1 // SPDX-License-Identifier: GPL-2.0-only 2 /****************************************************************************** 3 * 4 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. 5 * 6 * Contact Information: 7 * Intel Linux Wireless <ilw@linux.intel.com> 8 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 9 *****************************************************************************/ 10 11 #include <linux/kernel.h> 12 #include <linux/module.h> 13 #include <linux/etherdevice.h> 14 #include <linux/sched.h> 15 #include <linux/slab.h> 16 #include <linux/types.h> 17 #include <linux/lockdep.h> 18 #include <linux/pci.h> 19 #include <linux/dma-mapping.h> 20 #include <linux/delay.h> 21 #include <linux/skbuff.h> 22 #include <net/mac80211.h> 23 24 #include "common.h" 25 26 int 27 _il_poll_bit(struct il_priv *il, u32 addr, u32 bits, u32 mask, int timeout) 28 { 29 const int interval = 10; /* microseconds */ 30 int t = 0; 31 32 do { 33 if ((_il_rd(il, addr) & mask) == (bits & mask)) 34 return t; 35 udelay(interval); 36 t += interval; 37 } while (t < timeout); 38 39 return -ETIMEDOUT; 40 } 41 EXPORT_SYMBOL(_il_poll_bit); 42 43 void 44 il_set_bit(struct il_priv *p, u32 r, u32 m) 45 { 46 unsigned long reg_flags; 47 48 spin_lock_irqsave(&p->reg_lock, reg_flags); 49 _il_set_bit(p, r, m); 50 spin_unlock_irqrestore(&p->reg_lock, reg_flags); 51 } 52 EXPORT_SYMBOL(il_set_bit); 53 54 void 55 il_clear_bit(struct il_priv *p, u32 r, u32 m) 56 { 57 unsigned long reg_flags; 58 59 spin_lock_irqsave(&p->reg_lock, reg_flags); 60 _il_clear_bit(p, r, m); 61 spin_unlock_irqrestore(&p->reg_lock, reg_flags); 62 } 63 EXPORT_SYMBOL(il_clear_bit); 64 65 bool 66 _il_grab_nic_access(struct il_priv *il) 67 { 68 int ret; 69 u32 val; 70 71 /* this bit wakes up the NIC */ 72 _il_set_bit(il, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); 73 74 /* 75 * These bits say the device is running, and should keep running for 76 * at least a short while (at least as long as MAC_ACCESS_REQ stays 1), 77 * but they do not indicate that embedded SRAM is restored yet; 78 * 3945 and 4965 have volatile SRAM, and must save/restore contents 79 * to/from host DRAM when sleeping/waking for power-saving. 80 * Each direction takes approximately 1/4 millisecond; with this 81 * overhead, it's a good idea to grab and hold MAC_ACCESS_REQUEST if a 82 * series of register accesses are expected (e.g. reading Event Log), 83 * to keep device from sleeping. 84 * 85 * CSR_UCODE_DRV_GP1 register bit MAC_SLEEP == 0 indicates that 86 * SRAM is okay/restored. We don't check that here because this call 87 * is just for hardware register access; but GP1 MAC_SLEEP check is a 88 * good idea before accessing 3945/4965 SRAM (e.g. reading Event Log). 89 * 90 */ 91 ret = 92 _il_poll_bit(il, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_VAL_MAC_ACCESS_EN, 93 (CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY | 94 CSR_GP_CNTRL_REG_FLAG_GOING_TO_SLEEP), 15000); 95 if (unlikely(ret < 0)) { 96 val = _il_rd(il, CSR_GP_CNTRL); 97 WARN_ONCE(1, "Timeout waiting for ucode processor access " 98 "(CSR_GP_CNTRL 0x%08x)\n", val); 99 _il_wr(il, CSR_RESET, CSR_RESET_REG_FLAG_FORCE_NMI); 100 return false; 101 } 102 103 return true; 104 } 105 EXPORT_SYMBOL_GPL(_il_grab_nic_access); 106 107 int 108 il_poll_bit(struct il_priv *il, u32 addr, u32 mask, int timeout) 109 { 110 const int interval = 10; /* microseconds */ 111 int t = 0; 112 113 do { 114 if ((il_rd(il, addr) & mask) == mask) 115 return t; 116 udelay(interval); 117 t += interval; 118 } while (t < timeout); 119 120 return -ETIMEDOUT; 121 } 122 EXPORT_SYMBOL(il_poll_bit); 123 124 u32 125 il_rd_prph(struct il_priv *il, u32 reg) 126 { 127 unsigned long reg_flags; 128 u32 val; 129 130 spin_lock_irqsave(&il->reg_lock, reg_flags); 131 _il_grab_nic_access(il); 132 val = _il_rd_prph(il, reg); 133 _il_release_nic_access(il); 134 spin_unlock_irqrestore(&il->reg_lock, reg_flags); 135 return val; 136 } 137 EXPORT_SYMBOL(il_rd_prph); 138 139 void 140 il_wr_prph(struct il_priv *il, u32 addr, u32 val) 141 { 142 unsigned long reg_flags; 143 144 spin_lock_irqsave(&il->reg_lock, reg_flags); 145 if (likely(_il_grab_nic_access(il))) { 146 _il_wr_prph(il, addr, val); 147 _il_release_nic_access(il); 148 } 149 spin_unlock_irqrestore(&il->reg_lock, reg_flags); 150 } 151 EXPORT_SYMBOL(il_wr_prph); 152 153 u32 154 il_read_targ_mem(struct il_priv *il, u32 addr) 155 { 156 unsigned long reg_flags; 157 u32 value; 158 159 spin_lock_irqsave(&il->reg_lock, reg_flags); 160 _il_grab_nic_access(il); 161 162 _il_wr(il, HBUS_TARG_MEM_RADDR, addr); 163 value = _il_rd(il, HBUS_TARG_MEM_RDAT); 164 165 _il_release_nic_access(il); 166 spin_unlock_irqrestore(&il->reg_lock, reg_flags); 167 return value; 168 } 169 EXPORT_SYMBOL(il_read_targ_mem); 170 171 void 172 il_write_targ_mem(struct il_priv *il, u32 addr, u32 val) 173 { 174 unsigned long reg_flags; 175 176 spin_lock_irqsave(&il->reg_lock, reg_flags); 177 if (likely(_il_grab_nic_access(il))) { 178 _il_wr(il, HBUS_TARG_MEM_WADDR, addr); 179 _il_wr(il, HBUS_TARG_MEM_WDAT, val); 180 _il_release_nic_access(il); 181 } 182 spin_unlock_irqrestore(&il->reg_lock, reg_flags); 183 } 184 EXPORT_SYMBOL(il_write_targ_mem); 185 186 const char * 187 il_get_cmd_string(u8 cmd) 188 { 189 switch (cmd) { 190 IL_CMD(N_ALIVE); 191 IL_CMD(N_ERROR); 192 IL_CMD(C_RXON); 193 IL_CMD(C_RXON_ASSOC); 194 IL_CMD(C_QOS_PARAM); 195 IL_CMD(C_RXON_TIMING); 196 IL_CMD(C_ADD_STA); 197 IL_CMD(C_REM_STA); 198 IL_CMD(C_WEPKEY); 199 IL_CMD(N_3945_RX); 200 IL_CMD(C_TX); 201 IL_CMD(C_RATE_SCALE); 202 IL_CMD(C_LEDS); 203 IL_CMD(C_TX_LINK_QUALITY_CMD); 204 IL_CMD(C_CHANNEL_SWITCH); 205 IL_CMD(N_CHANNEL_SWITCH); 206 IL_CMD(C_SPECTRUM_MEASUREMENT); 207 IL_CMD(N_SPECTRUM_MEASUREMENT); 208 IL_CMD(C_POWER_TBL); 209 IL_CMD(N_PM_SLEEP); 210 IL_CMD(N_PM_DEBUG_STATS); 211 IL_CMD(C_SCAN); 212 IL_CMD(C_SCAN_ABORT); 213 IL_CMD(N_SCAN_START); 214 IL_CMD(N_SCAN_RESULTS); 215 IL_CMD(N_SCAN_COMPLETE); 216 IL_CMD(N_BEACON); 217 IL_CMD(C_TX_BEACON); 218 IL_CMD(C_TX_PWR_TBL); 219 IL_CMD(C_BT_CONFIG); 220 IL_CMD(C_STATS); 221 IL_CMD(N_STATS); 222 IL_CMD(N_CARD_STATE); 223 IL_CMD(N_MISSED_BEACONS); 224 IL_CMD(C_CT_KILL_CONFIG); 225 IL_CMD(C_SENSITIVITY); 226 IL_CMD(C_PHY_CALIBRATION); 227 IL_CMD(N_RX_PHY); 228 IL_CMD(N_RX_MPDU); 229 IL_CMD(N_RX); 230 IL_CMD(N_COMPRESSED_BA); 231 default: 232 return "UNKNOWN"; 233 234 } 235 } 236 EXPORT_SYMBOL(il_get_cmd_string); 237 238 #define HOST_COMPLETE_TIMEOUT (HZ / 2) 239 240 static void 241 il_generic_cmd_callback(struct il_priv *il, struct il_device_cmd *cmd, 242 struct il_rx_pkt *pkt) 243 { 244 if (pkt->hdr.flags & IL_CMD_FAILED_MSK) { 245 IL_ERR("Bad return from %s (0x%08X)\n", 246 il_get_cmd_string(cmd->hdr.cmd), pkt->hdr.flags); 247 return; 248 } 249 #ifdef CONFIG_IWLEGACY_DEBUG 250 switch (cmd->hdr.cmd) { 251 case C_TX_LINK_QUALITY_CMD: 252 case C_SENSITIVITY: 253 D_HC_DUMP("back from %s (0x%08X)\n", 254 il_get_cmd_string(cmd->hdr.cmd), pkt->hdr.flags); 255 break; 256 default: 257 D_HC("back from %s (0x%08X)\n", il_get_cmd_string(cmd->hdr.cmd), 258 pkt->hdr.flags); 259 } 260 #endif 261 } 262 263 static int 264 il_send_cmd_async(struct il_priv *il, struct il_host_cmd *cmd) 265 { 266 int ret; 267 268 BUG_ON(!(cmd->flags & CMD_ASYNC)); 269 270 /* An asynchronous command can not expect an SKB to be set. */ 271 BUG_ON(cmd->flags & CMD_WANT_SKB); 272 273 /* Assign a generic callback if one is not provided */ 274 if (!cmd->callback) 275 cmd->callback = il_generic_cmd_callback; 276 277 if (test_bit(S_EXIT_PENDING, &il->status)) 278 return -EBUSY; 279 280 ret = il_enqueue_hcmd(il, cmd); 281 if (ret < 0) { 282 IL_ERR("Error sending %s: enqueue_hcmd failed: %d\n", 283 il_get_cmd_string(cmd->id), ret); 284 return ret; 285 } 286 return 0; 287 } 288 289 int 290 il_send_cmd_sync(struct il_priv *il, struct il_host_cmd *cmd) 291 { 292 int cmd_idx; 293 int ret; 294 295 lockdep_assert_held(&il->mutex); 296 297 BUG_ON(cmd->flags & CMD_ASYNC); 298 299 /* A synchronous command can not have a callback set. */ 300 BUG_ON(cmd->callback); 301 302 D_INFO("Attempting to send sync command %s\n", 303 il_get_cmd_string(cmd->id)); 304 305 set_bit(S_HCMD_ACTIVE, &il->status); 306 D_INFO("Setting HCMD_ACTIVE for command %s\n", 307 il_get_cmd_string(cmd->id)); 308 309 cmd_idx = il_enqueue_hcmd(il, cmd); 310 if (cmd_idx < 0) { 311 ret = cmd_idx; 312 IL_ERR("Error sending %s: enqueue_hcmd failed: %d\n", 313 il_get_cmd_string(cmd->id), ret); 314 goto out; 315 } 316 317 ret = wait_event_timeout(il->wait_command_queue, 318 !test_bit(S_HCMD_ACTIVE, &il->status), 319 HOST_COMPLETE_TIMEOUT); 320 if (!ret) { 321 if (test_bit(S_HCMD_ACTIVE, &il->status)) { 322 IL_ERR("Error sending %s: time out after %dms.\n", 323 il_get_cmd_string(cmd->id), 324 jiffies_to_msecs(HOST_COMPLETE_TIMEOUT)); 325 326 clear_bit(S_HCMD_ACTIVE, &il->status); 327 D_INFO("Clearing HCMD_ACTIVE for command %s\n", 328 il_get_cmd_string(cmd->id)); 329 ret = -ETIMEDOUT; 330 goto cancel; 331 } 332 } 333 334 if (test_bit(S_RFKILL, &il->status)) { 335 IL_ERR("Command %s aborted: RF KILL Switch\n", 336 il_get_cmd_string(cmd->id)); 337 ret = -ECANCELED; 338 goto fail; 339 } 340 if (test_bit(S_FW_ERROR, &il->status)) { 341 IL_ERR("Command %s failed: FW Error\n", 342 il_get_cmd_string(cmd->id)); 343 ret = -EIO; 344 goto fail; 345 } 346 if ((cmd->flags & CMD_WANT_SKB) && !cmd->reply_page) { 347 IL_ERR("Error: Response NULL in '%s'\n", 348 il_get_cmd_string(cmd->id)); 349 ret = -EIO; 350 goto cancel; 351 } 352 353 ret = 0; 354 goto out; 355 356 cancel: 357 if (cmd->flags & CMD_WANT_SKB) { 358 /* 359 * Cancel the CMD_WANT_SKB flag for the cmd in the 360 * TX cmd queue. Otherwise in case the cmd comes 361 * in later, it will possibly set an invalid 362 * address (cmd->meta.source). 363 */ 364 il->txq[il->cmd_queue].meta[cmd_idx].flags &= ~CMD_WANT_SKB; 365 } 366 fail: 367 if (cmd->reply_page) { 368 il_free_pages(il, cmd->reply_page); 369 cmd->reply_page = 0; 370 } 371 out: 372 return ret; 373 } 374 EXPORT_SYMBOL(il_send_cmd_sync); 375 376 int 377 il_send_cmd(struct il_priv *il, struct il_host_cmd *cmd) 378 { 379 if (cmd->flags & CMD_ASYNC) 380 return il_send_cmd_async(il, cmd); 381 382 return il_send_cmd_sync(il, cmd); 383 } 384 EXPORT_SYMBOL(il_send_cmd); 385 386 int 387 il_send_cmd_pdu(struct il_priv *il, u8 id, u16 len, const void *data) 388 { 389 struct il_host_cmd cmd = { 390 .id = id, 391 .len = len, 392 .data = data, 393 }; 394 395 return il_send_cmd_sync(il, &cmd); 396 } 397 EXPORT_SYMBOL(il_send_cmd_pdu); 398 399 int 400 il_send_cmd_pdu_async(struct il_priv *il, u8 id, u16 len, const void *data, 401 void (*callback) (struct il_priv *il, 402 struct il_device_cmd *cmd, 403 struct il_rx_pkt *pkt)) 404 { 405 struct il_host_cmd cmd = { 406 .id = id, 407 .len = len, 408 .data = data, 409 }; 410 411 cmd.flags |= CMD_ASYNC; 412 cmd.callback = callback; 413 414 return il_send_cmd_async(il, &cmd); 415 } 416 EXPORT_SYMBOL(il_send_cmd_pdu_async); 417 418 /* default: IL_LED_BLINK(0) using blinking idx table */ 419 static int led_mode; 420 module_param(led_mode, int, 0444); 421 MODULE_PARM_DESC(led_mode, 422 "0=system default, " "1=On(RF On)/Off(RF Off), 2=blinking"); 423 424 /* Throughput OFF time(ms) ON time (ms) 425 * >300 25 25 426 * >200 to 300 40 40 427 * >100 to 200 55 55 428 * >70 to 100 65 65 429 * >50 to 70 75 75 430 * >20 to 50 85 85 431 * >10 to 20 95 95 432 * >5 to 10 110 110 433 * >1 to 5 130 130 434 * >0 to 1 167 167 435 * <=0 SOLID ON 436 */ 437 static const struct ieee80211_tpt_blink il_blink[] = { 438 {.throughput = 0, .blink_time = 334}, 439 {.throughput = 1 * 1024 - 1, .blink_time = 260}, 440 {.throughput = 5 * 1024 - 1, .blink_time = 220}, 441 {.throughput = 10 * 1024 - 1, .blink_time = 190}, 442 {.throughput = 20 * 1024 - 1, .blink_time = 170}, 443 {.throughput = 50 * 1024 - 1, .blink_time = 150}, 444 {.throughput = 70 * 1024 - 1, .blink_time = 130}, 445 {.throughput = 100 * 1024 - 1, .blink_time = 110}, 446 {.throughput = 200 * 1024 - 1, .blink_time = 80}, 447 {.throughput = 300 * 1024 - 1, .blink_time = 50}, 448 }; 449 450 /* 451 * Adjust led blink rate to compensate on a MAC Clock difference on every HW 452 * Led blink rate analysis showed an average deviation of 0% on 3945, 453 * 5% on 4965 HW. 454 * Need to compensate on the led on/off time per HW according to the deviation 455 * to achieve the desired led frequency 456 * The calculation is: (100-averageDeviation)/100 * blinkTime 457 * For code efficiency the calculation will be: 458 * compensation = (100 - averageDeviation) * 64 / 100 459 * NewBlinkTime = (compensation * BlinkTime) / 64 460 */ 461 static inline u8 462 il_blink_compensation(struct il_priv *il, u8 time, u16 compensation) 463 { 464 if (!compensation) { 465 IL_ERR("undefined blink compensation: " 466 "use pre-defined blinking time\n"); 467 return time; 468 } 469 470 return (u8) ((time * compensation) >> 6); 471 } 472 473 /* Set led pattern command */ 474 static int 475 il_led_cmd(struct il_priv *il, unsigned long on, unsigned long off) 476 { 477 struct il_led_cmd led_cmd = { 478 .id = IL_LED_LINK, 479 .interval = IL_DEF_LED_INTRVL 480 }; 481 int ret; 482 483 if (!test_bit(S_READY, &il->status)) 484 return -EBUSY; 485 486 if (il->blink_on == on && il->blink_off == off) 487 return 0; 488 489 if (off == 0) { 490 /* led is SOLID_ON */ 491 on = IL_LED_SOLID; 492 } 493 494 D_LED("Led blink time compensation=%u\n", 495 il->cfg->led_compensation); 496 led_cmd.on = 497 il_blink_compensation(il, on, 498 il->cfg->led_compensation); 499 led_cmd.off = 500 il_blink_compensation(il, off, 501 il->cfg->led_compensation); 502 503 ret = il->ops->send_led_cmd(il, &led_cmd); 504 if (!ret) { 505 il->blink_on = on; 506 il->blink_off = off; 507 } 508 return ret; 509 } 510 511 static void 512 il_led_brightness_set(struct led_classdev *led_cdev, 513 enum led_brightness brightness) 514 { 515 struct il_priv *il = container_of(led_cdev, struct il_priv, led); 516 unsigned long on = 0; 517 518 if (brightness > 0) 519 on = IL_LED_SOLID; 520 521 il_led_cmd(il, on, 0); 522 } 523 524 static int 525 il_led_blink_set(struct led_classdev *led_cdev, unsigned long *delay_on, 526 unsigned long *delay_off) 527 { 528 struct il_priv *il = container_of(led_cdev, struct il_priv, led); 529 530 return il_led_cmd(il, *delay_on, *delay_off); 531 } 532 533 void 534 il_leds_init(struct il_priv *il) 535 { 536 int mode = led_mode; 537 int ret; 538 539 if (mode == IL_LED_DEFAULT) 540 mode = il->cfg->led_mode; 541 542 il->led.name = 543 kasprintf(GFP_KERNEL, "%s-led", wiphy_name(il->hw->wiphy)); 544 il->led.brightness_set = il_led_brightness_set; 545 il->led.blink_set = il_led_blink_set; 546 il->led.max_brightness = 1; 547 548 switch (mode) { 549 case IL_LED_DEFAULT: 550 WARN_ON(1); 551 break; 552 case IL_LED_BLINK: 553 il->led.default_trigger = 554 ieee80211_create_tpt_led_trigger(il->hw, 555 IEEE80211_TPT_LEDTRIG_FL_CONNECTED, 556 il_blink, 557 ARRAY_SIZE(il_blink)); 558 break; 559 case IL_LED_RF_STATE: 560 il->led.default_trigger = ieee80211_get_radio_led_name(il->hw); 561 break; 562 } 563 564 ret = led_classdev_register(&il->pci_dev->dev, &il->led); 565 if (ret) { 566 kfree(il->led.name); 567 return; 568 } 569 570 il->led_registered = true; 571 } 572 EXPORT_SYMBOL(il_leds_init); 573 574 void 575 il_leds_exit(struct il_priv *il) 576 { 577 if (!il->led_registered) 578 return; 579 580 led_classdev_unregister(&il->led); 581 kfree(il->led.name); 582 } 583 EXPORT_SYMBOL(il_leds_exit); 584 585 /************************** EEPROM BANDS **************************** 586 * 587 * The il_eeprom_band definitions below provide the mapping from the 588 * EEPROM contents to the specific channel number supported for each 589 * band. 590 * 591 * For example, il_priv->eeprom.band_3_channels[4] from the band_3 592 * definition below maps to physical channel 42 in the 5.2GHz spectrum. 593 * The specific geography and calibration information for that channel 594 * is contained in the eeprom map itself. 595 * 596 * During init, we copy the eeprom information and channel map 597 * information into il->channel_info_24/52 and il->channel_map_24/52 598 * 599 * channel_map_24/52 provides the idx in the channel_info array for a 600 * given channel. We have to have two separate maps as there is channel 601 * overlap with the 2.4GHz and 5.2GHz spectrum as seen in band_1 and 602 * band_2 603 * 604 * A value of 0xff stored in the channel_map indicates that the channel 605 * is not supported by the hardware at all. 606 * 607 * A value of 0xfe in the channel_map indicates that the channel is not 608 * valid for Tx with the current hardware. This means that 609 * while the system can tune and receive on a given channel, it may not 610 * be able to associate or transmit any frames on that 611 * channel. There is no corresponding channel information for that 612 * entry. 613 * 614 *********************************************************************/ 615 616 /* 2.4 GHz */ 617 const u8 il_eeprom_band_1[14] = { 618 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 619 }; 620 621 /* 5.2 GHz bands */ 622 static const u8 il_eeprom_band_2[] = { /* 4915-5080MHz */ 623 183, 184, 185, 187, 188, 189, 192, 196, 7, 8, 11, 12, 16 624 }; 625 626 static const u8 il_eeprom_band_3[] = { /* 5170-5320MHz */ 627 34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64 628 }; 629 630 static const u8 il_eeprom_band_4[] = { /* 5500-5700MHz */ 631 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140 632 }; 633 634 static const u8 il_eeprom_band_5[] = { /* 5725-5825MHz */ 635 145, 149, 153, 157, 161, 165 636 }; 637 638 static const u8 il_eeprom_band_6[] = { /* 2.4 ht40 channel */ 639 1, 2, 3, 4, 5, 6, 7 640 }; 641 642 static const u8 il_eeprom_band_7[] = { /* 5.2 ht40 channel */ 643 36, 44, 52, 60, 100, 108, 116, 124, 132, 149, 157 644 }; 645 646 /****************************************************************************** 647 * 648 * EEPROM related functions 649 * 650 ******************************************************************************/ 651 652 static int 653 il_eeprom_verify_signature(struct il_priv *il) 654 { 655 u32 gp = _il_rd(il, CSR_EEPROM_GP) & CSR_EEPROM_GP_VALID_MSK; 656 int ret = 0; 657 658 D_EEPROM("EEPROM signature=0x%08x\n", gp); 659 switch (gp) { 660 case CSR_EEPROM_GP_GOOD_SIG_EEP_LESS_THAN_4K: 661 case CSR_EEPROM_GP_GOOD_SIG_EEP_MORE_THAN_4K: 662 break; 663 default: 664 IL_ERR("bad EEPROM signature," "EEPROM_GP=0x%08x\n", gp); 665 ret = -ENOENT; 666 break; 667 } 668 return ret; 669 } 670 671 const u8 * 672 il_eeprom_query_addr(const struct il_priv *il, size_t offset) 673 { 674 BUG_ON(offset >= il->cfg->eeprom_size); 675 return &il->eeprom[offset]; 676 } 677 EXPORT_SYMBOL(il_eeprom_query_addr); 678 679 u16 680 il_eeprom_query16(const struct il_priv *il, size_t offset) 681 { 682 if (!il->eeprom) 683 return 0; 684 return (u16) il->eeprom[offset] | ((u16) il->eeprom[offset + 1] << 8); 685 } 686 EXPORT_SYMBOL(il_eeprom_query16); 687 688 /** 689 * il_eeprom_init - read EEPROM contents 690 * 691 * Load the EEPROM contents from adapter into il->eeprom 692 * 693 * NOTE: This routine uses the non-debug IO access functions. 694 */ 695 int 696 il_eeprom_init(struct il_priv *il) 697 { 698 __le16 *e; 699 u32 gp = _il_rd(il, CSR_EEPROM_GP); 700 int sz; 701 int ret; 702 u16 addr; 703 704 /* allocate eeprom */ 705 sz = il->cfg->eeprom_size; 706 D_EEPROM("NVM size = %d\n", sz); 707 il->eeprom = kzalloc(sz, GFP_KERNEL); 708 if (!il->eeprom) 709 return -ENOMEM; 710 711 e = (__le16 *) il->eeprom; 712 713 il->ops->apm_init(il); 714 715 ret = il_eeprom_verify_signature(il); 716 if (ret < 0) { 717 IL_ERR("EEPROM not found, EEPROM_GP=0x%08x\n", gp); 718 ret = -ENOENT; 719 goto err; 720 } 721 722 /* Make sure driver (instead of uCode) is allowed to read EEPROM */ 723 ret = il->ops->eeprom_acquire_semaphore(il); 724 if (ret < 0) { 725 IL_ERR("Failed to acquire EEPROM semaphore.\n"); 726 ret = -ENOENT; 727 goto err; 728 } 729 730 /* eeprom is an array of 16bit values */ 731 for (addr = 0; addr < sz; addr += sizeof(u16)) { 732 u32 r; 733 734 _il_wr(il, CSR_EEPROM_REG, 735 CSR_EEPROM_REG_MSK_ADDR & (addr << 1)); 736 737 ret = 738 _il_poll_bit(il, CSR_EEPROM_REG, 739 CSR_EEPROM_REG_READ_VALID_MSK, 740 CSR_EEPROM_REG_READ_VALID_MSK, 741 IL_EEPROM_ACCESS_TIMEOUT); 742 if (ret < 0) { 743 IL_ERR("Time out reading EEPROM[%d]\n", addr); 744 goto done; 745 } 746 r = _il_rd(il, CSR_EEPROM_REG); 747 e[addr / 2] = cpu_to_le16(r >> 16); 748 } 749 750 D_EEPROM("NVM Type: %s, version: 0x%x\n", "EEPROM", 751 il_eeprom_query16(il, EEPROM_VERSION)); 752 753 ret = 0; 754 done: 755 il->ops->eeprom_release_semaphore(il); 756 757 err: 758 if (ret) 759 il_eeprom_free(il); 760 /* Reset chip to save power until we load uCode during "up". */ 761 il_apm_stop(il); 762 return ret; 763 } 764 EXPORT_SYMBOL(il_eeprom_init); 765 766 void 767 il_eeprom_free(struct il_priv *il) 768 { 769 kfree(il->eeprom); 770 il->eeprom = NULL; 771 } 772 EXPORT_SYMBOL(il_eeprom_free); 773 774 static void 775 il_init_band_reference(const struct il_priv *il, int eep_band, 776 int *eeprom_ch_count, 777 const struct il_eeprom_channel **eeprom_ch_info, 778 const u8 **eeprom_ch_idx) 779 { 780 u32 offset = il->cfg->regulatory_bands[eep_band - 1]; 781 782 switch (eep_band) { 783 case 1: /* 2.4GHz band */ 784 *eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_1); 785 *eeprom_ch_info = 786 (struct il_eeprom_channel *)il_eeprom_query_addr(il, 787 offset); 788 *eeprom_ch_idx = il_eeprom_band_1; 789 break; 790 case 2: /* 4.9GHz band */ 791 *eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_2); 792 *eeprom_ch_info = 793 (struct il_eeprom_channel *)il_eeprom_query_addr(il, 794 offset); 795 *eeprom_ch_idx = il_eeprom_band_2; 796 break; 797 case 3: /* 5.2GHz band */ 798 *eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_3); 799 *eeprom_ch_info = 800 (struct il_eeprom_channel *)il_eeprom_query_addr(il, 801 offset); 802 *eeprom_ch_idx = il_eeprom_band_3; 803 break; 804 case 4: /* 5.5GHz band */ 805 *eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_4); 806 *eeprom_ch_info = 807 (struct il_eeprom_channel *)il_eeprom_query_addr(il, 808 offset); 809 *eeprom_ch_idx = il_eeprom_band_4; 810 break; 811 case 5: /* 5.7GHz band */ 812 *eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_5); 813 *eeprom_ch_info = 814 (struct il_eeprom_channel *)il_eeprom_query_addr(il, 815 offset); 816 *eeprom_ch_idx = il_eeprom_band_5; 817 break; 818 case 6: /* 2.4GHz ht40 channels */ 819 *eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_6); 820 *eeprom_ch_info = 821 (struct il_eeprom_channel *)il_eeprom_query_addr(il, 822 offset); 823 *eeprom_ch_idx = il_eeprom_band_6; 824 break; 825 case 7: /* 5 GHz ht40 channels */ 826 *eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_7); 827 *eeprom_ch_info = 828 (struct il_eeprom_channel *)il_eeprom_query_addr(il, 829 offset); 830 *eeprom_ch_idx = il_eeprom_band_7; 831 break; 832 default: 833 BUG(); 834 } 835 } 836 837 #define CHECK_AND_PRINT(x) ((eeprom_ch->flags & EEPROM_CHANNEL_##x) \ 838 ? # x " " : "") 839 /** 840 * il_mod_ht40_chan_info - Copy ht40 channel info into driver's il. 841 * 842 * Does not set up a command, or touch hardware. 843 */ 844 static int 845 il_mod_ht40_chan_info(struct il_priv *il, enum nl80211_band band, u16 channel, 846 const struct il_eeprom_channel *eeprom_ch, 847 u8 clear_ht40_extension_channel) 848 { 849 struct il_channel_info *ch_info; 850 851 ch_info = 852 (struct il_channel_info *)il_get_channel_info(il, band, channel); 853 854 if (!il_is_channel_valid(ch_info)) 855 return -1; 856 857 D_EEPROM("HT40 Ch. %d [%sGHz] %s%s%s%s%s(0x%02x %ddBm):" 858 " Ad-Hoc %ssupported\n", ch_info->channel, 859 il_is_channel_a_band(ch_info) ? "5.2" : "2.4", 860 CHECK_AND_PRINT(IBSS), CHECK_AND_PRINT(ACTIVE), 861 CHECK_AND_PRINT(RADAR), CHECK_AND_PRINT(WIDE), 862 CHECK_AND_PRINT(DFS), eeprom_ch->flags, 863 eeprom_ch->max_power_avg, 864 ((eeprom_ch->flags & EEPROM_CHANNEL_IBSS) && 865 !(eeprom_ch->flags & EEPROM_CHANNEL_RADAR)) ? "" : "not "); 866 867 ch_info->ht40_eeprom = *eeprom_ch; 868 ch_info->ht40_max_power_avg = eeprom_ch->max_power_avg; 869 ch_info->ht40_flags = eeprom_ch->flags; 870 if (eeprom_ch->flags & EEPROM_CHANNEL_VALID) 871 ch_info->ht40_extension_channel &= 872 ~clear_ht40_extension_channel; 873 874 return 0; 875 } 876 877 #define CHECK_AND_PRINT_I(x) ((eeprom_ch_info[ch].flags & EEPROM_CHANNEL_##x) \ 878 ? # x " " : "") 879 880 /** 881 * il_init_channel_map - Set up driver's info for all possible channels 882 */ 883 int 884 il_init_channel_map(struct il_priv *il) 885 { 886 int eeprom_ch_count = 0; 887 const u8 *eeprom_ch_idx = NULL; 888 const struct il_eeprom_channel *eeprom_ch_info = NULL; 889 int band, ch; 890 struct il_channel_info *ch_info; 891 892 if (il->channel_count) { 893 D_EEPROM("Channel map already initialized.\n"); 894 return 0; 895 } 896 897 D_EEPROM("Initializing regulatory info from EEPROM\n"); 898 899 il->channel_count = 900 ARRAY_SIZE(il_eeprom_band_1) + ARRAY_SIZE(il_eeprom_band_2) + 901 ARRAY_SIZE(il_eeprom_band_3) + ARRAY_SIZE(il_eeprom_band_4) + 902 ARRAY_SIZE(il_eeprom_band_5); 903 904 D_EEPROM("Parsing data for %d channels.\n", il->channel_count); 905 906 il->channel_info = 907 kcalloc(il->channel_count, sizeof(struct il_channel_info), 908 GFP_KERNEL); 909 if (!il->channel_info) { 910 IL_ERR("Could not allocate channel_info\n"); 911 il->channel_count = 0; 912 return -ENOMEM; 913 } 914 915 ch_info = il->channel_info; 916 917 /* Loop through the 5 EEPROM bands adding them in order to the 918 * channel map we maintain (that contains additional information than 919 * what just in the EEPROM) */ 920 for (band = 1; band <= 5; band++) { 921 922 il_init_band_reference(il, band, &eeprom_ch_count, 923 &eeprom_ch_info, &eeprom_ch_idx); 924 925 /* Loop through each band adding each of the channels */ 926 for (ch = 0; ch < eeprom_ch_count; ch++) { 927 ch_info->channel = eeprom_ch_idx[ch]; 928 ch_info->band = 929 (band == 930 1) ? NL80211_BAND_2GHZ : NL80211_BAND_5GHZ; 931 932 /* permanently store EEPROM's channel regulatory flags 933 * and max power in channel info database. */ 934 ch_info->eeprom = eeprom_ch_info[ch]; 935 936 /* Copy the run-time flags so they are there even on 937 * invalid channels */ 938 ch_info->flags = eeprom_ch_info[ch].flags; 939 /* First write that ht40 is not enabled, and then enable 940 * one by one */ 941 ch_info->ht40_extension_channel = 942 IEEE80211_CHAN_NO_HT40; 943 944 if (!(il_is_channel_valid(ch_info))) { 945 D_EEPROM("Ch. %d Flags %x [%sGHz] - " 946 "No traffic\n", ch_info->channel, 947 ch_info->flags, 948 il_is_channel_a_band(ch_info) ? "5.2" : 949 "2.4"); 950 ch_info++; 951 continue; 952 } 953 954 /* Initialize regulatory-based run-time data */ 955 ch_info->max_power_avg = ch_info->curr_txpow = 956 eeprom_ch_info[ch].max_power_avg; 957 ch_info->scan_power = eeprom_ch_info[ch].max_power_avg; 958 ch_info->min_power = 0; 959 960 D_EEPROM("Ch. %d [%sGHz] " "%s%s%s%s%s%s(0x%02x %ddBm):" 961 " Ad-Hoc %ssupported\n", ch_info->channel, 962 il_is_channel_a_band(ch_info) ? "5.2" : "2.4", 963 CHECK_AND_PRINT_I(VALID), 964 CHECK_AND_PRINT_I(IBSS), 965 CHECK_AND_PRINT_I(ACTIVE), 966 CHECK_AND_PRINT_I(RADAR), 967 CHECK_AND_PRINT_I(WIDE), 968 CHECK_AND_PRINT_I(DFS), 969 eeprom_ch_info[ch].flags, 970 eeprom_ch_info[ch].max_power_avg, 971 ((eeprom_ch_info[ch]. 972 flags & EEPROM_CHANNEL_IBSS) && 973 !(eeprom_ch_info[ch]. 974 flags & EEPROM_CHANNEL_RADAR)) ? "" : 975 "not "); 976 977 ch_info++; 978 } 979 } 980 981 /* Check if we do have HT40 channels */ 982 if (il->cfg->regulatory_bands[5] == EEPROM_REGULATORY_BAND_NO_HT40 && 983 il->cfg->regulatory_bands[6] == EEPROM_REGULATORY_BAND_NO_HT40) 984 return 0; 985 986 /* Two additional EEPROM bands for 2.4 and 5 GHz HT40 channels */ 987 for (band = 6; band <= 7; band++) { 988 enum nl80211_band ieeeband; 989 990 il_init_band_reference(il, band, &eeprom_ch_count, 991 &eeprom_ch_info, &eeprom_ch_idx); 992 993 /* EEPROM band 6 is 2.4, band 7 is 5 GHz */ 994 ieeeband = 995 (band == 6) ? NL80211_BAND_2GHZ : NL80211_BAND_5GHZ; 996 997 /* Loop through each band adding each of the channels */ 998 for (ch = 0; ch < eeprom_ch_count; ch++) { 999 /* Set up driver's info for lower half */ 1000 il_mod_ht40_chan_info(il, ieeeband, eeprom_ch_idx[ch], 1001 &eeprom_ch_info[ch], 1002 IEEE80211_CHAN_NO_HT40PLUS); 1003 1004 /* Set up driver's info for upper half */ 1005 il_mod_ht40_chan_info(il, ieeeband, 1006 eeprom_ch_idx[ch] + 4, 1007 &eeprom_ch_info[ch], 1008 IEEE80211_CHAN_NO_HT40MINUS); 1009 } 1010 } 1011 1012 return 0; 1013 } 1014 EXPORT_SYMBOL(il_init_channel_map); 1015 1016 /* 1017 * il_free_channel_map - undo allocations in il_init_channel_map 1018 */ 1019 void 1020 il_free_channel_map(struct il_priv *il) 1021 { 1022 kfree(il->channel_info); 1023 il->channel_count = 0; 1024 } 1025 EXPORT_SYMBOL(il_free_channel_map); 1026 1027 /** 1028 * il_get_channel_info - Find driver's ilate channel info 1029 * 1030 * Based on band and channel number. 1031 */ 1032 const struct il_channel_info * 1033 il_get_channel_info(const struct il_priv *il, enum nl80211_band band, 1034 u16 channel) 1035 { 1036 int i; 1037 1038 switch (band) { 1039 case NL80211_BAND_5GHZ: 1040 for (i = 14; i < il->channel_count; i++) { 1041 if (il->channel_info[i].channel == channel) 1042 return &il->channel_info[i]; 1043 } 1044 break; 1045 case NL80211_BAND_2GHZ: 1046 if (channel >= 1 && channel <= 14) 1047 return &il->channel_info[channel - 1]; 1048 break; 1049 default: 1050 BUG(); 1051 } 1052 1053 return NULL; 1054 } 1055 EXPORT_SYMBOL(il_get_channel_info); 1056 1057 /* 1058 * Setting power level allows the card to go to sleep when not busy. 1059 * 1060 * We calculate a sleep command based on the required latency, which 1061 * we get from mac80211. 1062 */ 1063 1064 #define SLP_VEC(X0, X1, X2, X3, X4) { \ 1065 cpu_to_le32(X0), \ 1066 cpu_to_le32(X1), \ 1067 cpu_to_le32(X2), \ 1068 cpu_to_le32(X3), \ 1069 cpu_to_le32(X4) \ 1070 } 1071 1072 static void 1073 il_build_powertable_cmd(struct il_priv *il, struct il_powertable_cmd *cmd) 1074 { 1075 static const __le32 interval[3][IL_POWER_VEC_SIZE] = { 1076 SLP_VEC(2, 2, 4, 6, 0xFF), 1077 SLP_VEC(2, 4, 7, 10, 10), 1078 SLP_VEC(4, 7, 10, 10, 0xFF) 1079 }; 1080 int i, dtim_period, no_dtim; 1081 u32 max_sleep; 1082 bool skip; 1083 1084 memset(cmd, 0, sizeof(*cmd)); 1085 1086 if (il->power_data.pci_pm) 1087 cmd->flags |= IL_POWER_PCI_PM_MSK; 1088 1089 /* if no Power Save, we are done */ 1090 if (il->power_data.ps_disabled) 1091 return; 1092 1093 cmd->flags = IL_POWER_DRIVER_ALLOW_SLEEP_MSK; 1094 cmd->keep_alive_seconds = 0; 1095 cmd->debug_flags = 0; 1096 cmd->rx_data_timeout = cpu_to_le32(25 * 1024); 1097 cmd->tx_data_timeout = cpu_to_le32(25 * 1024); 1098 cmd->keep_alive_beacons = 0; 1099 1100 dtim_period = il->vif ? il->vif->bss_conf.dtim_period : 0; 1101 1102 if (dtim_period <= 2) { 1103 memcpy(cmd->sleep_interval, interval[0], sizeof(interval[0])); 1104 no_dtim = 2; 1105 } else if (dtim_period <= 10) { 1106 memcpy(cmd->sleep_interval, interval[1], sizeof(interval[1])); 1107 no_dtim = 2; 1108 } else { 1109 memcpy(cmd->sleep_interval, interval[2], sizeof(interval[2])); 1110 no_dtim = 0; 1111 } 1112 1113 if (dtim_period == 0) { 1114 dtim_period = 1; 1115 skip = false; 1116 } else { 1117 skip = !!no_dtim; 1118 } 1119 1120 if (skip) { 1121 __le32 tmp = cmd->sleep_interval[IL_POWER_VEC_SIZE - 1]; 1122 1123 max_sleep = le32_to_cpu(tmp); 1124 if (max_sleep == 0xFF) 1125 max_sleep = dtim_period * (skip + 1); 1126 else if (max_sleep > dtim_period) 1127 max_sleep = (max_sleep / dtim_period) * dtim_period; 1128 cmd->flags |= IL_POWER_SLEEP_OVER_DTIM_MSK; 1129 } else { 1130 max_sleep = dtim_period; 1131 cmd->flags &= ~IL_POWER_SLEEP_OVER_DTIM_MSK; 1132 } 1133 1134 for (i = 0; i < IL_POWER_VEC_SIZE; i++) 1135 if (le32_to_cpu(cmd->sleep_interval[i]) > max_sleep) 1136 cmd->sleep_interval[i] = cpu_to_le32(max_sleep); 1137 } 1138 1139 static int 1140 il_set_power(struct il_priv *il, struct il_powertable_cmd *cmd) 1141 { 1142 D_POWER("Sending power/sleep command\n"); 1143 D_POWER("Flags value = 0x%08X\n", cmd->flags); 1144 D_POWER("Tx timeout = %u\n", le32_to_cpu(cmd->tx_data_timeout)); 1145 D_POWER("Rx timeout = %u\n", le32_to_cpu(cmd->rx_data_timeout)); 1146 D_POWER("Sleep interval vector = { %d , %d , %d , %d , %d }\n", 1147 le32_to_cpu(cmd->sleep_interval[0]), 1148 le32_to_cpu(cmd->sleep_interval[1]), 1149 le32_to_cpu(cmd->sleep_interval[2]), 1150 le32_to_cpu(cmd->sleep_interval[3]), 1151 le32_to_cpu(cmd->sleep_interval[4])); 1152 1153 return il_send_cmd_pdu(il, C_POWER_TBL, 1154 sizeof(struct il_powertable_cmd), cmd); 1155 } 1156 1157 static int 1158 il_power_set_mode(struct il_priv *il, struct il_powertable_cmd *cmd, bool force) 1159 { 1160 int ret; 1161 bool update_chains; 1162 1163 lockdep_assert_held(&il->mutex); 1164 1165 /* Don't update the RX chain when chain noise calibration is running */ 1166 update_chains = il->chain_noise_data.state == IL_CHAIN_NOISE_DONE || 1167 il->chain_noise_data.state == IL_CHAIN_NOISE_ALIVE; 1168 1169 if (!memcmp(&il->power_data.sleep_cmd, cmd, sizeof(*cmd)) && !force) 1170 return 0; 1171 1172 if (!il_is_ready_rf(il)) 1173 return -EIO; 1174 1175 /* scan complete use sleep_power_next, need to be updated */ 1176 memcpy(&il->power_data.sleep_cmd_next, cmd, sizeof(*cmd)); 1177 if (test_bit(S_SCANNING, &il->status) && !force) { 1178 D_INFO("Defer power set mode while scanning\n"); 1179 return 0; 1180 } 1181 1182 if (cmd->flags & IL_POWER_DRIVER_ALLOW_SLEEP_MSK) 1183 set_bit(S_POWER_PMI, &il->status); 1184 1185 ret = il_set_power(il, cmd); 1186 if (!ret) { 1187 if (!(cmd->flags & IL_POWER_DRIVER_ALLOW_SLEEP_MSK)) 1188 clear_bit(S_POWER_PMI, &il->status); 1189 1190 if (il->ops->update_chain_flags && update_chains) 1191 il->ops->update_chain_flags(il); 1192 else if (il->ops->update_chain_flags) 1193 D_POWER("Cannot update the power, chain noise " 1194 "calibration running: %d\n", 1195 il->chain_noise_data.state); 1196 1197 memcpy(&il->power_data.sleep_cmd, cmd, sizeof(*cmd)); 1198 } else 1199 IL_ERR("set power fail, ret = %d", ret); 1200 1201 return ret; 1202 } 1203 1204 int 1205 il_power_update_mode(struct il_priv *il, bool force) 1206 { 1207 struct il_powertable_cmd cmd; 1208 1209 il_build_powertable_cmd(il, &cmd); 1210 1211 return il_power_set_mode(il, &cmd, force); 1212 } 1213 EXPORT_SYMBOL(il_power_update_mode); 1214 1215 /* initialize to default */ 1216 void 1217 il_power_initialize(struct il_priv *il) 1218 { 1219 u16 lctl; 1220 1221 pcie_capability_read_word(il->pci_dev, PCI_EXP_LNKCTL, &lctl); 1222 il->power_data.pci_pm = !(lctl & PCI_EXP_LNKCTL_ASPM_L0S); 1223 1224 il->power_data.debug_sleep_level_override = -1; 1225 1226 memset(&il->power_data.sleep_cmd, 0, sizeof(il->power_data.sleep_cmd)); 1227 } 1228 EXPORT_SYMBOL(il_power_initialize); 1229 1230 /* For active scan, listen ACTIVE_DWELL_TIME (msec) on each channel after 1231 * sending probe req. This should be set long enough to hear probe responses 1232 * from more than one AP. */ 1233 #define IL_ACTIVE_DWELL_TIME_24 (30) /* all times in msec */ 1234 #define IL_ACTIVE_DWELL_TIME_52 (20) 1235 1236 #define IL_ACTIVE_DWELL_FACTOR_24GHZ (3) 1237 #define IL_ACTIVE_DWELL_FACTOR_52GHZ (2) 1238 1239 /* For passive scan, listen PASSIVE_DWELL_TIME (msec) on each channel. 1240 * Must be set longer than active dwell time. 1241 * For the most reliable scan, set > AP beacon interval (typically 100msec). */ 1242 #define IL_PASSIVE_DWELL_TIME_24 (20) /* all times in msec */ 1243 #define IL_PASSIVE_DWELL_TIME_52 (10) 1244 #define IL_PASSIVE_DWELL_BASE (100) 1245 #define IL_CHANNEL_TUNE_TIME 5 1246 1247 static int 1248 il_send_scan_abort(struct il_priv *il) 1249 { 1250 int ret; 1251 struct il_rx_pkt *pkt; 1252 struct il_host_cmd cmd = { 1253 .id = C_SCAN_ABORT, 1254 .flags = CMD_WANT_SKB, 1255 }; 1256 1257 /* Exit instantly with error when device is not ready 1258 * to receive scan abort command or it does not perform 1259 * hardware scan currently */ 1260 if (!test_bit(S_READY, &il->status) || 1261 !test_bit(S_GEO_CONFIGURED, &il->status) || 1262 !test_bit(S_SCAN_HW, &il->status) || 1263 test_bit(S_FW_ERROR, &il->status) || 1264 test_bit(S_EXIT_PENDING, &il->status)) 1265 return -EIO; 1266 1267 ret = il_send_cmd_sync(il, &cmd); 1268 if (ret) 1269 return ret; 1270 1271 pkt = (struct il_rx_pkt *)cmd.reply_page; 1272 if (pkt->u.status != CAN_ABORT_STATUS) { 1273 /* The scan abort will return 1 for success or 1274 * 2 for "failure". A failure condition can be 1275 * due to simply not being in an active scan which 1276 * can occur if we send the scan abort before we 1277 * the microcode has notified us that a scan is 1278 * completed. */ 1279 D_SCAN("SCAN_ABORT ret %d.\n", pkt->u.status); 1280 ret = -EIO; 1281 } 1282 1283 il_free_pages(il, cmd.reply_page); 1284 return ret; 1285 } 1286 1287 static void 1288 il_complete_scan(struct il_priv *il, bool aborted) 1289 { 1290 struct cfg80211_scan_info info = { 1291 .aborted = aborted, 1292 }; 1293 1294 /* check if scan was requested from mac80211 */ 1295 if (il->scan_request) { 1296 D_SCAN("Complete scan in mac80211\n"); 1297 ieee80211_scan_completed(il->hw, &info); 1298 } 1299 1300 il->scan_vif = NULL; 1301 il->scan_request = NULL; 1302 } 1303 1304 void 1305 il_force_scan_end(struct il_priv *il) 1306 { 1307 lockdep_assert_held(&il->mutex); 1308 1309 if (!test_bit(S_SCANNING, &il->status)) { 1310 D_SCAN("Forcing scan end while not scanning\n"); 1311 return; 1312 } 1313 1314 D_SCAN("Forcing scan end\n"); 1315 clear_bit(S_SCANNING, &il->status); 1316 clear_bit(S_SCAN_HW, &il->status); 1317 clear_bit(S_SCAN_ABORTING, &il->status); 1318 il_complete_scan(il, true); 1319 } 1320 1321 static void 1322 il_do_scan_abort(struct il_priv *il) 1323 { 1324 int ret; 1325 1326 lockdep_assert_held(&il->mutex); 1327 1328 if (!test_bit(S_SCANNING, &il->status)) { 1329 D_SCAN("Not performing scan to abort\n"); 1330 return; 1331 } 1332 1333 if (test_and_set_bit(S_SCAN_ABORTING, &il->status)) { 1334 D_SCAN("Scan abort in progress\n"); 1335 return; 1336 } 1337 1338 ret = il_send_scan_abort(il); 1339 if (ret) { 1340 D_SCAN("Send scan abort failed %d\n", ret); 1341 il_force_scan_end(il); 1342 } else 1343 D_SCAN("Successfully send scan abort\n"); 1344 } 1345 1346 /** 1347 * il_scan_cancel - Cancel any currently executing HW scan 1348 */ 1349 int 1350 il_scan_cancel(struct il_priv *il) 1351 { 1352 D_SCAN("Queuing abort scan\n"); 1353 queue_work(il->workqueue, &il->abort_scan); 1354 return 0; 1355 } 1356 EXPORT_SYMBOL(il_scan_cancel); 1357 1358 /** 1359 * il_scan_cancel_timeout - Cancel any currently executing HW scan 1360 * @ms: amount of time to wait (in milliseconds) for scan to abort 1361 * 1362 */ 1363 int 1364 il_scan_cancel_timeout(struct il_priv *il, unsigned long ms) 1365 { 1366 unsigned long timeout = jiffies + msecs_to_jiffies(ms); 1367 1368 lockdep_assert_held(&il->mutex); 1369 1370 D_SCAN("Scan cancel timeout\n"); 1371 1372 il_do_scan_abort(il); 1373 1374 while (time_before_eq(jiffies, timeout)) { 1375 if (!test_bit(S_SCAN_HW, &il->status)) 1376 break; 1377 msleep(20); 1378 } 1379 1380 return test_bit(S_SCAN_HW, &il->status); 1381 } 1382 EXPORT_SYMBOL(il_scan_cancel_timeout); 1383 1384 /* Service response to C_SCAN (0x80) */ 1385 static void 1386 il_hdl_scan(struct il_priv *il, struct il_rx_buf *rxb) 1387 { 1388 #ifdef CONFIG_IWLEGACY_DEBUG 1389 struct il_rx_pkt *pkt = rxb_addr(rxb); 1390 struct il_scanreq_notification *notif = 1391 (struct il_scanreq_notification *)pkt->u.raw; 1392 1393 D_SCAN("Scan request status = 0x%x\n", notif->status); 1394 #endif 1395 } 1396 1397 /* Service N_SCAN_START (0x82) */ 1398 static void 1399 il_hdl_scan_start(struct il_priv *il, struct il_rx_buf *rxb) 1400 { 1401 struct il_rx_pkt *pkt = rxb_addr(rxb); 1402 struct il_scanstart_notification *notif = 1403 (struct il_scanstart_notification *)pkt->u.raw; 1404 il->scan_start_tsf = le32_to_cpu(notif->tsf_low); 1405 D_SCAN("Scan start: " "%d [802.11%s] " 1406 "(TSF: 0x%08X:%08X) - %d (beacon timer %u)\n", notif->channel, 1407 notif->band ? "bg" : "a", le32_to_cpu(notif->tsf_high), 1408 le32_to_cpu(notif->tsf_low), notif->status, notif->beacon_timer); 1409 } 1410 1411 /* Service N_SCAN_RESULTS (0x83) */ 1412 static void 1413 il_hdl_scan_results(struct il_priv *il, struct il_rx_buf *rxb) 1414 { 1415 #ifdef CONFIG_IWLEGACY_DEBUG 1416 struct il_rx_pkt *pkt = rxb_addr(rxb); 1417 struct il_scanresults_notification *notif = 1418 (struct il_scanresults_notification *)pkt->u.raw; 1419 1420 D_SCAN("Scan ch.res: " "%d [802.11%s] " "(TSF: 0x%08X:%08X) - %d " 1421 "elapsed=%lu usec\n", notif->channel, notif->band ? "bg" : "a", 1422 le32_to_cpu(notif->tsf_high), le32_to_cpu(notif->tsf_low), 1423 le32_to_cpu(notif->stats[0]), 1424 le32_to_cpu(notif->tsf_low) - il->scan_start_tsf); 1425 #endif 1426 } 1427 1428 /* Service N_SCAN_COMPLETE (0x84) */ 1429 static void 1430 il_hdl_scan_complete(struct il_priv *il, struct il_rx_buf *rxb) 1431 { 1432 1433 #ifdef CONFIG_IWLEGACY_DEBUG 1434 struct il_rx_pkt *pkt = rxb_addr(rxb); 1435 struct il_scancomplete_notification *scan_notif = (void *)pkt->u.raw; 1436 #endif 1437 1438 D_SCAN("Scan complete: %d channels (TSF 0x%08X:%08X) - %d\n", 1439 scan_notif->scanned_channels, scan_notif->tsf_low, 1440 scan_notif->tsf_high, scan_notif->status); 1441 1442 /* The HW is no longer scanning */ 1443 clear_bit(S_SCAN_HW, &il->status); 1444 1445 D_SCAN("Scan on %sGHz took %dms\n", 1446 (il->scan_band == NL80211_BAND_2GHZ) ? "2.4" : "5.2", 1447 jiffies_to_msecs(jiffies - il->scan_start)); 1448 1449 queue_work(il->workqueue, &il->scan_completed); 1450 } 1451 1452 void 1453 il_setup_rx_scan_handlers(struct il_priv *il) 1454 { 1455 /* scan handlers */ 1456 il->handlers[C_SCAN] = il_hdl_scan; 1457 il->handlers[N_SCAN_START] = il_hdl_scan_start; 1458 il->handlers[N_SCAN_RESULTS] = il_hdl_scan_results; 1459 il->handlers[N_SCAN_COMPLETE] = il_hdl_scan_complete; 1460 } 1461 EXPORT_SYMBOL(il_setup_rx_scan_handlers); 1462 1463 u16 1464 il_get_active_dwell_time(struct il_priv *il, enum nl80211_band band, 1465 u8 n_probes) 1466 { 1467 if (band == NL80211_BAND_5GHZ) 1468 return IL_ACTIVE_DWELL_TIME_52 + 1469 IL_ACTIVE_DWELL_FACTOR_52GHZ * (n_probes + 1); 1470 else 1471 return IL_ACTIVE_DWELL_TIME_24 + 1472 IL_ACTIVE_DWELL_FACTOR_24GHZ * (n_probes + 1); 1473 } 1474 EXPORT_SYMBOL(il_get_active_dwell_time); 1475 1476 u16 1477 il_get_passive_dwell_time(struct il_priv *il, enum nl80211_band band, 1478 struct ieee80211_vif *vif) 1479 { 1480 u16 value; 1481 1482 u16 passive = 1483 (band == 1484 NL80211_BAND_2GHZ) ? IL_PASSIVE_DWELL_BASE + 1485 IL_PASSIVE_DWELL_TIME_24 : IL_PASSIVE_DWELL_BASE + 1486 IL_PASSIVE_DWELL_TIME_52; 1487 1488 if (il_is_any_associated(il)) { 1489 /* 1490 * If we're associated, we clamp the maximum passive 1491 * dwell time to be 98% of the smallest beacon interval 1492 * (minus 2 * channel tune time) 1493 */ 1494 value = il->vif ? il->vif->bss_conf.beacon_int : 0; 1495 if (value > IL_PASSIVE_DWELL_BASE || !value) 1496 value = IL_PASSIVE_DWELL_BASE; 1497 value = (value * 98) / 100 - IL_CHANNEL_TUNE_TIME * 2; 1498 passive = min(value, passive); 1499 } 1500 1501 return passive; 1502 } 1503 EXPORT_SYMBOL(il_get_passive_dwell_time); 1504 1505 void 1506 il_init_scan_params(struct il_priv *il) 1507 { 1508 u8 ant_idx = fls(il->hw_params.valid_tx_ant) - 1; 1509 if (!il->scan_tx_ant[NL80211_BAND_5GHZ]) 1510 il->scan_tx_ant[NL80211_BAND_5GHZ] = ant_idx; 1511 if (!il->scan_tx_ant[NL80211_BAND_2GHZ]) 1512 il->scan_tx_ant[NL80211_BAND_2GHZ] = ant_idx; 1513 } 1514 EXPORT_SYMBOL(il_init_scan_params); 1515 1516 static int 1517 il_scan_initiate(struct il_priv *il, struct ieee80211_vif *vif) 1518 { 1519 int ret; 1520 1521 lockdep_assert_held(&il->mutex); 1522 1523 cancel_delayed_work(&il->scan_check); 1524 1525 if (!il_is_ready_rf(il)) { 1526 IL_WARN("Request scan called when driver not ready.\n"); 1527 return -EIO; 1528 } 1529 1530 if (test_bit(S_SCAN_HW, &il->status)) { 1531 D_SCAN("Multiple concurrent scan requests in parallel.\n"); 1532 return -EBUSY; 1533 } 1534 1535 if (test_bit(S_SCAN_ABORTING, &il->status)) { 1536 D_SCAN("Scan request while abort pending.\n"); 1537 return -EBUSY; 1538 } 1539 1540 D_SCAN("Starting scan...\n"); 1541 1542 set_bit(S_SCANNING, &il->status); 1543 il->scan_start = jiffies; 1544 1545 ret = il->ops->request_scan(il, vif); 1546 if (ret) { 1547 clear_bit(S_SCANNING, &il->status); 1548 return ret; 1549 } 1550 1551 queue_delayed_work(il->workqueue, &il->scan_check, 1552 IL_SCAN_CHECK_WATCHDOG); 1553 1554 return 0; 1555 } 1556 1557 int 1558 il_mac_hw_scan(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 1559 struct ieee80211_scan_request *hw_req) 1560 { 1561 struct cfg80211_scan_request *req = &hw_req->req; 1562 struct il_priv *il = hw->priv; 1563 int ret; 1564 1565 if (req->n_channels == 0) { 1566 IL_ERR("Can not scan on no channels.\n"); 1567 return -EINVAL; 1568 } 1569 1570 mutex_lock(&il->mutex); 1571 D_MAC80211("enter\n"); 1572 1573 if (test_bit(S_SCANNING, &il->status)) { 1574 D_SCAN("Scan already in progress.\n"); 1575 ret = -EAGAIN; 1576 goto out_unlock; 1577 } 1578 1579 /* mac80211 will only ask for one band at a time */ 1580 il->scan_request = req; 1581 il->scan_vif = vif; 1582 il->scan_band = req->channels[0]->band; 1583 1584 ret = il_scan_initiate(il, vif); 1585 1586 out_unlock: 1587 D_MAC80211("leave ret %d\n", ret); 1588 mutex_unlock(&il->mutex); 1589 1590 return ret; 1591 } 1592 EXPORT_SYMBOL(il_mac_hw_scan); 1593 1594 static void 1595 il_bg_scan_check(struct work_struct *data) 1596 { 1597 struct il_priv *il = 1598 container_of(data, struct il_priv, scan_check.work); 1599 1600 D_SCAN("Scan check work\n"); 1601 1602 /* Since we are here firmware does not finish scan and 1603 * most likely is in bad shape, so we don't bother to 1604 * send abort command, just force scan complete to mac80211 */ 1605 mutex_lock(&il->mutex); 1606 il_force_scan_end(il); 1607 mutex_unlock(&il->mutex); 1608 } 1609 1610 /** 1611 * il_fill_probe_req - fill in all required fields and IE for probe request 1612 */ 1613 1614 u16 1615 il_fill_probe_req(struct il_priv *il, struct ieee80211_mgmt *frame, 1616 const u8 *ta, const u8 *ies, int ie_len, int left) 1617 { 1618 int len = 0; 1619 u8 *pos = NULL; 1620 1621 /* Make sure there is enough space for the probe request, 1622 * two mandatory IEs and the data */ 1623 left -= 24; 1624 if (left < 0) 1625 return 0; 1626 1627 frame->frame_control = cpu_to_le16(IEEE80211_STYPE_PROBE_REQ); 1628 eth_broadcast_addr(frame->da); 1629 memcpy(frame->sa, ta, ETH_ALEN); 1630 eth_broadcast_addr(frame->bssid); 1631 frame->seq_ctrl = 0; 1632 1633 len += 24; 1634 1635 /* ...next IE... */ 1636 pos = &frame->u.probe_req.variable[0]; 1637 1638 /* fill in our indirect SSID IE */ 1639 left -= 2; 1640 if (left < 0) 1641 return 0; 1642 *pos++ = WLAN_EID_SSID; 1643 *pos++ = 0; 1644 1645 len += 2; 1646 1647 if (WARN_ON(left < ie_len)) 1648 return len; 1649 1650 if (ies && ie_len) { 1651 memcpy(pos, ies, ie_len); 1652 len += ie_len; 1653 } 1654 1655 return (u16) len; 1656 } 1657 EXPORT_SYMBOL(il_fill_probe_req); 1658 1659 static void 1660 il_bg_abort_scan(struct work_struct *work) 1661 { 1662 struct il_priv *il = container_of(work, struct il_priv, abort_scan); 1663 1664 D_SCAN("Abort scan work\n"); 1665 1666 /* We keep scan_check work queued in case when firmware will not 1667 * report back scan completed notification */ 1668 mutex_lock(&il->mutex); 1669 il_scan_cancel_timeout(il, 200); 1670 mutex_unlock(&il->mutex); 1671 } 1672 1673 static void 1674 il_bg_scan_completed(struct work_struct *work) 1675 { 1676 struct il_priv *il = container_of(work, struct il_priv, scan_completed); 1677 bool aborted; 1678 1679 D_SCAN("Completed scan.\n"); 1680 1681 cancel_delayed_work(&il->scan_check); 1682 1683 mutex_lock(&il->mutex); 1684 1685 aborted = test_and_clear_bit(S_SCAN_ABORTING, &il->status); 1686 if (aborted) 1687 D_SCAN("Aborted scan completed.\n"); 1688 1689 if (!test_and_clear_bit(S_SCANNING, &il->status)) { 1690 D_SCAN("Scan already completed.\n"); 1691 goto out_settings; 1692 } 1693 1694 il_complete_scan(il, aborted); 1695 1696 out_settings: 1697 /* Can we still talk to firmware ? */ 1698 if (!il_is_ready_rf(il)) 1699 goto out; 1700 1701 /* 1702 * We do not commit power settings while scan is pending, 1703 * do it now if the settings changed. 1704 */ 1705 il_power_set_mode(il, &il->power_data.sleep_cmd_next, false); 1706 il_set_tx_power(il, il->tx_power_next, false); 1707 1708 il->ops->post_scan(il); 1709 1710 out: 1711 mutex_unlock(&il->mutex); 1712 } 1713 1714 void 1715 il_setup_scan_deferred_work(struct il_priv *il) 1716 { 1717 INIT_WORK(&il->scan_completed, il_bg_scan_completed); 1718 INIT_WORK(&il->abort_scan, il_bg_abort_scan); 1719 INIT_DELAYED_WORK(&il->scan_check, il_bg_scan_check); 1720 } 1721 EXPORT_SYMBOL(il_setup_scan_deferred_work); 1722 1723 void 1724 il_cancel_scan_deferred_work(struct il_priv *il) 1725 { 1726 cancel_work_sync(&il->abort_scan); 1727 cancel_work_sync(&il->scan_completed); 1728 1729 if (cancel_delayed_work_sync(&il->scan_check)) { 1730 mutex_lock(&il->mutex); 1731 il_force_scan_end(il); 1732 mutex_unlock(&il->mutex); 1733 } 1734 } 1735 EXPORT_SYMBOL(il_cancel_scan_deferred_work); 1736 1737 /* il->sta_lock must be held */ 1738 static void 1739 il_sta_ucode_activate(struct il_priv *il, u8 sta_id) 1740 { 1741 1742 if (!(il->stations[sta_id].used & IL_STA_DRIVER_ACTIVE)) 1743 IL_ERR("ACTIVATE a non DRIVER active station id %u addr %pM\n", 1744 sta_id, il->stations[sta_id].sta.sta.addr); 1745 1746 if (il->stations[sta_id].used & IL_STA_UCODE_ACTIVE) { 1747 D_ASSOC("STA id %u addr %pM already present" 1748 " in uCode (according to driver)\n", sta_id, 1749 il->stations[sta_id].sta.sta.addr); 1750 } else { 1751 il->stations[sta_id].used |= IL_STA_UCODE_ACTIVE; 1752 D_ASSOC("Added STA id %u addr %pM to uCode\n", sta_id, 1753 il->stations[sta_id].sta.sta.addr); 1754 } 1755 } 1756 1757 static int 1758 il_process_add_sta_resp(struct il_priv *il, struct il_addsta_cmd *addsta, 1759 struct il_rx_pkt *pkt, bool sync) 1760 { 1761 u8 sta_id = addsta->sta.sta_id; 1762 unsigned long flags; 1763 int ret = -EIO; 1764 1765 if (pkt->hdr.flags & IL_CMD_FAILED_MSK) { 1766 IL_ERR("Bad return from C_ADD_STA (0x%08X)\n", pkt->hdr.flags); 1767 return ret; 1768 } 1769 1770 D_INFO("Processing response for adding station %u\n", sta_id); 1771 1772 spin_lock_irqsave(&il->sta_lock, flags); 1773 1774 switch (pkt->u.add_sta.status) { 1775 case ADD_STA_SUCCESS_MSK: 1776 D_INFO("C_ADD_STA PASSED\n"); 1777 il_sta_ucode_activate(il, sta_id); 1778 ret = 0; 1779 break; 1780 case ADD_STA_NO_ROOM_IN_TBL: 1781 IL_ERR("Adding station %d failed, no room in table.\n", sta_id); 1782 break; 1783 case ADD_STA_NO_BLOCK_ACK_RESOURCE: 1784 IL_ERR("Adding station %d failed, no block ack resource.\n", 1785 sta_id); 1786 break; 1787 case ADD_STA_MODIFY_NON_EXIST_STA: 1788 IL_ERR("Attempting to modify non-existing station %d\n", 1789 sta_id); 1790 break; 1791 default: 1792 D_ASSOC("Received C_ADD_STA:(0x%08X)\n", pkt->u.add_sta.status); 1793 break; 1794 } 1795 1796 D_INFO("%s station id %u addr %pM\n", 1797 il->stations[sta_id].sta.mode == 1798 STA_CONTROL_MODIFY_MSK ? "Modified" : "Added", sta_id, 1799 il->stations[sta_id].sta.sta.addr); 1800 1801 /* 1802 * XXX: The MAC address in the command buffer is often changed from 1803 * the original sent to the device. That is, the MAC address 1804 * written to the command buffer often is not the same MAC address 1805 * read from the command buffer when the command returns. This 1806 * issue has not yet been resolved and this debugging is left to 1807 * observe the problem. 1808 */ 1809 D_INFO("%s station according to cmd buffer %pM\n", 1810 il->stations[sta_id].sta.mode == 1811 STA_CONTROL_MODIFY_MSK ? "Modified" : "Added", addsta->sta.addr); 1812 spin_unlock_irqrestore(&il->sta_lock, flags); 1813 1814 return ret; 1815 } 1816 1817 static void 1818 il_add_sta_callback(struct il_priv *il, struct il_device_cmd *cmd, 1819 struct il_rx_pkt *pkt) 1820 { 1821 struct il_addsta_cmd *addsta = (struct il_addsta_cmd *)cmd->cmd.payload; 1822 1823 il_process_add_sta_resp(il, addsta, pkt, false); 1824 1825 } 1826 1827 int 1828 il_send_add_sta(struct il_priv *il, struct il_addsta_cmd *sta, u8 flags) 1829 { 1830 struct il_rx_pkt *pkt = NULL; 1831 int ret = 0; 1832 u8 data[sizeof(*sta)]; 1833 struct il_host_cmd cmd = { 1834 .id = C_ADD_STA, 1835 .flags = flags, 1836 .data = data, 1837 }; 1838 u8 sta_id __maybe_unused = sta->sta.sta_id; 1839 1840 D_INFO("Adding sta %u (%pM) %ssynchronously\n", sta_id, sta->sta.addr, 1841 flags & CMD_ASYNC ? "a" : ""); 1842 1843 if (flags & CMD_ASYNC) 1844 cmd.callback = il_add_sta_callback; 1845 else { 1846 cmd.flags |= CMD_WANT_SKB; 1847 might_sleep(); 1848 } 1849 1850 cmd.len = il->ops->build_addsta_hcmd(sta, data); 1851 ret = il_send_cmd(il, &cmd); 1852 if (ret) 1853 return ret; 1854 if (flags & CMD_ASYNC) 1855 return 0; 1856 1857 pkt = (struct il_rx_pkt *)cmd.reply_page; 1858 ret = il_process_add_sta_resp(il, sta, pkt, true); 1859 1860 il_free_pages(il, cmd.reply_page); 1861 1862 return ret; 1863 } 1864 EXPORT_SYMBOL(il_send_add_sta); 1865 1866 static void 1867 il_set_ht_add_station(struct il_priv *il, u8 idx, struct ieee80211_sta *sta) 1868 { 1869 struct ieee80211_sta_ht_cap *sta_ht_inf = &sta->ht_cap; 1870 __le32 sta_flags; 1871 1872 if (!sta || !sta_ht_inf->ht_supported) 1873 goto done; 1874 1875 D_ASSOC("spatial multiplexing power save mode: %s\n", 1876 (sta->smps_mode == IEEE80211_SMPS_STATIC) ? "static" : 1877 (sta->smps_mode == IEEE80211_SMPS_DYNAMIC) ? "dynamic" : 1878 "disabled"); 1879 1880 sta_flags = il->stations[idx].sta.station_flags; 1881 1882 sta_flags &= ~(STA_FLG_RTS_MIMO_PROT_MSK | STA_FLG_MIMO_DIS_MSK); 1883 1884 switch (sta->smps_mode) { 1885 case IEEE80211_SMPS_STATIC: 1886 sta_flags |= STA_FLG_MIMO_DIS_MSK; 1887 break; 1888 case IEEE80211_SMPS_DYNAMIC: 1889 sta_flags |= STA_FLG_RTS_MIMO_PROT_MSK; 1890 break; 1891 case IEEE80211_SMPS_OFF: 1892 break; 1893 default: 1894 IL_WARN("Invalid MIMO PS mode %d\n", sta->smps_mode); 1895 break; 1896 } 1897 1898 sta_flags |= 1899 cpu_to_le32((u32) sta_ht_inf-> 1900 ampdu_factor << STA_FLG_MAX_AGG_SIZE_POS); 1901 1902 sta_flags |= 1903 cpu_to_le32((u32) sta_ht_inf-> 1904 ampdu_density << STA_FLG_AGG_MPDU_DENSITY_POS); 1905 1906 if (il_is_ht40_tx_allowed(il, &sta->ht_cap)) 1907 sta_flags |= STA_FLG_HT40_EN_MSK; 1908 else 1909 sta_flags &= ~STA_FLG_HT40_EN_MSK; 1910 1911 il->stations[idx].sta.station_flags = sta_flags; 1912 done: 1913 return; 1914 } 1915 1916 /** 1917 * il_prep_station - Prepare station information for addition 1918 * 1919 * should be called with sta_lock held 1920 */ 1921 u8 1922 il_prep_station(struct il_priv *il, const u8 *addr, bool is_ap, 1923 struct ieee80211_sta *sta) 1924 { 1925 struct il_station_entry *station; 1926 int i; 1927 u8 sta_id = IL_INVALID_STATION; 1928 u16 rate; 1929 1930 if (is_ap) 1931 sta_id = IL_AP_ID; 1932 else if (is_broadcast_ether_addr(addr)) 1933 sta_id = il->hw_params.bcast_id; 1934 else 1935 for (i = IL_STA_ID; i < il->hw_params.max_stations; i++) { 1936 if (ether_addr_equal(il->stations[i].sta.sta.addr, 1937 addr)) { 1938 sta_id = i; 1939 break; 1940 } 1941 1942 if (!il->stations[i].used && 1943 sta_id == IL_INVALID_STATION) 1944 sta_id = i; 1945 } 1946 1947 /* 1948 * These two conditions have the same outcome, but keep them 1949 * separate 1950 */ 1951 if (unlikely(sta_id == IL_INVALID_STATION)) 1952 return sta_id; 1953 1954 /* 1955 * uCode is not able to deal with multiple requests to add a 1956 * station. Keep track if one is in progress so that we do not send 1957 * another. 1958 */ 1959 if (il->stations[sta_id].used & IL_STA_UCODE_INPROGRESS) { 1960 D_INFO("STA %d already in process of being added.\n", sta_id); 1961 return sta_id; 1962 } 1963 1964 if ((il->stations[sta_id].used & IL_STA_DRIVER_ACTIVE) && 1965 (il->stations[sta_id].used & IL_STA_UCODE_ACTIVE) && 1966 ether_addr_equal(il->stations[sta_id].sta.sta.addr, addr)) { 1967 D_ASSOC("STA %d (%pM) already added, not adding again.\n", 1968 sta_id, addr); 1969 return sta_id; 1970 } 1971 1972 station = &il->stations[sta_id]; 1973 station->used = IL_STA_DRIVER_ACTIVE; 1974 D_ASSOC("Add STA to driver ID %d: %pM\n", sta_id, addr); 1975 il->num_stations++; 1976 1977 /* Set up the C_ADD_STA command to send to device */ 1978 memset(&station->sta, 0, sizeof(struct il_addsta_cmd)); 1979 memcpy(station->sta.sta.addr, addr, ETH_ALEN); 1980 station->sta.mode = 0; 1981 station->sta.sta.sta_id = sta_id; 1982 station->sta.station_flags = 0; 1983 1984 /* 1985 * OK to call unconditionally, since local stations (IBSS BSSID 1986 * STA and broadcast STA) pass in a NULL sta, and mac80211 1987 * doesn't allow HT IBSS. 1988 */ 1989 il_set_ht_add_station(il, sta_id, sta); 1990 1991 /* 3945 only */ 1992 rate = (il->band == NL80211_BAND_5GHZ) ? RATE_6M_PLCP : RATE_1M_PLCP; 1993 /* Turn on both antennas for the station... */ 1994 station->sta.rate_n_flags = cpu_to_le16(rate | RATE_MCS_ANT_AB_MSK); 1995 1996 return sta_id; 1997 1998 } 1999 EXPORT_SYMBOL_GPL(il_prep_station); 2000 2001 #define STA_WAIT_TIMEOUT (HZ/2) 2002 2003 /** 2004 * il_add_station_common - 2005 */ 2006 int 2007 il_add_station_common(struct il_priv *il, const u8 *addr, bool is_ap, 2008 struct ieee80211_sta *sta, u8 *sta_id_r) 2009 { 2010 unsigned long flags_spin; 2011 int ret = 0; 2012 u8 sta_id; 2013 struct il_addsta_cmd sta_cmd; 2014 2015 *sta_id_r = 0; 2016 spin_lock_irqsave(&il->sta_lock, flags_spin); 2017 sta_id = il_prep_station(il, addr, is_ap, sta); 2018 if (sta_id == IL_INVALID_STATION) { 2019 IL_ERR("Unable to prepare station %pM for addition\n", addr); 2020 spin_unlock_irqrestore(&il->sta_lock, flags_spin); 2021 return -EINVAL; 2022 } 2023 2024 /* 2025 * uCode is not able to deal with multiple requests to add a 2026 * station. Keep track if one is in progress so that we do not send 2027 * another. 2028 */ 2029 if (il->stations[sta_id].used & IL_STA_UCODE_INPROGRESS) { 2030 D_INFO("STA %d already in process of being added.\n", sta_id); 2031 spin_unlock_irqrestore(&il->sta_lock, flags_spin); 2032 return -EEXIST; 2033 } 2034 2035 if ((il->stations[sta_id].used & IL_STA_DRIVER_ACTIVE) && 2036 (il->stations[sta_id].used & IL_STA_UCODE_ACTIVE)) { 2037 D_ASSOC("STA %d (%pM) already added, not adding again.\n", 2038 sta_id, addr); 2039 spin_unlock_irqrestore(&il->sta_lock, flags_spin); 2040 return -EEXIST; 2041 } 2042 2043 il->stations[sta_id].used |= IL_STA_UCODE_INPROGRESS; 2044 memcpy(&sta_cmd, &il->stations[sta_id].sta, 2045 sizeof(struct il_addsta_cmd)); 2046 spin_unlock_irqrestore(&il->sta_lock, flags_spin); 2047 2048 /* Add station to device's station table */ 2049 ret = il_send_add_sta(il, &sta_cmd, CMD_SYNC); 2050 if (ret) { 2051 spin_lock_irqsave(&il->sta_lock, flags_spin); 2052 IL_ERR("Adding station %pM failed.\n", 2053 il->stations[sta_id].sta.sta.addr); 2054 il->stations[sta_id].used &= ~IL_STA_DRIVER_ACTIVE; 2055 il->stations[sta_id].used &= ~IL_STA_UCODE_INPROGRESS; 2056 spin_unlock_irqrestore(&il->sta_lock, flags_spin); 2057 } 2058 *sta_id_r = sta_id; 2059 return ret; 2060 } 2061 EXPORT_SYMBOL(il_add_station_common); 2062 2063 /** 2064 * il_sta_ucode_deactivate - deactivate ucode status for a station 2065 * 2066 * il->sta_lock must be held 2067 */ 2068 static void 2069 il_sta_ucode_deactivate(struct il_priv *il, u8 sta_id) 2070 { 2071 /* Ucode must be active and driver must be non active */ 2072 if ((il->stations[sta_id]. 2073 used & (IL_STA_UCODE_ACTIVE | IL_STA_DRIVER_ACTIVE)) != 2074 IL_STA_UCODE_ACTIVE) 2075 IL_ERR("removed non active STA %u\n", sta_id); 2076 2077 il->stations[sta_id].used &= ~IL_STA_UCODE_ACTIVE; 2078 2079 memset(&il->stations[sta_id], 0, sizeof(struct il_station_entry)); 2080 D_ASSOC("Removed STA %u\n", sta_id); 2081 } 2082 2083 static int 2084 il_send_remove_station(struct il_priv *il, const u8 * addr, int sta_id, 2085 bool temporary) 2086 { 2087 struct il_rx_pkt *pkt; 2088 int ret; 2089 2090 unsigned long flags_spin; 2091 struct il_rem_sta_cmd rm_sta_cmd; 2092 2093 struct il_host_cmd cmd = { 2094 .id = C_REM_STA, 2095 .len = sizeof(struct il_rem_sta_cmd), 2096 .flags = CMD_SYNC, 2097 .data = &rm_sta_cmd, 2098 }; 2099 2100 memset(&rm_sta_cmd, 0, sizeof(rm_sta_cmd)); 2101 rm_sta_cmd.num_sta = 1; 2102 memcpy(&rm_sta_cmd.addr, addr, ETH_ALEN); 2103 2104 cmd.flags |= CMD_WANT_SKB; 2105 2106 ret = il_send_cmd(il, &cmd); 2107 2108 if (ret) 2109 return ret; 2110 2111 pkt = (struct il_rx_pkt *)cmd.reply_page; 2112 if (pkt->hdr.flags & IL_CMD_FAILED_MSK) { 2113 IL_ERR("Bad return from C_REM_STA (0x%08X)\n", pkt->hdr.flags); 2114 ret = -EIO; 2115 } 2116 2117 if (!ret) { 2118 switch (pkt->u.rem_sta.status) { 2119 case REM_STA_SUCCESS_MSK: 2120 if (!temporary) { 2121 spin_lock_irqsave(&il->sta_lock, flags_spin); 2122 il_sta_ucode_deactivate(il, sta_id); 2123 spin_unlock_irqrestore(&il->sta_lock, 2124 flags_spin); 2125 } 2126 D_ASSOC("C_REM_STA PASSED\n"); 2127 break; 2128 default: 2129 ret = -EIO; 2130 IL_ERR("C_REM_STA failed\n"); 2131 break; 2132 } 2133 } 2134 il_free_pages(il, cmd.reply_page); 2135 2136 return ret; 2137 } 2138 2139 /** 2140 * il_remove_station - Remove driver's knowledge of station. 2141 */ 2142 int 2143 il_remove_station(struct il_priv *il, const u8 sta_id, const u8 * addr) 2144 { 2145 unsigned long flags; 2146 2147 if (!il_is_ready(il)) { 2148 D_INFO("Unable to remove station %pM, device not ready.\n", 2149 addr); 2150 /* 2151 * It is typical for stations to be removed when we are 2152 * going down. Return success since device will be down 2153 * soon anyway 2154 */ 2155 return 0; 2156 } 2157 2158 D_ASSOC("Removing STA from driver:%d %pM\n", sta_id, addr); 2159 2160 if (WARN_ON(sta_id == IL_INVALID_STATION)) 2161 return -EINVAL; 2162 2163 spin_lock_irqsave(&il->sta_lock, flags); 2164 2165 if (!(il->stations[sta_id].used & IL_STA_DRIVER_ACTIVE)) { 2166 D_INFO("Removing %pM but non DRIVER active\n", addr); 2167 goto out_err; 2168 } 2169 2170 if (!(il->stations[sta_id].used & IL_STA_UCODE_ACTIVE)) { 2171 D_INFO("Removing %pM but non UCODE active\n", addr); 2172 goto out_err; 2173 } 2174 2175 if (il->stations[sta_id].used & IL_STA_LOCAL) { 2176 kfree(il->stations[sta_id].lq); 2177 il->stations[sta_id].lq = NULL; 2178 } 2179 2180 il->stations[sta_id].used &= ~IL_STA_DRIVER_ACTIVE; 2181 2182 il->num_stations--; 2183 2184 BUG_ON(il->num_stations < 0); 2185 2186 spin_unlock_irqrestore(&il->sta_lock, flags); 2187 2188 return il_send_remove_station(il, addr, sta_id, false); 2189 out_err: 2190 spin_unlock_irqrestore(&il->sta_lock, flags); 2191 return -EINVAL; 2192 } 2193 EXPORT_SYMBOL_GPL(il_remove_station); 2194 2195 /** 2196 * il_clear_ucode_stations - clear ucode station table bits 2197 * 2198 * This function clears all the bits in the driver indicating 2199 * which stations are active in the ucode. Call when something 2200 * other than explicit station management would cause this in 2201 * the ucode, e.g. unassociated RXON. 2202 */ 2203 void 2204 il_clear_ucode_stations(struct il_priv *il) 2205 { 2206 int i; 2207 unsigned long flags_spin; 2208 bool cleared = false; 2209 2210 D_INFO("Clearing ucode stations in driver\n"); 2211 2212 spin_lock_irqsave(&il->sta_lock, flags_spin); 2213 for (i = 0; i < il->hw_params.max_stations; i++) { 2214 if (il->stations[i].used & IL_STA_UCODE_ACTIVE) { 2215 D_INFO("Clearing ucode active for station %d\n", i); 2216 il->stations[i].used &= ~IL_STA_UCODE_ACTIVE; 2217 cleared = true; 2218 } 2219 } 2220 spin_unlock_irqrestore(&il->sta_lock, flags_spin); 2221 2222 if (!cleared) 2223 D_INFO("No active stations found to be cleared\n"); 2224 } 2225 EXPORT_SYMBOL(il_clear_ucode_stations); 2226 2227 /** 2228 * il_restore_stations() - Restore driver known stations to device 2229 * 2230 * All stations considered active by driver, but not present in ucode, is 2231 * restored. 2232 * 2233 * Function sleeps. 2234 */ 2235 void 2236 il_restore_stations(struct il_priv *il) 2237 { 2238 struct il_addsta_cmd sta_cmd; 2239 struct il_link_quality_cmd lq; 2240 unsigned long flags_spin; 2241 int i; 2242 bool found = false; 2243 int ret; 2244 bool send_lq; 2245 2246 if (!il_is_ready(il)) { 2247 D_INFO("Not ready yet, not restoring any stations.\n"); 2248 return; 2249 } 2250 2251 D_ASSOC("Restoring all known stations ... start.\n"); 2252 spin_lock_irqsave(&il->sta_lock, flags_spin); 2253 for (i = 0; i < il->hw_params.max_stations; i++) { 2254 if ((il->stations[i].used & IL_STA_DRIVER_ACTIVE) && 2255 !(il->stations[i].used & IL_STA_UCODE_ACTIVE)) { 2256 D_ASSOC("Restoring sta %pM\n", 2257 il->stations[i].sta.sta.addr); 2258 il->stations[i].sta.mode = 0; 2259 il->stations[i].used |= IL_STA_UCODE_INPROGRESS; 2260 found = true; 2261 } 2262 } 2263 2264 for (i = 0; i < il->hw_params.max_stations; i++) { 2265 if ((il->stations[i].used & IL_STA_UCODE_INPROGRESS)) { 2266 memcpy(&sta_cmd, &il->stations[i].sta, 2267 sizeof(struct il_addsta_cmd)); 2268 send_lq = false; 2269 if (il->stations[i].lq) { 2270 memcpy(&lq, il->stations[i].lq, 2271 sizeof(struct il_link_quality_cmd)); 2272 send_lq = true; 2273 } 2274 spin_unlock_irqrestore(&il->sta_lock, flags_spin); 2275 ret = il_send_add_sta(il, &sta_cmd, CMD_SYNC); 2276 if (ret) { 2277 spin_lock_irqsave(&il->sta_lock, flags_spin); 2278 IL_ERR("Adding station %pM failed.\n", 2279 il->stations[i].sta.sta.addr); 2280 il->stations[i].used &= ~IL_STA_DRIVER_ACTIVE; 2281 il->stations[i].used &= 2282 ~IL_STA_UCODE_INPROGRESS; 2283 spin_unlock_irqrestore(&il->sta_lock, 2284 flags_spin); 2285 } 2286 /* 2287 * Rate scaling has already been initialized, send 2288 * current LQ command 2289 */ 2290 if (send_lq) 2291 il_send_lq_cmd(il, &lq, CMD_SYNC, true); 2292 spin_lock_irqsave(&il->sta_lock, flags_spin); 2293 il->stations[i].used &= ~IL_STA_UCODE_INPROGRESS; 2294 } 2295 } 2296 2297 spin_unlock_irqrestore(&il->sta_lock, flags_spin); 2298 if (!found) 2299 D_INFO("Restoring all known stations" 2300 " .... no stations to be restored.\n"); 2301 else 2302 D_INFO("Restoring all known stations" " .... complete.\n"); 2303 } 2304 EXPORT_SYMBOL(il_restore_stations); 2305 2306 int 2307 il_get_free_ucode_key_idx(struct il_priv *il) 2308 { 2309 int i; 2310 2311 for (i = 0; i < il->sta_key_max_num; i++) 2312 if (!test_and_set_bit(i, &il->ucode_key_table)) 2313 return i; 2314 2315 return WEP_INVALID_OFFSET; 2316 } 2317 EXPORT_SYMBOL(il_get_free_ucode_key_idx); 2318 2319 void 2320 il_dealloc_bcast_stations(struct il_priv *il) 2321 { 2322 unsigned long flags; 2323 int i; 2324 2325 spin_lock_irqsave(&il->sta_lock, flags); 2326 for (i = 0; i < il->hw_params.max_stations; i++) { 2327 if (!(il->stations[i].used & IL_STA_BCAST)) 2328 continue; 2329 2330 il->stations[i].used &= ~IL_STA_UCODE_ACTIVE; 2331 il->num_stations--; 2332 BUG_ON(il->num_stations < 0); 2333 kfree(il->stations[i].lq); 2334 il->stations[i].lq = NULL; 2335 } 2336 spin_unlock_irqrestore(&il->sta_lock, flags); 2337 } 2338 EXPORT_SYMBOL_GPL(il_dealloc_bcast_stations); 2339 2340 #ifdef CONFIG_IWLEGACY_DEBUG 2341 static void 2342 il_dump_lq_cmd(struct il_priv *il, struct il_link_quality_cmd *lq) 2343 { 2344 int i; 2345 D_RATE("lq station id 0x%x\n", lq->sta_id); 2346 D_RATE("lq ant 0x%X 0x%X\n", lq->general_params.single_stream_ant_msk, 2347 lq->general_params.dual_stream_ant_msk); 2348 2349 for (i = 0; i < LINK_QUAL_MAX_RETRY_NUM; i++) 2350 D_RATE("lq idx %d 0x%X\n", i, lq->rs_table[i].rate_n_flags); 2351 } 2352 #else 2353 static inline void 2354 il_dump_lq_cmd(struct il_priv *il, struct il_link_quality_cmd *lq) 2355 { 2356 } 2357 #endif 2358 2359 /** 2360 * il_is_lq_table_valid() - Test one aspect of LQ cmd for validity 2361 * 2362 * It sometimes happens when a HT rate has been in use and we 2363 * loose connectivity with AP then mac80211 will first tell us that the 2364 * current channel is not HT anymore before removing the station. In such a 2365 * scenario the RXON flags will be updated to indicate we are not 2366 * communicating HT anymore, but the LQ command may still contain HT rates. 2367 * Test for this to prevent driver from sending LQ command between the time 2368 * RXON flags are updated and when LQ command is updated. 2369 */ 2370 static bool 2371 il_is_lq_table_valid(struct il_priv *il, struct il_link_quality_cmd *lq) 2372 { 2373 int i; 2374 2375 if (il->ht.enabled) 2376 return true; 2377 2378 D_INFO("Channel %u is not an HT channel\n", il->active.channel); 2379 for (i = 0; i < LINK_QUAL_MAX_RETRY_NUM; i++) { 2380 if (le32_to_cpu(lq->rs_table[i].rate_n_flags) & RATE_MCS_HT_MSK) { 2381 D_INFO("idx %d of LQ expects HT channel\n", i); 2382 return false; 2383 } 2384 } 2385 return true; 2386 } 2387 2388 /** 2389 * il_send_lq_cmd() - Send link quality command 2390 * @init: This command is sent as part of station initialization right 2391 * after station has been added. 2392 * 2393 * The link quality command is sent as the last step of station creation. 2394 * This is the special case in which init is set and we call a callback in 2395 * this case to clear the state indicating that station creation is in 2396 * progress. 2397 */ 2398 int 2399 il_send_lq_cmd(struct il_priv *il, struct il_link_quality_cmd *lq, 2400 u8 flags, bool init) 2401 { 2402 int ret = 0; 2403 unsigned long flags_spin; 2404 2405 struct il_host_cmd cmd = { 2406 .id = C_TX_LINK_QUALITY_CMD, 2407 .len = sizeof(struct il_link_quality_cmd), 2408 .flags = flags, 2409 .data = lq, 2410 }; 2411 2412 if (WARN_ON(lq->sta_id == IL_INVALID_STATION)) 2413 return -EINVAL; 2414 2415 spin_lock_irqsave(&il->sta_lock, flags_spin); 2416 if (!(il->stations[lq->sta_id].used & IL_STA_DRIVER_ACTIVE)) { 2417 spin_unlock_irqrestore(&il->sta_lock, flags_spin); 2418 return -EINVAL; 2419 } 2420 spin_unlock_irqrestore(&il->sta_lock, flags_spin); 2421 2422 il_dump_lq_cmd(il, lq); 2423 BUG_ON(init && (cmd.flags & CMD_ASYNC)); 2424 2425 if (il_is_lq_table_valid(il, lq)) 2426 ret = il_send_cmd(il, &cmd); 2427 else 2428 ret = -EINVAL; 2429 2430 if (cmd.flags & CMD_ASYNC) 2431 return ret; 2432 2433 if (init) { 2434 D_INFO("init LQ command complete," 2435 " clearing sta addition status for sta %d\n", 2436 lq->sta_id); 2437 spin_lock_irqsave(&il->sta_lock, flags_spin); 2438 il->stations[lq->sta_id].used &= ~IL_STA_UCODE_INPROGRESS; 2439 spin_unlock_irqrestore(&il->sta_lock, flags_spin); 2440 } 2441 return ret; 2442 } 2443 EXPORT_SYMBOL(il_send_lq_cmd); 2444 2445 int 2446 il_mac_sta_remove(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 2447 struct ieee80211_sta *sta) 2448 { 2449 struct il_priv *il = hw->priv; 2450 struct il_station_priv_common *sta_common = (void *)sta->drv_priv; 2451 int ret; 2452 2453 mutex_lock(&il->mutex); 2454 D_MAC80211("enter station %pM\n", sta->addr); 2455 2456 ret = il_remove_station(il, sta_common->sta_id, sta->addr); 2457 if (ret) 2458 IL_ERR("Error removing station %pM\n", sta->addr); 2459 2460 D_MAC80211("leave ret %d\n", ret); 2461 mutex_unlock(&il->mutex); 2462 2463 return ret; 2464 } 2465 EXPORT_SYMBOL(il_mac_sta_remove); 2466 2467 /************************** RX-FUNCTIONS ****************************/ 2468 /* 2469 * Rx theory of operation 2470 * 2471 * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs), 2472 * each of which point to Receive Buffers to be filled by the NIC. These get 2473 * used not only for Rx frames, but for any command response or notification 2474 * from the NIC. The driver and NIC manage the Rx buffers by means 2475 * of idxes into the circular buffer. 2476 * 2477 * Rx Queue Indexes 2478 * The host/firmware share two idx registers for managing the Rx buffers. 2479 * 2480 * The READ idx maps to the first position that the firmware may be writing 2481 * to -- the driver can read up to (but not including) this position and get 2482 * good data. 2483 * The READ idx is managed by the firmware once the card is enabled. 2484 * 2485 * The WRITE idx maps to the last position the driver has read from -- the 2486 * position preceding WRITE is the last slot the firmware can place a packet. 2487 * 2488 * The queue is empty (no good data) if WRITE = READ - 1, and is full if 2489 * WRITE = READ. 2490 * 2491 * During initialization, the host sets up the READ queue position to the first 2492 * IDX position, and WRITE to the last (READ - 1 wrapped) 2493 * 2494 * When the firmware places a packet in a buffer, it will advance the READ idx 2495 * and fire the RX interrupt. The driver can then query the READ idx and 2496 * process as many packets as possible, moving the WRITE idx forward as it 2497 * resets the Rx queue buffers with new memory. 2498 * 2499 * The management in the driver is as follows: 2500 * + A list of pre-allocated SKBs is stored in iwl->rxq->rx_free. When 2501 * iwl->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled 2502 * to replenish the iwl->rxq->rx_free. 2503 * + In il_rx_replenish (scheduled) if 'processed' != 'read' then the 2504 * iwl->rxq is replenished and the READ IDX is updated (updating the 2505 * 'processed' and 'read' driver idxes as well) 2506 * + A received packet is processed and handed to the kernel network stack, 2507 * detached from the iwl->rxq. The driver 'processed' idx is updated. 2508 * + The Host/Firmware iwl->rxq is replenished at tasklet time from the rx_free 2509 * list. If there are no allocated buffers in iwl->rxq->rx_free, the READ 2510 * IDX is not incremented and iwl->status(RX_STALLED) is set. If there 2511 * were enough free buffers and RX_STALLED is set it is cleared. 2512 * 2513 * 2514 * Driver sequence: 2515 * 2516 * il_rx_queue_alloc() Allocates rx_free 2517 * il_rx_replenish() Replenishes rx_free list from rx_used, and calls 2518 * il_rx_queue_restock 2519 * il_rx_queue_restock() Moves available buffers from rx_free into Rx 2520 * queue, updates firmware pointers, and updates 2521 * the WRITE idx. If insufficient rx_free buffers 2522 * are available, schedules il_rx_replenish 2523 * 2524 * -- enable interrupts -- 2525 * ISR - il_rx() Detach il_rx_bufs from pool up to the 2526 * READ IDX, detaching the SKB from the pool. 2527 * Moves the packet buffer from queue to rx_used. 2528 * Calls il_rx_queue_restock to refill any empty 2529 * slots. 2530 * ... 2531 * 2532 */ 2533 2534 /** 2535 * il_rx_queue_space - Return number of free slots available in queue. 2536 */ 2537 int 2538 il_rx_queue_space(const struct il_rx_queue *q) 2539 { 2540 int s = q->read - q->write; 2541 if (s <= 0) 2542 s += RX_QUEUE_SIZE; 2543 /* keep some buffer to not confuse full and empty queue */ 2544 s -= 2; 2545 if (s < 0) 2546 s = 0; 2547 return s; 2548 } 2549 EXPORT_SYMBOL(il_rx_queue_space); 2550 2551 /** 2552 * il_rx_queue_update_write_ptr - Update the write pointer for the RX queue 2553 */ 2554 void 2555 il_rx_queue_update_write_ptr(struct il_priv *il, struct il_rx_queue *q) 2556 { 2557 unsigned long flags; 2558 u32 rx_wrt_ptr_reg = il->hw_params.rx_wrt_ptr_reg; 2559 u32 reg; 2560 2561 spin_lock_irqsave(&q->lock, flags); 2562 2563 if (q->need_update == 0) 2564 goto exit_unlock; 2565 2566 /* If power-saving is in use, make sure device is awake */ 2567 if (test_bit(S_POWER_PMI, &il->status)) { 2568 reg = _il_rd(il, CSR_UCODE_DRV_GP1); 2569 2570 if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) { 2571 D_INFO("Rx queue requesting wakeup," " GP1 = 0x%x\n", 2572 reg); 2573 il_set_bit(il, CSR_GP_CNTRL, 2574 CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); 2575 goto exit_unlock; 2576 } 2577 2578 q->write_actual = (q->write & ~0x7); 2579 il_wr(il, rx_wrt_ptr_reg, q->write_actual); 2580 2581 /* Else device is assumed to be awake */ 2582 } else { 2583 /* Device expects a multiple of 8 */ 2584 q->write_actual = (q->write & ~0x7); 2585 il_wr(il, rx_wrt_ptr_reg, q->write_actual); 2586 } 2587 2588 q->need_update = 0; 2589 2590 exit_unlock: 2591 spin_unlock_irqrestore(&q->lock, flags); 2592 } 2593 EXPORT_SYMBOL(il_rx_queue_update_write_ptr); 2594 2595 int 2596 il_rx_queue_alloc(struct il_priv *il) 2597 { 2598 struct il_rx_queue *rxq = &il->rxq; 2599 struct device *dev = &il->pci_dev->dev; 2600 int i; 2601 2602 spin_lock_init(&rxq->lock); 2603 INIT_LIST_HEAD(&rxq->rx_free); 2604 INIT_LIST_HEAD(&rxq->rx_used); 2605 2606 /* Alloc the circular buffer of Read Buffer Descriptors (RBDs) */ 2607 rxq->bd = dma_alloc_coherent(dev, 4 * RX_QUEUE_SIZE, &rxq->bd_dma, 2608 GFP_KERNEL); 2609 if (!rxq->bd) 2610 goto err_bd; 2611 2612 rxq->rb_stts = dma_alloc_coherent(dev, sizeof(struct il_rb_status), 2613 &rxq->rb_stts_dma, GFP_KERNEL); 2614 if (!rxq->rb_stts) 2615 goto err_rb; 2616 2617 /* Fill the rx_used queue with _all_ of the Rx buffers */ 2618 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) 2619 list_add_tail(&rxq->pool[i].list, &rxq->rx_used); 2620 2621 /* Set us so that we have processed and used all buffers, but have 2622 * not restocked the Rx queue with fresh buffers */ 2623 rxq->read = rxq->write = 0; 2624 rxq->write_actual = 0; 2625 rxq->free_count = 0; 2626 rxq->need_update = 0; 2627 return 0; 2628 2629 err_rb: 2630 dma_free_coherent(&il->pci_dev->dev, 4 * RX_QUEUE_SIZE, rxq->bd, 2631 rxq->bd_dma); 2632 err_bd: 2633 return -ENOMEM; 2634 } 2635 EXPORT_SYMBOL(il_rx_queue_alloc); 2636 2637 void 2638 il_hdl_spectrum_measurement(struct il_priv *il, struct il_rx_buf *rxb) 2639 { 2640 struct il_rx_pkt *pkt = rxb_addr(rxb); 2641 struct il_spectrum_notification *report = &(pkt->u.spectrum_notif); 2642 2643 if (!report->state) { 2644 D_11H("Spectrum Measure Notification: Start\n"); 2645 return; 2646 } 2647 2648 memcpy(&il->measure_report, report, sizeof(*report)); 2649 il->measurement_status |= MEASUREMENT_READY; 2650 } 2651 EXPORT_SYMBOL(il_hdl_spectrum_measurement); 2652 2653 /* 2654 * returns non-zero if packet should be dropped 2655 */ 2656 int 2657 il_set_decrypted_flag(struct il_priv *il, struct ieee80211_hdr *hdr, 2658 u32 decrypt_res, struct ieee80211_rx_status *stats) 2659 { 2660 u16 fc = le16_to_cpu(hdr->frame_control); 2661 2662 /* 2663 * All contexts have the same setting here due to it being 2664 * a module parameter, so OK to check any context. 2665 */ 2666 if (il->active.filter_flags & RXON_FILTER_DIS_DECRYPT_MSK) 2667 return 0; 2668 2669 if (!(fc & IEEE80211_FCTL_PROTECTED)) 2670 return 0; 2671 2672 D_RX("decrypt_res:0x%x\n", decrypt_res); 2673 switch (decrypt_res & RX_RES_STATUS_SEC_TYPE_MSK) { 2674 case RX_RES_STATUS_SEC_TYPE_TKIP: 2675 /* The uCode has got a bad phase 1 Key, pushes the packet. 2676 * Decryption will be done in SW. */ 2677 if ((decrypt_res & RX_RES_STATUS_DECRYPT_TYPE_MSK) == 2678 RX_RES_STATUS_BAD_KEY_TTAK) 2679 break; 2680 /* fall through */ 2681 2682 case RX_RES_STATUS_SEC_TYPE_WEP: 2683 if ((decrypt_res & RX_RES_STATUS_DECRYPT_TYPE_MSK) == 2684 RX_RES_STATUS_BAD_ICV_MIC) { 2685 /* bad ICV, the packet is destroyed since the 2686 * decryption is inplace, drop it */ 2687 D_RX("Packet destroyed\n"); 2688 return -1; 2689 } 2690 /* fall through */ 2691 case RX_RES_STATUS_SEC_TYPE_CCMP: 2692 if ((decrypt_res & RX_RES_STATUS_DECRYPT_TYPE_MSK) == 2693 RX_RES_STATUS_DECRYPT_OK) { 2694 D_RX("hw decrypt successfully!!!\n"); 2695 stats->flag |= RX_FLAG_DECRYPTED; 2696 } 2697 break; 2698 2699 default: 2700 break; 2701 } 2702 return 0; 2703 } 2704 EXPORT_SYMBOL(il_set_decrypted_flag); 2705 2706 /** 2707 * il_txq_update_write_ptr - Send new write idx to hardware 2708 */ 2709 void 2710 il_txq_update_write_ptr(struct il_priv *il, struct il_tx_queue *txq) 2711 { 2712 u32 reg = 0; 2713 int txq_id = txq->q.id; 2714 2715 if (txq->need_update == 0) 2716 return; 2717 2718 /* if we're trying to save power */ 2719 if (test_bit(S_POWER_PMI, &il->status)) { 2720 /* wake up nic if it's powered down ... 2721 * uCode will wake up, and interrupt us again, so next 2722 * time we'll skip this part. */ 2723 reg = _il_rd(il, CSR_UCODE_DRV_GP1); 2724 2725 if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) { 2726 D_INFO("Tx queue %d requesting wakeup," " GP1 = 0x%x\n", 2727 txq_id, reg); 2728 il_set_bit(il, CSR_GP_CNTRL, 2729 CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); 2730 return; 2731 } 2732 2733 il_wr(il, HBUS_TARG_WRPTR, txq->q.write_ptr | (txq_id << 8)); 2734 2735 /* 2736 * else not in power-save mode, 2737 * uCode will never sleep when we're 2738 * trying to tx (during RFKILL, we're not trying to tx). 2739 */ 2740 } else 2741 _il_wr(il, HBUS_TARG_WRPTR, txq->q.write_ptr | (txq_id << 8)); 2742 txq->need_update = 0; 2743 } 2744 EXPORT_SYMBOL(il_txq_update_write_ptr); 2745 2746 /** 2747 * il_tx_queue_unmap - Unmap any remaining DMA mappings and free skb's 2748 */ 2749 void 2750 il_tx_queue_unmap(struct il_priv *il, int txq_id) 2751 { 2752 struct il_tx_queue *txq = &il->txq[txq_id]; 2753 struct il_queue *q = &txq->q; 2754 2755 if (q->n_bd == 0) 2756 return; 2757 2758 while (q->write_ptr != q->read_ptr) { 2759 il->ops->txq_free_tfd(il, txq); 2760 q->read_ptr = il_queue_inc_wrap(q->read_ptr, q->n_bd); 2761 } 2762 } 2763 EXPORT_SYMBOL(il_tx_queue_unmap); 2764 2765 /** 2766 * il_tx_queue_free - Deallocate DMA queue. 2767 * @txq: Transmit queue to deallocate. 2768 * 2769 * Empty queue by removing and destroying all BD's. 2770 * Free all buffers. 2771 * 0-fill, but do not free "txq" descriptor structure. 2772 */ 2773 void 2774 il_tx_queue_free(struct il_priv *il, int txq_id) 2775 { 2776 struct il_tx_queue *txq = &il->txq[txq_id]; 2777 struct device *dev = &il->pci_dev->dev; 2778 int i; 2779 2780 il_tx_queue_unmap(il, txq_id); 2781 2782 /* De-alloc array of command/tx buffers */ 2783 if (txq->cmd) { 2784 for (i = 0; i < TFD_TX_CMD_SLOTS; i++) 2785 kfree(txq->cmd[i]); 2786 } 2787 2788 /* De-alloc circular buffer of TFDs */ 2789 if (txq->q.n_bd) 2790 dma_free_coherent(dev, il->hw_params.tfd_size * txq->q.n_bd, 2791 txq->tfds, txq->q.dma_addr); 2792 2793 /* De-alloc array of per-TFD driver data */ 2794 kfree(txq->skbs); 2795 txq->skbs = NULL; 2796 2797 /* deallocate arrays */ 2798 kfree(txq->cmd); 2799 kfree(txq->meta); 2800 txq->cmd = NULL; 2801 txq->meta = NULL; 2802 2803 /* 0-fill queue descriptor structure */ 2804 memset(txq, 0, sizeof(*txq)); 2805 } 2806 EXPORT_SYMBOL(il_tx_queue_free); 2807 2808 /** 2809 * il_cmd_queue_unmap - Unmap any remaining DMA mappings from command queue 2810 */ 2811 void 2812 il_cmd_queue_unmap(struct il_priv *il) 2813 { 2814 struct il_tx_queue *txq = &il->txq[il->cmd_queue]; 2815 struct il_queue *q = &txq->q; 2816 int i; 2817 2818 if (q->n_bd == 0) 2819 return; 2820 2821 while (q->read_ptr != q->write_ptr) { 2822 i = il_get_cmd_idx(q, q->read_ptr, 0); 2823 2824 if (txq->meta[i].flags & CMD_MAPPED) { 2825 pci_unmap_single(il->pci_dev, 2826 dma_unmap_addr(&txq->meta[i], mapping), 2827 dma_unmap_len(&txq->meta[i], len), 2828 PCI_DMA_BIDIRECTIONAL); 2829 txq->meta[i].flags = 0; 2830 } 2831 2832 q->read_ptr = il_queue_inc_wrap(q->read_ptr, q->n_bd); 2833 } 2834 2835 i = q->n_win; 2836 if (txq->meta[i].flags & CMD_MAPPED) { 2837 pci_unmap_single(il->pci_dev, 2838 dma_unmap_addr(&txq->meta[i], mapping), 2839 dma_unmap_len(&txq->meta[i], len), 2840 PCI_DMA_BIDIRECTIONAL); 2841 txq->meta[i].flags = 0; 2842 } 2843 } 2844 EXPORT_SYMBOL(il_cmd_queue_unmap); 2845 2846 /** 2847 * il_cmd_queue_free - Deallocate DMA queue. 2848 * @txq: Transmit queue to deallocate. 2849 * 2850 * Empty queue by removing and destroying all BD's. 2851 * Free all buffers. 2852 * 0-fill, but do not free "txq" descriptor structure. 2853 */ 2854 void 2855 il_cmd_queue_free(struct il_priv *il) 2856 { 2857 struct il_tx_queue *txq = &il->txq[il->cmd_queue]; 2858 struct device *dev = &il->pci_dev->dev; 2859 int i; 2860 2861 il_cmd_queue_unmap(il); 2862 2863 /* De-alloc array of command/tx buffers */ 2864 if (txq->cmd) { 2865 for (i = 0; i <= TFD_CMD_SLOTS; i++) 2866 kfree(txq->cmd[i]); 2867 } 2868 2869 /* De-alloc circular buffer of TFDs */ 2870 if (txq->q.n_bd) 2871 dma_free_coherent(dev, il->hw_params.tfd_size * txq->q.n_bd, 2872 txq->tfds, txq->q.dma_addr); 2873 2874 /* deallocate arrays */ 2875 kfree(txq->cmd); 2876 kfree(txq->meta); 2877 txq->cmd = NULL; 2878 txq->meta = NULL; 2879 2880 /* 0-fill queue descriptor structure */ 2881 memset(txq, 0, sizeof(*txq)); 2882 } 2883 EXPORT_SYMBOL(il_cmd_queue_free); 2884 2885 /*************** DMA-QUEUE-GENERAL-FUNCTIONS ***** 2886 * DMA services 2887 * 2888 * Theory of operation 2889 * 2890 * A Tx or Rx queue resides in host DRAM, and is comprised of a circular buffer 2891 * of buffer descriptors, each of which points to one or more data buffers for 2892 * the device to read from or fill. Driver and device exchange status of each 2893 * queue via "read" and "write" pointers. Driver keeps minimum of 2 empty 2894 * entries in each circular buffer, to protect against confusing empty and full 2895 * queue states. 2896 * 2897 * The device reads or writes the data in the queues via the device's several 2898 * DMA/FIFO channels. Each queue is mapped to a single DMA channel. 2899 * 2900 * For Tx queue, there are low mark and high mark limits. If, after queuing 2901 * the packet for Tx, free space become < low mark, Tx queue stopped. When 2902 * reclaiming packets (on 'tx done IRQ), if free space become > high mark, 2903 * Tx queue resumed. 2904 * 2905 * See more detailed info in 4965.h. 2906 ***************************************************/ 2907 2908 int 2909 il_queue_space(const struct il_queue *q) 2910 { 2911 int s = q->read_ptr - q->write_ptr; 2912 2913 if (q->read_ptr > q->write_ptr) 2914 s -= q->n_bd; 2915 2916 if (s <= 0) 2917 s += q->n_win; 2918 /* keep some reserve to not confuse empty and full situations */ 2919 s -= 2; 2920 if (s < 0) 2921 s = 0; 2922 return s; 2923 } 2924 EXPORT_SYMBOL(il_queue_space); 2925 2926 2927 /** 2928 * il_queue_init - Initialize queue's high/low-water and read/write idxes 2929 */ 2930 static int 2931 il_queue_init(struct il_priv *il, struct il_queue *q, int slots, u32 id) 2932 { 2933 /* 2934 * TFD_QUEUE_SIZE_MAX must be power-of-two size, otherwise 2935 * il_queue_inc_wrap and il_queue_dec_wrap are broken. 2936 */ 2937 BUILD_BUG_ON(TFD_QUEUE_SIZE_MAX & (TFD_QUEUE_SIZE_MAX - 1)); 2938 /* FIXME: remove q->n_bd */ 2939 q->n_bd = TFD_QUEUE_SIZE_MAX; 2940 2941 q->n_win = slots; 2942 q->id = id; 2943 2944 /* slots_must be power-of-two size, otherwise 2945 * il_get_cmd_idx is broken. */ 2946 BUG_ON(!is_power_of_2(slots)); 2947 2948 q->low_mark = q->n_win / 4; 2949 if (q->low_mark < 4) 2950 q->low_mark = 4; 2951 2952 q->high_mark = q->n_win / 8; 2953 if (q->high_mark < 2) 2954 q->high_mark = 2; 2955 2956 q->write_ptr = q->read_ptr = 0; 2957 2958 return 0; 2959 } 2960 2961 /** 2962 * il_tx_queue_alloc - Alloc driver data and TFD CB for one Tx/cmd queue 2963 */ 2964 static int 2965 il_tx_queue_alloc(struct il_priv *il, struct il_tx_queue *txq, u32 id) 2966 { 2967 struct device *dev = &il->pci_dev->dev; 2968 size_t tfd_sz = il->hw_params.tfd_size * TFD_QUEUE_SIZE_MAX; 2969 2970 /* Driver ilate data, only for Tx (not command) queues, 2971 * not shared with device. */ 2972 if (id != il->cmd_queue) { 2973 txq->skbs = kcalloc(TFD_QUEUE_SIZE_MAX, 2974 sizeof(struct sk_buff *), 2975 GFP_KERNEL); 2976 if (!txq->skbs) { 2977 IL_ERR("Fail to alloc skbs\n"); 2978 goto error; 2979 } 2980 } else 2981 txq->skbs = NULL; 2982 2983 /* Circular buffer of transmit frame descriptors (TFDs), 2984 * shared with device */ 2985 txq->tfds = 2986 dma_alloc_coherent(dev, tfd_sz, &txq->q.dma_addr, GFP_KERNEL); 2987 if (!txq->tfds) 2988 goto error; 2989 2990 txq->q.id = id; 2991 2992 return 0; 2993 2994 error: 2995 kfree(txq->skbs); 2996 txq->skbs = NULL; 2997 2998 return -ENOMEM; 2999 } 3000 3001 /** 3002 * il_tx_queue_init - Allocate and initialize one tx/cmd queue 3003 */ 3004 int 3005 il_tx_queue_init(struct il_priv *il, u32 txq_id) 3006 { 3007 int i, len, ret; 3008 int slots, actual_slots; 3009 struct il_tx_queue *txq = &il->txq[txq_id]; 3010 3011 /* 3012 * Alloc buffer array for commands (Tx or other types of commands). 3013 * For the command queue (#4/#9), allocate command space + one big 3014 * command for scan, since scan command is very huge; the system will 3015 * not have two scans at the same time, so only one is needed. 3016 * For normal Tx queues (all other queues), no super-size command 3017 * space is needed. 3018 */ 3019 if (txq_id == il->cmd_queue) { 3020 slots = TFD_CMD_SLOTS; 3021 actual_slots = slots + 1; 3022 } else { 3023 slots = TFD_TX_CMD_SLOTS; 3024 actual_slots = slots; 3025 } 3026 3027 txq->meta = 3028 kcalloc(actual_slots, sizeof(struct il_cmd_meta), GFP_KERNEL); 3029 txq->cmd = 3030 kcalloc(actual_slots, sizeof(struct il_device_cmd *), GFP_KERNEL); 3031 3032 if (!txq->meta || !txq->cmd) 3033 goto out_free_arrays; 3034 3035 len = sizeof(struct il_device_cmd); 3036 for (i = 0; i < actual_slots; i++) { 3037 /* only happens for cmd queue */ 3038 if (i == slots) 3039 len = IL_MAX_CMD_SIZE; 3040 3041 txq->cmd[i] = kmalloc(len, GFP_KERNEL); 3042 if (!txq->cmd[i]) 3043 goto err; 3044 } 3045 3046 /* Alloc driver data array and TFD circular buffer */ 3047 ret = il_tx_queue_alloc(il, txq, txq_id); 3048 if (ret) 3049 goto err; 3050 3051 txq->need_update = 0; 3052 3053 /* 3054 * For the default queues 0-3, set up the swq_id 3055 * already -- all others need to get one later 3056 * (if they need one at all). 3057 */ 3058 if (txq_id < 4) 3059 il_set_swq_id(txq, txq_id, txq_id); 3060 3061 /* Initialize queue's high/low-water marks, and head/tail idxes */ 3062 il_queue_init(il, &txq->q, slots, txq_id); 3063 3064 /* Tell device where to find queue */ 3065 il->ops->txq_init(il, txq); 3066 3067 return 0; 3068 err: 3069 for (i = 0; i < actual_slots; i++) 3070 kfree(txq->cmd[i]); 3071 out_free_arrays: 3072 kfree(txq->meta); 3073 txq->meta = NULL; 3074 kfree(txq->cmd); 3075 txq->cmd = NULL; 3076 3077 return -ENOMEM; 3078 } 3079 EXPORT_SYMBOL(il_tx_queue_init); 3080 3081 void 3082 il_tx_queue_reset(struct il_priv *il, u32 txq_id) 3083 { 3084 int slots, actual_slots; 3085 struct il_tx_queue *txq = &il->txq[txq_id]; 3086 3087 if (txq_id == il->cmd_queue) { 3088 slots = TFD_CMD_SLOTS; 3089 actual_slots = TFD_CMD_SLOTS + 1; 3090 } else { 3091 slots = TFD_TX_CMD_SLOTS; 3092 actual_slots = TFD_TX_CMD_SLOTS; 3093 } 3094 3095 memset(txq->meta, 0, sizeof(struct il_cmd_meta) * actual_slots); 3096 txq->need_update = 0; 3097 3098 /* Initialize queue's high/low-water marks, and head/tail idxes */ 3099 il_queue_init(il, &txq->q, slots, txq_id); 3100 3101 /* Tell device where to find queue */ 3102 il->ops->txq_init(il, txq); 3103 } 3104 EXPORT_SYMBOL(il_tx_queue_reset); 3105 3106 /*************** HOST COMMAND QUEUE FUNCTIONS *****/ 3107 3108 /** 3109 * il_enqueue_hcmd - enqueue a uCode command 3110 * @il: device ilate data point 3111 * @cmd: a point to the ucode command structure 3112 * 3113 * The function returns < 0 values to indicate the operation is 3114 * failed. On success, it turns the idx (> 0) of command in the 3115 * command queue. 3116 */ 3117 int 3118 il_enqueue_hcmd(struct il_priv *il, struct il_host_cmd *cmd) 3119 { 3120 struct il_tx_queue *txq = &il->txq[il->cmd_queue]; 3121 struct il_queue *q = &txq->q; 3122 struct il_device_cmd *out_cmd; 3123 struct il_cmd_meta *out_meta; 3124 dma_addr_t phys_addr; 3125 unsigned long flags; 3126 int len; 3127 u32 idx; 3128 u16 fix_size; 3129 3130 cmd->len = il->ops->get_hcmd_size(cmd->id, cmd->len); 3131 fix_size = (u16) (cmd->len + sizeof(out_cmd->hdr)); 3132 3133 /* If any of the command structures end up being larger than 3134 * the TFD_MAX_PAYLOAD_SIZE, and it sent as a 'small' command then 3135 * we will need to increase the size of the TFD entries 3136 * Also, check to see if command buffer should not exceed the size 3137 * of device_cmd and max_cmd_size. */ 3138 BUG_ON((fix_size > TFD_MAX_PAYLOAD_SIZE) && 3139 !(cmd->flags & CMD_SIZE_HUGE)); 3140 BUG_ON(fix_size > IL_MAX_CMD_SIZE); 3141 3142 if (il_is_rfkill(il) || il_is_ctkill(il)) { 3143 IL_WARN("Not sending command - %s KILL\n", 3144 il_is_rfkill(il) ? "RF" : "CT"); 3145 return -EIO; 3146 } 3147 3148 spin_lock_irqsave(&il->hcmd_lock, flags); 3149 3150 if (il_queue_space(q) < ((cmd->flags & CMD_ASYNC) ? 2 : 1)) { 3151 spin_unlock_irqrestore(&il->hcmd_lock, flags); 3152 3153 IL_ERR("Restarting adapter due to command queue full\n"); 3154 queue_work(il->workqueue, &il->restart); 3155 return -ENOSPC; 3156 } 3157 3158 idx = il_get_cmd_idx(q, q->write_ptr, cmd->flags & CMD_SIZE_HUGE); 3159 out_cmd = txq->cmd[idx]; 3160 out_meta = &txq->meta[idx]; 3161 3162 if (WARN_ON(out_meta->flags & CMD_MAPPED)) { 3163 spin_unlock_irqrestore(&il->hcmd_lock, flags); 3164 return -ENOSPC; 3165 } 3166 3167 memset(out_meta, 0, sizeof(*out_meta)); /* re-initialize to NULL */ 3168 out_meta->flags = cmd->flags | CMD_MAPPED; 3169 if (cmd->flags & CMD_WANT_SKB) 3170 out_meta->source = cmd; 3171 if (cmd->flags & CMD_ASYNC) 3172 out_meta->callback = cmd->callback; 3173 3174 out_cmd->hdr.cmd = cmd->id; 3175 memcpy(&out_cmd->cmd.payload, cmd->data, cmd->len); 3176 3177 /* At this point, the out_cmd now has all of the incoming cmd 3178 * information */ 3179 3180 out_cmd->hdr.flags = 0; 3181 out_cmd->hdr.sequence = 3182 cpu_to_le16(QUEUE_TO_SEQ(il->cmd_queue) | IDX_TO_SEQ(q->write_ptr)); 3183 if (cmd->flags & CMD_SIZE_HUGE) 3184 out_cmd->hdr.sequence |= SEQ_HUGE_FRAME; 3185 len = sizeof(struct il_device_cmd); 3186 if (idx == TFD_CMD_SLOTS) 3187 len = IL_MAX_CMD_SIZE; 3188 3189 #ifdef CONFIG_IWLEGACY_DEBUG 3190 switch (out_cmd->hdr.cmd) { 3191 case C_TX_LINK_QUALITY_CMD: 3192 case C_SENSITIVITY: 3193 D_HC_DUMP("Sending command %s (#%x), seq: 0x%04X, " 3194 "%d bytes at %d[%d]:%d\n", 3195 il_get_cmd_string(out_cmd->hdr.cmd), out_cmd->hdr.cmd, 3196 le16_to_cpu(out_cmd->hdr.sequence), fix_size, 3197 q->write_ptr, idx, il->cmd_queue); 3198 break; 3199 default: 3200 D_HC("Sending command %s (#%x), seq: 0x%04X, " 3201 "%d bytes at %d[%d]:%d\n", 3202 il_get_cmd_string(out_cmd->hdr.cmd), out_cmd->hdr.cmd, 3203 le16_to_cpu(out_cmd->hdr.sequence), fix_size, q->write_ptr, 3204 idx, il->cmd_queue); 3205 } 3206 #endif 3207 3208 phys_addr = 3209 pci_map_single(il->pci_dev, &out_cmd->hdr, fix_size, 3210 PCI_DMA_BIDIRECTIONAL); 3211 if (unlikely(pci_dma_mapping_error(il->pci_dev, phys_addr))) { 3212 idx = -ENOMEM; 3213 goto out; 3214 } 3215 dma_unmap_addr_set(out_meta, mapping, phys_addr); 3216 dma_unmap_len_set(out_meta, len, fix_size); 3217 3218 txq->need_update = 1; 3219 3220 if (il->ops->txq_update_byte_cnt_tbl) 3221 /* Set up entry in queue's byte count circular buffer */ 3222 il->ops->txq_update_byte_cnt_tbl(il, txq, 0); 3223 3224 il->ops->txq_attach_buf_to_tfd(il, txq, phys_addr, fix_size, 1, 3225 U32_PAD(cmd->len)); 3226 3227 /* Increment and update queue's write idx */ 3228 q->write_ptr = il_queue_inc_wrap(q->write_ptr, q->n_bd); 3229 il_txq_update_write_ptr(il, txq); 3230 3231 out: 3232 spin_unlock_irqrestore(&il->hcmd_lock, flags); 3233 return idx; 3234 } 3235 3236 /** 3237 * il_hcmd_queue_reclaim - Reclaim TX command queue entries already Tx'd 3238 * 3239 * When FW advances 'R' idx, all entries between old and new 'R' idx 3240 * need to be reclaimed. As result, some free space forms. If there is 3241 * enough free space (> low mark), wake the stack that feeds us. 3242 */ 3243 static void 3244 il_hcmd_queue_reclaim(struct il_priv *il, int txq_id, int idx, int cmd_idx) 3245 { 3246 struct il_tx_queue *txq = &il->txq[txq_id]; 3247 struct il_queue *q = &txq->q; 3248 int nfreed = 0; 3249 3250 if (idx >= q->n_bd || il_queue_used(q, idx) == 0) { 3251 IL_ERR("Read idx for DMA queue txq id (%d), idx %d, " 3252 "is out of range [0-%d] %d %d.\n", txq_id, idx, q->n_bd, 3253 q->write_ptr, q->read_ptr); 3254 return; 3255 } 3256 3257 for (idx = il_queue_inc_wrap(idx, q->n_bd); q->read_ptr != idx; 3258 q->read_ptr = il_queue_inc_wrap(q->read_ptr, q->n_bd)) { 3259 3260 if (nfreed++ > 0) { 3261 IL_ERR("HCMD skipped: idx (%d) %d %d\n", idx, 3262 q->write_ptr, q->read_ptr); 3263 queue_work(il->workqueue, &il->restart); 3264 } 3265 3266 } 3267 } 3268 3269 /** 3270 * il_tx_cmd_complete - Pull unused buffers off the queue and reclaim them 3271 * @rxb: Rx buffer to reclaim 3272 * 3273 * If an Rx buffer has an async callback associated with it the callback 3274 * will be executed. The attached skb (if present) will only be freed 3275 * if the callback returns 1 3276 */ 3277 void 3278 il_tx_cmd_complete(struct il_priv *il, struct il_rx_buf *rxb) 3279 { 3280 struct il_rx_pkt *pkt = rxb_addr(rxb); 3281 u16 sequence = le16_to_cpu(pkt->hdr.sequence); 3282 int txq_id = SEQ_TO_QUEUE(sequence); 3283 int idx = SEQ_TO_IDX(sequence); 3284 int cmd_idx; 3285 bool huge = !!(pkt->hdr.sequence & SEQ_HUGE_FRAME); 3286 struct il_device_cmd *cmd; 3287 struct il_cmd_meta *meta; 3288 struct il_tx_queue *txq = &il->txq[il->cmd_queue]; 3289 unsigned long flags; 3290 3291 /* If a Tx command is being handled and it isn't in the actual 3292 * command queue then there a command routing bug has been introduced 3293 * in the queue management code. */ 3294 if (WARN 3295 (txq_id != il->cmd_queue, 3296 "wrong command queue %d (should be %d), sequence 0x%X readp=%d writep=%d\n", 3297 txq_id, il->cmd_queue, sequence, il->txq[il->cmd_queue].q.read_ptr, 3298 il->txq[il->cmd_queue].q.write_ptr)) { 3299 il_print_hex_error(il, pkt, 32); 3300 return; 3301 } 3302 3303 cmd_idx = il_get_cmd_idx(&txq->q, idx, huge); 3304 cmd = txq->cmd[cmd_idx]; 3305 meta = &txq->meta[cmd_idx]; 3306 3307 txq->time_stamp = jiffies; 3308 3309 pci_unmap_single(il->pci_dev, dma_unmap_addr(meta, mapping), 3310 dma_unmap_len(meta, len), PCI_DMA_BIDIRECTIONAL); 3311 3312 /* Input error checking is done when commands are added to queue. */ 3313 if (meta->flags & CMD_WANT_SKB) { 3314 meta->source->reply_page = (unsigned long)rxb_addr(rxb); 3315 rxb->page = NULL; 3316 } else if (meta->callback) 3317 meta->callback(il, cmd, pkt); 3318 3319 spin_lock_irqsave(&il->hcmd_lock, flags); 3320 3321 il_hcmd_queue_reclaim(il, txq_id, idx, cmd_idx); 3322 3323 if (!(meta->flags & CMD_ASYNC)) { 3324 clear_bit(S_HCMD_ACTIVE, &il->status); 3325 D_INFO("Clearing HCMD_ACTIVE for command %s\n", 3326 il_get_cmd_string(cmd->hdr.cmd)); 3327 wake_up(&il->wait_command_queue); 3328 } 3329 3330 /* Mark as unmapped */ 3331 meta->flags = 0; 3332 3333 spin_unlock_irqrestore(&il->hcmd_lock, flags); 3334 } 3335 EXPORT_SYMBOL(il_tx_cmd_complete); 3336 3337 MODULE_DESCRIPTION("iwl-legacy: common functions for 3945 and 4965"); 3338 MODULE_VERSION(IWLWIFI_VERSION); 3339 MODULE_AUTHOR(DRV_COPYRIGHT " " DRV_AUTHOR); 3340 MODULE_LICENSE("GPL"); 3341 3342 /* 3343 * set bt_coex_active to true, uCode will do kill/defer 3344 * every time the priority line is asserted (BT is sending signals on the 3345 * priority line in the PCIx). 3346 * set bt_coex_active to false, uCode will ignore the BT activity and 3347 * perform the normal operation 3348 * 3349 * User might experience transmit issue on some platform due to WiFi/BT 3350 * co-exist problem. The possible behaviors are: 3351 * Able to scan and finding all the available AP 3352 * Not able to associate with any AP 3353 * On those platforms, WiFi communication can be restored by set 3354 * "bt_coex_active" module parameter to "false" 3355 * 3356 * default: bt_coex_active = true (BT_COEX_ENABLE) 3357 */ 3358 static bool bt_coex_active = true; 3359 module_param(bt_coex_active, bool, 0444); 3360 MODULE_PARM_DESC(bt_coex_active, "enable wifi/bluetooth co-exist"); 3361 3362 u32 il_debug_level; 3363 EXPORT_SYMBOL(il_debug_level); 3364 3365 const u8 il_bcast_addr[ETH_ALEN] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 3366 EXPORT_SYMBOL(il_bcast_addr); 3367 3368 #define MAX_BIT_RATE_40_MHZ 150 /* Mbps */ 3369 #define MAX_BIT_RATE_20_MHZ 72 /* Mbps */ 3370 static void 3371 il_init_ht_hw_capab(const struct il_priv *il, 3372 struct ieee80211_sta_ht_cap *ht_info, 3373 enum nl80211_band band) 3374 { 3375 u16 max_bit_rate = 0; 3376 u8 rx_chains_num = il->hw_params.rx_chains_num; 3377 u8 tx_chains_num = il->hw_params.tx_chains_num; 3378 3379 ht_info->cap = 0; 3380 memset(&ht_info->mcs, 0, sizeof(ht_info->mcs)); 3381 3382 ht_info->ht_supported = true; 3383 3384 ht_info->cap |= IEEE80211_HT_CAP_SGI_20; 3385 max_bit_rate = MAX_BIT_RATE_20_MHZ; 3386 if (il->hw_params.ht40_channel & BIT(band)) { 3387 ht_info->cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40; 3388 ht_info->cap |= IEEE80211_HT_CAP_SGI_40; 3389 ht_info->mcs.rx_mask[4] = 0x01; 3390 max_bit_rate = MAX_BIT_RATE_40_MHZ; 3391 } 3392 3393 if (il->cfg->mod_params->amsdu_size_8K) 3394 ht_info->cap |= IEEE80211_HT_CAP_MAX_AMSDU; 3395 3396 ht_info->ampdu_factor = CFG_HT_RX_AMPDU_FACTOR_DEF; 3397 ht_info->ampdu_density = CFG_HT_MPDU_DENSITY_DEF; 3398 3399 ht_info->mcs.rx_mask[0] = 0xFF; 3400 if (rx_chains_num >= 2) 3401 ht_info->mcs.rx_mask[1] = 0xFF; 3402 if (rx_chains_num >= 3) 3403 ht_info->mcs.rx_mask[2] = 0xFF; 3404 3405 /* Highest supported Rx data rate */ 3406 max_bit_rate *= rx_chains_num; 3407 WARN_ON(max_bit_rate & ~IEEE80211_HT_MCS_RX_HIGHEST_MASK); 3408 ht_info->mcs.rx_highest = cpu_to_le16(max_bit_rate); 3409 3410 /* Tx MCS capabilities */ 3411 ht_info->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED; 3412 if (tx_chains_num != rx_chains_num) { 3413 ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_RX_DIFF; 3414 ht_info->mcs.tx_params |= 3415 ((tx_chains_num - 3416 1) << IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT); 3417 } 3418 } 3419 3420 /** 3421 * il_init_geos - Initialize mac80211's geo/channel info based from eeprom 3422 */ 3423 int 3424 il_init_geos(struct il_priv *il) 3425 { 3426 struct il_channel_info *ch; 3427 struct ieee80211_supported_band *sband; 3428 struct ieee80211_channel *channels; 3429 struct ieee80211_channel *geo_ch; 3430 struct ieee80211_rate *rates; 3431 int i = 0; 3432 s8 max_tx_power = 0; 3433 3434 if (il->bands[NL80211_BAND_2GHZ].n_bitrates || 3435 il->bands[NL80211_BAND_5GHZ].n_bitrates) { 3436 D_INFO("Geography modes already initialized.\n"); 3437 set_bit(S_GEO_CONFIGURED, &il->status); 3438 return 0; 3439 } 3440 3441 channels = 3442 kcalloc(il->channel_count, sizeof(struct ieee80211_channel), 3443 GFP_KERNEL); 3444 if (!channels) 3445 return -ENOMEM; 3446 3447 rates = 3448 kzalloc((sizeof(struct ieee80211_rate) * RATE_COUNT_LEGACY), 3449 GFP_KERNEL); 3450 if (!rates) { 3451 kfree(channels); 3452 return -ENOMEM; 3453 } 3454 3455 /* 5.2GHz channels start after the 2.4GHz channels */ 3456 sband = &il->bands[NL80211_BAND_5GHZ]; 3457 sband->channels = &channels[ARRAY_SIZE(il_eeprom_band_1)]; 3458 /* just OFDM */ 3459 sband->bitrates = &rates[IL_FIRST_OFDM_RATE]; 3460 sband->n_bitrates = RATE_COUNT_LEGACY - IL_FIRST_OFDM_RATE; 3461 3462 if (il->cfg->sku & IL_SKU_N) 3463 il_init_ht_hw_capab(il, &sband->ht_cap, NL80211_BAND_5GHZ); 3464 3465 sband = &il->bands[NL80211_BAND_2GHZ]; 3466 sband->channels = channels; 3467 /* OFDM & CCK */ 3468 sband->bitrates = rates; 3469 sband->n_bitrates = RATE_COUNT_LEGACY; 3470 3471 if (il->cfg->sku & IL_SKU_N) 3472 il_init_ht_hw_capab(il, &sband->ht_cap, NL80211_BAND_2GHZ); 3473 3474 il->ieee_channels = channels; 3475 il->ieee_rates = rates; 3476 3477 for (i = 0; i < il->channel_count; i++) { 3478 ch = &il->channel_info[i]; 3479 3480 if (!il_is_channel_valid(ch)) 3481 continue; 3482 3483 sband = &il->bands[ch->band]; 3484 3485 geo_ch = &sband->channels[sband->n_channels++]; 3486 3487 geo_ch->center_freq = 3488 ieee80211_channel_to_frequency(ch->channel, ch->band); 3489 geo_ch->max_power = ch->max_power_avg; 3490 geo_ch->max_antenna_gain = 0xff; 3491 geo_ch->hw_value = ch->channel; 3492 3493 if (il_is_channel_valid(ch)) { 3494 if (!(ch->flags & EEPROM_CHANNEL_IBSS)) 3495 geo_ch->flags |= IEEE80211_CHAN_NO_IR; 3496 3497 if (!(ch->flags & EEPROM_CHANNEL_ACTIVE)) 3498 geo_ch->flags |= IEEE80211_CHAN_NO_IR; 3499 3500 if (ch->flags & EEPROM_CHANNEL_RADAR) 3501 geo_ch->flags |= IEEE80211_CHAN_RADAR; 3502 3503 geo_ch->flags |= ch->ht40_extension_channel; 3504 3505 if (ch->max_power_avg > max_tx_power) 3506 max_tx_power = ch->max_power_avg; 3507 } else { 3508 geo_ch->flags |= IEEE80211_CHAN_DISABLED; 3509 } 3510 3511 D_INFO("Channel %d Freq=%d[%sGHz] %s flag=0x%X\n", ch->channel, 3512 geo_ch->center_freq, 3513 il_is_channel_a_band(ch) ? "5.2" : "2.4", 3514 geo_ch-> 3515 flags & IEEE80211_CHAN_DISABLED ? "restricted" : "valid", 3516 geo_ch->flags); 3517 } 3518 3519 il->tx_power_device_lmt = max_tx_power; 3520 il->tx_power_user_lmt = max_tx_power; 3521 il->tx_power_next = max_tx_power; 3522 3523 if (il->bands[NL80211_BAND_5GHZ].n_channels == 0 && 3524 (il->cfg->sku & IL_SKU_A)) { 3525 IL_INFO("Incorrectly detected BG card as ABG. " 3526 "Please send your PCI ID 0x%04X:0x%04X to maintainer.\n", 3527 il->pci_dev->device, il->pci_dev->subsystem_device); 3528 il->cfg->sku &= ~IL_SKU_A; 3529 } 3530 3531 IL_INFO("Tunable channels: %d 802.11bg, %d 802.11a channels\n", 3532 il->bands[NL80211_BAND_2GHZ].n_channels, 3533 il->bands[NL80211_BAND_5GHZ].n_channels); 3534 3535 set_bit(S_GEO_CONFIGURED, &il->status); 3536 3537 return 0; 3538 } 3539 EXPORT_SYMBOL(il_init_geos); 3540 3541 /* 3542 * il_free_geos - undo allocations in il_init_geos 3543 */ 3544 void 3545 il_free_geos(struct il_priv *il) 3546 { 3547 kfree(il->ieee_channels); 3548 kfree(il->ieee_rates); 3549 clear_bit(S_GEO_CONFIGURED, &il->status); 3550 } 3551 EXPORT_SYMBOL(il_free_geos); 3552 3553 static bool 3554 il_is_channel_extension(struct il_priv *il, enum nl80211_band band, 3555 u16 channel, u8 extension_chan_offset) 3556 { 3557 const struct il_channel_info *ch_info; 3558 3559 ch_info = il_get_channel_info(il, band, channel); 3560 if (!il_is_channel_valid(ch_info)) 3561 return false; 3562 3563 if (extension_chan_offset == IEEE80211_HT_PARAM_CHA_SEC_ABOVE) 3564 return !(ch_info-> 3565 ht40_extension_channel & IEEE80211_CHAN_NO_HT40PLUS); 3566 else if (extension_chan_offset == IEEE80211_HT_PARAM_CHA_SEC_BELOW) 3567 return !(ch_info-> 3568 ht40_extension_channel & IEEE80211_CHAN_NO_HT40MINUS); 3569 3570 return false; 3571 } 3572 3573 bool 3574 il_is_ht40_tx_allowed(struct il_priv *il, struct ieee80211_sta_ht_cap *ht_cap) 3575 { 3576 if (!il->ht.enabled || !il->ht.is_40mhz) 3577 return false; 3578 3579 /* 3580 * We do not check for IEEE80211_HT_CAP_SUP_WIDTH_20_40 3581 * the bit will not set if it is pure 40MHz case 3582 */ 3583 if (ht_cap && !ht_cap->ht_supported) 3584 return false; 3585 3586 #ifdef CONFIG_IWLEGACY_DEBUGFS 3587 if (il->disable_ht40) 3588 return false; 3589 #endif 3590 3591 return il_is_channel_extension(il, il->band, 3592 le16_to_cpu(il->staging.channel), 3593 il->ht.extension_chan_offset); 3594 } 3595 EXPORT_SYMBOL(il_is_ht40_tx_allowed); 3596 3597 static u16 noinline 3598 il_adjust_beacon_interval(u16 beacon_val, u16 max_beacon_val) 3599 { 3600 u16 new_val; 3601 u16 beacon_factor; 3602 3603 /* 3604 * If mac80211 hasn't given us a beacon interval, program 3605 * the default into the device. 3606 */ 3607 if (!beacon_val) 3608 return DEFAULT_BEACON_INTERVAL; 3609 3610 /* 3611 * If the beacon interval we obtained from the peer 3612 * is too large, we'll have to wake up more often 3613 * (and in IBSS case, we'll beacon too much) 3614 * 3615 * For example, if max_beacon_val is 4096, and the 3616 * requested beacon interval is 7000, we'll have to 3617 * use 3500 to be able to wake up on the beacons. 3618 * 3619 * This could badly influence beacon detection stats. 3620 */ 3621 3622 beacon_factor = (beacon_val + max_beacon_val) / max_beacon_val; 3623 new_val = beacon_val / beacon_factor; 3624 3625 if (!new_val) 3626 new_val = max_beacon_val; 3627 3628 return new_val; 3629 } 3630 3631 int 3632 il_send_rxon_timing(struct il_priv *il) 3633 { 3634 u64 tsf; 3635 s32 interval_tm, rem; 3636 struct ieee80211_conf *conf = NULL; 3637 u16 beacon_int; 3638 struct ieee80211_vif *vif = il->vif; 3639 3640 conf = &il->hw->conf; 3641 3642 lockdep_assert_held(&il->mutex); 3643 3644 memset(&il->timing, 0, sizeof(struct il_rxon_time_cmd)); 3645 3646 il->timing.timestamp = cpu_to_le64(il->timestamp); 3647 il->timing.listen_interval = cpu_to_le16(conf->listen_interval); 3648 3649 beacon_int = vif ? vif->bss_conf.beacon_int : 0; 3650 3651 /* 3652 * TODO: For IBSS we need to get atim_win from mac80211, 3653 * for now just always use 0 3654 */ 3655 il->timing.atim_win = 0; 3656 3657 beacon_int = 3658 il_adjust_beacon_interval(beacon_int, 3659 il->hw_params.max_beacon_itrvl * 3660 TIME_UNIT); 3661 il->timing.beacon_interval = cpu_to_le16(beacon_int); 3662 3663 tsf = il->timestamp; /* tsf is modifed by do_div: copy it */ 3664 interval_tm = beacon_int * TIME_UNIT; 3665 rem = do_div(tsf, interval_tm); 3666 il->timing.beacon_init_val = cpu_to_le32(interval_tm - rem); 3667 3668 il->timing.dtim_period = vif ? (vif->bss_conf.dtim_period ? : 1) : 1; 3669 3670 D_ASSOC("beacon interval %d beacon timer %d beacon tim %d\n", 3671 le16_to_cpu(il->timing.beacon_interval), 3672 le32_to_cpu(il->timing.beacon_init_val), 3673 le16_to_cpu(il->timing.atim_win)); 3674 3675 return il_send_cmd_pdu(il, C_RXON_TIMING, sizeof(il->timing), 3676 &il->timing); 3677 } 3678 EXPORT_SYMBOL(il_send_rxon_timing); 3679 3680 void 3681 il_set_rxon_hwcrypto(struct il_priv *il, int hw_decrypt) 3682 { 3683 struct il_rxon_cmd *rxon = &il->staging; 3684 3685 if (hw_decrypt) 3686 rxon->filter_flags &= ~RXON_FILTER_DIS_DECRYPT_MSK; 3687 else 3688 rxon->filter_flags |= RXON_FILTER_DIS_DECRYPT_MSK; 3689 3690 } 3691 EXPORT_SYMBOL(il_set_rxon_hwcrypto); 3692 3693 /* validate RXON structure is valid */ 3694 int 3695 il_check_rxon_cmd(struct il_priv *il) 3696 { 3697 struct il_rxon_cmd *rxon = &il->staging; 3698 bool error = false; 3699 3700 if (rxon->flags & RXON_FLG_BAND_24G_MSK) { 3701 if (rxon->flags & RXON_FLG_TGJ_NARROW_BAND_MSK) { 3702 IL_WARN("check 2.4G: wrong narrow\n"); 3703 error = true; 3704 } 3705 if (rxon->flags & RXON_FLG_RADAR_DETECT_MSK) { 3706 IL_WARN("check 2.4G: wrong radar\n"); 3707 error = true; 3708 } 3709 } else { 3710 if (!(rxon->flags & RXON_FLG_SHORT_SLOT_MSK)) { 3711 IL_WARN("check 5.2G: not short slot!\n"); 3712 error = true; 3713 } 3714 if (rxon->flags & RXON_FLG_CCK_MSK) { 3715 IL_WARN("check 5.2G: CCK!\n"); 3716 error = true; 3717 } 3718 } 3719 if ((rxon->node_addr[0] | rxon->bssid_addr[0]) & 0x1) { 3720 IL_WARN("mac/bssid mcast!\n"); 3721 error = true; 3722 } 3723 3724 /* make sure basic rates 6Mbps and 1Mbps are supported */ 3725 if ((rxon->ofdm_basic_rates & RATE_6M_MASK) == 0 && 3726 (rxon->cck_basic_rates & RATE_1M_MASK) == 0) { 3727 IL_WARN("neither 1 nor 6 are basic\n"); 3728 error = true; 3729 } 3730 3731 if (le16_to_cpu(rxon->assoc_id) > 2007) { 3732 IL_WARN("aid > 2007\n"); 3733 error = true; 3734 } 3735 3736 if ((rxon->flags & (RXON_FLG_CCK_MSK | RXON_FLG_SHORT_SLOT_MSK)) == 3737 (RXON_FLG_CCK_MSK | RXON_FLG_SHORT_SLOT_MSK)) { 3738 IL_WARN("CCK and short slot\n"); 3739 error = true; 3740 } 3741 3742 if ((rxon->flags & (RXON_FLG_CCK_MSK | RXON_FLG_AUTO_DETECT_MSK)) == 3743 (RXON_FLG_CCK_MSK | RXON_FLG_AUTO_DETECT_MSK)) { 3744 IL_WARN("CCK and auto detect"); 3745 error = true; 3746 } 3747 3748 if ((rxon-> 3749 flags & (RXON_FLG_AUTO_DETECT_MSK | RXON_FLG_TGG_PROTECT_MSK)) == 3750 RXON_FLG_TGG_PROTECT_MSK) { 3751 IL_WARN("TGg but no auto-detect\n"); 3752 error = true; 3753 } 3754 3755 if (error) 3756 IL_WARN("Tuning to channel %d\n", le16_to_cpu(rxon->channel)); 3757 3758 if (error) { 3759 IL_ERR("Invalid RXON\n"); 3760 return -EINVAL; 3761 } 3762 return 0; 3763 } 3764 EXPORT_SYMBOL(il_check_rxon_cmd); 3765 3766 /** 3767 * il_full_rxon_required - check if full RXON (vs RXON_ASSOC) cmd is needed 3768 * @il: staging_rxon is compared to active_rxon 3769 * 3770 * If the RXON structure is changing enough to require a new tune, 3771 * or is clearing the RXON_FILTER_ASSOC_MSK, then return 1 to indicate that 3772 * a new tune (full RXON command, rather than RXON_ASSOC cmd) is required. 3773 */ 3774 int 3775 il_full_rxon_required(struct il_priv *il) 3776 { 3777 const struct il_rxon_cmd *staging = &il->staging; 3778 const struct il_rxon_cmd *active = &il->active; 3779 3780 #define CHK(cond) \ 3781 if ((cond)) { \ 3782 D_INFO("need full RXON - " #cond "\n"); \ 3783 return 1; \ 3784 } 3785 3786 #define CHK_NEQ(c1, c2) \ 3787 if ((c1) != (c2)) { \ 3788 D_INFO("need full RXON - " \ 3789 #c1 " != " #c2 " - %d != %d\n", \ 3790 (c1), (c2)); \ 3791 return 1; \ 3792 } 3793 3794 /* These items are only settable from the full RXON command */ 3795 CHK(!il_is_associated(il)); 3796 CHK(!ether_addr_equal_64bits(staging->bssid_addr, active->bssid_addr)); 3797 CHK(!ether_addr_equal_64bits(staging->node_addr, active->node_addr)); 3798 CHK(!ether_addr_equal_64bits(staging->wlap_bssid_addr, 3799 active->wlap_bssid_addr)); 3800 CHK_NEQ(staging->dev_type, active->dev_type); 3801 CHK_NEQ(staging->channel, active->channel); 3802 CHK_NEQ(staging->air_propagation, active->air_propagation); 3803 CHK_NEQ(staging->ofdm_ht_single_stream_basic_rates, 3804 active->ofdm_ht_single_stream_basic_rates); 3805 CHK_NEQ(staging->ofdm_ht_dual_stream_basic_rates, 3806 active->ofdm_ht_dual_stream_basic_rates); 3807 CHK_NEQ(staging->assoc_id, active->assoc_id); 3808 3809 /* flags, filter_flags, ofdm_basic_rates, and cck_basic_rates can 3810 * be updated with the RXON_ASSOC command -- however only some 3811 * flag transitions are allowed using RXON_ASSOC */ 3812 3813 /* Check if we are not switching bands */ 3814 CHK_NEQ(staging->flags & RXON_FLG_BAND_24G_MSK, 3815 active->flags & RXON_FLG_BAND_24G_MSK); 3816 3817 /* Check if we are switching association toggle */ 3818 CHK_NEQ(staging->filter_flags & RXON_FILTER_ASSOC_MSK, 3819 active->filter_flags & RXON_FILTER_ASSOC_MSK); 3820 3821 #undef CHK 3822 #undef CHK_NEQ 3823 3824 return 0; 3825 } 3826 EXPORT_SYMBOL(il_full_rxon_required); 3827 3828 u8 3829 il_get_lowest_plcp(struct il_priv *il) 3830 { 3831 /* 3832 * Assign the lowest rate -- should really get this from 3833 * the beacon skb from mac80211. 3834 */ 3835 if (il->staging.flags & RXON_FLG_BAND_24G_MSK) 3836 return RATE_1M_PLCP; 3837 else 3838 return RATE_6M_PLCP; 3839 } 3840 EXPORT_SYMBOL(il_get_lowest_plcp); 3841 3842 static void 3843 _il_set_rxon_ht(struct il_priv *il, struct il_ht_config *ht_conf) 3844 { 3845 struct il_rxon_cmd *rxon = &il->staging; 3846 3847 if (!il->ht.enabled) { 3848 rxon->flags &= 3849 ~(RXON_FLG_CHANNEL_MODE_MSK | 3850 RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK | RXON_FLG_HT40_PROT_MSK 3851 | RXON_FLG_HT_PROT_MSK); 3852 return; 3853 } 3854 3855 rxon->flags |= 3856 cpu_to_le32(il->ht.protection << RXON_FLG_HT_OPERATING_MODE_POS); 3857 3858 /* Set up channel bandwidth: 3859 * 20 MHz only, 20/40 mixed or pure 40 if ht40 ok */ 3860 /* clear the HT channel mode before set the mode */ 3861 rxon->flags &= 3862 ~(RXON_FLG_CHANNEL_MODE_MSK | RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK); 3863 if (il_is_ht40_tx_allowed(il, NULL)) { 3864 /* pure ht40 */ 3865 if (il->ht.protection == IEEE80211_HT_OP_MODE_PROTECTION_20MHZ) { 3866 rxon->flags |= RXON_FLG_CHANNEL_MODE_PURE_40; 3867 /* Note: control channel is opposite of extension channel */ 3868 switch (il->ht.extension_chan_offset) { 3869 case IEEE80211_HT_PARAM_CHA_SEC_ABOVE: 3870 rxon->flags &= 3871 ~RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK; 3872 break; 3873 case IEEE80211_HT_PARAM_CHA_SEC_BELOW: 3874 rxon->flags |= RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK; 3875 break; 3876 } 3877 } else { 3878 /* Note: control channel is opposite of extension channel */ 3879 switch (il->ht.extension_chan_offset) { 3880 case IEEE80211_HT_PARAM_CHA_SEC_ABOVE: 3881 rxon->flags &= 3882 ~(RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK); 3883 rxon->flags |= RXON_FLG_CHANNEL_MODE_MIXED; 3884 break; 3885 case IEEE80211_HT_PARAM_CHA_SEC_BELOW: 3886 rxon->flags |= RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK; 3887 rxon->flags |= RXON_FLG_CHANNEL_MODE_MIXED; 3888 break; 3889 case IEEE80211_HT_PARAM_CHA_SEC_NONE: 3890 default: 3891 /* channel location only valid if in Mixed mode */ 3892 IL_ERR("invalid extension channel offset\n"); 3893 break; 3894 } 3895 } 3896 } else { 3897 rxon->flags |= RXON_FLG_CHANNEL_MODE_LEGACY; 3898 } 3899 3900 if (il->ops->set_rxon_chain) 3901 il->ops->set_rxon_chain(il); 3902 3903 D_ASSOC("rxon flags 0x%X operation mode :0x%X " 3904 "extension channel offset 0x%x\n", le32_to_cpu(rxon->flags), 3905 il->ht.protection, il->ht.extension_chan_offset); 3906 } 3907 3908 void 3909 il_set_rxon_ht(struct il_priv *il, struct il_ht_config *ht_conf) 3910 { 3911 _il_set_rxon_ht(il, ht_conf); 3912 } 3913 EXPORT_SYMBOL(il_set_rxon_ht); 3914 3915 /* Return valid, unused, channel for a passive scan to reset the RF */ 3916 u8 3917 il_get_single_channel_number(struct il_priv *il, enum nl80211_band band) 3918 { 3919 const struct il_channel_info *ch_info; 3920 int i; 3921 u8 channel = 0; 3922 u8 min, max; 3923 3924 if (band == NL80211_BAND_5GHZ) { 3925 min = 14; 3926 max = il->channel_count; 3927 } else { 3928 min = 0; 3929 max = 14; 3930 } 3931 3932 for (i = min; i < max; i++) { 3933 channel = il->channel_info[i].channel; 3934 if (channel == le16_to_cpu(il->staging.channel)) 3935 continue; 3936 3937 ch_info = il_get_channel_info(il, band, channel); 3938 if (il_is_channel_valid(ch_info)) 3939 break; 3940 } 3941 3942 return channel; 3943 } 3944 EXPORT_SYMBOL(il_get_single_channel_number); 3945 3946 /** 3947 * il_set_rxon_channel - Set the band and channel values in staging RXON 3948 * @ch: requested channel as a pointer to struct ieee80211_channel 3949 3950 * NOTE: Does not commit to the hardware; it sets appropriate bit fields 3951 * in the staging RXON flag structure based on the ch->band 3952 */ 3953 int 3954 il_set_rxon_channel(struct il_priv *il, struct ieee80211_channel *ch) 3955 { 3956 enum nl80211_band band = ch->band; 3957 u16 channel = ch->hw_value; 3958 3959 if (le16_to_cpu(il->staging.channel) == channel && il->band == band) 3960 return 0; 3961 3962 il->staging.channel = cpu_to_le16(channel); 3963 if (band == NL80211_BAND_5GHZ) 3964 il->staging.flags &= ~RXON_FLG_BAND_24G_MSK; 3965 else 3966 il->staging.flags |= RXON_FLG_BAND_24G_MSK; 3967 3968 il->band = band; 3969 3970 D_INFO("Staging channel set to %d [%d]\n", channel, band); 3971 3972 return 0; 3973 } 3974 EXPORT_SYMBOL(il_set_rxon_channel); 3975 3976 void 3977 il_set_flags_for_band(struct il_priv *il, enum nl80211_band band, 3978 struct ieee80211_vif *vif) 3979 { 3980 if (band == NL80211_BAND_5GHZ) { 3981 il->staging.flags &= 3982 ~(RXON_FLG_BAND_24G_MSK | RXON_FLG_AUTO_DETECT_MSK | 3983 RXON_FLG_CCK_MSK); 3984 il->staging.flags |= RXON_FLG_SHORT_SLOT_MSK; 3985 } else { 3986 /* Copied from il_post_associate() */ 3987 if (vif && vif->bss_conf.use_short_slot) 3988 il->staging.flags |= RXON_FLG_SHORT_SLOT_MSK; 3989 else 3990 il->staging.flags &= ~RXON_FLG_SHORT_SLOT_MSK; 3991 3992 il->staging.flags |= RXON_FLG_BAND_24G_MSK; 3993 il->staging.flags |= RXON_FLG_AUTO_DETECT_MSK; 3994 il->staging.flags &= ~RXON_FLG_CCK_MSK; 3995 } 3996 } 3997 EXPORT_SYMBOL(il_set_flags_for_band); 3998 3999 /* 4000 * initialize rxon structure with default values from eeprom 4001 */ 4002 void 4003 il_connection_init_rx_config(struct il_priv *il) 4004 { 4005 const struct il_channel_info *ch_info; 4006 4007 memset(&il->staging, 0, sizeof(il->staging)); 4008 4009 switch (il->iw_mode) { 4010 case NL80211_IFTYPE_UNSPECIFIED: 4011 il->staging.dev_type = RXON_DEV_TYPE_ESS; 4012 break; 4013 case NL80211_IFTYPE_STATION: 4014 il->staging.dev_type = RXON_DEV_TYPE_ESS; 4015 il->staging.filter_flags = RXON_FILTER_ACCEPT_GRP_MSK; 4016 break; 4017 case NL80211_IFTYPE_ADHOC: 4018 il->staging.dev_type = RXON_DEV_TYPE_IBSS; 4019 il->staging.flags = RXON_FLG_SHORT_PREAMBLE_MSK; 4020 il->staging.filter_flags = 4021 RXON_FILTER_BCON_AWARE_MSK | RXON_FILTER_ACCEPT_GRP_MSK; 4022 break; 4023 default: 4024 IL_ERR("Unsupported interface type %d\n", il->vif->type); 4025 return; 4026 } 4027 4028 #if 0 4029 /* TODO: Figure out when short_preamble would be set and cache from 4030 * that */ 4031 if (!hw_to_local(il->hw)->short_preamble) 4032 il->staging.flags &= ~RXON_FLG_SHORT_PREAMBLE_MSK; 4033 else 4034 il->staging.flags |= RXON_FLG_SHORT_PREAMBLE_MSK; 4035 #endif 4036 4037 ch_info = 4038 il_get_channel_info(il, il->band, le16_to_cpu(il->active.channel)); 4039 4040 if (!ch_info) 4041 ch_info = &il->channel_info[0]; 4042 4043 il->staging.channel = cpu_to_le16(ch_info->channel); 4044 il->band = ch_info->band; 4045 4046 il_set_flags_for_band(il, il->band, il->vif); 4047 4048 il->staging.ofdm_basic_rates = 4049 (IL_OFDM_RATES_MASK >> IL_FIRST_OFDM_RATE) & 0xFF; 4050 il->staging.cck_basic_rates = 4051 (IL_CCK_RATES_MASK >> IL_FIRST_CCK_RATE) & 0xF; 4052 4053 /* clear both MIX and PURE40 mode flag */ 4054 il->staging.flags &= 4055 ~(RXON_FLG_CHANNEL_MODE_MIXED | RXON_FLG_CHANNEL_MODE_PURE_40); 4056 if (il->vif) 4057 memcpy(il->staging.node_addr, il->vif->addr, ETH_ALEN); 4058 4059 il->staging.ofdm_ht_single_stream_basic_rates = 0xff; 4060 il->staging.ofdm_ht_dual_stream_basic_rates = 0xff; 4061 } 4062 EXPORT_SYMBOL(il_connection_init_rx_config); 4063 4064 void 4065 il_set_rate(struct il_priv *il) 4066 { 4067 const struct ieee80211_supported_band *hw = NULL; 4068 struct ieee80211_rate *rate; 4069 int i; 4070 4071 hw = il_get_hw_mode(il, il->band); 4072 if (!hw) { 4073 IL_ERR("Failed to set rate: unable to get hw mode\n"); 4074 return; 4075 } 4076 4077 il->active_rate = 0; 4078 4079 for (i = 0; i < hw->n_bitrates; i++) { 4080 rate = &(hw->bitrates[i]); 4081 if (rate->hw_value < RATE_COUNT_LEGACY) 4082 il->active_rate |= (1 << rate->hw_value); 4083 } 4084 4085 D_RATE("Set active_rate = %0x\n", il->active_rate); 4086 4087 il->staging.cck_basic_rates = 4088 (IL_CCK_BASIC_RATES_MASK >> IL_FIRST_CCK_RATE) & 0xF; 4089 4090 il->staging.ofdm_basic_rates = 4091 (IL_OFDM_BASIC_RATES_MASK >> IL_FIRST_OFDM_RATE) & 0xFF; 4092 } 4093 EXPORT_SYMBOL(il_set_rate); 4094 4095 void 4096 il_chswitch_done(struct il_priv *il, bool is_success) 4097 { 4098 if (test_bit(S_EXIT_PENDING, &il->status)) 4099 return; 4100 4101 if (test_and_clear_bit(S_CHANNEL_SWITCH_PENDING, &il->status)) 4102 ieee80211_chswitch_done(il->vif, is_success); 4103 } 4104 EXPORT_SYMBOL(il_chswitch_done); 4105 4106 void 4107 il_hdl_csa(struct il_priv *il, struct il_rx_buf *rxb) 4108 { 4109 struct il_rx_pkt *pkt = rxb_addr(rxb); 4110 struct il_csa_notification *csa = &(pkt->u.csa_notif); 4111 struct il_rxon_cmd *rxon = (void *)&il->active; 4112 4113 if (!test_bit(S_CHANNEL_SWITCH_PENDING, &il->status)) 4114 return; 4115 4116 if (!le32_to_cpu(csa->status) && csa->channel == il->switch_channel) { 4117 rxon->channel = csa->channel; 4118 il->staging.channel = csa->channel; 4119 D_11H("CSA notif: channel %d\n", le16_to_cpu(csa->channel)); 4120 il_chswitch_done(il, true); 4121 } else { 4122 IL_ERR("CSA notif (fail) : channel %d\n", 4123 le16_to_cpu(csa->channel)); 4124 il_chswitch_done(il, false); 4125 } 4126 } 4127 EXPORT_SYMBOL(il_hdl_csa); 4128 4129 #ifdef CONFIG_IWLEGACY_DEBUG 4130 void 4131 il_print_rx_config_cmd(struct il_priv *il) 4132 { 4133 struct il_rxon_cmd *rxon = &il->staging; 4134 4135 D_RADIO("RX CONFIG:\n"); 4136 il_print_hex_dump(il, IL_DL_RADIO, (u8 *) rxon, sizeof(*rxon)); 4137 D_RADIO("u16 channel: 0x%x\n", le16_to_cpu(rxon->channel)); 4138 D_RADIO("u32 flags: 0x%08X\n", le32_to_cpu(rxon->flags)); 4139 D_RADIO("u32 filter_flags: 0x%08x\n", le32_to_cpu(rxon->filter_flags)); 4140 D_RADIO("u8 dev_type: 0x%x\n", rxon->dev_type); 4141 D_RADIO("u8 ofdm_basic_rates: 0x%02x\n", rxon->ofdm_basic_rates); 4142 D_RADIO("u8 cck_basic_rates: 0x%02x\n", rxon->cck_basic_rates); 4143 D_RADIO("u8[6] node_addr: %pM\n", rxon->node_addr); 4144 D_RADIO("u8[6] bssid_addr: %pM\n", rxon->bssid_addr); 4145 D_RADIO("u16 assoc_id: 0x%x\n", le16_to_cpu(rxon->assoc_id)); 4146 } 4147 EXPORT_SYMBOL(il_print_rx_config_cmd); 4148 #endif 4149 /** 4150 * il_irq_handle_error - called for HW or SW error interrupt from card 4151 */ 4152 void 4153 il_irq_handle_error(struct il_priv *il) 4154 { 4155 /* Set the FW error flag -- cleared on il_down */ 4156 set_bit(S_FW_ERROR, &il->status); 4157 4158 /* Cancel currently queued command. */ 4159 clear_bit(S_HCMD_ACTIVE, &il->status); 4160 4161 IL_ERR("Loaded firmware version: %s\n", il->hw->wiphy->fw_version); 4162 4163 il->ops->dump_nic_error_log(il); 4164 if (il->ops->dump_fh) 4165 il->ops->dump_fh(il, NULL, false); 4166 #ifdef CONFIG_IWLEGACY_DEBUG 4167 if (il_get_debug_level(il) & IL_DL_FW_ERRORS) 4168 il_print_rx_config_cmd(il); 4169 #endif 4170 4171 wake_up(&il->wait_command_queue); 4172 4173 /* Keep the restart process from trying to send host 4174 * commands by clearing the INIT status bit */ 4175 clear_bit(S_READY, &il->status); 4176 4177 if (!test_bit(S_EXIT_PENDING, &il->status)) { 4178 IL_DBG(IL_DL_FW_ERRORS, 4179 "Restarting adapter due to uCode error.\n"); 4180 4181 if (il->cfg->mod_params->restart_fw) 4182 queue_work(il->workqueue, &il->restart); 4183 } 4184 } 4185 EXPORT_SYMBOL(il_irq_handle_error); 4186 4187 static int 4188 _il_apm_stop_master(struct il_priv *il) 4189 { 4190 int ret = 0; 4191 4192 /* stop device's busmaster DMA activity */ 4193 _il_set_bit(il, CSR_RESET, CSR_RESET_REG_FLAG_STOP_MASTER); 4194 4195 ret = 4196 _il_poll_bit(il, CSR_RESET, CSR_RESET_REG_FLAG_MASTER_DISABLED, 4197 CSR_RESET_REG_FLAG_MASTER_DISABLED, 100); 4198 if (ret < 0) 4199 IL_WARN("Master Disable Timed Out, 100 usec\n"); 4200 4201 D_INFO("stop master\n"); 4202 4203 return ret; 4204 } 4205 4206 void 4207 _il_apm_stop(struct il_priv *il) 4208 { 4209 lockdep_assert_held(&il->reg_lock); 4210 4211 D_INFO("Stop card, put in low power state\n"); 4212 4213 /* Stop device's DMA activity */ 4214 _il_apm_stop_master(il); 4215 4216 /* Reset the entire device */ 4217 _il_set_bit(il, CSR_RESET, CSR_RESET_REG_FLAG_SW_RESET); 4218 4219 udelay(10); 4220 4221 /* 4222 * Clear "initialization complete" bit to move adapter from 4223 * D0A* (powered-up Active) --> D0U* (Uninitialized) state. 4224 */ 4225 _il_clear_bit(il, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE); 4226 } 4227 EXPORT_SYMBOL(_il_apm_stop); 4228 4229 void 4230 il_apm_stop(struct il_priv *il) 4231 { 4232 unsigned long flags; 4233 4234 spin_lock_irqsave(&il->reg_lock, flags); 4235 _il_apm_stop(il); 4236 spin_unlock_irqrestore(&il->reg_lock, flags); 4237 } 4238 EXPORT_SYMBOL(il_apm_stop); 4239 4240 /* 4241 * Start up NIC's basic functionality after it has been reset 4242 * (e.g. after platform boot, or shutdown via il_apm_stop()) 4243 * NOTE: This does not load uCode nor start the embedded processor 4244 */ 4245 int 4246 il_apm_init(struct il_priv *il) 4247 { 4248 int ret = 0; 4249 u16 lctl; 4250 4251 D_INFO("Init card's basic functions\n"); 4252 4253 /* 4254 * Use "set_bit" below rather than "write", to preserve any hardware 4255 * bits already set by default after reset. 4256 */ 4257 4258 /* Disable L0S exit timer (platform NMI Work/Around) */ 4259 il_set_bit(il, CSR_GIO_CHICKEN_BITS, 4260 CSR_GIO_CHICKEN_BITS_REG_BIT_DIS_L0S_EXIT_TIMER); 4261 4262 /* 4263 * Disable L0s without affecting L1; 4264 * don't wait for ICH L0s (ICH bug W/A) 4265 */ 4266 il_set_bit(il, CSR_GIO_CHICKEN_BITS, 4267 CSR_GIO_CHICKEN_BITS_REG_BIT_L1A_NO_L0S_RX); 4268 4269 /* Set FH wait threshold to maximum (HW error during stress W/A) */ 4270 il_set_bit(il, CSR_DBG_HPET_MEM_REG, CSR_DBG_HPET_MEM_REG_VAL); 4271 4272 /* 4273 * Enable HAP INTA (interrupt from management bus) to 4274 * wake device's PCI Express link L1a -> L0s 4275 * NOTE: This is no-op for 3945 (non-existent bit) 4276 */ 4277 il_set_bit(il, CSR_HW_IF_CONFIG_REG, 4278 CSR_HW_IF_CONFIG_REG_BIT_HAP_WAKE_L1A); 4279 4280 /* 4281 * HW bug W/A for instability in PCIe bus L0->L0S->L1 transition. 4282 * Check if BIOS (or OS) enabled L1-ASPM on this device. 4283 * If so (likely), disable L0S, so device moves directly L0->L1; 4284 * costs negligible amount of power savings. 4285 * If not (unlikely), enable L0S, so there is at least some 4286 * power savings, even without L1. 4287 */ 4288 if (il->cfg->set_l0s) { 4289 pcie_capability_read_word(il->pci_dev, PCI_EXP_LNKCTL, &lctl); 4290 if (lctl & PCI_EXP_LNKCTL_ASPM_L1) { 4291 /* L1-ASPM enabled; disable(!) L0S */ 4292 il_set_bit(il, CSR_GIO_REG, 4293 CSR_GIO_REG_VAL_L0S_ENABLED); 4294 D_POWER("L1 Enabled; Disabling L0S\n"); 4295 } else { 4296 /* L1-ASPM disabled; enable(!) L0S */ 4297 il_clear_bit(il, CSR_GIO_REG, 4298 CSR_GIO_REG_VAL_L0S_ENABLED); 4299 D_POWER("L1 Disabled; Enabling L0S\n"); 4300 } 4301 } 4302 4303 /* Configure analog phase-lock-loop before activating to D0A */ 4304 if (il->cfg->pll_cfg_val) 4305 il_set_bit(il, CSR_ANA_PLL_CFG, 4306 il->cfg->pll_cfg_val); 4307 4308 /* 4309 * Set "initialization complete" bit to move adapter from 4310 * D0U* --> D0A* (powered-up active) state. 4311 */ 4312 il_set_bit(il, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE); 4313 4314 /* 4315 * Wait for clock stabilization; once stabilized, access to 4316 * device-internal resources is supported, e.g. il_wr_prph() 4317 * and accesses to uCode SRAM. 4318 */ 4319 ret = 4320 _il_poll_bit(il, CSR_GP_CNTRL, 4321 CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, 4322 CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, 25000); 4323 if (ret < 0) { 4324 D_INFO("Failed to init the card\n"); 4325 goto out; 4326 } 4327 4328 /* 4329 * Enable DMA and BSM (if used) clocks, wait for them to stabilize. 4330 * BSM (Boostrap State Machine) is only in 3945 and 4965. 4331 * 4332 * Write to "CLK_EN_REG"; "1" bits enable clocks, while "0" bits 4333 * do not disable clocks. This preserves any hardware bits already 4334 * set by default in "CLK_CTRL_REG" after reset. 4335 */ 4336 if (il->cfg->use_bsm) 4337 il_wr_prph(il, APMG_CLK_EN_REG, 4338 APMG_CLK_VAL_DMA_CLK_RQT | APMG_CLK_VAL_BSM_CLK_RQT); 4339 else 4340 il_wr_prph(il, APMG_CLK_EN_REG, APMG_CLK_VAL_DMA_CLK_RQT); 4341 udelay(20); 4342 4343 /* Disable L1-Active */ 4344 il_set_bits_prph(il, APMG_PCIDEV_STT_REG, 4345 APMG_PCIDEV_STT_VAL_L1_ACT_DIS); 4346 4347 out: 4348 return ret; 4349 } 4350 EXPORT_SYMBOL(il_apm_init); 4351 4352 int 4353 il_set_tx_power(struct il_priv *il, s8 tx_power, bool force) 4354 { 4355 int ret; 4356 s8 prev_tx_power; 4357 bool defer; 4358 4359 lockdep_assert_held(&il->mutex); 4360 4361 if (il->tx_power_user_lmt == tx_power && !force) 4362 return 0; 4363 4364 if (!il->ops->send_tx_power) 4365 return -EOPNOTSUPP; 4366 4367 /* 0 dBm mean 1 milliwatt */ 4368 if (tx_power < 0) { 4369 IL_WARN("Requested user TXPOWER %d below 1 mW.\n", tx_power); 4370 return -EINVAL; 4371 } 4372 4373 if (tx_power > il->tx_power_device_lmt) { 4374 IL_WARN("Requested user TXPOWER %d above upper limit %d.\n", 4375 tx_power, il->tx_power_device_lmt); 4376 return -EINVAL; 4377 } 4378 4379 if (!il_is_ready_rf(il)) 4380 return -EIO; 4381 4382 /* scan complete and commit_rxon use tx_power_next value, 4383 * it always need to be updated for newest request */ 4384 il->tx_power_next = tx_power; 4385 4386 /* do not set tx power when scanning or channel changing */ 4387 defer = test_bit(S_SCANNING, &il->status) || 4388 memcmp(&il->active, &il->staging, sizeof(il->staging)); 4389 if (defer && !force) { 4390 D_INFO("Deferring tx power set\n"); 4391 return 0; 4392 } 4393 4394 prev_tx_power = il->tx_power_user_lmt; 4395 il->tx_power_user_lmt = tx_power; 4396 4397 ret = il->ops->send_tx_power(il); 4398 4399 /* if fail to set tx_power, restore the orig. tx power */ 4400 if (ret) { 4401 il->tx_power_user_lmt = prev_tx_power; 4402 il->tx_power_next = prev_tx_power; 4403 } 4404 return ret; 4405 } 4406 EXPORT_SYMBOL(il_set_tx_power); 4407 4408 void 4409 il_send_bt_config(struct il_priv *il) 4410 { 4411 struct il_bt_cmd bt_cmd = { 4412 .lead_time = BT_LEAD_TIME_DEF, 4413 .max_kill = BT_MAX_KILL_DEF, 4414 .kill_ack_mask = 0, 4415 .kill_cts_mask = 0, 4416 }; 4417 4418 if (!bt_coex_active) 4419 bt_cmd.flags = BT_COEX_DISABLE; 4420 else 4421 bt_cmd.flags = BT_COEX_ENABLE; 4422 4423 D_INFO("BT coex %s\n", 4424 (bt_cmd.flags == BT_COEX_DISABLE) ? "disable" : "active"); 4425 4426 if (il_send_cmd_pdu(il, C_BT_CONFIG, sizeof(struct il_bt_cmd), &bt_cmd)) 4427 IL_ERR("failed to send BT Coex Config\n"); 4428 } 4429 EXPORT_SYMBOL(il_send_bt_config); 4430 4431 int 4432 il_send_stats_request(struct il_priv *il, u8 flags, bool clear) 4433 { 4434 struct il_stats_cmd stats_cmd = { 4435 .configuration_flags = clear ? IL_STATS_CONF_CLEAR_STATS : 0, 4436 }; 4437 4438 if (flags & CMD_ASYNC) 4439 return il_send_cmd_pdu_async(il, C_STATS, sizeof(struct il_stats_cmd), 4440 &stats_cmd, NULL); 4441 else 4442 return il_send_cmd_pdu(il, C_STATS, sizeof(struct il_stats_cmd), 4443 &stats_cmd); 4444 } 4445 EXPORT_SYMBOL(il_send_stats_request); 4446 4447 void 4448 il_hdl_pm_sleep(struct il_priv *il, struct il_rx_buf *rxb) 4449 { 4450 #ifdef CONFIG_IWLEGACY_DEBUG 4451 struct il_rx_pkt *pkt = rxb_addr(rxb); 4452 struct il_sleep_notification *sleep = &(pkt->u.sleep_notif); 4453 D_RX("sleep mode: %d, src: %d\n", 4454 sleep->pm_sleep_mode, sleep->pm_wakeup_src); 4455 #endif 4456 } 4457 EXPORT_SYMBOL(il_hdl_pm_sleep); 4458 4459 void 4460 il_hdl_pm_debug_stats(struct il_priv *il, struct il_rx_buf *rxb) 4461 { 4462 struct il_rx_pkt *pkt = rxb_addr(rxb); 4463 u32 len = le32_to_cpu(pkt->len_n_flags) & IL_RX_FRAME_SIZE_MSK; 4464 D_RADIO("Dumping %d bytes of unhandled notification for %s:\n", len, 4465 il_get_cmd_string(pkt->hdr.cmd)); 4466 il_print_hex_dump(il, IL_DL_RADIO, pkt->u.raw, len); 4467 } 4468 EXPORT_SYMBOL(il_hdl_pm_debug_stats); 4469 4470 void 4471 il_hdl_error(struct il_priv *il, struct il_rx_buf *rxb) 4472 { 4473 struct il_rx_pkt *pkt = rxb_addr(rxb); 4474 4475 IL_ERR("Error Reply type 0x%08X cmd %s (0x%02X) " 4476 "seq 0x%04X ser 0x%08X\n", 4477 le32_to_cpu(pkt->u.err_resp.error_type), 4478 il_get_cmd_string(pkt->u.err_resp.cmd_id), 4479 pkt->u.err_resp.cmd_id, 4480 le16_to_cpu(pkt->u.err_resp.bad_cmd_seq_num), 4481 le32_to_cpu(pkt->u.err_resp.error_info)); 4482 } 4483 EXPORT_SYMBOL(il_hdl_error); 4484 4485 void 4486 il_clear_isr_stats(struct il_priv *il) 4487 { 4488 memset(&il->isr_stats, 0, sizeof(il->isr_stats)); 4489 } 4490 4491 int 4492 il_mac_conf_tx(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u16 queue, 4493 const struct ieee80211_tx_queue_params *params) 4494 { 4495 struct il_priv *il = hw->priv; 4496 unsigned long flags; 4497 int q; 4498 4499 D_MAC80211("enter\n"); 4500 4501 if (!il_is_ready_rf(il)) { 4502 D_MAC80211("leave - RF not ready\n"); 4503 return -EIO; 4504 } 4505 4506 if (queue >= AC_NUM) { 4507 D_MAC80211("leave - queue >= AC_NUM %d\n", queue); 4508 return 0; 4509 } 4510 4511 q = AC_NUM - 1 - queue; 4512 4513 spin_lock_irqsave(&il->lock, flags); 4514 4515 il->qos_data.def_qos_parm.ac[q].cw_min = 4516 cpu_to_le16(params->cw_min); 4517 il->qos_data.def_qos_parm.ac[q].cw_max = 4518 cpu_to_le16(params->cw_max); 4519 il->qos_data.def_qos_parm.ac[q].aifsn = params->aifs; 4520 il->qos_data.def_qos_parm.ac[q].edca_txop = 4521 cpu_to_le16((params->txop * 32)); 4522 4523 il->qos_data.def_qos_parm.ac[q].reserved1 = 0; 4524 4525 spin_unlock_irqrestore(&il->lock, flags); 4526 4527 D_MAC80211("leave\n"); 4528 return 0; 4529 } 4530 EXPORT_SYMBOL(il_mac_conf_tx); 4531 4532 int 4533 il_mac_tx_last_beacon(struct ieee80211_hw *hw) 4534 { 4535 struct il_priv *il = hw->priv; 4536 int ret; 4537 4538 D_MAC80211("enter\n"); 4539 4540 ret = (il->ibss_manager == IL_IBSS_MANAGER); 4541 4542 D_MAC80211("leave ret %d\n", ret); 4543 return ret; 4544 } 4545 EXPORT_SYMBOL_GPL(il_mac_tx_last_beacon); 4546 4547 static int 4548 il_set_mode(struct il_priv *il) 4549 { 4550 il_connection_init_rx_config(il); 4551 4552 if (il->ops->set_rxon_chain) 4553 il->ops->set_rxon_chain(il); 4554 4555 return il_commit_rxon(il); 4556 } 4557 4558 int 4559 il_mac_add_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif) 4560 { 4561 struct il_priv *il = hw->priv; 4562 int err; 4563 bool reset; 4564 4565 mutex_lock(&il->mutex); 4566 D_MAC80211("enter: type %d, addr %pM\n", vif->type, vif->addr); 4567 4568 if (!il_is_ready_rf(il)) { 4569 IL_WARN("Try to add interface when device not ready\n"); 4570 err = -EINVAL; 4571 goto out; 4572 } 4573 4574 /* 4575 * We do not support multiple virtual interfaces, but on hardware reset 4576 * we have to add the same interface again. 4577 */ 4578 reset = (il->vif == vif); 4579 if (il->vif && !reset) { 4580 err = -EOPNOTSUPP; 4581 goto out; 4582 } 4583 4584 il->vif = vif; 4585 il->iw_mode = vif->type; 4586 4587 err = il_set_mode(il); 4588 if (err) { 4589 IL_WARN("Fail to set mode %d\n", vif->type); 4590 if (!reset) { 4591 il->vif = NULL; 4592 il->iw_mode = NL80211_IFTYPE_STATION; 4593 } 4594 } 4595 4596 out: 4597 D_MAC80211("leave err %d\n", err); 4598 mutex_unlock(&il->mutex); 4599 4600 return err; 4601 } 4602 EXPORT_SYMBOL(il_mac_add_interface); 4603 4604 static void 4605 il_teardown_interface(struct il_priv *il, struct ieee80211_vif *vif) 4606 { 4607 lockdep_assert_held(&il->mutex); 4608 4609 if (il->scan_vif == vif) { 4610 il_scan_cancel_timeout(il, 200); 4611 il_force_scan_end(il); 4612 } 4613 4614 il_set_mode(il); 4615 } 4616 4617 void 4618 il_mac_remove_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif) 4619 { 4620 struct il_priv *il = hw->priv; 4621 4622 mutex_lock(&il->mutex); 4623 D_MAC80211("enter: type %d, addr %pM\n", vif->type, vif->addr); 4624 4625 WARN_ON(il->vif != vif); 4626 il->vif = NULL; 4627 il->iw_mode = NL80211_IFTYPE_UNSPECIFIED; 4628 il_teardown_interface(il, vif); 4629 eth_zero_addr(il->bssid); 4630 4631 D_MAC80211("leave\n"); 4632 mutex_unlock(&il->mutex); 4633 } 4634 EXPORT_SYMBOL(il_mac_remove_interface); 4635 4636 int 4637 il_alloc_txq_mem(struct il_priv *il) 4638 { 4639 if (!il->txq) 4640 il->txq = 4641 kcalloc(il->cfg->num_of_queues, 4642 sizeof(struct il_tx_queue), 4643 GFP_KERNEL); 4644 if (!il->txq) { 4645 IL_ERR("Not enough memory for txq\n"); 4646 return -ENOMEM; 4647 } 4648 return 0; 4649 } 4650 EXPORT_SYMBOL(il_alloc_txq_mem); 4651 4652 void 4653 il_free_txq_mem(struct il_priv *il) 4654 { 4655 kfree(il->txq); 4656 il->txq = NULL; 4657 } 4658 EXPORT_SYMBOL(il_free_txq_mem); 4659 4660 int 4661 il_force_reset(struct il_priv *il, bool external) 4662 { 4663 struct il_force_reset *force_reset; 4664 4665 if (test_bit(S_EXIT_PENDING, &il->status)) 4666 return -EINVAL; 4667 4668 force_reset = &il->force_reset; 4669 force_reset->reset_request_count++; 4670 if (!external) { 4671 if (force_reset->last_force_reset_jiffies && 4672 time_after(force_reset->last_force_reset_jiffies + 4673 force_reset->reset_duration, jiffies)) { 4674 D_INFO("force reset rejected\n"); 4675 force_reset->reset_reject_count++; 4676 return -EAGAIN; 4677 } 4678 } 4679 force_reset->reset_success_count++; 4680 force_reset->last_force_reset_jiffies = jiffies; 4681 4682 /* 4683 * if the request is from external(ex: debugfs), 4684 * then always perform the request in regardless the module 4685 * parameter setting 4686 * if the request is from internal (uCode error or driver 4687 * detect failure), then fw_restart module parameter 4688 * need to be check before performing firmware reload 4689 */ 4690 4691 if (!external && !il->cfg->mod_params->restart_fw) { 4692 D_INFO("Cancel firmware reload based on " 4693 "module parameter setting\n"); 4694 return 0; 4695 } 4696 4697 IL_ERR("On demand firmware reload\n"); 4698 4699 /* Set the FW error flag -- cleared on il_down */ 4700 set_bit(S_FW_ERROR, &il->status); 4701 wake_up(&il->wait_command_queue); 4702 /* 4703 * Keep the restart process from trying to send host 4704 * commands by clearing the INIT status bit 4705 */ 4706 clear_bit(S_READY, &il->status); 4707 queue_work(il->workqueue, &il->restart); 4708 4709 return 0; 4710 } 4711 EXPORT_SYMBOL(il_force_reset); 4712 4713 int 4714 il_mac_change_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 4715 enum nl80211_iftype newtype, bool newp2p) 4716 { 4717 struct il_priv *il = hw->priv; 4718 int err; 4719 4720 mutex_lock(&il->mutex); 4721 D_MAC80211("enter: type %d, addr %pM newtype %d newp2p %d\n", 4722 vif->type, vif->addr, newtype, newp2p); 4723 4724 if (newp2p) { 4725 err = -EOPNOTSUPP; 4726 goto out; 4727 } 4728 4729 if (!il->vif || !il_is_ready_rf(il)) { 4730 /* 4731 * Huh? But wait ... this can maybe happen when 4732 * we're in the middle of a firmware restart! 4733 */ 4734 err = -EBUSY; 4735 goto out; 4736 } 4737 4738 /* success */ 4739 vif->type = newtype; 4740 vif->p2p = false; 4741 il->iw_mode = newtype; 4742 il_teardown_interface(il, vif); 4743 err = 0; 4744 4745 out: 4746 D_MAC80211("leave err %d\n", err); 4747 mutex_unlock(&il->mutex); 4748 4749 return err; 4750 } 4751 EXPORT_SYMBOL(il_mac_change_interface); 4752 4753 void il_mac_flush(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 4754 u32 queues, bool drop) 4755 { 4756 struct il_priv *il = hw->priv; 4757 unsigned long timeout = jiffies + msecs_to_jiffies(500); 4758 int i; 4759 4760 mutex_lock(&il->mutex); 4761 D_MAC80211("enter\n"); 4762 4763 if (il->txq == NULL) 4764 goto out; 4765 4766 for (i = 0; i < il->hw_params.max_txq_num; i++) { 4767 struct il_queue *q; 4768 4769 if (i == il->cmd_queue) 4770 continue; 4771 4772 q = &il->txq[i].q; 4773 if (q->read_ptr == q->write_ptr) 4774 continue; 4775 4776 if (time_after(jiffies, timeout)) { 4777 IL_ERR("Failed to flush queue %d\n", q->id); 4778 break; 4779 } 4780 4781 msleep(20); 4782 } 4783 out: 4784 D_MAC80211("leave\n"); 4785 mutex_unlock(&il->mutex); 4786 } 4787 EXPORT_SYMBOL(il_mac_flush); 4788 4789 /* 4790 * On every watchdog tick we check (latest) time stamp. If it does not 4791 * change during timeout period and queue is not empty we reset firmware. 4792 */ 4793 static int 4794 il_check_stuck_queue(struct il_priv *il, int cnt) 4795 { 4796 struct il_tx_queue *txq = &il->txq[cnt]; 4797 struct il_queue *q = &txq->q; 4798 unsigned long timeout; 4799 unsigned long now = jiffies; 4800 int ret; 4801 4802 if (q->read_ptr == q->write_ptr) { 4803 txq->time_stamp = now; 4804 return 0; 4805 } 4806 4807 timeout = 4808 txq->time_stamp + 4809 msecs_to_jiffies(il->cfg->wd_timeout); 4810 4811 if (time_after(now, timeout)) { 4812 IL_ERR("Queue %d stuck for %u ms.\n", q->id, 4813 jiffies_to_msecs(now - txq->time_stamp)); 4814 ret = il_force_reset(il, false); 4815 return (ret == -EAGAIN) ? 0 : 1; 4816 } 4817 4818 return 0; 4819 } 4820 4821 /* 4822 * Making watchdog tick be a quarter of timeout assure we will 4823 * discover the queue hung between timeout and 1.25*timeout 4824 */ 4825 #define IL_WD_TICK(timeout) ((timeout) / 4) 4826 4827 /* 4828 * Watchdog timer callback, we check each tx queue for stuck, if if hung 4829 * we reset the firmware. If everything is fine just rearm the timer. 4830 */ 4831 void 4832 il_bg_watchdog(struct timer_list *t) 4833 { 4834 struct il_priv *il = from_timer(il, t, watchdog); 4835 int cnt; 4836 unsigned long timeout; 4837 4838 if (test_bit(S_EXIT_PENDING, &il->status)) 4839 return; 4840 4841 timeout = il->cfg->wd_timeout; 4842 if (timeout == 0) 4843 return; 4844 4845 /* monitor and check for stuck cmd queue */ 4846 if (il_check_stuck_queue(il, il->cmd_queue)) 4847 return; 4848 4849 /* monitor and check for other stuck queues */ 4850 for (cnt = 0; cnt < il->hw_params.max_txq_num; cnt++) { 4851 /* skip as we already checked the command queue */ 4852 if (cnt == il->cmd_queue) 4853 continue; 4854 if (il_check_stuck_queue(il, cnt)) 4855 return; 4856 } 4857 4858 mod_timer(&il->watchdog, 4859 jiffies + msecs_to_jiffies(IL_WD_TICK(timeout))); 4860 } 4861 EXPORT_SYMBOL(il_bg_watchdog); 4862 4863 void 4864 il_setup_watchdog(struct il_priv *il) 4865 { 4866 unsigned int timeout = il->cfg->wd_timeout; 4867 4868 if (timeout) 4869 mod_timer(&il->watchdog, 4870 jiffies + msecs_to_jiffies(IL_WD_TICK(timeout))); 4871 else 4872 del_timer(&il->watchdog); 4873 } 4874 EXPORT_SYMBOL(il_setup_watchdog); 4875 4876 /* 4877 * extended beacon time format 4878 * time in usec will be changed into a 32-bit value in extended:internal format 4879 * the extended part is the beacon counts 4880 * the internal part is the time in usec within one beacon interval 4881 */ 4882 u32 4883 il_usecs_to_beacons(struct il_priv *il, u32 usec, u32 beacon_interval) 4884 { 4885 u32 quot; 4886 u32 rem; 4887 u32 interval = beacon_interval * TIME_UNIT; 4888 4889 if (!interval || !usec) 4890 return 0; 4891 4892 quot = 4893 (usec / 4894 interval) & (il_beacon_time_mask_high(il, 4895 il->hw_params. 4896 beacon_time_tsf_bits) >> il-> 4897 hw_params.beacon_time_tsf_bits); 4898 rem = 4899 (usec % interval) & il_beacon_time_mask_low(il, 4900 il->hw_params. 4901 beacon_time_tsf_bits); 4902 4903 return (quot << il->hw_params.beacon_time_tsf_bits) + rem; 4904 } 4905 EXPORT_SYMBOL(il_usecs_to_beacons); 4906 4907 /* base is usually what we get from ucode with each received frame, 4908 * the same as HW timer counter counting down 4909 */ 4910 __le32 4911 il_add_beacon_time(struct il_priv *il, u32 base, u32 addon, 4912 u32 beacon_interval) 4913 { 4914 u32 base_low = base & il_beacon_time_mask_low(il, 4915 il->hw_params. 4916 beacon_time_tsf_bits); 4917 u32 addon_low = addon & il_beacon_time_mask_low(il, 4918 il->hw_params. 4919 beacon_time_tsf_bits); 4920 u32 interval = beacon_interval * TIME_UNIT; 4921 u32 res = (base & il_beacon_time_mask_high(il, 4922 il->hw_params. 4923 beacon_time_tsf_bits)) + 4924 (addon & il_beacon_time_mask_high(il, 4925 il->hw_params. 4926 beacon_time_tsf_bits)); 4927 4928 if (base_low > addon_low) 4929 res += base_low - addon_low; 4930 else if (base_low < addon_low) { 4931 res += interval + base_low - addon_low; 4932 res += (1 << il->hw_params.beacon_time_tsf_bits); 4933 } else 4934 res += (1 << il->hw_params.beacon_time_tsf_bits); 4935 4936 return cpu_to_le32(res); 4937 } 4938 EXPORT_SYMBOL(il_add_beacon_time); 4939 4940 #ifdef CONFIG_PM_SLEEP 4941 4942 static int 4943 il_pci_suspend(struct device *device) 4944 { 4945 struct il_priv *il = dev_get_drvdata(device); 4946 4947 /* 4948 * This function is called when system goes into suspend state 4949 * mac80211 will call il_mac_stop() from the mac80211 suspend function 4950 * first but since il_mac_stop() has no knowledge of who the caller is, 4951 * it will not call apm_ops.stop() to stop the DMA operation. 4952 * Calling apm_ops.stop here to make sure we stop the DMA. 4953 */ 4954 il_apm_stop(il); 4955 4956 return 0; 4957 } 4958 4959 static int 4960 il_pci_resume(struct device *device) 4961 { 4962 struct pci_dev *pdev = to_pci_dev(device); 4963 struct il_priv *il = pci_get_drvdata(pdev); 4964 bool hw_rfkill = false; 4965 4966 /* 4967 * We disable the RETRY_TIMEOUT register (0x41) to keep 4968 * PCI Tx retries from interfering with C3 CPU state. 4969 */ 4970 pci_write_config_byte(pdev, PCI_CFG_RETRY_TIMEOUT, 0x00); 4971 4972 il_enable_interrupts(il); 4973 4974 if (!(_il_rd(il, CSR_GP_CNTRL) & CSR_GP_CNTRL_REG_FLAG_HW_RF_KILL_SW)) 4975 hw_rfkill = true; 4976 4977 if (hw_rfkill) 4978 set_bit(S_RFKILL, &il->status); 4979 else 4980 clear_bit(S_RFKILL, &il->status); 4981 4982 wiphy_rfkill_set_hw_state(il->hw->wiphy, hw_rfkill); 4983 4984 return 0; 4985 } 4986 4987 SIMPLE_DEV_PM_OPS(il_pm_ops, il_pci_suspend, il_pci_resume); 4988 EXPORT_SYMBOL(il_pm_ops); 4989 4990 #endif /* CONFIG_PM_SLEEP */ 4991 4992 static void 4993 il_update_qos(struct il_priv *il) 4994 { 4995 if (test_bit(S_EXIT_PENDING, &il->status)) 4996 return; 4997 4998 il->qos_data.def_qos_parm.qos_flags = 0; 4999 5000 if (il->qos_data.qos_active) 5001 il->qos_data.def_qos_parm.qos_flags |= 5002 QOS_PARAM_FLG_UPDATE_EDCA_MSK; 5003 5004 if (il->ht.enabled) 5005 il->qos_data.def_qos_parm.qos_flags |= QOS_PARAM_FLG_TGN_MSK; 5006 5007 D_QOS("send QoS cmd with Qos active=%d FLAGS=0x%X\n", 5008 il->qos_data.qos_active, il->qos_data.def_qos_parm.qos_flags); 5009 5010 il_send_cmd_pdu_async(il, C_QOS_PARAM, sizeof(struct il_qosparam_cmd), 5011 &il->qos_data.def_qos_parm, NULL); 5012 } 5013 5014 /** 5015 * il_mac_config - mac80211 config callback 5016 */ 5017 int 5018 il_mac_config(struct ieee80211_hw *hw, u32 changed) 5019 { 5020 struct il_priv *il = hw->priv; 5021 const struct il_channel_info *ch_info; 5022 struct ieee80211_conf *conf = &hw->conf; 5023 struct ieee80211_channel *channel = conf->chandef.chan; 5024 struct il_ht_config *ht_conf = &il->current_ht_config; 5025 unsigned long flags = 0; 5026 int ret = 0; 5027 u16 ch; 5028 int scan_active = 0; 5029 bool ht_changed = false; 5030 5031 mutex_lock(&il->mutex); 5032 D_MAC80211("enter: channel %d changed 0x%X\n", channel->hw_value, 5033 changed); 5034 5035 if (unlikely(test_bit(S_SCANNING, &il->status))) { 5036 scan_active = 1; 5037 D_MAC80211("scan active\n"); 5038 } 5039 5040 if (changed & 5041 (IEEE80211_CONF_CHANGE_SMPS | IEEE80211_CONF_CHANGE_CHANNEL)) { 5042 /* mac80211 uses static for non-HT which is what we want */ 5043 il->current_ht_config.smps = conf->smps_mode; 5044 5045 /* 5046 * Recalculate chain counts. 5047 * 5048 * If monitor mode is enabled then mac80211 will 5049 * set up the SM PS mode to OFF if an HT channel is 5050 * configured. 5051 */ 5052 if (il->ops->set_rxon_chain) 5053 il->ops->set_rxon_chain(il); 5054 } 5055 5056 /* during scanning mac80211 will delay channel setting until 5057 * scan finish with changed = 0 5058 */ 5059 if (!changed || (changed & IEEE80211_CONF_CHANGE_CHANNEL)) { 5060 5061 if (scan_active) 5062 goto set_ch_out; 5063 5064 ch = channel->hw_value; 5065 ch_info = il_get_channel_info(il, channel->band, ch); 5066 if (!il_is_channel_valid(ch_info)) { 5067 D_MAC80211("leave - invalid channel\n"); 5068 ret = -EINVAL; 5069 goto set_ch_out; 5070 } 5071 5072 if (il->iw_mode == NL80211_IFTYPE_ADHOC && 5073 !il_is_channel_ibss(ch_info)) { 5074 D_MAC80211("leave - not IBSS channel\n"); 5075 ret = -EINVAL; 5076 goto set_ch_out; 5077 } 5078 5079 spin_lock_irqsave(&il->lock, flags); 5080 5081 /* Configure HT40 channels */ 5082 if (il->ht.enabled != conf_is_ht(conf)) { 5083 il->ht.enabled = conf_is_ht(conf); 5084 ht_changed = true; 5085 } 5086 if (il->ht.enabled) { 5087 if (conf_is_ht40_minus(conf)) { 5088 il->ht.extension_chan_offset = 5089 IEEE80211_HT_PARAM_CHA_SEC_BELOW; 5090 il->ht.is_40mhz = true; 5091 } else if (conf_is_ht40_plus(conf)) { 5092 il->ht.extension_chan_offset = 5093 IEEE80211_HT_PARAM_CHA_SEC_ABOVE; 5094 il->ht.is_40mhz = true; 5095 } else { 5096 il->ht.extension_chan_offset = 5097 IEEE80211_HT_PARAM_CHA_SEC_NONE; 5098 il->ht.is_40mhz = false; 5099 } 5100 } else 5101 il->ht.is_40mhz = false; 5102 5103 /* 5104 * Default to no protection. Protection mode will 5105 * later be set from BSS config in il_ht_conf 5106 */ 5107 il->ht.protection = IEEE80211_HT_OP_MODE_PROTECTION_NONE; 5108 5109 /* if we are switching from ht to 2.4 clear flags 5110 * from any ht related info since 2.4 does not 5111 * support ht */ 5112 if ((le16_to_cpu(il->staging.channel) != ch)) 5113 il->staging.flags = 0; 5114 5115 il_set_rxon_channel(il, channel); 5116 il_set_rxon_ht(il, ht_conf); 5117 5118 il_set_flags_for_band(il, channel->band, il->vif); 5119 5120 spin_unlock_irqrestore(&il->lock, flags); 5121 5122 if (il->ops->update_bcast_stations) 5123 ret = il->ops->update_bcast_stations(il); 5124 5125 set_ch_out: 5126 /* The list of supported rates and rate mask can be different 5127 * for each band; since the band may have changed, reset 5128 * the rate mask to what mac80211 lists */ 5129 il_set_rate(il); 5130 } 5131 5132 if (changed & (IEEE80211_CONF_CHANGE_PS | IEEE80211_CONF_CHANGE_IDLE)) { 5133 il->power_data.ps_disabled = !(conf->flags & IEEE80211_CONF_PS); 5134 if (!il->power_data.ps_disabled) 5135 IL_WARN_ONCE("Enabling power save might cause firmware crashes\n"); 5136 ret = il_power_update_mode(il, false); 5137 if (ret) 5138 D_MAC80211("Error setting sleep level\n"); 5139 } 5140 5141 if (changed & IEEE80211_CONF_CHANGE_POWER) { 5142 D_MAC80211("TX Power old=%d new=%d\n", il->tx_power_user_lmt, 5143 conf->power_level); 5144 5145 il_set_tx_power(il, conf->power_level, false); 5146 } 5147 5148 if (!il_is_ready(il)) { 5149 D_MAC80211("leave - not ready\n"); 5150 goto out; 5151 } 5152 5153 if (scan_active) 5154 goto out; 5155 5156 if (memcmp(&il->active, &il->staging, sizeof(il->staging))) 5157 il_commit_rxon(il); 5158 else 5159 D_INFO("Not re-sending same RXON configuration.\n"); 5160 if (ht_changed) 5161 il_update_qos(il); 5162 5163 out: 5164 D_MAC80211("leave ret %d\n", ret); 5165 mutex_unlock(&il->mutex); 5166 5167 return ret; 5168 } 5169 EXPORT_SYMBOL(il_mac_config); 5170 5171 void 5172 il_mac_reset_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif) 5173 { 5174 struct il_priv *il = hw->priv; 5175 unsigned long flags; 5176 5177 mutex_lock(&il->mutex); 5178 D_MAC80211("enter: type %d, addr %pM\n", vif->type, vif->addr); 5179 5180 spin_lock_irqsave(&il->lock, flags); 5181 5182 memset(&il->current_ht_config, 0, sizeof(struct il_ht_config)); 5183 5184 /* new association get rid of ibss beacon skb */ 5185 dev_kfree_skb(il->beacon_skb); 5186 il->beacon_skb = NULL; 5187 il->timestamp = 0; 5188 5189 spin_unlock_irqrestore(&il->lock, flags); 5190 5191 il_scan_cancel_timeout(il, 100); 5192 if (!il_is_ready_rf(il)) { 5193 D_MAC80211("leave - not ready\n"); 5194 mutex_unlock(&il->mutex); 5195 return; 5196 } 5197 5198 /* we are restarting association process */ 5199 il->staging.filter_flags &= ~RXON_FILTER_ASSOC_MSK; 5200 il_commit_rxon(il); 5201 5202 il_set_rate(il); 5203 5204 D_MAC80211("leave\n"); 5205 mutex_unlock(&il->mutex); 5206 } 5207 EXPORT_SYMBOL(il_mac_reset_tsf); 5208 5209 static void 5210 il_ht_conf(struct il_priv *il, struct ieee80211_vif *vif) 5211 { 5212 struct il_ht_config *ht_conf = &il->current_ht_config; 5213 struct ieee80211_sta *sta; 5214 struct ieee80211_bss_conf *bss_conf = &vif->bss_conf; 5215 5216 D_ASSOC("enter:\n"); 5217 5218 if (!il->ht.enabled) 5219 return; 5220 5221 il->ht.protection = 5222 bss_conf->ht_operation_mode & IEEE80211_HT_OP_MODE_PROTECTION; 5223 il->ht.non_gf_sta_present = 5224 !!(bss_conf-> 5225 ht_operation_mode & IEEE80211_HT_OP_MODE_NON_GF_STA_PRSNT); 5226 5227 ht_conf->single_chain_sufficient = false; 5228 5229 switch (vif->type) { 5230 case NL80211_IFTYPE_STATION: 5231 rcu_read_lock(); 5232 sta = ieee80211_find_sta(vif, bss_conf->bssid); 5233 if (sta) { 5234 struct ieee80211_sta_ht_cap *ht_cap = &sta->ht_cap; 5235 int maxstreams; 5236 5237 maxstreams = 5238 (ht_cap->mcs. 5239 tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK) 5240 >> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT; 5241 maxstreams += 1; 5242 5243 if (ht_cap->mcs.rx_mask[1] == 0 && 5244 ht_cap->mcs.rx_mask[2] == 0) 5245 ht_conf->single_chain_sufficient = true; 5246 if (maxstreams <= 1) 5247 ht_conf->single_chain_sufficient = true; 5248 } else { 5249 /* 5250 * If at all, this can only happen through a race 5251 * when the AP disconnects us while we're still 5252 * setting up the connection, in that case mac80211 5253 * will soon tell us about that. 5254 */ 5255 ht_conf->single_chain_sufficient = true; 5256 } 5257 rcu_read_unlock(); 5258 break; 5259 case NL80211_IFTYPE_ADHOC: 5260 ht_conf->single_chain_sufficient = true; 5261 break; 5262 default: 5263 break; 5264 } 5265 5266 D_ASSOC("leave\n"); 5267 } 5268 5269 static inline void 5270 il_set_no_assoc(struct il_priv *il, struct ieee80211_vif *vif) 5271 { 5272 /* 5273 * inform the ucode that there is no longer an 5274 * association and that no more packets should be 5275 * sent 5276 */ 5277 il->staging.filter_flags &= ~RXON_FILTER_ASSOC_MSK; 5278 il->staging.assoc_id = 0; 5279 il_commit_rxon(il); 5280 } 5281 5282 static void 5283 il_beacon_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif) 5284 { 5285 struct il_priv *il = hw->priv; 5286 unsigned long flags; 5287 __le64 timestamp; 5288 struct sk_buff *skb = ieee80211_beacon_get(hw, vif); 5289 5290 if (!skb) 5291 return; 5292 5293 D_MAC80211("enter\n"); 5294 5295 lockdep_assert_held(&il->mutex); 5296 5297 if (!il->beacon_enabled) { 5298 IL_ERR("update beacon with no beaconing enabled\n"); 5299 dev_kfree_skb(skb); 5300 return; 5301 } 5302 5303 spin_lock_irqsave(&il->lock, flags); 5304 dev_kfree_skb(il->beacon_skb); 5305 il->beacon_skb = skb; 5306 5307 timestamp = ((struct ieee80211_mgmt *)skb->data)->u.beacon.timestamp; 5308 il->timestamp = le64_to_cpu(timestamp); 5309 5310 D_MAC80211("leave\n"); 5311 spin_unlock_irqrestore(&il->lock, flags); 5312 5313 if (!il_is_ready_rf(il)) { 5314 D_MAC80211("leave - RF not ready\n"); 5315 return; 5316 } 5317 5318 il->ops->post_associate(il); 5319 } 5320 5321 void 5322 il_mac_bss_info_changed(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 5323 struct ieee80211_bss_conf *bss_conf, u32 changes) 5324 { 5325 struct il_priv *il = hw->priv; 5326 int ret; 5327 5328 mutex_lock(&il->mutex); 5329 D_MAC80211("enter: changes 0x%x\n", changes); 5330 5331 if (!il_is_alive(il)) { 5332 D_MAC80211("leave - not alive\n"); 5333 mutex_unlock(&il->mutex); 5334 return; 5335 } 5336 5337 if (changes & BSS_CHANGED_QOS) { 5338 unsigned long flags; 5339 5340 spin_lock_irqsave(&il->lock, flags); 5341 il->qos_data.qos_active = bss_conf->qos; 5342 il_update_qos(il); 5343 spin_unlock_irqrestore(&il->lock, flags); 5344 } 5345 5346 if (changes & BSS_CHANGED_BEACON_ENABLED) { 5347 /* FIXME: can we remove beacon_enabled ? */ 5348 if (vif->bss_conf.enable_beacon) 5349 il->beacon_enabled = true; 5350 else 5351 il->beacon_enabled = false; 5352 } 5353 5354 if (changes & BSS_CHANGED_BSSID) { 5355 D_MAC80211("BSSID %pM\n", bss_conf->bssid); 5356 5357 /* 5358 * On passive channel we wait with blocked queues to see if 5359 * there is traffic on that channel. If no frame will be 5360 * received (what is very unlikely since scan detects AP on 5361 * that channel, but theoretically possible), mac80211 associate 5362 * procedure will time out and mac80211 will call us with NULL 5363 * bssid. We have to unblock queues on such condition. 5364 */ 5365 if (is_zero_ether_addr(bss_conf->bssid)) 5366 il_wake_queues_by_reason(il, IL_STOP_REASON_PASSIVE); 5367 5368 /* 5369 * If there is currently a HW scan going on in the background, 5370 * then we need to cancel it, otherwise sometimes we are not 5371 * able to authenticate (FIXME: why ?) 5372 */ 5373 if (il_scan_cancel_timeout(il, 100)) { 5374 D_MAC80211("leave - scan abort failed\n"); 5375 mutex_unlock(&il->mutex); 5376 return; 5377 } 5378 5379 /* mac80211 only sets assoc when in STATION mode */ 5380 memcpy(il->staging.bssid_addr, bss_conf->bssid, ETH_ALEN); 5381 5382 /* FIXME: currently needed in a few places */ 5383 memcpy(il->bssid, bss_conf->bssid, ETH_ALEN); 5384 } 5385 5386 /* 5387 * This needs to be after setting the BSSID in case 5388 * mac80211 decides to do both changes at once because 5389 * it will invoke post_associate. 5390 */ 5391 if (vif->type == NL80211_IFTYPE_ADHOC && (changes & BSS_CHANGED_BEACON)) 5392 il_beacon_update(hw, vif); 5393 5394 if (changes & BSS_CHANGED_ERP_PREAMBLE) { 5395 D_MAC80211("ERP_PREAMBLE %d\n", bss_conf->use_short_preamble); 5396 if (bss_conf->use_short_preamble) 5397 il->staging.flags |= RXON_FLG_SHORT_PREAMBLE_MSK; 5398 else 5399 il->staging.flags &= ~RXON_FLG_SHORT_PREAMBLE_MSK; 5400 } 5401 5402 if (changes & BSS_CHANGED_ERP_CTS_PROT) { 5403 D_MAC80211("ERP_CTS %d\n", bss_conf->use_cts_prot); 5404 if (bss_conf->use_cts_prot && il->band != NL80211_BAND_5GHZ) 5405 il->staging.flags |= RXON_FLG_TGG_PROTECT_MSK; 5406 else 5407 il->staging.flags &= ~RXON_FLG_TGG_PROTECT_MSK; 5408 if (bss_conf->use_cts_prot) 5409 il->staging.flags |= RXON_FLG_SELF_CTS_EN; 5410 else 5411 il->staging.flags &= ~RXON_FLG_SELF_CTS_EN; 5412 } 5413 5414 if (changes & BSS_CHANGED_BASIC_RATES) { 5415 /* XXX use this information 5416 * 5417 * To do that, remove code from il_set_rate() and put something 5418 * like this here: 5419 * 5420 if (A-band) 5421 il->staging.ofdm_basic_rates = 5422 bss_conf->basic_rates; 5423 else 5424 il->staging.ofdm_basic_rates = 5425 bss_conf->basic_rates >> 4; 5426 il->staging.cck_basic_rates = 5427 bss_conf->basic_rates & 0xF; 5428 */ 5429 } 5430 5431 if (changes & BSS_CHANGED_HT) { 5432 il_ht_conf(il, vif); 5433 5434 if (il->ops->set_rxon_chain) 5435 il->ops->set_rxon_chain(il); 5436 } 5437 5438 if (changes & BSS_CHANGED_ASSOC) { 5439 D_MAC80211("ASSOC %d\n", bss_conf->assoc); 5440 if (bss_conf->assoc) { 5441 il->timestamp = bss_conf->sync_tsf; 5442 5443 if (!il_is_rfkill(il)) 5444 il->ops->post_associate(il); 5445 } else 5446 il_set_no_assoc(il, vif); 5447 } 5448 5449 if (changes && il_is_associated(il) && bss_conf->aid) { 5450 D_MAC80211("Changes (%#x) while associated\n", changes); 5451 ret = il_send_rxon_assoc(il); 5452 if (!ret) { 5453 /* Sync active_rxon with latest change. */ 5454 memcpy((void *)&il->active, &il->staging, 5455 sizeof(struct il_rxon_cmd)); 5456 } 5457 } 5458 5459 if (changes & BSS_CHANGED_BEACON_ENABLED) { 5460 if (vif->bss_conf.enable_beacon) { 5461 memcpy(il->staging.bssid_addr, bss_conf->bssid, 5462 ETH_ALEN); 5463 memcpy(il->bssid, bss_conf->bssid, ETH_ALEN); 5464 il->ops->config_ap(il); 5465 } else 5466 il_set_no_assoc(il, vif); 5467 } 5468 5469 if (changes & BSS_CHANGED_IBSS) { 5470 ret = il->ops->manage_ibss_station(il, vif, 5471 bss_conf->ibss_joined); 5472 if (ret) 5473 IL_ERR("failed to %s IBSS station %pM\n", 5474 bss_conf->ibss_joined ? "add" : "remove", 5475 bss_conf->bssid); 5476 } 5477 5478 D_MAC80211("leave\n"); 5479 mutex_unlock(&il->mutex); 5480 } 5481 EXPORT_SYMBOL(il_mac_bss_info_changed); 5482 5483 irqreturn_t 5484 il_isr(int irq, void *data) 5485 { 5486 struct il_priv *il = data; 5487 u32 inta, inta_mask; 5488 u32 inta_fh; 5489 unsigned long flags; 5490 if (!il) 5491 return IRQ_NONE; 5492 5493 spin_lock_irqsave(&il->lock, flags); 5494 5495 /* Disable (but don't clear!) interrupts here to avoid 5496 * back-to-back ISRs and sporadic interrupts from our NIC. 5497 * If we have something to service, the tasklet will re-enable ints. 5498 * If we *don't* have something, we'll re-enable before leaving here. */ 5499 inta_mask = _il_rd(il, CSR_INT_MASK); /* just for debug */ 5500 _il_wr(il, CSR_INT_MASK, 0x00000000); 5501 5502 /* Discover which interrupts are active/pending */ 5503 inta = _il_rd(il, CSR_INT); 5504 inta_fh = _il_rd(il, CSR_FH_INT_STATUS); 5505 5506 /* Ignore interrupt if there's nothing in NIC to service. 5507 * This may be due to IRQ shared with another device, 5508 * or due to sporadic interrupts thrown from our NIC. */ 5509 if (!inta && !inta_fh) { 5510 D_ISR("Ignore interrupt, inta == 0, inta_fh == 0\n"); 5511 goto none; 5512 } 5513 5514 if (inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0) { 5515 /* Hardware disappeared. It might have already raised 5516 * an interrupt */ 5517 IL_WARN("HARDWARE GONE?? INTA == 0x%08x\n", inta); 5518 goto unplugged; 5519 } 5520 5521 D_ISR("ISR inta 0x%08x, enabled 0x%08x, fh 0x%08x\n", inta, inta_mask, 5522 inta_fh); 5523 5524 inta &= ~CSR_INT_BIT_SCD; 5525 5526 /* il_irq_tasklet() will service interrupts and re-enable them */ 5527 if (likely(inta || inta_fh)) 5528 tasklet_schedule(&il->irq_tasklet); 5529 5530 unplugged: 5531 spin_unlock_irqrestore(&il->lock, flags); 5532 return IRQ_HANDLED; 5533 5534 none: 5535 /* re-enable interrupts here since we don't have anything to service. */ 5536 /* only Re-enable if disabled by irq */ 5537 if (test_bit(S_INT_ENABLED, &il->status)) 5538 il_enable_interrupts(il); 5539 spin_unlock_irqrestore(&il->lock, flags); 5540 return IRQ_NONE; 5541 } 5542 EXPORT_SYMBOL(il_isr); 5543 5544 /* 5545 * il_tx_cmd_protection: Set rts/cts. 3945 and 4965 only share this 5546 * function. 5547 */ 5548 void 5549 il_tx_cmd_protection(struct il_priv *il, struct ieee80211_tx_info *info, 5550 __le16 fc, __le32 *tx_flags) 5551 { 5552 if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS) { 5553 *tx_flags |= TX_CMD_FLG_RTS_MSK; 5554 *tx_flags &= ~TX_CMD_FLG_CTS_MSK; 5555 *tx_flags |= TX_CMD_FLG_FULL_TXOP_PROT_MSK; 5556 5557 if (!ieee80211_is_mgmt(fc)) 5558 return; 5559 5560 switch (fc & cpu_to_le16(IEEE80211_FCTL_STYPE)) { 5561 case cpu_to_le16(IEEE80211_STYPE_AUTH): 5562 case cpu_to_le16(IEEE80211_STYPE_DEAUTH): 5563 case cpu_to_le16(IEEE80211_STYPE_ASSOC_REQ): 5564 case cpu_to_le16(IEEE80211_STYPE_REASSOC_REQ): 5565 *tx_flags &= ~TX_CMD_FLG_RTS_MSK; 5566 *tx_flags |= TX_CMD_FLG_CTS_MSK; 5567 break; 5568 } 5569 } else if (info->control.rates[0]. 5570 flags & IEEE80211_TX_RC_USE_CTS_PROTECT) { 5571 *tx_flags &= ~TX_CMD_FLG_RTS_MSK; 5572 *tx_flags |= TX_CMD_FLG_CTS_MSK; 5573 *tx_flags |= TX_CMD_FLG_FULL_TXOP_PROT_MSK; 5574 } 5575 } 5576 EXPORT_SYMBOL(il_tx_cmd_protection); 5577