1 /******************************************************************************
2  *
3  * GPL LICENSE SUMMARY
4  *
5  * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of version 2 of the GNU General Public License as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful, but
12  * WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
19  * USA
20  *
21  * The full GNU General Public License is included in this distribution
22  * in the file called LICENSE.GPL.
23  *
24  * Contact Information:
25  *  Intel Linux Wireless <ilw@linux.intel.com>
26  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27  *****************************************************************************/
28 
29 #include <linux/kernel.h>
30 #include <linux/module.h>
31 #include <linux/etherdevice.h>
32 #include <linux/sched.h>
33 #include <linux/slab.h>
34 #include <linux/types.h>
35 #include <linux/lockdep.h>
36 #include <linux/pci.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/delay.h>
39 #include <linux/skbuff.h>
40 #include <net/mac80211.h>
41 
42 #include "common.h"
43 
44 int
45 _il_poll_bit(struct il_priv *il, u32 addr, u32 bits, u32 mask, int timeout)
46 {
47 	const int interval = 10; /* microseconds */
48 	int t = 0;
49 
50 	do {
51 		if ((_il_rd(il, addr) & mask) == (bits & mask))
52 			return t;
53 		udelay(interval);
54 		t += interval;
55 	} while (t < timeout);
56 
57 	return -ETIMEDOUT;
58 }
59 EXPORT_SYMBOL(_il_poll_bit);
60 
61 void
62 il_set_bit(struct il_priv *p, u32 r, u32 m)
63 {
64 	unsigned long reg_flags;
65 
66 	spin_lock_irqsave(&p->reg_lock, reg_flags);
67 	_il_set_bit(p, r, m);
68 	spin_unlock_irqrestore(&p->reg_lock, reg_flags);
69 }
70 EXPORT_SYMBOL(il_set_bit);
71 
72 void
73 il_clear_bit(struct il_priv *p, u32 r, u32 m)
74 {
75 	unsigned long reg_flags;
76 
77 	spin_lock_irqsave(&p->reg_lock, reg_flags);
78 	_il_clear_bit(p, r, m);
79 	spin_unlock_irqrestore(&p->reg_lock, reg_flags);
80 }
81 EXPORT_SYMBOL(il_clear_bit);
82 
83 bool
84 _il_grab_nic_access(struct il_priv *il)
85 {
86 	int ret;
87 	u32 val;
88 
89 	/* this bit wakes up the NIC */
90 	_il_set_bit(il, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
91 
92 	/*
93 	 * These bits say the device is running, and should keep running for
94 	 * at least a short while (at least as long as MAC_ACCESS_REQ stays 1),
95 	 * but they do not indicate that embedded SRAM is restored yet;
96 	 * 3945 and 4965 have volatile SRAM, and must save/restore contents
97 	 * to/from host DRAM when sleeping/waking for power-saving.
98 	 * Each direction takes approximately 1/4 millisecond; with this
99 	 * overhead, it's a good idea to grab and hold MAC_ACCESS_REQUEST if a
100 	 * series of register accesses are expected (e.g. reading Event Log),
101 	 * to keep device from sleeping.
102 	 *
103 	 * CSR_UCODE_DRV_GP1 register bit MAC_SLEEP == 0 indicates that
104 	 * SRAM is okay/restored.  We don't check that here because this call
105 	 * is just for hardware register access; but GP1 MAC_SLEEP check is a
106 	 * good idea before accessing 3945/4965 SRAM (e.g. reading Event Log).
107 	 *
108 	 */
109 	ret =
110 	    _il_poll_bit(il, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_VAL_MAC_ACCESS_EN,
111 			 (CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY |
112 			  CSR_GP_CNTRL_REG_FLAG_GOING_TO_SLEEP), 15000);
113 	if (unlikely(ret < 0)) {
114 		val = _il_rd(il, CSR_GP_CNTRL);
115 		WARN_ONCE(1, "Timeout waiting for ucode processor access "
116 			     "(CSR_GP_CNTRL 0x%08x)\n", val);
117 		_il_wr(il, CSR_RESET, CSR_RESET_REG_FLAG_FORCE_NMI);
118 		return false;
119 	}
120 
121 	return true;
122 }
123 EXPORT_SYMBOL_GPL(_il_grab_nic_access);
124 
125 int
126 il_poll_bit(struct il_priv *il, u32 addr, u32 mask, int timeout)
127 {
128 	const int interval = 10; /* microseconds */
129 	int t = 0;
130 
131 	do {
132 		if ((il_rd(il, addr) & mask) == mask)
133 			return t;
134 		udelay(interval);
135 		t += interval;
136 	} while (t < timeout);
137 
138 	return -ETIMEDOUT;
139 }
140 EXPORT_SYMBOL(il_poll_bit);
141 
142 u32
143 il_rd_prph(struct il_priv *il, u32 reg)
144 {
145 	unsigned long reg_flags;
146 	u32 val;
147 
148 	spin_lock_irqsave(&il->reg_lock, reg_flags);
149 	_il_grab_nic_access(il);
150 	val = _il_rd_prph(il, reg);
151 	_il_release_nic_access(il);
152 	spin_unlock_irqrestore(&il->reg_lock, reg_flags);
153 	return val;
154 }
155 EXPORT_SYMBOL(il_rd_prph);
156 
157 void
158 il_wr_prph(struct il_priv *il, u32 addr, u32 val)
159 {
160 	unsigned long reg_flags;
161 
162 	spin_lock_irqsave(&il->reg_lock, reg_flags);
163 	if (likely(_il_grab_nic_access(il))) {
164 		_il_wr_prph(il, addr, val);
165 		_il_release_nic_access(il);
166 	}
167 	spin_unlock_irqrestore(&il->reg_lock, reg_flags);
168 }
169 EXPORT_SYMBOL(il_wr_prph);
170 
171 u32
172 il_read_targ_mem(struct il_priv *il, u32 addr)
173 {
174 	unsigned long reg_flags;
175 	u32 value;
176 
177 	spin_lock_irqsave(&il->reg_lock, reg_flags);
178 	_il_grab_nic_access(il);
179 
180 	_il_wr(il, HBUS_TARG_MEM_RADDR, addr);
181 	value = _il_rd(il, HBUS_TARG_MEM_RDAT);
182 
183 	_il_release_nic_access(il);
184 	spin_unlock_irqrestore(&il->reg_lock, reg_flags);
185 	return value;
186 }
187 EXPORT_SYMBOL(il_read_targ_mem);
188 
189 void
190 il_write_targ_mem(struct il_priv *il, u32 addr, u32 val)
191 {
192 	unsigned long reg_flags;
193 
194 	spin_lock_irqsave(&il->reg_lock, reg_flags);
195 	if (likely(_il_grab_nic_access(il))) {
196 		_il_wr(il, HBUS_TARG_MEM_WADDR, addr);
197 		_il_wr(il, HBUS_TARG_MEM_WDAT, val);
198 		_il_release_nic_access(il);
199 	}
200 	spin_unlock_irqrestore(&il->reg_lock, reg_flags);
201 }
202 EXPORT_SYMBOL(il_write_targ_mem);
203 
204 const char *
205 il_get_cmd_string(u8 cmd)
206 {
207 	switch (cmd) {
208 		IL_CMD(N_ALIVE);
209 		IL_CMD(N_ERROR);
210 		IL_CMD(C_RXON);
211 		IL_CMD(C_RXON_ASSOC);
212 		IL_CMD(C_QOS_PARAM);
213 		IL_CMD(C_RXON_TIMING);
214 		IL_CMD(C_ADD_STA);
215 		IL_CMD(C_REM_STA);
216 		IL_CMD(C_WEPKEY);
217 		IL_CMD(N_3945_RX);
218 		IL_CMD(C_TX);
219 		IL_CMD(C_RATE_SCALE);
220 		IL_CMD(C_LEDS);
221 		IL_CMD(C_TX_LINK_QUALITY_CMD);
222 		IL_CMD(C_CHANNEL_SWITCH);
223 		IL_CMD(N_CHANNEL_SWITCH);
224 		IL_CMD(C_SPECTRUM_MEASUREMENT);
225 		IL_CMD(N_SPECTRUM_MEASUREMENT);
226 		IL_CMD(C_POWER_TBL);
227 		IL_CMD(N_PM_SLEEP);
228 		IL_CMD(N_PM_DEBUG_STATS);
229 		IL_CMD(C_SCAN);
230 		IL_CMD(C_SCAN_ABORT);
231 		IL_CMD(N_SCAN_START);
232 		IL_CMD(N_SCAN_RESULTS);
233 		IL_CMD(N_SCAN_COMPLETE);
234 		IL_CMD(N_BEACON);
235 		IL_CMD(C_TX_BEACON);
236 		IL_CMD(C_TX_PWR_TBL);
237 		IL_CMD(C_BT_CONFIG);
238 		IL_CMD(C_STATS);
239 		IL_CMD(N_STATS);
240 		IL_CMD(N_CARD_STATE);
241 		IL_CMD(N_MISSED_BEACONS);
242 		IL_CMD(C_CT_KILL_CONFIG);
243 		IL_CMD(C_SENSITIVITY);
244 		IL_CMD(C_PHY_CALIBRATION);
245 		IL_CMD(N_RX_PHY);
246 		IL_CMD(N_RX_MPDU);
247 		IL_CMD(N_RX);
248 		IL_CMD(N_COMPRESSED_BA);
249 	default:
250 		return "UNKNOWN";
251 
252 	}
253 }
254 EXPORT_SYMBOL(il_get_cmd_string);
255 
256 #define HOST_COMPLETE_TIMEOUT (HZ / 2)
257 
258 static void
259 il_generic_cmd_callback(struct il_priv *il, struct il_device_cmd *cmd,
260 			struct il_rx_pkt *pkt)
261 {
262 	if (pkt->hdr.flags & IL_CMD_FAILED_MSK) {
263 		IL_ERR("Bad return from %s (0x%08X)\n",
264 		       il_get_cmd_string(cmd->hdr.cmd), pkt->hdr.flags);
265 		return;
266 	}
267 #ifdef CONFIG_IWLEGACY_DEBUG
268 	switch (cmd->hdr.cmd) {
269 	case C_TX_LINK_QUALITY_CMD:
270 	case C_SENSITIVITY:
271 		D_HC_DUMP("back from %s (0x%08X)\n",
272 			  il_get_cmd_string(cmd->hdr.cmd), pkt->hdr.flags);
273 		break;
274 	default:
275 		D_HC("back from %s (0x%08X)\n", il_get_cmd_string(cmd->hdr.cmd),
276 		     pkt->hdr.flags);
277 	}
278 #endif
279 }
280 
281 static int
282 il_send_cmd_async(struct il_priv *il, struct il_host_cmd *cmd)
283 {
284 	int ret;
285 
286 	BUG_ON(!(cmd->flags & CMD_ASYNC));
287 
288 	/* An asynchronous command can not expect an SKB to be set. */
289 	BUG_ON(cmd->flags & CMD_WANT_SKB);
290 
291 	/* Assign a generic callback if one is not provided */
292 	if (!cmd->callback)
293 		cmd->callback = il_generic_cmd_callback;
294 
295 	if (test_bit(S_EXIT_PENDING, &il->status))
296 		return -EBUSY;
297 
298 	ret = il_enqueue_hcmd(il, cmd);
299 	if (ret < 0) {
300 		IL_ERR("Error sending %s: enqueue_hcmd failed: %d\n",
301 		       il_get_cmd_string(cmd->id), ret);
302 		return ret;
303 	}
304 	return 0;
305 }
306 
307 int
308 il_send_cmd_sync(struct il_priv *il, struct il_host_cmd *cmd)
309 {
310 	int cmd_idx;
311 	int ret;
312 
313 	lockdep_assert_held(&il->mutex);
314 
315 	BUG_ON(cmd->flags & CMD_ASYNC);
316 
317 	/* A synchronous command can not have a callback set. */
318 	BUG_ON(cmd->callback);
319 
320 	D_INFO("Attempting to send sync command %s\n",
321 	       il_get_cmd_string(cmd->id));
322 
323 	set_bit(S_HCMD_ACTIVE, &il->status);
324 	D_INFO("Setting HCMD_ACTIVE for command %s\n",
325 	       il_get_cmd_string(cmd->id));
326 
327 	cmd_idx = il_enqueue_hcmd(il, cmd);
328 	if (cmd_idx < 0) {
329 		ret = cmd_idx;
330 		IL_ERR("Error sending %s: enqueue_hcmd failed: %d\n",
331 		       il_get_cmd_string(cmd->id), ret);
332 		goto out;
333 	}
334 
335 	ret = wait_event_timeout(il->wait_command_queue,
336 				 !test_bit(S_HCMD_ACTIVE, &il->status),
337 				 HOST_COMPLETE_TIMEOUT);
338 	if (!ret) {
339 		if (test_bit(S_HCMD_ACTIVE, &il->status)) {
340 			IL_ERR("Error sending %s: time out after %dms.\n",
341 			       il_get_cmd_string(cmd->id),
342 			       jiffies_to_msecs(HOST_COMPLETE_TIMEOUT));
343 
344 			clear_bit(S_HCMD_ACTIVE, &il->status);
345 			D_INFO("Clearing HCMD_ACTIVE for command %s\n",
346 			       il_get_cmd_string(cmd->id));
347 			ret = -ETIMEDOUT;
348 			goto cancel;
349 		}
350 	}
351 
352 	if (test_bit(S_RFKILL, &il->status)) {
353 		IL_ERR("Command %s aborted: RF KILL Switch\n",
354 		       il_get_cmd_string(cmd->id));
355 		ret = -ECANCELED;
356 		goto fail;
357 	}
358 	if (test_bit(S_FW_ERROR, &il->status)) {
359 		IL_ERR("Command %s failed: FW Error\n",
360 		       il_get_cmd_string(cmd->id));
361 		ret = -EIO;
362 		goto fail;
363 	}
364 	if ((cmd->flags & CMD_WANT_SKB) && !cmd->reply_page) {
365 		IL_ERR("Error: Response NULL in '%s'\n",
366 		       il_get_cmd_string(cmd->id));
367 		ret = -EIO;
368 		goto cancel;
369 	}
370 
371 	ret = 0;
372 	goto out;
373 
374 cancel:
375 	if (cmd->flags & CMD_WANT_SKB) {
376 		/*
377 		 * Cancel the CMD_WANT_SKB flag for the cmd in the
378 		 * TX cmd queue. Otherwise in case the cmd comes
379 		 * in later, it will possibly set an invalid
380 		 * address (cmd->meta.source).
381 		 */
382 		il->txq[il->cmd_queue].meta[cmd_idx].flags &= ~CMD_WANT_SKB;
383 	}
384 fail:
385 	if (cmd->reply_page) {
386 		il_free_pages(il, cmd->reply_page);
387 		cmd->reply_page = 0;
388 	}
389 out:
390 	return ret;
391 }
392 EXPORT_SYMBOL(il_send_cmd_sync);
393 
394 int
395 il_send_cmd(struct il_priv *il, struct il_host_cmd *cmd)
396 {
397 	if (cmd->flags & CMD_ASYNC)
398 		return il_send_cmd_async(il, cmd);
399 
400 	return il_send_cmd_sync(il, cmd);
401 }
402 EXPORT_SYMBOL(il_send_cmd);
403 
404 int
405 il_send_cmd_pdu(struct il_priv *il, u8 id, u16 len, const void *data)
406 {
407 	struct il_host_cmd cmd = {
408 		.id = id,
409 		.len = len,
410 		.data = data,
411 	};
412 
413 	return il_send_cmd_sync(il, &cmd);
414 }
415 EXPORT_SYMBOL(il_send_cmd_pdu);
416 
417 int
418 il_send_cmd_pdu_async(struct il_priv *il, u8 id, u16 len, const void *data,
419 		      void (*callback) (struct il_priv *il,
420 					struct il_device_cmd *cmd,
421 					struct il_rx_pkt *pkt))
422 {
423 	struct il_host_cmd cmd = {
424 		.id = id,
425 		.len = len,
426 		.data = data,
427 	};
428 
429 	cmd.flags |= CMD_ASYNC;
430 	cmd.callback = callback;
431 
432 	return il_send_cmd_async(il, &cmd);
433 }
434 EXPORT_SYMBOL(il_send_cmd_pdu_async);
435 
436 /* default: IL_LED_BLINK(0) using blinking idx table */
437 static int led_mode;
438 module_param(led_mode, int, S_IRUGO);
439 MODULE_PARM_DESC(led_mode,
440 		 "0=system default, " "1=On(RF On)/Off(RF Off), 2=blinking");
441 
442 /* Throughput		OFF time(ms)	ON time (ms)
443  *	>300			25		25
444  *	>200 to 300		40		40
445  *	>100 to 200		55		55
446  *	>70 to 100		65		65
447  *	>50 to 70		75		75
448  *	>20 to 50		85		85
449  *	>10 to 20		95		95
450  *	>5 to 10		110		110
451  *	>1 to 5			130		130
452  *	>0 to 1			167		167
453  *	<=0					SOLID ON
454  */
455 static const struct ieee80211_tpt_blink il_blink[] = {
456 	{.throughput = 0,		.blink_time = 334},
457 	{.throughput = 1 * 1024 - 1,	.blink_time = 260},
458 	{.throughput = 5 * 1024 - 1,	.blink_time = 220},
459 	{.throughput = 10 * 1024 - 1,	.blink_time = 190},
460 	{.throughput = 20 * 1024 - 1,	.blink_time = 170},
461 	{.throughput = 50 * 1024 - 1,	.blink_time = 150},
462 	{.throughput = 70 * 1024 - 1,	.blink_time = 130},
463 	{.throughput = 100 * 1024 - 1,	.blink_time = 110},
464 	{.throughput = 200 * 1024 - 1,	.blink_time = 80},
465 	{.throughput = 300 * 1024 - 1,	.blink_time = 50},
466 };
467 
468 /*
469  * Adjust led blink rate to compensate on a MAC Clock difference on every HW
470  * Led blink rate analysis showed an average deviation of 0% on 3945,
471  * 5% on 4965 HW.
472  * Need to compensate on the led on/off time per HW according to the deviation
473  * to achieve the desired led frequency
474  * The calculation is: (100-averageDeviation)/100 * blinkTime
475  * For code efficiency the calculation will be:
476  *     compensation = (100 - averageDeviation) * 64 / 100
477  *     NewBlinkTime = (compensation * BlinkTime) / 64
478  */
479 static inline u8
480 il_blink_compensation(struct il_priv *il, u8 time, u16 compensation)
481 {
482 	if (!compensation) {
483 		IL_ERR("undefined blink compensation: "
484 		       "use pre-defined blinking time\n");
485 		return time;
486 	}
487 
488 	return (u8) ((time * compensation) >> 6);
489 }
490 
491 /* Set led pattern command */
492 static int
493 il_led_cmd(struct il_priv *il, unsigned long on, unsigned long off)
494 {
495 	struct il_led_cmd led_cmd = {
496 		.id = IL_LED_LINK,
497 		.interval = IL_DEF_LED_INTRVL
498 	};
499 	int ret;
500 
501 	if (!test_bit(S_READY, &il->status))
502 		return -EBUSY;
503 
504 	if (il->blink_on == on && il->blink_off == off)
505 		return 0;
506 
507 	if (off == 0) {
508 		/* led is SOLID_ON */
509 		on = IL_LED_SOLID;
510 	}
511 
512 	D_LED("Led blink time compensation=%u\n",
513 	      il->cfg->led_compensation);
514 	led_cmd.on =
515 	    il_blink_compensation(il, on,
516 				  il->cfg->led_compensation);
517 	led_cmd.off =
518 	    il_blink_compensation(il, off,
519 				  il->cfg->led_compensation);
520 
521 	ret = il->ops->send_led_cmd(il, &led_cmd);
522 	if (!ret) {
523 		il->blink_on = on;
524 		il->blink_off = off;
525 	}
526 	return ret;
527 }
528 
529 static void
530 il_led_brightness_set(struct led_classdev *led_cdev,
531 		      enum led_brightness brightness)
532 {
533 	struct il_priv *il = container_of(led_cdev, struct il_priv, led);
534 	unsigned long on = 0;
535 
536 	if (brightness > 0)
537 		on = IL_LED_SOLID;
538 
539 	il_led_cmd(il, on, 0);
540 }
541 
542 static int
543 il_led_blink_set(struct led_classdev *led_cdev, unsigned long *delay_on,
544 		 unsigned long *delay_off)
545 {
546 	struct il_priv *il = container_of(led_cdev, struct il_priv, led);
547 
548 	return il_led_cmd(il, *delay_on, *delay_off);
549 }
550 
551 void
552 il_leds_init(struct il_priv *il)
553 {
554 	int mode = led_mode;
555 	int ret;
556 
557 	if (mode == IL_LED_DEFAULT)
558 		mode = il->cfg->led_mode;
559 
560 	il->led.name =
561 	    kasprintf(GFP_KERNEL, "%s-led", wiphy_name(il->hw->wiphy));
562 	il->led.brightness_set = il_led_brightness_set;
563 	il->led.blink_set = il_led_blink_set;
564 	il->led.max_brightness = 1;
565 
566 	switch (mode) {
567 	case IL_LED_DEFAULT:
568 		WARN_ON(1);
569 		break;
570 	case IL_LED_BLINK:
571 		il->led.default_trigger =
572 		    ieee80211_create_tpt_led_trigger(il->hw,
573 						     IEEE80211_TPT_LEDTRIG_FL_CONNECTED,
574 						     il_blink,
575 						     ARRAY_SIZE(il_blink));
576 		break;
577 	case IL_LED_RF_STATE:
578 		il->led.default_trigger = ieee80211_get_radio_led_name(il->hw);
579 		break;
580 	}
581 
582 	ret = led_classdev_register(&il->pci_dev->dev, &il->led);
583 	if (ret) {
584 		kfree(il->led.name);
585 		return;
586 	}
587 
588 	il->led_registered = true;
589 }
590 EXPORT_SYMBOL(il_leds_init);
591 
592 void
593 il_leds_exit(struct il_priv *il)
594 {
595 	if (!il->led_registered)
596 		return;
597 
598 	led_classdev_unregister(&il->led);
599 	kfree(il->led.name);
600 }
601 EXPORT_SYMBOL(il_leds_exit);
602 
603 /************************** EEPROM BANDS ****************************
604  *
605  * The il_eeprom_band definitions below provide the mapping from the
606  * EEPROM contents to the specific channel number supported for each
607  * band.
608  *
609  * For example, il_priv->eeprom.band_3_channels[4] from the band_3
610  * definition below maps to physical channel 42 in the 5.2GHz spectrum.
611  * The specific geography and calibration information for that channel
612  * is contained in the eeprom map itself.
613  *
614  * During init, we copy the eeprom information and channel map
615  * information into il->channel_info_24/52 and il->channel_map_24/52
616  *
617  * channel_map_24/52 provides the idx in the channel_info array for a
618  * given channel.  We have to have two separate maps as there is channel
619  * overlap with the 2.4GHz and 5.2GHz spectrum as seen in band_1 and
620  * band_2
621  *
622  * A value of 0xff stored in the channel_map indicates that the channel
623  * is not supported by the hardware at all.
624  *
625  * A value of 0xfe in the channel_map indicates that the channel is not
626  * valid for Tx with the current hardware.  This means that
627  * while the system can tune and receive on a given channel, it may not
628  * be able to associate or transmit any frames on that
629  * channel.  There is no corresponding channel information for that
630  * entry.
631  *
632  *********************************************************************/
633 
634 /* 2.4 GHz */
635 const u8 il_eeprom_band_1[14] = {
636 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
637 };
638 
639 /* 5.2 GHz bands */
640 static const u8 il_eeprom_band_2[] = {	/* 4915-5080MHz */
641 	183, 184, 185, 187, 188, 189, 192, 196, 7, 8, 11, 12, 16
642 };
643 
644 static const u8 il_eeprom_band_3[] = {	/* 5170-5320MHz */
645 	34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64
646 };
647 
648 static const u8 il_eeprom_band_4[] = {	/* 5500-5700MHz */
649 	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140
650 };
651 
652 static const u8 il_eeprom_band_5[] = {	/* 5725-5825MHz */
653 	145, 149, 153, 157, 161, 165
654 };
655 
656 static const u8 il_eeprom_band_6[] = {	/* 2.4 ht40 channel */
657 	1, 2, 3, 4, 5, 6, 7
658 };
659 
660 static const u8 il_eeprom_band_7[] = {	/* 5.2 ht40 channel */
661 	36, 44, 52, 60, 100, 108, 116, 124, 132, 149, 157
662 };
663 
664 /******************************************************************************
665  *
666  * EEPROM related functions
667  *
668 ******************************************************************************/
669 
670 static int
671 il_eeprom_verify_signature(struct il_priv *il)
672 {
673 	u32 gp = _il_rd(il, CSR_EEPROM_GP) & CSR_EEPROM_GP_VALID_MSK;
674 	int ret = 0;
675 
676 	D_EEPROM("EEPROM signature=0x%08x\n", gp);
677 	switch (gp) {
678 	case CSR_EEPROM_GP_GOOD_SIG_EEP_LESS_THAN_4K:
679 	case CSR_EEPROM_GP_GOOD_SIG_EEP_MORE_THAN_4K:
680 		break;
681 	default:
682 		IL_ERR("bad EEPROM signature," "EEPROM_GP=0x%08x\n", gp);
683 		ret = -ENOENT;
684 		break;
685 	}
686 	return ret;
687 }
688 
689 const u8 *
690 il_eeprom_query_addr(const struct il_priv *il, size_t offset)
691 {
692 	BUG_ON(offset >= il->cfg->eeprom_size);
693 	return &il->eeprom[offset];
694 }
695 EXPORT_SYMBOL(il_eeprom_query_addr);
696 
697 u16
698 il_eeprom_query16(const struct il_priv *il, size_t offset)
699 {
700 	if (!il->eeprom)
701 		return 0;
702 	return (u16) il->eeprom[offset] | ((u16) il->eeprom[offset + 1] << 8);
703 }
704 EXPORT_SYMBOL(il_eeprom_query16);
705 
706 /**
707  * il_eeprom_init - read EEPROM contents
708  *
709  * Load the EEPROM contents from adapter into il->eeprom
710  *
711  * NOTE:  This routine uses the non-debug IO access functions.
712  */
713 int
714 il_eeprom_init(struct il_priv *il)
715 {
716 	__le16 *e;
717 	u32 gp = _il_rd(il, CSR_EEPROM_GP);
718 	int sz;
719 	int ret;
720 	u16 addr;
721 
722 	/* allocate eeprom */
723 	sz = il->cfg->eeprom_size;
724 	D_EEPROM("NVM size = %d\n", sz);
725 	il->eeprom = kzalloc(sz, GFP_KERNEL);
726 	if (!il->eeprom)
727 		return -ENOMEM;
728 
729 	e = (__le16 *) il->eeprom;
730 
731 	il->ops->apm_init(il);
732 
733 	ret = il_eeprom_verify_signature(il);
734 	if (ret < 0) {
735 		IL_ERR("EEPROM not found, EEPROM_GP=0x%08x\n", gp);
736 		ret = -ENOENT;
737 		goto err;
738 	}
739 
740 	/* Make sure driver (instead of uCode) is allowed to read EEPROM */
741 	ret = il->ops->eeprom_acquire_semaphore(il);
742 	if (ret < 0) {
743 		IL_ERR("Failed to acquire EEPROM semaphore.\n");
744 		ret = -ENOENT;
745 		goto err;
746 	}
747 
748 	/* eeprom is an array of 16bit values */
749 	for (addr = 0; addr < sz; addr += sizeof(u16)) {
750 		u32 r;
751 
752 		_il_wr(il, CSR_EEPROM_REG,
753 		       CSR_EEPROM_REG_MSK_ADDR & (addr << 1));
754 
755 		ret =
756 		    _il_poll_bit(il, CSR_EEPROM_REG,
757 				 CSR_EEPROM_REG_READ_VALID_MSK,
758 				 CSR_EEPROM_REG_READ_VALID_MSK,
759 				 IL_EEPROM_ACCESS_TIMEOUT);
760 		if (ret < 0) {
761 			IL_ERR("Time out reading EEPROM[%d]\n", addr);
762 			goto done;
763 		}
764 		r = _il_rd(il, CSR_EEPROM_REG);
765 		e[addr / 2] = cpu_to_le16(r >> 16);
766 	}
767 
768 	D_EEPROM("NVM Type: %s, version: 0x%x\n", "EEPROM",
769 		 il_eeprom_query16(il, EEPROM_VERSION));
770 
771 	ret = 0;
772 done:
773 	il->ops->eeprom_release_semaphore(il);
774 
775 err:
776 	if (ret)
777 		il_eeprom_free(il);
778 	/* Reset chip to save power until we load uCode during "up". */
779 	il_apm_stop(il);
780 	return ret;
781 }
782 EXPORT_SYMBOL(il_eeprom_init);
783 
784 void
785 il_eeprom_free(struct il_priv *il)
786 {
787 	kfree(il->eeprom);
788 	il->eeprom = NULL;
789 }
790 EXPORT_SYMBOL(il_eeprom_free);
791 
792 static void
793 il_init_band_reference(const struct il_priv *il, int eep_band,
794 		       int *eeprom_ch_count,
795 		       const struct il_eeprom_channel **eeprom_ch_info,
796 		       const u8 **eeprom_ch_idx)
797 {
798 	u32 offset = il->cfg->regulatory_bands[eep_band - 1];
799 
800 	switch (eep_band) {
801 	case 1:		/* 2.4GHz band */
802 		*eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_1);
803 		*eeprom_ch_info =
804 		    (struct il_eeprom_channel *)il_eeprom_query_addr(il,
805 								     offset);
806 		*eeprom_ch_idx = il_eeprom_band_1;
807 		break;
808 	case 2:		/* 4.9GHz band */
809 		*eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_2);
810 		*eeprom_ch_info =
811 		    (struct il_eeprom_channel *)il_eeprom_query_addr(il,
812 								     offset);
813 		*eeprom_ch_idx = il_eeprom_band_2;
814 		break;
815 	case 3:		/* 5.2GHz band */
816 		*eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_3);
817 		*eeprom_ch_info =
818 		    (struct il_eeprom_channel *)il_eeprom_query_addr(il,
819 								     offset);
820 		*eeprom_ch_idx = il_eeprom_band_3;
821 		break;
822 	case 4:		/* 5.5GHz band */
823 		*eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_4);
824 		*eeprom_ch_info =
825 		    (struct il_eeprom_channel *)il_eeprom_query_addr(il,
826 								     offset);
827 		*eeprom_ch_idx = il_eeprom_band_4;
828 		break;
829 	case 5:		/* 5.7GHz band */
830 		*eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_5);
831 		*eeprom_ch_info =
832 		    (struct il_eeprom_channel *)il_eeprom_query_addr(il,
833 								     offset);
834 		*eeprom_ch_idx = il_eeprom_band_5;
835 		break;
836 	case 6:		/* 2.4GHz ht40 channels */
837 		*eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_6);
838 		*eeprom_ch_info =
839 		    (struct il_eeprom_channel *)il_eeprom_query_addr(il,
840 								     offset);
841 		*eeprom_ch_idx = il_eeprom_band_6;
842 		break;
843 	case 7:		/* 5 GHz ht40 channels */
844 		*eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_7);
845 		*eeprom_ch_info =
846 		    (struct il_eeprom_channel *)il_eeprom_query_addr(il,
847 								     offset);
848 		*eeprom_ch_idx = il_eeprom_band_7;
849 		break;
850 	default:
851 		BUG();
852 	}
853 }
854 
855 #define CHECK_AND_PRINT(x) ((eeprom_ch->flags & EEPROM_CHANNEL_##x) \
856 			    ? # x " " : "")
857 /**
858  * il_mod_ht40_chan_info - Copy ht40 channel info into driver's il.
859  *
860  * Does not set up a command, or touch hardware.
861  */
862 static int
863 il_mod_ht40_chan_info(struct il_priv *il, enum nl80211_band band, u16 channel,
864 		      const struct il_eeprom_channel *eeprom_ch,
865 		      u8 clear_ht40_extension_channel)
866 {
867 	struct il_channel_info *ch_info;
868 
869 	ch_info =
870 	    (struct il_channel_info *)il_get_channel_info(il, band, channel);
871 
872 	if (!il_is_channel_valid(ch_info))
873 		return -1;
874 
875 	D_EEPROM("HT40 Ch. %d [%sGHz] %s%s%s%s%s(0x%02x %ddBm):"
876 		 " Ad-Hoc %ssupported\n", ch_info->channel,
877 		 il_is_channel_a_band(ch_info) ? "5.2" : "2.4",
878 		 CHECK_AND_PRINT(IBSS), CHECK_AND_PRINT(ACTIVE),
879 		 CHECK_AND_PRINT(RADAR), CHECK_AND_PRINT(WIDE),
880 		 CHECK_AND_PRINT(DFS), eeprom_ch->flags,
881 		 eeprom_ch->max_power_avg,
882 		 ((eeprom_ch->flags & EEPROM_CHANNEL_IBSS) &&
883 		  !(eeprom_ch->flags & EEPROM_CHANNEL_RADAR)) ? "" : "not ");
884 
885 	ch_info->ht40_eeprom = *eeprom_ch;
886 	ch_info->ht40_max_power_avg = eeprom_ch->max_power_avg;
887 	ch_info->ht40_flags = eeprom_ch->flags;
888 	if (eeprom_ch->flags & EEPROM_CHANNEL_VALID)
889 		ch_info->ht40_extension_channel &=
890 		    ~clear_ht40_extension_channel;
891 
892 	return 0;
893 }
894 
895 #define CHECK_AND_PRINT_I(x) ((eeprom_ch_info[ch].flags & EEPROM_CHANNEL_##x) \
896 			    ? # x " " : "")
897 
898 /**
899  * il_init_channel_map - Set up driver's info for all possible channels
900  */
901 int
902 il_init_channel_map(struct il_priv *il)
903 {
904 	int eeprom_ch_count = 0;
905 	const u8 *eeprom_ch_idx = NULL;
906 	const struct il_eeprom_channel *eeprom_ch_info = NULL;
907 	int band, ch;
908 	struct il_channel_info *ch_info;
909 
910 	if (il->channel_count) {
911 		D_EEPROM("Channel map already initialized.\n");
912 		return 0;
913 	}
914 
915 	D_EEPROM("Initializing regulatory info from EEPROM\n");
916 
917 	il->channel_count =
918 	    ARRAY_SIZE(il_eeprom_band_1) + ARRAY_SIZE(il_eeprom_band_2) +
919 	    ARRAY_SIZE(il_eeprom_band_3) + ARRAY_SIZE(il_eeprom_band_4) +
920 	    ARRAY_SIZE(il_eeprom_band_5);
921 
922 	D_EEPROM("Parsing data for %d channels.\n", il->channel_count);
923 
924 	il->channel_info =
925 	    kzalloc(sizeof(struct il_channel_info) * il->channel_count,
926 		    GFP_KERNEL);
927 	if (!il->channel_info) {
928 		IL_ERR("Could not allocate channel_info\n");
929 		il->channel_count = 0;
930 		return -ENOMEM;
931 	}
932 
933 	ch_info = il->channel_info;
934 
935 	/* Loop through the 5 EEPROM bands adding them in order to the
936 	 * channel map we maintain (that contains additional information than
937 	 * what just in the EEPROM) */
938 	for (band = 1; band <= 5; band++) {
939 
940 		il_init_band_reference(il, band, &eeprom_ch_count,
941 				       &eeprom_ch_info, &eeprom_ch_idx);
942 
943 		/* Loop through each band adding each of the channels */
944 		for (ch = 0; ch < eeprom_ch_count; ch++) {
945 			ch_info->channel = eeprom_ch_idx[ch];
946 			ch_info->band =
947 			    (band ==
948 			     1) ? NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
949 
950 			/* permanently store EEPROM's channel regulatory flags
951 			 *   and max power in channel info database. */
952 			ch_info->eeprom = eeprom_ch_info[ch];
953 
954 			/* Copy the run-time flags so they are there even on
955 			 * invalid channels */
956 			ch_info->flags = eeprom_ch_info[ch].flags;
957 			/* First write that ht40 is not enabled, and then enable
958 			 * one by one */
959 			ch_info->ht40_extension_channel =
960 			    IEEE80211_CHAN_NO_HT40;
961 
962 			if (!(il_is_channel_valid(ch_info))) {
963 				D_EEPROM("Ch. %d Flags %x [%sGHz] - "
964 					 "No traffic\n", ch_info->channel,
965 					 ch_info->flags,
966 					 il_is_channel_a_band(ch_info) ? "5.2" :
967 					 "2.4");
968 				ch_info++;
969 				continue;
970 			}
971 
972 			/* Initialize regulatory-based run-time data */
973 			ch_info->max_power_avg = ch_info->curr_txpow =
974 			    eeprom_ch_info[ch].max_power_avg;
975 			ch_info->scan_power = eeprom_ch_info[ch].max_power_avg;
976 			ch_info->min_power = 0;
977 
978 			D_EEPROM("Ch. %d [%sGHz] " "%s%s%s%s%s%s(0x%02x %ddBm):"
979 				 " Ad-Hoc %ssupported\n", ch_info->channel,
980 				 il_is_channel_a_band(ch_info) ? "5.2" : "2.4",
981 				 CHECK_AND_PRINT_I(VALID),
982 				 CHECK_AND_PRINT_I(IBSS),
983 				 CHECK_AND_PRINT_I(ACTIVE),
984 				 CHECK_AND_PRINT_I(RADAR),
985 				 CHECK_AND_PRINT_I(WIDE),
986 				 CHECK_AND_PRINT_I(DFS),
987 				 eeprom_ch_info[ch].flags,
988 				 eeprom_ch_info[ch].max_power_avg,
989 				 ((eeprom_ch_info[ch].
990 				   flags & EEPROM_CHANNEL_IBSS) &&
991 				  !(eeprom_ch_info[ch].
992 				    flags & EEPROM_CHANNEL_RADAR)) ? "" :
993 				 "not ");
994 
995 			ch_info++;
996 		}
997 	}
998 
999 	/* Check if we do have HT40 channels */
1000 	if (il->cfg->regulatory_bands[5] == EEPROM_REGULATORY_BAND_NO_HT40 &&
1001 	    il->cfg->regulatory_bands[6] == EEPROM_REGULATORY_BAND_NO_HT40)
1002 		return 0;
1003 
1004 	/* Two additional EEPROM bands for 2.4 and 5 GHz HT40 channels */
1005 	for (band = 6; band <= 7; band++) {
1006 		enum nl80211_band ieeeband;
1007 
1008 		il_init_band_reference(il, band, &eeprom_ch_count,
1009 				       &eeprom_ch_info, &eeprom_ch_idx);
1010 
1011 		/* EEPROM band 6 is 2.4, band 7 is 5 GHz */
1012 		ieeeband =
1013 		    (band == 6) ? NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
1014 
1015 		/* Loop through each band adding each of the channels */
1016 		for (ch = 0; ch < eeprom_ch_count; ch++) {
1017 			/* Set up driver's info for lower half */
1018 			il_mod_ht40_chan_info(il, ieeeband, eeprom_ch_idx[ch],
1019 					      &eeprom_ch_info[ch],
1020 					      IEEE80211_CHAN_NO_HT40PLUS);
1021 
1022 			/* Set up driver's info for upper half */
1023 			il_mod_ht40_chan_info(il, ieeeband,
1024 					      eeprom_ch_idx[ch] + 4,
1025 					      &eeprom_ch_info[ch],
1026 					      IEEE80211_CHAN_NO_HT40MINUS);
1027 		}
1028 	}
1029 
1030 	return 0;
1031 }
1032 EXPORT_SYMBOL(il_init_channel_map);
1033 
1034 /*
1035  * il_free_channel_map - undo allocations in il_init_channel_map
1036  */
1037 void
1038 il_free_channel_map(struct il_priv *il)
1039 {
1040 	kfree(il->channel_info);
1041 	il->channel_count = 0;
1042 }
1043 EXPORT_SYMBOL(il_free_channel_map);
1044 
1045 /**
1046  * il_get_channel_info - Find driver's ilate channel info
1047  *
1048  * Based on band and channel number.
1049  */
1050 const struct il_channel_info *
1051 il_get_channel_info(const struct il_priv *il, enum nl80211_band band,
1052 		    u16 channel)
1053 {
1054 	int i;
1055 
1056 	switch (band) {
1057 	case NL80211_BAND_5GHZ:
1058 		for (i = 14; i < il->channel_count; i++) {
1059 			if (il->channel_info[i].channel == channel)
1060 				return &il->channel_info[i];
1061 		}
1062 		break;
1063 	case NL80211_BAND_2GHZ:
1064 		if (channel >= 1 && channel <= 14)
1065 			return &il->channel_info[channel - 1];
1066 		break;
1067 	default:
1068 		BUG();
1069 	}
1070 
1071 	return NULL;
1072 }
1073 EXPORT_SYMBOL(il_get_channel_info);
1074 
1075 /*
1076  * Setting power level allows the card to go to sleep when not busy.
1077  *
1078  * We calculate a sleep command based on the required latency, which
1079  * we get from mac80211.
1080  */
1081 
1082 #define SLP_VEC(X0, X1, X2, X3, X4) { \
1083 		cpu_to_le32(X0), \
1084 		cpu_to_le32(X1), \
1085 		cpu_to_le32(X2), \
1086 		cpu_to_le32(X3), \
1087 		cpu_to_le32(X4)  \
1088 }
1089 
1090 static void
1091 il_build_powertable_cmd(struct il_priv *il, struct il_powertable_cmd *cmd)
1092 {
1093 	const __le32 interval[3][IL_POWER_VEC_SIZE] = {
1094 		SLP_VEC(2, 2, 4, 6, 0xFF),
1095 		SLP_VEC(2, 4, 7, 10, 10),
1096 		SLP_VEC(4, 7, 10, 10, 0xFF)
1097 	};
1098 	int i, dtim_period, no_dtim;
1099 	u32 max_sleep;
1100 	bool skip;
1101 
1102 	memset(cmd, 0, sizeof(*cmd));
1103 
1104 	if (il->power_data.pci_pm)
1105 		cmd->flags |= IL_POWER_PCI_PM_MSK;
1106 
1107 	/* if no Power Save, we are done */
1108 	if (il->power_data.ps_disabled)
1109 		return;
1110 
1111 	cmd->flags = IL_POWER_DRIVER_ALLOW_SLEEP_MSK;
1112 	cmd->keep_alive_seconds = 0;
1113 	cmd->debug_flags = 0;
1114 	cmd->rx_data_timeout = cpu_to_le32(25 * 1024);
1115 	cmd->tx_data_timeout = cpu_to_le32(25 * 1024);
1116 	cmd->keep_alive_beacons = 0;
1117 
1118 	dtim_period = il->vif ? il->vif->bss_conf.dtim_period : 0;
1119 
1120 	if (dtim_period <= 2) {
1121 		memcpy(cmd->sleep_interval, interval[0], sizeof(interval[0]));
1122 		no_dtim = 2;
1123 	} else if (dtim_period <= 10) {
1124 		memcpy(cmd->sleep_interval, interval[1], sizeof(interval[1]));
1125 		no_dtim = 2;
1126 	} else {
1127 		memcpy(cmd->sleep_interval, interval[2], sizeof(interval[2]));
1128 		no_dtim = 0;
1129 	}
1130 
1131 	if (dtim_period == 0) {
1132 		dtim_period = 1;
1133 		skip = false;
1134 	} else {
1135 		skip = !!no_dtim;
1136 	}
1137 
1138 	if (skip) {
1139 		__le32 tmp = cmd->sleep_interval[IL_POWER_VEC_SIZE - 1];
1140 
1141 		max_sleep = le32_to_cpu(tmp);
1142 		if (max_sleep == 0xFF)
1143 			max_sleep = dtim_period * (skip + 1);
1144 		else if (max_sleep >  dtim_period)
1145 			max_sleep = (max_sleep / dtim_period) * dtim_period;
1146 		cmd->flags |= IL_POWER_SLEEP_OVER_DTIM_MSK;
1147 	} else {
1148 		max_sleep = dtim_period;
1149 		cmd->flags &= ~IL_POWER_SLEEP_OVER_DTIM_MSK;
1150 	}
1151 
1152 	for (i = 0; i < IL_POWER_VEC_SIZE; i++)
1153 		if (le32_to_cpu(cmd->sleep_interval[i]) > max_sleep)
1154 			cmd->sleep_interval[i] = cpu_to_le32(max_sleep);
1155 }
1156 
1157 static int
1158 il_set_power(struct il_priv *il, struct il_powertable_cmd *cmd)
1159 {
1160 	D_POWER("Sending power/sleep command\n");
1161 	D_POWER("Flags value = 0x%08X\n", cmd->flags);
1162 	D_POWER("Tx timeout = %u\n", le32_to_cpu(cmd->tx_data_timeout));
1163 	D_POWER("Rx timeout = %u\n", le32_to_cpu(cmd->rx_data_timeout));
1164 	D_POWER("Sleep interval vector = { %d , %d , %d , %d , %d }\n",
1165 		le32_to_cpu(cmd->sleep_interval[0]),
1166 		le32_to_cpu(cmd->sleep_interval[1]),
1167 		le32_to_cpu(cmd->sleep_interval[2]),
1168 		le32_to_cpu(cmd->sleep_interval[3]),
1169 		le32_to_cpu(cmd->sleep_interval[4]));
1170 
1171 	return il_send_cmd_pdu(il, C_POWER_TBL,
1172 			       sizeof(struct il_powertable_cmd), cmd);
1173 }
1174 
1175 static int
1176 il_power_set_mode(struct il_priv *il, struct il_powertable_cmd *cmd, bool force)
1177 {
1178 	int ret;
1179 	bool update_chains;
1180 
1181 	lockdep_assert_held(&il->mutex);
1182 
1183 	/* Don't update the RX chain when chain noise calibration is running */
1184 	update_chains = il->chain_noise_data.state == IL_CHAIN_NOISE_DONE ||
1185 	    il->chain_noise_data.state == IL_CHAIN_NOISE_ALIVE;
1186 
1187 	if (!memcmp(&il->power_data.sleep_cmd, cmd, sizeof(*cmd)) && !force)
1188 		return 0;
1189 
1190 	if (!il_is_ready_rf(il))
1191 		return -EIO;
1192 
1193 	/* scan complete use sleep_power_next, need to be updated */
1194 	memcpy(&il->power_data.sleep_cmd_next, cmd, sizeof(*cmd));
1195 	if (test_bit(S_SCANNING, &il->status) && !force) {
1196 		D_INFO("Defer power set mode while scanning\n");
1197 		return 0;
1198 	}
1199 
1200 	if (cmd->flags & IL_POWER_DRIVER_ALLOW_SLEEP_MSK)
1201 		set_bit(S_POWER_PMI, &il->status);
1202 
1203 	ret = il_set_power(il, cmd);
1204 	if (!ret) {
1205 		if (!(cmd->flags & IL_POWER_DRIVER_ALLOW_SLEEP_MSK))
1206 			clear_bit(S_POWER_PMI, &il->status);
1207 
1208 		if (il->ops->update_chain_flags && update_chains)
1209 			il->ops->update_chain_flags(il);
1210 		else if (il->ops->update_chain_flags)
1211 			D_POWER("Cannot update the power, chain noise "
1212 				"calibration running: %d\n",
1213 				il->chain_noise_data.state);
1214 
1215 		memcpy(&il->power_data.sleep_cmd, cmd, sizeof(*cmd));
1216 	} else
1217 		IL_ERR("set power fail, ret = %d", ret);
1218 
1219 	return ret;
1220 }
1221 
1222 int
1223 il_power_update_mode(struct il_priv *il, bool force)
1224 {
1225 	struct il_powertable_cmd cmd;
1226 
1227 	il_build_powertable_cmd(il, &cmd);
1228 
1229 	return il_power_set_mode(il, &cmd, force);
1230 }
1231 EXPORT_SYMBOL(il_power_update_mode);
1232 
1233 /* initialize to default */
1234 void
1235 il_power_initialize(struct il_priv *il)
1236 {
1237 	u16 lctl;
1238 
1239 	pcie_capability_read_word(il->pci_dev, PCI_EXP_LNKCTL, &lctl);
1240 	il->power_data.pci_pm = !(lctl & PCI_EXP_LNKCTL_ASPM_L0S);
1241 
1242 	il->power_data.debug_sleep_level_override = -1;
1243 
1244 	memset(&il->power_data.sleep_cmd, 0, sizeof(il->power_data.sleep_cmd));
1245 }
1246 EXPORT_SYMBOL(il_power_initialize);
1247 
1248 /* For active scan, listen ACTIVE_DWELL_TIME (msec) on each channel after
1249  * sending probe req.  This should be set long enough to hear probe responses
1250  * from more than one AP.  */
1251 #define IL_ACTIVE_DWELL_TIME_24    (30)	/* all times in msec */
1252 #define IL_ACTIVE_DWELL_TIME_52    (20)
1253 
1254 #define IL_ACTIVE_DWELL_FACTOR_24GHZ (3)
1255 #define IL_ACTIVE_DWELL_FACTOR_52GHZ (2)
1256 
1257 /* For passive scan, listen PASSIVE_DWELL_TIME (msec) on each channel.
1258  * Must be set longer than active dwell time.
1259  * For the most reliable scan, set > AP beacon interval (typically 100msec). */
1260 #define IL_PASSIVE_DWELL_TIME_24   (20)	/* all times in msec */
1261 #define IL_PASSIVE_DWELL_TIME_52   (10)
1262 #define IL_PASSIVE_DWELL_BASE      (100)
1263 #define IL_CHANNEL_TUNE_TIME       5
1264 
1265 static int
1266 il_send_scan_abort(struct il_priv *il)
1267 {
1268 	int ret;
1269 	struct il_rx_pkt *pkt;
1270 	struct il_host_cmd cmd = {
1271 		.id = C_SCAN_ABORT,
1272 		.flags = CMD_WANT_SKB,
1273 	};
1274 
1275 	/* Exit instantly with error when device is not ready
1276 	 * to receive scan abort command or it does not perform
1277 	 * hardware scan currently */
1278 	if (!test_bit(S_READY, &il->status) ||
1279 	    !test_bit(S_GEO_CONFIGURED, &il->status) ||
1280 	    !test_bit(S_SCAN_HW, &il->status) ||
1281 	    test_bit(S_FW_ERROR, &il->status) ||
1282 	    test_bit(S_EXIT_PENDING, &il->status))
1283 		return -EIO;
1284 
1285 	ret = il_send_cmd_sync(il, &cmd);
1286 	if (ret)
1287 		return ret;
1288 
1289 	pkt = (struct il_rx_pkt *)cmd.reply_page;
1290 	if (pkt->u.status != CAN_ABORT_STATUS) {
1291 		/* The scan abort will return 1 for success or
1292 		 * 2 for "failure".  A failure condition can be
1293 		 * due to simply not being in an active scan which
1294 		 * can occur if we send the scan abort before we
1295 		 * the microcode has notified us that a scan is
1296 		 * completed. */
1297 		D_SCAN("SCAN_ABORT ret %d.\n", pkt->u.status);
1298 		ret = -EIO;
1299 	}
1300 
1301 	il_free_pages(il, cmd.reply_page);
1302 	return ret;
1303 }
1304 
1305 static void
1306 il_complete_scan(struct il_priv *il, bool aborted)
1307 {
1308 	struct cfg80211_scan_info info = {
1309 		.aborted = aborted,
1310 	};
1311 
1312 	/* check if scan was requested from mac80211 */
1313 	if (il->scan_request) {
1314 		D_SCAN("Complete scan in mac80211\n");
1315 		ieee80211_scan_completed(il->hw, &info);
1316 	}
1317 
1318 	il->scan_vif = NULL;
1319 	il->scan_request = NULL;
1320 }
1321 
1322 void
1323 il_force_scan_end(struct il_priv *il)
1324 {
1325 	lockdep_assert_held(&il->mutex);
1326 
1327 	if (!test_bit(S_SCANNING, &il->status)) {
1328 		D_SCAN("Forcing scan end while not scanning\n");
1329 		return;
1330 	}
1331 
1332 	D_SCAN("Forcing scan end\n");
1333 	clear_bit(S_SCANNING, &il->status);
1334 	clear_bit(S_SCAN_HW, &il->status);
1335 	clear_bit(S_SCAN_ABORTING, &il->status);
1336 	il_complete_scan(il, true);
1337 }
1338 
1339 static void
1340 il_do_scan_abort(struct il_priv *il)
1341 {
1342 	int ret;
1343 
1344 	lockdep_assert_held(&il->mutex);
1345 
1346 	if (!test_bit(S_SCANNING, &il->status)) {
1347 		D_SCAN("Not performing scan to abort\n");
1348 		return;
1349 	}
1350 
1351 	if (test_and_set_bit(S_SCAN_ABORTING, &il->status)) {
1352 		D_SCAN("Scan abort in progress\n");
1353 		return;
1354 	}
1355 
1356 	ret = il_send_scan_abort(il);
1357 	if (ret) {
1358 		D_SCAN("Send scan abort failed %d\n", ret);
1359 		il_force_scan_end(il);
1360 	} else
1361 		D_SCAN("Successfully send scan abort\n");
1362 }
1363 
1364 /**
1365  * il_scan_cancel - Cancel any currently executing HW scan
1366  */
1367 int
1368 il_scan_cancel(struct il_priv *il)
1369 {
1370 	D_SCAN("Queuing abort scan\n");
1371 	queue_work(il->workqueue, &il->abort_scan);
1372 	return 0;
1373 }
1374 EXPORT_SYMBOL(il_scan_cancel);
1375 
1376 /**
1377  * il_scan_cancel_timeout - Cancel any currently executing HW scan
1378  * @ms: amount of time to wait (in milliseconds) for scan to abort
1379  *
1380  */
1381 int
1382 il_scan_cancel_timeout(struct il_priv *il, unsigned long ms)
1383 {
1384 	unsigned long timeout = jiffies + msecs_to_jiffies(ms);
1385 
1386 	lockdep_assert_held(&il->mutex);
1387 
1388 	D_SCAN("Scan cancel timeout\n");
1389 
1390 	il_do_scan_abort(il);
1391 
1392 	while (time_before_eq(jiffies, timeout)) {
1393 		if (!test_bit(S_SCAN_HW, &il->status))
1394 			break;
1395 		msleep(20);
1396 	}
1397 
1398 	return test_bit(S_SCAN_HW, &il->status);
1399 }
1400 EXPORT_SYMBOL(il_scan_cancel_timeout);
1401 
1402 /* Service response to C_SCAN (0x80) */
1403 static void
1404 il_hdl_scan(struct il_priv *il, struct il_rx_buf *rxb)
1405 {
1406 #ifdef CONFIG_IWLEGACY_DEBUG
1407 	struct il_rx_pkt *pkt = rxb_addr(rxb);
1408 	struct il_scanreq_notification *notif =
1409 	    (struct il_scanreq_notification *)pkt->u.raw;
1410 
1411 	D_SCAN("Scan request status = 0x%x\n", notif->status);
1412 #endif
1413 }
1414 
1415 /* Service N_SCAN_START (0x82) */
1416 static void
1417 il_hdl_scan_start(struct il_priv *il, struct il_rx_buf *rxb)
1418 {
1419 	struct il_rx_pkt *pkt = rxb_addr(rxb);
1420 	struct il_scanstart_notification *notif =
1421 	    (struct il_scanstart_notification *)pkt->u.raw;
1422 	il->scan_start_tsf = le32_to_cpu(notif->tsf_low);
1423 	D_SCAN("Scan start: " "%d [802.11%s] "
1424 	       "(TSF: 0x%08X:%08X) - %d (beacon timer %u)\n", notif->channel,
1425 	       notif->band ? "bg" : "a", le32_to_cpu(notif->tsf_high),
1426 	       le32_to_cpu(notif->tsf_low), notif->status, notif->beacon_timer);
1427 }
1428 
1429 /* Service N_SCAN_RESULTS (0x83) */
1430 static void
1431 il_hdl_scan_results(struct il_priv *il, struct il_rx_buf *rxb)
1432 {
1433 #ifdef CONFIG_IWLEGACY_DEBUG
1434 	struct il_rx_pkt *pkt = rxb_addr(rxb);
1435 	struct il_scanresults_notification *notif =
1436 	    (struct il_scanresults_notification *)pkt->u.raw;
1437 
1438 	D_SCAN("Scan ch.res: " "%d [802.11%s] " "(TSF: 0x%08X:%08X) - %d "
1439 	       "elapsed=%lu usec\n", notif->channel, notif->band ? "bg" : "a",
1440 	       le32_to_cpu(notif->tsf_high), le32_to_cpu(notif->tsf_low),
1441 	       le32_to_cpu(notif->stats[0]),
1442 	       le32_to_cpu(notif->tsf_low) - il->scan_start_tsf);
1443 #endif
1444 }
1445 
1446 /* Service N_SCAN_COMPLETE (0x84) */
1447 static void
1448 il_hdl_scan_complete(struct il_priv *il, struct il_rx_buf *rxb)
1449 {
1450 
1451 #ifdef CONFIG_IWLEGACY_DEBUG
1452 	struct il_rx_pkt *pkt = rxb_addr(rxb);
1453 	struct il_scancomplete_notification *scan_notif = (void *)pkt->u.raw;
1454 #endif
1455 
1456 	D_SCAN("Scan complete: %d channels (TSF 0x%08X:%08X) - %d\n",
1457 	       scan_notif->scanned_channels, scan_notif->tsf_low,
1458 	       scan_notif->tsf_high, scan_notif->status);
1459 
1460 	/* The HW is no longer scanning */
1461 	clear_bit(S_SCAN_HW, &il->status);
1462 
1463 	D_SCAN("Scan on %sGHz took %dms\n",
1464 	       (il->scan_band == NL80211_BAND_2GHZ) ? "2.4" : "5.2",
1465 	       jiffies_to_msecs(jiffies - il->scan_start));
1466 
1467 	queue_work(il->workqueue, &il->scan_completed);
1468 }
1469 
1470 void
1471 il_setup_rx_scan_handlers(struct il_priv *il)
1472 {
1473 	/* scan handlers */
1474 	il->handlers[C_SCAN] = il_hdl_scan;
1475 	il->handlers[N_SCAN_START] = il_hdl_scan_start;
1476 	il->handlers[N_SCAN_RESULTS] = il_hdl_scan_results;
1477 	il->handlers[N_SCAN_COMPLETE] = il_hdl_scan_complete;
1478 }
1479 EXPORT_SYMBOL(il_setup_rx_scan_handlers);
1480 
1481 u16
1482 il_get_active_dwell_time(struct il_priv *il, enum nl80211_band band,
1483 			 u8 n_probes)
1484 {
1485 	if (band == NL80211_BAND_5GHZ)
1486 		return IL_ACTIVE_DWELL_TIME_52 +
1487 		    IL_ACTIVE_DWELL_FACTOR_52GHZ * (n_probes + 1);
1488 	else
1489 		return IL_ACTIVE_DWELL_TIME_24 +
1490 		    IL_ACTIVE_DWELL_FACTOR_24GHZ * (n_probes + 1);
1491 }
1492 EXPORT_SYMBOL(il_get_active_dwell_time);
1493 
1494 u16
1495 il_get_passive_dwell_time(struct il_priv *il, enum nl80211_band band,
1496 			  struct ieee80211_vif *vif)
1497 {
1498 	u16 value;
1499 
1500 	u16 passive =
1501 	    (band ==
1502 	     NL80211_BAND_2GHZ) ? IL_PASSIVE_DWELL_BASE +
1503 	    IL_PASSIVE_DWELL_TIME_24 : IL_PASSIVE_DWELL_BASE +
1504 	    IL_PASSIVE_DWELL_TIME_52;
1505 
1506 	if (il_is_any_associated(il)) {
1507 		/*
1508 		 * If we're associated, we clamp the maximum passive
1509 		 * dwell time to be 98% of the smallest beacon interval
1510 		 * (minus 2 * channel tune time)
1511 		 */
1512 		value = il->vif ? il->vif->bss_conf.beacon_int : 0;
1513 		if (value > IL_PASSIVE_DWELL_BASE || !value)
1514 			value = IL_PASSIVE_DWELL_BASE;
1515 		value = (value * 98) / 100 - IL_CHANNEL_TUNE_TIME * 2;
1516 		passive = min(value, passive);
1517 	}
1518 
1519 	return passive;
1520 }
1521 EXPORT_SYMBOL(il_get_passive_dwell_time);
1522 
1523 void
1524 il_init_scan_params(struct il_priv *il)
1525 {
1526 	u8 ant_idx = fls(il->hw_params.valid_tx_ant) - 1;
1527 	if (!il->scan_tx_ant[NL80211_BAND_5GHZ])
1528 		il->scan_tx_ant[NL80211_BAND_5GHZ] = ant_idx;
1529 	if (!il->scan_tx_ant[NL80211_BAND_2GHZ])
1530 		il->scan_tx_ant[NL80211_BAND_2GHZ] = ant_idx;
1531 }
1532 EXPORT_SYMBOL(il_init_scan_params);
1533 
1534 static int
1535 il_scan_initiate(struct il_priv *il, struct ieee80211_vif *vif)
1536 {
1537 	int ret;
1538 
1539 	lockdep_assert_held(&il->mutex);
1540 
1541 	cancel_delayed_work(&il->scan_check);
1542 
1543 	if (!il_is_ready_rf(il)) {
1544 		IL_WARN("Request scan called when driver not ready.\n");
1545 		return -EIO;
1546 	}
1547 
1548 	if (test_bit(S_SCAN_HW, &il->status)) {
1549 		D_SCAN("Multiple concurrent scan requests in parallel.\n");
1550 		return -EBUSY;
1551 	}
1552 
1553 	if (test_bit(S_SCAN_ABORTING, &il->status)) {
1554 		D_SCAN("Scan request while abort pending.\n");
1555 		return -EBUSY;
1556 	}
1557 
1558 	D_SCAN("Starting scan...\n");
1559 
1560 	set_bit(S_SCANNING, &il->status);
1561 	il->scan_start = jiffies;
1562 
1563 	ret = il->ops->request_scan(il, vif);
1564 	if (ret) {
1565 		clear_bit(S_SCANNING, &il->status);
1566 		return ret;
1567 	}
1568 
1569 	queue_delayed_work(il->workqueue, &il->scan_check,
1570 			   IL_SCAN_CHECK_WATCHDOG);
1571 
1572 	return 0;
1573 }
1574 
1575 int
1576 il_mac_hw_scan(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1577 	       struct ieee80211_scan_request *hw_req)
1578 {
1579 	struct cfg80211_scan_request *req = &hw_req->req;
1580 	struct il_priv *il = hw->priv;
1581 	int ret;
1582 
1583 	if (req->n_channels == 0) {
1584 		IL_ERR("Can not scan on no channels.\n");
1585 		return -EINVAL;
1586 	}
1587 
1588 	mutex_lock(&il->mutex);
1589 	D_MAC80211("enter\n");
1590 
1591 	if (test_bit(S_SCANNING, &il->status)) {
1592 		D_SCAN("Scan already in progress.\n");
1593 		ret = -EAGAIN;
1594 		goto out_unlock;
1595 	}
1596 
1597 	/* mac80211 will only ask for one band at a time */
1598 	il->scan_request = req;
1599 	il->scan_vif = vif;
1600 	il->scan_band = req->channels[0]->band;
1601 
1602 	ret = il_scan_initiate(il, vif);
1603 
1604 out_unlock:
1605 	D_MAC80211("leave ret %d\n", ret);
1606 	mutex_unlock(&il->mutex);
1607 
1608 	return ret;
1609 }
1610 EXPORT_SYMBOL(il_mac_hw_scan);
1611 
1612 static void
1613 il_bg_scan_check(struct work_struct *data)
1614 {
1615 	struct il_priv *il =
1616 	    container_of(data, struct il_priv, scan_check.work);
1617 
1618 	D_SCAN("Scan check work\n");
1619 
1620 	/* Since we are here firmware does not finish scan and
1621 	 * most likely is in bad shape, so we don't bother to
1622 	 * send abort command, just force scan complete to mac80211 */
1623 	mutex_lock(&il->mutex);
1624 	il_force_scan_end(il);
1625 	mutex_unlock(&il->mutex);
1626 }
1627 
1628 /**
1629  * il_fill_probe_req - fill in all required fields and IE for probe request
1630  */
1631 
1632 u16
1633 il_fill_probe_req(struct il_priv *il, struct ieee80211_mgmt *frame,
1634 		  const u8 *ta, const u8 *ies, int ie_len, int left)
1635 {
1636 	int len = 0;
1637 	u8 *pos = NULL;
1638 
1639 	/* Make sure there is enough space for the probe request,
1640 	 * two mandatory IEs and the data */
1641 	left -= 24;
1642 	if (left < 0)
1643 		return 0;
1644 
1645 	frame->frame_control = cpu_to_le16(IEEE80211_STYPE_PROBE_REQ);
1646 	eth_broadcast_addr(frame->da);
1647 	memcpy(frame->sa, ta, ETH_ALEN);
1648 	eth_broadcast_addr(frame->bssid);
1649 	frame->seq_ctrl = 0;
1650 
1651 	len += 24;
1652 
1653 	/* ...next IE... */
1654 	pos = &frame->u.probe_req.variable[0];
1655 
1656 	/* fill in our indirect SSID IE */
1657 	left -= 2;
1658 	if (left < 0)
1659 		return 0;
1660 	*pos++ = WLAN_EID_SSID;
1661 	*pos++ = 0;
1662 
1663 	len += 2;
1664 
1665 	if (WARN_ON(left < ie_len))
1666 		return len;
1667 
1668 	if (ies && ie_len) {
1669 		memcpy(pos, ies, ie_len);
1670 		len += ie_len;
1671 	}
1672 
1673 	return (u16) len;
1674 }
1675 EXPORT_SYMBOL(il_fill_probe_req);
1676 
1677 static void
1678 il_bg_abort_scan(struct work_struct *work)
1679 {
1680 	struct il_priv *il = container_of(work, struct il_priv, abort_scan);
1681 
1682 	D_SCAN("Abort scan work\n");
1683 
1684 	/* We keep scan_check work queued in case when firmware will not
1685 	 * report back scan completed notification */
1686 	mutex_lock(&il->mutex);
1687 	il_scan_cancel_timeout(il, 200);
1688 	mutex_unlock(&il->mutex);
1689 }
1690 
1691 static void
1692 il_bg_scan_completed(struct work_struct *work)
1693 {
1694 	struct il_priv *il = container_of(work, struct il_priv, scan_completed);
1695 	bool aborted;
1696 
1697 	D_SCAN("Completed scan.\n");
1698 
1699 	cancel_delayed_work(&il->scan_check);
1700 
1701 	mutex_lock(&il->mutex);
1702 
1703 	aborted = test_and_clear_bit(S_SCAN_ABORTING, &il->status);
1704 	if (aborted)
1705 		D_SCAN("Aborted scan completed.\n");
1706 
1707 	if (!test_and_clear_bit(S_SCANNING, &il->status)) {
1708 		D_SCAN("Scan already completed.\n");
1709 		goto out_settings;
1710 	}
1711 
1712 	il_complete_scan(il, aborted);
1713 
1714 out_settings:
1715 	/* Can we still talk to firmware ? */
1716 	if (!il_is_ready_rf(il))
1717 		goto out;
1718 
1719 	/*
1720 	 * We do not commit power settings while scan is pending,
1721 	 * do it now if the settings changed.
1722 	 */
1723 	il_power_set_mode(il, &il->power_data.sleep_cmd_next, false);
1724 	il_set_tx_power(il, il->tx_power_next, false);
1725 
1726 	il->ops->post_scan(il);
1727 
1728 out:
1729 	mutex_unlock(&il->mutex);
1730 }
1731 
1732 void
1733 il_setup_scan_deferred_work(struct il_priv *il)
1734 {
1735 	INIT_WORK(&il->scan_completed, il_bg_scan_completed);
1736 	INIT_WORK(&il->abort_scan, il_bg_abort_scan);
1737 	INIT_DELAYED_WORK(&il->scan_check, il_bg_scan_check);
1738 }
1739 EXPORT_SYMBOL(il_setup_scan_deferred_work);
1740 
1741 void
1742 il_cancel_scan_deferred_work(struct il_priv *il)
1743 {
1744 	cancel_work_sync(&il->abort_scan);
1745 	cancel_work_sync(&il->scan_completed);
1746 
1747 	if (cancel_delayed_work_sync(&il->scan_check)) {
1748 		mutex_lock(&il->mutex);
1749 		il_force_scan_end(il);
1750 		mutex_unlock(&il->mutex);
1751 	}
1752 }
1753 EXPORT_SYMBOL(il_cancel_scan_deferred_work);
1754 
1755 /* il->sta_lock must be held */
1756 static void
1757 il_sta_ucode_activate(struct il_priv *il, u8 sta_id)
1758 {
1759 
1760 	if (!(il->stations[sta_id].used & IL_STA_DRIVER_ACTIVE))
1761 		IL_ERR("ACTIVATE a non DRIVER active station id %u addr %pM\n",
1762 		       sta_id, il->stations[sta_id].sta.sta.addr);
1763 
1764 	if (il->stations[sta_id].used & IL_STA_UCODE_ACTIVE) {
1765 		D_ASSOC("STA id %u addr %pM already present"
1766 			" in uCode (according to driver)\n", sta_id,
1767 			il->stations[sta_id].sta.sta.addr);
1768 	} else {
1769 		il->stations[sta_id].used |= IL_STA_UCODE_ACTIVE;
1770 		D_ASSOC("Added STA id %u addr %pM to uCode\n", sta_id,
1771 			il->stations[sta_id].sta.sta.addr);
1772 	}
1773 }
1774 
1775 static int
1776 il_process_add_sta_resp(struct il_priv *il, struct il_addsta_cmd *addsta,
1777 			struct il_rx_pkt *pkt, bool sync)
1778 {
1779 	u8 sta_id = addsta->sta.sta_id;
1780 	unsigned long flags;
1781 	int ret = -EIO;
1782 
1783 	if (pkt->hdr.flags & IL_CMD_FAILED_MSK) {
1784 		IL_ERR("Bad return from C_ADD_STA (0x%08X)\n", pkt->hdr.flags);
1785 		return ret;
1786 	}
1787 
1788 	D_INFO("Processing response for adding station %u\n", sta_id);
1789 
1790 	spin_lock_irqsave(&il->sta_lock, flags);
1791 
1792 	switch (pkt->u.add_sta.status) {
1793 	case ADD_STA_SUCCESS_MSK:
1794 		D_INFO("C_ADD_STA PASSED\n");
1795 		il_sta_ucode_activate(il, sta_id);
1796 		ret = 0;
1797 		break;
1798 	case ADD_STA_NO_ROOM_IN_TBL:
1799 		IL_ERR("Adding station %d failed, no room in table.\n", sta_id);
1800 		break;
1801 	case ADD_STA_NO_BLOCK_ACK_RESOURCE:
1802 		IL_ERR("Adding station %d failed, no block ack resource.\n",
1803 		       sta_id);
1804 		break;
1805 	case ADD_STA_MODIFY_NON_EXIST_STA:
1806 		IL_ERR("Attempting to modify non-existing station %d\n",
1807 		       sta_id);
1808 		break;
1809 	default:
1810 		D_ASSOC("Received C_ADD_STA:(0x%08X)\n", pkt->u.add_sta.status);
1811 		break;
1812 	}
1813 
1814 	D_INFO("%s station id %u addr %pM\n",
1815 	       il->stations[sta_id].sta.mode ==
1816 	       STA_CONTROL_MODIFY_MSK ? "Modified" : "Added", sta_id,
1817 	       il->stations[sta_id].sta.sta.addr);
1818 
1819 	/*
1820 	 * XXX: The MAC address in the command buffer is often changed from
1821 	 * the original sent to the device. That is, the MAC address
1822 	 * written to the command buffer often is not the same MAC address
1823 	 * read from the command buffer when the command returns. This
1824 	 * issue has not yet been resolved and this debugging is left to
1825 	 * observe the problem.
1826 	 */
1827 	D_INFO("%s station according to cmd buffer %pM\n",
1828 	       il->stations[sta_id].sta.mode ==
1829 	       STA_CONTROL_MODIFY_MSK ? "Modified" : "Added", addsta->sta.addr);
1830 	spin_unlock_irqrestore(&il->sta_lock, flags);
1831 
1832 	return ret;
1833 }
1834 
1835 static void
1836 il_add_sta_callback(struct il_priv *il, struct il_device_cmd *cmd,
1837 		    struct il_rx_pkt *pkt)
1838 {
1839 	struct il_addsta_cmd *addsta = (struct il_addsta_cmd *)cmd->cmd.payload;
1840 
1841 	il_process_add_sta_resp(il, addsta, pkt, false);
1842 
1843 }
1844 
1845 int
1846 il_send_add_sta(struct il_priv *il, struct il_addsta_cmd *sta, u8 flags)
1847 {
1848 	struct il_rx_pkt *pkt = NULL;
1849 	int ret = 0;
1850 	u8 data[sizeof(*sta)];
1851 	struct il_host_cmd cmd = {
1852 		.id = C_ADD_STA,
1853 		.flags = flags,
1854 		.data = data,
1855 	};
1856 	u8 sta_id __maybe_unused = sta->sta.sta_id;
1857 
1858 	D_INFO("Adding sta %u (%pM) %ssynchronously\n", sta_id, sta->sta.addr,
1859 	       flags & CMD_ASYNC ? "a" : "");
1860 
1861 	if (flags & CMD_ASYNC)
1862 		cmd.callback = il_add_sta_callback;
1863 	else {
1864 		cmd.flags |= CMD_WANT_SKB;
1865 		might_sleep();
1866 	}
1867 
1868 	cmd.len = il->ops->build_addsta_hcmd(sta, data);
1869 	ret = il_send_cmd(il, &cmd);
1870 	if (ret)
1871 		return ret;
1872 	if (flags & CMD_ASYNC)
1873 		return 0;
1874 
1875 	pkt = (struct il_rx_pkt *)cmd.reply_page;
1876 	ret = il_process_add_sta_resp(il, sta, pkt, true);
1877 
1878 	il_free_pages(il, cmd.reply_page);
1879 
1880 	return ret;
1881 }
1882 EXPORT_SYMBOL(il_send_add_sta);
1883 
1884 static void
1885 il_set_ht_add_station(struct il_priv *il, u8 idx, struct ieee80211_sta *sta)
1886 {
1887 	struct ieee80211_sta_ht_cap *sta_ht_inf = &sta->ht_cap;
1888 	__le32 sta_flags;
1889 
1890 	if (!sta || !sta_ht_inf->ht_supported)
1891 		goto done;
1892 
1893 	D_ASSOC("spatial multiplexing power save mode: %s\n",
1894 		(sta->smps_mode == IEEE80211_SMPS_STATIC) ? "static" :
1895 		(sta->smps_mode == IEEE80211_SMPS_DYNAMIC) ? "dynamic" :
1896 		"disabled");
1897 
1898 	sta_flags = il->stations[idx].sta.station_flags;
1899 
1900 	sta_flags &= ~(STA_FLG_RTS_MIMO_PROT_MSK | STA_FLG_MIMO_DIS_MSK);
1901 
1902 	switch (sta->smps_mode) {
1903 	case IEEE80211_SMPS_STATIC:
1904 		sta_flags |= STA_FLG_MIMO_DIS_MSK;
1905 		break;
1906 	case IEEE80211_SMPS_DYNAMIC:
1907 		sta_flags |= STA_FLG_RTS_MIMO_PROT_MSK;
1908 		break;
1909 	case IEEE80211_SMPS_OFF:
1910 		break;
1911 	default:
1912 		IL_WARN("Invalid MIMO PS mode %d\n", sta->smps_mode);
1913 		break;
1914 	}
1915 
1916 	sta_flags |=
1917 	    cpu_to_le32((u32) sta_ht_inf->
1918 			ampdu_factor << STA_FLG_MAX_AGG_SIZE_POS);
1919 
1920 	sta_flags |=
1921 	    cpu_to_le32((u32) sta_ht_inf->
1922 			ampdu_density << STA_FLG_AGG_MPDU_DENSITY_POS);
1923 
1924 	if (il_is_ht40_tx_allowed(il, &sta->ht_cap))
1925 		sta_flags |= STA_FLG_HT40_EN_MSK;
1926 	else
1927 		sta_flags &= ~STA_FLG_HT40_EN_MSK;
1928 
1929 	il->stations[idx].sta.station_flags = sta_flags;
1930 done:
1931 	return;
1932 }
1933 
1934 /**
1935  * il_prep_station - Prepare station information for addition
1936  *
1937  * should be called with sta_lock held
1938  */
1939 u8
1940 il_prep_station(struct il_priv *il, const u8 *addr, bool is_ap,
1941 		struct ieee80211_sta *sta)
1942 {
1943 	struct il_station_entry *station;
1944 	int i;
1945 	u8 sta_id = IL_INVALID_STATION;
1946 	u16 rate;
1947 
1948 	if (is_ap)
1949 		sta_id = IL_AP_ID;
1950 	else if (is_broadcast_ether_addr(addr))
1951 		sta_id = il->hw_params.bcast_id;
1952 	else
1953 		for (i = IL_STA_ID; i < il->hw_params.max_stations; i++) {
1954 			if (ether_addr_equal(il->stations[i].sta.sta.addr,
1955 					     addr)) {
1956 				sta_id = i;
1957 				break;
1958 			}
1959 
1960 			if (!il->stations[i].used &&
1961 			    sta_id == IL_INVALID_STATION)
1962 				sta_id = i;
1963 		}
1964 
1965 	/*
1966 	 * These two conditions have the same outcome, but keep them
1967 	 * separate
1968 	 */
1969 	if (unlikely(sta_id == IL_INVALID_STATION))
1970 		return sta_id;
1971 
1972 	/*
1973 	 * uCode is not able to deal with multiple requests to add a
1974 	 * station. Keep track if one is in progress so that we do not send
1975 	 * another.
1976 	 */
1977 	if (il->stations[sta_id].used & IL_STA_UCODE_INPROGRESS) {
1978 		D_INFO("STA %d already in process of being added.\n", sta_id);
1979 		return sta_id;
1980 	}
1981 
1982 	if ((il->stations[sta_id].used & IL_STA_DRIVER_ACTIVE) &&
1983 	    (il->stations[sta_id].used & IL_STA_UCODE_ACTIVE) &&
1984 	    ether_addr_equal(il->stations[sta_id].sta.sta.addr, addr)) {
1985 		D_ASSOC("STA %d (%pM) already added, not adding again.\n",
1986 			sta_id, addr);
1987 		return sta_id;
1988 	}
1989 
1990 	station = &il->stations[sta_id];
1991 	station->used = IL_STA_DRIVER_ACTIVE;
1992 	D_ASSOC("Add STA to driver ID %d: %pM\n", sta_id, addr);
1993 	il->num_stations++;
1994 
1995 	/* Set up the C_ADD_STA command to send to device */
1996 	memset(&station->sta, 0, sizeof(struct il_addsta_cmd));
1997 	memcpy(station->sta.sta.addr, addr, ETH_ALEN);
1998 	station->sta.mode = 0;
1999 	station->sta.sta.sta_id = sta_id;
2000 	station->sta.station_flags = 0;
2001 
2002 	/*
2003 	 * OK to call unconditionally, since local stations (IBSS BSSID
2004 	 * STA and broadcast STA) pass in a NULL sta, and mac80211
2005 	 * doesn't allow HT IBSS.
2006 	 */
2007 	il_set_ht_add_station(il, sta_id, sta);
2008 
2009 	/* 3945 only */
2010 	rate = (il->band == NL80211_BAND_5GHZ) ? RATE_6M_PLCP : RATE_1M_PLCP;
2011 	/* Turn on both antennas for the station... */
2012 	station->sta.rate_n_flags = cpu_to_le16(rate | RATE_MCS_ANT_AB_MSK);
2013 
2014 	return sta_id;
2015 
2016 }
2017 EXPORT_SYMBOL_GPL(il_prep_station);
2018 
2019 #define STA_WAIT_TIMEOUT (HZ/2)
2020 
2021 /**
2022  * il_add_station_common -
2023  */
2024 int
2025 il_add_station_common(struct il_priv *il, const u8 *addr, bool is_ap,
2026 		      struct ieee80211_sta *sta, u8 *sta_id_r)
2027 {
2028 	unsigned long flags_spin;
2029 	int ret = 0;
2030 	u8 sta_id;
2031 	struct il_addsta_cmd sta_cmd;
2032 
2033 	*sta_id_r = 0;
2034 	spin_lock_irqsave(&il->sta_lock, flags_spin);
2035 	sta_id = il_prep_station(il, addr, is_ap, sta);
2036 	if (sta_id == IL_INVALID_STATION) {
2037 		IL_ERR("Unable to prepare station %pM for addition\n", addr);
2038 		spin_unlock_irqrestore(&il->sta_lock, flags_spin);
2039 		return -EINVAL;
2040 	}
2041 
2042 	/*
2043 	 * uCode is not able to deal with multiple requests to add a
2044 	 * station. Keep track if one is in progress so that we do not send
2045 	 * another.
2046 	 */
2047 	if (il->stations[sta_id].used & IL_STA_UCODE_INPROGRESS) {
2048 		D_INFO("STA %d already in process of being added.\n", sta_id);
2049 		spin_unlock_irqrestore(&il->sta_lock, flags_spin);
2050 		return -EEXIST;
2051 	}
2052 
2053 	if ((il->stations[sta_id].used & IL_STA_DRIVER_ACTIVE) &&
2054 	    (il->stations[sta_id].used & IL_STA_UCODE_ACTIVE)) {
2055 		D_ASSOC("STA %d (%pM) already added, not adding again.\n",
2056 			sta_id, addr);
2057 		spin_unlock_irqrestore(&il->sta_lock, flags_spin);
2058 		return -EEXIST;
2059 	}
2060 
2061 	il->stations[sta_id].used |= IL_STA_UCODE_INPROGRESS;
2062 	memcpy(&sta_cmd, &il->stations[sta_id].sta,
2063 	       sizeof(struct il_addsta_cmd));
2064 	spin_unlock_irqrestore(&il->sta_lock, flags_spin);
2065 
2066 	/* Add station to device's station table */
2067 	ret = il_send_add_sta(il, &sta_cmd, CMD_SYNC);
2068 	if (ret) {
2069 		spin_lock_irqsave(&il->sta_lock, flags_spin);
2070 		IL_ERR("Adding station %pM failed.\n",
2071 		       il->stations[sta_id].sta.sta.addr);
2072 		il->stations[sta_id].used &= ~IL_STA_DRIVER_ACTIVE;
2073 		il->stations[sta_id].used &= ~IL_STA_UCODE_INPROGRESS;
2074 		spin_unlock_irqrestore(&il->sta_lock, flags_spin);
2075 	}
2076 	*sta_id_r = sta_id;
2077 	return ret;
2078 }
2079 EXPORT_SYMBOL(il_add_station_common);
2080 
2081 /**
2082  * il_sta_ucode_deactivate - deactivate ucode status for a station
2083  *
2084  * il->sta_lock must be held
2085  */
2086 static void
2087 il_sta_ucode_deactivate(struct il_priv *il, u8 sta_id)
2088 {
2089 	/* Ucode must be active and driver must be non active */
2090 	if ((il->stations[sta_id].
2091 	     used & (IL_STA_UCODE_ACTIVE | IL_STA_DRIVER_ACTIVE)) !=
2092 	    IL_STA_UCODE_ACTIVE)
2093 		IL_ERR("removed non active STA %u\n", sta_id);
2094 
2095 	il->stations[sta_id].used &= ~IL_STA_UCODE_ACTIVE;
2096 
2097 	memset(&il->stations[sta_id], 0, sizeof(struct il_station_entry));
2098 	D_ASSOC("Removed STA %u\n", sta_id);
2099 }
2100 
2101 static int
2102 il_send_remove_station(struct il_priv *il, const u8 * addr, int sta_id,
2103 		       bool temporary)
2104 {
2105 	struct il_rx_pkt *pkt;
2106 	int ret;
2107 
2108 	unsigned long flags_spin;
2109 	struct il_rem_sta_cmd rm_sta_cmd;
2110 
2111 	struct il_host_cmd cmd = {
2112 		.id = C_REM_STA,
2113 		.len = sizeof(struct il_rem_sta_cmd),
2114 		.flags = CMD_SYNC,
2115 		.data = &rm_sta_cmd,
2116 	};
2117 
2118 	memset(&rm_sta_cmd, 0, sizeof(rm_sta_cmd));
2119 	rm_sta_cmd.num_sta = 1;
2120 	memcpy(&rm_sta_cmd.addr, addr, ETH_ALEN);
2121 
2122 	cmd.flags |= CMD_WANT_SKB;
2123 
2124 	ret = il_send_cmd(il, &cmd);
2125 
2126 	if (ret)
2127 		return ret;
2128 
2129 	pkt = (struct il_rx_pkt *)cmd.reply_page;
2130 	if (pkt->hdr.flags & IL_CMD_FAILED_MSK) {
2131 		IL_ERR("Bad return from C_REM_STA (0x%08X)\n", pkt->hdr.flags);
2132 		ret = -EIO;
2133 	}
2134 
2135 	if (!ret) {
2136 		switch (pkt->u.rem_sta.status) {
2137 		case REM_STA_SUCCESS_MSK:
2138 			if (!temporary) {
2139 				spin_lock_irqsave(&il->sta_lock, flags_spin);
2140 				il_sta_ucode_deactivate(il, sta_id);
2141 				spin_unlock_irqrestore(&il->sta_lock,
2142 						       flags_spin);
2143 			}
2144 			D_ASSOC("C_REM_STA PASSED\n");
2145 			break;
2146 		default:
2147 			ret = -EIO;
2148 			IL_ERR("C_REM_STA failed\n");
2149 			break;
2150 		}
2151 	}
2152 	il_free_pages(il, cmd.reply_page);
2153 
2154 	return ret;
2155 }
2156 
2157 /**
2158  * il_remove_station - Remove driver's knowledge of station.
2159  */
2160 int
2161 il_remove_station(struct il_priv *il, const u8 sta_id, const u8 * addr)
2162 {
2163 	unsigned long flags;
2164 
2165 	if (!il_is_ready(il)) {
2166 		D_INFO("Unable to remove station %pM, device not ready.\n",
2167 		       addr);
2168 		/*
2169 		 * It is typical for stations to be removed when we are
2170 		 * going down. Return success since device will be down
2171 		 * soon anyway
2172 		 */
2173 		return 0;
2174 	}
2175 
2176 	D_ASSOC("Removing STA from driver:%d  %pM\n", sta_id, addr);
2177 
2178 	if (WARN_ON(sta_id == IL_INVALID_STATION))
2179 		return -EINVAL;
2180 
2181 	spin_lock_irqsave(&il->sta_lock, flags);
2182 
2183 	if (!(il->stations[sta_id].used & IL_STA_DRIVER_ACTIVE)) {
2184 		D_INFO("Removing %pM but non DRIVER active\n", addr);
2185 		goto out_err;
2186 	}
2187 
2188 	if (!(il->stations[sta_id].used & IL_STA_UCODE_ACTIVE)) {
2189 		D_INFO("Removing %pM but non UCODE active\n", addr);
2190 		goto out_err;
2191 	}
2192 
2193 	if (il->stations[sta_id].used & IL_STA_LOCAL) {
2194 		kfree(il->stations[sta_id].lq);
2195 		il->stations[sta_id].lq = NULL;
2196 	}
2197 
2198 	il->stations[sta_id].used &= ~IL_STA_DRIVER_ACTIVE;
2199 
2200 	il->num_stations--;
2201 
2202 	BUG_ON(il->num_stations < 0);
2203 
2204 	spin_unlock_irqrestore(&il->sta_lock, flags);
2205 
2206 	return il_send_remove_station(il, addr, sta_id, false);
2207 out_err:
2208 	spin_unlock_irqrestore(&il->sta_lock, flags);
2209 	return -EINVAL;
2210 }
2211 EXPORT_SYMBOL_GPL(il_remove_station);
2212 
2213 /**
2214  * il_clear_ucode_stations - clear ucode station table bits
2215  *
2216  * This function clears all the bits in the driver indicating
2217  * which stations are active in the ucode. Call when something
2218  * other than explicit station management would cause this in
2219  * the ucode, e.g. unassociated RXON.
2220  */
2221 void
2222 il_clear_ucode_stations(struct il_priv *il)
2223 {
2224 	int i;
2225 	unsigned long flags_spin;
2226 	bool cleared = false;
2227 
2228 	D_INFO("Clearing ucode stations in driver\n");
2229 
2230 	spin_lock_irqsave(&il->sta_lock, flags_spin);
2231 	for (i = 0; i < il->hw_params.max_stations; i++) {
2232 		if (il->stations[i].used & IL_STA_UCODE_ACTIVE) {
2233 			D_INFO("Clearing ucode active for station %d\n", i);
2234 			il->stations[i].used &= ~IL_STA_UCODE_ACTIVE;
2235 			cleared = true;
2236 		}
2237 	}
2238 	spin_unlock_irqrestore(&il->sta_lock, flags_spin);
2239 
2240 	if (!cleared)
2241 		D_INFO("No active stations found to be cleared\n");
2242 }
2243 EXPORT_SYMBOL(il_clear_ucode_stations);
2244 
2245 /**
2246  * il_restore_stations() - Restore driver known stations to device
2247  *
2248  * All stations considered active by driver, but not present in ucode, is
2249  * restored.
2250  *
2251  * Function sleeps.
2252  */
2253 void
2254 il_restore_stations(struct il_priv *il)
2255 {
2256 	struct il_addsta_cmd sta_cmd;
2257 	struct il_link_quality_cmd lq;
2258 	unsigned long flags_spin;
2259 	int i;
2260 	bool found = false;
2261 	int ret;
2262 	bool send_lq;
2263 
2264 	if (!il_is_ready(il)) {
2265 		D_INFO("Not ready yet, not restoring any stations.\n");
2266 		return;
2267 	}
2268 
2269 	D_ASSOC("Restoring all known stations ... start.\n");
2270 	spin_lock_irqsave(&il->sta_lock, flags_spin);
2271 	for (i = 0; i < il->hw_params.max_stations; i++) {
2272 		if ((il->stations[i].used & IL_STA_DRIVER_ACTIVE) &&
2273 		    !(il->stations[i].used & IL_STA_UCODE_ACTIVE)) {
2274 			D_ASSOC("Restoring sta %pM\n",
2275 				il->stations[i].sta.sta.addr);
2276 			il->stations[i].sta.mode = 0;
2277 			il->stations[i].used |= IL_STA_UCODE_INPROGRESS;
2278 			found = true;
2279 		}
2280 	}
2281 
2282 	for (i = 0; i < il->hw_params.max_stations; i++) {
2283 		if ((il->stations[i].used & IL_STA_UCODE_INPROGRESS)) {
2284 			memcpy(&sta_cmd, &il->stations[i].sta,
2285 			       sizeof(struct il_addsta_cmd));
2286 			send_lq = false;
2287 			if (il->stations[i].lq) {
2288 				memcpy(&lq, il->stations[i].lq,
2289 				       sizeof(struct il_link_quality_cmd));
2290 				send_lq = true;
2291 			}
2292 			spin_unlock_irqrestore(&il->sta_lock, flags_spin);
2293 			ret = il_send_add_sta(il, &sta_cmd, CMD_SYNC);
2294 			if (ret) {
2295 				spin_lock_irqsave(&il->sta_lock, flags_spin);
2296 				IL_ERR("Adding station %pM failed.\n",
2297 				       il->stations[i].sta.sta.addr);
2298 				il->stations[i].used &= ~IL_STA_DRIVER_ACTIVE;
2299 				il->stations[i].used &=
2300 				    ~IL_STA_UCODE_INPROGRESS;
2301 				spin_unlock_irqrestore(&il->sta_lock,
2302 						       flags_spin);
2303 			}
2304 			/*
2305 			 * Rate scaling has already been initialized, send
2306 			 * current LQ command
2307 			 */
2308 			if (send_lq)
2309 				il_send_lq_cmd(il, &lq, CMD_SYNC, true);
2310 			spin_lock_irqsave(&il->sta_lock, flags_spin);
2311 			il->stations[i].used &= ~IL_STA_UCODE_INPROGRESS;
2312 		}
2313 	}
2314 
2315 	spin_unlock_irqrestore(&il->sta_lock, flags_spin);
2316 	if (!found)
2317 		D_INFO("Restoring all known stations"
2318 		       " .... no stations to be restored.\n");
2319 	else
2320 		D_INFO("Restoring all known stations" " .... complete.\n");
2321 }
2322 EXPORT_SYMBOL(il_restore_stations);
2323 
2324 int
2325 il_get_free_ucode_key_idx(struct il_priv *il)
2326 {
2327 	int i;
2328 
2329 	for (i = 0; i < il->sta_key_max_num; i++)
2330 		if (!test_and_set_bit(i, &il->ucode_key_table))
2331 			return i;
2332 
2333 	return WEP_INVALID_OFFSET;
2334 }
2335 EXPORT_SYMBOL(il_get_free_ucode_key_idx);
2336 
2337 void
2338 il_dealloc_bcast_stations(struct il_priv *il)
2339 {
2340 	unsigned long flags;
2341 	int i;
2342 
2343 	spin_lock_irqsave(&il->sta_lock, flags);
2344 	for (i = 0; i < il->hw_params.max_stations; i++) {
2345 		if (!(il->stations[i].used & IL_STA_BCAST))
2346 			continue;
2347 
2348 		il->stations[i].used &= ~IL_STA_UCODE_ACTIVE;
2349 		il->num_stations--;
2350 		BUG_ON(il->num_stations < 0);
2351 		kfree(il->stations[i].lq);
2352 		il->stations[i].lq = NULL;
2353 	}
2354 	spin_unlock_irqrestore(&il->sta_lock, flags);
2355 }
2356 EXPORT_SYMBOL_GPL(il_dealloc_bcast_stations);
2357 
2358 #ifdef CONFIG_IWLEGACY_DEBUG
2359 static void
2360 il_dump_lq_cmd(struct il_priv *il, struct il_link_quality_cmd *lq)
2361 {
2362 	int i;
2363 	D_RATE("lq station id 0x%x\n", lq->sta_id);
2364 	D_RATE("lq ant 0x%X 0x%X\n", lq->general_params.single_stream_ant_msk,
2365 	       lq->general_params.dual_stream_ant_msk);
2366 
2367 	for (i = 0; i < LINK_QUAL_MAX_RETRY_NUM; i++)
2368 		D_RATE("lq idx %d 0x%X\n", i, lq->rs_table[i].rate_n_flags);
2369 }
2370 #else
2371 static inline void
2372 il_dump_lq_cmd(struct il_priv *il, struct il_link_quality_cmd *lq)
2373 {
2374 }
2375 #endif
2376 
2377 /**
2378  * il_is_lq_table_valid() - Test one aspect of LQ cmd for validity
2379  *
2380  * It sometimes happens when a HT rate has been in use and we
2381  * loose connectivity with AP then mac80211 will first tell us that the
2382  * current channel is not HT anymore before removing the station. In such a
2383  * scenario the RXON flags will be updated to indicate we are not
2384  * communicating HT anymore, but the LQ command may still contain HT rates.
2385  * Test for this to prevent driver from sending LQ command between the time
2386  * RXON flags are updated and when LQ command is updated.
2387  */
2388 static bool
2389 il_is_lq_table_valid(struct il_priv *il, struct il_link_quality_cmd *lq)
2390 {
2391 	int i;
2392 
2393 	if (il->ht.enabled)
2394 		return true;
2395 
2396 	D_INFO("Channel %u is not an HT channel\n", il->active.channel);
2397 	for (i = 0; i < LINK_QUAL_MAX_RETRY_NUM; i++) {
2398 		if (le32_to_cpu(lq->rs_table[i].rate_n_flags) & RATE_MCS_HT_MSK) {
2399 			D_INFO("idx %d of LQ expects HT channel\n", i);
2400 			return false;
2401 		}
2402 	}
2403 	return true;
2404 }
2405 
2406 /**
2407  * il_send_lq_cmd() - Send link quality command
2408  * @init: This command is sent as part of station initialization right
2409  *        after station has been added.
2410  *
2411  * The link quality command is sent as the last step of station creation.
2412  * This is the special case in which init is set and we call a callback in
2413  * this case to clear the state indicating that station creation is in
2414  * progress.
2415  */
2416 int
2417 il_send_lq_cmd(struct il_priv *il, struct il_link_quality_cmd *lq,
2418 	       u8 flags, bool init)
2419 {
2420 	int ret = 0;
2421 	unsigned long flags_spin;
2422 
2423 	struct il_host_cmd cmd = {
2424 		.id = C_TX_LINK_QUALITY_CMD,
2425 		.len = sizeof(struct il_link_quality_cmd),
2426 		.flags = flags,
2427 		.data = lq,
2428 	};
2429 
2430 	if (WARN_ON(lq->sta_id == IL_INVALID_STATION))
2431 		return -EINVAL;
2432 
2433 	spin_lock_irqsave(&il->sta_lock, flags_spin);
2434 	if (!(il->stations[lq->sta_id].used & IL_STA_DRIVER_ACTIVE)) {
2435 		spin_unlock_irqrestore(&il->sta_lock, flags_spin);
2436 		return -EINVAL;
2437 	}
2438 	spin_unlock_irqrestore(&il->sta_lock, flags_spin);
2439 
2440 	il_dump_lq_cmd(il, lq);
2441 	BUG_ON(init && (cmd.flags & CMD_ASYNC));
2442 
2443 	if (il_is_lq_table_valid(il, lq))
2444 		ret = il_send_cmd(il, &cmd);
2445 	else
2446 		ret = -EINVAL;
2447 
2448 	if (cmd.flags & CMD_ASYNC)
2449 		return ret;
2450 
2451 	if (init) {
2452 		D_INFO("init LQ command complete,"
2453 		       " clearing sta addition status for sta %d\n",
2454 		       lq->sta_id);
2455 		spin_lock_irqsave(&il->sta_lock, flags_spin);
2456 		il->stations[lq->sta_id].used &= ~IL_STA_UCODE_INPROGRESS;
2457 		spin_unlock_irqrestore(&il->sta_lock, flags_spin);
2458 	}
2459 	return ret;
2460 }
2461 EXPORT_SYMBOL(il_send_lq_cmd);
2462 
2463 int
2464 il_mac_sta_remove(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2465 		  struct ieee80211_sta *sta)
2466 {
2467 	struct il_priv *il = hw->priv;
2468 	struct il_station_priv_common *sta_common = (void *)sta->drv_priv;
2469 	int ret;
2470 
2471 	mutex_lock(&il->mutex);
2472 	D_MAC80211("enter station %pM\n", sta->addr);
2473 
2474 	ret = il_remove_station(il, sta_common->sta_id, sta->addr);
2475 	if (ret)
2476 		IL_ERR("Error removing station %pM\n", sta->addr);
2477 
2478 	D_MAC80211("leave ret %d\n", ret);
2479 	mutex_unlock(&il->mutex);
2480 
2481 	return ret;
2482 }
2483 EXPORT_SYMBOL(il_mac_sta_remove);
2484 
2485 /************************** RX-FUNCTIONS ****************************/
2486 /*
2487  * Rx theory of operation
2488  *
2489  * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
2490  * each of which point to Receive Buffers to be filled by the NIC.  These get
2491  * used not only for Rx frames, but for any command response or notification
2492  * from the NIC.  The driver and NIC manage the Rx buffers by means
2493  * of idxes into the circular buffer.
2494  *
2495  * Rx Queue Indexes
2496  * The host/firmware share two idx registers for managing the Rx buffers.
2497  *
2498  * The READ idx maps to the first position that the firmware may be writing
2499  * to -- the driver can read up to (but not including) this position and get
2500  * good data.
2501  * The READ idx is managed by the firmware once the card is enabled.
2502  *
2503  * The WRITE idx maps to the last position the driver has read from -- the
2504  * position preceding WRITE is the last slot the firmware can place a packet.
2505  *
2506  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
2507  * WRITE = READ.
2508  *
2509  * During initialization, the host sets up the READ queue position to the first
2510  * IDX position, and WRITE to the last (READ - 1 wrapped)
2511  *
2512  * When the firmware places a packet in a buffer, it will advance the READ idx
2513  * and fire the RX interrupt.  The driver can then query the READ idx and
2514  * process as many packets as possible, moving the WRITE idx forward as it
2515  * resets the Rx queue buffers with new memory.
2516  *
2517  * The management in the driver is as follows:
2518  * + A list of pre-allocated SKBs is stored in iwl->rxq->rx_free.  When
2519  *   iwl->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
2520  *   to replenish the iwl->rxq->rx_free.
2521  * + In il_rx_replenish (scheduled) if 'processed' != 'read' then the
2522  *   iwl->rxq is replenished and the READ IDX is updated (updating the
2523  *   'processed' and 'read' driver idxes as well)
2524  * + A received packet is processed and handed to the kernel network stack,
2525  *   detached from the iwl->rxq.  The driver 'processed' idx is updated.
2526  * + The Host/Firmware iwl->rxq is replenished at tasklet time from the rx_free
2527  *   list. If there are no allocated buffers in iwl->rxq->rx_free, the READ
2528  *   IDX is not incremented and iwl->status(RX_STALLED) is set.  If there
2529  *   were enough free buffers and RX_STALLED is set it is cleared.
2530  *
2531  *
2532  * Driver sequence:
2533  *
2534  * il_rx_queue_alloc()   Allocates rx_free
2535  * il_rx_replenish()     Replenishes rx_free list from rx_used, and calls
2536  *                            il_rx_queue_restock
2537  * il_rx_queue_restock() Moves available buffers from rx_free into Rx
2538  *                            queue, updates firmware pointers, and updates
2539  *                            the WRITE idx.  If insufficient rx_free buffers
2540  *                            are available, schedules il_rx_replenish
2541  *
2542  * -- enable interrupts --
2543  * ISR - il_rx()         Detach il_rx_bufs from pool up to the
2544  *                            READ IDX, detaching the SKB from the pool.
2545  *                            Moves the packet buffer from queue to rx_used.
2546  *                            Calls il_rx_queue_restock to refill any empty
2547  *                            slots.
2548  * ...
2549  *
2550  */
2551 
2552 /**
2553  * il_rx_queue_space - Return number of free slots available in queue.
2554  */
2555 int
2556 il_rx_queue_space(const struct il_rx_queue *q)
2557 {
2558 	int s = q->read - q->write;
2559 	if (s <= 0)
2560 		s += RX_QUEUE_SIZE;
2561 	/* keep some buffer to not confuse full and empty queue */
2562 	s -= 2;
2563 	if (s < 0)
2564 		s = 0;
2565 	return s;
2566 }
2567 EXPORT_SYMBOL(il_rx_queue_space);
2568 
2569 /**
2570  * il_rx_queue_update_write_ptr - Update the write pointer for the RX queue
2571  */
2572 void
2573 il_rx_queue_update_write_ptr(struct il_priv *il, struct il_rx_queue *q)
2574 {
2575 	unsigned long flags;
2576 	u32 rx_wrt_ptr_reg = il->hw_params.rx_wrt_ptr_reg;
2577 	u32 reg;
2578 
2579 	spin_lock_irqsave(&q->lock, flags);
2580 
2581 	if (q->need_update == 0)
2582 		goto exit_unlock;
2583 
2584 	/* If power-saving is in use, make sure device is awake */
2585 	if (test_bit(S_POWER_PMI, &il->status)) {
2586 		reg = _il_rd(il, CSR_UCODE_DRV_GP1);
2587 
2588 		if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
2589 			D_INFO("Rx queue requesting wakeup," " GP1 = 0x%x\n",
2590 			       reg);
2591 			il_set_bit(il, CSR_GP_CNTRL,
2592 				   CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
2593 			goto exit_unlock;
2594 		}
2595 
2596 		q->write_actual = (q->write & ~0x7);
2597 		il_wr(il, rx_wrt_ptr_reg, q->write_actual);
2598 
2599 		/* Else device is assumed to be awake */
2600 	} else {
2601 		/* Device expects a multiple of 8 */
2602 		q->write_actual = (q->write & ~0x7);
2603 		il_wr(il, rx_wrt_ptr_reg, q->write_actual);
2604 	}
2605 
2606 	q->need_update = 0;
2607 
2608 exit_unlock:
2609 	spin_unlock_irqrestore(&q->lock, flags);
2610 }
2611 EXPORT_SYMBOL(il_rx_queue_update_write_ptr);
2612 
2613 int
2614 il_rx_queue_alloc(struct il_priv *il)
2615 {
2616 	struct il_rx_queue *rxq = &il->rxq;
2617 	struct device *dev = &il->pci_dev->dev;
2618 	int i;
2619 
2620 	spin_lock_init(&rxq->lock);
2621 	INIT_LIST_HEAD(&rxq->rx_free);
2622 	INIT_LIST_HEAD(&rxq->rx_used);
2623 
2624 	/* Alloc the circular buffer of Read Buffer Descriptors (RBDs) */
2625 	rxq->bd = dma_alloc_coherent(dev, 4 * RX_QUEUE_SIZE, &rxq->bd_dma,
2626 				     GFP_KERNEL);
2627 	if (!rxq->bd)
2628 		goto err_bd;
2629 
2630 	rxq->rb_stts = dma_alloc_coherent(dev, sizeof(struct il_rb_status),
2631 					  &rxq->rb_stts_dma, GFP_KERNEL);
2632 	if (!rxq->rb_stts)
2633 		goto err_rb;
2634 
2635 	/* Fill the rx_used queue with _all_ of the Rx buffers */
2636 	for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
2637 		list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
2638 
2639 	/* Set us so that we have processed and used all buffers, but have
2640 	 * not restocked the Rx queue with fresh buffers */
2641 	rxq->read = rxq->write = 0;
2642 	rxq->write_actual = 0;
2643 	rxq->free_count = 0;
2644 	rxq->need_update = 0;
2645 	return 0;
2646 
2647 err_rb:
2648 	dma_free_coherent(&il->pci_dev->dev, 4 * RX_QUEUE_SIZE, rxq->bd,
2649 			  rxq->bd_dma);
2650 err_bd:
2651 	return -ENOMEM;
2652 }
2653 EXPORT_SYMBOL(il_rx_queue_alloc);
2654 
2655 void
2656 il_hdl_spectrum_measurement(struct il_priv *il, struct il_rx_buf *rxb)
2657 {
2658 	struct il_rx_pkt *pkt = rxb_addr(rxb);
2659 	struct il_spectrum_notification *report = &(pkt->u.spectrum_notif);
2660 
2661 	if (!report->state) {
2662 		D_11H("Spectrum Measure Notification: Start\n");
2663 		return;
2664 	}
2665 
2666 	memcpy(&il->measure_report, report, sizeof(*report));
2667 	il->measurement_status |= MEASUREMENT_READY;
2668 }
2669 EXPORT_SYMBOL(il_hdl_spectrum_measurement);
2670 
2671 /*
2672  * returns non-zero if packet should be dropped
2673  */
2674 int
2675 il_set_decrypted_flag(struct il_priv *il, struct ieee80211_hdr *hdr,
2676 		      u32 decrypt_res, struct ieee80211_rx_status *stats)
2677 {
2678 	u16 fc = le16_to_cpu(hdr->frame_control);
2679 
2680 	/*
2681 	 * All contexts have the same setting here due to it being
2682 	 * a module parameter, so OK to check any context.
2683 	 */
2684 	if (il->active.filter_flags & RXON_FILTER_DIS_DECRYPT_MSK)
2685 		return 0;
2686 
2687 	if (!(fc & IEEE80211_FCTL_PROTECTED))
2688 		return 0;
2689 
2690 	D_RX("decrypt_res:0x%x\n", decrypt_res);
2691 	switch (decrypt_res & RX_RES_STATUS_SEC_TYPE_MSK) {
2692 	case RX_RES_STATUS_SEC_TYPE_TKIP:
2693 		/* The uCode has got a bad phase 1 Key, pushes the packet.
2694 		 * Decryption will be done in SW. */
2695 		if ((decrypt_res & RX_RES_STATUS_DECRYPT_TYPE_MSK) ==
2696 		    RX_RES_STATUS_BAD_KEY_TTAK)
2697 			break;
2698 
2699 	case RX_RES_STATUS_SEC_TYPE_WEP:
2700 		if ((decrypt_res & RX_RES_STATUS_DECRYPT_TYPE_MSK) ==
2701 		    RX_RES_STATUS_BAD_ICV_MIC) {
2702 			/* bad ICV, the packet is destroyed since the
2703 			 * decryption is inplace, drop it */
2704 			D_RX("Packet destroyed\n");
2705 			return -1;
2706 		}
2707 	case RX_RES_STATUS_SEC_TYPE_CCMP:
2708 		if ((decrypt_res & RX_RES_STATUS_DECRYPT_TYPE_MSK) ==
2709 		    RX_RES_STATUS_DECRYPT_OK) {
2710 			D_RX("hw decrypt successfully!!!\n");
2711 			stats->flag |= RX_FLAG_DECRYPTED;
2712 		}
2713 		break;
2714 
2715 	default:
2716 		break;
2717 	}
2718 	return 0;
2719 }
2720 EXPORT_SYMBOL(il_set_decrypted_flag);
2721 
2722 /**
2723  * il_txq_update_write_ptr - Send new write idx to hardware
2724  */
2725 void
2726 il_txq_update_write_ptr(struct il_priv *il, struct il_tx_queue *txq)
2727 {
2728 	u32 reg = 0;
2729 	int txq_id = txq->q.id;
2730 
2731 	if (txq->need_update == 0)
2732 		return;
2733 
2734 	/* if we're trying to save power */
2735 	if (test_bit(S_POWER_PMI, &il->status)) {
2736 		/* wake up nic if it's powered down ...
2737 		 * uCode will wake up, and interrupt us again, so next
2738 		 * time we'll skip this part. */
2739 		reg = _il_rd(il, CSR_UCODE_DRV_GP1);
2740 
2741 		if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
2742 			D_INFO("Tx queue %d requesting wakeup," " GP1 = 0x%x\n",
2743 			       txq_id, reg);
2744 			il_set_bit(il, CSR_GP_CNTRL,
2745 				   CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
2746 			return;
2747 		}
2748 
2749 		il_wr(il, HBUS_TARG_WRPTR, txq->q.write_ptr | (txq_id << 8));
2750 
2751 		/*
2752 		 * else not in power-save mode,
2753 		 * uCode will never sleep when we're
2754 		 * trying to tx (during RFKILL, we're not trying to tx).
2755 		 */
2756 	} else
2757 		_il_wr(il, HBUS_TARG_WRPTR, txq->q.write_ptr | (txq_id << 8));
2758 	txq->need_update = 0;
2759 }
2760 EXPORT_SYMBOL(il_txq_update_write_ptr);
2761 
2762 /**
2763  * il_tx_queue_unmap -  Unmap any remaining DMA mappings and free skb's
2764  */
2765 void
2766 il_tx_queue_unmap(struct il_priv *il, int txq_id)
2767 {
2768 	struct il_tx_queue *txq = &il->txq[txq_id];
2769 	struct il_queue *q = &txq->q;
2770 
2771 	if (q->n_bd == 0)
2772 		return;
2773 
2774 	while (q->write_ptr != q->read_ptr) {
2775 		il->ops->txq_free_tfd(il, txq);
2776 		q->read_ptr = il_queue_inc_wrap(q->read_ptr, q->n_bd);
2777 	}
2778 }
2779 EXPORT_SYMBOL(il_tx_queue_unmap);
2780 
2781 /**
2782  * il_tx_queue_free - Deallocate DMA queue.
2783  * @txq: Transmit queue to deallocate.
2784  *
2785  * Empty queue by removing and destroying all BD's.
2786  * Free all buffers.
2787  * 0-fill, but do not free "txq" descriptor structure.
2788  */
2789 void
2790 il_tx_queue_free(struct il_priv *il, int txq_id)
2791 {
2792 	struct il_tx_queue *txq = &il->txq[txq_id];
2793 	struct device *dev = &il->pci_dev->dev;
2794 	int i;
2795 
2796 	il_tx_queue_unmap(il, txq_id);
2797 
2798 	/* De-alloc array of command/tx buffers */
2799 	if (txq->cmd) {
2800 		for (i = 0; i < TFD_TX_CMD_SLOTS; i++)
2801 			kfree(txq->cmd[i]);
2802 	}
2803 
2804 	/* De-alloc circular buffer of TFDs */
2805 	if (txq->q.n_bd)
2806 		dma_free_coherent(dev, il->hw_params.tfd_size * txq->q.n_bd,
2807 				  txq->tfds, txq->q.dma_addr);
2808 
2809 	/* De-alloc array of per-TFD driver data */
2810 	kfree(txq->skbs);
2811 	txq->skbs = NULL;
2812 
2813 	/* deallocate arrays */
2814 	kfree(txq->cmd);
2815 	kfree(txq->meta);
2816 	txq->cmd = NULL;
2817 	txq->meta = NULL;
2818 
2819 	/* 0-fill queue descriptor structure */
2820 	memset(txq, 0, sizeof(*txq));
2821 }
2822 EXPORT_SYMBOL(il_tx_queue_free);
2823 
2824 /**
2825  * il_cmd_queue_unmap - Unmap any remaining DMA mappings from command queue
2826  */
2827 void
2828 il_cmd_queue_unmap(struct il_priv *il)
2829 {
2830 	struct il_tx_queue *txq = &il->txq[il->cmd_queue];
2831 	struct il_queue *q = &txq->q;
2832 	int i;
2833 
2834 	if (q->n_bd == 0)
2835 		return;
2836 
2837 	while (q->read_ptr != q->write_ptr) {
2838 		i = il_get_cmd_idx(q, q->read_ptr, 0);
2839 
2840 		if (txq->meta[i].flags & CMD_MAPPED) {
2841 			pci_unmap_single(il->pci_dev,
2842 					 dma_unmap_addr(&txq->meta[i], mapping),
2843 					 dma_unmap_len(&txq->meta[i], len),
2844 					 PCI_DMA_BIDIRECTIONAL);
2845 			txq->meta[i].flags = 0;
2846 		}
2847 
2848 		q->read_ptr = il_queue_inc_wrap(q->read_ptr, q->n_bd);
2849 	}
2850 
2851 	i = q->n_win;
2852 	if (txq->meta[i].flags & CMD_MAPPED) {
2853 		pci_unmap_single(il->pci_dev,
2854 				 dma_unmap_addr(&txq->meta[i], mapping),
2855 				 dma_unmap_len(&txq->meta[i], len),
2856 				 PCI_DMA_BIDIRECTIONAL);
2857 		txq->meta[i].flags = 0;
2858 	}
2859 }
2860 EXPORT_SYMBOL(il_cmd_queue_unmap);
2861 
2862 /**
2863  * il_cmd_queue_free - Deallocate DMA queue.
2864  * @txq: Transmit queue to deallocate.
2865  *
2866  * Empty queue by removing and destroying all BD's.
2867  * Free all buffers.
2868  * 0-fill, but do not free "txq" descriptor structure.
2869  */
2870 void
2871 il_cmd_queue_free(struct il_priv *il)
2872 {
2873 	struct il_tx_queue *txq = &il->txq[il->cmd_queue];
2874 	struct device *dev = &il->pci_dev->dev;
2875 	int i;
2876 
2877 	il_cmd_queue_unmap(il);
2878 
2879 	/* De-alloc array of command/tx buffers */
2880 	if (txq->cmd) {
2881 		for (i = 0; i <= TFD_CMD_SLOTS; i++)
2882 			kfree(txq->cmd[i]);
2883 	}
2884 
2885 	/* De-alloc circular buffer of TFDs */
2886 	if (txq->q.n_bd)
2887 		dma_free_coherent(dev, il->hw_params.tfd_size * txq->q.n_bd,
2888 				  txq->tfds, txq->q.dma_addr);
2889 
2890 	/* deallocate arrays */
2891 	kfree(txq->cmd);
2892 	kfree(txq->meta);
2893 	txq->cmd = NULL;
2894 	txq->meta = NULL;
2895 
2896 	/* 0-fill queue descriptor structure */
2897 	memset(txq, 0, sizeof(*txq));
2898 }
2899 EXPORT_SYMBOL(il_cmd_queue_free);
2900 
2901 /*************** DMA-QUEUE-GENERAL-FUNCTIONS  *****
2902  * DMA services
2903  *
2904  * Theory of operation
2905  *
2906  * A Tx or Rx queue resides in host DRAM, and is comprised of a circular buffer
2907  * of buffer descriptors, each of which points to one or more data buffers for
2908  * the device to read from or fill.  Driver and device exchange status of each
2909  * queue via "read" and "write" pointers.  Driver keeps minimum of 2 empty
2910  * entries in each circular buffer, to protect against confusing empty and full
2911  * queue states.
2912  *
2913  * The device reads or writes the data in the queues via the device's several
2914  * DMA/FIFO channels.  Each queue is mapped to a single DMA channel.
2915  *
2916  * For Tx queue, there are low mark and high mark limits. If, after queuing
2917  * the packet for Tx, free space become < low mark, Tx queue stopped. When
2918  * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
2919  * Tx queue resumed.
2920  *
2921  * See more detailed info in 4965.h.
2922  ***************************************************/
2923 
2924 int
2925 il_queue_space(const struct il_queue *q)
2926 {
2927 	int s = q->read_ptr - q->write_ptr;
2928 
2929 	if (q->read_ptr > q->write_ptr)
2930 		s -= q->n_bd;
2931 
2932 	if (s <= 0)
2933 		s += q->n_win;
2934 	/* keep some reserve to not confuse empty and full situations */
2935 	s -= 2;
2936 	if (s < 0)
2937 		s = 0;
2938 	return s;
2939 }
2940 EXPORT_SYMBOL(il_queue_space);
2941 
2942 
2943 /**
2944  * il_queue_init - Initialize queue's high/low-water and read/write idxes
2945  */
2946 static int
2947 il_queue_init(struct il_priv *il, struct il_queue *q, int slots, u32 id)
2948 {
2949 	/*
2950 	 * TFD_QUEUE_SIZE_MAX must be power-of-two size, otherwise
2951 	 * il_queue_inc_wrap and il_queue_dec_wrap are broken.
2952 	 */
2953 	BUILD_BUG_ON(TFD_QUEUE_SIZE_MAX & (TFD_QUEUE_SIZE_MAX - 1));
2954 	/* FIXME: remove q->n_bd */
2955 	q->n_bd = TFD_QUEUE_SIZE_MAX;
2956 
2957 	q->n_win = slots;
2958 	q->id = id;
2959 
2960 	/* slots_must be power-of-two size, otherwise
2961 	 * il_get_cmd_idx is broken. */
2962 	BUG_ON(!is_power_of_2(slots));
2963 
2964 	q->low_mark = q->n_win / 4;
2965 	if (q->low_mark < 4)
2966 		q->low_mark = 4;
2967 
2968 	q->high_mark = q->n_win / 8;
2969 	if (q->high_mark < 2)
2970 		q->high_mark = 2;
2971 
2972 	q->write_ptr = q->read_ptr = 0;
2973 
2974 	return 0;
2975 }
2976 
2977 /**
2978  * il_tx_queue_alloc - Alloc driver data and TFD CB for one Tx/cmd queue
2979  */
2980 static int
2981 il_tx_queue_alloc(struct il_priv *il, struct il_tx_queue *txq, u32 id)
2982 {
2983 	struct device *dev = &il->pci_dev->dev;
2984 	size_t tfd_sz = il->hw_params.tfd_size * TFD_QUEUE_SIZE_MAX;
2985 
2986 	/* Driver ilate data, only for Tx (not command) queues,
2987 	 * not shared with device. */
2988 	if (id != il->cmd_queue) {
2989 		txq->skbs = kcalloc(TFD_QUEUE_SIZE_MAX,
2990 				    sizeof(struct sk_buff *),
2991 				    GFP_KERNEL);
2992 		if (!txq->skbs) {
2993 			IL_ERR("Fail to alloc skbs\n");
2994 			goto error;
2995 		}
2996 	} else
2997 		txq->skbs = NULL;
2998 
2999 	/* Circular buffer of transmit frame descriptors (TFDs),
3000 	 * shared with device */
3001 	txq->tfds =
3002 	    dma_alloc_coherent(dev, tfd_sz, &txq->q.dma_addr, GFP_KERNEL);
3003 	if (!txq->tfds)
3004 		goto error;
3005 
3006 	txq->q.id = id;
3007 
3008 	return 0;
3009 
3010 error:
3011 	kfree(txq->skbs);
3012 	txq->skbs = NULL;
3013 
3014 	return -ENOMEM;
3015 }
3016 
3017 /**
3018  * il_tx_queue_init - Allocate and initialize one tx/cmd queue
3019  */
3020 int
3021 il_tx_queue_init(struct il_priv *il, u32 txq_id)
3022 {
3023 	int i, len, ret;
3024 	int slots, actual_slots;
3025 	struct il_tx_queue *txq = &il->txq[txq_id];
3026 
3027 	/*
3028 	 * Alloc buffer array for commands (Tx or other types of commands).
3029 	 * For the command queue (#4/#9), allocate command space + one big
3030 	 * command for scan, since scan command is very huge; the system will
3031 	 * not have two scans at the same time, so only one is needed.
3032 	 * For normal Tx queues (all other queues), no super-size command
3033 	 * space is needed.
3034 	 */
3035 	if (txq_id == il->cmd_queue) {
3036 		slots = TFD_CMD_SLOTS;
3037 		actual_slots = slots + 1;
3038 	} else {
3039 		slots = TFD_TX_CMD_SLOTS;
3040 		actual_slots = slots;
3041 	}
3042 
3043 	txq->meta =
3044 	    kzalloc(sizeof(struct il_cmd_meta) * actual_slots, GFP_KERNEL);
3045 	txq->cmd =
3046 	    kzalloc(sizeof(struct il_device_cmd *) * actual_slots, GFP_KERNEL);
3047 
3048 	if (!txq->meta || !txq->cmd)
3049 		goto out_free_arrays;
3050 
3051 	len = sizeof(struct il_device_cmd);
3052 	for (i = 0; i < actual_slots; i++) {
3053 		/* only happens for cmd queue */
3054 		if (i == slots)
3055 			len = IL_MAX_CMD_SIZE;
3056 
3057 		txq->cmd[i] = kmalloc(len, GFP_KERNEL);
3058 		if (!txq->cmd[i])
3059 			goto err;
3060 	}
3061 
3062 	/* Alloc driver data array and TFD circular buffer */
3063 	ret = il_tx_queue_alloc(il, txq, txq_id);
3064 	if (ret)
3065 		goto err;
3066 
3067 	txq->need_update = 0;
3068 
3069 	/*
3070 	 * For the default queues 0-3, set up the swq_id
3071 	 * already -- all others need to get one later
3072 	 * (if they need one at all).
3073 	 */
3074 	if (txq_id < 4)
3075 		il_set_swq_id(txq, txq_id, txq_id);
3076 
3077 	/* Initialize queue's high/low-water marks, and head/tail idxes */
3078 	il_queue_init(il, &txq->q, slots, txq_id);
3079 
3080 	/* Tell device where to find queue */
3081 	il->ops->txq_init(il, txq);
3082 
3083 	return 0;
3084 err:
3085 	for (i = 0; i < actual_slots; i++)
3086 		kfree(txq->cmd[i]);
3087 out_free_arrays:
3088 	kfree(txq->meta);
3089 	txq->meta = NULL;
3090 	kfree(txq->cmd);
3091 	txq->cmd = NULL;
3092 
3093 	return -ENOMEM;
3094 }
3095 EXPORT_SYMBOL(il_tx_queue_init);
3096 
3097 void
3098 il_tx_queue_reset(struct il_priv *il, u32 txq_id)
3099 {
3100 	int slots, actual_slots;
3101 	struct il_tx_queue *txq = &il->txq[txq_id];
3102 
3103 	if (txq_id == il->cmd_queue) {
3104 		slots = TFD_CMD_SLOTS;
3105 		actual_slots = TFD_CMD_SLOTS + 1;
3106 	} else {
3107 		slots = TFD_TX_CMD_SLOTS;
3108 		actual_slots = TFD_TX_CMD_SLOTS;
3109 	}
3110 
3111 	memset(txq->meta, 0, sizeof(struct il_cmd_meta) * actual_slots);
3112 	txq->need_update = 0;
3113 
3114 	/* Initialize queue's high/low-water marks, and head/tail idxes */
3115 	il_queue_init(il, &txq->q, slots, txq_id);
3116 
3117 	/* Tell device where to find queue */
3118 	il->ops->txq_init(il, txq);
3119 }
3120 EXPORT_SYMBOL(il_tx_queue_reset);
3121 
3122 /*************** HOST COMMAND QUEUE FUNCTIONS   *****/
3123 
3124 /**
3125  * il_enqueue_hcmd - enqueue a uCode command
3126  * @il: device ilate data point
3127  * @cmd: a point to the ucode command structure
3128  *
3129  * The function returns < 0 values to indicate the operation is
3130  * failed. On success, it turns the idx (> 0) of command in the
3131  * command queue.
3132  */
3133 int
3134 il_enqueue_hcmd(struct il_priv *il, struct il_host_cmd *cmd)
3135 {
3136 	struct il_tx_queue *txq = &il->txq[il->cmd_queue];
3137 	struct il_queue *q = &txq->q;
3138 	struct il_device_cmd *out_cmd;
3139 	struct il_cmd_meta *out_meta;
3140 	dma_addr_t phys_addr;
3141 	unsigned long flags;
3142 	int len;
3143 	u32 idx;
3144 	u16 fix_size;
3145 
3146 	cmd->len = il->ops->get_hcmd_size(cmd->id, cmd->len);
3147 	fix_size = (u16) (cmd->len + sizeof(out_cmd->hdr));
3148 
3149 	/* If any of the command structures end up being larger than
3150 	 * the TFD_MAX_PAYLOAD_SIZE, and it sent as a 'small' command then
3151 	 * we will need to increase the size of the TFD entries
3152 	 * Also, check to see if command buffer should not exceed the size
3153 	 * of device_cmd and max_cmd_size. */
3154 	BUG_ON((fix_size > TFD_MAX_PAYLOAD_SIZE) &&
3155 	       !(cmd->flags & CMD_SIZE_HUGE));
3156 	BUG_ON(fix_size > IL_MAX_CMD_SIZE);
3157 
3158 	if (il_is_rfkill(il) || il_is_ctkill(il)) {
3159 		IL_WARN("Not sending command - %s KILL\n",
3160 			il_is_rfkill(il) ? "RF" : "CT");
3161 		return -EIO;
3162 	}
3163 
3164 	spin_lock_irqsave(&il->hcmd_lock, flags);
3165 
3166 	if (il_queue_space(q) < ((cmd->flags & CMD_ASYNC) ? 2 : 1)) {
3167 		spin_unlock_irqrestore(&il->hcmd_lock, flags);
3168 
3169 		IL_ERR("Restarting adapter due to command queue full\n");
3170 		queue_work(il->workqueue, &il->restart);
3171 		return -ENOSPC;
3172 	}
3173 
3174 	idx = il_get_cmd_idx(q, q->write_ptr, cmd->flags & CMD_SIZE_HUGE);
3175 	out_cmd = txq->cmd[idx];
3176 	out_meta = &txq->meta[idx];
3177 
3178 	if (WARN_ON(out_meta->flags & CMD_MAPPED)) {
3179 		spin_unlock_irqrestore(&il->hcmd_lock, flags);
3180 		return -ENOSPC;
3181 	}
3182 
3183 	memset(out_meta, 0, sizeof(*out_meta));	/* re-initialize to NULL */
3184 	out_meta->flags = cmd->flags | CMD_MAPPED;
3185 	if (cmd->flags & CMD_WANT_SKB)
3186 		out_meta->source = cmd;
3187 	if (cmd->flags & CMD_ASYNC)
3188 		out_meta->callback = cmd->callback;
3189 
3190 	out_cmd->hdr.cmd = cmd->id;
3191 	memcpy(&out_cmd->cmd.payload, cmd->data, cmd->len);
3192 
3193 	/* At this point, the out_cmd now has all of the incoming cmd
3194 	 * information */
3195 
3196 	out_cmd->hdr.flags = 0;
3197 	out_cmd->hdr.sequence =
3198 	    cpu_to_le16(QUEUE_TO_SEQ(il->cmd_queue) | IDX_TO_SEQ(q->write_ptr));
3199 	if (cmd->flags & CMD_SIZE_HUGE)
3200 		out_cmd->hdr.sequence |= SEQ_HUGE_FRAME;
3201 	len = sizeof(struct il_device_cmd);
3202 	if (idx == TFD_CMD_SLOTS)
3203 		len = IL_MAX_CMD_SIZE;
3204 
3205 #ifdef CONFIG_IWLEGACY_DEBUG
3206 	switch (out_cmd->hdr.cmd) {
3207 	case C_TX_LINK_QUALITY_CMD:
3208 	case C_SENSITIVITY:
3209 		D_HC_DUMP("Sending command %s (#%x), seq: 0x%04X, "
3210 			  "%d bytes at %d[%d]:%d\n",
3211 			  il_get_cmd_string(out_cmd->hdr.cmd), out_cmd->hdr.cmd,
3212 			  le16_to_cpu(out_cmd->hdr.sequence), fix_size,
3213 			  q->write_ptr, idx, il->cmd_queue);
3214 		break;
3215 	default:
3216 		D_HC("Sending command %s (#%x), seq: 0x%04X, "
3217 		     "%d bytes at %d[%d]:%d\n",
3218 		     il_get_cmd_string(out_cmd->hdr.cmd), out_cmd->hdr.cmd,
3219 		     le16_to_cpu(out_cmd->hdr.sequence), fix_size, q->write_ptr,
3220 		     idx, il->cmd_queue);
3221 	}
3222 #endif
3223 
3224 	phys_addr =
3225 	    pci_map_single(il->pci_dev, &out_cmd->hdr, fix_size,
3226 			   PCI_DMA_BIDIRECTIONAL);
3227 	if (unlikely(pci_dma_mapping_error(il->pci_dev, phys_addr))) {
3228 		idx = -ENOMEM;
3229 		goto out;
3230 	}
3231 	dma_unmap_addr_set(out_meta, mapping, phys_addr);
3232 	dma_unmap_len_set(out_meta, len, fix_size);
3233 
3234 	txq->need_update = 1;
3235 
3236 	if (il->ops->txq_update_byte_cnt_tbl)
3237 		/* Set up entry in queue's byte count circular buffer */
3238 		il->ops->txq_update_byte_cnt_tbl(il, txq, 0);
3239 
3240 	il->ops->txq_attach_buf_to_tfd(il, txq, phys_addr, fix_size, 1,
3241 					    U32_PAD(cmd->len));
3242 
3243 	/* Increment and update queue's write idx */
3244 	q->write_ptr = il_queue_inc_wrap(q->write_ptr, q->n_bd);
3245 	il_txq_update_write_ptr(il, txq);
3246 
3247 out:
3248 	spin_unlock_irqrestore(&il->hcmd_lock, flags);
3249 	return idx;
3250 }
3251 
3252 /**
3253  * il_hcmd_queue_reclaim - Reclaim TX command queue entries already Tx'd
3254  *
3255  * When FW advances 'R' idx, all entries between old and new 'R' idx
3256  * need to be reclaimed. As result, some free space forms.  If there is
3257  * enough free space (> low mark), wake the stack that feeds us.
3258  */
3259 static void
3260 il_hcmd_queue_reclaim(struct il_priv *il, int txq_id, int idx, int cmd_idx)
3261 {
3262 	struct il_tx_queue *txq = &il->txq[txq_id];
3263 	struct il_queue *q = &txq->q;
3264 	int nfreed = 0;
3265 
3266 	if (idx >= q->n_bd || il_queue_used(q, idx) == 0) {
3267 		IL_ERR("Read idx for DMA queue txq id (%d), idx %d, "
3268 		       "is out of range [0-%d] %d %d.\n", txq_id, idx, q->n_bd,
3269 		       q->write_ptr, q->read_ptr);
3270 		return;
3271 	}
3272 
3273 	for (idx = il_queue_inc_wrap(idx, q->n_bd); q->read_ptr != idx;
3274 	     q->read_ptr = il_queue_inc_wrap(q->read_ptr, q->n_bd)) {
3275 
3276 		if (nfreed++ > 0) {
3277 			IL_ERR("HCMD skipped: idx (%d) %d %d\n", idx,
3278 			       q->write_ptr, q->read_ptr);
3279 			queue_work(il->workqueue, &il->restart);
3280 		}
3281 
3282 	}
3283 }
3284 
3285 /**
3286  * il_tx_cmd_complete - Pull unused buffers off the queue and reclaim them
3287  * @rxb: Rx buffer to reclaim
3288  *
3289  * If an Rx buffer has an async callback associated with it the callback
3290  * will be executed.  The attached skb (if present) will only be freed
3291  * if the callback returns 1
3292  */
3293 void
3294 il_tx_cmd_complete(struct il_priv *il, struct il_rx_buf *rxb)
3295 {
3296 	struct il_rx_pkt *pkt = rxb_addr(rxb);
3297 	u16 sequence = le16_to_cpu(pkt->hdr.sequence);
3298 	int txq_id = SEQ_TO_QUEUE(sequence);
3299 	int idx = SEQ_TO_IDX(sequence);
3300 	int cmd_idx;
3301 	bool huge = !!(pkt->hdr.sequence & SEQ_HUGE_FRAME);
3302 	struct il_device_cmd *cmd;
3303 	struct il_cmd_meta *meta;
3304 	struct il_tx_queue *txq = &il->txq[il->cmd_queue];
3305 	unsigned long flags;
3306 
3307 	/* If a Tx command is being handled and it isn't in the actual
3308 	 * command queue then there a command routing bug has been introduced
3309 	 * in the queue management code. */
3310 	if (WARN
3311 	    (txq_id != il->cmd_queue,
3312 	     "wrong command queue %d (should be %d), sequence 0x%X readp=%d writep=%d\n",
3313 	     txq_id, il->cmd_queue, sequence, il->txq[il->cmd_queue].q.read_ptr,
3314 	     il->txq[il->cmd_queue].q.write_ptr)) {
3315 		il_print_hex_error(il, pkt, 32);
3316 		return;
3317 	}
3318 
3319 	cmd_idx = il_get_cmd_idx(&txq->q, idx, huge);
3320 	cmd = txq->cmd[cmd_idx];
3321 	meta = &txq->meta[cmd_idx];
3322 
3323 	txq->time_stamp = jiffies;
3324 
3325 	pci_unmap_single(il->pci_dev, dma_unmap_addr(meta, mapping),
3326 			 dma_unmap_len(meta, len), PCI_DMA_BIDIRECTIONAL);
3327 
3328 	/* Input error checking is done when commands are added to queue. */
3329 	if (meta->flags & CMD_WANT_SKB) {
3330 		meta->source->reply_page = (unsigned long)rxb_addr(rxb);
3331 		rxb->page = NULL;
3332 	} else if (meta->callback)
3333 		meta->callback(il, cmd, pkt);
3334 
3335 	spin_lock_irqsave(&il->hcmd_lock, flags);
3336 
3337 	il_hcmd_queue_reclaim(il, txq_id, idx, cmd_idx);
3338 
3339 	if (!(meta->flags & CMD_ASYNC)) {
3340 		clear_bit(S_HCMD_ACTIVE, &il->status);
3341 		D_INFO("Clearing HCMD_ACTIVE for command %s\n",
3342 		       il_get_cmd_string(cmd->hdr.cmd));
3343 		wake_up(&il->wait_command_queue);
3344 	}
3345 
3346 	/* Mark as unmapped */
3347 	meta->flags = 0;
3348 
3349 	spin_unlock_irqrestore(&il->hcmd_lock, flags);
3350 }
3351 EXPORT_SYMBOL(il_tx_cmd_complete);
3352 
3353 MODULE_DESCRIPTION("iwl-legacy: common functions for 3945 and 4965");
3354 MODULE_VERSION(IWLWIFI_VERSION);
3355 MODULE_AUTHOR(DRV_COPYRIGHT " " DRV_AUTHOR);
3356 MODULE_LICENSE("GPL");
3357 
3358 /*
3359  * set bt_coex_active to true, uCode will do kill/defer
3360  * every time the priority line is asserted (BT is sending signals on the
3361  * priority line in the PCIx).
3362  * set bt_coex_active to false, uCode will ignore the BT activity and
3363  * perform the normal operation
3364  *
3365  * User might experience transmit issue on some platform due to WiFi/BT
3366  * co-exist problem. The possible behaviors are:
3367  *   Able to scan and finding all the available AP
3368  *   Not able to associate with any AP
3369  * On those platforms, WiFi communication can be restored by set
3370  * "bt_coex_active" module parameter to "false"
3371  *
3372  * default: bt_coex_active = true (BT_COEX_ENABLE)
3373  */
3374 static bool bt_coex_active = true;
3375 module_param(bt_coex_active, bool, S_IRUGO);
3376 MODULE_PARM_DESC(bt_coex_active, "enable wifi/bluetooth co-exist");
3377 
3378 u32 il_debug_level;
3379 EXPORT_SYMBOL(il_debug_level);
3380 
3381 const u8 il_bcast_addr[ETH_ALEN] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3382 EXPORT_SYMBOL(il_bcast_addr);
3383 
3384 #define MAX_BIT_RATE_40_MHZ 150	/* Mbps */
3385 #define MAX_BIT_RATE_20_MHZ 72	/* Mbps */
3386 static void
3387 il_init_ht_hw_capab(const struct il_priv *il,
3388 		    struct ieee80211_sta_ht_cap *ht_info,
3389 		    enum nl80211_band band)
3390 {
3391 	u16 max_bit_rate = 0;
3392 	u8 rx_chains_num = il->hw_params.rx_chains_num;
3393 	u8 tx_chains_num = il->hw_params.tx_chains_num;
3394 
3395 	ht_info->cap = 0;
3396 	memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
3397 
3398 	ht_info->ht_supported = true;
3399 
3400 	ht_info->cap |= IEEE80211_HT_CAP_SGI_20;
3401 	max_bit_rate = MAX_BIT_RATE_20_MHZ;
3402 	if (il->hw_params.ht40_channel & BIT(band)) {
3403 		ht_info->cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40;
3404 		ht_info->cap |= IEEE80211_HT_CAP_SGI_40;
3405 		ht_info->mcs.rx_mask[4] = 0x01;
3406 		max_bit_rate = MAX_BIT_RATE_40_MHZ;
3407 	}
3408 
3409 	if (il->cfg->mod_params->amsdu_size_8K)
3410 		ht_info->cap |= IEEE80211_HT_CAP_MAX_AMSDU;
3411 
3412 	ht_info->ampdu_factor = CFG_HT_RX_AMPDU_FACTOR_DEF;
3413 	ht_info->ampdu_density = CFG_HT_MPDU_DENSITY_DEF;
3414 
3415 	ht_info->mcs.rx_mask[0] = 0xFF;
3416 	if (rx_chains_num >= 2)
3417 		ht_info->mcs.rx_mask[1] = 0xFF;
3418 	if (rx_chains_num >= 3)
3419 		ht_info->mcs.rx_mask[2] = 0xFF;
3420 
3421 	/* Highest supported Rx data rate */
3422 	max_bit_rate *= rx_chains_num;
3423 	WARN_ON(max_bit_rate & ~IEEE80211_HT_MCS_RX_HIGHEST_MASK);
3424 	ht_info->mcs.rx_highest = cpu_to_le16(max_bit_rate);
3425 
3426 	/* Tx MCS capabilities */
3427 	ht_info->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
3428 	if (tx_chains_num != rx_chains_num) {
3429 		ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_RX_DIFF;
3430 		ht_info->mcs.tx_params |=
3431 		    ((tx_chains_num -
3432 		      1) << IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT);
3433 	}
3434 }
3435 
3436 /**
3437  * il_init_geos - Initialize mac80211's geo/channel info based from eeprom
3438  */
3439 int
3440 il_init_geos(struct il_priv *il)
3441 {
3442 	struct il_channel_info *ch;
3443 	struct ieee80211_supported_band *sband;
3444 	struct ieee80211_channel *channels;
3445 	struct ieee80211_channel *geo_ch;
3446 	struct ieee80211_rate *rates;
3447 	int i = 0;
3448 	s8 max_tx_power = 0;
3449 
3450 	if (il->bands[NL80211_BAND_2GHZ].n_bitrates ||
3451 	    il->bands[NL80211_BAND_5GHZ].n_bitrates) {
3452 		D_INFO("Geography modes already initialized.\n");
3453 		set_bit(S_GEO_CONFIGURED, &il->status);
3454 		return 0;
3455 	}
3456 
3457 	channels =
3458 	    kzalloc(sizeof(struct ieee80211_channel) * il->channel_count,
3459 		    GFP_KERNEL);
3460 	if (!channels)
3461 		return -ENOMEM;
3462 
3463 	rates =
3464 	    kzalloc((sizeof(struct ieee80211_rate) * RATE_COUNT_LEGACY),
3465 		    GFP_KERNEL);
3466 	if (!rates) {
3467 		kfree(channels);
3468 		return -ENOMEM;
3469 	}
3470 
3471 	/* 5.2GHz channels start after the 2.4GHz channels */
3472 	sband = &il->bands[NL80211_BAND_5GHZ];
3473 	sband->channels = &channels[ARRAY_SIZE(il_eeprom_band_1)];
3474 	/* just OFDM */
3475 	sband->bitrates = &rates[IL_FIRST_OFDM_RATE];
3476 	sband->n_bitrates = RATE_COUNT_LEGACY - IL_FIRST_OFDM_RATE;
3477 
3478 	if (il->cfg->sku & IL_SKU_N)
3479 		il_init_ht_hw_capab(il, &sband->ht_cap, NL80211_BAND_5GHZ);
3480 
3481 	sband = &il->bands[NL80211_BAND_2GHZ];
3482 	sband->channels = channels;
3483 	/* OFDM & CCK */
3484 	sband->bitrates = rates;
3485 	sband->n_bitrates = RATE_COUNT_LEGACY;
3486 
3487 	if (il->cfg->sku & IL_SKU_N)
3488 		il_init_ht_hw_capab(il, &sband->ht_cap, NL80211_BAND_2GHZ);
3489 
3490 	il->ieee_channels = channels;
3491 	il->ieee_rates = rates;
3492 
3493 	for (i = 0; i < il->channel_count; i++) {
3494 		ch = &il->channel_info[i];
3495 
3496 		if (!il_is_channel_valid(ch))
3497 			continue;
3498 
3499 		sband = &il->bands[ch->band];
3500 
3501 		geo_ch = &sband->channels[sband->n_channels++];
3502 
3503 		geo_ch->center_freq =
3504 		    ieee80211_channel_to_frequency(ch->channel, ch->band);
3505 		geo_ch->max_power = ch->max_power_avg;
3506 		geo_ch->max_antenna_gain = 0xff;
3507 		geo_ch->hw_value = ch->channel;
3508 
3509 		if (il_is_channel_valid(ch)) {
3510 			if (!(ch->flags & EEPROM_CHANNEL_IBSS))
3511 				geo_ch->flags |= IEEE80211_CHAN_NO_IR;
3512 
3513 			if (!(ch->flags & EEPROM_CHANNEL_ACTIVE))
3514 				geo_ch->flags |= IEEE80211_CHAN_NO_IR;
3515 
3516 			if (ch->flags & EEPROM_CHANNEL_RADAR)
3517 				geo_ch->flags |= IEEE80211_CHAN_RADAR;
3518 
3519 			geo_ch->flags |= ch->ht40_extension_channel;
3520 
3521 			if (ch->max_power_avg > max_tx_power)
3522 				max_tx_power = ch->max_power_avg;
3523 		} else {
3524 			geo_ch->flags |= IEEE80211_CHAN_DISABLED;
3525 		}
3526 
3527 		D_INFO("Channel %d Freq=%d[%sGHz] %s flag=0x%X\n", ch->channel,
3528 		       geo_ch->center_freq,
3529 		       il_is_channel_a_band(ch) ? "5.2" : "2.4",
3530 		       geo_ch->
3531 		       flags & IEEE80211_CHAN_DISABLED ? "restricted" : "valid",
3532 		       geo_ch->flags);
3533 	}
3534 
3535 	il->tx_power_device_lmt = max_tx_power;
3536 	il->tx_power_user_lmt = max_tx_power;
3537 	il->tx_power_next = max_tx_power;
3538 
3539 	if (il->bands[NL80211_BAND_5GHZ].n_channels == 0 &&
3540 	    (il->cfg->sku & IL_SKU_A)) {
3541 		IL_INFO("Incorrectly detected BG card as ABG. "
3542 			"Please send your PCI ID 0x%04X:0x%04X to maintainer.\n",
3543 			il->pci_dev->device, il->pci_dev->subsystem_device);
3544 		il->cfg->sku &= ~IL_SKU_A;
3545 	}
3546 
3547 	IL_INFO("Tunable channels: %d 802.11bg, %d 802.11a channels\n",
3548 		il->bands[NL80211_BAND_2GHZ].n_channels,
3549 		il->bands[NL80211_BAND_5GHZ].n_channels);
3550 
3551 	set_bit(S_GEO_CONFIGURED, &il->status);
3552 
3553 	return 0;
3554 }
3555 EXPORT_SYMBOL(il_init_geos);
3556 
3557 /*
3558  * il_free_geos - undo allocations in il_init_geos
3559  */
3560 void
3561 il_free_geos(struct il_priv *il)
3562 {
3563 	kfree(il->ieee_channels);
3564 	kfree(il->ieee_rates);
3565 	clear_bit(S_GEO_CONFIGURED, &il->status);
3566 }
3567 EXPORT_SYMBOL(il_free_geos);
3568 
3569 static bool
3570 il_is_channel_extension(struct il_priv *il, enum nl80211_band band,
3571 			u16 channel, u8 extension_chan_offset)
3572 {
3573 	const struct il_channel_info *ch_info;
3574 
3575 	ch_info = il_get_channel_info(il, band, channel);
3576 	if (!il_is_channel_valid(ch_info))
3577 		return false;
3578 
3579 	if (extension_chan_offset == IEEE80211_HT_PARAM_CHA_SEC_ABOVE)
3580 		return !(ch_info->
3581 			 ht40_extension_channel & IEEE80211_CHAN_NO_HT40PLUS);
3582 	else if (extension_chan_offset == IEEE80211_HT_PARAM_CHA_SEC_BELOW)
3583 		return !(ch_info->
3584 			 ht40_extension_channel & IEEE80211_CHAN_NO_HT40MINUS);
3585 
3586 	return false;
3587 }
3588 
3589 bool
3590 il_is_ht40_tx_allowed(struct il_priv *il, struct ieee80211_sta_ht_cap *ht_cap)
3591 {
3592 	if (!il->ht.enabled || !il->ht.is_40mhz)
3593 		return false;
3594 
3595 	/*
3596 	 * We do not check for IEEE80211_HT_CAP_SUP_WIDTH_20_40
3597 	 * the bit will not set if it is pure 40MHz case
3598 	 */
3599 	if (ht_cap && !ht_cap->ht_supported)
3600 		return false;
3601 
3602 #ifdef CONFIG_IWLEGACY_DEBUGFS
3603 	if (il->disable_ht40)
3604 		return false;
3605 #endif
3606 
3607 	return il_is_channel_extension(il, il->band,
3608 				       le16_to_cpu(il->staging.channel),
3609 				       il->ht.extension_chan_offset);
3610 }
3611 EXPORT_SYMBOL(il_is_ht40_tx_allowed);
3612 
3613 static u16 noinline
3614 il_adjust_beacon_interval(u16 beacon_val, u16 max_beacon_val)
3615 {
3616 	u16 new_val;
3617 	u16 beacon_factor;
3618 
3619 	/*
3620 	 * If mac80211 hasn't given us a beacon interval, program
3621 	 * the default into the device.
3622 	 */
3623 	if (!beacon_val)
3624 		return DEFAULT_BEACON_INTERVAL;
3625 
3626 	/*
3627 	 * If the beacon interval we obtained from the peer
3628 	 * is too large, we'll have to wake up more often
3629 	 * (and in IBSS case, we'll beacon too much)
3630 	 *
3631 	 * For example, if max_beacon_val is 4096, and the
3632 	 * requested beacon interval is 7000, we'll have to
3633 	 * use 3500 to be able to wake up on the beacons.
3634 	 *
3635 	 * This could badly influence beacon detection stats.
3636 	 */
3637 
3638 	beacon_factor = (beacon_val + max_beacon_val) / max_beacon_val;
3639 	new_val = beacon_val / beacon_factor;
3640 
3641 	if (!new_val)
3642 		new_val = max_beacon_val;
3643 
3644 	return new_val;
3645 }
3646 
3647 int
3648 il_send_rxon_timing(struct il_priv *il)
3649 {
3650 	u64 tsf;
3651 	s32 interval_tm, rem;
3652 	struct ieee80211_conf *conf = NULL;
3653 	u16 beacon_int;
3654 	struct ieee80211_vif *vif = il->vif;
3655 
3656 	conf = &il->hw->conf;
3657 
3658 	lockdep_assert_held(&il->mutex);
3659 
3660 	memset(&il->timing, 0, sizeof(struct il_rxon_time_cmd));
3661 
3662 	il->timing.timestamp = cpu_to_le64(il->timestamp);
3663 	il->timing.listen_interval = cpu_to_le16(conf->listen_interval);
3664 
3665 	beacon_int = vif ? vif->bss_conf.beacon_int : 0;
3666 
3667 	/*
3668 	 * TODO: For IBSS we need to get atim_win from mac80211,
3669 	 *       for now just always use 0
3670 	 */
3671 	il->timing.atim_win = 0;
3672 
3673 	beacon_int =
3674 	    il_adjust_beacon_interval(beacon_int,
3675 				      il->hw_params.max_beacon_itrvl *
3676 				      TIME_UNIT);
3677 	il->timing.beacon_interval = cpu_to_le16(beacon_int);
3678 
3679 	tsf = il->timestamp;	/* tsf is modifed by do_div: copy it */
3680 	interval_tm = beacon_int * TIME_UNIT;
3681 	rem = do_div(tsf, interval_tm);
3682 	il->timing.beacon_init_val = cpu_to_le32(interval_tm - rem);
3683 
3684 	il->timing.dtim_period = vif ? (vif->bss_conf.dtim_period ? : 1) : 1;
3685 
3686 	D_ASSOC("beacon interval %d beacon timer %d beacon tim %d\n",
3687 		le16_to_cpu(il->timing.beacon_interval),
3688 		le32_to_cpu(il->timing.beacon_init_val),
3689 		le16_to_cpu(il->timing.atim_win));
3690 
3691 	return il_send_cmd_pdu(il, C_RXON_TIMING, sizeof(il->timing),
3692 			       &il->timing);
3693 }
3694 EXPORT_SYMBOL(il_send_rxon_timing);
3695 
3696 void
3697 il_set_rxon_hwcrypto(struct il_priv *il, int hw_decrypt)
3698 {
3699 	struct il_rxon_cmd *rxon = &il->staging;
3700 
3701 	if (hw_decrypt)
3702 		rxon->filter_flags &= ~RXON_FILTER_DIS_DECRYPT_MSK;
3703 	else
3704 		rxon->filter_flags |= RXON_FILTER_DIS_DECRYPT_MSK;
3705 
3706 }
3707 EXPORT_SYMBOL(il_set_rxon_hwcrypto);
3708 
3709 /* validate RXON structure is valid */
3710 int
3711 il_check_rxon_cmd(struct il_priv *il)
3712 {
3713 	struct il_rxon_cmd *rxon = &il->staging;
3714 	bool error = false;
3715 
3716 	if (rxon->flags & RXON_FLG_BAND_24G_MSK) {
3717 		if (rxon->flags & RXON_FLG_TGJ_NARROW_BAND_MSK) {
3718 			IL_WARN("check 2.4G: wrong narrow\n");
3719 			error = true;
3720 		}
3721 		if (rxon->flags & RXON_FLG_RADAR_DETECT_MSK) {
3722 			IL_WARN("check 2.4G: wrong radar\n");
3723 			error = true;
3724 		}
3725 	} else {
3726 		if (!(rxon->flags & RXON_FLG_SHORT_SLOT_MSK)) {
3727 			IL_WARN("check 5.2G: not short slot!\n");
3728 			error = true;
3729 		}
3730 		if (rxon->flags & RXON_FLG_CCK_MSK) {
3731 			IL_WARN("check 5.2G: CCK!\n");
3732 			error = true;
3733 		}
3734 	}
3735 	if ((rxon->node_addr[0] | rxon->bssid_addr[0]) & 0x1) {
3736 		IL_WARN("mac/bssid mcast!\n");
3737 		error = true;
3738 	}
3739 
3740 	/* make sure basic rates 6Mbps and 1Mbps are supported */
3741 	if ((rxon->ofdm_basic_rates & RATE_6M_MASK) == 0 &&
3742 	    (rxon->cck_basic_rates & RATE_1M_MASK) == 0) {
3743 		IL_WARN("neither 1 nor 6 are basic\n");
3744 		error = true;
3745 	}
3746 
3747 	if (le16_to_cpu(rxon->assoc_id) > 2007) {
3748 		IL_WARN("aid > 2007\n");
3749 		error = true;
3750 	}
3751 
3752 	if ((rxon->flags & (RXON_FLG_CCK_MSK | RXON_FLG_SHORT_SLOT_MSK)) ==
3753 	    (RXON_FLG_CCK_MSK | RXON_FLG_SHORT_SLOT_MSK)) {
3754 		IL_WARN("CCK and short slot\n");
3755 		error = true;
3756 	}
3757 
3758 	if ((rxon->flags & (RXON_FLG_CCK_MSK | RXON_FLG_AUTO_DETECT_MSK)) ==
3759 	    (RXON_FLG_CCK_MSK | RXON_FLG_AUTO_DETECT_MSK)) {
3760 		IL_WARN("CCK and auto detect");
3761 		error = true;
3762 	}
3763 
3764 	if ((rxon->
3765 	     flags & (RXON_FLG_AUTO_DETECT_MSK | RXON_FLG_TGG_PROTECT_MSK)) ==
3766 	    RXON_FLG_TGG_PROTECT_MSK) {
3767 		IL_WARN("TGg but no auto-detect\n");
3768 		error = true;
3769 	}
3770 
3771 	if (error)
3772 		IL_WARN("Tuning to channel %d\n", le16_to_cpu(rxon->channel));
3773 
3774 	if (error) {
3775 		IL_ERR("Invalid RXON\n");
3776 		return -EINVAL;
3777 	}
3778 	return 0;
3779 }
3780 EXPORT_SYMBOL(il_check_rxon_cmd);
3781 
3782 /**
3783  * il_full_rxon_required - check if full RXON (vs RXON_ASSOC) cmd is needed
3784  * @il: staging_rxon is compared to active_rxon
3785  *
3786  * If the RXON structure is changing enough to require a new tune,
3787  * or is clearing the RXON_FILTER_ASSOC_MSK, then return 1 to indicate that
3788  * a new tune (full RXON command, rather than RXON_ASSOC cmd) is required.
3789  */
3790 int
3791 il_full_rxon_required(struct il_priv *il)
3792 {
3793 	const struct il_rxon_cmd *staging = &il->staging;
3794 	const struct il_rxon_cmd *active = &il->active;
3795 
3796 #define CHK(cond)							\
3797 	if ((cond)) {							\
3798 		D_INFO("need full RXON - " #cond "\n");	\
3799 		return 1;						\
3800 	}
3801 
3802 #define CHK_NEQ(c1, c2)						\
3803 	if ((c1) != (c2)) {					\
3804 		D_INFO("need full RXON - "	\
3805 			       #c1 " != " #c2 " - %d != %d\n",	\
3806 			       (c1), (c2));			\
3807 		return 1;					\
3808 	}
3809 
3810 	/* These items are only settable from the full RXON command */
3811 	CHK(!il_is_associated(il));
3812 	CHK(!ether_addr_equal_64bits(staging->bssid_addr, active->bssid_addr));
3813 	CHK(!ether_addr_equal_64bits(staging->node_addr, active->node_addr));
3814 	CHK(!ether_addr_equal_64bits(staging->wlap_bssid_addr,
3815 				     active->wlap_bssid_addr));
3816 	CHK_NEQ(staging->dev_type, active->dev_type);
3817 	CHK_NEQ(staging->channel, active->channel);
3818 	CHK_NEQ(staging->air_propagation, active->air_propagation);
3819 	CHK_NEQ(staging->ofdm_ht_single_stream_basic_rates,
3820 		active->ofdm_ht_single_stream_basic_rates);
3821 	CHK_NEQ(staging->ofdm_ht_dual_stream_basic_rates,
3822 		active->ofdm_ht_dual_stream_basic_rates);
3823 	CHK_NEQ(staging->assoc_id, active->assoc_id);
3824 
3825 	/* flags, filter_flags, ofdm_basic_rates, and cck_basic_rates can
3826 	 * be updated with the RXON_ASSOC command -- however only some
3827 	 * flag transitions are allowed using RXON_ASSOC */
3828 
3829 	/* Check if we are not switching bands */
3830 	CHK_NEQ(staging->flags & RXON_FLG_BAND_24G_MSK,
3831 		active->flags & RXON_FLG_BAND_24G_MSK);
3832 
3833 	/* Check if we are switching association toggle */
3834 	CHK_NEQ(staging->filter_flags & RXON_FILTER_ASSOC_MSK,
3835 		active->filter_flags & RXON_FILTER_ASSOC_MSK);
3836 
3837 #undef CHK
3838 #undef CHK_NEQ
3839 
3840 	return 0;
3841 }
3842 EXPORT_SYMBOL(il_full_rxon_required);
3843 
3844 u8
3845 il_get_lowest_plcp(struct il_priv *il)
3846 {
3847 	/*
3848 	 * Assign the lowest rate -- should really get this from
3849 	 * the beacon skb from mac80211.
3850 	 */
3851 	if (il->staging.flags & RXON_FLG_BAND_24G_MSK)
3852 		return RATE_1M_PLCP;
3853 	else
3854 		return RATE_6M_PLCP;
3855 }
3856 EXPORT_SYMBOL(il_get_lowest_plcp);
3857 
3858 static void
3859 _il_set_rxon_ht(struct il_priv *il, struct il_ht_config *ht_conf)
3860 {
3861 	struct il_rxon_cmd *rxon = &il->staging;
3862 
3863 	if (!il->ht.enabled) {
3864 		rxon->flags &=
3865 		    ~(RXON_FLG_CHANNEL_MODE_MSK |
3866 		      RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK | RXON_FLG_HT40_PROT_MSK
3867 		      | RXON_FLG_HT_PROT_MSK);
3868 		return;
3869 	}
3870 
3871 	rxon->flags |=
3872 	    cpu_to_le32(il->ht.protection << RXON_FLG_HT_OPERATING_MODE_POS);
3873 
3874 	/* Set up channel bandwidth:
3875 	 * 20 MHz only, 20/40 mixed or pure 40 if ht40 ok */
3876 	/* clear the HT channel mode before set the mode */
3877 	rxon->flags &=
3878 	    ~(RXON_FLG_CHANNEL_MODE_MSK | RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK);
3879 	if (il_is_ht40_tx_allowed(il, NULL)) {
3880 		/* pure ht40 */
3881 		if (il->ht.protection == IEEE80211_HT_OP_MODE_PROTECTION_20MHZ) {
3882 			rxon->flags |= RXON_FLG_CHANNEL_MODE_PURE_40;
3883 			/* Note: control channel is opposite of extension channel */
3884 			switch (il->ht.extension_chan_offset) {
3885 			case IEEE80211_HT_PARAM_CHA_SEC_ABOVE:
3886 				rxon->flags &=
3887 				    ~RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK;
3888 				break;
3889 			case IEEE80211_HT_PARAM_CHA_SEC_BELOW:
3890 				rxon->flags |= RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK;
3891 				break;
3892 			}
3893 		} else {
3894 			/* Note: control channel is opposite of extension channel */
3895 			switch (il->ht.extension_chan_offset) {
3896 			case IEEE80211_HT_PARAM_CHA_SEC_ABOVE:
3897 				rxon->flags &=
3898 				    ~(RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK);
3899 				rxon->flags |= RXON_FLG_CHANNEL_MODE_MIXED;
3900 				break;
3901 			case IEEE80211_HT_PARAM_CHA_SEC_BELOW:
3902 				rxon->flags |= RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK;
3903 				rxon->flags |= RXON_FLG_CHANNEL_MODE_MIXED;
3904 				break;
3905 			case IEEE80211_HT_PARAM_CHA_SEC_NONE:
3906 			default:
3907 				/* channel location only valid if in Mixed mode */
3908 				IL_ERR("invalid extension channel offset\n");
3909 				break;
3910 			}
3911 		}
3912 	} else {
3913 		rxon->flags |= RXON_FLG_CHANNEL_MODE_LEGACY;
3914 	}
3915 
3916 	if (il->ops->set_rxon_chain)
3917 		il->ops->set_rxon_chain(il);
3918 
3919 	D_ASSOC("rxon flags 0x%X operation mode :0x%X "
3920 		"extension channel offset 0x%x\n", le32_to_cpu(rxon->flags),
3921 		il->ht.protection, il->ht.extension_chan_offset);
3922 }
3923 
3924 void
3925 il_set_rxon_ht(struct il_priv *il, struct il_ht_config *ht_conf)
3926 {
3927 	_il_set_rxon_ht(il, ht_conf);
3928 }
3929 EXPORT_SYMBOL(il_set_rxon_ht);
3930 
3931 /* Return valid, unused, channel for a passive scan to reset the RF */
3932 u8
3933 il_get_single_channel_number(struct il_priv *il, enum nl80211_band band)
3934 {
3935 	const struct il_channel_info *ch_info;
3936 	int i;
3937 	u8 channel = 0;
3938 	u8 min, max;
3939 
3940 	if (band == NL80211_BAND_5GHZ) {
3941 		min = 14;
3942 		max = il->channel_count;
3943 	} else {
3944 		min = 0;
3945 		max = 14;
3946 	}
3947 
3948 	for (i = min; i < max; i++) {
3949 		channel = il->channel_info[i].channel;
3950 		if (channel == le16_to_cpu(il->staging.channel))
3951 			continue;
3952 
3953 		ch_info = il_get_channel_info(il, band, channel);
3954 		if (il_is_channel_valid(ch_info))
3955 			break;
3956 	}
3957 
3958 	return channel;
3959 }
3960 EXPORT_SYMBOL(il_get_single_channel_number);
3961 
3962 /**
3963  * il_set_rxon_channel - Set the band and channel values in staging RXON
3964  * @ch: requested channel as a pointer to struct ieee80211_channel
3965 
3966  * NOTE:  Does not commit to the hardware; it sets appropriate bit fields
3967  * in the staging RXON flag structure based on the ch->band
3968  */
3969 int
3970 il_set_rxon_channel(struct il_priv *il, struct ieee80211_channel *ch)
3971 {
3972 	enum nl80211_band band = ch->band;
3973 	u16 channel = ch->hw_value;
3974 
3975 	if (le16_to_cpu(il->staging.channel) == channel && il->band == band)
3976 		return 0;
3977 
3978 	il->staging.channel = cpu_to_le16(channel);
3979 	if (band == NL80211_BAND_5GHZ)
3980 		il->staging.flags &= ~RXON_FLG_BAND_24G_MSK;
3981 	else
3982 		il->staging.flags |= RXON_FLG_BAND_24G_MSK;
3983 
3984 	il->band = band;
3985 
3986 	D_INFO("Staging channel set to %d [%d]\n", channel, band);
3987 
3988 	return 0;
3989 }
3990 EXPORT_SYMBOL(il_set_rxon_channel);
3991 
3992 void
3993 il_set_flags_for_band(struct il_priv *il, enum nl80211_band band,
3994 		      struct ieee80211_vif *vif)
3995 {
3996 	if (band == NL80211_BAND_5GHZ) {
3997 		il->staging.flags &=
3998 		    ~(RXON_FLG_BAND_24G_MSK | RXON_FLG_AUTO_DETECT_MSK |
3999 		      RXON_FLG_CCK_MSK);
4000 		il->staging.flags |= RXON_FLG_SHORT_SLOT_MSK;
4001 	} else {
4002 		/* Copied from il_post_associate() */
4003 		if (vif && vif->bss_conf.use_short_slot)
4004 			il->staging.flags |= RXON_FLG_SHORT_SLOT_MSK;
4005 		else
4006 			il->staging.flags &= ~RXON_FLG_SHORT_SLOT_MSK;
4007 
4008 		il->staging.flags |= RXON_FLG_BAND_24G_MSK;
4009 		il->staging.flags |= RXON_FLG_AUTO_DETECT_MSK;
4010 		il->staging.flags &= ~RXON_FLG_CCK_MSK;
4011 	}
4012 }
4013 EXPORT_SYMBOL(il_set_flags_for_band);
4014 
4015 /*
4016  * initialize rxon structure with default values from eeprom
4017  */
4018 void
4019 il_connection_init_rx_config(struct il_priv *il)
4020 {
4021 	const struct il_channel_info *ch_info;
4022 
4023 	memset(&il->staging, 0, sizeof(il->staging));
4024 
4025 	switch (il->iw_mode) {
4026 	case NL80211_IFTYPE_UNSPECIFIED:
4027 		il->staging.dev_type = RXON_DEV_TYPE_ESS;
4028 		break;
4029 	case NL80211_IFTYPE_STATION:
4030 		il->staging.dev_type = RXON_DEV_TYPE_ESS;
4031 		il->staging.filter_flags = RXON_FILTER_ACCEPT_GRP_MSK;
4032 		break;
4033 	case NL80211_IFTYPE_ADHOC:
4034 		il->staging.dev_type = RXON_DEV_TYPE_IBSS;
4035 		il->staging.flags = RXON_FLG_SHORT_PREAMBLE_MSK;
4036 		il->staging.filter_flags =
4037 		    RXON_FILTER_BCON_AWARE_MSK | RXON_FILTER_ACCEPT_GRP_MSK;
4038 		break;
4039 	default:
4040 		IL_ERR("Unsupported interface type %d\n", il->vif->type);
4041 		return;
4042 	}
4043 
4044 #if 0
4045 	/* TODO:  Figure out when short_preamble would be set and cache from
4046 	 * that */
4047 	if (!hw_to_local(il->hw)->short_preamble)
4048 		il->staging.flags &= ~RXON_FLG_SHORT_PREAMBLE_MSK;
4049 	else
4050 		il->staging.flags |= RXON_FLG_SHORT_PREAMBLE_MSK;
4051 #endif
4052 
4053 	ch_info =
4054 	    il_get_channel_info(il, il->band, le16_to_cpu(il->active.channel));
4055 
4056 	if (!ch_info)
4057 		ch_info = &il->channel_info[0];
4058 
4059 	il->staging.channel = cpu_to_le16(ch_info->channel);
4060 	il->band = ch_info->band;
4061 
4062 	il_set_flags_for_band(il, il->band, il->vif);
4063 
4064 	il->staging.ofdm_basic_rates =
4065 	    (IL_OFDM_RATES_MASK >> IL_FIRST_OFDM_RATE) & 0xFF;
4066 	il->staging.cck_basic_rates =
4067 	    (IL_CCK_RATES_MASK >> IL_FIRST_CCK_RATE) & 0xF;
4068 
4069 	/* clear both MIX and PURE40 mode flag */
4070 	il->staging.flags &=
4071 	    ~(RXON_FLG_CHANNEL_MODE_MIXED | RXON_FLG_CHANNEL_MODE_PURE_40);
4072 	if (il->vif)
4073 		memcpy(il->staging.node_addr, il->vif->addr, ETH_ALEN);
4074 
4075 	il->staging.ofdm_ht_single_stream_basic_rates = 0xff;
4076 	il->staging.ofdm_ht_dual_stream_basic_rates = 0xff;
4077 }
4078 EXPORT_SYMBOL(il_connection_init_rx_config);
4079 
4080 void
4081 il_set_rate(struct il_priv *il)
4082 {
4083 	const struct ieee80211_supported_band *hw = NULL;
4084 	struct ieee80211_rate *rate;
4085 	int i;
4086 
4087 	hw = il_get_hw_mode(il, il->band);
4088 	if (!hw) {
4089 		IL_ERR("Failed to set rate: unable to get hw mode\n");
4090 		return;
4091 	}
4092 
4093 	il->active_rate = 0;
4094 
4095 	for (i = 0; i < hw->n_bitrates; i++) {
4096 		rate = &(hw->bitrates[i]);
4097 		if (rate->hw_value < RATE_COUNT_LEGACY)
4098 			il->active_rate |= (1 << rate->hw_value);
4099 	}
4100 
4101 	D_RATE("Set active_rate = %0x\n", il->active_rate);
4102 
4103 	il->staging.cck_basic_rates =
4104 	    (IL_CCK_BASIC_RATES_MASK >> IL_FIRST_CCK_RATE) & 0xF;
4105 
4106 	il->staging.ofdm_basic_rates =
4107 	    (IL_OFDM_BASIC_RATES_MASK >> IL_FIRST_OFDM_RATE) & 0xFF;
4108 }
4109 EXPORT_SYMBOL(il_set_rate);
4110 
4111 void
4112 il_chswitch_done(struct il_priv *il, bool is_success)
4113 {
4114 	if (test_bit(S_EXIT_PENDING, &il->status))
4115 		return;
4116 
4117 	if (test_and_clear_bit(S_CHANNEL_SWITCH_PENDING, &il->status))
4118 		ieee80211_chswitch_done(il->vif, is_success);
4119 }
4120 EXPORT_SYMBOL(il_chswitch_done);
4121 
4122 void
4123 il_hdl_csa(struct il_priv *il, struct il_rx_buf *rxb)
4124 {
4125 	struct il_rx_pkt *pkt = rxb_addr(rxb);
4126 	struct il_csa_notification *csa = &(pkt->u.csa_notif);
4127 	struct il_rxon_cmd *rxon = (void *)&il->active;
4128 
4129 	if (!test_bit(S_CHANNEL_SWITCH_PENDING, &il->status))
4130 		return;
4131 
4132 	if (!le32_to_cpu(csa->status) && csa->channel == il->switch_channel) {
4133 		rxon->channel = csa->channel;
4134 		il->staging.channel = csa->channel;
4135 		D_11H("CSA notif: channel %d\n", le16_to_cpu(csa->channel));
4136 		il_chswitch_done(il, true);
4137 	} else {
4138 		IL_ERR("CSA notif (fail) : channel %d\n",
4139 		       le16_to_cpu(csa->channel));
4140 		il_chswitch_done(il, false);
4141 	}
4142 }
4143 EXPORT_SYMBOL(il_hdl_csa);
4144 
4145 #ifdef CONFIG_IWLEGACY_DEBUG
4146 void
4147 il_print_rx_config_cmd(struct il_priv *il)
4148 {
4149 	struct il_rxon_cmd *rxon = &il->staging;
4150 
4151 	D_RADIO("RX CONFIG:\n");
4152 	il_print_hex_dump(il, IL_DL_RADIO, (u8 *) rxon, sizeof(*rxon));
4153 	D_RADIO("u16 channel: 0x%x\n", le16_to_cpu(rxon->channel));
4154 	D_RADIO("u32 flags: 0x%08X\n", le32_to_cpu(rxon->flags));
4155 	D_RADIO("u32 filter_flags: 0x%08x\n", le32_to_cpu(rxon->filter_flags));
4156 	D_RADIO("u8 dev_type: 0x%x\n", rxon->dev_type);
4157 	D_RADIO("u8 ofdm_basic_rates: 0x%02x\n", rxon->ofdm_basic_rates);
4158 	D_RADIO("u8 cck_basic_rates: 0x%02x\n", rxon->cck_basic_rates);
4159 	D_RADIO("u8[6] node_addr: %pM\n", rxon->node_addr);
4160 	D_RADIO("u8[6] bssid_addr: %pM\n", rxon->bssid_addr);
4161 	D_RADIO("u16 assoc_id: 0x%x\n", le16_to_cpu(rxon->assoc_id));
4162 }
4163 EXPORT_SYMBOL(il_print_rx_config_cmd);
4164 #endif
4165 /**
4166  * il_irq_handle_error - called for HW or SW error interrupt from card
4167  */
4168 void
4169 il_irq_handle_error(struct il_priv *il)
4170 {
4171 	/* Set the FW error flag -- cleared on il_down */
4172 	set_bit(S_FW_ERROR, &il->status);
4173 
4174 	/* Cancel currently queued command. */
4175 	clear_bit(S_HCMD_ACTIVE, &il->status);
4176 
4177 	IL_ERR("Loaded firmware version: %s\n", il->hw->wiphy->fw_version);
4178 
4179 	il->ops->dump_nic_error_log(il);
4180 	if (il->ops->dump_fh)
4181 		il->ops->dump_fh(il, NULL, false);
4182 #ifdef CONFIG_IWLEGACY_DEBUG
4183 	if (il_get_debug_level(il) & IL_DL_FW_ERRORS)
4184 		il_print_rx_config_cmd(il);
4185 #endif
4186 
4187 	wake_up(&il->wait_command_queue);
4188 
4189 	/* Keep the restart process from trying to send host
4190 	 * commands by clearing the INIT status bit */
4191 	clear_bit(S_READY, &il->status);
4192 
4193 	if (!test_bit(S_EXIT_PENDING, &il->status)) {
4194 		IL_DBG(IL_DL_FW_ERRORS,
4195 		       "Restarting adapter due to uCode error.\n");
4196 
4197 		if (il->cfg->mod_params->restart_fw)
4198 			queue_work(il->workqueue, &il->restart);
4199 	}
4200 }
4201 EXPORT_SYMBOL(il_irq_handle_error);
4202 
4203 static int
4204 _il_apm_stop_master(struct il_priv *il)
4205 {
4206 	int ret = 0;
4207 
4208 	/* stop device's busmaster DMA activity */
4209 	_il_set_bit(il, CSR_RESET, CSR_RESET_REG_FLAG_STOP_MASTER);
4210 
4211 	ret =
4212 	    _il_poll_bit(il, CSR_RESET, CSR_RESET_REG_FLAG_MASTER_DISABLED,
4213 			 CSR_RESET_REG_FLAG_MASTER_DISABLED, 100);
4214 	if (ret < 0)
4215 		IL_WARN("Master Disable Timed Out, 100 usec\n");
4216 
4217 	D_INFO("stop master\n");
4218 
4219 	return ret;
4220 }
4221 
4222 void
4223 _il_apm_stop(struct il_priv *il)
4224 {
4225 	lockdep_assert_held(&il->reg_lock);
4226 
4227 	D_INFO("Stop card, put in low power state\n");
4228 
4229 	/* Stop device's DMA activity */
4230 	_il_apm_stop_master(il);
4231 
4232 	/* Reset the entire device */
4233 	_il_set_bit(il, CSR_RESET, CSR_RESET_REG_FLAG_SW_RESET);
4234 
4235 	udelay(10);
4236 
4237 	/*
4238 	 * Clear "initialization complete" bit to move adapter from
4239 	 * D0A* (powered-up Active) --> D0U* (Uninitialized) state.
4240 	 */
4241 	_il_clear_bit(il, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
4242 }
4243 EXPORT_SYMBOL(_il_apm_stop);
4244 
4245 void
4246 il_apm_stop(struct il_priv *il)
4247 {
4248 	unsigned long flags;
4249 
4250 	spin_lock_irqsave(&il->reg_lock, flags);
4251 	_il_apm_stop(il);
4252 	spin_unlock_irqrestore(&il->reg_lock, flags);
4253 }
4254 EXPORT_SYMBOL(il_apm_stop);
4255 
4256 /*
4257  * Start up NIC's basic functionality after it has been reset
4258  * (e.g. after platform boot, or shutdown via il_apm_stop())
4259  * NOTE:  This does not load uCode nor start the embedded processor
4260  */
4261 int
4262 il_apm_init(struct il_priv *il)
4263 {
4264 	int ret = 0;
4265 	u16 lctl;
4266 
4267 	D_INFO("Init card's basic functions\n");
4268 
4269 	/*
4270 	 * Use "set_bit" below rather than "write", to preserve any hardware
4271 	 * bits already set by default after reset.
4272 	 */
4273 
4274 	/* Disable L0S exit timer (platform NMI Work/Around) */
4275 	il_set_bit(il, CSR_GIO_CHICKEN_BITS,
4276 		   CSR_GIO_CHICKEN_BITS_REG_BIT_DIS_L0S_EXIT_TIMER);
4277 
4278 	/*
4279 	 * Disable L0s without affecting L1;
4280 	 *  don't wait for ICH L0s (ICH bug W/A)
4281 	 */
4282 	il_set_bit(il, CSR_GIO_CHICKEN_BITS,
4283 		   CSR_GIO_CHICKEN_BITS_REG_BIT_L1A_NO_L0S_RX);
4284 
4285 	/* Set FH wait threshold to maximum (HW error during stress W/A) */
4286 	il_set_bit(il, CSR_DBG_HPET_MEM_REG, CSR_DBG_HPET_MEM_REG_VAL);
4287 
4288 	/*
4289 	 * Enable HAP INTA (interrupt from management bus) to
4290 	 * wake device's PCI Express link L1a -> L0s
4291 	 * NOTE:  This is no-op for 3945 (non-existent bit)
4292 	 */
4293 	il_set_bit(il, CSR_HW_IF_CONFIG_REG,
4294 		   CSR_HW_IF_CONFIG_REG_BIT_HAP_WAKE_L1A);
4295 
4296 	/*
4297 	 * HW bug W/A for instability in PCIe bus L0->L0S->L1 transition.
4298 	 * Check if BIOS (or OS) enabled L1-ASPM on this device.
4299 	 * If so (likely), disable L0S, so device moves directly L0->L1;
4300 	 *    costs negligible amount of power savings.
4301 	 * If not (unlikely), enable L0S, so there is at least some
4302 	 *    power savings, even without L1.
4303 	 */
4304 	if (il->cfg->set_l0s) {
4305 		pcie_capability_read_word(il->pci_dev, PCI_EXP_LNKCTL, &lctl);
4306 		if (lctl & PCI_EXP_LNKCTL_ASPM_L1) {
4307 			/* L1-ASPM enabled; disable(!) L0S  */
4308 			il_set_bit(il, CSR_GIO_REG,
4309 				   CSR_GIO_REG_VAL_L0S_ENABLED);
4310 			D_POWER("L1 Enabled; Disabling L0S\n");
4311 		} else {
4312 			/* L1-ASPM disabled; enable(!) L0S */
4313 			il_clear_bit(il, CSR_GIO_REG,
4314 				     CSR_GIO_REG_VAL_L0S_ENABLED);
4315 			D_POWER("L1 Disabled; Enabling L0S\n");
4316 		}
4317 	}
4318 
4319 	/* Configure analog phase-lock-loop before activating to D0A */
4320 	if (il->cfg->pll_cfg_val)
4321 		il_set_bit(il, CSR_ANA_PLL_CFG,
4322 			   il->cfg->pll_cfg_val);
4323 
4324 	/*
4325 	 * Set "initialization complete" bit to move adapter from
4326 	 * D0U* --> D0A* (powered-up active) state.
4327 	 */
4328 	il_set_bit(il, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
4329 
4330 	/*
4331 	 * Wait for clock stabilization; once stabilized, access to
4332 	 * device-internal resources is supported, e.g. il_wr_prph()
4333 	 * and accesses to uCode SRAM.
4334 	 */
4335 	ret =
4336 	    _il_poll_bit(il, CSR_GP_CNTRL,
4337 			 CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
4338 			 CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, 25000);
4339 	if (ret < 0) {
4340 		D_INFO("Failed to init the card\n");
4341 		goto out;
4342 	}
4343 
4344 	/*
4345 	 * Enable DMA and BSM (if used) clocks, wait for them to stabilize.
4346 	 * BSM (Boostrap State Machine) is only in 3945 and 4965.
4347 	 *
4348 	 * Write to "CLK_EN_REG"; "1" bits enable clocks, while "0" bits
4349 	 * do not disable clocks.  This preserves any hardware bits already
4350 	 * set by default in "CLK_CTRL_REG" after reset.
4351 	 */
4352 	if (il->cfg->use_bsm)
4353 		il_wr_prph(il, APMG_CLK_EN_REG,
4354 			   APMG_CLK_VAL_DMA_CLK_RQT | APMG_CLK_VAL_BSM_CLK_RQT);
4355 	else
4356 		il_wr_prph(il, APMG_CLK_EN_REG, APMG_CLK_VAL_DMA_CLK_RQT);
4357 	udelay(20);
4358 
4359 	/* Disable L1-Active */
4360 	il_set_bits_prph(il, APMG_PCIDEV_STT_REG,
4361 			 APMG_PCIDEV_STT_VAL_L1_ACT_DIS);
4362 
4363 out:
4364 	return ret;
4365 }
4366 EXPORT_SYMBOL(il_apm_init);
4367 
4368 int
4369 il_set_tx_power(struct il_priv *il, s8 tx_power, bool force)
4370 {
4371 	int ret;
4372 	s8 prev_tx_power;
4373 	bool defer;
4374 
4375 	lockdep_assert_held(&il->mutex);
4376 
4377 	if (il->tx_power_user_lmt == tx_power && !force)
4378 		return 0;
4379 
4380 	if (!il->ops->send_tx_power)
4381 		return -EOPNOTSUPP;
4382 
4383 	/* 0 dBm mean 1 milliwatt */
4384 	if (tx_power < 0) {
4385 		IL_WARN("Requested user TXPOWER %d below 1 mW.\n", tx_power);
4386 		return -EINVAL;
4387 	}
4388 
4389 	if (tx_power > il->tx_power_device_lmt) {
4390 		IL_WARN("Requested user TXPOWER %d above upper limit %d.\n",
4391 			tx_power, il->tx_power_device_lmt);
4392 		return -EINVAL;
4393 	}
4394 
4395 	if (!il_is_ready_rf(il))
4396 		return -EIO;
4397 
4398 	/* scan complete and commit_rxon use tx_power_next value,
4399 	 * it always need to be updated for newest request */
4400 	il->tx_power_next = tx_power;
4401 
4402 	/* do not set tx power when scanning or channel changing */
4403 	defer = test_bit(S_SCANNING, &il->status) ||
4404 	    memcmp(&il->active, &il->staging, sizeof(il->staging));
4405 	if (defer && !force) {
4406 		D_INFO("Deferring tx power set\n");
4407 		return 0;
4408 	}
4409 
4410 	prev_tx_power = il->tx_power_user_lmt;
4411 	il->tx_power_user_lmt = tx_power;
4412 
4413 	ret = il->ops->send_tx_power(il);
4414 
4415 	/* if fail to set tx_power, restore the orig. tx power */
4416 	if (ret) {
4417 		il->tx_power_user_lmt = prev_tx_power;
4418 		il->tx_power_next = prev_tx_power;
4419 	}
4420 	return ret;
4421 }
4422 EXPORT_SYMBOL(il_set_tx_power);
4423 
4424 void
4425 il_send_bt_config(struct il_priv *il)
4426 {
4427 	struct il_bt_cmd bt_cmd = {
4428 		.lead_time = BT_LEAD_TIME_DEF,
4429 		.max_kill = BT_MAX_KILL_DEF,
4430 		.kill_ack_mask = 0,
4431 		.kill_cts_mask = 0,
4432 	};
4433 
4434 	if (!bt_coex_active)
4435 		bt_cmd.flags = BT_COEX_DISABLE;
4436 	else
4437 		bt_cmd.flags = BT_COEX_ENABLE;
4438 
4439 	D_INFO("BT coex %s\n",
4440 	       (bt_cmd.flags == BT_COEX_DISABLE) ? "disable" : "active");
4441 
4442 	if (il_send_cmd_pdu(il, C_BT_CONFIG, sizeof(struct il_bt_cmd), &bt_cmd))
4443 		IL_ERR("failed to send BT Coex Config\n");
4444 }
4445 EXPORT_SYMBOL(il_send_bt_config);
4446 
4447 int
4448 il_send_stats_request(struct il_priv *il, u8 flags, bool clear)
4449 {
4450 	struct il_stats_cmd stats_cmd = {
4451 		.configuration_flags = clear ? IL_STATS_CONF_CLEAR_STATS : 0,
4452 	};
4453 
4454 	if (flags & CMD_ASYNC)
4455 		return il_send_cmd_pdu_async(il, C_STATS, sizeof(struct il_stats_cmd),
4456 					     &stats_cmd, NULL);
4457 	else
4458 		return il_send_cmd_pdu(il, C_STATS, sizeof(struct il_stats_cmd),
4459 				       &stats_cmd);
4460 }
4461 EXPORT_SYMBOL(il_send_stats_request);
4462 
4463 void
4464 il_hdl_pm_sleep(struct il_priv *il, struct il_rx_buf *rxb)
4465 {
4466 #ifdef CONFIG_IWLEGACY_DEBUG
4467 	struct il_rx_pkt *pkt = rxb_addr(rxb);
4468 	struct il_sleep_notification *sleep = &(pkt->u.sleep_notif);
4469 	D_RX("sleep mode: %d, src: %d\n",
4470 	     sleep->pm_sleep_mode, sleep->pm_wakeup_src);
4471 #endif
4472 }
4473 EXPORT_SYMBOL(il_hdl_pm_sleep);
4474 
4475 void
4476 il_hdl_pm_debug_stats(struct il_priv *il, struct il_rx_buf *rxb)
4477 {
4478 	struct il_rx_pkt *pkt = rxb_addr(rxb);
4479 	u32 len = le32_to_cpu(pkt->len_n_flags) & IL_RX_FRAME_SIZE_MSK;
4480 	D_RADIO("Dumping %d bytes of unhandled notification for %s:\n", len,
4481 		il_get_cmd_string(pkt->hdr.cmd));
4482 	il_print_hex_dump(il, IL_DL_RADIO, pkt->u.raw, len);
4483 }
4484 EXPORT_SYMBOL(il_hdl_pm_debug_stats);
4485 
4486 void
4487 il_hdl_error(struct il_priv *il, struct il_rx_buf *rxb)
4488 {
4489 	struct il_rx_pkt *pkt = rxb_addr(rxb);
4490 
4491 	IL_ERR("Error Reply type 0x%08X cmd %s (0x%02X) "
4492 	       "seq 0x%04X ser 0x%08X\n",
4493 	       le32_to_cpu(pkt->u.err_resp.error_type),
4494 	       il_get_cmd_string(pkt->u.err_resp.cmd_id),
4495 	       pkt->u.err_resp.cmd_id,
4496 	       le16_to_cpu(pkt->u.err_resp.bad_cmd_seq_num),
4497 	       le32_to_cpu(pkt->u.err_resp.error_info));
4498 }
4499 EXPORT_SYMBOL(il_hdl_error);
4500 
4501 void
4502 il_clear_isr_stats(struct il_priv *il)
4503 {
4504 	memset(&il->isr_stats, 0, sizeof(il->isr_stats));
4505 }
4506 
4507 int
4508 il_mac_conf_tx(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u16 queue,
4509 	       const struct ieee80211_tx_queue_params *params)
4510 {
4511 	struct il_priv *il = hw->priv;
4512 	unsigned long flags;
4513 	int q;
4514 
4515 	D_MAC80211("enter\n");
4516 
4517 	if (!il_is_ready_rf(il)) {
4518 		D_MAC80211("leave - RF not ready\n");
4519 		return -EIO;
4520 	}
4521 
4522 	if (queue >= AC_NUM) {
4523 		D_MAC80211("leave - queue >= AC_NUM %d\n", queue);
4524 		return 0;
4525 	}
4526 
4527 	q = AC_NUM - 1 - queue;
4528 
4529 	spin_lock_irqsave(&il->lock, flags);
4530 
4531 	il->qos_data.def_qos_parm.ac[q].cw_min =
4532 	    cpu_to_le16(params->cw_min);
4533 	il->qos_data.def_qos_parm.ac[q].cw_max =
4534 	    cpu_to_le16(params->cw_max);
4535 	il->qos_data.def_qos_parm.ac[q].aifsn = params->aifs;
4536 	il->qos_data.def_qos_parm.ac[q].edca_txop =
4537 	    cpu_to_le16((params->txop * 32));
4538 
4539 	il->qos_data.def_qos_parm.ac[q].reserved1 = 0;
4540 
4541 	spin_unlock_irqrestore(&il->lock, flags);
4542 
4543 	D_MAC80211("leave\n");
4544 	return 0;
4545 }
4546 EXPORT_SYMBOL(il_mac_conf_tx);
4547 
4548 int
4549 il_mac_tx_last_beacon(struct ieee80211_hw *hw)
4550 {
4551 	struct il_priv *il = hw->priv;
4552 	int ret;
4553 
4554 	D_MAC80211("enter\n");
4555 
4556 	ret = (il->ibss_manager == IL_IBSS_MANAGER);
4557 
4558 	D_MAC80211("leave ret %d\n", ret);
4559 	return ret;
4560 }
4561 EXPORT_SYMBOL_GPL(il_mac_tx_last_beacon);
4562 
4563 static int
4564 il_set_mode(struct il_priv *il)
4565 {
4566 	il_connection_init_rx_config(il);
4567 
4568 	if (il->ops->set_rxon_chain)
4569 		il->ops->set_rxon_chain(il);
4570 
4571 	return il_commit_rxon(il);
4572 }
4573 
4574 int
4575 il_mac_add_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
4576 {
4577 	struct il_priv *il = hw->priv;
4578 	int err;
4579 	bool reset;
4580 
4581 	mutex_lock(&il->mutex);
4582 	D_MAC80211("enter: type %d, addr %pM\n", vif->type, vif->addr);
4583 
4584 	if (!il_is_ready_rf(il)) {
4585 		IL_WARN("Try to add interface when device not ready\n");
4586 		err = -EINVAL;
4587 		goto out;
4588 	}
4589 
4590 	/*
4591 	 * We do not support multiple virtual interfaces, but on hardware reset
4592 	 * we have to add the same interface again.
4593 	 */
4594 	reset = (il->vif == vif);
4595 	if (il->vif && !reset) {
4596 		err = -EOPNOTSUPP;
4597 		goto out;
4598 	}
4599 
4600 	il->vif = vif;
4601 	il->iw_mode = vif->type;
4602 
4603 	err = il_set_mode(il);
4604 	if (err) {
4605 		IL_WARN("Fail to set mode %d\n", vif->type);
4606 		if (!reset) {
4607 			il->vif = NULL;
4608 			il->iw_mode = NL80211_IFTYPE_STATION;
4609 		}
4610 	}
4611 
4612 out:
4613 	D_MAC80211("leave err %d\n", err);
4614 	mutex_unlock(&il->mutex);
4615 
4616 	return err;
4617 }
4618 EXPORT_SYMBOL(il_mac_add_interface);
4619 
4620 static void
4621 il_teardown_interface(struct il_priv *il, struct ieee80211_vif *vif)
4622 {
4623 	lockdep_assert_held(&il->mutex);
4624 
4625 	if (il->scan_vif == vif) {
4626 		il_scan_cancel_timeout(il, 200);
4627 		il_force_scan_end(il);
4628 	}
4629 
4630 	il_set_mode(il);
4631 }
4632 
4633 void
4634 il_mac_remove_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
4635 {
4636 	struct il_priv *il = hw->priv;
4637 
4638 	mutex_lock(&il->mutex);
4639 	D_MAC80211("enter: type %d, addr %pM\n", vif->type, vif->addr);
4640 
4641 	WARN_ON(il->vif != vif);
4642 	il->vif = NULL;
4643 	il->iw_mode = NL80211_IFTYPE_UNSPECIFIED;
4644 	il_teardown_interface(il, vif);
4645 	eth_zero_addr(il->bssid);
4646 
4647 	D_MAC80211("leave\n");
4648 	mutex_unlock(&il->mutex);
4649 }
4650 EXPORT_SYMBOL(il_mac_remove_interface);
4651 
4652 int
4653 il_alloc_txq_mem(struct il_priv *il)
4654 {
4655 	if (!il->txq)
4656 		il->txq =
4657 		    kzalloc(sizeof(struct il_tx_queue) *
4658 			    il->cfg->num_of_queues, GFP_KERNEL);
4659 	if (!il->txq) {
4660 		IL_ERR("Not enough memory for txq\n");
4661 		return -ENOMEM;
4662 	}
4663 	return 0;
4664 }
4665 EXPORT_SYMBOL(il_alloc_txq_mem);
4666 
4667 void
4668 il_free_txq_mem(struct il_priv *il)
4669 {
4670 	kfree(il->txq);
4671 	il->txq = NULL;
4672 }
4673 EXPORT_SYMBOL(il_free_txq_mem);
4674 
4675 int
4676 il_force_reset(struct il_priv *il, bool external)
4677 {
4678 	struct il_force_reset *force_reset;
4679 
4680 	if (test_bit(S_EXIT_PENDING, &il->status))
4681 		return -EINVAL;
4682 
4683 	force_reset = &il->force_reset;
4684 	force_reset->reset_request_count++;
4685 	if (!external) {
4686 		if (force_reset->last_force_reset_jiffies &&
4687 		    time_after(force_reset->last_force_reset_jiffies +
4688 			       force_reset->reset_duration, jiffies)) {
4689 			D_INFO("force reset rejected\n");
4690 			force_reset->reset_reject_count++;
4691 			return -EAGAIN;
4692 		}
4693 	}
4694 	force_reset->reset_success_count++;
4695 	force_reset->last_force_reset_jiffies = jiffies;
4696 
4697 	/*
4698 	 * if the request is from external(ex: debugfs),
4699 	 * then always perform the request in regardless the module
4700 	 * parameter setting
4701 	 * if the request is from internal (uCode error or driver
4702 	 * detect failure), then fw_restart module parameter
4703 	 * need to be check before performing firmware reload
4704 	 */
4705 
4706 	if (!external && !il->cfg->mod_params->restart_fw) {
4707 		D_INFO("Cancel firmware reload based on "
4708 		       "module parameter setting\n");
4709 		return 0;
4710 	}
4711 
4712 	IL_ERR("On demand firmware reload\n");
4713 
4714 	/* Set the FW error flag -- cleared on il_down */
4715 	set_bit(S_FW_ERROR, &il->status);
4716 	wake_up(&il->wait_command_queue);
4717 	/*
4718 	 * Keep the restart process from trying to send host
4719 	 * commands by clearing the INIT status bit
4720 	 */
4721 	clear_bit(S_READY, &il->status);
4722 	queue_work(il->workqueue, &il->restart);
4723 
4724 	return 0;
4725 }
4726 EXPORT_SYMBOL(il_force_reset);
4727 
4728 int
4729 il_mac_change_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
4730 			enum nl80211_iftype newtype, bool newp2p)
4731 {
4732 	struct il_priv *il = hw->priv;
4733 	int err;
4734 
4735 	mutex_lock(&il->mutex);
4736 	D_MAC80211("enter: type %d, addr %pM newtype %d newp2p %d\n",
4737 		    vif->type, vif->addr, newtype, newp2p);
4738 
4739 	if (newp2p) {
4740 		err = -EOPNOTSUPP;
4741 		goto out;
4742 	}
4743 
4744 	if (!il->vif || !il_is_ready_rf(il)) {
4745 		/*
4746 		 * Huh? But wait ... this can maybe happen when
4747 		 * we're in the middle of a firmware restart!
4748 		 */
4749 		err = -EBUSY;
4750 		goto out;
4751 	}
4752 
4753 	/* success */
4754 	vif->type = newtype;
4755 	vif->p2p = false;
4756 	il->iw_mode = newtype;
4757 	il_teardown_interface(il, vif);
4758 	err = 0;
4759 
4760 out:
4761 	D_MAC80211("leave err %d\n", err);
4762 	mutex_unlock(&il->mutex);
4763 
4764 	return err;
4765 }
4766 EXPORT_SYMBOL(il_mac_change_interface);
4767 
4768 void il_mac_flush(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
4769 		  u32 queues, bool drop)
4770 {
4771 	struct il_priv *il = hw->priv;
4772 	unsigned long timeout = jiffies + msecs_to_jiffies(500);
4773 	int i;
4774 
4775 	mutex_lock(&il->mutex);
4776 	D_MAC80211("enter\n");
4777 
4778 	if (il->txq == NULL)
4779 		goto out;
4780 
4781 	for (i = 0; i < il->hw_params.max_txq_num; i++) {
4782 		struct il_queue *q;
4783 
4784 		if (i == il->cmd_queue)
4785 			continue;
4786 
4787 		q = &il->txq[i].q;
4788 		if (q->read_ptr == q->write_ptr)
4789 			continue;
4790 
4791 		if (time_after(jiffies, timeout)) {
4792 			IL_ERR("Failed to flush queue %d\n", q->id);
4793 			break;
4794 		}
4795 
4796 		msleep(20);
4797 	}
4798 out:
4799 	D_MAC80211("leave\n");
4800 	mutex_unlock(&il->mutex);
4801 }
4802 EXPORT_SYMBOL(il_mac_flush);
4803 
4804 /*
4805  * On every watchdog tick we check (latest) time stamp. If it does not
4806  * change during timeout period and queue is not empty we reset firmware.
4807  */
4808 static int
4809 il_check_stuck_queue(struct il_priv *il, int cnt)
4810 {
4811 	struct il_tx_queue *txq = &il->txq[cnt];
4812 	struct il_queue *q = &txq->q;
4813 	unsigned long timeout;
4814 	unsigned long now = jiffies;
4815 	int ret;
4816 
4817 	if (q->read_ptr == q->write_ptr) {
4818 		txq->time_stamp = now;
4819 		return 0;
4820 	}
4821 
4822 	timeout =
4823 	    txq->time_stamp +
4824 	    msecs_to_jiffies(il->cfg->wd_timeout);
4825 
4826 	if (time_after(now, timeout)) {
4827 		IL_ERR("Queue %d stuck for %u ms.\n", q->id,
4828 		       jiffies_to_msecs(now - txq->time_stamp));
4829 		ret = il_force_reset(il, false);
4830 		return (ret == -EAGAIN) ? 0 : 1;
4831 	}
4832 
4833 	return 0;
4834 }
4835 
4836 /*
4837  * Making watchdog tick be a quarter of timeout assure we will
4838  * discover the queue hung between timeout and 1.25*timeout
4839  */
4840 #define IL_WD_TICK(timeout) ((timeout) / 4)
4841 
4842 /*
4843  * Watchdog timer callback, we check each tx queue for stuck, if if hung
4844  * we reset the firmware. If everything is fine just rearm the timer.
4845  */
4846 void
4847 il_bg_watchdog(struct timer_list *t)
4848 {
4849 	struct il_priv *il = from_timer(il, t, watchdog);
4850 	int cnt;
4851 	unsigned long timeout;
4852 
4853 	if (test_bit(S_EXIT_PENDING, &il->status))
4854 		return;
4855 
4856 	timeout = il->cfg->wd_timeout;
4857 	if (timeout == 0)
4858 		return;
4859 
4860 	/* monitor and check for stuck cmd queue */
4861 	if (il_check_stuck_queue(il, il->cmd_queue))
4862 		return;
4863 
4864 	/* monitor and check for other stuck queues */
4865 	for (cnt = 0; cnt < il->hw_params.max_txq_num; cnt++) {
4866 		/* skip as we already checked the command queue */
4867 		if (cnt == il->cmd_queue)
4868 			continue;
4869 		if (il_check_stuck_queue(il, cnt))
4870 			return;
4871 	}
4872 
4873 	mod_timer(&il->watchdog,
4874 		  jiffies + msecs_to_jiffies(IL_WD_TICK(timeout)));
4875 }
4876 EXPORT_SYMBOL(il_bg_watchdog);
4877 
4878 void
4879 il_setup_watchdog(struct il_priv *il)
4880 {
4881 	unsigned int timeout = il->cfg->wd_timeout;
4882 
4883 	if (timeout)
4884 		mod_timer(&il->watchdog,
4885 			  jiffies + msecs_to_jiffies(IL_WD_TICK(timeout)));
4886 	else
4887 		del_timer(&il->watchdog);
4888 }
4889 EXPORT_SYMBOL(il_setup_watchdog);
4890 
4891 /*
4892  * extended beacon time format
4893  * time in usec will be changed into a 32-bit value in extended:internal format
4894  * the extended part is the beacon counts
4895  * the internal part is the time in usec within one beacon interval
4896  */
4897 u32
4898 il_usecs_to_beacons(struct il_priv *il, u32 usec, u32 beacon_interval)
4899 {
4900 	u32 quot;
4901 	u32 rem;
4902 	u32 interval = beacon_interval * TIME_UNIT;
4903 
4904 	if (!interval || !usec)
4905 		return 0;
4906 
4907 	quot =
4908 	    (usec /
4909 	     interval) & (il_beacon_time_mask_high(il,
4910 						   il->hw_params.
4911 						   beacon_time_tsf_bits) >> il->
4912 			  hw_params.beacon_time_tsf_bits);
4913 	rem =
4914 	    (usec % interval) & il_beacon_time_mask_low(il,
4915 							il->hw_params.
4916 							beacon_time_tsf_bits);
4917 
4918 	return (quot << il->hw_params.beacon_time_tsf_bits) + rem;
4919 }
4920 EXPORT_SYMBOL(il_usecs_to_beacons);
4921 
4922 /* base is usually what we get from ucode with each received frame,
4923  * the same as HW timer counter counting down
4924  */
4925 __le32
4926 il_add_beacon_time(struct il_priv *il, u32 base, u32 addon,
4927 		   u32 beacon_interval)
4928 {
4929 	u32 base_low = base & il_beacon_time_mask_low(il,
4930 						      il->hw_params.
4931 						      beacon_time_tsf_bits);
4932 	u32 addon_low = addon & il_beacon_time_mask_low(il,
4933 							il->hw_params.
4934 							beacon_time_tsf_bits);
4935 	u32 interval = beacon_interval * TIME_UNIT;
4936 	u32 res = (base & il_beacon_time_mask_high(il,
4937 						   il->hw_params.
4938 						   beacon_time_tsf_bits)) +
4939 	    (addon & il_beacon_time_mask_high(il,
4940 					      il->hw_params.
4941 					      beacon_time_tsf_bits));
4942 
4943 	if (base_low > addon_low)
4944 		res += base_low - addon_low;
4945 	else if (base_low < addon_low) {
4946 		res += interval + base_low - addon_low;
4947 		res += (1 << il->hw_params.beacon_time_tsf_bits);
4948 	} else
4949 		res += (1 << il->hw_params.beacon_time_tsf_bits);
4950 
4951 	return cpu_to_le32(res);
4952 }
4953 EXPORT_SYMBOL(il_add_beacon_time);
4954 
4955 #ifdef CONFIG_PM_SLEEP
4956 
4957 static int
4958 il_pci_suspend(struct device *device)
4959 {
4960 	struct pci_dev *pdev = to_pci_dev(device);
4961 	struct il_priv *il = pci_get_drvdata(pdev);
4962 
4963 	/*
4964 	 * This function is called when system goes into suspend state
4965 	 * mac80211 will call il_mac_stop() from the mac80211 suspend function
4966 	 * first but since il_mac_stop() has no knowledge of who the caller is,
4967 	 * it will not call apm_ops.stop() to stop the DMA operation.
4968 	 * Calling apm_ops.stop here to make sure we stop the DMA.
4969 	 */
4970 	il_apm_stop(il);
4971 
4972 	return 0;
4973 }
4974 
4975 static int
4976 il_pci_resume(struct device *device)
4977 {
4978 	struct pci_dev *pdev = to_pci_dev(device);
4979 	struct il_priv *il = pci_get_drvdata(pdev);
4980 	bool hw_rfkill = false;
4981 
4982 	/*
4983 	 * We disable the RETRY_TIMEOUT register (0x41) to keep
4984 	 * PCI Tx retries from interfering with C3 CPU state.
4985 	 */
4986 	pci_write_config_byte(pdev, PCI_CFG_RETRY_TIMEOUT, 0x00);
4987 
4988 	il_enable_interrupts(il);
4989 
4990 	if (!(_il_rd(il, CSR_GP_CNTRL) & CSR_GP_CNTRL_REG_FLAG_HW_RF_KILL_SW))
4991 		hw_rfkill = true;
4992 
4993 	if (hw_rfkill)
4994 		set_bit(S_RFKILL, &il->status);
4995 	else
4996 		clear_bit(S_RFKILL, &il->status);
4997 
4998 	wiphy_rfkill_set_hw_state(il->hw->wiphy, hw_rfkill);
4999 
5000 	return 0;
5001 }
5002 
5003 SIMPLE_DEV_PM_OPS(il_pm_ops, il_pci_suspend, il_pci_resume);
5004 EXPORT_SYMBOL(il_pm_ops);
5005 
5006 #endif /* CONFIG_PM_SLEEP */
5007 
5008 static void
5009 il_update_qos(struct il_priv *il)
5010 {
5011 	if (test_bit(S_EXIT_PENDING, &il->status))
5012 		return;
5013 
5014 	il->qos_data.def_qos_parm.qos_flags = 0;
5015 
5016 	if (il->qos_data.qos_active)
5017 		il->qos_data.def_qos_parm.qos_flags |=
5018 		    QOS_PARAM_FLG_UPDATE_EDCA_MSK;
5019 
5020 	if (il->ht.enabled)
5021 		il->qos_data.def_qos_parm.qos_flags |= QOS_PARAM_FLG_TGN_MSK;
5022 
5023 	D_QOS("send QoS cmd with Qos active=%d FLAGS=0x%X\n",
5024 	      il->qos_data.qos_active, il->qos_data.def_qos_parm.qos_flags);
5025 
5026 	il_send_cmd_pdu_async(il, C_QOS_PARAM, sizeof(struct il_qosparam_cmd),
5027 			      &il->qos_data.def_qos_parm, NULL);
5028 }
5029 
5030 /**
5031  * il_mac_config - mac80211 config callback
5032  */
5033 int
5034 il_mac_config(struct ieee80211_hw *hw, u32 changed)
5035 {
5036 	struct il_priv *il = hw->priv;
5037 	const struct il_channel_info *ch_info;
5038 	struct ieee80211_conf *conf = &hw->conf;
5039 	struct ieee80211_channel *channel = conf->chandef.chan;
5040 	struct il_ht_config *ht_conf = &il->current_ht_config;
5041 	unsigned long flags = 0;
5042 	int ret = 0;
5043 	u16 ch;
5044 	int scan_active = 0;
5045 	bool ht_changed = false;
5046 
5047 	mutex_lock(&il->mutex);
5048 	D_MAC80211("enter: channel %d changed 0x%X\n", channel->hw_value,
5049 		   changed);
5050 
5051 	if (unlikely(test_bit(S_SCANNING, &il->status))) {
5052 		scan_active = 1;
5053 		D_MAC80211("scan active\n");
5054 	}
5055 
5056 	if (changed &
5057 	    (IEEE80211_CONF_CHANGE_SMPS | IEEE80211_CONF_CHANGE_CHANNEL)) {
5058 		/* mac80211 uses static for non-HT which is what we want */
5059 		il->current_ht_config.smps = conf->smps_mode;
5060 
5061 		/*
5062 		 * Recalculate chain counts.
5063 		 *
5064 		 * If monitor mode is enabled then mac80211 will
5065 		 * set up the SM PS mode to OFF if an HT channel is
5066 		 * configured.
5067 		 */
5068 		if (il->ops->set_rxon_chain)
5069 			il->ops->set_rxon_chain(il);
5070 	}
5071 
5072 	/* during scanning mac80211 will delay channel setting until
5073 	 * scan finish with changed = 0
5074 	 */
5075 	if (!changed || (changed & IEEE80211_CONF_CHANGE_CHANNEL)) {
5076 
5077 		if (scan_active)
5078 			goto set_ch_out;
5079 
5080 		ch = channel->hw_value;
5081 		ch_info = il_get_channel_info(il, channel->band, ch);
5082 		if (!il_is_channel_valid(ch_info)) {
5083 			D_MAC80211("leave - invalid channel\n");
5084 			ret = -EINVAL;
5085 			goto set_ch_out;
5086 		}
5087 
5088 		if (il->iw_mode == NL80211_IFTYPE_ADHOC &&
5089 		    !il_is_channel_ibss(ch_info)) {
5090 			D_MAC80211("leave - not IBSS channel\n");
5091 			ret = -EINVAL;
5092 			goto set_ch_out;
5093 		}
5094 
5095 		spin_lock_irqsave(&il->lock, flags);
5096 
5097 		/* Configure HT40 channels */
5098 		if (il->ht.enabled != conf_is_ht(conf)) {
5099 			il->ht.enabled = conf_is_ht(conf);
5100 			ht_changed = true;
5101 		}
5102 		if (il->ht.enabled) {
5103 			if (conf_is_ht40_minus(conf)) {
5104 				il->ht.extension_chan_offset =
5105 				    IEEE80211_HT_PARAM_CHA_SEC_BELOW;
5106 				il->ht.is_40mhz = true;
5107 			} else if (conf_is_ht40_plus(conf)) {
5108 				il->ht.extension_chan_offset =
5109 				    IEEE80211_HT_PARAM_CHA_SEC_ABOVE;
5110 				il->ht.is_40mhz = true;
5111 			} else {
5112 				il->ht.extension_chan_offset =
5113 				    IEEE80211_HT_PARAM_CHA_SEC_NONE;
5114 				il->ht.is_40mhz = false;
5115 			}
5116 		} else
5117 			il->ht.is_40mhz = false;
5118 
5119 		/*
5120 		 * Default to no protection. Protection mode will
5121 		 * later be set from BSS config in il_ht_conf
5122 		 */
5123 		il->ht.protection = IEEE80211_HT_OP_MODE_PROTECTION_NONE;
5124 
5125 		/* if we are switching from ht to 2.4 clear flags
5126 		 * from any ht related info since 2.4 does not
5127 		 * support ht */
5128 		if ((le16_to_cpu(il->staging.channel) != ch))
5129 			il->staging.flags = 0;
5130 
5131 		il_set_rxon_channel(il, channel);
5132 		il_set_rxon_ht(il, ht_conf);
5133 
5134 		il_set_flags_for_band(il, channel->band, il->vif);
5135 
5136 		spin_unlock_irqrestore(&il->lock, flags);
5137 
5138 		if (il->ops->update_bcast_stations)
5139 			ret = il->ops->update_bcast_stations(il);
5140 
5141 set_ch_out:
5142 		/* The list of supported rates and rate mask can be different
5143 		 * for each band; since the band may have changed, reset
5144 		 * the rate mask to what mac80211 lists */
5145 		il_set_rate(il);
5146 	}
5147 
5148 	if (changed & (IEEE80211_CONF_CHANGE_PS | IEEE80211_CONF_CHANGE_IDLE)) {
5149 		il->power_data.ps_disabled = !(conf->flags & IEEE80211_CONF_PS);
5150 		if (!il->power_data.ps_disabled)
5151 			IL_WARN_ONCE("Enabling power save might cause firmware crashes\n");
5152 		ret = il_power_update_mode(il, false);
5153 		if (ret)
5154 			D_MAC80211("Error setting sleep level\n");
5155 	}
5156 
5157 	if (changed & IEEE80211_CONF_CHANGE_POWER) {
5158 		D_MAC80211("TX Power old=%d new=%d\n", il->tx_power_user_lmt,
5159 			   conf->power_level);
5160 
5161 		il_set_tx_power(il, conf->power_level, false);
5162 	}
5163 
5164 	if (!il_is_ready(il)) {
5165 		D_MAC80211("leave - not ready\n");
5166 		goto out;
5167 	}
5168 
5169 	if (scan_active)
5170 		goto out;
5171 
5172 	if (memcmp(&il->active, &il->staging, sizeof(il->staging)))
5173 		il_commit_rxon(il);
5174 	else
5175 		D_INFO("Not re-sending same RXON configuration.\n");
5176 	if (ht_changed)
5177 		il_update_qos(il);
5178 
5179 out:
5180 	D_MAC80211("leave ret %d\n", ret);
5181 	mutex_unlock(&il->mutex);
5182 
5183 	return ret;
5184 }
5185 EXPORT_SYMBOL(il_mac_config);
5186 
5187 void
5188 il_mac_reset_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
5189 {
5190 	struct il_priv *il = hw->priv;
5191 	unsigned long flags;
5192 
5193 	mutex_lock(&il->mutex);
5194 	D_MAC80211("enter: type %d, addr %pM\n", vif->type, vif->addr);
5195 
5196 	spin_lock_irqsave(&il->lock, flags);
5197 
5198 	memset(&il->current_ht_config, 0, sizeof(struct il_ht_config));
5199 
5200 	/* new association get rid of ibss beacon skb */
5201 	if (il->beacon_skb)
5202 		dev_kfree_skb(il->beacon_skb);
5203 	il->beacon_skb = NULL;
5204 	il->timestamp = 0;
5205 
5206 	spin_unlock_irqrestore(&il->lock, flags);
5207 
5208 	il_scan_cancel_timeout(il, 100);
5209 	if (!il_is_ready_rf(il)) {
5210 		D_MAC80211("leave - not ready\n");
5211 		mutex_unlock(&il->mutex);
5212 		return;
5213 	}
5214 
5215 	/* we are restarting association process */
5216 	il->staging.filter_flags &= ~RXON_FILTER_ASSOC_MSK;
5217 	il_commit_rxon(il);
5218 
5219 	il_set_rate(il);
5220 
5221 	D_MAC80211("leave\n");
5222 	mutex_unlock(&il->mutex);
5223 }
5224 EXPORT_SYMBOL(il_mac_reset_tsf);
5225 
5226 static void
5227 il_ht_conf(struct il_priv *il, struct ieee80211_vif *vif)
5228 {
5229 	struct il_ht_config *ht_conf = &il->current_ht_config;
5230 	struct ieee80211_sta *sta;
5231 	struct ieee80211_bss_conf *bss_conf = &vif->bss_conf;
5232 
5233 	D_ASSOC("enter:\n");
5234 
5235 	if (!il->ht.enabled)
5236 		return;
5237 
5238 	il->ht.protection =
5239 	    bss_conf->ht_operation_mode & IEEE80211_HT_OP_MODE_PROTECTION;
5240 	il->ht.non_gf_sta_present =
5241 	    !!(bss_conf->
5242 	       ht_operation_mode & IEEE80211_HT_OP_MODE_NON_GF_STA_PRSNT);
5243 
5244 	ht_conf->single_chain_sufficient = false;
5245 
5246 	switch (vif->type) {
5247 	case NL80211_IFTYPE_STATION:
5248 		rcu_read_lock();
5249 		sta = ieee80211_find_sta(vif, bss_conf->bssid);
5250 		if (sta) {
5251 			struct ieee80211_sta_ht_cap *ht_cap = &sta->ht_cap;
5252 			int maxstreams;
5253 
5254 			maxstreams =
5255 			    (ht_cap->mcs.
5256 			     tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK)
5257 			    >> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT;
5258 			maxstreams += 1;
5259 
5260 			if (ht_cap->mcs.rx_mask[1] == 0 &&
5261 			    ht_cap->mcs.rx_mask[2] == 0)
5262 				ht_conf->single_chain_sufficient = true;
5263 			if (maxstreams <= 1)
5264 				ht_conf->single_chain_sufficient = true;
5265 		} else {
5266 			/*
5267 			 * If at all, this can only happen through a race
5268 			 * when the AP disconnects us while we're still
5269 			 * setting up the connection, in that case mac80211
5270 			 * will soon tell us about that.
5271 			 */
5272 			ht_conf->single_chain_sufficient = true;
5273 		}
5274 		rcu_read_unlock();
5275 		break;
5276 	case NL80211_IFTYPE_ADHOC:
5277 		ht_conf->single_chain_sufficient = true;
5278 		break;
5279 	default:
5280 		break;
5281 	}
5282 
5283 	D_ASSOC("leave\n");
5284 }
5285 
5286 static inline void
5287 il_set_no_assoc(struct il_priv *il, struct ieee80211_vif *vif)
5288 {
5289 	/*
5290 	 * inform the ucode that there is no longer an
5291 	 * association and that no more packets should be
5292 	 * sent
5293 	 */
5294 	il->staging.filter_flags &= ~RXON_FILTER_ASSOC_MSK;
5295 	il->staging.assoc_id = 0;
5296 	il_commit_rxon(il);
5297 }
5298 
5299 static void
5300 il_beacon_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
5301 {
5302 	struct il_priv *il = hw->priv;
5303 	unsigned long flags;
5304 	__le64 timestamp;
5305 	struct sk_buff *skb = ieee80211_beacon_get(hw, vif);
5306 
5307 	if (!skb)
5308 		return;
5309 
5310 	D_MAC80211("enter\n");
5311 
5312 	lockdep_assert_held(&il->mutex);
5313 
5314 	if (!il->beacon_enabled) {
5315 		IL_ERR("update beacon with no beaconing enabled\n");
5316 		dev_kfree_skb(skb);
5317 		return;
5318 	}
5319 
5320 	spin_lock_irqsave(&il->lock, flags);
5321 
5322 	if (il->beacon_skb)
5323 		dev_kfree_skb(il->beacon_skb);
5324 
5325 	il->beacon_skb = skb;
5326 
5327 	timestamp = ((struct ieee80211_mgmt *)skb->data)->u.beacon.timestamp;
5328 	il->timestamp = le64_to_cpu(timestamp);
5329 
5330 	D_MAC80211("leave\n");
5331 	spin_unlock_irqrestore(&il->lock, flags);
5332 
5333 	if (!il_is_ready_rf(il)) {
5334 		D_MAC80211("leave - RF not ready\n");
5335 		return;
5336 	}
5337 
5338 	il->ops->post_associate(il);
5339 }
5340 
5341 void
5342 il_mac_bss_info_changed(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
5343 			struct ieee80211_bss_conf *bss_conf, u32 changes)
5344 {
5345 	struct il_priv *il = hw->priv;
5346 	int ret;
5347 
5348 	mutex_lock(&il->mutex);
5349 	D_MAC80211("enter: changes 0x%x\n", changes);
5350 
5351 	if (!il_is_alive(il)) {
5352 		D_MAC80211("leave - not alive\n");
5353 		mutex_unlock(&il->mutex);
5354 		return;
5355 	}
5356 
5357 	if (changes & BSS_CHANGED_QOS) {
5358 		unsigned long flags;
5359 
5360 		spin_lock_irqsave(&il->lock, flags);
5361 		il->qos_data.qos_active = bss_conf->qos;
5362 		il_update_qos(il);
5363 		spin_unlock_irqrestore(&il->lock, flags);
5364 	}
5365 
5366 	if (changes & BSS_CHANGED_BEACON_ENABLED) {
5367 		/* FIXME: can we remove beacon_enabled ? */
5368 		if (vif->bss_conf.enable_beacon)
5369 			il->beacon_enabled = true;
5370 		else
5371 			il->beacon_enabled = false;
5372 	}
5373 
5374 	if (changes & BSS_CHANGED_BSSID) {
5375 		D_MAC80211("BSSID %pM\n", bss_conf->bssid);
5376 
5377 		/*
5378 		 * On passive channel we wait with blocked queues to see if
5379 		 * there is traffic on that channel. If no frame will be
5380 		 * received (what is very unlikely since scan detects AP on
5381 		 * that channel, but theoretically possible), mac80211 associate
5382 		 * procedure will time out and mac80211 will call us with NULL
5383 		 * bssid. We have to unblock queues on such condition.
5384 		 */
5385 		if (is_zero_ether_addr(bss_conf->bssid))
5386 			il_wake_queues_by_reason(il, IL_STOP_REASON_PASSIVE);
5387 
5388 		/*
5389 		 * If there is currently a HW scan going on in the background,
5390 		 * then we need to cancel it, otherwise sometimes we are not
5391 		 * able to authenticate (FIXME: why ?)
5392 		 */
5393 		if (il_scan_cancel_timeout(il, 100)) {
5394 			D_MAC80211("leave - scan abort failed\n");
5395 			mutex_unlock(&il->mutex);
5396 			return;
5397 		}
5398 
5399 		/* mac80211 only sets assoc when in STATION mode */
5400 		memcpy(il->staging.bssid_addr, bss_conf->bssid, ETH_ALEN);
5401 
5402 		/* FIXME: currently needed in a few places */
5403 		memcpy(il->bssid, bss_conf->bssid, ETH_ALEN);
5404 	}
5405 
5406 	/*
5407 	 * This needs to be after setting the BSSID in case
5408 	 * mac80211 decides to do both changes at once because
5409 	 * it will invoke post_associate.
5410 	 */
5411 	if (vif->type == NL80211_IFTYPE_ADHOC && (changes & BSS_CHANGED_BEACON))
5412 		il_beacon_update(hw, vif);
5413 
5414 	if (changes & BSS_CHANGED_ERP_PREAMBLE) {
5415 		D_MAC80211("ERP_PREAMBLE %d\n", bss_conf->use_short_preamble);
5416 		if (bss_conf->use_short_preamble)
5417 			il->staging.flags |= RXON_FLG_SHORT_PREAMBLE_MSK;
5418 		else
5419 			il->staging.flags &= ~RXON_FLG_SHORT_PREAMBLE_MSK;
5420 	}
5421 
5422 	if (changes & BSS_CHANGED_ERP_CTS_PROT) {
5423 		D_MAC80211("ERP_CTS %d\n", bss_conf->use_cts_prot);
5424 		if (bss_conf->use_cts_prot && il->band != NL80211_BAND_5GHZ)
5425 			il->staging.flags |= RXON_FLG_TGG_PROTECT_MSK;
5426 		else
5427 			il->staging.flags &= ~RXON_FLG_TGG_PROTECT_MSK;
5428 		if (bss_conf->use_cts_prot)
5429 			il->staging.flags |= RXON_FLG_SELF_CTS_EN;
5430 		else
5431 			il->staging.flags &= ~RXON_FLG_SELF_CTS_EN;
5432 	}
5433 
5434 	if (changes & BSS_CHANGED_BASIC_RATES) {
5435 		/* XXX use this information
5436 		 *
5437 		 * To do that, remove code from il_set_rate() and put something
5438 		 * like this here:
5439 		 *
5440 		 if (A-band)
5441 		 il->staging.ofdm_basic_rates =
5442 		 bss_conf->basic_rates;
5443 		 else
5444 		 il->staging.ofdm_basic_rates =
5445 		 bss_conf->basic_rates >> 4;
5446 		 il->staging.cck_basic_rates =
5447 		 bss_conf->basic_rates & 0xF;
5448 		 */
5449 	}
5450 
5451 	if (changes & BSS_CHANGED_HT) {
5452 		il_ht_conf(il, vif);
5453 
5454 		if (il->ops->set_rxon_chain)
5455 			il->ops->set_rxon_chain(il);
5456 	}
5457 
5458 	if (changes & BSS_CHANGED_ASSOC) {
5459 		D_MAC80211("ASSOC %d\n", bss_conf->assoc);
5460 		if (bss_conf->assoc) {
5461 			il->timestamp = bss_conf->sync_tsf;
5462 
5463 			if (!il_is_rfkill(il))
5464 				il->ops->post_associate(il);
5465 		} else
5466 			il_set_no_assoc(il, vif);
5467 	}
5468 
5469 	if (changes && il_is_associated(il) && bss_conf->aid) {
5470 		D_MAC80211("Changes (%#x) while associated\n", changes);
5471 		ret = il_send_rxon_assoc(il);
5472 		if (!ret) {
5473 			/* Sync active_rxon with latest change. */
5474 			memcpy((void *)&il->active, &il->staging,
5475 			       sizeof(struct il_rxon_cmd));
5476 		}
5477 	}
5478 
5479 	if (changes & BSS_CHANGED_BEACON_ENABLED) {
5480 		if (vif->bss_conf.enable_beacon) {
5481 			memcpy(il->staging.bssid_addr, bss_conf->bssid,
5482 			       ETH_ALEN);
5483 			memcpy(il->bssid, bss_conf->bssid, ETH_ALEN);
5484 			il->ops->config_ap(il);
5485 		} else
5486 			il_set_no_assoc(il, vif);
5487 	}
5488 
5489 	if (changes & BSS_CHANGED_IBSS) {
5490 		ret = il->ops->manage_ibss_station(il, vif,
5491 						   bss_conf->ibss_joined);
5492 		if (ret)
5493 			IL_ERR("failed to %s IBSS station %pM\n",
5494 			       bss_conf->ibss_joined ? "add" : "remove",
5495 			       bss_conf->bssid);
5496 	}
5497 
5498 	D_MAC80211("leave\n");
5499 	mutex_unlock(&il->mutex);
5500 }
5501 EXPORT_SYMBOL(il_mac_bss_info_changed);
5502 
5503 irqreturn_t
5504 il_isr(int irq, void *data)
5505 {
5506 	struct il_priv *il = data;
5507 	u32 inta, inta_mask;
5508 	u32 inta_fh;
5509 	unsigned long flags;
5510 	if (!il)
5511 		return IRQ_NONE;
5512 
5513 	spin_lock_irqsave(&il->lock, flags);
5514 
5515 	/* Disable (but don't clear!) interrupts here to avoid
5516 	 *    back-to-back ISRs and sporadic interrupts from our NIC.
5517 	 * If we have something to service, the tasklet will re-enable ints.
5518 	 * If we *don't* have something, we'll re-enable before leaving here. */
5519 	inta_mask = _il_rd(il, CSR_INT_MASK);	/* just for debug */
5520 	_il_wr(il, CSR_INT_MASK, 0x00000000);
5521 
5522 	/* Discover which interrupts are active/pending */
5523 	inta = _il_rd(il, CSR_INT);
5524 	inta_fh = _il_rd(il, CSR_FH_INT_STATUS);
5525 
5526 	/* Ignore interrupt if there's nothing in NIC to service.
5527 	 * This may be due to IRQ shared with another device,
5528 	 * or due to sporadic interrupts thrown from our NIC. */
5529 	if (!inta && !inta_fh) {
5530 		D_ISR("Ignore interrupt, inta == 0, inta_fh == 0\n");
5531 		goto none;
5532 	}
5533 
5534 	if (inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0) {
5535 		/* Hardware disappeared. It might have already raised
5536 		 * an interrupt */
5537 		IL_WARN("HARDWARE GONE?? INTA == 0x%08x\n", inta);
5538 		goto unplugged;
5539 	}
5540 
5541 	D_ISR("ISR inta 0x%08x, enabled 0x%08x, fh 0x%08x\n", inta, inta_mask,
5542 	      inta_fh);
5543 
5544 	inta &= ~CSR_INT_BIT_SCD;
5545 
5546 	/* il_irq_tasklet() will service interrupts and re-enable them */
5547 	if (likely(inta || inta_fh))
5548 		tasklet_schedule(&il->irq_tasklet);
5549 
5550 unplugged:
5551 	spin_unlock_irqrestore(&il->lock, flags);
5552 	return IRQ_HANDLED;
5553 
5554 none:
5555 	/* re-enable interrupts here since we don't have anything to service. */
5556 	/* only Re-enable if disabled by irq */
5557 	if (test_bit(S_INT_ENABLED, &il->status))
5558 		il_enable_interrupts(il);
5559 	spin_unlock_irqrestore(&il->lock, flags);
5560 	return IRQ_NONE;
5561 }
5562 EXPORT_SYMBOL(il_isr);
5563 
5564 /*
5565  *  il_tx_cmd_protection: Set rts/cts. 3945 and 4965 only share this
5566  *  function.
5567  */
5568 void
5569 il_tx_cmd_protection(struct il_priv *il, struct ieee80211_tx_info *info,
5570 		     __le16 fc, __le32 *tx_flags)
5571 {
5572 	if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
5573 		*tx_flags |= TX_CMD_FLG_RTS_MSK;
5574 		*tx_flags &= ~TX_CMD_FLG_CTS_MSK;
5575 		*tx_flags |= TX_CMD_FLG_FULL_TXOP_PROT_MSK;
5576 
5577 		if (!ieee80211_is_mgmt(fc))
5578 			return;
5579 
5580 		switch (fc & cpu_to_le16(IEEE80211_FCTL_STYPE)) {
5581 		case cpu_to_le16(IEEE80211_STYPE_AUTH):
5582 		case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
5583 		case cpu_to_le16(IEEE80211_STYPE_ASSOC_REQ):
5584 		case cpu_to_le16(IEEE80211_STYPE_REASSOC_REQ):
5585 			*tx_flags &= ~TX_CMD_FLG_RTS_MSK;
5586 			*tx_flags |= TX_CMD_FLG_CTS_MSK;
5587 			break;
5588 		}
5589 	} else if (info->control.rates[0].
5590 		   flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
5591 		*tx_flags &= ~TX_CMD_FLG_RTS_MSK;
5592 		*tx_flags |= TX_CMD_FLG_CTS_MSK;
5593 		*tx_flags |= TX_CMD_FLG_FULL_TXOP_PROT_MSK;
5594 	}
5595 }
5596 EXPORT_SYMBOL(il_tx_cmd_protection);
5597