xref: /openbmc/linux/drivers/net/wireless/intel/iwlegacy/4965.c (revision 4ed91d48259d9ddd378424d008f2e6559f7e78f8)
1 /******************************************************************************
2  *
3  * Copyright(c) 2003 - 2011 Intel Corporation. All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of version 2 of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc.,
16  * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
17  *
18  * The full GNU General Public License is included in this distribution in the
19  * file called LICENSE.
20  *
21  * Contact Information:
22  *  Intel Linux Wireless <ilw@linux.intel.com>
23  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24  *
25  *****************************************************************************/
26 
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/pci.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/delay.h>
32 #include <linux/sched.h>
33 #include <linux/skbuff.h>
34 #include <linux/netdevice.h>
35 #include <net/mac80211.h>
36 #include <linux/etherdevice.h>
37 #include <asm/unaligned.h>
38 
39 #include "common.h"
40 #include "4965.h"
41 
42 /**
43  * il_verify_inst_sparse - verify runtime uCode image in card vs. host,
44  *   using sample data 100 bytes apart.  If these sample points are good,
45  *   it's a pretty good bet that everything between them is good, too.
46  */
47 static int
48 il4965_verify_inst_sparse(struct il_priv *il, __le32 * image, u32 len)
49 {
50 	u32 val;
51 	int ret = 0;
52 	u32 errcnt = 0;
53 	u32 i;
54 
55 	D_INFO("ucode inst image size is %u\n", len);
56 
57 	for (i = 0; i < len; i += 100, image += 100 / sizeof(u32)) {
58 		/* read data comes through single port, auto-incr addr */
59 		/* NOTE: Use the debugless read so we don't flood kernel log
60 		 * if IL_DL_IO is set */
61 		il_wr(il, HBUS_TARG_MEM_RADDR, i + IL4965_RTC_INST_LOWER_BOUND);
62 		val = _il_rd(il, HBUS_TARG_MEM_RDAT);
63 		if (val != le32_to_cpu(*image)) {
64 			ret = -EIO;
65 			errcnt++;
66 			if (errcnt >= 3)
67 				break;
68 		}
69 	}
70 
71 	return ret;
72 }
73 
74 /**
75  * il4965_verify_inst_full - verify runtime uCode image in card vs. host,
76  *     looking at all data.
77  */
78 static int
79 il4965_verify_inst_full(struct il_priv *il, __le32 * image, u32 len)
80 {
81 	u32 val;
82 	u32 save_len = len;
83 	int ret = 0;
84 	u32 errcnt;
85 
86 	D_INFO("ucode inst image size is %u\n", len);
87 
88 	il_wr(il, HBUS_TARG_MEM_RADDR, IL4965_RTC_INST_LOWER_BOUND);
89 
90 	errcnt = 0;
91 	for (; len > 0; len -= sizeof(u32), image++) {
92 		/* read data comes through single port, auto-incr addr */
93 		/* NOTE: Use the debugless read so we don't flood kernel log
94 		 * if IL_DL_IO is set */
95 		val = _il_rd(il, HBUS_TARG_MEM_RDAT);
96 		if (val != le32_to_cpu(*image)) {
97 			IL_ERR("uCode INST section is invalid at "
98 			       "offset 0x%x, is 0x%x, s/b 0x%x\n",
99 			       save_len - len, val, le32_to_cpu(*image));
100 			ret = -EIO;
101 			errcnt++;
102 			if (errcnt >= 20)
103 				break;
104 		}
105 	}
106 
107 	if (!errcnt)
108 		D_INFO("ucode image in INSTRUCTION memory is good\n");
109 
110 	return ret;
111 }
112 
113 /**
114  * il4965_verify_ucode - determine which instruction image is in SRAM,
115  *    and verify its contents
116  */
117 int
118 il4965_verify_ucode(struct il_priv *il)
119 {
120 	__le32 *image;
121 	u32 len;
122 	int ret;
123 
124 	/* Try bootstrap */
125 	image = (__le32 *) il->ucode_boot.v_addr;
126 	len = il->ucode_boot.len;
127 	ret = il4965_verify_inst_sparse(il, image, len);
128 	if (!ret) {
129 		D_INFO("Bootstrap uCode is good in inst SRAM\n");
130 		return 0;
131 	}
132 
133 	/* Try initialize */
134 	image = (__le32 *) il->ucode_init.v_addr;
135 	len = il->ucode_init.len;
136 	ret = il4965_verify_inst_sparse(il, image, len);
137 	if (!ret) {
138 		D_INFO("Initialize uCode is good in inst SRAM\n");
139 		return 0;
140 	}
141 
142 	/* Try runtime/protocol */
143 	image = (__le32 *) il->ucode_code.v_addr;
144 	len = il->ucode_code.len;
145 	ret = il4965_verify_inst_sparse(il, image, len);
146 	if (!ret) {
147 		D_INFO("Runtime uCode is good in inst SRAM\n");
148 		return 0;
149 	}
150 
151 	IL_ERR("NO VALID UCODE IMAGE IN INSTRUCTION SRAM!!\n");
152 
153 	/* Since nothing seems to match, show first several data entries in
154 	 * instruction SRAM, so maybe visual inspection will give a clue.
155 	 * Selection of bootstrap image (vs. other images) is arbitrary. */
156 	image = (__le32 *) il->ucode_boot.v_addr;
157 	len = il->ucode_boot.len;
158 	ret = il4965_verify_inst_full(il, image, len);
159 
160 	return ret;
161 }
162 
163 /******************************************************************************
164  *
165  * EEPROM related functions
166  *
167 ******************************************************************************/
168 
169 /*
170  * The device's EEPROM semaphore prevents conflicts between driver and uCode
171  * when accessing the EEPROM; each access is a series of pulses to/from the
172  * EEPROM chip, not a single event, so even reads could conflict if they
173  * weren't arbitrated by the semaphore.
174  */
175 int
176 il4965_eeprom_acquire_semaphore(struct il_priv *il)
177 {
178 	u16 count;
179 	int ret;
180 
181 	for (count = 0; count < EEPROM_SEM_RETRY_LIMIT; count++) {
182 		/* Request semaphore */
183 		il_set_bit(il, CSR_HW_IF_CONFIG_REG,
184 			   CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM);
185 
186 		/* See if we got it */
187 		ret =
188 		    _il_poll_bit(il, CSR_HW_IF_CONFIG_REG,
189 				 CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM,
190 				 CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM,
191 				 EEPROM_SEM_TIMEOUT);
192 		if (ret >= 0)
193 			return ret;
194 	}
195 
196 	return ret;
197 }
198 
199 void
200 il4965_eeprom_release_semaphore(struct il_priv *il)
201 {
202 	il_clear_bit(il, CSR_HW_IF_CONFIG_REG,
203 		     CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM);
204 
205 }
206 
207 int
208 il4965_eeprom_check_version(struct il_priv *il)
209 {
210 	u16 eeprom_ver;
211 	u16 calib_ver;
212 
213 	eeprom_ver = il_eeprom_query16(il, EEPROM_VERSION);
214 	calib_ver = il_eeprom_query16(il, EEPROM_4965_CALIB_VERSION_OFFSET);
215 
216 	if (eeprom_ver < il->cfg->eeprom_ver ||
217 	    calib_ver < il->cfg->eeprom_calib_ver)
218 		goto err;
219 
220 	IL_INFO("device EEPROM VER=0x%x, CALIB=0x%x\n", eeprom_ver, calib_ver);
221 
222 	return 0;
223 err:
224 	IL_ERR("Unsupported (too old) EEPROM VER=0x%x < 0x%x "
225 	       "CALIB=0x%x < 0x%x\n", eeprom_ver, il->cfg->eeprom_ver,
226 	       calib_ver, il->cfg->eeprom_calib_ver);
227 	return -EINVAL;
228 
229 }
230 
231 void
232 il4965_eeprom_get_mac(const struct il_priv *il, u8 * mac)
233 {
234 	const u8 *addr = il_eeprom_query_addr(il,
235 					      EEPROM_MAC_ADDRESS);
236 	memcpy(mac, addr, ETH_ALEN);
237 }
238 
239 /* Send led command */
240 static int
241 il4965_send_led_cmd(struct il_priv *il, struct il_led_cmd *led_cmd)
242 {
243 	struct il_host_cmd cmd = {
244 		.id = C_LEDS,
245 		.len = sizeof(struct il_led_cmd),
246 		.data = led_cmd,
247 		.flags = CMD_ASYNC,
248 		.callback = NULL,
249 	};
250 	u32 reg;
251 
252 	reg = _il_rd(il, CSR_LED_REG);
253 	if (reg != (reg & CSR_LED_BSM_CTRL_MSK))
254 		_il_wr(il, CSR_LED_REG, reg & CSR_LED_BSM_CTRL_MSK);
255 
256 	return il_send_cmd(il, &cmd);
257 }
258 
259 /* Set led register off */
260 void
261 il4965_led_enable(struct il_priv *il)
262 {
263 	_il_wr(il, CSR_LED_REG, CSR_LED_REG_TRUN_ON);
264 }
265 
266 static int il4965_send_tx_power(struct il_priv *il);
267 static int il4965_hw_get_temperature(struct il_priv *il);
268 
269 /* Highest firmware API version supported */
270 #define IL4965_UCODE_API_MAX 2
271 
272 /* Lowest firmware API version supported */
273 #define IL4965_UCODE_API_MIN 2
274 
275 #define IL4965_FW_PRE "iwlwifi-4965-"
276 #define _IL4965_MODULE_FIRMWARE(api) IL4965_FW_PRE #api ".ucode"
277 #define IL4965_MODULE_FIRMWARE(api) _IL4965_MODULE_FIRMWARE(api)
278 
279 /* check contents of special bootstrap uCode SRAM */
280 static int
281 il4965_verify_bsm(struct il_priv *il)
282 {
283 	__le32 *image = il->ucode_boot.v_addr;
284 	u32 len = il->ucode_boot.len;
285 	u32 reg;
286 	u32 val;
287 
288 	D_INFO("Begin verify bsm\n");
289 
290 	/* verify BSM SRAM contents */
291 	val = il_rd_prph(il, BSM_WR_DWCOUNT_REG);
292 	for (reg = BSM_SRAM_LOWER_BOUND; reg < BSM_SRAM_LOWER_BOUND + len;
293 	     reg += sizeof(u32), image++) {
294 		val = il_rd_prph(il, reg);
295 		if (val != le32_to_cpu(*image)) {
296 			IL_ERR("BSM uCode verification failed at "
297 			       "addr 0x%08X+%u (of %u), is 0x%x, s/b 0x%x\n",
298 			       BSM_SRAM_LOWER_BOUND, reg - BSM_SRAM_LOWER_BOUND,
299 			       len, val, le32_to_cpu(*image));
300 			return -EIO;
301 		}
302 	}
303 
304 	D_INFO("BSM bootstrap uCode image OK\n");
305 
306 	return 0;
307 }
308 
309 /**
310  * il4965_load_bsm - Load bootstrap instructions
311  *
312  * BSM operation:
313  *
314  * The Bootstrap State Machine (BSM) stores a short bootstrap uCode program
315  * in special SRAM that does not power down during RFKILL.  When powering back
316  * up after power-saving sleeps (or during initial uCode load), the BSM loads
317  * the bootstrap program into the on-board processor, and starts it.
318  *
319  * The bootstrap program loads (via DMA) instructions and data for a new
320  * program from host DRAM locations indicated by the host driver in the
321  * BSM_DRAM_* registers.  Once the new program is loaded, it starts
322  * automatically.
323  *
324  * When initializing the NIC, the host driver points the BSM to the
325  * "initialize" uCode image.  This uCode sets up some internal data, then
326  * notifies host via "initialize alive" that it is complete.
327  *
328  * The host then replaces the BSM_DRAM_* pointer values to point to the
329  * normal runtime uCode instructions and a backup uCode data cache buffer
330  * (filled initially with starting data values for the on-board processor),
331  * then triggers the "initialize" uCode to load and launch the runtime uCode,
332  * which begins normal operation.
333  *
334  * When doing a power-save shutdown, runtime uCode saves data SRAM into
335  * the backup data cache in DRAM before SRAM is powered down.
336  *
337  * When powering back up, the BSM loads the bootstrap program.  This reloads
338  * the runtime uCode instructions and the backup data cache into SRAM,
339  * and re-launches the runtime uCode from where it left off.
340  */
341 static int
342 il4965_load_bsm(struct il_priv *il)
343 {
344 	__le32 *image = il->ucode_boot.v_addr;
345 	u32 len = il->ucode_boot.len;
346 	dma_addr_t pinst;
347 	dma_addr_t pdata;
348 	u32 inst_len;
349 	u32 data_len;
350 	int i;
351 	u32 done;
352 	u32 reg_offset;
353 	int ret;
354 
355 	D_INFO("Begin load bsm\n");
356 
357 	il->ucode_type = UCODE_RT;
358 
359 	/* make sure bootstrap program is no larger than BSM's SRAM size */
360 	if (len > IL49_MAX_BSM_SIZE)
361 		return -EINVAL;
362 
363 	/* Tell bootstrap uCode where to find the "Initialize" uCode
364 	 *   in host DRAM ... host DRAM physical address bits 35:4 for 4965.
365 	 * NOTE:  il_init_alive_start() will replace these values,
366 	 *        after the "initialize" uCode has run, to point to
367 	 *        runtime/protocol instructions and backup data cache.
368 	 */
369 	pinst = il->ucode_init.p_addr >> 4;
370 	pdata = il->ucode_init_data.p_addr >> 4;
371 	inst_len = il->ucode_init.len;
372 	data_len = il->ucode_init_data.len;
373 
374 	il_wr_prph(il, BSM_DRAM_INST_PTR_REG, pinst);
375 	il_wr_prph(il, BSM_DRAM_DATA_PTR_REG, pdata);
376 	il_wr_prph(il, BSM_DRAM_INST_BYTECOUNT_REG, inst_len);
377 	il_wr_prph(il, BSM_DRAM_DATA_BYTECOUNT_REG, data_len);
378 
379 	/* Fill BSM memory with bootstrap instructions */
380 	for (reg_offset = BSM_SRAM_LOWER_BOUND;
381 	     reg_offset < BSM_SRAM_LOWER_BOUND + len;
382 	     reg_offset += sizeof(u32), image++)
383 		_il_wr_prph(il, reg_offset, le32_to_cpu(*image));
384 
385 	ret = il4965_verify_bsm(il);
386 	if (ret)
387 		return ret;
388 
389 	/* Tell BSM to copy from BSM SRAM into instruction SRAM, when asked */
390 	il_wr_prph(il, BSM_WR_MEM_SRC_REG, 0x0);
391 	il_wr_prph(il, BSM_WR_MEM_DST_REG, IL49_RTC_INST_LOWER_BOUND);
392 	il_wr_prph(il, BSM_WR_DWCOUNT_REG, len / sizeof(u32));
393 
394 	/* Load bootstrap code into instruction SRAM now,
395 	 *   to prepare to load "initialize" uCode */
396 	il_wr_prph(il, BSM_WR_CTRL_REG, BSM_WR_CTRL_REG_BIT_START);
397 
398 	/* Wait for load of bootstrap uCode to finish */
399 	for (i = 0; i < 100; i++) {
400 		done = il_rd_prph(il, BSM_WR_CTRL_REG);
401 		if (!(done & BSM_WR_CTRL_REG_BIT_START))
402 			break;
403 		udelay(10);
404 	}
405 	if (i < 100)
406 		D_INFO("BSM write complete, poll %d iterations\n", i);
407 	else {
408 		IL_ERR("BSM write did not complete!\n");
409 		return -EIO;
410 	}
411 
412 	/* Enable future boot loads whenever power management unit triggers it
413 	 *   (e.g. when powering back up after power-save shutdown) */
414 	il_wr_prph(il, BSM_WR_CTRL_REG, BSM_WR_CTRL_REG_BIT_START_EN);
415 
416 	return 0;
417 }
418 
419 /**
420  * il4965_set_ucode_ptrs - Set uCode address location
421  *
422  * Tell initialization uCode where to find runtime uCode.
423  *
424  * BSM registers initially contain pointers to initialization uCode.
425  * We need to replace them to load runtime uCode inst and data,
426  * and to save runtime data when powering down.
427  */
428 static int
429 il4965_set_ucode_ptrs(struct il_priv *il)
430 {
431 	dma_addr_t pinst;
432 	dma_addr_t pdata;
433 	int ret = 0;
434 
435 	/* bits 35:4 for 4965 */
436 	pinst = il->ucode_code.p_addr >> 4;
437 	pdata = il->ucode_data_backup.p_addr >> 4;
438 
439 	/* Tell bootstrap uCode where to find image to load */
440 	il_wr_prph(il, BSM_DRAM_INST_PTR_REG, pinst);
441 	il_wr_prph(il, BSM_DRAM_DATA_PTR_REG, pdata);
442 	il_wr_prph(il, BSM_DRAM_DATA_BYTECOUNT_REG, il->ucode_data.len);
443 
444 	/* Inst byte count must be last to set up, bit 31 signals uCode
445 	 *   that all new ptr/size info is in place */
446 	il_wr_prph(il, BSM_DRAM_INST_BYTECOUNT_REG,
447 		   il->ucode_code.len | BSM_DRAM_INST_LOAD);
448 	D_INFO("Runtime uCode pointers are set.\n");
449 
450 	return ret;
451 }
452 
453 /**
454  * il4965_init_alive_start - Called after N_ALIVE notification received
455  *
456  * Called after N_ALIVE notification received from "initialize" uCode.
457  *
458  * The 4965 "initialize" ALIVE reply contains calibration data for:
459  *   Voltage, temperature, and MIMO tx gain correction, now stored in il
460  *   (3945 does not contain this data).
461  *
462  * Tell "initialize" uCode to go ahead and load the runtime uCode.
463 */
464 static void
465 il4965_init_alive_start(struct il_priv *il)
466 {
467 	/* Bootstrap uCode has loaded initialize uCode ... verify inst image.
468 	 * This is a paranoid check, because we would not have gotten the
469 	 * "initialize" alive if code weren't properly loaded.  */
470 	if (il4965_verify_ucode(il)) {
471 		/* Runtime instruction load was bad;
472 		 * take it all the way back down so we can try again */
473 		D_INFO("Bad \"initialize\" uCode load.\n");
474 		goto restart;
475 	}
476 
477 	/* Calculate temperature */
478 	il->temperature = il4965_hw_get_temperature(il);
479 
480 	/* Send pointers to protocol/runtime uCode image ... init code will
481 	 * load and launch runtime uCode, which will send us another "Alive"
482 	 * notification. */
483 	D_INFO("Initialization Alive received.\n");
484 	if (il4965_set_ucode_ptrs(il)) {
485 		/* Runtime instruction load won't happen;
486 		 * take it all the way back down so we can try again */
487 		D_INFO("Couldn't set up uCode pointers.\n");
488 		goto restart;
489 	}
490 	return;
491 
492 restart:
493 	queue_work(il->workqueue, &il->restart);
494 }
495 
496 static bool
497 iw4965_is_ht40_channel(__le32 rxon_flags)
498 {
499 	int chan_mod =
500 	    le32_to_cpu(rxon_flags & RXON_FLG_CHANNEL_MODE_MSK) >>
501 	    RXON_FLG_CHANNEL_MODE_POS;
502 	return (chan_mod == CHANNEL_MODE_PURE_40 ||
503 		chan_mod == CHANNEL_MODE_MIXED);
504 }
505 
506 void
507 il4965_nic_config(struct il_priv *il)
508 {
509 	unsigned long flags;
510 	u16 radio_cfg;
511 
512 	spin_lock_irqsave(&il->lock, flags);
513 
514 	radio_cfg = il_eeprom_query16(il, EEPROM_RADIO_CONFIG);
515 
516 	/* write radio config values to register */
517 	if (EEPROM_RF_CFG_TYPE_MSK(radio_cfg) == EEPROM_4965_RF_CFG_TYPE_MAX)
518 		il_set_bit(il, CSR_HW_IF_CONFIG_REG,
519 			   EEPROM_RF_CFG_TYPE_MSK(radio_cfg) |
520 			   EEPROM_RF_CFG_STEP_MSK(radio_cfg) |
521 			   EEPROM_RF_CFG_DASH_MSK(radio_cfg));
522 
523 	/* set CSR_HW_CONFIG_REG for uCode use */
524 	il_set_bit(il, CSR_HW_IF_CONFIG_REG,
525 		   CSR_HW_IF_CONFIG_REG_BIT_RADIO_SI |
526 		   CSR_HW_IF_CONFIG_REG_BIT_MAC_SI);
527 
528 	il->calib_info =
529 	    (struct il_eeprom_calib_info *)
530 	    il_eeprom_query_addr(il, EEPROM_4965_CALIB_TXPOWER_OFFSET);
531 
532 	spin_unlock_irqrestore(&il->lock, flags);
533 }
534 
535 /* Reset differential Rx gains in NIC to prepare for chain noise calibration.
536  * Called after every association, but this runs only once!
537  *  ... once chain noise is calibrated the first time, it's good forever.  */
538 static void
539 il4965_chain_noise_reset(struct il_priv *il)
540 {
541 	struct il_chain_noise_data *data = &(il->chain_noise_data);
542 
543 	if (data->state == IL_CHAIN_NOISE_ALIVE && il_is_any_associated(il)) {
544 		struct il_calib_diff_gain_cmd cmd;
545 
546 		/* clear data for chain noise calibration algorithm */
547 		data->chain_noise_a = 0;
548 		data->chain_noise_b = 0;
549 		data->chain_noise_c = 0;
550 		data->chain_signal_a = 0;
551 		data->chain_signal_b = 0;
552 		data->chain_signal_c = 0;
553 		data->beacon_count = 0;
554 
555 		memset(&cmd, 0, sizeof(cmd));
556 		cmd.hdr.op_code = IL_PHY_CALIBRATE_DIFF_GAIN_CMD;
557 		cmd.diff_gain_a = 0;
558 		cmd.diff_gain_b = 0;
559 		cmd.diff_gain_c = 0;
560 		if (il_send_cmd_pdu(il, C_PHY_CALIBRATION, sizeof(cmd), &cmd))
561 			IL_ERR("Could not send C_PHY_CALIBRATION\n");
562 		data->state = IL_CHAIN_NOISE_ACCUMULATE;
563 		D_CALIB("Run chain_noise_calibrate\n");
564 	}
565 }
566 
567 static s32
568 il4965_math_div_round(s32 num, s32 denom, s32 * res)
569 {
570 	s32 sign = 1;
571 
572 	if (num < 0) {
573 		sign = -sign;
574 		num = -num;
575 	}
576 	if (denom < 0) {
577 		sign = -sign;
578 		denom = -denom;
579 	}
580 	*res = 1;
581 	*res = ((num * 2 + denom) / (denom * 2)) * sign;
582 
583 	return 1;
584 }
585 
586 /**
587  * il4965_get_voltage_compensation - Power supply voltage comp for txpower
588  *
589  * Determines power supply voltage compensation for txpower calculations.
590  * Returns number of 1/2-dB steps to subtract from gain table idx,
591  * to compensate for difference between power supply voltage during
592  * factory measurements, vs. current power supply voltage.
593  *
594  * Voltage indication is higher for lower voltage.
595  * Lower voltage requires more gain (lower gain table idx).
596  */
597 static s32
598 il4965_get_voltage_compensation(s32 eeprom_voltage, s32 current_voltage)
599 {
600 	s32 comp = 0;
601 
602 	if (TX_POWER_IL_ILLEGAL_VOLTAGE == eeprom_voltage ||
603 	    TX_POWER_IL_ILLEGAL_VOLTAGE == current_voltage)
604 		return 0;
605 
606 	il4965_math_div_round(current_voltage - eeprom_voltage,
607 			      TX_POWER_IL_VOLTAGE_CODES_PER_03V, &comp);
608 
609 	if (current_voltage > eeprom_voltage)
610 		comp *= 2;
611 	if ((comp < -2) || (comp > 2))
612 		comp = 0;
613 
614 	return comp;
615 }
616 
617 static s32
618 il4965_get_tx_atten_grp(u16 channel)
619 {
620 	if (channel >= CALIB_IL_TX_ATTEN_GR5_FCH &&
621 	    channel <= CALIB_IL_TX_ATTEN_GR5_LCH)
622 		return CALIB_CH_GROUP_5;
623 
624 	if (channel >= CALIB_IL_TX_ATTEN_GR1_FCH &&
625 	    channel <= CALIB_IL_TX_ATTEN_GR1_LCH)
626 		return CALIB_CH_GROUP_1;
627 
628 	if (channel >= CALIB_IL_TX_ATTEN_GR2_FCH &&
629 	    channel <= CALIB_IL_TX_ATTEN_GR2_LCH)
630 		return CALIB_CH_GROUP_2;
631 
632 	if (channel >= CALIB_IL_TX_ATTEN_GR3_FCH &&
633 	    channel <= CALIB_IL_TX_ATTEN_GR3_LCH)
634 		return CALIB_CH_GROUP_3;
635 
636 	if (channel >= CALIB_IL_TX_ATTEN_GR4_FCH &&
637 	    channel <= CALIB_IL_TX_ATTEN_GR4_LCH)
638 		return CALIB_CH_GROUP_4;
639 
640 	return -EINVAL;
641 }
642 
643 static u32
644 il4965_get_sub_band(const struct il_priv *il, u32 channel)
645 {
646 	s32 b = -1;
647 
648 	for (b = 0; b < EEPROM_TX_POWER_BANDS; b++) {
649 		if (il->calib_info->band_info[b].ch_from == 0)
650 			continue;
651 
652 		if (channel >= il->calib_info->band_info[b].ch_from &&
653 		    channel <= il->calib_info->band_info[b].ch_to)
654 			break;
655 	}
656 
657 	return b;
658 }
659 
660 static s32
661 il4965_interpolate_value(s32 x, s32 x1, s32 y1, s32 x2, s32 y2)
662 {
663 	s32 val;
664 
665 	if (x2 == x1)
666 		return y1;
667 	else {
668 		il4965_math_div_round((x2 - x) * (y1 - y2), (x2 - x1), &val);
669 		return val + y2;
670 	}
671 }
672 
673 /**
674  * il4965_interpolate_chan - Interpolate factory measurements for one channel
675  *
676  * Interpolates factory measurements from the two sample channels within a
677  * sub-band, to apply to channel of interest.  Interpolation is proportional to
678  * differences in channel frequencies, which is proportional to differences
679  * in channel number.
680  */
681 static int
682 il4965_interpolate_chan(struct il_priv *il, u32 channel,
683 			struct il_eeprom_calib_ch_info *chan_info)
684 {
685 	s32 s = -1;
686 	u32 c;
687 	u32 m;
688 	const struct il_eeprom_calib_measure *m1;
689 	const struct il_eeprom_calib_measure *m2;
690 	struct il_eeprom_calib_measure *omeas;
691 	u32 ch_i1;
692 	u32 ch_i2;
693 
694 	s = il4965_get_sub_band(il, channel);
695 	if (s >= EEPROM_TX_POWER_BANDS) {
696 		IL_ERR("Tx Power can not find channel %d\n", channel);
697 		return -1;
698 	}
699 
700 	ch_i1 = il->calib_info->band_info[s].ch1.ch_num;
701 	ch_i2 = il->calib_info->band_info[s].ch2.ch_num;
702 	chan_info->ch_num = (u8) channel;
703 
704 	D_TXPOWER("channel %d subband %d factory cal ch %d & %d\n", channel, s,
705 		  ch_i1, ch_i2);
706 
707 	for (c = 0; c < EEPROM_TX_POWER_TX_CHAINS; c++) {
708 		for (m = 0; m < EEPROM_TX_POWER_MEASUREMENTS; m++) {
709 			m1 = &(il->calib_info->band_info[s].ch1.
710 			       measurements[c][m]);
711 			m2 = &(il->calib_info->band_info[s].ch2.
712 			       measurements[c][m]);
713 			omeas = &(chan_info->measurements[c][m]);
714 
715 			omeas->actual_pow =
716 			    (u8) il4965_interpolate_value(channel, ch_i1,
717 							  m1->actual_pow, ch_i2,
718 							  m2->actual_pow);
719 			omeas->gain_idx =
720 			    (u8) il4965_interpolate_value(channel, ch_i1,
721 							  m1->gain_idx, ch_i2,
722 							  m2->gain_idx);
723 			omeas->temperature =
724 			    (u8) il4965_interpolate_value(channel, ch_i1,
725 							  m1->temperature,
726 							  ch_i2,
727 							  m2->temperature);
728 			omeas->pa_det =
729 			    (s8) il4965_interpolate_value(channel, ch_i1,
730 							  m1->pa_det, ch_i2,
731 							  m2->pa_det);
732 
733 			D_TXPOWER("chain %d meas %d AP1=%d AP2=%d AP=%d\n", c,
734 				  m, m1->actual_pow, m2->actual_pow,
735 				  omeas->actual_pow);
736 			D_TXPOWER("chain %d meas %d NI1=%d NI2=%d NI=%d\n", c,
737 				  m, m1->gain_idx, m2->gain_idx,
738 				  omeas->gain_idx);
739 			D_TXPOWER("chain %d meas %d PA1=%d PA2=%d PA=%d\n", c,
740 				  m, m1->pa_det, m2->pa_det, omeas->pa_det);
741 			D_TXPOWER("chain %d meas %d  T1=%d  T2=%d  T=%d\n", c,
742 				  m, m1->temperature, m2->temperature,
743 				  omeas->temperature);
744 		}
745 	}
746 
747 	return 0;
748 }
749 
750 /* bit-rate-dependent table to prevent Tx distortion, in half-dB units,
751  * for OFDM 6, 12, 18, 24, 36, 48, 54, 60 MBit, and CCK all rates. */
752 static s32 back_off_table[] = {
753 	10, 10, 10, 10, 10, 15, 17, 20,	/* OFDM SISO 20 MHz */
754 	10, 10, 10, 10, 10, 15, 17, 20,	/* OFDM MIMO 20 MHz */
755 	10, 10, 10, 10, 10, 15, 17, 20,	/* OFDM SISO 40 MHz */
756 	10, 10, 10, 10, 10, 15, 17, 20,	/* OFDM MIMO 40 MHz */
757 	10			/* CCK */
758 };
759 
760 /* Thermal compensation values for txpower for various frequency ranges ...
761  *   ratios from 3:1 to 4.5:1 of degrees (Celsius) per half-dB gain adjust */
762 static struct il4965_txpower_comp_entry {
763 	s32 degrees_per_05db_a;
764 	s32 degrees_per_05db_a_denom;
765 } tx_power_cmp_tble[CALIB_CH_GROUP_MAX] = {
766 	{
767 	9, 2},			/* group 0 5.2, ch  34-43 */
768 	{
769 	4, 1},			/* group 1 5.2, ch  44-70 */
770 	{
771 	4, 1},			/* group 2 5.2, ch  71-124 */
772 	{
773 	4, 1},			/* group 3 5.2, ch 125-200 */
774 	{
775 	3, 1}			/* group 4 2.4, ch   all */
776 };
777 
778 static s32
779 get_min_power_idx(s32 rate_power_idx, u32 band)
780 {
781 	if (!band) {
782 		if ((rate_power_idx & 7) <= 4)
783 			return MIN_TX_GAIN_IDX_52GHZ_EXT;
784 	}
785 	return MIN_TX_GAIN_IDX;
786 }
787 
788 struct gain_entry {
789 	u8 dsp;
790 	u8 radio;
791 };
792 
793 static const struct gain_entry gain_table[2][108] = {
794 	/* 5.2GHz power gain idx table */
795 	{
796 	 {123, 0x3F},		/* highest txpower */
797 	 {117, 0x3F},
798 	 {110, 0x3F},
799 	 {104, 0x3F},
800 	 {98, 0x3F},
801 	 {110, 0x3E},
802 	 {104, 0x3E},
803 	 {98, 0x3E},
804 	 {110, 0x3D},
805 	 {104, 0x3D},
806 	 {98, 0x3D},
807 	 {110, 0x3C},
808 	 {104, 0x3C},
809 	 {98, 0x3C},
810 	 {110, 0x3B},
811 	 {104, 0x3B},
812 	 {98, 0x3B},
813 	 {110, 0x3A},
814 	 {104, 0x3A},
815 	 {98, 0x3A},
816 	 {110, 0x39},
817 	 {104, 0x39},
818 	 {98, 0x39},
819 	 {110, 0x38},
820 	 {104, 0x38},
821 	 {98, 0x38},
822 	 {110, 0x37},
823 	 {104, 0x37},
824 	 {98, 0x37},
825 	 {110, 0x36},
826 	 {104, 0x36},
827 	 {98, 0x36},
828 	 {110, 0x35},
829 	 {104, 0x35},
830 	 {98, 0x35},
831 	 {110, 0x34},
832 	 {104, 0x34},
833 	 {98, 0x34},
834 	 {110, 0x33},
835 	 {104, 0x33},
836 	 {98, 0x33},
837 	 {110, 0x32},
838 	 {104, 0x32},
839 	 {98, 0x32},
840 	 {110, 0x31},
841 	 {104, 0x31},
842 	 {98, 0x31},
843 	 {110, 0x30},
844 	 {104, 0x30},
845 	 {98, 0x30},
846 	 {110, 0x25},
847 	 {104, 0x25},
848 	 {98, 0x25},
849 	 {110, 0x24},
850 	 {104, 0x24},
851 	 {98, 0x24},
852 	 {110, 0x23},
853 	 {104, 0x23},
854 	 {98, 0x23},
855 	 {110, 0x22},
856 	 {104, 0x18},
857 	 {98, 0x18},
858 	 {110, 0x17},
859 	 {104, 0x17},
860 	 {98, 0x17},
861 	 {110, 0x16},
862 	 {104, 0x16},
863 	 {98, 0x16},
864 	 {110, 0x15},
865 	 {104, 0x15},
866 	 {98, 0x15},
867 	 {110, 0x14},
868 	 {104, 0x14},
869 	 {98, 0x14},
870 	 {110, 0x13},
871 	 {104, 0x13},
872 	 {98, 0x13},
873 	 {110, 0x12},
874 	 {104, 0x08},
875 	 {98, 0x08},
876 	 {110, 0x07},
877 	 {104, 0x07},
878 	 {98, 0x07},
879 	 {110, 0x06},
880 	 {104, 0x06},
881 	 {98, 0x06},
882 	 {110, 0x05},
883 	 {104, 0x05},
884 	 {98, 0x05},
885 	 {110, 0x04},
886 	 {104, 0x04},
887 	 {98, 0x04},
888 	 {110, 0x03},
889 	 {104, 0x03},
890 	 {98, 0x03},
891 	 {110, 0x02},
892 	 {104, 0x02},
893 	 {98, 0x02},
894 	 {110, 0x01},
895 	 {104, 0x01},
896 	 {98, 0x01},
897 	 {110, 0x00},
898 	 {104, 0x00},
899 	 {98, 0x00},
900 	 {93, 0x00},
901 	 {88, 0x00},
902 	 {83, 0x00},
903 	 {78, 0x00},
904 	 },
905 	/* 2.4GHz power gain idx table */
906 	{
907 	 {110, 0x3f},		/* highest txpower */
908 	 {104, 0x3f},
909 	 {98, 0x3f},
910 	 {110, 0x3e},
911 	 {104, 0x3e},
912 	 {98, 0x3e},
913 	 {110, 0x3d},
914 	 {104, 0x3d},
915 	 {98, 0x3d},
916 	 {110, 0x3c},
917 	 {104, 0x3c},
918 	 {98, 0x3c},
919 	 {110, 0x3b},
920 	 {104, 0x3b},
921 	 {98, 0x3b},
922 	 {110, 0x3a},
923 	 {104, 0x3a},
924 	 {98, 0x3a},
925 	 {110, 0x39},
926 	 {104, 0x39},
927 	 {98, 0x39},
928 	 {110, 0x38},
929 	 {104, 0x38},
930 	 {98, 0x38},
931 	 {110, 0x37},
932 	 {104, 0x37},
933 	 {98, 0x37},
934 	 {110, 0x36},
935 	 {104, 0x36},
936 	 {98, 0x36},
937 	 {110, 0x35},
938 	 {104, 0x35},
939 	 {98, 0x35},
940 	 {110, 0x34},
941 	 {104, 0x34},
942 	 {98, 0x34},
943 	 {110, 0x33},
944 	 {104, 0x33},
945 	 {98, 0x33},
946 	 {110, 0x32},
947 	 {104, 0x32},
948 	 {98, 0x32},
949 	 {110, 0x31},
950 	 {104, 0x31},
951 	 {98, 0x31},
952 	 {110, 0x30},
953 	 {104, 0x30},
954 	 {98, 0x30},
955 	 {110, 0x6},
956 	 {104, 0x6},
957 	 {98, 0x6},
958 	 {110, 0x5},
959 	 {104, 0x5},
960 	 {98, 0x5},
961 	 {110, 0x4},
962 	 {104, 0x4},
963 	 {98, 0x4},
964 	 {110, 0x3},
965 	 {104, 0x3},
966 	 {98, 0x3},
967 	 {110, 0x2},
968 	 {104, 0x2},
969 	 {98, 0x2},
970 	 {110, 0x1},
971 	 {104, 0x1},
972 	 {98, 0x1},
973 	 {110, 0x0},
974 	 {104, 0x0},
975 	 {98, 0x0},
976 	 {97, 0},
977 	 {96, 0},
978 	 {95, 0},
979 	 {94, 0},
980 	 {93, 0},
981 	 {92, 0},
982 	 {91, 0},
983 	 {90, 0},
984 	 {89, 0},
985 	 {88, 0},
986 	 {87, 0},
987 	 {86, 0},
988 	 {85, 0},
989 	 {84, 0},
990 	 {83, 0},
991 	 {82, 0},
992 	 {81, 0},
993 	 {80, 0},
994 	 {79, 0},
995 	 {78, 0},
996 	 {77, 0},
997 	 {76, 0},
998 	 {75, 0},
999 	 {74, 0},
1000 	 {73, 0},
1001 	 {72, 0},
1002 	 {71, 0},
1003 	 {70, 0},
1004 	 {69, 0},
1005 	 {68, 0},
1006 	 {67, 0},
1007 	 {66, 0},
1008 	 {65, 0},
1009 	 {64, 0},
1010 	 {63, 0},
1011 	 {62, 0},
1012 	 {61, 0},
1013 	 {60, 0},
1014 	 {59, 0},
1015 	 }
1016 };
1017 
1018 static int
1019 il4965_fill_txpower_tbl(struct il_priv *il, u8 band, u16 channel, u8 is_ht40,
1020 			u8 ctrl_chan_high,
1021 			struct il4965_tx_power_db *tx_power_tbl)
1022 {
1023 	u8 saturation_power;
1024 	s32 target_power;
1025 	s32 user_target_power;
1026 	s32 power_limit;
1027 	s32 current_temp;
1028 	s32 reg_limit;
1029 	s32 current_regulatory;
1030 	s32 txatten_grp = CALIB_CH_GROUP_MAX;
1031 	int i;
1032 	int c;
1033 	const struct il_channel_info *ch_info = NULL;
1034 	struct il_eeprom_calib_ch_info ch_eeprom_info;
1035 	const struct il_eeprom_calib_measure *measurement;
1036 	s16 voltage;
1037 	s32 init_voltage;
1038 	s32 voltage_compensation;
1039 	s32 degrees_per_05db_num;
1040 	s32 degrees_per_05db_denom;
1041 	s32 factory_temp;
1042 	s32 temperature_comp[2];
1043 	s32 factory_gain_idx[2];
1044 	s32 factory_actual_pwr[2];
1045 	s32 power_idx;
1046 
1047 	/* tx_power_user_lmt is in dBm, convert to half-dBm (half-dB units
1048 	 *   are used for idxing into txpower table) */
1049 	user_target_power = 2 * il->tx_power_user_lmt;
1050 
1051 	/* Get current (RXON) channel, band, width */
1052 	D_TXPOWER("chan %d band %d is_ht40 %d\n", channel, band, is_ht40);
1053 
1054 	ch_info = il_get_channel_info(il, il->band, channel);
1055 
1056 	if (!il_is_channel_valid(ch_info))
1057 		return -EINVAL;
1058 
1059 	/* get txatten group, used to select 1) thermal txpower adjustment
1060 	 *   and 2) mimo txpower balance between Tx chains. */
1061 	txatten_grp = il4965_get_tx_atten_grp(channel);
1062 	if (txatten_grp < 0) {
1063 		IL_ERR("Can't find txatten group for channel %d.\n", channel);
1064 		return txatten_grp;
1065 	}
1066 
1067 	D_TXPOWER("channel %d belongs to txatten group %d\n", channel,
1068 		  txatten_grp);
1069 
1070 	if (is_ht40) {
1071 		if (ctrl_chan_high)
1072 			channel -= 2;
1073 		else
1074 			channel += 2;
1075 	}
1076 
1077 	/* hardware txpower limits ...
1078 	 * saturation (clipping distortion) txpowers are in half-dBm */
1079 	if (band)
1080 		saturation_power = il->calib_info->saturation_power24;
1081 	else
1082 		saturation_power = il->calib_info->saturation_power52;
1083 
1084 	if (saturation_power < IL_TX_POWER_SATURATION_MIN ||
1085 	    saturation_power > IL_TX_POWER_SATURATION_MAX) {
1086 		if (band)
1087 			saturation_power = IL_TX_POWER_DEFAULT_SATURATION_24;
1088 		else
1089 			saturation_power = IL_TX_POWER_DEFAULT_SATURATION_52;
1090 	}
1091 
1092 	/* regulatory txpower limits ... reg_limit values are in half-dBm,
1093 	 *   max_power_avg values are in dBm, convert * 2 */
1094 	if (is_ht40)
1095 		reg_limit = ch_info->ht40_max_power_avg * 2;
1096 	else
1097 		reg_limit = ch_info->max_power_avg * 2;
1098 
1099 	if ((reg_limit < IL_TX_POWER_REGULATORY_MIN) ||
1100 	    (reg_limit > IL_TX_POWER_REGULATORY_MAX)) {
1101 		if (band)
1102 			reg_limit = IL_TX_POWER_DEFAULT_REGULATORY_24;
1103 		else
1104 			reg_limit = IL_TX_POWER_DEFAULT_REGULATORY_52;
1105 	}
1106 
1107 	/* Interpolate txpower calibration values for this channel,
1108 	 *   based on factory calibration tests on spaced channels. */
1109 	il4965_interpolate_chan(il, channel, &ch_eeprom_info);
1110 
1111 	/* calculate tx gain adjustment based on power supply voltage */
1112 	voltage = le16_to_cpu(il->calib_info->voltage);
1113 	init_voltage = (s32) le32_to_cpu(il->card_alive_init.voltage);
1114 	voltage_compensation =
1115 	    il4965_get_voltage_compensation(voltage, init_voltage);
1116 
1117 	D_TXPOWER("curr volt %d eeprom volt %d volt comp %d\n", init_voltage,
1118 		  voltage, voltage_compensation);
1119 
1120 	/* get current temperature (Celsius) */
1121 	current_temp = max(il->temperature, IL_TX_POWER_TEMPERATURE_MIN);
1122 	current_temp = min(il->temperature, IL_TX_POWER_TEMPERATURE_MAX);
1123 	current_temp = KELVIN_TO_CELSIUS(current_temp);
1124 
1125 	/* select thermal txpower adjustment params, based on channel group
1126 	 *   (same frequency group used for mimo txatten adjustment) */
1127 	degrees_per_05db_num =
1128 	    tx_power_cmp_tble[txatten_grp].degrees_per_05db_a;
1129 	degrees_per_05db_denom =
1130 	    tx_power_cmp_tble[txatten_grp].degrees_per_05db_a_denom;
1131 
1132 	/* get per-chain txpower values from factory measurements */
1133 	for (c = 0; c < 2; c++) {
1134 		measurement = &ch_eeprom_info.measurements[c][1];
1135 
1136 		/* txgain adjustment (in half-dB steps) based on difference
1137 		 *   between factory and current temperature */
1138 		factory_temp = measurement->temperature;
1139 		il4965_math_div_round((current_temp -
1140 				       factory_temp) * degrees_per_05db_denom,
1141 				      degrees_per_05db_num,
1142 				      &temperature_comp[c]);
1143 
1144 		factory_gain_idx[c] = measurement->gain_idx;
1145 		factory_actual_pwr[c] = measurement->actual_pow;
1146 
1147 		D_TXPOWER("chain = %d\n", c);
1148 		D_TXPOWER("fctry tmp %d, " "curr tmp %d, comp %d steps\n",
1149 			  factory_temp, current_temp, temperature_comp[c]);
1150 
1151 		D_TXPOWER("fctry idx %d, fctry pwr %d\n", factory_gain_idx[c],
1152 			  factory_actual_pwr[c]);
1153 	}
1154 
1155 	/* for each of 33 bit-rates (including 1 for CCK) */
1156 	for (i = 0; i < POWER_TBL_NUM_ENTRIES; i++) {
1157 		u8 is_mimo_rate;
1158 		union il4965_tx_power_dual_stream tx_power;
1159 
1160 		/* for mimo, reduce each chain's txpower by half
1161 		 * (3dB, 6 steps), so total output power is regulatory
1162 		 * compliant. */
1163 		if (i & 0x8) {
1164 			current_regulatory =
1165 			    reg_limit -
1166 			    IL_TX_POWER_MIMO_REGULATORY_COMPENSATION;
1167 			is_mimo_rate = 1;
1168 		} else {
1169 			current_regulatory = reg_limit;
1170 			is_mimo_rate = 0;
1171 		}
1172 
1173 		/* find txpower limit, either hardware or regulatory */
1174 		power_limit = saturation_power - back_off_table[i];
1175 		if (power_limit > current_regulatory)
1176 			power_limit = current_regulatory;
1177 
1178 		/* reduce user's txpower request if necessary
1179 		 * for this rate on this channel */
1180 		target_power = user_target_power;
1181 		if (target_power > power_limit)
1182 			target_power = power_limit;
1183 
1184 		D_TXPOWER("rate %d sat %d reg %d usr %d tgt %d\n", i,
1185 			  saturation_power - back_off_table[i],
1186 			  current_regulatory, user_target_power, target_power);
1187 
1188 		/* for each of 2 Tx chains (radio transmitters) */
1189 		for (c = 0; c < 2; c++) {
1190 			s32 atten_value;
1191 
1192 			if (is_mimo_rate)
1193 				atten_value =
1194 				    (s32) le32_to_cpu(il->card_alive_init.
1195 						      tx_atten[txatten_grp][c]);
1196 			else
1197 				atten_value = 0;
1198 
1199 			/* calculate idx; higher idx means lower txpower */
1200 			power_idx =
1201 			    (u8) (factory_gain_idx[c] -
1202 				  (target_power - factory_actual_pwr[c]) -
1203 				  temperature_comp[c] - voltage_compensation +
1204 				  atten_value);
1205 
1206 /*			D_TXPOWER("calculated txpower idx %d\n",
1207 						power_idx); */
1208 
1209 			if (power_idx < get_min_power_idx(i, band))
1210 				power_idx = get_min_power_idx(i, band);
1211 
1212 			/* adjust 5 GHz idx to support negative idxes */
1213 			if (!band)
1214 				power_idx += 9;
1215 
1216 			/* CCK, rate 32, reduce txpower for CCK */
1217 			if (i == POWER_TBL_CCK_ENTRY)
1218 				power_idx +=
1219 				    IL_TX_POWER_CCK_COMPENSATION_C_STEP;
1220 
1221 			/* stay within the table! */
1222 			if (power_idx > 107) {
1223 				IL_WARN("txpower idx %d > 107\n", power_idx);
1224 				power_idx = 107;
1225 			}
1226 			if (power_idx < 0) {
1227 				IL_WARN("txpower idx %d < 0\n", power_idx);
1228 				power_idx = 0;
1229 			}
1230 
1231 			/* fill txpower command for this rate/chain */
1232 			tx_power.s.radio_tx_gain[c] =
1233 			    gain_table[band][power_idx].radio;
1234 			tx_power.s.dsp_predis_atten[c] =
1235 			    gain_table[band][power_idx].dsp;
1236 
1237 			D_TXPOWER("chain %d mimo %d idx %d "
1238 				  "gain 0x%02x dsp %d\n", c, atten_value,
1239 				  power_idx, tx_power.s.radio_tx_gain[c],
1240 				  tx_power.s.dsp_predis_atten[c]);
1241 		}		/* for each chain */
1242 
1243 		tx_power_tbl->power_tbl[i].dw = cpu_to_le32(tx_power.dw);
1244 
1245 	}			/* for each rate */
1246 
1247 	return 0;
1248 }
1249 
1250 /**
1251  * il4965_send_tx_power - Configure the TXPOWER level user limit
1252  *
1253  * Uses the active RXON for channel, band, and characteristics (ht40, high)
1254  * The power limit is taken from il->tx_power_user_lmt.
1255  */
1256 static int
1257 il4965_send_tx_power(struct il_priv *il)
1258 {
1259 	struct il4965_txpowertable_cmd cmd = { 0 };
1260 	int ret;
1261 	u8 band = 0;
1262 	bool is_ht40 = false;
1263 	u8 ctrl_chan_high = 0;
1264 
1265 	if (WARN_ONCE
1266 	    (test_bit(S_SCAN_HW, &il->status),
1267 	     "TX Power requested while scanning!\n"))
1268 		return -EAGAIN;
1269 
1270 	band = il->band == NL80211_BAND_2GHZ;
1271 
1272 	is_ht40 = iw4965_is_ht40_channel(il->active.flags);
1273 
1274 	if (is_ht40 && (il->active.flags & RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK))
1275 		ctrl_chan_high = 1;
1276 
1277 	cmd.band = band;
1278 	cmd.channel = il->active.channel;
1279 
1280 	ret =
1281 	    il4965_fill_txpower_tbl(il, band, le16_to_cpu(il->active.channel),
1282 				    is_ht40, ctrl_chan_high, &cmd.tx_power);
1283 	if (ret)
1284 		goto out;
1285 
1286 	ret = il_send_cmd_pdu(il, C_TX_PWR_TBL, sizeof(cmd), &cmd);
1287 
1288 out:
1289 	return ret;
1290 }
1291 
1292 static int
1293 il4965_send_rxon_assoc(struct il_priv *il)
1294 {
1295 	int ret = 0;
1296 	struct il4965_rxon_assoc_cmd rxon_assoc;
1297 	const struct il_rxon_cmd *rxon1 = &il->staging;
1298 	const struct il_rxon_cmd *rxon2 = &il->active;
1299 
1300 	if (rxon1->flags == rxon2->flags &&
1301 	    rxon1->filter_flags == rxon2->filter_flags &&
1302 	    rxon1->cck_basic_rates == rxon2->cck_basic_rates &&
1303 	    rxon1->ofdm_ht_single_stream_basic_rates ==
1304 	    rxon2->ofdm_ht_single_stream_basic_rates &&
1305 	    rxon1->ofdm_ht_dual_stream_basic_rates ==
1306 	    rxon2->ofdm_ht_dual_stream_basic_rates &&
1307 	    rxon1->rx_chain == rxon2->rx_chain &&
1308 	    rxon1->ofdm_basic_rates == rxon2->ofdm_basic_rates) {
1309 		D_INFO("Using current RXON_ASSOC.  Not resending.\n");
1310 		return 0;
1311 	}
1312 
1313 	rxon_assoc.flags = il->staging.flags;
1314 	rxon_assoc.filter_flags = il->staging.filter_flags;
1315 	rxon_assoc.ofdm_basic_rates = il->staging.ofdm_basic_rates;
1316 	rxon_assoc.cck_basic_rates = il->staging.cck_basic_rates;
1317 	rxon_assoc.reserved = 0;
1318 	rxon_assoc.ofdm_ht_single_stream_basic_rates =
1319 	    il->staging.ofdm_ht_single_stream_basic_rates;
1320 	rxon_assoc.ofdm_ht_dual_stream_basic_rates =
1321 	    il->staging.ofdm_ht_dual_stream_basic_rates;
1322 	rxon_assoc.rx_chain_select_flags = il->staging.rx_chain;
1323 
1324 	ret =
1325 	    il_send_cmd_pdu_async(il, C_RXON_ASSOC, sizeof(rxon_assoc),
1326 				  &rxon_assoc, NULL);
1327 
1328 	return ret;
1329 }
1330 
1331 static int
1332 il4965_commit_rxon(struct il_priv *il)
1333 {
1334 	/* cast away the const for active_rxon in this function */
1335 	struct il_rxon_cmd *active_rxon = (void *)&il->active;
1336 	int ret;
1337 	bool new_assoc = !!(il->staging.filter_flags & RXON_FILTER_ASSOC_MSK);
1338 
1339 	if (!il_is_alive(il))
1340 		return -EBUSY;
1341 
1342 	/* always get timestamp with Rx frame */
1343 	il->staging.flags |= RXON_FLG_TSF2HOST_MSK;
1344 
1345 	ret = il_check_rxon_cmd(il);
1346 	if (ret) {
1347 		IL_ERR("Invalid RXON configuration.  Not committing.\n");
1348 		return -EINVAL;
1349 	}
1350 
1351 	/*
1352 	 * receive commit_rxon request
1353 	 * abort any previous channel switch if still in process
1354 	 */
1355 	if (test_bit(S_CHANNEL_SWITCH_PENDING, &il->status) &&
1356 	    il->switch_channel != il->staging.channel) {
1357 		D_11H("abort channel switch on %d\n",
1358 		      le16_to_cpu(il->switch_channel));
1359 		il_chswitch_done(il, false);
1360 	}
1361 
1362 	/* If we don't need to send a full RXON, we can use
1363 	 * il_rxon_assoc_cmd which is used to reconfigure filter
1364 	 * and other flags for the current radio configuration. */
1365 	if (!il_full_rxon_required(il)) {
1366 		ret = il_send_rxon_assoc(il);
1367 		if (ret) {
1368 			IL_ERR("Error setting RXON_ASSOC (%d)\n", ret);
1369 			return ret;
1370 		}
1371 
1372 		memcpy(active_rxon, &il->staging, sizeof(*active_rxon));
1373 		il_print_rx_config_cmd(il);
1374 		/*
1375 		 * We do not commit tx power settings while channel changing,
1376 		 * do it now if tx power changed.
1377 		 */
1378 		il_set_tx_power(il, il->tx_power_next, false);
1379 		return 0;
1380 	}
1381 
1382 	/* If we are currently associated and the new config requires
1383 	 * an RXON_ASSOC and the new config wants the associated mask enabled,
1384 	 * we must clear the associated from the active configuration
1385 	 * before we apply the new config */
1386 	if (il_is_associated(il) && new_assoc) {
1387 		D_INFO("Toggling associated bit on current RXON\n");
1388 		active_rxon->filter_flags &= ~RXON_FILTER_ASSOC_MSK;
1389 
1390 		ret =
1391 		    il_send_cmd_pdu(il, C_RXON,
1392 				    sizeof(struct il_rxon_cmd), active_rxon);
1393 
1394 		/* If the mask clearing failed then we set
1395 		 * active_rxon back to what it was previously */
1396 		if (ret) {
1397 			active_rxon->filter_flags |= RXON_FILTER_ASSOC_MSK;
1398 			IL_ERR("Error clearing ASSOC_MSK (%d)\n", ret);
1399 			return ret;
1400 		}
1401 		il_clear_ucode_stations(il);
1402 		il_restore_stations(il);
1403 		ret = il4965_restore_default_wep_keys(il);
1404 		if (ret) {
1405 			IL_ERR("Failed to restore WEP keys (%d)\n", ret);
1406 			return ret;
1407 		}
1408 	}
1409 
1410 	D_INFO("Sending RXON\n" "* with%s RXON_FILTER_ASSOC_MSK\n"
1411 	       "* channel = %d\n" "* bssid = %pM\n", (new_assoc ? "" : "out"),
1412 	       le16_to_cpu(il->staging.channel), il->staging.bssid_addr);
1413 
1414 	il_set_rxon_hwcrypto(il, !il->cfg->mod_params->sw_crypto);
1415 
1416 	/* Apply the new configuration
1417 	 * RXON unassoc clears the station table in uCode so restoration of
1418 	 * stations is needed after it (the RXON command) completes
1419 	 */
1420 	if (!new_assoc) {
1421 		ret =
1422 		    il_send_cmd_pdu(il, C_RXON,
1423 				    sizeof(struct il_rxon_cmd), &il->staging);
1424 		if (ret) {
1425 			IL_ERR("Error setting new RXON (%d)\n", ret);
1426 			return ret;
1427 		}
1428 		D_INFO("Return from !new_assoc RXON.\n");
1429 		memcpy(active_rxon, &il->staging, sizeof(*active_rxon));
1430 		il_clear_ucode_stations(il);
1431 		il_restore_stations(il);
1432 		ret = il4965_restore_default_wep_keys(il);
1433 		if (ret) {
1434 			IL_ERR("Failed to restore WEP keys (%d)\n", ret);
1435 			return ret;
1436 		}
1437 	}
1438 	if (new_assoc) {
1439 		il->start_calib = 0;
1440 		/* Apply the new configuration
1441 		 * RXON assoc doesn't clear the station table in uCode,
1442 		 */
1443 		ret =
1444 		    il_send_cmd_pdu(il, C_RXON,
1445 				    sizeof(struct il_rxon_cmd), &il->staging);
1446 		if (ret) {
1447 			IL_ERR("Error setting new RXON (%d)\n", ret);
1448 			return ret;
1449 		}
1450 		memcpy(active_rxon, &il->staging, sizeof(*active_rxon));
1451 	}
1452 	il_print_rx_config_cmd(il);
1453 
1454 	il4965_init_sensitivity(il);
1455 
1456 	/* If we issue a new RXON command which required a tune then we must
1457 	 * send a new TXPOWER command or we won't be able to Tx any frames */
1458 	ret = il_set_tx_power(il, il->tx_power_next, true);
1459 	if (ret) {
1460 		IL_ERR("Error sending TX power (%d)\n", ret);
1461 		return ret;
1462 	}
1463 
1464 	return 0;
1465 }
1466 
1467 static int
1468 il4965_hw_channel_switch(struct il_priv *il,
1469 			 struct ieee80211_channel_switch *ch_switch)
1470 {
1471 	int rc;
1472 	u8 band = 0;
1473 	bool is_ht40 = false;
1474 	u8 ctrl_chan_high = 0;
1475 	struct il4965_channel_switch_cmd cmd;
1476 	const struct il_channel_info *ch_info;
1477 	u32 switch_time_in_usec, ucode_switch_time;
1478 	u16 ch;
1479 	u32 tsf_low;
1480 	u8 switch_count;
1481 	u16 beacon_interval = le16_to_cpu(il->timing.beacon_interval);
1482 	struct ieee80211_vif *vif = il->vif;
1483 	band = (il->band == NL80211_BAND_2GHZ);
1484 
1485 	if (WARN_ON_ONCE(vif == NULL))
1486 		return -EIO;
1487 
1488 	is_ht40 = iw4965_is_ht40_channel(il->staging.flags);
1489 
1490 	if (is_ht40 && (il->staging.flags & RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK))
1491 		ctrl_chan_high = 1;
1492 
1493 	cmd.band = band;
1494 	cmd.expect_beacon = 0;
1495 	ch = ch_switch->chandef.chan->hw_value;
1496 	cmd.channel = cpu_to_le16(ch);
1497 	cmd.rxon_flags = il->staging.flags;
1498 	cmd.rxon_filter_flags = il->staging.filter_flags;
1499 	switch_count = ch_switch->count;
1500 	tsf_low = ch_switch->timestamp & 0x0ffffffff;
1501 	/*
1502 	 * calculate the ucode channel switch time
1503 	 * adding TSF as one of the factor for when to switch
1504 	 */
1505 	if (il->ucode_beacon_time > tsf_low && beacon_interval) {
1506 		if (switch_count >
1507 		    ((il->ucode_beacon_time - tsf_low) / beacon_interval)) {
1508 			switch_count -=
1509 			    (il->ucode_beacon_time - tsf_low) / beacon_interval;
1510 		} else
1511 			switch_count = 0;
1512 	}
1513 	if (switch_count <= 1)
1514 		cmd.switch_time = cpu_to_le32(il->ucode_beacon_time);
1515 	else {
1516 		switch_time_in_usec =
1517 		    vif->bss_conf.beacon_int * switch_count * TIME_UNIT;
1518 		ucode_switch_time =
1519 		    il_usecs_to_beacons(il, switch_time_in_usec,
1520 					beacon_interval);
1521 		cmd.switch_time =
1522 		    il_add_beacon_time(il, il->ucode_beacon_time,
1523 				       ucode_switch_time, beacon_interval);
1524 	}
1525 	D_11H("uCode time for the switch is 0x%x\n", cmd.switch_time);
1526 	ch_info = il_get_channel_info(il, il->band, ch);
1527 	if (ch_info)
1528 		cmd.expect_beacon = il_is_channel_radar(ch_info);
1529 	else {
1530 		IL_ERR("invalid channel switch from %u to %u\n",
1531 		       il->active.channel, ch);
1532 		return -EFAULT;
1533 	}
1534 
1535 	rc = il4965_fill_txpower_tbl(il, band, ch, is_ht40, ctrl_chan_high,
1536 				     &cmd.tx_power);
1537 	if (rc) {
1538 		D_11H("error:%d  fill txpower_tbl\n", rc);
1539 		return rc;
1540 	}
1541 
1542 	return il_send_cmd_pdu(il, C_CHANNEL_SWITCH, sizeof(cmd), &cmd);
1543 }
1544 
1545 /**
1546  * il4965_txq_update_byte_cnt_tbl - Set up entry in Tx byte-count array
1547  */
1548 static void
1549 il4965_txq_update_byte_cnt_tbl(struct il_priv *il, struct il_tx_queue *txq,
1550 			       u16 byte_cnt)
1551 {
1552 	struct il4965_scd_bc_tbl *scd_bc_tbl = il->scd_bc_tbls.addr;
1553 	int txq_id = txq->q.id;
1554 	int write_ptr = txq->q.write_ptr;
1555 	int len = byte_cnt + IL_TX_CRC_SIZE + IL_TX_DELIMITER_SIZE;
1556 	__le16 bc_ent;
1557 
1558 	WARN_ON(len > 0xFFF || write_ptr >= TFD_QUEUE_SIZE_MAX);
1559 
1560 	bc_ent = cpu_to_le16(len & 0xFFF);
1561 	/* Set up byte count within first 256 entries */
1562 	scd_bc_tbl[txq_id].tfd_offset[write_ptr] = bc_ent;
1563 
1564 	/* If within first 64 entries, duplicate at end */
1565 	if (write_ptr < TFD_QUEUE_SIZE_BC_DUP)
1566 		scd_bc_tbl[txq_id].tfd_offset[TFD_QUEUE_SIZE_MAX + write_ptr] =
1567 		    bc_ent;
1568 }
1569 
1570 /**
1571  * il4965_hw_get_temperature - return the calibrated temperature (in Kelvin)
1572  * @stats: Provides the temperature reading from the uCode
1573  *
1574  * A return of <0 indicates bogus data in the stats
1575  */
1576 static int
1577 il4965_hw_get_temperature(struct il_priv *il)
1578 {
1579 	s32 temperature;
1580 	s32 vt;
1581 	s32 R1, R2, R3;
1582 	u32 R4;
1583 
1584 	if (test_bit(S_TEMPERATURE, &il->status) &&
1585 	    (il->_4965.stats.flag & STATS_REPLY_FLG_HT40_MODE_MSK)) {
1586 		D_TEMP("Running HT40 temperature calibration\n");
1587 		R1 = (s32) le32_to_cpu(il->card_alive_init.therm_r1[1]);
1588 		R2 = (s32) le32_to_cpu(il->card_alive_init.therm_r2[1]);
1589 		R3 = (s32) le32_to_cpu(il->card_alive_init.therm_r3[1]);
1590 		R4 = le32_to_cpu(il->card_alive_init.therm_r4[1]);
1591 	} else {
1592 		D_TEMP("Running temperature calibration\n");
1593 		R1 = (s32) le32_to_cpu(il->card_alive_init.therm_r1[0]);
1594 		R2 = (s32) le32_to_cpu(il->card_alive_init.therm_r2[0]);
1595 		R3 = (s32) le32_to_cpu(il->card_alive_init.therm_r3[0]);
1596 		R4 = le32_to_cpu(il->card_alive_init.therm_r4[0]);
1597 	}
1598 
1599 	/*
1600 	 * Temperature is only 23 bits, so sign extend out to 32.
1601 	 *
1602 	 * NOTE If we haven't received a stats notification yet
1603 	 * with an updated temperature, use R4 provided to us in the
1604 	 * "initialize" ALIVE response.
1605 	 */
1606 	if (!test_bit(S_TEMPERATURE, &il->status))
1607 		vt = sign_extend32(R4, 23);
1608 	else
1609 		vt = sign_extend32(le32_to_cpu
1610 				   (il->_4965.stats.general.common.temperature),
1611 				   23);
1612 
1613 	D_TEMP("Calib values R[1-3]: %d %d %d R4: %d\n", R1, R2, R3, vt);
1614 
1615 	if (R3 == R1) {
1616 		IL_ERR("Calibration conflict R1 == R3\n");
1617 		return -1;
1618 	}
1619 
1620 	/* Calculate temperature in degrees Kelvin, adjust by 97%.
1621 	 * Add offset to center the adjustment around 0 degrees Centigrade. */
1622 	temperature = TEMPERATURE_CALIB_A_VAL * (vt - R2);
1623 	temperature /= (R3 - R1);
1624 	temperature =
1625 	    (temperature * 97) / 100 + TEMPERATURE_CALIB_KELVIN_OFFSET;
1626 
1627 	D_TEMP("Calibrated temperature: %dK, %dC\n", temperature,
1628 	       KELVIN_TO_CELSIUS(temperature));
1629 
1630 	return temperature;
1631 }
1632 
1633 /* Adjust Txpower only if temperature variance is greater than threshold. */
1634 #define IL_TEMPERATURE_THRESHOLD   3
1635 
1636 /**
1637  * il4965_is_temp_calib_needed - determines if new calibration is needed
1638  *
1639  * If the temperature changed has changed sufficiently, then a recalibration
1640  * is needed.
1641  *
1642  * Assumes caller will replace il->last_temperature once calibration
1643  * executed.
1644  */
1645 static int
1646 il4965_is_temp_calib_needed(struct il_priv *il)
1647 {
1648 	int temp_diff;
1649 
1650 	if (!test_bit(S_STATS, &il->status)) {
1651 		D_TEMP("Temperature not updated -- no stats.\n");
1652 		return 0;
1653 	}
1654 
1655 	temp_diff = il->temperature - il->last_temperature;
1656 
1657 	/* get absolute value */
1658 	if (temp_diff < 0) {
1659 		D_POWER("Getting cooler, delta %d\n", temp_diff);
1660 		temp_diff = -temp_diff;
1661 	} else if (temp_diff == 0)
1662 		D_POWER("Temperature unchanged\n");
1663 	else
1664 		D_POWER("Getting warmer, delta %d\n", temp_diff);
1665 
1666 	if (temp_diff < IL_TEMPERATURE_THRESHOLD) {
1667 		D_POWER(" => thermal txpower calib not needed\n");
1668 		return 0;
1669 	}
1670 
1671 	D_POWER(" => thermal txpower calib needed\n");
1672 
1673 	return 1;
1674 }
1675 
1676 void
1677 il4965_temperature_calib(struct il_priv *il)
1678 {
1679 	s32 temp;
1680 
1681 	temp = il4965_hw_get_temperature(il);
1682 	if (IL_TX_POWER_TEMPERATURE_OUT_OF_RANGE(temp))
1683 		return;
1684 
1685 	if (il->temperature != temp) {
1686 		if (il->temperature)
1687 			D_TEMP("Temperature changed " "from %dC to %dC\n",
1688 			       KELVIN_TO_CELSIUS(il->temperature),
1689 			       KELVIN_TO_CELSIUS(temp));
1690 		else
1691 			D_TEMP("Temperature " "initialized to %dC\n",
1692 			       KELVIN_TO_CELSIUS(temp));
1693 	}
1694 
1695 	il->temperature = temp;
1696 	set_bit(S_TEMPERATURE, &il->status);
1697 
1698 	if (!il->disable_tx_power_cal &&
1699 	    unlikely(!test_bit(S_SCANNING, &il->status)) &&
1700 	    il4965_is_temp_calib_needed(il))
1701 		queue_work(il->workqueue, &il->txpower_work);
1702 }
1703 
1704 static u16
1705 il4965_get_hcmd_size(u8 cmd_id, u16 len)
1706 {
1707 	switch (cmd_id) {
1708 	case C_RXON:
1709 		return (u16) sizeof(struct il4965_rxon_cmd);
1710 	default:
1711 		return len;
1712 	}
1713 }
1714 
1715 static u16
1716 il4965_build_addsta_hcmd(const struct il_addsta_cmd *cmd, u8 * data)
1717 {
1718 	struct il4965_addsta_cmd *addsta = (struct il4965_addsta_cmd *)data;
1719 	addsta->mode = cmd->mode;
1720 	memcpy(&addsta->sta, &cmd->sta, sizeof(struct sta_id_modify));
1721 	memcpy(&addsta->key, &cmd->key, sizeof(struct il4965_keyinfo));
1722 	addsta->station_flags = cmd->station_flags;
1723 	addsta->station_flags_msk = cmd->station_flags_msk;
1724 	addsta->tid_disable_tx = cmd->tid_disable_tx;
1725 	addsta->add_immediate_ba_tid = cmd->add_immediate_ba_tid;
1726 	addsta->remove_immediate_ba_tid = cmd->remove_immediate_ba_tid;
1727 	addsta->add_immediate_ba_ssn = cmd->add_immediate_ba_ssn;
1728 	addsta->sleep_tx_count = cmd->sleep_tx_count;
1729 	addsta->reserved1 = cpu_to_le16(0);
1730 	addsta->reserved2 = cpu_to_le16(0);
1731 
1732 	return (u16) sizeof(struct il4965_addsta_cmd);
1733 }
1734 
1735 static void
1736 il4965_post_scan(struct il_priv *il)
1737 {
1738 	/*
1739 	 * Since setting the RXON may have been deferred while
1740 	 * performing the scan, fire one off if needed
1741 	 */
1742 	if (memcmp(&il->staging, &il->active, sizeof(il->staging)))
1743 		il_commit_rxon(il);
1744 }
1745 
1746 static void
1747 il4965_post_associate(struct il_priv *il)
1748 {
1749 	struct ieee80211_vif *vif = il->vif;
1750 	int ret = 0;
1751 
1752 	if (!vif || !il->is_open)
1753 		return;
1754 
1755 	if (test_bit(S_EXIT_PENDING, &il->status))
1756 		return;
1757 
1758 	il_scan_cancel_timeout(il, 200);
1759 
1760 	il->staging.filter_flags &= ~RXON_FILTER_ASSOC_MSK;
1761 	il_commit_rxon(il);
1762 
1763 	ret = il_send_rxon_timing(il);
1764 	if (ret)
1765 		IL_WARN("RXON timing - " "Attempting to continue.\n");
1766 
1767 	il->staging.filter_flags |= RXON_FILTER_ASSOC_MSK;
1768 
1769 	il_set_rxon_ht(il, &il->current_ht_config);
1770 
1771 	if (il->ops->set_rxon_chain)
1772 		il->ops->set_rxon_chain(il);
1773 
1774 	il->staging.assoc_id = cpu_to_le16(vif->bss_conf.aid);
1775 
1776 	D_ASSOC("assoc id %d beacon interval %d\n", vif->bss_conf.aid,
1777 		vif->bss_conf.beacon_int);
1778 
1779 	if (vif->bss_conf.use_short_preamble)
1780 		il->staging.flags |= RXON_FLG_SHORT_PREAMBLE_MSK;
1781 	else
1782 		il->staging.flags &= ~RXON_FLG_SHORT_PREAMBLE_MSK;
1783 
1784 	if (il->staging.flags & RXON_FLG_BAND_24G_MSK) {
1785 		if (vif->bss_conf.use_short_slot)
1786 			il->staging.flags |= RXON_FLG_SHORT_SLOT_MSK;
1787 		else
1788 			il->staging.flags &= ~RXON_FLG_SHORT_SLOT_MSK;
1789 	}
1790 
1791 	il_commit_rxon(il);
1792 
1793 	D_ASSOC("Associated as %d to: %pM\n", vif->bss_conf.aid,
1794 		il->active.bssid_addr);
1795 
1796 	switch (vif->type) {
1797 	case NL80211_IFTYPE_STATION:
1798 		break;
1799 	case NL80211_IFTYPE_ADHOC:
1800 		il4965_send_beacon_cmd(il);
1801 		break;
1802 	default:
1803 		IL_ERR("%s Should not be called in %d mode\n", __func__,
1804 		       vif->type);
1805 		break;
1806 	}
1807 
1808 	/* the chain noise calibration will enabled PM upon completion
1809 	 * If chain noise has already been run, then we need to enable
1810 	 * power management here */
1811 	if (il->chain_noise_data.state == IL_CHAIN_NOISE_DONE)
1812 		il_power_update_mode(il, false);
1813 
1814 	/* Enable Rx differential gain and sensitivity calibrations */
1815 	il4965_chain_noise_reset(il);
1816 	il->start_calib = 1;
1817 }
1818 
1819 static void
1820 il4965_config_ap(struct il_priv *il)
1821 {
1822 	struct ieee80211_vif *vif = il->vif;
1823 	int ret = 0;
1824 
1825 	lockdep_assert_held(&il->mutex);
1826 
1827 	if (test_bit(S_EXIT_PENDING, &il->status))
1828 		return;
1829 
1830 	/* The following should be done only at AP bring up */
1831 	if (!il_is_associated(il)) {
1832 
1833 		/* RXON - unassoc (to set timing command) */
1834 		il->staging.filter_flags &= ~RXON_FILTER_ASSOC_MSK;
1835 		il_commit_rxon(il);
1836 
1837 		/* RXON Timing */
1838 		ret = il_send_rxon_timing(il);
1839 		if (ret)
1840 			IL_WARN("RXON timing failed - "
1841 				"Attempting to continue.\n");
1842 
1843 		/* AP has all antennas */
1844 		il->chain_noise_data.active_chains = il->hw_params.valid_rx_ant;
1845 		il_set_rxon_ht(il, &il->current_ht_config);
1846 		if (il->ops->set_rxon_chain)
1847 			il->ops->set_rxon_chain(il);
1848 
1849 		il->staging.assoc_id = 0;
1850 
1851 		if (vif->bss_conf.use_short_preamble)
1852 			il->staging.flags |= RXON_FLG_SHORT_PREAMBLE_MSK;
1853 		else
1854 			il->staging.flags &= ~RXON_FLG_SHORT_PREAMBLE_MSK;
1855 
1856 		if (il->staging.flags & RXON_FLG_BAND_24G_MSK) {
1857 			if (vif->bss_conf.use_short_slot)
1858 				il->staging.flags |= RXON_FLG_SHORT_SLOT_MSK;
1859 			else
1860 				il->staging.flags &= ~RXON_FLG_SHORT_SLOT_MSK;
1861 		}
1862 		/* need to send beacon cmd before committing assoc RXON! */
1863 		il4965_send_beacon_cmd(il);
1864 		/* restore RXON assoc */
1865 		il->staging.filter_flags |= RXON_FILTER_ASSOC_MSK;
1866 		il_commit_rxon(il);
1867 	}
1868 	il4965_send_beacon_cmd(il);
1869 }
1870 
1871 const struct il_ops il4965_ops = {
1872 	.txq_update_byte_cnt_tbl = il4965_txq_update_byte_cnt_tbl,
1873 	.txq_attach_buf_to_tfd = il4965_hw_txq_attach_buf_to_tfd,
1874 	.txq_free_tfd = il4965_hw_txq_free_tfd,
1875 	.txq_init = il4965_hw_tx_queue_init,
1876 	.is_valid_rtc_data_addr = il4965_hw_valid_rtc_data_addr,
1877 	.init_alive_start = il4965_init_alive_start,
1878 	.load_ucode = il4965_load_bsm,
1879 	.dump_nic_error_log = il4965_dump_nic_error_log,
1880 	.dump_fh = il4965_dump_fh,
1881 	.set_channel_switch = il4965_hw_channel_switch,
1882 	.apm_init = il_apm_init,
1883 	.send_tx_power = il4965_send_tx_power,
1884 	.update_chain_flags = il4965_update_chain_flags,
1885 	.eeprom_acquire_semaphore = il4965_eeprom_acquire_semaphore,
1886 	.eeprom_release_semaphore = il4965_eeprom_release_semaphore,
1887 
1888 	.rxon_assoc = il4965_send_rxon_assoc,
1889 	.commit_rxon = il4965_commit_rxon,
1890 	.set_rxon_chain = il4965_set_rxon_chain,
1891 
1892 	.get_hcmd_size = il4965_get_hcmd_size,
1893 	.build_addsta_hcmd = il4965_build_addsta_hcmd,
1894 	.request_scan = il4965_request_scan,
1895 	.post_scan = il4965_post_scan,
1896 
1897 	.post_associate = il4965_post_associate,
1898 	.config_ap = il4965_config_ap,
1899 	.manage_ibss_station = il4965_manage_ibss_station,
1900 	.update_bcast_stations = il4965_update_bcast_stations,
1901 
1902 	.send_led_cmd = il4965_send_led_cmd,
1903 };
1904 
1905 struct il_cfg il4965_cfg = {
1906 	.name = "Intel(R) Wireless WiFi Link 4965AGN",
1907 	.fw_name_pre = IL4965_FW_PRE,
1908 	.ucode_api_max = IL4965_UCODE_API_MAX,
1909 	.ucode_api_min = IL4965_UCODE_API_MIN,
1910 	.sku = IL_SKU_A | IL_SKU_G | IL_SKU_N,
1911 	.valid_tx_ant = ANT_AB,
1912 	.valid_rx_ant = ANT_ABC,
1913 	.eeprom_ver = EEPROM_4965_EEPROM_VERSION,
1914 	.eeprom_calib_ver = EEPROM_4965_TX_POWER_VERSION,
1915 	.mod_params = &il4965_mod_params,
1916 	.led_mode = IL_LED_BLINK,
1917 	/*
1918 	 * Force use of chains B and C for scan RX on 5 GHz band
1919 	 * because the device has off-channel reception on chain A.
1920 	 */
1921 	.scan_rx_antennas[NL80211_BAND_5GHZ] = ANT_BC,
1922 
1923 	.eeprom_size = IL4965_EEPROM_IMG_SIZE,
1924 	.num_of_queues = IL49_NUM_QUEUES,
1925 	.num_of_ampdu_queues = IL49_NUM_AMPDU_QUEUES,
1926 	.pll_cfg_val = 0,
1927 	.set_l0s = true,
1928 	.use_bsm = true,
1929 	.led_compensation = 61,
1930 	.chain_noise_num_beacons = IL4965_CAL_NUM_BEACONS,
1931 	.wd_timeout = IL_DEF_WD_TIMEOUT,
1932 	.temperature_kelvin = true,
1933 	.ucode_tracing = true,
1934 	.sensitivity_calib_by_driver = true,
1935 	.chain_noise_calib_by_driver = true,
1936 
1937 	.regulatory_bands = {
1938 		EEPROM_REGULATORY_BAND_1_CHANNELS,
1939 		EEPROM_REGULATORY_BAND_2_CHANNELS,
1940 		EEPROM_REGULATORY_BAND_3_CHANNELS,
1941 		EEPROM_REGULATORY_BAND_4_CHANNELS,
1942 		EEPROM_REGULATORY_BAND_5_CHANNELS,
1943 		EEPROM_4965_REGULATORY_BAND_24_HT40_CHANNELS,
1944 		EEPROM_4965_REGULATORY_BAND_52_HT40_CHANNELS
1945 	},
1946 
1947 };
1948 
1949 /* Module firmware */
1950 MODULE_FIRMWARE(IL4965_MODULE_FIRMWARE(IL4965_UCODE_API_MAX));
1951