1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* 3 * Copyright (C) 2005-2014 Intel Corporation 4 */ 5 #include <linux/slab.h> 6 #include <net/mac80211.h> 7 8 #include "iwl-trans.h" 9 10 #include "dev.h" 11 #include "calib.h" 12 #include "agn.h" 13 14 /***************************************************************************** 15 * INIT calibrations framework 16 *****************************************************************************/ 17 18 /* Opaque calibration results */ 19 struct iwl_calib_result { 20 struct list_head list; 21 size_t cmd_len; 22 struct iwl_calib_cmd cmd; 23 }; 24 25 struct statistics_general_data { 26 u32 beacon_silence_rssi_a; 27 u32 beacon_silence_rssi_b; 28 u32 beacon_silence_rssi_c; 29 u32 beacon_energy_a; 30 u32 beacon_energy_b; 31 u32 beacon_energy_c; 32 }; 33 34 int iwl_send_calib_results(struct iwl_priv *priv) 35 { 36 struct iwl_host_cmd hcmd = { 37 .id = REPLY_PHY_CALIBRATION_CMD, 38 }; 39 struct iwl_calib_result *res; 40 41 list_for_each_entry(res, &priv->calib_results, list) { 42 int ret; 43 44 hcmd.len[0] = res->cmd_len; 45 hcmd.data[0] = &res->cmd; 46 hcmd.dataflags[0] = IWL_HCMD_DFL_NOCOPY; 47 ret = iwl_dvm_send_cmd(priv, &hcmd); 48 if (ret) { 49 IWL_ERR(priv, "Error %d on calib cmd %d\n", 50 ret, res->cmd.hdr.op_code); 51 return ret; 52 } 53 } 54 55 return 0; 56 } 57 58 int iwl_calib_set(struct iwl_priv *priv, 59 const struct iwl_calib_cmd *cmd, size_t len) 60 { 61 struct iwl_calib_result *res, *tmp; 62 63 if (check_sub_overflow(len, sizeof(*cmd), &len)) 64 return -ENOMEM; 65 66 res = kmalloc(struct_size(res, cmd.data, len), GFP_ATOMIC); 67 if (!res) 68 return -ENOMEM; 69 res->cmd = *cmd; 70 memcpy(res->cmd.data, cmd->data, len); 71 res->cmd_len = struct_size(cmd, data, len); 72 73 list_for_each_entry(tmp, &priv->calib_results, list) { 74 if (tmp->cmd.hdr.op_code == res->cmd.hdr.op_code) { 75 list_replace(&tmp->list, &res->list); 76 kfree(tmp); 77 return 0; 78 } 79 } 80 81 /* wasn't in list already */ 82 list_add_tail(&res->list, &priv->calib_results); 83 84 return 0; 85 } 86 87 void iwl_calib_free_results(struct iwl_priv *priv) 88 { 89 struct iwl_calib_result *res, *tmp; 90 91 list_for_each_entry_safe(res, tmp, &priv->calib_results, list) { 92 list_del(&res->list); 93 kfree(res); 94 } 95 } 96 97 /***************************************************************************** 98 * RUNTIME calibrations framework 99 *****************************************************************************/ 100 101 /* "false alarms" are signals that our DSP tries to lock onto, 102 * but then determines that they are either noise, or transmissions 103 * from a distant wireless network (also "noise", really) that get 104 * "stepped on" by stronger transmissions within our own network. 105 * This algorithm attempts to set a sensitivity level that is high 106 * enough to receive all of our own network traffic, but not so 107 * high that our DSP gets too busy trying to lock onto non-network 108 * activity/noise. */ 109 static int iwl_sens_energy_cck(struct iwl_priv *priv, 110 u32 norm_fa, 111 u32 rx_enable_time, 112 struct statistics_general_data *rx_info) 113 { 114 u32 max_nrg_cck = 0; 115 int i = 0; 116 u8 max_silence_rssi = 0; 117 u32 silence_ref = 0; 118 u8 silence_rssi_a = 0; 119 u8 silence_rssi_b = 0; 120 u8 silence_rssi_c = 0; 121 u32 val; 122 123 /* "false_alarms" values below are cross-multiplications to assess the 124 * numbers of false alarms within the measured period of actual Rx 125 * (Rx is off when we're txing), vs the min/max expected false alarms 126 * (some should be expected if rx is sensitive enough) in a 127 * hypothetical listening period of 200 time units (TU), 204.8 msec: 128 * 129 * MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time 130 * 131 * */ 132 u32 false_alarms = norm_fa * 200 * 1024; 133 u32 max_false_alarms = MAX_FA_CCK * rx_enable_time; 134 u32 min_false_alarms = MIN_FA_CCK * rx_enable_time; 135 struct iwl_sensitivity_data *data = NULL; 136 const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens; 137 138 data = &(priv->sensitivity_data); 139 140 data->nrg_auto_corr_silence_diff = 0; 141 142 /* Find max silence rssi among all 3 receivers. 143 * This is background noise, which may include transmissions from other 144 * networks, measured during silence before our network's beacon */ 145 silence_rssi_a = (u8)((rx_info->beacon_silence_rssi_a & 146 ALL_BAND_FILTER) >> 8); 147 silence_rssi_b = (u8)((rx_info->beacon_silence_rssi_b & 148 ALL_BAND_FILTER) >> 8); 149 silence_rssi_c = (u8)((rx_info->beacon_silence_rssi_c & 150 ALL_BAND_FILTER) >> 8); 151 152 val = max(silence_rssi_b, silence_rssi_c); 153 max_silence_rssi = max(silence_rssi_a, (u8) val); 154 155 /* Store silence rssi in 20-beacon history table */ 156 data->nrg_silence_rssi[data->nrg_silence_idx] = max_silence_rssi; 157 data->nrg_silence_idx++; 158 if (data->nrg_silence_idx >= NRG_NUM_PREV_STAT_L) 159 data->nrg_silence_idx = 0; 160 161 /* Find max silence rssi across 20 beacon history */ 162 for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) { 163 val = data->nrg_silence_rssi[i]; 164 silence_ref = max(silence_ref, val); 165 } 166 IWL_DEBUG_CALIB(priv, "silence a %u, b %u, c %u, 20-bcn max %u\n", 167 silence_rssi_a, silence_rssi_b, silence_rssi_c, 168 silence_ref); 169 170 /* Find max rx energy (min value!) among all 3 receivers, 171 * measured during beacon frame. 172 * Save it in 10-beacon history table. */ 173 i = data->nrg_energy_idx; 174 val = min(rx_info->beacon_energy_b, rx_info->beacon_energy_c); 175 data->nrg_value[i] = min(rx_info->beacon_energy_a, val); 176 177 data->nrg_energy_idx++; 178 if (data->nrg_energy_idx >= 10) 179 data->nrg_energy_idx = 0; 180 181 /* Find min rx energy (max value) across 10 beacon history. 182 * This is the minimum signal level that we want to receive well. 183 * Add backoff (margin so we don't miss slightly lower energy frames). 184 * This establishes an upper bound (min value) for energy threshold. */ 185 max_nrg_cck = data->nrg_value[0]; 186 for (i = 1; i < 10; i++) 187 max_nrg_cck = (u32) max(max_nrg_cck, (data->nrg_value[i])); 188 max_nrg_cck += 6; 189 190 IWL_DEBUG_CALIB(priv, "rx energy a %u, b %u, c %u, 10-bcn max/min %u\n", 191 rx_info->beacon_energy_a, rx_info->beacon_energy_b, 192 rx_info->beacon_energy_c, max_nrg_cck - 6); 193 194 /* Count number of consecutive beacons with fewer-than-desired 195 * false alarms. */ 196 if (false_alarms < min_false_alarms) 197 data->num_in_cck_no_fa++; 198 else 199 data->num_in_cck_no_fa = 0; 200 IWL_DEBUG_CALIB(priv, "consecutive bcns with few false alarms = %u\n", 201 data->num_in_cck_no_fa); 202 203 /* If we got too many false alarms this time, reduce sensitivity */ 204 if ((false_alarms > max_false_alarms) && 205 (data->auto_corr_cck > AUTO_CORR_MAX_TH_CCK)) { 206 IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u\n", 207 false_alarms, max_false_alarms); 208 IWL_DEBUG_CALIB(priv, "... reducing sensitivity\n"); 209 data->nrg_curr_state = IWL_FA_TOO_MANY; 210 /* Store for "fewer than desired" on later beacon */ 211 data->nrg_silence_ref = silence_ref; 212 213 /* increase energy threshold (reduce nrg value) 214 * to decrease sensitivity */ 215 data->nrg_th_cck = data->nrg_th_cck - NRG_STEP_CCK; 216 /* Else if we got fewer than desired, increase sensitivity */ 217 } else if (false_alarms < min_false_alarms) { 218 data->nrg_curr_state = IWL_FA_TOO_FEW; 219 220 /* Compare silence level with silence level for most recent 221 * healthy number or too many false alarms */ 222 data->nrg_auto_corr_silence_diff = (s32)data->nrg_silence_ref - 223 (s32)silence_ref; 224 225 IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u, silence diff %d\n", 226 false_alarms, min_false_alarms, 227 data->nrg_auto_corr_silence_diff); 228 229 /* Increase value to increase sensitivity, but only if: 230 * 1a) previous beacon did *not* have *too many* false alarms 231 * 1b) AND there's a significant difference in Rx levels 232 * from a previous beacon with too many, or healthy # FAs 233 * OR 2) We've seen a lot of beacons (100) with too few 234 * false alarms */ 235 if ((data->nrg_prev_state != IWL_FA_TOO_MANY) && 236 ((data->nrg_auto_corr_silence_diff > NRG_DIFF) || 237 (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) { 238 239 IWL_DEBUG_CALIB(priv, "... increasing sensitivity\n"); 240 /* Increase nrg value to increase sensitivity */ 241 val = data->nrg_th_cck + NRG_STEP_CCK; 242 data->nrg_th_cck = min((u32)ranges->min_nrg_cck, val); 243 } else { 244 IWL_DEBUG_CALIB(priv, "... but not changing sensitivity\n"); 245 } 246 247 /* Else we got a healthy number of false alarms, keep status quo */ 248 } else { 249 IWL_DEBUG_CALIB(priv, " FA in safe zone\n"); 250 data->nrg_curr_state = IWL_FA_GOOD_RANGE; 251 252 /* Store for use in "fewer than desired" with later beacon */ 253 data->nrg_silence_ref = silence_ref; 254 255 /* If previous beacon had too many false alarms, 256 * give it some extra margin by reducing sensitivity again 257 * (but don't go below measured energy of desired Rx) */ 258 if (data->nrg_prev_state == IWL_FA_TOO_MANY) { 259 IWL_DEBUG_CALIB(priv, "... increasing margin\n"); 260 if (data->nrg_th_cck > (max_nrg_cck + NRG_MARGIN)) 261 data->nrg_th_cck -= NRG_MARGIN; 262 else 263 data->nrg_th_cck = max_nrg_cck; 264 } 265 } 266 267 /* Make sure the energy threshold does not go above the measured 268 * energy of the desired Rx signals (reduced by backoff margin), 269 * or else we might start missing Rx frames. 270 * Lower value is higher energy, so we use max()! 271 */ 272 data->nrg_th_cck = max(max_nrg_cck, data->nrg_th_cck); 273 IWL_DEBUG_CALIB(priv, "new nrg_th_cck %u\n", data->nrg_th_cck); 274 275 data->nrg_prev_state = data->nrg_curr_state; 276 277 /* Auto-correlation CCK algorithm */ 278 if (false_alarms > min_false_alarms) { 279 280 /* increase auto_corr values to decrease sensitivity 281 * so the DSP won't be disturbed by the noise 282 */ 283 if (data->auto_corr_cck < AUTO_CORR_MAX_TH_CCK) 284 data->auto_corr_cck = AUTO_CORR_MAX_TH_CCK + 1; 285 else { 286 val = data->auto_corr_cck + AUTO_CORR_STEP_CCK; 287 data->auto_corr_cck = 288 min((u32)ranges->auto_corr_max_cck, val); 289 } 290 val = data->auto_corr_cck_mrc + AUTO_CORR_STEP_CCK; 291 data->auto_corr_cck_mrc = 292 min((u32)ranges->auto_corr_max_cck_mrc, val); 293 } else if ((false_alarms < min_false_alarms) && 294 ((data->nrg_auto_corr_silence_diff > NRG_DIFF) || 295 (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) { 296 297 /* Decrease auto_corr values to increase sensitivity */ 298 val = data->auto_corr_cck - AUTO_CORR_STEP_CCK; 299 data->auto_corr_cck = 300 max((u32)ranges->auto_corr_min_cck, val); 301 val = data->auto_corr_cck_mrc - AUTO_CORR_STEP_CCK; 302 data->auto_corr_cck_mrc = 303 max((u32)ranges->auto_corr_min_cck_mrc, val); 304 } 305 306 return 0; 307 } 308 309 310 static int iwl_sens_auto_corr_ofdm(struct iwl_priv *priv, 311 u32 norm_fa, 312 u32 rx_enable_time) 313 { 314 u32 val; 315 u32 false_alarms = norm_fa * 200 * 1024; 316 u32 max_false_alarms = MAX_FA_OFDM * rx_enable_time; 317 u32 min_false_alarms = MIN_FA_OFDM * rx_enable_time; 318 struct iwl_sensitivity_data *data = NULL; 319 const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens; 320 321 data = &(priv->sensitivity_data); 322 323 /* If we got too many false alarms this time, reduce sensitivity */ 324 if (false_alarms > max_false_alarms) { 325 326 IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u)\n", 327 false_alarms, max_false_alarms); 328 329 val = data->auto_corr_ofdm + AUTO_CORR_STEP_OFDM; 330 data->auto_corr_ofdm = 331 min((u32)ranges->auto_corr_max_ofdm, val); 332 333 val = data->auto_corr_ofdm_mrc + AUTO_CORR_STEP_OFDM; 334 data->auto_corr_ofdm_mrc = 335 min((u32)ranges->auto_corr_max_ofdm_mrc, val); 336 337 val = data->auto_corr_ofdm_x1 + AUTO_CORR_STEP_OFDM; 338 data->auto_corr_ofdm_x1 = 339 min((u32)ranges->auto_corr_max_ofdm_x1, val); 340 341 val = data->auto_corr_ofdm_mrc_x1 + AUTO_CORR_STEP_OFDM; 342 data->auto_corr_ofdm_mrc_x1 = 343 min((u32)ranges->auto_corr_max_ofdm_mrc_x1, val); 344 } 345 346 /* Else if we got fewer than desired, increase sensitivity */ 347 else if (false_alarms < min_false_alarms) { 348 349 IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u\n", 350 false_alarms, min_false_alarms); 351 352 val = data->auto_corr_ofdm - AUTO_CORR_STEP_OFDM; 353 data->auto_corr_ofdm = 354 max((u32)ranges->auto_corr_min_ofdm, val); 355 356 val = data->auto_corr_ofdm_mrc - AUTO_CORR_STEP_OFDM; 357 data->auto_corr_ofdm_mrc = 358 max((u32)ranges->auto_corr_min_ofdm_mrc, val); 359 360 val = data->auto_corr_ofdm_x1 - AUTO_CORR_STEP_OFDM; 361 data->auto_corr_ofdm_x1 = 362 max((u32)ranges->auto_corr_min_ofdm_x1, val); 363 364 val = data->auto_corr_ofdm_mrc_x1 - AUTO_CORR_STEP_OFDM; 365 data->auto_corr_ofdm_mrc_x1 = 366 max((u32)ranges->auto_corr_min_ofdm_mrc_x1, val); 367 } else { 368 IWL_DEBUG_CALIB(priv, "min FA %u < norm FA %u < max FA %u OK\n", 369 min_false_alarms, false_alarms, max_false_alarms); 370 } 371 return 0; 372 } 373 374 static void iwl_prepare_legacy_sensitivity_tbl(struct iwl_priv *priv, 375 struct iwl_sensitivity_data *data, 376 __le16 *tbl) 377 { 378 tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX] = 379 cpu_to_le16((u16)data->auto_corr_ofdm); 380 tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX] = 381 cpu_to_le16((u16)data->auto_corr_ofdm_mrc); 382 tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX] = 383 cpu_to_le16((u16)data->auto_corr_ofdm_x1); 384 tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX] = 385 cpu_to_le16((u16)data->auto_corr_ofdm_mrc_x1); 386 387 tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX] = 388 cpu_to_le16((u16)data->auto_corr_cck); 389 tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX] = 390 cpu_to_le16((u16)data->auto_corr_cck_mrc); 391 392 tbl[HD_MIN_ENERGY_CCK_DET_INDEX] = 393 cpu_to_le16((u16)data->nrg_th_cck); 394 tbl[HD_MIN_ENERGY_OFDM_DET_INDEX] = 395 cpu_to_le16((u16)data->nrg_th_ofdm); 396 397 tbl[HD_BARKER_CORR_TH_ADD_MIN_INDEX] = 398 cpu_to_le16(data->barker_corr_th_min); 399 tbl[HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX] = 400 cpu_to_le16(data->barker_corr_th_min_mrc); 401 tbl[HD_OFDM_ENERGY_TH_IN_INDEX] = 402 cpu_to_le16(data->nrg_th_cca); 403 404 IWL_DEBUG_CALIB(priv, "ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n", 405 data->auto_corr_ofdm, data->auto_corr_ofdm_mrc, 406 data->auto_corr_ofdm_x1, data->auto_corr_ofdm_mrc_x1, 407 data->nrg_th_ofdm); 408 409 IWL_DEBUG_CALIB(priv, "cck: ac %u mrc %u thresh %u\n", 410 data->auto_corr_cck, data->auto_corr_cck_mrc, 411 data->nrg_th_cck); 412 } 413 414 /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */ 415 static int iwl_sensitivity_write(struct iwl_priv *priv) 416 { 417 struct iwl_sensitivity_cmd cmd; 418 struct iwl_sensitivity_data *data = NULL; 419 struct iwl_host_cmd cmd_out = { 420 .id = SENSITIVITY_CMD, 421 .len = { sizeof(struct iwl_sensitivity_cmd), }, 422 .flags = CMD_ASYNC, 423 .data = { &cmd, }, 424 }; 425 426 data = &(priv->sensitivity_data); 427 428 memset(&cmd, 0, sizeof(cmd)); 429 430 iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.table[0]); 431 432 /* Update uCode's "work" table, and copy it to DSP */ 433 cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE; 434 435 /* Don't send command to uCode if nothing has changed */ 436 if (!memcmp(&cmd.table[0], &(priv->sensitivity_tbl[0]), 437 sizeof(u16)*HD_TABLE_SIZE)) { 438 IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n"); 439 return 0; 440 } 441 442 /* Copy table for comparison next time */ 443 memcpy(&(priv->sensitivity_tbl[0]), &(cmd.table[0]), 444 sizeof(u16)*HD_TABLE_SIZE); 445 446 return iwl_dvm_send_cmd(priv, &cmd_out); 447 } 448 449 /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */ 450 static int iwl_enhance_sensitivity_write(struct iwl_priv *priv) 451 { 452 struct iwl_enhance_sensitivity_cmd cmd; 453 struct iwl_sensitivity_data *data = NULL; 454 struct iwl_host_cmd cmd_out = { 455 .id = SENSITIVITY_CMD, 456 .len = { sizeof(struct iwl_enhance_sensitivity_cmd), }, 457 .flags = CMD_ASYNC, 458 .data = { &cmd, }, 459 }; 460 461 data = &(priv->sensitivity_data); 462 463 memset(&cmd, 0, sizeof(cmd)); 464 465 iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.enhance_table[0]); 466 467 if (priv->lib->hd_v2) { 468 cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX] = 469 HD_INA_NON_SQUARE_DET_OFDM_DATA_V2; 470 cmd.enhance_table[HD_INA_NON_SQUARE_DET_CCK_INDEX] = 471 HD_INA_NON_SQUARE_DET_CCK_DATA_V2; 472 cmd.enhance_table[HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX] = 473 HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V2; 474 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX] = 475 HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V2; 476 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] = 477 HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2; 478 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX] = 479 HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V2; 480 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX] = 481 HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V2; 482 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX] = 483 HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V2; 484 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] = 485 HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2; 486 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_INDEX] = 487 HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V2; 488 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX] = 489 HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V2; 490 } else { 491 cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX] = 492 HD_INA_NON_SQUARE_DET_OFDM_DATA_V1; 493 cmd.enhance_table[HD_INA_NON_SQUARE_DET_CCK_INDEX] = 494 HD_INA_NON_SQUARE_DET_CCK_DATA_V1; 495 cmd.enhance_table[HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX] = 496 HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V1; 497 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX] = 498 HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V1; 499 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] = 500 HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1; 501 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX] = 502 HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V1; 503 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX] = 504 HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V1; 505 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX] = 506 HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V1; 507 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] = 508 HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1; 509 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_INDEX] = 510 HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V1; 511 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX] = 512 HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V1; 513 } 514 515 /* Update uCode's "work" table, and copy it to DSP */ 516 cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE; 517 518 /* Don't send command to uCode if nothing has changed */ 519 if (!memcmp(&cmd.enhance_table[0], &(priv->sensitivity_tbl[0]), 520 sizeof(u16)*HD_TABLE_SIZE) && 521 !memcmp(&cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX], 522 &(priv->enhance_sensitivity_tbl[0]), 523 sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES)) { 524 IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n"); 525 return 0; 526 } 527 528 /* Copy table for comparison next time */ 529 memcpy(&(priv->sensitivity_tbl[0]), &(cmd.enhance_table[0]), 530 sizeof(u16)*HD_TABLE_SIZE); 531 memcpy(&(priv->enhance_sensitivity_tbl[0]), 532 &(cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX]), 533 sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES); 534 535 return iwl_dvm_send_cmd(priv, &cmd_out); 536 } 537 538 void iwl_init_sensitivity(struct iwl_priv *priv) 539 { 540 int ret = 0; 541 int i; 542 struct iwl_sensitivity_data *data = NULL; 543 const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens; 544 545 if (priv->calib_disabled & IWL_SENSITIVITY_CALIB_DISABLED) 546 return; 547 548 IWL_DEBUG_CALIB(priv, "Start iwl_init_sensitivity\n"); 549 550 /* Clear driver's sensitivity algo data */ 551 data = &(priv->sensitivity_data); 552 553 if (ranges == NULL) 554 return; 555 556 memset(data, 0, sizeof(struct iwl_sensitivity_data)); 557 558 data->num_in_cck_no_fa = 0; 559 data->nrg_curr_state = IWL_FA_TOO_MANY; 560 data->nrg_prev_state = IWL_FA_TOO_MANY; 561 data->nrg_silence_ref = 0; 562 data->nrg_silence_idx = 0; 563 data->nrg_energy_idx = 0; 564 565 for (i = 0; i < 10; i++) 566 data->nrg_value[i] = 0; 567 568 for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) 569 data->nrg_silence_rssi[i] = 0; 570 571 data->auto_corr_ofdm = ranges->auto_corr_min_ofdm; 572 data->auto_corr_ofdm_mrc = ranges->auto_corr_min_ofdm_mrc; 573 data->auto_corr_ofdm_x1 = ranges->auto_corr_min_ofdm_x1; 574 data->auto_corr_ofdm_mrc_x1 = ranges->auto_corr_min_ofdm_mrc_x1; 575 data->auto_corr_cck = AUTO_CORR_CCK_MIN_VAL_DEF; 576 data->auto_corr_cck_mrc = ranges->auto_corr_min_cck_mrc; 577 data->nrg_th_cck = ranges->nrg_th_cck; 578 data->nrg_th_ofdm = ranges->nrg_th_ofdm; 579 data->barker_corr_th_min = ranges->barker_corr_th_min; 580 data->barker_corr_th_min_mrc = ranges->barker_corr_th_min_mrc; 581 data->nrg_th_cca = ranges->nrg_th_cca; 582 583 data->last_bad_plcp_cnt_ofdm = 0; 584 data->last_fa_cnt_ofdm = 0; 585 data->last_bad_plcp_cnt_cck = 0; 586 data->last_fa_cnt_cck = 0; 587 588 if (priv->fw->enhance_sensitivity_table) 589 ret |= iwl_enhance_sensitivity_write(priv); 590 else 591 ret |= iwl_sensitivity_write(priv); 592 IWL_DEBUG_CALIB(priv, "<<return 0x%X\n", ret); 593 } 594 595 void iwl_sensitivity_calibration(struct iwl_priv *priv) 596 { 597 u32 rx_enable_time; 598 u32 fa_cck; 599 u32 fa_ofdm; 600 u32 bad_plcp_cck; 601 u32 bad_plcp_ofdm; 602 u32 norm_fa_ofdm; 603 u32 norm_fa_cck; 604 struct iwl_sensitivity_data *data = NULL; 605 struct statistics_rx_non_phy *rx_info; 606 struct statistics_rx_phy *ofdm, *cck; 607 struct statistics_general_data statis; 608 609 if (priv->calib_disabled & IWL_SENSITIVITY_CALIB_DISABLED) 610 return; 611 612 data = &(priv->sensitivity_data); 613 614 if (!iwl_is_any_associated(priv)) { 615 IWL_DEBUG_CALIB(priv, "<< - not associated\n"); 616 return; 617 } 618 619 spin_lock_bh(&priv->statistics.lock); 620 rx_info = &priv->statistics.rx_non_phy; 621 ofdm = &priv->statistics.rx_ofdm; 622 cck = &priv->statistics.rx_cck; 623 if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) { 624 IWL_DEBUG_CALIB(priv, "<< invalid data.\n"); 625 spin_unlock_bh(&priv->statistics.lock); 626 return; 627 } 628 629 /* Extract Statistics: */ 630 rx_enable_time = le32_to_cpu(rx_info->channel_load); 631 fa_cck = le32_to_cpu(cck->false_alarm_cnt); 632 fa_ofdm = le32_to_cpu(ofdm->false_alarm_cnt); 633 bad_plcp_cck = le32_to_cpu(cck->plcp_err); 634 bad_plcp_ofdm = le32_to_cpu(ofdm->plcp_err); 635 636 statis.beacon_silence_rssi_a = 637 le32_to_cpu(rx_info->beacon_silence_rssi_a); 638 statis.beacon_silence_rssi_b = 639 le32_to_cpu(rx_info->beacon_silence_rssi_b); 640 statis.beacon_silence_rssi_c = 641 le32_to_cpu(rx_info->beacon_silence_rssi_c); 642 statis.beacon_energy_a = 643 le32_to_cpu(rx_info->beacon_energy_a); 644 statis.beacon_energy_b = 645 le32_to_cpu(rx_info->beacon_energy_b); 646 statis.beacon_energy_c = 647 le32_to_cpu(rx_info->beacon_energy_c); 648 649 spin_unlock_bh(&priv->statistics.lock); 650 651 IWL_DEBUG_CALIB(priv, "rx_enable_time = %u usecs\n", rx_enable_time); 652 653 if (!rx_enable_time) { 654 IWL_DEBUG_CALIB(priv, "<< RX Enable Time == 0!\n"); 655 return; 656 } 657 658 /* These statistics increase monotonically, and do not reset 659 * at each beacon. Calculate difference from last value, or just 660 * use the new statistics value if it has reset or wrapped around. */ 661 if (data->last_bad_plcp_cnt_cck > bad_plcp_cck) 662 data->last_bad_plcp_cnt_cck = bad_plcp_cck; 663 else { 664 bad_plcp_cck -= data->last_bad_plcp_cnt_cck; 665 data->last_bad_plcp_cnt_cck += bad_plcp_cck; 666 } 667 668 if (data->last_bad_plcp_cnt_ofdm > bad_plcp_ofdm) 669 data->last_bad_plcp_cnt_ofdm = bad_plcp_ofdm; 670 else { 671 bad_plcp_ofdm -= data->last_bad_plcp_cnt_ofdm; 672 data->last_bad_plcp_cnt_ofdm += bad_plcp_ofdm; 673 } 674 675 if (data->last_fa_cnt_ofdm > fa_ofdm) 676 data->last_fa_cnt_ofdm = fa_ofdm; 677 else { 678 fa_ofdm -= data->last_fa_cnt_ofdm; 679 data->last_fa_cnt_ofdm += fa_ofdm; 680 } 681 682 if (data->last_fa_cnt_cck > fa_cck) 683 data->last_fa_cnt_cck = fa_cck; 684 else { 685 fa_cck -= data->last_fa_cnt_cck; 686 data->last_fa_cnt_cck += fa_cck; 687 } 688 689 /* Total aborted signal locks */ 690 norm_fa_ofdm = fa_ofdm + bad_plcp_ofdm; 691 norm_fa_cck = fa_cck + bad_plcp_cck; 692 693 IWL_DEBUG_CALIB(priv, "cck: fa %u badp %u ofdm: fa %u badp %u\n", fa_cck, 694 bad_plcp_cck, fa_ofdm, bad_plcp_ofdm); 695 696 iwl_sens_auto_corr_ofdm(priv, norm_fa_ofdm, rx_enable_time); 697 iwl_sens_energy_cck(priv, norm_fa_cck, rx_enable_time, &statis); 698 if (priv->fw->enhance_sensitivity_table) 699 iwl_enhance_sensitivity_write(priv); 700 else 701 iwl_sensitivity_write(priv); 702 } 703 704 static inline u8 find_first_chain(u8 mask) 705 { 706 if (mask & ANT_A) 707 return CHAIN_A; 708 if (mask & ANT_B) 709 return CHAIN_B; 710 return CHAIN_C; 711 } 712 713 /* 714 * Run disconnected antenna algorithm to find out which antennas are 715 * disconnected. 716 */ 717 static void iwl_find_disconn_antenna(struct iwl_priv *priv, u32* average_sig, 718 struct iwl_chain_noise_data *data) 719 { 720 u32 active_chains = 0; 721 u32 max_average_sig; 722 u16 max_average_sig_antenna_i; 723 u8 num_tx_chains; 724 u8 first_chain; 725 u16 i = 0; 726 727 average_sig[0] = data->chain_signal_a / IWL_CAL_NUM_BEACONS; 728 average_sig[1] = data->chain_signal_b / IWL_CAL_NUM_BEACONS; 729 average_sig[2] = data->chain_signal_c / IWL_CAL_NUM_BEACONS; 730 731 if (average_sig[0] >= average_sig[1]) { 732 max_average_sig = average_sig[0]; 733 max_average_sig_antenna_i = 0; 734 active_chains = (1 << max_average_sig_antenna_i); 735 } else { 736 max_average_sig = average_sig[1]; 737 max_average_sig_antenna_i = 1; 738 active_chains = (1 << max_average_sig_antenna_i); 739 } 740 741 if (average_sig[2] >= max_average_sig) { 742 max_average_sig = average_sig[2]; 743 max_average_sig_antenna_i = 2; 744 active_chains = (1 << max_average_sig_antenna_i); 745 } 746 747 IWL_DEBUG_CALIB(priv, "average_sig: a %d b %d c %d\n", 748 average_sig[0], average_sig[1], average_sig[2]); 749 IWL_DEBUG_CALIB(priv, "max_average_sig = %d, antenna %d\n", 750 max_average_sig, max_average_sig_antenna_i); 751 752 /* Compare signal strengths for all 3 receivers. */ 753 for (i = 0; i < NUM_RX_CHAINS; i++) { 754 if (i != max_average_sig_antenna_i) { 755 s32 rssi_delta = (max_average_sig - average_sig[i]); 756 757 /* If signal is very weak, compared with 758 * strongest, mark it as disconnected. */ 759 if (rssi_delta > MAXIMUM_ALLOWED_PATHLOSS) 760 data->disconn_array[i] = 1; 761 else 762 active_chains |= (1 << i); 763 IWL_DEBUG_CALIB(priv, "i = %d rssiDelta = %d " 764 "disconn_array[i] = %d\n", 765 i, rssi_delta, data->disconn_array[i]); 766 } 767 } 768 769 /* 770 * The above algorithm sometimes fails when the ucode 771 * reports 0 for all chains. It's not clear why that 772 * happens to start with, but it is then causing trouble 773 * because this can make us enable more chains than the 774 * hardware really has. 775 * 776 * To be safe, simply mask out any chains that we know 777 * are not on the device. 778 */ 779 active_chains &= priv->nvm_data->valid_rx_ant; 780 781 num_tx_chains = 0; 782 for (i = 0; i < NUM_RX_CHAINS; i++) { 783 /* loops on all the bits of 784 * priv->hw_setting.valid_tx_ant */ 785 u8 ant_msk = (1 << i); 786 if (!(priv->nvm_data->valid_tx_ant & ant_msk)) 787 continue; 788 789 num_tx_chains++; 790 if (data->disconn_array[i] == 0) 791 /* there is a Tx antenna connected */ 792 break; 793 if (num_tx_chains == priv->hw_params.tx_chains_num && 794 data->disconn_array[i]) { 795 /* 796 * If all chains are disconnected 797 * connect the first valid tx chain 798 */ 799 first_chain = 800 find_first_chain(priv->nvm_data->valid_tx_ant); 801 data->disconn_array[first_chain] = 0; 802 active_chains |= BIT(first_chain); 803 IWL_DEBUG_CALIB(priv, 804 "All Tx chains are disconnected W/A - declare %d as connected\n", 805 first_chain); 806 break; 807 } 808 } 809 810 if (active_chains != priv->nvm_data->valid_rx_ant && 811 active_chains != priv->chain_noise_data.active_chains) 812 IWL_DEBUG_CALIB(priv, 813 "Detected that not all antennas are connected! " 814 "Connected: %#x, valid: %#x.\n", 815 active_chains, 816 priv->nvm_data->valid_rx_ant); 817 818 /* Save for use within RXON, TX, SCAN commands, etc. */ 819 data->active_chains = active_chains; 820 IWL_DEBUG_CALIB(priv, "active_chains (bitwise) = 0x%x\n", 821 active_chains); 822 } 823 824 static void iwlagn_gain_computation(struct iwl_priv *priv, 825 u32 average_noise[NUM_RX_CHAINS], 826 u8 default_chain) 827 { 828 int i; 829 s32 delta_g; 830 struct iwl_chain_noise_data *data = &priv->chain_noise_data; 831 832 /* 833 * Find Gain Code for the chains based on "default chain" 834 */ 835 for (i = default_chain + 1; i < NUM_RX_CHAINS; i++) { 836 if ((data->disconn_array[i])) { 837 data->delta_gain_code[i] = 0; 838 continue; 839 } 840 841 delta_g = (priv->lib->chain_noise_scale * 842 ((s32)average_noise[default_chain] - 843 (s32)average_noise[i])) / 1500; 844 845 /* bound gain by 2 bits value max, 3rd bit is sign */ 846 data->delta_gain_code[i] = 847 min(abs(delta_g), CHAIN_NOISE_MAX_DELTA_GAIN_CODE); 848 849 if (delta_g < 0) 850 /* 851 * set negative sign ... 852 * note to Intel developers: This is uCode API format, 853 * not the format of any internal device registers. 854 * Do not change this format for e.g. 6050 or similar 855 * devices. Change format only if more resolution 856 * (i.e. more than 2 bits magnitude) is needed. 857 */ 858 data->delta_gain_code[i] |= (1 << 2); 859 } 860 861 IWL_DEBUG_CALIB(priv, "Delta gains: ANT_B = %d ANT_C = %d\n", 862 data->delta_gain_code[1], data->delta_gain_code[2]); 863 864 if (!data->radio_write) { 865 struct iwl_calib_chain_noise_gain_cmd cmd; 866 867 memset(&cmd, 0, sizeof(cmd)); 868 869 iwl_set_calib_hdr(&cmd.hdr, 870 priv->phy_calib_chain_noise_gain_cmd); 871 cmd.delta_gain_1 = data->delta_gain_code[1]; 872 cmd.delta_gain_2 = data->delta_gain_code[2]; 873 iwl_dvm_send_cmd_pdu(priv, REPLY_PHY_CALIBRATION_CMD, 874 CMD_ASYNC, sizeof(cmd), &cmd); 875 876 data->radio_write = 1; 877 data->state = IWL_CHAIN_NOISE_CALIBRATED; 878 } 879 } 880 881 /* 882 * Accumulate 16 beacons of signal and noise statistics for each of 883 * 3 receivers/antennas/rx-chains, then figure out: 884 * 1) Which antennas are connected. 885 * 2) Differential rx gain settings to balance the 3 receivers. 886 */ 887 void iwl_chain_noise_calibration(struct iwl_priv *priv) 888 { 889 struct iwl_chain_noise_data *data = NULL; 890 891 u32 chain_noise_a; 892 u32 chain_noise_b; 893 u32 chain_noise_c; 894 u32 chain_sig_a; 895 u32 chain_sig_b; 896 u32 chain_sig_c; 897 u32 average_sig[NUM_RX_CHAINS] = {INITIALIZATION_VALUE}; 898 u32 average_noise[NUM_RX_CHAINS] = {INITIALIZATION_VALUE}; 899 u32 min_average_noise = MIN_AVERAGE_NOISE_MAX_VALUE; 900 u16 min_average_noise_antenna_i = INITIALIZATION_VALUE; 901 u16 i = 0; 902 u16 rxon_chnum = INITIALIZATION_VALUE; 903 u16 stat_chnum = INITIALIZATION_VALUE; 904 u8 rxon_band24; 905 u8 stat_band24; 906 struct statistics_rx_non_phy *rx_info; 907 908 /* 909 * MULTI-FIXME: 910 * When we support multiple interfaces on different channels, 911 * this must be modified/fixed. 912 */ 913 struct iwl_rxon_context *ctx = &priv->contexts[IWL_RXON_CTX_BSS]; 914 915 if (priv->calib_disabled & IWL_CHAIN_NOISE_CALIB_DISABLED) 916 return; 917 918 data = &(priv->chain_noise_data); 919 920 /* 921 * Accumulate just the first "chain_noise_num_beacons" after 922 * the first association, then we're done forever. 923 */ 924 if (data->state != IWL_CHAIN_NOISE_ACCUMULATE) { 925 if (data->state == IWL_CHAIN_NOISE_ALIVE) 926 IWL_DEBUG_CALIB(priv, "Wait for noise calib reset\n"); 927 return; 928 } 929 930 spin_lock_bh(&priv->statistics.lock); 931 932 rx_info = &priv->statistics.rx_non_phy; 933 934 if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) { 935 IWL_DEBUG_CALIB(priv, " << Interference data unavailable\n"); 936 spin_unlock_bh(&priv->statistics.lock); 937 return; 938 } 939 940 rxon_band24 = !!(ctx->staging.flags & RXON_FLG_BAND_24G_MSK); 941 rxon_chnum = le16_to_cpu(ctx->staging.channel); 942 stat_band24 = 943 !!(priv->statistics.flag & STATISTICS_REPLY_FLG_BAND_24G_MSK); 944 stat_chnum = le32_to_cpu(priv->statistics.flag) >> 16; 945 946 /* Make sure we accumulate data for just the associated channel 947 * (even if scanning). */ 948 if ((rxon_chnum != stat_chnum) || (rxon_band24 != stat_band24)) { 949 IWL_DEBUG_CALIB(priv, "Stats not from chan=%d, band24=%d\n", 950 rxon_chnum, rxon_band24); 951 spin_unlock_bh(&priv->statistics.lock); 952 return; 953 } 954 955 /* 956 * Accumulate beacon statistics values across 957 * "chain_noise_num_beacons" 958 */ 959 chain_noise_a = le32_to_cpu(rx_info->beacon_silence_rssi_a) & 960 IN_BAND_FILTER; 961 chain_noise_b = le32_to_cpu(rx_info->beacon_silence_rssi_b) & 962 IN_BAND_FILTER; 963 chain_noise_c = le32_to_cpu(rx_info->beacon_silence_rssi_c) & 964 IN_BAND_FILTER; 965 966 chain_sig_a = le32_to_cpu(rx_info->beacon_rssi_a) & IN_BAND_FILTER; 967 chain_sig_b = le32_to_cpu(rx_info->beacon_rssi_b) & IN_BAND_FILTER; 968 chain_sig_c = le32_to_cpu(rx_info->beacon_rssi_c) & IN_BAND_FILTER; 969 970 spin_unlock_bh(&priv->statistics.lock); 971 972 data->beacon_count++; 973 974 data->chain_noise_a = (chain_noise_a + data->chain_noise_a); 975 data->chain_noise_b = (chain_noise_b + data->chain_noise_b); 976 data->chain_noise_c = (chain_noise_c + data->chain_noise_c); 977 978 data->chain_signal_a = (chain_sig_a + data->chain_signal_a); 979 data->chain_signal_b = (chain_sig_b + data->chain_signal_b); 980 data->chain_signal_c = (chain_sig_c + data->chain_signal_c); 981 982 IWL_DEBUG_CALIB(priv, "chan=%d, band24=%d, beacon=%d\n", 983 rxon_chnum, rxon_band24, data->beacon_count); 984 IWL_DEBUG_CALIB(priv, "chain_sig: a %d b %d c %d\n", 985 chain_sig_a, chain_sig_b, chain_sig_c); 986 IWL_DEBUG_CALIB(priv, "chain_noise: a %d b %d c %d\n", 987 chain_noise_a, chain_noise_b, chain_noise_c); 988 989 /* If this is the "chain_noise_num_beacons", determine: 990 * 1) Disconnected antennas (using signal strengths) 991 * 2) Differential gain (using silence noise) to balance receivers */ 992 if (data->beacon_count != IWL_CAL_NUM_BEACONS) 993 return; 994 995 /* Analyze signal for disconnected antenna */ 996 if (priv->lib->bt_params && 997 priv->lib->bt_params->advanced_bt_coexist) { 998 /* Disable disconnected antenna algorithm for advanced 999 bt coex, assuming valid antennas are connected */ 1000 data->active_chains = priv->nvm_data->valid_rx_ant; 1001 for (i = 0; i < NUM_RX_CHAINS; i++) 1002 if (!(data->active_chains & (1<<i))) 1003 data->disconn_array[i] = 1; 1004 } else 1005 iwl_find_disconn_antenna(priv, average_sig, data); 1006 1007 /* Analyze noise for rx balance */ 1008 average_noise[0] = data->chain_noise_a / IWL_CAL_NUM_BEACONS; 1009 average_noise[1] = data->chain_noise_b / IWL_CAL_NUM_BEACONS; 1010 average_noise[2] = data->chain_noise_c / IWL_CAL_NUM_BEACONS; 1011 1012 for (i = 0; i < NUM_RX_CHAINS; i++) { 1013 if (!(data->disconn_array[i]) && 1014 (average_noise[i] <= min_average_noise)) { 1015 /* This means that chain i is active and has 1016 * lower noise values so far: */ 1017 min_average_noise = average_noise[i]; 1018 min_average_noise_antenna_i = i; 1019 } 1020 } 1021 1022 IWL_DEBUG_CALIB(priv, "average_noise: a %d b %d c %d\n", 1023 average_noise[0], average_noise[1], 1024 average_noise[2]); 1025 1026 IWL_DEBUG_CALIB(priv, "min_average_noise = %d, antenna %d\n", 1027 min_average_noise, min_average_noise_antenna_i); 1028 1029 iwlagn_gain_computation( 1030 priv, average_noise, 1031 find_first_chain(priv->nvm_data->valid_rx_ant)); 1032 1033 /* Some power changes may have been made during the calibration. 1034 * Update and commit the RXON 1035 */ 1036 iwl_update_chain_flags(priv); 1037 1038 data->state = IWL_CHAIN_NOISE_DONE; 1039 iwl_power_update_mode(priv, false); 1040 } 1041 1042 void iwl_reset_run_time_calib(struct iwl_priv *priv) 1043 { 1044 int i; 1045 memset(&(priv->sensitivity_data), 0, 1046 sizeof(struct iwl_sensitivity_data)); 1047 memset(&(priv->chain_noise_data), 0, 1048 sizeof(struct iwl_chain_noise_data)); 1049 for (i = 0; i < NUM_RX_CHAINS; i++) 1050 priv->chain_noise_data.delta_gain_code[i] = 1051 CHAIN_NOISE_DELTA_GAIN_INIT_VAL; 1052 1053 /* Ask for statistics now, the uCode will send notification 1054 * periodically after association */ 1055 iwl_send_statistics_request(priv, CMD_ASYNC, true); 1056 } 1057