1 /******************************************************************************
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of version 2 of the GNU General Public License as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * The full GNU General Public License is included in this distribution
20  * in the file called COPYING.
21  *
22  * Contact Information:
23  *  Intel Linux Wireless <linuxwifi@intel.com>
24  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25  *
26  * BSD LICENSE
27  *
28  * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
29  * All rights reserved.
30  *
31  * Redistribution and use in source and binary forms, with or without
32  * modification, are permitted provided that the following conditions
33  * are met:
34  *
35  *  * Redistributions of source code must retain the above copyright
36  *    notice, this list of conditions and the following disclaimer.
37  *  * Redistributions in binary form must reproduce the above copyright
38  *    notice, this list of conditions and the following disclaimer in
39  *    the documentation and/or other materials provided with the
40  *    distribution.
41  *  * Neither the name Intel Corporation nor the names of its
42  *    contributors may be used to endorse or promote products derived
43  *    from this software without specific prior written permission.
44  *
45  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
46  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
47  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
48  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
49  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
50  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
51  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
52  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
53  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
54  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
55  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
56  *
57  *****************************************************************************/
58 /*
59  * Please use this file (commands.h) only for uCode API definitions.
60  * Please use iwl-xxxx-hw.h for hardware-related definitions.
61  * Please use dev.h for driver implementation definitions.
62  */
63 
64 #ifndef __iwl_commands_h__
65 #define __iwl_commands_h__
66 
67 #include <linux/ieee80211.h>
68 #include <linux/types.h>
69 
70 
71 enum {
72 	REPLY_ALIVE = 0x1,
73 	REPLY_ERROR = 0x2,
74 	REPLY_ECHO = 0x3,		/* test command */
75 
76 	/* RXON and QOS commands */
77 	REPLY_RXON = 0x10,
78 	REPLY_RXON_ASSOC = 0x11,
79 	REPLY_QOS_PARAM = 0x13,
80 	REPLY_RXON_TIMING = 0x14,
81 
82 	/* Multi-Station support */
83 	REPLY_ADD_STA = 0x18,
84 	REPLY_REMOVE_STA = 0x19,
85 	REPLY_REMOVE_ALL_STA = 0x1a,	/* not used */
86 	REPLY_TXFIFO_FLUSH = 0x1e,
87 
88 	/* Security */
89 	REPLY_WEPKEY = 0x20,
90 
91 	/* RX, TX, LEDs */
92 	REPLY_TX = 0x1c,
93 	REPLY_LEDS_CMD = 0x48,
94 	REPLY_TX_LINK_QUALITY_CMD = 0x4e,
95 
96 	/* WiMAX coexistence */
97 	COEX_PRIORITY_TABLE_CMD = 0x5a,
98 	COEX_MEDIUM_NOTIFICATION = 0x5b,
99 	COEX_EVENT_CMD = 0x5c,
100 
101 	/* Calibration */
102 	TEMPERATURE_NOTIFICATION = 0x62,
103 	CALIBRATION_CFG_CMD = 0x65,
104 	CALIBRATION_RES_NOTIFICATION = 0x66,
105 	CALIBRATION_COMPLETE_NOTIFICATION = 0x67,
106 
107 	/* 802.11h related */
108 	REPLY_QUIET_CMD = 0x71,		/* not used */
109 	REPLY_CHANNEL_SWITCH = 0x72,
110 	CHANNEL_SWITCH_NOTIFICATION = 0x73,
111 	REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74,
112 	SPECTRUM_MEASURE_NOTIFICATION = 0x75,
113 
114 	/* Power Management */
115 	POWER_TABLE_CMD = 0x77,
116 	PM_SLEEP_NOTIFICATION = 0x7A,
117 	PM_DEBUG_STATISTIC_NOTIFIC = 0x7B,
118 
119 	/* Scan commands and notifications */
120 	REPLY_SCAN_CMD = 0x80,
121 	REPLY_SCAN_ABORT_CMD = 0x81,
122 	SCAN_START_NOTIFICATION = 0x82,
123 	SCAN_RESULTS_NOTIFICATION = 0x83,
124 	SCAN_COMPLETE_NOTIFICATION = 0x84,
125 
126 	/* IBSS/AP commands */
127 	BEACON_NOTIFICATION = 0x90,
128 	REPLY_TX_BEACON = 0x91,
129 	WHO_IS_AWAKE_NOTIFICATION = 0x94,	/* not used */
130 
131 	/* Miscellaneous commands */
132 	REPLY_TX_POWER_DBM_CMD = 0x95,
133 	QUIET_NOTIFICATION = 0x96,		/* not used */
134 	REPLY_TX_PWR_TABLE_CMD = 0x97,
135 	REPLY_TX_POWER_DBM_CMD_V1 = 0x98,	/* old version of API */
136 	TX_ANT_CONFIGURATION_CMD = 0x98,
137 	MEASURE_ABORT_NOTIFICATION = 0x99,	/* not used */
138 
139 	/* Bluetooth device coexistence config command */
140 	REPLY_BT_CONFIG = 0x9b,
141 
142 	/* Statistics */
143 	REPLY_STATISTICS_CMD = 0x9c,
144 	STATISTICS_NOTIFICATION = 0x9d,
145 
146 	/* RF-KILL commands and notifications */
147 	REPLY_CARD_STATE_CMD = 0xa0,
148 	CARD_STATE_NOTIFICATION = 0xa1,
149 
150 	/* Missed beacons notification */
151 	MISSED_BEACONS_NOTIFICATION = 0xa2,
152 
153 	REPLY_CT_KILL_CONFIG_CMD = 0xa4,
154 	SENSITIVITY_CMD = 0xa8,
155 	REPLY_PHY_CALIBRATION_CMD = 0xb0,
156 	REPLY_RX_PHY_CMD = 0xc0,
157 	REPLY_RX_MPDU_CMD = 0xc1,
158 	REPLY_RX = 0xc3,
159 	REPLY_COMPRESSED_BA = 0xc5,
160 
161 	/* BT Coex */
162 	REPLY_BT_COEX_PRIO_TABLE = 0xcc,
163 	REPLY_BT_COEX_PROT_ENV = 0xcd,
164 	REPLY_BT_COEX_PROFILE_NOTIF = 0xce,
165 
166 	/* PAN commands */
167 	REPLY_WIPAN_PARAMS = 0xb2,
168 	REPLY_WIPAN_RXON = 0xb3,	/* use REPLY_RXON structure */
169 	REPLY_WIPAN_RXON_TIMING = 0xb4,	/* use REPLY_RXON_TIMING structure */
170 	REPLY_WIPAN_RXON_ASSOC = 0xb6,	/* use REPLY_RXON_ASSOC structure */
171 	REPLY_WIPAN_QOS_PARAM = 0xb7,	/* use REPLY_QOS_PARAM structure */
172 	REPLY_WIPAN_WEPKEY = 0xb8,	/* use REPLY_WEPKEY structure */
173 	REPLY_WIPAN_P2P_CHANNEL_SWITCH = 0xb9,
174 	REPLY_WIPAN_NOA_NOTIFICATION = 0xbc,
175 	REPLY_WIPAN_DEACTIVATION_COMPLETE = 0xbd,
176 
177 	REPLY_WOWLAN_PATTERNS = 0xe0,
178 	REPLY_WOWLAN_WAKEUP_FILTER = 0xe1,
179 	REPLY_WOWLAN_TSC_RSC_PARAMS = 0xe2,
180 	REPLY_WOWLAN_TKIP_PARAMS = 0xe3,
181 	REPLY_WOWLAN_KEK_KCK_MATERIAL = 0xe4,
182 	REPLY_WOWLAN_GET_STATUS = 0xe5,
183 	REPLY_D3_CONFIG = 0xd3,
184 
185 	REPLY_MAX = 0xff
186 };
187 
188 /*
189  * Minimum number of queues. MAX_NUM is defined in hw specific files.
190  * Set the minimum to accommodate
191  *  - 4 standard TX queues
192  *  - the command queue
193  *  - 4 PAN TX queues
194  *  - the PAN multicast queue, and
195  *  - the AUX (TX during scan dwell) queue.
196  */
197 #define IWL_MIN_NUM_QUEUES	11
198 
199 /*
200  * Command queue depends on iPAN support.
201  */
202 #define IWL_DEFAULT_CMD_QUEUE_NUM	4
203 #define IWL_IPAN_CMD_QUEUE_NUM		9
204 
205 #define IWL_TX_FIFO_BK		0	/* shared */
206 #define IWL_TX_FIFO_BE		1
207 #define IWL_TX_FIFO_VI		2	/* shared */
208 #define IWL_TX_FIFO_VO		3
209 #define IWL_TX_FIFO_BK_IPAN	IWL_TX_FIFO_BK
210 #define IWL_TX_FIFO_BE_IPAN	4
211 #define IWL_TX_FIFO_VI_IPAN	IWL_TX_FIFO_VI
212 #define IWL_TX_FIFO_VO_IPAN	5
213 /* re-uses the VO FIFO, uCode will properly flush/schedule */
214 #define IWL_TX_FIFO_AUX		5
215 #define IWL_TX_FIFO_UNUSED	255
216 
217 #define IWLAGN_CMD_FIFO_NUM	7
218 
219 /*
220  * This queue number is required for proper operation
221  * because the ucode will stop/start the scheduler as
222  * required.
223  */
224 #define IWL_IPAN_MCAST_QUEUE	8
225 
226 /******************************************************************************
227  * (0)
228  * Commonly used structures and definitions:
229  * Command header, rate_n_flags, txpower
230  *
231  *****************************************************************************/
232 
233 /**
234  * iwlagn rate_n_flags bit fields
235  *
236  * rate_n_flags format is used in following iwlagn commands:
237  *  REPLY_RX (response only)
238  *  REPLY_RX_MPDU (response only)
239  *  REPLY_TX (both command and response)
240  *  REPLY_TX_LINK_QUALITY_CMD
241  *
242  * High-throughput (HT) rate format for bits 7:0 (bit 8 must be "1"):
243  *  2-0:  0)   6 Mbps
244  *        1)  12 Mbps
245  *        2)  18 Mbps
246  *        3)  24 Mbps
247  *        4)  36 Mbps
248  *        5)  48 Mbps
249  *        6)  54 Mbps
250  *        7)  60 Mbps
251  *
252  *  4-3:  0)  Single stream (SISO)
253  *        1)  Dual stream (MIMO)
254  *        2)  Triple stream (MIMO)
255  *
256  *    5:  Value of 0x20 in bits 7:0 indicates 6 Mbps HT40 duplicate data
257  *
258  * Legacy OFDM rate format for bits 7:0 (bit 8 must be "0", bit 9 "0"):
259  *  3-0:  0xD)   6 Mbps
260  *        0xF)   9 Mbps
261  *        0x5)  12 Mbps
262  *        0x7)  18 Mbps
263  *        0x9)  24 Mbps
264  *        0xB)  36 Mbps
265  *        0x1)  48 Mbps
266  *        0x3)  54 Mbps
267  *
268  * Legacy CCK rate format for bits 7:0 (bit 8 must be "0", bit 9 "1"):
269  *  6-0:   10)  1 Mbps
270  *         20)  2 Mbps
271  *         55)  5.5 Mbps
272  *        110)  11 Mbps
273  */
274 #define RATE_MCS_CODE_MSK 0x7
275 #define RATE_MCS_SPATIAL_POS 3
276 #define RATE_MCS_SPATIAL_MSK 0x18
277 #define RATE_MCS_HT_DUP_POS 5
278 #define RATE_MCS_HT_DUP_MSK 0x20
279 /* Both legacy and HT use bits 7:0 as the CCK/OFDM rate or HT MCS */
280 #define RATE_MCS_RATE_MSK 0xff
281 
282 /* Bit 8: (1) HT format, (0) legacy format in bits 7:0 */
283 #define RATE_MCS_FLAGS_POS 8
284 #define RATE_MCS_HT_POS 8
285 #define RATE_MCS_HT_MSK 0x100
286 
287 /* Bit 9: (1) CCK, (0) OFDM.  HT (bit 8) must be "0" for this bit to be valid */
288 #define RATE_MCS_CCK_POS 9
289 #define RATE_MCS_CCK_MSK 0x200
290 
291 /* Bit 10: (1) Use Green Field preamble */
292 #define RATE_MCS_GF_POS 10
293 #define RATE_MCS_GF_MSK 0x400
294 
295 /* Bit 11: (1) Use 40Mhz HT40 chnl width, (0) use 20 MHz legacy chnl width */
296 #define RATE_MCS_HT40_POS 11
297 #define RATE_MCS_HT40_MSK 0x800
298 
299 /* Bit 12: (1) Duplicate data on both 20MHz chnls. HT40 (bit 11) must be set. */
300 #define RATE_MCS_DUP_POS 12
301 #define RATE_MCS_DUP_MSK 0x1000
302 
303 /* Bit 13: (1) Short guard interval (0.4 usec), (0) normal GI (0.8 usec) */
304 #define RATE_MCS_SGI_POS 13
305 #define RATE_MCS_SGI_MSK 0x2000
306 
307 /**
308  * rate_n_flags Tx antenna masks
309  * bit14:16
310  */
311 #define RATE_MCS_ANT_POS	14
312 #define RATE_MCS_ANT_A_MSK	0x04000
313 #define RATE_MCS_ANT_B_MSK	0x08000
314 #define RATE_MCS_ANT_C_MSK	0x10000
315 #define RATE_MCS_ANT_AB_MSK	(RATE_MCS_ANT_A_MSK | RATE_MCS_ANT_B_MSK)
316 #define RATE_MCS_ANT_ABC_MSK	(RATE_MCS_ANT_AB_MSK | RATE_MCS_ANT_C_MSK)
317 #define RATE_ANT_NUM 3
318 
319 #define POWER_TABLE_NUM_ENTRIES			33
320 #define POWER_TABLE_NUM_HT_OFDM_ENTRIES		32
321 #define POWER_TABLE_CCK_ENTRY			32
322 
323 #define IWL_PWR_NUM_HT_OFDM_ENTRIES		24
324 #define IWL_PWR_CCK_ENTRIES			2
325 
326 /**
327  * struct tx_power_dual_stream
328  *
329  * Table entries in REPLY_TX_PWR_TABLE_CMD, REPLY_CHANNEL_SWITCH
330  *
331  * Same format as iwl_tx_power_dual_stream, but __le32
332  */
333 struct tx_power_dual_stream {
334 	__le32 dw;
335 } __packed;
336 
337 /**
338  * Command REPLY_TX_POWER_DBM_CMD = 0x98
339  * struct iwlagn_tx_power_dbm_cmd
340  */
341 #define IWLAGN_TX_POWER_AUTO 0x7f
342 #define IWLAGN_TX_POWER_NO_CLOSED (0x1 << 6)
343 
344 struct iwlagn_tx_power_dbm_cmd {
345 	s8 global_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */
346 	u8 flags;
347 	s8 srv_chan_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */
348 	u8 reserved;
349 } __packed;
350 
351 /**
352  * Command TX_ANT_CONFIGURATION_CMD = 0x98
353  * This command is used to configure valid Tx antenna.
354  * By default uCode concludes the valid antenna according to the radio flavor.
355  * This command enables the driver to override/modify this conclusion.
356  */
357 struct iwl_tx_ant_config_cmd {
358 	__le32 valid;
359 } __packed;
360 
361 /******************************************************************************
362  * (0a)
363  * Alive and Error Commands & Responses:
364  *
365  *****************************************************************************/
366 
367 #define UCODE_VALID_OK	cpu_to_le32(0x1)
368 
369 /**
370  * REPLY_ALIVE = 0x1 (response only, not a command)
371  *
372  * uCode issues this "alive" notification once the runtime image is ready
373  * to receive commands from the driver.  This is the *second* "alive"
374  * notification that the driver will receive after rebooting uCode;
375  * this "alive" is indicated by subtype field != 9.
376  *
377  * See comments documenting "BSM" (bootstrap state machine).
378  *
379  * This response includes two pointers to structures within the device's
380  * data SRAM (access via HBUS_TARG_MEM_* regs) that are useful for debugging:
381  *
382  * 1)  log_event_table_ptr indicates base of the event log.  This traces
383  *     a 256-entry history of uCode execution within a circular buffer.
384  *     Its header format is:
385  *
386  *	__le32 log_size;     log capacity (in number of entries)
387  *	__le32 type;         (1) timestamp with each entry, (0) no timestamp
388  *	__le32 wraps;        # times uCode has wrapped to top of circular buffer
389  *      __le32 write_index;  next circular buffer entry that uCode would fill
390  *
391  *     The header is followed by the circular buffer of log entries.  Entries
392  *     with timestamps have the following format:
393  *
394  *	__le32 event_id;     range 0 - 1500
395  *	__le32 timestamp;    low 32 bits of TSF (of network, if associated)
396  *	__le32 data;         event_id-specific data value
397  *
398  *     Entries without timestamps contain only event_id and data.
399  *
400  *
401  * 2)  error_event_table_ptr indicates base of the error log.  This contains
402  *     information about any uCode error that occurs.  For agn, the format
403  *     of the error log is defined by struct iwl_error_event_table.
404  *
405  * The Linux driver can print both logs to the system log when a uCode error
406  * occurs.
407  */
408 
409 /*
410  * Note: This structure is read from the device with IO accesses,
411  * and the reading already does the endian conversion. As it is
412  * read with u32-sized accesses, any members with a different size
413  * need to be ordered correctly though!
414  */
415 struct iwl_error_event_table {
416 	u32 valid;		/* (nonzero) valid, (0) log is empty */
417 	u32 error_id;		/* type of error */
418 	u32 pc;			/* program counter */
419 	u32 blink1;		/* branch link */
420 	u32 blink2;		/* branch link */
421 	u32 ilink1;		/* interrupt link */
422 	u32 ilink2;		/* interrupt link */
423 	u32 data1;		/* error-specific data */
424 	u32 data2;		/* error-specific data */
425 	u32 line;		/* source code line of error */
426 	u32 bcon_time;		/* beacon timer */
427 	u32 tsf_low;		/* network timestamp function timer */
428 	u32 tsf_hi;		/* network timestamp function timer */
429 	u32 gp1;		/* GP1 timer register */
430 	u32 gp2;		/* GP2 timer register */
431 	u32 gp3;		/* GP3 timer register */
432 	u32 ucode_ver;		/* uCode version */
433 	u32 hw_ver;		/* HW Silicon version */
434 	u32 brd_ver;		/* HW board version */
435 	u32 log_pc;		/* log program counter */
436 	u32 frame_ptr;		/* frame pointer */
437 	u32 stack_ptr;		/* stack pointer */
438 	u32 hcmd;		/* last host command header */
439 	u32 isr0;		/* isr status register LMPM_NIC_ISR0:
440 				 * rxtx_flag */
441 	u32 isr1;		/* isr status register LMPM_NIC_ISR1:
442 				 * host_flag */
443 	u32 isr2;		/* isr status register LMPM_NIC_ISR2:
444 				 * enc_flag */
445 	u32 isr3;		/* isr status register LMPM_NIC_ISR3:
446 				 * time_flag */
447 	u32 isr4;		/* isr status register LMPM_NIC_ISR4:
448 				 * wico interrupt */
449 	u32 isr_pref;		/* isr status register LMPM_NIC_PREF_STAT */
450 	u32 wait_event;		/* wait event() caller address */
451 	u32 l2p_control;	/* L2pControlField */
452 	u32 l2p_duration;	/* L2pDurationField */
453 	u32 l2p_mhvalid;	/* L2pMhValidBits */
454 	u32 l2p_addr_match;	/* L2pAddrMatchStat */
455 	u32 lmpm_pmg_sel;	/* indicate which clocks are turned on
456 				 * (LMPM_PMG_SEL) */
457 	u32 u_timestamp;	/* indicate when the date and time of the
458 				 * compilation */
459 	u32 flow_handler;	/* FH read/write pointers, RX credit */
460 } __packed;
461 
462 struct iwl_alive_resp {
463 	u8 ucode_minor;
464 	u8 ucode_major;
465 	__le16 reserved1;
466 	u8 sw_rev[8];
467 	u8 ver_type;
468 	u8 ver_subtype;			/* not "9" for runtime alive */
469 	__le16 reserved2;
470 	__le32 log_event_table_ptr;	/* SRAM address for event log */
471 	__le32 error_event_table_ptr;	/* SRAM address for error log */
472 	__le32 timestamp;
473 	__le32 is_valid;
474 } __packed;
475 
476 /*
477  * REPLY_ERROR = 0x2 (response only, not a command)
478  */
479 struct iwl_error_resp {
480 	__le32 error_type;
481 	u8 cmd_id;
482 	u8 reserved1;
483 	__le16 bad_cmd_seq_num;
484 	__le32 error_info;
485 	__le64 timestamp;
486 } __packed;
487 
488 /******************************************************************************
489  * (1)
490  * RXON Commands & Responses:
491  *
492  *****************************************************************************/
493 
494 /*
495  * Rx config defines & structure
496  */
497 /* rx_config device types  */
498 enum {
499 	RXON_DEV_TYPE_AP = 1,
500 	RXON_DEV_TYPE_ESS = 3,
501 	RXON_DEV_TYPE_IBSS = 4,
502 	RXON_DEV_TYPE_SNIFFER = 6,
503 	RXON_DEV_TYPE_CP = 7,
504 	RXON_DEV_TYPE_2STA = 8,
505 	RXON_DEV_TYPE_P2P = 9,
506 };
507 
508 
509 #define RXON_RX_CHAIN_DRIVER_FORCE_MSK		cpu_to_le16(0x1 << 0)
510 #define RXON_RX_CHAIN_DRIVER_FORCE_POS		(0)
511 #define RXON_RX_CHAIN_VALID_MSK			cpu_to_le16(0x7 << 1)
512 #define RXON_RX_CHAIN_VALID_POS			(1)
513 #define RXON_RX_CHAIN_FORCE_SEL_MSK		cpu_to_le16(0x7 << 4)
514 #define RXON_RX_CHAIN_FORCE_SEL_POS		(4)
515 #define RXON_RX_CHAIN_FORCE_MIMO_SEL_MSK	cpu_to_le16(0x7 << 7)
516 #define RXON_RX_CHAIN_FORCE_MIMO_SEL_POS	(7)
517 #define RXON_RX_CHAIN_CNT_MSK			cpu_to_le16(0x3 << 10)
518 #define RXON_RX_CHAIN_CNT_POS			(10)
519 #define RXON_RX_CHAIN_MIMO_CNT_MSK		cpu_to_le16(0x3 << 12)
520 #define RXON_RX_CHAIN_MIMO_CNT_POS		(12)
521 #define RXON_RX_CHAIN_MIMO_FORCE_MSK		cpu_to_le16(0x1 << 14)
522 #define RXON_RX_CHAIN_MIMO_FORCE_POS		(14)
523 
524 /* rx_config flags */
525 /* band & modulation selection */
526 #define RXON_FLG_BAND_24G_MSK           cpu_to_le32(1 << 0)
527 #define RXON_FLG_CCK_MSK                cpu_to_le32(1 << 1)
528 /* auto detection enable */
529 #define RXON_FLG_AUTO_DETECT_MSK        cpu_to_le32(1 << 2)
530 /* TGg protection when tx */
531 #define RXON_FLG_TGG_PROTECT_MSK        cpu_to_le32(1 << 3)
532 /* cck short slot & preamble */
533 #define RXON_FLG_SHORT_SLOT_MSK          cpu_to_le32(1 << 4)
534 #define RXON_FLG_SHORT_PREAMBLE_MSK     cpu_to_le32(1 << 5)
535 /* antenna selection */
536 #define RXON_FLG_DIS_DIV_MSK            cpu_to_le32(1 << 7)
537 #define RXON_FLG_ANT_SEL_MSK            cpu_to_le32(0x0f00)
538 #define RXON_FLG_ANT_A_MSK              cpu_to_le32(1 << 8)
539 #define RXON_FLG_ANT_B_MSK              cpu_to_le32(1 << 9)
540 /* radar detection enable */
541 #define RXON_FLG_RADAR_DETECT_MSK       cpu_to_le32(1 << 12)
542 #define RXON_FLG_TGJ_NARROW_BAND_MSK    cpu_to_le32(1 << 13)
543 /* rx response to host with 8-byte TSF
544 * (according to ON_AIR deassertion) */
545 #define RXON_FLG_TSF2HOST_MSK           cpu_to_le32(1 << 15)
546 
547 
548 /* HT flags */
549 #define RXON_FLG_CTRL_CHANNEL_LOC_POS		(22)
550 #define RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK	cpu_to_le32(0x1 << 22)
551 
552 #define RXON_FLG_HT_OPERATING_MODE_POS		(23)
553 
554 #define RXON_FLG_HT_PROT_MSK			cpu_to_le32(0x1 << 23)
555 #define RXON_FLG_HT40_PROT_MSK			cpu_to_le32(0x2 << 23)
556 
557 #define RXON_FLG_CHANNEL_MODE_POS		(25)
558 #define RXON_FLG_CHANNEL_MODE_MSK		cpu_to_le32(0x3 << 25)
559 
560 /* channel mode */
561 enum {
562 	CHANNEL_MODE_LEGACY = 0,
563 	CHANNEL_MODE_PURE_40 = 1,
564 	CHANNEL_MODE_MIXED = 2,
565 	CHANNEL_MODE_RESERVED = 3,
566 };
567 #define RXON_FLG_CHANNEL_MODE_LEGACY	cpu_to_le32(CHANNEL_MODE_LEGACY << RXON_FLG_CHANNEL_MODE_POS)
568 #define RXON_FLG_CHANNEL_MODE_PURE_40	cpu_to_le32(CHANNEL_MODE_PURE_40 << RXON_FLG_CHANNEL_MODE_POS)
569 #define RXON_FLG_CHANNEL_MODE_MIXED	cpu_to_le32(CHANNEL_MODE_MIXED << RXON_FLG_CHANNEL_MODE_POS)
570 
571 /* CTS to self (if spec allows) flag */
572 #define RXON_FLG_SELF_CTS_EN			cpu_to_le32(0x1<<30)
573 
574 /* rx_config filter flags */
575 /* accept all data frames */
576 #define RXON_FILTER_PROMISC_MSK         cpu_to_le32(1 << 0)
577 /* pass control & management to host */
578 #define RXON_FILTER_CTL2HOST_MSK        cpu_to_le32(1 << 1)
579 /* accept multi-cast */
580 #define RXON_FILTER_ACCEPT_GRP_MSK      cpu_to_le32(1 << 2)
581 /* don't decrypt uni-cast frames */
582 #define RXON_FILTER_DIS_DECRYPT_MSK     cpu_to_le32(1 << 3)
583 /* don't decrypt multi-cast frames */
584 #define RXON_FILTER_DIS_GRP_DECRYPT_MSK cpu_to_le32(1 << 4)
585 /* STA is associated */
586 #define RXON_FILTER_ASSOC_MSK           cpu_to_le32(1 << 5)
587 /* transfer to host non bssid beacons in associated state */
588 #define RXON_FILTER_BCON_AWARE_MSK      cpu_to_le32(1 << 6)
589 
590 /**
591  * REPLY_RXON = 0x10 (command, has simple generic response)
592  *
593  * RXON tunes the radio tuner to a service channel, and sets up a number
594  * of parameters that are used primarily for Rx, but also for Tx operations.
595  *
596  * NOTE:  When tuning to a new channel, driver must set the
597  *        RXON_FILTER_ASSOC_MSK to 0.  This will clear station-dependent
598  *        info within the device, including the station tables, tx retry
599  *        rate tables, and txpower tables.  Driver must build a new station
600  *        table and txpower table before transmitting anything on the RXON
601  *        channel.
602  *
603  * NOTE:  All RXONs wipe clean the internal txpower table.  Driver must
604  *        issue a new REPLY_TX_PWR_TABLE_CMD after each REPLY_RXON (0x10),
605  *        regardless of whether RXON_FILTER_ASSOC_MSK is set.
606  */
607 
608 struct iwl_rxon_cmd {
609 	u8 node_addr[6];
610 	__le16 reserved1;
611 	u8 bssid_addr[6];
612 	__le16 reserved2;
613 	u8 wlap_bssid_addr[6];
614 	__le16 reserved3;
615 	u8 dev_type;
616 	u8 air_propagation;
617 	__le16 rx_chain;
618 	u8 ofdm_basic_rates;
619 	u8 cck_basic_rates;
620 	__le16 assoc_id;
621 	__le32 flags;
622 	__le32 filter_flags;
623 	__le16 channel;
624 	u8 ofdm_ht_single_stream_basic_rates;
625 	u8 ofdm_ht_dual_stream_basic_rates;
626 	u8 ofdm_ht_triple_stream_basic_rates;
627 	u8 reserved5;
628 	__le16 acquisition_data;
629 	__le16 reserved6;
630 } __packed;
631 
632 /*
633  * REPLY_RXON_ASSOC = 0x11 (command, has simple generic response)
634  */
635 struct iwl_rxon_assoc_cmd {
636 	__le32 flags;
637 	__le32 filter_flags;
638 	u8 ofdm_basic_rates;
639 	u8 cck_basic_rates;
640 	__le16 reserved1;
641 	u8 ofdm_ht_single_stream_basic_rates;
642 	u8 ofdm_ht_dual_stream_basic_rates;
643 	u8 ofdm_ht_triple_stream_basic_rates;
644 	u8 reserved2;
645 	__le16 rx_chain_select_flags;
646 	__le16 acquisition_data;
647 	__le32 reserved3;
648 } __packed;
649 
650 #define IWL_CONN_MAX_LISTEN_INTERVAL	10
651 #define IWL_MAX_UCODE_BEACON_INTERVAL	4 /* 4096 */
652 
653 /*
654  * REPLY_RXON_TIMING = 0x14 (command, has simple generic response)
655  */
656 struct iwl_rxon_time_cmd {
657 	__le64 timestamp;
658 	__le16 beacon_interval;
659 	__le16 atim_window;
660 	__le32 beacon_init_val;
661 	__le16 listen_interval;
662 	u8 dtim_period;
663 	u8 delta_cp_bss_tbtts;
664 } __packed;
665 
666 /*
667  * REPLY_CHANNEL_SWITCH = 0x72 (command, has simple generic response)
668  */
669 /**
670  * struct iwl5000_channel_switch_cmd
671  * @band: 0- 5.2GHz, 1- 2.4GHz
672  * @expect_beacon: 0- resume transmits after channel switch
673  *		   1- wait for beacon to resume transmits
674  * @channel: new channel number
675  * @rxon_flags: Rx on flags
676  * @rxon_filter_flags: filtering parameters
677  * @switch_time: switch time in extended beacon format
678  * @reserved: reserved bytes
679  */
680 struct iwl5000_channel_switch_cmd {
681 	u8 band;
682 	u8 expect_beacon;
683 	__le16 channel;
684 	__le32 rxon_flags;
685 	__le32 rxon_filter_flags;
686 	__le32 switch_time;
687 	__le32 reserved[2][IWL_PWR_NUM_HT_OFDM_ENTRIES + IWL_PWR_CCK_ENTRIES];
688 } __packed;
689 
690 /**
691  * struct iwl6000_channel_switch_cmd
692  * @band: 0- 5.2GHz, 1- 2.4GHz
693  * @expect_beacon: 0- resume transmits after channel switch
694  *		   1- wait for beacon to resume transmits
695  * @channel: new channel number
696  * @rxon_flags: Rx on flags
697  * @rxon_filter_flags: filtering parameters
698  * @switch_time: switch time in extended beacon format
699  * @reserved: reserved bytes
700  */
701 struct iwl6000_channel_switch_cmd {
702 	u8 band;
703 	u8 expect_beacon;
704 	__le16 channel;
705 	__le32 rxon_flags;
706 	__le32 rxon_filter_flags;
707 	__le32 switch_time;
708 	__le32 reserved[3][IWL_PWR_NUM_HT_OFDM_ENTRIES + IWL_PWR_CCK_ENTRIES];
709 } __packed;
710 
711 /*
712  * CHANNEL_SWITCH_NOTIFICATION = 0x73 (notification only, not a command)
713  */
714 struct iwl_csa_notification {
715 	__le16 band;
716 	__le16 channel;
717 	__le32 status;		/* 0 - OK, 1 - fail */
718 } __packed;
719 
720 /******************************************************************************
721  * (2)
722  * Quality-of-Service (QOS) Commands & Responses:
723  *
724  *****************************************************************************/
725 
726 /**
727  * struct iwl_ac_qos -- QOS timing params for REPLY_QOS_PARAM
728  * One for each of 4 EDCA access categories in struct iwl_qosparam_cmd
729  *
730  * @cw_min: Contention window, start value in numbers of slots.
731  *          Should be a power-of-2, minus 1.  Device's default is 0x0f.
732  * @cw_max: Contention window, max value in numbers of slots.
733  *          Should be a power-of-2, minus 1.  Device's default is 0x3f.
734  * @aifsn:  Number of slots in Arbitration Interframe Space (before
735  *          performing random backoff timing prior to Tx).  Device default 1.
736  * @edca_txop:  Length of Tx opportunity, in uSecs.  Device default is 0.
737  *
738  * Device will automatically increase contention window by (2*CW) + 1 for each
739  * transmission retry.  Device uses cw_max as a bit mask, ANDed with new CW
740  * value, to cap the CW value.
741  */
742 struct iwl_ac_qos {
743 	__le16 cw_min;
744 	__le16 cw_max;
745 	u8 aifsn;
746 	u8 reserved1;
747 	__le16 edca_txop;
748 } __packed;
749 
750 /* QoS flags defines */
751 #define QOS_PARAM_FLG_UPDATE_EDCA_MSK	cpu_to_le32(0x01)
752 #define QOS_PARAM_FLG_TGN_MSK		cpu_to_le32(0x02)
753 #define QOS_PARAM_FLG_TXOP_TYPE_MSK	cpu_to_le32(0x10)
754 
755 /* Number of Access Categories (AC) (EDCA), queues 0..3 */
756 #define AC_NUM                4
757 
758 /*
759  * REPLY_QOS_PARAM = 0x13 (command, has simple generic response)
760  *
761  * This command sets up timings for each of the 4 prioritized EDCA Tx FIFOs
762  * 0: Background, 1: Best Effort, 2: Video, 3: Voice.
763  */
764 struct iwl_qosparam_cmd {
765 	__le32 qos_flags;
766 	struct iwl_ac_qos ac[AC_NUM];
767 } __packed;
768 
769 /******************************************************************************
770  * (3)
771  * Add/Modify Stations Commands & Responses:
772  *
773  *****************************************************************************/
774 /*
775  * Multi station support
776  */
777 
778 /* Special, dedicated locations within device's station table */
779 #define	IWL_AP_ID		0
780 #define	IWL_AP_ID_PAN		1
781 #define	IWL_STA_ID		2
782 #define IWLAGN_PAN_BCAST_ID	14
783 #define IWLAGN_BROADCAST_ID	15
784 #define	IWLAGN_STATION_COUNT	16
785 
786 #define IWL_TID_NON_QOS IWL_MAX_TID_COUNT
787 
788 #define STA_FLG_TX_RATE_MSK		cpu_to_le32(1 << 2)
789 #define STA_FLG_PWR_SAVE_MSK		cpu_to_le32(1 << 8)
790 #define STA_FLG_PAN_STATION		cpu_to_le32(1 << 13)
791 #define STA_FLG_RTS_MIMO_PROT_MSK	cpu_to_le32(1 << 17)
792 #define STA_FLG_AGG_MPDU_8US_MSK	cpu_to_le32(1 << 18)
793 #define STA_FLG_MAX_AGG_SIZE_POS	(19)
794 #define STA_FLG_MAX_AGG_SIZE_MSK	cpu_to_le32(3 << 19)
795 #define STA_FLG_HT40_EN_MSK		cpu_to_le32(1 << 21)
796 #define STA_FLG_MIMO_DIS_MSK		cpu_to_le32(1 << 22)
797 #define STA_FLG_AGG_MPDU_DENSITY_POS	(23)
798 #define STA_FLG_AGG_MPDU_DENSITY_MSK	cpu_to_le32(7 << 23)
799 
800 /* Use in mode field.  1: modify existing entry, 0: add new station entry */
801 #define STA_CONTROL_MODIFY_MSK		0x01
802 
803 /* key flags __le16*/
804 #define STA_KEY_FLG_ENCRYPT_MSK	cpu_to_le16(0x0007)
805 #define STA_KEY_FLG_NO_ENC	cpu_to_le16(0x0000)
806 #define STA_KEY_FLG_WEP		cpu_to_le16(0x0001)
807 #define STA_KEY_FLG_CCMP	cpu_to_le16(0x0002)
808 #define STA_KEY_FLG_TKIP	cpu_to_le16(0x0003)
809 
810 #define STA_KEY_FLG_KEYID_POS	8
811 #define STA_KEY_FLG_INVALID 	cpu_to_le16(0x0800)
812 /* wep key is either from global key (0) or from station info array (1) */
813 #define STA_KEY_FLG_MAP_KEY_MSK	cpu_to_le16(0x0008)
814 
815 /* wep key in STA: 5-bytes (0) or 13-bytes (1) */
816 #define STA_KEY_FLG_KEY_SIZE_MSK     cpu_to_le16(0x1000)
817 #define STA_KEY_MULTICAST_MSK        cpu_to_le16(0x4000)
818 #define STA_KEY_MAX_NUM		8
819 #define STA_KEY_MAX_NUM_PAN	16
820 /* must not match WEP_INVALID_OFFSET */
821 #define IWLAGN_HW_KEY_DEFAULT	0xfe
822 
823 /* Flags indicate whether to modify vs. don't change various station params */
824 #define	STA_MODIFY_KEY_MASK		0x01
825 #define	STA_MODIFY_TID_DISABLE_TX	0x02
826 #define	STA_MODIFY_TX_RATE_MSK		0x04
827 #define STA_MODIFY_ADDBA_TID_MSK	0x08
828 #define STA_MODIFY_DELBA_TID_MSK	0x10
829 #define STA_MODIFY_SLEEP_TX_COUNT_MSK	0x20
830 
831 /* agn */
832 struct iwl_keyinfo {
833 	__le16 key_flags;
834 	u8 tkip_rx_tsc_byte2;	/* TSC[2] for key mix ph1 detection */
835 	u8 reserved1;
836 	__le16 tkip_rx_ttak[5];	/* 10-byte unicast TKIP TTAK */
837 	u8 key_offset;
838 	u8 reserved2;
839 	u8 key[16];		/* 16-byte unicast decryption key */
840 	__le64 tx_secur_seq_cnt;
841 	__le64 hw_tkip_mic_rx_key;
842 	__le64 hw_tkip_mic_tx_key;
843 } __packed;
844 
845 /**
846  * struct sta_id_modify
847  * @addr[ETH_ALEN]: station's MAC address
848  * @sta_id: index of station in uCode's station table
849  * @modify_mask: STA_MODIFY_*, 1: modify, 0: don't change
850  *
851  * Driver selects unused table index when adding new station,
852  * or the index to a pre-existing station entry when modifying that station.
853  * Some indexes have special purposes (IWL_AP_ID, index 0, is for AP).
854  *
855  * modify_mask flags select which parameters to modify vs. leave alone.
856  */
857 struct sta_id_modify {
858 	u8 addr[ETH_ALEN];
859 	__le16 reserved1;
860 	u8 sta_id;
861 	u8 modify_mask;
862 	__le16 reserved2;
863 } __packed;
864 
865 /*
866  * REPLY_ADD_STA = 0x18 (command)
867  *
868  * The device contains an internal table of per-station information,
869  * with info on security keys, aggregation parameters, and Tx rates for
870  * initial Tx attempt and any retries (agn devices uses
871  * REPLY_TX_LINK_QUALITY_CMD,
872  *
873  * REPLY_ADD_STA sets up the table entry for one station, either creating
874  * a new entry, or modifying a pre-existing one.
875  *
876  * NOTE:  RXON command (without "associated" bit set) wipes the station table
877  *        clean.  Moving into RF_KILL state does this also.  Driver must set up
878  *        new station table before transmitting anything on the RXON channel
879  *        (except active scans or active measurements; those commands carry
880  *        their own txpower/rate setup data).
881  *
882  *        When getting started on a new channel, driver must set up the
883  *        IWL_BROADCAST_ID entry (last entry in the table).  For a client
884  *        station in a BSS, once an AP is selected, driver sets up the AP STA
885  *        in the IWL_AP_ID entry (1st entry in the table).  BROADCAST and AP
886  *        are all that are needed for a BSS client station.  If the device is
887  *        used as AP, or in an IBSS network, driver must set up station table
888  *        entries for all STAs in network, starting with index IWL_STA_ID.
889  */
890 
891 struct iwl_addsta_cmd {
892 	u8 mode;		/* 1: modify existing, 0: add new station */
893 	u8 reserved[3];
894 	struct sta_id_modify sta;
895 	struct iwl_keyinfo key;
896 	__le32 station_flags;		/* STA_FLG_* */
897 	__le32 station_flags_msk;	/* STA_FLG_* */
898 
899 	/* bit field to disable (1) or enable (0) Tx for Traffic ID (TID)
900 	 * corresponding to bit (e.g. bit 5 controls TID 5).
901 	 * Set modify_mask bit STA_MODIFY_TID_DISABLE_TX to use this field. */
902 	__le16 tid_disable_tx;
903 	__le16 legacy_reserved;
904 
905 	/* TID for which to add block-ack support.
906 	 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
907 	u8 add_immediate_ba_tid;
908 
909 	/* TID for which to remove block-ack support.
910 	 * Set modify_mask bit STA_MODIFY_DELBA_TID_MSK to use this field. */
911 	u8 remove_immediate_ba_tid;
912 
913 	/* Starting Sequence Number for added block-ack support.
914 	 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
915 	__le16 add_immediate_ba_ssn;
916 
917 	/*
918 	 * Number of packets OK to transmit to station even though
919 	 * it is asleep -- used to synchronise PS-poll and u-APSD
920 	 * responses while ucode keeps track of STA sleep state.
921 	 */
922 	__le16 sleep_tx_count;
923 
924 	__le16 reserved2;
925 } __packed;
926 
927 
928 #define ADD_STA_SUCCESS_MSK		0x1
929 #define ADD_STA_NO_ROOM_IN_TABLE	0x2
930 #define ADD_STA_NO_BLOCK_ACK_RESOURCE	0x4
931 #define ADD_STA_MODIFY_NON_EXIST_STA	0x8
932 /*
933  * REPLY_ADD_STA = 0x18 (response)
934  */
935 struct iwl_add_sta_resp {
936 	u8 status;	/* ADD_STA_* */
937 } __packed;
938 
939 #define REM_STA_SUCCESS_MSK              0x1
940 /*
941  *  REPLY_REM_STA = 0x19 (response)
942  */
943 struct iwl_rem_sta_resp {
944 	u8 status;
945 } __packed;
946 
947 /*
948  *  REPLY_REM_STA = 0x19 (command)
949  */
950 struct iwl_rem_sta_cmd {
951 	u8 num_sta;     /* number of removed stations */
952 	u8 reserved[3];
953 	u8 addr[ETH_ALEN]; /* MAC addr of the first station */
954 	u8 reserved2[2];
955 } __packed;
956 
957 
958 /* WiFi queues mask */
959 #define IWL_SCD_BK_MSK			BIT(0)
960 #define IWL_SCD_BE_MSK			BIT(1)
961 #define IWL_SCD_VI_MSK			BIT(2)
962 #define IWL_SCD_VO_MSK			BIT(3)
963 #define IWL_SCD_MGMT_MSK		BIT(3)
964 
965 /* PAN queues mask */
966 #define IWL_PAN_SCD_BK_MSK		BIT(4)
967 #define IWL_PAN_SCD_BE_MSK		BIT(5)
968 #define IWL_PAN_SCD_VI_MSK		BIT(6)
969 #define IWL_PAN_SCD_VO_MSK		BIT(7)
970 #define IWL_PAN_SCD_MGMT_MSK		BIT(7)
971 #define IWL_PAN_SCD_MULTICAST_MSK	BIT(8)
972 
973 #define IWL_AGG_TX_QUEUE_MSK		0xffc00
974 
975 #define IWL_DROP_ALL			BIT(1)
976 
977 /*
978  * REPLY_TXFIFO_FLUSH = 0x1e(command and response)
979  *
980  * When using full FIFO flush this command checks the scheduler HW block WR/RD
981  * pointers to check if all the frames were transferred by DMA into the
982  * relevant TX FIFO queue. Only when the DMA is finished and the queue is
983  * empty the command can finish.
984  * This command is used to flush the TXFIFO from transmit commands, it may
985  * operate on single or multiple queues, the command queue can't be flushed by
986  * this command. The command response is returned when all the queue flush
987  * operations are done. Each TX command flushed return response with the FLUSH
988  * status set in the TX response status. When FIFO flush operation is used,
989  * the flush operation ends when both the scheduler DMA done and TXFIFO empty
990  * are set.
991  *
992  * @queue_control: bit mask for which queues to flush
993  * @flush_control: flush controls
994  *	0: Dump single MSDU
995  *	1: Dump multiple MSDU according to PS, INVALID STA, TTL, TID disable.
996  *	2: Dump all FIFO
997  */
998 struct iwl_txfifo_flush_cmd_v3 {
999 	__le32 queue_control;
1000 	__le16 flush_control;
1001 	__le16 reserved;
1002 } __packed;
1003 
1004 struct iwl_txfifo_flush_cmd_v2 {
1005 	__le16 queue_control;
1006 	__le16 flush_control;
1007 } __packed;
1008 
1009 /*
1010  * REPLY_WEP_KEY = 0x20
1011  */
1012 struct iwl_wep_key {
1013 	u8 key_index;
1014 	u8 key_offset;
1015 	u8 reserved1[2];
1016 	u8 key_size;
1017 	u8 reserved2[3];
1018 	u8 key[16];
1019 } __packed;
1020 
1021 struct iwl_wep_cmd {
1022 	u8 num_keys;
1023 	u8 global_key_type;
1024 	u8 flags;
1025 	u8 reserved;
1026 	struct iwl_wep_key key[];
1027 } __packed;
1028 
1029 #define WEP_KEY_WEP_TYPE 1
1030 #define WEP_KEYS_MAX 4
1031 #define WEP_INVALID_OFFSET 0xff
1032 #define WEP_KEY_LEN_64 5
1033 #define WEP_KEY_LEN_128 13
1034 
1035 /******************************************************************************
1036  * (4)
1037  * Rx Responses:
1038  *
1039  *****************************************************************************/
1040 
1041 #define RX_RES_STATUS_NO_CRC32_ERROR	cpu_to_le32(1 << 0)
1042 #define RX_RES_STATUS_NO_RXE_OVERFLOW	cpu_to_le32(1 << 1)
1043 
1044 #define RX_RES_PHY_FLAGS_BAND_24_MSK	cpu_to_le16(1 << 0)
1045 #define RX_RES_PHY_FLAGS_MOD_CCK_MSK		cpu_to_le16(1 << 1)
1046 #define RX_RES_PHY_FLAGS_SHORT_PREAMBLE_MSK	cpu_to_le16(1 << 2)
1047 #define RX_RES_PHY_FLAGS_NARROW_BAND_MSK	cpu_to_le16(1 << 3)
1048 #define RX_RES_PHY_FLAGS_ANTENNA_MSK		0x70
1049 #define RX_RES_PHY_FLAGS_ANTENNA_POS		4
1050 #define RX_RES_PHY_FLAGS_AGG_MSK		cpu_to_le16(1 << 7)
1051 
1052 #define RX_RES_STATUS_SEC_TYPE_MSK	(0x7 << 8)
1053 #define RX_RES_STATUS_SEC_TYPE_NONE	(0x0 << 8)
1054 #define RX_RES_STATUS_SEC_TYPE_WEP	(0x1 << 8)
1055 #define RX_RES_STATUS_SEC_TYPE_CCMP	(0x2 << 8)
1056 #define RX_RES_STATUS_SEC_TYPE_TKIP	(0x3 << 8)
1057 #define	RX_RES_STATUS_SEC_TYPE_ERR	(0x7 << 8)
1058 
1059 #define RX_RES_STATUS_STATION_FOUND	(1<<6)
1060 #define RX_RES_STATUS_NO_STATION_INFO_MISMATCH	(1<<7)
1061 
1062 #define RX_RES_STATUS_DECRYPT_TYPE_MSK	(0x3 << 11)
1063 #define RX_RES_STATUS_NOT_DECRYPT	(0x0 << 11)
1064 #define RX_RES_STATUS_DECRYPT_OK	(0x3 << 11)
1065 #define RX_RES_STATUS_BAD_ICV_MIC	(0x1 << 11)
1066 #define RX_RES_STATUS_BAD_KEY_TTAK	(0x2 << 11)
1067 
1068 #define RX_MPDU_RES_STATUS_ICV_OK	(0x20)
1069 #define RX_MPDU_RES_STATUS_MIC_OK	(0x40)
1070 #define RX_MPDU_RES_STATUS_TTAK_OK	(1 << 7)
1071 #define RX_MPDU_RES_STATUS_DEC_DONE_MSK	(0x800)
1072 
1073 
1074 #define IWLAGN_RX_RES_PHY_CNT 8
1075 #define IWLAGN_RX_RES_AGC_IDX     1
1076 #define IWLAGN_RX_RES_RSSI_AB_IDX 2
1077 #define IWLAGN_RX_RES_RSSI_C_IDX  3
1078 #define IWLAGN_OFDM_AGC_MSK 0xfe00
1079 #define IWLAGN_OFDM_AGC_BIT_POS 9
1080 #define IWLAGN_OFDM_RSSI_INBAND_A_BITMSK 0x00ff
1081 #define IWLAGN_OFDM_RSSI_ALLBAND_A_BITMSK 0xff00
1082 #define IWLAGN_OFDM_RSSI_A_BIT_POS 0
1083 #define IWLAGN_OFDM_RSSI_INBAND_B_BITMSK 0xff0000
1084 #define IWLAGN_OFDM_RSSI_ALLBAND_B_BITMSK 0xff000000
1085 #define IWLAGN_OFDM_RSSI_B_BIT_POS 16
1086 #define IWLAGN_OFDM_RSSI_INBAND_C_BITMSK 0x00ff
1087 #define IWLAGN_OFDM_RSSI_ALLBAND_C_BITMSK 0xff00
1088 #define IWLAGN_OFDM_RSSI_C_BIT_POS 0
1089 
1090 struct iwlagn_non_cfg_phy {
1091 	__le32 non_cfg_phy[IWLAGN_RX_RES_PHY_CNT];  /* up to 8 phy entries */
1092 } __packed;
1093 
1094 
1095 /*
1096  * REPLY_RX = 0xc3 (response only, not a command)
1097  * Used only for legacy (non 11n) frames.
1098  */
1099 struct iwl_rx_phy_res {
1100 	u8 non_cfg_phy_cnt;     /* non configurable DSP phy data byte count */
1101 	u8 cfg_phy_cnt;		/* configurable DSP phy data byte count */
1102 	u8 stat_id;		/* configurable DSP phy data set ID */
1103 	u8 reserved1;
1104 	__le64 timestamp;	/* TSF at on air rise */
1105 	__le32 beacon_time_stamp; /* beacon at on-air rise */
1106 	__le16 phy_flags;	/* general phy flags: band, modulation, ... */
1107 	__le16 channel;		/* channel number */
1108 	u8 non_cfg_phy_buf[32]; /* for various implementations of non_cfg_phy */
1109 	__le32 rate_n_flags;	/* RATE_MCS_* */
1110 	__le16 byte_count;	/* frame's byte-count */
1111 	__le16 frame_time;	/* frame's time on the air */
1112 } __packed;
1113 
1114 struct iwl_rx_mpdu_res_start {
1115 	__le16 byte_count;
1116 	__le16 reserved;
1117 } __packed;
1118 
1119 
1120 /******************************************************************************
1121  * (5)
1122  * Tx Commands & Responses:
1123  *
1124  * Driver must place each REPLY_TX command into one of the prioritized Tx
1125  * queues in host DRAM, shared between driver and device (see comments for
1126  * SCD registers and Tx/Rx Queues).  When the device's Tx scheduler and uCode
1127  * are preparing to transmit, the device pulls the Tx command over the PCI
1128  * bus via one of the device's Tx DMA channels, to fill an internal FIFO
1129  * from which data will be transmitted.
1130  *
1131  * uCode handles all timing and protocol related to control frames
1132  * (RTS/CTS/ACK), based on flags in the Tx command.  uCode and Tx scheduler
1133  * handle reception of block-acks; uCode updates the host driver via
1134  * REPLY_COMPRESSED_BA.
1135  *
1136  * uCode handles retrying Tx when an ACK is expected but not received.
1137  * This includes trying lower data rates than the one requested in the Tx
1138  * command, as set up by the REPLY_TX_LINK_QUALITY_CMD (agn).
1139  *
1140  * Driver sets up transmit power for various rates via REPLY_TX_PWR_TABLE_CMD.
1141  * This command must be executed after every RXON command, before Tx can occur.
1142  *****************************************************************************/
1143 
1144 /* REPLY_TX Tx flags field */
1145 
1146 /*
1147  * 1: Use RTS/CTS protocol or CTS-to-self if spec allows it
1148  * before this frame. if CTS-to-self required check
1149  * RXON_FLG_SELF_CTS_EN status.
1150  */
1151 #define TX_CMD_FLG_PROT_REQUIRE_MSK cpu_to_le32(1 << 0)
1152 
1153 /* 1: Expect ACK from receiving station
1154  * 0: Don't expect ACK (MAC header's duration field s/b 0)
1155  * Set this for unicast frames, but not broadcast/multicast. */
1156 #define TX_CMD_FLG_ACK_MSK cpu_to_le32(1 << 3)
1157 
1158 /* For agn devices:
1159  * 1: Use rate scale table (see REPLY_TX_LINK_QUALITY_CMD).
1160  *    Tx command's initial_rate_index indicates first rate to try;
1161  *    uCode walks through table for additional Tx attempts.
1162  * 0: Use Tx rate/MCS from Tx command's rate_n_flags field.
1163  *    This rate will be used for all Tx attempts; it will not be scaled. */
1164 #define TX_CMD_FLG_STA_RATE_MSK cpu_to_le32(1 << 4)
1165 
1166 /* 1: Expect immediate block-ack.
1167  * Set when Txing a block-ack request frame.  Also set TX_CMD_FLG_ACK_MSK. */
1168 #define TX_CMD_FLG_IMM_BA_RSP_MASK  cpu_to_le32(1 << 6)
1169 
1170 /* Tx antenna selection field; reserved (0) for agn devices. */
1171 #define TX_CMD_FLG_ANT_SEL_MSK cpu_to_le32(0xf00)
1172 
1173 /* 1: Ignore Bluetooth priority for this frame.
1174  * 0: Delay Tx until Bluetooth device is done (normal usage). */
1175 #define TX_CMD_FLG_IGNORE_BT cpu_to_le32(1 << 12)
1176 
1177 /* 1: uCode overrides sequence control field in MAC header.
1178  * 0: Driver provides sequence control field in MAC header.
1179  * Set this for management frames, non-QOS data frames, non-unicast frames,
1180  * and also in Tx command embedded in REPLY_SCAN_CMD for active scans. */
1181 #define TX_CMD_FLG_SEQ_CTL_MSK cpu_to_le32(1 << 13)
1182 
1183 /* 1: This frame is non-last MPDU; more fragments are coming.
1184  * 0: Last fragment, or not using fragmentation. */
1185 #define TX_CMD_FLG_MORE_FRAG_MSK cpu_to_le32(1 << 14)
1186 
1187 /* 1: uCode calculates and inserts Timestamp Function (TSF) in outgoing frame.
1188  * 0: No TSF required in outgoing frame.
1189  * Set this for transmitting beacons and probe responses. */
1190 #define TX_CMD_FLG_TSF_MSK cpu_to_le32(1 << 16)
1191 
1192 /* 1: Driver inserted 2 bytes pad after the MAC header, for (required) dword
1193  *    alignment of frame's payload data field.
1194  * 0: No pad
1195  * Set this for MAC headers with 26 or 30 bytes, i.e. those with QOS or ADDR4
1196  * field (but not both).  Driver must align frame data (i.e. data following
1197  * MAC header) to DWORD boundary. */
1198 #define TX_CMD_FLG_MH_PAD_MSK cpu_to_le32(1 << 20)
1199 
1200 /* accelerate aggregation support
1201  * 0 - no CCMP encryption; 1 - CCMP encryption */
1202 #define TX_CMD_FLG_AGG_CCMP_MSK cpu_to_le32(1 << 22)
1203 
1204 /* HCCA-AP - disable duration overwriting. */
1205 #define TX_CMD_FLG_DUR_MSK cpu_to_le32(1 << 25)
1206 
1207 
1208 /*
1209  * TX command security control
1210  */
1211 #define TX_CMD_SEC_WEP  	0x01
1212 #define TX_CMD_SEC_CCM  	0x02
1213 #define TX_CMD_SEC_TKIP		0x03
1214 #define TX_CMD_SEC_MSK		0x03
1215 #define TX_CMD_SEC_SHIFT	6
1216 #define TX_CMD_SEC_KEY128	0x08
1217 
1218 /*
1219  * REPLY_TX = 0x1c (command)
1220  */
1221 
1222 /*
1223  * Used for managing Tx retries when expecting block-acks.
1224  * Driver should set these fields to 0.
1225  */
1226 struct iwl_dram_scratch {
1227 	u8 try_cnt;		/* Tx attempts */
1228 	u8 bt_kill_cnt;		/* Tx attempts blocked by Bluetooth device */
1229 	__le16 reserved;
1230 } __packed;
1231 
1232 struct iwl_tx_cmd {
1233 	/*
1234 	 * MPDU byte count:
1235 	 * MAC header (24/26/30/32 bytes) + 2 bytes pad if 26/30 header size,
1236 	 * + 8 byte IV for CCM or TKIP (not used for WEP)
1237 	 * + Data payload
1238 	 * + 8-byte MIC (not used for CCM/WEP)
1239 	 * NOTE:  Does not include Tx command bytes, post-MAC pad bytes,
1240 	 *        MIC (CCM) 8 bytes, ICV (WEP/TKIP/CKIP) 4 bytes, CRC 4 bytes.i
1241 	 * Range: 14-2342 bytes.
1242 	 */
1243 	__le16 len;
1244 
1245 	/*
1246 	 * MPDU or MSDU byte count for next frame.
1247 	 * Used for fragmentation and bursting, but not 11n aggregation.
1248 	 * Same as "len", but for next frame.  Set to 0 if not applicable.
1249 	 */
1250 	__le16 next_frame_len;
1251 
1252 	__le32 tx_flags;	/* TX_CMD_FLG_* */
1253 
1254 	/* uCode may modify this field of the Tx command (in host DRAM!).
1255 	 * Driver must also set dram_lsb_ptr and dram_msb_ptr in this cmd. */
1256 	struct iwl_dram_scratch scratch;
1257 
1258 	/* Rate for *all* Tx attempts, if TX_CMD_FLG_STA_RATE_MSK is cleared. */
1259 	__le32 rate_n_flags;	/* RATE_MCS_* */
1260 
1261 	/* Index of destination station in uCode's station table */
1262 	u8 sta_id;
1263 
1264 	/* Type of security encryption:  CCM or TKIP */
1265 	u8 sec_ctl;		/* TX_CMD_SEC_* */
1266 
1267 	/*
1268 	 * Index into rate table (see REPLY_TX_LINK_QUALITY_CMD) for initial
1269 	 * Tx attempt, if TX_CMD_FLG_STA_RATE_MSK is set.  Normally "0" for
1270 	 * data frames, this field may be used to selectively reduce initial
1271 	 * rate (via non-0 value) for special frames (e.g. management), while
1272 	 * still supporting rate scaling for all frames.
1273 	 */
1274 	u8 initial_rate_index;
1275 	u8 reserved;
1276 	u8 key[16];
1277 	__le16 next_frame_flags;
1278 	__le16 reserved2;
1279 	union {
1280 		__le32 life_time;
1281 		__le32 attempt;
1282 	} stop_time;
1283 
1284 	/* Host DRAM physical address pointer to "scratch" in this command.
1285 	 * Must be dword aligned.  "0" in dram_lsb_ptr disables usage. */
1286 	__le32 dram_lsb_ptr;
1287 	u8 dram_msb_ptr;
1288 
1289 	u8 rts_retry_limit;	/*byte 50 */
1290 	u8 data_retry_limit;	/*byte 51 */
1291 	u8 tid_tspec;
1292 	union {
1293 		__le16 pm_frame_timeout;
1294 		__le16 attempt_duration;
1295 	} timeout;
1296 
1297 	/*
1298 	 * Duration of EDCA burst Tx Opportunity, in 32-usec units.
1299 	 * Set this if txop time is not specified by HCCA protocol (e.g. by AP).
1300 	 */
1301 	__le16 driver_txop;
1302 
1303 	/*
1304 	 * MAC header goes here, followed by 2 bytes padding if MAC header
1305 	 * length is 26 or 30 bytes, followed by payload data
1306 	 */
1307 	u8 payload[0];
1308 	struct ieee80211_hdr hdr[];
1309 } __packed;
1310 
1311 /*
1312  * TX command response is sent after *agn* transmission attempts.
1313  *
1314  * both postpone and abort status are expected behavior from uCode. there is
1315  * no special operation required from driver; except for RFKILL_FLUSH,
1316  * which required tx flush host command to flush all the tx frames in queues
1317  */
1318 enum {
1319 	TX_STATUS_SUCCESS = 0x01,
1320 	TX_STATUS_DIRECT_DONE = 0x02,
1321 	/* postpone TX */
1322 	TX_STATUS_POSTPONE_DELAY = 0x40,
1323 	TX_STATUS_POSTPONE_FEW_BYTES = 0x41,
1324 	TX_STATUS_POSTPONE_BT_PRIO = 0x42,
1325 	TX_STATUS_POSTPONE_QUIET_PERIOD = 0x43,
1326 	TX_STATUS_POSTPONE_CALC_TTAK = 0x44,
1327 	/* abort TX */
1328 	TX_STATUS_FAIL_INTERNAL_CROSSED_RETRY = 0x81,
1329 	TX_STATUS_FAIL_SHORT_LIMIT = 0x82,
1330 	TX_STATUS_FAIL_LONG_LIMIT = 0x83,
1331 	TX_STATUS_FAIL_FIFO_UNDERRUN = 0x84,
1332 	TX_STATUS_FAIL_DRAIN_FLOW = 0x85,
1333 	TX_STATUS_FAIL_RFKILL_FLUSH = 0x86,
1334 	TX_STATUS_FAIL_LIFE_EXPIRE = 0x87,
1335 	TX_STATUS_FAIL_DEST_PS = 0x88,
1336 	TX_STATUS_FAIL_HOST_ABORTED = 0x89,
1337 	TX_STATUS_FAIL_BT_RETRY = 0x8a,
1338 	TX_STATUS_FAIL_STA_INVALID = 0x8b,
1339 	TX_STATUS_FAIL_FRAG_DROPPED = 0x8c,
1340 	TX_STATUS_FAIL_TID_DISABLE = 0x8d,
1341 	TX_STATUS_FAIL_FIFO_FLUSHED = 0x8e,
1342 	TX_STATUS_FAIL_INSUFFICIENT_CF_POLL = 0x8f,
1343 	TX_STATUS_FAIL_PASSIVE_NO_RX = 0x90,
1344 	TX_STATUS_FAIL_NO_BEACON_ON_RADAR = 0x91,
1345 };
1346 
1347 #define	TX_PACKET_MODE_REGULAR		0x0000
1348 #define	TX_PACKET_MODE_BURST_SEQ	0x0100
1349 #define	TX_PACKET_MODE_BURST_FIRST	0x0200
1350 
1351 enum {
1352 	TX_POWER_PA_NOT_ACTIVE = 0x0,
1353 };
1354 
1355 enum {
1356 	TX_STATUS_MSK = 0x000000ff,		/* bits 0:7 */
1357 	TX_STATUS_DELAY_MSK = 0x00000040,
1358 	TX_STATUS_ABORT_MSK = 0x00000080,
1359 	TX_PACKET_MODE_MSK = 0x0000ff00,	/* bits 8:15 */
1360 	TX_FIFO_NUMBER_MSK = 0x00070000,	/* bits 16:18 */
1361 	TX_RESERVED = 0x00780000,		/* bits 19:22 */
1362 	TX_POWER_PA_DETECT_MSK = 0x7f800000,	/* bits 23:30 */
1363 	TX_ABORT_REQUIRED_MSK = 0x80000000,	/* bits 31:31 */
1364 };
1365 
1366 /* *******************************
1367  * TX aggregation status
1368  ******************************* */
1369 
1370 enum {
1371 	AGG_TX_STATE_TRANSMITTED = 0x00,
1372 	AGG_TX_STATE_UNDERRUN_MSK = 0x01,
1373 	AGG_TX_STATE_BT_PRIO_MSK = 0x02,
1374 	AGG_TX_STATE_FEW_BYTES_MSK = 0x04,
1375 	AGG_TX_STATE_ABORT_MSK = 0x08,
1376 	AGG_TX_STATE_LAST_SENT_TTL_MSK = 0x10,
1377 	AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK = 0x20,
1378 	AGG_TX_STATE_LAST_SENT_BT_KILL_MSK = 0x40,
1379 	AGG_TX_STATE_SCD_QUERY_MSK = 0x80,
1380 	AGG_TX_STATE_TEST_BAD_CRC32_MSK = 0x100,
1381 	AGG_TX_STATE_RESPONSE_MSK = 0x1ff,
1382 	AGG_TX_STATE_DUMP_TX_MSK = 0x200,
1383 	AGG_TX_STATE_DELAY_TX_MSK = 0x400
1384 };
1385 
1386 #define AGG_TX_STATUS_MSK	0x00000fff	/* bits 0:11 */
1387 #define AGG_TX_TRY_MSK		0x0000f000	/* bits 12:15 */
1388 #define AGG_TX_TRY_POS		12
1389 
1390 #define AGG_TX_STATE_LAST_SENT_MSK  (AGG_TX_STATE_LAST_SENT_TTL_MSK | \
1391 				     AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK | \
1392 				     AGG_TX_STATE_LAST_SENT_BT_KILL_MSK)
1393 
1394 /* # tx attempts for first frame in aggregation */
1395 #define AGG_TX_STATE_TRY_CNT_POS 12
1396 #define AGG_TX_STATE_TRY_CNT_MSK 0xf000
1397 
1398 /* Command ID and sequence number of Tx command for this frame */
1399 #define AGG_TX_STATE_SEQ_NUM_POS 16
1400 #define AGG_TX_STATE_SEQ_NUM_MSK 0xffff0000
1401 
1402 /*
1403  * REPLY_TX = 0x1c (response)
1404  *
1405  * This response may be in one of two slightly different formats, indicated
1406  * by the frame_count field:
1407  *
1408  * 1)  No aggregation (frame_count == 1).  This reports Tx results for
1409  *     a single frame.  Multiple attempts, at various bit rates, may have
1410  *     been made for this frame.
1411  *
1412  * 2)  Aggregation (frame_count > 1).  This reports Tx results for
1413  *     2 or more frames that used block-acknowledge.  All frames were
1414  *     transmitted at same rate.  Rate scaling may have been used if first
1415  *     frame in this new agg block failed in previous agg block(s).
1416  *
1417  *     Note that, for aggregation, ACK (block-ack) status is not delivered here;
1418  *     block-ack has not been received by the time the agn device records
1419  *     this status.
1420  *     This status relates to reasons the tx might have been blocked or aborted
1421  *     within the sending station (this agn device), rather than whether it was
1422  *     received successfully by the destination station.
1423  */
1424 struct agg_tx_status {
1425 	__le16 status;
1426 	__le16 sequence;
1427 } __packed;
1428 
1429 /* refer to ra_tid */
1430 #define IWLAGN_TX_RES_TID_POS	0
1431 #define IWLAGN_TX_RES_TID_MSK	0x0f
1432 #define IWLAGN_TX_RES_RA_POS	4
1433 #define IWLAGN_TX_RES_RA_MSK	0xf0
1434 
1435 struct iwlagn_tx_resp {
1436 	u8 frame_count;		/* 1 no aggregation, >1 aggregation */
1437 	u8 bt_kill_count;	/* # blocked by bluetooth (unused for agg) */
1438 	u8 failure_rts;		/* # failures due to unsuccessful RTS */
1439 	u8 failure_frame;	/* # failures due to no ACK (unused for agg) */
1440 
1441 	/* For non-agg:  Rate at which frame was successful.
1442 	 * For agg:  Rate at which all frames were transmitted. */
1443 	__le32 rate_n_flags;	/* RATE_MCS_*  */
1444 
1445 	/* For non-agg:  RTS + CTS + frame tx attempts time + ACK.
1446 	 * For agg:  RTS + CTS + aggregation tx time + block-ack time. */
1447 	__le16 wireless_media_time;	/* uSecs */
1448 
1449 	u8 pa_status;		/* RF power amplifier measurement (not used) */
1450 	u8 pa_integ_res_a[3];
1451 	u8 pa_integ_res_b[3];
1452 	u8 pa_integ_res_C[3];
1453 
1454 	__le32 tfd_info;
1455 	__le16 seq_ctl;
1456 	__le16 byte_cnt;
1457 	u8 tlc_info;
1458 	u8 ra_tid;		/* tid (0:3), sta_id (4:7) */
1459 	__le16 frame_ctrl;
1460 	/*
1461 	 * For non-agg:  frame status TX_STATUS_*
1462 	 * For agg:  status of 1st frame, AGG_TX_STATE_*; other frame status
1463 	 *           fields follow this one, up to frame_count.
1464 	 *           Bit fields:
1465 	 *           11- 0:  AGG_TX_STATE_* status code
1466 	 *           15-12:  Retry count for 1st frame in aggregation (retries
1467 	 *                   occur if tx failed for this frame when it was a
1468 	 *                   member of a previous aggregation block).  If rate
1469 	 *                   scaling is used, retry count indicates the rate
1470 	 *                   table entry used for all frames in the new agg.
1471 	 *           31-16:  Sequence # for this frame's Tx cmd (not SSN!)
1472 	 */
1473 	struct agg_tx_status status;	/* TX status (in aggregation -
1474 					 * status of 1st frame) */
1475 } __packed;
1476 /*
1477  * REPLY_COMPRESSED_BA = 0xc5 (response only, not a command)
1478  *
1479  * Reports Block-Acknowledge from recipient station
1480  */
1481 struct iwl_compressed_ba_resp {
1482 	__le32 sta_addr_lo32;
1483 	__le16 sta_addr_hi16;
1484 	__le16 reserved;
1485 
1486 	/* Index of recipient (BA-sending) station in uCode's station table */
1487 	u8 sta_id;
1488 	u8 tid;
1489 	__le16 seq_ctl;
1490 	__le64 bitmap;
1491 	__le16 scd_flow;
1492 	__le16 scd_ssn;
1493 	u8 txed;	/* number of frames sent */
1494 	u8 txed_2_done; /* number of frames acked */
1495 	__le16 reserved1;
1496 } __packed;
1497 
1498 /*
1499  * REPLY_TX_PWR_TABLE_CMD = 0x97 (command, has simple generic response)
1500  *
1501  */
1502 
1503 /*RS_NEW_API: only TLC_RTS remains and moved to bit 0 */
1504 #define  LINK_QUAL_FLAGS_SET_STA_TLC_RTS_MSK	(1 << 0)
1505 
1506 /* # of EDCA prioritized tx fifos */
1507 #define  LINK_QUAL_AC_NUM AC_NUM
1508 
1509 /* # entries in rate scale table to support Tx retries */
1510 #define  LINK_QUAL_MAX_RETRY_NUM 16
1511 
1512 /* Tx antenna selection values */
1513 #define  LINK_QUAL_ANT_A_MSK (1 << 0)
1514 #define  LINK_QUAL_ANT_B_MSK (1 << 1)
1515 #define  LINK_QUAL_ANT_MSK   (LINK_QUAL_ANT_A_MSK|LINK_QUAL_ANT_B_MSK)
1516 
1517 
1518 /**
1519  * struct iwl_link_qual_general_params
1520  *
1521  * Used in REPLY_TX_LINK_QUALITY_CMD
1522  */
1523 struct iwl_link_qual_general_params {
1524 	u8 flags;
1525 
1526 	/* No entries at or above this (driver chosen) index contain MIMO */
1527 	u8 mimo_delimiter;
1528 
1529 	/* Best single antenna to use for single stream (legacy, SISO). */
1530 	u8 single_stream_ant_msk;	/* LINK_QUAL_ANT_* */
1531 
1532 	/* Best antennas to use for MIMO */
1533 	u8 dual_stream_ant_msk;		/* LINK_QUAL_ANT_* */
1534 
1535 	/*
1536 	 * If driver needs to use different initial rates for different
1537 	 * EDCA QOS access categories (as implemented by tx fifos 0-3),
1538 	 * this table will set that up, by indicating the indexes in the
1539 	 * rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table at which to start.
1540 	 * Otherwise, driver should set all entries to 0.
1541 	 *
1542 	 * Entry usage:
1543 	 * 0 = Background, 1 = Best Effort (normal), 2 = Video, 3 = Voice
1544 	 * TX FIFOs above 3 use same value (typically 0) as TX FIFO 3.
1545 	 */
1546 	u8 start_rate_index[LINK_QUAL_AC_NUM];
1547 } __packed;
1548 
1549 #define LINK_QUAL_AGG_TIME_LIMIT_DEF	(4000) /* 4 milliseconds */
1550 #define LINK_QUAL_AGG_TIME_LIMIT_MAX	(8000)
1551 #define LINK_QUAL_AGG_TIME_LIMIT_MIN	(100)
1552 
1553 #define LINK_QUAL_AGG_DISABLE_START_DEF	(3)
1554 #define LINK_QUAL_AGG_DISABLE_START_MAX	(255)
1555 #define LINK_QUAL_AGG_DISABLE_START_MIN	(0)
1556 
1557 #define LINK_QUAL_AGG_FRAME_LIMIT_DEF	(63)
1558 #define LINK_QUAL_AGG_FRAME_LIMIT_MAX	(63)
1559 #define LINK_QUAL_AGG_FRAME_LIMIT_MIN	(0)
1560 
1561 /**
1562  * struct iwl_link_qual_agg_params
1563  *
1564  * Used in REPLY_TX_LINK_QUALITY_CMD
1565  */
1566 struct iwl_link_qual_agg_params {
1567 
1568 	/*
1569 	 *Maximum number of uSec in aggregation.
1570 	 * default set to 4000 (4 milliseconds) if not configured in .cfg
1571 	 */
1572 	__le16 agg_time_limit;
1573 
1574 	/*
1575 	 * Number of Tx retries allowed for a frame, before that frame will
1576 	 * no longer be considered for the start of an aggregation sequence
1577 	 * (scheduler will then try to tx it as single frame).
1578 	 * Driver should set this to 3.
1579 	 */
1580 	u8 agg_dis_start_th;
1581 
1582 	/*
1583 	 * Maximum number of frames in aggregation.
1584 	 * 0 = no limit (default).  1 = no aggregation.
1585 	 * Other values = max # frames in aggregation.
1586 	 */
1587 	u8 agg_frame_cnt_limit;
1588 
1589 	__le32 reserved;
1590 } __packed;
1591 
1592 /*
1593  * REPLY_TX_LINK_QUALITY_CMD = 0x4e (command, has simple generic response)
1594  *
1595  * For agn devices
1596  *
1597  * Each station in the agn device's internal station table has its own table
1598  * of 16
1599  * Tx rates and modulation modes (e.g. legacy/SISO/MIMO) for retrying Tx when
1600  * an ACK is not received.  This command replaces the entire table for
1601  * one station.
1602  *
1603  * NOTE:  Station must already be in agn device's station table.
1604  *	  Use REPLY_ADD_STA.
1605  *
1606  * The rate scaling procedures described below work well.  Of course, other
1607  * procedures are possible, and may work better for particular environments.
1608  *
1609  *
1610  * FILLING THE RATE TABLE
1611  *
1612  * Given a particular initial rate and mode, as determined by the rate
1613  * scaling algorithm described below, the Linux driver uses the following
1614  * formula to fill the rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table in the
1615  * Link Quality command:
1616  *
1617  *
1618  * 1)  If using High-throughput (HT) (SISO or MIMO) initial rate:
1619  *     a) Use this same initial rate for first 3 entries.
1620  *     b) Find next lower available rate using same mode (SISO or MIMO),
1621  *        use for next 3 entries.  If no lower rate available, switch to
1622  *        legacy mode (no HT40 channel, no MIMO, no short guard interval).
1623  *     c) If using MIMO, set command's mimo_delimiter to number of entries
1624  *        using MIMO (3 or 6).
1625  *     d) After trying 2 HT rates, switch to legacy mode (no HT40 channel,
1626  *        no MIMO, no short guard interval), at the next lower bit rate
1627  *        (e.g. if second HT bit rate was 54, try 48 legacy), and follow
1628  *        legacy procedure for remaining table entries.
1629  *
1630  * 2)  If using legacy initial rate:
1631  *     a) Use the initial rate for only one entry.
1632  *     b) For each following entry, reduce the rate to next lower available
1633  *        rate, until reaching the lowest available rate.
1634  *     c) When reducing rate, also switch antenna selection.
1635  *     d) Once lowest available rate is reached, repeat this rate until
1636  *        rate table is filled (16 entries), switching antenna each entry.
1637  *
1638  *
1639  * ACCUMULATING HISTORY
1640  *
1641  * The rate scaling algorithm for agn devices, as implemented in Linux driver,
1642  * uses two sets of frame Tx success history:  One for the current/active
1643  * modulation mode, and one for a speculative/search mode that is being
1644  * attempted. If the speculative mode turns out to be more effective (i.e.
1645  * actual transfer rate is better), then the driver continues to use the
1646  * speculative mode as the new current active mode.
1647  *
1648  * Each history set contains, separately for each possible rate, data for a
1649  * sliding window of the 62 most recent tx attempts at that rate.  The data
1650  * includes a shifting bitmap of success(1)/failure(0), and sums of successful
1651  * and attempted frames, from which the driver can additionally calculate a
1652  * success ratio (success / attempted) and number of failures
1653  * (attempted - success), and control the size of the window (attempted).
1654  * The driver uses the bit map to remove successes from the success sum, as
1655  * the oldest tx attempts fall out of the window.
1656  *
1657  * When the agn device makes multiple tx attempts for a given frame, each
1658  * attempt might be at a different rate, and have different modulation
1659  * characteristics (e.g. antenna, fat channel, short guard interval), as set
1660  * up in the rate scaling table in the Link Quality command.  The driver must
1661  * determine which rate table entry was used for each tx attempt, to determine
1662  * which rate-specific history to update, and record only those attempts that
1663  * match the modulation characteristics of the history set.
1664  *
1665  * When using block-ack (aggregation), all frames are transmitted at the same
1666  * rate, since there is no per-attempt acknowledgment from the destination
1667  * station.  The Tx response struct iwl_tx_resp indicates the Tx rate in
1668  * rate_n_flags field.  After receiving a block-ack, the driver can update
1669  * history for the entire block all at once.
1670  *
1671  *
1672  * FINDING BEST STARTING RATE:
1673  *
1674  * When working with a selected initial modulation mode (see below), the
1675  * driver attempts to find a best initial rate.  The initial rate is the
1676  * first entry in the Link Quality command's rate table.
1677  *
1678  * 1)  Calculate actual throughput (success ratio * expected throughput, see
1679  *     table below) for current initial rate.  Do this only if enough frames
1680  *     have been attempted to make the value meaningful:  at least 6 failed
1681  *     tx attempts, or at least 8 successes.  If not enough, don't try rate
1682  *     scaling yet.
1683  *
1684  * 2)  Find available rates adjacent to current initial rate.  Available means:
1685  *     a)  supported by hardware &&
1686  *     b)  supported by association &&
1687  *     c)  within any constraints selected by user
1688  *
1689  * 3)  Gather measured throughputs for adjacent rates.  These might not have
1690  *     enough history to calculate a throughput.  That's okay, we might try
1691  *     using one of them anyway!
1692  *
1693  * 4)  Try decreasing rate if, for current rate:
1694  *     a)  success ratio is < 15% ||
1695  *     b)  lower adjacent rate has better measured throughput ||
1696  *     c)  higher adjacent rate has worse throughput, and lower is unmeasured
1697  *
1698  *     As a sanity check, if decrease was determined above, leave rate
1699  *     unchanged if:
1700  *     a)  lower rate unavailable
1701  *     b)  success ratio at current rate > 85% (very good)
1702  *     c)  current measured throughput is better than expected throughput
1703  *         of lower rate (under perfect 100% tx conditions, see table below)
1704  *
1705  * 5)  Try increasing rate if, for current rate:
1706  *     a)  success ratio is < 15% ||
1707  *     b)  both adjacent rates' throughputs are unmeasured (try it!) ||
1708  *     b)  higher adjacent rate has better measured throughput ||
1709  *     c)  lower adjacent rate has worse throughput, and higher is unmeasured
1710  *
1711  *     As a sanity check, if increase was determined above, leave rate
1712  *     unchanged if:
1713  *     a)  success ratio at current rate < 70%.  This is not particularly
1714  *         good performance; higher rate is sure to have poorer success.
1715  *
1716  * 6)  Re-evaluate the rate after each tx frame.  If working with block-
1717  *     acknowledge, history and statistics may be calculated for the entire
1718  *     block (including prior history that fits within the history windows),
1719  *     before re-evaluation.
1720  *
1721  * FINDING BEST STARTING MODULATION MODE:
1722  *
1723  * After working with a modulation mode for a "while" (and doing rate scaling),
1724  * the driver searches for a new initial mode in an attempt to improve
1725  * throughput.  The "while" is measured by numbers of attempted frames:
1726  *
1727  * For legacy mode, search for new mode after:
1728  *   480 successful frames, or 160 failed frames
1729  * For high-throughput modes (SISO or MIMO), search for new mode after:
1730  *   4500 successful frames, or 400 failed frames
1731  *
1732  * Mode switch possibilities are (3 for each mode):
1733  *
1734  * For legacy:
1735  *   Change antenna, try SISO (if HT association), try MIMO (if HT association)
1736  * For SISO:
1737  *   Change antenna, try MIMO, try shortened guard interval (SGI)
1738  * For MIMO:
1739  *   Try SISO antenna A, SISO antenna B, try shortened guard interval (SGI)
1740  *
1741  * When trying a new mode, use the same bit rate as the old/current mode when
1742  * trying antenna switches and shortened guard interval.  When switching to
1743  * SISO from MIMO or legacy, or to MIMO from SISO or legacy, use a rate
1744  * for which the expected throughput (under perfect conditions) is about the
1745  * same or slightly better than the actual measured throughput delivered by
1746  * the old/current mode.
1747  *
1748  * Actual throughput can be estimated by multiplying the expected throughput
1749  * by the success ratio (successful / attempted tx frames).  Frame size is
1750  * not considered in this calculation; it assumes that frame size will average
1751  * out to be fairly consistent over several samples.  The following are
1752  * metric values for expected throughput assuming 100% success ratio.
1753  * Only G band has support for CCK rates:
1754  *
1755  *           RATE:  1    2    5   11    6   9   12   18   24   36   48   54   60
1756  *
1757  *              G:  7   13   35   58   40  57   72   98  121  154  177  186  186
1758  *              A:  0    0    0    0   40  57   72   98  121  154  177  186  186
1759  *     SISO 20MHz:  0    0    0    0   42  42   76  102  124  159  183  193  202
1760  * SGI SISO 20MHz:  0    0    0    0   46  46   82  110  132  168  192  202  211
1761  *     MIMO 20MHz:  0    0    0    0   74  74  123  155  179  214  236  244  251
1762  * SGI MIMO 20MHz:  0    0    0    0   81  81  131  164  188  222  243  251  257
1763  *     SISO 40MHz:  0    0    0    0   77  77  127  160  184  220  242  250  257
1764  * SGI SISO 40MHz:  0    0    0    0   83  83  135  169  193  229  250  257  264
1765  *     MIMO 40MHz:  0    0    0    0  123 123  182  214  235  264  279  285  289
1766  * SGI MIMO 40MHz:  0    0    0    0  131 131  191  222  242  270  284  289  293
1767  *
1768  * After the new mode has been tried for a short while (minimum of 6 failed
1769  * frames or 8 successful frames), compare success ratio and actual throughput
1770  * estimate of the new mode with the old.  If either is better with the new
1771  * mode, continue to use the new mode.
1772  *
1773  * Continue comparing modes until all 3 possibilities have been tried.
1774  * If moving from legacy to HT, try all 3 possibilities from the new HT
1775  * mode.  After trying all 3, a best mode is found.  Continue to use this mode
1776  * for the longer "while" described above (e.g. 480 successful frames for
1777  * legacy), and then repeat the search process.
1778  *
1779  */
1780 struct iwl_link_quality_cmd {
1781 
1782 	/* Index of destination/recipient station in uCode's station table */
1783 	u8 sta_id;
1784 	u8 reserved1;
1785 	__le16 control;		/* not used */
1786 	struct iwl_link_qual_general_params general_params;
1787 	struct iwl_link_qual_agg_params agg_params;
1788 
1789 	/*
1790 	 * Rate info; when using rate-scaling, Tx command's initial_rate_index
1791 	 * specifies 1st Tx rate attempted, via index into this table.
1792 	 * agn devices works its way through table when retrying Tx.
1793 	 */
1794 	struct {
1795 		__le32 rate_n_flags;	/* RATE_MCS_*, IWL_RATE_* */
1796 	} rs_table[LINK_QUAL_MAX_RETRY_NUM];
1797 	__le32 reserved2;
1798 } __packed;
1799 
1800 /*
1801  * BT configuration enable flags:
1802  *   bit 0 - 1: BT channel announcement enabled
1803  *           0: disable
1804  *   bit 1 - 1: priority of BT device enabled
1805  *           0: disable
1806  *   bit 2 - 1: BT 2 wire support enabled
1807  *           0: disable
1808  */
1809 #define BT_COEX_DISABLE (0x0)
1810 #define BT_ENABLE_CHANNEL_ANNOUNCE BIT(0)
1811 #define BT_ENABLE_PRIORITY	   BIT(1)
1812 #define BT_ENABLE_2_WIRE	   BIT(2)
1813 
1814 #define BT_COEX_DISABLE (0x0)
1815 #define BT_COEX_ENABLE  (BT_ENABLE_CHANNEL_ANNOUNCE | BT_ENABLE_PRIORITY)
1816 
1817 #define BT_LEAD_TIME_MIN (0x0)
1818 #define BT_LEAD_TIME_DEF (0x1E)
1819 #define BT_LEAD_TIME_MAX (0xFF)
1820 
1821 #define BT_MAX_KILL_MIN (0x1)
1822 #define BT_MAX_KILL_DEF (0x5)
1823 #define BT_MAX_KILL_MAX (0xFF)
1824 
1825 #define BT_DURATION_LIMIT_DEF	625
1826 #define BT_DURATION_LIMIT_MAX	1250
1827 #define BT_DURATION_LIMIT_MIN	625
1828 
1829 #define BT_ON_THRESHOLD_DEF	4
1830 #define BT_ON_THRESHOLD_MAX	1000
1831 #define BT_ON_THRESHOLD_MIN	1
1832 
1833 #define BT_FRAG_THRESHOLD_DEF	0
1834 #define BT_FRAG_THRESHOLD_MAX	0
1835 #define BT_FRAG_THRESHOLD_MIN	0
1836 
1837 #define BT_AGG_THRESHOLD_DEF	1200
1838 #define BT_AGG_THRESHOLD_MAX	8000
1839 #define BT_AGG_THRESHOLD_MIN	400
1840 
1841 /*
1842  * REPLY_BT_CONFIG = 0x9b (command, has simple generic response)
1843  *
1844  * agn devices support hardware handshake with Bluetooth device on
1845  * same platform.  Bluetooth device alerts wireless device when it will Tx;
1846  * wireless device can delay or kill its own Tx to accommodate.
1847  */
1848 struct iwl_bt_cmd {
1849 	u8 flags;
1850 	u8 lead_time;
1851 	u8 max_kill;
1852 	u8 reserved;
1853 	__le32 kill_ack_mask;
1854 	__le32 kill_cts_mask;
1855 } __packed;
1856 
1857 #define IWLAGN_BT_FLAG_CHANNEL_INHIBITION	BIT(0)
1858 
1859 #define IWLAGN_BT_FLAG_COEX_MODE_MASK		(BIT(3)|BIT(4)|BIT(5))
1860 #define IWLAGN_BT_FLAG_COEX_MODE_SHIFT		3
1861 #define IWLAGN_BT_FLAG_COEX_MODE_DISABLED	0
1862 #define IWLAGN_BT_FLAG_COEX_MODE_LEGACY_2W	1
1863 #define IWLAGN_BT_FLAG_COEX_MODE_3W		2
1864 #define IWLAGN_BT_FLAG_COEX_MODE_4W		3
1865 
1866 #define IWLAGN_BT_FLAG_UCODE_DEFAULT		BIT(6)
1867 /* Disable Sync PSPoll on SCO/eSCO */
1868 #define IWLAGN_BT_FLAG_SYNC_2_BT_DISABLE	BIT(7)
1869 
1870 #define IWLAGN_BT_PSP_MIN_RSSI_THRESHOLD	-75 /* dBm */
1871 #define IWLAGN_BT_PSP_MAX_RSSI_THRESHOLD	-65 /* dBm */
1872 
1873 #define IWLAGN_BT_PRIO_BOOST_MAX	0xFF
1874 #define IWLAGN_BT_PRIO_BOOST_MIN	0x00
1875 #define IWLAGN_BT_PRIO_BOOST_DEFAULT	0xF0
1876 #define IWLAGN_BT_PRIO_BOOST_DEFAULT32	0xF0F0F0F0
1877 
1878 #define IWLAGN_BT_MAX_KILL_DEFAULT	5
1879 
1880 #define IWLAGN_BT3_T7_DEFAULT		1
1881 
1882 enum iwl_bt_kill_idx {
1883 	IWL_BT_KILL_DEFAULT = 0,
1884 	IWL_BT_KILL_OVERRIDE = 1,
1885 	IWL_BT_KILL_REDUCE = 2,
1886 };
1887 
1888 #define IWLAGN_BT_KILL_ACK_MASK_DEFAULT	cpu_to_le32(0xffff0000)
1889 #define IWLAGN_BT_KILL_CTS_MASK_DEFAULT	cpu_to_le32(0xffff0000)
1890 #define IWLAGN_BT_KILL_ACK_CTS_MASK_SCO	cpu_to_le32(0xffffffff)
1891 #define IWLAGN_BT_KILL_ACK_CTS_MASK_REDUCE	cpu_to_le32(0)
1892 
1893 #define IWLAGN_BT3_PRIO_SAMPLE_DEFAULT	2
1894 
1895 #define IWLAGN_BT3_T2_DEFAULT		0xc
1896 
1897 #define IWLAGN_BT_VALID_ENABLE_FLAGS	cpu_to_le16(BIT(0))
1898 #define IWLAGN_BT_VALID_BOOST		cpu_to_le16(BIT(1))
1899 #define IWLAGN_BT_VALID_MAX_KILL	cpu_to_le16(BIT(2))
1900 #define IWLAGN_BT_VALID_3W_TIMERS	cpu_to_le16(BIT(3))
1901 #define IWLAGN_BT_VALID_KILL_ACK_MASK	cpu_to_le16(BIT(4))
1902 #define IWLAGN_BT_VALID_KILL_CTS_MASK	cpu_to_le16(BIT(5))
1903 #define IWLAGN_BT_VALID_REDUCED_TX_PWR	cpu_to_le16(BIT(6))
1904 #define IWLAGN_BT_VALID_3W_LUT		cpu_to_le16(BIT(7))
1905 
1906 #define IWLAGN_BT_ALL_VALID_MSK		(IWLAGN_BT_VALID_ENABLE_FLAGS | \
1907 					IWLAGN_BT_VALID_BOOST | \
1908 					IWLAGN_BT_VALID_MAX_KILL | \
1909 					IWLAGN_BT_VALID_3W_TIMERS | \
1910 					IWLAGN_BT_VALID_KILL_ACK_MASK | \
1911 					IWLAGN_BT_VALID_KILL_CTS_MASK | \
1912 					IWLAGN_BT_VALID_REDUCED_TX_PWR | \
1913 					IWLAGN_BT_VALID_3W_LUT)
1914 
1915 #define IWLAGN_BT_REDUCED_TX_PWR	BIT(0)
1916 
1917 #define IWLAGN_BT_DECISION_LUT_SIZE	12
1918 
1919 struct iwl_basic_bt_cmd {
1920 	u8 flags;
1921 	u8 ledtime; /* unused */
1922 	u8 max_kill;
1923 	u8 bt3_timer_t7_value;
1924 	__le32 kill_ack_mask;
1925 	__le32 kill_cts_mask;
1926 	u8 bt3_prio_sample_time;
1927 	u8 bt3_timer_t2_value;
1928 	__le16 bt4_reaction_time; /* unused */
1929 	__le32 bt3_lookup_table[IWLAGN_BT_DECISION_LUT_SIZE];
1930 	/*
1931 	 * bit 0: use reduced tx power for control frame
1932 	 * bit 1 - 7: reserved
1933 	 */
1934 	u8 reduce_txpower;
1935 	u8 reserved;
1936 	__le16 valid;
1937 };
1938 
1939 struct iwl_bt_cmd_v1 {
1940 	struct iwl_basic_bt_cmd basic;
1941 	u8 prio_boost;
1942 	/*
1943 	 * set IWLAGN_BT_VALID_BOOST to "1" in "valid" bitmask
1944 	 * if configure the following patterns
1945 	 */
1946 	u8 tx_prio_boost;	/* SW boost of WiFi tx priority */
1947 	__le16 rx_prio_boost;	/* SW boost of WiFi rx priority */
1948 };
1949 
1950 struct iwl_bt_cmd_v2 {
1951 	struct iwl_basic_bt_cmd basic;
1952 	__le32 prio_boost;
1953 	/*
1954 	 * set IWLAGN_BT_VALID_BOOST to "1" in "valid" bitmask
1955 	 * if configure the following patterns
1956 	 */
1957 	u8 reserved;
1958 	u8 tx_prio_boost;	/* SW boost of WiFi tx priority */
1959 	__le16 rx_prio_boost;	/* SW boost of WiFi rx priority */
1960 };
1961 
1962 #define IWLAGN_BT_SCO_ACTIVE	cpu_to_le32(BIT(0))
1963 
1964 struct iwlagn_bt_sco_cmd {
1965 	__le32 flags;
1966 };
1967 
1968 /******************************************************************************
1969  * (6)
1970  * Spectrum Management (802.11h) Commands, Responses, Notifications:
1971  *
1972  *****************************************************************************/
1973 
1974 /*
1975  * Spectrum Management
1976  */
1977 #define MEASUREMENT_FILTER_FLAG (RXON_FILTER_PROMISC_MSK         | \
1978 				 RXON_FILTER_CTL2HOST_MSK        | \
1979 				 RXON_FILTER_ACCEPT_GRP_MSK      | \
1980 				 RXON_FILTER_DIS_DECRYPT_MSK     | \
1981 				 RXON_FILTER_DIS_GRP_DECRYPT_MSK | \
1982 				 RXON_FILTER_ASSOC_MSK           | \
1983 				 RXON_FILTER_BCON_AWARE_MSK)
1984 
1985 struct iwl_measure_channel {
1986 	__le32 duration;	/* measurement duration in extended beacon
1987 				 * format */
1988 	u8 channel;		/* channel to measure */
1989 	u8 type;		/* see enum iwl_measure_type */
1990 	__le16 reserved;
1991 } __packed;
1992 
1993 /*
1994  * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (command)
1995  */
1996 struct iwl_spectrum_cmd {
1997 	__le16 len;		/* number of bytes starting from token */
1998 	u8 token;		/* token id */
1999 	u8 id;			/* measurement id -- 0 or 1 */
2000 	u8 origin;		/* 0 = TGh, 1 = other, 2 = TGk */
2001 	u8 periodic;		/* 1 = periodic */
2002 	__le16 path_loss_timeout;
2003 	__le32 start_time;	/* start time in extended beacon format */
2004 	__le32 reserved2;
2005 	__le32 flags;		/* rxon flags */
2006 	__le32 filter_flags;	/* rxon filter flags */
2007 	__le16 channel_count;	/* minimum 1, maximum 10 */
2008 	__le16 reserved3;
2009 	struct iwl_measure_channel channels[10];
2010 } __packed;
2011 
2012 /*
2013  * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (response)
2014  */
2015 struct iwl_spectrum_resp {
2016 	u8 token;
2017 	u8 id;			/* id of the prior command replaced, or 0xff */
2018 	__le16 status;		/* 0 - command will be handled
2019 				 * 1 - cannot handle (conflicts with another
2020 				 *     measurement) */
2021 } __packed;
2022 
2023 enum iwl_measurement_state {
2024 	IWL_MEASUREMENT_START = 0,
2025 	IWL_MEASUREMENT_STOP = 1,
2026 };
2027 
2028 enum iwl_measurement_status {
2029 	IWL_MEASUREMENT_OK = 0,
2030 	IWL_MEASUREMENT_CONCURRENT = 1,
2031 	IWL_MEASUREMENT_CSA_CONFLICT = 2,
2032 	IWL_MEASUREMENT_TGH_CONFLICT = 3,
2033 	/* 4-5 reserved */
2034 	IWL_MEASUREMENT_STOPPED = 6,
2035 	IWL_MEASUREMENT_TIMEOUT = 7,
2036 	IWL_MEASUREMENT_PERIODIC_FAILED = 8,
2037 };
2038 
2039 #define NUM_ELEMENTS_IN_HISTOGRAM 8
2040 
2041 struct iwl_measurement_histogram {
2042 	__le32 ofdm[NUM_ELEMENTS_IN_HISTOGRAM];	/* in 0.8usec counts */
2043 	__le32 cck[NUM_ELEMENTS_IN_HISTOGRAM];	/* in 1usec counts */
2044 } __packed;
2045 
2046 /* clear channel availability counters */
2047 struct iwl_measurement_cca_counters {
2048 	__le32 ofdm;
2049 	__le32 cck;
2050 } __packed;
2051 
2052 enum iwl_measure_type {
2053 	IWL_MEASURE_BASIC = (1 << 0),
2054 	IWL_MEASURE_CHANNEL_LOAD = (1 << 1),
2055 	IWL_MEASURE_HISTOGRAM_RPI = (1 << 2),
2056 	IWL_MEASURE_HISTOGRAM_NOISE = (1 << 3),
2057 	IWL_MEASURE_FRAME = (1 << 4),
2058 	/* bits 5:6 are reserved */
2059 	IWL_MEASURE_IDLE = (1 << 7),
2060 };
2061 
2062 /*
2063  * SPECTRUM_MEASURE_NOTIFICATION = 0x75 (notification only, not a command)
2064  */
2065 struct iwl_spectrum_notification {
2066 	u8 id;			/* measurement id -- 0 or 1 */
2067 	u8 token;
2068 	u8 channel_index;	/* index in measurement channel list */
2069 	u8 state;		/* 0 - start, 1 - stop */
2070 	__le32 start_time;	/* lower 32-bits of TSF */
2071 	u8 band;		/* 0 - 5.2GHz, 1 - 2.4GHz */
2072 	u8 channel;
2073 	u8 type;		/* see enum iwl_measurement_type */
2074 	u8 reserved1;
2075 	/* NOTE:  cca_ofdm, cca_cck, basic_type, and histogram are only only
2076 	 * valid if applicable for measurement type requested. */
2077 	__le32 cca_ofdm;	/* cca fraction time in 40Mhz clock periods */
2078 	__le32 cca_cck;		/* cca fraction time in 44Mhz clock periods */
2079 	__le32 cca_time;	/* channel load time in usecs */
2080 	u8 basic_type;		/* 0 - bss, 1 - ofdm preamble, 2 -
2081 				 * unidentified */
2082 	u8 reserved2[3];
2083 	struct iwl_measurement_histogram histogram;
2084 	__le32 stop_time;	/* lower 32-bits of TSF */
2085 	__le32 status;		/* see iwl_measurement_status */
2086 } __packed;
2087 
2088 /******************************************************************************
2089  * (7)
2090  * Power Management Commands, Responses, Notifications:
2091  *
2092  *****************************************************************************/
2093 
2094 /**
2095  * struct iwl_powertable_cmd - Power Table Command
2096  * @flags: See below:
2097  *
2098  * POWER_TABLE_CMD = 0x77 (command, has simple generic response)
2099  *
2100  * PM allow:
2101  *   bit 0 - '0' Driver not allow power management
2102  *           '1' Driver allow PM (use rest of parameters)
2103  *
2104  * uCode send sleep notifications:
2105  *   bit 1 - '0' Don't send sleep notification
2106  *           '1' send sleep notification (SEND_PM_NOTIFICATION)
2107  *
2108  * Sleep over DTIM
2109  *   bit 2 - '0' PM have to walk up every DTIM
2110  *           '1' PM could sleep over DTIM till listen Interval.
2111  *
2112  * PCI power managed
2113  *   bit 3 - '0' (PCI_CFG_LINK_CTRL & 0x1)
2114  *           '1' !(PCI_CFG_LINK_CTRL & 0x1)
2115  *
2116  * Fast PD
2117  *   bit 4 - '1' Put radio to sleep when receiving frame for others
2118  *
2119  * Force sleep Modes
2120  *   bit 31/30- '00' use both mac/xtal sleeps
2121  *              '01' force Mac sleep
2122  *              '10' force xtal sleep
2123  *              '11' Illegal set
2124  *
2125  * NOTE: if sleep_interval[SLEEP_INTRVL_TABLE_SIZE-1] > DTIM period then
2126  * ucode assume sleep over DTIM is allowed and we don't need to wake up
2127  * for every DTIM.
2128  */
2129 #define IWL_POWER_VEC_SIZE 5
2130 
2131 #define IWL_POWER_DRIVER_ALLOW_SLEEP_MSK	cpu_to_le16(BIT(0))
2132 #define IWL_POWER_POWER_SAVE_ENA_MSK		cpu_to_le16(BIT(0))
2133 #define IWL_POWER_POWER_MANAGEMENT_ENA_MSK	cpu_to_le16(BIT(1))
2134 #define IWL_POWER_SLEEP_OVER_DTIM_MSK		cpu_to_le16(BIT(2))
2135 #define IWL_POWER_PCI_PM_MSK			cpu_to_le16(BIT(3))
2136 #define IWL_POWER_FAST_PD			cpu_to_le16(BIT(4))
2137 #define IWL_POWER_BEACON_FILTERING		cpu_to_le16(BIT(5))
2138 #define IWL_POWER_SHADOW_REG_ENA		cpu_to_le16(BIT(6))
2139 #define IWL_POWER_CT_KILL_SET			cpu_to_le16(BIT(7))
2140 #define IWL_POWER_BT_SCO_ENA			cpu_to_le16(BIT(8))
2141 #define IWL_POWER_ADVANCE_PM_ENA_MSK		cpu_to_le16(BIT(9))
2142 
2143 struct iwl_powertable_cmd {
2144 	__le16 flags;
2145 	u8 keep_alive_seconds;
2146 	u8 debug_flags;
2147 	__le32 rx_data_timeout;
2148 	__le32 tx_data_timeout;
2149 	__le32 sleep_interval[IWL_POWER_VEC_SIZE];
2150 	__le32 keep_alive_beacons;
2151 } __packed;
2152 
2153 /*
2154  * PM_SLEEP_NOTIFICATION = 0x7A (notification only, not a command)
2155  * all devices identical.
2156  */
2157 struct iwl_sleep_notification {
2158 	u8 pm_sleep_mode;
2159 	u8 pm_wakeup_src;
2160 	__le16 reserved;
2161 	__le32 sleep_time;
2162 	__le32 tsf_low;
2163 	__le32 bcon_timer;
2164 } __packed;
2165 
2166 /* Sleep states.  all devices identical. */
2167 enum {
2168 	IWL_PM_NO_SLEEP = 0,
2169 	IWL_PM_SLP_MAC = 1,
2170 	IWL_PM_SLP_FULL_MAC_UNASSOCIATE = 2,
2171 	IWL_PM_SLP_FULL_MAC_CARD_STATE = 3,
2172 	IWL_PM_SLP_PHY = 4,
2173 	IWL_PM_SLP_REPENT = 5,
2174 	IWL_PM_WAKEUP_BY_TIMER = 6,
2175 	IWL_PM_WAKEUP_BY_DRIVER = 7,
2176 	IWL_PM_WAKEUP_BY_RFKILL = 8,
2177 	/* 3 reserved */
2178 	IWL_PM_NUM_OF_MODES = 12,
2179 };
2180 
2181 /*
2182  * REPLY_CARD_STATE_CMD = 0xa0 (command, has simple generic response)
2183  */
2184 #define CARD_STATE_CMD_DISABLE 0x00	/* Put card to sleep */
2185 #define CARD_STATE_CMD_ENABLE  0x01	/* Wake up card */
2186 #define CARD_STATE_CMD_HALT    0x02	/* Power down permanently */
2187 struct iwl_card_state_cmd {
2188 	__le32 status;		/* CARD_STATE_CMD_* request new power state */
2189 } __packed;
2190 
2191 /*
2192  * CARD_STATE_NOTIFICATION = 0xa1 (notification only, not a command)
2193  */
2194 struct iwl_card_state_notif {
2195 	__le32 flags;
2196 } __packed;
2197 
2198 #define HW_CARD_DISABLED   0x01
2199 #define SW_CARD_DISABLED   0x02
2200 #define CT_CARD_DISABLED   0x04
2201 #define RXON_CARD_DISABLED 0x10
2202 
2203 struct iwl_ct_kill_config {
2204 	__le32   reserved;
2205 	__le32   critical_temperature_M;
2206 	__le32   critical_temperature_R;
2207 }  __packed;
2208 
2209 /* 1000, and 6x00 */
2210 struct iwl_ct_kill_throttling_config {
2211 	__le32   critical_temperature_exit;
2212 	__le32   reserved;
2213 	__le32   critical_temperature_enter;
2214 }  __packed;
2215 
2216 /******************************************************************************
2217  * (8)
2218  * Scan Commands, Responses, Notifications:
2219  *
2220  *****************************************************************************/
2221 
2222 #define SCAN_CHANNEL_TYPE_PASSIVE cpu_to_le32(0)
2223 #define SCAN_CHANNEL_TYPE_ACTIVE  cpu_to_le32(1)
2224 
2225 /**
2226  * struct iwl_scan_channel - entry in REPLY_SCAN_CMD channel table
2227  *
2228  * One for each channel in the scan list.
2229  * Each channel can independently select:
2230  * 1)  SSID for directed active scans
2231  * 2)  Txpower setting (for rate specified within Tx command)
2232  * 3)  How long to stay on-channel (behavior may be modified by quiet_time,
2233  *     quiet_plcp_th, good_CRC_th)
2234  *
2235  * To avoid uCode errors, make sure the following are true (see comments
2236  * under struct iwl_scan_cmd about max_out_time and quiet_time):
2237  * 1)  If using passive_dwell (i.e. passive_dwell != 0):
2238  *     active_dwell <= passive_dwell (< max_out_time if max_out_time != 0)
2239  * 2)  quiet_time <= active_dwell
2240  * 3)  If restricting off-channel time (i.e. max_out_time !=0):
2241  *     passive_dwell < max_out_time
2242  *     active_dwell < max_out_time
2243  */
2244 
2245 struct iwl_scan_channel {
2246 	/*
2247 	 * type is defined as:
2248 	 * 0:0 1 = active, 0 = passive
2249 	 * 1:20 SSID direct bit map; if a bit is set, then corresponding
2250 	 *     SSID IE is transmitted in probe request.
2251 	 * 21:31 reserved
2252 	 */
2253 	__le32 type;
2254 	__le16 channel;	/* band is selected by iwl_scan_cmd "flags" field */
2255 	u8 tx_gain;		/* gain for analog radio */
2256 	u8 dsp_atten;		/* gain for DSP */
2257 	__le16 active_dwell;	/* in 1024-uSec TU (time units), typ 5-50 */
2258 	__le16 passive_dwell;	/* in 1024-uSec TU (time units), typ 20-500 */
2259 } __packed;
2260 
2261 /* set number of direct probes __le32 type */
2262 #define IWL_SCAN_PROBE_MASK(n) 	cpu_to_le32((BIT(n) | (BIT(n) - BIT(1))))
2263 
2264 /**
2265  * struct iwl_ssid_ie - directed scan network information element
2266  *
2267  * Up to 20 of these may appear in REPLY_SCAN_CMD,
2268  * selected by "type" bit field in struct iwl_scan_channel;
2269  * each channel may select different ssids from among the 20 entries.
2270  * SSID IEs get transmitted in reverse order of entry.
2271  */
2272 struct iwl_ssid_ie {
2273 	u8 id;
2274 	u8 len;
2275 	u8 ssid[32];
2276 } __packed;
2277 
2278 #define PROBE_OPTION_MAX		20
2279 #define TX_CMD_LIFE_TIME_INFINITE	cpu_to_le32(0xFFFFFFFF)
2280 #define IWL_GOOD_CRC_TH_DISABLED	0
2281 #define IWL_GOOD_CRC_TH_DEFAULT		cpu_to_le16(1)
2282 #define IWL_GOOD_CRC_TH_NEVER		cpu_to_le16(0xffff)
2283 #define IWL_MAX_CMD_SIZE 4096
2284 
2285 /*
2286  * REPLY_SCAN_CMD = 0x80 (command)
2287  *
2288  * The hardware scan command is very powerful; the driver can set it up to
2289  * maintain (relatively) normal network traffic while doing a scan in the
2290  * background.  The max_out_time and suspend_time control the ratio of how
2291  * long the device stays on an associated network channel ("service channel")
2292  * vs. how long it's away from the service channel, i.e. tuned to other channels
2293  * for scanning.
2294  *
2295  * max_out_time is the max time off-channel (in usec), and suspend_time
2296  * is how long (in "extended beacon" format) that the scan is "suspended"
2297  * after returning to the service channel.  That is, suspend_time is the
2298  * time that we stay on the service channel, doing normal work, between
2299  * scan segments.  The driver may set these parameters differently to support
2300  * scanning when associated vs. not associated, and light vs. heavy traffic
2301  * loads when associated.
2302  *
2303  * After receiving this command, the device's scan engine does the following;
2304  *
2305  * 1)  Sends SCAN_START notification to driver
2306  * 2)  Checks to see if it has time to do scan for one channel
2307  * 3)  Sends NULL packet, with power-save (PS) bit set to 1,
2308  *     to tell AP that we're going off-channel
2309  * 4)  Tunes to first channel in scan list, does active or passive scan
2310  * 5)  Sends SCAN_RESULT notification to driver
2311  * 6)  Checks to see if it has time to do scan on *next* channel in list
2312  * 7)  Repeats 4-6 until it no longer has time to scan the next channel
2313  *     before max_out_time expires
2314  * 8)  Returns to service channel
2315  * 9)  Sends NULL packet with PS=0 to tell AP that we're back
2316  * 10) Stays on service channel until suspend_time expires
2317  * 11) Repeats entire process 2-10 until list is complete
2318  * 12) Sends SCAN_COMPLETE notification
2319  *
2320  * For fast, efficient scans, the scan command also has support for staying on
2321  * a channel for just a short time, if doing active scanning and getting no
2322  * responses to the transmitted probe request.  This time is controlled by
2323  * quiet_time, and the number of received packets below which a channel is
2324  * considered "quiet" is controlled by quiet_plcp_threshold.
2325  *
2326  * For active scanning on channels that have regulatory restrictions against
2327  * blindly transmitting, the scan can listen before transmitting, to make sure
2328  * that there is already legitimate activity on the channel.  If enough
2329  * packets are cleanly received on the channel (controlled by good_CRC_th,
2330  * typical value 1), the scan engine starts transmitting probe requests.
2331  *
2332  * Driver must use separate scan commands for 2.4 vs. 5 GHz bands.
2333  *
2334  * To avoid uCode errors, see timing restrictions described under
2335  * struct iwl_scan_channel.
2336  */
2337 
2338 enum iwl_scan_flags {
2339 	/* BIT(0) currently unused */
2340 	IWL_SCAN_FLAGS_ACTION_FRAME_TX	= BIT(1),
2341 	/* bits 2-7 reserved */
2342 };
2343 
2344 struct iwl_scan_cmd {
2345 	__le16 len;
2346 	u8 scan_flags;		/* scan flags: see enum iwl_scan_flags */
2347 	u8 channel_count;	/* # channels in channel list */
2348 	__le16 quiet_time;	/* dwell only this # millisecs on quiet channel
2349 				 * (only for active scan) */
2350 	__le16 quiet_plcp_th;	/* quiet chnl is < this # pkts (typ. 1) */
2351 	__le16 good_CRC_th;	/* passive -> active promotion threshold */
2352 	__le16 rx_chain;	/* RXON_RX_CHAIN_* */
2353 	__le32 max_out_time;	/* max usec to be away from associated (service)
2354 				 * channel */
2355 	__le32 suspend_time;	/* pause scan this long (in "extended beacon
2356 				 * format") when returning to service chnl:
2357 				 */
2358 	__le32 flags;		/* RXON_FLG_* */
2359 	__le32 filter_flags;	/* RXON_FILTER_* */
2360 
2361 	/* For active scans (set to all-0s for passive scans).
2362 	 * Does not include payload.  Must specify Tx rate; no rate scaling. */
2363 	struct iwl_tx_cmd tx_cmd;
2364 
2365 	/* For directed active scans (set to all-0s otherwise) */
2366 	struct iwl_ssid_ie direct_scan[PROBE_OPTION_MAX];
2367 
2368 	/*
2369 	 * Probe request frame, followed by channel list.
2370 	 *
2371 	 * Size of probe request frame is specified by byte count in tx_cmd.
2372 	 * Channel list follows immediately after probe request frame.
2373 	 * Number of channels in list is specified by channel_count.
2374 	 * Each channel in list is of type:
2375 	 *
2376 	 * struct iwl_scan_channel channels[0];
2377 	 *
2378 	 * NOTE:  Only one band of channels can be scanned per pass.  You
2379 	 * must not mix 2.4GHz channels and 5.2GHz channels, and you must wait
2380 	 * for one scan to complete (i.e. receive SCAN_COMPLETE_NOTIFICATION)
2381 	 * before requesting another scan.
2382 	 */
2383 	u8 data[];
2384 } __packed;
2385 
2386 /* Can abort will notify by complete notification with abort status. */
2387 #define CAN_ABORT_STATUS	cpu_to_le32(0x1)
2388 /* complete notification statuses */
2389 #define ABORT_STATUS            0x2
2390 
2391 /*
2392  * REPLY_SCAN_CMD = 0x80 (response)
2393  */
2394 struct iwl_scanreq_notification {
2395 	__le32 status;		/* 1: okay, 2: cannot fulfill request */
2396 } __packed;
2397 
2398 /*
2399  * SCAN_START_NOTIFICATION = 0x82 (notification only, not a command)
2400  */
2401 struct iwl_scanstart_notification {
2402 	__le32 tsf_low;
2403 	__le32 tsf_high;
2404 	__le32 beacon_timer;
2405 	u8 channel;
2406 	u8 band;
2407 	u8 reserved[2];
2408 	__le32 status;
2409 } __packed;
2410 
2411 #define  SCAN_OWNER_STATUS 0x1
2412 #define  MEASURE_OWNER_STATUS 0x2
2413 
2414 #define IWL_PROBE_STATUS_OK		0
2415 #define IWL_PROBE_STATUS_TX_FAILED	BIT(0)
2416 /* error statuses combined with TX_FAILED */
2417 #define IWL_PROBE_STATUS_FAIL_TTL	BIT(1)
2418 #define IWL_PROBE_STATUS_FAIL_BT	BIT(2)
2419 
2420 #define NUMBER_OF_STATISTICS 1	/* first __le32 is good CRC */
2421 /*
2422  * SCAN_RESULTS_NOTIFICATION = 0x83 (notification only, not a command)
2423  */
2424 struct iwl_scanresults_notification {
2425 	u8 channel;
2426 	u8 band;
2427 	u8 probe_status;
2428 	u8 num_probe_not_sent; /* not enough time to send */
2429 	__le32 tsf_low;
2430 	__le32 tsf_high;
2431 	__le32 statistics[NUMBER_OF_STATISTICS];
2432 } __packed;
2433 
2434 /*
2435  * SCAN_COMPLETE_NOTIFICATION = 0x84 (notification only, not a command)
2436  */
2437 struct iwl_scancomplete_notification {
2438 	u8 scanned_channels;
2439 	u8 status;
2440 	u8 bt_status;	/* BT On/Off status */
2441 	u8 last_channel;
2442 	__le32 tsf_low;
2443 	__le32 tsf_high;
2444 } __packed;
2445 
2446 
2447 /******************************************************************************
2448  * (9)
2449  * IBSS/AP Commands and Notifications:
2450  *
2451  *****************************************************************************/
2452 
2453 enum iwl_ibss_manager {
2454 	IWL_NOT_IBSS_MANAGER = 0,
2455 	IWL_IBSS_MANAGER = 1,
2456 };
2457 
2458 /*
2459  * BEACON_NOTIFICATION = 0x90 (notification only, not a command)
2460  */
2461 
2462 struct iwlagn_beacon_notif {
2463 	struct iwlagn_tx_resp beacon_notify_hdr;
2464 	__le32 low_tsf;
2465 	__le32 high_tsf;
2466 	__le32 ibss_mgr_status;
2467 } __packed;
2468 
2469 /*
2470  * REPLY_TX_BEACON = 0x91 (command, has simple generic response)
2471  */
2472 
2473 struct iwl_tx_beacon_cmd {
2474 	struct iwl_tx_cmd tx;
2475 	__le16 tim_idx;
2476 	u8 tim_size;
2477 	u8 reserved1;
2478 	struct ieee80211_hdr frame[];	/* beacon frame */
2479 } __packed;
2480 
2481 /******************************************************************************
2482  * (10)
2483  * Statistics Commands and Notifications:
2484  *
2485  *****************************************************************************/
2486 
2487 #define IWL_TEMP_CONVERT 260
2488 
2489 #define SUP_RATE_11A_MAX_NUM_CHANNELS  8
2490 #define SUP_RATE_11B_MAX_NUM_CHANNELS  4
2491 #define SUP_RATE_11G_MAX_NUM_CHANNELS  12
2492 
2493 /* Used for passing to driver number of successes and failures per rate */
2494 struct rate_histogram {
2495 	union {
2496 		__le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
2497 		__le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
2498 		__le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
2499 	} success;
2500 	union {
2501 		__le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
2502 		__le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
2503 		__le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
2504 	} failed;
2505 } __packed;
2506 
2507 /* statistics command response */
2508 
2509 struct statistics_dbg {
2510 	__le32 burst_check;
2511 	__le32 burst_count;
2512 	__le32 wait_for_silence_timeout_cnt;
2513 	__le32 reserved[3];
2514 } __packed;
2515 
2516 struct statistics_rx_phy {
2517 	__le32 ina_cnt;
2518 	__le32 fina_cnt;
2519 	__le32 plcp_err;
2520 	__le32 crc32_err;
2521 	__le32 overrun_err;
2522 	__le32 early_overrun_err;
2523 	__le32 crc32_good;
2524 	__le32 false_alarm_cnt;
2525 	__le32 fina_sync_err_cnt;
2526 	__le32 sfd_timeout;
2527 	__le32 fina_timeout;
2528 	__le32 unresponded_rts;
2529 	__le32 rxe_frame_limit_overrun;
2530 	__le32 sent_ack_cnt;
2531 	__le32 sent_cts_cnt;
2532 	__le32 sent_ba_rsp_cnt;
2533 	__le32 dsp_self_kill;
2534 	__le32 mh_format_err;
2535 	__le32 re_acq_main_rssi_sum;
2536 	__le32 reserved3;
2537 } __packed;
2538 
2539 struct statistics_rx_ht_phy {
2540 	__le32 plcp_err;
2541 	__le32 overrun_err;
2542 	__le32 early_overrun_err;
2543 	__le32 crc32_good;
2544 	__le32 crc32_err;
2545 	__le32 mh_format_err;
2546 	__le32 agg_crc32_good;
2547 	__le32 agg_mpdu_cnt;
2548 	__le32 agg_cnt;
2549 	__le32 unsupport_mcs;
2550 } __packed;
2551 
2552 #define INTERFERENCE_DATA_AVAILABLE      cpu_to_le32(1)
2553 
2554 struct statistics_rx_non_phy {
2555 	__le32 bogus_cts;	/* CTS received when not expecting CTS */
2556 	__le32 bogus_ack;	/* ACK received when not expecting ACK */
2557 	__le32 non_bssid_frames;	/* number of frames with BSSID that
2558 					 * doesn't belong to the STA BSSID */
2559 	__le32 filtered_frames;	/* count frames that were dumped in the
2560 				 * filtering process */
2561 	__le32 non_channel_beacons;	/* beacons with our bss id but not on
2562 					 * our serving channel */
2563 	__le32 channel_beacons;	/* beacons with our bss id and in our
2564 				 * serving channel */
2565 	__le32 num_missed_bcon;	/* number of missed beacons */
2566 	__le32 adc_rx_saturation_time;	/* count in 0.8us units the time the
2567 					 * ADC was in saturation */
2568 	__le32 ina_detection_search_time;/* total time (in 0.8us) searched
2569 					  * for INA */
2570 	__le32 beacon_silence_rssi_a;	/* RSSI silence after beacon frame */
2571 	__le32 beacon_silence_rssi_b;	/* RSSI silence after beacon frame */
2572 	__le32 beacon_silence_rssi_c;	/* RSSI silence after beacon frame */
2573 	__le32 interference_data_flag;	/* flag for interference data
2574 					 * availability. 1 when data is
2575 					 * available. */
2576 	__le32 channel_load;		/* counts RX Enable time in uSec */
2577 	__le32 dsp_false_alarms;	/* DSP false alarm (both OFDM
2578 					 * and CCK) counter */
2579 	__le32 beacon_rssi_a;
2580 	__le32 beacon_rssi_b;
2581 	__le32 beacon_rssi_c;
2582 	__le32 beacon_energy_a;
2583 	__le32 beacon_energy_b;
2584 	__le32 beacon_energy_c;
2585 } __packed;
2586 
2587 struct statistics_rx_non_phy_bt {
2588 	struct statistics_rx_non_phy common;
2589 	/* additional stats for bt */
2590 	__le32 num_bt_kills;
2591 	__le32 reserved[2];
2592 } __packed;
2593 
2594 struct statistics_rx {
2595 	struct statistics_rx_phy ofdm;
2596 	struct statistics_rx_phy cck;
2597 	struct statistics_rx_non_phy general;
2598 	struct statistics_rx_ht_phy ofdm_ht;
2599 } __packed;
2600 
2601 struct statistics_rx_bt {
2602 	struct statistics_rx_phy ofdm;
2603 	struct statistics_rx_phy cck;
2604 	struct statistics_rx_non_phy_bt general;
2605 	struct statistics_rx_ht_phy ofdm_ht;
2606 } __packed;
2607 
2608 /**
2609  * struct statistics_tx_power - current tx power
2610  *
2611  * @ant_a: current tx power on chain a in 1/2 dB step
2612  * @ant_b: current tx power on chain b in 1/2 dB step
2613  * @ant_c: current tx power on chain c in 1/2 dB step
2614  */
2615 struct statistics_tx_power {
2616 	u8 ant_a;
2617 	u8 ant_b;
2618 	u8 ant_c;
2619 	u8 reserved;
2620 } __packed;
2621 
2622 struct statistics_tx_non_phy_agg {
2623 	__le32 ba_timeout;
2624 	__le32 ba_reschedule_frames;
2625 	__le32 scd_query_agg_frame_cnt;
2626 	__le32 scd_query_no_agg;
2627 	__le32 scd_query_agg;
2628 	__le32 scd_query_mismatch;
2629 	__le32 frame_not_ready;
2630 	__le32 underrun;
2631 	__le32 bt_prio_kill;
2632 	__le32 rx_ba_rsp_cnt;
2633 } __packed;
2634 
2635 struct statistics_tx {
2636 	__le32 preamble_cnt;
2637 	__le32 rx_detected_cnt;
2638 	__le32 bt_prio_defer_cnt;
2639 	__le32 bt_prio_kill_cnt;
2640 	__le32 few_bytes_cnt;
2641 	__le32 cts_timeout;
2642 	__le32 ack_timeout;
2643 	__le32 expected_ack_cnt;
2644 	__le32 actual_ack_cnt;
2645 	__le32 dump_msdu_cnt;
2646 	__le32 burst_abort_next_frame_mismatch_cnt;
2647 	__le32 burst_abort_missing_next_frame_cnt;
2648 	__le32 cts_timeout_collision;
2649 	__le32 ack_or_ba_timeout_collision;
2650 	struct statistics_tx_non_phy_agg agg;
2651 	/*
2652 	 * "tx_power" are optional parameters provided by uCode,
2653 	 * 6000 series is the only device provide the information,
2654 	 * Those are reserved fields for all the other devices
2655 	 */
2656 	struct statistics_tx_power tx_power;
2657 	__le32 reserved1;
2658 } __packed;
2659 
2660 
2661 struct statistics_div {
2662 	__le32 tx_on_a;
2663 	__le32 tx_on_b;
2664 	__le32 exec_time;
2665 	__le32 probe_time;
2666 	__le32 reserved1;
2667 	__le32 reserved2;
2668 } __packed;
2669 
2670 struct statistics_general_common {
2671 	__le32 temperature;   /* radio temperature */
2672 	__le32 temperature_m; /* radio voltage */
2673 	struct statistics_dbg dbg;
2674 	__le32 sleep_time;
2675 	__le32 slots_out;
2676 	__le32 slots_idle;
2677 	__le32 ttl_timestamp;
2678 	struct statistics_div div;
2679 	__le32 rx_enable_counter;
2680 	/*
2681 	 * num_of_sos_states:
2682 	 *  count the number of times we have to re-tune
2683 	 *  in order to get out of bad PHY status
2684 	 */
2685 	__le32 num_of_sos_states;
2686 } __packed;
2687 
2688 struct statistics_bt_activity {
2689 	/* Tx statistics */
2690 	__le32 hi_priority_tx_req_cnt;
2691 	__le32 hi_priority_tx_denied_cnt;
2692 	__le32 lo_priority_tx_req_cnt;
2693 	__le32 lo_priority_tx_denied_cnt;
2694 	/* Rx statistics */
2695 	__le32 hi_priority_rx_req_cnt;
2696 	__le32 hi_priority_rx_denied_cnt;
2697 	__le32 lo_priority_rx_req_cnt;
2698 	__le32 lo_priority_rx_denied_cnt;
2699 } __packed;
2700 
2701 struct statistics_general {
2702 	struct statistics_general_common common;
2703 	__le32 reserved2;
2704 	__le32 reserved3;
2705 } __packed;
2706 
2707 struct statistics_general_bt {
2708 	struct statistics_general_common common;
2709 	struct statistics_bt_activity activity;
2710 	__le32 reserved2;
2711 	__le32 reserved3;
2712 } __packed;
2713 
2714 #define UCODE_STATISTICS_CLEAR_MSK		(0x1 << 0)
2715 #define UCODE_STATISTICS_FREQUENCY_MSK		(0x1 << 1)
2716 #define UCODE_STATISTICS_NARROW_BAND_MSK	(0x1 << 2)
2717 
2718 /*
2719  * REPLY_STATISTICS_CMD = 0x9c,
2720  * all devices identical.
2721  *
2722  * This command triggers an immediate response containing uCode statistics.
2723  * The response is in the same format as STATISTICS_NOTIFICATION 0x9d, below.
2724  *
2725  * If the CLEAR_STATS configuration flag is set, uCode will clear its
2726  * internal copy of the statistics (counters) after issuing the response.
2727  * This flag does not affect STATISTICS_NOTIFICATIONs after beacons (see below).
2728  *
2729  * If the DISABLE_NOTIF configuration flag is set, uCode will not issue
2730  * STATISTICS_NOTIFICATIONs after received beacons (see below).  This flag
2731  * does not affect the response to the REPLY_STATISTICS_CMD 0x9c itself.
2732  */
2733 #define IWL_STATS_CONF_CLEAR_STATS cpu_to_le32(0x1)	/* see above */
2734 #define IWL_STATS_CONF_DISABLE_NOTIF cpu_to_le32(0x2)/* see above */
2735 struct iwl_statistics_cmd {
2736 	__le32 configuration_flags;	/* IWL_STATS_CONF_* */
2737 } __packed;
2738 
2739 /*
2740  * STATISTICS_NOTIFICATION = 0x9d (notification only, not a command)
2741  *
2742  * By default, uCode issues this notification after receiving a beacon
2743  * while associated.  To disable this behavior, set DISABLE_NOTIF flag in the
2744  * REPLY_STATISTICS_CMD 0x9c, above.
2745  *
2746  * Statistics counters continue to increment beacon after beacon, but are
2747  * cleared when changing channels or when driver issues REPLY_STATISTICS_CMD
2748  * 0x9c with CLEAR_STATS bit set (see above).
2749  *
2750  * uCode also issues this notification during scans.  uCode clears statistics
2751  * appropriately so that each notification contains statistics for only the
2752  * one channel that has just been scanned.
2753  */
2754 #define STATISTICS_REPLY_FLG_BAND_24G_MSK         cpu_to_le32(0x2)
2755 #define STATISTICS_REPLY_FLG_HT40_MODE_MSK        cpu_to_le32(0x8)
2756 
2757 struct iwl_notif_statistics {
2758 	__le32 flag;
2759 	struct statistics_rx rx;
2760 	struct statistics_tx tx;
2761 	struct statistics_general general;
2762 } __packed;
2763 
2764 struct iwl_bt_notif_statistics {
2765 	__le32 flag;
2766 	struct statistics_rx_bt rx;
2767 	struct statistics_tx tx;
2768 	struct statistics_general_bt general;
2769 } __packed;
2770 
2771 /*
2772  * MISSED_BEACONS_NOTIFICATION = 0xa2 (notification only, not a command)
2773  *
2774  * uCode send MISSED_BEACONS_NOTIFICATION to driver when detect beacon missed
2775  * in regardless of how many missed beacons, which mean when driver receive the
2776  * notification, inside the command, it can find all the beacons information
2777  * which include number of total missed beacons, number of consecutive missed
2778  * beacons, number of beacons received and number of beacons expected to
2779  * receive.
2780  *
2781  * If uCode detected consecutive_missed_beacons > 5, it will reset the radio
2782  * in order to bring the radio/PHY back to working state; which has no relation
2783  * to when driver will perform sensitivity calibration.
2784  *
2785  * Driver should set it own missed_beacon_threshold to decide when to perform
2786  * sensitivity calibration based on number of consecutive missed beacons in
2787  * order to improve overall performance, especially in noisy environment.
2788  *
2789  */
2790 
2791 #define IWL_MISSED_BEACON_THRESHOLD_MIN	(1)
2792 #define IWL_MISSED_BEACON_THRESHOLD_DEF	(5)
2793 #define IWL_MISSED_BEACON_THRESHOLD_MAX	IWL_MISSED_BEACON_THRESHOLD_DEF
2794 
2795 struct iwl_missed_beacon_notif {
2796 	__le32 consecutive_missed_beacons;
2797 	__le32 total_missed_becons;
2798 	__le32 num_expected_beacons;
2799 	__le32 num_recvd_beacons;
2800 } __packed;
2801 
2802 
2803 /******************************************************************************
2804  * (11)
2805  * Rx Calibration Commands:
2806  *
2807  * With the uCode used for open source drivers, most Tx calibration (except
2808  * for Tx Power) and most Rx calibration is done by uCode during the
2809  * "initialize" phase of uCode boot.  Driver must calibrate only:
2810  *
2811  * 1)  Tx power (depends on temperature), described elsewhere
2812  * 2)  Receiver gain balance (optimize MIMO, and detect disconnected antennas)
2813  * 3)  Receiver sensitivity (to optimize signal detection)
2814  *
2815  *****************************************************************************/
2816 
2817 /**
2818  * SENSITIVITY_CMD = 0xa8 (command, has simple generic response)
2819  *
2820  * This command sets up the Rx signal detector for a sensitivity level that
2821  * is high enough to lock onto all signals within the associated network,
2822  * but low enough to ignore signals that are below a certain threshold, so as
2823  * not to have too many "false alarms".  False alarms are signals that the
2824  * Rx DSP tries to lock onto, but then discards after determining that they
2825  * are noise.
2826  *
2827  * The optimum number of false alarms is between 5 and 50 per 200 TUs
2828  * (200 * 1024 uSecs, i.e. 204.8 milliseconds) of actual Rx time (i.e.
2829  * time listening, not transmitting).  Driver must adjust sensitivity so that
2830  * the ratio of actual false alarms to actual Rx time falls within this range.
2831  *
2832  * While associated, uCode delivers STATISTICS_NOTIFICATIONs after each
2833  * received beacon.  These provide information to the driver to analyze the
2834  * sensitivity.  Don't analyze statistics that come in from scanning, or any
2835  * other non-associated-network source.  Pertinent statistics include:
2836  *
2837  * From "general" statistics (struct statistics_rx_non_phy):
2838  *
2839  * (beacon_energy_[abc] & 0x0FF00) >> 8 (unsigned, higher value is lower level)
2840  *   Measure of energy of desired signal.  Used for establishing a level
2841  *   below which the device does not detect signals.
2842  *
2843  * (beacon_silence_rssi_[abc] & 0x0FF00) >> 8 (unsigned, units in dB)
2844  *   Measure of background noise in silent period after beacon.
2845  *
2846  * channel_load
2847  *   uSecs of actual Rx time during beacon period (varies according to
2848  *   how much time was spent transmitting).
2849  *
2850  * From "cck" and "ofdm" statistics (struct statistics_rx_phy), separately:
2851  *
2852  * false_alarm_cnt
2853  *   Signal locks abandoned early (before phy-level header).
2854  *
2855  * plcp_err
2856  *   Signal locks abandoned late (during phy-level header).
2857  *
2858  * NOTE:  Both false_alarm_cnt and plcp_err increment monotonically from
2859  *        beacon to beacon, i.e. each value is an accumulation of all errors
2860  *        before and including the latest beacon.  Values will wrap around to 0
2861  *        after counting up to 2^32 - 1.  Driver must differentiate vs.
2862  *        previous beacon's values to determine # false alarms in the current
2863  *        beacon period.
2864  *
2865  * Total number of false alarms = false_alarms + plcp_errs
2866  *
2867  * For OFDM, adjust the following table entries in struct iwl_sensitivity_cmd
2868  * (notice that the start points for OFDM are at or close to settings for
2869  * maximum sensitivity):
2870  *
2871  *                                             START  /  MIN  /  MAX
2872  *   HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX          90   /   85  /  120
2873  *   HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX     170   /  170  /  210
2874  *   HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX         105   /  105  /  140
2875  *   HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX     220   /  220  /  270
2876  *
2877  *   If actual rate of OFDM false alarms (+ plcp_errors) is too high
2878  *   (greater than 50 for each 204.8 msecs listening), reduce sensitivity
2879  *   by *adding* 1 to all 4 of the table entries above, up to the max for
2880  *   each entry.  Conversely, if false alarm rate is too low (less than 5
2881  *   for each 204.8 msecs listening), *subtract* 1 from each entry to
2882  *   increase sensitivity.
2883  *
2884  * For CCK sensitivity, keep track of the following:
2885  *
2886  *   1).  20-beacon history of maximum background noise, indicated by
2887  *        (beacon_silence_rssi_[abc] & 0x0FF00), units in dB, across the
2888  *        3 receivers.  For any given beacon, the "silence reference" is
2889  *        the maximum of last 60 samples (20 beacons * 3 receivers).
2890  *
2891  *   2).  10-beacon history of strongest signal level, as indicated
2892  *        by (beacon_energy_[abc] & 0x0FF00) >> 8, across the 3 receivers,
2893  *        i.e. the strength of the signal through the best receiver at the
2894  *        moment.  These measurements are "upside down", with lower values
2895  *        for stronger signals, so max energy will be *minimum* value.
2896  *
2897  *        Then for any given beacon, the driver must determine the *weakest*
2898  *        of the strongest signals; this is the minimum level that needs to be
2899  *        successfully detected, when using the best receiver at the moment.
2900  *        "Max cck energy" is the maximum (higher value means lower energy!)
2901  *        of the last 10 minima.  Once this is determined, driver must add
2902  *        a little margin by adding "6" to it.
2903  *
2904  *   3).  Number of consecutive beacon periods with too few false alarms.
2905  *        Reset this to 0 at the first beacon period that falls within the
2906  *        "good" range (5 to 50 false alarms per 204.8 milliseconds rx).
2907  *
2908  * Then, adjust the following CCK table entries in struct iwl_sensitivity_cmd
2909  * (notice that the start points for CCK are at maximum sensitivity):
2910  *
2911  *                                             START  /  MIN  /  MAX
2912  *   HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX         125   /  125  /  200
2913  *   HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX     200   /  200  /  400
2914  *   HD_MIN_ENERGY_CCK_DET_INDEX                100   /    0  /  100
2915  *
2916  *   If actual rate of CCK false alarms (+ plcp_errors) is too high
2917  *   (greater than 50 for each 204.8 msecs listening), method for reducing
2918  *   sensitivity is:
2919  *
2920  *   1)  *Add* 3 to value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX,
2921  *       up to max 400.
2922  *
2923  *   2)  If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is < 160,
2924  *       sensitivity has been reduced a significant amount; bring it up to
2925  *       a moderate 161.  Otherwise, *add* 3, up to max 200.
2926  *
2927  *   3)  a)  If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is > 160,
2928  *       sensitivity has been reduced only a moderate or small amount;
2929  *       *subtract* 2 from value in HD_MIN_ENERGY_CCK_DET_INDEX,
2930  *       down to min 0.  Otherwise (if gain has been significantly reduced),
2931  *       don't change the HD_MIN_ENERGY_CCK_DET_INDEX value.
2932  *
2933  *       b)  Save a snapshot of the "silence reference".
2934  *
2935  *   If actual rate of CCK false alarms (+ plcp_errors) is too low
2936  *   (less than 5 for each 204.8 msecs listening), method for increasing
2937  *   sensitivity is used only if:
2938  *
2939  *   1a)  Previous beacon did not have too many false alarms
2940  *   1b)  AND difference between previous "silence reference" and current
2941  *        "silence reference" (prev - current) is 2 or more,
2942  *   OR 2)  100 or more consecutive beacon periods have had rate of
2943  *          less than 5 false alarms per 204.8 milliseconds rx time.
2944  *
2945  *   Method for increasing sensitivity:
2946  *
2947  *   1)  *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX,
2948  *       down to min 125.
2949  *
2950  *   2)  *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX,
2951  *       down to min 200.
2952  *
2953  *   3)  *Add* 2 to value in HD_MIN_ENERGY_CCK_DET_INDEX, up to max 100.
2954  *
2955  *   If actual rate of CCK false alarms (+ plcp_errors) is within good range
2956  *   (between 5 and 50 for each 204.8 msecs listening):
2957  *
2958  *   1)  Save a snapshot of the silence reference.
2959  *
2960  *   2)  If previous beacon had too many CCK false alarms (+ plcp_errors),
2961  *       give some extra margin to energy threshold by *subtracting* 8
2962  *       from value in HD_MIN_ENERGY_CCK_DET_INDEX.
2963  *
2964  *   For all cases (too few, too many, good range), make sure that the CCK
2965  *   detection threshold (energy) is below the energy level for robust
2966  *   detection over the past 10 beacon periods, the "Max cck energy".
2967  *   Lower values mean higher energy; this means making sure that the value
2968  *   in HD_MIN_ENERGY_CCK_DET_INDEX is at or *above* "Max cck energy".
2969  *
2970  */
2971 
2972 /*
2973  * Table entries in SENSITIVITY_CMD (struct iwl_sensitivity_cmd)
2974  */
2975 #define HD_TABLE_SIZE  (11)	/* number of entries */
2976 #define HD_MIN_ENERGY_CCK_DET_INDEX                 (0)	/* table indexes */
2977 #define HD_MIN_ENERGY_OFDM_DET_INDEX                (1)
2978 #define HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX          (2)
2979 #define HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX      (3)
2980 #define HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX      (4)
2981 #define HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX          (5)
2982 #define HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX      (6)
2983 #define HD_BARKER_CORR_TH_ADD_MIN_INDEX             (7)
2984 #define HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX         (8)
2985 #define HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX          (9)
2986 #define HD_OFDM_ENERGY_TH_IN_INDEX                  (10)
2987 
2988 /*
2989  * Additional table entries in enhance SENSITIVITY_CMD
2990  */
2991 #define HD_INA_NON_SQUARE_DET_OFDM_INDEX		(11)
2992 #define HD_INA_NON_SQUARE_DET_CCK_INDEX			(12)
2993 #define HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX		(13)
2994 #define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX		(14)
2995 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX	(15)
2996 #define HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX		(16)
2997 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX		(17)
2998 #define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX		(18)
2999 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX	(19)
3000 #define HD_CCK_NON_SQUARE_DET_SLOPE_INDEX		(20)
3001 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX		(21)
3002 #define HD_RESERVED					(22)
3003 
3004 /* number of entries for enhanced tbl */
3005 #define ENHANCE_HD_TABLE_SIZE  (23)
3006 
3007 /* number of additional entries for enhanced tbl */
3008 #define ENHANCE_HD_TABLE_ENTRIES  (ENHANCE_HD_TABLE_SIZE - HD_TABLE_SIZE)
3009 
3010 #define HD_INA_NON_SQUARE_DET_OFDM_DATA_V1		cpu_to_le16(0)
3011 #define HD_INA_NON_SQUARE_DET_CCK_DATA_V1		cpu_to_le16(0)
3012 #define HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V1		cpu_to_le16(0)
3013 #define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V1	cpu_to_le16(668)
3014 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1	cpu_to_le16(4)
3015 #define HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V1		cpu_to_le16(486)
3016 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V1	cpu_to_le16(37)
3017 #define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V1		cpu_to_le16(853)
3018 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1	cpu_to_le16(4)
3019 #define HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V1		cpu_to_le16(476)
3020 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V1		cpu_to_le16(99)
3021 
3022 #define HD_INA_NON_SQUARE_DET_OFDM_DATA_V2		cpu_to_le16(1)
3023 #define HD_INA_NON_SQUARE_DET_CCK_DATA_V2		cpu_to_le16(1)
3024 #define HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V2		cpu_to_le16(1)
3025 #define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V2	cpu_to_le16(600)
3026 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2	cpu_to_le16(40)
3027 #define HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V2		cpu_to_le16(486)
3028 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V2	cpu_to_le16(45)
3029 #define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V2		cpu_to_le16(853)
3030 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2	cpu_to_le16(60)
3031 #define HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V2		cpu_to_le16(476)
3032 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V2		cpu_to_le16(99)
3033 
3034 
3035 /* Control field in struct iwl_sensitivity_cmd */
3036 #define SENSITIVITY_CMD_CONTROL_DEFAULT_TABLE	cpu_to_le16(0)
3037 #define SENSITIVITY_CMD_CONTROL_WORK_TABLE	cpu_to_le16(1)
3038 
3039 /**
3040  * struct iwl_sensitivity_cmd
3041  * @control:  (1) updates working table, (0) updates default table
3042  * @table:  energy threshold values, use HD_* as index into table
3043  *
3044  * Always use "1" in "control" to update uCode's working table and DSP.
3045  */
3046 struct iwl_sensitivity_cmd {
3047 	__le16 control;			/* always use "1" */
3048 	__le16 table[HD_TABLE_SIZE];	/* use HD_* as index */
3049 } __packed;
3050 
3051 /*
3052  *
3053  */
3054 struct iwl_enhance_sensitivity_cmd {
3055 	__le16 control;			/* always use "1" */
3056 	__le16 enhance_table[ENHANCE_HD_TABLE_SIZE];	/* use HD_* as index */
3057 } __packed;
3058 
3059 
3060 /**
3061  * REPLY_PHY_CALIBRATION_CMD = 0xb0 (command, has simple generic response)
3062  *
3063  * This command sets the relative gains of agn device's 3 radio receiver chains.
3064  *
3065  * After the first association, driver should accumulate signal and noise
3066  * statistics from the STATISTICS_NOTIFICATIONs that follow the first 20
3067  * beacons from the associated network (don't collect statistics that come
3068  * in from scanning, or any other non-network source).
3069  *
3070  * DISCONNECTED ANTENNA:
3071  *
3072  * Driver should determine which antennas are actually connected, by comparing
3073  * average beacon signal levels for the 3 Rx chains.  Accumulate (add) the
3074  * following values over 20 beacons, one accumulator for each of the chains
3075  * a/b/c, from struct statistics_rx_non_phy:
3076  *
3077  * beacon_rssi_[abc] & 0x0FF (unsigned, units in dB)
3078  *
3079  * Find the strongest signal from among a/b/c.  Compare the other two to the
3080  * strongest.  If any signal is more than 15 dB (times 20, unless you
3081  * divide the accumulated values by 20) below the strongest, the driver
3082  * considers that antenna to be disconnected, and should not try to use that
3083  * antenna/chain for Rx or Tx.  If both A and B seem to be disconnected,
3084  * driver should declare the stronger one as connected, and attempt to use it
3085  * (A and B are the only 2 Tx chains!).
3086  *
3087  *
3088  * RX BALANCE:
3089  *
3090  * Driver should balance the 3 receivers (but just the ones that are connected
3091  * to antennas, see above) for gain, by comparing the average signal levels
3092  * detected during the silence after each beacon (background noise).
3093  * Accumulate (add) the following values over 20 beacons, one accumulator for
3094  * each of the chains a/b/c, from struct statistics_rx_non_phy:
3095  *
3096  * beacon_silence_rssi_[abc] & 0x0FF (unsigned, units in dB)
3097  *
3098  * Find the weakest background noise level from among a/b/c.  This Rx chain
3099  * will be the reference, with 0 gain adjustment.  Attenuate other channels by
3100  * finding noise difference:
3101  *
3102  * (accum_noise[i] - accum_noise[reference]) / 30
3103  *
3104  * The "30" adjusts the dB in the 20 accumulated samples to units of 1.5 dB.
3105  * For use in diff_gain_[abc] fields of struct iwl_calibration_cmd, the
3106  * driver should limit the difference results to a range of 0-3 (0-4.5 dB),
3107  * and set bit 2 to indicate "reduce gain".  The value for the reference
3108  * (weakest) chain should be "0".
3109  *
3110  * diff_gain_[abc] bit fields:
3111  *   2: (1) reduce gain, (0) increase gain
3112  * 1-0: amount of gain, units of 1.5 dB
3113  */
3114 
3115 /* Phy calibration command for series */
3116 enum {
3117 	IWL_PHY_CALIBRATE_DC_CMD		= 8,
3118 	IWL_PHY_CALIBRATE_LO_CMD		= 9,
3119 	IWL_PHY_CALIBRATE_TX_IQ_CMD		= 11,
3120 	IWL_PHY_CALIBRATE_CRYSTAL_FRQ_CMD	= 15,
3121 	IWL_PHY_CALIBRATE_BASE_BAND_CMD		= 16,
3122 	IWL_PHY_CALIBRATE_TX_IQ_PERD_CMD	= 17,
3123 	IWL_PHY_CALIBRATE_TEMP_OFFSET_CMD	= 18,
3124 };
3125 
3126 /* This enum defines the bitmap of various calibrations to enable in both
3127  * init ucode and runtime ucode through CALIBRATION_CFG_CMD.
3128  */
3129 enum iwl_ucode_calib_cfg {
3130 	IWL_CALIB_CFG_RX_BB_IDX			= BIT(0),
3131 	IWL_CALIB_CFG_DC_IDX			= BIT(1),
3132 	IWL_CALIB_CFG_LO_IDX			= BIT(2),
3133 	IWL_CALIB_CFG_TX_IQ_IDX			= BIT(3),
3134 	IWL_CALIB_CFG_RX_IQ_IDX			= BIT(4),
3135 	IWL_CALIB_CFG_NOISE_IDX			= BIT(5),
3136 	IWL_CALIB_CFG_CRYSTAL_IDX		= BIT(6),
3137 	IWL_CALIB_CFG_TEMPERATURE_IDX		= BIT(7),
3138 	IWL_CALIB_CFG_PAPD_IDX			= BIT(8),
3139 	IWL_CALIB_CFG_SENSITIVITY_IDX		= BIT(9),
3140 	IWL_CALIB_CFG_TX_PWR_IDX		= BIT(10),
3141 };
3142 
3143 #define IWL_CALIB_INIT_CFG_ALL	cpu_to_le32(IWL_CALIB_CFG_RX_BB_IDX |	\
3144 					IWL_CALIB_CFG_DC_IDX |		\
3145 					IWL_CALIB_CFG_LO_IDX |		\
3146 					IWL_CALIB_CFG_TX_IQ_IDX |	\
3147 					IWL_CALIB_CFG_RX_IQ_IDX |	\
3148 					IWL_CALIB_CFG_CRYSTAL_IDX)
3149 
3150 #define IWL_CALIB_RT_CFG_ALL	cpu_to_le32(IWL_CALIB_CFG_RX_BB_IDX |	\
3151 					IWL_CALIB_CFG_DC_IDX |		\
3152 					IWL_CALIB_CFG_LO_IDX |		\
3153 					IWL_CALIB_CFG_TX_IQ_IDX |	\
3154 					IWL_CALIB_CFG_RX_IQ_IDX |	\
3155 					IWL_CALIB_CFG_TEMPERATURE_IDX |	\
3156 					IWL_CALIB_CFG_PAPD_IDX |	\
3157 					IWL_CALIB_CFG_TX_PWR_IDX |	\
3158 					IWL_CALIB_CFG_CRYSTAL_IDX)
3159 
3160 #define IWL_CALIB_CFG_FLAG_SEND_COMPLETE_NTFY_MSK	cpu_to_le32(BIT(0))
3161 
3162 struct iwl_calib_cfg_elmnt_s {
3163 	__le32 is_enable;
3164 	__le32 start;
3165 	__le32 send_res;
3166 	__le32 apply_res;
3167 	__le32 reserved;
3168 } __packed;
3169 
3170 struct iwl_calib_cfg_status_s {
3171 	struct iwl_calib_cfg_elmnt_s once;
3172 	struct iwl_calib_cfg_elmnt_s perd;
3173 	__le32 flags;
3174 } __packed;
3175 
3176 struct iwl_calib_cfg_cmd {
3177 	struct iwl_calib_cfg_status_s ucd_calib_cfg;
3178 	struct iwl_calib_cfg_status_s drv_calib_cfg;
3179 	__le32 reserved1;
3180 } __packed;
3181 
3182 struct iwl_calib_hdr {
3183 	u8 op_code;
3184 	u8 first_group;
3185 	u8 groups_num;
3186 	u8 data_valid;
3187 } __packed;
3188 
3189 struct iwl_calib_cmd {
3190 	struct iwl_calib_hdr hdr;
3191 	u8 data[];
3192 } __packed;
3193 
3194 struct iwl_calib_xtal_freq_cmd {
3195 	struct iwl_calib_hdr hdr;
3196 	u8 cap_pin1;
3197 	u8 cap_pin2;
3198 	u8 pad[2];
3199 } __packed;
3200 
3201 #define DEFAULT_RADIO_SENSOR_OFFSET    cpu_to_le16(2700)
3202 struct iwl_calib_temperature_offset_cmd {
3203 	struct iwl_calib_hdr hdr;
3204 	__le16 radio_sensor_offset;
3205 	__le16 reserved;
3206 } __packed;
3207 
3208 struct iwl_calib_temperature_offset_v2_cmd {
3209 	struct iwl_calib_hdr hdr;
3210 	__le16 radio_sensor_offset_high;
3211 	__le16 radio_sensor_offset_low;
3212 	__le16 burntVoltageRef;
3213 	__le16 reserved;
3214 } __packed;
3215 
3216 /* IWL_PHY_CALIBRATE_CHAIN_NOISE_RESET_CMD */
3217 struct iwl_calib_chain_noise_reset_cmd {
3218 	struct iwl_calib_hdr hdr;
3219 	u8 data[];
3220 };
3221 
3222 /* IWL_PHY_CALIBRATE_CHAIN_NOISE_GAIN_CMD */
3223 struct iwl_calib_chain_noise_gain_cmd {
3224 	struct iwl_calib_hdr hdr;
3225 	u8 delta_gain_1;
3226 	u8 delta_gain_2;
3227 	u8 pad[2];
3228 } __packed;
3229 
3230 /******************************************************************************
3231  * (12)
3232  * Miscellaneous Commands:
3233  *
3234  *****************************************************************************/
3235 
3236 /*
3237  * LEDs Command & Response
3238  * REPLY_LEDS_CMD = 0x48 (command, has simple generic response)
3239  *
3240  * For each of 3 possible LEDs (Activity/Link/Tech, selected by "id" field),
3241  * this command turns it on or off, or sets up a periodic blinking cycle.
3242  */
3243 struct iwl_led_cmd {
3244 	__le32 interval;	/* "interval" in uSec */
3245 	u8 id;			/* 1: Activity, 2: Link, 3: Tech */
3246 	u8 off;			/* # intervals off while blinking;
3247 				 * "0", with >0 "on" value, turns LED on */
3248 	u8 on;			/* # intervals on while blinking;
3249 				 * "0", regardless of "off", turns LED off */
3250 	u8 reserved;
3251 } __packed;
3252 
3253 /*
3254  * station priority table entries
3255  * also used as potential "events" value for both
3256  * COEX_MEDIUM_NOTIFICATION and COEX_EVENT_CMD
3257  */
3258 
3259 /*
3260  * COEX events entry flag masks
3261  * RP - Requested Priority
3262  * WP - Win Medium Priority: priority assigned when the contention has been won
3263  */
3264 #define COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG        (0x1)
3265 #define COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG        (0x2)
3266 #define COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG  (0x4)
3267 
3268 #define COEX_CU_UNASSOC_IDLE_RP               4
3269 #define COEX_CU_UNASSOC_MANUAL_SCAN_RP        4
3270 #define COEX_CU_UNASSOC_AUTO_SCAN_RP          4
3271 #define COEX_CU_CALIBRATION_RP                4
3272 #define COEX_CU_PERIODIC_CALIBRATION_RP       4
3273 #define COEX_CU_CONNECTION_ESTAB_RP           4
3274 #define COEX_CU_ASSOCIATED_IDLE_RP            4
3275 #define COEX_CU_ASSOC_MANUAL_SCAN_RP          4
3276 #define COEX_CU_ASSOC_AUTO_SCAN_RP            4
3277 #define COEX_CU_ASSOC_ACTIVE_LEVEL_RP         4
3278 #define COEX_CU_RF_ON_RP                      6
3279 #define COEX_CU_RF_OFF_RP                     4
3280 #define COEX_CU_STAND_ALONE_DEBUG_RP          6
3281 #define COEX_CU_IPAN_ASSOC_LEVEL_RP           4
3282 #define COEX_CU_RSRVD1_RP                     4
3283 #define COEX_CU_RSRVD2_RP                     4
3284 
3285 #define COEX_CU_UNASSOC_IDLE_WP               3
3286 #define COEX_CU_UNASSOC_MANUAL_SCAN_WP        3
3287 #define COEX_CU_UNASSOC_AUTO_SCAN_WP          3
3288 #define COEX_CU_CALIBRATION_WP                3
3289 #define COEX_CU_PERIODIC_CALIBRATION_WP       3
3290 #define COEX_CU_CONNECTION_ESTAB_WP           3
3291 #define COEX_CU_ASSOCIATED_IDLE_WP            3
3292 #define COEX_CU_ASSOC_MANUAL_SCAN_WP          3
3293 #define COEX_CU_ASSOC_AUTO_SCAN_WP            3
3294 #define COEX_CU_ASSOC_ACTIVE_LEVEL_WP         3
3295 #define COEX_CU_RF_ON_WP                      3
3296 #define COEX_CU_RF_OFF_WP                     3
3297 #define COEX_CU_STAND_ALONE_DEBUG_WP          6
3298 #define COEX_CU_IPAN_ASSOC_LEVEL_WP           3
3299 #define COEX_CU_RSRVD1_WP                     3
3300 #define COEX_CU_RSRVD2_WP                     3
3301 
3302 #define COEX_UNASSOC_IDLE_FLAGS                     0
3303 #define COEX_UNASSOC_MANUAL_SCAN_FLAGS		\
3304 	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3305 	COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3306 #define COEX_UNASSOC_AUTO_SCAN_FLAGS		\
3307 	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3308 	COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3309 #define COEX_CALIBRATION_FLAGS			\
3310 	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3311 	COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3312 #define COEX_PERIODIC_CALIBRATION_FLAGS             0
3313 /*
3314  * COEX_CONNECTION_ESTAB:
3315  * we need DELAY_MEDIUM_FREE_NTFY to let WiMAX disconnect from network.
3316  */
3317 #define COEX_CONNECTION_ESTAB_FLAGS		\
3318 	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3319 	COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG |	\
3320 	COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3321 #define COEX_ASSOCIATED_IDLE_FLAGS                  0
3322 #define COEX_ASSOC_MANUAL_SCAN_FLAGS		\
3323 	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3324 	COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3325 #define COEX_ASSOC_AUTO_SCAN_FLAGS		\
3326 	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3327 	 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3328 #define COEX_ASSOC_ACTIVE_LEVEL_FLAGS               0
3329 #define COEX_RF_ON_FLAGS                            0
3330 #define COEX_RF_OFF_FLAGS                           0
3331 #define COEX_STAND_ALONE_DEBUG_FLAGS		\
3332 	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3333 	 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3334 #define COEX_IPAN_ASSOC_LEVEL_FLAGS		\
3335 	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3336 	 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG |	\
3337 	 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3338 #define COEX_RSRVD1_FLAGS                           0
3339 #define COEX_RSRVD2_FLAGS                           0
3340 /*
3341  * COEX_CU_RF_ON is the event wrapping all radio ownership.
3342  * We need DELAY_MEDIUM_FREE_NTFY to let WiMAX disconnect from network.
3343  */
3344 #define COEX_CU_RF_ON_FLAGS			\
3345 	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3346 	 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG |	\
3347 	 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3348 
3349 
3350 enum {
3351 	/* un-association part */
3352 	COEX_UNASSOC_IDLE		= 0,
3353 	COEX_UNASSOC_MANUAL_SCAN	= 1,
3354 	COEX_UNASSOC_AUTO_SCAN		= 2,
3355 	/* calibration */
3356 	COEX_CALIBRATION		= 3,
3357 	COEX_PERIODIC_CALIBRATION	= 4,
3358 	/* connection */
3359 	COEX_CONNECTION_ESTAB		= 5,
3360 	/* association part */
3361 	COEX_ASSOCIATED_IDLE		= 6,
3362 	COEX_ASSOC_MANUAL_SCAN		= 7,
3363 	COEX_ASSOC_AUTO_SCAN		= 8,
3364 	COEX_ASSOC_ACTIVE_LEVEL		= 9,
3365 	/* RF ON/OFF */
3366 	COEX_RF_ON			= 10,
3367 	COEX_RF_OFF			= 11,
3368 	COEX_STAND_ALONE_DEBUG		= 12,
3369 	/* IPAN */
3370 	COEX_IPAN_ASSOC_LEVEL		= 13,
3371 	/* reserved */
3372 	COEX_RSRVD1			= 14,
3373 	COEX_RSRVD2			= 15,
3374 	COEX_NUM_OF_EVENTS		= 16
3375 };
3376 
3377 /*
3378  * Coexistence WIFI/WIMAX  Command
3379  * COEX_PRIORITY_TABLE_CMD = 0x5a
3380  *
3381  */
3382 struct iwl_wimax_coex_event_entry {
3383 	u8 request_prio;
3384 	u8 win_medium_prio;
3385 	u8 reserved;
3386 	u8 flags;
3387 } __packed;
3388 
3389 /* COEX flag masks */
3390 
3391 /* Station table is valid */
3392 #define COEX_FLAGS_STA_TABLE_VALID_MSK      (0x1)
3393 /* UnMask wake up src at unassociated sleep */
3394 #define COEX_FLAGS_UNASSOC_WA_UNMASK_MSK    (0x4)
3395 /* UnMask wake up src at associated sleep */
3396 #define COEX_FLAGS_ASSOC_WA_UNMASK_MSK      (0x8)
3397 /* Enable CoEx feature. */
3398 #define COEX_FLAGS_COEX_ENABLE_MSK          (0x80)
3399 
3400 struct iwl_wimax_coex_cmd {
3401 	u8 flags;
3402 	u8 reserved[3];
3403 	struct iwl_wimax_coex_event_entry sta_prio[COEX_NUM_OF_EVENTS];
3404 } __packed;
3405 
3406 /*
3407  * Coexistence MEDIUM NOTIFICATION
3408  * COEX_MEDIUM_NOTIFICATION = 0x5b
3409  *
3410  * notification from uCode to host to indicate medium changes
3411  *
3412  */
3413 /*
3414  * status field
3415  * bit 0 - 2: medium status
3416  * bit 3: medium change indication
3417  * bit 4 - 31: reserved
3418  */
3419 /* status option values, (0 - 2 bits) */
3420 #define COEX_MEDIUM_BUSY	(0x0) /* radio belongs to WiMAX */
3421 #define COEX_MEDIUM_ACTIVE	(0x1) /* radio belongs to WiFi */
3422 #define COEX_MEDIUM_PRE_RELEASE	(0x2) /* received radio release */
3423 #define COEX_MEDIUM_MSK		(0x7)
3424 
3425 /* send notification status (1 bit) */
3426 #define COEX_MEDIUM_CHANGED	(0x8)
3427 #define COEX_MEDIUM_CHANGED_MSK	(0x8)
3428 #define COEX_MEDIUM_SHIFT	(3)
3429 
3430 struct iwl_coex_medium_notification {
3431 	__le32 status;
3432 	__le32 events;
3433 } __packed;
3434 
3435 /*
3436  * Coexistence EVENT  Command
3437  * COEX_EVENT_CMD = 0x5c
3438  *
3439  * send from host to uCode for coex event request.
3440  */
3441 /* flags options */
3442 #define COEX_EVENT_REQUEST_MSK	(0x1)
3443 
3444 struct iwl_coex_event_cmd {
3445 	u8 flags;
3446 	u8 event;
3447 	__le16 reserved;
3448 } __packed;
3449 
3450 struct iwl_coex_event_resp {
3451 	__le32 status;
3452 } __packed;
3453 
3454 
3455 /******************************************************************************
3456  * Bluetooth Coexistence commands
3457  *
3458  *****************************************************************************/
3459 
3460 /*
3461  * BT Status notification
3462  * REPLY_BT_COEX_PROFILE_NOTIF = 0xce
3463  */
3464 enum iwl_bt_coex_profile_traffic_load {
3465 	IWL_BT_COEX_TRAFFIC_LOAD_NONE = 	0,
3466 	IWL_BT_COEX_TRAFFIC_LOAD_LOW =		1,
3467 	IWL_BT_COEX_TRAFFIC_LOAD_HIGH = 	2,
3468 	IWL_BT_COEX_TRAFFIC_LOAD_CONTINUOUS =	3,
3469 /*
3470  * There are no more even though below is a u8, the
3471  * indication from the BT device only has two bits.
3472  */
3473 };
3474 
3475 #define BT_SESSION_ACTIVITY_1_UART_MSG		0x1
3476 #define BT_SESSION_ACTIVITY_2_UART_MSG		0x2
3477 
3478 /* BT UART message - Share Part (BT -> WiFi) */
3479 #define BT_UART_MSG_FRAME1MSGTYPE_POS		(0)
3480 #define BT_UART_MSG_FRAME1MSGTYPE_MSK		\
3481 		(0x7 << BT_UART_MSG_FRAME1MSGTYPE_POS)
3482 #define BT_UART_MSG_FRAME1SSN_POS		(3)
3483 #define BT_UART_MSG_FRAME1SSN_MSK		\
3484 		(0x3 << BT_UART_MSG_FRAME1SSN_POS)
3485 #define BT_UART_MSG_FRAME1UPDATEREQ_POS		(5)
3486 #define BT_UART_MSG_FRAME1UPDATEREQ_MSK		\
3487 		(0x1 << BT_UART_MSG_FRAME1UPDATEREQ_POS)
3488 #define BT_UART_MSG_FRAME1RESERVED_POS		(6)
3489 #define BT_UART_MSG_FRAME1RESERVED_MSK		\
3490 		(0x3 << BT_UART_MSG_FRAME1RESERVED_POS)
3491 
3492 #define BT_UART_MSG_FRAME2OPENCONNECTIONS_POS	(0)
3493 #define BT_UART_MSG_FRAME2OPENCONNECTIONS_MSK	\
3494 		(0x3 << BT_UART_MSG_FRAME2OPENCONNECTIONS_POS)
3495 #define BT_UART_MSG_FRAME2TRAFFICLOAD_POS	(2)
3496 #define BT_UART_MSG_FRAME2TRAFFICLOAD_MSK	\
3497 		(0x3 << BT_UART_MSG_FRAME2TRAFFICLOAD_POS)
3498 #define BT_UART_MSG_FRAME2CHLSEQN_POS		(4)
3499 #define BT_UART_MSG_FRAME2CHLSEQN_MSK		\
3500 		(0x1 << BT_UART_MSG_FRAME2CHLSEQN_POS)
3501 #define BT_UART_MSG_FRAME2INBAND_POS		(5)
3502 #define BT_UART_MSG_FRAME2INBAND_MSK		\
3503 		(0x1 << BT_UART_MSG_FRAME2INBAND_POS)
3504 #define BT_UART_MSG_FRAME2RESERVED_POS		(6)
3505 #define BT_UART_MSG_FRAME2RESERVED_MSK		\
3506 		(0x3 << BT_UART_MSG_FRAME2RESERVED_POS)
3507 
3508 #define BT_UART_MSG_FRAME3SCOESCO_POS		(0)
3509 #define BT_UART_MSG_FRAME3SCOESCO_MSK		\
3510 		(0x1 << BT_UART_MSG_FRAME3SCOESCO_POS)
3511 #define BT_UART_MSG_FRAME3SNIFF_POS		(1)
3512 #define BT_UART_MSG_FRAME3SNIFF_MSK		\
3513 		(0x1 << BT_UART_MSG_FRAME3SNIFF_POS)
3514 #define BT_UART_MSG_FRAME3A2DP_POS		(2)
3515 #define BT_UART_MSG_FRAME3A2DP_MSK		\
3516 		(0x1 << BT_UART_MSG_FRAME3A2DP_POS)
3517 #define BT_UART_MSG_FRAME3ACL_POS		(3)
3518 #define BT_UART_MSG_FRAME3ACL_MSK		\
3519 		(0x1 << BT_UART_MSG_FRAME3ACL_POS)
3520 #define BT_UART_MSG_FRAME3MASTER_POS		(4)
3521 #define BT_UART_MSG_FRAME3MASTER_MSK		\
3522 		(0x1 << BT_UART_MSG_FRAME3MASTER_POS)
3523 #define BT_UART_MSG_FRAME3OBEX_POS		(5)
3524 #define BT_UART_MSG_FRAME3OBEX_MSK		\
3525 		(0x1 << BT_UART_MSG_FRAME3OBEX_POS)
3526 #define BT_UART_MSG_FRAME3RESERVED_POS		(6)
3527 #define BT_UART_MSG_FRAME3RESERVED_MSK		\
3528 		(0x3 << BT_UART_MSG_FRAME3RESERVED_POS)
3529 
3530 #define BT_UART_MSG_FRAME4IDLEDURATION_POS	(0)
3531 #define BT_UART_MSG_FRAME4IDLEDURATION_MSK	\
3532 		(0x3F << BT_UART_MSG_FRAME4IDLEDURATION_POS)
3533 #define BT_UART_MSG_FRAME4RESERVED_POS		(6)
3534 #define BT_UART_MSG_FRAME4RESERVED_MSK		\
3535 		(0x3 << BT_UART_MSG_FRAME4RESERVED_POS)
3536 
3537 #define BT_UART_MSG_FRAME5TXACTIVITY_POS	(0)
3538 #define BT_UART_MSG_FRAME5TXACTIVITY_MSK	\
3539 		(0x3 << BT_UART_MSG_FRAME5TXACTIVITY_POS)
3540 #define BT_UART_MSG_FRAME5RXACTIVITY_POS	(2)
3541 #define BT_UART_MSG_FRAME5RXACTIVITY_MSK	\
3542 		(0x3 << BT_UART_MSG_FRAME5RXACTIVITY_POS)
3543 #define BT_UART_MSG_FRAME5ESCORETRANSMIT_POS	(4)
3544 #define BT_UART_MSG_FRAME5ESCORETRANSMIT_MSK	\
3545 		(0x3 << BT_UART_MSG_FRAME5ESCORETRANSMIT_POS)
3546 #define BT_UART_MSG_FRAME5RESERVED_POS		(6)
3547 #define BT_UART_MSG_FRAME5RESERVED_MSK		\
3548 		(0x3 << BT_UART_MSG_FRAME5RESERVED_POS)
3549 
3550 #define BT_UART_MSG_FRAME6SNIFFINTERVAL_POS	(0)
3551 #define BT_UART_MSG_FRAME6SNIFFINTERVAL_MSK	\
3552 		(0x1F << BT_UART_MSG_FRAME6SNIFFINTERVAL_POS)
3553 #define BT_UART_MSG_FRAME6DISCOVERABLE_POS	(5)
3554 #define BT_UART_MSG_FRAME6DISCOVERABLE_MSK	\
3555 		(0x1 << BT_UART_MSG_FRAME6DISCOVERABLE_POS)
3556 #define BT_UART_MSG_FRAME6RESERVED_POS		(6)
3557 #define BT_UART_MSG_FRAME6RESERVED_MSK		\
3558 		(0x3 << BT_UART_MSG_FRAME6RESERVED_POS)
3559 
3560 #define BT_UART_MSG_FRAME7SNIFFACTIVITY_POS	(0)
3561 #define BT_UART_MSG_FRAME7SNIFFACTIVITY_MSK	\
3562 		(0x7 << BT_UART_MSG_FRAME7SNIFFACTIVITY_POS)
3563 #define BT_UART_MSG_FRAME7PAGE_POS		(3)
3564 #define BT_UART_MSG_FRAME7PAGE_MSK		\
3565 		(0x1 << BT_UART_MSG_FRAME7PAGE_POS)
3566 #define BT_UART_MSG_FRAME7INQUIRY_POS		(4)
3567 #define BT_UART_MSG_FRAME7INQUIRY_MSK		\
3568 		(0x1 << BT_UART_MSG_FRAME7INQUIRY_POS)
3569 #define BT_UART_MSG_FRAME7CONNECTABLE_POS	(5)
3570 #define BT_UART_MSG_FRAME7CONNECTABLE_MSK	\
3571 		(0x1 << BT_UART_MSG_FRAME7CONNECTABLE_POS)
3572 #define BT_UART_MSG_FRAME7RESERVED_POS		(6)
3573 #define BT_UART_MSG_FRAME7RESERVED_MSK		\
3574 		(0x3 << BT_UART_MSG_FRAME7RESERVED_POS)
3575 
3576 /* BT Session Activity 2 UART message (BT -> WiFi) */
3577 #define BT_UART_MSG_2_FRAME1RESERVED1_POS	(5)
3578 #define BT_UART_MSG_2_FRAME1RESERVED1_MSK	\
3579 		(0x1<<BT_UART_MSG_2_FRAME1RESERVED1_POS)
3580 #define BT_UART_MSG_2_FRAME1RESERVED2_POS	(6)
3581 #define BT_UART_MSG_2_FRAME1RESERVED2_MSK	\
3582 		(0x3<<BT_UART_MSG_2_FRAME1RESERVED2_POS)
3583 
3584 #define BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_POS	(0)
3585 #define BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_MSK	\
3586 		(0x3F<<BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_POS)
3587 #define BT_UART_MSG_2_FRAME2RESERVED_POS	(6)
3588 #define BT_UART_MSG_2_FRAME2RESERVED_MSK	\
3589 		(0x3<<BT_UART_MSG_2_FRAME2RESERVED_POS)
3590 
3591 #define BT_UART_MSG_2_FRAME3BRLASTTXPOWER_POS	(0)
3592 #define BT_UART_MSG_2_FRAME3BRLASTTXPOWER_MSK	\
3593 		(0xF<<BT_UART_MSG_2_FRAME3BRLASTTXPOWER_POS)
3594 #define BT_UART_MSG_2_FRAME3INQPAGESRMODE_POS	(4)
3595 #define BT_UART_MSG_2_FRAME3INQPAGESRMODE_MSK	\
3596 		(0x1<<BT_UART_MSG_2_FRAME3INQPAGESRMODE_POS)
3597 #define BT_UART_MSG_2_FRAME3LEMASTER_POS	(5)
3598 #define BT_UART_MSG_2_FRAME3LEMASTER_MSK	\
3599 		(0x1<<BT_UART_MSG_2_FRAME3LEMASTER_POS)
3600 #define BT_UART_MSG_2_FRAME3RESERVED_POS	(6)
3601 #define BT_UART_MSG_2_FRAME3RESERVED_MSK	\
3602 		(0x3<<BT_UART_MSG_2_FRAME3RESERVED_POS)
3603 
3604 #define BT_UART_MSG_2_FRAME4LELASTTXPOWER_POS	(0)
3605 #define BT_UART_MSG_2_FRAME4LELASTTXPOWER_MSK	\
3606 		(0xF<<BT_UART_MSG_2_FRAME4LELASTTXPOWER_POS)
3607 #define BT_UART_MSG_2_FRAME4NUMLECONN_POS	(4)
3608 #define BT_UART_MSG_2_FRAME4NUMLECONN_MSK	\
3609 		(0x3<<BT_UART_MSG_2_FRAME4NUMLECONN_POS)
3610 #define BT_UART_MSG_2_FRAME4RESERVED_POS	(6)
3611 #define BT_UART_MSG_2_FRAME4RESERVED_MSK	\
3612 		(0x3<<BT_UART_MSG_2_FRAME4RESERVED_POS)
3613 
3614 #define BT_UART_MSG_2_FRAME5BTMINRSSI_POS	(0)
3615 #define BT_UART_MSG_2_FRAME5BTMINRSSI_MSK	\
3616 		(0xF<<BT_UART_MSG_2_FRAME5BTMINRSSI_POS)
3617 #define BT_UART_MSG_2_FRAME5LESCANINITMODE_POS	(4)
3618 #define BT_UART_MSG_2_FRAME5LESCANINITMODE_MSK	\
3619 		(0x1<<BT_UART_MSG_2_FRAME5LESCANINITMODE_POS)
3620 #define BT_UART_MSG_2_FRAME5LEADVERMODE_POS	(5)
3621 #define BT_UART_MSG_2_FRAME5LEADVERMODE_MSK	\
3622 		(0x1<<BT_UART_MSG_2_FRAME5LEADVERMODE_POS)
3623 #define BT_UART_MSG_2_FRAME5RESERVED_POS	(6)
3624 #define BT_UART_MSG_2_FRAME5RESERVED_MSK	\
3625 		(0x3<<BT_UART_MSG_2_FRAME5RESERVED_POS)
3626 
3627 #define BT_UART_MSG_2_FRAME6LECONNINTERVAL_POS	(0)
3628 #define BT_UART_MSG_2_FRAME6LECONNINTERVAL_MSK	\
3629 		(0x1F<<BT_UART_MSG_2_FRAME6LECONNINTERVAL_POS)
3630 #define BT_UART_MSG_2_FRAME6RFU_POS		(5)
3631 #define BT_UART_MSG_2_FRAME6RFU_MSK		\
3632 		(0x1<<BT_UART_MSG_2_FRAME6RFU_POS)
3633 #define BT_UART_MSG_2_FRAME6RESERVED_POS	(6)
3634 #define BT_UART_MSG_2_FRAME6RESERVED_MSK	\
3635 		(0x3<<BT_UART_MSG_2_FRAME6RESERVED_POS)
3636 
3637 #define BT_UART_MSG_2_FRAME7LECONNSLAVELAT_POS	(0)
3638 #define BT_UART_MSG_2_FRAME7LECONNSLAVELAT_MSK	\
3639 		(0x7<<BT_UART_MSG_2_FRAME7LECONNSLAVELAT_POS)
3640 #define BT_UART_MSG_2_FRAME7LEPROFILE1_POS	(3)
3641 #define BT_UART_MSG_2_FRAME7LEPROFILE1_MSK	\
3642 		(0x1<<BT_UART_MSG_2_FRAME7LEPROFILE1_POS)
3643 #define BT_UART_MSG_2_FRAME7LEPROFILE2_POS	(4)
3644 #define BT_UART_MSG_2_FRAME7LEPROFILE2_MSK	\
3645 		(0x1<<BT_UART_MSG_2_FRAME7LEPROFILE2_POS)
3646 #define BT_UART_MSG_2_FRAME7LEPROFILEOTHER_POS	(5)
3647 #define BT_UART_MSG_2_FRAME7LEPROFILEOTHER_MSK	\
3648 		(0x1<<BT_UART_MSG_2_FRAME7LEPROFILEOTHER_POS)
3649 #define BT_UART_MSG_2_FRAME7RESERVED_POS	(6)
3650 #define BT_UART_MSG_2_FRAME7RESERVED_MSK	\
3651 		(0x3<<BT_UART_MSG_2_FRAME7RESERVED_POS)
3652 
3653 
3654 #define BT_ENABLE_REDUCED_TXPOWER_THRESHOLD	(-62)
3655 #define BT_DISABLE_REDUCED_TXPOWER_THRESHOLD	(-65)
3656 
3657 struct iwl_bt_uart_msg {
3658 	u8 header;
3659 	u8 frame1;
3660 	u8 frame2;
3661 	u8 frame3;
3662 	u8 frame4;
3663 	u8 frame5;
3664 	u8 frame6;
3665 	u8 frame7;
3666 } __packed;
3667 
3668 struct iwl_bt_coex_profile_notif {
3669 	struct iwl_bt_uart_msg last_bt_uart_msg;
3670 	u8 bt_status; /* 0 - off, 1 - on */
3671 	u8 bt_traffic_load; /* 0 .. 3? */
3672 	u8 bt_ci_compliance; /* 0 - not complied, 1 - complied */
3673 	u8 reserved;
3674 } __packed;
3675 
3676 #define IWL_BT_COEX_PRIO_TBL_SHARED_ANTENNA_POS	0
3677 #define IWL_BT_COEX_PRIO_TBL_SHARED_ANTENNA_MSK	0x1
3678 #define IWL_BT_COEX_PRIO_TBL_PRIO_POS		1
3679 #define IWL_BT_COEX_PRIO_TBL_PRIO_MASK		0x0e
3680 #define IWL_BT_COEX_PRIO_TBL_RESERVED_POS	4
3681 #define IWL_BT_COEX_PRIO_TBL_RESERVED_MASK	0xf0
3682 #define IWL_BT_COEX_PRIO_TBL_PRIO_SHIFT		1
3683 
3684 /*
3685  * BT Coexistence Priority table
3686  * REPLY_BT_COEX_PRIO_TABLE = 0xcc
3687  */
3688 enum bt_coex_prio_table_events {
3689 	BT_COEX_PRIO_TBL_EVT_INIT_CALIB1 = 0,
3690 	BT_COEX_PRIO_TBL_EVT_INIT_CALIB2 = 1,
3691 	BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_LOW1 = 2,
3692 	BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_LOW2 = 3, /* DC calib */
3693 	BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_HIGH1 = 4,
3694 	BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_HIGH2 = 5,
3695 	BT_COEX_PRIO_TBL_EVT_DTIM = 6,
3696 	BT_COEX_PRIO_TBL_EVT_SCAN52 = 7,
3697 	BT_COEX_PRIO_TBL_EVT_SCAN24 = 8,
3698 	BT_COEX_PRIO_TBL_EVT_RESERVED0 = 9,
3699 	BT_COEX_PRIO_TBL_EVT_RESERVED1 = 10,
3700 	BT_COEX_PRIO_TBL_EVT_RESERVED2 = 11,
3701 	BT_COEX_PRIO_TBL_EVT_RESERVED3 = 12,
3702 	BT_COEX_PRIO_TBL_EVT_RESERVED4 = 13,
3703 	BT_COEX_PRIO_TBL_EVT_RESERVED5 = 14,
3704 	BT_COEX_PRIO_TBL_EVT_RESERVED6 = 15,
3705 	/* BT_COEX_PRIO_TBL_EVT_MAX should always be last */
3706 	BT_COEX_PRIO_TBL_EVT_MAX,
3707 };
3708 
3709 enum bt_coex_prio_table_priorities {
3710 	BT_COEX_PRIO_TBL_DISABLED = 0,
3711 	BT_COEX_PRIO_TBL_PRIO_LOW = 1,
3712 	BT_COEX_PRIO_TBL_PRIO_HIGH = 2,
3713 	BT_COEX_PRIO_TBL_PRIO_BYPASS = 3,
3714 	BT_COEX_PRIO_TBL_PRIO_COEX_OFF = 4,
3715 	BT_COEX_PRIO_TBL_PRIO_COEX_ON = 5,
3716 	BT_COEX_PRIO_TBL_PRIO_RSRVD1 = 6,
3717 	BT_COEX_PRIO_TBL_PRIO_RSRVD2 = 7,
3718 	BT_COEX_PRIO_TBL_MAX,
3719 };
3720 
3721 struct iwl_bt_coex_prio_table_cmd {
3722 	u8 prio_tbl[BT_COEX_PRIO_TBL_EVT_MAX];
3723 } __packed;
3724 
3725 #define IWL_BT_COEX_ENV_CLOSE	0
3726 #define IWL_BT_COEX_ENV_OPEN	1
3727 /*
3728  * BT Protection Envelope
3729  * REPLY_BT_COEX_PROT_ENV = 0xcd
3730  */
3731 struct iwl_bt_coex_prot_env_cmd {
3732 	u8 action; /* 0 = closed, 1 = open */
3733 	u8 type; /* 0 .. 15 */
3734 	u8 reserved[2];
3735 } __packed;
3736 
3737 /*
3738  * REPLY_D3_CONFIG
3739  */
3740 enum iwlagn_d3_wakeup_filters {
3741 	IWLAGN_D3_WAKEUP_RFKILL		= BIT(0),
3742 	IWLAGN_D3_WAKEUP_SYSASSERT	= BIT(1),
3743 };
3744 
3745 struct iwlagn_d3_config_cmd {
3746 	__le32 min_sleep_time;
3747 	__le32 wakeup_flags;
3748 } __packed;
3749 
3750 /*
3751  * REPLY_WOWLAN_PATTERNS
3752  */
3753 #define IWLAGN_WOWLAN_MIN_PATTERN_LEN	16
3754 #define IWLAGN_WOWLAN_MAX_PATTERN_LEN	128
3755 
3756 struct iwlagn_wowlan_pattern {
3757 	u8 mask[IWLAGN_WOWLAN_MAX_PATTERN_LEN / 8];
3758 	u8 pattern[IWLAGN_WOWLAN_MAX_PATTERN_LEN];
3759 	u8 mask_size;
3760 	u8 pattern_size;
3761 	__le16 reserved;
3762 } __packed;
3763 
3764 #define IWLAGN_WOWLAN_MAX_PATTERNS	20
3765 
3766 struct iwlagn_wowlan_patterns_cmd {
3767 	__le32 n_patterns;
3768 	struct iwlagn_wowlan_pattern patterns[];
3769 } __packed;
3770 
3771 /*
3772  * REPLY_WOWLAN_WAKEUP_FILTER
3773  */
3774 enum iwlagn_wowlan_wakeup_filters {
3775 	IWLAGN_WOWLAN_WAKEUP_MAGIC_PACKET	= BIT(0),
3776 	IWLAGN_WOWLAN_WAKEUP_PATTERN_MATCH	= BIT(1),
3777 	IWLAGN_WOWLAN_WAKEUP_BEACON_MISS	= BIT(2),
3778 	IWLAGN_WOWLAN_WAKEUP_LINK_CHANGE	= BIT(3),
3779 	IWLAGN_WOWLAN_WAKEUP_GTK_REKEY_FAIL	= BIT(4),
3780 	IWLAGN_WOWLAN_WAKEUP_EAP_IDENT_REQ	= BIT(5),
3781 	IWLAGN_WOWLAN_WAKEUP_4WAY_HANDSHAKE	= BIT(6),
3782 	IWLAGN_WOWLAN_WAKEUP_ALWAYS		= BIT(7),
3783 	IWLAGN_WOWLAN_WAKEUP_ENABLE_NET_DETECT	= BIT(8),
3784 };
3785 
3786 struct iwlagn_wowlan_wakeup_filter_cmd {
3787 	__le32 enabled;
3788 	__le16 non_qos_seq;
3789 	__le16 reserved;
3790 	__le16 qos_seq[8];
3791 };
3792 
3793 /*
3794  * REPLY_WOWLAN_TSC_RSC_PARAMS
3795  */
3796 #define IWLAGN_NUM_RSC	16
3797 
3798 struct tkip_sc {
3799 	__le16 iv16;
3800 	__le16 pad;
3801 	__le32 iv32;
3802 } __packed;
3803 
3804 struct iwlagn_tkip_rsc_tsc {
3805 	struct tkip_sc unicast_rsc[IWLAGN_NUM_RSC];
3806 	struct tkip_sc multicast_rsc[IWLAGN_NUM_RSC];
3807 	struct tkip_sc tsc;
3808 } __packed;
3809 
3810 struct aes_sc {
3811 	__le64 pn;
3812 } __packed;
3813 
3814 struct iwlagn_aes_rsc_tsc {
3815 	struct aes_sc unicast_rsc[IWLAGN_NUM_RSC];
3816 	struct aes_sc multicast_rsc[IWLAGN_NUM_RSC];
3817 	struct aes_sc tsc;
3818 } __packed;
3819 
3820 union iwlagn_all_tsc_rsc {
3821 	struct iwlagn_tkip_rsc_tsc tkip;
3822 	struct iwlagn_aes_rsc_tsc aes;
3823 };
3824 
3825 struct iwlagn_wowlan_rsc_tsc_params_cmd {
3826 	union iwlagn_all_tsc_rsc all_tsc_rsc;
3827 } __packed;
3828 
3829 /*
3830  * REPLY_WOWLAN_TKIP_PARAMS
3831  */
3832 #define IWLAGN_MIC_KEY_SIZE	8
3833 #define IWLAGN_P1K_SIZE		5
3834 struct iwlagn_mic_keys {
3835 	u8 tx[IWLAGN_MIC_KEY_SIZE];
3836 	u8 rx_unicast[IWLAGN_MIC_KEY_SIZE];
3837 	u8 rx_mcast[IWLAGN_MIC_KEY_SIZE];
3838 } __packed;
3839 
3840 struct iwlagn_p1k_cache {
3841 	__le16 p1k[IWLAGN_P1K_SIZE];
3842 } __packed;
3843 
3844 #define IWLAGN_NUM_RX_P1K_CACHE	2
3845 
3846 struct iwlagn_wowlan_tkip_params_cmd {
3847 	struct iwlagn_mic_keys mic_keys;
3848 	struct iwlagn_p1k_cache tx;
3849 	struct iwlagn_p1k_cache rx_uni[IWLAGN_NUM_RX_P1K_CACHE];
3850 	struct iwlagn_p1k_cache rx_multi[IWLAGN_NUM_RX_P1K_CACHE];
3851 } __packed;
3852 
3853 /*
3854  * REPLY_WOWLAN_KEK_KCK_MATERIAL
3855  */
3856 
3857 #define IWLAGN_KCK_MAX_SIZE	32
3858 #define IWLAGN_KEK_MAX_SIZE	32
3859 
3860 struct iwlagn_wowlan_kek_kck_material_cmd {
3861 	u8	kck[IWLAGN_KCK_MAX_SIZE];
3862 	u8	kek[IWLAGN_KEK_MAX_SIZE];
3863 	__le16	kck_len;
3864 	__le16	kek_len;
3865 	__le64	replay_ctr;
3866 } __packed;
3867 
3868 #define RF_KILL_INDICATOR_FOR_WOWLAN	0x87
3869 
3870 /*
3871  * REPLY_WOWLAN_GET_STATUS = 0xe5
3872  */
3873 struct iwlagn_wowlan_status {
3874 	__le64 replay_ctr;
3875 	__le32 rekey_status;
3876 	__le32 wakeup_reason;
3877 	u8 pattern_number;
3878 	u8 reserved1;
3879 	__le16 qos_seq_ctr[8];
3880 	__le16 non_qos_seq_ctr;
3881 	__le16 reserved2;
3882 	union iwlagn_all_tsc_rsc tsc_rsc;
3883 	__le16 reserved3;
3884 } __packed;
3885 
3886 /*
3887  * REPLY_WIPAN_PARAMS = 0xb2 (Commands and Notification)
3888  */
3889 
3890 /*
3891  * Minimum slot time in TU
3892  */
3893 #define IWL_MIN_SLOT_TIME	20
3894 
3895 /**
3896  * struct iwl_wipan_slot
3897  * @width: Time in TU
3898  * @type:
3899  *   0 - BSS
3900  *   1 - PAN
3901  */
3902 struct iwl_wipan_slot {
3903 	__le16 width;
3904 	u8 type;
3905 	u8 reserved;
3906 } __packed;
3907 
3908 #define IWL_WIPAN_PARAMS_FLG_LEAVE_CHANNEL_CTS		BIT(1)	/* reserved */
3909 #define IWL_WIPAN_PARAMS_FLG_LEAVE_CHANNEL_QUIET	BIT(2)	/* reserved */
3910 #define IWL_WIPAN_PARAMS_FLG_SLOTTED_MODE		BIT(3)	/* reserved */
3911 #define IWL_WIPAN_PARAMS_FLG_FILTER_BEACON_NOTIF	BIT(4)
3912 #define IWL_WIPAN_PARAMS_FLG_FULL_SLOTTED_MODE		BIT(5)
3913 
3914 /**
3915  * struct iwl_wipan_params_cmd
3916  * @flags:
3917  *   bit0: reserved
3918  *   bit1: CP leave channel with CTS
3919  *   bit2: CP leave channel qith Quiet
3920  *   bit3: slotted mode
3921  *     1 - work in slotted mode
3922  *     0 - work in non slotted mode
3923  *   bit4: filter beacon notification
3924  *   bit5: full tx slotted mode. if this flag is set,
3925  *         uCode will perform leaving channel methods in context switch
3926  *         also when working in same channel mode
3927  * @num_slots: 1 - 10
3928  */
3929 struct iwl_wipan_params_cmd {
3930 	__le16 flags;
3931 	u8 reserved;
3932 	u8 num_slots;
3933 	struct iwl_wipan_slot slots[10];
3934 } __packed;
3935 
3936 /*
3937  * REPLY_WIPAN_P2P_CHANNEL_SWITCH = 0xb9
3938  *
3939  * TODO: Figure out what this is used for,
3940  *	 it can only switch between 2.4 GHz
3941  *	 channels!!
3942  */
3943 
3944 struct iwl_wipan_p2p_channel_switch_cmd {
3945 	__le16 channel;
3946 	__le16 reserved;
3947 };
3948 
3949 /*
3950  * REPLY_WIPAN_NOA_NOTIFICATION = 0xbc
3951  *
3952  * This is used by the device to notify us of the
3953  * NoA schedule it determined so we can forward it
3954  * to userspace for inclusion in probe responses.
3955  *
3956  * In beacons, the NoA schedule is simply appended
3957  * to the frame we give the device.
3958  */
3959 
3960 struct iwl_wipan_noa_descriptor {
3961 	u8 count;
3962 	__le32 duration;
3963 	__le32 interval;
3964 	__le32 starttime;
3965 } __packed;
3966 
3967 struct iwl_wipan_noa_attribute {
3968 	u8 id;
3969 	__le16 length;
3970 	u8 index;
3971 	u8 ct_window;
3972 	struct iwl_wipan_noa_descriptor descr0, descr1;
3973 	u8 reserved;
3974 } __packed;
3975 
3976 struct iwl_wipan_noa_notification {
3977 	u32 noa_active;
3978 	struct iwl_wipan_noa_attribute noa_attribute;
3979 } __packed;
3980 
3981 #endif				/* __iwl_commands_h__ */
3982