1 /****************************************************************************** 2 * 3 * Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms of version 2 of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * The full GNU General Public License is included in this distribution in the 15 * file called LICENSE. 16 * 17 * Contact Information: 18 * Intel Linux Wireless <linuxwifi@intel.com> 19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 20 * 21 *****************************************************************************/ 22 23 /* 24 * DVM device-specific data & functions 25 */ 26 #include "iwl-io.h" 27 #include "iwl-prph.h" 28 #include "iwl-eeprom-parse.h" 29 30 #include "agn.h" 31 #include "dev.h" 32 #include "commands.h" 33 34 35 /* 36 * 1000 series 37 * =========== 38 */ 39 40 /* 41 * For 1000, use advance thermal throttling critical temperature threshold, 42 * but legacy thermal management implementation for now. 43 * This is for the reason of 1000 uCode using advance thermal throttling API 44 * but not implement ct_kill_exit based on ct_kill exit temperature 45 * so the thermal throttling will still based on legacy thermal throttling 46 * management. 47 * The code here need to be modified once 1000 uCode has the advanced thermal 48 * throttling algorithm in place 49 */ 50 static void iwl1000_set_ct_threshold(struct iwl_priv *priv) 51 { 52 /* want Celsius */ 53 priv->hw_params.ct_kill_threshold = CT_KILL_THRESHOLD_LEGACY; 54 priv->hw_params.ct_kill_exit_threshold = CT_KILL_EXIT_THRESHOLD; 55 } 56 57 /* NIC configuration for 1000 series */ 58 static void iwl1000_nic_config(struct iwl_priv *priv) 59 { 60 /* Setting digital SVR for 1000 card to 1.32V */ 61 /* locking is acquired in iwl_set_bits_mask_prph() function */ 62 iwl_set_bits_mask_prph(priv->trans, APMG_DIGITAL_SVR_REG, 63 APMG_SVR_DIGITAL_VOLTAGE_1_32, 64 ~APMG_SVR_VOLTAGE_CONFIG_BIT_MSK); 65 } 66 67 /** 68 * iwl_beacon_time_mask_low - mask of lower 32 bit of beacon time 69 * @priv -- pointer to iwl_priv data structure 70 * @tsf_bits -- number of bits need to shift for masking) 71 */ 72 static inline u32 iwl_beacon_time_mask_low(struct iwl_priv *priv, 73 u16 tsf_bits) 74 { 75 return (1 << tsf_bits) - 1; 76 } 77 78 /** 79 * iwl_beacon_time_mask_high - mask of higher 32 bit of beacon time 80 * @priv -- pointer to iwl_priv data structure 81 * @tsf_bits -- number of bits need to shift for masking) 82 */ 83 static inline u32 iwl_beacon_time_mask_high(struct iwl_priv *priv, 84 u16 tsf_bits) 85 { 86 return ((1 << (32 - tsf_bits)) - 1) << tsf_bits; 87 } 88 89 /* 90 * extended beacon time format 91 * time in usec will be changed into a 32-bit value in extended:internal format 92 * the extended part is the beacon counts 93 * the internal part is the time in usec within one beacon interval 94 */ 95 static u32 iwl_usecs_to_beacons(struct iwl_priv *priv, u32 usec, 96 u32 beacon_interval) 97 { 98 u32 quot; 99 u32 rem; 100 u32 interval = beacon_interval * TIME_UNIT; 101 102 if (!interval || !usec) 103 return 0; 104 105 quot = (usec / interval) & 106 (iwl_beacon_time_mask_high(priv, IWLAGN_EXT_BEACON_TIME_POS) >> 107 IWLAGN_EXT_BEACON_TIME_POS); 108 rem = (usec % interval) & iwl_beacon_time_mask_low(priv, 109 IWLAGN_EXT_BEACON_TIME_POS); 110 111 return (quot << IWLAGN_EXT_BEACON_TIME_POS) + rem; 112 } 113 114 /* base is usually what we get from ucode with each received frame, 115 * the same as HW timer counter counting down 116 */ 117 static __le32 iwl_add_beacon_time(struct iwl_priv *priv, u32 base, 118 u32 addon, u32 beacon_interval) 119 { 120 u32 base_low = base & iwl_beacon_time_mask_low(priv, 121 IWLAGN_EXT_BEACON_TIME_POS); 122 u32 addon_low = addon & iwl_beacon_time_mask_low(priv, 123 IWLAGN_EXT_BEACON_TIME_POS); 124 u32 interval = beacon_interval * TIME_UNIT; 125 u32 res = (base & iwl_beacon_time_mask_high(priv, 126 IWLAGN_EXT_BEACON_TIME_POS)) + 127 (addon & iwl_beacon_time_mask_high(priv, 128 IWLAGN_EXT_BEACON_TIME_POS)); 129 130 if (base_low > addon_low) 131 res += base_low - addon_low; 132 else if (base_low < addon_low) { 133 res += interval + base_low - addon_low; 134 res += (1 << IWLAGN_EXT_BEACON_TIME_POS); 135 } else 136 res += (1 << IWLAGN_EXT_BEACON_TIME_POS); 137 138 return cpu_to_le32(res); 139 } 140 141 static const struct iwl_sensitivity_ranges iwl1000_sensitivity = { 142 .min_nrg_cck = 95, 143 .auto_corr_min_ofdm = 90, 144 .auto_corr_min_ofdm_mrc = 170, 145 .auto_corr_min_ofdm_x1 = 120, 146 .auto_corr_min_ofdm_mrc_x1 = 240, 147 148 .auto_corr_max_ofdm = 120, 149 .auto_corr_max_ofdm_mrc = 210, 150 .auto_corr_max_ofdm_x1 = 155, 151 .auto_corr_max_ofdm_mrc_x1 = 290, 152 153 .auto_corr_min_cck = 125, 154 .auto_corr_max_cck = 200, 155 .auto_corr_min_cck_mrc = 170, 156 .auto_corr_max_cck_mrc = 400, 157 .nrg_th_cck = 95, 158 .nrg_th_ofdm = 95, 159 160 .barker_corr_th_min = 190, 161 .barker_corr_th_min_mrc = 390, 162 .nrg_th_cca = 62, 163 }; 164 165 static void iwl1000_hw_set_hw_params(struct iwl_priv *priv) 166 { 167 iwl1000_set_ct_threshold(priv); 168 169 /* Set initial sensitivity parameters */ 170 priv->hw_params.sens = &iwl1000_sensitivity; 171 } 172 173 const struct iwl_dvm_cfg iwl_dvm_1000_cfg = { 174 .set_hw_params = iwl1000_hw_set_hw_params, 175 .nic_config = iwl1000_nic_config, 176 .temperature = iwlagn_temperature, 177 .support_ct_kill_exit = true, 178 .plcp_delta_threshold = IWL_MAX_PLCP_ERR_EXT_LONG_THRESHOLD_DEF, 179 .chain_noise_scale = 1000, 180 }; 181 182 183 /* 184 * 2000 series 185 * =========== 186 */ 187 188 static void iwl2000_set_ct_threshold(struct iwl_priv *priv) 189 { 190 /* want Celsius */ 191 priv->hw_params.ct_kill_threshold = CT_KILL_THRESHOLD; 192 priv->hw_params.ct_kill_exit_threshold = CT_KILL_EXIT_THRESHOLD; 193 } 194 195 /* NIC configuration for 2000 series */ 196 static void iwl2000_nic_config(struct iwl_priv *priv) 197 { 198 iwl_set_bit(priv->trans, CSR_GP_DRIVER_REG, 199 CSR_GP_DRIVER_REG_BIT_RADIO_IQ_INVER); 200 } 201 202 static const struct iwl_sensitivity_ranges iwl2000_sensitivity = { 203 .min_nrg_cck = 97, 204 .auto_corr_min_ofdm = 80, 205 .auto_corr_min_ofdm_mrc = 128, 206 .auto_corr_min_ofdm_x1 = 105, 207 .auto_corr_min_ofdm_mrc_x1 = 192, 208 209 .auto_corr_max_ofdm = 145, 210 .auto_corr_max_ofdm_mrc = 232, 211 .auto_corr_max_ofdm_x1 = 110, 212 .auto_corr_max_ofdm_mrc_x1 = 232, 213 214 .auto_corr_min_cck = 125, 215 .auto_corr_max_cck = 175, 216 .auto_corr_min_cck_mrc = 160, 217 .auto_corr_max_cck_mrc = 310, 218 .nrg_th_cck = 97, 219 .nrg_th_ofdm = 100, 220 221 .barker_corr_th_min = 190, 222 .barker_corr_th_min_mrc = 390, 223 .nrg_th_cca = 62, 224 }; 225 226 static void iwl2000_hw_set_hw_params(struct iwl_priv *priv) 227 { 228 iwl2000_set_ct_threshold(priv); 229 230 /* Set initial sensitivity parameters */ 231 priv->hw_params.sens = &iwl2000_sensitivity; 232 } 233 234 const struct iwl_dvm_cfg iwl_dvm_2000_cfg = { 235 .set_hw_params = iwl2000_hw_set_hw_params, 236 .nic_config = iwl2000_nic_config, 237 .temperature = iwlagn_temperature, 238 .adv_thermal_throttle = true, 239 .support_ct_kill_exit = true, 240 .plcp_delta_threshold = IWL_MAX_PLCP_ERR_THRESHOLD_DEF, 241 .chain_noise_scale = 1000, 242 .hd_v2 = true, 243 .need_temp_offset_calib = true, 244 .temp_offset_v2 = true, 245 }; 246 247 const struct iwl_dvm_cfg iwl_dvm_105_cfg = { 248 .set_hw_params = iwl2000_hw_set_hw_params, 249 .nic_config = iwl2000_nic_config, 250 .temperature = iwlagn_temperature, 251 .adv_thermal_throttle = true, 252 .support_ct_kill_exit = true, 253 .plcp_delta_threshold = IWL_MAX_PLCP_ERR_THRESHOLD_DEF, 254 .chain_noise_scale = 1000, 255 .hd_v2 = true, 256 .need_temp_offset_calib = true, 257 .temp_offset_v2 = true, 258 .adv_pm = true, 259 }; 260 261 static const struct iwl_dvm_bt_params iwl2030_bt_params = { 262 /* Due to bluetooth, we transmit 2.4 GHz probes only on antenna A */ 263 .advanced_bt_coexist = true, 264 .agg_time_limit = BT_AGG_THRESHOLD_DEF, 265 .bt_init_traffic_load = IWL_BT_COEX_TRAFFIC_LOAD_NONE, 266 .bt_prio_boost = IWLAGN_BT_PRIO_BOOST_DEFAULT32, 267 .bt_sco_disable = true, 268 .bt_session_2 = true, 269 }; 270 271 const struct iwl_dvm_cfg iwl_dvm_2030_cfg = { 272 .set_hw_params = iwl2000_hw_set_hw_params, 273 .nic_config = iwl2000_nic_config, 274 .temperature = iwlagn_temperature, 275 .adv_thermal_throttle = true, 276 .support_ct_kill_exit = true, 277 .plcp_delta_threshold = IWL_MAX_PLCP_ERR_THRESHOLD_DEF, 278 .chain_noise_scale = 1000, 279 .hd_v2 = true, 280 .bt_params = &iwl2030_bt_params, 281 .need_temp_offset_calib = true, 282 .temp_offset_v2 = true, 283 .adv_pm = true, 284 }; 285 286 /* 287 * 5000 series 288 * =========== 289 */ 290 291 /* NIC configuration for 5000 series */ 292 static const struct iwl_sensitivity_ranges iwl5000_sensitivity = { 293 .min_nrg_cck = 100, 294 .auto_corr_min_ofdm = 90, 295 .auto_corr_min_ofdm_mrc = 170, 296 .auto_corr_min_ofdm_x1 = 105, 297 .auto_corr_min_ofdm_mrc_x1 = 220, 298 299 .auto_corr_max_ofdm = 120, 300 .auto_corr_max_ofdm_mrc = 210, 301 .auto_corr_max_ofdm_x1 = 120, 302 .auto_corr_max_ofdm_mrc_x1 = 240, 303 304 .auto_corr_min_cck = 125, 305 .auto_corr_max_cck = 200, 306 .auto_corr_min_cck_mrc = 200, 307 .auto_corr_max_cck_mrc = 400, 308 .nrg_th_cck = 100, 309 .nrg_th_ofdm = 100, 310 311 .barker_corr_th_min = 190, 312 .barker_corr_th_min_mrc = 390, 313 .nrg_th_cca = 62, 314 }; 315 316 static const struct iwl_sensitivity_ranges iwl5150_sensitivity = { 317 .min_nrg_cck = 95, 318 .auto_corr_min_ofdm = 90, 319 .auto_corr_min_ofdm_mrc = 170, 320 .auto_corr_min_ofdm_x1 = 105, 321 .auto_corr_min_ofdm_mrc_x1 = 220, 322 323 .auto_corr_max_ofdm = 120, 324 .auto_corr_max_ofdm_mrc = 210, 325 /* max = min for performance bug in 5150 DSP */ 326 .auto_corr_max_ofdm_x1 = 105, 327 .auto_corr_max_ofdm_mrc_x1 = 220, 328 329 .auto_corr_min_cck = 125, 330 .auto_corr_max_cck = 200, 331 .auto_corr_min_cck_mrc = 170, 332 .auto_corr_max_cck_mrc = 400, 333 .nrg_th_cck = 95, 334 .nrg_th_ofdm = 95, 335 336 .barker_corr_th_min = 190, 337 .barker_corr_th_min_mrc = 390, 338 .nrg_th_cca = 62, 339 }; 340 341 #define IWL_5150_VOLTAGE_TO_TEMPERATURE_COEFF (-5) 342 343 static s32 iwl_temp_calib_to_offset(struct iwl_priv *priv) 344 { 345 u16 temperature, voltage; 346 347 temperature = le16_to_cpu(priv->nvm_data->kelvin_temperature); 348 voltage = le16_to_cpu(priv->nvm_data->kelvin_voltage); 349 350 /* offset = temp - volt / coeff */ 351 return (s32)(temperature - 352 voltage / IWL_5150_VOLTAGE_TO_TEMPERATURE_COEFF); 353 } 354 355 static void iwl5150_set_ct_threshold(struct iwl_priv *priv) 356 { 357 const s32 volt2temp_coef = IWL_5150_VOLTAGE_TO_TEMPERATURE_COEFF; 358 s32 threshold = (s32)CELSIUS_TO_KELVIN(CT_KILL_THRESHOLD_LEGACY) - 359 iwl_temp_calib_to_offset(priv); 360 361 priv->hw_params.ct_kill_threshold = threshold * volt2temp_coef; 362 } 363 364 static void iwl5000_set_ct_threshold(struct iwl_priv *priv) 365 { 366 /* want Celsius */ 367 priv->hw_params.ct_kill_threshold = CT_KILL_THRESHOLD_LEGACY; 368 } 369 370 static void iwl5000_hw_set_hw_params(struct iwl_priv *priv) 371 { 372 iwl5000_set_ct_threshold(priv); 373 374 /* Set initial sensitivity parameters */ 375 priv->hw_params.sens = &iwl5000_sensitivity; 376 } 377 378 static void iwl5150_hw_set_hw_params(struct iwl_priv *priv) 379 { 380 iwl5150_set_ct_threshold(priv); 381 382 /* Set initial sensitivity parameters */ 383 priv->hw_params.sens = &iwl5150_sensitivity; 384 } 385 386 static void iwl5150_temperature(struct iwl_priv *priv) 387 { 388 u32 vt = 0; 389 s32 offset = iwl_temp_calib_to_offset(priv); 390 391 vt = le32_to_cpu(priv->statistics.common.temperature); 392 vt = vt / IWL_5150_VOLTAGE_TO_TEMPERATURE_COEFF + offset; 393 /* now vt hold the temperature in Kelvin */ 394 priv->temperature = KELVIN_TO_CELSIUS(vt); 395 iwl_tt_handler(priv); 396 } 397 398 static int iwl5000_hw_channel_switch(struct iwl_priv *priv, 399 struct ieee80211_channel_switch *ch_switch) 400 { 401 /* 402 * MULTI-FIXME 403 * See iwlagn_mac_channel_switch. 404 */ 405 struct iwl_rxon_context *ctx = &priv->contexts[IWL_RXON_CTX_BSS]; 406 struct iwl5000_channel_switch_cmd cmd; 407 u32 switch_time_in_usec, ucode_switch_time; 408 u16 ch; 409 u32 tsf_low; 410 u8 switch_count; 411 u16 beacon_interval = le16_to_cpu(ctx->timing.beacon_interval); 412 struct ieee80211_vif *vif = ctx->vif; 413 struct iwl_host_cmd hcmd = { 414 .id = REPLY_CHANNEL_SWITCH, 415 .len = { sizeof(cmd), }, 416 .data = { &cmd, }, 417 }; 418 419 cmd.band = priv->band == NL80211_BAND_2GHZ; 420 ch = ch_switch->chandef.chan->hw_value; 421 IWL_DEBUG_11H(priv, "channel switch from %d to %d\n", 422 ctx->active.channel, ch); 423 cmd.channel = cpu_to_le16(ch); 424 cmd.rxon_flags = ctx->staging.flags; 425 cmd.rxon_filter_flags = ctx->staging.filter_flags; 426 switch_count = ch_switch->count; 427 tsf_low = ch_switch->timestamp & 0x0ffffffff; 428 /* 429 * calculate the ucode channel switch time 430 * adding TSF as one of the factor for when to switch 431 */ 432 if ((priv->ucode_beacon_time > tsf_low) && beacon_interval) { 433 if (switch_count > ((priv->ucode_beacon_time - tsf_low) / 434 beacon_interval)) { 435 switch_count -= (priv->ucode_beacon_time - 436 tsf_low) / beacon_interval; 437 } else 438 switch_count = 0; 439 } 440 if (switch_count <= 1) 441 cmd.switch_time = cpu_to_le32(priv->ucode_beacon_time); 442 else { 443 switch_time_in_usec = 444 vif->bss_conf.beacon_int * switch_count * TIME_UNIT; 445 ucode_switch_time = iwl_usecs_to_beacons(priv, 446 switch_time_in_usec, 447 beacon_interval); 448 cmd.switch_time = iwl_add_beacon_time(priv, 449 priv->ucode_beacon_time, 450 ucode_switch_time, 451 beacon_interval); 452 } 453 IWL_DEBUG_11H(priv, "uCode time for the switch is 0x%x\n", 454 cmd.switch_time); 455 cmd.expect_beacon = 456 ch_switch->chandef.chan->flags & IEEE80211_CHAN_RADAR; 457 458 return iwl_dvm_send_cmd(priv, &hcmd); 459 } 460 461 const struct iwl_dvm_cfg iwl_dvm_5000_cfg = { 462 .set_hw_params = iwl5000_hw_set_hw_params, 463 .set_channel_switch = iwl5000_hw_channel_switch, 464 .temperature = iwlagn_temperature, 465 .plcp_delta_threshold = IWL_MAX_PLCP_ERR_LONG_THRESHOLD_DEF, 466 .chain_noise_scale = 1000, 467 .no_idle_support = true, 468 }; 469 470 const struct iwl_dvm_cfg iwl_dvm_5150_cfg = { 471 .set_hw_params = iwl5150_hw_set_hw_params, 472 .set_channel_switch = iwl5000_hw_channel_switch, 473 .temperature = iwl5150_temperature, 474 .plcp_delta_threshold = IWL_MAX_PLCP_ERR_LONG_THRESHOLD_DEF, 475 .chain_noise_scale = 1000, 476 .no_idle_support = true, 477 .no_xtal_calib = true, 478 }; 479 480 481 482 /* 483 * 6000 series 484 * =========== 485 */ 486 487 static void iwl6000_set_ct_threshold(struct iwl_priv *priv) 488 { 489 /* want Celsius */ 490 priv->hw_params.ct_kill_threshold = CT_KILL_THRESHOLD; 491 priv->hw_params.ct_kill_exit_threshold = CT_KILL_EXIT_THRESHOLD; 492 } 493 494 /* NIC configuration for 6000 series */ 495 static void iwl6000_nic_config(struct iwl_priv *priv) 496 { 497 switch (priv->cfg->device_family) { 498 case IWL_DEVICE_FAMILY_6005: 499 case IWL_DEVICE_FAMILY_6030: 500 case IWL_DEVICE_FAMILY_6000: 501 break; 502 case IWL_DEVICE_FAMILY_6000i: 503 /* 2x2 IPA phy type */ 504 iwl_write32(priv->trans, CSR_GP_DRIVER_REG, 505 CSR_GP_DRIVER_REG_BIT_RADIO_SKU_2x2_IPA); 506 break; 507 case IWL_DEVICE_FAMILY_6050: 508 /* Indicate calibration version to uCode. */ 509 if (priv->nvm_data->calib_version >= 6) 510 iwl_set_bit(priv->trans, CSR_GP_DRIVER_REG, 511 CSR_GP_DRIVER_REG_BIT_CALIB_VERSION6); 512 break; 513 case IWL_DEVICE_FAMILY_6150: 514 /* Indicate calibration version to uCode. */ 515 if (priv->nvm_data->calib_version >= 6) 516 iwl_set_bit(priv->trans, CSR_GP_DRIVER_REG, 517 CSR_GP_DRIVER_REG_BIT_CALIB_VERSION6); 518 iwl_set_bit(priv->trans, CSR_GP_DRIVER_REG, 519 CSR_GP_DRIVER_REG_BIT_6050_1x2); 520 break; 521 default: 522 WARN_ON(1); 523 } 524 } 525 526 static const struct iwl_sensitivity_ranges iwl6000_sensitivity = { 527 .min_nrg_cck = 110, 528 .auto_corr_min_ofdm = 80, 529 .auto_corr_min_ofdm_mrc = 128, 530 .auto_corr_min_ofdm_x1 = 105, 531 .auto_corr_min_ofdm_mrc_x1 = 192, 532 533 .auto_corr_max_ofdm = 145, 534 .auto_corr_max_ofdm_mrc = 232, 535 .auto_corr_max_ofdm_x1 = 110, 536 .auto_corr_max_ofdm_mrc_x1 = 232, 537 538 .auto_corr_min_cck = 125, 539 .auto_corr_max_cck = 175, 540 .auto_corr_min_cck_mrc = 160, 541 .auto_corr_max_cck_mrc = 310, 542 .nrg_th_cck = 110, 543 .nrg_th_ofdm = 110, 544 545 .barker_corr_th_min = 190, 546 .barker_corr_th_min_mrc = 336, 547 .nrg_th_cca = 62, 548 }; 549 550 static void iwl6000_hw_set_hw_params(struct iwl_priv *priv) 551 { 552 iwl6000_set_ct_threshold(priv); 553 554 /* Set initial sensitivity parameters */ 555 priv->hw_params.sens = &iwl6000_sensitivity; 556 557 } 558 559 static int iwl6000_hw_channel_switch(struct iwl_priv *priv, 560 struct ieee80211_channel_switch *ch_switch) 561 { 562 /* 563 * MULTI-FIXME 564 * See iwlagn_mac_channel_switch. 565 */ 566 struct iwl_rxon_context *ctx = &priv->contexts[IWL_RXON_CTX_BSS]; 567 struct iwl6000_channel_switch_cmd *cmd; 568 u32 switch_time_in_usec, ucode_switch_time; 569 u16 ch; 570 u32 tsf_low; 571 u8 switch_count; 572 u16 beacon_interval = le16_to_cpu(ctx->timing.beacon_interval); 573 struct ieee80211_vif *vif = ctx->vif; 574 struct iwl_host_cmd hcmd = { 575 .id = REPLY_CHANNEL_SWITCH, 576 .len = { sizeof(*cmd), }, 577 .dataflags[0] = IWL_HCMD_DFL_NOCOPY, 578 }; 579 int err; 580 581 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL); 582 if (!cmd) 583 return -ENOMEM; 584 585 hcmd.data[0] = cmd; 586 587 cmd->band = priv->band == NL80211_BAND_2GHZ; 588 ch = ch_switch->chandef.chan->hw_value; 589 IWL_DEBUG_11H(priv, "channel switch from %u to %u\n", 590 ctx->active.channel, ch); 591 cmd->channel = cpu_to_le16(ch); 592 cmd->rxon_flags = ctx->staging.flags; 593 cmd->rxon_filter_flags = ctx->staging.filter_flags; 594 switch_count = ch_switch->count; 595 tsf_low = ch_switch->timestamp & 0x0ffffffff; 596 /* 597 * calculate the ucode channel switch time 598 * adding TSF as one of the factor for when to switch 599 */ 600 if ((priv->ucode_beacon_time > tsf_low) && beacon_interval) { 601 if (switch_count > ((priv->ucode_beacon_time - tsf_low) / 602 beacon_interval)) { 603 switch_count -= (priv->ucode_beacon_time - 604 tsf_low) / beacon_interval; 605 } else 606 switch_count = 0; 607 } 608 if (switch_count <= 1) 609 cmd->switch_time = cpu_to_le32(priv->ucode_beacon_time); 610 else { 611 switch_time_in_usec = 612 vif->bss_conf.beacon_int * switch_count * TIME_UNIT; 613 ucode_switch_time = iwl_usecs_to_beacons(priv, 614 switch_time_in_usec, 615 beacon_interval); 616 cmd->switch_time = iwl_add_beacon_time(priv, 617 priv->ucode_beacon_time, 618 ucode_switch_time, 619 beacon_interval); 620 } 621 IWL_DEBUG_11H(priv, "uCode time for the switch is 0x%x\n", 622 cmd->switch_time); 623 cmd->expect_beacon = 624 ch_switch->chandef.chan->flags & IEEE80211_CHAN_RADAR; 625 626 err = iwl_dvm_send_cmd(priv, &hcmd); 627 kfree(cmd); 628 return err; 629 } 630 631 const struct iwl_dvm_cfg iwl_dvm_6000_cfg = { 632 .set_hw_params = iwl6000_hw_set_hw_params, 633 .set_channel_switch = iwl6000_hw_channel_switch, 634 .nic_config = iwl6000_nic_config, 635 .temperature = iwlagn_temperature, 636 .adv_thermal_throttle = true, 637 .support_ct_kill_exit = true, 638 .plcp_delta_threshold = IWL_MAX_PLCP_ERR_THRESHOLD_DEF, 639 .chain_noise_scale = 1000, 640 }; 641 642 const struct iwl_dvm_cfg iwl_dvm_6005_cfg = { 643 .set_hw_params = iwl6000_hw_set_hw_params, 644 .set_channel_switch = iwl6000_hw_channel_switch, 645 .nic_config = iwl6000_nic_config, 646 .temperature = iwlagn_temperature, 647 .adv_thermal_throttle = true, 648 .support_ct_kill_exit = true, 649 .plcp_delta_threshold = IWL_MAX_PLCP_ERR_THRESHOLD_DEF, 650 .chain_noise_scale = 1000, 651 .need_temp_offset_calib = true, 652 }; 653 654 const struct iwl_dvm_cfg iwl_dvm_6050_cfg = { 655 .set_hw_params = iwl6000_hw_set_hw_params, 656 .set_channel_switch = iwl6000_hw_channel_switch, 657 .nic_config = iwl6000_nic_config, 658 .temperature = iwlagn_temperature, 659 .adv_thermal_throttle = true, 660 .support_ct_kill_exit = true, 661 .plcp_delta_threshold = IWL_MAX_PLCP_ERR_THRESHOLD_DEF, 662 .chain_noise_scale = 1500, 663 }; 664 665 static const struct iwl_dvm_bt_params iwl6000_bt_params = { 666 /* Due to bluetooth, we transmit 2.4 GHz probes only on antenna A */ 667 .advanced_bt_coexist = true, 668 .agg_time_limit = BT_AGG_THRESHOLD_DEF, 669 .bt_init_traffic_load = IWL_BT_COEX_TRAFFIC_LOAD_NONE, 670 .bt_prio_boost = IWLAGN_BT_PRIO_BOOST_DEFAULT, 671 .bt_sco_disable = true, 672 }; 673 674 const struct iwl_dvm_cfg iwl_dvm_6030_cfg = { 675 .set_hw_params = iwl6000_hw_set_hw_params, 676 .set_channel_switch = iwl6000_hw_channel_switch, 677 .nic_config = iwl6000_nic_config, 678 .temperature = iwlagn_temperature, 679 .adv_thermal_throttle = true, 680 .support_ct_kill_exit = true, 681 .plcp_delta_threshold = IWL_MAX_PLCP_ERR_THRESHOLD_DEF, 682 .chain_noise_scale = 1000, 683 .bt_params = &iwl6000_bt_params, 684 .need_temp_offset_calib = true, 685 .adv_pm = true, 686 }; 687