xref: /openbmc/linux/drivers/net/wireless/intel/iwlegacy/4965.c (revision 87fcfa7b7fe6bf819033fe827a27f710e38639b5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /******************************************************************************
3  *
4  * Copyright(c) 2003 - 2011 Intel Corporation. All rights reserved.
5  *
6  * Contact Information:
7  *  Intel Linux Wireless <ilw@linux.intel.com>
8  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
9  *
10  *****************************************************************************/
11 
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/pci.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/delay.h>
17 #include <linux/sched.h>
18 #include <linux/skbuff.h>
19 #include <linux/netdevice.h>
20 #include <linux/units.h>
21 #include <net/mac80211.h>
22 #include <linux/etherdevice.h>
23 #include <asm/unaligned.h>
24 
25 #include "common.h"
26 #include "4965.h"
27 
28 /**
29  * il_verify_inst_sparse - verify runtime uCode image in card vs. host,
30  *   using sample data 100 bytes apart.  If these sample points are good,
31  *   it's a pretty good bet that everything between them is good, too.
32  */
33 static int
34 il4965_verify_inst_sparse(struct il_priv *il, __le32 * image, u32 len)
35 {
36 	u32 val;
37 	int ret = 0;
38 	u32 errcnt = 0;
39 	u32 i;
40 
41 	D_INFO("ucode inst image size is %u\n", len);
42 
43 	for (i = 0; i < len; i += 100, image += 100 / sizeof(u32)) {
44 		/* read data comes through single port, auto-incr addr */
45 		/* NOTE: Use the debugless read so we don't flood kernel log
46 		 * if IL_DL_IO is set */
47 		il_wr(il, HBUS_TARG_MEM_RADDR, i + IL4965_RTC_INST_LOWER_BOUND);
48 		val = _il_rd(il, HBUS_TARG_MEM_RDAT);
49 		if (val != le32_to_cpu(*image)) {
50 			ret = -EIO;
51 			errcnt++;
52 			if (errcnt >= 3)
53 				break;
54 		}
55 	}
56 
57 	return ret;
58 }
59 
60 /**
61  * il4965_verify_inst_full - verify runtime uCode image in card vs. host,
62  *     looking at all data.
63  */
64 static int
65 il4965_verify_inst_full(struct il_priv *il, __le32 * image, u32 len)
66 {
67 	u32 val;
68 	u32 save_len = len;
69 	int ret = 0;
70 	u32 errcnt;
71 
72 	D_INFO("ucode inst image size is %u\n", len);
73 
74 	il_wr(il, HBUS_TARG_MEM_RADDR, IL4965_RTC_INST_LOWER_BOUND);
75 
76 	errcnt = 0;
77 	for (; len > 0; len -= sizeof(u32), image++) {
78 		/* read data comes through single port, auto-incr addr */
79 		/* NOTE: Use the debugless read so we don't flood kernel log
80 		 * if IL_DL_IO is set */
81 		val = _il_rd(il, HBUS_TARG_MEM_RDAT);
82 		if (val != le32_to_cpu(*image)) {
83 			IL_ERR("uCode INST section is invalid at "
84 			       "offset 0x%x, is 0x%x, s/b 0x%x\n",
85 			       save_len - len, val, le32_to_cpu(*image));
86 			ret = -EIO;
87 			errcnt++;
88 			if (errcnt >= 20)
89 				break;
90 		}
91 	}
92 
93 	if (!errcnt)
94 		D_INFO("ucode image in INSTRUCTION memory is good\n");
95 
96 	return ret;
97 }
98 
99 /**
100  * il4965_verify_ucode - determine which instruction image is in SRAM,
101  *    and verify its contents
102  */
103 int
104 il4965_verify_ucode(struct il_priv *il)
105 {
106 	__le32 *image;
107 	u32 len;
108 	int ret;
109 
110 	/* Try bootstrap */
111 	image = (__le32 *) il->ucode_boot.v_addr;
112 	len = il->ucode_boot.len;
113 	ret = il4965_verify_inst_sparse(il, image, len);
114 	if (!ret) {
115 		D_INFO("Bootstrap uCode is good in inst SRAM\n");
116 		return 0;
117 	}
118 
119 	/* Try initialize */
120 	image = (__le32 *) il->ucode_init.v_addr;
121 	len = il->ucode_init.len;
122 	ret = il4965_verify_inst_sparse(il, image, len);
123 	if (!ret) {
124 		D_INFO("Initialize uCode is good in inst SRAM\n");
125 		return 0;
126 	}
127 
128 	/* Try runtime/protocol */
129 	image = (__le32 *) il->ucode_code.v_addr;
130 	len = il->ucode_code.len;
131 	ret = il4965_verify_inst_sparse(il, image, len);
132 	if (!ret) {
133 		D_INFO("Runtime uCode is good in inst SRAM\n");
134 		return 0;
135 	}
136 
137 	IL_ERR("NO VALID UCODE IMAGE IN INSTRUCTION SRAM!!\n");
138 
139 	/* Since nothing seems to match, show first several data entries in
140 	 * instruction SRAM, so maybe visual inspection will give a clue.
141 	 * Selection of bootstrap image (vs. other images) is arbitrary. */
142 	image = (__le32 *) il->ucode_boot.v_addr;
143 	len = il->ucode_boot.len;
144 	ret = il4965_verify_inst_full(il, image, len);
145 
146 	return ret;
147 }
148 
149 /******************************************************************************
150  *
151  * EEPROM related functions
152  *
153 ******************************************************************************/
154 
155 /*
156  * The device's EEPROM semaphore prevents conflicts between driver and uCode
157  * when accessing the EEPROM; each access is a series of pulses to/from the
158  * EEPROM chip, not a single event, so even reads could conflict if they
159  * weren't arbitrated by the semaphore.
160  */
161 int
162 il4965_eeprom_acquire_semaphore(struct il_priv *il)
163 {
164 	u16 count;
165 	int ret;
166 
167 	for (count = 0; count < EEPROM_SEM_RETRY_LIMIT; count++) {
168 		/* Request semaphore */
169 		il_set_bit(il, CSR_HW_IF_CONFIG_REG,
170 			   CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM);
171 
172 		/* See if we got it */
173 		ret =
174 		    _il_poll_bit(il, CSR_HW_IF_CONFIG_REG,
175 				 CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM,
176 				 CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM,
177 				 EEPROM_SEM_TIMEOUT);
178 		if (ret >= 0)
179 			return ret;
180 	}
181 
182 	return ret;
183 }
184 
185 void
186 il4965_eeprom_release_semaphore(struct il_priv *il)
187 {
188 	il_clear_bit(il, CSR_HW_IF_CONFIG_REG,
189 		     CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM);
190 
191 }
192 
193 int
194 il4965_eeprom_check_version(struct il_priv *il)
195 {
196 	u16 eeprom_ver;
197 	u16 calib_ver;
198 
199 	eeprom_ver = il_eeprom_query16(il, EEPROM_VERSION);
200 	calib_ver = il_eeprom_query16(il, EEPROM_4965_CALIB_VERSION_OFFSET);
201 
202 	if (eeprom_ver < il->cfg->eeprom_ver ||
203 	    calib_ver < il->cfg->eeprom_calib_ver)
204 		goto err;
205 
206 	IL_INFO("device EEPROM VER=0x%x, CALIB=0x%x\n", eeprom_ver, calib_ver);
207 
208 	return 0;
209 err:
210 	IL_ERR("Unsupported (too old) EEPROM VER=0x%x < 0x%x "
211 	       "CALIB=0x%x < 0x%x\n", eeprom_ver, il->cfg->eeprom_ver,
212 	       calib_ver, il->cfg->eeprom_calib_ver);
213 	return -EINVAL;
214 
215 }
216 
217 void
218 il4965_eeprom_get_mac(const struct il_priv *il, u8 * mac)
219 {
220 	const u8 *addr = il_eeprom_query_addr(il,
221 					      EEPROM_MAC_ADDRESS);
222 	memcpy(mac, addr, ETH_ALEN);
223 }
224 
225 /* Send led command */
226 static int
227 il4965_send_led_cmd(struct il_priv *il, struct il_led_cmd *led_cmd)
228 {
229 	struct il_host_cmd cmd = {
230 		.id = C_LEDS,
231 		.len = sizeof(struct il_led_cmd),
232 		.data = led_cmd,
233 		.flags = CMD_ASYNC,
234 		.callback = NULL,
235 	};
236 	u32 reg;
237 
238 	reg = _il_rd(il, CSR_LED_REG);
239 	if (reg != (reg & CSR_LED_BSM_CTRL_MSK))
240 		_il_wr(il, CSR_LED_REG, reg & CSR_LED_BSM_CTRL_MSK);
241 
242 	return il_send_cmd(il, &cmd);
243 }
244 
245 /* Set led register off */
246 void
247 il4965_led_enable(struct il_priv *il)
248 {
249 	_il_wr(il, CSR_LED_REG, CSR_LED_REG_TRUN_ON);
250 }
251 
252 static int il4965_send_tx_power(struct il_priv *il);
253 static int il4965_hw_get_temperature(struct il_priv *il);
254 
255 /* Highest firmware API version supported */
256 #define IL4965_UCODE_API_MAX 2
257 
258 /* Lowest firmware API version supported */
259 #define IL4965_UCODE_API_MIN 2
260 
261 #define IL4965_FW_PRE "iwlwifi-4965-"
262 #define _IL4965_MODULE_FIRMWARE(api) IL4965_FW_PRE #api ".ucode"
263 #define IL4965_MODULE_FIRMWARE(api) _IL4965_MODULE_FIRMWARE(api)
264 
265 /* check contents of special bootstrap uCode SRAM */
266 static int
267 il4965_verify_bsm(struct il_priv *il)
268 {
269 	__le32 *image = il->ucode_boot.v_addr;
270 	u32 len = il->ucode_boot.len;
271 	u32 reg;
272 	u32 val;
273 
274 	D_INFO("Begin verify bsm\n");
275 
276 	/* verify BSM SRAM contents */
277 	val = il_rd_prph(il, BSM_WR_DWCOUNT_REG);
278 	for (reg = BSM_SRAM_LOWER_BOUND; reg < BSM_SRAM_LOWER_BOUND + len;
279 	     reg += sizeof(u32), image++) {
280 		val = il_rd_prph(il, reg);
281 		if (val != le32_to_cpu(*image)) {
282 			IL_ERR("BSM uCode verification failed at "
283 			       "addr 0x%08X+%u (of %u), is 0x%x, s/b 0x%x\n",
284 			       BSM_SRAM_LOWER_BOUND, reg - BSM_SRAM_LOWER_BOUND,
285 			       len, val, le32_to_cpu(*image));
286 			return -EIO;
287 		}
288 	}
289 
290 	D_INFO("BSM bootstrap uCode image OK\n");
291 
292 	return 0;
293 }
294 
295 /**
296  * il4965_load_bsm - Load bootstrap instructions
297  *
298  * BSM operation:
299  *
300  * The Bootstrap State Machine (BSM) stores a short bootstrap uCode program
301  * in special SRAM that does not power down during RFKILL.  When powering back
302  * up after power-saving sleeps (or during initial uCode load), the BSM loads
303  * the bootstrap program into the on-board processor, and starts it.
304  *
305  * The bootstrap program loads (via DMA) instructions and data for a new
306  * program from host DRAM locations indicated by the host driver in the
307  * BSM_DRAM_* registers.  Once the new program is loaded, it starts
308  * automatically.
309  *
310  * When initializing the NIC, the host driver points the BSM to the
311  * "initialize" uCode image.  This uCode sets up some internal data, then
312  * notifies host via "initialize alive" that it is complete.
313  *
314  * The host then replaces the BSM_DRAM_* pointer values to point to the
315  * normal runtime uCode instructions and a backup uCode data cache buffer
316  * (filled initially with starting data values for the on-board processor),
317  * then triggers the "initialize" uCode to load and launch the runtime uCode,
318  * which begins normal operation.
319  *
320  * When doing a power-save shutdown, runtime uCode saves data SRAM into
321  * the backup data cache in DRAM before SRAM is powered down.
322  *
323  * When powering back up, the BSM loads the bootstrap program.  This reloads
324  * the runtime uCode instructions and the backup data cache into SRAM,
325  * and re-launches the runtime uCode from where it left off.
326  */
327 static int
328 il4965_load_bsm(struct il_priv *il)
329 {
330 	__le32 *image = il->ucode_boot.v_addr;
331 	u32 len = il->ucode_boot.len;
332 	dma_addr_t pinst;
333 	dma_addr_t pdata;
334 	u32 inst_len;
335 	u32 data_len;
336 	int i;
337 	u32 done;
338 	u32 reg_offset;
339 	int ret;
340 
341 	D_INFO("Begin load bsm\n");
342 
343 	il->ucode_type = UCODE_RT;
344 
345 	/* make sure bootstrap program is no larger than BSM's SRAM size */
346 	if (len > IL49_MAX_BSM_SIZE)
347 		return -EINVAL;
348 
349 	/* Tell bootstrap uCode where to find the "Initialize" uCode
350 	 *   in host DRAM ... host DRAM physical address bits 35:4 for 4965.
351 	 * NOTE:  il_init_alive_start() will replace these values,
352 	 *        after the "initialize" uCode has run, to point to
353 	 *        runtime/protocol instructions and backup data cache.
354 	 */
355 	pinst = il->ucode_init.p_addr >> 4;
356 	pdata = il->ucode_init_data.p_addr >> 4;
357 	inst_len = il->ucode_init.len;
358 	data_len = il->ucode_init_data.len;
359 
360 	il_wr_prph(il, BSM_DRAM_INST_PTR_REG, pinst);
361 	il_wr_prph(il, BSM_DRAM_DATA_PTR_REG, pdata);
362 	il_wr_prph(il, BSM_DRAM_INST_BYTECOUNT_REG, inst_len);
363 	il_wr_prph(il, BSM_DRAM_DATA_BYTECOUNT_REG, data_len);
364 
365 	/* Fill BSM memory with bootstrap instructions */
366 	for (reg_offset = BSM_SRAM_LOWER_BOUND;
367 	     reg_offset < BSM_SRAM_LOWER_BOUND + len;
368 	     reg_offset += sizeof(u32), image++)
369 		_il_wr_prph(il, reg_offset, le32_to_cpu(*image));
370 
371 	ret = il4965_verify_bsm(il);
372 	if (ret)
373 		return ret;
374 
375 	/* Tell BSM to copy from BSM SRAM into instruction SRAM, when asked */
376 	il_wr_prph(il, BSM_WR_MEM_SRC_REG, 0x0);
377 	il_wr_prph(il, BSM_WR_MEM_DST_REG, IL49_RTC_INST_LOWER_BOUND);
378 	il_wr_prph(il, BSM_WR_DWCOUNT_REG, len / sizeof(u32));
379 
380 	/* Load bootstrap code into instruction SRAM now,
381 	 *   to prepare to load "initialize" uCode */
382 	il_wr_prph(il, BSM_WR_CTRL_REG, BSM_WR_CTRL_REG_BIT_START);
383 
384 	/* Wait for load of bootstrap uCode to finish */
385 	for (i = 0; i < 100; i++) {
386 		done = il_rd_prph(il, BSM_WR_CTRL_REG);
387 		if (!(done & BSM_WR_CTRL_REG_BIT_START))
388 			break;
389 		udelay(10);
390 	}
391 	if (i < 100)
392 		D_INFO("BSM write complete, poll %d iterations\n", i);
393 	else {
394 		IL_ERR("BSM write did not complete!\n");
395 		return -EIO;
396 	}
397 
398 	/* Enable future boot loads whenever power management unit triggers it
399 	 *   (e.g. when powering back up after power-save shutdown) */
400 	il_wr_prph(il, BSM_WR_CTRL_REG, BSM_WR_CTRL_REG_BIT_START_EN);
401 
402 	return 0;
403 }
404 
405 /**
406  * il4965_set_ucode_ptrs - Set uCode address location
407  *
408  * Tell initialization uCode where to find runtime uCode.
409  *
410  * BSM registers initially contain pointers to initialization uCode.
411  * We need to replace them to load runtime uCode inst and data,
412  * and to save runtime data when powering down.
413  */
414 static int
415 il4965_set_ucode_ptrs(struct il_priv *il)
416 {
417 	dma_addr_t pinst;
418 	dma_addr_t pdata;
419 	int ret = 0;
420 
421 	/* bits 35:4 for 4965 */
422 	pinst = il->ucode_code.p_addr >> 4;
423 	pdata = il->ucode_data_backup.p_addr >> 4;
424 
425 	/* Tell bootstrap uCode where to find image to load */
426 	il_wr_prph(il, BSM_DRAM_INST_PTR_REG, pinst);
427 	il_wr_prph(il, BSM_DRAM_DATA_PTR_REG, pdata);
428 	il_wr_prph(il, BSM_DRAM_DATA_BYTECOUNT_REG, il->ucode_data.len);
429 
430 	/* Inst byte count must be last to set up, bit 31 signals uCode
431 	 *   that all new ptr/size info is in place */
432 	il_wr_prph(il, BSM_DRAM_INST_BYTECOUNT_REG,
433 		   il->ucode_code.len | BSM_DRAM_INST_LOAD);
434 	D_INFO("Runtime uCode pointers are set.\n");
435 
436 	return ret;
437 }
438 
439 /**
440  * il4965_init_alive_start - Called after N_ALIVE notification received
441  *
442  * Called after N_ALIVE notification received from "initialize" uCode.
443  *
444  * The 4965 "initialize" ALIVE reply contains calibration data for:
445  *   Voltage, temperature, and MIMO tx gain correction, now stored in il
446  *   (3945 does not contain this data).
447  *
448  * Tell "initialize" uCode to go ahead and load the runtime uCode.
449 */
450 static void
451 il4965_init_alive_start(struct il_priv *il)
452 {
453 	/* Bootstrap uCode has loaded initialize uCode ... verify inst image.
454 	 * This is a paranoid check, because we would not have gotten the
455 	 * "initialize" alive if code weren't properly loaded.  */
456 	if (il4965_verify_ucode(il)) {
457 		/* Runtime instruction load was bad;
458 		 * take it all the way back down so we can try again */
459 		D_INFO("Bad \"initialize\" uCode load.\n");
460 		goto restart;
461 	}
462 
463 	/* Calculate temperature */
464 	il->temperature = il4965_hw_get_temperature(il);
465 
466 	/* Send pointers to protocol/runtime uCode image ... init code will
467 	 * load and launch runtime uCode, which will send us another "Alive"
468 	 * notification. */
469 	D_INFO("Initialization Alive received.\n");
470 	if (il4965_set_ucode_ptrs(il)) {
471 		/* Runtime instruction load won't happen;
472 		 * take it all the way back down so we can try again */
473 		D_INFO("Couldn't set up uCode pointers.\n");
474 		goto restart;
475 	}
476 	return;
477 
478 restart:
479 	queue_work(il->workqueue, &il->restart);
480 }
481 
482 static bool
483 iw4965_is_ht40_channel(__le32 rxon_flags)
484 {
485 	int chan_mod =
486 	    le32_to_cpu(rxon_flags & RXON_FLG_CHANNEL_MODE_MSK) >>
487 	    RXON_FLG_CHANNEL_MODE_POS;
488 	return (chan_mod == CHANNEL_MODE_PURE_40 ||
489 		chan_mod == CHANNEL_MODE_MIXED);
490 }
491 
492 void
493 il4965_nic_config(struct il_priv *il)
494 {
495 	unsigned long flags;
496 	u16 radio_cfg;
497 
498 	spin_lock_irqsave(&il->lock, flags);
499 
500 	radio_cfg = il_eeprom_query16(il, EEPROM_RADIO_CONFIG);
501 
502 	/* write radio config values to register */
503 	if (EEPROM_RF_CFG_TYPE_MSK(radio_cfg) == EEPROM_4965_RF_CFG_TYPE_MAX)
504 		il_set_bit(il, CSR_HW_IF_CONFIG_REG,
505 			   EEPROM_RF_CFG_TYPE_MSK(radio_cfg) |
506 			   EEPROM_RF_CFG_STEP_MSK(radio_cfg) |
507 			   EEPROM_RF_CFG_DASH_MSK(radio_cfg));
508 
509 	/* set CSR_HW_CONFIG_REG for uCode use */
510 	il_set_bit(il, CSR_HW_IF_CONFIG_REG,
511 		   CSR_HW_IF_CONFIG_REG_BIT_RADIO_SI |
512 		   CSR_HW_IF_CONFIG_REG_BIT_MAC_SI);
513 
514 	il->calib_info =
515 	    (struct il_eeprom_calib_info *)
516 	    il_eeprom_query_addr(il, EEPROM_4965_CALIB_TXPOWER_OFFSET);
517 
518 	spin_unlock_irqrestore(&il->lock, flags);
519 }
520 
521 /* Reset differential Rx gains in NIC to prepare for chain noise calibration.
522  * Called after every association, but this runs only once!
523  *  ... once chain noise is calibrated the first time, it's good forever.  */
524 static void
525 il4965_chain_noise_reset(struct il_priv *il)
526 {
527 	struct il_chain_noise_data *data = &(il->chain_noise_data);
528 
529 	if (data->state == IL_CHAIN_NOISE_ALIVE && il_is_any_associated(il)) {
530 		struct il_calib_diff_gain_cmd cmd;
531 
532 		/* clear data for chain noise calibration algorithm */
533 		data->chain_noise_a = 0;
534 		data->chain_noise_b = 0;
535 		data->chain_noise_c = 0;
536 		data->chain_signal_a = 0;
537 		data->chain_signal_b = 0;
538 		data->chain_signal_c = 0;
539 		data->beacon_count = 0;
540 
541 		memset(&cmd, 0, sizeof(cmd));
542 		cmd.hdr.op_code = IL_PHY_CALIBRATE_DIFF_GAIN_CMD;
543 		cmd.diff_gain_a = 0;
544 		cmd.diff_gain_b = 0;
545 		cmd.diff_gain_c = 0;
546 		if (il_send_cmd_pdu(il, C_PHY_CALIBRATION, sizeof(cmd), &cmd))
547 			IL_ERR("Could not send C_PHY_CALIBRATION\n");
548 		data->state = IL_CHAIN_NOISE_ACCUMULATE;
549 		D_CALIB("Run chain_noise_calibrate\n");
550 	}
551 }
552 
553 static s32
554 il4965_math_div_round(s32 num, s32 denom, s32 * res)
555 {
556 	s32 sign = 1;
557 
558 	if (num < 0) {
559 		sign = -sign;
560 		num = -num;
561 	}
562 	if (denom < 0) {
563 		sign = -sign;
564 		denom = -denom;
565 	}
566 	*res = ((num * 2 + denom) / (denom * 2)) * sign;
567 
568 	return 1;
569 }
570 
571 /**
572  * il4965_get_voltage_compensation - Power supply voltage comp for txpower
573  *
574  * Determines power supply voltage compensation for txpower calculations.
575  * Returns number of 1/2-dB steps to subtract from gain table idx,
576  * to compensate for difference between power supply voltage during
577  * factory measurements, vs. current power supply voltage.
578  *
579  * Voltage indication is higher for lower voltage.
580  * Lower voltage requires more gain (lower gain table idx).
581  */
582 static s32
583 il4965_get_voltage_compensation(s32 eeprom_voltage, s32 current_voltage)
584 {
585 	s32 comp = 0;
586 
587 	if (TX_POWER_IL_ILLEGAL_VOLTAGE == eeprom_voltage ||
588 	    TX_POWER_IL_ILLEGAL_VOLTAGE == current_voltage)
589 		return 0;
590 
591 	il4965_math_div_round(current_voltage - eeprom_voltage,
592 			      TX_POWER_IL_VOLTAGE_CODES_PER_03V, &comp);
593 
594 	if (current_voltage > eeprom_voltage)
595 		comp *= 2;
596 	if ((comp < -2) || (comp > 2))
597 		comp = 0;
598 
599 	return comp;
600 }
601 
602 static s32
603 il4965_get_tx_atten_grp(u16 channel)
604 {
605 	if (channel >= CALIB_IL_TX_ATTEN_GR5_FCH &&
606 	    channel <= CALIB_IL_TX_ATTEN_GR5_LCH)
607 		return CALIB_CH_GROUP_5;
608 
609 	if (channel >= CALIB_IL_TX_ATTEN_GR1_FCH &&
610 	    channel <= CALIB_IL_TX_ATTEN_GR1_LCH)
611 		return CALIB_CH_GROUP_1;
612 
613 	if (channel >= CALIB_IL_TX_ATTEN_GR2_FCH &&
614 	    channel <= CALIB_IL_TX_ATTEN_GR2_LCH)
615 		return CALIB_CH_GROUP_2;
616 
617 	if (channel >= CALIB_IL_TX_ATTEN_GR3_FCH &&
618 	    channel <= CALIB_IL_TX_ATTEN_GR3_LCH)
619 		return CALIB_CH_GROUP_3;
620 
621 	if (channel >= CALIB_IL_TX_ATTEN_GR4_FCH &&
622 	    channel <= CALIB_IL_TX_ATTEN_GR4_LCH)
623 		return CALIB_CH_GROUP_4;
624 
625 	return -EINVAL;
626 }
627 
628 static u32
629 il4965_get_sub_band(const struct il_priv *il, u32 channel)
630 {
631 	s32 b = -1;
632 
633 	for (b = 0; b < EEPROM_TX_POWER_BANDS; b++) {
634 		if (il->calib_info->band_info[b].ch_from == 0)
635 			continue;
636 
637 		if (channel >= il->calib_info->band_info[b].ch_from &&
638 		    channel <= il->calib_info->band_info[b].ch_to)
639 			break;
640 	}
641 
642 	return b;
643 }
644 
645 static s32
646 il4965_interpolate_value(s32 x, s32 x1, s32 y1, s32 x2, s32 y2)
647 {
648 	s32 val;
649 
650 	if (x2 == x1)
651 		return y1;
652 	else {
653 		il4965_math_div_round((x2 - x) * (y1 - y2), (x2 - x1), &val);
654 		return val + y2;
655 	}
656 }
657 
658 /**
659  * il4965_interpolate_chan - Interpolate factory measurements for one channel
660  *
661  * Interpolates factory measurements from the two sample channels within a
662  * sub-band, to apply to channel of interest.  Interpolation is proportional to
663  * differences in channel frequencies, which is proportional to differences
664  * in channel number.
665  */
666 static int
667 il4965_interpolate_chan(struct il_priv *il, u32 channel,
668 			struct il_eeprom_calib_ch_info *chan_info)
669 {
670 	s32 s = -1;
671 	u32 c;
672 	u32 m;
673 	const struct il_eeprom_calib_measure *m1;
674 	const struct il_eeprom_calib_measure *m2;
675 	struct il_eeprom_calib_measure *omeas;
676 	u32 ch_i1;
677 	u32 ch_i2;
678 
679 	s = il4965_get_sub_band(il, channel);
680 	if (s >= EEPROM_TX_POWER_BANDS) {
681 		IL_ERR("Tx Power can not find channel %d\n", channel);
682 		return -1;
683 	}
684 
685 	ch_i1 = il->calib_info->band_info[s].ch1.ch_num;
686 	ch_i2 = il->calib_info->band_info[s].ch2.ch_num;
687 	chan_info->ch_num = (u8) channel;
688 
689 	D_TXPOWER("channel %d subband %d factory cal ch %d & %d\n", channel, s,
690 		  ch_i1, ch_i2);
691 
692 	for (c = 0; c < EEPROM_TX_POWER_TX_CHAINS; c++) {
693 		for (m = 0; m < EEPROM_TX_POWER_MEASUREMENTS; m++) {
694 			m1 = &(il->calib_info->band_info[s].ch1.
695 			       measurements[c][m]);
696 			m2 = &(il->calib_info->band_info[s].ch2.
697 			       measurements[c][m]);
698 			omeas = &(chan_info->measurements[c][m]);
699 
700 			omeas->actual_pow =
701 			    (u8) il4965_interpolate_value(channel, ch_i1,
702 							  m1->actual_pow, ch_i2,
703 							  m2->actual_pow);
704 			omeas->gain_idx =
705 			    (u8) il4965_interpolate_value(channel, ch_i1,
706 							  m1->gain_idx, ch_i2,
707 							  m2->gain_idx);
708 			omeas->temperature =
709 			    (u8) il4965_interpolate_value(channel, ch_i1,
710 							  m1->temperature,
711 							  ch_i2,
712 							  m2->temperature);
713 			omeas->pa_det =
714 			    (s8) il4965_interpolate_value(channel, ch_i1,
715 							  m1->pa_det, ch_i2,
716 							  m2->pa_det);
717 
718 			D_TXPOWER("chain %d meas %d AP1=%d AP2=%d AP=%d\n", c,
719 				  m, m1->actual_pow, m2->actual_pow,
720 				  omeas->actual_pow);
721 			D_TXPOWER("chain %d meas %d NI1=%d NI2=%d NI=%d\n", c,
722 				  m, m1->gain_idx, m2->gain_idx,
723 				  omeas->gain_idx);
724 			D_TXPOWER("chain %d meas %d PA1=%d PA2=%d PA=%d\n", c,
725 				  m, m1->pa_det, m2->pa_det, omeas->pa_det);
726 			D_TXPOWER("chain %d meas %d  T1=%d  T2=%d  T=%d\n", c,
727 				  m, m1->temperature, m2->temperature,
728 				  omeas->temperature);
729 		}
730 	}
731 
732 	return 0;
733 }
734 
735 /* bit-rate-dependent table to prevent Tx distortion, in half-dB units,
736  * for OFDM 6, 12, 18, 24, 36, 48, 54, 60 MBit, and CCK all rates. */
737 static s32 back_off_table[] = {
738 	10, 10, 10, 10, 10, 15, 17, 20,	/* OFDM SISO 20 MHz */
739 	10, 10, 10, 10, 10, 15, 17, 20,	/* OFDM MIMO 20 MHz */
740 	10, 10, 10, 10, 10, 15, 17, 20,	/* OFDM SISO 40 MHz */
741 	10, 10, 10, 10, 10, 15, 17, 20,	/* OFDM MIMO 40 MHz */
742 	10			/* CCK */
743 };
744 
745 /* Thermal compensation values for txpower for various frequency ranges ...
746  *   ratios from 3:1 to 4.5:1 of degrees (Celsius) per half-dB gain adjust */
747 static struct il4965_txpower_comp_entry {
748 	s32 degrees_per_05db_a;
749 	s32 degrees_per_05db_a_denom;
750 } tx_power_cmp_tble[CALIB_CH_GROUP_MAX] = {
751 	{
752 	9, 2},			/* group 0 5.2, ch  34-43 */
753 	{
754 	4, 1},			/* group 1 5.2, ch  44-70 */
755 	{
756 	4, 1},			/* group 2 5.2, ch  71-124 */
757 	{
758 	4, 1},			/* group 3 5.2, ch 125-200 */
759 	{
760 	3, 1}			/* group 4 2.4, ch   all */
761 };
762 
763 static s32
764 get_min_power_idx(s32 rate_power_idx, u32 band)
765 {
766 	if (!band) {
767 		if ((rate_power_idx & 7) <= 4)
768 			return MIN_TX_GAIN_IDX_52GHZ_EXT;
769 	}
770 	return MIN_TX_GAIN_IDX;
771 }
772 
773 struct gain_entry {
774 	u8 dsp;
775 	u8 radio;
776 };
777 
778 static const struct gain_entry gain_table[2][108] = {
779 	/* 5.2GHz power gain idx table */
780 	{
781 	 {123, 0x3F},		/* highest txpower */
782 	 {117, 0x3F},
783 	 {110, 0x3F},
784 	 {104, 0x3F},
785 	 {98, 0x3F},
786 	 {110, 0x3E},
787 	 {104, 0x3E},
788 	 {98, 0x3E},
789 	 {110, 0x3D},
790 	 {104, 0x3D},
791 	 {98, 0x3D},
792 	 {110, 0x3C},
793 	 {104, 0x3C},
794 	 {98, 0x3C},
795 	 {110, 0x3B},
796 	 {104, 0x3B},
797 	 {98, 0x3B},
798 	 {110, 0x3A},
799 	 {104, 0x3A},
800 	 {98, 0x3A},
801 	 {110, 0x39},
802 	 {104, 0x39},
803 	 {98, 0x39},
804 	 {110, 0x38},
805 	 {104, 0x38},
806 	 {98, 0x38},
807 	 {110, 0x37},
808 	 {104, 0x37},
809 	 {98, 0x37},
810 	 {110, 0x36},
811 	 {104, 0x36},
812 	 {98, 0x36},
813 	 {110, 0x35},
814 	 {104, 0x35},
815 	 {98, 0x35},
816 	 {110, 0x34},
817 	 {104, 0x34},
818 	 {98, 0x34},
819 	 {110, 0x33},
820 	 {104, 0x33},
821 	 {98, 0x33},
822 	 {110, 0x32},
823 	 {104, 0x32},
824 	 {98, 0x32},
825 	 {110, 0x31},
826 	 {104, 0x31},
827 	 {98, 0x31},
828 	 {110, 0x30},
829 	 {104, 0x30},
830 	 {98, 0x30},
831 	 {110, 0x25},
832 	 {104, 0x25},
833 	 {98, 0x25},
834 	 {110, 0x24},
835 	 {104, 0x24},
836 	 {98, 0x24},
837 	 {110, 0x23},
838 	 {104, 0x23},
839 	 {98, 0x23},
840 	 {110, 0x22},
841 	 {104, 0x18},
842 	 {98, 0x18},
843 	 {110, 0x17},
844 	 {104, 0x17},
845 	 {98, 0x17},
846 	 {110, 0x16},
847 	 {104, 0x16},
848 	 {98, 0x16},
849 	 {110, 0x15},
850 	 {104, 0x15},
851 	 {98, 0x15},
852 	 {110, 0x14},
853 	 {104, 0x14},
854 	 {98, 0x14},
855 	 {110, 0x13},
856 	 {104, 0x13},
857 	 {98, 0x13},
858 	 {110, 0x12},
859 	 {104, 0x08},
860 	 {98, 0x08},
861 	 {110, 0x07},
862 	 {104, 0x07},
863 	 {98, 0x07},
864 	 {110, 0x06},
865 	 {104, 0x06},
866 	 {98, 0x06},
867 	 {110, 0x05},
868 	 {104, 0x05},
869 	 {98, 0x05},
870 	 {110, 0x04},
871 	 {104, 0x04},
872 	 {98, 0x04},
873 	 {110, 0x03},
874 	 {104, 0x03},
875 	 {98, 0x03},
876 	 {110, 0x02},
877 	 {104, 0x02},
878 	 {98, 0x02},
879 	 {110, 0x01},
880 	 {104, 0x01},
881 	 {98, 0x01},
882 	 {110, 0x00},
883 	 {104, 0x00},
884 	 {98, 0x00},
885 	 {93, 0x00},
886 	 {88, 0x00},
887 	 {83, 0x00},
888 	 {78, 0x00},
889 	 },
890 	/* 2.4GHz power gain idx table */
891 	{
892 	 {110, 0x3f},		/* highest txpower */
893 	 {104, 0x3f},
894 	 {98, 0x3f},
895 	 {110, 0x3e},
896 	 {104, 0x3e},
897 	 {98, 0x3e},
898 	 {110, 0x3d},
899 	 {104, 0x3d},
900 	 {98, 0x3d},
901 	 {110, 0x3c},
902 	 {104, 0x3c},
903 	 {98, 0x3c},
904 	 {110, 0x3b},
905 	 {104, 0x3b},
906 	 {98, 0x3b},
907 	 {110, 0x3a},
908 	 {104, 0x3a},
909 	 {98, 0x3a},
910 	 {110, 0x39},
911 	 {104, 0x39},
912 	 {98, 0x39},
913 	 {110, 0x38},
914 	 {104, 0x38},
915 	 {98, 0x38},
916 	 {110, 0x37},
917 	 {104, 0x37},
918 	 {98, 0x37},
919 	 {110, 0x36},
920 	 {104, 0x36},
921 	 {98, 0x36},
922 	 {110, 0x35},
923 	 {104, 0x35},
924 	 {98, 0x35},
925 	 {110, 0x34},
926 	 {104, 0x34},
927 	 {98, 0x34},
928 	 {110, 0x33},
929 	 {104, 0x33},
930 	 {98, 0x33},
931 	 {110, 0x32},
932 	 {104, 0x32},
933 	 {98, 0x32},
934 	 {110, 0x31},
935 	 {104, 0x31},
936 	 {98, 0x31},
937 	 {110, 0x30},
938 	 {104, 0x30},
939 	 {98, 0x30},
940 	 {110, 0x6},
941 	 {104, 0x6},
942 	 {98, 0x6},
943 	 {110, 0x5},
944 	 {104, 0x5},
945 	 {98, 0x5},
946 	 {110, 0x4},
947 	 {104, 0x4},
948 	 {98, 0x4},
949 	 {110, 0x3},
950 	 {104, 0x3},
951 	 {98, 0x3},
952 	 {110, 0x2},
953 	 {104, 0x2},
954 	 {98, 0x2},
955 	 {110, 0x1},
956 	 {104, 0x1},
957 	 {98, 0x1},
958 	 {110, 0x0},
959 	 {104, 0x0},
960 	 {98, 0x0},
961 	 {97, 0},
962 	 {96, 0},
963 	 {95, 0},
964 	 {94, 0},
965 	 {93, 0},
966 	 {92, 0},
967 	 {91, 0},
968 	 {90, 0},
969 	 {89, 0},
970 	 {88, 0},
971 	 {87, 0},
972 	 {86, 0},
973 	 {85, 0},
974 	 {84, 0},
975 	 {83, 0},
976 	 {82, 0},
977 	 {81, 0},
978 	 {80, 0},
979 	 {79, 0},
980 	 {78, 0},
981 	 {77, 0},
982 	 {76, 0},
983 	 {75, 0},
984 	 {74, 0},
985 	 {73, 0},
986 	 {72, 0},
987 	 {71, 0},
988 	 {70, 0},
989 	 {69, 0},
990 	 {68, 0},
991 	 {67, 0},
992 	 {66, 0},
993 	 {65, 0},
994 	 {64, 0},
995 	 {63, 0},
996 	 {62, 0},
997 	 {61, 0},
998 	 {60, 0},
999 	 {59, 0},
1000 	 }
1001 };
1002 
1003 static int
1004 il4965_fill_txpower_tbl(struct il_priv *il, u8 band, u16 channel, u8 is_ht40,
1005 			u8 ctrl_chan_high,
1006 			struct il4965_tx_power_db *tx_power_tbl)
1007 {
1008 	u8 saturation_power;
1009 	s32 target_power;
1010 	s32 user_target_power;
1011 	s32 power_limit;
1012 	s32 current_temp;
1013 	s32 reg_limit;
1014 	s32 current_regulatory;
1015 	s32 txatten_grp = CALIB_CH_GROUP_MAX;
1016 	int i;
1017 	int c;
1018 	const struct il_channel_info *ch_info = NULL;
1019 	struct il_eeprom_calib_ch_info ch_eeprom_info;
1020 	const struct il_eeprom_calib_measure *measurement;
1021 	s16 voltage;
1022 	s32 init_voltage;
1023 	s32 voltage_compensation;
1024 	s32 degrees_per_05db_num;
1025 	s32 degrees_per_05db_denom;
1026 	s32 factory_temp;
1027 	s32 temperature_comp[2];
1028 	s32 factory_gain_idx[2];
1029 	s32 factory_actual_pwr[2];
1030 	s32 power_idx;
1031 
1032 	/* tx_power_user_lmt is in dBm, convert to half-dBm (half-dB units
1033 	 *   are used for idxing into txpower table) */
1034 	user_target_power = 2 * il->tx_power_user_lmt;
1035 
1036 	/* Get current (RXON) channel, band, width */
1037 	D_TXPOWER("chan %d band %d is_ht40 %d\n", channel, band, is_ht40);
1038 
1039 	ch_info = il_get_channel_info(il, il->band, channel);
1040 
1041 	if (!il_is_channel_valid(ch_info))
1042 		return -EINVAL;
1043 
1044 	/* get txatten group, used to select 1) thermal txpower adjustment
1045 	 *   and 2) mimo txpower balance between Tx chains. */
1046 	txatten_grp = il4965_get_tx_atten_grp(channel);
1047 	if (txatten_grp < 0) {
1048 		IL_ERR("Can't find txatten group for channel %d.\n", channel);
1049 		return txatten_grp;
1050 	}
1051 
1052 	D_TXPOWER("channel %d belongs to txatten group %d\n", channel,
1053 		  txatten_grp);
1054 
1055 	if (is_ht40) {
1056 		if (ctrl_chan_high)
1057 			channel -= 2;
1058 		else
1059 			channel += 2;
1060 	}
1061 
1062 	/* hardware txpower limits ...
1063 	 * saturation (clipping distortion) txpowers are in half-dBm */
1064 	if (band)
1065 		saturation_power = il->calib_info->saturation_power24;
1066 	else
1067 		saturation_power = il->calib_info->saturation_power52;
1068 
1069 	if (saturation_power < IL_TX_POWER_SATURATION_MIN ||
1070 	    saturation_power > IL_TX_POWER_SATURATION_MAX) {
1071 		if (band)
1072 			saturation_power = IL_TX_POWER_DEFAULT_SATURATION_24;
1073 		else
1074 			saturation_power = IL_TX_POWER_DEFAULT_SATURATION_52;
1075 	}
1076 
1077 	/* regulatory txpower limits ... reg_limit values are in half-dBm,
1078 	 *   max_power_avg values are in dBm, convert * 2 */
1079 	if (is_ht40)
1080 		reg_limit = ch_info->ht40_max_power_avg * 2;
1081 	else
1082 		reg_limit = ch_info->max_power_avg * 2;
1083 
1084 	if ((reg_limit < IL_TX_POWER_REGULATORY_MIN) ||
1085 	    (reg_limit > IL_TX_POWER_REGULATORY_MAX)) {
1086 		if (band)
1087 			reg_limit = IL_TX_POWER_DEFAULT_REGULATORY_24;
1088 		else
1089 			reg_limit = IL_TX_POWER_DEFAULT_REGULATORY_52;
1090 	}
1091 
1092 	/* Interpolate txpower calibration values for this channel,
1093 	 *   based on factory calibration tests on spaced channels. */
1094 	il4965_interpolate_chan(il, channel, &ch_eeprom_info);
1095 
1096 	/* calculate tx gain adjustment based on power supply voltage */
1097 	voltage = le16_to_cpu(il->calib_info->voltage);
1098 	init_voltage = (s32) le32_to_cpu(il->card_alive_init.voltage);
1099 	voltage_compensation =
1100 	    il4965_get_voltage_compensation(voltage, init_voltage);
1101 
1102 	D_TXPOWER("curr volt %d eeprom volt %d volt comp %d\n", init_voltage,
1103 		  voltage, voltage_compensation);
1104 
1105 	/* get current temperature (Celsius) */
1106 	current_temp = max(il->temperature, IL_TX_POWER_TEMPERATURE_MIN);
1107 	current_temp = min(il->temperature, IL_TX_POWER_TEMPERATURE_MAX);
1108 	current_temp = kelvin_to_celsius(current_temp);
1109 
1110 	/* select thermal txpower adjustment params, based on channel group
1111 	 *   (same frequency group used for mimo txatten adjustment) */
1112 	degrees_per_05db_num =
1113 	    tx_power_cmp_tble[txatten_grp].degrees_per_05db_a;
1114 	degrees_per_05db_denom =
1115 	    tx_power_cmp_tble[txatten_grp].degrees_per_05db_a_denom;
1116 
1117 	/* get per-chain txpower values from factory measurements */
1118 	for (c = 0; c < 2; c++) {
1119 		measurement = &ch_eeprom_info.measurements[c][1];
1120 
1121 		/* txgain adjustment (in half-dB steps) based on difference
1122 		 *   between factory and current temperature */
1123 		factory_temp = measurement->temperature;
1124 		il4965_math_div_round((current_temp -
1125 				       factory_temp) * degrees_per_05db_denom,
1126 				      degrees_per_05db_num,
1127 				      &temperature_comp[c]);
1128 
1129 		factory_gain_idx[c] = measurement->gain_idx;
1130 		factory_actual_pwr[c] = measurement->actual_pow;
1131 
1132 		D_TXPOWER("chain = %d\n", c);
1133 		D_TXPOWER("fctry tmp %d, " "curr tmp %d, comp %d steps\n",
1134 			  factory_temp, current_temp, temperature_comp[c]);
1135 
1136 		D_TXPOWER("fctry idx %d, fctry pwr %d\n", factory_gain_idx[c],
1137 			  factory_actual_pwr[c]);
1138 	}
1139 
1140 	/* for each of 33 bit-rates (including 1 for CCK) */
1141 	for (i = 0; i < POWER_TBL_NUM_ENTRIES; i++) {
1142 		u8 is_mimo_rate;
1143 		union il4965_tx_power_dual_stream tx_power;
1144 
1145 		/* for mimo, reduce each chain's txpower by half
1146 		 * (3dB, 6 steps), so total output power is regulatory
1147 		 * compliant. */
1148 		if (i & 0x8) {
1149 			current_regulatory =
1150 			    reg_limit -
1151 			    IL_TX_POWER_MIMO_REGULATORY_COMPENSATION;
1152 			is_mimo_rate = 1;
1153 		} else {
1154 			current_regulatory = reg_limit;
1155 			is_mimo_rate = 0;
1156 		}
1157 
1158 		/* find txpower limit, either hardware or regulatory */
1159 		power_limit = saturation_power - back_off_table[i];
1160 		if (power_limit > current_regulatory)
1161 			power_limit = current_regulatory;
1162 
1163 		/* reduce user's txpower request if necessary
1164 		 * for this rate on this channel */
1165 		target_power = user_target_power;
1166 		if (target_power > power_limit)
1167 			target_power = power_limit;
1168 
1169 		D_TXPOWER("rate %d sat %d reg %d usr %d tgt %d\n", i,
1170 			  saturation_power - back_off_table[i],
1171 			  current_regulatory, user_target_power, target_power);
1172 
1173 		/* for each of 2 Tx chains (radio transmitters) */
1174 		for (c = 0; c < 2; c++) {
1175 			s32 atten_value;
1176 
1177 			if (is_mimo_rate)
1178 				atten_value =
1179 				    (s32) le32_to_cpu(il->card_alive_init.
1180 						      tx_atten[txatten_grp][c]);
1181 			else
1182 				atten_value = 0;
1183 
1184 			/* calculate idx; higher idx means lower txpower */
1185 			power_idx =
1186 			    (u8) (factory_gain_idx[c] -
1187 				  (target_power - factory_actual_pwr[c]) -
1188 				  temperature_comp[c] - voltage_compensation +
1189 				  atten_value);
1190 
1191 /*			D_TXPOWER("calculated txpower idx %d\n",
1192 						power_idx); */
1193 
1194 			if (power_idx < get_min_power_idx(i, band))
1195 				power_idx = get_min_power_idx(i, band);
1196 
1197 			/* adjust 5 GHz idx to support negative idxes */
1198 			if (!band)
1199 				power_idx += 9;
1200 
1201 			/* CCK, rate 32, reduce txpower for CCK */
1202 			if (i == POWER_TBL_CCK_ENTRY)
1203 				power_idx +=
1204 				    IL_TX_POWER_CCK_COMPENSATION_C_STEP;
1205 
1206 			/* stay within the table! */
1207 			if (power_idx > 107) {
1208 				IL_WARN("txpower idx %d > 107\n", power_idx);
1209 				power_idx = 107;
1210 			}
1211 			if (power_idx < 0) {
1212 				IL_WARN("txpower idx %d < 0\n", power_idx);
1213 				power_idx = 0;
1214 			}
1215 
1216 			/* fill txpower command for this rate/chain */
1217 			tx_power.s.radio_tx_gain[c] =
1218 			    gain_table[band][power_idx].radio;
1219 			tx_power.s.dsp_predis_atten[c] =
1220 			    gain_table[band][power_idx].dsp;
1221 
1222 			D_TXPOWER("chain %d mimo %d idx %d "
1223 				  "gain 0x%02x dsp %d\n", c, atten_value,
1224 				  power_idx, tx_power.s.radio_tx_gain[c],
1225 				  tx_power.s.dsp_predis_atten[c]);
1226 		}		/* for each chain */
1227 
1228 		tx_power_tbl->power_tbl[i].dw = cpu_to_le32(tx_power.dw);
1229 
1230 	}			/* for each rate */
1231 
1232 	return 0;
1233 }
1234 
1235 /**
1236  * il4965_send_tx_power - Configure the TXPOWER level user limit
1237  *
1238  * Uses the active RXON for channel, band, and characteristics (ht40, high)
1239  * The power limit is taken from il->tx_power_user_lmt.
1240  */
1241 static int
1242 il4965_send_tx_power(struct il_priv *il)
1243 {
1244 	struct il4965_txpowertable_cmd cmd = { 0 };
1245 	int ret;
1246 	u8 band = 0;
1247 	bool is_ht40 = false;
1248 	u8 ctrl_chan_high = 0;
1249 
1250 	if (WARN_ONCE
1251 	    (test_bit(S_SCAN_HW, &il->status),
1252 	     "TX Power requested while scanning!\n"))
1253 		return -EAGAIN;
1254 
1255 	band = il->band == NL80211_BAND_2GHZ;
1256 
1257 	is_ht40 = iw4965_is_ht40_channel(il->active.flags);
1258 
1259 	if (is_ht40 && (il->active.flags & RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK))
1260 		ctrl_chan_high = 1;
1261 
1262 	cmd.band = band;
1263 	cmd.channel = il->active.channel;
1264 
1265 	ret =
1266 	    il4965_fill_txpower_tbl(il, band, le16_to_cpu(il->active.channel),
1267 				    is_ht40, ctrl_chan_high, &cmd.tx_power);
1268 	if (ret)
1269 		goto out;
1270 
1271 	ret = il_send_cmd_pdu(il, C_TX_PWR_TBL, sizeof(cmd), &cmd);
1272 
1273 out:
1274 	return ret;
1275 }
1276 
1277 static int
1278 il4965_send_rxon_assoc(struct il_priv *il)
1279 {
1280 	int ret = 0;
1281 	struct il4965_rxon_assoc_cmd rxon_assoc;
1282 	const struct il_rxon_cmd *rxon1 = &il->staging;
1283 	const struct il_rxon_cmd *rxon2 = &il->active;
1284 
1285 	lockdep_assert_held(&il->mutex);
1286 
1287 	if (rxon1->flags == rxon2->flags &&
1288 	    rxon1->filter_flags == rxon2->filter_flags &&
1289 	    rxon1->cck_basic_rates == rxon2->cck_basic_rates &&
1290 	    rxon1->ofdm_ht_single_stream_basic_rates ==
1291 	    rxon2->ofdm_ht_single_stream_basic_rates &&
1292 	    rxon1->ofdm_ht_dual_stream_basic_rates ==
1293 	    rxon2->ofdm_ht_dual_stream_basic_rates &&
1294 	    rxon1->rx_chain == rxon2->rx_chain &&
1295 	    rxon1->ofdm_basic_rates == rxon2->ofdm_basic_rates) {
1296 		D_INFO("Using current RXON_ASSOC.  Not resending.\n");
1297 		return 0;
1298 	}
1299 
1300 	rxon_assoc.flags = il->staging.flags;
1301 	rxon_assoc.filter_flags = il->staging.filter_flags;
1302 	rxon_assoc.ofdm_basic_rates = il->staging.ofdm_basic_rates;
1303 	rxon_assoc.cck_basic_rates = il->staging.cck_basic_rates;
1304 	rxon_assoc.reserved = 0;
1305 	rxon_assoc.ofdm_ht_single_stream_basic_rates =
1306 	    il->staging.ofdm_ht_single_stream_basic_rates;
1307 	rxon_assoc.ofdm_ht_dual_stream_basic_rates =
1308 	    il->staging.ofdm_ht_dual_stream_basic_rates;
1309 	rxon_assoc.rx_chain_select_flags = il->staging.rx_chain;
1310 
1311 	ret =
1312 	    il_send_cmd_pdu_async(il, C_RXON_ASSOC, sizeof(rxon_assoc),
1313 				  &rxon_assoc, NULL);
1314 
1315 	return ret;
1316 }
1317 
1318 static int
1319 il4965_commit_rxon(struct il_priv *il)
1320 {
1321 	/* cast away the const for active_rxon in this function */
1322 	struct il_rxon_cmd *active_rxon = (void *)&il->active;
1323 	int ret;
1324 	bool new_assoc = !!(il->staging.filter_flags & RXON_FILTER_ASSOC_MSK);
1325 
1326 	if (!il_is_alive(il))
1327 		return -EBUSY;
1328 
1329 	/* always get timestamp with Rx frame */
1330 	il->staging.flags |= RXON_FLG_TSF2HOST_MSK;
1331 
1332 	ret = il_check_rxon_cmd(il);
1333 	if (ret) {
1334 		IL_ERR("Invalid RXON configuration.  Not committing.\n");
1335 		return -EINVAL;
1336 	}
1337 
1338 	/*
1339 	 * receive commit_rxon request
1340 	 * abort any previous channel switch if still in process
1341 	 */
1342 	if (test_bit(S_CHANNEL_SWITCH_PENDING, &il->status) &&
1343 	    il->switch_channel != il->staging.channel) {
1344 		D_11H("abort channel switch on %d\n",
1345 		      le16_to_cpu(il->switch_channel));
1346 		il_chswitch_done(il, false);
1347 	}
1348 
1349 	/* If we don't need to send a full RXON, we can use
1350 	 * il_rxon_assoc_cmd which is used to reconfigure filter
1351 	 * and other flags for the current radio configuration. */
1352 	if (!il_full_rxon_required(il)) {
1353 		ret = il_send_rxon_assoc(il);
1354 		if (ret) {
1355 			IL_ERR("Error setting RXON_ASSOC (%d)\n", ret);
1356 			return ret;
1357 		}
1358 
1359 		memcpy(active_rxon, &il->staging, sizeof(*active_rxon));
1360 		il_print_rx_config_cmd(il);
1361 		/*
1362 		 * We do not commit tx power settings while channel changing,
1363 		 * do it now if tx power changed.
1364 		 */
1365 		il_set_tx_power(il, il->tx_power_next, false);
1366 		return 0;
1367 	}
1368 
1369 	/* If we are currently associated and the new config requires
1370 	 * an RXON_ASSOC and the new config wants the associated mask enabled,
1371 	 * we must clear the associated from the active configuration
1372 	 * before we apply the new config */
1373 	if (il_is_associated(il) && new_assoc) {
1374 		D_INFO("Toggling associated bit on current RXON\n");
1375 		active_rxon->filter_flags &= ~RXON_FILTER_ASSOC_MSK;
1376 
1377 		ret =
1378 		    il_send_cmd_pdu(il, C_RXON,
1379 				    sizeof(struct il_rxon_cmd), active_rxon);
1380 
1381 		/* If the mask clearing failed then we set
1382 		 * active_rxon back to what it was previously */
1383 		if (ret) {
1384 			active_rxon->filter_flags |= RXON_FILTER_ASSOC_MSK;
1385 			IL_ERR("Error clearing ASSOC_MSK (%d)\n", ret);
1386 			return ret;
1387 		}
1388 		il_clear_ucode_stations(il);
1389 		il_restore_stations(il);
1390 		ret = il4965_restore_default_wep_keys(il);
1391 		if (ret) {
1392 			IL_ERR("Failed to restore WEP keys (%d)\n", ret);
1393 			return ret;
1394 		}
1395 	}
1396 
1397 	D_INFO("Sending RXON\n" "* with%s RXON_FILTER_ASSOC_MSK\n"
1398 	       "* channel = %d\n" "* bssid = %pM\n", (new_assoc ? "" : "out"),
1399 	       le16_to_cpu(il->staging.channel), il->staging.bssid_addr);
1400 
1401 	il_set_rxon_hwcrypto(il, !il->cfg->mod_params->sw_crypto);
1402 
1403 	/* Apply the new configuration
1404 	 * RXON unassoc clears the station table in uCode so restoration of
1405 	 * stations is needed after it (the RXON command) completes
1406 	 */
1407 	if (!new_assoc) {
1408 		ret =
1409 		    il_send_cmd_pdu(il, C_RXON,
1410 				    sizeof(struct il_rxon_cmd), &il->staging);
1411 		if (ret) {
1412 			IL_ERR("Error setting new RXON (%d)\n", ret);
1413 			return ret;
1414 		}
1415 		D_INFO("Return from !new_assoc RXON.\n");
1416 		memcpy(active_rxon, &il->staging, sizeof(*active_rxon));
1417 		il_clear_ucode_stations(il);
1418 		il_restore_stations(il);
1419 		ret = il4965_restore_default_wep_keys(il);
1420 		if (ret) {
1421 			IL_ERR("Failed to restore WEP keys (%d)\n", ret);
1422 			return ret;
1423 		}
1424 	}
1425 	if (new_assoc) {
1426 		il->start_calib = 0;
1427 		/* Apply the new configuration
1428 		 * RXON assoc doesn't clear the station table in uCode,
1429 		 */
1430 		ret =
1431 		    il_send_cmd_pdu(il, C_RXON,
1432 				    sizeof(struct il_rxon_cmd), &il->staging);
1433 		if (ret) {
1434 			IL_ERR("Error setting new RXON (%d)\n", ret);
1435 			return ret;
1436 		}
1437 		memcpy(active_rxon, &il->staging, sizeof(*active_rxon));
1438 	}
1439 	il_print_rx_config_cmd(il);
1440 
1441 	il4965_init_sensitivity(il);
1442 
1443 	/* If we issue a new RXON command which required a tune then we must
1444 	 * send a new TXPOWER command or we won't be able to Tx any frames */
1445 	ret = il_set_tx_power(il, il->tx_power_next, true);
1446 	if (ret) {
1447 		IL_ERR("Error sending TX power (%d)\n", ret);
1448 		return ret;
1449 	}
1450 
1451 	return 0;
1452 }
1453 
1454 static int
1455 il4965_hw_channel_switch(struct il_priv *il,
1456 			 struct ieee80211_channel_switch *ch_switch)
1457 {
1458 	int rc;
1459 	u8 band = 0;
1460 	bool is_ht40 = false;
1461 	u8 ctrl_chan_high = 0;
1462 	struct il4965_channel_switch_cmd cmd;
1463 	const struct il_channel_info *ch_info;
1464 	u32 switch_time_in_usec, ucode_switch_time;
1465 	u16 ch;
1466 	u32 tsf_low;
1467 	u8 switch_count;
1468 	u16 beacon_interval = le16_to_cpu(il->timing.beacon_interval);
1469 	struct ieee80211_vif *vif = il->vif;
1470 	band = (il->band == NL80211_BAND_2GHZ);
1471 
1472 	if (WARN_ON_ONCE(vif == NULL))
1473 		return -EIO;
1474 
1475 	is_ht40 = iw4965_is_ht40_channel(il->staging.flags);
1476 
1477 	if (is_ht40 && (il->staging.flags & RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK))
1478 		ctrl_chan_high = 1;
1479 
1480 	cmd.band = band;
1481 	cmd.expect_beacon = 0;
1482 	ch = ch_switch->chandef.chan->hw_value;
1483 	cmd.channel = cpu_to_le16(ch);
1484 	cmd.rxon_flags = il->staging.flags;
1485 	cmd.rxon_filter_flags = il->staging.filter_flags;
1486 	switch_count = ch_switch->count;
1487 	tsf_low = ch_switch->timestamp & 0x0ffffffff;
1488 	/*
1489 	 * calculate the ucode channel switch time
1490 	 * adding TSF as one of the factor for when to switch
1491 	 */
1492 	if (il->ucode_beacon_time > tsf_low && beacon_interval) {
1493 		if (switch_count >
1494 		    ((il->ucode_beacon_time - tsf_low) / beacon_interval)) {
1495 			switch_count -=
1496 			    (il->ucode_beacon_time - tsf_low) / beacon_interval;
1497 		} else
1498 			switch_count = 0;
1499 	}
1500 	if (switch_count <= 1)
1501 		cmd.switch_time = cpu_to_le32(il->ucode_beacon_time);
1502 	else {
1503 		switch_time_in_usec =
1504 		    vif->bss_conf.beacon_int * switch_count * TIME_UNIT;
1505 		ucode_switch_time =
1506 		    il_usecs_to_beacons(il, switch_time_in_usec,
1507 					beacon_interval);
1508 		cmd.switch_time =
1509 		    il_add_beacon_time(il, il->ucode_beacon_time,
1510 				       ucode_switch_time, beacon_interval);
1511 	}
1512 	D_11H("uCode time for the switch is 0x%x\n", cmd.switch_time);
1513 	ch_info = il_get_channel_info(il, il->band, ch);
1514 	if (ch_info)
1515 		cmd.expect_beacon = il_is_channel_radar(ch_info);
1516 	else {
1517 		IL_ERR("invalid channel switch from %u to %u\n",
1518 		       il->active.channel, ch);
1519 		return -EFAULT;
1520 	}
1521 
1522 	rc = il4965_fill_txpower_tbl(il, band, ch, is_ht40, ctrl_chan_high,
1523 				     &cmd.tx_power);
1524 	if (rc) {
1525 		D_11H("error:%d  fill txpower_tbl\n", rc);
1526 		return rc;
1527 	}
1528 
1529 	return il_send_cmd_pdu(il, C_CHANNEL_SWITCH, sizeof(cmd), &cmd);
1530 }
1531 
1532 /**
1533  * il4965_txq_update_byte_cnt_tbl - Set up entry in Tx byte-count array
1534  */
1535 static void
1536 il4965_txq_update_byte_cnt_tbl(struct il_priv *il, struct il_tx_queue *txq,
1537 			       u16 byte_cnt)
1538 {
1539 	struct il4965_scd_bc_tbl *scd_bc_tbl = il->scd_bc_tbls.addr;
1540 	int txq_id = txq->q.id;
1541 	int write_ptr = txq->q.write_ptr;
1542 	int len = byte_cnt + IL_TX_CRC_SIZE + IL_TX_DELIMITER_SIZE;
1543 	__le16 bc_ent;
1544 
1545 	WARN_ON(len > 0xFFF || write_ptr >= TFD_QUEUE_SIZE_MAX);
1546 
1547 	bc_ent = cpu_to_le16(len & 0xFFF);
1548 	/* Set up byte count within first 256 entries */
1549 	scd_bc_tbl[txq_id].tfd_offset[write_ptr] = bc_ent;
1550 
1551 	/* If within first 64 entries, duplicate at end */
1552 	if (write_ptr < TFD_QUEUE_SIZE_BC_DUP)
1553 		scd_bc_tbl[txq_id].tfd_offset[TFD_QUEUE_SIZE_MAX + write_ptr] =
1554 		    bc_ent;
1555 }
1556 
1557 /**
1558  * il4965_hw_get_temperature - return the calibrated temperature (in Kelvin)
1559  * @stats: Provides the temperature reading from the uCode
1560  *
1561  * A return of <0 indicates bogus data in the stats
1562  */
1563 static int
1564 il4965_hw_get_temperature(struct il_priv *il)
1565 {
1566 	s32 temperature;
1567 	s32 vt;
1568 	s32 R1, R2, R3;
1569 	u32 R4;
1570 
1571 	if (test_bit(S_TEMPERATURE, &il->status) &&
1572 	    (il->_4965.stats.flag & STATS_REPLY_FLG_HT40_MODE_MSK)) {
1573 		D_TEMP("Running HT40 temperature calibration\n");
1574 		R1 = (s32) le32_to_cpu(il->card_alive_init.therm_r1[1]);
1575 		R2 = (s32) le32_to_cpu(il->card_alive_init.therm_r2[1]);
1576 		R3 = (s32) le32_to_cpu(il->card_alive_init.therm_r3[1]);
1577 		R4 = le32_to_cpu(il->card_alive_init.therm_r4[1]);
1578 	} else {
1579 		D_TEMP("Running temperature calibration\n");
1580 		R1 = (s32) le32_to_cpu(il->card_alive_init.therm_r1[0]);
1581 		R2 = (s32) le32_to_cpu(il->card_alive_init.therm_r2[0]);
1582 		R3 = (s32) le32_to_cpu(il->card_alive_init.therm_r3[0]);
1583 		R4 = le32_to_cpu(il->card_alive_init.therm_r4[0]);
1584 	}
1585 
1586 	/*
1587 	 * Temperature is only 23 bits, so sign extend out to 32.
1588 	 *
1589 	 * NOTE If we haven't received a stats notification yet
1590 	 * with an updated temperature, use R4 provided to us in the
1591 	 * "initialize" ALIVE response.
1592 	 */
1593 	if (!test_bit(S_TEMPERATURE, &il->status))
1594 		vt = sign_extend32(R4, 23);
1595 	else
1596 		vt = sign_extend32(le32_to_cpu
1597 				   (il->_4965.stats.general.common.temperature),
1598 				   23);
1599 
1600 	D_TEMP("Calib values R[1-3]: %d %d %d R4: %d\n", R1, R2, R3, vt);
1601 
1602 	if (R3 == R1) {
1603 		IL_ERR("Calibration conflict R1 == R3\n");
1604 		return -1;
1605 	}
1606 
1607 	/* Calculate temperature in degrees Kelvin, adjust by 97%.
1608 	 * Add offset to center the adjustment around 0 degrees Centigrade. */
1609 	temperature = TEMPERATURE_CALIB_A_VAL * (vt - R2);
1610 	temperature /= (R3 - R1);
1611 	temperature =
1612 	    (temperature * 97) / 100 + TEMPERATURE_CALIB_KELVIN_OFFSET;
1613 
1614 	D_TEMP("Calibrated temperature: %dK, %ldC\n", temperature,
1615 	       kelvin_to_celsius(temperature));
1616 
1617 	return temperature;
1618 }
1619 
1620 /* Adjust Txpower only if temperature variance is greater than threshold. */
1621 #define IL_TEMPERATURE_THRESHOLD   3
1622 
1623 /**
1624  * il4965_is_temp_calib_needed - determines if new calibration is needed
1625  *
1626  * If the temperature changed has changed sufficiently, then a recalibration
1627  * is needed.
1628  *
1629  * Assumes caller will replace il->last_temperature once calibration
1630  * executed.
1631  */
1632 static int
1633 il4965_is_temp_calib_needed(struct il_priv *il)
1634 {
1635 	int temp_diff;
1636 
1637 	if (!test_bit(S_STATS, &il->status)) {
1638 		D_TEMP("Temperature not updated -- no stats.\n");
1639 		return 0;
1640 	}
1641 
1642 	temp_diff = il->temperature - il->last_temperature;
1643 
1644 	/* get absolute value */
1645 	if (temp_diff < 0) {
1646 		D_POWER("Getting cooler, delta %d\n", temp_diff);
1647 		temp_diff = -temp_diff;
1648 	} else if (temp_diff == 0)
1649 		D_POWER("Temperature unchanged\n");
1650 	else
1651 		D_POWER("Getting warmer, delta %d\n", temp_diff);
1652 
1653 	if (temp_diff < IL_TEMPERATURE_THRESHOLD) {
1654 		D_POWER(" => thermal txpower calib not needed\n");
1655 		return 0;
1656 	}
1657 
1658 	D_POWER(" => thermal txpower calib needed\n");
1659 
1660 	return 1;
1661 }
1662 
1663 void
1664 il4965_temperature_calib(struct il_priv *il)
1665 {
1666 	s32 temp;
1667 
1668 	temp = il4965_hw_get_temperature(il);
1669 	if (IL_TX_POWER_TEMPERATURE_OUT_OF_RANGE(temp))
1670 		return;
1671 
1672 	if (il->temperature != temp) {
1673 		if (il->temperature)
1674 			D_TEMP("Temperature changed " "from %ldC to %ldC\n",
1675 			       kelvin_to_celsius(il->temperature),
1676 			       kelvin_to_celsius(temp));
1677 		else
1678 			D_TEMP("Temperature " "initialized to %ldC\n",
1679 			       kelvin_to_celsius(temp));
1680 	}
1681 
1682 	il->temperature = temp;
1683 	set_bit(S_TEMPERATURE, &il->status);
1684 
1685 	if (!il->disable_tx_power_cal &&
1686 	    unlikely(!test_bit(S_SCANNING, &il->status)) &&
1687 	    il4965_is_temp_calib_needed(il))
1688 		queue_work(il->workqueue, &il->txpower_work);
1689 }
1690 
1691 static u16
1692 il4965_get_hcmd_size(u8 cmd_id, u16 len)
1693 {
1694 	switch (cmd_id) {
1695 	case C_RXON:
1696 		return (u16) sizeof(struct il4965_rxon_cmd);
1697 	default:
1698 		return len;
1699 	}
1700 }
1701 
1702 static u16
1703 il4965_build_addsta_hcmd(const struct il_addsta_cmd *cmd, u8 * data)
1704 {
1705 	struct il4965_addsta_cmd *addsta = (struct il4965_addsta_cmd *)data;
1706 	addsta->mode = cmd->mode;
1707 	memcpy(&addsta->sta, &cmd->sta, sizeof(struct sta_id_modify));
1708 	memcpy(&addsta->key, &cmd->key, sizeof(struct il4965_keyinfo));
1709 	addsta->station_flags = cmd->station_flags;
1710 	addsta->station_flags_msk = cmd->station_flags_msk;
1711 	addsta->tid_disable_tx = cmd->tid_disable_tx;
1712 	addsta->add_immediate_ba_tid = cmd->add_immediate_ba_tid;
1713 	addsta->remove_immediate_ba_tid = cmd->remove_immediate_ba_tid;
1714 	addsta->add_immediate_ba_ssn = cmd->add_immediate_ba_ssn;
1715 	addsta->sleep_tx_count = cmd->sleep_tx_count;
1716 	addsta->reserved1 = cpu_to_le16(0);
1717 	addsta->reserved2 = cpu_to_le16(0);
1718 
1719 	return (u16) sizeof(struct il4965_addsta_cmd);
1720 }
1721 
1722 static void
1723 il4965_post_scan(struct il_priv *il)
1724 {
1725 	/*
1726 	 * Since setting the RXON may have been deferred while
1727 	 * performing the scan, fire one off if needed
1728 	 */
1729 	if (memcmp(&il->staging, &il->active, sizeof(il->staging)))
1730 		il_commit_rxon(il);
1731 }
1732 
1733 static void
1734 il4965_post_associate(struct il_priv *il)
1735 {
1736 	struct ieee80211_vif *vif = il->vif;
1737 	int ret = 0;
1738 
1739 	if (!vif || !il->is_open)
1740 		return;
1741 
1742 	if (test_bit(S_EXIT_PENDING, &il->status))
1743 		return;
1744 
1745 	il_scan_cancel_timeout(il, 200);
1746 
1747 	il->staging.filter_flags &= ~RXON_FILTER_ASSOC_MSK;
1748 	il_commit_rxon(il);
1749 
1750 	ret = il_send_rxon_timing(il);
1751 	if (ret)
1752 		IL_WARN("RXON timing - " "Attempting to continue.\n");
1753 
1754 	il->staging.filter_flags |= RXON_FILTER_ASSOC_MSK;
1755 
1756 	il_set_rxon_ht(il, &il->current_ht_config);
1757 
1758 	if (il->ops->set_rxon_chain)
1759 		il->ops->set_rxon_chain(il);
1760 
1761 	il->staging.assoc_id = cpu_to_le16(vif->bss_conf.aid);
1762 
1763 	D_ASSOC("assoc id %d beacon interval %d\n", vif->bss_conf.aid,
1764 		vif->bss_conf.beacon_int);
1765 
1766 	if (vif->bss_conf.use_short_preamble)
1767 		il->staging.flags |= RXON_FLG_SHORT_PREAMBLE_MSK;
1768 	else
1769 		il->staging.flags &= ~RXON_FLG_SHORT_PREAMBLE_MSK;
1770 
1771 	if (il->staging.flags & RXON_FLG_BAND_24G_MSK) {
1772 		if (vif->bss_conf.use_short_slot)
1773 			il->staging.flags |= RXON_FLG_SHORT_SLOT_MSK;
1774 		else
1775 			il->staging.flags &= ~RXON_FLG_SHORT_SLOT_MSK;
1776 	}
1777 
1778 	il_commit_rxon(il);
1779 
1780 	D_ASSOC("Associated as %d to: %pM\n", vif->bss_conf.aid,
1781 		il->active.bssid_addr);
1782 
1783 	switch (vif->type) {
1784 	case NL80211_IFTYPE_STATION:
1785 		break;
1786 	case NL80211_IFTYPE_ADHOC:
1787 		il4965_send_beacon_cmd(il);
1788 		break;
1789 	default:
1790 		IL_ERR("%s Should not be called in %d mode\n", __func__,
1791 		       vif->type);
1792 		break;
1793 	}
1794 
1795 	/* the chain noise calibration will enabled PM upon completion
1796 	 * If chain noise has already been run, then we need to enable
1797 	 * power management here */
1798 	if (il->chain_noise_data.state == IL_CHAIN_NOISE_DONE)
1799 		il_power_update_mode(il, false);
1800 
1801 	/* Enable Rx differential gain and sensitivity calibrations */
1802 	il4965_chain_noise_reset(il);
1803 	il->start_calib = 1;
1804 }
1805 
1806 static void
1807 il4965_config_ap(struct il_priv *il)
1808 {
1809 	struct ieee80211_vif *vif = il->vif;
1810 	int ret = 0;
1811 
1812 	lockdep_assert_held(&il->mutex);
1813 
1814 	if (test_bit(S_EXIT_PENDING, &il->status))
1815 		return;
1816 
1817 	/* The following should be done only at AP bring up */
1818 	if (!il_is_associated(il)) {
1819 
1820 		/* RXON - unassoc (to set timing command) */
1821 		il->staging.filter_flags &= ~RXON_FILTER_ASSOC_MSK;
1822 		il_commit_rxon(il);
1823 
1824 		/* RXON Timing */
1825 		ret = il_send_rxon_timing(il);
1826 		if (ret)
1827 			IL_WARN("RXON timing failed - "
1828 				"Attempting to continue.\n");
1829 
1830 		/* AP has all antennas */
1831 		il->chain_noise_data.active_chains = il->hw_params.valid_rx_ant;
1832 		il_set_rxon_ht(il, &il->current_ht_config);
1833 		if (il->ops->set_rxon_chain)
1834 			il->ops->set_rxon_chain(il);
1835 
1836 		il->staging.assoc_id = 0;
1837 
1838 		if (vif->bss_conf.use_short_preamble)
1839 			il->staging.flags |= RXON_FLG_SHORT_PREAMBLE_MSK;
1840 		else
1841 			il->staging.flags &= ~RXON_FLG_SHORT_PREAMBLE_MSK;
1842 
1843 		if (il->staging.flags & RXON_FLG_BAND_24G_MSK) {
1844 			if (vif->bss_conf.use_short_slot)
1845 				il->staging.flags |= RXON_FLG_SHORT_SLOT_MSK;
1846 			else
1847 				il->staging.flags &= ~RXON_FLG_SHORT_SLOT_MSK;
1848 		}
1849 		/* need to send beacon cmd before committing assoc RXON! */
1850 		il4965_send_beacon_cmd(il);
1851 		/* restore RXON assoc */
1852 		il->staging.filter_flags |= RXON_FILTER_ASSOC_MSK;
1853 		il_commit_rxon(il);
1854 	}
1855 	il4965_send_beacon_cmd(il);
1856 }
1857 
1858 const struct il_ops il4965_ops = {
1859 	.txq_update_byte_cnt_tbl = il4965_txq_update_byte_cnt_tbl,
1860 	.txq_attach_buf_to_tfd = il4965_hw_txq_attach_buf_to_tfd,
1861 	.txq_free_tfd = il4965_hw_txq_free_tfd,
1862 	.txq_init = il4965_hw_tx_queue_init,
1863 	.is_valid_rtc_data_addr = il4965_hw_valid_rtc_data_addr,
1864 	.init_alive_start = il4965_init_alive_start,
1865 	.load_ucode = il4965_load_bsm,
1866 	.dump_nic_error_log = il4965_dump_nic_error_log,
1867 	.dump_fh = il4965_dump_fh,
1868 	.set_channel_switch = il4965_hw_channel_switch,
1869 	.apm_init = il_apm_init,
1870 	.send_tx_power = il4965_send_tx_power,
1871 	.update_chain_flags = il4965_update_chain_flags,
1872 	.eeprom_acquire_semaphore = il4965_eeprom_acquire_semaphore,
1873 	.eeprom_release_semaphore = il4965_eeprom_release_semaphore,
1874 
1875 	.rxon_assoc = il4965_send_rxon_assoc,
1876 	.commit_rxon = il4965_commit_rxon,
1877 	.set_rxon_chain = il4965_set_rxon_chain,
1878 
1879 	.get_hcmd_size = il4965_get_hcmd_size,
1880 	.build_addsta_hcmd = il4965_build_addsta_hcmd,
1881 	.request_scan = il4965_request_scan,
1882 	.post_scan = il4965_post_scan,
1883 
1884 	.post_associate = il4965_post_associate,
1885 	.config_ap = il4965_config_ap,
1886 	.manage_ibss_station = il4965_manage_ibss_station,
1887 	.update_bcast_stations = il4965_update_bcast_stations,
1888 
1889 	.send_led_cmd = il4965_send_led_cmd,
1890 };
1891 
1892 struct il_cfg il4965_cfg = {
1893 	.name = "Intel(R) Wireless WiFi Link 4965AGN",
1894 	.fw_name_pre = IL4965_FW_PRE,
1895 	.ucode_api_max = IL4965_UCODE_API_MAX,
1896 	.ucode_api_min = IL4965_UCODE_API_MIN,
1897 	.sku = IL_SKU_A | IL_SKU_G | IL_SKU_N,
1898 	.valid_tx_ant = ANT_AB,
1899 	.valid_rx_ant = ANT_ABC,
1900 	.eeprom_ver = EEPROM_4965_EEPROM_VERSION,
1901 	.eeprom_calib_ver = EEPROM_4965_TX_POWER_VERSION,
1902 	.mod_params = &il4965_mod_params,
1903 	.led_mode = IL_LED_BLINK,
1904 	/*
1905 	 * Force use of chains B and C for scan RX on 5 GHz band
1906 	 * because the device has off-channel reception on chain A.
1907 	 */
1908 	.scan_rx_antennas[NL80211_BAND_5GHZ] = ANT_BC,
1909 
1910 	.eeprom_size = IL4965_EEPROM_IMG_SIZE,
1911 	.num_of_queues = IL49_NUM_QUEUES,
1912 	.num_of_ampdu_queues = IL49_NUM_AMPDU_QUEUES,
1913 	.pll_cfg_val = 0,
1914 	.set_l0s = true,
1915 	.use_bsm = true,
1916 	.led_compensation = 61,
1917 	.chain_noise_num_beacons = IL4965_CAL_NUM_BEACONS,
1918 	.wd_timeout = IL_DEF_WD_TIMEOUT,
1919 	.temperature_kelvin = true,
1920 	.ucode_tracing = true,
1921 	.sensitivity_calib_by_driver = true,
1922 	.chain_noise_calib_by_driver = true,
1923 
1924 	.regulatory_bands = {
1925 		EEPROM_REGULATORY_BAND_1_CHANNELS,
1926 		EEPROM_REGULATORY_BAND_2_CHANNELS,
1927 		EEPROM_REGULATORY_BAND_3_CHANNELS,
1928 		EEPROM_REGULATORY_BAND_4_CHANNELS,
1929 		EEPROM_REGULATORY_BAND_5_CHANNELS,
1930 		EEPROM_4965_REGULATORY_BAND_24_HT40_CHANNELS,
1931 		EEPROM_4965_REGULATORY_BAND_52_HT40_CHANNELS
1932 	},
1933 
1934 };
1935 
1936 /* Module firmware */
1937 MODULE_FIRMWARE(IL4965_MODULE_FIRMWARE(IL4965_UCODE_API_MAX));
1938