1 /****************************************************************************** 2 * 3 * This file is provided under a dual BSD/GPLv2 license. When using or 4 * redistributing this file, you may do so under either license. 5 * 6 * GPL LICENSE SUMMARY 7 * 8 * Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved. 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of version 2 of the GNU General Public License as 12 * published by the Free Software Foundation. 13 * 14 * This program is distributed in the hope that it will be useful, but 15 * WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 17 * General Public License for more details. 18 * 19 * The full GNU General Public License is included in this distribution 20 * in the file called COPYING. 21 * 22 * Contact Information: 23 * Intel Linux Wireless <linuxwifi@intel.com> 24 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 25 * 26 * BSD LICENSE 27 * 28 * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved. 29 * All rights reserved. 30 * 31 * Redistribution and use in source and binary forms, with or without 32 * modification, are permitted provided that the following conditions 33 * are met: 34 * 35 * * Redistributions of source code must retain the above copyright 36 * notice, this list of conditions and the following disclaimer. 37 * * Redistributions in binary form must reproduce the above copyright 38 * notice, this list of conditions and the following disclaimer in 39 * the documentation and/or other materials provided with the 40 * distribution. 41 * * Neither the name Intel Corporation nor the names of its 42 * contributors may be used to endorse or promote products derived 43 * from this software without specific prior written permission. 44 * 45 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 46 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 47 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 48 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 49 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 50 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 51 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 52 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 53 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 54 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 55 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 56 *****************************************************************************/ 57 58 #include <linux/slab.h> 59 #include <net/mac80211.h> 60 61 #include "iwl-trans.h" 62 63 #include "dev.h" 64 #include "calib.h" 65 #include "agn.h" 66 67 /***************************************************************************** 68 * INIT calibrations framework 69 *****************************************************************************/ 70 71 /* Opaque calibration results */ 72 struct iwl_calib_result { 73 struct list_head list; 74 size_t cmd_len; 75 struct iwl_calib_hdr hdr; 76 /* data follows */ 77 }; 78 79 struct statistics_general_data { 80 u32 beacon_silence_rssi_a; 81 u32 beacon_silence_rssi_b; 82 u32 beacon_silence_rssi_c; 83 u32 beacon_energy_a; 84 u32 beacon_energy_b; 85 u32 beacon_energy_c; 86 }; 87 88 int iwl_send_calib_results(struct iwl_priv *priv) 89 { 90 struct iwl_host_cmd hcmd = { 91 .id = REPLY_PHY_CALIBRATION_CMD, 92 }; 93 struct iwl_calib_result *res; 94 95 list_for_each_entry(res, &priv->calib_results, list) { 96 int ret; 97 98 hcmd.len[0] = res->cmd_len; 99 hcmd.data[0] = &res->hdr; 100 hcmd.dataflags[0] = IWL_HCMD_DFL_NOCOPY; 101 ret = iwl_dvm_send_cmd(priv, &hcmd); 102 if (ret) { 103 IWL_ERR(priv, "Error %d on calib cmd %d\n", 104 ret, res->hdr.op_code); 105 return ret; 106 } 107 } 108 109 return 0; 110 } 111 112 int iwl_calib_set(struct iwl_priv *priv, 113 const struct iwl_calib_hdr *cmd, int len) 114 { 115 struct iwl_calib_result *res, *tmp; 116 117 res = kmalloc(sizeof(*res) + len - sizeof(struct iwl_calib_hdr), 118 GFP_ATOMIC); 119 if (!res) 120 return -ENOMEM; 121 memcpy(&res->hdr, cmd, len); 122 res->cmd_len = len; 123 124 list_for_each_entry(tmp, &priv->calib_results, list) { 125 if (tmp->hdr.op_code == res->hdr.op_code) { 126 list_replace(&tmp->list, &res->list); 127 kfree(tmp); 128 return 0; 129 } 130 } 131 132 /* wasn't in list already */ 133 list_add_tail(&res->list, &priv->calib_results); 134 135 return 0; 136 } 137 138 void iwl_calib_free_results(struct iwl_priv *priv) 139 { 140 struct iwl_calib_result *res, *tmp; 141 142 list_for_each_entry_safe(res, tmp, &priv->calib_results, list) { 143 list_del(&res->list); 144 kfree(res); 145 } 146 } 147 148 /***************************************************************************** 149 * RUNTIME calibrations framework 150 *****************************************************************************/ 151 152 /* "false alarms" are signals that our DSP tries to lock onto, 153 * but then determines that they are either noise, or transmissions 154 * from a distant wireless network (also "noise", really) that get 155 * "stepped on" by stronger transmissions within our own network. 156 * This algorithm attempts to set a sensitivity level that is high 157 * enough to receive all of our own network traffic, but not so 158 * high that our DSP gets too busy trying to lock onto non-network 159 * activity/noise. */ 160 static int iwl_sens_energy_cck(struct iwl_priv *priv, 161 u32 norm_fa, 162 u32 rx_enable_time, 163 struct statistics_general_data *rx_info) 164 { 165 u32 max_nrg_cck = 0; 166 int i = 0; 167 u8 max_silence_rssi = 0; 168 u32 silence_ref = 0; 169 u8 silence_rssi_a = 0; 170 u8 silence_rssi_b = 0; 171 u8 silence_rssi_c = 0; 172 u32 val; 173 174 /* "false_alarms" values below are cross-multiplications to assess the 175 * numbers of false alarms within the measured period of actual Rx 176 * (Rx is off when we're txing), vs the min/max expected false alarms 177 * (some should be expected if rx is sensitive enough) in a 178 * hypothetical listening period of 200 time units (TU), 204.8 msec: 179 * 180 * MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time 181 * 182 * */ 183 u32 false_alarms = norm_fa * 200 * 1024; 184 u32 max_false_alarms = MAX_FA_CCK * rx_enable_time; 185 u32 min_false_alarms = MIN_FA_CCK * rx_enable_time; 186 struct iwl_sensitivity_data *data = NULL; 187 const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens; 188 189 data = &(priv->sensitivity_data); 190 191 data->nrg_auto_corr_silence_diff = 0; 192 193 /* Find max silence rssi among all 3 receivers. 194 * This is background noise, which may include transmissions from other 195 * networks, measured during silence before our network's beacon */ 196 silence_rssi_a = (u8)((rx_info->beacon_silence_rssi_a & 197 ALL_BAND_FILTER) >> 8); 198 silence_rssi_b = (u8)((rx_info->beacon_silence_rssi_b & 199 ALL_BAND_FILTER) >> 8); 200 silence_rssi_c = (u8)((rx_info->beacon_silence_rssi_c & 201 ALL_BAND_FILTER) >> 8); 202 203 val = max(silence_rssi_b, silence_rssi_c); 204 max_silence_rssi = max(silence_rssi_a, (u8) val); 205 206 /* Store silence rssi in 20-beacon history table */ 207 data->nrg_silence_rssi[data->nrg_silence_idx] = max_silence_rssi; 208 data->nrg_silence_idx++; 209 if (data->nrg_silence_idx >= NRG_NUM_PREV_STAT_L) 210 data->nrg_silence_idx = 0; 211 212 /* Find max silence rssi across 20 beacon history */ 213 for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) { 214 val = data->nrg_silence_rssi[i]; 215 silence_ref = max(silence_ref, val); 216 } 217 IWL_DEBUG_CALIB(priv, "silence a %u, b %u, c %u, 20-bcn max %u\n", 218 silence_rssi_a, silence_rssi_b, silence_rssi_c, 219 silence_ref); 220 221 /* Find max rx energy (min value!) among all 3 receivers, 222 * measured during beacon frame. 223 * Save it in 10-beacon history table. */ 224 i = data->nrg_energy_idx; 225 val = min(rx_info->beacon_energy_b, rx_info->beacon_energy_c); 226 data->nrg_value[i] = min(rx_info->beacon_energy_a, val); 227 228 data->nrg_energy_idx++; 229 if (data->nrg_energy_idx >= 10) 230 data->nrg_energy_idx = 0; 231 232 /* Find min rx energy (max value) across 10 beacon history. 233 * This is the minimum signal level that we want to receive well. 234 * Add backoff (margin so we don't miss slightly lower energy frames). 235 * This establishes an upper bound (min value) for energy threshold. */ 236 max_nrg_cck = data->nrg_value[0]; 237 for (i = 1; i < 10; i++) 238 max_nrg_cck = (u32) max(max_nrg_cck, (data->nrg_value[i])); 239 max_nrg_cck += 6; 240 241 IWL_DEBUG_CALIB(priv, "rx energy a %u, b %u, c %u, 10-bcn max/min %u\n", 242 rx_info->beacon_energy_a, rx_info->beacon_energy_b, 243 rx_info->beacon_energy_c, max_nrg_cck - 6); 244 245 /* Count number of consecutive beacons with fewer-than-desired 246 * false alarms. */ 247 if (false_alarms < min_false_alarms) 248 data->num_in_cck_no_fa++; 249 else 250 data->num_in_cck_no_fa = 0; 251 IWL_DEBUG_CALIB(priv, "consecutive bcns with few false alarms = %u\n", 252 data->num_in_cck_no_fa); 253 254 /* If we got too many false alarms this time, reduce sensitivity */ 255 if ((false_alarms > max_false_alarms) && 256 (data->auto_corr_cck > AUTO_CORR_MAX_TH_CCK)) { 257 IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u\n", 258 false_alarms, max_false_alarms); 259 IWL_DEBUG_CALIB(priv, "... reducing sensitivity\n"); 260 data->nrg_curr_state = IWL_FA_TOO_MANY; 261 /* Store for "fewer than desired" on later beacon */ 262 data->nrg_silence_ref = silence_ref; 263 264 /* increase energy threshold (reduce nrg value) 265 * to decrease sensitivity */ 266 data->nrg_th_cck = data->nrg_th_cck - NRG_STEP_CCK; 267 /* Else if we got fewer than desired, increase sensitivity */ 268 } else if (false_alarms < min_false_alarms) { 269 data->nrg_curr_state = IWL_FA_TOO_FEW; 270 271 /* Compare silence level with silence level for most recent 272 * healthy number or too many false alarms */ 273 data->nrg_auto_corr_silence_diff = (s32)data->nrg_silence_ref - 274 (s32)silence_ref; 275 276 IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u, silence diff %d\n", 277 false_alarms, min_false_alarms, 278 data->nrg_auto_corr_silence_diff); 279 280 /* Increase value to increase sensitivity, but only if: 281 * 1a) previous beacon did *not* have *too many* false alarms 282 * 1b) AND there's a significant difference in Rx levels 283 * from a previous beacon with too many, or healthy # FAs 284 * OR 2) We've seen a lot of beacons (100) with too few 285 * false alarms */ 286 if ((data->nrg_prev_state != IWL_FA_TOO_MANY) && 287 ((data->nrg_auto_corr_silence_diff > NRG_DIFF) || 288 (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) { 289 290 IWL_DEBUG_CALIB(priv, "... increasing sensitivity\n"); 291 /* Increase nrg value to increase sensitivity */ 292 val = data->nrg_th_cck + NRG_STEP_CCK; 293 data->nrg_th_cck = min((u32)ranges->min_nrg_cck, val); 294 } else { 295 IWL_DEBUG_CALIB(priv, "... but not changing sensitivity\n"); 296 } 297 298 /* Else we got a healthy number of false alarms, keep status quo */ 299 } else { 300 IWL_DEBUG_CALIB(priv, " FA in safe zone\n"); 301 data->nrg_curr_state = IWL_FA_GOOD_RANGE; 302 303 /* Store for use in "fewer than desired" with later beacon */ 304 data->nrg_silence_ref = silence_ref; 305 306 /* If previous beacon had too many false alarms, 307 * give it some extra margin by reducing sensitivity again 308 * (but don't go below measured energy of desired Rx) */ 309 if (data->nrg_prev_state == IWL_FA_TOO_MANY) { 310 IWL_DEBUG_CALIB(priv, "... increasing margin\n"); 311 if (data->nrg_th_cck > (max_nrg_cck + NRG_MARGIN)) 312 data->nrg_th_cck -= NRG_MARGIN; 313 else 314 data->nrg_th_cck = max_nrg_cck; 315 } 316 } 317 318 /* Make sure the energy threshold does not go above the measured 319 * energy of the desired Rx signals (reduced by backoff margin), 320 * or else we might start missing Rx frames. 321 * Lower value is higher energy, so we use max()! 322 */ 323 data->nrg_th_cck = max(max_nrg_cck, data->nrg_th_cck); 324 IWL_DEBUG_CALIB(priv, "new nrg_th_cck %u\n", data->nrg_th_cck); 325 326 data->nrg_prev_state = data->nrg_curr_state; 327 328 /* Auto-correlation CCK algorithm */ 329 if (false_alarms > min_false_alarms) { 330 331 /* increase auto_corr values to decrease sensitivity 332 * so the DSP won't be disturbed by the noise 333 */ 334 if (data->auto_corr_cck < AUTO_CORR_MAX_TH_CCK) 335 data->auto_corr_cck = AUTO_CORR_MAX_TH_CCK + 1; 336 else { 337 val = data->auto_corr_cck + AUTO_CORR_STEP_CCK; 338 data->auto_corr_cck = 339 min((u32)ranges->auto_corr_max_cck, val); 340 } 341 val = data->auto_corr_cck_mrc + AUTO_CORR_STEP_CCK; 342 data->auto_corr_cck_mrc = 343 min((u32)ranges->auto_corr_max_cck_mrc, val); 344 } else if ((false_alarms < min_false_alarms) && 345 ((data->nrg_auto_corr_silence_diff > NRG_DIFF) || 346 (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) { 347 348 /* Decrease auto_corr values to increase sensitivity */ 349 val = data->auto_corr_cck - AUTO_CORR_STEP_CCK; 350 data->auto_corr_cck = 351 max((u32)ranges->auto_corr_min_cck, val); 352 val = data->auto_corr_cck_mrc - AUTO_CORR_STEP_CCK; 353 data->auto_corr_cck_mrc = 354 max((u32)ranges->auto_corr_min_cck_mrc, val); 355 } 356 357 return 0; 358 } 359 360 361 static int iwl_sens_auto_corr_ofdm(struct iwl_priv *priv, 362 u32 norm_fa, 363 u32 rx_enable_time) 364 { 365 u32 val; 366 u32 false_alarms = norm_fa * 200 * 1024; 367 u32 max_false_alarms = MAX_FA_OFDM * rx_enable_time; 368 u32 min_false_alarms = MIN_FA_OFDM * rx_enable_time; 369 struct iwl_sensitivity_data *data = NULL; 370 const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens; 371 372 data = &(priv->sensitivity_data); 373 374 /* If we got too many false alarms this time, reduce sensitivity */ 375 if (false_alarms > max_false_alarms) { 376 377 IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u)\n", 378 false_alarms, max_false_alarms); 379 380 val = data->auto_corr_ofdm + AUTO_CORR_STEP_OFDM; 381 data->auto_corr_ofdm = 382 min((u32)ranges->auto_corr_max_ofdm, val); 383 384 val = data->auto_corr_ofdm_mrc + AUTO_CORR_STEP_OFDM; 385 data->auto_corr_ofdm_mrc = 386 min((u32)ranges->auto_corr_max_ofdm_mrc, val); 387 388 val = data->auto_corr_ofdm_x1 + AUTO_CORR_STEP_OFDM; 389 data->auto_corr_ofdm_x1 = 390 min((u32)ranges->auto_corr_max_ofdm_x1, val); 391 392 val = data->auto_corr_ofdm_mrc_x1 + AUTO_CORR_STEP_OFDM; 393 data->auto_corr_ofdm_mrc_x1 = 394 min((u32)ranges->auto_corr_max_ofdm_mrc_x1, val); 395 } 396 397 /* Else if we got fewer than desired, increase sensitivity */ 398 else if (false_alarms < min_false_alarms) { 399 400 IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u\n", 401 false_alarms, min_false_alarms); 402 403 val = data->auto_corr_ofdm - AUTO_CORR_STEP_OFDM; 404 data->auto_corr_ofdm = 405 max((u32)ranges->auto_corr_min_ofdm, val); 406 407 val = data->auto_corr_ofdm_mrc - AUTO_CORR_STEP_OFDM; 408 data->auto_corr_ofdm_mrc = 409 max((u32)ranges->auto_corr_min_ofdm_mrc, val); 410 411 val = data->auto_corr_ofdm_x1 - AUTO_CORR_STEP_OFDM; 412 data->auto_corr_ofdm_x1 = 413 max((u32)ranges->auto_corr_min_ofdm_x1, val); 414 415 val = data->auto_corr_ofdm_mrc_x1 - AUTO_CORR_STEP_OFDM; 416 data->auto_corr_ofdm_mrc_x1 = 417 max((u32)ranges->auto_corr_min_ofdm_mrc_x1, val); 418 } else { 419 IWL_DEBUG_CALIB(priv, "min FA %u < norm FA %u < max FA %u OK\n", 420 min_false_alarms, false_alarms, max_false_alarms); 421 } 422 return 0; 423 } 424 425 static void iwl_prepare_legacy_sensitivity_tbl(struct iwl_priv *priv, 426 struct iwl_sensitivity_data *data, 427 __le16 *tbl) 428 { 429 tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX] = 430 cpu_to_le16((u16)data->auto_corr_ofdm); 431 tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX] = 432 cpu_to_le16((u16)data->auto_corr_ofdm_mrc); 433 tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX] = 434 cpu_to_le16((u16)data->auto_corr_ofdm_x1); 435 tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX] = 436 cpu_to_le16((u16)data->auto_corr_ofdm_mrc_x1); 437 438 tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX] = 439 cpu_to_le16((u16)data->auto_corr_cck); 440 tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX] = 441 cpu_to_le16((u16)data->auto_corr_cck_mrc); 442 443 tbl[HD_MIN_ENERGY_CCK_DET_INDEX] = 444 cpu_to_le16((u16)data->nrg_th_cck); 445 tbl[HD_MIN_ENERGY_OFDM_DET_INDEX] = 446 cpu_to_le16((u16)data->nrg_th_ofdm); 447 448 tbl[HD_BARKER_CORR_TH_ADD_MIN_INDEX] = 449 cpu_to_le16(data->barker_corr_th_min); 450 tbl[HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX] = 451 cpu_to_le16(data->barker_corr_th_min_mrc); 452 tbl[HD_OFDM_ENERGY_TH_IN_INDEX] = 453 cpu_to_le16(data->nrg_th_cca); 454 455 IWL_DEBUG_CALIB(priv, "ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n", 456 data->auto_corr_ofdm, data->auto_corr_ofdm_mrc, 457 data->auto_corr_ofdm_x1, data->auto_corr_ofdm_mrc_x1, 458 data->nrg_th_ofdm); 459 460 IWL_DEBUG_CALIB(priv, "cck: ac %u mrc %u thresh %u\n", 461 data->auto_corr_cck, data->auto_corr_cck_mrc, 462 data->nrg_th_cck); 463 } 464 465 /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */ 466 static int iwl_sensitivity_write(struct iwl_priv *priv) 467 { 468 struct iwl_sensitivity_cmd cmd; 469 struct iwl_sensitivity_data *data = NULL; 470 struct iwl_host_cmd cmd_out = { 471 .id = SENSITIVITY_CMD, 472 .len = { sizeof(struct iwl_sensitivity_cmd), }, 473 .flags = CMD_ASYNC, 474 .data = { &cmd, }, 475 }; 476 477 data = &(priv->sensitivity_data); 478 479 memset(&cmd, 0, sizeof(cmd)); 480 481 iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.table[0]); 482 483 /* Update uCode's "work" table, and copy it to DSP */ 484 cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE; 485 486 /* Don't send command to uCode if nothing has changed */ 487 if (!memcmp(&cmd.table[0], &(priv->sensitivity_tbl[0]), 488 sizeof(u16)*HD_TABLE_SIZE)) { 489 IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n"); 490 return 0; 491 } 492 493 /* Copy table for comparison next time */ 494 memcpy(&(priv->sensitivity_tbl[0]), &(cmd.table[0]), 495 sizeof(u16)*HD_TABLE_SIZE); 496 497 return iwl_dvm_send_cmd(priv, &cmd_out); 498 } 499 500 /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */ 501 static int iwl_enhance_sensitivity_write(struct iwl_priv *priv) 502 { 503 struct iwl_enhance_sensitivity_cmd cmd; 504 struct iwl_sensitivity_data *data = NULL; 505 struct iwl_host_cmd cmd_out = { 506 .id = SENSITIVITY_CMD, 507 .len = { sizeof(struct iwl_enhance_sensitivity_cmd), }, 508 .flags = CMD_ASYNC, 509 .data = { &cmd, }, 510 }; 511 512 data = &(priv->sensitivity_data); 513 514 memset(&cmd, 0, sizeof(cmd)); 515 516 iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.enhance_table[0]); 517 518 if (priv->lib->hd_v2) { 519 cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX] = 520 HD_INA_NON_SQUARE_DET_OFDM_DATA_V2; 521 cmd.enhance_table[HD_INA_NON_SQUARE_DET_CCK_INDEX] = 522 HD_INA_NON_SQUARE_DET_CCK_DATA_V2; 523 cmd.enhance_table[HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX] = 524 HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V2; 525 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX] = 526 HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V2; 527 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] = 528 HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2; 529 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX] = 530 HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V2; 531 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX] = 532 HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V2; 533 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX] = 534 HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V2; 535 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] = 536 HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2; 537 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_INDEX] = 538 HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V2; 539 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX] = 540 HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V2; 541 } else { 542 cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX] = 543 HD_INA_NON_SQUARE_DET_OFDM_DATA_V1; 544 cmd.enhance_table[HD_INA_NON_SQUARE_DET_CCK_INDEX] = 545 HD_INA_NON_SQUARE_DET_CCK_DATA_V1; 546 cmd.enhance_table[HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX] = 547 HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V1; 548 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX] = 549 HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V1; 550 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] = 551 HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1; 552 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX] = 553 HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V1; 554 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX] = 555 HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V1; 556 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX] = 557 HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V1; 558 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] = 559 HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1; 560 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_INDEX] = 561 HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V1; 562 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX] = 563 HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V1; 564 } 565 566 /* Update uCode's "work" table, and copy it to DSP */ 567 cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE; 568 569 /* Don't send command to uCode if nothing has changed */ 570 if (!memcmp(&cmd.enhance_table[0], &(priv->sensitivity_tbl[0]), 571 sizeof(u16)*HD_TABLE_SIZE) && 572 !memcmp(&cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX], 573 &(priv->enhance_sensitivity_tbl[0]), 574 sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES)) { 575 IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n"); 576 return 0; 577 } 578 579 /* Copy table for comparison next time */ 580 memcpy(&(priv->sensitivity_tbl[0]), &(cmd.enhance_table[0]), 581 sizeof(u16)*HD_TABLE_SIZE); 582 memcpy(&(priv->enhance_sensitivity_tbl[0]), 583 &(cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX]), 584 sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES); 585 586 return iwl_dvm_send_cmd(priv, &cmd_out); 587 } 588 589 void iwl_init_sensitivity(struct iwl_priv *priv) 590 { 591 int ret = 0; 592 int i; 593 struct iwl_sensitivity_data *data = NULL; 594 const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens; 595 596 if (priv->calib_disabled & IWL_SENSITIVITY_CALIB_DISABLED) 597 return; 598 599 IWL_DEBUG_CALIB(priv, "Start iwl_init_sensitivity\n"); 600 601 /* Clear driver's sensitivity algo data */ 602 data = &(priv->sensitivity_data); 603 604 if (ranges == NULL) 605 return; 606 607 memset(data, 0, sizeof(struct iwl_sensitivity_data)); 608 609 data->num_in_cck_no_fa = 0; 610 data->nrg_curr_state = IWL_FA_TOO_MANY; 611 data->nrg_prev_state = IWL_FA_TOO_MANY; 612 data->nrg_silence_ref = 0; 613 data->nrg_silence_idx = 0; 614 data->nrg_energy_idx = 0; 615 616 for (i = 0; i < 10; i++) 617 data->nrg_value[i] = 0; 618 619 for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) 620 data->nrg_silence_rssi[i] = 0; 621 622 data->auto_corr_ofdm = ranges->auto_corr_min_ofdm; 623 data->auto_corr_ofdm_mrc = ranges->auto_corr_min_ofdm_mrc; 624 data->auto_corr_ofdm_x1 = ranges->auto_corr_min_ofdm_x1; 625 data->auto_corr_ofdm_mrc_x1 = ranges->auto_corr_min_ofdm_mrc_x1; 626 data->auto_corr_cck = AUTO_CORR_CCK_MIN_VAL_DEF; 627 data->auto_corr_cck_mrc = ranges->auto_corr_min_cck_mrc; 628 data->nrg_th_cck = ranges->nrg_th_cck; 629 data->nrg_th_ofdm = ranges->nrg_th_ofdm; 630 data->barker_corr_th_min = ranges->barker_corr_th_min; 631 data->barker_corr_th_min_mrc = ranges->barker_corr_th_min_mrc; 632 data->nrg_th_cca = ranges->nrg_th_cca; 633 634 data->last_bad_plcp_cnt_ofdm = 0; 635 data->last_fa_cnt_ofdm = 0; 636 data->last_bad_plcp_cnt_cck = 0; 637 data->last_fa_cnt_cck = 0; 638 639 if (priv->fw->enhance_sensitivity_table) 640 ret |= iwl_enhance_sensitivity_write(priv); 641 else 642 ret |= iwl_sensitivity_write(priv); 643 IWL_DEBUG_CALIB(priv, "<<return 0x%X\n", ret); 644 } 645 646 void iwl_sensitivity_calibration(struct iwl_priv *priv) 647 { 648 u32 rx_enable_time; 649 u32 fa_cck; 650 u32 fa_ofdm; 651 u32 bad_plcp_cck; 652 u32 bad_plcp_ofdm; 653 u32 norm_fa_ofdm; 654 u32 norm_fa_cck; 655 struct iwl_sensitivity_data *data = NULL; 656 struct statistics_rx_non_phy *rx_info; 657 struct statistics_rx_phy *ofdm, *cck; 658 struct statistics_general_data statis; 659 660 if (priv->calib_disabled & IWL_SENSITIVITY_CALIB_DISABLED) 661 return; 662 663 data = &(priv->sensitivity_data); 664 665 if (!iwl_is_any_associated(priv)) { 666 IWL_DEBUG_CALIB(priv, "<< - not associated\n"); 667 return; 668 } 669 670 spin_lock_bh(&priv->statistics.lock); 671 rx_info = &priv->statistics.rx_non_phy; 672 ofdm = &priv->statistics.rx_ofdm; 673 cck = &priv->statistics.rx_cck; 674 if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) { 675 IWL_DEBUG_CALIB(priv, "<< invalid data.\n"); 676 spin_unlock_bh(&priv->statistics.lock); 677 return; 678 } 679 680 /* Extract Statistics: */ 681 rx_enable_time = le32_to_cpu(rx_info->channel_load); 682 fa_cck = le32_to_cpu(cck->false_alarm_cnt); 683 fa_ofdm = le32_to_cpu(ofdm->false_alarm_cnt); 684 bad_plcp_cck = le32_to_cpu(cck->plcp_err); 685 bad_plcp_ofdm = le32_to_cpu(ofdm->plcp_err); 686 687 statis.beacon_silence_rssi_a = 688 le32_to_cpu(rx_info->beacon_silence_rssi_a); 689 statis.beacon_silence_rssi_b = 690 le32_to_cpu(rx_info->beacon_silence_rssi_b); 691 statis.beacon_silence_rssi_c = 692 le32_to_cpu(rx_info->beacon_silence_rssi_c); 693 statis.beacon_energy_a = 694 le32_to_cpu(rx_info->beacon_energy_a); 695 statis.beacon_energy_b = 696 le32_to_cpu(rx_info->beacon_energy_b); 697 statis.beacon_energy_c = 698 le32_to_cpu(rx_info->beacon_energy_c); 699 700 spin_unlock_bh(&priv->statistics.lock); 701 702 IWL_DEBUG_CALIB(priv, "rx_enable_time = %u usecs\n", rx_enable_time); 703 704 if (!rx_enable_time) { 705 IWL_DEBUG_CALIB(priv, "<< RX Enable Time == 0!\n"); 706 return; 707 } 708 709 /* These statistics increase monotonically, and do not reset 710 * at each beacon. Calculate difference from last value, or just 711 * use the new statistics value if it has reset or wrapped around. */ 712 if (data->last_bad_plcp_cnt_cck > bad_plcp_cck) 713 data->last_bad_plcp_cnt_cck = bad_plcp_cck; 714 else { 715 bad_plcp_cck -= data->last_bad_plcp_cnt_cck; 716 data->last_bad_plcp_cnt_cck += bad_plcp_cck; 717 } 718 719 if (data->last_bad_plcp_cnt_ofdm > bad_plcp_ofdm) 720 data->last_bad_plcp_cnt_ofdm = bad_plcp_ofdm; 721 else { 722 bad_plcp_ofdm -= data->last_bad_plcp_cnt_ofdm; 723 data->last_bad_plcp_cnt_ofdm += bad_plcp_ofdm; 724 } 725 726 if (data->last_fa_cnt_ofdm > fa_ofdm) 727 data->last_fa_cnt_ofdm = fa_ofdm; 728 else { 729 fa_ofdm -= data->last_fa_cnt_ofdm; 730 data->last_fa_cnt_ofdm += fa_ofdm; 731 } 732 733 if (data->last_fa_cnt_cck > fa_cck) 734 data->last_fa_cnt_cck = fa_cck; 735 else { 736 fa_cck -= data->last_fa_cnt_cck; 737 data->last_fa_cnt_cck += fa_cck; 738 } 739 740 /* Total aborted signal locks */ 741 norm_fa_ofdm = fa_ofdm + bad_plcp_ofdm; 742 norm_fa_cck = fa_cck + bad_plcp_cck; 743 744 IWL_DEBUG_CALIB(priv, "cck: fa %u badp %u ofdm: fa %u badp %u\n", fa_cck, 745 bad_plcp_cck, fa_ofdm, bad_plcp_ofdm); 746 747 iwl_sens_auto_corr_ofdm(priv, norm_fa_ofdm, rx_enable_time); 748 iwl_sens_energy_cck(priv, norm_fa_cck, rx_enable_time, &statis); 749 if (priv->fw->enhance_sensitivity_table) 750 iwl_enhance_sensitivity_write(priv); 751 else 752 iwl_sensitivity_write(priv); 753 } 754 755 static inline u8 find_first_chain(u8 mask) 756 { 757 if (mask & ANT_A) 758 return CHAIN_A; 759 if (mask & ANT_B) 760 return CHAIN_B; 761 return CHAIN_C; 762 } 763 764 /** 765 * Run disconnected antenna algorithm to find out which antennas are 766 * disconnected. 767 */ 768 static void iwl_find_disconn_antenna(struct iwl_priv *priv, u32* average_sig, 769 struct iwl_chain_noise_data *data) 770 { 771 u32 active_chains = 0; 772 u32 max_average_sig; 773 u16 max_average_sig_antenna_i; 774 u8 num_tx_chains; 775 u8 first_chain; 776 u16 i = 0; 777 778 average_sig[0] = data->chain_signal_a / IWL_CAL_NUM_BEACONS; 779 average_sig[1] = data->chain_signal_b / IWL_CAL_NUM_BEACONS; 780 average_sig[2] = data->chain_signal_c / IWL_CAL_NUM_BEACONS; 781 782 if (average_sig[0] >= average_sig[1]) { 783 max_average_sig = average_sig[0]; 784 max_average_sig_antenna_i = 0; 785 active_chains = (1 << max_average_sig_antenna_i); 786 } else { 787 max_average_sig = average_sig[1]; 788 max_average_sig_antenna_i = 1; 789 active_chains = (1 << max_average_sig_antenna_i); 790 } 791 792 if (average_sig[2] >= max_average_sig) { 793 max_average_sig = average_sig[2]; 794 max_average_sig_antenna_i = 2; 795 active_chains = (1 << max_average_sig_antenna_i); 796 } 797 798 IWL_DEBUG_CALIB(priv, "average_sig: a %d b %d c %d\n", 799 average_sig[0], average_sig[1], average_sig[2]); 800 IWL_DEBUG_CALIB(priv, "max_average_sig = %d, antenna %d\n", 801 max_average_sig, max_average_sig_antenna_i); 802 803 /* Compare signal strengths for all 3 receivers. */ 804 for (i = 0; i < NUM_RX_CHAINS; i++) { 805 if (i != max_average_sig_antenna_i) { 806 s32 rssi_delta = (max_average_sig - average_sig[i]); 807 808 /* If signal is very weak, compared with 809 * strongest, mark it as disconnected. */ 810 if (rssi_delta > MAXIMUM_ALLOWED_PATHLOSS) 811 data->disconn_array[i] = 1; 812 else 813 active_chains |= (1 << i); 814 IWL_DEBUG_CALIB(priv, "i = %d rssiDelta = %d " 815 "disconn_array[i] = %d\n", 816 i, rssi_delta, data->disconn_array[i]); 817 } 818 } 819 820 /* 821 * The above algorithm sometimes fails when the ucode 822 * reports 0 for all chains. It's not clear why that 823 * happens to start with, but it is then causing trouble 824 * because this can make us enable more chains than the 825 * hardware really has. 826 * 827 * To be safe, simply mask out any chains that we know 828 * are not on the device. 829 */ 830 active_chains &= priv->nvm_data->valid_rx_ant; 831 832 num_tx_chains = 0; 833 for (i = 0; i < NUM_RX_CHAINS; i++) { 834 /* loops on all the bits of 835 * priv->hw_setting.valid_tx_ant */ 836 u8 ant_msk = (1 << i); 837 if (!(priv->nvm_data->valid_tx_ant & ant_msk)) 838 continue; 839 840 num_tx_chains++; 841 if (data->disconn_array[i] == 0) 842 /* there is a Tx antenna connected */ 843 break; 844 if (num_tx_chains == priv->hw_params.tx_chains_num && 845 data->disconn_array[i]) { 846 /* 847 * If all chains are disconnected 848 * connect the first valid tx chain 849 */ 850 first_chain = 851 find_first_chain(priv->nvm_data->valid_tx_ant); 852 data->disconn_array[first_chain] = 0; 853 active_chains |= BIT(first_chain); 854 IWL_DEBUG_CALIB(priv, 855 "All Tx chains are disconnected W/A - declare %d as connected\n", 856 first_chain); 857 break; 858 } 859 } 860 861 if (active_chains != priv->nvm_data->valid_rx_ant && 862 active_chains != priv->chain_noise_data.active_chains) 863 IWL_DEBUG_CALIB(priv, 864 "Detected that not all antennas are connected! " 865 "Connected: %#x, valid: %#x.\n", 866 active_chains, 867 priv->nvm_data->valid_rx_ant); 868 869 /* Save for use within RXON, TX, SCAN commands, etc. */ 870 data->active_chains = active_chains; 871 IWL_DEBUG_CALIB(priv, "active_chains (bitwise) = 0x%x\n", 872 active_chains); 873 } 874 875 static void iwlagn_gain_computation(struct iwl_priv *priv, 876 u32 average_noise[NUM_RX_CHAINS], 877 u8 default_chain) 878 { 879 int i; 880 s32 delta_g; 881 struct iwl_chain_noise_data *data = &priv->chain_noise_data; 882 883 /* 884 * Find Gain Code for the chains based on "default chain" 885 */ 886 for (i = default_chain + 1; i < NUM_RX_CHAINS; i++) { 887 if ((data->disconn_array[i])) { 888 data->delta_gain_code[i] = 0; 889 continue; 890 } 891 892 delta_g = (priv->lib->chain_noise_scale * 893 ((s32)average_noise[default_chain] - 894 (s32)average_noise[i])) / 1500; 895 896 /* bound gain by 2 bits value max, 3rd bit is sign */ 897 data->delta_gain_code[i] = 898 min(abs(delta_g), CHAIN_NOISE_MAX_DELTA_GAIN_CODE); 899 900 if (delta_g < 0) 901 /* 902 * set negative sign ... 903 * note to Intel developers: This is uCode API format, 904 * not the format of any internal device registers. 905 * Do not change this format for e.g. 6050 or similar 906 * devices. Change format only if more resolution 907 * (i.e. more than 2 bits magnitude) is needed. 908 */ 909 data->delta_gain_code[i] |= (1 << 2); 910 } 911 912 IWL_DEBUG_CALIB(priv, "Delta gains: ANT_B = %d ANT_C = %d\n", 913 data->delta_gain_code[1], data->delta_gain_code[2]); 914 915 if (!data->radio_write) { 916 struct iwl_calib_chain_noise_gain_cmd cmd; 917 918 memset(&cmd, 0, sizeof(cmd)); 919 920 iwl_set_calib_hdr(&cmd.hdr, 921 priv->phy_calib_chain_noise_gain_cmd); 922 cmd.delta_gain_1 = data->delta_gain_code[1]; 923 cmd.delta_gain_2 = data->delta_gain_code[2]; 924 iwl_dvm_send_cmd_pdu(priv, REPLY_PHY_CALIBRATION_CMD, 925 CMD_ASYNC, sizeof(cmd), &cmd); 926 927 data->radio_write = 1; 928 data->state = IWL_CHAIN_NOISE_CALIBRATED; 929 } 930 } 931 932 /* 933 * Accumulate 16 beacons of signal and noise statistics for each of 934 * 3 receivers/antennas/rx-chains, then figure out: 935 * 1) Which antennas are connected. 936 * 2) Differential rx gain settings to balance the 3 receivers. 937 */ 938 void iwl_chain_noise_calibration(struct iwl_priv *priv) 939 { 940 struct iwl_chain_noise_data *data = NULL; 941 942 u32 chain_noise_a; 943 u32 chain_noise_b; 944 u32 chain_noise_c; 945 u32 chain_sig_a; 946 u32 chain_sig_b; 947 u32 chain_sig_c; 948 u32 average_sig[NUM_RX_CHAINS] = {INITIALIZATION_VALUE}; 949 u32 average_noise[NUM_RX_CHAINS] = {INITIALIZATION_VALUE}; 950 u32 min_average_noise = MIN_AVERAGE_NOISE_MAX_VALUE; 951 u16 min_average_noise_antenna_i = INITIALIZATION_VALUE; 952 u16 i = 0; 953 u16 rxon_chnum = INITIALIZATION_VALUE; 954 u16 stat_chnum = INITIALIZATION_VALUE; 955 u8 rxon_band24; 956 u8 stat_band24; 957 struct statistics_rx_non_phy *rx_info; 958 959 /* 960 * MULTI-FIXME: 961 * When we support multiple interfaces on different channels, 962 * this must be modified/fixed. 963 */ 964 struct iwl_rxon_context *ctx = &priv->contexts[IWL_RXON_CTX_BSS]; 965 966 if (priv->calib_disabled & IWL_CHAIN_NOISE_CALIB_DISABLED) 967 return; 968 969 data = &(priv->chain_noise_data); 970 971 /* 972 * Accumulate just the first "chain_noise_num_beacons" after 973 * the first association, then we're done forever. 974 */ 975 if (data->state != IWL_CHAIN_NOISE_ACCUMULATE) { 976 if (data->state == IWL_CHAIN_NOISE_ALIVE) 977 IWL_DEBUG_CALIB(priv, "Wait for noise calib reset\n"); 978 return; 979 } 980 981 spin_lock_bh(&priv->statistics.lock); 982 983 rx_info = &priv->statistics.rx_non_phy; 984 985 if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) { 986 IWL_DEBUG_CALIB(priv, " << Interference data unavailable\n"); 987 spin_unlock_bh(&priv->statistics.lock); 988 return; 989 } 990 991 rxon_band24 = !!(ctx->staging.flags & RXON_FLG_BAND_24G_MSK); 992 rxon_chnum = le16_to_cpu(ctx->staging.channel); 993 stat_band24 = 994 !!(priv->statistics.flag & STATISTICS_REPLY_FLG_BAND_24G_MSK); 995 stat_chnum = le32_to_cpu(priv->statistics.flag) >> 16; 996 997 /* Make sure we accumulate data for just the associated channel 998 * (even if scanning). */ 999 if ((rxon_chnum != stat_chnum) || (rxon_band24 != stat_band24)) { 1000 IWL_DEBUG_CALIB(priv, "Stats not from chan=%d, band24=%d\n", 1001 rxon_chnum, rxon_band24); 1002 spin_unlock_bh(&priv->statistics.lock); 1003 return; 1004 } 1005 1006 /* 1007 * Accumulate beacon statistics values across 1008 * "chain_noise_num_beacons" 1009 */ 1010 chain_noise_a = le32_to_cpu(rx_info->beacon_silence_rssi_a) & 1011 IN_BAND_FILTER; 1012 chain_noise_b = le32_to_cpu(rx_info->beacon_silence_rssi_b) & 1013 IN_BAND_FILTER; 1014 chain_noise_c = le32_to_cpu(rx_info->beacon_silence_rssi_c) & 1015 IN_BAND_FILTER; 1016 1017 chain_sig_a = le32_to_cpu(rx_info->beacon_rssi_a) & IN_BAND_FILTER; 1018 chain_sig_b = le32_to_cpu(rx_info->beacon_rssi_b) & IN_BAND_FILTER; 1019 chain_sig_c = le32_to_cpu(rx_info->beacon_rssi_c) & IN_BAND_FILTER; 1020 1021 spin_unlock_bh(&priv->statistics.lock); 1022 1023 data->beacon_count++; 1024 1025 data->chain_noise_a = (chain_noise_a + data->chain_noise_a); 1026 data->chain_noise_b = (chain_noise_b + data->chain_noise_b); 1027 data->chain_noise_c = (chain_noise_c + data->chain_noise_c); 1028 1029 data->chain_signal_a = (chain_sig_a + data->chain_signal_a); 1030 data->chain_signal_b = (chain_sig_b + data->chain_signal_b); 1031 data->chain_signal_c = (chain_sig_c + data->chain_signal_c); 1032 1033 IWL_DEBUG_CALIB(priv, "chan=%d, band24=%d, beacon=%d\n", 1034 rxon_chnum, rxon_band24, data->beacon_count); 1035 IWL_DEBUG_CALIB(priv, "chain_sig: a %d b %d c %d\n", 1036 chain_sig_a, chain_sig_b, chain_sig_c); 1037 IWL_DEBUG_CALIB(priv, "chain_noise: a %d b %d c %d\n", 1038 chain_noise_a, chain_noise_b, chain_noise_c); 1039 1040 /* If this is the "chain_noise_num_beacons", determine: 1041 * 1) Disconnected antennas (using signal strengths) 1042 * 2) Differential gain (using silence noise) to balance receivers */ 1043 if (data->beacon_count != IWL_CAL_NUM_BEACONS) 1044 return; 1045 1046 /* Analyze signal for disconnected antenna */ 1047 if (priv->lib->bt_params && 1048 priv->lib->bt_params->advanced_bt_coexist) { 1049 /* Disable disconnected antenna algorithm for advanced 1050 bt coex, assuming valid antennas are connected */ 1051 data->active_chains = priv->nvm_data->valid_rx_ant; 1052 for (i = 0; i < NUM_RX_CHAINS; i++) 1053 if (!(data->active_chains & (1<<i))) 1054 data->disconn_array[i] = 1; 1055 } else 1056 iwl_find_disconn_antenna(priv, average_sig, data); 1057 1058 /* Analyze noise for rx balance */ 1059 average_noise[0] = data->chain_noise_a / IWL_CAL_NUM_BEACONS; 1060 average_noise[1] = data->chain_noise_b / IWL_CAL_NUM_BEACONS; 1061 average_noise[2] = data->chain_noise_c / IWL_CAL_NUM_BEACONS; 1062 1063 for (i = 0; i < NUM_RX_CHAINS; i++) { 1064 if (!(data->disconn_array[i]) && 1065 (average_noise[i] <= min_average_noise)) { 1066 /* This means that chain i is active and has 1067 * lower noise values so far: */ 1068 min_average_noise = average_noise[i]; 1069 min_average_noise_antenna_i = i; 1070 } 1071 } 1072 1073 IWL_DEBUG_CALIB(priv, "average_noise: a %d b %d c %d\n", 1074 average_noise[0], average_noise[1], 1075 average_noise[2]); 1076 1077 IWL_DEBUG_CALIB(priv, "min_average_noise = %d, antenna %d\n", 1078 min_average_noise, min_average_noise_antenna_i); 1079 1080 iwlagn_gain_computation( 1081 priv, average_noise, 1082 find_first_chain(priv->nvm_data->valid_rx_ant)); 1083 1084 /* Some power changes may have been made during the calibration. 1085 * Update and commit the RXON 1086 */ 1087 iwl_update_chain_flags(priv); 1088 1089 data->state = IWL_CHAIN_NOISE_DONE; 1090 iwl_power_update_mode(priv, false); 1091 } 1092 1093 void iwl_reset_run_time_calib(struct iwl_priv *priv) 1094 { 1095 int i; 1096 memset(&(priv->sensitivity_data), 0, 1097 sizeof(struct iwl_sensitivity_data)); 1098 memset(&(priv->chain_noise_data), 0, 1099 sizeof(struct iwl_chain_noise_data)); 1100 for (i = 0; i < NUM_RX_CHAINS; i++) 1101 priv->chain_noise_data.delta_gain_code[i] = 1102 CHAIN_NOISE_DELTA_GAIN_INIT_VAL; 1103 1104 /* Ask for statistics now, the uCode will send notification 1105 * periodically after association */ 1106 iwl_send_statistics_request(priv, CMD_ASYNC, true); 1107 } 1108