1 /******************************************************************************
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of version 2 of the GNU General Public License as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
22  * USA
23  *
24  * The full GNU General Public License is included in this distribution
25  * in the file called COPYING.
26  *
27  * Contact Information:
28  *  Intel Linux Wireless <linuxwifi@intel.com>
29  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30  *
31  * BSD LICENSE
32  *
33  * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  *
40  *  * Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  *  * Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in
44  *    the documentation and/or other materials provided with the
45  *    distribution.
46  *  * Neither the name Intel Corporation nor the names of its
47  *    contributors may be used to endorse or promote products derived
48  *    from this software without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61  *
62  *****************************************************************************/
63 /*
64  * Please use this file (commands.h) only for uCode API definitions.
65  * Please use iwl-xxxx-hw.h for hardware-related definitions.
66  * Please use dev.h for driver implementation definitions.
67  */
68 
69 #ifndef __iwl_commands_h__
70 #define __iwl_commands_h__
71 
72 #include <linux/ieee80211.h>
73 #include <linux/types.h>
74 
75 
76 enum {
77 	REPLY_ALIVE = 0x1,
78 	REPLY_ERROR = 0x2,
79 	REPLY_ECHO = 0x3,		/* test command */
80 
81 	/* RXON and QOS commands */
82 	REPLY_RXON = 0x10,
83 	REPLY_RXON_ASSOC = 0x11,
84 	REPLY_QOS_PARAM = 0x13,
85 	REPLY_RXON_TIMING = 0x14,
86 
87 	/* Multi-Station support */
88 	REPLY_ADD_STA = 0x18,
89 	REPLY_REMOVE_STA = 0x19,
90 	REPLY_REMOVE_ALL_STA = 0x1a,	/* not used */
91 	REPLY_TXFIFO_FLUSH = 0x1e,
92 
93 	/* Security */
94 	REPLY_WEPKEY = 0x20,
95 
96 	/* RX, TX, LEDs */
97 	REPLY_TX = 0x1c,
98 	REPLY_LEDS_CMD = 0x48,
99 	REPLY_TX_LINK_QUALITY_CMD = 0x4e,
100 
101 	/* WiMAX coexistence */
102 	COEX_PRIORITY_TABLE_CMD = 0x5a,
103 	COEX_MEDIUM_NOTIFICATION = 0x5b,
104 	COEX_EVENT_CMD = 0x5c,
105 
106 	/* Calibration */
107 	TEMPERATURE_NOTIFICATION = 0x62,
108 	CALIBRATION_CFG_CMD = 0x65,
109 	CALIBRATION_RES_NOTIFICATION = 0x66,
110 	CALIBRATION_COMPLETE_NOTIFICATION = 0x67,
111 
112 	/* 802.11h related */
113 	REPLY_QUIET_CMD = 0x71,		/* not used */
114 	REPLY_CHANNEL_SWITCH = 0x72,
115 	CHANNEL_SWITCH_NOTIFICATION = 0x73,
116 	REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74,
117 	SPECTRUM_MEASURE_NOTIFICATION = 0x75,
118 
119 	/* Power Management */
120 	POWER_TABLE_CMD = 0x77,
121 	PM_SLEEP_NOTIFICATION = 0x7A,
122 	PM_DEBUG_STATISTIC_NOTIFIC = 0x7B,
123 
124 	/* Scan commands and notifications */
125 	REPLY_SCAN_CMD = 0x80,
126 	REPLY_SCAN_ABORT_CMD = 0x81,
127 	SCAN_START_NOTIFICATION = 0x82,
128 	SCAN_RESULTS_NOTIFICATION = 0x83,
129 	SCAN_COMPLETE_NOTIFICATION = 0x84,
130 
131 	/* IBSS/AP commands */
132 	BEACON_NOTIFICATION = 0x90,
133 	REPLY_TX_BEACON = 0x91,
134 	WHO_IS_AWAKE_NOTIFICATION = 0x94,	/* not used */
135 
136 	/* Miscellaneous commands */
137 	REPLY_TX_POWER_DBM_CMD = 0x95,
138 	QUIET_NOTIFICATION = 0x96,		/* not used */
139 	REPLY_TX_PWR_TABLE_CMD = 0x97,
140 	REPLY_TX_POWER_DBM_CMD_V1 = 0x98,	/* old version of API */
141 	TX_ANT_CONFIGURATION_CMD = 0x98,
142 	MEASURE_ABORT_NOTIFICATION = 0x99,	/* not used */
143 
144 	/* Bluetooth device coexistence config command */
145 	REPLY_BT_CONFIG = 0x9b,
146 
147 	/* Statistics */
148 	REPLY_STATISTICS_CMD = 0x9c,
149 	STATISTICS_NOTIFICATION = 0x9d,
150 
151 	/* RF-KILL commands and notifications */
152 	REPLY_CARD_STATE_CMD = 0xa0,
153 	CARD_STATE_NOTIFICATION = 0xa1,
154 
155 	/* Missed beacons notification */
156 	MISSED_BEACONS_NOTIFICATION = 0xa2,
157 
158 	REPLY_CT_KILL_CONFIG_CMD = 0xa4,
159 	SENSITIVITY_CMD = 0xa8,
160 	REPLY_PHY_CALIBRATION_CMD = 0xb0,
161 	REPLY_RX_PHY_CMD = 0xc0,
162 	REPLY_RX_MPDU_CMD = 0xc1,
163 	REPLY_RX = 0xc3,
164 	REPLY_COMPRESSED_BA = 0xc5,
165 
166 	/* BT Coex */
167 	REPLY_BT_COEX_PRIO_TABLE = 0xcc,
168 	REPLY_BT_COEX_PROT_ENV = 0xcd,
169 	REPLY_BT_COEX_PROFILE_NOTIF = 0xce,
170 
171 	/* PAN commands */
172 	REPLY_WIPAN_PARAMS = 0xb2,
173 	REPLY_WIPAN_RXON = 0xb3,	/* use REPLY_RXON structure */
174 	REPLY_WIPAN_RXON_TIMING = 0xb4,	/* use REPLY_RXON_TIMING structure */
175 	REPLY_WIPAN_RXON_ASSOC = 0xb6,	/* use REPLY_RXON_ASSOC structure */
176 	REPLY_WIPAN_QOS_PARAM = 0xb7,	/* use REPLY_QOS_PARAM structure */
177 	REPLY_WIPAN_WEPKEY = 0xb8,	/* use REPLY_WEPKEY structure */
178 	REPLY_WIPAN_P2P_CHANNEL_SWITCH = 0xb9,
179 	REPLY_WIPAN_NOA_NOTIFICATION = 0xbc,
180 	REPLY_WIPAN_DEACTIVATION_COMPLETE = 0xbd,
181 
182 	REPLY_WOWLAN_PATTERNS = 0xe0,
183 	REPLY_WOWLAN_WAKEUP_FILTER = 0xe1,
184 	REPLY_WOWLAN_TSC_RSC_PARAMS = 0xe2,
185 	REPLY_WOWLAN_TKIP_PARAMS = 0xe3,
186 	REPLY_WOWLAN_KEK_KCK_MATERIAL = 0xe4,
187 	REPLY_WOWLAN_GET_STATUS = 0xe5,
188 	REPLY_D3_CONFIG = 0xd3,
189 
190 	REPLY_MAX = 0xff
191 };
192 
193 /*
194  * Minimum number of queues. MAX_NUM is defined in hw specific files.
195  * Set the minimum to accommodate
196  *  - 4 standard TX queues
197  *  - the command queue
198  *  - 4 PAN TX queues
199  *  - the PAN multicast queue, and
200  *  - the AUX (TX during scan dwell) queue.
201  */
202 #define IWL_MIN_NUM_QUEUES	11
203 
204 /*
205  * Command queue depends on iPAN support.
206  */
207 #define IWL_DEFAULT_CMD_QUEUE_NUM	4
208 #define IWL_IPAN_CMD_QUEUE_NUM		9
209 
210 #define IWL_TX_FIFO_BK		0	/* shared */
211 #define IWL_TX_FIFO_BE		1
212 #define IWL_TX_FIFO_VI		2	/* shared */
213 #define IWL_TX_FIFO_VO		3
214 #define IWL_TX_FIFO_BK_IPAN	IWL_TX_FIFO_BK
215 #define IWL_TX_FIFO_BE_IPAN	4
216 #define IWL_TX_FIFO_VI_IPAN	IWL_TX_FIFO_VI
217 #define IWL_TX_FIFO_VO_IPAN	5
218 /* re-uses the VO FIFO, uCode will properly flush/schedule */
219 #define IWL_TX_FIFO_AUX		5
220 #define IWL_TX_FIFO_UNUSED	255
221 
222 #define IWLAGN_CMD_FIFO_NUM	7
223 
224 /*
225  * This queue number is required for proper operation
226  * because the ucode will stop/start the scheduler as
227  * required.
228  */
229 #define IWL_IPAN_MCAST_QUEUE	8
230 
231 /******************************************************************************
232  * (0)
233  * Commonly used structures and definitions:
234  * Command header, rate_n_flags, txpower
235  *
236  *****************************************************************************/
237 
238 /**
239  * iwlagn rate_n_flags bit fields
240  *
241  * rate_n_flags format is used in following iwlagn commands:
242  *  REPLY_RX (response only)
243  *  REPLY_RX_MPDU (response only)
244  *  REPLY_TX (both command and response)
245  *  REPLY_TX_LINK_QUALITY_CMD
246  *
247  * High-throughput (HT) rate format for bits 7:0 (bit 8 must be "1"):
248  *  2-0:  0)   6 Mbps
249  *        1)  12 Mbps
250  *        2)  18 Mbps
251  *        3)  24 Mbps
252  *        4)  36 Mbps
253  *        5)  48 Mbps
254  *        6)  54 Mbps
255  *        7)  60 Mbps
256  *
257  *  4-3:  0)  Single stream (SISO)
258  *        1)  Dual stream (MIMO)
259  *        2)  Triple stream (MIMO)
260  *
261  *    5:  Value of 0x20 in bits 7:0 indicates 6 Mbps HT40 duplicate data
262  *
263  * Legacy OFDM rate format for bits 7:0 (bit 8 must be "0", bit 9 "0"):
264  *  3-0:  0xD)   6 Mbps
265  *        0xF)   9 Mbps
266  *        0x5)  12 Mbps
267  *        0x7)  18 Mbps
268  *        0x9)  24 Mbps
269  *        0xB)  36 Mbps
270  *        0x1)  48 Mbps
271  *        0x3)  54 Mbps
272  *
273  * Legacy CCK rate format for bits 7:0 (bit 8 must be "0", bit 9 "1"):
274  *  6-0:   10)  1 Mbps
275  *         20)  2 Mbps
276  *         55)  5.5 Mbps
277  *        110)  11 Mbps
278  */
279 #define RATE_MCS_CODE_MSK 0x7
280 #define RATE_MCS_SPATIAL_POS 3
281 #define RATE_MCS_SPATIAL_MSK 0x18
282 #define RATE_MCS_HT_DUP_POS 5
283 #define RATE_MCS_HT_DUP_MSK 0x20
284 /* Both legacy and HT use bits 7:0 as the CCK/OFDM rate or HT MCS */
285 #define RATE_MCS_RATE_MSK 0xff
286 
287 /* Bit 8: (1) HT format, (0) legacy format in bits 7:0 */
288 #define RATE_MCS_FLAGS_POS 8
289 #define RATE_MCS_HT_POS 8
290 #define RATE_MCS_HT_MSK 0x100
291 
292 /* Bit 9: (1) CCK, (0) OFDM.  HT (bit 8) must be "0" for this bit to be valid */
293 #define RATE_MCS_CCK_POS 9
294 #define RATE_MCS_CCK_MSK 0x200
295 
296 /* Bit 10: (1) Use Green Field preamble */
297 #define RATE_MCS_GF_POS 10
298 #define RATE_MCS_GF_MSK 0x400
299 
300 /* Bit 11: (1) Use 40Mhz HT40 chnl width, (0) use 20 MHz legacy chnl width */
301 #define RATE_MCS_HT40_POS 11
302 #define RATE_MCS_HT40_MSK 0x800
303 
304 /* Bit 12: (1) Duplicate data on both 20MHz chnls. HT40 (bit 11) must be set. */
305 #define RATE_MCS_DUP_POS 12
306 #define RATE_MCS_DUP_MSK 0x1000
307 
308 /* Bit 13: (1) Short guard interval (0.4 usec), (0) normal GI (0.8 usec) */
309 #define RATE_MCS_SGI_POS 13
310 #define RATE_MCS_SGI_MSK 0x2000
311 
312 /**
313  * rate_n_flags Tx antenna masks
314  * 4965 has 2 transmitters
315  * 5100 has 1 transmitter B
316  * 5150 has 1 transmitter A
317  * 5300 has 3 transmitters
318  * 5350 has 3 transmitters
319  * bit14:16
320  */
321 #define RATE_MCS_ANT_POS	14
322 #define RATE_MCS_ANT_A_MSK	0x04000
323 #define RATE_MCS_ANT_B_MSK	0x08000
324 #define RATE_MCS_ANT_C_MSK	0x10000
325 #define RATE_MCS_ANT_AB_MSK	(RATE_MCS_ANT_A_MSK | RATE_MCS_ANT_B_MSK)
326 #define RATE_MCS_ANT_ABC_MSK	(RATE_MCS_ANT_AB_MSK | RATE_MCS_ANT_C_MSK)
327 #define RATE_ANT_NUM 3
328 
329 #define POWER_TABLE_NUM_ENTRIES			33
330 #define POWER_TABLE_NUM_HT_OFDM_ENTRIES		32
331 #define POWER_TABLE_CCK_ENTRY			32
332 
333 #define IWL_PWR_NUM_HT_OFDM_ENTRIES		24
334 #define IWL_PWR_CCK_ENTRIES			2
335 
336 /**
337  * struct tx_power_dual_stream
338  *
339  * Table entries in REPLY_TX_PWR_TABLE_CMD, REPLY_CHANNEL_SWITCH
340  *
341  * Same format as iwl_tx_power_dual_stream, but __le32
342  */
343 struct tx_power_dual_stream {
344 	__le32 dw;
345 } __packed;
346 
347 /**
348  * Command REPLY_TX_POWER_DBM_CMD = 0x98
349  * struct iwlagn_tx_power_dbm_cmd
350  */
351 #define IWLAGN_TX_POWER_AUTO 0x7f
352 #define IWLAGN_TX_POWER_NO_CLOSED (0x1 << 6)
353 
354 struct iwlagn_tx_power_dbm_cmd {
355 	s8 global_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */
356 	u8 flags;
357 	s8 srv_chan_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */
358 	u8 reserved;
359 } __packed;
360 
361 /**
362  * Command TX_ANT_CONFIGURATION_CMD = 0x98
363  * This command is used to configure valid Tx antenna.
364  * By default uCode concludes the valid antenna according to the radio flavor.
365  * This command enables the driver to override/modify this conclusion.
366  */
367 struct iwl_tx_ant_config_cmd {
368 	__le32 valid;
369 } __packed;
370 
371 /******************************************************************************
372  * (0a)
373  * Alive and Error Commands & Responses:
374  *
375  *****************************************************************************/
376 
377 #define UCODE_VALID_OK	cpu_to_le32(0x1)
378 
379 /**
380  * REPLY_ALIVE = 0x1 (response only, not a command)
381  *
382  * uCode issues this "alive" notification once the runtime image is ready
383  * to receive commands from the driver.  This is the *second* "alive"
384  * notification that the driver will receive after rebooting uCode;
385  * this "alive" is indicated by subtype field != 9.
386  *
387  * See comments documenting "BSM" (bootstrap state machine).
388  *
389  * This response includes two pointers to structures within the device's
390  * data SRAM (access via HBUS_TARG_MEM_* regs) that are useful for debugging:
391  *
392  * 1)  log_event_table_ptr indicates base of the event log.  This traces
393  *     a 256-entry history of uCode execution within a circular buffer.
394  *     Its header format is:
395  *
396  *	__le32 log_size;     log capacity (in number of entries)
397  *	__le32 type;         (1) timestamp with each entry, (0) no timestamp
398  *	__le32 wraps;        # times uCode has wrapped to top of circular buffer
399  *      __le32 write_index;  next circular buffer entry that uCode would fill
400  *
401  *     The header is followed by the circular buffer of log entries.  Entries
402  *     with timestamps have the following format:
403  *
404  *	__le32 event_id;     range 0 - 1500
405  *	__le32 timestamp;    low 32 bits of TSF (of network, if associated)
406  *	__le32 data;         event_id-specific data value
407  *
408  *     Entries without timestamps contain only event_id and data.
409  *
410  *
411  * 2)  error_event_table_ptr indicates base of the error log.  This contains
412  *     information about any uCode error that occurs.  For agn, the format
413  *     of the error log is defined by struct iwl_error_event_table.
414  *
415  * The Linux driver can print both logs to the system log when a uCode error
416  * occurs.
417  */
418 
419 /*
420  * Note: This structure is read from the device with IO accesses,
421  * and the reading already does the endian conversion. As it is
422  * read with u32-sized accesses, any members with a different size
423  * need to be ordered correctly though!
424  */
425 struct iwl_error_event_table {
426 	u32 valid;		/* (nonzero) valid, (0) log is empty */
427 	u32 error_id;		/* type of error */
428 	u32 pc;			/* program counter */
429 	u32 blink1;		/* branch link */
430 	u32 blink2;		/* branch link */
431 	u32 ilink1;		/* interrupt link */
432 	u32 ilink2;		/* interrupt link */
433 	u32 data1;		/* error-specific data */
434 	u32 data2;		/* error-specific data */
435 	u32 line;		/* source code line of error */
436 	u32 bcon_time;		/* beacon timer */
437 	u32 tsf_low;		/* network timestamp function timer */
438 	u32 tsf_hi;		/* network timestamp function timer */
439 	u32 gp1;		/* GP1 timer register */
440 	u32 gp2;		/* GP2 timer register */
441 	u32 gp3;		/* GP3 timer register */
442 	u32 ucode_ver;		/* uCode version */
443 	u32 hw_ver;		/* HW Silicon version */
444 	u32 brd_ver;		/* HW board version */
445 	u32 log_pc;		/* log program counter */
446 	u32 frame_ptr;		/* frame pointer */
447 	u32 stack_ptr;		/* stack pointer */
448 	u32 hcmd;		/* last host command header */
449 	u32 isr0;		/* isr status register LMPM_NIC_ISR0:
450 				 * rxtx_flag */
451 	u32 isr1;		/* isr status register LMPM_NIC_ISR1:
452 				 * host_flag */
453 	u32 isr2;		/* isr status register LMPM_NIC_ISR2:
454 				 * enc_flag */
455 	u32 isr3;		/* isr status register LMPM_NIC_ISR3:
456 				 * time_flag */
457 	u32 isr4;		/* isr status register LMPM_NIC_ISR4:
458 				 * wico interrupt */
459 	u32 isr_pref;		/* isr status register LMPM_NIC_PREF_STAT */
460 	u32 wait_event;		/* wait event() caller address */
461 	u32 l2p_control;	/* L2pControlField */
462 	u32 l2p_duration;	/* L2pDurationField */
463 	u32 l2p_mhvalid;	/* L2pMhValidBits */
464 	u32 l2p_addr_match;	/* L2pAddrMatchStat */
465 	u32 lmpm_pmg_sel;	/* indicate which clocks are turned on
466 				 * (LMPM_PMG_SEL) */
467 	u32 u_timestamp;	/* indicate when the date and time of the
468 				 * compilation */
469 	u32 flow_handler;	/* FH read/write pointers, RX credit */
470 } __packed;
471 
472 struct iwl_alive_resp {
473 	u8 ucode_minor;
474 	u8 ucode_major;
475 	__le16 reserved1;
476 	u8 sw_rev[8];
477 	u8 ver_type;
478 	u8 ver_subtype;			/* not "9" for runtime alive */
479 	__le16 reserved2;
480 	__le32 log_event_table_ptr;	/* SRAM address for event log */
481 	__le32 error_event_table_ptr;	/* SRAM address for error log */
482 	__le32 timestamp;
483 	__le32 is_valid;
484 } __packed;
485 
486 /*
487  * REPLY_ERROR = 0x2 (response only, not a command)
488  */
489 struct iwl_error_resp {
490 	__le32 error_type;
491 	u8 cmd_id;
492 	u8 reserved1;
493 	__le16 bad_cmd_seq_num;
494 	__le32 error_info;
495 	__le64 timestamp;
496 } __packed;
497 
498 /******************************************************************************
499  * (1)
500  * RXON Commands & Responses:
501  *
502  *****************************************************************************/
503 
504 /*
505  * Rx config defines & structure
506  */
507 /* rx_config device types  */
508 enum {
509 	RXON_DEV_TYPE_AP = 1,
510 	RXON_DEV_TYPE_ESS = 3,
511 	RXON_DEV_TYPE_IBSS = 4,
512 	RXON_DEV_TYPE_SNIFFER = 6,
513 	RXON_DEV_TYPE_CP = 7,
514 	RXON_DEV_TYPE_2STA = 8,
515 	RXON_DEV_TYPE_P2P = 9,
516 };
517 
518 
519 #define RXON_RX_CHAIN_DRIVER_FORCE_MSK		cpu_to_le16(0x1 << 0)
520 #define RXON_RX_CHAIN_DRIVER_FORCE_POS		(0)
521 #define RXON_RX_CHAIN_VALID_MSK			cpu_to_le16(0x7 << 1)
522 #define RXON_RX_CHAIN_VALID_POS			(1)
523 #define RXON_RX_CHAIN_FORCE_SEL_MSK		cpu_to_le16(0x7 << 4)
524 #define RXON_RX_CHAIN_FORCE_SEL_POS		(4)
525 #define RXON_RX_CHAIN_FORCE_MIMO_SEL_MSK	cpu_to_le16(0x7 << 7)
526 #define RXON_RX_CHAIN_FORCE_MIMO_SEL_POS	(7)
527 #define RXON_RX_CHAIN_CNT_MSK			cpu_to_le16(0x3 << 10)
528 #define RXON_RX_CHAIN_CNT_POS			(10)
529 #define RXON_RX_CHAIN_MIMO_CNT_MSK		cpu_to_le16(0x3 << 12)
530 #define RXON_RX_CHAIN_MIMO_CNT_POS		(12)
531 #define RXON_RX_CHAIN_MIMO_FORCE_MSK		cpu_to_le16(0x1 << 14)
532 #define RXON_RX_CHAIN_MIMO_FORCE_POS		(14)
533 
534 /* rx_config flags */
535 /* band & modulation selection */
536 #define RXON_FLG_BAND_24G_MSK           cpu_to_le32(1 << 0)
537 #define RXON_FLG_CCK_MSK                cpu_to_le32(1 << 1)
538 /* auto detection enable */
539 #define RXON_FLG_AUTO_DETECT_MSK        cpu_to_le32(1 << 2)
540 /* TGg protection when tx */
541 #define RXON_FLG_TGG_PROTECT_MSK        cpu_to_le32(1 << 3)
542 /* cck short slot & preamble */
543 #define RXON_FLG_SHORT_SLOT_MSK          cpu_to_le32(1 << 4)
544 #define RXON_FLG_SHORT_PREAMBLE_MSK     cpu_to_le32(1 << 5)
545 /* antenna selection */
546 #define RXON_FLG_DIS_DIV_MSK            cpu_to_le32(1 << 7)
547 #define RXON_FLG_ANT_SEL_MSK            cpu_to_le32(0x0f00)
548 #define RXON_FLG_ANT_A_MSK              cpu_to_le32(1 << 8)
549 #define RXON_FLG_ANT_B_MSK              cpu_to_le32(1 << 9)
550 /* radar detection enable */
551 #define RXON_FLG_RADAR_DETECT_MSK       cpu_to_le32(1 << 12)
552 #define RXON_FLG_TGJ_NARROW_BAND_MSK    cpu_to_le32(1 << 13)
553 /* rx response to host with 8-byte TSF
554 * (according to ON_AIR deassertion) */
555 #define RXON_FLG_TSF2HOST_MSK           cpu_to_le32(1 << 15)
556 
557 
558 /* HT flags */
559 #define RXON_FLG_CTRL_CHANNEL_LOC_POS		(22)
560 #define RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK	cpu_to_le32(0x1 << 22)
561 
562 #define RXON_FLG_HT_OPERATING_MODE_POS		(23)
563 
564 #define RXON_FLG_HT_PROT_MSK			cpu_to_le32(0x1 << 23)
565 #define RXON_FLG_HT40_PROT_MSK			cpu_to_le32(0x2 << 23)
566 
567 #define RXON_FLG_CHANNEL_MODE_POS		(25)
568 #define RXON_FLG_CHANNEL_MODE_MSK		cpu_to_le32(0x3 << 25)
569 
570 /* channel mode */
571 enum {
572 	CHANNEL_MODE_LEGACY = 0,
573 	CHANNEL_MODE_PURE_40 = 1,
574 	CHANNEL_MODE_MIXED = 2,
575 	CHANNEL_MODE_RESERVED = 3,
576 };
577 #define RXON_FLG_CHANNEL_MODE_LEGACY	cpu_to_le32(CHANNEL_MODE_LEGACY << RXON_FLG_CHANNEL_MODE_POS)
578 #define RXON_FLG_CHANNEL_MODE_PURE_40	cpu_to_le32(CHANNEL_MODE_PURE_40 << RXON_FLG_CHANNEL_MODE_POS)
579 #define RXON_FLG_CHANNEL_MODE_MIXED	cpu_to_le32(CHANNEL_MODE_MIXED << RXON_FLG_CHANNEL_MODE_POS)
580 
581 /* CTS to self (if spec allows) flag */
582 #define RXON_FLG_SELF_CTS_EN			cpu_to_le32(0x1<<30)
583 
584 /* rx_config filter flags */
585 /* accept all data frames */
586 #define RXON_FILTER_PROMISC_MSK         cpu_to_le32(1 << 0)
587 /* pass control & management to host */
588 #define RXON_FILTER_CTL2HOST_MSK        cpu_to_le32(1 << 1)
589 /* accept multi-cast */
590 #define RXON_FILTER_ACCEPT_GRP_MSK      cpu_to_le32(1 << 2)
591 /* don't decrypt uni-cast frames */
592 #define RXON_FILTER_DIS_DECRYPT_MSK     cpu_to_le32(1 << 3)
593 /* don't decrypt multi-cast frames */
594 #define RXON_FILTER_DIS_GRP_DECRYPT_MSK cpu_to_le32(1 << 4)
595 /* STA is associated */
596 #define RXON_FILTER_ASSOC_MSK           cpu_to_le32(1 << 5)
597 /* transfer to host non bssid beacons in associated state */
598 #define RXON_FILTER_BCON_AWARE_MSK      cpu_to_le32(1 << 6)
599 
600 /**
601  * REPLY_RXON = 0x10 (command, has simple generic response)
602  *
603  * RXON tunes the radio tuner to a service channel, and sets up a number
604  * of parameters that are used primarily for Rx, but also for Tx operations.
605  *
606  * NOTE:  When tuning to a new channel, driver must set the
607  *        RXON_FILTER_ASSOC_MSK to 0.  This will clear station-dependent
608  *        info within the device, including the station tables, tx retry
609  *        rate tables, and txpower tables.  Driver must build a new station
610  *        table and txpower table before transmitting anything on the RXON
611  *        channel.
612  *
613  * NOTE:  All RXONs wipe clean the internal txpower table.  Driver must
614  *        issue a new REPLY_TX_PWR_TABLE_CMD after each REPLY_RXON (0x10),
615  *        regardless of whether RXON_FILTER_ASSOC_MSK is set.
616  */
617 
618 struct iwl_rxon_cmd {
619 	u8 node_addr[6];
620 	__le16 reserved1;
621 	u8 bssid_addr[6];
622 	__le16 reserved2;
623 	u8 wlap_bssid_addr[6];
624 	__le16 reserved3;
625 	u8 dev_type;
626 	u8 air_propagation;
627 	__le16 rx_chain;
628 	u8 ofdm_basic_rates;
629 	u8 cck_basic_rates;
630 	__le16 assoc_id;
631 	__le32 flags;
632 	__le32 filter_flags;
633 	__le16 channel;
634 	u8 ofdm_ht_single_stream_basic_rates;
635 	u8 ofdm_ht_dual_stream_basic_rates;
636 	u8 ofdm_ht_triple_stream_basic_rates;
637 	u8 reserved5;
638 	__le16 acquisition_data;
639 	__le16 reserved6;
640 } __packed;
641 
642 /*
643  * REPLY_RXON_ASSOC = 0x11 (command, has simple generic response)
644  */
645 struct iwl_rxon_assoc_cmd {
646 	__le32 flags;
647 	__le32 filter_flags;
648 	u8 ofdm_basic_rates;
649 	u8 cck_basic_rates;
650 	__le16 reserved1;
651 	u8 ofdm_ht_single_stream_basic_rates;
652 	u8 ofdm_ht_dual_stream_basic_rates;
653 	u8 ofdm_ht_triple_stream_basic_rates;
654 	u8 reserved2;
655 	__le16 rx_chain_select_flags;
656 	__le16 acquisition_data;
657 	__le32 reserved3;
658 } __packed;
659 
660 #define IWL_CONN_MAX_LISTEN_INTERVAL	10
661 #define IWL_MAX_UCODE_BEACON_INTERVAL	4 /* 4096 */
662 
663 /*
664  * REPLY_RXON_TIMING = 0x14 (command, has simple generic response)
665  */
666 struct iwl_rxon_time_cmd {
667 	__le64 timestamp;
668 	__le16 beacon_interval;
669 	__le16 atim_window;
670 	__le32 beacon_init_val;
671 	__le16 listen_interval;
672 	u8 dtim_period;
673 	u8 delta_cp_bss_tbtts;
674 } __packed;
675 
676 /*
677  * REPLY_CHANNEL_SWITCH = 0x72 (command, has simple generic response)
678  */
679 /**
680  * struct iwl5000_channel_switch_cmd
681  * @band: 0- 5.2GHz, 1- 2.4GHz
682  * @expect_beacon: 0- resume transmits after channel switch
683  *		   1- wait for beacon to resume transmits
684  * @channel: new channel number
685  * @rxon_flags: Rx on flags
686  * @rxon_filter_flags: filtering parameters
687  * @switch_time: switch time in extended beacon format
688  * @reserved: reserved bytes
689  */
690 struct iwl5000_channel_switch_cmd {
691 	u8 band;
692 	u8 expect_beacon;
693 	__le16 channel;
694 	__le32 rxon_flags;
695 	__le32 rxon_filter_flags;
696 	__le32 switch_time;
697 	__le32 reserved[2][IWL_PWR_NUM_HT_OFDM_ENTRIES + IWL_PWR_CCK_ENTRIES];
698 } __packed;
699 
700 /**
701  * struct iwl6000_channel_switch_cmd
702  * @band: 0- 5.2GHz, 1- 2.4GHz
703  * @expect_beacon: 0- resume transmits after channel switch
704  *		   1- wait for beacon to resume transmits
705  * @channel: new channel number
706  * @rxon_flags: Rx on flags
707  * @rxon_filter_flags: filtering parameters
708  * @switch_time: switch time in extended beacon format
709  * @reserved: reserved bytes
710  */
711 struct iwl6000_channel_switch_cmd {
712 	u8 band;
713 	u8 expect_beacon;
714 	__le16 channel;
715 	__le32 rxon_flags;
716 	__le32 rxon_filter_flags;
717 	__le32 switch_time;
718 	__le32 reserved[3][IWL_PWR_NUM_HT_OFDM_ENTRIES + IWL_PWR_CCK_ENTRIES];
719 } __packed;
720 
721 /*
722  * CHANNEL_SWITCH_NOTIFICATION = 0x73 (notification only, not a command)
723  */
724 struct iwl_csa_notification {
725 	__le16 band;
726 	__le16 channel;
727 	__le32 status;		/* 0 - OK, 1 - fail */
728 } __packed;
729 
730 /******************************************************************************
731  * (2)
732  * Quality-of-Service (QOS) Commands & Responses:
733  *
734  *****************************************************************************/
735 
736 /**
737  * struct iwl_ac_qos -- QOS timing params for REPLY_QOS_PARAM
738  * One for each of 4 EDCA access categories in struct iwl_qosparam_cmd
739  *
740  * @cw_min: Contention window, start value in numbers of slots.
741  *          Should be a power-of-2, minus 1.  Device's default is 0x0f.
742  * @cw_max: Contention window, max value in numbers of slots.
743  *          Should be a power-of-2, minus 1.  Device's default is 0x3f.
744  * @aifsn:  Number of slots in Arbitration Interframe Space (before
745  *          performing random backoff timing prior to Tx).  Device default 1.
746  * @edca_txop:  Length of Tx opportunity, in uSecs.  Device default is 0.
747  *
748  * Device will automatically increase contention window by (2*CW) + 1 for each
749  * transmission retry.  Device uses cw_max as a bit mask, ANDed with new CW
750  * value, to cap the CW value.
751  */
752 struct iwl_ac_qos {
753 	__le16 cw_min;
754 	__le16 cw_max;
755 	u8 aifsn;
756 	u8 reserved1;
757 	__le16 edca_txop;
758 } __packed;
759 
760 /* QoS flags defines */
761 #define QOS_PARAM_FLG_UPDATE_EDCA_MSK	cpu_to_le32(0x01)
762 #define QOS_PARAM_FLG_TGN_MSK		cpu_to_le32(0x02)
763 #define QOS_PARAM_FLG_TXOP_TYPE_MSK	cpu_to_le32(0x10)
764 
765 /* Number of Access Categories (AC) (EDCA), queues 0..3 */
766 #define AC_NUM                4
767 
768 /*
769  * REPLY_QOS_PARAM = 0x13 (command, has simple generic response)
770  *
771  * This command sets up timings for each of the 4 prioritized EDCA Tx FIFOs
772  * 0: Background, 1: Best Effort, 2: Video, 3: Voice.
773  */
774 struct iwl_qosparam_cmd {
775 	__le32 qos_flags;
776 	struct iwl_ac_qos ac[AC_NUM];
777 } __packed;
778 
779 /******************************************************************************
780  * (3)
781  * Add/Modify Stations Commands & Responses:
782  *
783  *****************************************************************************/
784 /*
785  * Multi station support
786  */
787 
788 /* Special, dedicated locations within device's station table */
789 #define	IWL_AP_ID		0
790 #define	IWL_AP_ID_PAN		1
791 #define	IWL_STA_ID		2
792 #define IWLAGN_PAN_BCAST_ID	14
793 #define IWLAGN_BROADCAST_ID	15
794 #define	IWLAGN_STATION_COUNT	16
795 
796 #define IWL_TID_NON_QOS IWL_MAX_TID_COUNT
797 
798 #define STA_FLG_TX_RATE_MSK		cpu_to_le32(1 << 2)
799 #define STA_FLG_PWR_SAVE_MSK		cpu_to_le32(1 << 8)
800 #define STA_FLG_PAN_STATION		cpu_to_le32(1 << 13)
801 #define STA_FLG_RTS_MIMO_PROT_MSK	cpu_to_le32(1 << 17)
802 #define STA_FLG_AGG_MPDU_8US_MSK	cpu_to_le32(1 << 18)
803 #define STA_FLG_MAX_AGG_SIZE_POS	(19)
804 #define STA_FLG_MAX_AGG_SIZE_MSK	cpu_to_le32(3 << 19)
805 #define STA_FLG_HT40_EN_MSK		cpu_to_le32(1 << 21)
806 #define STA_FLG_MIMO_DIS_MSK		cpu_to_le32(1 << 22)
807 #define STA_FLG_AGG_MPDU_DENSITY_POS	(23)
808 #define STA_FLG_AGG_MPDU_DENSITY_MSK	cpu_to_le32(7 << 23)
809 
810 /* Use in mode field.  1: modify existing entry, 0: add new station entry */
811 #define STA_CONTROL_MODIFY_MSK		0x01
812 
813 /* key flags __le16*/
814 #define STA_KEY_FLG_ENCRYPT_MSK	cpu_to_le16(0x0007)
815 #define STA_KEY_FLG_NO_ENC	cpu_to_le16(0x0000)
816 #define STA_KEY_FLG_WEP		cpu_to_le16(0x0001)
817 #define STA_KEY_FLG_CCMP	cpu_to_le16(0x0002)
818 #define STA_KEY_FLG_TKIP	cpu_to_le16(0x0003)
819 
820 #define STA_KEY_FLG_KEYID_POS	8
821 #define STA_KEY_FLG_INVALID 	cpu_to_le16(0x0800)
822 /* wep key is either from global key (0) or from station info array (1) */
823 #define STA_KEY_FLG_MAP_KEY_MSK	cpu_to_le16(0x0008)
824 
825 /* wep key in STA: 5-bytes (0) or 13-bytes (1) */
826 #define STA_KEY_FLG_KEY_SIZE_MSK     cpu_to_le16(0x1000)
827 #define STA_KEY_MULTICAST_MSK        cpu_to_le16(0x4000)
828 #define STA_KEY_MAX_NUM		8
829 #define STA_KEY_MAX_NUM_PAN	16
830 /* must not match WEP_INVALID_OFFSET */
831 #define IWLAGN_HW_KEY_DEFAULT	0xfe
832 
833 /* Flags indicate whether to modify vs. don't change various station params */
834 #define	STA_MODIFY_KEY_MASK		0x01
835 #define	STA_MODIFY_TID_DISABLE_TX	0x02
836 #define	STA_MODIFY_TX_RATE_MSK		0x04
837 #define STA_MODIFY_ADDBA_TID_MSK	0x08
838 #define STA_MODIFY_DELBA_TID_MSK	0x10
839 #define STA_MODIFY_SLEEP_TX_COUNT_MSK	0x20
840 
841 /* agn */
842 struct iwl_keyinfo {
843 	__le16 key_flags;
844 	u8 tkip_rx_tsc_byte2;	/* TSC[2] for key mix ph1 detection */
845 	u8 reserved1;
846 	__le16 tkip_rx_ttak[5];	/* 10-byte unicast TKIP TTAK */
847 	u8 key_offset;
848 	u8 reserved2;
849 	u8 key[16];		/* 16-byte unicast decryption key */
850 	__le64 tx_secur_seq_cnt;
851 	__le64 hw_tkip_mic_rx_key;
852 	__le64 hw_tkip_mic_tx_key;
853 } __packed;
854 
855 /**
856  * struct sta_id_modify
857  * @addr[ETH_ALEN]: station's MAC address
858  * @sta_id: index of station in uCode's station table
859  * @modify_mask: STA_MODIFY_*, 1: modify, 0: don't change
860  *
861  * Driver selects unused table index when adding new station,
862  * or the index to a pre-existing station entry when modifying that station.
863  * Some indexes have special purposes (IWL_AP_ID, index 0, is for AP).
864  *
865  * modify_mask flags select which parameters to modify vs. leave alone.
866  */
867 struct sta_id_modify {
868 	u8 addr[ETH_ALEN];
869 	__le16 reserved1;
870 	u8 sta_id;
871 	u8 modify_mask;
872 	__le16 reserved2;
873 } __packed;
874 
875 /*
876  * REPLY_ADD_STA = 0x18 (command)
877  *
878  * The device contains an internal table of per-station information,
879  * with info on security keys, aggregation parameters, and Tx rates for
880  * initial Tx attempt and any retries (agn devices uses
881  * REPLY_TX_LINK_QUALITY_CMD,
882  *
883  * REPLY_ADD_STA sets up the table entry for one station, either creating
884  * a new entry, or modifying a pre-existing one.
885  *
886  * NOTE:  RXON command (without "associated" bit set) wipes the station table
887  *        clean.  Moving into RF_KILL state does this also.  Driver must set up
888  *        new station table before transmitting anything on the RXON channel
889  *        (except active scans or active measurements; those commands carry
890  *        their own txpower/rate setup data).
891  *
892  *        When getting started on a new channel, driver must set up the
893  *        IWL_BROADCAST_ID entry (last entry in the table).  For a client
894  *        station in a BSS, once an AP is selected, driver sets up the AP STA
895  *        in the IWL_AP_ID entry (1st entry in the table).  BROADCAST and AP
896  *        are all that are needed for a BSS client station.  If the device is
897  *        used as AP, or in an IBSS network, driver must set up station table
898  *        entries for all STAs in network, starting with index IWL_STA_ID.
899  */
900 
901 struct iwl_addsta_cmd {
902 	u8 mode;		/* 1: modify existing, 0: add new station */
903 	u8 reserved[3];
904 	struct sta_id_modify sta;
905 	struct iwl_keyinfo key;
906 	__le32 station_flags;		/* STA_FLG_* */
907 	__le32 station_flags_msk;	/* STA_FLG_* */
908 
909 	/* bit field to disable (1) or enable (0) Tx for Traffic ID (TID)
910 	 * corresponding to bit (e.g. bit 5 controls TID 5).
911 	 * Set modify_mask bit STA_MODIFY_TID_DISABLE_TX to use this field. */
912 	__le16 tid_disable_tx;
913 	__le16 legacy_reserved;
914 
915 	/* TID for which to add block-ack support.
916 	 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
917 	u8 add_immediate_ba_tid;
918 
919 	/* TID for which to remove block-ack support.
920 	 * Set modify_mask bit STA_MODIFY_DELBA_TID_MSK to use this field. */
921 	u8 remove_immediate_ba_tid;
922 
923 	/* Starting Sequence Number for added block-ack support.
924 	 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
925 	__le16 add_immediate_ba_ssn;
926 
927 	/*
928 	 * Number of packets OK to transmit to station even though
929 	 * it is asleep -- used to synchronise PS-poll and u-APSD
930 	 * responses while ucode keeps track of STA sleep state.
931 	 */
932 	__le16 sleep_tx_count;
933 
934 	__le16 reserved2;
935 } __packed;
936 
937 
938 #define ADD_STA_SUCCESS_MSK		0x1
939 #define ADD_STA_NO_ROOM_IN_TABLE	0x2
940 #define ADD_STA_NO_BLOCK_ACK_RESOURCE	0x4
941 #define ADD_STA_MODIFY_NON_EXIST_STA	0x8
942 /*
943  * REPLY_ADD_STA = 0x18 (response)
944  */
945 struct iwl_add_sta_resp {
946 	u8 status;	/* ADD_STA_* */
947 } __packed;
948 
949 #define REM_STA_SUCCESS_MSK              0x1
950 /*
951  *  REPLY_REM_STA = 0x19 (response)
952  */
953 struct iwl_rem_sta_resp {
954 	u8 status;
955 } __packed;
956 
957 /*
958  *  REPLY_REM_STA = 0x19 (command)
959  */
960 struct iwl_rem_sta_cmd {
961 	u8 num_sta;     /* number of removed stations */
962 	u8 reserved[3];
963 	u8 addr[ETH_ALEN]; /* MAC addr of the first station */
964 	u8 reserved2[2];
965 } __packed;
966 
967 
968 /* WiFi queues mask */
969 #define IWL_SCD_BK_MSK			BIT(0)
970 #define IWL_SCD_BE_MSK			BIT(1)
971 #define IWL_SCD_VI_MSK			BIT(2)
972 #define IWL_SCD_VO_MSK			BIT(3)
973 #define IWL_SCD_MGMT_MSK		BIT(3)
974 
975 /* PAN queues mask */
976 #define IWL_PAN_SCD_BK_MSK		BIT(4)
977 #define IWL_PAN_SCD_BE_MSK		BIT(5)
978 #define IWL_PAN_SCD_VI_MSK		BIT(6)
979 #define IWL_PAN_SCD_VO_MSK		BIT(7)
980 #define IWL_PAN_SCD_MGMT_MSK		BIT(7)
981 #define IWL_PAN_SCD_MULTICAST_MSK	BIT(8)
982 
983 #define IWL_AGG_TX_QUEUE_MSK		0xffc00
984 
985 #define IWL_DROP_ALL			BIT(1)
986 
987 /*
988  * REPLY_TXFIFO_FLUSH = 0x1e(command and response)
989  *
990  * When using full FIFO flush this command checks the scheduler HW block WR/RD
991  * pointers to check if all the frames were transferred by DMA into the
992  * relevant TX FIFO queue. Only when the DMA is finished and the queue is
993  * empty the command can finish.
994  * This command is used to flush the TXFIFO from transmit commands, it may
995  * operate on single or multiple queues, the command queue can't be flushed by
996  * this command. The command response is returned when all the queue flush
997  * operations are done. Each TX command flushed return response with the FLUSH
998  * status set in the TX response status. When FIFO flush operation is used,
999  * the flush operation ends when both the scheduler DMA done and TXFIFO empty
1000  * are set.
1001  *
1002  * @queue_control: bit mask for which queues to flush
1003  * @flush_control: flush controls
1004  *	0: Dump single MSDU
1005  *	1: Dump multiple MSDU according to PS, INVALID STA, TTL, TID disable.
1006  *	2: Dump all FIFO
1007  */
1008 struct iwl_txfifo_flush_cmd_v3 {
1009 	__le32 queue_control;
1010 	__le16 flush_control;
1011 	__le16 reserved;
1012 } __packed;
1013 
1014 struct iwl_txfifo_flush_cmd_v2 {
1015 	__le16 queue_control;
1016 	__le16 flush_control;
1017 } __packed;
1018 
1019 /*
1020  * REPLY_WEP_KEY = 0x20
1021  */
1022 struct iwl_wep_key {
1023 	u8 key_index;
1024 	u8 key_offset;
1025 	u8 reserved1[2];
1026 	u8 key_size;
1027 	u8 reserved2[3];
1028 	u8 key[16];
1029 } __packed;
1030 
1031 struct iwl_wep_cmd {
1032 	u8 num_keys;
1033 	u8 global_key_type;
1034 	u8 flags;
1035 	u8 reserved;
1036 	struct iwl_wep_key key[0];
1037 } __packed;
1038 
1039 #define WEP_KEY_WEP_TYPE 1
1040 #define WEP_KEYS_MAX 4
1041 #define WEP_INVALID_OFFSET 0xff
1042 #define WEP_KEY_LEN_64 5
1043 #define WEP_KEY_LEN_128 13
1044 
1045 /******************************************************************************
1046  * (4)
1047  * Rx Responses:
1048  *
1049  *****************************************************************************/
1050 
1051 #define RX_RES_STATUS_NO_CRC32_ERROR	cpu_to_le32(1 << 0)
1052 #define RX_RES_STATUS_NO_RXE_OVERFLOW	cpu_to_le32(1 << 1)
1053 
1054 #define RX_RES_PHY_FLAGS_BAND_24_MSK	cpu_to_le16(1 << 0)
1055 #define RX_RES_PHY_FLAGS_MOD_CCK_MSK		cpu_to_le16(1 << 1)
1056 #define RX_RES_PHY_FLAGS_SHORT_PREAMBLE_MSK	cpu_to_le16(1 << 2)
1057 #define RX_RES_PHY_FLAGS_NARROW_BAND_MSK	cpu_to_le16(1 << 3)
1058 #define RX_RES_PHY_FLAGS_ANTENNA_MSK		0x70
1059 #define RX_RES_PHY_FLAGS_ANTENNA_POS		4
1060 #define RX_RES_PHY_FLAGS_AGG_MSK		cpu_to_le16(1 << 7)
1061 
1062 #define RX_RES_STATUS_SEC_TYPE_MSK	(0x7 << 8)
1063 #define RX_RES_STATUS_SEC_TYPE_NONE	(0x0 << 8)
1064 #define RX_RES_STATUS_SEC_TYPE_WEP	(0x1 << 8)
1065 #define RX_RES_STATUS_SEC_TYPE_CCMP	(0x2 << 8)
1066 #define RX_RES_STATUS_SEC_TYPE_TKIP	(0x3 << 8)
1067 #define	RX_RES_STATUS_SEC_TYPE_ERR	(0x7 << 8)
1068 
1069 #define RX_RES_STATUS_STATION_FOUND	(1<<6)
1070 #define RX_RES_STATUS_NO_STATION_INFO_MISMATCH	(1<<7)
1071 
1072 #define RX_RES_STATUS_DECRYPT_TYPE_MSK	(0x3 << 11)
1073 #define RX_RES_STATUS_NOT_DECRYPT	(0x0 << 11)
1074 #define RX_RES_STATUS_DECRYPT_OK	(0x3 << 11)
1075 #define RX_RES_STATUS_BAD_ICV_MIC	(0x1 << 11)
1076 #define RX_RES_STATUS_BAD_KEY_TTAK	(0x2 << 11)
1077 
1078 #define RX_MPDU_RES_STATUS_ICV_OK	(0x20)
1079 #define RX_MPDU_RES_STATUS_MIC_OK	(0x40)
1080 #define RX_MPDU_RES_STATUS_TTAK_OK	(1 << 7)
1081 #define RX_MPDU_RES_STATUS_DEC_DONE_MSK	(0x800)
1082 
1083 
1084 #define IWLAGN_RX_RES_PHY_CNT 8
1085 #define IWLAGN_RX_RES_AGC_IDX     1
1086 #define IWLAGN_RX_RES_RSSI_AB_IDX 2
1087 #define IWLAGN_RX_RES_RSSI_C_IDX  3
1088 #define IWLAGN_OFDM_AGC_MSK 0xfe00
1089 #define IWLAGN_OFDM_AGC_BIT_POS 9
1090 #define IWLAGN_OFDM_RSSI_INBAND_A_BITMSK 0x00ff
1091 #define IWLAGN_OFDM_RSSI_ALLBAND_A_BITMSK 0xff00
1092 #define IWLAGN_OFDM_RSSI_A_BIT_POS 0
1093 #define IWLAGN_OFDM_RSSI_INBAND_B_BITMSK 0xff0000
1094 #define IWLAGN_OFDM_RSSI_ALLBAND_B_BITMSK 0xff000000
1095 #define IWLAGN_OFDM_RSSI_B_BIT_POS 16
1096 #define IWLAGN_OFDM_RSSI_INBAND_C_BITMSK 0x00ff
1097 #define IWLAGN_OFDM_RSSI_ALLBAND_C_BITMSK 0xff00
1098 #define IWLAGN_OFDM_RSSI_C_BIT_POS 0
1099 
1100 struct iwlagn_non_cfg_phy {
1101 	__le32 non_cfg_phy[IWLAGN_RX_RES_PHY_CNT];  /* up to 8 phy entries */
1102 } __packed;
1103 
1104 
1105 /*
1106  * REPLY_RX = 0xc3 (response only, not a command)
1107  * Used only for legacy (non 11n) frames.
1108  */
1109 struct iwl_rx_phy_res {
1110 	u8 non_cfg_phy_cnt;     /* non configurable DSP phy data byte count */
1111 	u8 cfg_phy_cnt;		/* configurable DSP phy data byte count */
1112 	u8 stat_id;		/* configurable DSP phy data set ID */
1113 	u8 reserved1;
1114 	__le64 timestamp;	/* TSF at on air rise */
1115 	__le32 beacon_time_stamp; /* beacon at on-air rise */
1116 	__le16 phy_flags;	/* general phy flags: band, modulation, ... */
1117 	__le16 channel;		/* channel number */
1118 	u8 non_cfg_phy_buf[32]; /* for various implementations of non_cfg_phy */
1119 	__le32 rate_n_flags;	/* RATE_MCS_* */
1120 	__le16 byte_count;	/* frame's byte-count */
1121 	__le16 frame_time;	/* frame's time on the air */
1122 } __packed;
1123 
1124 struct iwl_rx_mpdu_res_start {
1125 	__le16 byte_count;
1126 	__le16 reserved;
1127 } __packed;
1128 
1129 
1130 /******************************************************************************
1131  * (5)
1132  * Tx Commands & Responses:
1133  *
1134  * Driver must place each REPLY_TX command into one of the prioritized Tx
1135  * queues in host DRAM, shared between driver and device (see comments for
1136  * SCD registers and Tx/Rx Queues).  When the device's Tx scheduler and uCode
1137  * are preparing to transmit, the device pulls the Tx command over the PCI
1138  * bus via one of the device's Tx DMA channels, to fill an internal FIFO
1139  * from which data will be transmitted.
1140  *
1141  * uCode handles all timing and protocol related to control frames
1142  * (RTS/CTS/ACK), based on flags in the Tx command.  uCode and Tx scheduler
1143  * handle reception of block-acks; uCode updates the host driver via
1144  * REPLY_COMPRESSED_BA.
1145  *
1146  * uCode handles retrying Tx when an ACK is expected but not received.
1147  * This includes trying lower data rates than the one requested in the Tx
1148  * command, as set up by the REPLY_TX_LINK_QUALITY_CMD (agn).
1149  *
1150  * Driver sets up transmit power for various rates via REPLY_TX_PWR_TABLE_CMD.
1151  * This command must be executed after every RXON command, before Tx can occur.
1152  *****************************************************************************/
1153 
1154 /* REPLY_TX Tx flags field */
1155 
1156 /*
1157  * 1: Use RTS/CTS protocol or CTS-to-self if spec allows it
1158  * before this frame. if CTS-to-self required check
1159  * RXON_FLG_SELF_CTS_EN status.
1160  */
1161 #define TX_CMD_FLG_PROT_REQUIRE_MSK cpu_to_le32(1 << 0)
1162 
1163 /* 1: Expect ACK from receiving station
1164  * 0: Don't expect ACK (MAC header's duration field s/b 0)
1165  * Set this for unicast frames, but not broadcast/multicast. */
1166 #define TX_CMD_FLG_ACK_MSK cpu_to_le32(1 << 3)
1167 
1168 /* For agn devices:
1169  * 1: Use rate scale table (see REPLY_TX_LINK_QUALITY_CMD).
1170  *    Tx command's initial_rate_index indicates first rate to try;
1171  *    uCode walks through table for additional Tx attempts.
1172  * 0: Use Tx rate/MCS from Tx command's rate_n_flags field.
1173  *    This rate will be used for all Tx attempts; it will not be scaled. */
1174 #define TX_CMD_FLG_STA_RATE_MSK cpu_to_le32(1 << 4)
1175 
1176 /* 1: Expect immediate block-ack.
1177  * Set when Txing a block-ack request frame.  Also set TX_CMD_FLG_ACK_MSK. */
1178 #define TX_CMD_FLG_IMM_BA_RSP_MASK  cpu_to_le32(1 << 6)
1179 
1180 /* Tx antenna selection field; reserved (0) for agn devices. */
1181 #define TX_CMD_FLG_ANT_SEL_MSK cpu_to_le32(0xf00)
1182 
1183 /* 1: Ignore Bluetooth priority for this frame.
1184  * 0: Delay Tx until Bluetooth device is done (normal usage). */
1185 #define TX_CMD_FLG_IGNORE_BT cpu_to_le32(1 << 12)
1186 
1187 /* 1: uCode overrides sequence control field in MAC header.
1188  * 0: Driver provides sequence control field in MAC header.
1189  * Set this for management frames, non-QOS data frames, non-unicast frames,
1190  * and also in Tx command embedded in REPLY_SCAN_CMD for active scans. */
1191 #define TX_CMD_FLG_SEQ_CTL_MSK cpu_to_le32(1 << 13)
1192 
1193 /* 1: This frame is non-last MPDU; more fragments are coming.
1194  * 0: Last fragment, or not using fragmentation. */
1195 #define TX_CMD_FLG_MORE_FRAG_MSK cpu_to_le32(1 << 14)
1196 
1197 /* 1: uCode calculates and inserts Timestamp Function (TSF) in outgoing frame.
1198  * 0: No TSF required in outgoing frame.
1199  * Set this for transmitting beacons and probe responses. */
1200 #define TX_CMD_FLG_TSF_MSK cpu_to_le32(1 << 16)
1201 
1202 /* 1: Driver inserted 2 bytes pad after the MAC header, for (required) dword
1203  *    alignment of frame's payload data field.
1204  * 0: No pad
1205  * Set this for MAC headers with 26 or 30 bytes, i.e. those with QOS or ADDR4
1206  * field (but not both).  Driver must align frame data (i.e. data following
1207  * MAC header) to DWORD boundary. */
1208 #define TX_CMD_FLG_MH_PAD_MSK cpu_to_le32(1 << 20)
1209 
1210 /* accelerate aggregation support
1211  * 0 - no CCMP encryption; 1 - CCMP encryption */
1212 #define TX_CMD_FLG_AGG_CCMP_MSK cpu_to_le32(1 << 22)
1213 
1214 /* HCCA-AP - disable duration overwriting. */
1215 #define TX_CMD_FLG_DUR_MSK cpu_to_le32(1 << 25)
1216 
1217 
1218 /*
1219  * TX command security control
1220  */
1221 #define TX_CMD_SEC_WEP  	0x01
1222 #define TX_CMD_SEC_CCM  	0x02
1223 #define TX_CMD_SEC_TKIP		0x03
1224 #define TX_CMD_SEC_MSK		0x03
1225 #define TX_CMD_SEC_SHIFT	6
1226 #define TX_CMD_SEC_KEY128	0x08
1227 
1228 /*
1229  * REPLY_TX = 0x1c (command)
1230  */
1231 
1232 /*
1233  * 4965 uCode updates these Tx attempt count values in host DRAM.
1234  * Used for managing Tx retries when expecting block-acks.
1235  * Driver should set these fields to 0.
1236  */
1237 struct iwl_dram_scratch {
1238 	u8 try_cnt;		/* Tx attempts */
1239 	u8 bt_kill_cnt;		/* Tx attempts blocked by Bluetooth device */
1240 	__le16 reserved;
1241 } __packed;
1242 
1243 struct iwl_tx_cmd {
1244 	/*
1245 	 * MPDU byte count:
1246 	 * MAC header (24/26/30/32 bytes) + 2 bytes pad if 26/30 header size,
1247 	 * + 8 byte IV for CCM or TKIP (not used for WEP)
1248 	 * + Data payload
1249 	 * + 8-byte MIC (not used for CCM/WEP)
1250 	 * NOTE:  Does not include Tx command bytes, post-MAC pad bytes,
1251 	 *        MIC (CCM) 8 bytes, ICV (WEP/TKIP/CKIP) 4 bytes, CRC 4 bytes.i
1252 	 * Range: 14-2342 bytes.
1253 	 */
1254 	__le16 len;
1255 
1256 	/*
1257 	 * MPDU or MSDU byte count for next frame.
1258 	 * Used for fragmentation and bursting, but not 11n aggregation.
1259 	 * Same as "len", but for next frame.  Set to 0 if not applicable.
1260 	 */
1261 	__le16 next_frame_len;
1262 
1263 	__le32 tx_flags;	/* TX_CMD_FLG_* */
1264 
1265 	/* uCode may modify this field of the Tx command (in host DRAM!).
1266 	 * Driver must also set dram_lsb_ptr and dram_msb_ptr in this cmd. */
1267 	struct iwl_dram_scratch scratch;
1268 
1269 	/* Rate for *all* Tx attempts, if TX_CMD_FLG_STA_RATE_MSK is cleared. */
1270 	__le32 rate_n_flags;	/* RATE_MCS_* */
1271 
1272 	/* Index of destination station in uCode's station table */
1273 	u8 sta_id;
1274 
1275 	/* Type of security encryption:  CCM or TKIP */
1276 	u8 sec_ctl;		/* TX_CMD_SEC_* */
1277 
1278 	/*
1279 	 * Index into rate table (see REPLY_TX_LINK_QUALITY_CMD) for initial
1280 	 * Tx attempt, if TX_CMD_FLG_STA_RATE_MSK is set.  Normally "0" for
1281 	 * data frames, this field may be used to selectively reduce initial
1282 	 * rate (via non-0 value) for special frames (e.g. management), while
1283 	 * still supporting rate scaling for all frames.
1284 	 */
1285 	u8 initial_rate_index;
1286 	u8 reserved;
1287 	u8 key[16];
1288 	__le16 next_frame_flags;
1289 	__le16 reserved2;
1290 	union {
1291 		__le32 life_time;
1292 		__le32 attempt;
1293 	} stop_time;
1294 
1295 	/* Host DRAM physical address pointer to "scratch" in this command.
1296 	 * Must be dword aligned.  "0" in dram_lsb_ptr disables usage. */
1297 	__le32 dram_lsb_ptr;
1298 	u8 dram_msb_ptr;
1299 
1300 	u8 rts_retry_limit;	/*byte 50 */
1301 	u8 data_retry_limit;	/*byte 51 */
1302 	u8 tid_tspec;
1303 	union {
1304 		__le16 pm_frame_timeout;
1305 		__le16 attempt_duration;
1306 	} timeout;
1307 
1308 	/*
1309 	 * Duration of EDCA burst Tx Opportunity, in 32-usec units.
1310 	 * Set this if txop time is not specified by HCCA protocol (e.g. by AP).
1311 	 */
1312 	__le16 driver_txop;
1313 
1314 	/*
1315 	 * MAC header goes here, followed by 2 bytes padding if MAC header
1316 	 * length is 26 or 30 bytes, followed by payload data
1317 	 */
1318 	u8 payload[0];
1319 	struct ieee80211_hdr hdr[0];
1320 } __packed;
1321 
1322 /*
1323  * TX command response is sent after *agn* transmission attempts.
1324  *
1325  * both postpone and abort status are expected behavior from uCode. there is
1326  * no special operation required from driver; except for RFKILL_FLUSH,
1327  * which required tx flush host command to flush all the tx frames in queues
1328  */
1329 enum {
1330 	TX_STATUS_SUCCESS = 0x01,
1331 	TX_STATUS_DIRECT_DONE = 0x02,
1332 	/* postpone TX */
1333 	TX_STATUS_POSTPONE_DELAY = 0x40,
1334 	TX_STATUS_POSTPONE_FEW_BYTES = 0x41,
1335 	TX_STATUS_POSTPONE_BT_PRIO = 0x42,
1336 	TX_STATUS_POSTPONE_QUIET_PERIOD = 0x43,
1337 	TX_STATUS_POSTPONE_CALC_TTAK = 0x44,
1338 	/* abort TX */
1339 	TX_STATUS_FAIL_INTERNAL_CROSSED_RETRY = 0x81,
1340 	TX_STATUS_FAIL_SHORT_LIMIT = 0x82,
1341 	TX_STATUS_FAIL_LONG_LIMIT = 0x83,
1342 	TX_STATUS_FAIL_FIFO_UNDERRUN = 0x84,
1343 	TX_STATUS_FAIL_DRAIN_FLOW = 0x85,
1344 	TX_STATUS_FAIL_RFKILL_FLUSH = 0x86,
1345 	TX_STATUS_FAIL_LIFE_EXPIRE = 0x87,
1346 	TX_STATUS_FAIL_DEST_PS = 0x88,
1347 	TX_STATUS_FAIL_HOST_ABORTED = 0x89,
1348 	TX_STATUS_FAIL_BT_RETRY = 0x8a,
1349 	TX_STATUS_FAIL_STA_INVALID = 0x8b,
1350 	TX_STATUS_FAIL_FRAG_DROPPED = 0x8c,
1351 	TX_STATUS_FAIL_TID_DISABLE = 0x8d,
1352 	TX_STATUS_FAIL_FIFO_FLUSHED = 0x8e,
1353 	TX_STATUS_FAIL_INSUFFICIENT_CF_POLL = 0x8f,
1354 	TX_STATUS_FAIL_PASSIVE_NO_RX = 0x90,
1355 	TX_STATUS_FAIL_NO_BEACON_ON_RADAR = 0x91,
1356 };
1357 
1358 #define	TX_PACKET_MODE_REGULAR		0x0000
1359 #define	TX_PACKET_MODE_BURST_SEQ	0x0100
1360 #define	TX_PACKET_MODE_BURST_FIRST	0x0200
1361 
1362 enum {
1363 	TX_POWER_PA_NOT_ACTIVE = 0x0,
1364 };
1365 
1366 enum {
1367 	TX_STATUS_MSK = 0x000000ff,		/* bits 0:7 */
1368 	TX_STATUS_DELAY_MSK = 0x00000040,
1369 	TX_STATUS_ABORT_MSK = 0x00000080,
1370 	TX_PACKET_MODE_MSK = 0x0000ff00,	/* bits 8:15 */
1371 	TX_FIFO_NUMBER_MSK = 0x00070000,	/* bits 16:18 */
1372 	TX_RESERVED = 0x00780000,		/* bits 19:22 */
1373 	TX_POWER_PA_DETECT_MSK = 0x7f800000,	/* bits 23:30 */
1374 	TX_ABORT_REQUIRED_MSK = 0x80000000,	/* bits 31:31 */
1375 };
1376 
1377 /* *******************************
1378  * TX aggregation status
1379  ******************************* */
1380 
1381 enum {
1382 	AGG_TX_STATE_TRANSMITTED = 0x00,
1383 	AGG_TX_STATE_UNDERRUN_MSK = 0x01,
1384 	AGG_TX_STATE_BT_PRIO_MSK = 0x02,
1385 	AGG_TX_STATE_FEW_BYTES_MSK = 0x04,
1386 	AGG_TX_STATE_ABORT_MSK = 0x08,
1387 	AGG_TX_STATE_LAST_SENT_TTL_MSK = 0x10,
1388 	AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK = 0x20,
1389 	AGG_TX_STATE_LAST_SENT_BT_KILL_MSK = 0x40,
1390 	AGG_TX_STATE_SCD_QUERY_MSK = 0x80,
1391 	AGG_TX_STATE_TEST_BAD_CRC32_MSK = 0x100,
1392 	AGG_TX_STATE_RESPONSE_MSK = 0x1ff,
1393 	AGG_TX_STATE_DUMP_TX_MSK = 0x200,
1394 	AGG_TX_STATE_DELAY_TX_MSK = 0x400
1395 };
1396 
1397 #define AGG_TX_STATUS_MSK	0x00000fff	/* bits 0:11 */
1398 #define AGG_TX_TRY_MSK		0x0000f000	/* bits 12:15 */
1399 #define AGG_TX_TRY_POS		12
1400 
1401 #define AGG_TX_STATE_LAST_SENT_MSK  (AGG_TX_STATE_LAST_SENT_TTL_MSK | \
1402 				     AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK | \
1403 				     AGG_TX_STATE_LAST_SENT_BT_KILL_MSK)
1404 
1405 /* # tx attempts for first frame in aggregation */
1406 #define AGG_TX_STATE_TRY_CNT_POS 12
1407 #define AGG_TX_STATE_TRY_CNT_MSK 0xf000
1408 
1409 /* Command ID and sequence number of Tx command for this frame */
1410 #define AGG_TX_STATE_SEQ_NUM_POS 16
1411 #define AGG_TX_STATE_SEQ_NUM_MSK 0xffff0000
1412 
1413 /*
1414  * REPLY_TX = 0x1c (response)
1415  *
1416  * This response may be in one of two slightly different formats, indicated
1417  * by the frame_count field:
1418  *
1419  * 1)  No aggregation (frame_count == 1).  This reports Tx results for
1420  *     a single frame.  Multiple attempts, at various bit rates, may have
1421  *     been made for this frame.
1422  *
1423  * 2)  Aggregation (frame_count > 1).  This reports Tx results for
1424  *     2 or more frames that used block-acknowledge.  All frames were
1425  *     transmitted at same rate.  Rate scaling may have been used if first
1426  *     frame in this new agg block failed in previous agg block(s).
1427  *
1428  *     Note that, for aggregation, ACK (block-ack) status is not delivered here;
1429  *     block-ack has not been received by the time the agn device records
1430  *     this status.
1431  *     This status relates to reasons the tx might have been blocked or aborted
1432  *     within the sending station (this agn device), rather than whether it was
1433  *     received successfully by the destination station.
1434  */
1435 struct agg_tx_status {
1436 	__le16 status;
1437 	__le16 sequence;
1438 } __packed;
1439 
1440 /*
1441  * definitions for initial rate index field
1442  * bits [3:0] initial rate index
1443  * bits [6:4] rate table color, used for the initial rate
1444  * bit-7 invalid rate indication
1445  *   i.e. rate was not chosen from rate table
1446  *   or rate table color was changed during frame retries
1447  * refer tlc rate info
1448  */
1449 
1450 #define IWL50_TX_RES_INIT_RATE_INDEX_POS	0
1451 #define IWL50_TX_RES_INIT_RATE_INDEX_MSK	0x0f
1452 #define IWL50_TX_RES_RATE_TABLE_COLOR_POS	4
1453 #define IWL50_TX_RES_RATE_TABLE_COLOR_MSK	0x70
1454 #define IWL50_TX_RES_INV_RATE_INDEX_MSK	0x80
1455 
1456 /* refer to ra_tid */
1457 #define IWLAGN_TX_RES_TID_POS	0
1458 #define IWLAGN_TX_RES_TID_MSK	0x0f
1459 #define IWLAGN_TX_RES_RA_POS	4
1460 #define IWLAGN_TX_RES_RA_MSK	0xf0
1461 
1462 struct iwlagn_tx_resp {
1463 	u8 frame_count;		/* 1 no aggregation, >1 aggregation */
1464 	u8 bt_kill_count;	/* # blocked by bluetooth (unused for agg) */
1465 	u8 failure_rts;		/* # failures due to unsuccessful RTS */
1466 	u8 failure_frame;	/* # failures due to no ACK (unused for agg) */
1467 
1468 	/* For non-agg:  Rate at which frame was successful.
1469 	 * For agg:  Rate at which all frames were transmitted. */
1470 	__le32 rate_n_flags;	/* RATE_MCS_*  */
1471 
1472 	/* For non-agg:  RTS + CTS + frame tx attempts time + ACK.
1473 	 * For agg:  RTS + CTS + aggregation tx time + block-ack time. */
1474 	__le16 wireless_media_time;	/* uSecs */
1475 
1476 	u8 pa_status;		/* RF power amplifier measurement (not used) */
1477 	u8 pa_integ_res_a[3];
1478 	u8 pa_integ_res_b[3];
1479 	u8 pa_integ_res_C[3];
1480 
1481 	__le32 tfd_info;
1482 	__le16 seq_ctl;
1483 	__le16 byte_cnt;
1484 	u8 tlc_info;
1485 	u8 ra_tid;		/* tid (0:3), sta_id (4:7) */
1486 	__le16 frame_ctrl;
1487 	/*
1488 	 * For non-agg:  frame status TX_STATUS_*
1489 	 * For agg:  status of 1st frame, AGG_TX_STATE_*; other frame status
1490 	 *           fields follow this one, up to frame_count.
1491 	 *           Bit fields:
1492 	 *           11- 0:  AGG_TX_STATE_* status code
1493 	 *           15-12:  Retry count for 1st frame in aggregation (retries
1494 	 *                   occur if tx failed for this frame when it was a
1495 	 *                   member of a previous aggregation block).  If rate
1496 	 *                   scaling is used, retry count indicates the rate
1497 	 *                   table entry used for all frames in the new agg.
1498 	 *           31-16:  Sequence # for this frame's Tx cmd (not SSN!)
1499 	 */
1500 	struct agg_tx_status status;	/* TX status (in aggregation -
1501 					 * status of 1st frame) */
1502 } __packed;
1503 /*
1504  * REPLY_COMPRESSED_BA = 0xc5 (response only, not a command)
1505  *
1506  * Reports Block-Acknowledge from recipient station
1507  */
1508 struct iwl_compressed_ba_resp {
1509 	__le32 sta_addr_lo32;
1510 	__le16 sta_addr_hi16;
1511 	__le16 reserved;
1512 
1513 	/* Index of recipient (BA-sending) station in uCode's station table */
1514 	u8 sta_id;
1515 	u8 tid;
1516 	__le16 seq_ctl;
1517 	__le64 bitmap;
1518 	__le16 scd_flow;
1519 	__le16 scd_ssn;
1520 	u8 txed;	/* number of frames sent */
1521 	u8 txed_2_done; /* number of frames acked */
1522 	__le16 reserved1;
1523 } __packed;
1524 
1525 /*
1526  * REPLY_TX_PWR_TABLE_CMD = 0x97 (command, has simple generic response)
1527  *
1528  */
1529 
1530 /*RS_NEW_API: only TLC_RTS remains and moved to bit 0 */
1531 #define  LINK_QUAL_FLAGS_SET_STA_TLC_RTS_MSK	(1 << 0)
1532 
1533 /* # of EDCA prioritized tx fifos */
1534 #define  LINK_QUAL_AC_NUM AC_NUM
1535 
1536 /* # entries in rate scale table to support Tx retries */
1537 #define  LINK_QUAL_MAX_RETRY_NUM 16
1538 
1539 /* Tx antenna selection values */
1540 #define  LINK_QUAL_ANT_A_MSK (1 << 0)
1541 #define  LINK_QUAL_ANT_B_MSK (1 << 1)
1542 #define  LINK_QUAL_ANT_MSK   (LINK_QUAL_ANT_A_MSK|LINK_QUAL_ANT_B_MSK)
1543 
1544 
1545 /**
1546  * struct iwl_link_qual_general_params
1547  *
1548  * Used in REPLY_TX_LINK_QUALITY_CMD
1549  */
1550 struct iwl_link_qual_general_params {
1551 	u8 flags;
1552 
1553 	/* No entries at or above this (driver chosen) index contain MIMO */
1554 	u8 mimo_delimiter;
1555 
1556 	/* Best single antenna to use for single stream (legacy, SISO). */
1557 	u8 single_stream_ant_msk;	/* LINK_QUAL_ANT_* */
1558 
1559 	/* Best antennas to use for MIMO (unused for 4965, assumes both). */
1560 	u8 dual_stream_ant_msk;		/* LINK_QUAL_ANT_* */
1561 
1562 	/*
1563 	 * If driver needs to use different initial rates for different
1564 	 * EDCA QOS access categories (as implemented by tx fifos 0-3),
1565 	 * this table will set that up, by indicating the indexes in the
1566 	 * rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table at which to start.
1567 	 * Otherwise, driver should set all entries to 0.
1568 	 *
1569 	 * Entry usage:
1570 	 * 0 = Background, 1 = Best Effort (normal), 2 = Video, 3 = Voice
1571 	 * TX FIFOs above 3 use same value (typically 0) as TX FIFO 3.
1572 	 */
1573 	u8 start_rate_index[LINK_QUAL_AC_NUM];
1574 } __packed;
1575 
1576 #define LINK_QUAL_AGG_TIME_LIMIT_DEF	(4000) /* 4 milliseconds */
1577 #define LINK_QUAL_AGG_TIME_LIMIT_MAX	(8000)
1578 #define LINK_QUAL_AGG_TIME_LIMIT_MIN	(100)
1579 
1580 #define LINK_QUAL_AGG_DISABLE_START_DEF	(3)
1581 #define LINK_QUAL_AGG_DISABLE_START_MAX	(255)
1582 #define LINK_QUAL_AGG_DISABLE_START_MIN	(0)
1583 
1584 #define LINK_QUAL_AGG_FRAME_LIMIT_DEF	(63)
1585 #define LINK_QUAL_AGG_FRAME_LIMIT_MAX	(63)
1586 #define LINK_QUAL_AGG_FRAME_LIMIT_MIN	(0)
1587 
1588 /**
1589  * struct iwl_link_qual_agg_params
1590  *
1591  * Used in REPLY_TX_LINK_QUALITY_CMD
1592  */
1593 struct iwl_link_qual_agg_params {
1594 
1595 	/*
1596 	 *Maximum number of uSec in aggregation.
1597 	 * default set to 4000 (4 milliseconds) if not configured in .cfg
1598 	 */
1599 	__le16 agg_time_limit;
1600 
1601 	/*
1602 	 * Number of Tx retries allowed for a frame, before that frame will
1603 	 * no longer be considered for the start of an aggregation sequence
1604 	 * (scheduler will then try to tx it as single frame).
1605 	 * Driver should set this to 3.
1606 	 */
1607 	u8 agg_dis_start_th;
1608 
1609 	/*
1610 	 * Maximum number of frames in aggregation.
1611 	 * 0 = no limit (default).  1 = no aggregation.
1612 	 * Other values = max # frames in aggregation.
1613 	 */
1614 	u8 agg_frame_cnt_limit;
1615 
1616 	__le32 reserved;
1617 } __packed;
1618 
1619 /*
1620  * REPLY_TX_LINK_QUALITY_CMD = 0x4e (command, has simple generic response)
1621  *
1622  * For agn devices
1623  *
1624  * Each station in the agn device's internal station table has its own table
1625  * of 16
1626  * Tx rates and modulation modes (e.g. legacy/SISO/MIMO) for retrying Tx when
1627  * an ACK is not received.  This command replaces the entire table for
1628  * one station.
1629  *
1630  * NOTE:  Station must already be in agn device's station table.
1631  *	  Use REPLY_ADD_STA.
1632  *
1633  * The rate scaling procedures described below work well.  Of course, other
1634  * procedures are possible, and may work better for particular environments.
1635  *
1636  *
1637  * FILLING THE RATE TABLE
1638  *
1639  * Given a particular initial rate and mode, as determined by the rate
1640  * scaling algorithm described below, the Linux driver uses the following
1641  * formula to fill the rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table in the
1642  * Link Quality command:
1643  *
1644  *
1645  * 1)  If using High-throughput (HT) (SISO or MIMO) initial rate:
1646  *     a) Use this same initial rate for first 3 entries.
1647  *     b) Find next lower available rate using same mode (SISO or MIMO),
1648  *        use for next 3 entries.  If no lower rate available, switch to
1649  *        legacy mode (no HT40 channel, no MIMO, no short guard interval).
1650  *     c) If using MIMO, set command's mimo_delimiter to number of entries
1651  *        using MIMO (3 or 6).
1652  *     d) After trying 2 HT rates, switch to legacy mode (no HT40 channel,
1653  *        no MIMO, no short guard interval), at the next lower bit rate
1654  *        (e.g. if second HT bit rate was 54, try 48 legacy), and follow
1655  *        legacy procedure for remaining table entries.
1656  *
1657  * 2)  If using legacy initial rate:
1658  *     a) Use the initial rate for only one entry.
1659  *     b) For each following entry, reduce the rate to next lower available
1660  *        rate, until reaching the lowest available rate.
1661  *     c) When reducing rate, also switch antenna selection.
1662  *     d) Once lowest available rate is reached, repeat this rate until
1663  *        rate table is filled (16 entries), switching antenna each entry.
1664  *
1665  *
1666  * ACCUMULATING HISTORY
1667  *
1668  * The rate scaling algorithm for agn devices, as implemented in Linux driver,
1669  * uses two sets of frame Tx success history:  One for the current/active
1670  * modulation mode, and one for a speculative/search mode that is being
1671  * attempted. If the speculative mode turns out to be more effective (i.e.
1672  * actual transfer rate is better), then the driver continues to use the
1673  * speculative mode as the new current active mode.
1674  *
1675  * Each history set contains, separately for each possible rate, data for a
1676  * sliding window of the 62 most recent tx attempts at that rate.  The data
1677  * includes a shifting bitmap of success(1)/failure(0), and sums of successful
1678  * and attempted frames, from which the driver can additionally calculate a
1679  * success ratio (success / attempted) and number of failures
1680  * (attempted - success), and control the size of the window (attempted).
1681  * The driver uses the bit map to remove successes from the success sum, as
1682  * the oldest tx attempts fall out of the window.
1683  *
1684  * When the agn device makes multiple tx attempts for a given frame, each
1685  * attempt might be at a different rate, and have different modulation
1686  * characteristics (e.g. antenna, fat channel, short guard interval), as set
1687  * up in the rate scaling table in the Link Quality command.  The driver must
1688  * determine which rate table entry was used for each tx attempt, to determine
1689  * which rate-specific history to update, and record only those attempts that
1690  * match the modulation characteristics of the history set.
1691  *
1692  * When using block-ack (aggregation), all frames are transmitted at the same
1693  * rate, since there is no per-attempt acknowledgment from the destination
1694  * station.  The Tx response struct iwl_tx_resp indicates the Tx rate in
1695  * rate_n_flags field.  After receiving a block-ack, the driver can update
1696  * history for the entire block all at once.
1697  *
1698  *
1699  * FINDING BEST STARTING RATE:
1700  *
1701  * When working with a selected initial modulation mode (see below), the
1702  * driver attempts to find a best initial rate.  The initial rate is the
1703  * first entry in the Link Quality command's rate table.
1704  *
1705  * 1)  Calculate actual throughput (success ratio * expected throughput, see
1706  *     table below) for current initial rate.  Do this only if enough frames
1707  *     have been attempted to make the value meaningful:  at least 6 failed
1708  *     tx attempts, or at least 8 successes.  If not enough, don't try rate
1709  *     scaling yet.
1710  *
1711  * 2)  Find available rates adjacent to current initial rate.  Available means:
1712  *     a)  supported by hardware &&
1713  *     b)  supported by association &&
1714  *     c)  within any constraints selected by user
1715  *
1716  * 3)  Gather measured throughputs for adjacent rates.  These might not have
1717  *     enough history to calculate a throughput.  That's okay, we might try
1718  *     using one of them anyway!
1719  *
1720  * 4)  Try decreasing rate if, for current rate:
1721  *     a)  success ratio is < 15% ||
1722  *     b)  lower adjacent rate has better measured throughput ||
1723  *     c)  higher adjacent rate has worse throughput, and lower is unmeasured
1724  *
1725  *     As a sanity check, if decrease was determined above, leave rate
1726  *     unchanged if:
1727  *     a)  lower rate unavailable
1728  *     b)  success ratio at current rate > 85% (very good)
1729  *     c)  current measured throughput is better than expected throughput
1730  *         of lower rate (under perfect 100% tx conditions, see table below)
1731  *
1732  * 5)  Try increasing rate if, for current rate:
1733  *     a)  success ratio is < 15% ||
1734  *     b)  both adjacent rates' throughputs are unmeasured (try it!) ||
1735  *     b)  higher adjacent rate has better measured throughput ||
1736  *     c)  lower adjacent rate has worse throughput, and higher is unmeasured
1737  *
1738  *     As a sanity check, if increase was determined above, leave rate
1739  *     unchanged if:
1740  *     a)  success ratio at current rate < 70%.  This is not particularly
1741  *         good performance; higher rate is sure to have poorer success.
1742  *
1743  * 6)  Re-evaluate the rate after each tx frame.  If working with block-
1744  *     acknowledge, history and statistics may be calculated for the entire
1745  *     block (including prior history that fits within the history windows),
1746  *     before re-evaluation.
1747  *
1748  * FINDING BEST STARTING MODULATION MODE:
1749  *
1750  * After working with a modulation mode for a "while" (and doing rate scaling),
1751  * the driver searches for a new initial mode in an attempt to improve
1752  * throughput.  The "while" is measured by numbers of attempted frames:
1753  *
1754  * For legacy mode, search for new mode after:
1755  *   480 successful frames, or 160 failed frames
1756  * For high-throughput modes (SISO or MIMO), search for new mode after:
1757  *   4500 successful frames, or 400 failed frames
1758  *
1759  * Mode switch possibilities are (3 for each mode):
1760  *
1761  * For legacy:
1762  *   Change antenna, try SISO (if HT association), try MIMO (if HT association)
1763  * For SISO:
1764  *   Change antenna, try MIMO, try shortened guard interval (SGI)
1765  * For MIMO:
1766  *   Try SISO antenna A, SISO antenna B, try shortened guard interval (SGI)
1767  *
1768  * When trying a new mode, use the same bit rate as the old/current mode when
1769  * trying antenna switches and shortened guard interval.  When switching to
1770  * SISO from MIMO or legacy, or to MIMO from SISO or legacy, use a rate
1771  * for which the expected throughput (under perfect conditions) is about the
1772  * same or slightly better than the actual measured throughput delivered by
1773  * the old/current mode.
1774  *
1775  * Actual throughput can be estimated by multiplying the expected throughput
1776  * by the success ratio (successful / attempted tx frames).  Frame size is
1777  * not considered in this calculation; it assumes that frame size will average
1778  * out to be fairly consistent over several samples.  The following are
1779  * metric values for expected throughput assuming 100% success ratio.
1780  * Only G band has support for CCK rates:
1781  *
1782  *           RATE:  1    2    5   11    6   9   12   18   24   36   48   54   60
1783  *
1784  *              G:  7   13   35   58   40  57   72   98  121  154  177  186  186
1785  *              A:  0    0    0    0   40  57   72   98  121  154  177  186  186
1786  *     SISO 20MHz:  0    0    0    0   42  42   76  102  124  159  183  193  202
1787  * SGI SISO 20MHz:  0    0    0    0   46  46   82  110  132  168  192  202  211
1788  *     MIMO 20MHz:  0    0    0    0   74  74  123  155  179  214  236  244  251
1789  * SGI MIMO 20MHz:  0    0    0    0   81  81  131  164  188  222  243  251  257
1790  *     SISO 40MHz:  0    0    0    0   77  77  127  160  184  220  242  250  257
1791  * SGI SISO 40MHz:  0    0    0    0   83  83  135  169  193  229  250  257  264
1792  *     MIMO 40MHz:  0    0    0    0  123 123  182  214  235  264  279  285  289
1793  * SGI MIMO 40MHz:  0    0    0    0  131 131  191  222  242  270  284  289  293
1794  *
1795  * After the new mode has been tried for a short while (minimum of 6 failed
1796  * frames or 8 successful frames), compare success ratio and actual throughput
1797  * estimate of the new mode with the old.  If either is better with the new
1798  * mode, continue to use the new mode.
1799  *
1800  * Continue comparing modes until all 3 possibilities have been tried.
1801  * If moving from legacy to HT, try all 3 possibilities from the new HT
1802  * mode.  After trying all 3, a best mode is found.  Continue to use this mode
1803  * for the longer "while" described above (e.g. 480 successful frames for
1804  * legacy), and then repeat the search process.
1805  *
1806  */
1807 struct iwl_link_quality_cmd {
1808 
1809 	/* Index of destination/recipient station in uCode's station table */
1810 	u8 sta_id;
1811 	u8 reserved1;
1812 	__le16 control;		/* not used */
1813 	struct iwl_link_qual_general_params general_params;
1814 	struct iwl_link_qual_agg_params agg_params;
1815 
1816 	/*
1817 	 * Rate info; when using rate-scaling, Tx command's initial_rate_index
1818 	 * specifies 1st Tx rate attempted, via index into this table.
1819 	 * agn devices works its way through table when retrying Tx.
1820 	 */
1821 	struct {
1822 		__le32 rate_n_flags;	/* RATE_MCS_*, IWL_RATE_* */
1823 	} rs_table[LINK_QUAL_MAX_RETRY_NUM];
1824 	__le32 reserved2;
1825 } __packed;
1826 
1827 /*
1828  * BT configuration enable flags:
1829  *   bit 0 - 1: BT channel announcement enabled
1830  *           0: disable
1831  *   bit 1 - 1: priority of BT device enabled
1832  *           0: disable
1833  *   bit 2 - 1: BT 2 wire support enabled
1834  *           0: disable
1835  */
1836 #define BT_COEX_DISABLE (0x0)
1837 #define BT_ENABLE_CHANNEL_ANNOUNCE BIT(0)
1838 #define BT_ENABLE_PRIORITY	   BIT(1)
1839 #define BT_ENABLE_2_WIRE	   BIT(2)
1840 
1841 #define BT_COEX_DISABLE (0x0)
1842 #define BT_COEX_ENABLE  (BT_ENABLE_CHANNEL_ANNOUNCE | BT_ENABLE_PRIORITY)
1843 
1844 #define BT_LEAD_TIME_MIN (0x0)
1845 #define BT_LEAD_TIME_DEF (0x1E)
1846 #define BT_LEAD_TIME_MAX (0xFF)
1847 
1848 #define BT_MAX_KILL_MIN (0x1)
1849 #define BT_MAX_KILL_DEF (0x5)
1850 #define BT_MAX_KILL_MAX (0xFF)
1851 
1852 #define BT_DURATION_LIMIT_DEF	625
1853 #define BT_DURATION_LIMIT_MAX	1250
1854 #define BT_DURATION_LIMIT_MIN	625
1855 
1856 #define BT_ON_THRESHOLD_DEF	4
1857 #define BT_ON_THRESHOLD_MAX	1000
1858 #define BT_ON_THRESHOLD_MIN	1
1859 
1860 #define BT_FRAG_THRESHOLD_DEF	0
1861 #define BT_FRAG_THRESHOLD_MAX	0
1862 #define BT_FRAG_THRESHOLD_MIN	0
1863 
1864 #define BT_AGG_THRESHOLD_DEF	1200
1865 #define BT_AGG_THRESHOLD_MAX	8000
1866 #define BT_AGG_THRESHOLD_MIN	400
1867 
1868 /*
1869  * REPLY_BT_CONFIG = 0x9b (command, has simple generic response)
1870  *
1871  * agn devices support hardware handshake with Bluetooth device on
1872  * same platform.  Bluetooth device alerts wireless device when it will Tx;
1873  * wireless device can delay or kill its own Tx to accommodate.
1874  */
1875 struct iwl_bt_cmd {
1876 	u8 flags;
1877 	u8 lead_time;
1878 	u8 max_kill;
1879 	u8 reserved;
1880 	__le32 kill_ack_mask;
1881 	__le32 kill_cts_mask;
1882 } __packed;
1883 
1884 #define IWLAGN_BT_FLAG_CHANNEL_INHIBITION	BIT(0)
1885 
1886 #define IWLAGN_BT_FLAG_COEX_MODE_MASK		(BIT(3)|BIT(4)|BIT(5))
1887 #define IWLAGN_BT_FLAG_COEX_MODE_SHIFT		3
1888 #define IWLAGN_BT_FLAG_COEX_MODE_DISABLED	0
1889 #define IWLAGN_BT_FLAG_COEX_MODE_LEGACY_2W	1
1890 #define IWLAGN_BT_FLAG_COEX_MODE_3W		2
1891 #define IWLAGN_BT_FLAG_COEX_MODE_4W		3
1892 
1893 #define IWLAGN_BT_FLAG_UCODE_DEFAULT		BIT(6)
1894 /* Disable Sync PSPoll on SCO/eSCO */
1895 #define IWLAGN_BT_FLAG_SYNC_2_BT_DISABLE	BIT(7)
1896 
1897 #define IWLAGN_BT_PSP_MIN_RSSI_THRESHOLD	-75 /* dBm */
1898 #define IWLAGN_BT_PSP_MAX_RSSI_THRESHOLD	-65 /* dBm */
1899 
1900 #define IWLAGN_BT_PRIO_BOOST_MAX	0xFF
1901 #define IWLAGN_BT_PRIO_BOOST_MIN	0x00
1902 #define IWLAGN_BT_PRIO_BOOST_DEFAULT	0xF0
1903 #define IWLAGN_BT_PRIO_BOOST_DEFAULT32	0xF0F0F0F0
1904 
1905 #define IWLAGN_BT_MAX_KILL_DEFAULT	5
1906 
1907 #define IWLAGN_BT3_T7_DEFAULT		1
1908 
1909 enum iwl_bt_kill_idx {
1910 	IWL_BT_KILL_DEFAULT = 0,
1911 	IWL_BT_KILL_OVERRIDE = 1,
1912 	IWL_BT_KILL_REDUCE = 2,
1913 };
1914 
1915 #define IWLAGN_BT_KILL_ACK_MASK_DEFAULT	cpu_to_le32(0xffff0000)
1916 #define IWLAGN_BT_KILL_CTS_MASK_DEFAULT	cpu_to_le32(0xffff0000)
1917 #define IWLAGN_BT_KILL_ACK_CTS_MASK_SCO	cpu_to_le32(0xffffffff)
1918 #define IWLAGN_BT_KILL_ACK_CTS_MASK_REDUCE	cpu_to_le32(0)
1919 
1920 #define IWLAGN_BT3_PRIO_SAMPLE_DEFAULT	2
1921 
1922 #define IWLAGN_BT3_T2_DEFAULT		0xc
1923 
1924 #define IWLAGN_BT_VALID_ENABLE_FLAGS	cpu_to_le16(BIT(0))
1925 #define IWLAGN_BT_VALID_BOOST		cpu_to_le16(BIT(1))
1926 #define IWLAGN_BT_VALID_MAX_KILL	cpu_to_le16(BIT(2))
1927 #define IWLAGN_BT_VALID_3W_TIMERS	cpu_to_le16(BIT(3))
1928 #define IWLAGN_BT_VALID_KILL_ACK_MASK	cpu_to_le16(BIT(4))
1929 #define IWLAGN_BT_VALID_KILL_CTS_MASK	cpu_to_le16(BIT(5))
1930 #define IWLAGN_BT_VALID_REDUCED_TX_PWR	cpu_to_le16(BIT(6))
1931 #define IWLAGN_BT_VALID_3W_LUT		cpu_to_le16(BIT(7))
1932 
1933 #define IWLAGN_BT_ALL_VALID_MSK		(IWLAGN_BT_VALID_ENABLE_FLAGS | \
1934 					IWLAGN_BT_VALID_BOOST | \
1935 					IWLAGN_BT_VALID_MAX_KILL | \
1936 					IWLAGN_BT_VALID_3W_TIMERS | \
1937 					IWLAGN_BT_VALID_KILL_ACK_MASK | \
1938 					IWLAGN_BT_VALID_KILL_CTS_MASK | \
1939 					IWLAGN_BT_VALID_REDUCED_TX_PWR | \
1940 					IWLAGN_BT_VALID_3W_LUT)
1941 
1942 #define IWLAGN_BT_REDUCED_TX_PWR	BIT(0)
1943 
1944 #define IWLAGN_BT_DECISION_LUT_SIZE	12
1945 
1946 struct iwl_basic_bt_cmd {
1947 	u8 flags;
1948 	u8 ledtime; /* unused */
1949 	u8 max_kill;
1950 	u8 bt3_timer_t7_value;
1951 	__le32 kill_ack_mask;
1952 	__le32 kill_cts_mask;
1953 	u8 bt3_prio_sample_time;
1954 	u8 bt3_timer_t2_value;
1955 	__le16 bt4_reaction_time; /* unused */
1956 	__le32 bt3_lookup_table[IWLAGN_BT_DECISION_LUT_SIZE];
1957 	/*
1958 	 * bit 0: use reduced tx power for control frame
1959 	 * bit 1 - 7: reserved
1960 	 */
1961 	u8 reduce_txpower;
1962 	u8 reserved;
1963 	__le16 valid;
1964 };
1965 
1966 struct iwl_bt_cmd_v1 {
1967 	struct iwl_basic_bt_cmd basic;
1968 	u8 prio_boost;
1969 	/*
1970 	 * set IWLAGN_BT_VALID_BOOST to "1" in "valid" bitmask
1971 	 * if configure the following patterns
1972 	 */
1973 	u8 tx_prio_boost;	/* SW boost of WiFi tx priority */
1974 	__le16 rx_prio_boost;	/* SW boost of WiFi rx priority */
1975 };
1976 
1977 struct iwl_bt_cmd_v2 {
1978 	struct iwl_basic_bt_cmd basic;
1979 	__le32 prio_boost;
1980 	/*
1981 	 * set IWLAGN_BT_VALID_BOOST to "1" in "valid" bitmask
1982 	 * if configure the following patterns
1983 	 */
1984 	u8 reserved;
1985 	u8 tx_prio_boost;	/* SW boost of WiFi tx priority */
1986 	__le16 rx_prio_boost;	/* SW boost of WiFi rx priority */
1987 };
1988 
1989 #define IWLAGN_BT_SCO_ACTIVE	cpu_to_le32(BIT(0))
1990 
1991 struct iwlagn_bt_sco_cmd {
1992 	__le32 flags;
1993 };
1994 
1995 /******************************************************************************
1996  * (6)
1997  * Spectrum Management (802.11h) Commands, Responses, Notifications:
1998  *
1999  *****************************************************************************/
2000 
2001 /*
2002  * Spectrum Management
2003  */
2004 #define MEASUREMENT_FILTER_FLAG (RXON_FILTER_PROMISC_MSK         | \
2005 				 RXON_FILTER_CTL2HOST_MSK        | \
2006 				 RXON_FILTER_ACCEPT_GRP_MSK      | \
2007 				 RXON_FILTER_DIS_DECRYPT_MSK     | \
2008 				 RXON_FILTER_DIS_GRP_DECRYPT_MSK | \
2009 				 RXON_FILTER_ASSOC_MSK           | \
2010 				 RXON_FILTER_BCON_AWARE_MSK)
2011 
2012 struct iwl_measure_channel {
2013 	__le32 duration;	/* measurement duration in extended beacon
2014 				 * format */
2015 	u8 channel;		/* channel to measure */
2016 	u8 type;		/* see enum iwl_measure_type */
2017 	__le16 reserved;
2018 } __packed;
2019 
2020 /*
2021  * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (command)
2022  */
2023 struct iwl_spectrum_cmd {
2024 	__le16 len;		/* number of bytes starting from token */
2025 	u8 token;		/* token id */
2026 	u8 id;			/* measurement id -- 0 or 1 */
2027 	u8 origin;		/* 0 = TGh, 1 = other, 2 = TGk */
2028 	u8 periodic;		/* 1 = periodic */
2029 	__le16 path_loss_timeout;
2030 	__le32 start_time;	/* start time in extended beacon format */
2031 	__le32 reserved2;
2032 	__le32 flags;		/* rxon flags */
2033 	__le32 filter_flags;	/* rxon filter flags */
2034 	__le16 channel_count;	/* minimum 1, maximum 10 */
2035 	__le16 reserved3;
2036 	struct iwl_measure_channel channels[10];
2037 } __packed;
2038 
2039 /*
2040  * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (response)
2041  */
2042 struct iwl_spectrum_resp {
2043 	u8 token;
2044 	u8 id;			/* id of the prior command replaced, or 0xff */
2045 	__le16 status;		/* 0 - command will be handled
2046 				 * 1 - cannot handle (conflicts with another
2047 				 *     measurement) */
2048 } __packed;
2049 
2050 enum iwl_measurement_state {
2051 	IWL_MEASUREMENT_START = 0,
2052 	IWL_MEASUREMENT_STOP = 1,
2053 };
2054 
2055 enum iwl_measurement_status {
2056 	IWL_MEASUREMENT_OK = 0,
2057 	IWL_MEASUREMENT_CONCURRENT = 1,
2058 	IWL_MEASUREMENT_CSA_CONFLICT = 2,
2059 	IWL_MEASUREMENT_TGH_CONFLICT = 3,
2060 	/* 4-5 reserved */
2061 	IWL_MEASUREMENT_STOPPED = 6,
2062 	IWL_MEASUREMENT_TIMEOUT = 7,
2063 	IWL_MEASUREMENT_PERIODIC_FAILED = 8,
2064 };
2065 
2066 #define NUM_ELEMENTS_IN_HISTOGRAM 8
2067 
2068 struct iwl_measurement_histogram {
2069 	__le32 ofdm[NUM_ELEMENTS_IN_HISTOGRAM];	/* in 0.8usec counts */
2070 	__le32 cck[NUM_ELEMENTS_IN_HISTOGRAM];	/* in 1usec counts */
2071 } __packed;
2072 
2073 /* clear channel availability counters */
2074 struct iwl_measurement_cca_counters {
2075 	__le32 ofdm;
2076 	__le32 cck;
2077 } __packed;
2078 
2079 enum iwl_measure_type {
2080 	IWL_MEASURE_BASIC = (1 << 0),
2081 	IWL_MEASURE_CHANNEL_LOAD = (1 << 1),
2082 	IWL_MEASURE_HISTOGRAM_RPI = (1 << 2),
2083 	IWL_MEASURE_HISTOGRAM_NOISE = (1 << 3),
2084 	IWL_MEASURE_FRAME = (1 << 4),
2085 	/* bits 5:6 are reserved */
2086 	IWL_MEASURE_IDLE = (1 << 7),
2087 };
2088 
2089 /*
2090  * SPECTRUM_MEASURE_NOTIFICATION = 0x75 (notification only, not a command)
2091  */
2092 struct iwl_spectrum_notification {
2093 	u8 id;			/* measurement id -- 0 or 1 */
2094 	u8 token;
2095 	u8 channel_index;	/* index in measurement channel list */
2096 	u8 state;		/* 0 - start, 1 - stop */
2097 	__le32 start_time;	/* lower 32-bits of TSF */
2098 	u8 band;		/* 0 - 5.2GHz, 1 - 2.4GHz */
2099 	u8 channel;
2100 	u8 type;		/* see enum iwl_measurement_type */
2101 	u8 reserved1;
2102 	/* NOTE:  cca_ofdm, cca_cck, basic_type, and histogram are only only
2103 	 * valid if applicable for measurement type requested. */
2104 	__le32 cca_ofdm;	/* cca fraction time in 40Mhz clock periods */
2105 	__le32 cca_cck;		/* cca fraction time in 44Mhz clock periods */
2106 	__le32 cca_time;	/* channel load time in usecs */
2107 	u8 basic_type;		/* 0 - bss, 1 - ofdm preamble, 2 -
2108 				 * unidentified */
2109 	u8 reserved2[3];
2110 	struct iwl_measurement_histogram histogram;
2111 	__le32 stop_time;	/* lower 32-bits of TSF */
2112 	__le32 status;		/* see iwl_measurement_status */
2113 } __packed;
2114 
2115 /******************************************************************************
2116  * (7)
2117  * Power Management Commands, Responses, Notifications:
2118  *
2119  *****************************************************************************/
2120 
2121 /**
2122  * struct iwl_powertable_cmd - Power Table Command
2123  * @flags: See below:
2124  *
2125  * POWER_TABLE_CMD = 0x77 (command, has simple generic response)
2126  *
2127  * PM allow:
2128  *   bit 0 - '0' Driver not allow power management
2129  *           '1' Driver allow PM (use rest of parameters)
2130  *
2131  * uCode send sleep notifications:
2132  *   bit 1 - '0' Don't send sleep notification
2133  *           '1' send sleep notification (SEND_PM_NOTIFICATION)
2134  *
2135  * Sleep over DTIM
2136  *   bit 2 - '0' PM have to walk up every DTIM
2137  *           '1' PM could sleep over DTIM till listen Interval.
2138  *
2139  * PCI power managed
2140  *   bit 3 - '0' (PCI_CFG_LINK_CTRL & 0x1)
2141  *           '1' !(PCI_CFG_LINK_CTRL & 0x1)
2142  *
2143  * Fast PD
2144  *   bit 4 - '1' Put radio to sleep when receiving frame for others
2145  *
2146  * Force sleep Modes
2147  *   bit 31/30- '00' use both mac/xtal sleeps
2148  *              '01' force Mac sleep
2149  *              '10' force xtal sleep
2150  *              '11' Illegal set
2151  *
2152  * NOTE: if sleep_interval[SLEEP_INTRVL_TABLE_SIZE-1] > DTIM period then
2153  * ucode assume sleep over DTIM is allowed and we don't need to wake up
2154  * for every DTIM.
2155  */
2156 #define IWL_POWER_VEC_SIZE 5
2157 
2158 #define IWL_POWER_DRIVER_ALLOW_SLEEP_MSK	cpu_to_le16(BIT(0))
2159 #define IWL_POWER_POWER_SAVE_ENA_MSK		cpu_to_le16(BIT(0))
2160 #define IWL_POWER_POWER_MANAGEMENT_ENA_MSK	cpu_to_le16(BIT(1))
2161 #define IWL_POWER_SLEEP_OVER_DTIM_MSK		cpu_to_le16(BIT(2))
2162 #define IWL_POWER_PCI_PM_MSK			cpu_to_le16(BIT(3))
2163 #define IWL_POWER_FAST_PD			cpu_to_le16(BIT(4))
2164 #define IWL_POWER_BEACON_FILTERING		cpu_to_le16(BIT(5))
2165 #define IWL_POWER_SHADOW_REG_ENA		cpu_to_le16(BIT(6))
2166 #define IWL_POWER_CT_KILL_SET			cpu_to_le16(BIT(7))
2167 #define IWL_POWER_BT_SCO_ENA			cpu_to_le16(BIT(8))
2168 #define IWL_POWER_ADVANCE_PM_ENA_MSK		cpu_to_le16(BIT(9))
2169 
2170 struct iwl_powertable_cmd {
2171 	__le16 flags;
2172 	u8 keep_alive_seconds;
2173 	u8 debug_flags;
2174 	__le32 rx_data_timeout;
2175 	__le32 tx_data_timeout;
2176 	__le32 sleep_interval[IWL_POWER_VEC_SIZE];
2177 	__le32 keep_alive_beacons;
2178 } __packed;
2179 
2180 /*
2181  * PM_SLEEP_NOTIFICATION = 0x7A (notification only, not a command)
2182  * all devices identical.
2183  */
2184 struct iwl_sleep_notification {
2185 	u8 pm_sleep_mode;
2186 	u8 pm_wakeup_src;
2187 	__le16 reserved;
2188 	__le32 sleep_time;
2189 	__le32 tsf_low;
2190 	__le32 bcon_timer;
2191 } __packed;
2192 
2193 /* Sleep states.  all devices identical. */
2194 enum {
2195 	IWL_PM_NO_SLEEP = 0,
2196 	IWL_PM_SLP_MAC = 1,
2197 	IWL_PM_SLP_FULL_MAC_UNASSOCIATE = 2,
2198 	IWL_PM_SLP_FULL_MAC_CARD_STATE = 3,
2199 	IWL_PM_SLP_PHY = 4,
2200 	IWL_PM_SLP_REPENT = 5,
2201 	IWL_PM_WAKEUP_BY_TIMER = 6,
2202 	IWL_PM_WAKEUP_BY_DRIVER = 7,
2203 	IWL_PM_WAKEUP_BY_RFKILL = 8,
2204 	/* 3 reserved */
2205 	IWL_PM_NUM_OF_MODES = 12,
2206 };
2207 
2208 /*
2209  * REPLY_CARD_STATE_CMD = 0xa0 (command, has simple generic response)
2210  */
2211 #define CARD_STATE_CMD_DISABLE 0x00	/* Put card to sleep */
2212 #define CARD_STATE_CMD_ENABLE  0x01	/* Wake up card */
2213 #define CARD_STATE_CMD_HALT    0x02	/* Power down permanently */
2214 struct iwl_card_state_cmd {
2215 	__le32 status;		/* CARD_STATE_CMD_* request new power state */
2216 } __packed;
2217 
2218 /*
2219  * CARD_STATE_NOTIFICATION = 0xa1 (notification only, not a command)
2220  */
2221 struct iwl_card_state_notif {
2222 	__le32 flags;
2223 } __packed;
2224 
2225 #define HW_CARD_DISABLED   0x01
2226 #define SW_CARD_DISABLED   0x02
2227 #define CT_CARD_DISABLED   0x04
2228 #define RXON_CARD_DISABLED 0x10
2229 
2230 struct iwl_ct_kill_config {
2231 	__le32   reserved;
2232 	__le32   critical_temperature_M;
2233 	__le32   critical_temperature_R;
2234 }  __packed;
2235 
2236 /* 1000, and 6x00 */
2237 struct iwl_ct_kill_throttling_config {
2238 	__le32   critical_temperature_exit;
2239 	__le32   reserved;
2240 	__le32   critical_temperature_enter;
2241 }  __packed;
2242 
2243 /******************************************************************************
2244  * (8)
2245  * Scan Commands, Responses, Notifications:
2246  *
2247  *****************************************************************************/
2248 
2249 #define SCAN_CHANNEL_TYPE_PASSIVE cpu_to_le32(0)
2250 #define SCAN_CHANNEL_TYPE_ACTIVE  cpu_to_le32(1)
2251 
2252 /**
2253  * struct iwl_scan_channel - entry in REPLY_SCAN_CMD channel table
2254  *
2255  * One for each channel in the scan list.
2256  * Each channel can independently select:
2257  * 1)  SSID for directed active scans
2258  * 2)  Txpower setting (for rate specified within Tx command)
2259  * 3)  How long to stay on-channel (behavior may be modified by quiet_time,
2260  *     quiet_plcp_th, good_CRC_th)
2261  *
2262  * To avoid uCode errors, make sure the following are true (see comments
2263  * under struct iwl_scan_cmd about max_out_time and quiet_time):
2264  * 1)  If using passive_dwell (i.e. passive_dwell != 0):
2265  *     active_dwell <= passive_dwell (< max_out_time if max_out_time != 0)
2266  * 2)  quiet_time <= active_dwell
2267  * 3)  If restricting off-channel time (i.e. max_out_time !=0):
2268  *     passive_dwell < max_out_time
2269  *     active_dwell < max_out_time
2270  */
2271 
2272 struct iwl_scan_channel {
2273 	/*
2274 	 * type is defined as:
2275 	 * 0:0 1 = active, 0 = passive
2276 	 * 1:20 SSID direct bit map; if a bit is set, then corresponding
2277 	 *     SSID IE is transmitted in probe request.
2278 	 * 21:31 reserved
2279 	 */
2280 	__le32 type;
2281 	__le16 channel;	/* band is selected by iwl_scan_cmd "flags" field */
2282 	u8 tx_gain;		/* gain for analog radio */
2283 	u8 dsp_atten;		/* gain for DSP */
2284 	__le16 active_dwell;	/* in 1024-uSec TU (time units), typ 5-50 */
2285 	__le16 passive_dwell;	/* in 1024-uSec TU (time units), typ 20-500 */
2286 } __packed;
2287 
2288 /* set number of direct probes __le32 type */
2289 #define IWL_SCAN_PROBE_MASK(n) 	cpu_to_le32((BIT(n) | (BIT(n) - BIT(1))))
2290 
2291 /**
2292  * struct iwl_ssid_ie - directed scan network information element
2293  *
2294  * Up to 20 of these may appear in REPLY_SCAN_CMD,
2295  * selected by "type" bit field in struct iwl_scan_channel;
2296  * each channel may select different ssids from among the 20 entries.
2297  * SSID IEs get transmitted in reverse order of entry.
2298  */
2299 struct iwl_ssid_ie {
2300 	u8 id;
2301 	u8 len;
2302 	u8 ssid[32];
2303 } __packed;
2304 
2305 #define PROBE_OPTION_MAX		20
2306 #define TX_CMD_LIFE_TIME_INFINITE	cpu_to_le32(0xFFFFFFFF)
2307 #define IWL_GOOD_CRC_TH_DISABLED	0
2308 #define IWL_GOOD_CRC_TH_DEFAULT		cpu_to_le16(1)
2309 #define IWL_GOOD_CRC_TH_NEVER		cpu_to_le16(0xffff)
2310 #define IWL_MAX_CMD_SIZE 4096
2311 
2312 /*
2313  * REPLY_SCAN_CMD = 0x80 (command)
2314  *
2315  * The hardware scan command is very powerful; the driver can set it up to
2316  * maintain (relatively) normal network traffic while doing a scan in the
2317  * background.  The max_out_time and suspend_time control the ratio of how
2318  * long the device stays on an associated network channel ("service channel")
2319  * vs. how long it's away from the service channel, i.e. tuned to other channels
2320  * for scanning.
2321  *
2322  * max_out_time is the max time off-channel (in usec), and suspend_time
2323  * is how long (in "extended beacon" format) that the scan is "suspended"
2324  * after returning to the service channel.  That is, suspend_time is the
2325  * time that we stay on the service channel, doing normal work, between
2326  * scan segments.  The driver may set these parameters differently to support
2327  * scanning when associated vs. not associated, and light vs. heavy traffic
2328  * loads when associated.
2329  *
2330  * After receiving this command, the device's scan engine does the following;
2331  *
2332  * 1)  Sends SCAN_START notification to driver
2333  * 2)  Checks to see if it has time to do scan for one channel
2334  * 3)  Sends NULL packet, with power-save (PS) bit set to 1,
2335  *     to tell AP that we're going off-channel
2336  * 4)  Tunes to first channel in scan list, does active or passive scan
2337  * 5)  Sends SCAN_RESULT notification to driver
2338  * 6)  Checks to see if it has time to do scan on *next* channel in list
2339  * 7)  Repeats 4-6 until it no longer has time to scan the next channel
2340  *     before max_out_time expires
2341  * 8)  Returns to service channel
2342  * 9)  Sends NULL packet with PS=0 to tell AP that we're back
2343  * 10) Stays on service channel until suspend_time expires
2344  * 11) Repeats entire process 2-10 until list is complete
2345  * 12) Sends SCAN_COMPLETE notification
2346  *
2347  * For fast, efficient scans, the scan command also has support for staying on
2348  * a channel for just a short time, if doing active scanning and getting no
2349  * responses to the transmitted probe request.  This time is controlled by
2350  * quiet_time, and the number of received packets below which a channel is
2351  * considered "quiet" is controlled by quiet_plcp_threshold.
2352  *
2353  * For active scanning on channels that have regulatory restrictions against
2354  * blindly transmitting, the scan can listen before transmitting, to make sure
2355  * that there is already legitimate activity on the channel.  If enough
2356  * packets are cleanly received on the channel (controlled by good_CRC_th,
2357  * typical value 1), the scan engine starts transmitting probe requests.
2358  *
2359  * Driver must use separate scan commands for 2.4 vs. 5 GHz bands.
2360  *
2361  * To avoid uCode errors, see timing restrictions described under
2362  * struct iwl_scan_channel.
2363  */
2364 
2365 enum iwl_scan_flags {
2366 	/* BIT(0) currently unused */
2367 	IWL_SCAN_FLAGS_ACTION_FRAME_TX	= BIT(1),
2368 	/* bits 2-7 reserved */
2369 };
2370 
2371 struct iwl_scan_cmd {
2372 	__le16 len;
2373 	u8 scan_flags;		/* scan flags: see enum iwl_scan_flags */
2374 	u8 channel_count;	/* # channels in channel list */
2375 	__le16 quiet_time;	/* dwell only this # millisecs on quiet channel
2376 				 * (only for active scan) */
2377 	__le16 quiet_plcp_th;	/* quiet chnl is < this # pkts (typ. 1) */
2378 	__le16 good_CRC_th;	/* passive -> active promotion threshold */
2379 	__le16 rx_chain;	/* RXON_RX_CHAIN_* */
2380 	__le32 max_out_time;	/* max usec to be away from associated (service)
2381 				 * channel */
2382 	__le32 suspend_time;	/* pause scan this long (in "extended beacon
2383 				 * format") when returning to service chnl:
2384 				 */
2385 	__le32 flags;		/* RXON_FLG_* */
2386 	__le32 filter_flags;	/* RXON_FILTER_* */
2387 
2388 	/* For active scans (set to all-0s for passive scans).
2389 	 * Does not include payload.  Must specify Tx rate; no rate scaling. */
2390 	struct iwl_tx_cmd tx_cmd;
2391 
2392 	/* For directed active scans (set to all-0s otherwise) */
2393 	struct iwl_ssid_ie direct_scan[PROBE_OPTION_MAX];
2394 
2395 	/*
2396 	 * Probe request frame, followed by channel list.
2397 	 *
2398 	 * Size of probe request frame is specified by byte count in tx_cmd.
2399 	 * Channel list follows immediately after probe request frame.
2400 	 * Number of channels in list is specified by channel_count.
2401 	 * Each channel in list is of type:
2402 	 *
2403 	 * struct iwl_scan_channel channels[0];
2404 	 *
2405 	 * NOTE:  Only one band of channels can be scanned per pass.  You
2406 	 * must not mix 2.4GHz channels and 5.2GHz channels, and you must wait
2407 	 * for one scan to complete (i.e. receive SCAN_COMPLETE_NOTIFICATION)
2408 	 * before requesting another scan.
2409 	 */
2410 	u8 data[0];
2411 } __packed;
2412 
2413 /* Can abort will notify by complete notification with abort status. */
2414 #define CAN_ABORT_STATUS	cpu_to_le32(0x1)
2415 /* complete notification statuses */
2416 #define ABORT_STATUS            0x2
2417 
2418 /*
2419  * REPLY_SCAN_CMD = 0x80 (response)
2420  */
2421 struct iwl_scanreq_notification {
2422 	__le32 status;		/* 1: okay, 2: cannot fulfill request */
2423 } __packed;
2424 
2425 /*
2426  * SCAN_START_NOTIFICATION = 0x82 (notification only, not a command)
2427  */
2428 struct iwl_scanstart_notification {
2429 	__le32 tsf_low;
2430 	__le32 tsf_high;
2431 	__le32 beacon_timer;
2432 	u8 channel;
2433 	u8 band;
2434 	u8 reserved[2];
2435 	__le32 status;
2436 } __packed;
2437 
2438 #define  SCAN_OWNER_STATUS 0x1
2439 #define  MEASURE_OWNER_STATUS 0x2
2440 
2441 #define IWL_PROBE_STATUS_OK		0
2442 #define IWL_PROBE_STATUS_TX_FAILED	BIT(0)
2443 /* error statuses combined with TX_FAILED */
2444 #define IWL_PROBE_STATUS_FAIL_TTL	BIT(1)
2445 #define IWL_PROBE_STATUS_FAIL_BT	BIT(2)
2446 
2447 #define NUMBER_OF_STATISTICS 1	/* first __le32 is good CRC */
2448 /*
2449  * SCAN_RESULTS_NOTIFICATION = 0x83 (notification only, not a command)
2450  */
2451 struct iwl_scanresults_notification {
2452 	u8 channel;
2453 	u8 band;
2454 	u8 probe_status;
2455 	u8 num_probe_not_sent; /* not enough time to send */
2456 	__le32 tsf_low;
2457 	__le32 tsf_high;
2458 	__le32 statistics[NUMBER_OF_STATISTICS];
2459 } __packed;
2460 
2461 /*
2462  * SCAN_COMPLETE_NOTIFICATION = 0x84 (notification only, not a command)
2463  */
2464 struct iwl_scancomplete_notification {
2465 	u8 scanned_channels;
2466 	u8 status;
2467 	u8 bt_status;	/* BT On/Off status */
2468 	u8 last_channel;
2469 	__le32 tsf_low;
2470 	__le32 tsf_high;
2471 } __packed;
2472 
2473 
2474 /******************************************************************************
2475  * (9)
2476  * IBSS/AP Commands and Notifications:
2477  *
2478  *****************************************************************************/
2479 
2480 enum iwl_ibss_manager {
2481 	IWL_NOT_IBSS_MANAGER = 0,
2482 	IWL_IBSS_MANAGER = 1,
2483 };
2484 
2485 /*
2486  * BEACON_NOTIFICATION = 0x90 (notification only, not a command)
2487  */
2488 
2489 struct iwlagn_beacon_notif {
2490 	struct iwlagn_tx_resp beacon_notify_hdr;
2491 	__le32 low_tsf;
2492 	__le32 high_tsf;
2493 	__le32 ibss_mgr_status;
2494 } __packed;
2495 
2496 /*
2497  * REPLY_TX_BEACON = 0x91 (command, has simple generic response)
2498  */
2499 
2500 struct iwl_tx_beacon_cmd {
2501 	struct iwl_tx_cmd tx;
2502 	__le16 tim_idx;
2503 	u8 tim_size;
2504 	u8 reserved1;
2505 	struct ieee80211_hdr frame[0];	/* beacon frame */
2506 } __packed;
2507 
2508 /******************************************************************************
2509  * (10)
2510  * Statistics Commands and Notifications:
2511  *
2512  *****************************************************************************/
2513 
2514 #define IWL_TEMP_CONVERT 260
2515 
2516 #define SUP_RATE_11A_MAX_NUM_CHANNELS  8
2517 #define SUP_RATE_11B_MAX_NUM_CHANNELS  4
2518 #define SUP_RATE_11G_MAX_NUM_CHANNELS  12
2519 
2520 /* Used for passing to driver number of successes and failures per rate */
2521 struct rate_histogram {
2522 	union {
2523 		__le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
2524 		__le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
2525 		__le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
2526 	} success;
2527 	union {
2528 		__le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
2529 		__le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
2530 		__le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
2531 	} failed;
2532 } __packed;
2533 
2534 /* statistics command response */
2535 
2536 struct statistics_dbg {
2537 	__le32 burst_check;
2538 	__le32 burst_count;
2539 	__le32 wait_for_silence_timeout_cnt;
2540 	__le32 reserved[3];
2541 } __packed;
2542 
2543 struct statistics_rx_phy {
2544 	__le32 ina_cnt;
2545 	__le32 fina_cnt;
2546 	__le32 plcp_err;
2547 	__le32 crc32_err;
2548 	__le32 overrun_err;
2549 	__le32 early_overrun_err;
2550 	__le32 crc32_good;
2551 	__le32 false_alarm_cnt;
2552 	__le32 fina_sync_err_cnt;
2553 	__le32 sfd_timeout;
2554 	__le32 fina_timeout;
2555 	__le32 unresponded_rts;
2556 	__le32 rxe_frame_limit_overrun;
2557 	__le32 sent_ack_cnt;
2558 	__le32 sent_cts_cnt;
2559 	__le32 sent_ba_rsp_cnt;
2560 	__le32 dsp_self_kill;
2561 	__le32 mh_format_err;
2562 	__le32 re_acq_main_rssi_sum;
2563 	__le32 reserved3;
2564 } __packed;
2565 
2566 struct statistics_rx_ht_phy {
2567 	__le32 plcp_err;
2568 	__le32 overrun_err;
2569 	__le32 early_overrun_err;
2570 	__le32 crc32_good;
2571 	__le32 crc32_err;
2572 	__le32 mh_format_err;
2573 	__le32 agg_crc32_good;
2574 	__le32 agg_mpdu_cnt;
2575 	__le32 agg_cnt;
2576 	__le32 unsupport_mcs;
2577 } __packed;
2578 
2579 #define INTERFERENCE_DATA_AVAILABLE      cpu_to_le32(1)
2580 
2581 struct statistics_rx_non_phy {
2582 	__le32 bogus_cts;	/* CTS received when not expecting CTS */
2583 	__le32 bogus_ack;	/* ACK received when not expecting ACK */
2584 	__le32 non_bssid_frames;	/* number of frames with BSSID that
2585 					 * doesn't belong to the STA BSSID */
2586 	__le32 filtered_frames;	/* count frames that were dumped in the
2587 				 * filtering process */
2588 	__le32 non_channel_beacons;	/* beacons with our bss id but not on
2589 					 * our serving channel */
2590 	__le32 channel_beacons;	/* beacons with our bss id and in our
2591 				 * serving channel */
2592 	__le32 num_missed_bcon;	/* number of missed beacons */
2593 	__le32 adc_rx_saturation_time;	/* count in 0.8us units the time the
2594 					 * ADC was in saturation */
2595 	__le32 ina_detection_search_time;/* total time (in 0.8us) searched
2596 					  * for INA */
2597 	__le32 beacon_silence_rssi_a;	/* RSSI silence after beacon frame */
2598 	__le32 beacon_silence_rssi_b;	/* RSSI silence after beacon frame */
2599 	__le32 beacon_silence_rssi_c;	/* RSSI silence after beacon frame */
2600 	__le32 interference_data_flag;	/* flag for interference data
2601 					 * availability. 1 when data is
2602 					 * available. */
2603 	__le32 channel_load;		/* counts RX Enable time in uSec */
2604 	__le32 dsp_false_alarms;	/* DSP false alarm (both OFDM
2605 					 * and CCK) counter */
2606 	__le32 beacon_rssi_a;
2607 	__le32 beacon_rssi_b;
2608 	__le32 beacon_rssi_c;
2609 	__le32 beacon_energy_a;
2610 	__le32 beacon_energy_b;
2611 	__le32 beacon_energy_c;
2612 } __packed;
2613 
2614 struct statistics_rx_non_phy_bt {
2615 	struct statistics_rx_non_phy common;
2616 	/* additional stats for bt */
2617 	__le32 num_bt_kills;
2618 	__le32 reserved[2];
2619 } __packed;
2620 
2621 struct statistics_rx {
2622 	struct statistics_rx_phy ofdm;
2623 	struct statistics_rx_phy cck;
2624 	struct statistics_rx_non_phy general;
2625 	struct statistics_rx_ht_phy ofdm_ht;
2626 } __packed;
2627 
2628 struct statistics_rx_bt {
2629 	struct statistics_rx_phy ofdm;
2630 	struct statistics_rx_phy cck;
2631 	struct statistics_rx_non_phy_bt general;
2632 	struct statistics_rx_ht_phy ofdm_ht;
2633 } __packed;
2634 
2635 /**
2636  * struct statistics_tx_power - current tx power
2637  *
2638  * @ant_a: current tx power on chain a in 1/2 dB step
2639  * @ant_b: current tx power on chain b in 1/2 dB step
2640  * @ant_c: current tx power on chain c in 1/2 dB step
2641  */
2642 struct statistics_tx_power {
2643 	u8 ant_a;
2644 	u8 ant_b;
2645 	u8 ant_c;
2646 	u8 reserved;
2647 } __packed;
2648 
2649 struct statistics_tx_non_phy_agg {
2650 	__le32 ba_timeout;
2651 	__le32 ba_reschedule_frames;
2652 	__le32 scd_query_agg_frame_cnt;
2653 	__le32 scd_query_no_agg;
2654 	__le32 scd_query_agg;
2655 	__le32 scd_query_mismatch;
2656 	__le32 frame_not_ready;
2657 	__le32 underrun;
2658 	__le32 bt_prio_kill;
2659 	__le32 rx_ba_rsp_cnt;
2660 } __packed;
2661 
2662 struct statistics_tx {
2663 	__le32 preamble_cnt;
2664 	__le32 rx_detected_cnt;
2665 	__le32 bt_prio_defer_cnt;
2666 	__le32 bt_prio_kill_cnt;
2667 	__le32 few_bytes_cnt;
2668 	__le32 cts_timeout;
2669 	__le32 ack_timeout;
2670 	__le32 expected_ack_cnt;
2671 	__le32 actual_ack_cnt;
2672 	__le32 dump_msdu_cnt;
2673 	__le32 burst_abort_next_frame_mismatch_cnt;
2674 	__le32 burst_abort_missing_next_frame_cnt;
2675 	__le32 cts_timeout_collision;
2676 	__le32 ack_or_ba_timeout_collision;
2677 	struct statistics_tx_non_phy_agg agg;
2678 	/*
2679 	 * "tx_power" are optional parameters provided by uCode,
2680 	 * 6000 series is the only device provide the information,
2681 	 * Those are reserved fields for all the other devices
2682 	 */
2683 	struct statistics_tx_power tx_power;
2684 	__le32 reserved1;
2685 } __packed;
2686 
2687 
2688 struct statistics_div {
2689 	__le32 tx_on_a;
2690 	__le32 tx_on_b;
2691 	__le32 exec_time;
2692 	__le32 probe_time;
2693 	__le32 reserved1;
2694 	__le32 reserved2;
2695 } __packed;
2696 
2697 struct statistics_general_common {
2698 	__le32 temperature;   /* radio temperature */
2699 	__le32 temperature_m; /* radio voltage */
2700 	struct statistics_dbg dbg;
2701 	__le32 sleep_time;
2702 	__le32 slots_out;
2703 	__le32 slots_idle;
2704 	__le32 ttl_timestamp;
2705 	struct statistics_div div;
2706 	__le32 rx_enable_counter;
2707 	/*
2708 	 * num_of_sos_states:
2709 	 *  count the number of times we have to re-tune
2710 	 *  in order to get out of bad PHY status
2711 	 */
2712 	__le32 num_of_sos_states;
2713 } __packed;
2714 
2715 struct statistics_bt_activity {
2716 	/* Tx statistics */
2717 	__le32 hi_priority_tx_req_cnt;
2718 	__le32 hi_priority_tx_denied_cnt;
2719 	__le32 lo_priority_tx_req_cnt;
2720 	__le32 lo_priority_tx_denied_cnt;
2721 	/* Rx statistics */
2722 	__le32 hi_priority_rx_req_cnt;
2723 	__le32 hi_priority_rx_denied_cnt;
2724 	__le32 lo_priority_rx_req_cnt;
2725 	__le32 lo_priority_rx_denied_cnt;
2726 } __packed;
2727 
2728 struct statistics_general {
2729 	struct statistics_general_common common;
2730 	__le32 reserved2;
2731 	__le32 reserved3;
2732 } __packed;
2733 
2734 struct statistics_general_bt {
2735 	struct statistics_general_common common;
2736 	struct statistics_bt_activity activity;
2737 	__le32 reserved2;
2738 	__le32 reserved3;
2739 } __packed;
2740 
2741 #define UCODE_STATISTICS_CLEAR_MSK		(0x1 << 0)
2742 #define UCODE_STATISTICS_FREQUENCY_MSK		(0x1 << 1)
2743 #define UCODE_STATISTICS_NARROW_BAND_MSK	(0x1 << 2)
2744 
2745 /*
2746  * REPLY_STATISTICS_CMD = 0x9c,
2747  * all devices identical.
2748  *
2749  * This command triggers an immediate response containing uCode statistics.
2750  * The response is in the same format as STATISTICS_NOTIFICATION 0x9d, below.
2751  *
2752  * If the CLEAR_STATS configuration flag is set, uCode will clear its
2753  * internal copy of the statistics (counters) after issuing the response.
2754  * This flag does not affect STATISTICS_NOTIFICATIONs after beacons (see below).
2755  *
2756  * If the DISABLE_NOTIF configuration flag is set, uCode will not issue
2757  * STATISTICS_NOTIFICATIONs after received beacons (see below).  This flag
2758  * does not affect the response to the REPLY_STATISTICS_CMD 0x9c itself.
2759  */
2760 #define IWL_STATS_CONF_CLEAR_STATS cpu_to_le32(0x1)	/* see above */
2761 #define IWL_STATS_CONF_DISABLE_NOTIF cpu_to_le32(0x2)/* see above */
2762 struct iwl_statistics_cmd {
2763 	__le32 configuration_flags;	/* IWL_STATS_CONF_* */
2764 } __packed;
2765 
2766 /*
2767  * STATISTICS_NOTIFICATION = 0x9d (notification only, not a command)
2768  *
2769  * By default, uCode issues this notification after receiving a beacon
2770  * while associated.  To disable this behavior, set DISABLE_NOTIF flag in the
2771  * REPLY_STATISTICS_CMD 0x9c, above.
2772  *
2773  * Statistics counters continue to increment beacon after beacon, but are
2774  * cleared when changing channels or when driver issues REPLY_STATISTICS_CMD
2775  * 0x9c with CLEAR_STATS bit set (see above).
2776  *
2777  * uCode also issues this notification during scans.  uCode clears statistics
2778  * appropriately so that each notification contains statistics for only the
2779  * one channel that has just been scanned.
2780  */
2781 #define STATISTICS_REPLY_FLG_BAND_24G_MSK         cpu_to_le32(0x2)
2782 #define STATISTICS_REPLY_FLG_HT40_MODE_MSK        cpu_to_le32(0x8)
2783 
2784 struct iwl_notif_statistics {
2785 	__le32 flag;
2786 	struct statistics_rx rx;
2787 	struct statistics_tx tx;
2788 	struct statistics_general general;
2789 } __packed;
2790 
2791 struct iwl_bt_notif_statistics {
2792 	__le32 flag;
2793 	struct statistics_rx_bt rx;
2794 	struct statistics_tx tx;
2795 	struct statistics_general_bt general;
2796 } __packed;
2797 
2798 /*
2799  * MISSED_BEACONS_NOTIFICATION = 0xa2 (notification only, not a command)
2800  *
2801  * uCode send MISSED_BEACONS_NOTIFICATION to driver when detect beacon missed
2802  * in regardless of how many missed beacons, which mean when driver receive the
2803  * notification, inside the command, it can find all the beacons information
2804  * which include number of total missed beacons, number of consecutive missed
2805  * beacons, number of beacons received and number of beacons expected to
2806  * receive.
2807  *
2808  * If uCode detected consecutive_missed_beacons > 5, it will reset the radio
2809  * in order to bring the radio/PHY back to working state; which has no relation
2810  * to when driver will perform sensitivity calibration.
2811  *
2812  * Driver should set it own missed_beacon_threshold to decide when to perform
2813  * sensitivity calibration based on number of consecutive missed beacons in
2814  * order to improve overall performance, especially in noisy environment.
2815  *
2816  */
2817 
2818 #define IWL_MISSED_BEACON_THRESHOLD_MIN	(1)
2819 #define IWL_MISSED_BEACON_THRESHOLD_DEF	(5)
2820 #define IWL_MISSED_BEACON_THRESHOLD_MAX	IWL_MISSED_BEACON_THRESHOLD_DEF
2821 
2822 struct iwl_missed_beacon_notif {
2823 	__le32 consecutive_missed_beacons;
2824 	__le32 total_missed_becons;
2825 	__le32 num_expected_beacons;
2826 	__le32 num_recvd_beacons;
2827 } __packed;
2828 
2829 
2830 /******************************************************************************
2831  * (11)
2832  * Rx Calibration Commands:
2833  *
2834  * With the uCode used for open source drivers, most Tx calibration (except
2835  * for Tx Power) and most Rx calibration is done by uCode during the
2836  * "initialize" phase of uCode boot.  Driver must calibrate only:
2837  *
2838  * 1)  Tx power (depends on temperature), described elsewhere
2839  * 2)  Receiver gain balance (optimize MIMO, and detect disconnected antennas)
2840  * 3)  Receiver sensitivity (to optimize signal detection)
2841  *
2842  *****************************************************************************/
2843 
2844 /**
2845  * SENSITIVITY_CMD = 0xa8 (command, has simple generic response)
2846  *
2847  * This command sets up the Rx signal detector for a sensitivity level that
2848  * is high enough to lock onto all signals within the associated network,
2849  * but low enough to ignore signals that are below a certain threshold, so as
2850  * not to have too many "false alarms".  False alarms are signals that the
2851  * Rx DSP tries to lock onto, but then discards after determining that they
2852  * are noise.
2853  *
2854  * The optimum number of false alarms is between 5 and 50 per 200 TUs
2855  * (200 * 1024 uSecs, i.e. 204.8 milliseconds) of actual Rx time (i.e.
2856  * time listening, not transmitting).  Driver must adjust sensitivity so that
2857  * the ratio of actual false alarms to actual Rx time falls within this range.
2858  *
2859  * While associated, uCode delivers STATISTICS_NOTIFICATIONs after each
2860  * received beacon.  These provide information to the driver to analyze the
2861  * sensitivity.  Don't analyze statistics that come in from scanning, or any
2862  * other non-associated-network source.  Pertinent statistics include:
2863  *
2864  * From "general" statistics (struct statistics_rx_non_phy):
2865  *
2866  * (beacon_energy_[abc] & 0x0FF00) >> 8 (unsigned, higher value is lower level)
2867  *   Measure of energy of desired signal.  Used for establishing a level
2868  *   below which the device does not detect signals.
2869  *
2870  * (beacon_silence_rssi_[abc] & 0x0FF00) >> 8 (unsigned, units in dB)
2871  *   Measure of background noise in silent period after beacon.
2872  *
2873  * channel_load
2874  *   uSecs of actual Rx time during beacon period (varies according to
2875  *   how much time was spent transmitting).
2876  *
2877  * From "cck" and "ofdm" statistics (struct statistics_rx_phy), separately:
2878  *
2879  * false_alarm_cnt
2880  *   Signal locks abandoned early (before phy-level header).
2881  *
2882  * plcp_err
2883  *   Signal locks abandoned late (during phy-level header).
2884  *
2885  * NOTE:  Both false_alarm_cnt and plcp_err increment monotonically from
2886  *        beacon to beacon, i.e. each value is an accumulation of all errors
2887  *        before and including the latest beacon.  Values will wrap around to 0
2888  *        after counting up to 2^32 - 1.  Driver must differentiate vs.
2889  *        previous beacon's values to determine # false alarms in the current
2890  *        beacon period.
2891  *
2892  * Total number of false alarms = false_alarms + plcp_errs
2893  *
2894  * For OFDM, adjust the following table entries in struct iwl_sensitivity_cmd
2895  * (notice that the start points for OFDM are at or close to settings for
2896  * maximum sensitivity):
2897  *
2898  *                                             START  /  MIN  /  MAX
2899  *   HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX          90   /   85  /  120
2900  *   HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX     170   /  170  /  210
2901  *   HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX         105   /  105  /  140
2902  *   HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX     220   /  220  /  270
2903  *
2904  *   If actual rate of OFDM false alarms (+ plcp_errors) is too high
2905  *   (greater than 50 for each 204.8 msecs listening), reduce sensitivity
2906  *   by *adding* 1 to all 4 of the table entries above, up to the max for
2907  *   each entry.  Conversely, if false alarm rate is too low (less than 5
2908  *   for each 204.8 msecs listening), *subtract* 1 from each entry to
2909  *   increase sensitivity.
2910  *
2911  * For CCK sensitivity, keep track of the following:
2912  *
2913  *   1).  20-beacon history of maximum background noise, indicated by
2914  *        (beacon_silence_rssi_[abc] & 0x0FF00), units in dB, across the
2915  *        3 receivers.  For any given beacon, the "silence reference" is
2916  *        the maximum of last 60 samples (20 beacons * 3 receivers).
2917  *
2918  *   2).  10-beacon history of strongest signal level, as indicated
2919  *        by (beacon_energy_[abc] & 0x0FF00) >> 8, across the 3 receivers,
2920  *        i.e. the strength of the signal through the best receiver at the
2921  *        moment.  These measurements are "upside down", with lower values
2922  *        for stronger signals, so max energy will be *minimum* value.
2923  *
2924  *        Then for any given beacon, the driver must determine the *weakest*
2925  *        of the strongest signals; this is the minimum level that needs to be
2926  *        successfully detected, when using the best receiver at the moment.
2927  *        "Max cck energy" is the maximum (higher value means lower energy!)
2928  *        of the last 10 minima.  Once this is determined, driver must add
2929  *        a little margin by adding "6" to it.
2930  *
2931  *   3).  Number of consecutive beacon periods with too few false alarms.
2932  *        Reset this to 0 at the first beacon period that falls within the
2933  *        "good" range (5 to 50 false alarms per 204.8 milliseconds rx).
2934  *
2935  * Then, adjust the following CCK table entries in struct iwl_sensitivity_cmd
2936  * (notice that the start points for CCK are at maximum sensitivity):
2937  *
2938  *                                             START  /  MIN  /  MAX
2939  *   HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX         125   /  125  /  200
2940  *   HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX     200   /  200  /  400
2941  *   HD_MIN_ENERGY_CCK_DET_INDEX                100   /    0  /  100
2942  *
2943  *   If actual rate of CCK false alarms (+ plcp_errors) is too high
2944  *   (greater than 50 for each 204.8 msecs listening), method for reducing
2945  *   sensitivity is:
2946  *
2947  *   1)  *Add* 3 to value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX,
2948  *       up to max 400.
2949  *
2950  *   2)  If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is < 160,
2951  *       sensitivity has been reduced a significant amount; bring it up to
2952  *       a moderate 161.  Otherwise, *add* 3, up to max 200.
2953  *
2954  *   3)  a)  If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is > 160,
2955  *       sensitivity has been reduced only a moderate or small amount;
2956  *       *subtract* 2 from value in HD_MIN_ENERGY_CCK_DET_INDEX,
2957  *       down to min 0.  Otherwise (if gain has been significantly reduced),
2958  *       don't change the HD_MIN_ENERGY_CCK_DET_INDEX value.
2959  *
2960  *       b)  Save a snapshot of the "silence reference".
2961  *
2962  *   If actual rate of CCK false alarms (+ plcp_errors) is too low
2963  *   (less than 5 for each 204.8 msecs listening), method for increasing
2964  *   sensitivity is used only if:
2965  *
2966  *   1a)  Previous beacon did not have too many false alarms
2967  *   1b)  AND difference between previous "silence reference" and current
2968  *        "silence reference" (prev - current) is 2 or more,
2969  *   OR 2)  100 or more consecutive beacon periods have had rate of
2970  *          less than 5 false alarms per 204.8 milliseconds rx time.
2971  *
2972  *   Method for increasing sensitivity:
2973  *
2974  *   1)  *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX,
2975  *       down to min 125.
2976  *
2977  *   2)  *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX,
2978  *       down to min 200.
2979  *
2980  *   3)  *Add* 2 to value in HD_MIN_ENERGY_CCK_DET_INDEX, up to max 100.
2981  *
2982  *   If actual rate of CCK false alarms (+ plcp_errors) is within good range
2983  *   (between 5 and 50 for each 204.8 msecs listening):
2984  *
2985  *   1)  Save a snapshot of the silence reference.
2986  *
2987  *   2)  If previous beacon had too many CCK false alarms (+ plcp_errors),
2988  *       give some extra margin to energy threshold by *subtracting* 8
2989  *       from value in HD_MIN_ENERGY_CCK_DET_INDEX.
2990  *
2991  *   For all cases (too few, too many, good range), make sure that the CCK
2992  *   detection threshold (energy) is below the energy level for robust
2993  *   detection over the past 10 beacon periods, the "Max cck energy".
2994  *   Lower values mean higher energy; this means making sure that the value
2995  *   in HD_MIN_ENERGY_CCK_DET_INDEX is at or *above* "Max cck energy".
2996  *
2997  */
2998 
2999 /*
3000  * Table entries in SENSITIVITY_CMD (struct iwl_sensitivity_cmd)
3001  */
3002 #define HD_TABLE_SIZE  (11)	/* number of entries */
3003 #define HD_MIN_ENERGY_CCK_DET_INDEX                 (0)	/* table indexes */
3004 #define HD_MIN_ENERGY_OFDM_DET_INDEX                (1)
3005 #define HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX          (2)
3006 #define HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX      (3)
3007 #define HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX      (4)
3008 #define HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX          (5)
3009 #define HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX      (6)
3010 #define HD_BARKER_CORR_TH_ADD_MIN_INDEX             (7)
3011 #define HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX         (8)
3012 #define HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX          (9)
3013 #define HD_OFDM_ENERGY_TH_IN_INDEX                  (10)
3014 
3015 /*
3016  * Additional table entries in enhance SENSITIVITY_CMD
3017  */
3018 #define HD_INA_NON_SQUARE_DET_OFDM_INDEX		(11)
3019 #define HD_INA_NON_SQUARE_DET_CCK_INDEX			(12)
3020 #define HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX		(13)
3021 #define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX		(14)
3022 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX	(15)
3023 #define HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX		(16)
3024 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX		(17)
3025 #define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX		(18)
3026 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX	(19)
3027 #define HD_CCK_NON_SQUARE_DET_SLOPE_INDEX		(20)
3028 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX		(21)
3029 #define HD_RESERVED					(22)
3030 
3031 /* number of entries for enhanced tbl */
3032 #define ENHANCE_HD_TABLE_SIZE  (23)
3033 
3034 /* number of additional entries for enhanced tbl */
3035 #define ENHANCE_HD_TABLE_ENTRIES  (ENHANCE_HD_TABLE_SIZE - HD_TABLE_SIZE)
3036 
3037 #define HD_INA_NON_SQUARE_DET_OFDM_DATA_V1		cpu_to_le16(0)
3038 #define HD_INA_NON_SQUARE_DET_CCK_DATA_V1		cpu_to_le16(0)
3039 #define HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V1		cpu_to_le16(0)
3040 #define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V1	cpu_to_le16(668)
3041 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1	cpu_to_le16(4)
3042 #define HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V1		cpu_to_le16(486)
3043 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V1	cpu_to_le16(37)
3044 #define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V1		cpu_to_le16(853)
3045 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1	cpu_to_le16(4)
3046 #define HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V1		cpu_to_le16(476)
3047 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V1		cpu_to_le16(99)
3048 
3049 #define HD_INA_NON_SQUARE_DET_OFDM_DATA_V2		cpu_to_le16(1)
3050 #define HD_INA_NON_SQUARE_DET_CCK_DATA_V2		cpu_to_le16(1)
3051 #define HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V2		cpu_to_le16(1)
3052 #define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V2	cpu_to_le16(600)
3053 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2	cpu_to_le16(40)
3054 #define HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V2		cpu_to_le16(486)
3055 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V2	cpu_to_le16(45)
3056 #define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V2		cpu_to_le16(853)
3057 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2	cpu_to_le16(60)
3058 #define HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V2		cpu_to_le16(476)
3059 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V2		cpu_to_le16(99)
3060 
3061 
3062 /* Control field in struct iwl_sensitivity_cmd */
3063 #define SENSITIVITY_CMD_CONTROL_DEFAULT_TABLE	cpu_to_le16(0)
3064 #define SENSITIVITY_CMD_CONTROL_WORK_TABLE	cpu_to_le16(1)
3065 
3066 /**
3067  * struct iwl_sensitivity_cmd
3068  * @control:  (1) updates working table, (0) updates default table
3069  * @table:  energy threshold values, use HD_* as index into table
3070  *
3071  * Always use "1" in "control" to update uCode's working table and DSP.
3072  */
3073 struct iwl_sensitivity_cmd {
3074 	__le16 control;			/* always use "1" */
3075 	__le16 table[HD_TABLE_SIZE];	/* use HD_* as index */
3076 } __packed;
3077 
3078 /*
3079  *
3080  */
3081 struct iwl_enhance_sensitivity_cmd {
3082 	__le16 control;			/* always use "1" */
3083 	__le16 enhance_table[ENHANCE_HD_TABLE_SIZE];	/* use HD_* as index */
3084 } __packed;
3085 
3086 
3087 /**
3088  * REPLY_PHY_CALIBRATION_CMD = 0xb0 (command, has simple generic response)
3089  *
3090  * This command sets the relative gains of agn device's 3 radio receiver chains.
3091  *
3092  * After the first association, driver should accumulate signal and noise
3093  * statistics from the STATISTICS_NOTIFICATIONs that follow the first 20
3094  * beacons from the associated network (don't collect statistics that come
3095  * in from scanning, or any other non-network source).
3096  *
3097  * DISCONNECTED ANTENNA:
3098  *
3099  * Driver should determine which antennas are actually connected, by comparing
3100  * average beacon signal levels for the 3 Rx chains.  Accumulate (add) the
3101  * following values over 20 beacons, one accumulator for each of the chains
3102  * a/b/c, from struct statistics_rx_non_phy:
3103  *
3104  * beacon_rssi_[abc] & 0x0FF (unsigned, units in dB)
3105  *
3106  * Find the strongest signal from among a/b/c.  Compare the other two to the
3107  * strongest.  If any signal is more than 15 dB (times 20, unless you
3108  * divide the accumulated values by 20) below the strongest, the driver
3109  * considers that antenna to be disconnected, and should not try to use that
3110  * antenna/chain for Rx or Tx.  If both A and B seem to be disconnected,
3111  * driver should declare the stronger one as connected, and attempt to use it
3112  * (A and B are the only 2 Tx chains!).
3113  *
3114  *
3115  * RX BALANCE:
3116  *
3117  * Driver should balance the 3 receivers (but just the ones that are connected
3118  * to antennas, see above) for gain, by comparing the average signal levels
3119  * detected during the silence after each beacon (background noise).
3120  * Accumulate (add) the following values over 20 beacons, one accumulator for
3121  * each of the chains a/b/c, from struct statistics_rx_non_phy:
3122  *
3123  * beacon_silence_rssi_[abc] & 0x0FF (unsigned, units in dB)
3124  *
3125  * Find the weakest background noise level from among a/b/c.  This Rx chain
3126  * will be the reference, with 0 gain adjustment.  Attenuate other channels by
3127  * finding noise difference:
3128  *
3129  * (accum_noise[i] - accum_noise[reference]) / 30
3130  *
3131  * The "30" adjusts the dB in the 20 accumulated samples to units of 1.5 dB.
3132  * For use in diff_gain_[abc] fields of struct iwl_calibration_cmd, the
3133  * driver should limit the difference results to a range of 0-3 (0-4.5 dB),
3134  * and set bit 2 to indicate "reduce gain".  The value for the reference
3135  * (weakest) chain should be "0".
3136  *
3137  * diff_gain_[abc] bit fields:
3138  *   2: (1) reduce gain, (0) increase gain
3139  * 1-0: amount of gain, units of 1.5 dB
3140  */
3141 
3142 /* Phy calibration command for series */
3143 enum {
3144 	IWL_PHY_CALIBRATE_DC_CMD		= 8,
3145 	IWL_PHY_CALIBRATE_LO_CMD		= 9,
3146 	IWL_PHY_CALIBRATE_TX_IQ_CMD		= 11,
3147 	IWL_PHY_CALIBRATE_CRYSTAL_FRQ_CMD	= 15,
3148 	IWL_PHY_CALIBRATE_BASE_BAND_CMD		= 16,
3149 	IWL_PHY_CALIBRATE_TX_IQ_PERD_CMD	= 17,
3150 	IWL_PHY_CALIBRATE_TEMP_OFFSET_CMD	= 18,
3151 };
3152 
3153 /* This enum defines the bitmap of various calibrations to enable in both
3154  * init ucode and runtime ucode through CALIBRATION_CFG_CMD.
3155  */
3156 enum iwl_ucode_calib_cfg {
3157 	IWL_CALIB_CFG_RX_BB_IDX			= BIT(0),
3158 	IWL_CALIB_CFG_DC_IDX			= BIT(1),
3159 	IWL_CALIB_CFG_LO_IDX			= BIT(2),
3160 	IWL_CALIB_CFG_TX_IQ_IDX			= BIT(3),
3161 	IWL_CALIB_CFG_RX_IQ_IDX			= BIT(4),
3162 	IWL_CALIB_CFG_NOISE_IDX			= BIT(5),
3163 	IWL_CALIB_CFG_CRYSTAL_IDX		= BIT(6),
3164 	IWL_CALIB_CFG_TEMPERATURE_IDX		= BIT(7),
3165 	IWL_CALIB_CFG_PAPD_IDX			= BIT(8),
3166 	IWL_CALIB_CFG_SENSITIVITY_IDX		= BIT(9),
3167 	IWL_CALIB_CFG_TX_PWR_IDX		= BIT(10),
3168 };
3169 
3170 #define IWL_CALIB_INIT_CFG_ALL	cpu_to_le32(IWL_CALIB_CFG_RX_BB_IDX |	\
3171 					IWL_CALIB_CFG_DC_IDX |		\
3172 					IWL_CALIB_CFG_LO_IDX |		\
3173 					IWL_CALIB_CFG_TX_IQ_IDX |	\
3174 					IWL_CALIB_CFG_RX_IQ_IDX |	\
3175 					IWL_CALIB_CFG_CRYSTAL_IDX)
3176 
3177 #define IWL_CALIB_RT_CFG_ALL	cpu_to_le32(IWL_CALIB_CFG_RX_BB_IDX |	\
3178 					IWL_CALIB_CFG_DC_IDX |		\
3179 					IWL_CALIB_CFG_LO_IDX |		\
3180 					IWL_CALIB_CFG_TX_IQ_IDX |	\
3181 					IWL_CALIB_CFG_RX_IQ_IDX |	\
3182 					IWL_CALIB_CFG_TEMPERATURE_IDX |	\
3183 					IWL_CALIB_CFG_PAPD_IDX |	\
3184 					IWL_CALIB_CFG_TX_PWR_IDX |	\
3185 					IWL_CALIB_CFG_CRYSTAL_IDX)
3186 
3187 #define IWL_CALIB_CFG_FLAG_SEND_COMPLETE_NTFY_MSK	cpu_to_le32(BIT(0))
3188 
3189 struct iwl_calib_cfg_elmnt_s {
3190 	__le32 is_enable;
3191 	__le32 start;
3192 	__le32 send_res;
3193 	__le32 apply_res;
3194 	__le32 reserved;
3195 } __packed;
3196 
3197 struct iwl_calib_cfg_status_s {
3198 	struct iwl_calib_cfg_elmnt_s once;
3199 	struct iwl_calib_cfg_elmnt_s perd;
3200 	__le32 flags;
3201 } __packed;
3202 
3203 struct iwl_calib_cfg_cmd {
3204 	struct iwl_calib_cfg_status_s ucd_calib_cfg;
3205 	struct iwl_calib_cfg_status_s drv_calib_cfg;
3206 	__le32 reserved1;
3207 } __packed;
3208 
3209 struct iwl_calib_hdr {
3210 	u8 op_code;
3211 	u8 first_group;
3212 	u8 groups_num;
3213 	u8 data_valid;
3214 } __packed;
3215 
3216 struct iwl_calib_cmd {
3217 	struct iwl_calib_hdr hdr;
3218 	u8 data[0];
3219 } __packed;
3220 
3221 struct iwl_calib_xtal_freq_cmd {
3222 	struct iwl_calib_hdr hdr;
3223 	u8 cap_pin1;
3224 	u8 cap_pin2;
3225 	u8 pad[2];
3226 } __packed;
3227 
3228 #define DEFAULT_RADIO_SENSOR_OFFSET    cpu_to_le16(2700)
3229 struct iwl_calib_temperature_offset_cmd {
3230 	struct iwl_calib_hdr hdr;
3231 	__le16 radio_sensor_offset;
3232 	__le16 reserved;
3233 } __packed;
3234 
3235 struct iwl_calib_temperature_offset_v2_cmd {
3236 	struct iwl_calib_hdr hdr;
3237 	__le16 radio_sensor_offset_high;
3238 	__le16 radio_sensor_offset_low;
3239 	__le16 burntVoltageRef;
3240 	__le16 reserved;
3241 } __packed;
3242 
3243 /* IWL_PHY_CALIBRATE_CHAIN_NOISE_RESET_CMD */
3244 struct iwl_calib_chain_noise_reset_cmd {
3245 	struct iwl_calib_hdr hdr;
3246 	u8 data[0];
3247 };
3248 
3249 /* IWL_PHY_CALIBRATE_CHAIN_NOISE_GAIN_CMD */
3250 struct iwl_calib_chain_noise_gain_cmd {
3251 	struct iwl_calib_hdr hdr;
3252 	u8 delta_gain_1;
3253 	u8 delta_gain_2;
3254 	u8 pad[2];
3255 } __packed;
3256 
3257 /******************************************************************************
3258  * (12)
3259  * Miscellaneous Commands:
3260  *
3261  *****************************************************************************/
3262 
3263 /*
3264  * LEDs Command & Response
3265  * REPLY_LEDS_CMD = 0x48 (command, has simple generic response)
3266  *
3267  * For each of 3 possible LEDs (Activity/Link/Tech, selected by "id" field),
3268  * this command turns it on or off, or sets up a periodic blinking cycle.
3269  */
3270 struct iwl_led_cmd {
3271 	__le32 interval;	/* "interval" in uSec */
3272 	u8 id;			/* 1: Activity, 2: Link, 3: Tech */
3273 	u8 off;			/* # intervals off while blinking;
3274 				 * "0", with >0 "on" value, turns LED on */
3275 	u8 on;			/* # intervals on while blinking;
3276 				 * "0", regardless of "off", turns LED off */
3277 	u8 reserved;
3278 } __packed;
3279 
3280 /*
3281  * station priority table entries
3282  * also used as potential "events" value for both
3283  * COEX_MEDIUM_NOTIFICATION and COEX_EVENT_CMD
3284  */
3285 
3286 /*
3287  * COEX events entry flag masks
3288  * RP - Requested Priority
3289  * WP - Win Medium Priority: priority assigned when the contention has been won
3290  */
3291 #define COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG        (0x1)
3292 #define COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG        (0x2)
3293 #define COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG  (0x4)
3294 
3295 #define COEX_CU_UNASSOC_IDLE_RP               4
3296 #define COEX_CU_UNASSOC_MANUAL_SCAN_RP        4
3297 #define COEX_CU_UNASSOC_AUTO_SCAN_RP          4
3298 #define COEX_CU_CALIBRATION_RP                4
3299 #define COEX_CU_PERIODIC_CALIBRATION_RP       4
3300 #define COEX_CU_CONNECTION_ESTAB_RP           4
3301 #define COEX_CU_ASSOCIATED_IDLE_RP            4
3302 #define COEX_CU_ASSOC_MANUAL_SCAN_RP          4
3303 #define COEX_CU_ASSOC_AUTO_SCAN_RP            4
3304 #define COEX_CU_ASSOC_ACTIVE_LEVEL_RP         4
3305 #define COEX_CU_RF_ON_RP                      6
3306 #define COEX_CU_RF_OFF_RP                     4
3307 #define COEX_CU_STAND_ALONE_DEBUG_RP          6
3308 #define COEX_CU_IPAN_ASSOC_LEVEL_RP           4
3309 #define COEX_CU_RSRVD1_RP                     4
3310 #define COEX_CU_RSRVD2_RP                     4
3311 
3312 #define COEX_CU_UNASSOC_IDLE_WP               3
3313 #define COEX_CU_UNASSOC_MANUAL_SCAN_WP        3
3314 #define COEX_CU_UNASSOC_AUTO_SCAN_WP          3
3315 #define COEX_CU_CALIBRATION_WP                3
3316 #define COEX_CU_PERIODIC_CALIBRATION_WP       3
3317 #define COEX_CU_CONNECTION_ESTAB_WP           3
3318 #define COEX_CU_ASSOCIATED_IDLE_WP            3
3319 #define COEX_CU_ASSOC_MANUAL_SCAN_WP          3
3320 #define COEX_CU_ASSOC_AUTO_SCAN_WP            3
3321 #define COEX_CU_ASSOC_ACTIVE_LEVEL_WP         3
3322 #define COEX_CU_RF_ON_WP                      3
3323 #define COEX_CU_RF_OFF_WP                     3
3324 #define COEX_CU_STAND_ALONE_DEBUG_WP          6
3325 #define COEX_CU_IPAN_ASSOC_LEVEL_WP           3
3326 #define COEX_CU_RSRVD1_WP                     3
3327 #define COEX_CU_RSRVD2_WP                     3
3328 
3329 #define COEX_UNASSOC_IDLE_FLAGS                     0
3330 #define COEX_UNASSOC_MANUAL_SCAN_FLAGS		\
3331 	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3332 	COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3333 #define COEX_UNASSOC_AUTO_SCAN_FLAGS		\
3334 	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3335 	COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3336 #define COEX_CALIBRATION_FLAGS			\
3337 	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3338 	COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3339 #define COEX_PERIODIC_CALIBRATION_FLAGS             0
3340 /*
3341  * COEX_CONNECTION_ESTAB:
3342  * we need DELAY_MEDIUM_FREE_NTFY to let WiMAX disconnect from network.
3343  */
3344 #define COEX_CONNECTION_ESTAB_FLAGS		\
3345 	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3346 	COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG |	\
3347 	COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3348 #define COEX_ASSOCIATED_IDLE_FLAGS                  0
3349 #define COEX_ASSOC_MANUAL_SCAN_FLAGS		\
3350 	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3351 	COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3352 #define COEX_ASSOC_AUTO_SCAN_FLAGS		\
3353 	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3354 	 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3355 #define COEX_ASSOC_ACTIVE_LEVEL_FLAGS               0
3356 #define COEX_RF_ON_FLAGS                            0
3357 #define COEX_RF_OFF_FLAGS                           0
3358 #define COEX_STAND_ALONE_DEBUG_FLAGS		\
3359 	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3360 	 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3361 #define COEX_IPAN_ASSOC_LEVEL_FLAGS		\
3362 	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3363 	 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG |	\
3364 	 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3365 #define COEX_RSRVD1_FLAGS                           0
3366 #define COEX_RSRVD2_FLAGS                           0
3367 /*
3368  * COEX_CU_RF_ON is the event wrapping all radio ownership.
3369  * We need DELAY_MEDIUM_FREE_NTFY to let WiMAX disconnect from network.
3370  */
3371 #define COEX_CU_RF_ON_FLAGS			\
3372 	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3373 	 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG |	\
3374 	 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3375 
3376 
3377 enum {
3378 	/* un-association part */
3379 	COEX_UNASSOC_IDLE		= 0,
3380 	COEX_UNASSOC_MANUAL_SCAN	= 1,
3381 	COEX_UNASSOC_AUTO_SCAN		= 2,
3382 	/* calibration */
3383 	COEX_CALIBRATION		= 3,
3384 	COEX_PERIODIC_CALIBRATION	= 4,
3385 	/* connection */
3386 	COEX_CONNECTION_ESTAB		= 5,
3387 	/* association part */
3388 	COEX_ASSOCIATED_IDLE		= 6,
3389 	COEX_ASSOC_MANUAL_SCAN		= 7,
3390 	COEX_ASSOC_AUTO_SCAN		= 8,
3391 	COEX_ASSOC_ACTIVE_LEVEL		= 9,
3392 	/* RF ON/OFF */
3393 	COEX_RF_ON			= 10,
3394 	COEX_RF_OFF			= 11,
3395 	COEX_STAND_ALONE_DEBUG		= 12,
3396 	/* IPAN */
3397 	COEX_IPAN_ASSOC_LEVEL		= 13,
3398 	/* reserved */
3399 	COEX_RSRVD1			= 14,
3400 	COEX_RSRVD2			= 15,
3401 	COEX_NUM_OF_EVENTS		= 16
3402 };
3403 
3404 /*
3405  * Coexistence WIFI/WIMAX  Command
3406  * COEX_PRIORITY_TABLE_CMD = 0x5a
3407  *
3408  */
3409 struct iwl_wimax_coex_event_entry {
3410 	u8 request_prio;
3411 	u8 win_medium_prio;
3412 	u8 reserved;
3413 	u8 flags;
3414 } __packed;
3415 
3416 /* COEX flag masks */
3417 
3418 /* Station table is valid */
3419 #define COEX_FLAGS_STA_TABLE_VALID_MSK      (0x1)
3420 /* UnMask wake up src at unassociated sleep */
3421 #define COEX_FLAGS_UNASSOC_WA_UNMASK_MSK    (0x4)
3422 /* UnMask wake up src at associated sleep */
3423 #define COEX_FLAGS_ASSOC_WA_UNMASK_MSK      (0x8)
3424 /* Enable CoEx feature. */
3425 #define COEX_FLAGS_COEX_ENABLE_MSK          (0x80)
3426 
3427 struct iwl_wimax_coex_cmd {
3428 	u8 flags;
3429 	u8 reserved[3];
3430 	struct iwl_wimax_coex_event_entry sta_prio[COEX_NUM_OF_EVENTS];
3431 } __packed;
3432 
3433 /*
3434  * Coexistence MEDIUM NOTIFICATION
3435  * COEX_MEDIUM_NOTIFICATION = 0x5b
3436  *
3437  * notification from uCode to host to indicate medium changes
3438  *
3439  */
3440 /*
3441  * status field
3442  * bit 0 - 2: medium status
3443  * bit 3: medium change indication
3444  * bit 4 - 31: reserved
3445  */
3446 /* status option values, (0 - 2 bits) */
3447 #define COEX_MEDIUM_BUSY	(0x0) /* radio belongs to WiMAX */
3448 #define COEX_MEDIUM_ACTIVE	(0x1) /* radio belongs to WiFi */
3449 #define COEX_MEDIUM_PRE_RELEASE	(0x2) /* received radio release */
3450 #define COEX_MEDIUM_MSK		(0x7)
3451 
3452 /* send notification status (1 bit) */
3453 #define COEX_MEDIUM_CHANGED	(0x8)
3454 #define COEX_MEDIUM_CHANGED_MSK	(0x8)
3455 #define COEX_MEDIUM_SHIFT	(3)
3456 
3457 struct iwl_coex_medium_notification {
3458 	__le32 status;
3459 	__le32 events;
3460 } __packed;
3461 
3462 /*
3463  * Coexistence EVENT  Command
3464  * COEX_EVENT_CMD = 0x5c
3465  *
3466  * send from host to uCode for coex event request.
3467  */
3468 /* flags options */
3469 #define COEX_EVENT_REQUEST_MSK	(0x1)
3470 
3471 struct iwl_coex_event_cmd {
3472 	u8 flags;
3473 	u8 event;
3474 	__le16 reserved;
3475 } __packed;
3476 
3477 struct iwl_coex_event_resp {
3478 	__le32 status;
3479 } __packed;
3480 
3481 
3482 /******************************************************************************
3483  * Bluetooth Coexistence commands
3484  *
3485  *****************************************************************************/
3486 
3487 /*
3488  * BT Status notification
3489  * REPLY_BT_COEX_PROFILE_NOTIF = 0xce
3490  */
3491 enum iwl_bt_coex_profile_traffic_load {
3492 	IWL_BT_COEX_TRAFFIC_LOAD_NONE = 	0,
3493 	IWL_BT_COEX_TRAFFIC_LOAD_LOW =		1,
3494 	IWL_BT_COEX_TRAFFIC_LOAD_HIGH = 	2,
3495 	IWL_BT_COEX_TRAFFIC_LOAD_CONTINUOUS =	3,
3496 /*
3497  * There are no more even though below is a u8, the
3498  * indication from the BT device only has two bits.
3499  */
3500 };
3501 
3502 #define BT_SESSION_ACTIVITY_1_UART_MSG		0x1
3503 #define BT_SESSION_ACTIVITY_2_UART_MSG		0x2
3504 
3505 /* BT UART message - Share Part (BT -> WiFi) */
3506 #define BT_UART_MSG_FRAME1MSGTYPE_POS		(0)
3507 #define BT_UART_MSG_FRAME1MSGTYPE_MSK		\
3508 		(0x7 << BT_UART_MSG_FRAME1MSGTYPE_POS)
3509 #define BT_UART_MSG_FRAME1SSN_POS		(3)
3510 #define BT_UART_MSG_FRAME1SSN_MSK		\
3511 		(0x3 << BT_UART_MSG_FRAME1SSN_POS)
3512 #define BT_UART_MSG_FRAME1UPDATEREQ_POS		(5)
3513 #define BT_UART_MSG_FRAME1UPDATEREQ_MSK		\
3514 		(0x1 << BT_UART_MSG_FRAME1UPDATEREQ_POS)
3515 #define BT_UART_MSG_FRAME1RESERVED_POS		(6)
3516 #define BT_UART_MSG_FRAME1RESERVED_MSK		\
3517 		(0x3 << BT_UART_MSG_FRAME1RESERVED_POS)
3518 
3519 #define BT_UART_MSG_FRAME2OPENCONNECTIONS_POS	(0)
3520 #define BT_UART_MSG_FRAME2OPENCONNECTIONS_MSK	\
3521 		(0x3 << BT_UART_MSG_FRAME2OPENCONNECTIONS_POS)
3522 #define BT_UART_MSG_FRAME2TRAFFICLOAD_POS	(2)
3523 #define BT_UART_MSG_FRAME2TRAFFICLOAD_MSK	\
3524 		(0x3 << BT_UART_MSG_FRAME2TRAFFICLOAD_POS)
3525 #define BT_UART_MSG_FRAME2CHLSEQN_POS		(4)
3526 #define BT_UART_MSG_FRAME2CHLSEQN_MSK		\
3527 		(0x1 << BT_UART_MSG_FRAME2CHLSEQN_POS)
3528 #define BT_UART_MSG_FRAME2INBAND_POS		(5)
3529 #define BT_UART_MSG_FRAME2INBAND_MSK		\
3530 		(0x1 << BT_UART_MSG_FRAME2INBAND_POS)
3531 #define BT_UART_MSG_FRAME2RESERVED_POS		(6)
3532 #define BT_UART_MSG_FRAME2RESERVED_MSK		\
3533 		(0x3 << BT_UART_MSG_FRAME2RESERVED_POS)
3534 
3535 #define BT_UART_MSG_FRAME3SCOESCO_POS		(0)
3536 #define BT_UART_MSG_FRAME3SCOESCO_MSK		\
3537 		(0x1 << BT_UART_MSG_FRAME3SCOESCO_POS)
3538 #define BT_UART_MSG_FRAME3SNIFF_POS		(1)
3539 #define BT_UART_MSG_FRAME3SNIFF_MSK		\
3540 		(0x1 << BT_UART_MSG_FRAME3SNIFF_POS)
3541 #define BT_UART_MSG_FRAME3A2DP_POS		(2)
3542 #define BT_UART_MSG_FRAME3A2DP_MSK		\
3543 		(0x1 << BT_UART_MSG_FRAME3A2DP_POS)
3544 #define BT_UART_MSG_FRAME3ACL_POS		(3)
3545 #define BT_UART_MSG_FRAME3ACL_MSK		\
3546 		(0x1 << BT_UART_MSG_FRAME3ACL_POS)
3547 #define BT_UART_MSG_FRAME3MASTER_POS		(4)
3548 #define BT_UART_MSG_FRAME3MASTER_MSK		\
3549 		(0x1 << BT_UART_MSG_FRAME3MASTER_POS)
3550 #define BT_UART_MSG_FRAME3OBEX_POS		(5)
3551 #define BT_UART_MSG_FRAME3OBEX_MSK		\
3552 		(0x1 << BT_UART_MSG_FRAME3OBEX_POS)
3553 #define BT_UART_MSG_FRAME3RESERVED_POS		(6)
3554 #define BT_UART_MSG_FRAME3RESERVED_MSK		\
3555 		(0x3 << BT_UART_MSG_FRAME3RESERVED_POS)
3556 
3557 #define BT_UART_MSG_FRAME4IDLEDURATION_POS	(0)
3558 #define BT_UART_MSG_FRAME4IDLEDURATION_MSK	\
3559 		(0x3F << BT_UART_MSG_FRAME4IDLEDURATION_POS)
3560 #define BT_UART_MSG_FRAME4RESERVED_POS		(6)
3561 #define BT_UART_MSG_FRAME4RESERVED_MSK		\
3562 		(0x3 << BT_UART_MSG_FRAME4RESERVED_POS)
3563 
3564 #define BT_UART_MSG_FRAME5TXACTIVITY_POS	(0)
3565 #define BT_UART_MSG_FRAME5TXACTIVITY_MSK	\
3566 		(0x3 << BT_UART_MSG_FRAME5TXACTIVITY_POS)
3567 #define BT_UART_MSG_FRAME5RXACTIVITY_POS	(2)
3568 #define BT_UART_MSG_FRAME5RXACTIVITY_MSK	\
3569 		(0x3 << BT_UART_MSG_FRAME5RXACTIVITY_POS)
3570 #define BT_UART_MSG_FRAME5ESCORETRANSMIT_POS	(4)
3571 #define BT_UART_MSG_FRAME5ESCORETRANSMIT_MSK	\
3572 		(0x3 << BT_UART_MSG_FRAME5ESCORETRANSMIT_POS)
3573 #define BT_UART_MSG_FRAME5RESERVED_POS		(6)
3574 #define BT_UART_MSG_FRAME5RESERVED_MSK		\
3575 		(0x3 << BT_UART_MSG_FRAME5RESERVED_POS)
3576 
3577 #define BT_UART_MSG_FRAME6SNIFFINTERVAL_POS	(0)
3578 #define BT_UART_MSG_FRAME6SNIFFINTERVAL_MSK	\
3579 		(0x1F << BT_UART_MSG_FRAME6SNIFFINTERVAL_POS)
3580 #define BT_UART_MSG_FRAME6DISCOVERABLE_POS	(5)
3581 #define BT_UART_MSG_FRAME6DISCOVERABLE_MSK	\
3582 		(0x1 << BT_UART_MSG_FRAME6DISCOVERABLE_POS)
3583 #define BT_UART_MSG_FRAME6RESERVED_POS		(6)
3584 #define BT_UART_MSG_FRAME6RESERVED_MSK		\
3585 		(0x3 << BT_UART_MSG_FRAME6RESERVED_POS)
3586 
3587 #define BT_UART_MSG_FRAME7SNIFFACTIVITY_POS	(0)
3588 #define BT_UART_MSG_FRAME7SNIFFACTIVITY_MSK	\
3589 		(0x7 << BT_UART_MSG_FRAME7SNIFFACTIVITY_POS)
3590 #define BT_UART_MSG_FRAME7PAGE_POS		(3)
3591 #define BT_UART_MSG_FRAME7PAGE_MSK		\
3592 		(0x1 << BT_UART_MSG_FRAME7PAGE_POS)
3593 #define BT_UART_MSG_FRAME7INQUIRY_POS		(4)
3594 #define BT_UART_MSG_FRAME7INQUIRY_MSK		\
3595 		(0x1 << BT_UART_MSG_FRAME7INQUIRY_POS)
3596 #define BT_UART_MSG_FRAME7CONNECTABLE_POS	(5)
3597 #define BT_UART_MSG_FRAME7CONNECTABLE_MSK	\
3598 		(0x1 << BT_UART_MSG_FRAME7CONNECTABLE_POS)
3599 #define BT_UART_MSG_FRAME7RESERVED_POS		(6)
3600 #define BT_UART_MSG_FRAME7RESERVED_MSK		\
3601 		(0x3 << BT_UART_MSG_FRAME7RESERVED_POS)
3602 
3603 /* BT Session Activity 2 UART message (BT -> WiFi) */
3604 #define BT_UART_MSG_2_FRAME1RESERVED1_POS	(5)
3605 #define BT_UART_MSG_2_FRAME1RESERVED1_MSK	\
3606 		(0x1<<BT_UART_MSG_2_FRAME1RESERVED1_POS)
3607 #define BT_UART_MSG_2_FRAME1RESERVED2_POS	(6)
3608 #define BT_UART_MSG_2_FRAME1RESERVED2_MSK	\
3609 		(0x3<<BT_UART_MSG_2_FRAME1RESERVED2_POS)
3610 
3611 #define BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_POS	(0)
3612 #define BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_MSK	\
3613 		(0x3F<<BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_POS)
3614 #define BT_UART_MSG_2_FRAME2RESERVED_POS	(6)
3615 #define BT_UART_MSG_2_FRAME2RESERVED_MSK	\
3616 		(0x3<<BT_UART_MSG_2_FRAME2RESERVED_POS)
3617 
3618 #define BT_UART_MSG_2_FRAME3BRLASTTXPOWER_POS	(0)
3619 #define BT_UART_MSG_2_FRAME3BRLASTTXPOWER_MSK	\
3620 		(0xF<<BT_UART_MSG_2_FRAME3BRLASTTXPOWER_POS)
3621 #define BT_UART_MSG_2_FRAME3INQPAGESRMODE_POS	(4)
3622 #define BT_UART_MSG_2_FRAME3INQPAGESRMODE_MSK	\
3623 		(0x1<<BT_UART_MSG_2_FRAME3INQPAGESRMODE_POS)
3624 #define BT_UART_MSG_2_FRAME3LEMASTER_POS	(5)
3625 #define BT_UART_MSG_2_FRAME3LEMASTER_MSK	\
3626 		(0x1<<BT_UART_MSG_2_FRAME3LEMASTER_POS)
3627 #define BT_UART_MSG_2_FRAME3RESERVED_POS	(6)
3628 #define BT_UART_MSG_2_FRAME3RESERVED_MSK	\
3629 		(0x3<<BT_UART_MSG_2_FRAME3RESERVED_POS)
3630 
3631 #define BT_UART_MSG_2_FRAME4LELASTTXPOWER_POS	(0)
3632 #define BT_UART_MSG_2_FRAME4LELASTTXPOWER_MSK	\
3633 		(0xF<<BT_UART_MSG_2_FRAME4LELASTTXPOWER_POS)
3634 #define BT_UART_MSG_2_FRAME4NUMLECONN_POS	(4)
3635 #define BT_UART_MSG_2_FRAME4NUMLECONN_MSK	\
3636 		(0x3<<BT_UART_MSG_2_FRAME4NUMLECONN_POS)
3637 #define BT_UART_MSG_2_FRAME4RESERVED_POS	(6)
3638 #define BT_UART_MSG_2_FRAME4RESERVED_MSK	\
3639 		(0x3<<BT_UART_MSG_2_FRAME4RESERVED_POS)
3640 
3641 #define BT_UART_MSG_2_FRAME5BTMINRSSI_POS	(0)
3642 #define BT_UART_MSG_2_FRAME5BTMINRSSI_MSK	\
3643 		(0xF<<BT_UART_MSG_2_FRAME5BTMINRSSI_POS)
3644 #define BT_UART_MSG_2_FRAME5LESCANINITMODE_POS	(4)
3645 #define BT_UART_MSG_2_FRAME5LESCANINITMODE_MSK	\
3646 		(0x1<<BT_UART_MSG_2_FRAME5LESCANINITMODE_POS)
3647 #define BT_UART_MSG_2_FRAME5LEADVERMODE_POS	(5)
3648 #define BT_UART_MSG_2_FRAME5LEADVERMODE_MSK	\
3649 		(0x1<<BT_UART_MSG_2_FRAME5LEADVERMODE_POS)
3650 #define BT_UART_MSG_2_FRAME5RESERVED_POS	(6)
3651 #define BT_UART_MSG_2_FRAME5RESERVED_MSK	\
3652 		(0x3<<BT_UART_MSG_2_FRAME5RESERVED_POS)
3653 
3654 #define BT_UART_MSG_2_FRAME6LECONNINTERVAL_POS	(0)
3655 #define BT_UART_MSG_2_FRAME6LECONNINTERVAL_MSK	\
3656 		(0x1F<<BT_UART_MSG_2_FRAME6LECONNINTERVAL_POS)
3657 #define BT_UART_MSG_2_FRAME6RFU_POS		(5)
3658 #define BT_UART_MSG_2_FRAME6RFU_MSK		\
3659 		(0x1<<BT_UART_MSG_2_FRAME6RFU_POS)
3660 #define BT_UART_MSG_2_FRAME6RESERVED_POS	(6)
3661 #define BT_UART_MSG_2_FRAME6RESERVED_MSK	\
3662 		(0x3<<BT_UART_MSG_2_FRAME6RESERVED_POS)
3663 
3664 #define BT_UART_MSG_2_FRAME7LECONNSLAVELAT_POS	(0)
3665 #define BT_UART_MSG_2_FRAME7LECONNSLAVELAT_MSK	\
3666 		(0x7<<BT_UART_MSG_2_FRAME7LECONNSLAVELAT_POS)
3667 #define BT_UART_MSG_2_FRAME7LEPROFILE1_POS	(3)
3668 #define BT_UART_MSG_2_FRAME7LEPROFILE1_MSK	\
3669 		(0x1<<BT_UART_MSG_2_FRAME7LEPROFILE1_POS)
3670 #define BT_UART_MSG_2_FRAME7LEPROFILE2_POS	(4)
3671 #define BT_UART_MSG_2_FRAME7LEPROFILE2_MSK	\
3672 		(0x1<<BT_UART_MSG_2_FRAME7LEPROFILE2_POS)
3673 #define BT_UART_MSG_2_FRAME7LEPROFILEOTHER_POS	(5)
3674 #define BT_UART_MSG_2_FRAME7LEPROFILEOTHER_MSK	\
3675 		(0x1<<BT_UART_MSG_2_FRAME7LEPROFILEOTHER_POS)
3676 #define BT_UART_MSG_2_FRAME7RESERVED_POS	(6)
3677 #define BT_UART_MSG_2_FRAME7RESERVED_MSK	\
3678 		(0x3<<BT_UART_MSG_2_FRAME7RESERVED_POS)
3679 
3680 
3681 #define BT_ENABLE_REDUCED_TXPOWER_THRESHOLD	(-62)
3682 #define BT_DISABLE_REDUCED_TXPOWER_THRESHOLD	(-65)
3683 
3684 struct iwl_bt_uart_msg {
3685 	u8 header;
3686 	u8 frame1;
3687 	u8 frame2;
3688 	u8 frame3;
3689 	u8 frame4;
3690 	u8 frame5;
3691 	u8 frame6;
3692 	u8 frame7;
3693 } __packed;
3694 
3695 struct iwl_bt_coex_profile_notif {
3696 	struct iwl_bt_uart_msg last_bt_uart_msg;
3697 	u8 bt_status; /* 0 - off, 1 - on */
3698 	u8 bt_traffic_load; /* 0 .. 3? */
3699 	u8 bt_ci_compliance; /* 0 - not complied, 1 - complied */
3700 	u8 reserved;
3701 } __packed;
3702 
3703 #define IWL_BT_COEX_PRIO_TBL_SHARED_ANTENNA_POS	0
3704 #define IWL_BT_COEX_PRIO_TBL_SHARED_ANTENNA_MSK	0x1
3705 #define IWL_BT_COEX_PRIO_TBL_PRIO_POS		1
3706 #define IWL_BT_COEX_PRIO_TBL_PRIO_MASK		0x0e
3707 #define IWL_BT_COEX_PRIO_TBL_RESERVED_POS	4
3708 #define IWL_BT_COEX_PRIO_TBL_RESERVED_MASK	0xf0
3709 #define IWL_BT_COEX_PRIO_TBL_PRIO_SHIFT		1
3710 
3711 /*
3712  * BT Coexistence Priority table
3713  * REPLY_BT_COEX_PRIO_TABLE = 0xcc
3714  */
3715 enum bt_coex_prio_table_events {
3716 	BT_COEX_PRIO_TBL_EVT_INIT_CALIB1 = 0,
3717 	BT_COEX_PRIO_TBL_EVT_INIT_CALIB2 = 1,
3718 	BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_LOW1 = 2,
3719 	BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_LOW2 = 3, /* DC calib */
3720 	BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_HIGH1 = 4,
3721 	BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_HIGH2 = 5,
3722 	BT_COEX_PRIO_TBL_EVT_DTIM = 6,
3723 	BT_COEX_PRIO_TBL_EVT_SCAN52 = 7,
3724 	BT_COEX_PRIO_TBL_EVT_SCAN24 = 8,
3725 	BT_COEX_PRIO_TBL_EVT_RESERVED0 = 9,
3726 	BT_COEX_PRIO_TBL_EVT_RESERVED1 = 10,
3727 	BT_COEX_PRIO_TBL_EVT_RESERVED2 = 11,
3728 	BT_COEX_PRIO_TBL_EVT_RESERVED3 = 12,
3729 	BT_COEX_PRIO_TBL_EVT_RESERVED4 = 13,
3730 	BT_COEX_PRIO_TBL_EVT_RESERVED5 = 14,
3731 	BT_COEX_PRIO_TBL_EVT_RESERVED6 = 15,
3732 	/* BT_COEX_PRIO_TBL_EVT_MAX should always be last */
3733 	BT_COEX_PRIO_TBL_EVT_MAX,
3734 };
3735 
3736 enum bt_coex_prio_table_priorities {
3737 	BT_COEX_PRIO_TBL_DISABLED = 0,
3738 	BT_COEX_PRIO_TBL_PRIO_LOW = 1,
3739 	BT_COEX_PRIO_TBL_PRIO_HIGH = 2,
3740 	BT_COEX_PRIO_TBL_PRIO_BYPASS = 3,
3741 	BT_COEX_PRIO_TBL_PRIO_COEX_OFF = 4,
3742 	BT_COEX_PRIO_TBL_PRIO_COEX_ON = 5,
3743 	BT_COEX_PRIO_TBL_PRIO_RSRVD1 = 6,
3744 	BT_COEX_PRIO_TBL_PRIO_RSRVD2 = 7,
3745 	BT_COEX_PRIO_TBL_MAX,
3746 };
3747 
3748 struct iwl_bt_coex_prio_table_cmd {
3749 	u8 prio_tbl[BT_COEX_PRIO_TBL_EVT_MAX];
3750 } __packed;
3751 
3752 #define IWL_BT_COEX_ENV_CLOSE	0
3753 #define IWL_BT_COEX_ENV_OPEN	1
3754 /*
3755  * BT Protection Envelope
3756  * REPLY_BT_COEX_PROT_ENV = 0xcd
3757  */
3758 struct iwl_bt_coex_prot_env_cmd {
3759 	u8 action; /* 0 = closed, 1 = open */
3760 	u8 type; /* 0 .. 15 */
3761 	u8 reserved[2];
3762 } __packed;
3763 
3764 /*
3765  * REPLY_D3_CONFIG
3766  */
3767 enum iwlagn_d3_wakeup_filters {
3768 	IWLAGN_D3_WAKEUP_RFKILL		= BIT(0),
3769 	IWLAGN_D3_WAKEUP_SYSASSERT	= BIT(1),
3770 };
3771 
3772 struct iwlagn_d3_config_cmd {
3773 	__le32 min_sleep_time;
3774 	__le32 wakeup_flags;
3775 } __packed;
3776 
3777 /*
3778  * REPLY_WOWLAN_PATTERNS
3779  */
3780 #define IWLAGN_WOWLAN_MIN_PATTERN_LEN	16
3781 #define IWLAGN_WOWLAN_MAX_PATTERN_LEN	128
3782 
3783 struct iwlagn_wowlan_pattern {
3784 	u8 mask[IWLAGN_WOWLAN_MAX_PATTERN_LEN / 8];
3785 	u8 pattern[IWLAGN_WOWLAN_MAX_PATTERN_LEN];
3786 	u8 mask_size;
3787 	u8 pattern_size;
3788 	__le16 reserved;
3789 } __packed;
3790 
3791 #define IWLAGN_WOWLAN_MAX_PATTERNS	20
3792 
3793 struct iwlagn_wowlan_patterns_cmd {
3794 	__le32 n_patterns;
3795 	struct iwlagn_wowlan_pattern patterns[];
3796 } __packed;
3797 
3798 /*
3799  * REPLY_WOWLAN_WAKEUP_FILTER
3800  */
3801 enum iwlagn_wowlan_wakeup_filters {
3802 	IWLAGN_WOWLAN_WAKEUP_MAGIC_PACKET	= BIT(0),
3803 	IWLAGN_WOWLAN_WAKEUP_PATTERN_MATCH	= BIT(1),
3804 	IWLAGN_WOWLAN_WAKEUP_BEACON_MISS	= BIT(2),
3805 	IWLAGN_WOWLAN_WAKEUP_LINK_CHANGE	= BIT(3),
3806 	IWLAGN_WOWLAN_WAKEUP_GTK_REKEY_FAIL	= BIT(4),
3807 	IWLAGN_WOWLAN_WAKEUP_EAP_IDENT_REQ	= BIT(5),
3808 	IWLAGN_WOWLAN_WAKEUP_4WAY_HANDSHAKE	= BIT(6),
3809 	IWLAGN_WOWLAN_WAKEUP_ALWAYS		= BIT(7),
3810 	IWLAGN_WOWLAN_WAKEUP_ENABLE_NET_DETECT	= BIT(8),
3811 };
3812 
3813 struct iwlagn_wowlan_wakeup_filter_cmd {
3814 	__le32 enabled;
3815 	__le16 non_qos_seq;
3816 	__le16 reserved;
3817 	__le16 qos_seq[8];
3818 };
3819 
3820 /*
3821  * REPLY_WOWLAN_TSC_RSC_PARAMS
3822  */
3823 #define IWLAGN_NUM_RSC	16
3824 
3825 struct tkip_sc {
3826 	__le16 iv16;
3827 	__le16 pad;
3828 	__le32 iv32;
3829 } __packed;
3830 
3831 struct iwlagn_tkip_rsc_tsc {
3832 	struct tkip_sc unicast_rsc[IWLAGN_NUM_RSC];
3833 	struct tkip_sc multicast_rsc[IWLAGN_NUM_RSC];
3834 	struct tkip_sc tsc;
3835 } __packed;
3836 
3837 struct aes_sc {
3838 	__le64 pn;
3839 } __packed;
3840 
3841 struct iwlagn_aes_rsc_tsc {
3842 	struct aes_sc unicast_rsc[IWLAGN_NUM_RSC];
3843 	struct aes_sc multicast_rsc[IWLAGN_NUM_RSC];
3844 	struct aes_sc tsc;
3845 } __packed;
3846 
3847 union iwlagn_all_tsc_rsc {
3848 	struct iwlagn_tkip_rsc_tsc tkip;
3849 	struct iwlagn_aes_rsc_tsc aes;
3850 };
3851 
3852 struct iwlagn_wowlan_rsc_tsc_params_cmd {
3853 	union iwlagn_all_tsc_rsc all_tsc_rsc;
3854 } __packed;
3855 
3856 /*
3857  * REPLY_WOWLAN_TKIP_PARAMS
3858  */
3859 #define IWLAGN_MIC_KEY_SIZE	8
3860 #define IWLAGN_P1K_SIZE		5
3861 struct iwlagn_mic_keys {
3862 	u8 tx[IWLAGN_MIC_KEY_SIZE];
3863 	u8 rx_unicast[IWLAGN_MIC_KEY_SIZE];
3864 	u8 rx_mcast[IWLAGN_MIC_KEY_SIZE];
3865 } __packed;
3866 
3867 struct iwlagn_p1k_cache {
3868 	__le16 p1k[IWLAGN_P1K_SIZE];
3869 } __packed;
3870 
3871 #define IWLAGN_NUM_RX_P1K_CACHE	2
3872 
3873 struct iwlagn_wowlan_tkip_params_cmd {
3874 	struct iwlagn_mic_keys mic_keys;
3875 	struct iwlagn_p1k_cache tx;
3876 	struct iwlagn_p1k_cache rx_uni[IWLAGN_NUM_RX_P1K_CACHE];
3877 	struct iwlagn_p1k_cache rx_multi[IWLAGN_NUM_RX_P1K_CACHE];
3878 } __packed;
3879 
3880 /*
3881  * REPLY_WOWLAN_KEK_KCK_MATERIAL
3882  */
3883 
3884 #define IWLAGN_KCK_MAX_SIZE	32
3885 #define IWLAGN_KEK_MAX_SIZE	32
3886 
3887 struct iwlagn_wowlan_kek_kck_material_cmd {
3888 	u8	kck[IWLAGN_KCK_MAX_SIZE];
3889 	u8	kek[IWLAGN_KEK_MAX_SIZE];
3890 	__le16	kck_len;
3891 	__le16	kek_len;
3892 	__le64	replay_ctr;
3893 } __packed;
3894 
3895 #define RF_KILL_INDICATOR_FOR_WOWLAN	0x87
3896 
3897 /*
3898  * REPLY_WOWLAN_GET_STATUS = 0xe5
3899  */
3900 struct iwlagn_wowlan_status {
3901 	__le64 replay_ctr;
3902 	__le32 rekey_status;
3903 	__le32 wakeup_reason;
3904 	u8 pattern_number;
3905 	u8 reserved1;
3906 	__le16 qos_seq_ctr[8];
3907 	__le16 non_qos_seq_ctr;
3908 	__le16 reserved2;
3909 	union iwlagn_all_tsc_rsc tsc_rsc;
3910 	__le16 reserved3;
3911 } __packed;
3912 
3913 /*
3914  * REPLY_WIPAN_PARAMS = 0xb2 (Commands and Notification)
3915  */
3916 
3917 /*
3918  * Minimum slot time in TU
3919  */
3920 #define IWL_MIN_SLOT_TIME	20
3921 
3922 /**
3923  * struct iwl_wipan_slot
3924  * @width: Time in TU
3925  * @type:
3926  *   0 - BSS
3927  *   1 - PAN
3928  */
3929 struct iwl_wipan_slot {
3930 	__le16 width;
3931 	u8 type;
3932 	u8 reserved;
3933 } __packed;
3934 
3935 #define IWL_WIPAN_PARAMS_FLG_LEAVE_CHANNEL_CTS		BIT(1)	/* reserved */
3936 #define IWL_WIPAN_PARAMS_FLG_LEAVE_CHANNEL_QUIET	BIT(2)	/* reserved */
3937 #define IWL_WIPAN_PARAMS_FLG_SLOTTED_MODE		BIT(3)	/* reserved */
3938 #define IWL_WIPAN_PARAMS_FLG_FILTER_BEACON_NOTIF	BIT(4)
3939 #define IWL_WIPAN_PARAMS_FLG_FULL_SLOTTED_MODE		BIT(5)
3940 
3941 /**
3942  * struct iwl_wipan_params_cmd
3943  * @flags:
3944  *   bit0: reserved
3945  *   bit1: CP leave channel with CTS
3946  *   bit2: CP leave channel qith Quiet
3947  *   bit3: slotted mode
3948  *     1 - work in slotted mode
3949  *     0 - work in non slotted mode
3950  *   bit4: filter beacon notification
3951  *   bit5: full tx slotted mode. if this flag is set,
3952  *         uCode will perform leaving channel methods in context switch
3953  *         also when working in same channel mode
3954  * @num_slots: 1 - 10
3955  */
3956 struct iwl_wipan_params_cmd {
3957 	__le16 flags;
3958 	u8 reserved;
3959 	u8 num_slots;
3960 	struct iwl_wipan_slot slots[10];
3961 } __packed;
3962 
3963 /*
3964  * REPLY_WIPAN_P2P_CHANNEL_SWITCH = 0xb9
3965  *
3966  * TODO: Figure out what this is used for,
3967  *	 it can only switch between 2.4 GHz
3968  *	 channels!!
3969  */
3970 
3971 struct iwl_wipan_p2p_channel_switch_cmd {
3972 	__le16 channel;
3973 	__le16 reserved;
3974 };
3975 
3976 /*
3977  * REPLY_WIPAN_NOA_NOTIFICATION = 0xbc
3978  *
3979  * This is used by the device to notify us of the
3980  * NoA schedule it determined so we can forward it
3981  * to userspace for inclusion in probe responses.
3982  *
3983  * In beacons, the NoA schedule is simply appended
3984  * to the frame we give the device.
3985  */
3986 
3987 struct iwl_wipan_noa_descriptor {
3988 	u8 count;
3989 	__le32 duration;
3990 	__le32 interval;
3991 	__le32 starttime;
3992 } __packed;
3993 
3994 struct iwl_wipan_noa_attribute {
3995 	u8 id;
3996 	__le16 length;
3997 	u8 index;
3998 	u8 ct_window;
3999 	struct iwl_wipan_noa_descriptor descr0, descr1;
4000 	u8 reserved;
4001 } __packed;
4002 
4003 struct iwl_wipan_noa_notification {
4004 	u32 noa_active;
4005 	struct iwl_wipan_noa_attribute noa_attribute;
4006 } __packed;
4007 
4008 #endif				/* __iwl_commands_h__ */
4009