466 	base = priv->device_pointers.log_event_table;
467 	if (iwlagn_hw_valid_rtc_data_addr(base)) {
468 		iwl_trans_read_mem_bytes(priv->trans, base,
469 					 &read, sizeof(read));
470 		capacity = read.capacity;
471 		mode = read.mode;
472 		num_wraps = read.wrap_counter;
473 		next_entry = read.write_counter;
474 	} else
475 		return;
476 
477 	/*
478 	 * Unfortunately, the uCode doesn't use temporary variables.
479 	 * Therefore, it can happen that we read next_entry == capacity,
480 	 * which really means next_entry == 0.
481 	 */
482 	if (unlikely(next_entry == capacity))
483 		next_entry = 0;
484 	/*
485 	 * Additionally, the uCode increases the write pointer before
486 	 * the wraps counter, so if the write pointer is smaller than
487 	 * the old write pointer (wrap occurred) but we read that no
488 	 * wrap occurred, we actually read between the next_entry and
489 	 * num_wraps update (this does happen in practice!!) -- take
490 	 * that into account by increasing num_wraps.
491 	 */
492 	if (unlikely(next_entry < priv->event_log.next_entry &&
493 		     num_wraps == priv->event_log.num_wraps))
494 		num_wraps++;
495 
496 	if (num_wraps == priv->event_log.num_wraps) {
497 		iwl_print_cont_event_trace(
498 			priv, base, priv->event_log.next_entry,
499 			next_entry - priv->event_log.next_entry,
500 			capacity, mode);
501 
502 		priv->event_log.non_wraps_count++;
503 	} else {
504 		if (num_wraps - priv->event_log.num_wraps > 1)
505 			priv->event_log.wraps_more_count++;
506 		else
507 			priv->event_log.wraps_once_count++;
508 
509 		trace_iwlwifi_dev_ucode_wrap_event(priv->trans->dev,
510 				num_wraps - priv->event_log.num_wraps,
511 				next_entry, priv->event_log.next_entry);
512 
513 		if (next_entry < priv->event_log.next_entry) {
514 			iwl_print_cont_event_trace(
515 				priv, base, priv->event_log.next_entry,
516 				capacity - priv->event_log.next_entry,
517 				capacity, mode);
518 
519 			iwl_print_cont_event_trace(
520 				priv, base, 0, next_entry, capacity, mode);
521 		} else {
522 			iwl_print_cont_event_trace(
523 				priv, base, next_entry,
524 				capacity - next_entry,
525 				capacity, mode);
526 
527 			iwl_print_cont_event_trace(
528 				priv, base, 0, next_entry, capacity, mode);
529 		}
530 	}
531 
532 	priv->event_log.num_wraps = num_wraps;
533 	priv->event_log.next_entry = next_entry;
534 }
535 
536 /*
537  * iwl_bg_ucode_trace - Timer callback to log ucode event
538  *
539  * The timer is continually set to execute every
540  * UCODE_TRACE_PERIOD milliseconds after the last timer expired
541  * this function is to perform continuous uCode event logging operation
542  * if enabled
543  */
544 static void iwl_bg_ucode_trace(struct timer_list *t)
545 {
546 	struct iwl_priv *priv = from_timer(priv, t, ucode_trace);
547 
548 	if (test_bit(STATUS_EXIT_PENDING, &priv->status))
549 		return;
550 
551 	if (priv->event_log.ucode_trace) {
552 		iwl_continuous_event_trace(priv);
553 		/* Reschedule the timer to occur in UCODE_TRACE_PERIOD */
554 		mod_timer(&priv->ucode_trace,
555 			 jiffies + msecs_to_jiffies(UCODE_TRACE_PERIOD));
556 	}
557 }
558 
559 static void iwl_bg_tx_flush(struct work_struct *work)
560 {
561 	struct iwl_priv *priv =
562 		container_of(work, struct iwl_priv, tx_flush);
563 
564 	if (test_bit(STATUS_EXIT_PENDING, &priv->status))
565 		return;
566 
567 	/* do nothing if rf-kill is on */
568 	if (!iwl_is_ready_rf(priv))
569 		return;
570 
571 	IWL_DEBUG_INFO(priv, "device request: flush all tx frames\n");
572 	iwlagn_dev_txfifo_flush(priv);
573 }
574 
575 /*
576  * queue/FIFO/AC mapping definitions
577  */
578 
579 static const u8 iwlagn_bss_ac_to_fifo[] = {
580 	IWL_TX_FIFO_VO,
581 	IWL_TX_FIFO_VI,
582 	IWL_TX_FIFO_BE,
583 	IWL_TX_FIFO_BK,
584 };
585 
586 static const u8 iwlagn_bss_ac_to_queue[] = {
587 	0, 1, 2, 3,
588 };
589 
590 static const u8 iwlagn_pan_ac_to_fifo[] = {
591 	IWL_TX_FIFO_VO_IPAN,
592 	IWL_TX_FIFO_VI_IPAN,
593 	IWL_TX_FIFO_BE_IPAN,
594 	IWL_TX_FIFO_BK_IPAN,
595 };
596 
597 static const u8 iwlagn_pan_ac_to_queue[] = {
598 	7, 6, 5, 4,
599 };
600 
601 static void iwl_init_context(struct iwl_priv *priv, u32 ucode_flags)
602 {
603 	int i;
604 
605 	/*
606 	 * The default context is always valid,
607 	 * the PAN context depends on uCode.
608 	 */
609 	priv->valid_contexts = BIT(IWL_RXON_CTX_BSS);
610 	if (ucode_flags & IWL_UCODE_TLV_FLAGS_PAN)
611 		priv->valid_contexts |= BIT(IWL_RXON_CTX_PAN);
612 
613 	for (i = 0; i < NUM_IWL_RXON_CTX; i++)
614 		priv->contexts[i].ctxid = i;
615 
616 	priv->contexts[IWL_RXON_CTX_BSS].always_active = true;
617 	priv->contexts[IWL_RXON_CTX_BSS].is_active = true;
618 	priv->contexts[IWL_RXON_CTX_BSS].rxon_cmd = REPLY_RXON;
619 	priv->contexts[IWL_RXON_CTX_BSS].rxon_timing_cmd = REPLY_RXON_TIMING;
620 	priv->contexts[IWL_RXON_CTX_BSS].rxon_assoc_cmd = REPLY_RXON_ASSOC;
621 	priv->contexts[IWL_RXON_CTX_BSS].qos_cmd = REPLY_QOS_PARAM;
622 	priv->contexts[IWL_RXON_CTX_BSS].ap_sta_id = IWL_AP_ID;
623 	priv->contexts[IWL_RXON_CTX_BSS].wep_key_cmd = REPLY_WEPKEY;
624 	priv->contexts[IWL_RXON_CTX_BSS].bcast_sta_id = IWLAGN_BROADCAST_ID;
625 	priv->contexts[IWL_RXON_CTX_BSS].exclusive_interface_modes =
626 		BIT(NL80211_IFTYPE_ADHOC) | BIT(NL80211_IFTYPE_MONITOR);
627 	priv->contexts[IWL_RXON_CTX_BSS].interface_modes =
628 		BIT(NL80211_IFTYPE_STATION);
629 	priv->contexts[IWL_RXON_CTX_BSS].ap_devtype = RXON_DEV_TYPE_AP;
630 	priv->contexts[IWL_RXON_CTX_BSS].ibss_devtype = RXON_DEV_TYPE_IBSS;
631 	priv->contexts[IWL_RXON_CTX_BSS].station_devtype = RXON_DEV_TYPE_ESS;
632 	priv->contexts[IWL_RXON_CTX_BSS].unused_devtype = RXON_DEV_TYPE_ESS;
633 	memcpy(priv->contexts[IWL_RXON_CTX_BSS].ac_to_queue,
634 	       iwlagn_bss_ac_to_queue, sizeof(iwlagn_bss_ac_to_queue));
635 	memcpy(priv->contexts[IWL_RXON_CTX_BSS].ac_to_fifo,
636 	       iwlagn_bss_ac_to_fifo, sizeof(iwlagn_bss_ac_to_fifo));
637 
638 	priv->contexts[IWL_RXON_CTX_PAN].rxon_cmd = REPLY_WIPAN_RXON;
639 	priv->contexts[IWL_RXON_CTX_PAN].rxon_timing_cmd =
640 		REPLY_WIPAN_RXON_TIMING;
641 	priv->contexts[IWL_RXON_CTX_PAN].rxon_assoc_cmd =
642 		REPLY_WIPAN_RXON_ASSOC;
643 	priv->contexts[IWL_RXON_CTX_PAN].qos_cmd = REPLY_WIPAN_QOS_PARAM;
644 	priv->contexts[IWL_RXON_CTX_PAN].ap_sta_id = IWL_AP_ID_PAN;
645 	priv->contexts[IWL_RXON_CTX_PAN].wep_key_cmd = REPLY_WIPAN_WEPKEY;
646 	priv->contexts[IWL_RXON_CTX_PAN].bcast_sta_id = IWLAGN_PAN_BCAST_ID;
647 	priv->contexts[IWL_RXON_CTX_PAN].station_flags = STA_FLG_PAN_STATION;
648 	priv->contexts[IWL_RXON_CTX_PAN].interface_modes =
649 		BIT(NL80211_IFTYPE_STATION) | BIT(NL80211_IFTYPE_AP);
650 
651 	priv->contexts[IWL_RXON_CTX_PAN].ap_devtype = RXON_DEV_TYPE_CP;
652 	priv->contexts[IWL_RXON_CTX_PAN].station_devtype = RXON_DEV_TYPE_2STA;
653 	priv->contexts[IWL_RXON_CTX_PAN].unused_devtype = RXON_DEV_TYPE_P2P;
654 	memcpy(priv->contexts[IWL_RXON_CTX_PAN].ac_to_queue,
655 	       iwlagn_pan_ac_to_queue, sizeof(iwlagn_pan_ac_to_queue));
656 	memcpy(priv->contexts[IWL_RXON_CTX_PAN].ac_to_fifo,
657 	       iwlagn_pan_ac_to_fifo, sizeof(iwlagn_pan_ac_to_fifo));
658 	priv->contexts[IWL_RXON_CTX_PAN].mcast_queue = IWL_IPAN_MCAST_QUEUE;
659 
660 	BUILD_BUG_ON(NUM_IWL_RXON_CTX != 2);
661 }
662 
663 static void iwl_rf_kill_ct_config(struct iwl_priv *priv)
664 {
665 	struct iwl_ct_kill_config cmd;
666 	struct iwl_ct_kill_throttling_config adv_cmd;
667 	int ret = 0;
668 
669 	iwl_write32(priv->trans, CSR_UCODE_DRV_GP1_CLR,
670 		    CSR_UCODE_DRV_GP1_REG_BIT_CT_KILL_EXIT);
671 
672 	priv->thermal_throttle.ct_kill_toggle = false;
673 
674 	if (priv->lib->support_ct_kill_exit) {
675 		adv_cmd.critical_temperature_enter =
676 			cpu_to_le32(priv->hw_params.ct_kill_threshold);
677 		adv_cmd.critical_temperature_exit =
678 			cpu_to_le32(priv->hw_params.ct_kill_exit_threshold);
679 
680 		ret = iwl_dvm_send_cmd_pdu(priv,
681 				       REPLY_CT_KILL_CONFIG_CMD,
682 				       0, sizeof(adv_cmd), &adv_cmd);
683 		if (ret)
684 			IWL_ERR(priv, "REPLY_CT_KILL_CONFIG_CMD failed\n");
685 		else
686 			IWL_DEBUG_INFO(priv, "REPLY_CT_KILL_CONFIG_CMD "
687 				"succeeded, critical temperature enter is %d,"
688 				"exit is %d\n",
689 				priv->hw_params.ct_kill_threshold,
690 				priv->hw_params.ct_kill_exit_threshold);
691 	} else {
692 		cmd.critical_temperature_R =
693 			cpu_to_le32(priv->hw_params.ct_kill_threshold);
694 
695 		ret = iwl_dvm_send_cmd_pdu(priv,
696 				       REPLY_CT_KILL_CONFIG_CMD,
697 				       0, sizeof(cmd), &cmd);
698 		if (ret)
699 			IWL_ERR(priv, "REPLY_CT_KILL_CONFIG_CMD failed\n");
700 		else
701 			IWL_DEBUG_INFO(priv, "REPLY_CT_KILL_CONFIG_CMD "
702 				"succeeded, "
703 				"critical temperature is %d\n",
704 				priv->hw_params.ct_kill_threshold);
705 	}
706 }
707 
708 static int iwlagn_send_calib_cfg_rt(struct iwl_priv *priv, u32 cfg)
709 {
710 	struct iwl_calib_cfg_cmd calib_cfg_cmd;
711 	struct iwl_host_cmd cmd = {
712 		.id = CALIBRATION_CFG_CMD,
713 		.len = { sizeof(struct iwl_calib_cfg_cmd), },
714 		.data = { &calib_cfg_cmd, },
715 	};
716 
717 	memset(&calib_cfg_cmd, 0, sizeof(calib_cfg_cmd));
718 	calib_cfg_cmd.ucd_calib_cfg.once.is_enable = IWL_CALIB_RT_CFG_ALL;
719 	calib_cfg_cmd.ucd_calib_cfg.once.start = cpu_to_le32(cfg);
720 
721 	return iwl_dvm_send_cmd(priv, &cmd);
722 }
723 
724 
725 static int iwlagn_send_tx_ant_config(struct iwl_priv *priv, u8 valid_tx_ant)
726 {
727 	struct iwl_tx_ant_config_cmd tx_ant_cmd = {
728 	  .valid = cpu_to_le32(valid_tx_ant),
729 	};
730 
731 	if (IWL_UCODE_API(priv->fw->ucode_ver) > 1) {
732 		IWL_DEBUG_HC(priv, "select valid tx ant: %u\n", valid_tx_ant);
733 		return iwl_dvm_send_cmd_pdu(priv, TX_ANT_CONFIGURATION_CMD, 0,
734 					sizeof(struct iwl_tx_ant_config_cmd),
735 					&tx_ant_cmd);
736 	} else {
737 		IWL_DEBUG_HC(priv, "TX_ANT_CONFIGURATION_CMD not supported\n");
738 		return -EOPNOTSUPP;
739 	}
740 }
741 
742 static void iwl_send_bt_config(struct iwl_priv *priv)
743 {
744 	struct iwl_bt_cmd bt_cmd = {
745 		.lead_time = BT_LEAD_TIME_DEF,
746 		.max_kill = BT_MAX_KILL_DEF,
747 		.kill_ack_mask = 0,
748 		.kill_cts_mask = 0,
749 	};
750 
751 	if (!iwlwifi_mod_params.bt_coex_active)
752 		bt_cmd.flags = BT_COEX_DISABLE;
753 	else
754 		bt_cmd.flags = BT_COEX_ENABLE;
755 
756 	priv->bt_enable_flag = bt_cmd.flags;
757 	IWL_DEBUG_INFO(priv, "BT coex %s\n",
758 		(bt_cmd.flags == BT_COEX_DISABLE) ? "disable" : "active");
759 
760 	if (iwl_dvm_send_cmd_pdu(priv, REPLY_BT_CONFIG,
761 			     0, sizeof(struct iwl_bt_cmd), &bt_cmd))
762 		IWL_ERR(priv, "failed to send BT Coex Config\n");
763 }
764 
765 /*
766  * iwl_alive_start - called after REPLY_ALIVE notification received
767  *                   from protocol/runtime uCode (initialization uCode's
768  *                   Alive gets handled by iwl_init_alive_start()).
769  */
770 int iwl_alive_start(struct iwl_priv *priv)
771 {
772 	int ret = 0;
773 	struct iwl_rxon_context *ctx = &priv->contexts[IWL_RXON_CTX_BSS];
774 
775 	IWL_DEBUG_INFO(priv, "Runtime Alive received.\n");
776 
777 	/* After the ALIVE response, we can send host commands to the uCode */
778 	set_bit(STATUS_ALIVE, &priv->status);
779 
780 	if (iwl_is_rfkill(priv))
781 		return -ERFKILL;
782 
783 	if (priv->event_log.ucode_trace) {
784 		/* start collecting data now */
785 		mod_timer(&priv->ucode_trace, jiffies);
786 	}
787 
788 	/* download priority table before any calibration request */
789 	if (priv->lib->bt_params &&
790 	    priv->lib->bt_params->advanced_bt_coexist) {
791 		/* Configure Bluetooth device coexistence support */
792 		if (priv->lib->bt_params->bt_sco_disable)
793 			priv->bt_enable_pspoll = false;
794 		else
795 			priv->bt_enable_pspoll = true;
796 
797 		priv->bt_valid = IWLAGN_BT_ALL_VALID_MSK;
798 		priv->kill_ack_mask = IWLAGN_BT_KILL_ACK_MASK_DEFAULT;
799 		priv->kill_cts_mask = IWLAGN_BT_KILL_CTS_MASK_DEFAULT;
800 		iwlagn_send_advance_bt_config(priv);
801 		priv->bt_valid = IWLAGN_BT_VALID_ENABLE_FLAGS;
802 		priv->cur_rssi_ctx = NULL;
803 
804 		iwl_send_prio_tbl(priv);
805 
806 		/* FIXME: w/a to force change uCode BT state machine */
807 		ret = iwl_send_bt_env(priv, IWL_BT_COEX_ENV_OPEN,
808 					 BT_COEX_PRIO_TBL_EVT_INIT_CALIB2);
809 		if (ret)
810 			return ret;
811 		ret = iwl_send_bt_env(priv, IWL_BT_COEX_ENV_CLOSE,
812 					 BT_COEX_PRIO_TBL_EVT_INIT_CALIB2);
813 		if (ret)
814 			return ret;
815 	} else if (priv->lib->bt_params) {
816 		/*
817 		 * default is 2-wire BT coexexistence support
818 		 */
819 		iwl_send_bt_config(priv);
820 	}
821 
822 	/*
823 	 * Perform runtime calibrations, including DC calibration.
824 	 */
825 	iwlagn_send_calib_cfg_rt(priv, IWL_CALIB_CFG_DC_IDX);
826 
827 	ieee80211_wake_queues(priv->hw);
828 
829 	/* Configure Tx antenna selection based on H/W config */
830 	iwlagn_send_tx_ant_config(priv, priv->nvm_data->valid_tx_ant);
831 
832 	if (iwl_is_associated_ctx(ctx) && !priv->wowlan) {
833 		struct iwl_rxon_cmd *active_rxon =
834 				(struct iwl_rxon_cmd *)&ctx->active;
835 		/* apply any changes in staging */
836 		ctx->staging.filter_flags |= RXON_FILTER_ASSOC_MSK;
837 		active_rxon->filter_flags &= ~RXON_FILTER_ASSOC_MSK;
838 	} else {
839 		struct iwl_rxon_context *tmp;
840 		/* Initialize our rx_config data */
841 		for_each_context(priv, tmp)
842 			iwl_connection_init_rx_config(priv, tmp);
843 
844 		iwlagn_set_rxon_chain(priv, ctx);
845 	}
846 
847 	if (!priv->wowlan) {
848 		/* WoWLAN ucode will not reply in the same way, skip it */
849 		iwl_reset_run_time_calib(priv);
850 	}
851 
852 	set_bit(STATUS_READY, &priv->status);
853 
854 	/* Configure the adapter for unassociated operation */
855 	ret = iwlagn_commit_rxon(priv, ctx);
856 	if (ret)
857 		return ret;
858 
859 	/* At this point, the NIC is initialized and operational */
860 	iwl_rf_kill_ct_config(priv);
861 
862 	IWL_DEBUG_INFO(priv, "ALIVE processing complete.\n");
863 
864 	return iwl_power_update_mode(priv, true);
865 }
866 
867 /**
868  * iwl_clear_driver_stations - clear knowledge of all stations from driver
869  * @priv: iwl priv struct
870  *
871  * This is called during iwl_down() to make sure that in the case
872  * we're coming there from a hardware restart mac80211 will be
873  * able to reconfigure stations -- if we're getting there in the
874  * normal down flow then the stations will already be cleared.
875  */
876 static void iwl_clear_driver_stations(struct iwl_priv *priv)
877 {
878 	struct iwl_rxon_context *ctx;
879 
880 	spin_lock_bh(&priv->sta_lock);
881 	memset(priv->stations, 0, sizeof(priv->stations));
882 	priv->num_stations = 0;
883 
884 	priv->ucode_key_table = 0;
885 
886 	for_each_context(priv, ctx) {
887 		/*
888 		 * Remove all key information that is not stored as part
889 		 * of station information since mac80211 may not have had
890 		 * a chance to remove all the keys. When device is
891 		 * reconfigured by mac80211 after an error all keys will
892 		 * be reconfigured.
893 		 */
894 		memset(ctx->wep_keys, 0, sizeof(ctx->wep_keys));
895 		ctx->key_mapping_keys = 0;
896 	}
897 
898 	spin_unlock_bh(&priv->sta_lock);
899 }
900 
901 void iwl_down(struct iwl_priv *priv)
902 {
903 	int exit_pending;
904 
905 	IWL_DEBUG_INFO(priv, DRV_NAME " is going down\n");
906 
907 	lockdep_assert_held(&priv->mutex);
908 
909 	iwl_scan_cancel_timeout(priv, 200);
910 
911 	exit_pending =
912 		test_and_set_bit(STATUS_EXIT_PENDING, &priv->status);
913 
914 	iwl_clear_ucode_stations(priv, NULL);
915 	iwl_dealloc_bcast_stations(priv);
916 	iwl_clear_driver_stations(priv);
917 
918 	/* reset BT coex data */
919 	priv->bt_status = 0;
920 	priv->cur_rssi_ctx = NULL;
921 	priv->bt_is_sco = 0;
922 	if (priv->lib->bt_params)
923 		priv->bt_traffic_load =
924 			 priv->lib->bt_params->bt_init_traffic_load;
925 	else
926 		priv->bt_traffic_load = 0;
927 	priv->bt_full_concurrent = false;
928 	priv->bt_ci_compliance = 0;
929 
930 	/* Wipe out the EXIT_PENDING status bit if we are not actually
931 	 * exiting the module */
932 	if (!exit_pending)
933 		clear_bit(STATUS_EXIT_PENDING, &priv->status);
934 
935 	if (priv->mac80211_registered)
936 		ieee80211_stop_queues(priv->hw);
937 
938 	priv->ucode_loaded = false;
939 	iwl_trans_stop_device(priv->trans);
940 
941 	/* Set num_aux_in_flight must be done after the transport is stopped */
942 	atomic_set(&priv->num_aux_in_flight, 0);
943 
944 	/* Clear out all status bits but a few that are stable across reset */
945 	priv->status &= test_bit(STATUS_RF_KILL_HW, &priv->status) <<
946 				STATUS_RF_KILL_HW |
947 			test_bit(STATUS_FW_ERROR, &priv->status) <<
948 				STATUS_FW_ERROR |
949 			test_bit(STATUS_EXIT_PENDING, &priv->status) <<
950 				STATUS_EXIT_PENDING;
951 
952 	dev_kfree_skb(priv->beacon_skb);
953 	priv->beacon_skb = NULL;
954 }
955 
956 /*****************************************************************************
957  *
958  * Workqueue callbacks
959  *
960  *****************************************************************************/
961 
962 static void iwl_bg_run_time_calib_work(struct work_struct *work)
963 {
964 	struct iwl_priv *priv = container_of(work, struct iwl_priv,
965 			run_time_calib_work);
966 
967 	mutex_lock(&priv->mutex);
968 
969 	if (test_bit(STATUS_EXIT_PENDING, &priv->status) ||
970 	    test_bit(STATUS_SCANNING, &priv->status)) {
971 		mutex_unlock(&priv->mutex);
972 		return;
973 	}
974 
975 	if (priv->start_calib) {
976 		iwl_chain_noise_calibration(priv);
977 		iwl_sensitivity_calibration(priv);
978 	}
979 
980 	mutex_unlock(&priv->mutex);
981 }
982 
983 void iwlagn_prepare_restart(struct iwl_priv *priv)
984 {
985 	bool bt_full_concurrent;
986 	u8 bt_ci_compliance;
987 	u8 bt_load;
988 	u8 bt_status;
989 	bool bt_is_sco;
990 	int i;
991 
992 	lockdep_assert_held(&priv->mutex);
993 
994 	priv->is_open = 0;
995 
996 	/*
997 	 * __iwl_down() will clear the BT status variables,
998 	 * which is correct, but when we restart we really
999 	 * want to keep them so restore them afterwards.
1000 	 *
1001 	 * The restart process will later pick them up and
1002 	 * re-configure the hw when we reconfigure the BT
1003 	 * command.
1004 	 */
1005 	bt_full_concurrent = priv->bt_full_concurrent;
1006 	bt_ci_compliance = priv->bt_ci_compliance;
1007 	bt_load = priv->bt_traffic_load;
1008 	bt_status = priv->bt_status;
1009 	bt_is_sco = priv->bt_is_sco;
1010 
1011 	iwl_down(priv);
1012 
1013 	priv->bt_full_concurrent = bt_full_concurrent;
1014 	priv->bt_ci_compliance = bt_ci_compliance;
1015 	priv->bt_traffic_load = bt_load;
1016 	priv->bt_status = bt_status;
1017 	priv->bt_is_sco = bt_is_sco;
1018 
1019 	/* reset aggregation queues */
1020 	for (i = IWLAGN_FIRST_AMPDU_QUEUE; i < IWL_MAX_HW_QUEUES; i++)
1021 		priv->queue_to_mac80211[i] = IWL_INVALID_MAC80211_QUEUE;
1022 	/* and stop counts */
1023 	for (i = 0; i < IWL_MAX_HW_QUEUES; i++)
1024 		atomic_set(&priv->queue_stop_count[i], 0);
1025 
1026 	memset(priv->agg_q_alloc, 0, sizeof(priv->agg_q_alloc));
1027 }
1028 
1029 static void iwl_bg_restart(struct work_struct *data)
1030 {
1031 	struct iwl_priv *priv = container_of(data, struct iwl_priv, restart);
1032 
1033 	if (test_bit(STATUS_EXIT_PENDING, &priv->status))
1034 		return;
1035 
1036 	if (test_and_clear_bit(STATUS_FW_ERROR, &priv->status)) {
1037 		mutex_lock(&priv->mutex);
1038 		iwlagn_prepare_restart(priv);
1039 		mutex_unlock(&priv->mutex);
1040 		iwl_cancel_deferred_work(priv);
1041 		if (priv->mac80211_registered)
1042 			ieee80211_restart_hw(priv->hw);
1043 		else
1044 			IWL_ERR(priv,
1045 				"Cannot request restart before registering with mac80211\n");
1046 	} else {
1047 		WARN_ON(1);
1048 	}
1049 }
1050 
1051 /*****************************************************************************
1052  *
1053  * driver setup and teardown
1054  *
1055  *****************************************************************************/
1056 
1057 static void iwl_setup_deferred_work(struct iwl_priv *priv)
1058 {
1059 	priv->workqueue = alloc_ordered_workqueue(DRV_NAME, 0);
1060 
1061 	INIT_WORK(&priv->restart, iwl_bg_restart);
1062 	INIT_WORK(&priv->beacon_update, iwl_bg_beacon_update);
1063 	INIT_WORK(&priv->run_time_calib_work, iwl_bg_run_time_calib_work);
1064 	INIT_WORK(&priv->tx_flush, iwl_bg_tx_flush);
1065 	INIT_WORK(&priv->bt_full_concurrency, iwl_bg_bt_full_concurrency);
1066 	INIT_WORK(&priv->bt_runtime_config, iwl_bg_bt_runtime_config);
1067 
1068 	iwl_setup_scan_deferred_work(priv);
1069 
1070 	if (priv->lib->bt_params)
1071 		iwlagn_bt_setup_deferred_work(priv);
1072 
1073 	timer_setup(&priv->statistics_periodic, iwl_bg_statistics_periodic, 0);
1074 
1075 	timer_setup(&priv->ucode_trace, iwl_bg_ucode_trace, 0);
1076 }
1077 
1078 void iwl_cancel_deferred_work(struct iwl_priv *priv)
1079 {
1080 	if (priv->lib->bt_params)
1081 		iwlagn_bt_cancel_deferred_work(priv);
1082 
1083 	cancel_work_sync(&priv->run_time_calib_work);
1084 	cancel_work_sync(&priv->beacon_update);
1085 
1086 	iwl_cancel_scan_deferred_work(priv);
1087 
1088 	cancel_work_sync(&priv->bt_full_concurrency);
1089 	cancel_work_sync(&priv->bt_runtime_config);
1090 
1091 	del_timer_sync(&priv->statistics_periodic);
1092 	del_timer_sync(&priv->ucode_trace);
1093 }
1094 
1095 static int iwl_init_drv(struct iwl_priv *priv)
1096 {
1097 	spin_lock_init(&priv->sta_lock);
1098 
1099 	mutex_init(&priv->mutex);
1100 
1101 	INIT_LIST_HEAD(&priv->calib_results);
1102 
1103 	priv->band = NL80211_BAND_2GHZ;
1104 
1105 	priv->plcp_delta_threshold = priv->lib->plcp_delta_threshold;
1106 
1107 	priv->iw_mode = NL80211_IFTYPE_STATION;
1108 	priv->current_ht_config.smps = IEEE80211_SMPS_STATIC;
1109 	priv->missed_beacon_threshold = IWL_MISSED_BEACON_THRESHOLD_DEF;
1110 	priv->agg_tids_count = 0;
1111 
1112 	priv->rx_statistics_jiffies = jiffies;
1113 
1114 	/* Choose which receivers/antennas to use */
1115 	iwlagn_set_rxon_chain(priv, &priv->contexts[IWL_RXON_CTX_BSS]);
1116 
1117 	iwl_init_scan_params(priv);
1118 
1119 	/* init bt coex */
1120 	if (priv->lib->bt_params &&
1121 	    priv->lib->bt_params->advanced_bt_coexist) {
1122 		priv->kill_ack_mask = IWLAGN_BT_KILL_ACK_MASK_DEFAULT;
1123 		priv->kill_cts_mask = IWLAGN_BT_KILL_CTS_MASK_DEFAULT;
1124 		priv->bt_valid = IWLAGN_BT_ALL_VALID_MSK;
1125 		priv->bt_on_thresh = BT_ON_THRESHOLD_DEF;
1126 		priv->bt_duration = BT_DURATION_LIMIT_DEF;
1127 		priv->dynamic_frag_thresh = BT_FRAG_THRESHOLD_DEF;
1128 	}
1129 
1130 	return 0;
1131 }
1132 
1133 static void iwl_uninit_drv(struct iwl_priv *priv)
1134 {
1135 	kfree(priv->scan_cmd);
1136 	kfree(priv->beacon_cmd);
1137 	kfree(rcu_dereference_raw(priv->noa_data));
1138 	iwl_calib_free_results(priv);
1139 #ifdef CONFIG_IWLWIFI_DEBUGFS
1140 	kfree(priv->wowlan_sram);
1141 #endif
1142 }
1143 
1144 static void iwl_set_hw_params(struct iwl_priv *priv)
1145 {
1146 	if (priv->cfg->ht_params)
1147 		priv->hw_params.use_rts_for_aggregation =
1148 			priv->cfg->ht_params->use_rts_for_aggregation;
1149 
1150 	/* Device-specific setup */
1151 	priv->lib->set_hw_params(priv);
1152 }
1153 
1154 
1155 
1156 /* show what optional capabilities we have */
1157 static void iwl_option_config(struct iwl_priv *priv)
1158 {
1159 #ifdef CONFIG_IWLWIFI_DEBUG
1160 	IWL_INFO(priv, "CONFIG_IWLWIFI_DEBUG enabled\n");
1161 #else
1162 	IWL_INFO(priv, "CONFIG_IWLWIFI_DEBUG disabled\n");
1163 #endif
1164 
1165 #ifdef CONFIG_IWLWIFI_DEBUGFS
1166 	IWL_INFO(priv, "CONFIG_IWLWIFI_DEBUGFS enabled\n");
1167 #else
1168 	IWL_INFO(priv, "CONFIG_IWLWIFI_DEBUGFS disabled\n");
1169 #endif
1170 
1171 #ifdef CONFIG_IWLWIFI_DEVICE_TRACING
1172 	IWL_INFO(priv, "CONFIG_IWLWIFI_DEVICE_TRACING enabled\n");
1173 #else
1174 	IWL_INFO(priv, "CONFIG_IWLWIFI_DEVICE_TRACING disabled\n");
1175 #endif
1176 }
1177 
1178 static int iwl_eeprom_init_hw_params(struct iwl_priv *priv)
1179 {
1180 	struct iwl_nvm_data *data = priv->nvm_data;
1181 
1182 	if (data->sku_cap_11n_enable &&
1183 	    !priv->cfg->ht_params) {
1184 		IWL_ERR(priv, "Invalid 11n configuration\n");
1185 		return -EINVAL;
1186 	}
1187 
1188 	if (!data->sku_cap_11n_enable && !data->sku_cap_band_24ghz_enable &&
1189 	    !data->sku_cap_band_52ghz_enable) {
1190 		IWL_ERR(priv, "Invalid device sku\n");
1191 		return -EINVAL;
1192 	}
1193 
1194 	IWL_DEBUG_INFO(priv,
1195 		       "Device SKU: 24GHz %s %s, 52GHz %s %s, 11.n %s %s\n",
1196 		       data->sku_cap_band_24ghz_enable ? "" : "NOT", "enabled",
1197 		       data->sku_cap_band_52ghz_enable ? "" : "NOT", "enabled",
1198 		       data->sku_cap_11n_enable ? "" : "NOT", "enabled");
1199 
1200 	priv->hw_params.tx_chains_num =
1201 		num_of_ant(data->valid_tx_ant);
1202 	if (priv->cfg->rx_with_siso_diversity)
1203 		priv->hw_params.rx_chains_num = 1;
1204 	else
1205 		priv->hw_params.rx_chains_num =
1206 			num_of_ant(data->valid_rx_ant);
1207 
1208 	IWL_DEBUG_INFO(priv, "Valid Tx ant: 0x%X, Valid Rx ant: 0x%X\n",
1209 		       data->valid_tx_ant,
1210 		       data->valid_rx_ant);
1211 
1212 	return 0;
1213 }
1214 
1215 static int iwl_nvm_check_version(struct iwl_nvm_data *data,
1216 				 struct iwl_trans *trans)
1217 {
1218 	if (data->nvm_version >= trans->cfg->nvm_ver ||
1219 	    data->calib_version >= trans->cfg->nvm_calib_ver) {
1220 		IWL_DEBUG_INFO(trans, "device EEPROM VER=0x%x, CALIB=0x%x\n",
1221 			       data->nvm_version, data->calib_version);
1222 		return 0;
1223 	}
1224 
1225 	IWL_ERR(trans,
1226 		"Unsupported (too old) EEPROM VER=0x%x < 0x%x CALIB=0x%x < 0x%x\n",
1227 		data->nvm_version, trans->cfg->nvm_ver,
1228 		data->calib_version,  trans->cfg->nvm_calib_ver);
1229 	return -EINVAL;
1230 }
1231 
1232 static struct iwl_op_mode *iwl_op_mode_dvm_start(struct iwl_trans *trans,
1233 						 const struct iwl_cfg *cfg,
1234 						 const struct iwl_fw *fw,
1235 						 struct dentry *dbgfs_dir)
1236 {
1237 	struct iwl_priv *priv;
1238 	struct ieee80211_hw *hw;
1239 	struct iwl_op_mode *op_mode;
1240 	u16 num_mac;
1241 	u32 ucode_flags;
1242 	struct iwl_trans_config trans_cfg = {};
1243 	static const u8 no_reclaim_cmds[] = {
1244 		REPLY_RX_PHY_CMD,
1245 		REPLY_RX_MPDU_CMD,
1246 		REPLY_COMPRESSED_BA,
1247 		STATISTICS_NOTIFICATION,
1248 		REPLY_TX,
1249 	};
1250 	int i;
1251 
1252 	/************************
1253 	 * 1. Allocating HW data
1254 	 ************************/
1255 	hw = iwl_alloc_all();
1256 	if (!hw) {
1257 		pr_err("%s: Cannot allocate network device\n", trans->name);
1258 		goto out;
1259 	}
1260 
1261 	op_mode = hw->priv;
1262 	op_mode->ops = &iwl_dvm_ops;
1263 	priv = IWL_OP_MODE_GET_DVM(op_mode);
1264 	priv->trans = trans;
1265 	priv->dev = trans->dev;
1266 	priv->cfg = cfg;
1267 	priv->fw = fw;
1268 
1269 	switch (priv->trans->trans_cfg->device_family) {
1270 	case IWL_DEVICE_FAMILY_1000:
1271 	case IWL_DEVICE_FAMILY_100:
1272 		priv->lib = &iwl_dvm_1000_cfg;
1273 		break;
1274 	case IWL_DEVICE_FAMILY_2000:
1275 		priv->lib = &iwl_dvm_2000_cfg;
1276 		break;
1277 	case IWL_DEVICE_FAMILY_105:
1278 		priv->lib = &iwl_dvm_105_cfg;
1279 		break;
1280 	case IWL_DEVICE_FAMILY_2030:
1281 	case IWL_DEVICE_FAMILY_135:
1282 		priv->lib = &iwl_dvm_2030_cfg;
1283 		break;
1284 	case IWL_DEVICE_FAMILY_5000:
1285 		priv->lib = &iwl_dvm_5000_cfg;
1286 		break;
1287 	case IWL_DEVICE_FAMILY_5150:
1288 		priv->lib = &iwl_dvm_5150_cfg;
1289 		break;
1290 	case IWL_DEVICE_FAMILY_6000:
1291 	case IWL_DEVICE_FAMILY_6000i:
1292 		priv->lib = &iwl_dvm_6000_cfg;
1293 		break;
1294 	case IWL_DEVICE_FAMILY_6005:
1295 		priv->lib = &iwl_dvm_6005_cfg;
1296 		break;
1297 	case IWL_DEVICE_FAMILY_6050:
1298 	case IWL_DEVICE_FAMILY_6150:
1299 		priv->lib = &iwl_dvm_6050_cfg;
1300 		break;
1301 	case IWL_DEVICE_FAMILY_6030:
1302 		priv->lib = &iwl_dvm_6030_cfg;
1303 		break;
1304 	default:
1305 		break;
1306 	}
1307 
1308 	if (WARN_ON(!priv->lib))
1309 		goto out_free_hw;
1310 
1311 	/*
1312 	 * Populate the state variables that the transport layer needs
1313 	 * to know about.
1314 	 */
1315 	trans_cfg.op_mode = op_mode;
1316 	trans_cfg.no_reclaim_cmds = no_reclaim_cmds;
1317 	trans_cfg.n_no_reclaim_cmds = ARRAY_SIZE(no_reclaim_cmds);
1318 
1319 	switch (iwlwifi_mod_params.amsdu_size) {
1320 	case IWL_AMSDU_DEF:
1321 	case IWL_AMSDU_4K:
1322 		trans_cfg.rx_buf_size = IWL_AMSDU_4K;
1323 		break;
1324 	case IWL_AMSDU_8K:
1325 		trans_cfg.rx_buf_size = IWL_AMSDU_8K;
1326 		break;
1327 	case IWL_AMSDU_12K:
1328 	default:
1329 		trans_cfg.rx_buf_size = IWL_AMSDU_4K;
1330 		pr_err("Unsupported amsdu_size: %d\n",
1331 		       iwlwifi_mod_params.amsdu_size);
1332 	}
1333 
1334 	trans_cfg.cmd_q_wdg_timeout = IWL_WATCHDOG_DISABLED;
1335 
1336 	trans_cfg.command_groups = iwl_dvm_groups;
1337 	trans_cfg.command_groups_size = ARRAY_SIZE(iwl_dvm_groups);
1338 
1339 	trans_cfg.cmd_fifo = IWLAGN_CMD_FIFO_NUM;
1340 	trans_cfg.cb_data_offs = offsetof(struct ieee80211_tx_info,
1341 					  driver_data[2]);
1342 
1343 	WARN_ON(sizeof(priv->transport_queue_stop) * BITS_PER_BYTE <
1344 		priv->trans->trans_cfg->base_params->num_of_queues);
1345 
1346 	ucode_flags = fw->ucode_capa.flags;
1347 
1348 	if (ucode_flags & IWL_UCODE_TLV_FLAGS_PAN) {
1349 		priv->sta_key_max_num = STA_KEY_MAX_NUM_PAN;
1350 		trans_cfg.cmd_queue = IWL_IPAN_CMD_QUEUE_NUM;
1351 	} else {
1352 		priv->sta_key_max_num = STA_KEY_MAX_NUM;
1353 		trans_cfg.cmd_queue = IWL_DEFAULT_CMD_QUEUE_NUM;
1354 	}
1355 
1356 	/* Configure transport layer */
1357 	iwl_trans_configure(priv->trans, &trans_cfg);
1358 
1359 	trans->rx_mpdu_cmd = REPLY_RX_MPDU_CMD;
1360 	trans->rx_mpdu_cmd_hdr_size = sizeof(struct iwl_rx_mpdu_res_start);
1361 	trans->command_groups = trans_cfg.command_groups;
1362 	trans->command_groups_size = trans_cfg.command_groups_size;
1363 
1364 	/* At this point both hw and priv are allocated. */
1365 
1366 	SET_IEEE80211_DEV(priv->hw, priv->trans->dev);
1367 
1368 	iwl_option_config(priv);
1369 
1370 	IWL_DEBUG_INFO(priv, "*** LOAD DRIVER ***\n");
1371 
1372 	/* bt channel inhibition enabled*/
1373 	priv->bt_ch_announce = true;
1374 	IWL_DEBUG_INFO(priv, "BT channel inhibition is %s\n",
1375 		       (priv->bt_ch_announce) ? "On" : "Off");
1376 
1377 	/* these spin locks will be used in apm_ops.init and EEPROM access
1378 	 * we should init now
1379 	 */
1380 	spin_lock_init(&priv->statistics.lock);
1381 
1382 	/***********************
1383 	 * 2. Read REV register
1384 	 ***********************/
1385 	IWL_INFO(priv, "Detected %s, REV=0x%X\n",
1386 		priv->trans->name, priv->trans->hw_rev);
1387 
1388 	if (iwl_trans_start_hw(priv->trans))
1389 		goto out_free_hw;
1390 
1391 	/* Read the EEPROM */
1392 	if (iwl_read_eeprom(priv->trans, &priv->eeprom_blob,
1393 			    &priv->eeprom_blob_size)) {
1394 		IWL_ERR(priv, "Unable to init EEPROM\n");
1395 		goto out_free_hw;
1396 	}
1397 
1398 	/* Reset chip to save power until we load uCode during "up". */
1399 	iwl_trans_stop_device(priv->trans);
1400 
1401 	priv->nvm_data = iwl_parse_eeprom_data(priv->trans, priv->cfg,
1402 					       priv->eeprom_blob,
1403 					       priv->eeprom_blob_size);
1404 	if (!priv->nvm_data)
1405 		goto out_free_eeprom_blob;
1406 
1407 	if (iwl_nvm_check_version(priv->nvm_data, priv->trans))
1408 		goto out_free_eeprom;
1409 
1410 	if (iwl_eeprom_init_hw_params(priv))
1411 		goto out_free_eeprom;
1412 
1413 	/* extract MAC Address */
1414 	memcpy(priv->addresses[0].addr, priv->nvm_data->hw_addr, ETH_ALEN);
1415 	IWL_DEBUG_INFO(priv, "MAC address: %pM\n", priv->addresses[0].addr);
1416 	priv->hw->wiphy->addresses = priv->addresses;
1417 	priv->hw->wiphy->n_addresses = 1;
1418 	num_mac = priv->nvm_data->n_hw_addrs;
1419 	if (num_mac > 1) {
1420 		memcpy(priv->addresses[1].addr, priv->addresses[0].addr,
1421 		       ETH_ALEN);
1422 		priv->addresses[1].addr[5]++;
1423 		priv->hw->wiphy->n_addresses++;
1424 	}
1425 
1426 	/************************
1427 	 * 4. Setup HW constants
1428 	 ************************/
1429 	iwl_set_hw_params(priv);
1430 
1431 	if (!(priv->nvm_data->sku_cap_ipan_enable)) {
1432 		IWL_DEBUG_INFO(priv, "Your EEPROM disabled PAN\n");
1433 		ucode_flags &= ~IWL_UCODE_TLV_FLAGS_PAN;
1434 		/*
1435 		 * if not PAN, then don't support P2P -- might be a uCode
1436 		 * packaging bug or due to the eeprom check above
1437 		 */
1438 		priv->sta_key_max_num = STA_KEY_MAX_NUM;
1439 		trans_cfg.cmd_queue = IWL_DEFAULT_CMD_QUEUE_NUM;
1440 
1441 		/* Configure transport layer again*/
1442 		iwl_trans_configure(priv->trans, &trans_cfg);
1443 	}
1444 
1445 	/*******************
1446 	 * 5. Setup priv
1447 	 *******************/
1448 	for (i = 0; i < IWL_MAX_HW_QUEUES; i++) {
1449 		priv->queue_to_mac80211[i] = IWL_INVALID_MAC80211_QUEUE;
1450 		if (i < IWLAGN_FIRST_AMPDU_QUEUE &&
1451 		    i != IWL_DEFAULT_CMD_QUEUE_NUM &&
1452 		    i != IWL_IPAN_CMD_QUEUE_NUM)
1453 			priv->queue_to_mac80211[i] = i;
1454 		atomic_set(&priv->queue_stop_count[i], 0);
1455 	}
1456 
1457 	if (iwl_init_drv(priv))
1458 		goto out_free_eeprom;
1459 
1460 	/* At this point both hw and priv are initialized. */
1461 
1462 	/********************
1463 	 * 6. Setup services
1464 	 ********************/
1465 	iwl_setup_deferred_work(priv);
1466 	iwl_setup_rx_handlers(priv);
1467 
1468 	iwl_power_initialize(priv);
1469 	iwl_tt_initialize(priv);
1470 
1471 	snprintf(priv->hw->wiphy->fw_version,
1472 		 sizeof(priv->hw->wiphy->fw_version),
1473 		 "%s", fw->fw_version);
1474 
1475 	priv->new_scan_threshold_behaviour =
1476 		!!(ucode_flags & IWL_UCODE_TLV_FLAGS_NEWSCAN);
1477 
1478 	priv->phy_calib_chain_noise_reset_cmd =
1479 		fw->ucode_capa.standard_phy_calibration_size;
1480 	priv->phy_calib_chain_noise_gain_cmd =
1481 		fw->ucode_capa.standard_phy_calibration_size + 1;
1482 
1483 	/* initialize all valid contexts */
1484 	iwl_init_context(priv, ucode_flags);
1485 
1486 	/**************************************************
1487 	 * This is still part of probe() in a sense...
1488 	 *
1489 	 * 7. Setup and register with mac80211 and debugfs
1490 	 **************************************************/
1491 	if (iwlagn_mac_setup_register(priv, &fw->ucode_capa))
1492 		goto out_destroy_workqueue;
1493 
1494 	iwl_dbgfs_register(priv, dbgfs_dir);
1495 
1496 	return op_mode;
1497 
1498 out_destroy_workqueue:
1499 	iwl_tt_exit(priv);
1500 	iwl_cancel_deferred_work(priv);
1501 	destroy_workqueue(priv->workqueue);
1502 	priv->workqueue = NULL;
1503 	iwl_uninit_drv(priv);
1504 out_free_eeprom_blob:
1505 	kfree(priv->eeprom_blob);
1506 out_free_eeprom:
1507 	kfree(priv->nvm_data);
1508 out_free_hw:
1509 	ieee80211_free_hw(priv->hw);
1510 out:
1511 	op_mode = NULL;
1512 	return op_mode;
1513 }
1514 
1515 static void iwl_op_mode_dvm_stop(struct iwl_op_mode *op_mode)
1516 {
1517 	struct iwl_priv *priv = IWL_OP_MODE_GET_DVM(op_mode);
1518 
1519 	IWL_DEBUG_INFO(priv, "*** UNLOAD DRIVER ***\n");
1520 
1521 	iwlagn_mac_unregister(priv);
1522 
1523 	iwl_tt_exit(priv);
1524 
1525 	kfree(priv->eeprom_blob);
1526 	kfree(priv->nvm_data);
1527 
1528 	/*netif_stop_queue(dev); */
1529 	flush_workqueue(priv->workqueue);
1530 
1531 	/* ieee80211_unregister_hw calls iwlagn_mac_stop, which flushes
1532 	 * priv->workqueue... so we can't take down the workqueue
1533 	 * until now... */
1534 	destroy_workqueue(priv->workqueue);
1535 	priv->workqueue = NULL;
1536 
1537 	iwl_uninit_drv(priv);
1538 
1539 	dev_kfree_skb(priv->beacon_skb);
1540 
1541 	iwl_trans_op_mode_leave(priv->trans);
1542 	ieee80211_free_hw(priv->hw);
1543 }
1544 
1545 static const char * const desc_lookup_text[] = {
1546 	"OK",
1547 	"FAIL",
1548 	"BAD_PARAM",
1549 	"BAD_CHECKSUM",
1550 	"NMI_INTERRUPT_WDG",
1551 	"SYSASSERT",
1552 	"FATAL_ERROR",
1553 	"BAD_COMMAND",
1554 	"HW_ERROR_TUNE_LOCK",
1555 	"HW_ERROR_TEMPERATURE",
1556 	"ILLEGAL_CHAN_FREQ",
1557 	"VCC_NOT_STABLE",
1558 	"FH_ERROR",
1559 	"NMI_INTERRUPT_HOST",
1560 	"NMI_INTERRUPT_ACTION_PT",
1561 	"NMI_INTERRUPT_UNKNOWN",
1562 	"UCODE_VERSION_MISMATCH",
1563 	"HW_ERROR_ABS_LOCK",
1564 	"HW_ERROR_CAL_LOCK_FAIL",
1565 	"NMI_INTERRUPT_INST_ACTION_PT",
1566 	"NMI_INTERRUPT_DATA_ACTION_PT",
1567 	"NMI_TRM_HW_ER",
1568 	"NMI_INTERRUPT_TRM",
1569 	"NMI_INTERRUPT_BREAK_POINT",
1570 	"DEBUG_0",
1571 	"DEBUG_1",
1572 	"DEBUG_2",
1573 	"DEBUG_3",
1574 };
1575 
1576 static struct { char *name; u8 num; } advanced_lookup[] = {
1577 	{ "NMI_INTERRUPT_WDG", 0x34 },
1578 	{ "SYSASSERT", 0x35 },
1579 	{ "UCODE_VERSION_MISMATCH", 0x37 },
1580 	{ "BAD_COMMAND", 0x38 },
1581 	{ "NMI_INTERRUPT_DATA_ACTION_PT", 0x3C },
1582 	{ "FATAL_ERROR", 0x3D },
1583 	{ "NMI_TRM_HW_ERR", 0x46 },
1584 	{ "NMI_INTERRUPT_TRM", 0x4C },
1585 	{ "NMI_INTERRUPT_BREAK_POINT", 0x54 },
1586 	{ "NMI_INTERRUPT_WDG_RXF_FULL", 0x5C },
1587 	{ "NMI_INTERRUPT_WDG_NO_RBD_RXF_FULL", 0x64 },
1588 	{ "NMI_INTERRUPT_HOST", 0x66 },
1589 	{ "NMI_INTERRUPT_ACTION_PT", 0x7C },
1590 	{ "NMI_INTERRUPT_UNKNOWN", 0x84 },
1591 	{ "NMI_INTERRUPT_INST_ACTION_PT", 0x86 },
1592 	{ "ADVANCED_SYSASSERT", 0 },
1593 };
1594 
1595 static const char *desc_lookup(u32 num)
1596 {
1597 	int i;
1598 	int max = ARRAY_SIZE(desc_lookup_text);
1599 
1600 	if (num < max)
1601 		return desc_lookup_text[num];
1602 
1603 	max = ARRAY_SIZE(advanced_lookup) - 1;
1604 	for (i = 0; i < max; i++) {
1605 		if (advanced_lookup[i].num == num)
1606 			break;
1607 	}
1608 	return advanced_lookup[i].name;
1609 }
1610 
1611 #define ERROR_START_OFFSET  (1 * sizeof(u32))
1612 #define ERROR_ELEM_SIZE     (7 * sizeof(u32))
1613 
1614 static void iwl_dump_nic_error_log(struct iwl_priv *priv)
1615 {
1616 	struct iwl_trans *trans = priv->trans;
1617 	u32 base;
1618 	struct iwl_error_event_table table;
1619 
1620 	base = priv->device_pointers.error_event_table;
1621 	if (priv->cur_ucode == IWL_UCODE_INIT) {
1622 		if (!base)
1623 			base = priv->fw->init_errlog_ptr;
1624 	} else {
1625 		if (!base)
1626 			base = priv->fw->inst_errlog_ptr;
1627 	}
1628 
1629 	if (!iwlagn_hw_valid_rtc_data_addr(base)) {
1630 		IWL_ERR(priv,
1631 			"Not valid error log pointer 0x%08X for %s uCode\n",
1632 			base,
1633 			(priv->cur_ucode == IWL_UCODE_INIT)
1634 					? "Init" : "RT");
1635 		return;
1636 	}
1637 
1638 	/*TODO: Update dbgfs with ISR error stats obtained below */
1639 	iwl_trans_read_mem_bytes(trans, base, &table, sizeof(table));
1640 
1641 	if (ERROR_START_OFFSET <= table.valid * ERROR_ELEM_SIZE) {
1642 		IWL_ERR(trans, "Start IWL Error Log Dump:\n");
1643 		IWL_ERR(trans, "Status: 0x%08lX, count: %d\n",
1644 			priv->status, table.valid);
1645 	}
1646 
1647 	IWL_ERR(priv, "0x%08X | %-28s\n", table.error_id,
1648 		desc_lookup(table.error_id));
1649 	IWL_ERR(priv, "0x%08X | uPc\n", table.pc);
1650 	IWL_ERR(priv, "0x%08X | branchlink1\n", table.blink1);
1651 	IWL_ERR(priv, "0x%08X | branchlink2\n", table.blink2);
1652 	IWL_ERR(priv, "0x%08X | interruptlink1\n", table.ilink1);
1653 	IWL_ERR(priv, "0x%08X | interruptlink2\n", table.ilink2);
1654 	IWL_ERR(priv, "0x%08X | data1\n", table.data1);
1655 	IWL_ERR(priv, "0x%08X | data2\n", table.data2);
1656 	IWL_ERR(priv, "0x%08X | line\n", table.line);
1657 	IWL_ERR(priv, "0x%08X | beacon time\n", table.bcon_time);
1658 	IWL_ERR(priv, "0x%08X | tsf low\n", table.tsf_low);
1659 	IWL_ERR(priv, "0x%08X | tsf hi\n", table.tsf_hi);
1660 	IWL_ERR(priv, "0x%08X | time gp1\n", table.gp1);
1661 	IWL_ERR(priv, "0x%08X | time gp2\n", table.gp2);
1662 	IWL_ERR(priv, "0x%08X | time gp3\n", table.gp3);
1663 	IWL_ERR(priv, "0x%08X | uCode version\n", table.ucode_ver);
1664 	IWL_ERR(priv, "0x%08X | hw version\n", table.hw_ver);
1665 	IWL_ERR(priv, "0x%08X | board version\n", table.brd_ver);
1666 	IWL_ERR(priv, "0x%08X | hcmd\n", table.hcmd);
1667 	IWL_ERR(priv, "0x%08X | isr0\n", table.isr0);
1668 	IWL_ERR(priv, "0x%08X | isr1\n", table.isr1);
1669 	IWL_ERR(priv, "0x%08X | isr2\n", table.isr2);
1670 	IWL_ERR(priv, "0x%08X | isr3\n", table.isr3);
1671 	IWL_ERR(priv, "0x%08X | isr4\n", table.isr4);
1672 	IWL_ERR(priv, "0x%08X | isr_pref\n", table.isr_pref);
1673 	IWL_ERR(priv, "0x%08X | wait_event\n", table.wait_event);
1674 	IWL_ERR(priv, "0x%08X | l2p_control\n", table.l2p_control);
1675 	IWL_ERR(priv, "0x%08X | l2p_duration\n", table.l2p_duration);
1676 	IWL_ERR(priv, "0x%08X | l2p_mhvalid\n", table.l2p_mhvalid);
1677 	IWL_ERR(priv, "0x%08X | l2p_addr_match\n", table.l2p_addr_match);
1678 	IWL_ERR(priv, "0x%08X | lmpm_pmg_sel\n", table.lmpm_pmg_sel);
1679 	IWL_ERR(priv, "0x%08X | timestamp\n", table.u_timestamp);
1680 	IWL_ERR(priv, "0x%08X | flow_handler\n", table.flow_handler);
1681 }
1682 
1683 #define EVENT_START_OFFSET  (4 * sizeof(u32))
1684 
1685 /*
1686  * iwl_print_event_log - Dump error event log to syslog
1687  */
1688 static int iwl_print_event_log(struct iwl_priv *priv, u32 start_idx,
1689 			       u32 num_events, u32 mode,
1690 			       int pos, char **buf, size_t bufsz)
1691 {
1692 	u32 i;
1693 	u32 base;       /* SRAM byte address of event log header */
1694 	u32 event_size; /* 2 u32s, or 3 u32s if timestamp recorded */
1695 	u32 ptr;        /* SRAM byte address of log data */
1696 	u32 ev, time, data; /* event log data */
1697 	unsigned long reg_flags;
1698 
1699 	struct iwl_trans *trans = priv->trans;
1700 
1701 	if (num_events == 0)
1702 		return pos;
1703 
1704 	base = priv->device_pointers.log_event_table;
1705 	if (priv->cur_ucode == IWL_UCODE_INIT) {
1706 		if (!base)
1707 			base = priv->fw->init_evtlog_ptr;
1708 	} else {
1709 		if (!base)
1710 			base = priv->fw->inst_evtlog_ptr;
1711 	}
1712 
1713 	if (mode == 0)
1714 		event_size = 2 * sizeof(u32);
1715 	else
1716 		event_size = 3 * sizeof(u32);
1717 
1718 	ptr = base + EVENT_START_OFFSET + (start_idx * event_size);
1719 
1720 	/* Make sure device is powered up for SRAM reads */
1721 	if (!iwl_trans_grab_nic_access(trans, &reg_flags))
1722 		return pos;
1723 
1724 	/* Set starting address; reads will auto-increment */
1725 	iwl_write32(trans, HBUS_TARG_MEM_RADDR, ptr);
1726 
1727 	/* "time" is actually "data" for mode 0 (no timestamp).
1728 	* place event id # at far right for easier visual parsing. */
1729 	for (i = 0; i < num_events; i++) {
1730 		ev = iwl_read32(trans, HBUS_TARG_MEM_RDAT);
1731 		time = iwl_read32(trans, HBUS_TARG_MEM_RDAT);
1732 		if (mode == 0) {
1733 			/* data, ev */
1734 			if (bufsz) {
1735 				pos += scnprintf(*buf + pos, bufsz - pos,
1736 						"EVT_LOG:0x%08x:%04u\n",
1737 						time, ev);
1738 			} else {
1739 				trace_iwlwifi_dev_ucode_event(trans->dev, 0,
1740 					time, ev);
1741 				IWL_ERR(priv, "EVT_LOG:0x%08x:%04u\n",
1742 					time, ev);
1743 			}
1744 		} else {
1745 			data = iwl_read32(trans, HBUS_TARG_MEM_RDAT);
1746 			if (bufsz) {
1747 				pos += scnprintf(*buf + pos, bufsz - pos,
1748 						"EVT_LOGT:%010u:0x%08x:%04u\n",
1749 						 time, data, ev);
1750 			} else {
1751 				IWL_ERR(priv, "EVT_LOGT:%010u:0x%08x:%04u\n",
1752 					time, data, ev);
1753 				trace_iwlwifi_dev_ucode_event(trans->dev, time,
1754 					data, ev);
1755 			}
1756 		}
1757 	}
1758 
1759 	/* Allow device to power down */
1760 	iwl_trans_release_nic_access(trans, &reg_flags);
1761 	return pos;
1762 }
1763 
1764 /*
1765  * iwl_print_last_event_logs - Dump the newest # of event log to syslog
1766  */
1767 static int iwl_print_last_event_logs(struct iwl_priv *priv, u32 capacity,
1768 				    u32 num_wraps, u32 next_entry,
1769 				    u32 size, u32 mode,
1770 				    int pos, char **buf, size_t bufsz)
1771 {
1772 	/*
1773 	 * display the newest DEFAULT_LOG_ENTRIES entries
1774 	 * i.e the entries just before the next ont that uCode would fill.
1775 	 */
1776 	if (num_wraps) {
1777 		if (next_entry < size) {
1778 			pos = iwl_print_event_log(priv,
1779 						capacity - (size - next_entry),
1780 						size - next_entry, mode,
1781 						pos, buf, bufsz);
1782 			pos = iwl_print_event_log(priv, 0,
1783 						  next_entry, mode,
1784 						  pos, buf, bufsz);
1785 		} else
1786 			pos = iwl_print_event_log(priv, next_entry - size,
1787 						  size, mode, pos, buf, bufsz);
1788 	} else {
1789 		if (next_entry < size) {
1790 			pos = iwl_print_event_log(priv, 0, next_entry,
1791 						  mode, pos, buf, bufsz);
1792 		} else {
1793 			pos = iwl_print_event_log(priv, next_entry - size,
1794 						  size, mode, pos, buf, bufsz);
1795 		}
1796 	}
1797 	return pos;
1798 }
1799 
1800 #define DEFAULT_DUMP_EVENT_LOG_ENTRIES (20)
1801 
1802 int iwl_dump_nic_event_log(struct iwl_priv *priv, bool full_log,
1803 			    char **buf)
1804 {
1805 	u32 base;       /* SRAM byte address of event log header */
1806 	u32 capacity;   /* event log capacity in # entries */
1807 	u32 mode;       /* 0 - no timestamp, 1 - timestamp recorded */
1808 	u32 num_wraps;  /* # times uCode wrapped to top of log */
1809 	u32 next_entry; /* index of next entry to be written by uCode */
1810 	u32 size;       /* # entries that we'll print */
1811 	u32 logsize;
1812 	int pos = 0;
1813 	size_t bufsz = 0;
1814 	struct iwl_trans *trans = priv->trans;
1815 
1816 	base = priv->device_pointers.log_event_table;
1817 	if (priv->cur_ucode == IWL_UCODE_INIT) {
1818 		logsize = priv->fw->init_evtlog_size;
1819 		if (!base)
1820 			base = priv->fw->init_evtlog_ptr;
1821 	} else {
1822 		logsize = priv->fw->inst_evtlog_size;
1823 		if (!base)
1824 			base = priv->fw->inst_evtlog_ptr;
1825 	}
1826 
1827 	if (!iwlagn_hw_valid_rtc_data_addr(base)) {
1828 		IWL_ERR(priv,
1829 			"Invalid event log pointer 0x%08X for %s uCode\n",
1830 			base,
1831 			(priv->cur_ucode == IWL_UCODE_INIT)
1832 					? "Init" : "RT");
1833 		return -EINVAL;
1834 	}
1835 
1836 	/* event log header */
1837 	capacity = iwl_trans_read_mem32(trans, base);
1838 	mode = iwl_trans_read_mem32(trans, base + (1 * sizeof(u32)));
1839 	num_wraps = iwl_trans_read_mem32(trans, base + (2 * sizeof(u32)));
1840 	next_entry = iwl_trans_read_mem32(trans, base + (3 * sizeof(u32)));
1841 
1842 	if (capacity > logsize) {
1843 		IWL_ERR(priv, "Log capacity %d is bogus, limit to %d "
1844 			"entries\n", capacity, logsize);
1845 		capacity = logsize;
1846 	}
1847 
1848 	if (next_entry > logsize) {
1849 		IWL_ERR(priv, "Log write index %d is bogus, limit to %d\n",
1850 			next_entry, logsize);
1851 		next_entry = logsize;
1852 	}
1853 
1854 	size = num_wraps ? capacity : next_entry;
1855 
1856 	/* bail out if nothing in log */
1857 	if (size == 0) {
1858 		IWL_ERR(trans, "Start IWL Event Log Dump: nothing in log\n");
1859 		return pos;
1860 	}
1861 
1862 	if (!(iwl_have_debug_level(IWL_DL_FW)) && !full_log)
1863 		size = (size > DEFAULT_DUMP_EVENT_LOG_ENTRIES)
1864 			? DEFAULT_DUMP_EVENT_LOG_ENTRIES : size;
1865 	IWL_ERR(priv, "Start IWL Event Log Dump: display last %u entries\n",
1866 		size);
1867 
1868 #ifdef CONFIG_IWLWIFI_DEBUG
1869 	if (buf) {
1870 		if (full_log)
1871 			bufsz = capacity * 48;
1872 		else
1873 			bufsz = size * 48;
1874 		*buf = kmalloc(bufsz, GFP_KERNEL);
1875 		if (!*buf)
1876 			return -ENOMEM;
1877 	}
1878 	if (iwl_have_debug_level(IWL_DL_FW) || full_log) {
1879 		/*
1880 		 * if uCode has wrapped back to top of log,
1881 		 * start at the oldest entry,
1882 		 * i.e the next one that uCode would fill.
1883 		 */
1884 		if (num_wraps)
1885 			pos = iwl_print_event_log(priv, next_entry,
1886 						capacity - next_entry, mode,
1887 						pos, buf, bufsz);
1888 		/* (then/else) start at top of log */
1889 		pos = iwl_print_event_log(priv, 0,
1890 					  next_entry, mode, pos, buf, bufsz);
1891 	} else
1892 		pos = iwl_print_last_event_logs(priv, capacity, num_wraps,
1893 						next_entry, size, mode,
1894 						pos, buf, bufsz);
1895 #else
1896 	pos = iwl_print_last_event_logs(priv, capacity, num_wraps,
1897 					next_entry, size, mode,
1898 					pos, buf, bufsz);
1899 #endif
1900 	return pos;
1901 }
1902 
1903 static void iwlagn_fw_error(struct iwl_priv *priv, bool ondemand)
1904 {
1905 	unsigned int reload_msec;
1906 	unsigned long reload_jiffies;
1907 
1908 	if (iwl_have_debug_level(IWL_DL_FW))
1909 		iwl_print_rx_config_cmd(priv, IWL_RXON_CTX_BSS);
1910 
1911 	/* uCode is no longer loaded. */
1912 	priv->ucode_loaded = false;
1913 
1914 	/* Set the FW error flag -- cleared on iwl_down */
1915 	set_bit(STATUS_FW_ERROR, &priv->status);
1916 
1917 	iwl_abort_notification_waits(&priv->notif_wait);
1918 
1919 	/* Keep the restart process from trying to send host
1920 	 * commands by clearing the ready bit */
1921 	clear_bit(STATUS_READY, &priv->status);
1922 
1923 	if (!ondemand) {
1924 		/*
1925 		 * If firmware keep reloading, then it indicate something
1926 		 * serious wrong and firmware having problem to recover
1927 		 * from it. Instead of keep trying which will fill the syslog
1928 		 * and hang the system, let's just stop it
1929 		 */
1930 		reload_jiffies = jiffies;
1931 		reload_msec = jiffies_to_msecs((long) reload_jiffies -
1932 					(long) priv->reload_jiffies);
1933 		priv->reload_jiffies = reload_jiffies;
1934 		if (reload_msec <= IWL_MIN_RELOAD_DURATION) {
1935 			priv->reload_count++;
1936 			if (priv->reload_count >= IWL_MAX_CONTINUE_RELOAD_CNT) {
1937 				IWL_ERR(priv, "BUG_ON, Stop restarting\n");
1938 				return;
1939 			}
1940 		} else
1941 			priv->reload_count = 0;
1942 	}
1943 
1944 	if (!test_bit(STATUS_EXIT_PENDING, &priv->status)) {
1945 		if (iwlwifi_mod_params.fw_restart) {
1946 			IWL_DEBUG_FW(priv,
1947 				     "Restarting adapter due to uCode error.\n");
1948 			queue_work(priv->workqueue, &priv->restart);
1949 		} else
1950 			IWL_DEBUG_FW(priv,
1951 				     "Detected FW error, but not restarting\n");
1952 	}
1953 }
1954 
1955 static void iwl_nic_error(struct iwl_op_mode *op_mode)
1956 {
1957 	struct iwl_priv *priv = IWL_OP_MODE_GET_DVM(op_mode);
1958 
1959 	IWL_ERR(priv, "Loaded firmware version: %s\n",
1960 		priv->fw->fw_version);
1961 
1962 	iwl_dump_nic_error_log(priv);
1963 	iwl_dump_nic_event_log(priv, false, NULL);
1964 
1965 	iwlagn_fw_error(priv, false);
1966 }
1967 
1968 static void iwl_cmd_queue_full(struct iwl_op_mode *op_mode)
1969 {
1970 	struct iwl_priv *priv = IWL_OP_MODE_GET_DVM(op_mode);
1971 
1972 	if (!iwl_check_for_ct_kill(priv)) {
1973 		IWL_ERR(priv, "Restarting adapter queue is full\n");
1974 		iwlagn_fw_error(priv, false);
1975 	}
1976 }
1977 
1978 #define EEPROM_RF_CONFIG_TYPE_MAX      0x3
1979 
1980 static void iwl_nic_config(struct iwl_op_mode *op_mode)
1981 {
1982 	struct iwl_priv *priv = IWL_OP_MODE_GET_DVM(op_mode);
1983 
1984 	/* SKU Control */
1985 	iwl_trans_set_bits_mask(priv->trans, CSR_HW_IF_CONFIG_REG,
1986 				CSR_HW_IF_CONFIG_REG_MSK_MAC_DASH |
1987 				CSR_HW_IF_CONFIG_REG_MSK_MAC_STEP,
1988 				(CSR_HW_REV_STEP(priv->trans->hw_rev) <<
1989 					CSR_HW_IF_CONFIG_REG_POS_MAC_STEP) |
1990 				(CSR_HW_REV_DASH(priv->trans->hw_rev) <<
1991 					CSR_HW_IF_CONFIG_REG_POS_MAC_DASH));
1992 
1993 	/* write radio config values to register */
1994 	if (priv->nvm_data->radio_cfg_type <= EEPROM_RF_CONFIG_TYPE_MAX) {
1995 		u32 reg_val =
1996 			priv->nvm_data->radio_cfg_type <<
1997 				CSR_HW_IF_CONFIG_REG_POS_PHY_TYPE |
1998 			priv->nvm_data->radio_cfg_step <<
1999 				CSR_HW_IF_CONFIG_REG_POS_PHY_STEP |
2000 			priv->nvm_data->radio_cfg_dash <<
2001 				CSR_HW_IF_CONFIG_REG_POS_PHY_DASH;
2002 
2003 		iwl_trans_set_bits_mask(priv->trans, CSR_HW_IF_CONFIG_REG,
2004 					CSR_HW_IF_CONFIG_REG_MSK_PHY_TYPE |
2005 					CSR_HW_IF_CONFIG_REG_MSK_PHY_STEP |
2006 					CSR_HW_IF_CONFIG_REG_MSK_PHY_DASH,
2007 					reg_val);
2008 
2009 		IWL_INFO(priv, "Radio type=0x%x-0x%x-0x%x\n",
2010 			 priv->nvm_data->radio_cfg_type,
2011 			 priv->nvm_data->radio_cfg_step,
2012 			 priv->nvm_data->radio_cfg_dash);
2013 	} else {
2014 		WARN_ON(1);
2015 	}
2016 
2017 	/* set CSR_HW_CONFIG_REG for uCode use */
2018 	iwl_set_bit(priv->trans, CSR_HW_IF_CONFIG_REG,
2019 		    CSR_HW_IF_CONFIG_REG_BIT_RADIO_SI |
2020 		    CSR_HW_IF_CONFIG_REG_BIT_MAC_SI);
2021 
2022 	/* W/A : NIC is stuck in a reset state after Early PCIe power off
2023 	 * (PCIe power is lost before PERST# is asserted),
2024 	 * causing ME FW to lose ownership and not being able to obtain it back.
2025 	 */
2026 	iwl_set_bits_mask_prph(priv->trans, APMG_PS_CTRL_REG,
2027 			       APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS,
2028 			       ~APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS);
2029 
2030 	if (priv->lib->nic_config)
2031 		priv->lib->nic_config(priv);
2032 }
2033 
2034 static void iwl_wimax_active(struct iwl_op_mode *op_mode)
2035 {
2036 	struct iwl_priv *priv = IWL_OP_MODE_GET_DVM(op_mode);
2037 
2038 	clear_bit(STATUS_READY, &priv->status);
2039 	IWL_ERR(priv, "RF is used by WiMAX\n");
2040 }
2041 
2042 static void iwl_stop_sw_queue(struct iwl_op_mode *op_mode, int queue)
2043 {
2044 	struct iwl_priv *priv = IWL_OP_MODE_GET_DVM(op_mode);
2045 	int mq = priv->queue_to_mac80211[queue];
2046 
2047 	if (WARN_ON_ONCE(mq == IWL_INVALID_MAC80211_QUEUE))
2048 		return;
2049 
2050 	if (atomic_inc_return(&priv->queue_stop_count[mq]) > 1) {
2051 		IWL_DEBUG_TX_QUEUES(priv,
2052 			"queue %d (mac80211 %d) already stopped\n",
2053 			queue, mq);
2054 		return;
2055 	}
2056 
2057 	set_bit(mq, &priv->transport_queue_stop);
2058 	ieee80211_stop_queue(priv->hw, mq);
2059 }
2060 
2061 static void iwl_wake_sw_queue(struct iwl_op_mode *op_mode, int queue)
2062 {
2063 	struct iwl_priv *priv = IWL_OP_MODE_GET_DVM(op_mode);
2064 	int mq = priv->queue_to_mac80211[queue];
2065 
2066 	if (WARN_ON_ONCE(mq == IWL_INVALID_MAC80211_QUEUE))
2067 		return;
2068 
2069 	if (atomic_dec_return(&priv->queue_stop_count[mq]) > 0) {
2070 		IWL_DEBUG_TX_QUEUES(priv,
2071 			"queue %d (mac80211 %d) already awake\n",
2072 			queue, mq);
2073 		return;
2074 	}
2075 
2076 	clear_bit(mq, &priv->transport_queue_stop);
2077 
2078 	if (!priv->passive_no_rx)
2079 		ieee80211_wake_queue(priv->hw, mq);
2080 }
2081 
2082 void iwlagn_lift_passive_no_rx(struct iwl_priv *priv)
2083 {
2084 	int mq;
2085 
2086 	if (!priv->passive_no_rx)
2087 		return;
2088 
2089 	for (mq = 0; mq < IWLAGN_FIRST_AMPDU_QUEUE; mq++) {
2090 		if (!test_bit(mq, &priv->transport_queue_stop)) {
2091 			IWL_DEBUG_TX_QUEUES(priv, "Wake queue %d\n", mq);
2092 			ieee80211_wake_queue(priv->hw, mq);
2093 		} else {
2094 			IWL_DEBUG_TX_QUEUES(priv, "Don't wake queue %d\n", mq);
2095 		}
2096 	}
2097 
2098 	priv->passive_no_rx = false;
2099 }
2100 
2101 static void iwl_free_skb(struct iwl_op_mode *op_mode, struct sk_buff *skb)
2102 {
2103 	struct iwl_priv *priv = IWL_OP_MODE_GET_DVM(op_mode);
2104 	struct ieee80211_tx_info *info;
2105 
2106 	info = IEEE80211_SKB_CB(skb);
2107 	iwl_trans_free_tx_cmd(priv->trans, info->driver_data[1]);
2108 	ieee80211_free_txskb(priv->hw, skb);
2109 }
2110 
2111 static bool iwl_set_hw_rfkill_state(struct iwl_op_mode *op_mode, bool state)
2112 {
2113 	struct iwl_priv *priv = IWL_OP_MODE_GET_DVM(op_mode);
2114 
2115 	if (state)
2116 		set_bit(STATUS_RF_KILL_HW, &priv->status);
2117 	else
2118 		clear_bit(STATUS_RF_KILL_HW, &priv->status);
2119 
2120 	wiphy_rfkill_set_hw_state(priv->hw->wiphy, state);
2121 
2122 	return false;
2123 }
2124 
2125 static const struct iwl_op_mode_ops iwl_dvm_ops = {
2126 	.start = iwl_op_mode_dvm_start,
2127 	.stop = iwl_op_mode_dvm_stop,
2128 	.rx = iwl_rx_dispatch,
2129 	.queue_full = iwl_stop_sw_queue,
2130 	.queue_not_full = iwl_wake_sw_queue,
2131 	.hw_rf_kill = iwl_set_hw_rfkill_state,
2132 	.free_skb = iwl_free_skb,
2133 	.nic_error = iwl_nic_error,
2134 	.cmd_queue_full = iwl_cmd_queue_full,
2135 	.nic_config = iwl_nic_config,
2136 	.wimax_active = iwl_wimax_active,
2137 };
2138 
2139 /*****************************************************************************
2140  *
2141  * driver and module entry point
2142  *
2143  *****************************************************************************/
2144 static int __init iwl_init(void)
2145 {
2146 
2147 	int ret;
2148 
2149 	ret = iwlagn_rate_control_register();
2150 	if (ret) {
2151 		pr_err("Unable to register rate control algorithm: %d\n", ret);
2152 		return ret;
2153 	}
2154 
2155 	ret = iwl_opmode_register("iwldvm", &iwl_dvm_ops);
2156 	if (ret) {
2157 		pr_err("Unable to register op_mode: %d\n", ret);
2158 		iwlagn_rate_control_unregister();
2159 	}
2160 
2161 	return ret;
2162 }
2163 module_init(iwl_init);
2164 
2165 static void __exit iwl_exit(void)
2166 {
2167 	iwl_opmode_deregister("iwldvm");
2168 	iwlagn_rate_control_unregister();
2169 }
2170 module_exit(iwl_exit);
2171