xref: /openbmc/linux/drivers/net/wireless/intel/iwlegacy/common.c (revision 8ef9ea1503d0a129cc6f5cf48fb63633efa5d766)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /******************************************************************************
3  *
4  * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
5  *
6  * Contact Information:
7  *  Intel Linux Wireless <ilw@linux.intel.com>
8  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
9  *****************************************************************************/
10 
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/etherdevice.h>
14 #include <linux/sched.h>
15 #include <linux/slab.h>
16 #include <linux/types.h>
17 #include <linux/lockdep.h>
18 #include <linux/pci.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/delay.h>
21 #include <linux/skbuff.h>
22 #include <net/mac80211.h>
23 
24 #include "common.h"
25 
26 int
27 _il_poll_bit(struct il_priv *il, u32 addr, u32 bits, u32 mask, int timeout)
28 {
29 	const int interval = 10; /* microseconds */
30 	int t = 0;
31 
32 	do {
33 		if ((_il_rd(il, addr) & mask) == (bits & mask))
34 			return t;
35 		udelay(interval);
36 		t += interval;
37 	} while (t < timeout);
38 
39 	return -ETIMEDOUT;
40 }
41 EXPORT_SYMBOL(_il_poll_bit);
42 
43 void
44 il_set_bit(struct il_priv *p, u32 r, u32 m)
45 {
46 	unsigned long reg_flags;
47 
48 	spin_lock_irqsave(&p->reg_lock, reg_flags);
49 	_il_set_bit(p, r, m);
50 	spin_unlock_irqrestore(&p->reg_lock, reg_flags);
51 }
52 EXPORT_SYMBOL(il_set_bit);
53 
54 void
55 il_clear_bit(struct il_priv *p, u32 r, u32 m)
56 {
57 	unsigned long reg_flags;
58 
59 	spin_lock_irqsave(&p->reg_lock, reg_flags);
60 	_il_clear_bit(p, r, m);
61 	spin_unlock_irqrestore(&p->reg_lock, reg_flags);
62 }
63 EXPORT_SYMBOL(il_clear_bit);
64 
65 bool
66 _il_grab_nic_access(struct il_priv *il)
67 {
68 	int ret;
69 	u32 val;
70 
71 	/* this bit wakes up the NIC */
72 	_il_set_bit(il, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
73 
74 	/*
75 	 * These bits say the device is running, and should keep running for
76 	 * at least a short while (at least as long as MAC_ACCESS_REQ stays 1),
77 	 * but they do not indicate that embedded SRAM is restored yet;
78 	 * 3945 and 4965 have volatile SRAM, and must save/restore contents
79 	 * to/from host DRAM when sleeping/waking for power-saving.
80 	 * Each direction takes approximately 1/4 millisecond; with this
81 	 * overhead, it's a good idea to grab and hold MAC_ACCESS_REQUEST if a
82 	 * series of register accesses are expected (e.g. reading Event Log),
83 	 * to keep device from sleeping.
84 	 *
85 	 * CSR_UCODE_DRV_GP1 register bit MAC_SLEEP == 0 indicates that
86 	 * SRAM is okay/restored.  We don't check that here because this call
87 	 * is just for hardware register access; but GP1 MAC_SLEEP check is a
88 	 * good idea before accessing 3945/4965 SRAM (e.g. reading Event Log).
89 	 *
90 	 */
91 	ret =
92 	    _il_poll_bit(il, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_VAL_MAC_ACCESS_EN,
93 			 (CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY |
94 			  CSR_GP_CNTRL_REG_FLAG_GOING_TO_SLEEP), 15000);
95 	if (unlikely(ret < 0)) {
96 		val = _il_rd(il, CSR_GP_CNTRL);
97 		WARN_ONCE(1, "Timeout waiting for ucode processor access "
98 			     "(CSR_GP_CNTRL 0x%08x)\n", val);
99 		_il_wr(il, CSR_RESET, CSR_RESET_REG_FLAG_FORCE_NMI);
100 		return false;
101 	}
102 
103 	return true;
104 }
105 EXPORT_SYMBOL_GPL(_il_grab_nic_access);
106 
107 int
108 il_poll_bit(struct il_priv *il, u32 addr, u32 mask, int timeout)
109 {
110 	const int interval = 10; /* microseconds */
111 	int t = 0;
112 
113 	do {
114 		if ((il_rd(il, addr) & mask) == mask)
115 			return t;
116 		udelay(interval);
117 		t += interval;
118 	} while (t < timeout);
119 
120 	return -ETIMEDOUT;
121 }
122 EXPORT_SYMBOL(il_poll_bit);
123 
124 u32
125 il_rd_prph(struct il_priv *il, u32 reg)
126 {
127 	unsigned long reg_flags;
128 	u32 val;
129 
130 	spin_lock_irqsave(&il->reg_lock, reg_flags);
131 	_il_grab_nic_access(il);
132 	val = _il_rd_prph(il, reg);
133 	_il_release_nic_access(il);
134 	spin_unlock_irqrestore(&il->reg_lock, reg_flags);
135 	return val;
136 }
137 EXPORT_SYMBOL(il_rd_prph);
138 
139 void
140 il_wr_prph(struct il_priv *il, u32 addr, u32 val)
141 {
142 	unsigned long reg_flags;
143 
144 	spin_lock_irqsave(&il->reg_lock, reg_flags);
145 	if (likely(_il_grab_nic_access(il))) {
146 		_il_wr_prph(il, addr, val);
147 		_il_release_nic_access(il);
148 	}
149 	spin_unlock_irqrestore(&il->reg_lock, reg_flags);
150 }
151 EXPORT_SYMBOL(il_wr_prph);
152 
153 u32
154 il_read_targ_mem(struct il_priv *il, u32 addr)
155 {
156 	unsigned long reg_flags;
157 	u32 value;
158 
159 	spin_lock_irqsave(&il->reg_lock, reg_flags);
160 	_il_grab_nic_access(il);
161 
162 	_il_wr(il, HBUS_TARG_MEM_RADDR, addr);
163 	value = _il_rd(il, HBUS_TARG_MEM_RDAT);
164 
165 	_il_release_nic_access(il);
166 	spin_unlock_irqrestore(&il->reg_lock, reg_flags);
167 	return value;
168 }
169 EXPORT_SYMBOL(il_read_targ_mem);
170 
171 void
172 il_write_targ_mem(struct il_priv *il, u32 addr, u32 val)
173 {
174 	unsigned long reg_flags;
175 
176 	spin_lock_irqsave(&il->reg_lock, reg_flags);
177 	if (likely(_il_grab_nic_access(il))) {
178 		_il_wr(il, HBUS_TARG_MEM_WADDR, addr);
179 		_il_wr(il, HBUS_TARG_MEM_WDAT, val);
180 		_il_release_nic_access(il);
181 	}
182 	spin_unlock_irqrestore(&il->reg_lock, reg_flags);
183 }
184 EXPORT_SYMBOL(il_write_targ_mem);
185 
186 const char *
187 il_get_cmd_string(u8 cmd)
188 {
189 	switch (cmd) {
190 		IL_CMD(N_ALIVE);
191 		IL_CMD(N_ERROR);
192 		IL_CMD(C_RXON);
193 		IL_CMD(C_RXON_ASSOC);
194 		IL_CMD(C_QOS_PARAM);
195 		IL_CMD(C_RXON_TIMING);
196 		IL_CMD(C_ADD_STA);
197 		IL_CMD(C_REM_STA);
198 		IL_CMD(C_WEPKEY);
199 		IL_CMD(N_3945_RX);
200 		IL_CMD(C_TX);
201 		IL_CMD(C_RATE_SCALE);
202 		IL_CMD(C_LEDS);
203 		IL_CMD(C_TX_LINK_QUALITY_CMD);
204 		IL_CMD(C_CHANNEL_SWITCH);
205 		IL_CMD(N_CHANNEL_SWITCH);
206 		IL_CMD(C_SPECTRUM_MEASUREMENT);
207 		IL_CMD(N_SPECTRUM_MEASUREMENT);
208 		IL_CMD(C_POWER_TBL);
209 		IL_CMD(N_PM_SLEEP);
210 		IL_CMD(N_PM_DEBUG_STATS);
211 		IL_CMD(C_SCAN);
212 		IL_CMD(C_SCAN_ABORT);
213 		IL_CMD(N_SCAN_START);
214 		IL_CMD(N_SCAN_RESULTS);
215 		IL_CMD(N_SCAN_COMPLETE);
216 		IL_CMD(N_BEACON);
217 		IL_CMD(C_TX_BEACON);
218 		IL_CMD(C_TX_PWR_TBL);
219 		IL_CMD(C_BT_CONFIG);
220 		IL_CMD(C_STATS);
221 		IL_CMD(N_STATS);
222 		IL_CMD(N_CARD_STATE);
223 		IL_CMD(N_MISSED_BEACONS);
224 		IL_CMD(C_CT_KILL_CONFIG);
225 		IL_CMD(C_SENSITIVITY);
226 		IL_CMD(C_PHY_CALIBRATION);
227 		IL_CMD(N_RX_PHY);
228 		IL_CMD(N_RX_MPDU);
229 		IL_CMD(N_RX);
230 		IL_CMD(N_COMPRESSED_BA);
231 	default:
232 		return "UNKNOWN";
233 
234 	}
235 }
236 EXPORT_SYMBOL(il_get_cmd_string);
237 
238 #define HOST_COMPLETE_TIMEOUT (HZ / 2)
239 
240 static void
241 il_generic_cmd_callback(struct il_priv *il, struct il_device_cmd *cmd,
242 			struct il_rx_pkt *pkt)
243 {
244 	if (pkt->hdr.flags & IL_CMD_FAILED_MSK) {
245 		IL_ERR("Bad return from %s (0x%08X)\n",
246 		       il_get_cmd_string(cmd->hdr.cmd), pkt->hdr.flags);
247 		return;
248 	}
249 #ifdef CONFIG_IWLEGACY_DEBUG
250 	switch (cmd->hdr.cmd) {
251 	case C_TX_LINK_QUALITY_CMD:
252 	case C_SENSITIVITY:
253 		D_HC_DUMP("back from %s (0x%08X)\n",
254 			  il_get_cmd_string(cmd->hdr.cmd), pkt->hdr.flags);
255 		break;
256 	default:
257 		D_HC("back from %s (0x%08X)\n", il_get_cmd_string(cmd->hdr.cmd),
258 		     pkt->hdr.flags);
259 	}
260 #endif
261 }
262 
263 static int
264 il_send_cmd_async(struct il_priv *il, struct il_host_cmd *cmd)
265 {
266 	int ret;
267 
268 	BUG_ON(!(cmd->flags & CMD_ASYNC));
269 
270 	/* An asynchronous command can not expect an SKB to be set. */
271 	BUG_ON(cmd->flags & CMD_WANT_SKB);
272 
273 	/* Assign a generic callback if one is not provided */
274 	if (!cmd->callback)
275 		cmd->callback = il_generic_cmd_callback;
276 
277 	if (test_bit(S_EXIT_PENDING, &il->status))
278 		return -EBUSY;
279 
280 	ret = il_enqueue_hcmd(il, cmd);
281 	if (ret < 0) {
282 		IL_ERR("Error sending %s: enqueue_hcmd failed: %d\n",
283 		       il_get_cmd_string(cmd->id), ret);
284 		return ret;
285 	}
286 	return 0;
287 }
288 
289 int
290 il_send_cmd_sync(struct il_priv *il, struct il_host_cmd *cmd)
291 {
292 	int cmd_idx;
293 	int ret;
294 
295 	lockdep_assert_held(&il->mutex);
296 
297 	BUG_ON(cmd->flags & CMD_ASYNC);
298 
299 	/* A synchronous command can not have a callback set. */
300 	BUG_ON(cmd->callback);
301 
302 	D_INFO("Attempting to send sync command %s\n",
303 	       il_get_cmd_string(cmd->id));
304 
305 	set_bit(S_HCMD_ACTIVE, &il->status);
306 	D_INFO("Setting HCMD_ACTIVE for command %s\n",
307 	       il_get_cmd_string(cmd->id));
308 
309 	cmd_idx = il_enqueue_hcmd(il, cmd);
310 	if (cmd_idx < 0) {
311 		ret = cmd_idx;
312 		IL_ERR("Error sending %s: enqueue_hcmd failed: %d\n",
313 		       il_get_cmd_string(cmd->id), ret);
314 		goto out;
315 	}
316 
317 	ret = wait_event_timeout(il->wait_command_queue,
318 				 !test_bit(S_HCMD_ACTIVE, &il->status),
319 				 HOST_COMPLETE_TIMEOUT);
320 	if (!ret) {
321 		if (test_bit(S_HCMD_ACTIVE, &il->status)) {
322 			IL_ERR("Error sending %s: time out after %dms.\n",
323 			       il_get_cmd_string(cmd->id),
324 			       jiffies_to_msecs(HOST_COMPLETE_TIMEOUT));
325 
326 			clear_bit(S_HCMD_ACTIVE, &il->status);
327 			D_INFO("Clearing HCMD_ACTIVE for command %s\n",
328 			       il_get_cmd_string(cmd->id));
329 			ret = -ETIMEDOUT;
330 			goto cancel;
331 		}
332 	}
333 
334 	if (test_bit(S_RFKILL, &il->status)) {
335 		IL_ERR("Command %s aborted: RF KILL Switch\n",
336 		       il_get_cmd_string(cmd->id));
337 		ret = -ECANCELED;
338 		goto fail;
339 	}
340 	if (test_bit(S_FW_ERROR, &il->status)) {
341 		IL_ERR("Command %s failed: FW Error\n",
342 		       il_get_cmd_string(cmd->id));
343 		ret = -EIO;
344 		goto fail;
345 	}
346 	if ((cmd->flags & CMD_WANT_SKB) && !cmd->reply_page) {
347 		IL_ERR("Error: Response NULL in '%s'\n",
348 		       il_get_cmd_string(cmd->id));
349 		ret = -EIO;
350 		goto cancel;
351 	}
352 
353 	ret = 0;
354 	goto out;
355 
356 cancel:
357 	if (cmd->flags & CMD_WANT_SKB) {
358 		/*
359 		 * Cancel the CMD_WANT_SKB flag for the cmd in the
360 		 * TX cmd queue. Otherwise in case the cmd comes
361 		 * in later, it will possibly set an invalid
362 		 * address (cmd->meta.source).
363 		 */
364 		il->txq[il->cmd_queue].meta[cmd_idx].flags &= ~CMD_WANT_SKB;
365 	}
366 fail:
367 	if (cmd->reply_page) {
368 		il_free_pages(il, cmd->reply_page);
369 		cmd->reply_page = 0;
370 	}
371 out:
372 	return ret;
373 }
374 EXPORT_SYMBOL(il_send_cmd_sync);
375 
376 int
377 il_send_cmd(struct il_priv *il, struct il_host_cmd *cmd)
378 {
379 	if (cmd->flags & CMD_ASYNC)
380 		return il_send_cmd_async(il, cmd);
381 
382 	return il_send_cmd_sync(il, cmd);
383 }
384 EXPORT_SYMBOL(il_send_cmd);
385 
386 int
387 il_send_cmd_pdu(struct il_priv *il, u8 id, u16 len, const void *data)
388 {
389 	struct il_host_cmd cmd = {
390 		.id = id,
391 		.len = len,
392 		.data = data,
393 	};
394 
395 	return il_send_cmd_sync(il, &cmd);
396 }
397 EXPORT_SYMBOL(il_send_cmd_pdu);
398 
399 int
400 il_send_cmd_pdu_async(struct il_priv *il, u8 id, u16 len, const void *data,
401 		      void (*callback) (struct il_priv *il,
402 					struct il_device_cmd *cmd,
403 					struct il_rx_pkt *pkt))
404 {
405 	struct il_host_cmd cmd = {
406 		.id = id,
407 		.len = len,
408 		.data = data,
409 	};
410 
411 	cmd.flags |= CMD_ASYNC;
412 	cmd.callback = callback;
413 
414 	return il_send_cmd_async(il, &cmd);
415 }
416 EXPORT_SYMBOL(il_send_cmd_pdu_async);
417 
418 /* default: IL_LED_BLINK(0) using blinking idx table */
419 static int led_mode;
420 module_param(led_mode, int, 0444);
421 MODULE_PARM_DESC(led_mode,
422 		 "0=system default, " "1=On(RF On)/Off(RF Off), 2=blinking");
423 
424 /* Throughput		OFF time(ms)	ON time (ms)
425  *	>300			25		25
426  *	>200 to 300		40		40
427  *	>100 to 200		55		55
428  *	>70 to 100		65		65
429  *	>50 to 70		75		75
430  *	>20 to 50		85		85
431  *	>10 to 20		95		95
432  *	>5 to 10		110		110
433  *	>1 to 5			130		130
434  *	>0 to 1			167		167
435  *	<=0					SOLID ON
436  */
437 static const struct ieee80211_tpt_blink il_blink[] = {
438 	{.throughput = 0,		.blink_time = 334},
439 	{.throughput = 1 * 1024 - 1,	.blink_time = 260},
440 	{.throughput = 5 * 1024 - 1,	.blink_time = 220},
441 	{.throughput = 10 * 1024 - 1,	.blink_time = 190},
442 	{.throughput = 20 * 1024 - 1,	.blink_time = 170},
443 	{.throughput = 50 * 1024 - 1,	.blink_time = 150},
444 	{.throughput = 70 * 1024 - 1,	.blink_time = 130},
445 	{.throughput = 100 * 1024 - 1,	.blink_time = 110},
446 	{.throughput = 200 * 1024 - 1,	.blink_time = 80},
447 	{.throughput = 300 * 1024 - 1,	.blink_time = 50},
448 };
449 
450 /*
451  * Adjust led blink rate to compensate on a MAC Clock difference on every HW
452  * Led blink rate analysis showed an average deviation of 0% on 3945,
453  * 5% on 4965 HW.
454  * Need to compensate on the led on/off time per HW according to the deviation
455  * to achieve the desired led frequency
456  * The calculation is: (100-averageDeviation)/100 * blinkTime
457  * For code efficiency the calculation will be:
458  *     compensation = (100 - averageDeviation) * 64 / 100
459  *     NewBlinkTime = (compensation * BlinkTime) / 64
460  */
461 static inline u8
462 il_blink_compensation(struct il_priv *il, u8 time, u16 compensation)
463 {
464 	if (!compensation) {
465 		IL_ERR("undefined blink compensation: "
466 		       "use pre-defined blinking time\n");
467 		return time;
468 	}
469 
470 	return (u8) ((time * compensation) >> 6);
471 }
472 
473 /* Set led pattern command */
474 static int
475 il_led_cmd(struct il_priv *il, unsigned long on, unsigned long off)
476 {
477 	struct il_led_cmd led_cmd = {
478 		.id = IL_LED_LINK,
479 		.interval = IL_DEF_LED_INTRVL
480 	};
481 	int ret;
482 
483 	if (!test_bit(S_READY, &il->status))
484 		return -EBUSY;
485 
486 	if (il->blink_on == on && il->blink_off == off)
487 		return 0;
488 
489 	if (off == 0) {
490 		/* led is SOLID_ON */
491 		on = IL_LED_SOLID;
492 	}
493 
494 	D_LED("Led blink time compensation=%u\n",
495 	      il->cfg->led_compensation);
496 	led_cmd.on =
497 	    il_blink_compensation(il, on,
498 				  il->cfg->led_compensation);
499 	led_cmd.off =
500 	    il_blink_compensation(il, off,
501 				  il->cfg->led_compensation);
502 
503 	ret = il->ops->send_led_cmd(il, &led_cmd);
504 	if (!ret) {
505 		il->blink_on = on;
506 		il->blink_off = off;
507 	}
508 	return ret;
509 }
510 
511 static void
512 il_led_brightness_set(struct led_classdev *led_cdev,
513 		      enum led_brightness brightness)
514 {
515 	struct il_priv *il = container_of(led_cdev, struct il_priv, led);
516 	unsigned long on = 0;
517 
518 	if (brightness > 0)
519 		on = IL_LED_SOLID;
520 
521 	il_led_cmd(il, on, 0);
522 }
523 
524 static int
525 il_led_blink_set(struct led_classdev *led_cdev, unsigned long *delay_on,
526 		 unsigned long *delay_off)
527 {
528 	struct il_priv *il = container_of(led_cdev, struct il_priv, led);
529 
530 	return il_led_cmd(il, *delay_on, *delay_off);
531 }
532 
533 void
534 il_leds_init(struct il_priv *il)
535 {
536 	int mode = led_mode;
537 	int ret;
538 
539 	if (mode == IL_LED_DEFAULT)
540 		mode = il->cfg->led_mode;
541 
542 	il->led.name =
543 	    kasprintf(GFP_KERNEL, "%s-led", wiphy_name(il->hw->wiphy));
544 	il->led.brightness_set = il_led_brightness_set;
545 	il->led.blink_set = il_led_blink_set;
546 	il->led.max_brightness = 1;
547 
548 	switch (mode) {
549 	case IL_LED_DEFAULT:
550 		WARN_ON(1);
551 		break;
552 	case IL_LED_BLINK:
553 		il->led.default_trigger =
554 		    ieee80211_create_tpt_led_trigger(il->hw,
555 						     IEEE80211_TPT_LEDTRIG_FL_CONNECTED,
556 						     il_blink,
557 						     ARRAY_SIZE(il_blink));
558 		break;
559 	case IL_LED_RF_STATE:
560 		il->led.default_trigger = ieee80211_get_radio_led_name(il->hw);
561 		break;
562 	}
563 
564 	ret = led_classdev_register(&il->pci_dev->dev, &il->led);
565 	if (ret) {
566 		kfree(il->led.name);
567 		return;
568 	}
569 
570 	il->led_registered = true;
571 }
572 EXPORT_SYMBOL(il_leds_init);
573 
574 void
575 il_leds_exit(struct il_priv *il)
576 {
577 	if (!il->led_registered)
578 		return;
579 
580 	led_classdev_unregister(&il->led);
581 	kfree(il->led.name);
582 }
583 EXPORT_SYMBOL(il_leds_exit);
584 
585 /************************** EEPROM BANDS ****************************
586  *
587  * The il_eeprom_band definitions below provide the mapping from the
588  * EEPROM contents to the specific channel number supported for each
589  * band.
590  *
591  * For example, il_priv->eeprom.band_3_channels[4] from the band_3
592  * definition below maps to physical channel 42 in the 5.2GHz spectrum.
593  * The specific geography and calibration information for that channel
594  * is contained in the eeprom map itself.
595  *
596  * During init, we copy the eeprom information and channel map
597  * information into il->channel_info_24/52 and il->channel_map_24/52
598  *
599  * channel_map_24/52 provides the idx in the channel_info array for a
600  * given channel.  We have to have two separate maps as there is channel
601  * overlap with the 2.4GHz and 5.2GHz spectrum as seen in band_1 and
602  * band_2
603  *
604  * A value of 0xff stored in the channel_map indicates that the channel
605  * is not supported by the hardware at all.
606  *
607  * A value of 0xfe in the channel_map indicates that the channel is not
608  * valid for Tx with the current hardware.  This means that
609  * while the system can tune and receive on a given channel, it may not
610  * be able to associate or transmit any frames on that
611  * channel.  There is no corresponding channel information for that
612  * entry.
613  *
614  *********************************************************************/
615 
616 /* 2.4 GHz */
617 const u8 il_eeprom_band_1[14] = {
618 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
619 };
620 
621 /* 5.2 GHz bands */
622 static const u8 il_eeprom_band_2[] = {	/* 4915-5080MHz */
623 	183, 184, 185, 187, 188, 189, 192, 196, 7, 8, 11, 12, 16
624 };
625 
626 static const u8 il_eeprom_band_3[] = {	/* 5170-5320MHz */
627 	34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64
628 };
629 
630 static const u8 il_eeprom_band_4[] = {	/* 5500-5700MHz */
631 	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140
632 };
633 
634 static const u8 il_eeprom_band_5[] = {	/* 5725-5825MHz */
635 	145, 149, 153, 157, 161, 165
636 };
637 
638 static const u8 il_eeprom_band_6[] = {	/* 2.4 ht40 channel */
639 	1, 2, 3, 4, 5, 6, 7
640 };
641 
642 static const u8 il_eeprom_band_7[] = {	/* 5.2 ht40 channel */
643 	36, 44, 52, 60, 100, 108, 116, 124, 132, 149, 157
644 };
645 
646 /******************************************************************************
647  *
648  * EEPROM related functions
649  *
650 ******************************************************************************/
651 
652 static int
653 il_eeprom_verify_signature(struct il_priv *il)
654 {
655 	u32 gp = _il_rd(il, CSR_EEPROM_GP) & CSR_EEPROM_GP_VALID_MSK;
656 	int ret = 0;
657 
658 	D_EEPROM("EEPROM signature=0x%08x\n", gp);
659 	switch (gp) {
660 	case CSR_EEPROM_GP_GOOD_SIG_EEP_LESS_THAN_4K:
661 	case CSR_EEPROM_GP_GOOD_SIG_EEP_MORE_THAN_4K:
662 		break;
663 	default:
664 		IL_ERR("bad EEPROM signature," "EEPROM_GP=0x%08x\n", gp);
665 		ret = -ENOENT;
666 		break;
667 	}
668 	return ret;
669 }
670 
671 const u8 *
672 il_eeprom_query_addr(const struct il_priv *il, size_t offset)
673 {
674 	BUG_ON(offset >= il->cfg->eeprom_size);
675 	return &il->eeprom[offset];
676 }
677 EXPORT_SYMBOL(il_eeprom_query_addr);
678 
679 u16
680 il_eeprom_query16(const struct il_priv *il, size_t offset)
681 {
682 	if (!il->eeprom)
683 		return 0;
684 	return (u16) il->eeprom[offset] | ((u16) il->eeprom[offset + 1] << 8);
685 }
686 EXPORT_SYMBOL(il_eeprom_query16);
687 
688 /*
689  * il_eeprom_init - read EEPROM contents
690  *
691  * Load the EEPROM contents from adapter into il->eeprom
692  *
693  * NOTE:  This routine uses the non-debug IO access functions.
694  */
695 int
696 il_eeprom_init(struct il_priv *il)
697 {
698 	__le16 *e;
699 	u32 gp = _il_rd(il, CSR_EEPROM_GP);
700 	int sz;
701 	int ret;
702 	int addr;
703 
704 	/* allocate eeprom */
705 	sz = il->cfg->eeprom_size;
706 	D_EEPROM("NVM size = %d\n", sz);
707 	il->eeprom = kzalloc(sz, GFP_KERNEL);
708 	if (!il->eeprom)
709 		return -ENOMEM;
710 
711 	e = (__le16 *) il->eeprom;
712 
713 	il->ops->apm_init(il);
714 
715 	ret = il_eeprom_verify_signature(il);
716 	if (ret < 0) {
717 		IL_ERR("EEPROM not found, EEPROM_GP=0x%08x\n", gp);
718 		ret = -ENOENT;
719 		goto err;
720 	}
721 
722 	/* Make sure driver (instead of uCode) is allowed to read EEPROM */
723 	ret = il->ops->eeprom_acquire_semaphore(il);
724 	if (ret < 0) {
725 		IL_ERR("Failed to acquire EEPROM semaphore.\n");
726 		ret = -ENOENT;
727 		goto err;
728 	}
729 
730 	/* eeprom is an array of 16bit values */
731 	for (addr = 0; addr < sz; addr += sizeof(u16)) {
732 		u32 r;
733 
734 		_il_wr(il, CSR_EEPROM_REG,
735 		       CSR_EEPROM_REG_MSK_ADDR & (addr << 1));
736 
737 		ret =
738 		    _il_poll_bit(il, CSR_EEPROM_REG,
739 				 CSR_EEPROM_REG_READ_VALID_MSK,
740 				 CSR_EEPROM_REG_READ_VALID_MSK,
741 				 IL_EEPROM_ACCESS_TIMEOUT);
742 		if (ret < 0) {
743 			IL_ERR("Time out reading EEPROM[%d]\n", addr);
744 			goto done;
745 		}
746 		r = _il_rd(il, CSR_EEPROM_REG);
747 		e[addr / 2] = cpu_to_le16(r >> 16);
748 	}
749 
750 	D_EEPROM("NVM Type: %s, version: 0x%x\n", "EEPROM",
751 		 il_eeprom_query16(il, EEPROM_VERSION));
752 
753 	ret = 0;
754 done:
755 	il->ops->eeprom_release_semaphore(il);
756 
757 err:
758 	if (ret)
759 		il_eeprom_free(il);
760 	/* Reset chip to save power until we load uCode during "up". */
761 	il_apm_stop(il);
762 	return ret;
763 }
764 EXPORT_SYMBOL(il_eeprom_init);
765 
766 void
767 il_eeprom_free(struct il_priv *il)
768 {
769 	kfree(il->eeprom);
770 	il->eeprom = NULL;
771 }
772 EXPORT_SYMBOL(il_eeprom_free);
773 
774 static void
775 il_init_band_reference(const struct il_priv *il, int eep_band,
776 		       int *eeprom_ch_count,
777 		       const struct il_eeprom_channel **eeprom_ch_info,
778 		       const u8 **eeprom_ch_idx)
779 {
780 	u32 offset = il->cfg->regulatory_bands[eep_band - 1];
781 
782 	switch (eep_band) {
783 	case 1:		/* 2.4GHz band */
784 		*eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_1);
785 		*eeprom_ch_info =
786 		    (struct il_eeprom_channel *)il_eeprom_query_addr(il,
787 								     offset);
788 		*eeprom_ch_idx = il_eeprom_band_1;
789 		break;
790 	case 2:		/* 4.9GHz band */
791 		*eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_2);
792 		*eeprom_ch_info =
793 		    (struct il_eeprom_channel *)il_eeprom_query_addr(il,
794 								     offset);
795 		*eeprom_ch_idx = il_eeprom_band_2;
796 		break;
797 	case 3:		/* 5.2GHz band */
798 		*eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_3);
799 		*eeprom_ch_info =
800 		    (struct il_eeprom_channel *)il_eeprom_query_addr(il,
801 								     offset);
802 		*eeprom_ch_idx = il_eeprom_band_3;
803 		break;
804 	case 4:		/* 5.5GHz band */
805 		*eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_4);
806 		*eeprom_ch_info =
807 		    (struct il_eeprom_channel *)il_eeprom_query_addr(il,
808 								     offset);
809 		*eeprom_ch_idx = il_eeprom_band_4;
810 		break;
811 	case 5:		/* 5.7GHz band */
812 		*eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_5);
813 		*eeprom_ch_info =
814 		    (struct il_eeprom_channel *)il_eeprom_query_addr(il,
815 								     offset);
816 		*eeprom_ch_idx = il_eeprom_band_5;
817 		break;
818 	case 6:		/* 2.4GHz ht40 channels */
819 		*eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_6);
820 		*eeprom_ch_info =
821 		    (struct il_eeprom_channel *)il_eeprom_query_addr(il,
822 								     offset);
823 		*eeprom_ch_idx = il_eeprom_band_6;
824 		break;
825 	case 7:		/* 5 GHz ht40 channels */
826 		*eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_7);
827 		*eeprom_ch_info =
828 		    (struct il_eeprom_channel *)il_eeprom_query_addr(il,
829 								     offset);
830 		*eeprom_ch_idx = il_eeprom_band_7;
831 		break;
832 	default:
833 		BUG();
834 	}
835 }
836 
837 #define CHECK_AND_PRINT(x) ((eeprom_ch->flags & EEPROM_CHANNEL_##x) \
838 			    ? # x " " : "")
839 /*
840  * il_mod_ht40_chan_info - Copy ht40 channel info into driver's il.
841  *
842  * Does not set up a command, or touch hardware.
843  */
844 static int
845 il_mod_ht40_chan_info(struct il_priv *il, enum nl80211_band band, u16 channel,
846 		      const struct il_eeprom_channel *eeprom_ch,
847 		      u8 clear_ht40_extension_channel)
848 {
849 	struct il_channel_info *ch_info;
850 
851 	ch_info =
852 	    (struct il_channel_info *)il_get_channel_info(il, band, channel);
853 
854 	if (!il_is_channel_valid(ch_info))
855 		return -1;
856 
857 	D_EEPROM("HT40 Ch. %d [%sGHz] %s%s%s%s%s(0x%02x %ddBm):"
858 		 " Ad-Hoc %ssupported\n", ch_info->channel,
859 		 il_is_channel_a_band(ch_info) ? "5.2" : "2.4",
860 		 CHECK_AND_PRINT(IBSS), CHECK_AND_PRINT(ACTIVE),
861 		 CHECK_AND_PRINT(RADAR), CHECK_AND_PRINT(WIDE),
862 		 CHECK_AND_PRINT(DFS), eeprom_ch->flags,
863 		 eeprom_ch->max_power_avg,
864 		 ((eeprom_ch->flags & EEPROM_CHANNEL_IBSS) &&
865 		  !(eeprom_ch->flags & EEPROM_CHANNEL_RADAR)) ? "" : "not ");
866 
867 	ch_info->ht40_eeprom = *eeprom_ch;
868 	ch_info->ht40_max_power_avg = eeprom_ch->max_power_avg;
869 	ch_info->ht40_flags = eeprom_ch->flags;
870 	if (eeprom_ch->flags & EEPROM_CHANNEL_VALID)
871 		ch_info->ht40_extension_channel &=
872 		    ~clear_ht40_extension_channel;
873 
874 	return 0;
875 }
876 
877 #define CHECK_AND_PRINT_I(x) ((eeprom_ch_info[ch].flags & EEPROM_CHANNEL_##x) \
878 			    ? # x " " : "")
879 
880 /*
881  * il_init_channel_map - Set up driver's info for all possible channels
882  */
883 int
884 il_init_channel_map(struct il_priv *il)
885 {
886 	int eeprom_ch_count = 0;
887 	const u8 *eeprom_ch_idx = NULL;
888 	const struct il_eeprom_channel *eeprom_ch_info = NULL;
889 	int band, ch;
890 	struct il_channel_info *ch_info;
891 
892 	if (il->channel_count) {
893 		D_EEPROM("Channel map already initialized.\n");
894 		return 0;
895 	}
896 
897 	D_EEPROM("Initializing regulatory info from EEPROM\n");
898 
899 	il->channel_count =
900 	    ARRAY_SIZE(il_eeprom_band_1) + ARRAY_SIZE(il_eeprom_band_2) +
901 	    ARRAY_SIZE(il_eeprom_band_3) + ARRAY_SIZE(il_eeprom_band_4) +
902 	    ARRAY_SIZE(il_eeprom_band_5);
903 
904 	D_EEPROM("Parsing data for %d channels.\n", il->channel_count);
905 
906 	il->channel_info =
907 	    kcalloc(il->channel_count, sizeof(struct il_channel_info),
908 		    GFP_KERNEL);
909 	if (!il->channel_info) {
910 		IL_ERR("Could not allocate channel_info\n");
911 		il->channel_count = 0;
912 		return -ENOMEM;
913 	}
914 
915 	ch_info = il->channel_info;
916 
917 	/* Loop through the 5 EEPROM bands adding them in order to the
918 	 * channel map we maintain (that contains additional information than
919 	 * what just in the EEPROM) */
920 	for (band = 1; band <= 5; band++) {
921 
922 		il_init_band_reference(il, band, &eeprom_ch_count,
923 				       &eeprom_ch_info, &eeprom_ch_idx);
924 
925 		/* Loop through each band adding each of the channels */
926 		for (ch = 0; ch < eeprom_ch_count; ch++) {
927 			ch_info->channel = eeprom_ch_idx[ch];
928 			ch_info->band =
929 			    (band ==
930 			     1) ? NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
931 
932 			/* permanently store EEPROM's channel regulatory flags
933 			 *   and max power in channel info database. */
934 			ch_info->eeprom = eeprom_ch_info[ch];
935 
936 			/* Copy the run-time flags so they are there even on
937 			 * invalid channels */
938 			ch_info->flags = eeprom_ch_info[ch].flags;
939 			/* First write that ht40 is not enabled, and then enable
940 			 * one by one */
941 			ch_info->ht40_extension_channel =
942 			    IEEE80211_CHAN_NO_HT40;
943 
944 			if (!(il_is_channel_valid(ch_info))) {
945 				D_EEPROM("Ch. %d Flags %x [%sGHz] - "
946 					 "No traffic\n", ch_info->channel,
947 					 ch_info->flags,
948 					 il_is_channel_a_band(ch_info) ? "5.2" :
949 					 "2.4");
950 				ch_info++;
951 				continue;
952 			}
953 
954 			/* Initialize regulatory-based run-time data */
955 			ch_info->max_power_avg = ch_info->curr_txpow =
956 			    eeprom_ch_info[ch].max_power_avg;
957 			ch_info->scan_power = eeprom_ch_info[ch].max_power_avg;
958 			ch_info->min_power = 0;
959 
960 			D_EEPROM("Ch. %d [%sGHz] " "%s%s%s%s%s%s(0x%02x %ddBm):"
961 				 " Ad-Hoc %ssupported\n", ch_info->channel,
962 				 il_is_channel_a_band(ch_info) ? "5.2" : "2.4",
963 				 CHECK_AND_PRINT_I(VALID),
964 				 CHECK_AND_PRINT_I(IBSS),
965 				 CHECK_AND_PRINT_I(ACTIVE),
966 				 CHECK_AND_PRINT_I(RADAR),
967 				 CHECK_AND_PRINT_I(WIDE),
968 				 CHECK_AND_PRINT_I(DFS),
969 				 eeprom_ch_info[ch].flags,
970 				 eeprom_ch_info[ch].max_power_avg,
971 				 ((eeprom_ch_info[ch].
972 				   flags & EEPROM_CHANNEL_IBSS) &&
973 				  !(eeprom_ch_info[ch].
974 				    flags & EEPROM_CHANNEL_RADAR)) ? "" :
975 				 "not ");
976 
977 			ch_info++;
978 		}
979 	}
980 
981 	/* Check if we do have HT40 channels */
982 	if (il->cfg->regulatory_bands[5] == EEPROM_REGULATORY_BAND_NO_HT40 &&
983 	    il->cfg->regulatory_bands[6] == EEPROM_REGULATORY_BAND_NO_HT40)
984 		return 0;
985 
986 	/* Two additional EEPROM bands for 2.4 and 5 GHz HT40 channels */
987 	for (band = 6; band <= 7; band++) {
988 		enum nl80211_band ieeeband;
989 
990 		il_init_band_reference(il, band, &eeprom_ch_count,
991 				       &eeprom_ch_info, &eeprom_ch_idx);
992 
993 		/* EEPROM band 6 is 2.4, band 7 is 5 GHz */
994 		ieeeband =
995 		    (band == 6) ? NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
996 
997 		/* Loop through each band adding each of the channels */
998 		for (ch = 0; ch < eeprom_ch_count; ch++) {
999 			/* Set up driver's info for lower half */
1000 			il_mod_ht40_chan_info(il, ieeeband, eeprom_ch_idx[ch],
1001 					      &eeprom_ch_info[ch],
1002 					      IEEE80211_CHAN_NO_HT40PLUS);
1003 
1004 			/* Set up driver's info for upper half */
1005 			il_mod_ht40_chan_info(il, ieeeband,
1006 					      eeprom_ch_idx[ch] + 4,
1007 					      &eeprom_ch_info[ch],
1008 					      IEEE80211_CHAN_NO_HT40MINUS);
1009 		}
1010 	}
1011 
1012 	return 0;
1013 }
1014 EXPORT_SYMBOL(il_init_channel_map);
1015 
1016 /*
1017  * il_free_channel_map - undo allocations in il_init_channel_map
1018  */
1019 void
1020 il_free_channel_map(struct il_priv *il)
1021 {
1022 	kfree(il->channel_info);
1023 	il->channel_count = 0;
1024 }
1025 EXPORT_SYMBOL(il_free_channel_map);
1026 
1027 /*
1028  * il_get_channel_info - Find driver's ilate channel info
1029  *
1030  * Based on band and channel number.
1031  */
1032 const struct il_channel_info *
1033 il_get_channel_info(const struct il_priv *il, enum nl80211_band band,
1034 		    u16 channel)
1035 {
1036 	int i;
1037 
1038 	switch (band) {
1039 	case NL80211_BAND_5GHZ:
1040 		for (i = 14; i < il->channel_count; i++) {
1041 			if (il->channel_info[i].channel == channel)
1042 				return &il->channel_info[i];
1043 		}
1044 		break;
1045 	case NL80211_BAND_2GHZ:
1046 		if (channel >= 1 && channel <= 14)
1047 			return &il->channel_info[channel - 1];
1048 		break;
1049 	default:
1050 		BUG();
1051 	}
1052 
1053 	return NULL;
1054 }
1055 EXPORT_SYMBOL(il_get_channel_info);
1056 
1057 /*
1058  * Setting power level allows the card to go to sleep when not busy.
1059  *
1060  * We calculate a sleep command based on the required latency, which
1061  * we get from mac80211.
1062  */
1063 
1064 #define SLP_VEC(X0, X1, X2, X3, X4) { \
1065 		cpu_to_le32(X0), \
1066 		cpu_to_le32(X1), \
1067 		cpu_to_le32(X2), \
1068 		cpu_to_le32(X3), \
1069 		cpu_to_le32(X4)  \
1070 }
1071 
1072 static void
1073 il_build_powertable_cmd(struct il_priv *il, struct il_powertable_cmd *cmd)
1074 {
1075 	static const __le32 interval[3][IL_POWER_VEC_SIZE] = {
1076 		SLP_VEC(2, 2, 4, 6, 0xFF),
1077 		SLP_VEC(2, 4, 7, 10, 10),
1078 		SLP_VEC(4, 7, 10, 10, 0xFF)
1079 	};
1080 	int i, dtim_period, no_dtim;
1081 	u32 max_sleep;
1082 	bool skip;
1083 
1084 	memset(cmd, 0, sizeof(*cmd));
1085 
1086 	if (il->power_data.pci_pm)
1087 		cmd->flags |= IL_POWER_PCI_PM_MSK;
1088 
1089 	/* if no Power Save, we are done */
1090 	if (il->power_data.ps_disabled)
1091 		return;
1092 
1093 	cmd->flags = IL_POWER_DRIVER_ALLOW_SLEEP_MSK;
1094 	cmd->keep_alive_seconds = 0;
1095 	cmd->debug_flags = 0;
1096 	cmd->rx_data_timeout = cpu_to_le32(25 * 1024);
1097 	cmd->tx_data_timeout = cpu_to_le32(25 * 1024);
1098 	cmd->keep_alive_beacons = 0;
1099 
1100 	dtim_period = il->vif ? il->vif->bss_conf.dtim_period : 0;
1101 
1102 	if (dtim_period <= 2) {
1103 		memcpy(cmd->sleep_interval, interval[0], sizeof(interval[0]));
1104 		no_dtim = 2;
1105 	} else if (dtim_period <= 10) {
1106 		memcpy(cmd->sleep_interval, interval[1], sizeof(interval[1]));
1107 		no_dtim = 2;
1108 	} else {
1109 		memcpy(cmd->sleep_interval, interval[2], sizeof(interval[2]));
1110 		no_dtim = 0;
1111 	}
1112 
1113 	if (dtim_period == 0) {
1114 		dtim_period = 1;
1115 		skip = false;
1116 	} else {
1117 		skip = !!no_dtim;
1118 	}
1119 
1120 	if (skip) {
1121 		__le32 tmp = cmd->sleep_interval[IL_POWER_VEC_SIZE - 1];
1122 
1123 		max_sleep = le32_to_cpu(tmp);
1124 		if (max_sleep == 0xFF)
1125 			max_sleep = dtim_period * (skip + 1);
1126 		else if (max_sleep >  dtim_period)
1127 			max_sleep = (max_sleep / dtim_period) * dtim_period;
1128 		cmd->flags |= IL_POWER_SLEEP_OVER_DTIM_MSK;
1129 	} else {
1130 		max_sleep = dtim_period;
1131 		cmd->flags &= ~IL_POWER_SLEEP_OVER_DTIM_MSK;
1132 	}
1133 
1134 	for (i = 0; i < IL_POWER_VEC_SIZE; i++)
1135 		if (le32_to_cpu(cmd->sleep_interval[i]) > max_sleep)
1136 			cmd->sleep_interval[i] = cpu_to_le32(max_sleep);
1137 }
1138 
1139 static int
1140 il_set_power(struct il_priv *il, struct il_powertable_cmd *cmd)
1141 {
1142 	D_POWER("Sending power/sleep command\n");
1143 	D_POWER("Flags value = 0x%08X\n", cmd->flags);
1144 	D_POWER("Tx timeout = %u\n", le32_to_cpu(cmd->tx_data_timeout));
1145 	D_POWER("Rx timeout = %u\n", le32_to_cpu(cmd->rx_data_timeout));
1146 	D_POWER("Sleep interval vector = { %d , %d , %d , %d , %d }\n",
1147 		le32_to_cpu(cmd->sleep_interval[0]),
1148 		le32_to_cpu(cmd->sleep_interval[1]),
1149 		le32_to_cpu(cmd->sleep_interval[2]),
1150 		le32_to_cpu(cmd->sleep_interval[3]),
1151 		le32_to_cpu(cmd->sleep_interval[4]));
1152 
1153 	return il_send_cmd_pdu(il, C_POWER_TBL,
1154 			       sizeof(struct il_powertable_cmd), cmd);
1155 }
1156 
1157 static int
1158 il_power_set_mode(struct il_priv *il, struct il_powertable_cmd *cmd, bool force)
1159 {
1160 	int ret;
1161 	bool update_chains;
1162 
1163 	lockdep_assert_held(&il->mutex);
1164 
1165 	/* Don't update the RX chain when chain noise calibration is running */
1166 	update_chains = il->chain_noise_data.state == IL_CHAIN_NOISE_DONE ||
1167 	    il->chain_noise_data.state == IL_CHAIN_NOISE_ALIVE;
1168 
1169 	if (!memcmp(&il->power_data.sleep_cmd, cmd, sizeof(*cmd)) && !force)
1170 		return 0;
1171 
1172 	if (!il_is_ready_rf(il))
1173 		return -EIO;
1174 
1175 	/* scan complete use sleep_power_next, need to be updated */
1176 	memcpy(&il->power_data.sleep_cmd_next, cmd, sizeof(*cmd));
1177 	if (test_bit(S_SCANNING, &il->status) && !force) {
1178 		D_INFO("Defer power set mode while scanning\n");
1179 		return 0;
1180 	}
1181 
1182 	if (cmd->flags & IL_POWER_DRIVER_ALLOW_SLEEP_MSK)
1183 		set_bit(S_POWER_PMI, &il->status);
1184 
1185 	ret = il_set_power(il, cmd);
1186 	if (!ret) {
1187 		if (!(cmd->flags & IL_POWER_DRIVER_ALLOW_SLEEP_MSK))
1188 			clear_bit(S_POWER_PMI, &il->status);
1189 
1190 		if (il->ops->update_chain_flags && update_chains)
1191 			il->ops->update_chain_flags(il);
1192 		else if (il->ops->update_chain_flags)
1193 			D_POWER("Cannot update the power, chain noise "
1194 				"calibration running: %d\n",
1195 				il->chain_noise_data.state);
1196 
1197 		memcpy(&il->power_data.sleep_cmd, cmd, sizeof(*cmd));
1198 	} else
1199 		IL_ERR("set power fail, ret = %d", ret);
1200 
1201 	return ret;
1202 }
1203 
1204 int
1205 il_power_update_mode(struct il_priv *il, bool force)
1206 {
1207 	struct il_powertable_cmd cmd;
1208 
1209 	il_build_powertable_cmd(il, &cmd);
1210 
1211 	return il_power_set_mode(il, &cmd, force);
1212 }
1213 EXPORT_SYMBOL(il_power_update_mode);
1214 
1215 /* initialize to default */
1216 void
1217 il_power_initialize(struct il_priv *il)
1218 {
1219 	u16 lctl;
1220 
1221 	pcie_capability_read_word(il->pci_dev, PCI_EXP_LNKCTL, &lctl);
1222 	il->power_data.pci_pm = !(lctl & PCI_EXP_LNKCTL_ASPM_L0S);
1223 
1224 	il->power_data.debug_sleep_level_override = -1;
1225 
1226 	memset(&il->power_data.sleep_cmd, 0, sizeof(il->power_data.sleep_cmd));
1227 }
1228 EXPORT_SYMBOL(il_power_initialize);
1229 
1230 /* For active scan, listen ACTIVE_DWELL_TIME (msec) on each channel after
1231  * sending probe req.  This should be set long enough to hear probe responses
1232  * from more than one AP.  */
1233 #define IL_ACTIVE_DWELL_TIME_24    (30)	/* all times in msec */
1234 #define IL_ACTIVE_DWELL_TIME_52    (20)
1235 
1236 #define IL_ACTIVE_DWELL_FACTOR_24GHZ (3)
1237 #define IL_ACTIVE_DWELL_FACTOR_52GHZ (2)
1238 
1239 /* For passive scan, listen PASSIVE_DWELL_TIME (msec) on each channel.
1240  * Must be set longer than active dwell time.
1241  * For the most reliable scan, set > AP beacon interval (typically 100msec). */
1242 #define IL_PASSIVE_DWELL_TIME_24   (20)	/* all times in msec */
1243 #define IL_PASSIVE_DWELL_TIME_52   (10)
1244 #define IL_PASSIVE_DWELL_BASE      (100)
1245 #define IL_CHANNEL_TUNE_TIME       5
1246 
1247 static int
1248 il_send_scan_abort(struct il_priv *il)
1249 {
1250 	int ret;
1251 	struct il_rx_pkt *pkt;
1252 	struct il_host_cmd cmd = {
1253 		.id = C_SCAN_ABORT,
1254 		.flags = CMD_WANT_SKB,
1255 	};
1256 
1257 	/* Exit instantly with error when device is not ready
1258 	 * to receive scan abort command or it does not perform
1259 	 * hardware scan currently */
1260 	if (!test_bit(S_READY, &il->status) ||
1261 	    !test_bit(S_GEO_CONFIGURED, &il->status) ||
1262 	    !test_bit(S_SCAN_HW, &il->status) ||
1263 	    test_bit(S_FW_ERROR, &il->status) ||
1264 	    test_bit(S_EXIT_PENDING, &il->status))
1265 		return -EIO;
1266 
1267 	ret = il_send_cmd_sync(il, &cmd);
1268 	if (ret)
1269 		return ret;
1270 
1271 	pkt = (struct il_rx_pkt *)cmd.reply_page;
1272 	if (pkt->u.status != CAN_ABORT_STATUS) {
1273 		/* The scan abort will return 1 for success or
1274 		 * 2 for "failure".  A failure condition can be
1275 		 * due to simply not being in an active scan which
1276 		 * can occur if we send the scan abort before we
1277 		 * the microcode has notified us that a scan is
1278 		 * completed. */
1279 		D_SCAN("SCAN_ABORT ret %d.\n", pkt->u.status);
1280 		ret = -EIO;
1281 	}
1282 
1283 	il_free_pages(il, cmd.reply_page);
1284 	return ret;
1285 }
1286 
1287 static void
1288 il_complete_scan(struct il_priv *il, bool aborted)
1289 {
1290 	struct cfg80211_scan_info info = {
1291 		.aborted = aborted,
1292 	};
1293 
1294 	/* check if scan was requested from mac80211 */
1295 	if (il->scan_request) {
1296 		D_SCAN("Complete scan in mac80211\n");
1297 		ieee80211_scan_completed(il->hw, &info);
1298 	}
1299 
1300 	il->scan_vif = NULL;
1301 	il->scan_request = NULL;
1302 }
1303 
1304 void
1305 il_force_scan_end(struct il_priv *il)
1306 {
1307 	lockdep_assert_held(&il->mutex);
1308 
1309 	if (!test_bit(S_SCANNING, &il->status)) {
1310 		D_SCAN("Forcing scan end while not scanning\n");
1311 		return;
1312 	}
1313 
1314 	D_SCAN("Forcing scan end\n");
1315 	clear_bit(S_SCANNING, &il->status);
1316 	clear_bit(S_SCAN_HW, &il->status);
1317 	clear_bit(S_SCAN_ABORTING, &il->status);
1318 	il_complete_scan(il, true);
1319 }
1320 
1321 static void
1322 il_do_scan_abort(struct il_priv *il)
1323 {
1324 	int ret;
1325 
1326 	lockdep_assert_held(&il->mutex);
1327 
1328 	if (!test_bit(S_SCANNING, &il->status)) {
1329 		D_SCAN("Not performing scan to abort\n");
1330 		return;
1331 	}
1332 
1333 	if (test_and_set_bit(S_SCAN_ABORTING, &il->status)) {
1334 		D_SCAN("Scan abort in progress\n");
1335 		return;
1336 	}
1337 
1338 	ret = il_send_scan_abort(il);
1339 	if (ret) {
1340 		D_SCAN("Send scan abort failed %d\n", ret);
1341 		il_force_scan_end(il);
1342 	} else
1343 		D_SCAN("Successfully send scan abort\n");
1344 }
1345 
1346 /*
1347  * il_scan_cancel - Cancel any currently executing HW scan
1348  */
1349 int
1350 il_scan_cancel(struct il_priv *il)
1351 {
1352 	D_SCAN("Queuing abort scan\n");
1353 	queue_work(il->workqueue, &il->abort_scan);
1354 	return 0;
1355 }
1356 EXPORT_SYMBOL(il_scan_cancel);
1357 
1358 /*
1359  * il_scan_cancel_timeout - Cancel any currently executing HW scan
1360  * @ms: amount of time to wait (in milliseconds) for scan to abort
1361  *
1362  */
1363 int
1364 il_scan_cancel_timeout(struct il_priv *il, unsigned long ms)
1365 {
1366 	unsigned long timeout = jiffies + msecs_to_jiffies(ms);
1367 
1368 	lockdep_assert_held(&il->mutex);
1369 
1370 	D_SCAN("Scan cancel timeout\n");
1371 
1372 	il_do_scan_abort(il);
1373 
1374 	while (time_before_eq(jiffies, timeout)) {
1375 		if (!test_bit(S_SCAN_HW, &il->status))
1376 			break;
1377 		msleep(20);
1378 	}
1379 
1380 	return test_bit(S_SCAN_HW, &il->status);
1381 }
1382 EXPORT_SYMBOL(il_scan_cancel_timeout);
1383 
1384 /* Service response to C_SCAN (0x80) */
1385 static void
1386 il_hdl_scan(struct il_priv *il, struct il_rx_buf *rxb)
1387 {
1388 #ifdef CONFIG_IWLEGACY_DEBUG
1389 	struct il_rx_pkt *pkt = rxb_addr(rxb);
1390 	struct il_scanreq_notification *notif =
1391 	    (struct il_scanreq_notification *)pkt->u.raw;
1392 
1393 	D_SCAN("Scan request status = 0x%x\n", notif->status);
1394 #endif
1395 }
1396 
1397 /* Service N_SCAN_START (0x82) */
1398 static void
1399 il_hdl_scan_start(struct il_priv *il, struct il_rx_buf *rxb)
1400 {
1401 	struct il_rx_pkt *pkt = rxb_addr(rxb);
1402 	struct il_scanstart_notification *notif =
1403 	    (struct il_scanstart_notification *)pkt->u.raw;
1404 	il->scan_start_tsf = le32_to_cpu(notif->tsf_low);
1405 	D_SCAN("Scan start: " "%d [802.11%s] "
1406 	       "(TSF: 0x%08X:%08X) - %d (beacon timer %u)\n", notif->channel,
1407 	       notif->band ? "bg" : "a", le32_to_cpu(notif->tsf_high),
1408 	       le32_to_cpu(notif->tsf_low), notif->status, notif->beacon_timer);
1409 }
1410 
1411 /* Service N_SCAN_RESULTS (0x83) */
1412 static void
1413 il_hdl_scan_results(struct il_priv *il, struct il_rx_buf *rxb)
1414 {
1415 #ifdef CONFIG_IWLEGACY_DEBUG
1416 	struct il_rx_pkt *pkt = rxb_addr(rxb);
1417 	struct il_scanresults_notification *notif =
1418 	    (struct il_scanresults_notification *)pkt->u.raw;
1419 
1420 	D_SCAN("Scan ch.res: " "%d [802.11%s] " "(TSF: 0x%08X:%08X) - %d "
1421 	       "elapsed=%lu usec\n", notif->channel, notif->band ? "bg" : "a",
1422 	       le32_to_cpu(notif->tsf_high), le32_to_cpu(notif->tsf_low),
1423 	       le32_to_cpu(notif->stats[0]),
1424 	       le32_to_cpu(notif->tsf_low) - il->scan_start_tsf);
1425 #endif
1426 }
1427 
1428 /* Service N_SCAN_COMPLETE (0x84) */
1429 static void
1430 il_hdl_scan_complete(struct il_priv *il, struct il_rx_buf *rxb)
1431 {
1432 
1433 	struct il_rx_pkt *pkt = rxb_addr(rxb);
1434 	struct il_scancomplete_notification *scan_notif = (void *)pkt->u.raw;
1435 
1436 	D_SCAN("Scan complete: %d channels (TSF 0x%08X:%08X) - %d\n",
1437 	       scan_notif->scanned_channels, scan_notif->tsf_low,
1438 	       scan_notif->tsf_high, scan_notif->status);
1439 
1440 	/* The HW is no longer scanning */
1441 	clear_bit(S_SCAN_HW, &il->status);
1442 
1443 	D_SCAN("Scan on %sGHz took %dms\n",
1444 	       (il->scan_band == NL80211_BAND_2GHZ) ? "2.4" : "5.2",
1445 	       jiffies_to_msecs(jiffies - il->scan_start));
1446 
1447 	queue_work(il->workqueue, &il->scan_completed);
1448 }
1449 
1450 void
1451 il_setup_rx_scan_handlers(struct il_priv *il)
1452 {
1453 	/* scan handlers */
1454 	il->handlers[C_SCAN] = il_hdl_scan;
1455 	il->handlers[N_SCAN_START] = il_hdl_scan_start;
1456 	il->handlers[N_SCAN_RESULTS] = il_hdl_scan_results;
1457 	il->handlers[N_SCAN_COMPLETE] = il_hdl_scan_complete;
1458 }
1459 EXPORT_SYMBOL(il_setup_rx_scan_handlers);
1460 
1461 u16
1462 il_get_active_dwell_time(struct il_priv *il, enum nl80211_band band,
1463 			 u8 n_probes)
1464 {
1465 	if (band == NL80211_BAND_5GHZ)
1466 		return IL_ACTIVE_DWELL_TIME_52 +
1467 		    IL_ACTIVE_DWELL_FACTOR_52GHZ * (n_probes + 1);
1468 	else
1469 		return IL_ACTIVE_DWELL_TIME_24 +
1470 		    IL_ACTIVE_DWELL_FACTOR_24GHZ * (n_probes + 1);
1471 }
1472 EXPORT_SYMBOL(il_get_active_dwell_time);
1473 
1474 u16
1475 il_get_passive_dwell_time(struct il_priv *il, enum nl80211_band band,
1476 			  struct ieee80211_vif *vif)
1477 {
1478 	u16 value;
1479 
1480 	u16 passive =
1481 	    (band ==
1482 	     NL80211_BAND_2GHZ) ? IL_PASSIVE_DWELL_BASE +
1483 	    IL_PASSIVE_DWELL_TIME_24 : IL_PASSIVE_DWELL_BASE +
1484 	    IL_PASSIVE_DWELL_TIME_52;
1485 
1486 	if (il_is_any_associated(il)) {
1487 		/*
1488 		 * If we're associated, we clamp the maximum passive
1489 		 * dwell time to be 98% of the smallest beacon interval
1490 		 * (minus 2 * channel tune time)
1491 		 */
1492 		value = il->vif ? il->vif->bss_conf.beacon_int : 0;
1493 		if (value > IL_PASSIVE_DWELL_BASE || !value)
1494 			value = IL_PASSIVE_DWELL_BASE;
1495 		value = (value * 98) / 100 - IL_CHANNEL_TUNE_TIME * 2;
1496 		passive = min(value, passive);
1497 	}
1498 
1499 	return passive;
1500 }
1501 EXPORT_SYMBOL(il_get_passive_dwell_time);
1502 
1503 void
1504 il_init_scan_params(struct il_priv *il)
1505 {
1506 	u8 ant_idx = fls(il->hw_params.valid_tx_ant) - 1;
1507 	if (!il->scan_tx_ant[NL80211_BAND_5GHZ])
1508 		il->scan_tx_ant[NL80211_BAND_5GHZ] = ant_idx;
1509 	if (!il->scan_tx_ant[NL80211_BAND_2GHZ])
1510 		il->scan_tx_ant[NL80211_BAND_2GHZ] = ant_idx;
1511 }
1512 EXPORT_SYMBOL(il_init_scan_params);
1513 
1514 static int
1515 il_scan_initiate(struct il_priv *il, struct ieee80211_vif *vif)
1516 {
1517 	int ret;
1518 
1519 	lockdep_assert_held(&il->mutex);
1520 
1521 	cancel_delayed_work(&il->scan_check);
1522 
1523 	if (!il_is_ready_rf(il)) {
1524 		IL_WARN("Request scan called when driver not ready.\n");
1525 		return -EIO;
1526 	}
1527 
1528 	if (test_bit(S_SCAN_HW, &il->status)) {
1529 		D_SCAN("Multiple concurrent scan requests in parallel.\n");
1530 		return -EBUSY;
1531 	}
1532 
1533 	if (test_bit(S_SCAN_ABORTING, &il->status)) {
1534 		D_SCAN("Scan request while abort pending.\n");
1535 		return -EBUSY;
1536 	}
1537 
1538 	D_SCAN("Starting scan...\n");
1539 
1540 	set_bit(S_SCANNING, &il->status);
1541 	il->scan_start = jiffies;
1542 
1543 	ret = il->ops->request_scan(il, vif);
1544 	if (ret) {
1545 		clear_bit(S_SCANNING, &il->status);
1546 		return ret;
1547 	}
1548 
1549 	queue_delayed_work(il->workqueue, &il->scan_check,
1550 			   IL_SCAN_CHECK_WATCHDOG);
1551 
1552 	return 0;
1553 }
1554 
1555 int
1556 il_mac_hw_scan(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1557 	       struct ieee80211_scan_request *hw_req)
1558 {
1559 	struct cfg80211_scan_request *req = &hw_req->req;
1560 	struct il_priv *il = hw->priv;
1561 	int ret;
1562 
1563 	if (req->n_channels == 0) {
1564 		IL_ERR("Can not scan on no channels.\n");
1565 		return -EINVAL;
1566 	}
1567 
1568 	mutex_lock(&il->mutex);
1569 	D_MAC80211("enter\n");
1570 
1571 	if (test_bit(S_SCANNING, &il->status)) {
1572 		D_SCAN("Scan already in progress.\n");
1573 		ret = -EAGAIN;
1574 		goto out_unlock;
1575 	}
1576 
1577 	/* mac80211 will only ask for one band at a time */
1578 	il->scan_request = req;
1579 	il->scan_vif = vif;
1580 	il->scan_band = req->channels[0]->band;
1581 
1582 	ret = il_scan_initiate(il, vif);
1583 
1584 out_unlock:
1585 	D_MAC80211("leave ret %d\n", ret);
1586 	mutex_unlock(&il->mutex);
1587 
1588 	return ret;
1589 }
1590 EXPORT_SYMBOL(il_mac_hw_scan);
1591 
1592 static void
1593 il_bg_scan_check(struct work_struct *data)
1594 {
1595 	struct il_priv *il =
1596 	    container_of(data, struct il_priv, scan_check.work);
1597 
1598 	D_SCAN("Scan check work\n");
1599 
1600 	/* Since we are here firmware does not finish scan and
1601 	 * most likely is in bad shape, so we don't bother to
1602 	 * send abort command, just force scan complete to mac80211 */
1603 	mutex_lock(&il->mutex);
1604 	il_force_scan_end(il);
1605 	mutex_unlock(&il->mutex);
1606 }
1607 
1608 /*
1609  * il_fill_probe_req - fill in all required fields and IE for probe request
1610  */
1611 u16
1612 il_fill_probe_req(struct il_priv *il, struct ieee80211_mgmt *frame,
1613 		  const u8 *ta, const u8 *ies, int ie_len, int left)
1614 {
1615 	int len = 0;
1616 	u8 *pos = NULL;
1617 
1618 	/* Make sure there is enough space for the probe request,
1619 	 * two mandatory IEs and the data */
1620 	left -= 24;
1621 	if (left < 0)
1622 		return 0;
1623 
1624 	frame->frame_control = cpu_to_le16(IEEE80211_STYPE_PROBE_REQ);
1625 	eth_broadcast_addr(frame->da);
1626 	memcpy(frame->sa, ta, ETH_ALEN);
1627 	eth_broadcast_addr(frame->bssid);
1628 	frame->seq_ctrl = 0;
1629 
1630 	len += 24;
1631 
1632 	/* ...next IE... */
1633 	pos = &frame->u.probe_req.variable[0];
1634 
1635 	/* fill in our indirect SSID IE */
1636 	left -= 2;
1637 	if (left < 0)
1638 		return 0;
1639 	*pos++ = WLAN_EID_SSID;
1640 	*pos++ = 0;
1641 
1642 	len += 2;
1643 
1644 	if (WARN_ON(left < ie_len))
1645 		return len;
1646 
1647 	if (ies && ie_len) {
1648 		memcpy(pos, ies, ie_len);
1649 		len += ie_len;
1650 	}
1651 
1652 	return (u16) len;
1653 }
1654 EXPORT_SYMBOL(il_fill_probe_req);
1655 
1656 static void
1657 il_bg_abort_scan(struct work_struct *work)
1658 {
1659 	struct il_priv *il = container_of(work, struct il_priv, abort_scan);
1660 
1661 	D_SCAN("Abort scan work\n");
1662 
1663 	/* We keep scan_check work queued in case when firmware will not
1664 	 * report back scan completed notification */
1665 	mutex_lock(&il->mutex);
1666 	il_scan_cancel_timeout(il, 200);
1667 	mutex_unlock(&il->mutex);
1668 }
1669 
1670 static void
1671 il_bg_scan_completed(struct work_struct *work)
1672 {
1673 	struct il_priv *il = container_of(work, struct il_priv, scan_completed);
1674 	bool aborted;
1675 
1676 	D_SCAN("Completed scan.\n");
1677 
1678 	cancel_delayed_work(&il->scan_check);
1679 
1680 	mutex_lock(&il->mutex);
1681 
1682 	aborted = test_and_clear_bit(S_SCAN_ABORTING, &il->status);
1683 	if (aborted)
1684 		D_SCAN("Aborted scan completed.\n");
1685 
1686 	if (!test_and_clear_bit(S_SCANNING, &il->status)) {
1687 		D_SCAN("Scan already completed.\n");
1688 		goto out_settings;
1689 	}
1690 
1691 	il_complete_scan(il, aborted);
1692 
1693 out_settings:
1694 	/* Can we still talk to firmware ? */
1695 	if (!il_is_ready_rf(il))
1696 		goto out;
1697 
1698 	/*
1699 	 * We do not commit power settings while scan is pending,
1700 	 * do it now if the settings changed.
1701 	 */
1702 	il_power_set_mode(il, &il->power_data.sleep_cmd_next, false);
1703 	il_set_tx_power(il, il->tx_power_next, false);
1704 
1705 	il->ops->post_scan(il);
1706 
1707 out:
1708 	mutex_unlock(&il->mutex);
1709 }
1710 
1711 void
1712 il_setup_scan_deferred_work(struct il_priv *il)
1713 {
1714 	INIT_WORK(&il->scan_completed, il_bg_scan_completed);
1715 	INIT_WORK(&il->abort_scan, il_bg_abort_scan);
1716 	INIT_DELAYED_WORK(&il->scan_check, il_bg_scan_check);
1717 }
1718 EXPORT_SYMBOL(il_setup_scan_deferred_work);
1719 
1720 void
1721 il_cancel_scan_deferred_work(struct il_priv *il)
1722 {
1723 	cancel_work_sync(&il->abort_scan);
1724 	cancel_work_sync(&il->scan_completed);
1725 
1726 	if (cancel_delayed_work_sync(&il->scan_check)) {
1727 		mutex_lock(&il->mutex);
1728 		il_force_scan_end(il);
1729 		mutex_unlock(&il->mutex);
1730 	}
1731 }
1732 EXPORT_SYMBOL(il_cancel_scan_deferred_work);
1733 
1734 /* il->sta_lock must be held */
1735 static void
1736 il_sta_ucode_activate(struct il_priv *il, u8 sta_id)
1737 {
1738 
1739 	if (!(il->stations[sta_id].used & IL_STA_DRIVER_ACTIVE))
1740 		IL_ERR("ACTIVATE a non DRIVER active station id %u addr %pM\n",
1741 		       sta_id, il->stations[sta_id].sta.sta.addr);
1742 
1743 	if (il->stations[sta_id].used & IL_STA_UCODE_ACTIVE) {
1744 		D_ASSOC("STA id %u addr %pM already present"
1745 			" in uCode (according to driver)\n", sta_id,
1746 			il->stations[sta_id].sta.sta.addr);
1747 	} else {
1748 		il->stations[sta_id].used |= IL_STA_UCODE_ACTIVE;
1749 		D_ASSOC("Added STA id %u addr %pM to uCode\n", sta_id,
1750 			il->stations[sta_id].sta.sta.addr);
1751 	}
1752 }
1753 
1754 static int
1755 il_process_add_sta_resp(struct il_priv *il, struct il_addsta_cmd *addsta,
1756 			struct il_rx_pkt *pkt, bool sync)
1757 {
1758 	u8 sta_id = addsta->sta.sta_id;
1759 	unsigned long flags;
1760 	int ret = -EIO;
1761 
1762 	if (pkt->hdr.flags & IL_CMD_FAILED_MSK) {
1763 		IL_ERR("Bad return from C_ADD_STA (0x%08X)\n", pkt->hdr.flags);
1764 		return ret;
1765 	}
1766 
1767 	D_INFO("Processing response for adding station %u\n", sta_id);
1768 
1769 	spin_lock_irqsave(&il->sta_lock, flags);
1770 
1771 	switch (pkt->u.add_sta.status) {
1772 	case ADD_STA_SUCCESS_MSK:
1773 		D_INFO("C_ADD_STA PASSED\n");
1774 		il_sta_ucode_activate(il, sta_id);
1775 		ret = 0;
1776 		break;
1777 	case ADD_STA_NO_ROOM_IN_TBL:
1778 		IL_ERR("Adding station %d failed, no room in table.\n", sta_id);
1779 		break;
1780 	case ADD_STA_NO_BLOCK_ACK_RESOURCE:
1781 		IL_ERR("Adding station %d failed, no block ack resource.\n",
1782 		       sta_id);
1783 		break;
1784 	case ADD_STA_MODIFY_NON_EXIST_STA:
1785 		IL_ERR("Attempting to modify non-existing station %d\n",
1786 		       sta_id);
1787 		break;
1788 	default:
1789 		D_ASSOC("Received C_ADD_STA:(0x%08X)\n", pkt->u.add_sta.status);
1790 		break;
1791 	}
1792 
1793 	D_INFO("%s station id %u addr %pM\n",
1794 	       il->stations[sta_id].sta.mode ==
1795 	       STA_CONTROL_MODIFY_MSK ? "Modified" : "Added", sta_id,
1796 	       il->stations[sta_id].sta.sta.addr);
1797 
1798 	/*
1799 	 * XXX: The MAC address in the command buffer is often changed from
1800 	 * the original sent to the device. That is, the MAC address
1801 	 * written to the command buffer often is not the same MAC address
1802 	 * read from the command buffer when the command returns. This
1803 	 * issue has not yet been resolved and this debugging is left to
1804 	 * observe the problem.
1805 	 */
1806 	D_INFO("%s station according to cmd buffer %pM\n",
1807 	       il->stations[sta_id].sta.mode ==
1808 	       STA_CONTROL_MODIFY_MSK ? "Modified" : "Added", addsta->sta.addr);
1809 	spin_unlock_irqrestore(&il->sta_lock, flags);
1810 
1811 	return ret;
1812 }
1813 
1814 static void
1815 il_add_sta_callback(struct il_priv *il, struct il_device_cmd *cmd,
1816 		    struct il_rx_pkt *pkt)
1817 {
1818 	struct il_addsta_cmd *addsta = (struct il_addsta_cmd *)cmd->cmd.payload;
1819 
1820 	il_process_add_sta_resp(il, addsta, pkt, false);
1821 
1822 }
1823 
1824 int
1825 il_send_add_sta(struct il_priv *il, struct il_addsta_cmd *sta, u8 flags)
1826 {
1827 	struct il_rx_pkt *pkt = NULL;
1828 	int ret = 0;
1829 	u8 data[sizeof(*sta)];
1830 	struct il_host_cmd cmd = {
1831 		.id = C_ADD_STA,
1832 		.flags = flags,
1833 		.data = data,
1834 	};
1835 	u8 sta_id __maybe_unused = sta->sta.sta_id;
1836 
1837 	D_INFO("Adding sta %u (%pM) %ssynchronously\n", sta_id, sta->sta.addr,
1838 	       flags & CMD_ASYNC ? "a" : "");
1839 
1840 	if (flags & CMD_ASYNC)
1841 		cmd.callback = il_add_sta_callback;
1842 	else {
1843 		cmd.flags |= CMD_WANT_SKB;
1844 		might_sleep();
1845 	}
1846 
1847 	cmd.len = il->ops->build_addsta_hcmd(sta, data);
1848 	ret = il_send_cmd(il, &cmd);
1849 	if (ret)
1850 		return ret;
1851 	if (flags & CMD_ASYNC)
1852 		return 0;
1853 
1854 	pkt = (struct il_rx_pkt *)cmd.reply_page;
1855 	ret = il_process_add_sta_resp(il, sta, pkt, true);
1856 
1857 	il_free_pages(il, cmd.reply_page);
1858 
1859 	return ret;
1860 }
1861 EXPORT_SYMBOL(il_send_add_sta);
1862 
1863 static void
1864 il_set_ht_add_station(struct il_priv *il, u8 idx, struct ieee80211_sta *sta)
1865 {
1866 	struct ieee80211_sta_ht_cap *sta_ht_inf = &sta->deflink.ht_cap;
1867 	__le32 sta_flags;
1868 
1869 	if (!sta || !sta_ht_inf->ht_supported)
1870 		goto done;
1871 
1872 	D_ASSOC("spatial multiplexing power save mode: %s\n",
1873 		(sta->deflink.smps_mode == IEEE80211_SMPS_STATIC) ? "static" :
1874 		(sta->deflink.smps_mode == IEEE80211_SMPS_DYNAMIC) ? "dynamic" :
1875 		"disabled");
1876 
1877 	sta_flags = il->stations[idx].sta.station_flags;
1878 
1879 	sta_flags &= ~(STA_FLG_RTS_MIMO_PROT_MSK | STA_FLG_MIMO_DIS_MSK);
1880 
1881 	switch (sta->deflink.smps_mode) {
1882 	case IEEE80211_SMPS_STATIC:
1883 		sta_flags |= STA_FLG_MIMO_DIS_MSK;
1884 		break;
1885 	case IEEE80211_SMPS_DYNAMIC:
1886 		sta_flags |= STA_FLG_RTS_MIMO_PROT_MSK;
1887 		break;
1888 	case IEEE80211_SMPS_OFF:
1889 		break;
1890 	default:
1891 		IL_WARN("Invalid MIMO PS mode %d\n", sta->deflink.smps_mode);
1892 		break;
1893 	}
1894 
1895 	sta_flags |=
1896 	    cpu_to_le32((u32) sta_ht_inf->
1897 			ampdu_factor << STA_FLG_MAX_AGG_SIZE_POS);
1898 
1899 	sta_flags |=
1900 	    cpu_to_le32((u32) sta_ht_inf->
1901 			ampdu_density << STA_FLG_AGG_MPDU_DENSITY_POS);
1902 
1903 	if (il_is_ht40_tx_allowed(il, &sta->deflink.ht_cap))
1904 		sta_flags |= STA_FLG_HT40_EN_MSK;
1905 	else
1906 		sta_flags &= ~STA_FLG_HT40_EN_MSK;
1907 
1908 	il->stations[idx].sta.station_flags = sta_flags;
1909 done:
1910 	return;
1911 }
1912 
1913 /*
1914  * il_prep_station - Prepare station information for addition
1915  *
1916  * should be called with sta_lock held
1917  */
1918 u8
1919 il_prep_station(struct il_priv *il, const u8 *addr, bool is_ap,
1920 		struct ieee80211_sta *sta)
1921 {
1922 	struct il_station_entry *station;
1923 	int i;
1924 	u8 sta_id = IL_INVALID_STATION;
1925 	u16 rate;
1926 
1927 	if (is_ap)
1928 		sta_id = IL_AP_ID;
1929 	else if (is_broadcast_ether_addr(addr))
1930 		sta_id = il->hw_params.bcast_id;
1931 	else
1932 		for (i = IL_STA_ID; i < il->hw_params.max_stations; i++) {
1933 			if (ether_addr_equal(il->stations[i].sta.sta.addr,
1934 					     addr)) {
1935 				sta_id = i;
1936 				break;
1937 			}
1938 
1939 			if (!il->stations[i].used &&
1940 			    sta_id == IL_INVALID_STATION)
1941 				sta_id = i;
1942 		}
1943 
1944 	/*
1945 	 * These two conditions have the same outcome, but keep them
1946 	 * separate
1947 	 */
1948 	if (unlikely(sta_id == IL_INVALID_STATION))
1949 		return sta_id;
1950 
1951 	/*
1952 	 * uCode is not able to deal with multiple requests to add a
1953 	 * station. Keep track if one is in progress so that we do not send
1954 	 * another.
1955 	 */
1956 	if (il->stations[sta_id].used & IL_STA_UCODE_INPROGRESS) {
1957 		D_INFO("STA %d already in process of being added.\n", sta_id);
1958 		return sta_id;
1959 	}
1960 
1961 	if ((il->stations[sta_id].used & IL_STA_DRIVER_ACTIVE) &&
1962 	    (il->stations[sta_id].used & IL_STA_UCODE_ACTIVE) &&
1963 	    ether_addr_equal(il->stations[sta_id].sta.sta.addr, addr)) {
1964 		D_ASSOC("STA %d (%pM) already added, not adding again.\n",
1965 			sta_id, addr);
1966 		return sta_id;
1967 	}
1968 
1969 	station = &il->stations[sta_id];
1970 	station->used = IL_STA_DRIVER_ACTIVE;
1971 	D_ASSOC("Add STA to driver ID %d: %pM\n", sta_id, addr);
1972 	il->num_stations++;
1973 
1974 	/* Set up the C_ADD_STA command to send to device */
1975 	memset(&station->sta, 0, sizeof(struct il_addsta_cmd));
1976 	memcpy(station->sta.sta.addr, addr, ETH_ALEN);
1977 	station->sta.mode = 0;
1978 	station->sta.sta.sta_id = sta_id;
1979 	station->sta.station_flags = 0;
1980 
1981 	/*
1982 	 * OK to call unconditionally, since local stations (IBSS BSSID
1983 	 * STA and broadcast STA) pass in a NULL sta, and mac80211
1984 	 * doesn't allow HT IBSS.
1985 	 */
1986 	il_set_ht_add_station(il, sta_id, sta);
1987 
1988 	/* 3945 only */
1989 	rate = (il->band == NL80211_BAND_5GHZ) ? RATE_6M_PLCP : RATE_1M_PLCP;
1990 	/* Turn on both antennas for the station... */
1991 	station->sta.rate_n_flags = cpu_to_le16(rate | RATE_MCS_ANT_AB_MSK);
1992 
1993 	return sta_id;
1994 
1995 }
1996 EXPORT_SYMBOL_GPL(il_prep_station);
1997 
1998 #define STA_WAIT_TIMEOUT (HZ/2)
1999 
2000 /*
2001  * il_add_station_common -
2002  */
2003 int
2004 il_add_station_common(struct il_priv *il, const u8 *addr, bool is_ap,
2005 		      struct ieee80211_sta *sta, u8 *sta_id_r)
2006 {
2007 	unsigned long flags_spin;
2008 	int ret = 0;
2009 	u8 sta_id;
2010 	struct il_addsta_cmd sta_cmd;
2011 
2012 	*sta_id_r = 0;
2013 	spin_lock_irqsave(&il->sta_lock, flags_spin);
2014 	sta_id = il_prep_station(il, addr, is_ap, sta);
2015 	if (sta_id == IL_INVALID_STATION) {
2016 		IL_ERR("Unable to prepare station %pM for addition\n", addr);
2017 		spin_unlock_irqrestore(&il->sta_lock, flags_spin);
2018 		return -EINVAL;
2019 	}
2020 
2021 	/*
2022 	 * uCode is not able to deal with multiple requests to add a
2023 	 * station. Keep track if one is in progress so that we do not send
2024 	 * another.
2025 	 */
2026 	if (il->stations[sta_id].used & IL_STA_UCODE_INPROGRESS) {
2027 		D_INFO("STA %d already in process of being added.\n", sta_id);
2028 		spin_unlock_irqrestore(&il->sta_lock, flags_spin);
2029 		return -EEXIST;
2030 	}
2031 
2032 	if ((il->stations[sta_id].used & IL_STA_DRIVER_ACTIVE) &&
2033 	    (il->stations[sta_id].used & IL_STA_UCODE_ACTIVE)) {
2034 		D_ASSOC("STA %d (%pM) already added, not adding again.\n",
2035 			sta_id, addr);
2036 		spin_unlock_irqrestore(&il->sta_lock, flags_spin);
2037 		return -EEXIST;
2038 	}
2039 
2040 	il->stations[sta_id].used |= IL_STA_UCODE_INPROGRESS;
2041 	memcpy(&sta_cmd, &il->stations[sta_id].sta,
2042 	       sizeof(struct il_addsta_cmd));
2043 	spin_unlock_irqrestore(&il->sta_lock, flags_spin);
2044 
2045 	/* Add station to device's station table */
2046 	ret = il_send_add_sta(il, &sta_cmd, CMD_SYNC);
2047 	if (ret) {
2048 		spin_lock_irqsave(&il->sta_lock, flags_spin);
2049 		IL_ERR("Adding station %pM failed.\n",
2050 		       il->stations[sta_id].sta.sta.addr);
2051 		il->stations[sta_id].used &= ~IL_STA_DRIVER_ACTIVE;
2052 		il->stations[sta_id].used &= ~IL_STA_UCODE_INPROGRESS;
2053 		spin_unlock_irqrestore(&il->sta_lock, flags_spin);
2054 	}
2055 	*sta_id_r = sta_id;
2056 	return ret;
2057 }
2058 EXPORT_SYMBOL(il_add_station_common);
2059 
2060 /*
2061  * il_sta_ucode_deactivate - deactivate ucode status for a station
2062  *
2063  * il->sta_lock must be held
2064  */
2065 static void
2066 il_sta_ucode_deactivate(struct il_priv *il, u8 sta_id)
2067 {
2068 	/* Ucode must be active and driver must be non active */
2069 	if ((il->stations[sta_id].
2070 	     used & (IL_STA_UCODE_ACTIVE | IL_STA_DRIVER_ACTIVE)) !=
2071 	    IL_STA_UCODE_ACTIVE)
2072 		IL_ERR("removed non active STA %u\n", sta_id);
2073 
2074 	il->stations[sta_id].used &= ~IL_STA_UCODE_ACTIVE;
2075 
2076 	memset(&il->stations[sta_id], 0, sizeof(struct il_station_entry));
2077 	D_ASSOC("Removed STA %u\n", sta_id);
2078 }
2079 
2080 static int
2081 il_send_remove_station(struct il_priv *il, const u8 * addr, int sta_id,
2082 		       bool temporary)
2083 {
2084 	struct il_rx_pkt *pkt;
2085 	int ret;
2086 
2087 	unsigned long flags_spin;
2088 	struct il_rem_sta_cmd rm_sta_cmd;
2089 
2090 	struct il_host_cmd cmd = {
2091 		.id = C_REM_STA,
2092 		.len = sizeof(struct il_rem_sta_cmd),
2093 		.flags = CMD_SYNC,
2094 		.data = &rm_sta_cmd,
2095 	};
2096 
2097 	memset(&rm_sta_cmd, 0, sizeof(rm_sta_cmd));
2098 	rm_sta_cmd.num_sta = 1;
2099 	memcpy(&rm_sta_cmd.addr, addr, ETH_ALEN);
2100 
2101 	cmd.flags |= CMD_WANT_SKB;
2102 
2103 	ret = il_send_cmd(il, &cmd);
2104 
2105 	if (ret)
2106 		return ret;
2107 
2108 	pkt = (struct il_rx_pkt *)cmd.reply_page;
2109 	if (pkt->hdr.flags & IL_CMD_FAILED_MSK) {
2110 		IL_ERR("Bad return from C_REM_STA (0x%08X)\n", pkt->hdr.flags);
2111 		ret = -EIO;
2112 	}
2113 
2114 	if (!ret) {
2115 		switch (pkt->u.rem_sta.status) {
2116 		case REM_STA_SUCCESS_MSK:
2117 			if (!temporary) {
2118 				spin_lock_irqsave(&il->sta_lock, flags_spin);
2119 				il_sta_ucode_deactivate(il, sta_id);
2120 				spin_unlock_irqrestore(&il->sta_lock,
2121 						       flags_spin);
2122 			}
2123 			D_ASSOC("C_REM_STA PASSED\n");
2124 			break;
2125 		default:
2126 			ret = -EIO;
2127 			IL_ERR("C_REM_STA failed\n");
2128 			break;
2129 		}
2130 	}
2131 	il_free_pages(il, cmd.reply_page);
2132 
2133 	return ret;
2134 }
2135 
2136 /*
2137  * il_remove_station - Remove driver's knowledge of station.
2138  */
2139 int
2140 il_remove_station(struct il_priv *il, const u8 sta_id, const u8 * addr)
2141 {
2142 	unsigned long flags;
2143 
2144 	if (!il_is_ready(il)) {
2145 		D_INFO("Unable to remove station %pM, device not ready.\n",
2146 		       addr);
2147 		/*
2148 		 * It is typical for stations to be removed when we are
2149 		 * going down. Return success since device will be down
2150 		 * soon anyway
2151 		 */
2152 		return 0;
2153 	}
2154 
2155 	D_ASSOC("Removing STA from driver:%d  %pM\n", sta_id, addr);
2156 
2157 	if (WARN_ON(sta_id == IL_INVALID_STATION))
2158 		return -EINVAL;
2159 
2160 	spin_lock_irqsave(&il->sta_lock, flags);
2161 
2162 	if (!(il->stations[sta_id].used & IL_STA_DRIVER_ACTIVE)) {
2163 		D_INFO("Removing %pM but non DRIVER active\n", addr);
2164 		goto out_err;
2165 	}
2166 
2167 	if (!(il->stations[sta_id].used & IL_STA_UCODE_ACTIVE)) {
2168 		D_INFO("Removing %pM but non UCODE active\n", addr);
2169 		goto out_err;
2170 	}
2171 
2172 	if (il->stations[sta_id].used & IL_STA_LOCAL) {
2173 		kfree(il->stations[sta_id].lq);
2174 		il->stations[sta_id].lq = NULL;
2175 	}
2176 
2177 	il->stations[sta_id].used &= ~IL_STA_DRIVER_ACTIVE;
2178 
2179 	il->num_stations--;
2180 
2181 	BUG_ON(il->num_stations < 0);
2182 
2183 	spin_unlock_irqrestore(&il->sta_lock, flags);
2184 
2185 	return il_send_remove_station(il, addr, sta_id, false);
2186 out_err:
2187 	spin_unlock_irqrestore(&il->sta_lock, flags);
2188 	return -EINVAL;
2189 }
2190 EXPORT_SYMBOL_GPL(il_remove_station);
2191 
2192 /*
2193  * il_clear_ucode_stations - clear ucode station table bits
2194  *
2195  * This function clears all the bits in the driver indicating
2196  * which stations are active in the ucode. Call when something
2197  * other than explicit station management would cause this in
2198  * the ucode, e.g. unassociated RXON.
2199  */
2200 void
2201 il_clear_ucode_stations(struct il_priv *il)
2202 {
2203 	int i;
2204 	unsigned long flags_spin;
2205 	bool cleared = false;
2206 
2207 	D_INFO("Clearing ucode stations in driver\n");
2208 
2209 	spin_lock_irqsave(&il->sta_lock, flags_spin);
2210 	for (i = 0; i < il->hw_params.max_stations; i++) {
2211 		if (il->stations[i].used & IL_STA_UCODE_ACTIVE) {
2212 			D_INFO("Clearing ucode active for station %d\n", i);
2213 			il->stations[i].used &= ~IL_STA_UCODE_ACTIVE;
2214 			cleared = true;
2215 		}
2216 	}
2217 	spin_unlock_irqrestore(&il->sta_lock, flags_spin);
2218 
2219 	if (!cleared)
2220 		D_INFO("No active stations found to be cleared\n");
2221 }
2222 EXPORT_SYMBOL(il_clear_ucode_stations);
2223 
2224 /*
2225  * il_restore_stations() - Restore driver known stations to device
2226  *
2227  * All stations considered active by driver, but not present in ucode, is
2228  * restored.
2229  *
2230  * Function sleeps.
2231  */
2232 void
2233 il_restore_stations(struct il_priv *il)
2234 {
2235 	struct il_addsta_cmd sta_cmd;
2236 	struct il_link_quality_cmd lq;
2237 	unsigned long flags_spin;
2238 	int i;
2239 	bool found = false;
2240 	int ret;
2241 	bool send_lq;
2242 
2243 	if (!il_is_ready(il)) {
2244 		D_INFO("Not ready yet, not restoring any stations.\n");
2245 		return;
2246 	}
2247 
2248 	D_ASSOC("Restoring all known stations ... start.\n");
2249 	spin_lock_irqsave(&il->sta_lock, flags_spin);
2250 	for (i = 0; i < il->hw_params.max_stations; i++) {
2251 		if ((il->stations[i].used & IL_STA_DRIVER_ACTIVE) &&
2252 		    !(il->stations[i].used & IL_STA_UCODE_ACTIVE)) {
2253 			D_ASSOC("Restoring sta %pM\n",
2254 				il->stations[i].sta.sta.addr);
2255 			il->stations[i].sta.mode = 0;
2256 			il->stations[i].used |= IL_STA_UCODE_INPROGRESS;
2257 			found = true;
2258 		}
2259 	}
2260 
2261 	for (i = 0; i < il->hw_params.max_stations; i++) {
2262 		if ((il->stations[i].used & IL_STA_UCODE_INPROGRESS)) {
2263 			memcpy(&sta_cmd, &il->stations[i].sta,
2264 			       sizeof(struct il_addsta_cmd));
2265 			send_lq = false;
2266 			if (il->stations[i].lq) {
2267 				memcpy(&lq, il->stations[i].lq,
2268 				       sizeof(struct il_link_quality_cmd));
2269 				send_lq = true;
2270 			}
2271 			spin_unlock_irqrestore(&il->sta_lock, flags_spin);
2272 			ret = il_send_add_sta(il, &sta_cmd, CMD_SYNC);
2273 			if (ret) {
2274 				spin_lock_irqsave(&il->sta_lock, flags_spin);
2275 				IL_ERR("Adding station %pM failed.\n",
2276 				       il->stations[i].sta.sta.addr);
2277 				il->stations[i].used &= ~IL_STA_DRIVER_ACTIVE;
2278 				il->stations[i].used &=
2279 				    ~IL_STA_UCODE_INPROGRESS;
2280 				spin_unlock_irqrestore(&il->sta_lock,
2281 						       flags_spin);
2282 			}
2283 			/*
2284 			 * Rate scaling has already been initialized, send
2285 			 * current LQ command
2286 			 */
2287 			if (send_lq)
2288 				il_send_lq_cmd(il, &lq, CMD_SYNC, true);
2289 			spin_lock_irqsave(&il->sta_lock, flags_spin);
2290 			il->stations[i].used &= ~IL_STA_UCODE_INPROGRESS;
2291 		}
2292 	}
2293 
2294 	spin_unlock_irqrestore(&il->sta_lock, flags_spin);
2295 	if (!found)
2296 		D_INFO("Restoring all known stations"
2297 		       " .... no stations to be restored.\n");
2298 	else
2299 		D_INFO("Restoring all known stations" " .... complete.\n");
2300 }
2301 EXPORT_SYMBOL(il_restore_stations);
2302 
2303 int
2304 il_get_free_ucode_key_idx(struct il_priv *il)
2305 {
2306 	int i;
2307 
2308 	for (i = 0; i < il->sta_key_max_num; i++)
2309 		if (!test_and_set_bit(i, &il->ucode_key_table))
2310 			return i;
2311 
2312 	return WEP_INVALID_OFFSET;
2313 }
2314 EXPORT_SYMBOL(il_get_free_ucode_key_idx);
2315 
2316 void
2317 il_dealloc_bcast_stations(struct il_priv *il)
2318 {
2319 	unsigned long flags;
2320 	int i;
2321 
2322 	spin_lock_irqsave(&il->sta_lock, flags);
2323 	for (i = 0; i < il->hw_params.max_stations; i++) {
2324 		if (!(il->stations[i].used & IL_STA_BCAST))
2325 			continue;
2326 
2327 		il->stations[i].used &= ~IL_STA_UCODE_ACTIVE;
2328 		il->num_stations--;
2329 		BUG_ON(il->num_stations < 0);
2330 		kfree(il->stations[i].lq);
2331 		il->stations[i].lq = NULL;
2332 	}
2333 	spin_unlock_irqrestore(&il->sta_lock, flags);
2334 }
2335 EXPORT_SYMBOL_GPL(il_dealloc_bcast_stations);
2336 
2337 #ifdef CONFIG_IWLEGACY_DEBUG
2338 static void
2339 il_dump_lq_cmd(struct il_priv *il, struct il_link_quality_cmd *lq)
2340 {
2341 	int i;
2342 	D_RATE("lq station id 0x%x\n", lq->sta_id);
2343 	D_RATE("lq ant 0x%X 0x%X\n", lq->general_params.single_stream_ant_msk,
2344 	       lq->general_params.dual_stream_ant_msk);
2345 
2346 	for (i = 0; i < LINK_QUAL_MAX_RETRY_NUM; i++)
2347 		D_RATE("lq idx %d 0x%X\n", i, lq->rs_table[i].rate_n_flags);
2348 }
2349 #else
2350 static inline void
2351 il_dump_lq_cmd(struct il_priv *il, struct il_link_quality_cmd *lq)
2352 {
2353 }
2354 #endif
2355 
2356 /*
2357  * il_is_lq_table_valid() - Test one aspect of LQ cmd for validity
2358  *
2359  * It sometimes happens when a HT rate has been in use and we
2360  * loose connectivity with AP then mac80211 will first tell us that the
2361  * current channel is not HT anymore before removing the station. In such a
2362  * scenario the RXON flags will be updated to indicate we are not
2363  * communicating HT anymore, but the LQ command may still contain HT rates.
2364  * Test for this to prevent driver from sending LQ command between the time
2365  * RXON flags are updated and when LQ command is updated.
2366  */
2367 static bool
2368 il_is_lq_table_valid(struct il_priv *il, struct il_link_quality_cmd *lq)
2369 {
2370 	int i;
2371 
2372 	if (il->ht.enabled)
2373 		return true;
2374 
2375 	D_INFO("Channel %u is not an HT channel\n", il->active.channel);
2376 	for (i = 0; i < LINK_QUAL_MAX_RETRY_NUM; i++) {
2377 		if (le32_to_cpu(lq->rs_table[i].rate_n_flags) & RATE_MCS_HT_MSK) {
2378 			D_INFO("idx %d of LQ expects HT channel\n", i);
2379 			return false;
2380 		}
2381 	}
2382 	return true;
2383 }
2384 
2385 /*
2386  * il_send_lq_cmd() - Send link quality command
2387  * @init: This command is sent as part of station initialization right
2388  *        after station has been added.
2389  *
2390  * The link quality command is sent as the last step of station creation.
2391  * This is the special case in which init is set and we call a callback in
2392  * this case to clear the state indicating that station creation is in
2393  * progress.
2394  */
2395 int
2396 il_send_lq_cmd(struct il_priv *il, struct il_link_quality_cmd *lq,
2397 	       u8 flags, bool init)
2398 {
2399 	int ret = 0;
2400 	unsigned long flags_spin;
2401 
2402 	struct il_host_cmd cmd = {
2403 		.id = C_TX_LINK_QUALITY_CMD,
2404 		.len = sizeof(struct il_link_quality_cmd),
2405 		.flags = flags,
2406 		.data = lq,
2407 	};
2408 
2409 	if (WARN_ON(lq->sta_id == IL_INVALID_STATION))
2410 		return -EINVAL;
2411 
2412 	spin_lock_irqsave(&il->sta_lock, flags_spin);
2413 	if (!(il->stations[lq->sta_id].used & IL_STA_DRIVER_ACTIVE)) {
2414 		spin_unlock_irqrestore(&il->sta_lock, flags_spin);
2415 		return -EINVAL;
2416 	}
2417 	spin_unlock_irqrestore(&il->sta_lock, flags_spin);
2418 
2419 	il_dump_lq_cmd(il, lq);
2420 	BUG_ON(init && (cmd.flags & CMD_ASYNC));
2421 
2422 	if (il_is_lq_table_valid(il, lq))
2423 		ret = il_send_cmd(il, &cmd);
2424 	else
2425 		ret = -EINVAL;
2426 
2427 	if (cmd.flags & CMD_ASYNC)
2428 		return ret;
2429 
2430 	if (init) {
2431 		D_INFO("init LQ command complete,"
2432 		       " clearing sta addition status for sta %d\n",
2433 		       lq->sta_id);
2434 		spin_lock_irqsave(&il->sta_lock, flags_spin);
2435 		il->stations[lq->sta_id].used &= ~IL_STA_UCODE_INPROGRESS;
2436 		spin_unlock_irqrestore(&il->sta_lock, flags_spin);
2437 	}
2438 	return ret;
2439 }
2440 EXPORT_SYMBOL(il_send_lq_cmd);
2441 
2442 int
2443 il_mac_sta_remove(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2444 		  struct ieee80211_sta *sta)
2445 {
2446 	struct il_priv *il = hw->priv;
2447 	struct il_station_priv_common *sta_common = (void *)sta->drv_priv;
2448 	int ret;
2449 
2450 	mutex_lock(&il->mutex);
2451 	D_MAC80211("enter station %pM\n", sta->addr);
2452 
2453 	ret = il_remove_station(il, sta_common->sta_id, sta->addr);
2454 	if (ret)
2455 		IL_ERR("Error removing station %pM\n", sta->addr);
2456 
2457 	D_MAC80211("leave ret %d\n", ret);
2458 	mutex_unlock(&il->mutex);
2459 
2460 	return ret;
2461 }
2462 EXPORT_SYMBOL(il_mac_sta_remove);
2463 
2464 /************************** RX-FUNCTIONS ****************************/
2465 /*
2466  * Rx theory of operation
2467  *
2468  * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
2469  * each of which point to Receive Buffers to be filled by the NIC.  These get
2470  * used not only for Rx frames, but for any command response or notification
2471  * from the NIC.  The driver and NIC manage the Rx buffers by means
2472  * of idxes into the circular buffer.
2473  *
2474  * Rx Queue Indexes
2475  * The host/firmware share two idx registers for managing the Rx buffers.
2476  *
2477  * The READ idx maps to the first position that the firmware may be writing
2478  * to -- the driver can read up to (but not including) this position and get
2479  * good data.
2480  * The READ idx is managed by the firmware once the card is enabled.
2481  *
2482  * The WRITE idx maps to the last position the driver has read from -- the
2483  * position preceding WRITE is the last slot the firmware can place a packet.
2484  *
2485  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
2486  * WRITE = READ.
2487  *
2488  * During initialization, the host sets up the READ queue position to the first
2489  * IDX position, and WRITE to the last (READ - 1 wrapped)
2490  *
2491  * When the firmware places a packet in a buffer, it will advance the READ idx
2492  * and fire the RX interrupt.  The driver can then query the READ idx and
2493  * process as many packets as possible, moving the WRITE idx forward as it
2494  * resets the Rx queue buffers with new memory.
2495  *
2496  * The management in the driver is as follows:
2497  * + A list of pre-allocated SKBs is stored in iwl->rxq->rx_free.  When
2498  *   iwl->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
2499  *   to replenish the iwl->rxq->rx_free.
2500  * + In il_rx_replenish (scheduled) if 'processed' != 'read' then the
2501  *   iwl->rxq is replenished and the READ IDX is updated (updating the
2502  *   'processed' and 'read' driver idxes as well)
2503  * + A received packet is processed and handed to the kernel network stack,
2504  *   detached from the iwl->rxq.  The driver 'processed' idx is updated.
2505  * + The Host/Firmware iwl->rxq is replenished at tasklet time from the rx_free
2506  *   list. If there are no allocated buffers in iwl->rxq->rx_free, the READ
2507  *   IDX is not incremented and iwl->status(RX_STALLED) is set.  If there
2508  *   were enough free buffers and RX_STALLED is set it is cleared.
2509  *
2510  *
2511  * Driver sequence:
2512  *
2513  * il_rx_queue_alloc()   Allocates rx_free
2514  * il_rx_replenish()     Replenishes rx_free list from rx_used, and calls
2515  *                            il_rx_queue_restock
2516  * il_rx_queue_restock() Moves available buffers from rx_free into Rx
2517  *                            queue, updates firmware pointers, and updates
2518  *                            the WRITE idx.  If insufficient rx_free buffers
2519  *                            are available, schedules il_rx_replenish
2520  *
2521  * -- enable interrupts --
2522  * ISR - il_rx()         Detach il_rx_bufs from pool up to the
2523  *                            READ IDX, detaching the SKB from the pool.
2524  *                            Moves the packet buffer from queue to rx_used.
2525  *                            Calls il_rx_queue_restock to refill any empty
2526  *                            slots.
2527  * ...
2528  *
2529  */
2530 
2531 /*
2532  * il_rx_queue_space - Return number of free slots available in queue.
2533  */
2534 int
2535 il_rx_queue_space(const struct il_rx_queue *q)
2536 {
2537 	int s = q->read - q->write;
2538 	if (s <= 0)
2539 		s += RX_QUEUE_SIZE;
2540 	/* keep some buffer to not confuse full and empty queue */
2541 	s -= 2;
2542 	if (s < 0)
2543 		s = 0;
2544 	return s;
2545 }
2546 EXPORT_SYMBOL(il_rx_queue_space);
2547 
2548 /*
2549  * il_rx_queue_update_write_ptr - Update the write pointer for the RX queue
2550  */
2551 void
2552 il_rx_queue_update_write_ptr(struct il_priv *il, struct il_rx_queue *q)
2553 {
2554 	unsigned long flags;
2555 	u32 rx_wrt_ptr_reg = il->hw_params.rx_wrt_ptr_reg;
2556 	u32 reg;
2557 
2558 	spin_lock_irqsave(&q->lock, flags);
2559 
2560 	if (q->need_update == 0)
2561 		goto exit_unlock;
2562 
2563 	/* If power-saving is in use, make sure device is awake */
2564 	if (test_bit(S_POWER_PMI, &il->status)) {
2565 		reg = _il_rd(il, CSR_UCODE_DRV_GP1);
2566 
2567 		if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
2568 			D_INFO("Rx queue requesting wakeup," " GP1 = 0x%x\n",
2569 			       reg);
2570 			il_set_bit(il, CSR_GP_CNTRL,
2571 				   CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
2572 			goto exit_unlock;
2573 		}
2574 
2575 		q->write_actual = (q->write & ~0x7);
2576 		il_wr(il, rx_wrt_ptr_reg, q->write_actual);
2577 
2578 		/* Else device is assumed to be awake */
2579 	} else {
2580 		/* Device expects a multiple of 8 */
2581 		q->write_actual = (q->write & ~0x7);
2582 		il_wr(il, rx_wrt_ptr_reg, q->write_actual);
2583 	}
2584 
2585 	q->need_update = 0;
2586 
2587 exit_unlock:
2588 	spin_unlock_irqrestore(&q->lock, flags);
2589 }
2590 EXPORT_SYMBOL(il_rx_queue_update_write_ptr);
2591 
2592 int
2593 il_rx_queue_alloc(struct il_priv *il)
2594 {
2595 	struct il_rx_queue *rxq = &il->rxq;
2596 	struct device *dev = &il->pci_dev->dev;
2597 	int i;
2598 
2599 	spin_lock_init(&rxq->lock);
2600 	INIT_LIST_HEAD(&rxq->rx_free);
2601 	INIT_LIST_HEAD(&rxq->rx_used);
2602 
2603 	/* Alloc the circular buffer of Read Buffer Descriptors (RBDs) */
2604 	rxq->bd = dma_alloc_coherent(dev, 4 * RX_QUEUE_SIZE, &rxq->bd_dma,
2605 				     GFP_KERNEL);
2606 	if (!rxq->bd)
2607 		goto err_bd;
2608 
2609 	rxq->rb_stts = dma_alloc_coherent(dev, sizeof(struct il_rb_status),
2610 					  &rxq->rb_stts_dma, GFP_KERNEL);
2611 	if (!rxq->rb_stts)
2612 		goto err_rb;
2613 
2614 	/* Fill the rx_used queue with _all_ of the Rx buffers */
2615 	for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
2616 		list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
2617 
2618 	/* Set us so that we have processed and used all buffers, but have
2619 	 * not restocked the Rx queue with fresh buffers */
2620 	rxq->read = rxq->write = 0;
2621 	rxq->write_actual = 0;
2622 	rxq->free_count = 0;
2623 	rxq->need_update = 0;
2624 	return 0;
2625 
2626 err_rb:
2627 	dma_free_coherent(&il->pci_dev->dev, 4 * RX_QUEUE_SIZE, rxq->bd,
2628 			  rxq->bd_dma);
2629 err_bd:
2630 	return -ENOMEM;
2631 }
2632 EXPORT_SYMBOL(il_rx_queue_alloc);
2633 
2634 void
2635 il_hdl_spectrum_measurement(struct il_priv *il, struct il_rx_buf *rxb)
2636 {
2637 	struct il_rx_pkt *pkt = rxb_addr(rxb);
2638 	struct il_spectrum_notification *report = &(pkt->u.spectrum_notif);
2639 
2640 	if (!report->state) {
2641 		D_11H("Spectrum Measure Notification: Start\n");
2642 		return;
2643 	}
2644 
2645 	memcpy(&il->measure_report, report, sizeof(*report));
2646 	il->measurement_status |= MEASUREMENT_READY;
2647 }
2648 EXPORT_SYMBOL(il_hdl_spectrum_measurement);
2649 
2650 /*
2651  * returns non-zero if packet should be dropped
2652  */
2653 int
2654 il_set_decrypted_flag(struct il_priv *il, struct ieee80211_hdr *hdr,
2655 		      u32 decrypt_res, struct ieee80211_rx_status *stats)
2656 {
2657 	u16 fc = le16_to_cpu(hdr->frame_control);
2658 
2659 	/*
2660 	 * All contexts have the same setting here due to it being
2661 	 * a module parameter, so OK to check any context.
2662 	 */
2663 	if (il->active.filter_flags & RXON_FILTER_DIS_DECRYPT_MSK)
2664 		return 0;
2665 
2666 	if (!(fc & IEEE80211_FCTL_PROTECTED))
2667 		return 0;
2668 
2669 	D_RX("decrypt_res:0x%x\n", decrypt_res);
2670 	switch (decrypt_res & RX_RES_STATUS_SEC_TYPE_MSK) {
2671 	case RX_RES_STATUS_SEC_TYPE_TKIP:
2672 		/* The uCode has got a bad phase 1 Key, pushes the packet.
2673 		 * Decryption will be done in SW. */
2674 		if ((decrypt_res & RX_RES_STATUS_DECRYPT_TYPE_MSK) ==
2675 		    RX_RES_STATUS_BAD_KEY_TTAK)
2676 			break;
2677 		fallthrough;
2678 
2679 	case RX_RES_STATUS_SEC_TYPE_WEP:
2680 		if ((decrypt_res & RX_RES_STATUS_DECRYPT_TYPE_MSK) ==
2681 		    RX_RES_STATUS_BAD_ICV_MIC) {
2682 			/* bad ICV, the packet is destroyed since the
2683 			 * decryption is inplace, drop it */
2684 			D_RX("Packet destroyed\n");
2685 			return -1;
2686 		}
2687 		fallthrough;
2688 	case RX_RES_STATUS_SEC_TYPE_CCMP:
2689 		if ((decrypt_res & RX_RES_STATUS_DECRYPT_TYPE_MSK) ==
2690 		    RX_RES_STATUS_DECRYPT_OK) {
2691 			D_RX("hw decrypt successfully!!!\n");
2692 			stats->flag |= RX_FLAG_DECRYPTED;
2693 		}
2694 		break;
2695 
2696 	default:
2697 		break;
2698 	}
2699 	return 0;
2700 }
2701 EXPORT_SYMBOL(il_set_decrypted_flag);
2702 
2703 /*
2704  * il_txq_update_write_ptr - Send new write idx to hardware
2705  */
2706 void
2707 il_txq_update_write_ptr(struct il_priv *il, struct il_tx_queue *txq)
2708 {
2709 	u32 reg = 0;
2710 	int txq_id = txq->q.id;
2711 
2712 	if (txq->need_update == 0)
2713 		return;
2714 
2715 	/* if we're trying to save power */
2716 	if (test_bit(S_POWER_PMI, &il->status)) {
2717 		/* wake up nic if it's powered down ...
2718 		 * uCode will wake up, and interrupt us again, so next
2719 		 * time we'll skip this part. */
2720 		reg = _il_rd(il, CSR_UCODE_DRV_GP1);
2721 
2722 		if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
2723 			D_INFO("Tx queue %d requesting wakeup," " GP1 = 0x%x\n",
2724 			       txq_id, reg);
2725 			il_set_bit(il, CSR_GP_CNTRL,
2726 				   CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
2727 			return;
2728 		}
2729 
2730 		il_wr(il, HBUS_TARG_WRPTR, txq->q.write_ptr | (txq_id << 8));
2731 
2732 		/*
2733 		 * else not in power-save mode,
2734 		 * uCode will never sleep when we're
2735 		 * trying to tx (during RFKILL, we're not trying to tx).
2736 		 */
2737 	} else
2738 		_il_wr(il, HBUS_TARG_WRPTR, txq->q.write_ptr | (txq_id << 8));
2739 	txq->need_update = 0;
2740 }
2741 EXPORT_SYMBOL(il_txq_update_write_ptr);
2742 
2743 /*
2744  * il_tx_queue_unmap -  Unmap any remaining DMA mappings and free skb's
2745  */
2746 void
2747 il_tx_queue_unmap(struct il_priv *il, int txq_id)
2748 {
2749 	struct il_tx_queue *txq = &il->txq[txq_id];
2750 	struct il_queue *q = &txq->q;
2751 
2752 	if (q->n_bd == 0)
2753 		return;
2754 
2755 	while (q->write_ptr != q->read_ptr) {
2756 		il->ops->txq_free_tfd(il, txq);
2757 		q->read_ptr = il_queue_inc_wrap(q->read_ptr, q->n_bd);
2758 	}
2759 }
2760 EXPORT_SYMBOL(il_tx_queue_unmap);
2761 
2762 /*
2763  * il_tx_queue_free - Deallocate DMA queue.
2764  * @txq: Transmit queue to deallocate.
2765  *
2766  * Empty queue by removing and destroying all BD's.
2767  * Free all buffers.
2768  * 0-fill, but do not free "txq" descriptor structure.
2769  */
2770 void
2771 il_tx_queue_free(struct il_priv *il, int txq_id)
2772 {
2773 	struct il_tx_queue *txq = &il->txq[txq_id];
2774 	struct device *dev = &il->pci_dev->dev;
2775 	int i;
2776 
2777 	il_tx_queue_unmap(il, txq_id);
2778 
2779 	/* De-alloc array of command/tx buffers */
2780 	if (txq->cmd) {
2781 		for (i = 0; i < TFD_TX_CMD_SLOTS; i++)
2782 			kfree(txq->cmd[i]);
2783 	}
2784 
2785 	/* De-alloc circular buffer of TFDs */
2786 	if (txq->q.n_bd)
2787 		dma_free_coherent(dev, il->hw_params.tfd_size * txq->q.n_bd,
2788 				  txq->tfds, txq->q.dma_addr);
2789 
2790 	/* De-alloc array of per-TFD driver data */
2791 	kfree(txq->skbs);
2792 	txq->skbs = NULL;
2793 
2794 	/* deallocate arrays */
2795 	kfree(txq->cmd);
2796 	kfree(txq->meta);
2797 	txq->cmd = NULL;
2798 	txq->meta = NULL;
2799 
2800 	/* 0-fill queue descriptor structure */
2801 	memset(txq, 0, sizeof(*txq));
2802 }
2803 EXPORT_SYMBOL(il_tx_queue_free);
2804 
2805 /*
2806  * il_cmd_queue_unmap - Unmap any remaining DMA mappings from command queue
2807  */
2808 void
2809 il_cmd_queue_unmap(struct il_priv *il)
2810 {
2811 	struct il_tx_queue *txq = &il->txq[il->cmd_queue];
2812 	struct il_queue *q = &txq->q;
2813 	int i;
2814 
2815 	if (q->n_bd == 0)
2816 		return;
2817 
2818 	while (q->read_ptr != q->write_ptr) {
2819 		i = il_get_cmd_idx(q, q->read_ptr, 0);
2820 
2821 		if (txq->meta[i].flags & CMD_MAPPED) {
2822 			dma_unmap_single(&il->pci_dev->dev,
2823 					 dma_unmap_addr(&txq->meta[i], mapping),
2824 					 dma_unmap_len(&txq->meta[i], len),
2825 					 DMA_BIDIRECTIONAL);
2826 			txq->meta[i].flags = 0;
2827 		}
2828 
2829 		q->read_ptr = il_queue_inc_wrap(q->read_ptr, q->n_bd);
2830 	}
2831 
2832 	i = q->n_win;
2833 	if (txq->meta[i].flags & CMD_MAPPED) {
2834 		dma_unmap_single(&il->pci_dev->dev,
2835 				 dma_unmap_addr(&txq->meta[i], mapping),
2836 				 dma_unmap_len(&txq->meta[i], len),
2837 				 DMA_BIDIRECTIONAL);
2838 		txq->meta[i].flags = 0;
2839 	}
2840 }
2841 EXPORT_SYMBOL(il_cmd_queue_unmap);
2842 
2843 /*
2844  * il_cmd_queue_free - Deallocate DMA queue.
2845  *
2846  * Empty queue by removing and destroying all BD's.
2847  * Free all buffers.
2848  * 0-fill, but do not free "txq" descriptor structure.
2849  */
2850 void
2851 il_cmd_queue_free(struct il_priv *il)
2852 {
2853 	struct il_tx_queue *txq = &il->txq[il->cmd_queue];
2854 	struct device *dev = &il->pci_dev->dev;
2855 	int i;
2856 
2857 	il_cmd_queue_unmap(il);
2858 
2859 	/* De-alloc array of command/tx buffers */
2860 	if (txq->cmd) {
2861 		for (i = 0; i <= TFD_CMD_SLOTS; i++)
2862 			kfree(txq->cmd[i]);
2863 	}
2864 
2865 	/* De-alloc circular buffer of TFDs */
2866 	if (txq->q.n_bd)
2867 		dma_free_coherent(dev, il->hw_params.tfd_size * txq->q.n_bd,
2868 				  txq->tfds, txq->q.dma_addr);
2869 
2870 	/* deallocate arrays */
2871 	kfree(txq->cmd);
2872 	kfree(txq->meta);
2873 	txq->cmd = NULL;
2874 	txq->meta = NULL;
2875 
2876 	/* 0-fill queue descriptor structure */
2877 	memset(txq, 0, sizeof(*txq));
2878 }
2879 EXPORT_SYMBOL(il_cmd_queue_free);
2880 
2881 /*************** DMA-QUEUE-GENERAL-FUNCTIONS  *****
2882  * DMA services
2883  *
2884  * Theory of operation
2885  *
2886  * A Tx or Rx queue resides in host DRAM, and is comprised of a circular buffer
2887  * of buffer descriptors, each of which points to one or more data buffers for
2888  * the device to read from or fill.  Driver and device exchange status of each
2889  * queue via "read" and "write" pointers.  Driver keeps minimum of 2 empty
2890  * entries in each circular buffer, to protect against confusing empty and full
2891  * queue states.
2892  *
2893  * The device reads or writes the data in the queues via the device's several
2894  * DMA/FIFO channels.  Each queue is mapped to a single DMA channel.
2895  *
2896  * For Tx queue, there are low mark and high mark limits. If, after queuing
2897  * the packet for Tx, free space become < low mark, Tx queue stopped. When
2898  * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
2899  * Tx queue resumed.
2900  *
2901  * See more detailed info in 4965.h.
2902  ***************************************************/
2903 
2904 int
2905 il_queue_space(const struct il_queue *q)
2906 {
2907 	int s = q->read_ptr - q->write_ptr;
2908 
2909 	if (q->read_ptr > q->write_ptr)
2910 		s -= q->n_bd;
2911 
2912 	if (s <= 0)
2913 		s += q->n_win;
2914 	/* keep some reserve to not confuse empty and full situations */
2915 	s -= 2;
2916 	if (s < 0)
2917 		s = 0;
2918 	return s;
2919 }
2920 EXPORT_SYMBOL(il_queue_space);
2921 
2922 
2923 /*
2924  * il_queue_init - Initialize queue's high/low-water and read/write idxes
2925  */
2926 static int
2927 il_queue_init(struct il_priv *il, struct il_queue *q, int slots, u32 id)
2928 {
2929 	/*
2930 	 * TFD_QUEUE_SIZE_MAX must be power-of-two size, otherwise
2931 	 * il_queue_inc_wrap and il_queue_dec_wrap are broken.
2932 	 */
2933 	BUILD_BUG_ON(TFD_QUEUE_SIZE_MAX & (TFD_QUEUE_SIZE_MAX - 1));
2934 	/* FIXME: remove q->n_bd */
2935 	q->n_bd = TFD_QUEUE_SIZE_MAX;
2936 
2937 	q->n_win = slots;
2938 	q->id = id;
2939 
2940 	/* slots_must be power-of-two size, otherwise
2941 	 * il_get_cmd_idx is broken. */
2942 	BUG_ON(!is_power_of_2(slots));
2943 
2944 	q->low_mark = q->n_win / 4;
2945 	if (q->low_mark < 4)
2946 		q->low_mark = 4;
2947 
2948 	q->high_mark = q->n_win / 8;
2949 	if (q->high_mark < 2)
2950 		q->high_mark = 2;
2951 
2952 	q->write_ptr = q->read_ptr = 0;
2953 
2954 	return 0;
2955 }
2956 
2957 /*
2958  * il_tx_queue_alloc - Alloc driver data and TFD CB for one Tx/cmd queue
2959  */
2960 static int
2961 il_tx_queue_alloc(struct il_priv *il, struct il_tx_queue *txq, u32 id)
2962 {
2963 	struct device *dev = &il->pci_dev->dev;
2964 	size_t tfd_sz = il->hw_params.tfd_size * TFD_QUEUE_SIZE_MAX;
2965 
2966 	/* Driver ilate data, only for Tx (not command) queues,
2967 	 * not shared with device. */
2968 	if (id != il->cmd_queue) {
2969 		txq->skbs = kcalloc(TFD_QUEUE_SIZE_MAX,
2970 				    sizeof(struct sk_buff *),
2971 				    GFP_KERNEL);
2972 		if (!txq->skbs) {
2973 			IL_ERR("Fail to alloc skbs\n");
2974 			goto error;
2975 		}
2976 	} else
2977 		txq->skbs = NULL;
2978 
2979 	/* Circular buffer of transmit frame descriptors (TFDs),
2980 	 * shared with device */
2981 	txq->tfds =
2982 	    dma_alloc_coherent(dev, tfd_sz, &txq->q.dma_addr, GFP_KERNEL);
2983 	if (!txq->tfds)
2984 		goto error;
2985 
2986 	txq->q.id = id;
2987 
2988 	return 0;
2989 
2990 error:
2991 	kfree(txq->skbs);
2992 	txq->skbs = NULL;
2993 
2994 	return -ENOMEM;
2995 }
2996 
2997 /*
2998  * il_tx_queue_init - Allocate and initialize one tx/cmd queue
2999  */
3000 int
3001 il_tx_queue_init(struct il_priv *il, u32 txq_id)
3002 {
3003 	int i, len, ret;
3004 	int slots, actual_slots;
3005 	struct il_tx_queue *txq = &il->txq[txq_id];
3006 
3007 	/*
3008 	 * Alloc buffer array for commands (Tx or other types of commands).
3009 	 * For the command queue (#4/#9), allocate command space + one big
3010 	 * command for scan, since scan command is very huge; the system will
3011 	 * not have two scans at the same time, so only one is needed.
3012 	 * For normal Tx queues (all other queues), no super-size command
3013 	 * space is needed.
3014 	 */
3015 	if (txq_id == il->cmd_queue) {
3016 		slots = TFD_CMD_SLOTS;
3017 		actual_slots = slots + 1;
3018 	} else {
3019 		slots = TFD_TX_CMD_SLOTS;
3020 		actual_slots = slots;
3021 	}
3022 
3023 	txq->meta =
3024 	    kcalloc(actual_slots, sizeof(struct il_cmd_meta), GFP_KERNEL);
3025 	txq->cmd =
3026 	    kcalloc(actual_slots, sizeof(struct il_device_cmd *), GFP_KERNEL);
3027 
3028 	if (!txq->meta || !txq->cmd)
3029 		goto out_free_arrays;
3030 
3031 	len = sizeof(struct il_device_cmd);
3032 	for (i = 0; i < actual_slots; i++) {
3033 		/* only happens for cmd queue */
3034 		if (i == slots)
3035 			len = IL_MAX_CMD_SIZE;
3036 
3037 		txq->cmd[i] = kmalloc(len, GFP_KERNEL);
3038 		if (!txq->cmd[i])
3039 			goto err;
3040 	}
3041 
3042 	/* Alloc driver data array and TFD circular buffer */
3043 	ret = il_tx_queue_alloc(il, txq, txq_id);
3044 	if (ret)
3045 		goto err;
3046 
3047 	txq->need_update = 0;
3048 
3049 	/*
3050 	 * For the default queues 0-3, set up the swq_id
3051 	 * already -- all others need to get one later
3052 	 * (if they need one at all).
3053 	 */
3054 	if (txq_id < 4)
3055 		il_set_swq_id(txq, txq_id, txq_id);
3056 
3057 	/* Initialize queue's high/low-water marks, and head/tail idxes */
3058 	il_queue_init(il, &txq->q, slots, txq_id);
3059 
3060 	/* Tell device where to find queue */
3061 	il->ops->txq_init(il, txq);
3062 
3063 	return 0;
3064 err:
3065 	for (i = 0; i < actual_slots; i++)
3066 		kfree(txq->cmd[i]);
3067 out_free_arrays:
3068 	kfree(txq->meta);
3069 	txq->meta = NULL;
3070 	kfree(txq->cmd);
3071 	txq->cmd = NULL;
3072 
3073 	return -ENOMEM;
3074 }
3075 EXPORT_SYMBOL(il_tx_queue_init);
3076 
3077 void
3078 il_tx_queue_reset(struct il_priv *il, u32 txq_id)
3079 {
3080 	int slots, actual_slots;
3081 	struct il_tx_queue *txq = &il->txq[txq_id];
3082 
3083 	if (txq_id == il->cmd_queue) {
3084 		slots = TFD_CMD_SLOTS;
3085 		actual_slots = TFD_CMD_SLOTS + 1;
3086 	} else {
3087 		slots = TFD_TX_CMD_SLOTS;
3088 		actual_slots = TFD_TX_CMD_SLOTS;
3089 	}
3090 
3091 	memset(txq->meta, 0, sizeof(struct il_cmd_meta) * actual_slots);
3092 	txq->need_update = 0;
3093 
3094 	/* Initialize queue's high/low-water marks, and head/tail idxes */
3095 	il_queue_init(il, &txq->q, slots, txq_id);
3096 
3097 	/* Tell device where to find queue */
3098 	il->ops->txq_init(il, txq);
3099 }
3100 EXPORT_SYMBOL(il_tx_queue_reset);
3101 
3102 /*************** HOST COMMAND QUEUE FUNCTIONS   *****/
3103 
3104 /*
3105  * il_enqueue_hcmd - enqueue a uCode command
3106  * @il: device ilate data point
3107  * @cmd: a point to the ucode command structure
3108  *
3109  * The function returns < 0 values to indicate the operation is
3110  * failed. On success, it turns the idx (> 0) of command in the
3111  * command queue.
3112  */
3113 int
3114 il_enqueue_hcmd(struct il_priv *il, struct il_host_cmd *cmd)
3115 {
3116 	struct il_tx_queue *txq = &il->txq[il->cmd_queue];
3117 	struct il_queue *q = &txq->q;
3118 	struct il_device_cmd *out_cmd;
3119 	struct il_cmd_meta *out_meta;
3120 	dma_addr_t phys_addr;
3121 	unsigned long flags;
3122 	u8 *out_payload;
3123 	u32 idx;
3124 	u16 fix_size;
3125 
3126 	cmd->len = il->ops->get_hcmd_size(cmd->id, cmd->len);
3127 	fix_size = (u16) (cmd->len + sizeof(out_cmd->hdr));
3128 
3129 	/* If any of the command structures end up being larger than
3130 	 * the TFD_MAX_PAYLOAD_SIZE, and it sent as a 'small' command then
3131 	 * we will need to increase the size of the TFD entries
3132 	 * Also, check to see if command buffer should not exceed the size
3133 	 * of device_cmd and max_cmd_size. */
3134 	BUG_ON((fix_size > TFD_MAX_PAYLOAD_SIZE) &&
3135 	       !(cmd->flags & CMD_SIZE_HUGE));
3136 	BUG_ON(fix_size > IL_MAX_CMD_SIZE);
3137 
3138 	if (il_is_rfkill(il) || il_is_ctkill(il)) {
3139 		IL_WARN("Not sending command - %s KILL\n",
3140 			il_is_rfkill(il) ? "RF" : "CT");
3141 		return -EIO;
3142 	}
3143 
3144 	spin_lock_irqsave(&il->hcmd_lock, flags);
3145 
3146 	if (il_queue_space(q) < ((cmd->flags & CMD_ASYNC) ? 2 : 1)) {
3147 		spin_unlock_irqrestore(&il->hcmd_lock, flags);
3148 
3149 		IL_ERR("Restarting adapter due to command queue full\n");
3150 		queue_work(il->workqueue, &il->restart);
3151 		return -ENOSPC;
3152 	}
3153 
3154 	idx = il_get_cmd_idx(q, q->write_ptr, cmd->flags & CMD_SIZE_HUGE);
3155 	out_cmd = txq->cmd[idx];
3156 	out_meta = &txq->meta[idx];
3157 
3158 	/* The payload is in the same place in regular and huge
3159 	 * command buffers, but we need to let the compiler know when
3160 	 * we're using a larger payload buffer to avoid "field-
3161 	 * spanning write" warnings at run-time for huge commands.
3162 	 */
3163 	if (cmd->flags & CMD_SIZE_HUGE)
3164 		out_payload = ((struct il_device_cmd_huge *)out_cmd)->cmd.payload;
3165 	else
3166 		out_payload = out_cmd->cmd.payload;
3167 
3168 	if (WARN_ON(out_meta->flags & CMD_MAPPED)) {
3169 		spin_unlock_irqrestore(&il->hcmd_lock, flags);
3170 		return -ENOSPC;
3171 	}
3172 
3173 	memset(out_meta, 0, sizeof(*out_meta));	/* re-initialize to NULL */
3174 	out_meta->flags = cmd->flags | CMD_MAPPED;
3175 	if (cmd->flags & CMD_WANT_SKB)
3176 		out_meta->source = cmd;
3177 	if (cmd->flags & CMD_ASYNC)
3178 		out_meta->callback = cmd->callback;
3179 
3180 	out_cmd->hdr.cmd = cmd->id;
3181 	memcpy(out_payload, cmd->data, cmd->len);
3182 
3183 	/* At this point, the out_cmd now has all of the incoming cmd
3184 	 * information */
3185 
3186 	out_cmd->hdr.flags = 0;
3187 	out_cmd->hdr.sequence =
3188 	    cpu_to_le16(QUEUE_TO_SEQ(il->cmd_queue) | IDX_TO_SEQ(q->write_ptr));
3189 	if (cmd->flags & CMD_SIZE_HUGE)
3190 		out_cmd->hdr.sequence |= SEQ_HUGE_FRAME;
3191 
3192 #ifdef CONFIG_IWLEGACY_DEBUG
3193 	switch (out_cmd->hdr.cmd) {
3194 	case C_TX_LINK_QUALITY_CMD:
3195 	case C_SENSITIVITY:
3196 		D_HC_DUMP("Sending command %s (#%x), seq: 0x%04X, "
3197 			  "%d bytes at %d[%d]:%d\n",
3198 			  il_get_cmd_string(out_cmd->hdr.cmd), out_cmd->hdr.cmd,
3199 			  le16_to_cpu(out_cmd->hdr.sequence), fix_size,
3200 			  q->write_ptr, idx, il->cmd_queue);
3201 		break;
3202 	default:
3203 		D_HC("Sending command %s (#%x), seq: 0x%04X, "
3204 		     "%d bytes at %d[%d]:%d\n",
3205 		     il_get_cmd_string(out_cmd->hdr.cmd), out_cmd->hdr.cmd,
3206 		     le16_to_cpu(out_cmd->hdr.sequence), fix_size, q->write_ptr,
3207 		     idx, il->cmd_queue);
3208 	}
3209 #endif
3210 
3211 	phys_addr = dma_map_single(&il->pci_dev->dev, &out_cmd->hdr, fix_size,
3212 				   DMA_BIDIRECTIONAL);
3213 	if (unlikely(dma_mapping_error(&il->pci_dev->dev, phys_addr))) {
3214 		idx = -ENOMEM;
3215 		goto out;
3216 	}
3217 	dma_unmap_addr_set(out_meta, mapping, phys_addr);
3218 	dma_unmap_len_set(out_meta, len, fix_size);
3219 
3220 	txq->need_update = 1;
3221 
3222 	if (il->ops->txq_update_byte_cnt_tbl)
3223 		/* Set up entry in queue's byte count circular buffer */
3224 		il->ops->txq_update_byte_cnt_tbl(il, txq, 0);
3225 
3226 	il->ops->txq_attach_buf_to_tfd(il, txq, phys_addr, fix_size, 1,
3227 					    U32_PAD(cmd->len));
3228 
3229 	/* Increment and update queue's write idx */
3230 	q->write_ptr = il_queue_inc_wrap(q->write_ptr, q->n_bd);
3231 	il_txq_update_write_ptr(il, txq);
3232 
3233 out:
3234 	spin_unlock_irqrestore(&il->hcmd_lock, flags);
3235 	return idx;
3236 }
3237 
3238 /*
3239  * il_hcmd_queue_reclaim - Reclaim TX command queue entries already Tx'd
3240  *
3241  * When FW advances 'R' idx, all entries between old and new 'R' idx
3242  * need to be reclaimed. As result, some free space forms.  If there is
3243  * enough free space (> low mark), wake the stack that feeds us.
3244  */
3245 static void
3246 il_hcmd_queue_reclaim(struct il_priv *il, int txq_id, int idx, int cmd_idx)
3247 {
3248 	struct il_tx_queue *txq = &il->txq[txq_id];
3249 	struct il_queue *q = &txq->q;
3250 	int nfreed = 0;
3251 
3252 	if (idx >= q->n_bd || il_queue_used(q, idx) == 0) {
3253 		IL_ERR("Read idx for DMA queue txq id (%d), idx %d, "
3254 		       "is out of range [0-%d] %d %d.\n", txq_id, idx, q->n_bd,
3255 		       q->write_ptr, q->read_ptr);
3256 		return;
3257 	}
3258 
3259 	for (idx = il_queue_inc_wrap(idx, q->n_bd); q->read_ptr != idx;
3260 	     q->read_ptr = il_queue_inc_wrap(q->read_ptr, q->n_bd)) {
3261 
3262 		if (nfreed++ > 0) {
3263 			IL_ERR("HCMD skipped: idx (%d) %d %d\n", idx,
3264 			       q->write_ptr, q->read_ptr);
3265 			queue_work(il->workqueue, &il->restart);
3266 		}
3267 
3268 	}
3269 }
3270 
3271 /*
3272  * il_tx_cmd_complete - Pull unused buffers off the queue and reclaim them
3273  * @rxb: Rx buffer to reclaim
3274  *
3275  * If an Rx buffer has an async callback associated with it the callback
3276  * will be executed.  The attached skb (if present) will only be freed
3277  * if the callback returns 1
3278  */
3279 void
3280 il_tx_cmd_complete(struct il_priv *il, struct il_rx_buf *rxb)
3281 {
3282 	struct il_rx_pkt *pkt = rxb_addr(rxb);
3283 	u16 sequence = le16_to_cpu(pkt->hdr.sequence);
3284 	int txq_id = SEQ_TO_QUEUE(sequence);
3285 	int idx = SEQ_TO_IDX(sequence);
3286 	int cmd_idx;
3287 	bool huge = !!(pkt->hdr.sequence & SEQ_HUGE_FRAME);
3288 	struct il_device_cmd *cmd;
3289 	struct il_cmd_meta *meta;
3290 	struct il_tx_queue *txq = &il->txq[il->cmd_queue];
3291 	unsigned long flags;
3292 
3293 	/* If a Tx command is being handled and it isn't in the actual
3294 	 * command queue then there a command routing bug has been introduced
3295 	 * in the queue management code. */
3296 	if (WARN
3297 	    (txq_id != il->cmd_queue,
3298 	     "wrong command queue %d (should be %d), sequence 0x%X readp=%d writep=%d\n",
3299 	     txq_id, il->cmd_queue, sequence, il->txq[il->cmd_queue].q.read_ptr,
3300 	     il->txq[il->cmd_queue].q.write_ptr)) {
3301 		il_print_hex_error(il, pkt, 32);
3302 		return;
3303 	}
3304 
3305 	cmd_idx = il_get_cmd_idx(&txq->q, idx, huge);
3306 	cmd = txq->cmd[cmd_idx];
3307 	meta = &txq->meta[cmd_idx];
3308 
3309 	txq->time_stamp = jiffies;
3310 
3311 	dma_unmap_single(&il->pci_dev->dev, dma_unmap_addr(meta, mapping),
3312 			 dma_unmap_len(meta, len), DMA_BIDIRECTIONAL);
3313 
3314 	/* Input error checking is done when commands are added to queue. */
3315 	if (meta->flags & CMD_WANT_SKB) {
3316 		meta->source->reply_page = (unsigned long)rxb_addr(rxb);
3317 		rxb->page = NULL;
3318 	} else if (meta->callback)
3319 		meta->callback(il, cmd, pkt);
3320 
3321 	spin_lock_irqsave(&il->hcmd_lock, flags);
3322 
3323 	il_hcmd_queue_reclaim(il, txq_id, idx, cmd_idx);
3324 
3325 	if (!(meta->flags & CMD_ASYNC)) {
3326 		clear_bit(S_HCMD_ACTIVE, &il->status);
3327 		D_INFO("Clearing HCMD_ACTIVE for command %s\n",
3328 		       il_get_cmd_string(cmd->hdr.cmd));
3329 		wake_up(&il->wait_command_queue);
3330 	}
3331 
3332 	/* Mark as unmapped */
3333 	meta->flags = 0;
3334 
3335 	spin_unlock_irqrestore(&il->hcmd_lock, flags);
3336 }
3337 EXPORT_SYMBOL(il_tx_cmd_complete);
3338 
3339 MODULE_DESCRIPTION("iwl-legacy: common functions for 3945 and 4965");
3340 MODULE_VERSION(IWLWIFI_VERSION);
3341 MODULE_AUTHOR(DRV_COPYRIGHT " " DRV_AUTHOR);
3342 MODULE_LICENSE("GPL");
3343 
3344 /*
3345  * set bt_coex_active to true, uCode will do kill/defer
3346  * every time the priority line is asserted (BT is sending signals on the
3347  * priority line in the PCIx).
3348  * set bt_coex_active to false, uCode will ignore the BT activity and
3349  * perform the normal operation
3350  *
3351  * User might experience transmit issue on some platform due to WiFi/BT
3352  * co-exist problem. The possible behaviors are:
3353  *   Able to scan and finding all the available AP
3354  *   Not able to associate with any AP
3355  * On those platforms, WiFi communication can be restored by set
3356  * "bt_coex_active" module parameter to "false"
3357  *
3358  * default: bt_coex_active = true (BT_COEX_ENABLE)
3359  */
3360 static bool bt_coex_active = true;
3361 module_param(bt_coex_active, bool, 0444);
3362 MODULE_PARM_DESC(bt_coex_active, "enable wifi/bluetooth co-exist");
3363 
3364 u32 il_debug_level;
3365 EXPORT_SYMBOL(il_debug_level);
3366 
3367 const u8 il_bcast_addr[ETH_ALEN] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3368 EXPORT_SYMBOL(il_bcast_addr);
3369 
3370 #define MAX_BIT_RATE_40_MHZ 150	/* Mbps */
3371 #define MAX_BIT_RATE_20_MHZ 72	/* Mbps */
3372 static void
3373 il_init_ht_hw_capab(const struct il_priv *il,
3374 		    struct ieee80211_sta_ht_cap *ht_info,
3375 		    enum nl80211_band band)
3376 {
3377 	u16 max_bit_rate = 0;
3378 	u8 rx_chains_num = il->hw_params.rx_chains_num;
3379 	u8 tx_chains_num = il->hw_params.tx_chains_num;
3380 
3381 	ht_info->cap = 0;
3382 	memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
3383 
3384 	ht_info->ht_supported = true;
3385 
3386 	ht_info->cap |= IEEE80211_HT_CAP_SGI_20;
3387 	max_bit_rate = MAX_BIT_RATE_20_MHZ;
3388 	if (il->hw_params.ht40_channel & BIT(band)) {
3389 		ht_info->cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40;
3390 		ht_info->cap |= IEEE80211_HT_CAP_SGI_40;
3391 		ht_info->mcs.rx_mask[4] = 0x01;
3392 		max_bit_rate = MAX_BIT_RATE_40_MHZ;
3393 	}
3394 
3395 	if (il->cfg->mod_params->amsdu_size_8K)
3396 		ht_info->cap |= IEEE80211_HT_CAP_MAX_AMSDU;
3397 
3398 	ht_info->ampdu_factor = CFG_HT_RX_AMPDU_FACTOR_DEF;
3399 	ht_info->ampdu_density = CFG_HT_MPDU_DENSITY_DEF;
3400 
3401 	ht_info->mcs.rx_mask[0] = 0xFF;
3402 	if (rx_chains_num >= 2)
3403 		ht_info->mcs.rx_mask[1] = 0xFF;
3404 	if (rx_chains_num >= 3)
3405 		ht_info->mcs.rx_mask[2] = 0xFF;
3406 
3407 	/* Highest supported Rx data rate */
3408 	max_bit_rate *= rx_chains_num;
3409 	WARN_ON(max_bit_rate & ~IEEE80211_HT_MCS_RX_HIGHEST_MASK);
3410 	ht_info->mcs.rx_highest = cpu_to_le16(max_bit_rate);
3411 
3412 	/* Tx MCS capabilities */
3413 	ht_info->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
3414 	if (tx_chains_num != rx_chains_num) {
3415 		ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_RX_DIFF;
3416 		ht_info->mcs.tx_params |=
3417 		    ((tx_chains_num -
3418 		      1) << IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT);
3419 	}
3420 }
3421 
3422 /*
3423  * il_init_geos - Initialize mac80211's geo/channel info based from eeprom
3424  */
3425 int
3426 il_init_geos(struct il_priv *il)
3427 {
3428 	struct il_channel_info *ch;
3429 	struct ieee80211_supported_band *sband;
3430 	struct ieee80211_channel *channels;
3431 	struct ieee80211_channel *geo_ch;
3432 	struct ieee80211_rate *rates;
3433 	int i = 0;
3434 	s8 max_tx_power = 0;
3435 
3436 	if (il->bands[NL80211_BAND_2GHZ].n_bitrates ||
3437 	    il->bands[NL80211_BAND_5GHZ].n_bitrates) {
3438 		D_INFO("Geography modes already initialized.\n");
3439 		set_bit(S_GEO_CONFIGURED, &il->status);
3440 		return 0;
3441 	}
3442 
3443 	channels =
3444 	    kcalloc(il->channel_count, sizeof(struct ieee80211_channel),
3445 		    GFP_KERNEL);
3446 	if (!channels)
3447 		return -ENOMEM;
3448 
3449 	rates =
3450 	    kzalloc((sizeof(struct ieee80211_rate) * RATE_COUNT_LEGACY),
3451 		    GFP_KERNEL);
3452 	if (!rates) {
3453 		kfree(channels);
3454 		return -ENOMEM;
3455 	}
3456 
3457 	/* 5.2GHz channels start after the 2.4GHz channels */
3458 	sband = &il->bands[NL80211_BAND_5GHZ];
3459 	sband->channels = &channels[ARRAY_SIZE(il_eeprom_band_1)];
3460 	/* just OFDM */
3461 	sband->bitrates = &rates[IL_FIRST_OFDM_RATE];
3462 	sband->n_bitrates = RATE_COUNT_LEGACY - IL_FIRST_OFDM_RATE;
3463 
3464 	if (il->cfg->sku & IL_SKU_N)
3465 		il_init_ht_hw_capab(il, &sband->ht_cap, NL80211_BAND_5GHZ);
3466 
3467 	sband = &il->bands[NL80211_BAND_2GHZ];
3468 	sband->channels = channels;
3469 	/* OFDM & CCK */
3470 	sband->bitrates = rates;
3471 	sband->n_bitrates = RATE_COUNT_LEGACY;
3472 
3473 	if (il->cfg->sku & IL_SKU_N)
3474 		il_init_ht_hw_capab(il, &sband->ht_cap, NL80211_BAND_2GHZ);
3475 
3476 	il->ieee_channels = channels;
3477 	il->ieee_rates = rates;
3478 
3479 	for (i = 0; i < il->channel_count; i++) {
3480 		ch = &il->channel_info[i];
3481 
3482 		if (!il_is_channel_valid(ch))
3483 			continue;
3484 
3485 		sband = &il->bands[ch->band];
3486 
3487 		geo_ch = &sband->channels[sband->n_channels++];
3488 
3489 		geo_ch->center_freq =
3490 		    ieee80211_channel_to_frequency(ch->channel, ch->band);
3491 		geo_ch->max_power = ch->max_power_avg;
3492 		geo_ch->max_antenna_gain = 0xff;
3493 		geo_ch->hw_value = ch->channel;
3494 
3495 		if (il_is_channel_valid(ch)) {
3496 			if (!(ch->flags & EEPROM_CHANNEL_IBSS))
3497 				geo_ch->flags |= IEEE80211_CHAN_NO_IR;
3498 
3499 			if (!(ch->flags & EEPROM_CHANNEL_ACTIVE))
3500 				geo_ch->flags |= IEEE80211_CHAN_NO_IR;
3501 
3502 			if (ch->flags & EEPROM_CHANNEL_RADAR)
3503 				geo_ch->flags |= IEEE80211_CHAN_RADAR;
3504 
3505 			geo_ch->flags |= ch->ht40_extension_channel;
3506 
3507 			if (ch->max_power_avg > max_tx_power)
3508 				max_tx_power = ch->max_power_avg;
3509 		} else {
3510 			geo_ch->flags |= IEEE80211_CHAN_DISABLED;
3511 		}
3512 
3513 		D_INFO("Channel %d Freq=%d[%sGHz] %s flag=0x%X\n", ch->channel,
3514 		       geo_ch->center_freq,
3515 		       il_is_channel_a_band(ch) ? "5.2" : "2.4",
3516 		       geo_ch->
3517 		       flags & IEEE80211_CHAN_DISABLED ? "restricted" : "valid",
3518 		       geo_ch->flags);
3519 	}
3520 
3521 	il->tx_power_device_lmt = max_tx_power;
3522 	il->tx_power_user_lmt = max_tx_power;
3523 	il->tx_power_next = max_tx_power;
3524 
3525 	if (il->bands[NL80211_BAND_5GHZ].n_channels == 0 &&
3526 	    (il->cfg->sku & IL_SKU_A)) {
3527 		IL_INFO("Incorrectly detected BG card as ABG. "
3528 			"Please send your PCI ID 0x%04X:0x%04X to maintainer.\n",
3529 			il->pci_dev->device, il->pci_dev->subsystem_device);
3530 		il->cfg->sku &= ~IL_SKU_A;
3531 	}
3532 
3533 	IL_INFO("Tunable channels: %d 802.11bg, %d 802.11a channels\n",
3534 		il->bands[NL80211_BAND_2GHZ].n_channels,
3535 		il->bands[NL80211_BAND_5GHZ].n_channels);
3536 
3537 	set_bit(S_GEO_CONFIGURED, &il->status);
3538 
3539 	return 0;
3540 }
3541 EXPORT_SYMBOL(il_init_geos);
3542 
3543 /*
3544  * il_free_geos - undo allocations in il_init_geos
3545  */
3546 void
3547 il_free_geos(struct il_priv *il)
3548 {
3549 	kfree(il->ieee_channels);
3550 	kfree(il->ieee_rates);
3551 	clear_bit(S_GEO_CONFIGURED, &il->status);
3552 }
3553 EXPORT_SYMBOL(il_free_geos);
3554 
3555 static bool
3556 il_is_channel_extension(struct il_priv *il, enum nl80211_band band,
3557 			u16 channel, u8 extension_chan_offset)
3558 {
3559 	const struct il_channel_info *ch_info;
3560 
3561 	ch_info = il_get_channel_info(il, band, channel);
3562 	if (!il_is_channel_valid(ch_info))
3563 		return false;
3564 
3565 	if (extension_chan_offset == IEEE80211_HT_PARAM_CHA_SEC_ABOVE)
3566 		return !(ch_info->
3567 			 ht40_extension_channel & IEEE80211_CHAN_NO_HT40PLUS);
3568 	else if (extension_chan_offset == IEEE80211_HT_PARAM_CHA_SEC_BELOW)
3569 		return !(ch_info->
3570 			 ht40_extension_channel & IEEE80211_CHAN_NO_HT40MINUS);
3571 
3572 	return false;
3573 }
3574 
3575 bool
3576 il_is_ht40_tx_allowed(struct il_priv *il, struct ieee80211_sta_ht_cap *ht_cap)
3577 {
3578 	if (!il->ht.enabled || !il->ht.is_40mhz)
3579 		return false;
3580 
3581 	/*
3582 	 * We do not check for IEEE80211_HT_CAP_SUP_WIDTH_20_40
3583 	 * the bit will not set if it is pure 40MHz case
3584 	 */
3585 	if (ht_cap && !ht_cap->ht_supported)
3586 		return false;
3587 
3588 #ifdef CONFIG_IWLEGACY_DEBUGFS
3589 	if (il->disable_ht40)
3590 		return false;
3591 #endif
3592 
3593 	return il_is_channel_extension(il, il->band,
3594 				       le16_to_cpu(il->staging.channel),
3595 				       il->ht.extension_chan_offset);
3596 }
3597 EXPORT_SYMBOL(il_is_ht40_tx_allowed);
3598 
3599 static u16 noinline
3600 il_adjust_beacon_interval(u16 beacon_val, u16 max_beacon_val)
3601 {
3602 	u16 new_val;
3603 	u16 beacon_factor;
3604 
3605 	/*
3606 	 * If mac80211 hasn't given us a beacon interval, program
3607 	 * the default into the device.
3608 	 */
3609 	if (!beacon_val)
3610 		return DEFAULT_BEACON_INTERVAL;
3611 
3612 	/*
3613 	 * If the beacon interval we obtained from the peer
3614 	 * is too large, we'll have to wake up more often
3615 	 * (and in IBSS case, we'll beacon too much)
3616 	 *
3617 	 * For example, if max_beacon_val is 4096, and the
3618 	 * requested beacon interval is 7000, we'll have to
3619 	 * use 3500 to be able to wake up on the beacons.
3620 	 *
3621 	 * This could badly influence beacon detection stats.
3622 	 */
3623 
3624 	beacon_factor = (beacon_val + max_beacon_val) / max_beacon_val;
3625 	new_val = beacon_val / beacon_factor;
3626 
3627 	if (!new_val)
3628 		new_val = max_beacon_val;
3629 
3630 	return new_val;
3631 }
3632 
3633 int
3634 il_send_rxon_timing(struct il_priv *il)
3635 {
3636 	u64 tsf;
3637 	s32 interval_tm, rem;
3638 	struct ieee80211_conf *conf = NULL;
3639 	u16 beacon_int;
3640 	struct ieee80211_vif *vif = il->vif;
3641 
3642 	conf = &il->hw->conf;
3643 
3644 	lockdep_assert_held(&il->mutex);
3645 
3646 	memset(&il->timing, 0, sizeof(struct il_rxon_time_cmd));
3647 
3648 	il->timing.timestamp = cpu_to_le64(il->timestamp);
3649 	il->timing.listen_interval = cpu_to_le16(conf->listen_interval);
3650 
3651 	beacon_int = vif ? vif->bss_conf.beacon_int : 0;
3652 
3653 	/*
3654 	 * TODO: For IBSS we need to get atim_win from mac80211,
3655 	 *       for now just always use 0
3656 	 */
3657 	il->timing.atim_win = 0;
3658 
3659 	beacon_int =
3660 	    il_adjust_beacon_interval(beacon_int,
3661 				      il->hw_params.max_beacon_itrvl *
3662 				      TIME_UNIT);
3663 	il->timing.beacon_interval = cpu_to_le16(beacon_int);
3664 
3665 	tsf = il->timestamp;	/* tsf is modifed by do_div: copy it */
3666 	interval_tm = beacon_int * TIME_UNIT;
3667 	rem = do_div(tsf, interval_tm);
3668 	il->timing.beacon_init_val = cpu_to_le32(interval_tm - rem);
3669 
3670 	il->timing.dtim_period = vif ? (vif->bss_conf.dtim_period ? : 1) : 1;
3671 
3672 	D_ASSOC("beacon interval %d beacon timer %d beacon tim %d\n",
3673 		le16_to_cpu(il->timing.beacon_interval),
3674 		le32_to_cpu(il->timing.beacon_init_val),
3675 		le16_to_cpu(il->timing.atim_win));
3676 
3677 	return il_send_cmd_pdu(il, C_RXON_TIMING, sizeof(il->timing),
3678 			       &il->timing);
3679 }
3680 EXPORT_SYMBOL(il_send_rxon_timing);
3681 
3682 void
3683 il_set_rxon_hwcrypto(struct il_priv *il, int hw_decrypt)
3684 {
3685 	struct il_rxon_cmd *rxon = &il->staging;
3686 
3687 	if (hw_decrypt)
3688 		rxon->filter_flags &= ~RXON_FILTER_DIS_DECRYPT_MSK;
3689 	else
3690 		rxon->filter_flags |= RXON_FILTER_DIS_DECRYPT_MSK;
3691 
3692 }
3693 EXPORT_SYMBOL(il_set_rxon_hwcrypto);
3694 
3695 /* validate RXON structure is valid */
3696 int
3697 il_check_rxon_cmd(struct il_priv *il)
3698 {
3699 	struct il_rxon_cmd *rxon = &il->staging;
3700 	bool error = false;
3701 
3702 	if (rxon->flags & RXON_FLG_BAND_24G_MSK) {
3703 		if (rxon->flags & RXON_FLG_TGJ_NARROW_BAND_MSK) {
3704 			IL_WARN("check 2.4G: wrong narrow\n");
3705 			error = true;
3706 		}
3707 		if (rxon->flags & RXON_FLG_RADAR_DETECT_MSK) {
3708 			IL_WARN("check 2.4G: wrong radar\n");
3709 			error = true;
3710 		}
3711 	} else {
3712 		if (!(rxon->flags & RXON_FLG_SHORT_SLOT_MSK)) {
3713 			IL_WARN("check 5.2G: not short slot!\n");
3714 			error = true;
3715 		}
3716 		if (rxon->flags & RXON_FLG_CCK_MSK) {
3717 			IL_WARN("check 5.2G: CCK!\n");
3718 			error = true;
3719 		}
3720 	}
3721 	if ((rxon->node_addr[0] | rxon->bssid_addr[0]) & 0x1) {
3722 		IL_WARN("mac/bssid mcast!\n");
3723 		error = true;
3724 	}
3725 
3726 	/* make sure basic rates 6Mbps and 1Mbps are supported */
3727 	if ((rxon->ofdm_basic_rates & RATE_6M_MASK) == 0 &&
3728 	    (rxon->cck_basic_rates & RATE_1M_MASK) == 0) {
3729 		IL_WARN("neither 1 nor 6 are basic\n");
3730 		error = true;
3731 	}
3732 
3733 	if (le16_to_cpu(rxon->assoc_id) > 2007) {
3734 		IL_WARN("aid > 2007\n");
3735 		error = true;
3736 	}
3737 
3738 	if ((rxon->flags & (RXON_FLG_CCK_MSK | RXON_FLG_SHORT_SLOT_MSK)) ==
3739 	    (RXON_FLG_CCK_MSK | RXON_FLG_SHORT_SLOT_MSK)) {
3740 		IL_WARN("CCK and short slot\n");
3741 		error = true;
3742 	}
3743 
3744 	if ((rxon->flags & (RXON_FLG_CCK_MSK | RXON_FLG_AUTO_DETECT_MSK)) ==
3745 	    (RXON_FLG_CCK_MSK | RXON_FLG_AUTO_DETECT_MSK)) {
3746 		IL_WARN("CCK and auto detect");
3747 		error = true;
3748 	}
3749 
3750 	if ((rxon->
3751 	     flags & (RXON_FLG_AUTO_DETECT_MSK | RXON_FLG_TGG_PROTECT_MSK)) ==
3752 	    RXON_FLG_TGG_PROTECT_MSK) {
3753 		IL_WARN("TGg but no auto-detect\n");
3754 		error = true;
3755 	}
3756 
3757 	if (error)
3758 		IL_WARN("Tuning to channel %d\n", le16_to_cpu(rxon->channel));
3759 
3760 	if (error) {
3761 		IL_ERR("Invalid RXON\n");
3762 		return -EINVAL;
3763 	}
3764 	return 0;
3765 }
3766 EXPORT_SYMBOL(il_check_rxon_cmd);
3767 
3768 /*
3769  * il_full_rxon_required - check if full RXON (vs RXON_ASSOC) cmd is needed
3770  * @il: staging_rxon is compared to active_rxon
3771  *
3772  * If the RXON structure is changing enough to require a new tune,
3773  * or is clearing the RXON_FILTER_ASSOC_MSK, then return 1 to indicate that
3774  * a new tune (full RXON command, rather than RXON_ASSOC cmd) is required.
3775  */
3776 int
3777 il_full_rxon_required(struct il_priv *il)
3778 {
3779 	const struct il_rxon_cmd *staging = &il->staging;
3780 	const struct il_rxon_cmd *active = &il->active;
3781 
3782 #define CHK(cond)							\
3783 	if ((cond)) {							\
3784 		D_INFO("need full RXON - " #cond "\n");	\
3785 		return 1;						\
3786 	}
3787 
3788 #define CHK_NEQ(c1, c2)						\
3789 	if ((c1) != (c2)) {					\
3790 		D_INFO("need full RXON - "	\
3791 			       #c1 " != " #c2 " - %d != %d\n",	\
3792 			       (c1), (c2));			\
3793 		return 1;					\
3794 	}
3795 
3796 	/* These items are only settable from the full RXON command */
3797 	CHK(!il_is_associated(il));
3798 	CHK(!ether_addr_equal_64bits(staging->bssid_addr, active->bssid_addr));
3799 	CHK(!ether_addr_equal_64bits(staging->node_addr, active->node_addr));
3800 	CHK(!ether_addr_equal_64bits(staging->wlap_bssid_addr,
3801 				     active->wlap_bssid_addr));
3802 	CHK_NEQ(staging->dev_type, active->dev_type);
3803 	CHK_NEQ(staging->channel, active->channel);
3804 	CHK_NEQ(staging->air_propagation, active->air_propagation);
3805 	CHK_NEQ(staging->ofdm_ht_single_stream_basic_rates,
3806 		active->ofdm_ht_single_stream_basic_rates);
3807 	CHK_NEQ(staging->ofdm_ht_dual_stream_basic_rates,
3808 		active->ofdm_ht_dual_stream_basic_rates);
3809 	CHK_NEQ(staging->assoc_id, active->assoc_id);
3810 
3811 	/* flags, filter_flags, ofdm_basic_rates, and cck_basic_rates can
3812 	 * be updated with the RXON_ASSOC command -- however only some
3813 	 * flag transitions are allowed using RXON_ASSOC */
3814 
3815 	/* Check if we are not switching bands */
3816 	CHK_NEQ(staging->flags & RXON_FLG_BAND_24G_MSK,
3817 		active->flags & RXON_FLG_BAND_24G_MSK);
3818 
3819 	/* Check if we are switching association toggle */
3820 	CHK_NEQ(staging->filter_flags & RXON_FILTER_ASSOC_MSK,
3821 		active->filter_flags & RXON_FILTER_ASSOC_MSK);
3822 
3823 #undef CHK
3824 #undef CHK_NEQ
3825 
3826 	return 0;
3827 }
3828 EXPORT_SYMBOL(il_full_rxon_required);
3829 
3830 u8
3831 il_get_lowest_plcp(struct il_priv *il)
3832 {
3833 	/*
3834 	 * Assign the lowest rate -- should really get this from
3835 	 * the beacon skb from mac80211.
3836 	 */
3837 	if (il->staging.flags & RXON_FLG_BAND_24G_MSK)
3838 		return RATE_1M_PLCP;
3839 	else
3840 		return RATE_6M_PLCP;
3841 }
3842 EXPORT_SYMBOL(il_get_lowest_plcp);
3843 
3844 static void
3845 _il_set_rxon_ht(struct il_priv *il, struct il_ht_config *ht_conf)
3846 {
3847 	struct il_rxon_cmd *rxon = &il->staging;
3848 
3849 	if (!il->ht.enabled) {
3850 		rxon->flags &=
3851 		    ~(RXON_FLG_CHANNEL_MODE_MSK |
3852 		      RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK | RXON_FLG_HT40_PROT_MSK
3853 		      | RXON_FLG_HT_PROT_MSK);
3854 		return;
3855 	}
3856 
3857 	rxon->flags |=
3858 	    cpu_to_le32(il->ht.protection << RXON_FLG_HT_OPERATING_MODE_POS);
3859 
3860 	/* Set up channel bandwidth:
3861 	 * 20 MHz only, 20/40 mixed or pure 40 if ht40 ok */
3862 	/* clear the HT channel mode before set the mode */
3863 	rxon->flags &=
3864 	    ~(RXON_FLG_CHANNEL_MODE_MSK | RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK);
3865 	if (il_is_ht40_tx_allowed(il, NULL)) {
3866 		/* pure ht40 */
3867 		if (il->ht.protection == IEEE80211_HT_OP_MODE_PROTECTION_20MHZ) {
3868 			rxon->flags |= RXON_FLG_CHANNEL_MODE_PURE_40;
3869 			/* Note: control channel is opposite of extension channel */
3870 			switch (il->ht.extension_chan_offset) {
3871 			case IEEE80211_HT_PARAM_CHA_SEC_ABOVE:
3872 				rxon->flags &=
3873 				    ~RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK;
3874 				break;
3875 			case IEEE80211_HT_PARAM_CHA_SEC_BELOW:
3876 				rxon->flags |= RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK;
3877 				break;
3878 			}
3879 		} else {
3880 			/* Note: control channel is opposite of extension channel */
3881 			switch (il->ht.extension_chan_offset) {
3882 			case IEEE80211_HT_PARAM_CHA_SEC_ABOVE:
3883 				rxon->flags &=
3884 				    ~(RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK);
3885 				rxon->flags |= RXON_FLG_CHANNEL_MODE_MIXED;
3886 				break;
3887 			case IEEE80211_HT_PARAM_CHA_SEC_BELOW:
3888 				rxon->flags |= RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK;
3889 				rxon->flags |= RXON_FLG_CHANNEL_MODE_MIXED;
3890 				break;
3891 			case IEEE80211_HT_PARAM_CHA_SEC_NONE:
3892 			default:
3893 				/* channel location only valid if in Mixed mode */
3894 				IL_ERR("invalid extension channel offset\n");
3895 				break;
3896 			}
3897 		}
3898 	} else {
3899 		rxon->flags |= RXON_FLG_CHANNEL_MODE_LEGACY;
3900 	}
3901 
3902 	if (il->ops->set_rxon_chain)
3903 		il->ops->set_rxon_chain(il);
3904 
3905 	D_ASSOC("rxon flags 0x%X operation mode :0x%X "
3906 		"extension channel offset 0x%x\n", le32_to_cpu(rxon->flags),
3907 		il->ht.protection, il->ht.extension_chan_offset);
3908 }
3909 
3910 void
3911 il_set_rxon_ht(struct il_priv *il, struct il_ht_config *ht_conf)
3912 {
3913 	_il_set_rxon_ht(il, ht_conf);
3914 }
3915 EXPORT_SYMBOL(il_set_rxon_ht);
3916 
3917 /* Return valid, unused, channel for a passive scan to reset the RF */
3918 u8
3919 il_get_single_channel_number(struct il_priv *il, enum nl80211_band band)
3920 {
3921 	const struct il_channel_info *ch_info;
3922 	int i;
3923 	u8 channel = 0;
3924 	u8 min, max;
3925 
3926 	if (band == NL80211_BAND_5GHZ) {
3927 		min = 14;
3928 		max = il->channel_count;
3929 	} else {
3930 		min = 0;
3931 		max = 14;
3932 	}
3933 
3934 	for (i = min; i < max; i++) {
3935 		channel = il->channel_info[i].channel;
3936 		if (channel == le16_to_cpu(il->staging.channel))
3937 			continue;
3938 
3939 		ch_info = il_get_channel_info(il, band, channel);
3940 		if (il_is_channel_valid(ch_info))
3941 			break;
3942 	}
3943 
3944 	return channel;
3945 }
3946 EXPORT_SYMBOL(il_get_single_channel_number);
3947 
3948 /*
3949  * il_set_rxon_channel - Set the band and channel values in staging RXON
3950  * @ch: requested channel as a pointer to struct ieee80211_channel
3951 
3952  * NOTE:  Does not commit to the hardware; it sets appropriate bit fields
3953  * in the staging RXON flag structure based on the ch->band
3954  */
3955 int
3956 il_set_rxon_channel(struct il_priv *il, struct ieee80211_channel *ch)
3957 {
3958 	enum nl80211_band band = ch->band;
3959 	u16 channel = ch->hw_value;
3960 
3961 	if (le16_to_cpu(il->staging.channel) == channel && il->band == band)
3962 		return 0;
3963 
3964 	il->staging.channel = cpu_to_le16(channel);
3965 	if (band == NL80211_BAND_5GHZ)
3966 		il->staging.flags &= ~RXON_FLG_BAND_24G_MSK;
3967 	else
3968 		il->staging.flags |= RXON_FLG_BAND_24G_MSK;
3969 
3970 	il->band = band;
3971 
3972 	D_INFO("Staging channel set to %d [%d]\n", channel, band);
3973 
3974 	return 0;
3975 }
3976 EXPORT_SYMBOL(il_set_rxon_channel);
3977 
3978 void
3979 il_set_flags_for_band(struct il_priv *il, enum nl80211_band band,
3980 		      struct ieee80211_vif *vif)
3981 {
3982 	if (band == NL80211_BAND_5GHZ) {
3983 		il->staging.flags &=
3984 		    ~(RXON_FLG_BAND_24G_MSK | RXON_FLG_AUTO_DETECT_MSK |
3985 		      RXON_FLG_CCK_MSK);
3986 		il->staging.flags |= RXON_FLG_SHORT_SLOT_MSK;
3987 	} else {
3988 		/* Copied from il_post_associate() */
3989 		if (vif && vif->bss_conf.use_short_slot)
3990 			il->staging.flags |= RXON_FLG_SHORT_SLOT_MSK;
3991 		else
3992 			il->staging.flags &= ~RXON_FLG_SHORT_SLOT_MSK;
3993 
3994 		il->staging.flags |= RXON_FLG_BAND_24G_MSK;
3995 		il->staging.flags |= RXON_FLG_AUTO_DETECT_MSK;
3996 		il->staging.flags &= ~RXON_FLG_CCK_MSK;
3997 	}
3998 }
3999 EXPORT_SYMBOL(il_set_flags_for_band);
4000 
4001 /*
4002  * initialize rxon structure with default values from eeprom
4003  */
4004 void
4005 il_connection_init_rx_config(struct il_priv *il)
4006 {
4007 	const struct il_channel_info *ch_info;
4008 
4009 	memset(&il->staging, 0, sizeof(il->staging));
4010 
4011 	switch (il->iw_mode) {
4012 	case NL80211_IFTYPE_UNSPECIFIED:
4013 		il->staging.dev_type = RXON_DEV_TYPE_ESS;
4014 		break;
4015 	case NL80211_IFTYPE_STATION:
4016 		il->staging.dev_type = RXON_DEV_TYPE_ESS;
4017 		il->staging.filter_flags = RXON_FILTER_ACCEPT_GRP_MSK;
4018 		break;
4019 	case NL80211_IFTYPE_ADHOC:
4020 		il->staging.dev_type = RXON_DEV_TYPE_IBSS;
4021 		il->staging.flags = RXON_FLG_SHORT_PREAMBLE_MSK;
4022 		il->staging.filter_flags =
4023 		    RXON_FILTER_BCON_AWARE_MSK | RXON_FILTER_ACCEPT_GRP_MSK;
4024 		break;
4025 	default:
4026 		IL_ERR("Unsupported interface type %d\n", il->vif->type);
4027 		return;
4028 	}
4029 
4030 #if 0
4031 	/* TODO:  Figure out when short_preamble would be set and cache from
4032 	 * that */
4033 	if (!hw_to_local(il->hw)->short_preamble)
4034 		il->staging.flags &= ~RXON_FLG_SHORT_PREAMBLE_MSK;
4035 	else
4036 		il->staging.flags |= RXON_FLG_SHORT_PREAMBLE_MSK;
4037 #endif
4038 
4039 	ch_info =
4040 	    il_get_channel_info(il, il->band, le16_to_cpu(il->active.channel));
4041 
4042 	if (!ch_info)
4043 		ch_info = &il->channel_info[0];
4044 
4045 	il->staging.channel = cpu_to_le16(ch_info->channel);
4046 	il->band = ch_info->band;
4047 
4048 	il_set_flags_for_band(il, il->band, il->vif);
4049 
4050 	il->staging.ofdm_basic_rates =
4051 	    (IL_OFDM_RATES_MASK >> IL_FIRST_OFDM_RATE) & 0xFF;
4052 	il->staging.cck_basic_rates =
4053 	    (IL_CCK_RATES_MASK >> IL_FIRST_CCK_RATE) & 0xF;
4054 
4055 	/* clear both MIX and PURE40 mode flag */
4056 	il->staging.flags &=
4057 	    ~(RXON_FLG_CHANNEL_MODE_MIXED | RXON_FLG_CHANNEL_MODE_PURE_40);
4058 	if (il->vif)
4059 		memcpy(il->staging.node_addr, il->vif->addr, ETH_ALEN);
4060 
4061 	il->staging.ofdm_ht_single_stream_basic_rates = 0xff;
4062 	il->staging.ofdm_ht_dual_stream_basic_rates = 0xff;
4063 }
4064 EXPORT_SYMBOL(il_connection_init_rx_config);
4065 
4066 void
4067 il_set_rate(struct il_priv *il)
4068 {
4069 	const struct ieee80211_supported_band *hw = NULL;
4070 	struct ieee80211_rate *rate;
4071 	int i;
4072 
4073 	hw = il_get_hw_mode(il, il->band);
4074 	if (!hw) {
4075 		IL_ERR("Failed to set rate: unable to get hw mode\n");
4076 		return;
4077 	}
4078 
4079 	il->active_rate = 0;
4080 
4081 	for (i = 0; i < hw->n_bitrates; i++) {
4082 		rate = &(hw->bitrates[i]);
4083 		if (rate->hw_value < RATE_COUNT_LEGACY)
4084 			il->active_rate |= (1 << rate->hw_value);
4085 	}
4086 
4087 	D_RATE("Set active_rate = %0x\n", il->active_rate);
4088 
4089 	il->staging.cck_basic_rates =
4090 	    (IL_CCK_BASIC_RATES_MASK >> IL_FIRST_CCK_RATE) & 0xF;
4091 
4092 	il->staging.ofdm_basic_rates =
4093 	    (IL_OFDM_BASIC_RATES_MASK >> IL_FIRST_OFDM_RATE) & 0xFF;
4094 }
4095 EXPORT_SYMBOL(il_set_rate);
4096 
4097 void
4098 il_chswitch_done(struct il_priv *il, bool is_success)
4099 {
4100 	if (test_bit(S_EXIT_PENDING, &il->status))
4101 		return;
4102 
4103 	if (test_and_clear_bit(S_CHANNEL_SWITCH_PENDING, &il->status))
4104 		ieee80211_chswitch_done(il->vif, is_success);
4105 }
4106 EXPORT_SYMBOL(il_chswitch_done);
4107 
4108 void
4109 il_hdl_csa(struct il_priv *il, struct il_rx_buf *rxb)
4110 {
4111 	struct il_rx_pkt *pkt = rxb_addr(rxb);
4112 	struct il_csa_notification *csa = &(pkt->u.csa_notif);
4113 	struct il_rxon_cmd *rxon = (void *)&il->active;
4114 
4115 	if (!test_bit(S_CHANNEL_SWITCH_PENDING, &il->status))
4116 		return;
4117 
4118 	if (!le32_to_cpu(csa->status) && csa->channel == il->switch_channel) {
4119 		rxon->channel = csa->channel;
4120 		il->staging.channel = csa->channel;
4121 		D_11H("CSA notif: channel %d\n", le16_to_cpu(csa->channel));
4122 		il_chswitch_done(il, true);
4123 	} else {
4124 		IL_ERR("CSA notif (fail) : channel %d\n",
4125 		       le16_to_cpu(csa->channel));
4126 		il_chswitch_done(il, false);
4127 	}
4128 }
4129 EXPORT_SYMBOL(il_hdl_csa);
4130 
4131 #ifdef CONFIG_IWLEGACY_DEBUG
4132 void
4133 il_print_rx_config_cmd(struct il_priv *il)
4134 {
4135 	struct il_rxon_cmd *rxon = &il->staging;
4136 
4137 	D_RADIO("RX CONFIG:\n");
4138 	il_print_hex_dump(il, IL_DL_RADIO, (u8 *) rxon, sizeof(*rxon));
4139 	D_RADIO("u16 channel: 0x%x\n", le16_to_cpu(rxon->channel));
4140 	D_RADIO("u32 flags: 0x%08X\n", le32_to_cpu(rxon->flags));
4141 	D_RADIO("u32 filter_flags: 0x%08x\n", le32_to_cpu(rxon->filter_flags));
4142 	D_RADIO("u8 dev_type: 0x%x\n", rxon->dev_type);
4143 	D_RADIO("u8 ofdm_basic_rates: 0x%02x\n", rxon->ofdm_basic_rates);
4144 	D_RADIO("u8 cck_basic_rates: 0x%02x\n", rxon->cck_basic_rates);
4145 	D_RADIO("u8[6] node_addr: %pM\n", rxon->node_addr);
4146 	D_RADIO("u8[6] bssid_addr: %pM\n", rxon->bssid_addr);
4147 	D_RADIO("u16 assoc_id: 0x%x\n", le16_to_cpu(rxon->assoc_id));
4148 }
4149 EXPORT_SYMBOL(il_print_rx_config_cmd);
4150 #endif
4151 /*
4152  * il_irq_handle_error - called for HW or SW error interrupt from card
4153  */
4154 void
4155 il_irq_handle_error(struct il_priv *il)
4156 {
4157 	/* Set the FW error flag -- cleared on il_down */
4158 	set_bit(S_FW_ERROR, &il->status);
4159 
4160 	/* Cancel currently queued command. */
4161 	clear_bit(S_HCMD_ACTIVE, &il->status);
4162 
4163 	IL_ERR("Loaded firmware version: %s\n", il->hw->wiphy->fw_version);
4164 
4165 	il->ops->dump_nic_error_log(il);
4166 	if (il->ops->dump_fh)
4167 		il->ops->dump_fh(il, NULL, false);
4168 #ifdef CONFIG_IWLEGACY_DEBUG
4169 	if (il_get_debug_level(il) & IL_DL_FW_ERRORS)
4170 		il_print_rx_config_cmd(il);
4171 #endif
4172 
4173 	wake_up(&il->wait_command_queue);
4174 
4175 	/* Keep the restart process from trying to send host
4176 	 * commands by clearing the INIT status bit */
4177 	clear_bit(S_READY, &il->status);
4178 
4179 	if (!test_bit(S_EXIT_PENDING, &il->status)) {
4180 		IL_DBG(IL_DL_FW_ERRORS,
4181 		       "Restarting adapter due to uCode error.\n");
4182 
4183 		if (il->cfg->mod_params->restart_fw)
4184 			queue_work(il->workqueue, &il->restart);
4185 	}
4186 }
4187 EXPORT_SYMBOL(il_irq_handle_error);
4188 
4189 static int
4190 _il_apm_stop_master(struct il_priv *il)
4191 {
4192 	int ret = 0;
4193 
4194 	/* stop device's busmaster DMA activity */
4195 	_il_set_bit(il, CSR_RESET, CSR_RESET_REG_FLAG_STOP_MASTER);
4196 
4197 	ret =
4198 	    _il_poll_bit(il, CSR_RESET, CSR_RESET_REG_FLAG_MASTER_DISABLED,
4199 			 CSR_RESET_REG_FLAG_MASTER_DISABLED, 100);
4200 	if (ret < 0)
4201 		IL_WARN("Master Disable Timed Out, 100 usec\n");
4202 
4203 	D_INFO("stop master\n");
4204 
4205 	return ret;
4206 }
4207 
4208 void
4209 _il_apm_stop(struct il_priv *il)
4210 {
4211 	lockdep_assert_held(&il->reg_lock);
4212 
4213 	D_INFO("Stop card, put in low power state\n");
4214 
4215 	/* Stop device's DMA activity */
4216 	_il_apm_stop_master(il);
4217 
4218 	/* Reset the entire device */
4219 	_il_set_bit(il, CSR_RESET, CSR_RESET_REG_FLAG_SW_RESET);
4220 
4221 	udelay(10);
4222 
4223 	/*
4224 	 * Clear "initialization complete" bit to move adapter from
4225 	 * D0A* (powered-up Active) --> D0U* (Uninitialized) state.
4226 	 */
4227 	_il_clear_bit(il, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
4228 }
4229 EXPORT_SYMBOL(_il_apm_stop);
4230 
4231 void
4232 il_apm_stop(struct il_priv *il)
4233 {
4234 	unsigned long flags;
4235 
4236 	spin_lock_irqsave(&il->reg_lock, flags);
4237 	_il_apm_stop(il);
4238 	spin_unlock_irqrestore(&il->reg_lock, flags);
4239 }
4240 EXPORT_SYMBOL(il_apm_stop);
4241 
4242 /*
4243  * Start up NIC's basic functionality after it has been reset
4244  * (e.g. after platform boot, or shutdown via il_apm_stop())
4245  * NOTE:  This does not load uCode nor start the embedded processor
4246  */
4247 int
4248 il_apm_init(struct il_priv *il)
4249 {
4250 	int ret = 0;
4251 	u16 lctl;
4252 
4253 	D_INFO("Init card's basic functions\n");
4254 
4255 	/*
4256 	 * Use "set_bit" below rather than "write", to preserve any hardware
4257 	 * bits already set by default after reset.
4258 	 */
4259 
4260 	/* Disable L0S exit timer (platform NMI Work/Around) */
4261 	il_set_bit(il, CSR_GIO_CHICKEN_BITS,
4262 		   CSR_GIO_CHICKEN_BITS_REG_BIT_DIS_L0S_EXIT_TIMER);
4263 
4264 	/*
4265 	 * Disable L0s without affecting L1;
4266 	 *  don't wait for ICH L0s (ICH bug W/A)
4267 	 */
4268 	il_set_bit(il, CSR_GIO_CHICKEN_BITS,
4269 		   CSR_GIO_CHICKEN_BITS_REG_BIT_L1A_NO_L0S_RX);
4270 
4271 	/* Set FH wait threshold to maximum (HW error during stress W/A) */
4272 	il_set_bit(il, CSR_DBG_HPET_MEM_REG, CSR_DBG_HPET_MEM_REG_VAL);
4273 
4274 	/*
4275 	 * Enable HAP INTA (interrupt from management bus) to
4276 	 * wake device's PCI Express link L1a -> L0s
4277 	 * NOTE:  This is no-op for 3945 (non-existent bit)
4278 	 */
4279 	il_set_bit(il, CSR_HW_IF_CONFIG_REG,
4280 		   CSR_HW_IF_CONFIG_REG_BIT_HAP_WAKE_L1A);
4281 
4282 	/*
4283 	 * HW bug W/A for instability in PCIe bus L0->L0S->L1 transition.
4284 	 * Check if BIOS (or OS) enabled L1-ASPM on this device.
4285 	 * If so (likely), disable L0S, so device moves directly L0->L1;
4286 	 *    costs negligible amount of power savings.
4287 	 * If not (unlikely), enable L0S, so there is at least some
4288 	 *    power savings, even without L1.
4289 	 */
4290 	if (il->cfg->set_l0s) {
4291 		ret = pcie_capability_read_word(il->pci_dev, PCI_EXP_LNKCTL, &lctl);
4292 		if (!ret && (lctl & PCI_EXP_LNKCTL_ASPM_L1)) {
4293 			/* L1-ASPM enabled; disable(!) L0S  */
4294 			il_set_bit(il, CSR_GIO_REG,
4295 				   CSR_GIO_REG_VAL_L0S_ENABLED);
4296 			D_POWER("L1 Enabled; Disabling L0S\n");
4297 		} else {
4298 			/* L1-ASPM disabled; enable(!) L0S */
4299 			il_clear_bit(il, CSR_GIO_REG,
4300 				     CSR_GIO_REG_VAL_L0S_ENABLED);
4301 			D_POWER("L1 Disabled; Enabling L0S\n");
4302 		}
4303 	}
4304 
4305 	/* Configure analog phase-lock-loop before activating to D0A */
4306 	if (il->cfg->pll_cfg_val)
4307 		il_set_bit(il, CSR_ANA_PLL_CFG,
4308 			   il->cfg->pll_cfg_val);
4309 
4310 	/*
4311 	 * Set "initialization complete" bit to move adapter from
4312 	 * D0U* --> D0A* (powered-up active) state.
4313 	 */
4314 	il_set_bit(il, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
4315 
4316 	/*
4317 	 * Wait for clock stabilization; once stabilized, access to
4318 	 * device-internal resources is supported, e.g. il_wr_prph()
4319 	 * and accesses to uCode SRAM.
4320 	 */
4321 	ret =
4322 	    _il_poll_bit(il, CSR_GP_CNTRL,
4323 			 CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
4324 			 CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, 25000);
4325 	if (ret < 0) {
4326 		D_INFO("Failed to init the card\n");
4327 		goto out;
4328 	}
4329 
4330 	/*
4331 	 * Enable DMA and BSM (if used) clocks, wait for them to stabilize.
4332 	 * BSM (Boostrap State Machine) is only in 3945 and 4965.
4333 	 *
4334 	 * Write to "CLK_EN_REG"; "1" bits enable clocks, while "0" bits
4335 	 * do not disable clocks.  This preserves any hardware bits already
4336 	 * set by default in "CLK_CTRL_REG" after reset.
4337 	 */
4338 	if (il->cfg->use_bsm)
4339 		il_wr_prph(il, APMG_CLK_EN_REG,
4340 			   APMG_CLK_VAL_DMA_CLK_RQT | APMG_CLK_VAL_BSM_CLK_RQT);
4341 	else
4342 		il_wr_prph(il, APMG_CLK_EN_REG, APMG_CLK_VAL_DMA_CLK_RQT);
4343 	udelay(20);
4344 
4345 	/* Disable L1-Active */
4346 	il_set_bits_prph(il, APMG_PCIDEV_STT_REG,
4347 			 APMG_PCIDEV_STT_VAL_L1_ACT_DIS);
4348 
4349 out:
4350 	return ret;
4351 }
4352 EXPORT_SYMBOL(il_apm_init);
4353 
4354 int
4355 il_set_tx_power(struct il_priv *il, s8 tx_power, bool force)
4356 {
4357 	int ret;
4358 	s8 prev_tx_power;
4359 	bool defer;
4360 
4361 	lockdep_assert_held(&il->mutex);
4362 
4363 	if (il->tx_power_user_lmt == tx_power && !force)
4364 		return 0;
4365 
4366 	if (!il->ops->send_tx_power)
4367 		return -EOPNOTSUPP;
4368 
4369 	/* 0 dBm mean 1 milliwatt */
4370 	if (tx_power < 0) {
4371 		IL_WARN("Requested user TXPOWER %d below 1 mW.\n", tx_power);
4372 		return -EINVAL;
4373 	}
4374 
4375 	if (tx_power > il->tx_power_device_lmt) {
4376 		IL_WARN("Requested user TXPOWER %d above upper limit %d.\n",
4377 			tx_power, il->tx_power_device_lmt);
4378 		return -EINVAL;
4379 	}
4380 
4381 	if (!il_is_ready_rf(il))
4382 		return -EIO;
4383 
4384 	/* scan complete and commit_rxon use tx_power_next value,
4385 	 * it always need to be updated for newest request */
4386 	il->tx_power_next = tx_power;
4387 
4388 	/* do not set tx power when scanning or channel changing */
4389 	defer = test_bit(S_SCANNING, &il->status) ||
4390 	    memcmp(&il->active, &il->staging, sizeof(il->staging));
4391 	if (defer && !force) {
4392 		D_INFO("Deferring tx power set\n");
4393 		return 0;
4394 	}
4395 
4396 	prev_tx_power = il->tx_power_user_lmt;
4397 	il->tx_power_user_lmt = tx_power;
4398 
4399 	ret = il->ops->send_tx_power(il);
4400 
4401 	/* if fail to set tx_power, restore the orig. tx power */
4402 	if (ret) {
4403 		il->tx_power_user_lmt = prev_tx_power;
4404 		il->tx_power_next = prev_tx_power;
4405 	}
4406 	return ret;
4407 }
4408 EXPORT_SYMBOL(il_set_tx_power);
4409 
4410 void
4411 il_send_bt_config(struct il_priv *il)
4412 {
4413 	struct il_bt_cmd bt_cmd = {
4414 		.lead_time = BT_LEAD_TIME_DEF,
4415 		.max_kill = BT_MAX_KILL_DEF,
4416 		.kill_ack_mask = 0,
4417 		.kill_cts_mask = 0,
4418 	};
4419 
4420 	if (!bt_coex_active)
4421 		bt_cmd.flags = BT_COEX_DISABLE;
4422 	else
4423 		bt_cmd.flags = BT_COEX_ENABLE;
4424 
4425 	D_INFO("BT coex %s\n",
4426 	       (bt_cmd.flags == BT_COEX_DISABLE) ? "disable" : "active");
4427 
4428 	if (il_send_cmd_pdu(il, C_BT_CONFIG, sizeof(struct il_bt_cmd), &bt_cmd))
4429 		IL_ERR("failed to send BT Coex Config\n");
4430 }
4431 EXPORT_SYMBOL(il_send_bt_config);
4432 
4433 int
4434 il_send_stats_request(struct il_priv *il, u8 flags, bool clear)
4435 {
4436 	struct il_stats_cmd stats_cmd = {
4437 		.configuration_flags = clear ? IL_STATS_CONF_CLEAR_STATS : 0,
4438 	};
4439 
4440 	if (flags & CMD_ASYNC)
4441 		return il_send_cmd_pdu_async(il, C_STATS, sizeof(struct il_stats_cmd),
4442 					     &stats_cmd, NULL);
4443 	else
4444 		return il_send_cmd_pdu(il, C_STATS, sizeof(struct il_stats_cmd),
4445 				       &stats_cmd);
4446 }
4447 EXPORT_SYMBOL(il_send_stats_request);
4448 
4449 void
4450 il_hdl_pm_sleep(struct il_priv *il, struct il_rx_buf *rxb)
4451 {
4452 #ifdef CONFIG_IWLEGACY_DEBUG
4453 	struct il_rx_pkt *pkt = rxb_addr(rxb);
4454 	struct il_sleep_notification *sleep = &(pkt->u.sleep_notif);
4455 	D_RX("sleep mode: %d, src: %d\n",
4456 	     sleep->pm_sleep_mode, sleep->pm_wakeup_src);
4457 #endif
4458 }
4459 EXPORT_SYMBOL(il_hdl_pm_sleep);
4460 
4461 void
4462 il_hdl_pm_debug_stats(struct il_priv *il, struct il_rx_buf *rxb)
4463 {
4464 	struct il_rx_pkt *pkt = rxb_addr(rxb);
4465 	u32 len = le32_to_cpu(pkt->len_n_flags) & IL_RX_FRAME_SIZE_MSK;
4466 	D_RADIO("Dumping %d bytes of unhandled notification for %s:\n", len,
4467 		il_get_cmd_string(pkt->hdr.cmd));
4468 	il_print_hex_dump(il, IL_DL_RADIO, pkt->u.raw, len);
4469 }
4470 EXPORT_SYMBOL(il_hdl_pm_debug_stats);
4471 
4472 void
4473 il_hdl_error(struct il_priv *il, struct il_rx_buf *rxb)
4474 {
4475 	struct il_rx_pkt *pkt = rxb_addr(rxb);
4476 
4477 	IL_ERR("Error Reply type 0x%08X cmd %s (0x%02X) "
4478 	       "seq 0x%04X ser 0x%08X\n",
4479 	       le32_to_cpu(pkt->u.err_resp.error_type),
4480 	       il_get_cmd_string(pkt->u.err_resp.cmd_id),
4481 	       pkt->u.err_resp.cmd_id,
4482 	       le16_to_cpu(pkt->u.err_resp.bad_cmd_seq_num),
4483 	       le32_to_cpu(pkt->u.err_resp.error_info));
4484 }
4485 EXPORT_SYMBOL(il_hdl_error);
4486 
4487 void
4488 il_clear_isr_stats(struct il_priv *il)
4489 {
4490 	memset(&il->isr_stats, 0, sizeof(il->isr_stats));
4491 }
4492 
4493 int
4494 il_mac_conf_tx(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
4495 	       unsigned int link_id, u16 queue,
4496 	       const struct ieee80211_tx_queue_params *params)
4497 {
4498 	struct il_priv *il = hw->priv;
4499 	unsigned long flags;
4500 	int q;
4501 
4502 	D_MAC80211("enter\n");
4503 
4504 	if (!il_is_ready_rf(il)) {
4505 		D_MAC80211("leave - RF not ready\n");
4506 		return -EIO;
4507 	}
4508 
4509 	if (queue >= AC_NUM) {
4510 		D_MAC80211("leave - queue >= AC_NUM %d\n", queue);
4511 		return 0;
4512 	}
4513 
4514 	q = AC_NUM - 1 - queue;
4515 
4516 	spin_lock_irqsave(&il->lock, flags);
4517 
4518 	il->qos_data.def_qos_parm.ac[q].cw_min =
4519 	    cpu_to_le16(params->cw_min);
4520 	il->qos_data.def_qos_parm.ac[q].cw_max =
4521 	    cpu_to_le16(params->cw_max);
4522 	il->qos_data.def_qos_parm.ac[q].aifsn = params->aifs;
4523 	il->qos_data.def_qos_parm.ac[q].edca_txop =
4524 	    cpu_to_le16((params->txop * 32));
4525 
4526 	il->qos_data.def_qos_parm.ac[q].reserved1 = 0;
4527 
4528 	spin_unlock_irqrestore(&il->lock, flags);
4529 
4530 	D_MAC80211("leave\n");
4531 	return 0;
4532 }
4533 EXPORT_SYMBOL(il_mac_conf_tx);
4534 
4535 int
4536 il_mac_tx_last_beacon(struct ieee80211_hw *hw)
4537 {
4538 	struct il_priv *il = hw->priv;
4539 	int ret;
4540 
4541 	D_MAC80211("enter\n");
4542 
4543 	ret = (il->ibss_manager == IL_IBSS_MANAGER);
4544 
4545 	D_MAC80211("leave ret %d\n", ret);
4546 	return ret;
4547 }
4548 EXPORT_SYMBOL_GPL(il_mac_tx_last_beacon);
4549 
4550 static int
4551 il_set_mode(struct il_priv *il)
4552 {
4553 	il_connection_init_rx_config(il);
4554 
4555 	if (il->ops->set_rxon_chain)
4556 		il->ops->set_rxon_chain(il);
4557 
4558 	return il_commit_rxon(il);
4559 }
4560 
4561 int
4562 il_mac_add_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
4563 {
4564 	struct il_priv *il = hw->priv;
4565 	int err;
4566 	bool reset;
4567 
4568 	mutex_lock(&il->mutex);
4569 	D_MAC80211("enter: type %d, addr %pM\n", vif->type, vif->addr);
4570 
4571 	if (!il_is_ready_rf(il)) {
4572 		IL_WARN("Try to add interface when device not ready\n");
4573 		err = -EINVAL;
4574 		goto out;
4575 	}
4576 
4577 	/*
4578 	 * We do not support multiple virtual interfaces, but on hardware reset
4579 	 * we have to add the same interface again.
4580 	 */
4581 	reset = (il->vif == vif);
4582 	if (il->vif && !reset) {
4583 		err = -EOPNOTSUPP;
4584 		goto out;
4585 	}
4586 
4587 	il->vif = vif;
4588 	il->iw_mode = vif->type;
4589 
4590 	err = il_set_mode(il);
4591 	if (err) {
4592 		IL_WARN("Fail to set mode %d\n", vif->type);
4593 		if (!reset) {
4594 			il->vif = NULL;
4595 			il->iw_mode = NL80211_IFTYPE_STATION;
4596 		}
4597 	}
4598 
4599 out:
4600 	D_MAC80211("leave err %d\n", err);
4601 	mutex_unlock(&il->mutex);
4602 
4603 	return err;
4604 }
4605 EXPORT_SYMBOL(il_mac_add_interface);
4606 
4607 static void
4608 il_teardown_interface(struct il_priv *il, struct ieee80211_vif *vif)
4609 {
4610 	lockdep_assert_held(&il->mutex);
4611 
4612 	if (il->scan_vif == vif) {
4613 		il_scan_cancel_timeout(il, 200);
4614 		il_force_scan_end(il);
4615 	}
4616 
4617 	il_set_mode(il);
4618 }
4619 
4620 void
4621 il_mac_remove_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
4622 {
4623 	struct il_priv *il = hw->priv;
4624 
4625 	mutex_lock(&il->mutex);
4626 	D_MAC80211("enter: type %d, addr %pM\n", vif->type, vif->addr);
4627 
4628 	WARN_ON(il->vif != vif);
4629 	il->vif = NULL;
4630 	il->iw_mode = NL80211_IFTYPE_UNSPECIFIED;
4631 	il_teardown_interface(il, vif);
4632 	eth_zero_addr(il->bssid);
4633 
4634 	D_MAC80211("leave\n");
4635 	mutex_unlock(&il->mutex);
4636 }
4637 EXPORT_SYMBOL(il_mac_remove_interface);
4638 
4639 int
4640 il_alloc_txq_mem(struct il_priv *il)
4641 {
4642 	if (!il->txq)
4643 		il->txq =
4644 		    kcalloc(il->cfg->num_of_queues,
4645 			    sizeof(struct il_tx_queue),
4646 			    GFP_KERNEL);
4647 	if (!il->txq) {
4648 		IL_ERR("Not enough memory for txq\n");
4649 		return -ENOMEM;
4650 	}
4651 	return 0;
4652 }
4653 EXPORT_SYMBOL(il_alloc_txq_mem);
4654 
4655 void
4656 il_free_txq_mem(struct il_priv *il)
4657 {
4658 	kfree(il->txq);
4659 	il->txq = NULL;
4660 }
4661 EXPORT_SYMBOL(il_free_txq_mem);
4662 
4663 int
4664 il_force_reset(struct il_priv *il, bool external)
4665 {
4666 	struct il_force_reset *force_reset;
4667 
4668 	if (test_bit(S_EXIT_PENDING, &il->status))
4669 		return -EINVAL;
4670 
4671 	force_reset = &il->force_reset;
4672 	force_reset->reset_request_count++;
4673 	if (!external) {
4674 		if (force_reset->last_force_reset_jiffies &&
4675 		    time_after(force_reset->last_force_reset_jiffies +
4676 			       force_reset->reset_duration, jiffies)) {
4677 			D_INFO("force reset rejected\n");
4678 			force_reset->reset_reject_count++;
4679 			return -EAGAIN;
4680 		}
4681 	}
4682 	force_reset->reset_success_count++;
4683 	force_reset->last_force_reset_jiffies = jiffies;
4684 
4685 	/*
4686 	 * if the request is from external(ex: debugfs),
4687 	 * then always perform the request in regardless the module
4688 	 * parameter setting
4689 	 * if the request is from internal (uCode error or driver
4690 	 * detect failure), then fw_restart module parameter
4691 	 * need to be check before performing firmware reload
4692 	 */
4693 
4694 	if (!external && !il->cfg->mod_params->restart_fw) {
4695 		D_INFO("Cancel firmware reload based on "
4696 		       "module parameter setting\n");
4697 		return 0;
4698 	}
4699 
4700 	IL_ERR("On demand firmware reload\n");
4701 
4702 	/* Set the FW error flag -- cleared on il_down */
4703 	set_bit(S_FW_ERROR, &il->status);
4704 	wake_up(&il->wait_command_queue);
4705 	/*
4706 	 * Keep the restart process from trying to send host
4707 	 * commands by clearing the INIT status bit
4708 	 */
4709 	clear_bit(S_READY, &il->status);
4710 	queue_work(il->workqueue, &il->restart);
4711 
4712 	return 0;
4713 }
4714 EXPORT_SYMBOL(il_force_reset);
4715 
4716 int
4717 il_mac_change_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
4718 			enum nl80211_iftype newtype, bool newp2p)
4719 {
4720 	struct il_priv *il = hw->priv;
4721 	int err;
4722 
4723 	mutex_lock(&il->mutex);
4724 	D_MAC80211("enter: type %d, addr %pM newtype %d newp2p %d\n",
4725 		    vif->type, vif->addr, newtype, newp2p);
4726 
4727 	if (newp2p) {
4728 		err = -EOPNOTSUPP;
4729 		goto out;
4730 	}
4731 
4732 	if (!il->vif || !il_is_ready_rf(il)) {
4733 		/*
4734 		 * Huh? But wait ... this can maybe happen when
4735 		 * we're in the middle of a firmware restart!
4736 		 */
4737 		err = -EBUSY;
4738 		goto out;
4739 	}
4740 
4741 	/* success */
4742 	vif->type = newtype;
4743 	vif->p2p = false;
4744 	il->iw_mode = newtype;
4745 	il_teardown_interface(il, vif);
4746 	err = 0;
4747 
4748 out:
4749 	D_MAC80211("leave err %d\n", err);
4750 	mutex_unlock(&il->mutex);
4751 
4752 	return err;
4753 }
4754 EXPORT_SYMBOL(il_mac_change_interface);
4755 
4756 void il_mac_flush(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
4757 		  u32 queues, bool drop)
4758 {
4759 	struct il_priv *il = hw->priv;
4760 	unsigned long timeout = jiffies + msecs_to_jiffies(500);
4761 	int i;
4762 
4763 	mutex_lock(&il->mutex);
4764 	D_MAC80211("enter\n");
4765 
4766 	if (il->txq == NULL)
4767 		goto out;
4768 
4769 	for (i = 0; i < il->hw_params.max_txq_num; i++) {
4770 		struct il_queue *q;
4771 
4772 		if (i == il->cmd_queue)
4773 			continue;
4774 
4775 		q = &il->txq[i].q;
4776 		if (q->read_ptr == q->write_ptr)
4777 			continue;
4778 
4779 		if (time_after(jiffies, timeout)) {
4780 			IL_ERR("Failed to flush queue %d\n", q->id);
4781 			break;
4782 		}
4783 
4784 		msleep(20);
4785 	}
4786 out:
4787 	D_MAC80211("leave\n");
4788 	mutex_unlock(&il->mutex);
4789 }
4790 EXPORT_SYMBOL(il_mac_flush);
4791 
4792 /*
4793  * On every watchdog tick we check (latest) time stamp. If it does not
4794  * change during timeout period and queue is not empty we reset firmware.
4795  */
4796 static int
4797 il_check_stuck_queue(struct il_priv *il, int cnt)
4798 {
4799 	struct il_tx_queue *txq = &il->txq[cnt];
4800 	struct il_queue *q = &txq->q;
4801 	unsigned long timeout;
4802 	unsigned long now = jiffies;
4803 	int ret;
4804 
4805 	if (q->read_ptr == q->write_ptr) {
4806 		txq->time_stamp = now;
4807 		return 0;
4808 	}
4809 
4810 	timeout =
4811 	    txq->time_stamp +
4812 	    msecs_to_jiffies(il->cfg->wd_timeout);
4813 
4814 	if (time_after(now, timeout)) {
4815 		IL_ERR("Queue %d stuck for %u ms.\n", q->id,
4816 		       jiffies_to_msecs(now - txq->time_stamp));
4817 		ret = il_force_reset(il, false);
4818 		return (ret == -EAGAIN) ? 0 : 1;
4819 	}
4820 
4821 	return 0;
4822 }
4823 
4824 /*
4825  * Making watchdog tick be a quarter of timeout assure we will
4826  * discover the queue hung between timeout and 1.25*timeout
4827  */
4828 #define IL_WD_TICK(timeout) ((timeout) / 4)
4829 
4830 /*
4831  * Watchdog timer callback, we check each tx queue for stuck, if hung
4832  * we reset the firmware. If everything is fine just rearm the timer.
4833  */
4834 void
4835 il_bg_watchdog(struct timer_list *t)
4836 {
4837 	struct il_priv *il = from_timer(il, t, watchdog);
4838 	int cnt;
4839 	unsigned long timeout;
4840 
4841 	if (test_bit(S_EXIT_PENDING, &il->status))
4842 		return;
4843 
4844 	timeout = il->cfg->wd_timeout;
4845 	if (timeout == 0)
4846 		return;
4847 
4848 	/* monitor and check for stuck cmd queue */
4849 	if (il_check_stuck_queue(il, il->cmd_queue))
4850 		return;
4851 
4852 	/* monitor and check for other stuck queues */
4853 	for (cnt = 0; cnt < il->hw_params.max_txq_num; cnt++) {
4854 		/* skip as we already checked the command queue */
4855 		if (cnt == il->cmd_queue)
4856 			continue;
4857 		if (il_check_stuck_queue(il, cnt))
4858 			return;
4859 	}
4860 
4861 	mod_timer(&il->watchdog,
4862 		  jiffies + msecs_to_jiffies(IL_WD_TICK(timeout)));
4863 }
4864 EXPORT_SYMBOL(il_bg_watchdog);
4865 
4866 void
4867 il_setup_watchdog(struct il_priv *il)
4868 {
4869 	unsigned int timeout = il->cfg->wd_timeout;
4870 
4871 	if (timeout)
4872 		mod_timer(&il->watchdog,
4873 			  jiffies + msecs_to_jiffies(IL_WD_TICK(timeout)));
4874 	else
4875 		del_timer(&il->watchdog);
4876 }
4877 EXPORT_SYMBOL(il_setup_watchdog);
4878 
4879 /*
4880  * extended beacon time format
4881  * time in usec will be changed into a 32-bit value in extended:internal format
4882  * the extended part is the beacon counts
4883  * the internal part is the time in usec within one beacon interval
4884  */
4885 u32
4886 il_usecs_to_beacons(struct il_priv *il, u32 usec, u32 beacon_interval)
4887 {
4888 	u32 quot;
4889 	u32 rem;
4890 	u32 interval = beacon_interval * TIME_UNIT;
4891 
4892 	if (!interval || !usec)
4893 		return 0;
4894 
4895 	quot =
4896 	    (usec /
4897 	     interval) & (il_beacon_time_mask_high(il,
4898 						   il->hw_params.
4899 						   beacon_time_tsf_bits) >> il->
4900 			  hw_params.beacon_time_tsf_bits);
4901 	rem =
4902 	    (usec % interval) & il_beacon_time_mask_low(il,
4903 							il->hw_params.
4904 							beacon_time_tsf_bits);
4905 
4906 	return (quot << il->hw_params.beacon_time_tsf_bits) + rem;
4907 }
4908 EXPORT_SYMBOL(il_usecs_to_beacons);
4909 
4910 /* base is usually what we get from ucode with each received frame,
4911  * the same as HW timer counter counting down
4912  */
4913 __le32
4914 il_add_beacon_time(struct il_priv *il, u32 base, u32 addon,
4915 		   u32 beacon_interval)
4916 {
4917 	u32 base_low = base & il_beacon_time_mask_low(il,
4918 						      il->hw_params.
4919 						      beacon_time_tsf_bits);
4920 	u32 addon_low = addon & il_beacon_time_mask_low(il,
4921 							il->hw_params.
4922 							beacon_time_tsf_bits);
4923 	u32 interval = beacon_interval * TIME_UNIT;
4924 	u32 res = (base & il_beacon_time_mask_high(il,
4925 						   il->hw_params.
4926 						   beacon_time_tsf_bits)) +
4927 	    (addon & il_beacon_time_mask_high(il,
4928 					      il->hw_params.
4929 					      beacon_time_tsf_bits));
4930 
4931 	if (base_low > addon_low)
4932 		res += base_low - addon_low;
4933 	else if (base_low < addon_low) {
4934 		res += interval + base_low - addon_low;
4935 		res += (1 << il->hw_params.beacon_time_tsf_bits);
4936 	} else
4937 		res += (1 << il->hw_params.beacon_time_tsf_bits);
4938 
4939 	return cpu_to_le32(res);
4940 }
4941 EXPORT_SYMBOL(il_add_beacon_time);
4942 
4943 #ifdef CONFIG_PM_SLEEP
4944 
4945 static int
4946 il_pci_suspend(struct device *device)
4947 {
4948 	struct il_priv *il = dev_get_drvdata(device);
4949 
4950 	/*
4951 	 * This function is called when system goes into suspend state
4952 	 * mac80211 will call il_mac_stop() from the mac80211 suspend function
4953 	 * first but since il_mac_stop() has no knowledge of who the caller is,
4954 	 * it will not call apm_ops.stop() to stop the DMA operation.
4955 	 * Calling apm_ops.stop here to make sure we stop the DMA.
4956 	 */
4957 	il_apm_stop(il);
4958 
4959 	return 0;
4960 }
4961 
4962 static int
4963 il_pci_resume(struct device *device)
4964 {
4965 	struct pci_dev *pdev = to_pci_dev(device);
4966 	struct il_priv *il = pci_get_drvdata(pdev);
4967 	bool hw_rfkill = false;
4968 
4969 	/*
4970 	 * We disable the RETRY_TIMEOUT register (0x41) to keep
4971 	 * PCI Tx retries from interfering with C3 CPU state.
4972 	 */
4973 	pci_write_config_byte(pdev, PCI_CFG_RETRY_TIMEOUT, 0x00);
4974 
4975 	_il_wr(il, CSR_INT, 0xffffffff);
4976 	_il_wr(il, CSR_FH_INT_STATUS, 0xffffffff);
4977 	il_enable_interrupts(il);
4978 
4979 	if (!(_il_rd(il, CSR_GP_CNTRL) & CSR_GP_CNTRL_REG_FLAG_HW_RF_KILL_SW))
4980 		hw_rfkill = true;
4981 
4982 	if (hw_rfkill)
4983 		set_bit(S_RFKILL, &il->status);
4984 	else
4985 		clear_bit(S_RFKILL, &il->status);
4986 
4987 	wiphy_rfkill_set_hw_state(il->hw->wiphy, hw_rfkill);
4988 
4989 	return 0;
4990 }
4991 
4992 SIMPLE_DEV_PM_OPS(il_pm_ops, il_pci_suspend, il_pci_resume);
4993 EXPORT_SYMBOL(il_pm_ops);
4994 
4995 #endif /* CONFIG_PM_SLEEP */
4996 
4997 static void
4998 il_update_qos(struct il_priv *il)
4999 {
5000 	if (test_bit(S_EXIT_PENDING, &il->status))
5001 		return;
5002 
5003 	il->qos_data.def_qos_parm.qos_flags = 0;
5004 
5005 	if (il->qos_data.qos_active)
5006 		il->qos_data.def_qos_parm.qos_flags |=
5007 		    QOS_PARAM_FLG_UPDATE_EDCA_MSK;
5008 
5009 	if (il->ht.enabled)
5010 		il->qos_data.def_qos_parm.qos_flags |= QOS_PARAM_FLG_TGN_MSK;
5011 
5012 	D_QOS("send QoS cmd with Qos active=%d FLAGS=0x%X\n",
5013 	      il->qos_data.qos_active, il->qos_data.def_qos_parm.qos_flags);
5014 
5015 	il_send_cmd_pdu_async(il, C_QOS_PARAM, sizeof(struct il_qosparam_cmd),
5016 			      &il->qos_data.def_qos_parm, NULL);
5017 }
5018 
5019 /*
5020  * il_mac_config - mac80211 config callback
5021  */
5022 int
5023 il_mac_config(struct ieee80211_hw *hw, u32 changed)
5024 {
5025 	struct il_priv *il = hw->priv;
5026 	const struct il_channel_info *ch_info;
5027 	struct ieee80211_conf *conf = &hw->conf;
5028 	struct ieee80211_channel *channel = conf->chandef.chan;
5029 	struct il_ht_config *ht_conf = &il->current_ht_config;
5030 	unsigned long flags = 0;
5031 	int ret = 0;
5032 	u16 ch;
5033 	int scan_active = 0;
5034 	bool ht_changed = false;
5035 
5036 	mutex_lock(&il->mutex);
5037 	D_MAC80211("enter: channel %d changed 0x%X\n", channel->hw_value,
5038 		   changed);
5039 
5040 	if (unlikely(test_bit(S_SCANNING, &il->status))) {
5041 		scan_active = 1;
5042 		D_MAC80211("scan active\n");
5043 	}
5044 
5045 	if (changed &
5046 	    (IEEE80211_CONF_CHANGE_SMPS | IEEE80211_CONF_CHANGE_CHANNEL)) {
5047 		/* mac80211 uses static for non-HT which is what we want */
5048 		il->current_ht_config.smps = conf->smps_mode;
5049 
5050 		/*
5051 		 * Recalculate chain counts.
5052 		 *
5053 		 * If monitor mode is enabled then mac80211 will
5054 		 * set up the SM PS mode to OFF if an HT channel is
5055 		 * configured.
5056 		 */
5057 		if (il->ops->set_rxon_chain)
5058 			il->ops->set_rxon_chain(il);
5059 	}
5060 
5061 	/* during scanning mac80211 will delay channel setting until
5062 	 * scan finish with changed = 0
5063 	 */
5064 	if (!changed || (changed & IEEE80211_CONF_CHANGE_CHANNEL)) {
5065 
5066 		if (scan_active)
5067 			goto set_ch_out;
5068 
5069 		ch = channel->hw_value;
5070 		ch_info = il_get_channel_info(il, channel->band, ch);
5071 		if (!il_is_channel_valid(ch_info)) {
5072 			D_MAC80211("leave - invalid channel\n");
5073 			ret = -EINVAL;
5074 			goto set_ch_out;
5075 		}
5076 
5077 		if (il->iw_mode == NL80211_IFTYPE_ADHOC &&
5078 		    !il_is_channel_ibss(ch_info)) {
5079 			D_MAC80211("leave - not IBSS channel\n");
5080 			ret = -EINVAL;
5081 			goto set_ch_out;
5082 		}
5083 
5084 		spin_lock_irqsave(&il->lock, flags);
5085 
5086 		/* Configure HT40 channels */
5087 		if (il->ht.enabled != conf_is_ht(conf)) {
5088 			il->ht.enabled = conf_is_ht(conf);
5089 			ht_changed = true;
5090 		}
5091 		if (il->ht.enabled) {
5092 			if (conf_is_ht40_minus(conf)) {
5093 				il->ht.extension_chan_offset =
5094 				    IEEE80211_HT_PARAM_CHA_SEC_BELOW;
5095 				il->ht.is_40mhz = true;
5096 			} else if (conf_is_ht40_plus(conf)) {
5097 				il->ht.extension_chan_offset =
5098 				    IEEE80211_HT_PARAM_CHA_SEC_ABOVE;
5099 				il->ht.is_40mhz = true;
5100 			} else {
5101 				il->ht.extension_chan_offset =
5102 				    IEEE80211_HT_PARAM_CHA_SEC_NONE;
5103 				il->ht.is_40mhz = false;
5104 			}
5105 		} else
5106 			il->ht.is_40mhz = false;
5107 
5108 		/*
5109 		 * Default to no protection. Protection mode will
5110 		 * later be set from BSS config in il_ht_conf
5111 		 */
5112 		il->ht.protection = IEEE80211_HT_OP_MODE_PROTECTION_NONE;
5113 
5114 		/* if we are switching from ht to 2.4 clear flags
5115 		 * from any ht related info since 2.4 does not
5116 		 * support ht */
5117 		if ((le16_to_cpu(il->staging.channel) != ch))
5118 			il->staging.flags = 0;
5119 
5120 		il_set_rxon_channel(il, channel);
5121 		il_set_rxon_ht(il, ht_conf);
5122 
5123 		il_set_flags_for_band(il, channel->band, il->vif);
5124 
5125 		spin_unlock_irqrestore(&il->lock, flags);
5126 
5127 		if (il->ops->update_bcast_stations)
5128 			ret = il->ops->update_bcast_stations(il);
5129 
5130 set_ch_out:
5131 		/* The list of supported rates and rate mask can be different
5132 		 * for each band; since the band may have changed, reset
5133 		 * the rate mask to what mac80211 lists */
5134 		il_set_rate(il);
5135 	}
5136 
5137 	if (changed & (IEEE80211_CONF_CHANGE_PS | IEEE80211_CONF_CHANGE_IDLE)) {
5138 		il->power_data.ps_disabled = !(conf->flags & IEEE80211_CONF_PS);
5139 		if (!il->power_data.ps_disabled)
5140 			IL_WARN_ONCE("Enabling power save might cause firmware crashes\n");
5141 		ret = il_power_update_mode(il, false);
5142 		if (ret)
5143 			D_MAC80211("Error setting sleep level\n");
5144 	}
5145 
5146 	if (changed & IEEE80211_CONF_CHANGE_POWER) {
5147 		D_MAC80211("TX Power old=%d new=%d\n", il->tx_power_user_lmt,
5148 			   conf->power_level);
5149 
5150 		il_set_tx_power(il, conf->power_level, false);
5151 	}
5152 
5153 	if (!il_is_ready(il)) {
5154 		D_MAC80211("leave - not ready\n");
5155 		goto out;
5156 	}
5157 
5158 	if (scan_active)
5159 		goto out;
5160 
5161 	if (memcmp(&il->active, &il->staging, sizeof(il->staging)))
5162 		il_commit_rxon(il);
5163 	else
5164 		D_INFO("Not re-sending same RXON configuration.\n");
5165 	if (ht_changed)
5166 		il_update_qos(il);
5167 
5168 out:
5169 	D_MAC80211("leave ret %d\n", ret);
5170 	mutex_unlock(&il->mutex);
5171 
5172 	return ret;
5173 }
5174 EXPORT_SYMBOL(il_mac_config);
5175 
5176 void
5177 il_mac_reset_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
5178 {
5179 	struct il_priv *il = hw->priv;
5180 	unsigned long flags;
5181 
5182 	mutex_lock(&il->mutex);
5183 	D_MAC80211("enter: type %d, addr %pM\n", vif->type, vif->addr);
5184 
5185 	spin_lock_irqsave(&il->lock, flags);
5186 
5187 	memset(&il->current_ht_config, 0, sizeof(struct il_ht_config));
5188 
5189 	/* new association get rid of ibss beacon skb */
5190 	dev_consume_skb_irq(il->beacon_skb);
5191 	il->beacon_skb = NULL;
5192 	il->timestamp = 0;
5193 
5194 	spin_unlock_irqrestore(&il->lock, flags);
5195 
5196 	il_scan_cancel_timeout(il, 100);
5197 	if (!il_is_ready_rf(il)) {
5198 		D_MAC80211("leave - not ready\n");
5199 		mutex_unlock(&il->mutex);
5200 		return;
5201 	}
5202 
5203 	/* we are restarting association process */
5204 	il->staging.filter_flags &= ~RXON_FILTER_ASSOC_MSK;
5205 	il_commit_rxon(il);
5206 
5207 	il_set_rate(il);
5208 
5209 	D_MAC80211("leave\n");
5210 	mutex_unlock(&il->mutex);
5211 }
5212 EXPORT_SYMBOL(il_mac_reset_tsf);
5213 
5214 static void
5215 il_ht_conf(struct il_priv *il, struct ieee80211_vif *vif)
5216 {
5217 	struct il_ht_config *ht_conf = &il->current_ht_config;
5218 	struct ieee80211_sta *sta;
5219 	struct ieee80211_bss_conf *bss_conf = &vif->bss_conf;
5220 
5221 	D_ASSOC("enter:\n");
5222 
5223 	if (!il->ht.enabled)
5224 		return;
5225 
5226 	il->ht.protection =
5227 	    bss_conf->ht_operation_mode & IEEE80211_HT_OP_MODE_PROTECTION;
5228 	il->ht.non_gf_sta_present =
5229 	    !!(bss_conf->
5230 	       ht_operation_mode & IEEE80211_HT_OP_MODE_NON_GF_STA_PRSNT);
5231 
5232 	ht_conf->single_chain_sufficient = false;
5233 
5234 	switch (vif->type) {
5235 	case NL80211_IFTYPE_STATION:
5236 		rcu_read_lock();
5237 		sta = ieee80211_find_sta(vif, bss_conf->bssid);
5238 		if (sta) {
5239 			struct ieee80211_sta_ht_cap *ht_cap = &sta->deflink.ht_cap;
5240 			int maxstreams;
5241 
5242 			maxstreams =
5243 			    (ht_cap->mcs.
5244 			     tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK)
5245 			    >> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT;
5246 			maxstreams += 1;
5247 
5248 			if (ht_cap->mcs.rx_mask[1] == 0 &&
5249 			    ht_cap->mcs.rx_mask[2] == 0)
5250 				ht_conf->single_chain_sufficient = true;
5251 			if (maxstreams <= 1)
5252 				ht_conf->single_chain_sufficient = true;
5253 		} else {
5254 			/*
5255 			 * If at all, this can only happen through a race
5256 			 * when the AP disconnects us while we're still
5257 			 * setting up the connection, in that case mac80211
5258 			 * will soon tell us about that.
5259 			 */
5260 			ht_conf->single_chain_sufficient = true;
5261 		}
5262 		rcu_read_unlock();
5263 		break;
5264 	case NL80211_IFTYPE_ADHOC:
5265 		ht_conf->single_chain_sufficient = true;
5266 		break;
5267 	default:
5268 		break;
5269 	}
5270 
5271 	D_ASSOC("leave\n");
5272 }
5273 
5274 static inline void
5275 il_set_no_assoc(struct il_priv *il, struct ieee80211_vif *vif)
5276 {
5277 	/*
5278 	 * inform the ucode that there is no longer an
5279 	 * association and that no more packets should be
5280 	 * sent
5281 	 */
5282 	il->staging.filter_flags &= ~RXON_FILTER_ASSOC_MSK;
5283 	il->staging.assoc_id = 0;
5284 	il_commit_rxon(il);
5285 }
5286 
5287 static void
5288 il_beacon_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
5289 {
5290 	struct il_priv *il = hw->priv;
5291 	unsigned long flags;
5292 	__le64 timestamp;
5293 	struct sk_buff *skb = ieee80211_beacon_get(hw, vif, 0);
5294 
5295 	if (!skb)
5296 		return;
5297 
5298 	D_MAC80211("enter\n");
5299 
5300 	lockdep_assert_held(&il->mutex);
5301 
5302 	if (!il->beacon_enabled) {
5303 		IL_ERR("update beacon with no beaconing enabled\n");
5304 		dev_kfree_skb(skb);
5305 		return;
5306 	}
5307 
5308 	spin_lock_irqsave(&il->lock, flags);
5309 	dev_consume_skb_irq(il->beacon_skb);
5310 	il->beacon_skb = skb;
5311 
5312 	timestamp = ((struct ieee80211_mgmt *)skb->data)->u.beacon.timestamp;
5313 	il->timestamp = le64_to_cpu(timestamp);
5314 
5315 	D_MAC80211("leave\n");
5316 	spin_unlock_irqrestore(&il->lock, flags);
5317 
5318 	if (!il_is_ready_rf(il)) {
5319 		D_MAC80211("leave - RF not ready\n");
5320 		return;
5321 	}
5322 
5323 	il->ops->post_associate(il);
5324 }
5325 
5326 void
5327 il_mac_bss_info_changed(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
5328 			struct ieee80211_bss_conf *bss_conf, u64 changes)
5329 {
5330 	struct il_priv *il = hw->priv;
5331 	int ret;
5332 
5333 	mutex_lock(&il->mutex);
5334 	D_MAC80211("enter: changes 0x%llx\n", changes);
5335 
5336 	if (!il_is_alive(il)) {
5337 		D_MAC80211("leave - not alive\n");
5338 		mutex_unlock(&il->mutex);
5339 		return;
5340 	}
5341 
5342 	if (changes & BSS_CHANGED_QOS) {
5343 		unsigned long flags;
5344 
5345 		spin_lock_irqsave(&il->lock, flags);
5346 		il->qos_data.qos_active = bss_conf->qos;
5347 		il_update_qos(il);
5348 		spin_unlock_irqrestore(&il->lock, flags);
5349 	}
5350 
5351 	if (changes & BSS_CHANGED_BEACON_ENABLED) {
5352 		/* FIXME: can we remove beacon_enabled ? */
5353 		if (vif->bss_conf.enable_beacon)
5354 			il->beacon_enabled = true;
5355 		else
5356 			il->beacon_enabled = false;
5357 	}
5358 
5359 	if (changes & BSS_CHANGED_BSSID) {
5360 		D_MAC80211("BSSID %pM\n", bss_conf->bssid);
5361 
5362 		/*
5363 		 * On passive channel we wait with blocked queues to see if
5364 		 * there is traffic on that channel. If no frame will be
5365 		 * received (what is very unlikely since scan detects AP on
5366 		 * that channel, but theoretically possible), mac80211 associate
5367 		 * procedure will time out and mac80211 will call us with NULL
5368 		 * bssid. We have to unblock queues on such condition.
5369 		 */
5370 		if (is_zero_ether_addr(bss_conf->bssid))
5371 			il_wake_queues_by_reason(il, IL_STOP_REASON_PASSIVE);
5372 
5373 		/*
5374 		 * If there is currently a HW scan going on in the background,
5375 		 * then we need to cancel it, otherwise sometimes we are not
5376 		 * able to authenticate (FIXME: why ?)
5377 		 */
5378 		if (il_scan_cancel_timeout(il, 100)) {
5379 			D_MAC80211("leave - scan abort failed\n");
5380 			mutex_unlock(&il->mutex);
5381 			return;
5382 		}
5383 
5384 		/* mac80211 only sets assoc when in STATION mode */
5385 		memcpy(il->staging.bssid_addr, bss_conf->bssid, ETH_ALEN);
5386 
5387 		/* FIXME: currently needed in a few places */
5388 		memcpy(il->bssid, bss_conf->bssid, ETH_ALEN);
5389 	}
5390 
5391 	/*
5392 	 * This needs to be after setting the BSSID in case
5393 	 * mac80211 decides to do both changes at once because
5394 	 * it will invoke post_associate.
5395 	 */
5396 	if (vif->type == NL80211_IFTYPE_ADHOC && (changes & BSS_CHANGED_BEACON))
5397 		il_beacon_update(hw, vif);
5398 
5399 	if (changes & BSS_CHANGED_ERP_PREAMBLE) {
5400 		D_MAC80211("ERP_PREAMBLE %d\n", bss_conf->use_short_preamble);
5401 		if (bss_conf->use_short_preamble)
5402 			il->staging.flags |= RXON_FLG_SHORT_PREAMBLE_MSK;
5403 		else
5404 			il->staging.flags &= ~RXON_FLG_SHORT_PREAMBLE_MSK;
5405 	}
5406 
5407 	if (changes & BSS_CHANGED_ERP_CTS_PROT) {
5408 		D_MAC80211("ERP_CTS %d\n", bss_conf->use_cts_prot);
5409 		if (bss_conf->use_cts_prot && il->band != NL80211_BAND_5GHZ)
5410 			il->staging.flags |= RXON_FLG_TGG_PROTECT_MSK;
5411 		else
5412 			il->staging.flags &= ~RXON_FLG_TGG_PROTECT_MSK;
5413 		if (bss_conf->use_cts_prot)
5414 			il->staging.flags |= RXON_FLG_SELF_CTS_EN;
5415 		else
5416 			il->staging.flags &= ~RXON_FLG_SELF_CTS_EN;
5417 	}
5418 
5419 	if (changes & BSS_CHANGED_BASIC_RATES) {
5420 		/* XXX use this information
5421 		 *
5422 		 * To do that, remove code from il_set_rate() and put something
5423 		 * like this here:
5424 		 *
5425 		 if (A-band)
5426 		 il->staging.ofdm_basic_rates =
5427 		 bss_conf->basic_rates;
5428 		 else
5429 		 il->staging.ofdm_basic_rates =
5430 		 bss_conf->basic_rates >> 4;
5431 		 il->staging.cck_basic_rates =
5432 		 bss_conf->basic_rates & 0xF;
5433 		 */
5434 	}
5435 
5436 	if (changes & BSS_CHANGED_HT) {
5437 		il_ht_conf(il, vif);
5438 
5439 		if (il->ops->set_rxon_chain)
5440 			il->ops->set_rxon_chain(il);
5441 	}
5442 
5443 	if (changes & BSS_CHANGED_ASSOC) {
5444 		D_MAC80211("ASSOC %d\n", vif->cfg.assoc);
5445 		if (vif->cfg.assoc) {
5446 			il->timestamp = bss_conf->sync_tsf;
5447 
5448 			if (!il_is_rfkill(il))
5449 				il->ops->post_associate(il);
5450 		} else
5451 			il_set_no_assoc(il, vif);
5452 	}
5453 
5454 	if (changes && il_is_associated(il) && vif->cfg.aid) {
5455 		D_MAC80211("Changes (%#llx) while associated\n", changes);
5456 		ret = il_send_rxon_assoc(il);
5457 		if (!ret) {
5458 			/* Sync active_rxon with latest change. */
5459 			memcpy((void *)&il->active, &il->staging,
5460 			       sizeof(struct il_rxon_cmd));
5461 		}
5462 	}
5463 
5464 	if (changes & BSS_CHANGED_BEACON_ENABLED) {
5465 		if (vif->bss_conf.enable_beacon) {
5466 			memcpy(il->staging.bssid_addr, bss_conf->bssid,
5467 			       ETH_ALEN);
5468 			memcpy(il->bssid, bss_conf->bssid, ETH_ALEN);
5469 			il->ops->config_ap(il);
5470 		} else
5471 			il_set_no_assoc(il, vif);
5472 	}
5473 
5474 	if (changes & BSS_CHANGED_IBSS) {
5475 		ret = il->ops->manage_ibss_station(il, vif,
5476 						   vif->cfg.ibss_joined);
5477 		if (ret)
5478 			IL_ERR("failed to %s IBSS station %pM\n",
5479 			       vif->cfg.ibss_joined ? "add" : "remove",
5480 			       bss_conf->bssid);
5481 	}
5482 
5483 	D_MAC80211("leave\n");
5484 	mutex_unlock(&il->mutex);
5485 }
5486 EXPORT_SYMBOL(il_mac_bss_info_changed);
5487 
5488 irqreturn_t
5489 il_isr(int irq, void *data)
5490 {
5491 	struct il_priv *il = data;
5492 	u32 inta, inta_mask;
5493 	u32 inta_fh;
5494 	unsigned long flags;
5495 	if (!il)
5496 		return IRQ_NONE;
5497 
5498 	spin_lock_irqsave(&il->lock, flags);
5499 
5500 	/* Disable (but don't clear!) interrupts here to avoid
5501 	 *    back-to-back ISRs and sporadic interrupts from our NIC.
5502 	 * If we have something to service, the tasklet will re-enable ints.
5503 	 * If we *don't* have something, we'll re-enable before leaving here. */
5504 	inta_mask = _il_rd(il, CSR_INT_MASK);	/* just for debug */
5505 	_il_wr(il, CSR_INT_MASK, 0x00000000);
5506 
5507 	/* Discover which interrupts are active/pending */
5508 	inta = _il_rd(il, CSR_INT);
5509 	inta_fh = _il_rd(il, CSR_FH_INT_STATUS);
5510 
5511 	/* Ignore interrupt if there's nothing in NIC to service.
5512 	 * This may be due to IRQ shared with another device,
5513 	 * or due to sporadic interrupts thrown from our NIC. */
5514 	if (!inta && !inta_fh) {
5515 		D_ISR("Ignore interrupt, inta == 0, inta_fh == 0\n");
5516 		goto none;
5517 	}
5518 
5519 	if (inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0) {
5520 		/* Hardware disappeared. It might have already raised
5521 		 * an interrupt */
5522 		IL_WARN("HARDWARE GONE?? INTA == 0x%08x\n", inta);
5523 		goto unplugged;
5524 	}
5525 
5526 	D_ISR("ISR inta 0x%08x, enabled 0x%08x, fh 0x%08x\n", inta, inta_mask,
5527 	      inta_fh);
5528 
5529 	inta &= ~CSR_INT_BIT_SCD;
5530 
5531 	/* il_irq_tasklet() will service interrupts and re-enable them */
5532 	if (likely(inta || inta_fh))
5533 		tasklet_schedule(&il->irq_tasklet);
5534 
5535 unplugged:
5536 	spin_unlock_irqrestore(&il->lock, flags);
5537 	return IRQ_HANDLED;
5538 
5539 none:
5540 	/* re-enable interrupts here since we don't have anything to service. */
5541 	/* only Re-enable if disabled by irq */
5542 	if (test_bit(S_INT_ENABLED, &il->status))
5543 		il_enable_interrupts(il);
5544 	spin_unlock_irqrestore(&il->lock, flags);
5545 	return IRQ_NONE;
5546 }
5547 EXPORT_SYMBOL(il_isr);
5548 
5549 /*
5550  *  il_tx_cmd_protection: Set rts/cts. 3945 and 4965 only share this
5551  *  function.
5552  */
5553 void
5554 il_tx_cmd_protection(struct il_priv *il, struct ieee80211_tx_info *info,
5555 		     __le16 fc, __le32 *tx_flags)
5556 {
5557 	if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
5558 		*tx_flags |= TX_CMD_FLG_RTS_MSK;
5559 		*tx_flags &= ~TX_CMD_FLG_CTS_MSK;
5560 		*tx_flags |= TX_CMD_FLG_FULL_TXOP_PROT_MSK;
5561 
5562 		if (!ieee80211_is_mgmt(fc))
5563 			return;
5564 
5565 		switch (fc & cpu_to_le16(IEEE80211_FCTL_STYPE)) {
5566 		case cpu_to_le16(IEEE80211_STYPE_AUTH):
5567 		case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
5568 		case cpu_to_le16(IEEE80211_STYPE_ASSOC_REQ):
5569 		case cpu_to_le16(IEEE80211_STYPE_REASSOC_REQ):
5570 			*tx_flags &= ~TX_CMD_FLG_RTS_MSK;
5571 			*tx_flags |= TX_CMD_FLG_CTS_MSK;
5572 			break;
5573 		}
5574 	} else if (info->control.rates[0].
5575 		   flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
5576 		*tx_flags &= ~TX_CMD_FLG_RTS_MSK;
5577 		*tx_flags |= TX_CMD_FLG_CTS_MSK;
5578 		*tx_flags |= TX_CMD_FLG_FULL_TXOP_PROT_MSK;
5579 	}
5580 }
5581 EXPORT_SYMBOL(il_tx_cmd_protection);
5582