1 /****************************************************************************** 2 * 3 * GPL LICENSE SUMMARY 4 * 5 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of version 2 of the GNU General Public License as 9 * published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, but 12 * WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110, 19 * USA 20 * 21 * The full GNU General Public License is included in this distribution 22 * in the file called LICENSE.GPL. 23 * 24 * Contact Information: 25 * Intel Linux Wireless <ilw@linux.intel.com> 26 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 27 * 28 *****************************************************************************/ 29 30 #ifndef __il_4965_h__ 31 #define __il_4965_h__ 32 33 struct il_rx_queue; 34 struct il_rx_buf; 35 struct il_rx_pkt; 36 struct il_tx_queue; 37 struct il_rxon_context; 38 39 /* configuration for the _4965 devices */ 40 extern struct il_cfg il4965_cfg; 41 extern const struct il_ops il4965_ops; 42 43 extern struct il_mod_params il4965_mod_params; 44 45 /* tx queue */ 46 void il4965_free_tfds_in_queue(struct il_priv *il, int sta_id, int tid, 47 int freed); 48 49 /* RXON */ 50 void il4965_set_rxon_chain(struct il_priv *il); 51 52 /* uCode */ 53 int il4965_verify_ucode(struct il_priv *il); 54 55 /* lib */ 56 void il4965_check_abort_status(struct il_priv *il, u8 frame_count, u32 status); 57 58 void il4965_rx_queue_reset(struct il_priv *il, struct il_rx_queue *rxq); 59 int il4965_rx_init(struct il_priv *il, struct il_rx_queue *rxq); 60 int il4965_hw_nic_init(struct il_priv *il); 61 int il4965_dump_fh(struct il_priv *il, char **buf, bool display); 62 63 void il4965_nic_config(struct il_priv *il); 64 65 /* rx */ 66 void il4965_rx_queue_restock(struct il_priv *il); 67 void il4965_rx_replenish(struct il_priv *il); 68 void il4965_rx_replenish_now(struct il_priv *il); 69 void il4965_rx_queue_free(struct il_priv *il, struct il_rx_queue *rxq); 70 int il4965_rxq_stop(struct il_priv *il); 71 int il4965_hwrate_to_mac80211_idx(u32 rate_n_flags, enum nl80211_band band); 72 void il4965_rx_handle(struct il_priv *il); 73 74 /* tx */ 75 void il4965_hw_txq_free_tfd(struct il_priv *il, struct il_tx_queue *txq); 76 int il4965_hw_txq_attach_buf_to_tfd(struct il_priv *il, struct il_tx_queue *txq, 77 dma_addr_t addr, u16 len, u8 reset, u8 pad); 78 int il4965_hw_tx_queue_init(struct il_priv *il, struct il_tx_queue *txq); 79 void il4965_hwrate_to_tx_control(struct il_priv *il, u32 rate_n_flags, 80 struct ieee80211_tx_info *info); 81 int il4965_tx_skb(struct il_priv *il, 82 struct ieee80211_sta *sta, 83 struct sk_buff *skb); 84 int il4965_tx_agg_start(struct il_priv *il, struct ieee80211_vif *vif, 85 struct ieee80211_sta *sta, u16 tid, u16 * ssn); 86 int il4965_tx_agg_stop(struct il_priv *il, struct ieee80211_vif *vif, 87 struct ieee80211_sta *sta, u16 tid); 88 int il4965_txq_check_empty(struct il_priv *il, int sta_id, u8 tid, int txq_id); 89 int il4965_tx_queue_reclaim(struct il_priv *il, int txq_id, int idx); 90 void il4965_hw_txq_ctx_free(struct il_priv *il); 91 int il4965_txq_ctx_alloc(struct il_priv *il); 92 void il4965_txq_ctx_reset(struct il_priv *il); 93 void il4965_txq_ctx_stop(struct il_priv *il); 94 void il4965_txq_set_sched(struct il_priv *il, u32 mask); 95 96 /* 97 * Acquire il->lock before calling this function ! 98 */ 99 void il4965_set_wr_ptrs(struct il_priv *il, int txq_id, u32 idx); 100 /** 101 * il4965_tx_queue_set_status - (optionally) start Tx/Cmd queue 102 * @tx_fifo_id: Tx DMA/FIFO channel (range 0-7) that the queue will feed 103 * @scd_retry: (1) Indicates queue will be used in aggregation mode 104 * 105 * NOTE: Acquire il->lock before calling this function ! 106 */ 107 void il4965_tx_queue_set_status(struct il_priv *il, struct il_tx_queue *txq, 108 int tx_fifo_id, int scd_retry); 109 110 /* scan */ 111 int il4965_request_scan(struct il_priv *il, struct ieee80211_vif *vif); 112 113 /* station mgmt */ 114 int il4965_manage_ibss_station(struct il_priv *il, struct ieee80211_vif *vif, 115 bool add); 116 117 /* hcmd */ 118 int il4965_send_beacon_cmd(struct il_priv *il); 119 120 #ifdef CONFIG_IWLEGACY_DEBUG 121 const char *il4965_get_tx_fail_reason(u32 status); 122 #else 123 static inline const char * 124 il4965_get_tx_fail_reason(u32 status) 125 { 126 return ""; 127 } 128 #endif 129 130 /* station management */ 131 int il4965_alloc_bcast_station(struct il_priv *il); 132 int il4965_add_bssid_station(struct il_priv *il, const u8 *addr, u8 *sta_id_r); 133 int il4965_remove_default_wep_key(struct il_priv *il, 134 struct ieee80211_key_conf *key); 135 int il4965_set_default_wep_key(struct il_priv *il, 136 struct ieee80211_key_conf *key); 137 int il4965_restore_default_wep_keys(struct il_priv *il); 138 int il4965_set_dynamic_key(struct il_priv *il, 139 struct ieee80211_key_conf *key, u8 sta_id); 140 int il4965_remove_dynamic_key(struct il_priv *il, 141 struct ieee80211_key_conf *key, u8 sta_id); 142 void il4965_update_tkip_key(struct il_priv *il, 143 struct ieee80211_key_conf *keyconf, 144 struct ieee80211_sta *sta, u32 iv32, 145 u16 *phase1key); 146 int il4965_sta_tx_modify_enable_tid(struct il_priv *il, int sta_id, int tid); 147 int il4965_sta_rx_agg_start(struct il_priv *il, struct ieee80211_sta *sta, 148 int tid, u16 ssn); 149 int il4965_sta_rx_agg_stop(struct il_priv *il, struct ieee80211_sta *sta, 150 int tid); 151 void il4965_sta_modify_sleep_tx_count(struct il_priv *il, int sta_id, int cnt); 152 int il4965_update_bcast_stations(struct il_priv *il); 153 154 /* rate */ 155 static inline u8 156 il4965_hw_get_rate(__le32 rate_n_flags) 157 { 158 return le32_to_cpu(rate_n_flags) & 0xFF; 159 } 160 161 /* eeprom */ 162 void il4965_eeprom_get_mac(const struct il_priv *il, u8 * mac); 163 int il4965_eeprom_acquire_semaphore(struct il_priv *il); 164 void il4965_eeprom_release_semaphore(struct il_priv *il); 165 int il4965_eeprom_check_version(struct il_priv *il); 166 167 /* mac80211 handlers (for 4965) */ 168 void il4965_mac_tx(struct ieee80211_hw *hw, 169 struct ieee80211_tx_control *control, 170 struct sk_buff *skb); 171 int il4965_mac_start(struct ieee80211_hw *hw); 172 void il4965_mac_stop(struct ieee80211_hw *hw); 173 void il4965_configure_filter(struct ieee80211_hw *hw, 174 unsigned int changed_flags, 175 unsigned int *total_flags, u64 multicast); 176 int il4965_mac_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd, 177 struct ieee80211_vif *vif, struct ieee80211_sta *sta, 178 struct ieee80211_key_conf *key); 179 void il4965_mac_update_tkip_key(struct ieee80211_hw *hw, 180 struct ieee80211_vif *vif, 181 struct ieee80211_key_conf *keyconf, 182 struct ieee80211_sta *sta, u32 iv32, 183 u16 *phase1key); 184 int il4965_mac_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 185 struct ieee80211_ampdu_params *params); 186 int il4965_mac_sta_add(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 187 struct ieee80211_sta *sta); 188 void 189 il4965_mac_channel_switch(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 190 struct ieee80211_channel_switch *ch_switch); 191 192 void il4965_led_enable(struct il_priv *il); 193 194 /* EEPROM */ 195 #define IL4965_EEPROM_IMG_SIZE 1024 196 197 /* 198 * uCode queue management definitions ... 199 * The first queue used for block-ack aggregation is #7 (4965 only). 200 * All block-ack aggregation queues should map to Tx DMA/FIFO channel 7. 201 */ 202 #define IL49_FIRST_AMPDU_QUEUE 7 203 204 /* Sizes and addresses for instruction and data memory (SRAM) in 205 * 4965's embedded processor. Driver access is via HBUS_TARG_MEM_* regs. */ 206 #define IL49_RTC_INST_LOWER_BOUND (0x000000) 207 #define IL49_RTC_INST_UPPER_BOUND (0x018000) 208 209 #define IL49_RTC_DATA_LOWER_BOUND (0x800000) 210 #define IL49_RTC_DATA_UPPER_BOUND (0x80A000) 211 212 #define IL49_RTC_INST_SIZE (IL49_RTC_INST_UPPER_BOUND - \ 213 IL49_RTC_INST_LOWER_BOUND) 214 #define IL49_RTC_DATA_SIZE (IL49_RTC_DATA_UPPER_BOUND - \ 215 IL49_RTC_DATA_LOWER_BOUND) 216 217 #define IL49_MAX_INST_SIZE IL49_RTC_INST_SIZE 218 #define IL49_MAX_DATA_SIZE IL49_RTC_DATA_SIZE 219 220 /* Size of uCode instruction memory in bootstrap state machine */ 221 #define IL49_MAX_BSM_SIZE BSM_SRAM_SIZE 222 223 static inline int 224 il4965_hw_valid_rtc_data_addr(u32 addr) 225 { 226 return (addr >= IL49_RTC_DATA_LOWER_BOUND && 227 addr < IL49_RTC_DATA_UPPER_BOUND); 228 } 229 230 /********************* START TEMPERATURE *************************************/ 231 232 /** 233 * 4965 temperature calculation. 234 * 235 * The driver must calculate the device temperature before calculating 236 * a txpower setting (amplifier gain is temperature dependent). The 237 * calculation uses 4 measurements, 3 of which (R1, R2, R3) are calibration 238 * values used for the life of the driver, and one of which (R4) is the 239 * real-time temperature indicator. 240 * 241 * uCode provides all 4 values to the driver via the "initialize alive" 242 * notification (see struct il4965_init_alive_resp). After the runtime uCode 243 * image loads, uCode updates the R4 value via stats notifications 244 * (see N_STATS), which occur after each received beacon 245 * when associated, or can be requested via C_STATS. 246 * 247 * NOTE: uCode provides the R4 value as a 23-bit signed value. Driver 248 * must sign-extend to 32 bits before applying formula below. 249 * 250 * Formula: 251 * 252 * degrees Kelvin = ((97 * 259 * (R4 - R2) / (R3 - R1)) / 100) + 8 253 * 254 * NOTE: The basic formula is 259 * (R4-R2) / (R3-R1). The 97/100 is 255 * an additional correction, which should be centered around 0 degrees 256 * Celsius (273 degrees Kelvin). The 8 (3 percent of 273) compensates for 257 * centering the 97/100 correction around 0 degrees K. 258 * 259 * Add 273 to Kelvin value to find degrees Celsius, for comparing current 260 * temperature with factory-measured temperatures when calculating txpower 261 * settings. 262 */ 263 #define TEMPERATURE_CALIB_KELVIN_OFFSET 8 264 #define TEMPERATURE_CALIB_A_VAL 259 265 266 /* Limit range of calculated temperature to be between these Kelvin values */ 267 #define IL_TX_POWER_TEMPERATURE_MIN (263) 268 #define IL_TX_POWER_TEMPERATURE_MAX (410) 269 270 #define IL_TX_POWER_TEMPERATURE_OUT_OF_RANGE(t) \ 271 ((t) < IL_TX_POWER_TEMPERATURE_MIN || \ 272 (t) > IL_TX_POWER_TEMPERATURE_MAX) 273 274 void il4965_temperature_calib(struct il_priv *il); 275 /********************* END TEMPERATURE ***************************************/ 276 277 /********************* START TXPOWER *****************************************/ 278 279 /** 280 * 4965 txpower calculations rely on information from three sources: 281 * 282 * 1) EEPROM 283 * 2) "initialize" alive notification 284 * 3) stats notifications 285 * 286 * EEPROM data consists of: 287 * 288 * 1) Regulatory information (max txpower and channel usage flags) is provided 289 * separately for each channel that can possibly supported by 4965. 290 * 40 MHz wide (.11n HT40) channels are listed separately from 20 MHz 291 * (legacy) channels. 292 * 293 * See struct il4965_eeprom_channel for format, and struct il4965_eeprom 294 * for locations in EEPROM. 295 * 296 * 2) Factory txpower calibration information is provided separately for 297 * sub-bands of contiguous channels. 2.4GHz has just one sub-band, 298 * but 5 GHz has several sub-bands. 299 * 300 * In addition, per-band (2.4 and 5 Ghz) saturation txpowers are provided. 301 * 302 * See struct il4965_eeprom_calib_info (and the tree of structures 303 * contained within it) for format, and struct il4965_eeprom for 304 * locations in EEPROM. 305 * 306 * "Initialization alive" notification (see struct il4965_init_alive_resp) 307 * consists of: 308 * 309 * 1) Temperature calculation parameters. 310 * 311 * 2) Power supply voltage measurement. 312 * 313 * 3) Tx gain compensation to balance 2 transmitters for MIMO use. 314 * 315 * Statistics notifications deliver: 316 * 317 * 1) Current values for temperature param R4. 318 */ 319 320 /** 321 * To calculate a txpower setting for a given desired target txpower, channel, 322 * modulation bit rate, and transmitter chain (4965 has 2 transmitters to 323 * support MIMO and transmit diversity), driver must do the following: 324 * 325 * 1) Compare desired txpower vs. (EEPROM) regulatory limit for this channel. 326 * Do not exceed regulatory limit; reduce target txpower if necessary. 327 * 328 * If setting up txpowers for MIMO rates (rate idxes 8-15, 24-31), 329 * 2 transmitters will be used simultaneously; driver must reduce the 330 * regulatory limit by 3 dB (half-power) for each transmitter, so the 331 * combined total output of the 2 transmitters is within regulatory limits. 332 * 333 * 334 * 2) Compare target txpower vs. (EEPROM) saturation txpower *reduced by 335 * backoff for this bit rate*. Do not exceed (saturation - backoff[rate]); 336 * reduce target txpower if necessary. 337 * 338 * Backoff values below are in 1/2 dB units (equivalent to steps in 339 * txpower gain tables): 340 * 341 * OFDM 6 - 36 MBit: 10 steps (5 dB) 342 * OFDM 48 MBit: 15 steps (7.5 dB) 343 * OFDM 54 MBit: 17 steps (8.5 dB) 344 * OFDM 60 MBit: 20 steps (10 dB) 345 * CCK all rates: 10 steps (5 dB) 346 * 347 * Backoff values apply to saturation txpower on a per-transmitter basis; 348 * when using MIMO (2 transmitters), each transmitter uses the same 349 * saturation level provided in EEPROM, and the same backoff values; 350 * no reduction (such as with regulatory txpower limits) is required. 351 * 352 * Saturation and Backoff values apply equally to 20 Mhz (legacy) channel 353 * widths and 40 Mhz (.11n HT40) channel widths; there is no separate 354 * factory measurement for ht40 channels. 355 * 356 * The result of this step is the final target txpower. The rest of 357 * the steps figure out the proper settings for the device to achieve 358 * that target txpower. 359 * 360 * 361 * 3) Determine (EEPROM) calibration sub band for the target channel, by 362 * comparing against first and last channels in each sub band 363 * (see struct il4965_eeprom_calib_subband_info). 364 * 365 * 366 * 4) Linearly interpolate (EEPROM) factory calibration measurement sets, 367 * referencing the 2 factory-measured (sample) channels within the sub band. 368 * 369 * Interpolation is based on difference between target channel's frequency 370 * and the sample channels' frequencies. Since channel numbers are based 371 * on frequency (5 MHz between each channel number), this is equivalent 372 * to interpolating based on channel number differences. 373 * 374 * Note that the sample channels may or may not be the channels at the 375 * edges of the sub band. The target channel may be "outside" of the 376 * span of the sampled channels. 377 * 378 * Driver may choose the pair (for 2 Tx chains) of measurements (see 379 * struct il4965_eeprom_calib_ch_info) for which the actual measured 380 * txpower comes closest to the desired txpower. Usually, though, 381 * the middle set of measurements is closest to the regulatory limits, 382 * and is therefore a good choice for all txpower calculations (this 383 * assumes that high accuracy is needed for maximizing legal txpower, 384 * while lower txpower configurations do not need as much accuracy). 385 * 386 * Driver should interpolate both members of the chosen measurement pair, 387 * i.e. for both Tx chains (radio transmitters), unless the driver knows 388 * that only one of the chains will be used (e.g. only one tx antenna 389 * connected, but this should be unusual). The rate scaling algorithm 390 * switches antennas to find best performance, so both Tx chains will 391 * be used (although only one at a time) even for non-MIMO transmissions. 392 * 393 * Driver should interpolate factory values for temperature, gain table 394 * idx, and actual power. The power amplifier detector values are 395 * not used by the driver. 396 * 397 * Sanity check: If the target channel happens to be one of the sample 398 * channels, the results should agree with the sample channel's 399 * measurements! 400 * 401 * 402 * 5) Find difference between desired txpower and (interpolated) 403 * factory-measured txpower. Using (interpolated) factory gain table idx 404 * (shown elsewhere) as a starting point, adjust this idx lower to 405 * increase txpower, or higher to decrease txpower, until the target 406 * txpower is reached. Each step in the gain table is 1/2 dB. 407 * 408 * For example, if factory measured txpower is 16 dBm, and target txpower 409 * is 13 dBm, add 6 steps to the factory gain idx to reduce txpower 410 * by 3 dB. 411 * 412 * 413 * 6) Find difference between current device temperature and (interpolated) 414 * factory-measured temperature for sub-band. Factory values are in 415 * degrees Celsius. To calculate current temperature, see comments for 416 * "4965 temperature calculation". 417 * 418 * If current temperature is higher than factory temperature, driver must 419 * increase gain (lower gain table idx), and vice verse. 420 * 421 * Temperature affects gain differently for different channels: 422 * 423 * 2.4 GHz all channels: 3.5 degrees per half-dB step 424 * 5 GHz channels 34-43: 4.5 degrees per half-dB step 425 * 5 GHz channels >= 44: 4.0 degrees per half-dB step 426 * 427 * NOTE: Temperature can increase rapidly when transmitting, especially 428 * with heavy traffic at high txpowers. Driver should update 429 * temperature calculations often under these conditions to 430 * maintain strong txpower in the face of rising temperature. 431 * 432 * 433 * 7) Find difference between current power supply voltage indicator 434 * (from "initialize alive") and factory-measured power supply voltage 435 * indicator (EEPROM). 436 * 437 * If the current voltage is higher (indicator is lower) than factory 438 * voltage, gain should be reduced (gain table idx increased) by: 439 * 440 * (eeprom - current) / 7 441 * 442 * If the current voltage is lower (indicator is higher) than factory 443 * voltage, gain should be increased (gain table idx decreased) by: 444 * 445 * 2 * (current - eeprom) / 7 446 * 447 * If number of idx steps in either direction turns out to be > 2, 448 * something is wrong ... just use 0. 449 * 450 * NOTE: Voltage compensation is independent of band/channel. 451 * 452 * NOTE: "Initialize" uCode measures current voltage, which is assumed 453 * to be constant after this initial measurement. Voltage 454 * compensation for txpower (number of steps in gain table) 455 * may be calculated once and used until the next uCode bootload. 456 * 457 * 458 * 8) If setting up txpowers for MIMO rates (rate idxes 8-15, 24-31), 459 * adjust txpower for each transmitter chain, so txpower is balanced 460 * between the two chains. There are 5 pairs of tx_atten[group][chain] 461 * values in "initialize alive", one pair for each of 5 channel ranges: 462 * 463 * Group 0: 5 GHz channel 34-43 464 * Group 1: 5 GHz channel 44-70 465 * Group 2: 5 GHz channel 71-124 466 * Group 3: 5 GHz channel 125-200 467 * Group 4: 2.4 GHz all channels 468 * 469 * Add the tx_atten[group][chain] value to the idx for the target chain. 470 * The values are signed, but are in pairs of 0 and a non-negative number, 471 * so as to reduce gain (if necessary) of the "hotter" channel. This 472 * avoids any need to double-check for regulatory compliance after 473 * this step. 474 * 475 * 476 * 9) If setting up for a CCK rate, lower the gain by adding a CCK compensation 477 * value to the idx: 478 * 479 * Hardware rev B: 9 steps (4.5 dB) 480 * Hardware rev C: 5 steps (2.5 dB) 481 * 482 * Hardware rev for 4965 can be determined by reading CSR_HW_REV_WA_REG, 483 * bits [3:2], 1 = B, 2 = C. 484 * 485 * NOTE: This compensation is in addition to any saturation backoff that 486 * might have been applied in an earlier step. 487 * 488 * 489 * 10) Select the gain table, based on band (2.4 vs 5 GHz). 490 * 491 * Limit the adjusted idx to stay within the table! 492 * 493 * 494 * 11) Read gain table entries for DSP and radio gain, place into appropriate 495 * location(s) in command (struct il4965_txpowertable_cmd). 496 */ 497 498 /** 499 * When MIMO is used (2 transmitters operating simultaneously), driver should 500 * limit each transmitter to deliver a max of 3 dB below the regulatory limit 501 * for the device. That is, use half power for each transmitter, so total 502 * txpower is within regulatory limits. 503 * 504 * The value "6" represents number of steps in gain table to reduce power 3 dB. 505 * Each step is 1/2 dB. 506 */ 507 #define IL_TX_POWER_MIMO_REGULATORY_COMPENSATION (6) 508 509 /** 510 * CCK gain compensation. 511 * 512 * When calculating txpowers for CCK, after making sure that the target power 513 * is within regulatory and saturation limits, driver must additionally 514 * back off gain by adding these values to the gain table idx. 515 * 516 * Hardware rev for 4965 can be determined by reading CSR_HW_REV_WA_REG, 517 * bits [3:2], 1 = B, 2 = C. 518 */ 519 #define IL_TX_POWER_CCK_COMPENSATION_B_STEP (9) 520 #define IL_TX_POWER_CCK_COMPENSATION_C_STEP (5) 521 522 /* 523 * 4965 power supply voltage compensation for txpower 524 */ 525 #define TX_POWER_IL_VOLTAGE_CODES_PER_03V (7) 526 527 /** 528 * Gain tables. 529 * 530 * The following tables contain pair of values for setting txpower, i.e. 531 * gain settings for the output of the device's digital signal processor (DSP), 532 * and for the analog gain structure of the transmitter. 533 * 534 * Each entry in the gain tables represents a step of 1/2 dB. Note that these 535 * are *relative* steps, not indications of absolute output power. Output 536 * power varies with temperature, voltage, and channel frequency, and also 537 * requires consideration of average power (to satisfy regulatory constraints), 538 * and peak power (to avoid distortion of the output signal). 539 * 540 * Each entry contains two values: 541 * 1) DSP gain (or sometimes called DSP attenuation). This is a fine-grained 542 * linear value that multiplies the output of the digital signal processor, 543 * before being sent to the analog radio. 544 * 2) Radio gain. This sets the analog gain of the radio Tx path. 545 * It is a coarser setting, and behaves in a logarithmic (dB) fashion. 546 * 547 * EEPROM contains factory calibration data for txpower. This maps actual 548 * measured txpower levels to gain settings in the "well known" tables 549 * below ("well-known" means here that both factory calibration *and* the 550 * driver work with the same table). 551 * 552 * There are separate tables for 2.4 GHz and 5 GHz bands. The 5 GHz table 553 * has an extension (into negative idxes), in case the driver needs to 554 * boost power setting for high device temperatures (higher than would be 555 * present during factory calibration). A 5 Ghz EEPROM idx of "40" 556 * corresponds to the 49th entry in the table used by the driver. 557 */ 558 #define MIN_TX_GAIN_IDX (0) /* highest gain, lowest idx, 2.4 */ 559 #define MIN_TX_GAIN_IDX_52GHZ_EXT (-9) /* highest gain, lowest idx, 5 */ 560 561 /** 562 * 2.4 GHz gain table 563 * 564 * Index Dsp gain Radio gain 565 * 0 110 0x3f (highest gain) 566 * 1 104 0x3f 567 * 2 98 0x3f 568 * 3 110 0x3e 569 * 4 104 0x3e 570 * 5 98 0x3e 571 * 6 110 0x3d 572 * 7 104 0x3d 573 * 8 98 0x3d 574 * 9 110 0x3c 575 * 10 104 0x3c 576 * 11 98 0x3c 577 * 12 110 0x3b 578 * 13 104 0x3b 579 * 14 98 0x3b 580 * 15 110 0x3a 581 * 16 104 0x3a 582 * 17 98 0x3a 583 * 18 110 0x39 584 * 19 104 0x39 585 * 20 98 0x39 586 * 21 110 0x38 587 * 22 104 0x38 588 * 23 98 0x38 589 * 24 110 0x37 590 * 25 104 0x37 591 * 26 98 0x37 592 * 27 110 0x36 593 * 28 104 0x36 594 * 29 98 0x36 595 * 30 110 0x35 596 * 31 104 0x35 597 * 32 98 0x35 598 * 33 110 0x34 599 * 34 104 0x34 600 * 35 98 0x34 601 * 36 110 0x33 602 * 37 104 0x33 603 * 38 98 0x33 604 * 39 110 0x32 605 * 40 104 0x32 606 * 41 98 0x32 607 * 42 110 0x31 608 * 43 104 0x31 609 * 44 98 0x31 610 * 45 110 0x30 611 * 46 104 0x30 612 * 47 98 0x30 613 * 48 110 0x6 614 * 49 104 0x6 615 * 50 98 0x6 616 * 51 110 0x5 617 * 52 104 0x5 618 * 53 98 0x5 619 * 54 110 0x4 620 * 55 104 0x4 621 * 56 98 0x4 622 * 57 110 0x3 623 * 58 104 0x3 624 * 59 98 0x3 625 * 60 110 0x2 626 * 61 104 0x2 627 * 62 98 0x2 628 * 63 110 0x1 629 * 64 104 0x1 630 * 65 98 0x1 631 * 66 110 0x0 632 * 67 104 0x0 633 * 68 98 0x0 634 * 69 97 0 635 * 70 96 0 636 * 71 95 0 637 * 72 94 0 638 * 73 93 0 639 * 74 92 0 640 * 75 91 0 641 * 76 90 0 642 * 77 89 0 643 * 78 88 0 644 * 79 87 0 645 * 80 86 0 646 * 81 85 0 647 * 82 84 0 648 * 83 83 0 649 * 84 82 0 650 * 85 81 0 651 * 86 80 0 652 * 87 79 0 653 * 88 78 0 654 * 89 77 0 655 * 90 76 0 656 * 91 75 0 657 * 92 74 0 658 * 93 73 0 659 * 94 72 0 660 * 95 71 0 661 * 96 70 0 662 * 97 69 0 663 * 98 68 0 664 */ 665 666 /** 667 * 5 GHz gain table 668 * 669 * Index Dsp gain Radio gain 670 * -9 123 0x3F (highest gain) 671 * -8 117 0x3F 672 * -7 110 0x3F 673 * -6 104 0x3F 674 * -5 98 0x3F 675 * -4 110 0x3E 676 * -3 104 0x3E 677 * -2 98 0x3E 678 * -1 110 0x3D 679 * 0 104 0x3D 680 * 1 98 0x3D 681 * 2 110 0x3C 682 * 3 104 0x3C 683 * 4 98 0x3C 684 * 5 110 0x3B 685 * 6 104 0x3B 686 * 7 98 0x3B 687 * 8 110 0x3A 688 * 9 104 0x3A 689 * 10 98 0x3A 690 * 11 110 0x39 691 * 12 104 0x39 692 * 13 98 0x39 693 * 14 110 0x38 694 * 15 104 0x38 695 * 16 98 0x38 696 * 17 110 0x37 697 * 18 104 0x37 698 * 19 98 0x37 699 * 20 110 0x36 700 * 21 104 0x36 701 * 22 98 0x36 702 * 23 110 0x35 703 * 24 104 0x35 704 * 25 98 0x35 705 * 26 110 0x34 706 * 27 104 0x34 707 * 28 98 0x34 708 * 29 110 0x33 709 * 30 104 0x33 710 * 31 98 0x33 711 * 32 110 0x32 712 * 33 104 0x32 713 * 34 98 0x32 714 * 35 110 0x31 715 * 36 104 0x31 716 * 37 98 0x31 717 * 38 110 0x30 718 * 39 104 0x30 719 * 40 98 0x30 720 * 41 110 0x25 721 * 42 104 0x25 722 * 43 98 0x25 723 * 44 110 0x24 724 * 45 104 0x24 725 * 46 98 0x24 726 * 47 110 0x23 727 * 48 104 0x23 728 * 49 98 0x23 729 * 50 110 0x22 730 * 51 104 0x18 731 * 52 98 0x18 732 * 53 110 0x17 733 * 54 104 0x17 734 * 55 98 0x17 735 * 56 110 0x16 736 * 57 104 0x16 737 * 58 98 0x16 738 * 59 110 0x15 739 * 60 104 0x15 740 * 61 98 0x15 741 * 62 110 0x14 742 * 63 104 0x14 743 * 64 98 0x14 744 * 65 110 0x13 745 * 66 104 0x13 746 * 67 98 0x13 747 * 68 110 0x12 748 * 69 104 0x08 749 * 70 98 0x08 750 * 71 110 0x07 751 * 72 104 0x07 752 * 73 98 0x07 753 * 74 110 0x06 754 * 75 104 0x06 755 * 76 98 0x06 756 * 77 110 0x05 757 * 78 104 0x05 758 * 79 98 0x05 759 * 80 110 0x04 760 * 81 104 0x04 761 * 82 98 0x04 762 * 83 110 0x03 763 * 84 104 0x03 764 * 85 98 0x03 765 * 86 110 0x02 766 * 87 104 0x02 767 * 88 98 0x02 768 * 89 110 0x01 769 * 90 104 0x01 770 * 91 98 0x01 771 * 92 110 0x00 772 * 93 104 0x00 773 * 94 98 0x00 774 * 95 93 0x00 775 * 96 88 0x00 776 * 97 83 0x00 777 * 98 78 0x00 778 */ 779 780 /** 781 * Sanity checks and default values for EEPROM regulatory levels. 782 * If EEPROM values fall outside MIN/MAX range, use default values. 783 * 784 * Regulatory limits refer to the maximum average txpower allowed by 785 * regulatory agencies in the geographies in which the device is meant 786 * to be operated. These limits are SKU-specific (i.e. geography-specific), 787 * and channel-specific; each channel has an individual regulatory limit 788 * listed in the EEPROM. 789 * 790 * Units are in half-dBm (i.e. "34" means 17 dBm). 791 */ 792 #define IL_TX_POWER_DEFAULT_REGULATORY_24 (34) 793 #define IL_TX_POWER_DEFAULT_REGULATORY_52 (34) 794 #define IL_TX_POWER_REGULATORY_MIN (0) 795 #define IL_TX_POWER_REGULATORY_MAX (34) 796 797 /** 798 * Sanity checks and default values for EEPROM saturation levels. 799 * If EEPROM values fall outside MIN/MAX range, use default values. 800 * 801 * Saturation is the highest level that the output power amplifier can produce 802 * without significant clipping distortion. This is a "peak" power level. 803 * Different types of modulation (i.e. various "rates", and OFDM vs. CCK) 804 * require differing amounts of backoff, relative to their average power output, 805 * in order to avoid clipping distortion. 806 * 807 * Driver must make sure that it is violating neither the saturation limit, 808 * nor the regulatory limit, when calculating Tx power settings for various 809 * rates. 810 * 811 * Units are in half-dBm (i.e. "38" means 19 dBm). 812 */ 813 #define IL_TX_POWER_DEFAULT_SATURATION_24 (38) 814 #define IL_TX_POWER_DEFAULT_SATURATION_52 (38) 815 #define IL_TX_POWER_SATURATION_MIN (20) 816 #define IL_TX_POWER_SATURATION_MAX (50) 817 818 /** 819 * Channel groups used for Tx Attenuation calibration (MIMO tx channel balance) 820 * and thermal Txpower calibration. 821 * 822 * When calculating txpower, driver must compensate for current device 823 * temperature; higher temperature requires higher gain. Driver must calculate 824 * current temperature (see "4965 temperature calculation"), then compare vs. 825 * factory calibration temperature in EEPROM; if current temperature is higher 826 * than factory temperature, driver must *increase* gain by proportions shown 827 * in table below. If current temperature is lower than factory, driver must 828 * *decrease* gain. 829 * 830 * Different frequency ranges require different compensation, as shown below. 831 */ 832 /* Group 0, 5.2 GHz ch 34-43: 4.5 degrees per 1/2 dB. */ 833 #define CALIB_IL_TX_ATTEN_GR1_FCH 34 834 #define CALIB_IL_TX_ATTEN_GR1_LCH 43 835 836 /* Group 1, 5.3 GHz ch 44-70: 4.0 degrees per 1/2 dB. */ 837 #define CALIB_IL_TX_ATTEN_GR2_FCH 44 838 #define CALIB_IL_TX_ATTEN_GR2_LCH 70 839 840 /* Group 2, 5.5 GHz ch 71-124: 4.0 degrees per 1/2 dB. */ 841 #define CALIB_IL_TX_ATTEN_GR3_FCH 71 842 #define CALIB_IL_TX_ATTEN_GR3_LCH 124 843 844 /* Group 3, 5.7 GHz ch 125-200: 4.0 degrees per 1/2 dB. */ 845 #define CALIB_IL_TX_ATTEN_GR4_FCH 125 846 #define CALIB_IL_TX_ATTEN_GR4_LCH 200 847 848 /* Group 4, 2.4 GHz all channels: 3.5 degrees per 1/2 dB. */ 849 #define CALIB_IL_TX_ATTEN_GR5_FCH 1 850 #define CALIB_IL_TX_ATTEN_GR5_LCH 20 851 852 enum { 853 CALIB_CH_GROUP_1 = 0, 854 CALIB_CH_GROUP_2 = 1, 855 CALIB_CH_GROUP_3 = 2, 856 CALIB_CH_GROUP_4 = 3, 857 CALIB_CH_GROUP_5 = 4, 858 CALIB_CH_GROUP_MAX 859 }; 860 861 /********************* END TXPOWER *****************************************/ 862 863 /** 864 * Tx/Rx Queues 865 * 866 * Most communication between driver and 4965 is via queues of data buffers. 867 * For example, all commands that the driver issues to device's embedded 868 * controller (uCode) are via the command queue (one of the Tx queues). All 869 * uCode command responses/replies/notifications, including Rx frames, are 870 * conveyed from uCode to driver via the Rx queue. 871 * 872 * Most support for these queues, including handshake support, resides in 873 * structures in host DRAM, shared between the driver and the device. When 874 * allocating this memory, the driver must make sure that data written by 875 * the host CPU updates DRAM immediately (and does not get "stuck" in CPU's 876 * cache memory), so DRAM and cache are consistent, and the device can 877 * immediately see changes made by the driver. 878 * 879 * 4965 supports up to 16 DRAM-based Tx queues, and services these queues via 880 * up to 7 DMA channels (FIFOs). Each Tx queue is supported by a circular array 881 * in DRAM containing 256 Transmit Frame Descriptors (TFDs). 882 */ 883 #define IL49_NUM_FIFOS 7 884 #define IL49_CMD_FIFO_NUM 4 885 #define IL49_NUM_QUEUES 16 886 #define IL49_NUM_AMPDU_QUEUES 8 887 888 /** 889 * struct il4965_schedq_bc_tbl 890 * 891 * Byte Count table 892 * 893 * Each Tx queue uses a byte-count table containing 320 entries: 894 * one 16-bit entry for each of 256 TFDs, plus an additional 64 entries that 895 * duplicate the first 64 entries (to avoid wrap-around within a Tx win; 896 * max Tx win is 64 TFDs). 897 * 898 * When driver sets up a new TFD, it must also enter the total byte count 899 * of the frame to be transmitted into the corresponding entry in the byte 900 * count table for the chosen Tx queue. If the TFD idx is 0-63, the driver 901 * must duplicate the byte count entry in corresponding idx 256-319. 902 * 903 * padding puts each byte count table on a 1024-byte boundary; 904 * 4965 assumes tables are separated by 1024 bytes. 905 */ 906 struct il4965_scd_bc_tbl { 907 __le16 tfd_offset[TFD_QUEUE_BC_SIZE]; 908 u8 pad[1024 - (TFD_QUEUE_BC_SIZE) * sizeof(__le16)]; 909 } __packed; 910 911 #define IL4965_RTC_INST_LOWER_BOUND (0x000000) 912 913 /* RSSI to dBm */ 914 #define IL4965_RSSI_OFFSET 44 915 916 /* PCI registers */ 917 #define PCI_CFG_RETRY_TIMEOUT 0x041 918 919 #define IL4965_DEFAULT_TX_RETRY 15 920 921 /* EEPROM */ 922 #define IL4965_FIRST_AMPDU_QUEUE 10 923 924 /* Calibration */ 925 void il4965_chain_noise_calibration(struct il_priv *il, void *stat_resp); 926 void il4965_sensitivity_calibration(struct il_priv *il, void *resp); 927 void il4965_init_sensitivity(struct il_priv *il); 928 void il4965_reset_run_time_calib(struct il_priv *il); 929 930 /* Debug */ 931 #ifdef CONFIG_IWLEGACY_DEBUGFS 932 extern const struct il_debugfs_ops il4965_debugfs_ops; 933 #endif 934 935 /****************************/ 936 /* Flow Handler Definitions */ 937 /****************************/ 938 939 /** 940 * This I/O area is directly read/writable by driver (e.g. Linux uses writel()) 941 * Addresses are offsets from device's PCI hardware base address. 942 */ 943 #define FH49_MEM_LOWER_BOUND (0x1000) 944 #define FH49_MEM_UPPER_BOUND (0x2000) 945 946 /** 947 * Keep-Warm (KW) buffer base address. 948 * 949 * Driver must allocate a 4KByte buffer that is used by 4965 for keeping the 950 * host DRAM powered on (via dummy accesses to DRAM) to maintain low-latency 951 * DRAM access when 4965 is Txing or Rxing. The dummy accesses prevent host 952 * from going into a power-savings mode that would cause higher DRAM latency, 953 * and possible data over/under-runs, before all Tx/Rx is complete. 954 * 955 * Driver loads FH49_KW_MEM_ADDR_REG with the physical address (bits 35:4) 956 * of the buffer, which must be 4K aligned. Once this is set up, the 4965 957 * automatically invokes keep-warm accesses when normal accesses might not 958 * be sufficient to maintain fast DRAM response. 959 * 960 * Bit fields: 961 * 31-0: Keep-warm buffer physical base address [35:4], must be 4K aligned 962 */ 963 #define FH49_KW_MEM_ADDR_REG (FH49_MEM_LOWER_BOUND + 0x97C) 964 965 /** 966 * TFD Circular Buffers Base (CBBC) addresses 967 * 968 * 4965 has 16 base pointer registers, one for each of 16 host-DRAM-resident 969 * circular buffers (CBs/queues) containing Transmit Frame Descriptors (TFDs) 970 * (see struct il_tfd_frame). These 16 pointer registers are offset by 0x04 971 * bytes from one another. Each TFD circular buffer in DRAM must be 256-byte 972 * aligned (address bits 0-7 must be 0). 973 * 974 * Bit fields in each pointer register: 975 * 27-0: TFD CB physical base address [35:8], must be 256-byte aligned 976 */ 977 #define FH49_MEM_CBBC_LOWER_BOUND (FH49_MEM_LOWER_BOUND + 0x9D0) 978 #define FH49_MEM_CBBC_UPPER_BOUND (FH49_MEM_LOWER_BOUND + 0xA10) 979 980 /* Find TFD CB base pointer for given queue (range 0-15). */ 981 #define FH49_MEM_CBBC_QUEUE(x) (FH49_MEM_CBBC_LOWER_BOUND + (x) * 0x4) 982 983 /** 984 * Rx SRAM Control and Status Registers (RSCSR) 985 * 986 * These registers provide handshake between driver and 4965 for the Rx queue 987 * (this queue handles *all* command responses, notifications, Rx data, etc. 988 * sent from 4965 uCode to host driver). Unlike Tx, there is only one Rx 989 * queue, and only one Rx DMA/FIFO channel. Also unlike Tx, which can 990 * concatenate up to 20 DRAM buffers to form a Tx frame, each Receive Buffer 991 * Descriptor (RBD) points to only one Rx Buffer (RB); there is a 1:1 992 * mapping between RBDs and RBs. 993 * 994 * Driver must allocate host DRAM memory for the following, and set the 995 * physical address of each into 4965 registers: 996 * 997 * 1) Receive Buffer Descriptor (RBD) circular buffer (CB), typically with 256 998 * entries (although any power of 2, up to 4096, is selectable by driver). 999 * Each entry (1 dword) points to a receive buffer (RB) of consistent size 1000 * (typically 4K, although 8K or 16K are also selectable by driver). 1001 * Driver sets up RB size and number of RBDs in the CB via Rx config 1002 * register FH49_MEM_RCSR_CHNL0_CONFIG_REG. 1003 * 1004 * Bit fields within one RBD: 1005 * 27-0: Receive Buffer physical address bits [35:8], 256-byte aligned 1006 * 1007 * Driver sets physical address [35:8] of base of RBD circular buffer 1008 * into FH49_RSCSR_CHNL0_RBDCB_BASE_REG [27:0]. 1009 * 1010 * 2) Rx status buffer, 8 bytes, in which 4965 indicates which Rx Buffers 1011 * (RBs) have been filled, via a "write pointer", actually the idx of 1012 * the RB's corresponding RBD within the circular buffer. Driver sets 1013 * physical address [35:4] into FH49_RSCSR_CHNL0_STTS_WPTR_REG [31:0]. 1014 * 1015 * Bit fields in lower dword of Rx status buffer (upper dword not used 1016 * by driver; see struct il4965_shared, val0): 1017 * 31-12: Not used by driver 1018 * 11- 0: Index of last filled Rx buffer descriptor 1019 * (4965 writes, driver reads this value) 1020 * 1021 * As the driver prepares Receive Buffers (RBs) for 4965 to fill, driver must 1022 * enter pointers to these RBs into contiguous RBD circular buffer entries, 1023 * and update the 4965's "write" idx register, 1024 * FH49_RSCSR_CHNL0_RBDCB_WPTR_REG. 1025 * 1026 * This "write" idx corresponds to the *next* RBD that the driver will make 1027 * available, i.e. one RBD past the tail of the ready-to-fill RBDs within 1028 * the circular buffer. This value should initially be 0 (before preparing any 1029 * RBs), should be 8 after preparing the first 8 RBs (for example), and must 1030 * wrap back to 0 at the end of the circular buffer (but don't wrap before 1031 * "read" idx has advanced past 1! See below). 1032 * NOTE: 4965 EXPECTS THE WRITE IDX TO BE INCREMENTED IN MULTIPLES OF 8. 1033 * 1034 * As the 4965 fills RBs (referenced from contiguous RBDs within the circular 1035 * buffer), it updates the Rx status buffer in host DRAM, 2) described above, 1036 * to tell the driver the idx of the latest filled RBD. The driver must 1037 * read this "read" idx from DRAM after receiving an Rx interrupt from 4965. 1038 * 1039 * The driver must also internally keep track of a third idx, which is the 1040 * next RBD to process. When receiving an Rx interrupt, driver should process 1041 * all filled but unprocessed RBs up to, but not including, the RB 1042 * corresponding to the "read" idx. For example, if "read" idx becomes "1", 1043 * driver may process the RB pointed to by RBD 0. Depending on volume of 1044 * traffic, there may be many RBs to process. 1045 * 1046 * If read idx == write idx, 4965 thinks there is no room to put new data. 1047 * Due to this, the maximum number of filled RBs is 255, instead of 256. To 1048 * be safe, make sure that there is a gap of at least 2 RBDs between "write" 1049 * and "read" idxes; that is, make sure that there are no more than 254 1050 * buffers waiting to be filled. 1051 */ 1052 #define FH49_MEM_RSCSR_LOWER_BOUND (FH49_MEM_LOWER_BOUND + 0xBC0) 1053 #define FH49_MEM_RSCSR_UPPER_BOUND (FH49_MEM_LOWER_BOUND + 0xC00) 1054 #define FH49_MEM_RSCSR_CHNL0 (FH49_MEM_RSCSR_LOWER_BOUND) 1055 1056 /** 1057 * Physical base address of 8-byte Rx Status buffer. 1058 * Bit fields: 1059 * 31-0: Rx status buffer physical base address [35:4], must 16-byte aligned. 1060 */ 1061 #define FH49_RSCSR_CHNL0_STTS_WPTR_REG (FH49_MEM_RSCSR_CHNL0) 1062 1063 /** 1064 * Physical base address of Rx Buffer Descriptor Circular Buffer. 1065 * Bit fields: 1066 * 27-0: RBD CD physical base address [35:8], must be 256-byte aligned. 1067 */ 1068 #define FH49_RSCSR_CHNL0_RBDCB_BASE_REG (FH49_MEM_RSCSR_CHNL0 + 0x004) 1069 1070 /** 1071 * Rx write pointer (idx, really!). 1072 * Bit fields: 1073 * 11-0: Index of driver's most recent prepared-to-be-filled RBD, + 1. 1074 * NOTE: For 256-entry circular buffer, use only bits [7:0]. 1075 */ 1076 #define FH49_RSCSR_CHNL0_RBDCB_WPTR_REG (FH49_MEM_RSCSR_CHNL0 + 0x008) 1077 #define FH49_RSCSR_CHNL0_WPTR (FH49_RSCSR_CHNL0_RBDCB_WPTR_REG) 1078 1079 /** 1080 * Rx Config/Status Registers (RCSR) 1081 * Rx Config Reg for channel 0 (only channel used) 1082 * 1083 * Driver must initialize FH49_MEM_RCSR_CHNL0_CONFIG_REG as follows for 1084 * normal operation (see bit fields). 1085 * 1086 * Clearing FH49_MEM_RCSR_CHNL0_CONFIG_REG to 0 turns off Rx DMA. 1087 * Driver should poll FH49_MEM_RSSR_RX_STATUS_REG for 1088 * FH49_RSSR_CHNL0_RX_STATUS_CHNL_IDLE (bit 24) before continuing. 1089 * 1090 * Bit fields: 1091 * 31-30: Rx DMA channel enable: '00' off/pause, '01' pause at end of frame, 1092 * '10' operate normally 1093 * 29-24: reserved 1094 * 23-20: # RBDs in circular buffer = 2^value; use "8" for 256 RBDs (normal), 1095 * min "5" for 32 RBDs, max "12" for 4096 RBDs. 1096 * 19-18: reserved 1097 * 17-16: size of each receive buffer; '00' 4K (normal), '01' 8K, 1098 * '10' 12K, '11' 16K. 1099 * 15-14: reserved 1100 * 13-12: IRQ destination; '00' none, '01' host driver (normal operation) 1101 * 11- 4: timeout for closing Rx buffer and interrupting host (units 32 usec) 1102 * typical value 0x10 (about 1/2 msec) 1103 * 3- 0: reserved 1104 */ 1105 #define FH49_MEM_RCSR_LOWER_BOUND (FH49_MEM_LOWER_BOUND + 0xC00) 1106 #define FH49_MEM_RCSR_UPPER_BOUND (FH49_MEM_LOWER_BOUND + 0xCC0) 1107 #define FH49_MEM_RCSR_CHNL0 (FH49_MEM_RCSR_LOWER_BOUND) 1108 1109 #define FH49_MEM_RCSR_CHNL0_CONFIG_REG (FH49_MEM_RCSR_CHNL0) 1110 1111 #define FH49_RCSR_CHNL0_RX_CONFIG_RB_TIMEOUT_MSK (0x00000FF0) /* bits 4-11 */ 1112 #define FH49_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_MSK (0x00001000) /* bits 12 */ 1113 #define FH49_RCSR_CHNL0_RX_CONFIG_SINGLE_FRAME_MSK (0x00008000) /* bit 15 */ 1114 #define FH49_RCSR_CHNL0_RX_CONFIG_RB_SIZE_MSK (0x00030000) /* bits 16-17 */ 1115 #define FH49_RCSR_CHNL0_RX_CONFIG_RBDBC_SIZE_MSK (0x00F00000) /* bits 20-23 */ 1116 #define FH49_RCSR_CHNL0_RX_CONFIG_DMA_CHNL_EN_MSK (0xC0000000) /* bits 30-31 */ 1117 1118 #define FH49_RCSR_RX_CONFIG_RBDCB_SIZE_POS (20) 1119 #define FH49_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS (4) 1120 #define RX_RB_TIMEOUT (0x10) 1121 1122 #define FH49_RCSR_RX_CONFIG_CHNL_EN_PAUSE_VAL (0x00000000) 1123 #define FH49_RCSR_RX_CONFIG_CHNL_EN_PAUSE_EOF_VAL (0x40000000) 1124 #define FH49_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL (0x80000000) 1125 1126 #define FH49_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K (0x00000000) 1127 #define FH49_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K (0x00010000) 1128 #define FH49_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K (0x00020000) 1129 #define FH49_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_16K (0x00030000) 1130 1131 #define FH49_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY (0x00000004) 1132 #define FH49_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_NO_INT_VAL (0x00000000) 1133 #define FH49_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL (0x00001000) 1134 1135 /** 1136 * Rx Shared Status Registers (RSSR) 1137 * 1138 * After stopping Rx DMA channel (writing 0 to 1139 * FH49_MEM_RCSR_CHNL0_CONFIG_REG), driver must poll 1140 * FH49_MEM_RSSR_RX_STATUS_REG until Rx channel is idle. 1141 * 1142 * Bit fields: 1143 * 24: 1 = Channel 0 is idle 1144 * 1145 * FH49_MEM_RSSR_SHARED_CTRL_REG and FH49_MEM_RSSR_RX_ENABLE_ERR_IRQ2DRV 1146 * contain default values that should not be altered by the driver. 1147 */ 1148 #define FH49_MEM_RSSR_LOWER_BOUND (FH49_MEM_LOWER_BOUND + 0xC40) 1149 #define FH49_MEM_RSSR_UPPER_BOUND (FH49_MEM_LOWER_BOUND + 0xD00) 1150 1151 #define FH49_MEM_RSSR_SHARED_CTRL_REG (FH49_MEM_RSSR_LOWER_BOUND) 1152 #define FH49_MEM_RSSR_RX_STATUS_REG (FH49_MEM_RSSR_LOWER_BOUND + 0x004) 1153 #define FH49_MEM_RSSR_RX_ENABLE_ERR_IRQ2DRV\ 1154 (FH49_MEM_RSSR_LOWER_BOUND + 0x008) 1155 1156 #define FH49_RSSR_CHNL0_RX_STATUS_CHNL_IDLE (0x01000000) 1157 1158 #define FH49_MEM_TFDIB_REG1_ADDR_BITSHIFT 28 1159 1160 /* TFDB Area - TFDs buffer table */ 1161 #define FH49_MEM_TFDIB_DRAM_ADDR_LSB_MSK (0xFFFFFFFF) 1162 #define FH49_TFDIB_LOWER_BOUND (FH49_MEM_LOWER_BOUND + 0x900) 1163 #define FH49_TFDIB_UPPER_BOUND (FH49_MEM_LOWER_BOUND + 0x958) 1164 #define FH49_TFDIB_CTRL0_REG(_chnl) (FH49_TFDIB_LOWER_BOUND + 0x8 * (_chnl)) 1165 #define FH49_TFDIB_CTRL1_REG(_chnl) (FH49_TFDIB_LOWER_BOUND + 0x8 * (_chnl) + 0x4) 1166 1167 /** 1168 * Transmit DMA Channel Control/Status Registers (TCSR) 1169 * 1170 * 4965 has one configuration register for each of 8 Tx DMA/FIFO channels 1171 * supported in hardware (don't confuse these with the 16 Tx queues in DRAM, 1172 * which feed the DMA/FIFO channels); config regs are separated by 0x20 bytes. 1173 * 1174 * To use a Tx DMA channel, driver must initialize its 1175 * FH49_TCSR_CHNL_TX_CONFIG_REG(chnl) with: 1176 * 1177 * FH49_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE | 1178 * FH49_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE_VAL 1179 * 1180 * All other bits should be 0. 1181 * 1182 * Bit fields: 1183 * 31-30: Tx DMA channel enable: '00' off/pause, '01' pause at end of frame, 1184 * '10' operate normally 1185 * 29- 4: Reserved, set to "0" 1186 * 3: Enable internal DMA requests (1, normal operation), disable (0) 1187 * 2- 0: Reserved, set to "0" 1188 */ 1189 #define FH49_TCSR_LOWER_BOUND (FH49_MEM_LOWER_BOUND + 0xD00) 1190 #define FH49_TCSR_UPPER_BOUND (FH49_MEM_LOWER_BOUND + 0xE60) 1191 1192 /* Find Control/Status reg for given Tx DMA/FIFO channel */ 1193 #define FH49_TCSR_CHNL_NUM (7) 1194 #define FH50_TCSR_CHNL_NUM (8) 1195 1196 /* TCSR: tx_config register values */ 1197 #define FH49_TCSR_CHNL_TX_CONFIG_REG(_chnl) \ 1198 (FH49_TCSR_LOWER_BOUND + 0x20 * (_chnl)) 1199 #define FH49_TCSR_CHNL_TX_CREDIT_REG(_chnl) \ 1200 (FH49_TCSR_LOWER_BOUND + 0x20 * (_chnl) + 0x4) 1201 #define FH49_TCSR_CHNL_TX_BUF_STS_REG(_chnl) \ 1202 (FH49_TCSR_LOWER_BOUND + 0x20 * (_chnl) + 0x8) 1203 1204 #define FH49_TCSR_TX_CONFIG_REG_VAL_MSG_MODE_TXF (0x00000000) 1205 #define FH49_TCSR_TX_CONFIG_REG_VAL_MSG_MODE_DRV (0x00000001) 1206 1207 #define FH49_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_DISABLE (0x00000000) 1208 #define FH49_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE (0x00000008) 1209 1210 #define FH49_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_NOINT (0x00000000) 1211 #define FH49_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_ENDTFD (0x00100000) 1212 #define FH49_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_IFTFD (0x00200000) 1213 1214 #define FH49_TCSR_TX_CONFIG_REG_VAL_CIRQ_RTC_NOINT (0x00000000) 1215 #define FH49_TCSR_TX_CONFIG_REG_VAL_CIRQ_RTC_ENDTFD (0x00400000) 1216 #define FH49_TCSR_TX_CONFIG_REG_VAL_CIRQ_RTC_IFTFD (0x00800000) 1217 1218 #define FH49_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE (0x00000000) 1219 #define FH49_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE_EOF (0x40000000) 1220 #define FH49_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE (0x80000000) 1221 1222 #define FH49_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_EMPTY (0x00000000) 1223 #define FH49_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_WAIT (0x00002000) 1224 #define FH49_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_VALID (0x00000003) 1225 1226 #define FH49_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_NUM (20) 1227 #define FH49_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_IDX (12) 1228 1229 /** 1230 * Tx Shared Status Registers (TSSR) 1231 * 1232 * After stopping Tx DMA channel (writing 0 to 1233 * FH49_TCSR_CHNL_TX_CONFIG_REG(chnl)), driver must poll 1234 * FH49_TSSR_TX_STATUS_REG until selected Tx channel is idle 1235 * (channel's buffers empty | no pending requests). 1236 * 1237 * Bit fields: 1238 * 31-24: 1 = Channel buffers empty (channel 7:0) 1239 * 23-16: 1 = No pending requests (channel 7:0) 1240 */ 1241 #define FH49_TSSR_LOWER_BOUND (FH49_MEM_LOWER_BOUND + 0xEA0) 1242 #define FH49_TSSR_UPPER_BOUND (FH49_MEM_LOWER_BOUND + 0xEC0) 1243 1244 #define FH49_TSSR_TX_STATUS_REG (FH49_TSSR_LOWER_BOUND + 0x010) 1245 1246 /** 1247 * Bit fields for TSSR(Tx Shared Status & Control) error status register: 1248 * 31: Indicates an address error when accessed to internal memory 1249 * uCode/driver must write "1" in order to clear this flag 1250 * 30: Indicates that Host did not send the expected number of dwords to FH 1251 * uCode/driver must write "1" in order to clear this flag 1252 * 16-9:Each status bit is for one channel. Indicates that an (Error) ActDMA 1253 * command was received from the scheduler while the TRB was already full 1254 * with previous command 1255 * uCode/driver must write "1" in order to clear this flag 1256 * 7-0: Each status bit indicates a channel's TxCredit error. When an error 1257 * bit is set, it indicates that the FH has received a full indication 1258 * from the RTC TxFIFO and the current value of the TxCredit counter was 1259 * not equal to zero. This mean that the credit mechanism was not 1260 * synchronized to the TxFIFO status 1261 * uCode/driver must write "1" in order to clear this flag 1262 */ 1263 #define FH49_TSSR_TX_ERROR_REG (FH49_TSSR_LOWER_BOUND + 0x018) 1264 1265 #define FH49_TSSR_TX_STATUS_REG_MSK_CHNL_IDLE(_chnl) ((1 << (_chnl)) << 16) 1266 1267 /* Tx service channels */ 1268 #define FH49_SRVC_CHNL (9) 1269 #define FH49_SRVC_LOWER_BOUND (FH49_MEM_LOWER_BOUND + 0x9C8) 1270 #define FH49_SRVC_UPPER_BOUND (FH49_MEM_LOWER_BOUND + 0x9D0) 1271 #define FH49_SRVC_CHNL_SRAM_ADDR_REG(_chnl) \ 1272 (FH49_SRVC_LOWER_BOUND + ((_chnl) - 9) * 0x4) 1273 1274 #define FH49_TX_CHICKEN_BITS_REG (FH49_MEM_LOWER_BOUND + 0xE98) 1275 /* Instruct FH to increment the retry count of a packet when 1276 * it is brought from the memory to TX-FIFO 1277 */ 1278 #define FH49_TX_CHICKEN_BITS_SCD_AUTO_RETRY_EN (0x00000002) 1279 1280 /* Keep Warm Size */ 1281 #define IL_KW_SIZE 0x1000 /* 4k */ 1282 1283 #endif /* __il_4965_h__ */ 1284