1 // SPDX-License-Identifier: GPL-2.0-only 2 /****************************************************************************** 3 4 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved. 5 6 802.11 status code portion of this file from ethereal-0.10.6: 7 Copyright 2000, Axis Communications AB 8 Ethereal - Network traffic analyzer 9 By Gerald Combs <gerald@ethereal.com> 10 Copyright 1998 Gerald Combs 11 12 13 Contact Information: 14 Intel Linux Wireless <ilw@linux.intel.com> 15 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 16 17 ******************************************************************************/ 18 19 #include <linux/sched.h> 20 #include <linux/slab.h> 21 #include <net/cfg80211-wext.h> 22 #include "ipw2200.h" 23 #include "ipw.h" 24 25 26 #ifndef KBUILD_EXTMOD 27 #define VK "k" 28 #else 29 #define VK 30 #endif 31 32 #ifdef CONFIG_IPW2200_DEBUG 33 #define VD "d" 34 #else 35 #define VD 36 #endif 37 38 #ifdef CONFIG_IPW2200_MONITOR 39 #define VM "m" 40 #else 41 #define VM 42 #endif 43 44 #ifdef CONFIG_IPW2200_PROMISCUOUS 45 #define VP "p" 46 #else 47 #define VP 48 #endif 49 50 #ifdef CONFIG_IPW2200_RADIOTAP 51 #define VR "r" 52 #else 53 #define VR 54 #endif 55 56 #ifdef CONFIG_IPW2200_QOS 57 #define VQ "q" 58 #else 59 #define VQ 60 #endif 61 62 #define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ 63 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver" 64 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation" 65 #define DRV_VERSION IPW2200_VERSION 66 67 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1) 68 69 MODULE_DESCRIPTION(DRV_DESCRIPTION); 70 MODULE_VERSION(DRV_VERSION); 71 MODULE_AUTHOR(DRV_COPYRIGHT); 72 MODULE_LICENSE("GPL"); 73 MODULE_FIRMWARE("ipw2200-ibss.fw"); 74 #ifdef CONFIG_IPW2200_MONITOR 75 MODULE_FIRMWARE("ipw2200-sniffer.fw"); 76 #endif 77 MODULE_FIRMWARE("ipw2200-bss.fw"); 78 79 static int cmdlog = 0; 80 static int debug = 0; 81 static int default_channel = 0; 82 static int network_mode = 0; 83 84 static u32 ipw_debug_level; 85 static int associate; 86 static int auto_create = 1; 87 static int led_support = 1; 88 static int disable = 0; 89 static int bt_coexist = 0; 90 static int hwcrypto = 0; 91 static int roaming = 1; 92 static const char ipw_modes[] = { 93 'a', 'b', 'g', '?' 94 }; 95 static int antenna = CFG_SYS_ANTENNA_BOTH; 96 97 #ifdef CONFIG_IPW2200_PROMISCUOUS 98 static int rtap_iface = 0; /* def: 0 -- do not create rtap interface */ 99 #endif 100 101 static struct ieee80211_rate ipw2200_rates[] = { 102 { .bitrate = 10 }, 103 { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 104 { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 105 { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 106 { .bitrate = 60 }, 107 { .bitrate = 90 }, 108 { .bitrate = 120 }, 109 { .bitrate = 180 }, 110 { .bitrate = 240 }, 111 { .bitrate = 360 }, 112 { .bitrate = 480 }, 113 { .bitrate = 540 } 114 }; 115 116 #define ipw2200_a_rates (ipw2200_rates + 4) 117 #define ipw2200_num_a_rates 8 118 #define ipw2200_bg_rates (ipw2200_rates + 0) 119 #define ipw2200_num_bg_rates 12 120 121 /* Ugly macro to convert literal channel numbers into their mhz equivalents 122 * There are certianly some conditions that will break this (like feeding it '30') 123 * but they shouldn't arise since nothing talks on channel 30. */ 124 #define ieee80211chan2mhz(x) \ 125 (((x) <= 14) ? \ 126 (((x) == 14) ? 2484 : ((x) * 5) + 2407) : \ 127 ((x) + 1000) * 5) 128 129 #ifdef CONFIG_IPW2200_QOS 130 static int qos_enable = 0; 131 static int qos_burst_enable = 0; 132 static int qos_no_ack_mask = 0; 133 static int burst_duration_CCK = 0; 134 static int burst_duration_OFDM = 0; 135 136 static struct libipw_qos_parameters def_qos_parameters_OFDM = { 137 {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM, 138 QOS_TX3_CW_MIN_OFDM}, 139 {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM, 140 QOS_TX3_CW_MAX_OFDM}, 141 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS}, 142 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM}, 143 {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM, 144 QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM} 145 }; 146 147 static struct libipw_qos_parameters def_qos_parameters_CCK = { 148 {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK, 149 QOS_TX3_CW_MIN_CCK}, 150 {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK, 151 QOS_TX3_CW_MAX_CCK}, 152 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS}, 153 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM}, 154 {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK, 155 QOS_TX3_TXOP_LIMIT_CCK} 156 }; 157 158 static struct libipw_qos_parameters def_parameters_OFDM = { 159 {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM, 160 DEF_TX3_CW_MIN_OFDM}, 161 {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM, 162 DEF_TX3_CW_MAX_OFDM}, 163 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS}, 164 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM}, 165 {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM, 166 DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM} 167 }; 168 169 static struct libipw_qos_parameters def_parameters_CCK = { 170 {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK, 171 DEF_TX3_CW_MIN_CCK}, 172 {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK, 173 DEF_TX3_CW_MAX_CCK}, 174 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS}, 175 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM}, 176 {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK, 177 DEF_TX3_TXOP_LIMIT_CCK} 178 }; 179 180 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 }; 181 182 static int from_priority_to_tx_queue[] = { 183 IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1, 184 IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4 185 }; 186 187 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv); 188 189 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters 190 *qos_param); 191 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element 192 *qos_param); 193 #endif /* CONFIG_IPW2200_QOS */ 194 195 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev); 196 static void ipw_remove_current_network(struct ipw_priv *priv); 197 static void ipw_rx(struct ipw_priv *priv); 198 static int ipw_queue_tx_reclaim(struct ipw_priv *priv, 199 struct clx2_tx_queue *txq, int qindex); 200 static int ipw_queue_reset(struct ipw_priv *priv); 201 202 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf, 203 int len, int sync); 204 205 static void ipw_tx_queue_free(struct ipw_priv *); 206 207 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *); 208 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *); 209 static void ipw_rx_queue_replenish(void *); 210 static int ipw_up(struct ipw_priv *); 211 static void ipw_bg_up(struct work_struct *work); 212 static void ipw_down(struct ipw_priv *); 213 static void ipw_bg_down(struct work_struct *work); 214 static int ipw_config(struct ipw_priv *); 215 static int init_supported_rates(struct ipw_priv *priv, 216 struct ipw_supported_rates *prates); 217 static void ipw_set_hwcrypto_keys(struct ipw_priv *); 218 static void ipw_send_wep_keys(struct ipw_priv *, int); 219 220 static int snprint_line(char *buf, size_t count, 221 const u8 * data, u32 len, u32 ofs) 222 { 223 int out, i, j, l; 224 char c; 225 226 out = snprintf(buf, count, "%08X", ofs); 227 228 for (l = 0, i = 0; i < 2; i++) { 229 out += snprintf(buf + out, count - out, " "); 230 for (j = 0; j < 8 && l < len; j++, l++) 231 out += snprintf(buf + out, count - out, "%02X ", 232 data[(i * 8 + j)]); 233 for (; j < 8; j++) 234 out += snprintf(buf + out, count - out, " "); 235 } 236 237 out += snprintf(buf + out, count - out, " "); 238 for (l = 0, i = 0; i < 2; i++) { 239 out += snprintf(buf + out, count - out, " "); 240 for (j = 0; j < 8 && l < len; j++, l++) { 241 c = data[(i * 8 + j)]; 242 if (!isascii(c) || !isprint(c)) 243 c = '.'; 244 245 out += snprintf(buf + out, count - out, "%c", c); 246 } 247 248 for (; j < 8; j++) 249 out += snprintf(buf + out, count - out, " "); 250 } 251 252 return out; 253 } 254 255 static void printk_buf(int level, const u8 * data, u32 len) 256 { 257 char line[81]; 258 u32 ofs = 0; 259 if (!(ipw_debug_level & level)) 260 return; 261 262 while (len) { 263 snprint_line(line, sizeof(line), &data[ofs], 264 min(len, 16U), ofs); 265 printk(KERN_DEBUG "%s\n", line); 266 ofs += 16; 267 len -= min(len, 16U); 268 } 269 } 270 271 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len) 272 { 273 size_t out = size; 274 u32 ofs = 0; 275 int total = 0; 276 277 while (size && len) { 278 out = snprint_line(output, size, &data[ofs], 279 min_t(size_t, len, 16U), ofs); 280 281 ofs += 16; 282 output += out; 283 size -= out; 284 len -= min_t(size_t, len, 16U); 285 total += out; 286 } 287 return total; 288 } 289 290 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */ 291 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg); 292 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b) 293 294 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */ 295 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg); 296 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b) 297 298 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */ 299 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value); 300 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c) 301 { 302 IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__, 303 __LINE__, (u32) (b), (u32) (c)); 304 _ipw_write_reg8(a, b, c); 305 } 306 307 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */ 308 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value); 309 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c) 310 { 311 IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__, 312 __LINE__, (u32) (b), (u32) (c)); 313 _ipw_write_reg16(a, b, c); 314 } 315 316 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */ 317 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value); 318 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c) 319 { 320 IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__, 321 __LINE__, (u32) (b), (u32) (c)); 322 _ipw_write_reg32(a, b, c); 323 } 324 325 /* 8-bit direct write (low 4K) */ 326 static inline void _ipw_write8(struct ipw_priv *ipw, unsigned long ofs, 327 u8 val) 328 { 329 writeb(val, ipw->hw_base + ofs); 330 } 331 332 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */ 333 #define ipw_write8(ipw, ofs, val) do { \ 334 IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, \ 335 __LINE__, (u32)(ofs), (u32)(val)); \ 336 _ipw_write8(ipw, ofs, val); \ 337 } while (0) 338 339 /* 16-bit direct write (low 4K) */ 340 static inline void _ipw_write16(struct ipw_priv *ipw, unsigned long ofs, 341 u16 val) 342 { 343 writew(val, ipw->hw_base + ofs); 344 } 345 346 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */ 347 #define ipw_write16(ipw, ofs, val) do { \ 348 IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, \ 349 __LINE__, (u32)(ofs), (u32)(val)); \ 350 _ipw_write16(ipw, ofs, val); \ 351 } while (0) 352 353 /* 32-bit direct write (low 4K) */ 354 static inline void _ipw_write32(struct ipw_priv *ipw, unsigned long ofs, 355 u32 val) 356 { 357 writel(val, ipw->hw_base + ofs); 358 } 359 360 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */ 361 #define ipw_write32(ipw, ofs, val) do { \ 362 IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, \ 363 __LINE__, (u32)(ofs), (u32)(val)); \ 364 _ipw_write32(ipw, ofs, val); \ 365 } while (0) 366 367 /* 8-bit direct read (low 4K) */ 368 static inline u8 _ipw_read8(struct ipw_priv *ipw, unsigned long ofs) 369 { 370 return readb(ipw->hw_base + ofs); 371 } 372 373 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */ 374 #define ipw_read8(ipw, ofs) ({ \ 375 IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", __FILE__, __LINE__, \ 376 (u32)(ofs)); \ 377 _ipw_read8(ipw, ofs); \ 378 }) 379 380 /* 16-bit direct read (low 4K) */ 381 static inline u16 _ipw_read16(struct ipw_priv *ipw, unsigned long ofs) 382 { 383 return readw(ipw->hw_base + ofs); 384 } 385 386 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */ 387 #define ipw_read16(ipw, ofs) ({ \ 388 IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", __FILE__, __LINE__, \ 389 (u32)(ofs)); \ 390 _ipw_read16(ipw, ofs); \ 391 }) 392 393 /* 32-bit direct read (low 4K) */ 394 static inline u32 _ipw_read32(struct ipw_priv *ipw, unsigned long ofs) 395 { 396 return readl(ipw->hw_base + ofs); 397 } 398 399 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */ 400 #define ipw_read32(ipw, ofs) ({ \ 401 IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", __FILE__, __LINE__, \ 402 (u32)(ofs)); \ 403 _ipw_read32(ipw, ofs); \ 404 }) 405 406 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int); 407 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */ 408 #define ipw_read_indirect(a, b, c, d) ({ \ 409 IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %u bytes\n", __FILE__, \ 410 __LINE__, (u32)(b), (u32)(d)); \ 411 _ipw_read_indirect(a, b, c, d); \ 412 }) 413 414 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */ 415 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data, 416 int num); 417 #define ipw_write_indirect(a, b, c, d) do { \ 418 IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %u bytes\n", __FILE__, \ 419 __LINE__, (u32)(b), (u32)(d)); \ 420 _ipw_write_indirect(a, b, c, d); \ 421 } while (0) 422 423 /* 32-bit indirect write (above 4K) */ 424 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value) 425 { 426 IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value); 427 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg); 428 _ipw_write32(priv, IPW_INDIRECT_DATA, value); 429 } 430 431 /* 8-bit indirect write (above 4K) */ 432 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value) 433 { 434 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */ 435 u32 dif_len = reg - aligned_addr; 436 437 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value); 438 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr); 439 _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value); 440 } 441 442 /* 16-bit indirect write (above 4K) */ 443 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value) 444 { 445 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */ 446 u32 dif_len = (reg - aligned_addr) & (~0x1ul); 447 448 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value); 449 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr); 450 _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value); 451 } 452 453 /* 8-bit indirect read (above 4K) */ 454 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg) 455 { 456 u32 word; 457 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK); 458 IPW_DEBUG_IO(" reg = 0x%8X :\n", reg); 459 word = _ipw_read32(priv, IPW_INDIRECT_DATA); 460 return (word >> ((reg & 0x3) * 8)) & 0xff; 461 } 462 463 /* 32-bit indirect read (above 4K) */ 464 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg) 465 { 466 u32 value; 467 468 IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg); 469 470 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg); 471 value = _ipw_read32(priv, IPW_INDIRECT_DATA); 472 IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x\n", reg, value); 473 return value; 474 } 475 476 /* General purpose, no alignment requirement, iterative (multi-byte) read, */ 477 /* for area above 1st 4K of SRAM/reg space */ 478 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf, 479 int num) 480 { 481 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */ 482 u32 dif_len = addr - aligned_addr; 483 u32 i; 484 485 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num); 486 487 if (num <= 0) { 488 return; 489 } 490 491 /* Read the first dword (or portion) byte by byte */ 492 if (unlikely(dif_len)) { 493 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr); 494 /* Start reading at aligned_addr + dif_len */ 495 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--) 496 *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i); 497 aligned_addr += 4; 498 } 499 500 /* Read all of the middle dwords as dwords, with auto-increment */ 501 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr); 502 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4) 503 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA); 504 505 /* Read the last dword (or portion) byte by byte */ 506 if (unlikely(num)) { 507 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr); 508 for (i = 0; num > 0; i++, num--) 509 *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i); 510 } 511 } 512 513 /* General purpose, no alignment requirement, iterative (multi-byte) write, */ 514 /* for area above 1st 4K of SRAM/reg space */ 515 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf, 516 int num) 517 { 518 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */ 519 u32 dif_len = addr - aligned_addr; 520 u32 i; 521 522 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num); 523 524 if (num <= 0) { 525 return; 526 } 527 528 /* Write the first dword (or portion) byte by byte */ 529 if (unlikely(dif_len)) { 530 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr); 531 /* Start writing at aligned_addr + dif_len */ 532 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++) 533 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf); 534 aligned_addr += 4; 535 } 536 537 /* Write all of the middle dwords as dwords, with auto-increment */ 538 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr); 539 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4) 540 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf); 541 542 /* Write the last dword (or portion) byte by byte */ 543 if (unlikely(num)) { 544 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr); 545 for (i = 0; num > 0; i++, num--, buf++) 546 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf); 547 } 548 } 549 550 /* General purpose, no alignment requirement, iterative (multi-byte) write, */ 551 /* for 1st 4K of SRAM/regs space */ 552 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf, 553 int num) 554 { 555 memcpy_toio((priv->hw_base + addr), buf, num); 556 } 557 558 /* Set bit(s) in low 4K of SRAM/regs */ 559 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask) 560 { 561 ipw_write32(priv, reg, ipw_read32(priv, reg) | mask); 562 } 563 564 /* Clear bit(s) in low 4K of SRAM/regs */ 565 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask) 566 { 567 ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask); 568 } 569 570 static inline void __ipw_enable_interrupts(struct ipw_priv *priv) 571 { 572 if (priv->status & STATUS_INT_ENABLED) 573 return; 574 priv->status |= STATUS_INT_ENABLED; 575 ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL); 576 } 577 578 static inline void __ipw_disable_interrupts(struct ipw_priv *priv) 579 { 580 if (!(priv->status & STATUS_INT_ENABLED)) 581 return; 582 priv->status &= ~STATUS_INT_ENABLED; 583 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL); 584 } 585 586 static inline void ipw_enable_interrupts(struct ipw_priv *priv) 587 { 588 unsigned long flags; 589 590 spin_lock_irqsave(&priv->irq_lock, flags); 591 __ipw_enable_interrupts(priv); 592 spin_unlock_irqrestore(&priv->irq_lock, flags); 593 } 594 595 static inline void ipw_disable_interrupts(struct ipw_priv *priv) 596 { 597 unsigned long flags; 598 599 spin_lock_irqsave(&priv->irq_lock, flags); 600 __ipw_disable_interrupts(priv); 601 spin_unlock_irqrestore(&priv->irq_lock, flags); 602 } 603 604 static char *ipw_error_desc(u32 val) 605 { 606 switch (val) { 607 case IPW_FW_ERROR_OK: 608 return "ERROR_OK"; 609 case IPW_FW_ERROR_FAIL: 610 return "ERROR_FAIL"; 611 case IPW_FW_ERROR_MEMORY_UNDERFLOW: 612 return "MEMORY_UNDERFLOW"; 613 case IPW_FW_ERROR_MEMORY_OVERFLOW: 614 return "MEMORY_OVERFLOW"; 615 case IPW_FW_ERROR_BAD_PARAM: 616 return "BAD_PARAM"; 617 case IPW_FW_ERROR_BAD_CHECKSUM: 618 return "BAD_CHECKSUM"; 619 case IPW_FW_ERROR_NMI_INTERRUPT: 620 return "NMI_INTERRUPT"; 621 case IPW_FW_ERROR_BAD_DATABASE: 622 return "BAD_DATABASE"; 623 case IPW_FW_ERROR_ALLOC_FAIL: 624 return "ALLOC_FAIL"; 625 case IPW_FW_ERROR_DMA_UNDERRUN: 626 return "DMA_UNDERRUN"; 627 case IPW_FW_ERROR_DMA_STATUS: 628 return "DMA_STATUS"; 629 case IPW_FW_ERROR_DINO_ERROR: 630 return "DINO_ERROR"; 631 case IPW_FW_ERROR_EEPROM_ERROR: 632 return "EEPROM_ERROR"; 633 case IPW_FW_ERROR_SYSASSERT: 634 return "SYSASSERT"; 635 case IPW_FW_ERROR_FATAL_ERROR: 636 return "FATAL_ERROR"; 637 default: 638 return "UNKNOWN_ERROR"; 639 } 640 } 641 642 static void ipw_dump_error_log(struct ipw_priv *priv, 643 struct ipw_fw_error *error) 644 { 645 u32 i; 646 647 if (!error) { 648 IPW_ERROR("Error allocating and capturing error log. " 649 "Nothing to dump.\n"); 650 return; 651 } 652 653 IPW_ERROR("Start IPW Error Log Dump:\n"); 654 IPW_ERROR("Status: 0x%08X, Config: %08X\n", 655 error->status, error->config); 656 657 for (i = 0; i < error->elem_len; i++) 658 IPW_ERROR("%s %i 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", 659 ipw_error_desc(error->elem[i].desc), 660 error->elem[i].time, 661 error->elem[i].blink1, 662 error->elem[i].blink2, 663 error->elem[i].link1, 664 error->elem[i].link2, error->elem[i].data); 665 for (i = 0; i < error->log_len; i++) 666 IPW_ERROR("%i\t0x%08x\t%i\n", 667 error->log[i].time, 668 error->log[i].data, error->log[i].event); 669 } 670 671 static inline int ipw_is_init(struct ipw_priv *priv) 672 { 673 return (priv->status & STATUS_INIT) ? 1 : 0; 674 } 675 676 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len) 677 { 678 u32 addr, field_info, field_len, field_count, total_len; 679 680 IPW_DEBUG_ORD("ordinal = %i\n", ord); 681 682 if (!priv || !val || !len) { 683 IPW_DEBUG_ORD("Invalid argument\n"); 684 return -EINVAL; 685 } 686 687 /* verify device ordinal tables have been initialized */ 688 if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) { 689 IPW_DEBUG_ORD("Access ordinals before initialization\n"); 690 return -EINVAL; 691 } 692 693 switch (IPW_ORD_TABLE_ID_MASK & ord) { 694 case IPW_ORD_TABLE_0_MASK: 695 /* 696 * TABLE 0: Direct access to a table of 32 bit values 697 * 698 * This is a very simple table with the data directly 699 * read from the table 700 */ 701 702 /* remove the table id from the ordinal */ 703 ord &= IPW_ORD_TABLE_VALUE_MASK; 704 705 /* boundary check */ 706 if (ord > priv->table0_len) { 707 IPW_DEBUG_ORD("ordinal value (%i) longer then " 708 "max (%i)\n", ord, priv->table0_len); 709 return -EINVAL; 710 } 711 712 /* verify we have enough room to store the value */ 713 if (*len < sizeof(u32)) { 714 IPW_DEBUG_ORD("ordinal buffer length too small, " 715 "need %zd\n", sizeof(u32)); 716 return -EINVAL; 717 } 718 719 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n", 720 ord, priv->table0_addr + (ord << 2)); 721 722 *len = sizeof(u32); 723 ord <<= 2; 724 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord); 725 break; 726 727 case IPW_ORD_TABLE_1_MASK: 728 /* 729 * TABLE 1: Indirect access to a table of 32 bit values 730 * 731 * This is a fairly large table of u32 values each 732 * representing starting addr for the data (which is 733 * also a u32) 734 */ 735 736 /* remove the table id from the ordinal */ 737 ord &= IPW_ORD_TABLE_VALUE_MASK; 738 739 /* boundary check */ 740 if (ord > priv->table1_len) { 741 IPW_DEBUG_ORD("ordinal value too long\n"); 742 return -EINVAL; 743 } 744 745 /* verify we have enough room to store the value */ 746 if (*len < sizeof(u32)) { 747 IPW_DEBUG_ORD("ordinal buffer length too small, " 748 "need %zd\n", sizeof(u32)); 749 return -EINVAL; 750 } 751 752 *((u32 *) val) = 753 ipw_read_reg32(priv, (priv->table1_addr + (ord << 2))); 754 *len = sizeof(u32); 755 break; 756 757 case IPW_ORD_TABLE_2_MASK: 758 /* 759 * TABLE 2: Indirect access to a table of variable sized values 760 * 761 * This table consist of six values, each containing 762 * - dword containing the starting offset of the data 763 * - dword containing the lengh in the first 16bits 764 * and the count in the second 16bits 765 */ 766 767 /* remove the table id from the ordinal */ 768 ord &= IPW_ORD_TABLE_VALUE_MASK; 769 770 /* boundary check */ 771 if (ord > priv->table2_len) { 772 IPW_DEBUG_ORD("ordinal value too long\n"); 773 return -EINVAL; 774 } 775 776 /* get the address of statistic */ 777 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3)); 778 779 /* get the second DW of statistics ; 780 * two 16-bit words - first is length, second is count */ 781 field_info = 782 ipw_read_reg32(priv, 783 priv->table2_addr + (ord << 3) + 784 sizeof(u32)); 785 786 /* get each entry length */ 787 field_len = *((u16 *) & field_info); 788 789 /* get number of entries */ 790 field_count = *(((u16 *) & field_info) + 1); 791 792 /* abort if not enough memory */ 793 total_len = field_len * field_count; 794 if (total_len > *len) { 795 *len = total_len; 796 return -EINVAL; 797 } 798 799 *len = total_len; 800 if (!total_len) 801 return 0; 802 803 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, " 804 "field_info = 0x%08x\n", 805 addr, total_len, field_info); 806 ipw_read_indirect(priv, addr, val, total_len); 807 break; 808 809 default: 810 IPW_DEBUG_ORD("Invalid ordinal!\n"); 811 return -EINVAL; 812 813 } 814 815 return 0; 816 } 817 818 static void ipw_init_ordinals(struct ipw_priv *priv) 819 { 820 priv->table0_addr = IPW_ORDINALS_TABLE_LOWER; 821 priv->table0_len = ipw_read32(priv, priv->table0_addr); 822 823 IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n", 824 priv->table0_addr, priv->table0_len); 825 826 priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1); 827 priv->table1_len = ipw_read_reg32(priv, priv->table1_addr); 828 829 IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n", 830 priv->table1_addr, priv->table1_len); 831 832 priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2); 833 priv->table2_len = ipw_read_reg32(priv, priv->table2_addr); 834 priv->table2_len &= 0x0000ffff; /* use first two bytes */ 835 836 IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n", 837 priv->table2_addr, priv->table2_len); 838 839 } 840 841 static u32 ipw_register_toggle(u32 reg) 842 { 843 reg &= ~IPW_START_STANDBY; 844 if (reg & IPW_GATE_ODMA) 845 reg &= ~IPW_GATE_ODMA; 846 if (reg & IPW_GATE_IDMA) 847 reg &= ~IPW_GATE_IDMA; 848 if (reg & IPW_GATE_ADMA) 849 reg &= ~IPW_GATE_ADMA; 850 return reg; 851 } 852 853 /* 854 * LED behavior: 855 * - On radio ON, turn on any LEDs that require to be on during start 856 * - On initialization, start unassociated blink 857 * - On association, disable unassociated blink 858 * - On disassociation, start unassociated blink 859 * - On radio OFF, turn off any LEDs started during radio on 860 * 861 */ 862 #define LD_TIME_LINK_ON msecs_to_jiffies(300) 863 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700) 864 #define LD_TIME_ACT_ON msecs_to_jiffies(250) 865 866 static void ipw_led_link_on(struct ipw_priv *priv) 867 { 868 unsigned long flags; 869 u32 led; 870 871 /* If configured to not use LEDs, or nic_type is 1, 872 * then we don't toggle a LINK led */ 873 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1) 874 return; 875 876 spin_lock_irqsave(&priv->lock, flags); 877 878 if (!(priv->status & STATUS_RF_KILL_MASK) && 879 !(priv->status & STATUS_LED_LINK_ON)) { 880 IPW_DEBUG_LED("Link LED On\n"); 881 led = ipw_read_reg32(priv, IPW_EVENT_REG); 882 led |= priv->led_association_on; 883 884 led = ipw_register_toggle(led); 885 886 IPW_DEBUG_LED("Reg: 0x%08X\n", led); 887 ipw_write_reg32(priv, IPW_EVENT_REG, led); 888 889 priv->status |= STATUS_LED_LINK_ON; 890 891 /* If we aren't associated, schedule turning the LED off */ 892 if (!(priv->status & STATUS_ASSOCIATED)) 893 schedule_delayed_work(&priv->led_link_off, 894 LD_TIME_LINK_ON); 895 } 896 897 spin_unlock_irqrestore(&priv->lock, flags); 898 } 899 900 static void ipw_bg_led_link_on(struct work_struct *work) 901 { 902 struct ipw_priv *priv = 903 container_of(work, struct ipw_priv, led_link_on.work); 904 mutex_lock(&priv->mutex); 905 ipw_led_link_on(priv); 906 mutex_unlock(&priv->mutex); 907 } 908 909 static void ipw_led_link_off(struct ipw_priv *priv) 910 { 911 unsigned long flags; 912 u32 led; 913 914 /* If configured not to use LEDs, or nic type is 1, 915 * then we don't goggle the LINK led. */ 916 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1) 917 return; 918 919 spin_lock_irqsave(&priv->lock, flags); 920 921 if (priv->status & STATUS_LED_LINK_ON) { 922 led = ipw_read_reg32(priv, IPW_EVENT_REG); 923 led &= priv->led_association_off; 924 led = ipw_register_toggle(led); 925 926 IPW_DEBUG_LED("Reg: 0x%08X\n", led); 927 ipw_write_reg32(priv, IPW_EVENT_REG, led); 928 929 IPW_DEBUG_LED("Link LED Off\n"); 930 931 priv->status &= ~STATUS_LED_LINK_ON; 932 933 /* If we aren't associated and the radio is on, schedule 934 * turning the LED on (blink while unassociated) */ 935 if (!(priv->status & STATUS_RF_KILL_MASK) && 936 !(priv->status & STATUS_ASSOCIATED)) 937 schedule_delayed_work(&priv->led_link_on, 938 LD_TIME_LINK_OFF); 939 940 } 941 942 spin_unlock_irqrestore(&priv->lock, flags); 943 } 944 945 static void ipw_bg_led_link_off(struct work_struct *work) 946 { 947 struct ipw_priv *priv = 948 container_of(work, struct ipw_priv, led_link_off.work); 949 mutex_lock(&priv->mutex); 950 ipw_led_link_off(priv); 951 mutex_unlock(&priv->mutex); 952 } 953 954 static void __ipw_led_activity_on(struct ipw_priv *priv) 955 { 956 u32 led; 957 958 if (priv->config & CFG_NO_LED) 959 return; 960 961 if (priv->status & STATUS_RF_KILL_MASK) 962 return; 963 964 if (!(priv->status & STATUS_LED_ACT_ON)) { 965 led = ipw_read_reg32(priv, IPW_EVENT_REG); 966 led |= priv->led_activity_on; 967 968 led = ipw_register_toggle(led); 969 970 IPW_DEBUG_LED("Reg: 0x%08X\n", led); 971 ipw_write_reg32(priv, IPW_EVENT_REG, led); 972 973 IPW_DEBUG_LED("Activity LED On\n"); 974 975 priv->status |= STATUS_LED_ACT_ON; 976 977 cancel_delayed_work(&priv->led_act_off); 978 schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON); 979 } else { 980 /* Reschedule LED off for full time period */ 981 cancel_delayed_work(&priv->led_act_off); 982 schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON); 983 } 984 } 985 986 #if 0 987 void ipw_led_activity_on(struct ipw_priv *priv) 988 { 989 unsigned long flags; 990 spin_lock_irqsave(&priv->lock, flags); 991 __ipw_led_activity_on(priv); 992 spin_unlock_irqrestore(&priv->lock, flags); 993 } 994 #endif /* 0 */ 995 996 static void ipw_led_activity_off(struct ipw_priv *priv) 997 { 998 unsigned long flags; 999 u32 led; 1000 1001 if (priv->config & CFG_NO_LED) 1002 return; 1003 1004 spin_lock_irqsave(&priv->lock, flags); 1005 1006 if (priv->status & STATUS_LED_ACT_ON) { 1007 led = ipw_read_reg32(priv, IPW_EVENT_REG); 1008 led &= priv->led_activity_off; 1009 1010 led = ipw_register_toggle(led); 1011 1012 IPW_DEBUG_LED("Reg: 0x%08X\n", led); 1013 ipw_write_reg32(priv, IPW_EVENT_REG, led); 1014 1015 IPW_DEBUG_LED("Activity LED Off\n"); 1016 1017 priv->status &= ~STATUS_LED_ACT_ON; 1018 } 1019 1020 spin_unlock_irqrestore(&priv->lock, flags); 1021 } 1022 1023 static void ipw_bg_led_activity_off(struct work_struct *work) 1024 { 1025 struct ipw_priv *priv = 1026 container_of(work, struct ipw_priv, led_act_off.work); 1027 mutex_lock(&priv->mutex); 1028 ipw_led_activity_off(priv); 1029 mutex_unlock(&priv->mutex); 1030 } 1031 1032 static void ipw_led_band_on(struct ipw_priv *priv) 1033 { 1034 unsigned long flags; 1035 u32 led; 1036 1037 /* Only nic type 1 supports mode LEDs */ 1038 if (priv->config & CFG_NO_LED || 1039 priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network) 1040 return; 1041 1042 spin_lock_irqsave(&priv->lock, flags); 1043 1044 led = ipw_read_reg32(priv, IPW_EVENT_REG); 1045 if (priv->assoc_network->mode == IEEE_A) { 1046 led |= priv->led_ofdm_on; 1047 led &= priv->led_association_off; 1048 IPW_DEBUG_LED("Mode LED On: 802.11a\n"); 1049 } else if (priv->assoc_network->mode == IEEE_G) { 1050 led |= priv->led_ofdm_on; 1051 led |= priv->led_association_on; 1052 IPW_DEBUG_LED("Mode LED On: 802.11g\n"); 1053 } else { 1054 led &= priv->led_ofdm_off; 1055 led |= priv->led_association_on; 1056 IPW_DEBUG_LED("Mode LED On: 802.11b\n"); 1057 } 1058 1059 led = ipw_register_toggle(led); 1060 1061 IPW_DEBUG_LED("Reg: 0x%08X\n", led); 1062 ipw_write_reg32(priv, IPW_EVENT_REG, led); 1063 1064 spin_unlock_irqrestore(&priv->lock, flags); 1065 } 1066 1067 static void ipw_led_band_off(struct ipw_priv *priv) 1068 { 1069 unsigned long flags; 1070 u32 led; 1071 1072 /* Only nic type 1 supports mode LEDs */ 1073 if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1) 1074 return; 1075 1076 spin_lock_irqsave(&priv->lock, flags); 1077 1078 led = ipw_read_reg32(priv, IPW_EVENT_REG); 1079 led &= priv->led_ofdm_off; 1080 led &= priv->led_association_off; 1081 1082 led = ipw_register_toggle(led); 1083 1084 IPW_DEBUG_LED("Reg: 0x%08X\n", led); 1085 ipw_write_reg32(priv, IPW_EVENT_REG, led); 1086 1087 spin_unlock_irqrestore(&priv->lock, flags); 1088 } 1089 1090 static void ipw_led_radio_on(struct ipw_priv *priv) 1091 { 1092 ipw_led_link_on(priv); 1093 } 1094 1095 static void ipw_led_radio_off(struct ipw_priv *priv) 1096 { 1097 ipw_led_activity_off(priv); 1098 ipw_led_link_off(priv); 1099 } 1100 1101 static void ipw_led_link_up(struct ipw_priv *priv) 1102 { 1103 /* Set the Link Led on for all nic types */ 1104 ipw_led_link_on(priv); 1105 } 1106 1107 static void ipw_led_link_down(struct ipw_priv *priv) 1108 { 1109 ipw_led_activity_off(priv); 1110 ipw_led_link_off(priv); 1111 1112 if (priv->status & STATUS_RF_KILL_MASK) 1113 ipw_led_radio_off(priv); 1114 } 1115 1116 static void ipw_led_init(struct ipw_priv *priv) 1117 { 1118 priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE]; 1119 1120 /* Set the default PINs for the link and activity leds */ 1121 priv->led_activity_on = IPW_ACTIVITY_LED; 1122 priv->led_activity_off = ~(IPW_ACTIVITY_LED); 1123 1124 priv->led_association_on = IPW_ASSOCIATED_LED; 1125 priv->led_association_off = ~(IPW_ASSOCIATED_LED); 1126 1127 /* Set the default PINs for the OFDM leds */ 1128 priv->led_ofdm_on = IPW_OFDM_LED; 1129 priv->led_ofdm_off = ~(IPW_OFDM_LED); 1130 1131 switch (priv->nic_type) { 1132 case EEPROM_NIC_TYPE_1: 1133 /* In this NIC type, the LEDs are reversed.... */ 1134 priv->led_activity_on = IPW_ASSOCIATED_LED; 1135 priv->led_activity_off = ~(IPW_ASSOCIATED_LED); 1136 priv->led_association_on = IPW_ACTIVITY_LED; 1137 priv->led_association_off = ~(IPW_ACTIVITY_LED); 1138 1139 if (!(priv->config & CFG_NO_LED)) 1140 ipw_led_band_on(priv); 1141 1142 /* And we don't blink link LEDs for this nic, so 1143 * just return here */ 1144 return; 1145 1146 case EEPROM_NIC_TYPE_3: 1147 case EEPROM_NIC_TYPE_2: 1148 case EEPROM_NIC_TYPE_4: 1149 case EEPROM_NIC_TYPE_0: 1150 break; 1151 1152 default: 1153 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n", 1154 priv->nic_type); 1155 priv->nic_type = EEPROM_NIC_TYPE_0; 1156 break; 1157 } 1158 1159 if (!(priv->config & CFG_NO_LED)) { 1160 if (priv->status & STATUS_ASSOCIATED) 1161 ipw_led_link_on(priv); 1162 else 1163 ipw_led_link_off(priv); 1164 } 1165 } 1166 1167 static void ipw_led_shutdown(struct ipw_priv *priv) 1168 { 1169 ipw_led_activity_off(priv); 1170 ipw_led_link_off(priv); 1171 ipw_led_band_off(priv); 1172 cancel_delayed_work(&priv->led_link_on); 1173 cancel_delayed_work(&priv->led_link_off); 1174 cancel_delayed_work(&priv->led_act_off); 1175 } 1176 1177 /* 1178 * The following adds a new attribute to the sysfs representation 1179 * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/) 1180 * used for controlling the debug level. 1181 * 1182 * See the level definitions in ipw for details. 1183 */ 1184 static ssize_t debug_level_show(struct device_driver *d, char *buf) 1185 { 1186 return sprintf(buf, "0x%08X\n", ipw_debug_level); 1187 } 1188 1189 static ssize_t debug_level_store(struct device_driver *d, const char *buf, 1190 size_t count) 1191 { 1192 char *p = (char *)buf; 1193 u32 val; 1194 1195 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') { 1196 p++; 1197 if (p[0] == 'x' || p[0] == 'X') 1198 p++; 1199 val = simple_strtoul(p, &p, 16); 1200 } else 1201 val = simple_strtoul(p, &p, 10); 1202 if (p == buf) 1203 printk(KERN_INFO DRV_NAME 1204 ": %s is not in hex or decimal form.\n", buf); 1205 else 1206 ipw_debug_level = val; 1207 1208 return strnlen(buf, count); 1209 } 1210 static DRIVER_ATTR_RW(debug_level); 1211 1212 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv) 1213 { 1214 /* length = 1st dword in log */ 1215 return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG)); 1216 } 1217 1218 static void ipw_capture_event_log(struct ipw_priv *priv, 1219 u32 log_len, struct ipw_event *log) 1220 { 1221 u32 base; 1222 1223 if (log_len) { 1224 base = ipw_read32(priv, IPW_EVENT_LOG); 1225 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32), 1226 (u8 *) log, sizeof(*log) * log_len); 1227 } 1228 } 1229 1230 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv) 1231 { 1232 struct ipw_fw_error *error; 1233 u32 log_len = ipw_get_event_log_len(priv); 1234 u32 base = ipw_read32(priv, IPW_ERROR_LOG); 1235 u32 elem_len = ipw_read_reg32(priv, base); 1236 1237 error = kmalloc(sizeof(*error) + 1238 sizeof(*error->elem) * elem_len + 1239 sizeof(*error->log) * log_len, GFP_ATOMIC); 1240 if (!error) { 1241 IPW_ERROR("Memory allocation for firmware error log " 1242 "failed.\n"); 1243 return NULL; 1244 } 1245 error->jiffies = jiffies; 1246 error->status = priv->status; 1247 error->config = priv->config; 1248 error->elem_len = elem_len; 1249 error->log_len = log_len; 1250 error->elem = (struct ipw_error_elem *)error->payload; 1251 error->log = (struct ipw_event *)(error->elem + elem_len); 1252 1253 ipw_capture_event_log(priv, log_len, error->log); 1254 1255 if (elem_len) 1256 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem, 1257 sizeof(*error->elem) * elem_len); 1258 1259 return error; 1260 } 1261 1262 static ssize_t show_event_log(struct device *d, 1263 struct device_attribute *attr, char *buf) 1264 { 1265 struct ipw_priv *priv = dev_get_drvdata(d); 1266 u32 log_len = ipw_get_event_log_len(priv); 1267 u32 log_size; 1268 struct ipw_event *log; 1269 u32 len = 0, i; 1270 1271 /* not using min() because of its strict type checking */ 1272 log_size = PAGE_SIZE / sizeof(*log) > log_len ? 1273 sizeof(*log) * log_len : PAGE_SIZE; 1274 log = kzalloc(log_size, GFP_KERNEL); 1275 if (!log) { 1276 IPW_ERROR("Unable to allocate memory for log\n"); 1277 return 0; 1278 } 1279 log_len = log_size / sizeof(*log); 1280 ipw_capture_event_log(priv, log_len, log); 1281 1282 len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len); 1283 for (i = 0; i < log_len; i++) 1284 len += snprintf(buf + len, PAGE_SIZE - len, 1285 "\n%08X%08X%08X", 1286 log[i].time, log[i].event, log[i].data); 1287 len += snprintf(buf + len, PAGE_SIZE - len, "\n"); 1288 kfree(log); 1289 return len; 1290 } 1291 1292 static DEVICE_ATTR(event_log, 0444, show_event_log, NULL); 1293 1294 static ssize_t show_error(struct device *d, 1295 struct device_attribute *attr, char *buf) 1296 { 1297 struct ipw_priv *priv = dev_get_drvdata(d); 1298 u32 len = 0, i; 1299 if (!priv->error) 1300 return 0; 1301 len += snprintf(buf + len, PAGE_SIZE - len, 1302 "%08lX%08X%08X%08X", 1303 priv->error->jiffies, 1304 priv->error->status, 1305 priv->error->config, priv->error->elem_len); 1306 for (i = 0; i < priv->error->elem_len; i++) 1307 len += snprintf(buf + len, PAGE_SIZE - len, 1308 "\n%08X%08X%08X%08X%08X%08X%08X", 1309 priv->error->elem[i].time, 1310 priv->error->elem[i].desc, 1311 priv->error->elem[i].blink1, 1312 priv->error->elem[i].blink2, 1313 priv->error->elem[i].link1, 1314 priv->error->elem[i].link2, 1315 priv->error->elem[i].data); 1316 1317 len += snprintf(buf + len, PAGE_SIZE - len, 1318 "\n%08X", priv->error->log_len); 1319 for (i = 0; i < priv->error->log_len; i++) 1320 len += snprintf(buf + len, PAGE_SIZE - len, 1321 "\n%08X%08X%08X", 1322 priv->error->log[i].time, 1323 priv->error->log[i].event, 1324 priv->error->log[i].data); 1325 len += snprintf(buf + len, PAGE_SIZE - len, "\n"); 1326 return len; 1327 } 1328 1329 static ssize_t clear_error(struct device *d, 1330 struct device_attribute *attr, 1331 const char *buf, size_t count) 1332 { 1333 struct ipw_priv *priv = dev_get_drvdata(d); 1334 1335 kfree(priv->error); 1336 priv->error = NULL; 1337 return count; 1338 } 1339 1340 static DEVICE_ATTR(error, 0644, show_error, clear_error); 1341 1342 static ssize_t show_cmd_log(struct device *d, 1343 struct device_attribute *attr, char *buf) 1344 { 1345 struct ipw_priv *priv = dev_get_drvdata(d); 1346 u32 len = 0, i; 1347 if (!priv->cmdlog) 1348 return 0; 1349 for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len; 1350 (i != priv->cmdlog_pos) && (len < PAGE_SIZE); 1351 i = (i + 1) % priv->cmdlog_len) { 1352 len += 1353 snprintf(buf + len, PAGE_SIZE - len, 1354 "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies, 1355 priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd, 1356 priv->cmdlog[i].cmd.len); 1357 len += 1358 snprintk_buf(buf + len, PAGE_SIZE - len, 1359 (u8 *) priv->cmdlog[i].cmd.param, 1360 priv->cmdlog[i].cmd.len); 1361 len += snprintf(buf + len, PAGE_SIZE - len, "\n"); 1362 } 1363 len += snprintf(buf + len, PAGE_SIZE - len, "\n"); 1364 return len; 1365 } 1366 1367 static DEVICE_ATTR(cmd_log, 0444, show_cmd_log, NULL); 1368 1369 #ifdef CONFIG_IPW2200_PROMISCUOUS 1370 static void ipw_prom_free(struct ipw_priv *priv); 1371 static int ipw_prom_alloc(struct ipw_priv *priv); 1372 static ssize_t store_rtap_iface(struct device *d, 1373 struct device_attribute *attr, 1374 const char *buf, size_t count) 1375 { 1376 struct ipw_priv *priv = dev_get_drvdata(d); 1377 int rc = 0; 1378 1379 if (count < 1) 1380 return -EINVAL; 1381 1382 switch (buf[0]) { 1383 case '0': 1384 if (!rtap_iface) 1385 return count; 1386 1387 if (netif_running(priv->prom_net_dev)) { 1388 IPW_WARNING("Interface is up. Cannot unregister.\n"); 1389 return count; 1390 } 1391 1392 ipw_prom_free(priv); 1393 rtap_iface = 0; 1394 break; 1395 1396 case '1': 1397 if (rtap_iface) 1398 return count; 1399 1400 rc = ipw_prom_alloc(priv); 1401 if (!rc) 1402 rtap_iface = 1; 1403 break; 1404 1405 default: 1406 return -EINVAL; 1407 } 1408 1409 if (rc) { 1410 IPW_ERROR("Failed to register promiscuous network " 1411 "device (error %d).\n", rc); 1412 } 1413 1414 return count; 1415 } 1416 1417 static ssize_t show_rtap_iface(struct device *d, 1418 struct device_attribute *attr, 1419 char *buf) 1420 { 1421 struct ipw_priv *priv = dev_get_drvdata(d); 1422 if (rtap_iface) 1423 return sprintf(buf, "%s", priv->prom_net_dev->name); 1424 else { 1425 buf[0] = '-'; 1426 buf[1] = '1'; 1427 buf[2] = '\0'; 1428 return 3; 1429 } 1430 } 1431 1432 static DEVICE_ATTR(rtap_iface, 0600, show_rtap_iface, store_rtap_iface); 1433 1434 static ssize_t store_rtap_filter(struct device *d, 1435 struct device_attribute *attr, 1436 const char *buf, size_t count) 1437 { 1438 struct ipw_priv *priv = dev_get_drvdata(d); 1439 1440 if (!priv->prom_priv) { 1441 IPW_ERROR("Attempting to set filter without " 1442 "rtap_iface enabled.\n"); 1443 return -EPERM; 1444 } 1445 1446 priv->prom_priv->filter = simple_strtol(buf, NULL, 0); 1447 1448 IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n", 1449 BIT_ARG16(priv->prom_priv->filter)); 1450 1451 return count; 1452 } 1453 1454 static ssize_t show_rtap_filter(struct device *d, 1455 struct device_attribute *attr, 1456 char *buf) 1457 { 1458 struct ipw_priv *priv = dev_get_drvdata(d); 1459 return sprintf(buf, "0x%04X", 1460 priv->prom_priv ? priv->prom_priv->filter : 0); 1461 } 1462 1463 static DEVICE_ATTR(rtap_filter, 0600, show_rtap_filter, store_rtap_filter); 1464 #endif 1465 1466 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr, 1467 char *buf) 1468 { 1469 struct ipw_priv *priv = dev_get_drvdata(d); 1470 return sprintf(buf, "%d\n", priv->ieee->scan_age); 1471 } 1472 1473 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr, 1474 const char *buf, size_t count) 1475 { 1476 struct ipw_priv *priv = dev_get_drvdata(d); 1477 struct net_device *dev = priv->net_dev; 1478 char buffer[] = "00000000"; 1479 unsigned long len = 1480 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1; 1481 unsigned long val; 1482 char *p = buffer; 1483 1484 IPW_DEBUG_INFO("enter\n"); 1485 1486 strncpy(buffer, buf, len); 1487 buffer[len] = 0; 1488 1489 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') { 1490 p++; 1491 if (p[0] == 'x' || p[0] == 'X') 1492 p++; 1493 val = simple_strtoul(p, &p, 16); 1494 } else 1495 val = simple_strtoul(p, &p, 10); 1496 if (p == buffer) { 1497 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name); 1498 } else { 1499 priv->ieee->scan_age = val; 1500 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age); 1501 } 1502 1503 IPW_DEBUG_INFO("exit\n"); 1504 return len; 1505 } 1506 1507 static DEVICE_ATTR(scan_age, 0644, show_scan_age, store_scan_age); 1508 1509 static ssize_t show_led(struct device *d, struct device_attribute *attr, 1510 char *buf) 1511 { 1512 struct ipw_priv *priv = dev_get_drvdata(d); 1513 return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1); 1514 } 1515 1516 static ssize_t store_led(struct device *d, struct device_attribute *attr, 1517 const char *buf, size_t count) 1518 { 1519 struct ipw_priv *priv = dev_get_drvdata(d); 1520 1521 IPW_DEBUG_INFO("enter\n"); 1522 1523 if (count == 0) 1524 return 0; 1525 1526 if (*buf == 0) { 1527 IPW_DEBUG_LED("Disabling LED control.\n"); 1528 priv->config |= CFG_NO_LED; 1529 ipw_led_shutdown(priv); 1530 } else { 1531 IPW_DEBUG_LED("Enabling LED control.\n"); 1532 priv->config &= ~CFG_NO_LED; 1533 ipw_led_init(priv); 1534 } 1535 1536 IPW_DEBUG_INFO("exit\n"); 1537 return count; 1538 } 1539 1540 static DEVICE_ATTR(led, 0644, show_led, store_led); 1541 1542 static ssize_t show_status(struct device *d, 1543 struct device_attribute *attr, char *buf) 1544 { 1545 struct ipw_priv *p = dev_get_drvdata(d); 1546 return sprintf(buf, "0x%08x\n", (int)p->status); 1547 } 1548 1549 static DEVICE_ATTR(status, 0444, show_status, NULL); 1550 1551 static ssize_t show_cfg(struct device *d, struct device_attribute *attr, 1552 char *buf) 1553 { 1554 struct ipw_priv *p = dev_get_drvdata(d); 1555 return sprintf(buf, "0x%08x\n", (int)p->config); 1556 } 1557 1558 static DEVICE_ATTR(cfg, 0444, show_cfg, NULL); 1559 1560 static ssize_t show_nic_type(struct device *d, 1561 struct device_attribute *attr, char *buf) 1562 { 1563 struct ipw_priv *priv = dev_get_drvdata(d); 1564 return sprintf(buf, "TYPE: %d\n", priv->nic_type); 1565 } 1566 1567 static DEVICE_ATTR(nic_type, 0444, show_nic_type, NULL); 1568 1569 static ssize_t show_ucode_version(struct device *d, 1570 struct device_attribute *attr, char *buf) 1571 { 1572 u32 len = sizeof(u32), tmp = 0; 1573 struct ipw_priv *p = dev_get_drvdata(d); 1574 1575 if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len)) 1576 return 0; 1577 1578 return sprintf(buf, "0x%08x\n", tmp); 1579 } 1580 1581 static DEVICE_ATTR(ucode_version, 0644, show_ucode_version, NULL); 1582 1583 static ssize_t show_rtc(struct device *d, struct device_attribute *attr, 1584 char *buf) 1585 { 1586 u32 len = sizeof(u32), tmp = 0; 1587 struct ipw_priv *p = dev_get_drvdata(d); 1588 1589 if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len)) 1590 return 0; 1591 1592 return sprintf(buf, "0x%08x\n", tmp); 1593 } 1594 1595 static DEVICE_ATTR(rtc, 0644, show_rtc, NULL); 1596 1597 /* 1598 * Add a device attribute to view/control the delay between eeprom 1599 * operations. 1600 */ 1601 static ssize_t show_eeprom_delay(struct device *d, 1602 struct device_attribute *attr, char *buf) 1603 { 1604 struct ipw_priv *p = dev_get_drvdata(d); 1605 int n = p->eeprom_delay; 1606 return sprintf(buf, "%i\n", n); 1607 } 1608 static ssize_t store_eeprom_delay(struct device *d, 1609 struct device_attribute *attr, 1610 const char *buf, size_t count) 1611 { 1612 struct ipw_priv *p = dev_get_drvdata(d); 1613 sscanf(buf, "%i", &p->eeprom_delay); 1614 return strnlen(buf, count); 1615 } 1616 1617 static DEVICE_ATTR(eeprom_delay, 0644, show_eeprom_delay, store_eeprom_delay); 1618 1619 static ssize_t show_command_event_reg(struct device *d, 1620 struct device_attribute *attr, char *buf) 1621 { 1622 u32 reg = 0; 1623 struct ipw_priv *p = dev_get_drvdata(d); 1624 1625 reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT); 1626 return sprintf(buf, "0x%08x\n", reg); 1627 } 1628 static ssize_t store_command_event_reg(struct device *d, 1629 struct device_attribute *attr, 1630 const char *buf, size_t count) 1631 { 1632 u32 reg; 1633 struct ipw_priv *p = dev_get_drvdata(d); 1634 1635 sscanf(buf, "%x", ®); 1636 ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg); 1637 return strnlen(buf, count); 1638 } 1639 1640 static DEVICE_ATTR(command_event_reg, 0644, 1641 show_command_event_reg, store_command_event_reg); 1642 1643 static ssize_t show_mem_gpio_reg(struct device *d, 1644 struct device_attribute *attr, char *buf) 1645 { 1646 u32 reg = 0; 1647 struct ipw_priv *p = dev_get_drvdata(d); 1648 1649 reg = ipw_read_reg32(p, 0x301100); 1650 return sprintf(buf, "0x%08x\n", reg); 1651 } 1652 static ssize_t store_mem_gpio_reg(struct device *d, 1653 struct device_attribute *attr, 1654 const char *buf, size_t count) 1655 { 1656 u32 reg; 1657 struct ipw_priv *p = dev_get_drvdata(d); 1658 1659 sscanf(buf, "%x", ®); 1660 ipw_write_reg32(p, 0x301100, reg); 1661 return strnlen(buf, count); 1662 } 1663 1664 static DEVICE_ATTR(mem_gpio_reg, 0644, show_mem_gpio_reg, store_mem_gpio_reg); 1665 1666 static ssize_t show_indirect_dword(struct device *d, 1667 struct device_attribute *attr, char *buf) 1668 { 1669 u32 reg = 0; 1670 struct ipw_priv *priv = dev_get_drvdata(d); 1671 1672 if (priv->status & STATUS_INDIRECT_DWORD) 1673 reg = ipw_read_reg32(priv, priv->indirect_dword); 1674 else 1675 reg = 0; 1676 1677 return sprintf(buf, "0x%08x\n", reg); 1678 } 1679 static ssize_t store_indirect_dword(struct device *d, 1680 struct device_attribute *attr, 1681 const char *buf, size_t count) 1682 { 1683 struct ipw_priv *priv = dev_get_drvdata(d); 1684 1685 sscanf(buf, "%x", &priv->indirect_dword); 1686 priv->status |= STATUS_INDIRECT_DWORD; 1687 return strnlen(buf, count); 1688 } 1689 1690 static DEVICE_ATTR(indirect_dword, 0644, 1691 show_indirect_dword, store_indirect_dword); 1692 1693 static ssize_t show_indirect_byte(struct device *d, 1694 struct device_attribute *attr, char *buf) 1695 { 1696 u8 reg = 0; 1697 struct ipw_priv *priv = dev_get_drvdata(d); 1698 1699 if (priv->status & STATUS_INDIRECT_BYTE) 1700 reg = ipw_read_reg8(priv, priv->indirect_byte); 1701 else 1702 reg = 0; 1703 1704 return sprintf(buf, "0x%02x\n", reg); 1705 } 1706 static ssize_t store_indirect_byte(struct device *d, 1707 struct device_attribute *attr, 1708 const char *buf, size_t count) 1709 { 1710 struct ipw_priv *priv = dev_get_drvdata(d); 1711 1712 sscanf(buf, "%x", &priv->indirect_byte); 1713 priv->status |= STATUS_INDIRECT_BYTE; 1714 return strnlen(buf, count); 1715 } 1716 1717 static DEVICE_ATTR(indirect_byte, 0644, 1718 show_indirect_byte, store_indirect_byte); 1719 1720 static ssize_t show_direct_dword(struct device *d, 1721 struct device_attribute *attr, char *buf) 1722 { 1723 u32 reg = 0; 1724 struct ipw_priv *priv = dev_get_drvdata(d); 1725 1726 if (priv->status & STATUS_DIRECT_DWORD) 1727 reg = ipw_read32(priv, priv->direct_dword); 1728 else 1729 reg = 0; 1730 1731 return sprintf(buf, "0x%08x\n", reg); 1732 } 1733 static ssize_t store_direct_dword(struct device *d, 1734 struct device_attribute *attr, 1735 const char *buf, size_t count) 1736 { 1737 struct ipw_priv *priv = dev_get_drvdata(d); 1738 1739 sscanf(buf, "%x", &priv->direct_dword); 1740 priv->status |= STATUS_DIRECT_DWORD; 1741 return strnlen(buf, count); 1742 } 1743 1744 static DEVICE_ATTR(direct_dword, 0644, show_direct_dword, store_direct_dword); 1745 1746 static int rf_kill_active(struct ipw_priv *priv) 1747 { 1748 if (0 == (ipw_read32(priv, 0x30) & 0x10000)) { 1749 priv->status |= STATUS_RF_KILL_HW; 1750 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true); 1751 } else { 1752 priv->status &= ~STATUS_RF_KILL_HW; 1753 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false); 1754 } 1755 1756 return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0; 1757 } 1758 1759 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr, 1760 char *buf) 1761 { 1762 /* 0 - RF kill not enabled 1763 1 - SW based RF kill active (sysfs) 1764 2 - HW based RF kill active 1765 3 - Both HW and SW baed RF kill active */ 1766 struct ipw_priv *priv = dev_get_drvdata(d); 1767 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) | 1768 (rf_kill_active(priv) ? 0x2 : 0x0); 1769 return sprintf(buf, "%i\n", val); 1770 } 1771 1772 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio) 1773 { 1774 if ((disable_radio ? 1 : 0) == 1775 ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0)) 1776 return 0; 1777 1778 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n", 1779 disable_radio ? "OFF" : "ON"); 1780 1781 if (disable_radio) { 1782 priv->status |= STATUS_RF_KILL_SW; 1783 1784 cancel_delayed_work(&priv->request_scan); 1785 cancel_delayed_work(&priv->request_direct_scan); 1786 cancel_delayed_work(&priv->request_passive_scan); 1787 cancel_delayed_work(&priv->scan_event); 1788 schedule_work(&priv->down); 1789 } else { 1790 priv->status &= ~STATUS_RF_KILL_SW; 1791 if (rf_kill_active(priv)) { 1792 IPW_DEBUG_RF_KILL("Can not turn radio back on - " 1793 "disabled by HW switch\n"); 1794 /* Make sure the RF_KILL check timer is running */ 1795 cancel_delayed_work(&priv->rf_kill); 1796 schedule_delayed_work(&priv->rf_kill, 1797 round_jiffies_relative(2 * HZ)); 1798 } else 1799 schedule_work(&priv->up); 1800 } 1801 1802 return 1; 1803 } 1804 1805 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr, 1806 const char *buf, size_t count) 1807 { 1808 struct ipw_priv *priv = dev_get_drvdata(d); 1809 1810 ipw_radio_kill_sw(priv, buf[0] == '1'); 1811 1812 return count; 1813 } 1814 1815 static DEVICE_ATTR(rf_kill, 0644, show_rf_kill, store_rf_kill); 1816 1817 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr, 1818 char *buf) 1819 { 1820 struct ipw_priv *priv = dev_get_drvdata(d); 1821 int pos = 0, len = 0; 1822 if (priv->config & CFG_SPEED_SCAN) { 1823 while (priv->speed_scan[pos] != 0) 1824 len += sprintf(&buf[len], "%d ", 1825 priv->speed_scan[pos++]); 1826 return len + sprintf(&buf[len], "\n"); 1827 } 1828 1829 return sprintf(buf, "0\n"); 1830 } 1831 1832 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr, 1833 const char *buf, size_t count) 1834 { 1835 struct ipw_priv *priv = dev_get_drvdata(d); 1836 int channel, pos = 0; 1837 const char *p = buf; 1838 1839 /* list of space separated channels to scan, optionally ending with 0 */ 1840 while ((channel = simple_strtol(p, NULL, 0))) { 1841 if (pos == MAX_SPEED_SCAN - 1) { 1842 priv->speed_scan[pos] = 0; 1843 break; 1844 } 1845 1846 if (libipw_is_valid_channel(priv->ieee, channel)) 1847 priv->speed_scan[pos++] = channel; 1848 else 1849 IPW_WARNING("Skipping invalid channel request: %d\n", 1850 channel); 1851 p = strchr(p, ' '); 1852 if (!p) 1853 break; 1854 while (*p == ' ' || *p == '\t') 1855 p++; 1856 } 1857 1858 if (pos == 0) 1859 priv->config &= ~CFG_SPEED_SCAN; 1860 else { 1861 priv->speed_scan_pos = 0; 1862 priv->config |= CFG_SPEED_SCAN; 1863 } 1864 1865 return count; 1866 } 1867 1868 static DEVICE_ATTR(speed_scan, 0644, show_speed_scan, store_speed_scan); 1869 1870 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr, 1871 char *buf) 1872 { 1873 struct ipw_priv *priv = dev_get_drvdata(d); 1874 return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0'); 1875 } 1876 1877 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr, 1878 const char *buf, size_t count) 1879 { 1880 struct ipw_priv *priv = dev_get_drvdata(d); 1881 if (buf[0] == '1') 1882 priv->config |= CFG_NET_STATS; 1883 else 1884 priv->config &= ~CFG_NET_STATS; 1885 1886 return count; 1887 } 1888 1889 static DEVICE_ATTR(net_stats, 0644, show_net_stats, store_net_stats); 1890 1891 static ssize_t show_channels(struct device *d, 1892 struct device_attribute *attr, 1893 char *buf) 1894 { 1895 struct ipw_priv *priv = dev_get_drvdata(d); 1896 const struct libipw_geo *geo = libipw_get_geo(priv->ieee); 1897 int len = 0, i; 1898 1899 len = sprintf(&buf[len], 1900 "Displaying %d channels in 2.4Ghz band " 1901 "(802.11bg):\n", geo->bg_channels); 1902 1903 for (i = 0; i < geo->bg_channels; i++) { 1904 len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n", 1905 geo->bg[i].channel, 1906 geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT ? 1907 " (radar spectrum)" : "", 1908 ((geo->bg[i].flags & LIBIPW_CH_NO_IBSS) || 1909 (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)) 1910 ? "" : ", IBSS", 1911 geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY ? 1912 "passive only" : "active/passive", 1913 geo->bg[i].flags & LIBIPW_CH_B_ONLY ? 1914 "B" : "B/G"); 1915 } 1916 1917 len += sprintf(&buf[len], 1918 "Displaying %d channels in 5.2Ghz band " 1919 "(802.11a):\n", geo->a_channels); 1920 for (i = 0; i < geo->a_channels; i++) { 1921 len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n", 1922 geo->a[i].channel, 1923 geo->a[i].flags & LIBIPW_CH_RADAR_DETECT ? 1924 " (radar spectrum)" : "", 1925 ((geo->a[i].flags & LIBIPW_CH_NO_IBSS) || 1926 (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT)) 1927 ? "" : ", IBSS", 1928 geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY ? 1929 "passive only" : "active/passive"); 1930 } 1931 1932 return len; 1933 } 1934 1935 static DEVICE_ATTR(channels, 0400, show_channels, NULL); 1936 1937 static void notify_wx_assoc_event(struct ipw_priv *priv) 1938 { 1939 union iwreq_data wrqu; 1940 wrqu.ap_addr.sa_family = ARPHRD_ETHER; 1941 if (priv->status & STATUS_ASSOCIATED) 1942 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN); 1943 else 1944 eth_zero_addr(wrqu.ap_addr.sa_data); 1945 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL); 1946 } 1947 1948 static void ipw_irq_tasklet(struct ipw_priv *priv) 1949 { 1950 u32 inta, inta_mask, handled = 0; 1951 unsigned long flags; 1952 int rc = 0; 1953 1954 spin_lock_irqsave(&priv->irq_lock, flags); 1955 1956 inta = ipw_read32(priv, IPW_INTA_RW); 1957 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R); 1958 1959 if (inta == 0xFFFFFFFF) { 1960 /* Hardware disappeared */ 1961 IPW_WARNING("TASKLET INTA == 0xFFFFFFFF\n"); 1962 /* Only handle the cached INTA values */ 1963 inta = 0; 1964 } 1965 inta &= (IPW_INTA_MASK_ALL & inta_mask); 1966 1967 /* Add any cached INTA values that need to be handled */ 1968 inta |= priv->isr_inta; 1969 1970 spin_unlock_irqrestore(&priv->irq_lock, flags); 1971 1972 spin_lock_irqsave(&priv->lock, flags); 1973 1974 /* handle all the justifications for the interrupt */ 1975 if (inta & IPW_INTA_BIT_RX_TRANSFER) { 1976 ipw_rx(priv); 1977 handled |= IPW_INTA_BIT_RX_TRANSFER; 1978 } 1979 1980 if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) { 1981 IPW_DEBUG_HC("Command completed.\n"); 1982 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1); 1983 priv->status &= ~STATUS_HCMD_ACTIVE; 1984 wake_up_interruptible(&priv->wait_command_queue); 1985 handled |= IPW_INTA_BIT_TX_CMD_QUEUE; 1986 } 1987 1988 if (inta & IPW_INTA_BIT_TX_QUEUE_1) { 1989 IPW_DEBUG_TX("TX_QUEUE_1\n"); 1990 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0); 1991 handled |= IPW_INTA_BIT_TX_QUEUE_1; 1992 } 1993 1994 if (inta & IPW_INTA_BIT_TX_QUEUE_2) { 1995 IPW_DEBUG_TX("TX_QUEUE_2\n"); 1996 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1); 1997 handled |= IPW_INTA_BIT_TX_QUEUE_2; 1998 } 1999 2000 if (inta & IPW_INTA_BIT_TX_QUEUE_3) { 2001 IPW_DEBUG_TX("TX_QUEUE_3\n"); 2002 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2); 2003 handled |= IPW_INTA_BIT_TX_QUEUE_3; 2004 } 2005 2006 if (inta & IPW_INTA_BIT_TX_QUEUE_4) { 2007 IPW_DEBUG_TX("TX_QUEUE_4\n"); 2008 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3); 2009 handled |= IPW_INTA_BIT_TX_QUEUE_4; 2010 } 2011 2012 if (inta & IPW_INTA_BIT_STATUS_CHANGE) { 2013 IPW_WARNING("STATUS_CHANGE\n"); 2014 handled |= IPW_INTA_BIT_STATUS_CHANGE; 2015 } 2016 2017 if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) { 2018 IPW_WARNING("TX_PERIOD_EXPIRED\n"); 2019 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED; 2020 } 2021 2022 if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) { 2023 IPW_WARNING("HOST_CMD_DONE\n"); 2024 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE; 2025 } 2026 2027 if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) { 2028 IPW_WARNING("FW_INITIALIZATION_DONE\n"); 2029 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE; 2030 } 2031 2032 if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) { 2033 IPW_WARNING("PHY_OFF_DONE\n"); 2034 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE; 2035 } 2036 2037 if (inta & IPW_INTA_BIT_RF_KILL_DONE) { 2038 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n"); 2039 priv->status |= STATUS_RF_KILL_HW; 2040 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true); 2041 wake_up_interruptible(&priv->wait_command_queue); 2042 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING); 2043 cancel_delayed_work(&priv->request_scan); 2044 cancel_delayed_work(&priv->request_direct_scan); 2045 cancel_delayed_work(&priv->request_passive_scan); 2046 cancel_delayed_work(&priv->scan_event); 2047 schedule_work(&priv->link_down); 2048 schedule_delayed_work(&priv->rf_kill, 2 * HZ); 2049 handled |= IPW_INTA_BIT_RF_KILL_DONE; 2050 } 2051 2052 if (inta & IPW_INTA_BIT_FATAL_ERROR) { 2053 IPW_WARNING("Firmware error detected. Restarting.\n"); 2054 if (priv->error) { 2055 IPW_DEBUG_FW("Sysfs 'error' log already exists.\n"); 2056 if (ipw_debug_level & IPW_DL_FW_ERRORS) { 2057 struct ipw_fw_error *error = 2058 ipw_alloc_error_log(priv); 2059 ipw_dump_error_log(priv, error); 2060 kfree(error); 2061 } 2062 } else { 2063 priv->error = ipw_alloc_error_log(priv); 2064 if (priv->error) 2065 IPW_DEBUG_FW("Sysfs 'error' log captured.\n"); 2066 else 2067 IPW_DEBUG_FW("Error allocating sysfs 'error' " 2068 "log.\n"); 2069 if (ipw_debug_level & IPW_DL_FW_ERRORS) 2070 ipw_dump_error_log(priv, priv->error); 2071 } 2072 2073 /* XXX: If hardware encryption is for WPA/WPA2, 2074 * we have to notify the supplicant. */ 2075 if (priv->ieee->sec.encrypt) { 2076 priv->status &= ~STATUS_ASSOCIATED; 2077 notify_wx_assoc_event(priv); 2078 } 2079 2080 /* Keep the restart process from trying to send host 2081 * commands by clearing the INIT status bit */ 2082 priv->status &= ~STATUS_INIT; 2083 2084 /* Cancel currently queued command. */ 2085 priv->status &= ~STATUS_HCMD_ACTIVE; 2086 wake_up_interruptible(&priv->wait_command_queue); 2087 2088 schedule_work(&priv->adapter_restart); 2089 handled |= IPW_INTA_BIT_FATAL_ERROR; 2090 } 2091 2092 if (inta & IPW_INTA_BIT_PARITY_ERROR) { 2093 IPW_ERROR("Parity error\n"); 2094 handled |= IPW_INTA_BIT_PARITY_ERROR; 2095 } 2096 2097 if (handled != inta) { 2098 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled); 2099 } 2100 2101 spin_unlock_irqrestore(&priv->lock, flags); 2102 2103 /* enable all interrupts */ 2104 ipw_enable_interrupts(priv); 2105 } 2106 2107 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x 2108 static char *get_cmd_string(u8 cmd) 2109 { 2110 switch (cmd) { 2111 IPW_CMD(HOST_COMPLETE); 2112 IPW_CMD(POWER_DOWN); 2113 IPW_CMD(SYSTEM_CONFIG); 2114 IPW_CMD(MULTICAST_ADDRESS); 2115 IPW_CMD(SSID); 2116 IPW_CMD(ADAPTER_ADDRESS); 2117 IPW_CMD(PORT_TYPE); 2118 IPW_CMD(RTS_THRESHOLD); 2119 IPW_CMD(FRAG_THRESHOLD); 2120 IPW_CMD(POWER_MODE); 2121 IPW_CMD(WEP_KEY); 2122 IPW_CMD(TGI_TX_KEY); 2123 IPW_CMD(SCAN_REQUEST); 2124 IPW_CMD(SCAN_REQUEST_EXT); 2125 IPW_CMD(ASSOCIATE); 2126 IPW_CMD(SUPPORTED_RATES); 2127 IPW_CMD(SCAN_ABORT); 2128 IPW_CMD(TX_FLUSH); 2129 IPW_CMD(QOS_PARAMETERS); 2130 IPW_CMD(DINO_CONFIG); 2131 IPW_CMD(RSN_CAPABILITIES); 2132 IPW_CMD(RX_KEY); 2133 IPW_CMD(CARD_DISABLE); 2134 IPW_CMD(SEED_NUMBER); 2135 IPW_CMD(TX_POWER); 2136 IPW_CMD(COUNTRY_INFO); 2137 IPW_CMD(AIRONET_INFO); 2138 IPW_CMD(AP_TX_POWER); 2139 IPW_CMD(CCKM_INFO); 2140 IPW_CMD(CCX_VER_INFO); 2141 IPW_CMD(SET_CALIBRATION); 2142 IPW_CMD(SENSITIVITY_CALIB); 2143 IPW_CMD(RETRY_LIMIT); 2144 IPW_CMD(IPW_PRE_POWER_DOWN); 2145 IPW_CMD(VAP_BEACON_TEMPLATE); 2146 IPW_CMD(VAP_DTIM_PERIOD); 2147 IPW_CMD(EXT_SUPPORTED_RATES); 2148 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT); 2149 IPW_CMD(VAP_QUIET_INTERVALS); 2150 IPW_CMD(VAP_CHANNEL_SWITCH); 2151 IPW_CMD(VAP_MANDATORY_CHANNELS); 2152 IPW_CMD(VAP_CELL_PWR_LIMIT); 2153 IPW_CMD(VAP_CF_PARAM_SET); 2154 IPW_CMD(VAP_SET_BEACONING_STATE); 2155 IPW_CMD(MEASUREMENT); 2156 IPW_CMD(POWER_CAPABILITY); 2157 IPW_CMD(SUPPORTED_CHANNELS); 2158 IPW_CMD(TPC_REPORT); 2159 IPW_CMD(WME_INFO); 2160 IPW_CMD(PRODUCTION_COMMAND); 2161 default: 2162 return "UNKNOWN"; 2163 } 2164 } 2165 2166 #define HOST_COMPLETE_TIMEOUT HZ 2167 2168 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd) 2169 { 2170 int rc = 0; 2171 unsigned long flags; 2172 unsigned long now, end; 2173 2174 spin_lock_irqsave(&priv->lock, flags); 2175 if (priv->status & STATUS_HCMD_ACTIVE) { 2176 IPW_ERROR("Failed to send %s: Already sending a command.\n", 2177 get_cmd_string(cmd->cmd)); 2178 spin_unlock_irqrestore(&priv->lock, flags); 2179 return -EAGAIN; 2180 } 2181 2182 priv->status |= STATUS_HCMD_ACTIVE; 2183 2184 if (priv->cmdlog) { 2185 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies; 2186 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd; 2187 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len; 2188 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param, 2189 cmd->len); 2190 priv->cmdlog[priv->cmdlog_pos].retcode = -1; 2191 } 2192 2193 IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n", 2194 get_cmd_string(cmd->cmd), cmd->cmd, cmd->len, 2195 priv->status); 2196 2197 #ifndef DEBUG_CMD_WEP_KEY 2198 if (cmd->cmd == IPW_CMD_WEP_KEY) 2199 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n"); 2200 else 2201 #endif 2202 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len); 2203 2204 rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0); 2205 if (rc) { 2206 priv->status &= ~STATUS_HCMD_ACTIVE; 2207 IPW_ERROR("Failed to send %s: Reason %d\n", 2208 get_cmd_string(cmd->cmd), rc); 2209 spin_unlock_irqrestore(&priv->lock, flags); 2210 goto exit; 2211 } 2212 spin_unlock_irqrestore(&priv->lock, flags); 2213 2214 now = jiffies; 2215 end = now + HOST_COMPLETE_TIMEOUT; 2216 again: 2217 rc = wait_event_interruptible_timeout(priv->wait_command_queue, 2218 !(priv-> 2219 status & STATUS_HCMD_ACTIVE), 2220 end - now); 2221 if (rc < 0) { 2222 now = jiffies; 2223 if (time_before(now, end)) 2224 goto again; 2225 rc = 0; 2226 } 2227 2228 if (rc == 0) { 2229 spin_lock_irqsave(&priv->lock, flags); 2230 if (priv->status & STATUS_HCMD_ACTIVE) { 2231 IPW_ERROR("Failed to send %s: Command timed out.\n", 2232 get_cmd_string(cmd->cmd)); 2233 priv->status &= ~STATUS_HCMD_ACTIVE; 2234 spin_unlock_irqrestore(&priv->lock, flags); 2235 rc = -EIO; 2236 goto exit; 2237 } 2238 spin_unlock_irqrestore(&priv->lock, flags); 2239 } else 2240 rc = 0; 2241 2242 if (priv->status & STATUS_RF_KILL_HW) { 2243 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n", 2244 get_cmd_string(cmd->cmd)); 2245 rc = -EIO; 2246 goto exit; 2247 } 2248 2249 exit: 2250 if (priv->cmdlog) { 2251 priv->cmdlog[priv->cmdlog_pos++].retcode = rc; 2252 priv->cmdlog_pos %= priv->cmdlog_len; 2253 } 2254 return rc; 2255 } 2256 2257 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command) 2258 { 2259 struct host_cmd cmd = { 2260 .cmd = command, 2261 }; 2262 2263 return __ipw_send_cmd(priv, &cmd); 2264 } 2265 2266 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len, 2267 void *data) 2268 { 2269 struct host_cmd cmd = { 2270 .cmd = command, 2271 .len = len, 2272 .param = data, 2273 }; 2274 2275 return __ipw_send_cmd(priv, &cmd); 2276 } 2277 2278 static int ipw_send_host_complete(struct ipw_priv *priv) 2279 { 2280 if (!priv) { 2281 IPW_ERROR("Invalid args\n"); 2282 return -1; 2283 } 2284 2285 return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE); 2286 } 2287 2288 static int ipw_send_system_config(struct ipw_priv *priv) 2289 { 2290 return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG, 2291 sizeof(priv->sys_config), 2292 &priv->sys_config); 2293 } 2294 2295 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len) 2296 { 2297 if (!priv || !ssid) { 2298 IPW_ERROR("Invalid args\n"); 2299 return -1; 2300 } 2301 2302 return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE), 2303 ssid); 2304 } 2305 2306 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac) 2307 { 2308 if (!priv || !mac) { 2309 IPW_ERROR("Invalid args\n"); 2310 return -1; 2311 } 2312 2313 IPW_DEBUG_INFO("%s: Setting MAC to %pM\n", 2314 priv->net_dev->name, mac); 2315 2316 return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac); 2317 } 2318 2319 static void ipw_adapter_restart(void *adapter) 2320 { 2321 struct ipw_priv *priv = adapter; 2322 2323 if (priv->status & STATUS_RF_KILL_MASK) 2324 return; 2325 2326 ipw_down(priv); 2327 2328 if (priv->assoc_network && 2329 (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS)) 2330 ipw_remove_current_network(priv); 2331 2332 if (ipw_up(priv)) { 2333 IPW_ERROR("Failed to up device\n"); 2334 return; 2335 } 2336 } 2337 2338 static void ipw_bg_adapter_restart(struct work_struct *work) 2339 { 2340 struct ipw_priv *priv = 2341 container_of(work, struct ipw_priv, adapter_restart); 2342 mutex_lock(&priv->mutex); 2343 ipw_adapter_restart(priv); 2344 mutex_unlock(&priv->mutex); 2345 } 2346 2347 static void ipw_abort_scan(struct ipw_priv *priv); 2348 2349 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ) 2350 2351 static void ipw_scan_check(void *data) 2352 { 2353 struct ipw_priv *priv = data; 2354 2355 if (priv->status & STATUS_SCAN_ABORTING) { 2356 IPW_DEBUG_SCAN("Scan completion watchdog resetting " 2357 "adapter after (%dms).\n", 2358 jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG)); 2359 schedule_work(&priv->adapter_restart); 2360 } else if (priv->status & STATUS_SCANNING) { 2361 IPW_DEBUG_SCAN("Scan completion watchdog aborting scan " 2362 "after (%dms).\n", 2363 jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG)); 2364 ipw_abort_scan(priv); 2365 schedule_delayed_work(&priv->scan_check, HZ); 2366 } 2367 } 2368 2369 static void ipw_bg_scan_check(struct work_struct *work) 2370 { 2371 struct ipw_priv *priv = 2372 container_of(work, struct ipw_priv, scan_check.work); 2373 mutex_lock(&priv->mutex); 2374 ipw_scan_check(priv); 2375 mutex_unlock(&priv->mutex); 2376 } 2377 2378 static int ipw_send_scan_request_ext(struct ipw_priv *priv, 2379 struct ipw_scan_request_ext *request) 2380 { 2381 return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT, 2382 sizeof(*request), request); 2383 } 2384 2385 static int ipw_send_scan_abort(struct ipw_priv *priv) 2386 { 2387 if (!priv) { 2388 IPW_ERROR("Invalid args\n"); 2389 return -1; 2390 } 2391 2392 return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT); 2393 } 2394 2395 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens) 2396 { 2397 struct ipw_sensitivity_calib calib = { 2398 .beacon_rssi_raw = cpu_to_le16(sens), 2399 }; 2400 2401 return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib), 2402 &calib); 2403 } 2404 2405 static int ipw_send_associate(struct ipw_priv *priv, 2406 struct ipw_associate *associate) 2407 { 2408 if (!priv || !associate) { 2409 IPW_ERROR("Invalid args\n"); 2410 return -1; 2411 } 2412 2413 return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(*associate), 2414 associate); 2415 } 2416 2417 static int ipw_send_supported_rates(struct ipw_priv *priv, 2418 struct ipw_supported_rates *rates) 2419 { 2420 if (!priv || !rates) { 2421 IPW_ERROR("Invalid args\n"); 2422 return -1; 2423 } 2424 2425 return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates), 2426 rates); 2427 } 2428 2429 static int ipw_set_random_seed(struct ipw_priv *priv) 2430 { 2431 u32 val; 2432 2433 if (!priv) { 2434 IPW_ERROR("Invalid args\n"); 2435 return -1; 2436 } 2437 2438 get_random_bytes(&val, sizeof(val)); 2439 2440 return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val); 2441 } 2442 2443 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off) 2444 { 2445 __le32 v = cpu_to_le32(phy_off); 2446 if (!priv) { 2447 IPW_ERROR("Invalid args\n"); 2448 return -1; 2449 } 2450 2451 return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(v), &v); 2452 } 2453 2454 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power) 2455 { 2456 if (!priv || !power) { 2457 IPW_ERROR("Invalid args\n"); 2458 return -1; 2459 } 2460 2461 return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power); 2462 } 2463 2464 static int ipw_set_tx_power(struct ipw_priv *priv) 2465 { 2466 const struct libipw_geo *geo = libipw_get_geo(priv->ieee); 2467 struct ipw_tx_power tx_power; 2468 s8 max_power; 2469 int i; 2470 2471 memset(&tx_power, 0, sizeof(tx_power)); 2472 2473 /* configure device for 'G' band */ 2474 tx_power.ieee_mode = IPW_G_MODE; 2475 tx_power.num_channels = geo->bg_channels; 2476 for (i = 0; i < geo->bg_channels; i++) { 2477 max_power = geo->bg[i].max_power; 2478 tx_power.channels_tx_power[i].channel_number = 2479 geo->bg[i].channel; 2480 tx_power.channels_tx_power[i].tx_power = max_power ? 2481 min(max_power, priv->tx_power) : priv->tx_power; 2482 } 2483 if (ipw_send_tx_power(priv, &tx_power)) 2484 return -EIO; 2485 2486 /* configure device to also handle 'B' band */ 2487 tx_power.ieee_mode = IPW_B_MODE; 2488 if (ipw_send_tx_power(priv, &tx_power)) 2489 return -EIO; 2490 2491 /* configure device to also handle 'A' band */ 2492 if (priv->ieee->abg_true) { 2493 tx_power.ieee_mode = IPW_A_MODE; 2494 tx_power.num_channels = geo->a_channels; 2495 for (i = 0; i < tx_power.num_channels; i++) { 2496 max_power = geo->a[i].max_power; 2497 tx_power.channels_tx_power[i].channel_number = 2498 geo->a[i].channel; 2499 tx_power.channels_tx_power[i].tx_power = max_power ? 2500 min(max_power, priv->tx_power) : priv->tx_power; 2501 } 2502 if (ipw_send_tx_power(priv, &tx_power)) 2503 return -EIO; 2504 } 2505 return 0; 2506 } 2507 2508 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts) 2509 { 2510 struct ipw_rts_threshold rts_threshold = { 2511 .rts_threshold = cpu_to_le16(rts), 2512 }; 2513 2514 if (!priv) { 2515 IPW_ERROR("Invalid args\n"); 2516 return -1; 2517 } 2518 2519 return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD, 2520 sizeof(rts_threshold), &rts_threshold); 2521 } 2522 2523 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag) 2524 { 2525 struct ipw_frag_threshold frag_threshold = { 2526 .frag_threshold = cpu_to_le16(frag), 2527 }; 2528 2529 if (!priv) { 2530 IPW_ERROR("Invalid args\n"); 2531 return -1; 2532 } 2533 2534 return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD, 2535 sizeof(frag_threshold), &frag_threshold); 2536 } 2537 2538 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode) 2539 { 2540 __le32 param; 2541 2542 if (!priv) { 2543 IPW_ERROR("Invalid args\n"); 2544 return -1; 2545 } 2546 2547 /* If on battery, set to 3, if AC set to CAM, else user 2548 * level */ 2549 switch (mode) { 2550 case IPW_POWER_BATTERY: 2551 param = cpu_to_le32(IPW_POWER_INDEX_3); 2552 break; 2553 case IPW_POWER_AC: 2554 param = cpu_to_le32(IPW_POWER_MODE_CAM); 2555 break; 2556 default: 2557 param = cpu_to_le32(mode); 2558 break; 2559 } 2560 2561 return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param), 2562 ¶m); 2563 } 2564 2565 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit) 2566 { 2567 struct ipw_retry_limit retry_limit = { 2568 .short_retry_limit = slimit, 2569 .long_retry_limit = llimit 2570 }; 2571 2572 if (!priv) { 2573 IPW_ERROR("Invalid args\n"); 2574 return -1; 2575 } 2576 2577 return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit), 2578 &retry_limit); 2579 } 2580 2581 /* 2582 * The IPW device contains a Microwire compatible EEPROM that stores 2583 * various data like the MAC address. Usually the firmware has exclusive 2584 * access to the eeprom, but during device initialization (before the 2585 * device driver has sent the HostComplete command to the firmware) the 2586 * device driver has read access to the EEPROM by way of indirect addressing 2587 * through a couple of memory mapped registers. 2588 * 2589 * The following is a simplified implementation for pulling data out of the 2590 * the eeprom, along with some helper functions to find information in 2591 * the per device private data's copy of the eeprom. 2592 * 2593 * NOTE: To better understand how these functions work (i.e what is a chip 2594 * select and why do have to keep driving the eeprom clock?), read 2595 * just about any data sheet for a Microwire compatible EEPROM. 2596 */ 2597 2598 /* write a 32 bit value into the indirect accessor register */ 2599 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data) 2600 { 2601 ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data); 2602 2603 /* the eeprom requires some time to complete the operation */ 2604 udelay(p->eeprom_delay); 2605 } 2606 2607 /* perform a chip select operation */ 2608 static void eeprom_cs(struct ipw_priv *priv) 2609 { 2610 eeprom_write_reg(priv, 0); 2611 eeprom_write_reg(priv, EEPROM_BIT_CS); 2612 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK); 2613 eeprom_write_reg(priv, EEPROM_BIT_CS); 2614 } 2615 2616 /* perform a chip select operation */ 2617 static void eeprom_disable_cs(struct ipw_priv *priv) 2618 { 2619 eeprom_write_reg(priv, EEPROM_BIT_CS); 2620 eeprom_write_reg(priv, 0); 2621 eeprom_write_reg(priv, EEPROM_BIT_SK); 2622 } 2623 2624 /* push a single bit down to the eeprom */ 2625 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit) 2626 { 2627 int d = (bit ? EEPROM_BIT_DI : 0); 2628 eeprom_write_reg(p, EEPROM_BIT_CS | d); 2629 eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK); 2630 } 2631 2632 /* push an opcode followed by an address down to the eeprom */ 2633 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr) 2634 { 2635 int i; 2636 2637 eeprom_cs(priv); 2638 eeprom_write_bit(priv, 1); 2639 eeprom_write_bit(priv, op & 2); 2640 eeprom_write_bit(priv, op & 1); 2641 for (i = 7; i >= 0; i--) { 2642 eeprom_write_bit(priv, addr & (1 << i)); 2643 } 2644 } 2645 2646 /* pull 16 bits off the eeprom, one bit at a time */ 2647 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr) 2648 { 2649 int i; 2650 u16 r = 0; 2651 2652 /* Send READ Opcode */ 2653 eeprom_op(priv, EEPROM_CMD_READ, addr); 2654 2655 /* Send dummy bit */ 2656 eeprom_write_reg(priv, EEPROM_BIT_CS); 2657 2658 /* Read the byte off the eeprom one bit at a time */ 2659 for (i = 0; i < 16; i++) { 2660 u32 data = 0; 2661 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK); 2662 eeprom_write_reg(priv, EEPROM_BIT_CS); 2663 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS); 2664 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0); 2665 } 2666 2667 /* Send another dummy bit */ 2668 eeprom_write_reg(priv, 0); 2669 eeprom_disable_cs(priv); 2670 2671 return r; 2672 } 2673 2674 /* helper function for pulling the mac address out of the private */ 2675 /* data's copy of the eeprom data */ 2676 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac) 2677 { 2678 memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], ETH_ALEN); 2679 } 2680 2681 static void ipw_read_eeprom(struct ipw_priv *priv) 2682 { 2683 int i; 2684 __le16 *eeprom = (__le16 *) priv->eeprom; 2685 2686 IPW_DEBUG_TRACE(">>\n"); 2687 2688 /* read entire contents of eeprom into private buffer */ 2689 for (i = 0; i < 128; i++) 2690 eeprom[i] = cpu_to_le16(eeprom_read_u16(priv, (u8) i)); 2691 2692 IPW_DEBUG_TRACE("<<\n"); 2693 } 2694 2695 /* 2696 * Either the device driver (i.e. the host) or the firmware can 2697 * load eeprom data into the designated region in SRAM. If neither 2698 * happens then the FW will shutdown with a fatal error. 2699 * 2700 * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE 2701 * bit needs region of shared SRAM needs to be non-zero. 2702 */ 2703 static void ipw_eeprom_init_sram(struct ipw_priv *priv) 2704 { 2705 int i; 2706 2707 IPW_DEBUG_TRACE(">>\n"); 2708 2709 /* 2710 If the data looks correct, then copy it to our private 2711 copy. Otherwise let the firmware know to perform the operation 2712 on its own. 2713 */ 2714 if (priv->eeprom[EEPROM_VERSION] != 0) { 2715 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n"); 2716 2717 /* write the eeprom data to sram */ 2718 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++) 2719 ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]); 2720 2721 /* Do not load eeprom data on fatal error or suspend */ 2722 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0); 2723 } else { 2724 IPW_DEBUG_INFO("Enabling FW initialization of SRAM\n"); 2725 2726 /* Load eeprom data on fatal error or suspend */ 2727 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1); 2728 } 2729 2730 IPW_DEBUG_TRACE("<<\n"); 2731 } 2732 2733 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count) 2734 { 2735 count >>= 2; 2736 if (!count) 2737 return; 2738 _ipw_write32(priv, IPW_AUTOINC_ADDR, start); 2739 while (count--) 2740 _ipw_write32(priv, IPW_AUTOINC_DATA, 0); 2741 } 2742 2743 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv) 2744 { 2745 ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL, 2746 CB_NUMBER_OF_ELEMENTS_SMALL * 2747 sizeof(struct command_block)); 2748 } 2749 2750 static int ipw_fw_dma_enable(struct ipw_priv *priv) 2751 { /* start dma engine but no transfers yet */ 2752 2753 IPW_DEBUG_FW(">> :\n"); 2754 2755 /* Start the dma */ 2756 ipw_fw_dma_reset_command_blocks(priv); 2757 2758 /* Write CB base address */ 2759 ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL); 2760 2761 IPW_DEBUG_FW("<< :\n"); 2762 return 0; 2763 } 2764 2765 static void ipw_fw_dma_abort(struct ipw_priv *priv) 2766 { 2767 u32 control = 0; 2768 2769 IPW_DEBUG_FW(">> :\n"); 2770 2771 /* set the Stop and Abort bit */ 2772 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT; 2773 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control); 2774 priv->sram_desc.last_cb_index = 0; 2775 2776 IPW_DEBUG_FW("<<\n"); 2777 } 2778 2779 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index, 2780 struct command_block *cb) 2781 { 2782 u32 address = 2783 IPW_SHARED_SRAM_DMA_CONTROL + 2784 (sizeof(struct command_block) * index); 2785 IPW_DEBUG_FW(">> :\n"); 2786 2787 ipw_write_indirect(priv, address, (u8 *) cb, 2788 (int)sizeof(struct command_block)); 2789 2790 IPW_DEBUG_FW("<< :\n"); 2791 return 0; 2792 2793 } 2794 2795 static int ipw_fw_dma_kick(struct ipw_priv *priv) 2796 { 2797 u32 control = 0; 2798 u32 index = 0; 2799 2800 IPW_DEBUG_FW(">> :\n"); 2801 2802 for (index = 0; index < priv->sram_desc.last_cb_index; index++) 2803 ipw_fw_dma_write_command_block(priv, index, 2804 &priv->sram_desc.cb_list[index]); 2805 2806 /* Enable the DMA in the CSR register */ 2807 ipw_clear_bit(priv, IPW_RESET_REG, 2808 IPW_RESET_REG_MASTER_DISABLED | 2809 IPW_RESET_REG_STOP_MASTER); 2810 2811 /* Set the Start bit. */ 2812 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START; 2813 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control); 2814 2815 IPW_DEBUG_FW("<< :\n"); 2816 return 0; 2817 } 2818 2819 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv) 2820 { 2821 u32 address; 2822 u32 register_value = 0; 2823 u32 cb_fields_address = 0; 2824 2825 IPW_DEBUG_FW(">> :\n"); 2826 address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB); 2827 IPW_DEBUG_FW_INFO("Current CB is 0x%x\n", address); 2828 2829 /* Read the DMA Controlor register */ 2830 register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL); 2831 IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x\n", register_value); 2832 2833 /* Print the CB values */ 2834 cb_fields_address = address; 2835 register_value = ipw_read_reg32(priv, cb_fields_address); 2836 IPW_DEBUG_FW_INFO("Current CB Control Field is 0x%x\n", register_value); 2837 2838 cb_fields_address += sizeof(u32); 2839 register_value = ipw_read_reg32(priv, cb_fields_address); 2840 IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x\n", register_value); 2841 2842 cb_fields_address += sizeof(u32); 2843 register_value = ipw_read_reg32(priv, cb_fields_address); 2844 IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x\n", 2845 register_value); 2846 2847 cb_fields_address += sizeof(u32); 2848 register_value = ipw_read_reg32(priv, cb_fields_address); 2849 IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x\n", register_value); 2850 2851 IPW_DEBUG_FW(">> :\n"); 2852 } 2853 2854 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv) 2855 { 2856 u32 current_cb_address = 0; 2857 u32 current_cb_index = 0; 2858 2859 IPW_DEBUG_FW("<< :\n"); 2860 current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB); 2861 2862 current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) / 2863 sizeof(struct command_block); 2864 2865 IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X\n", 2866 current_cb_index, current_cb_address); 2867 2868 IPW_DEBUG_FW(">> :\n"); 2869 return current_cb_index; 2870 2871 } 2872 2873 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv, 2874 u32 src_address, 2875 u32 dest_address, 2876 u32 length, 2877 int interrupt_enabled, int is_last) 2878 { 2879 2880 u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC | 2881 CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG | 2882 CB_DEST_SIZE_LONG; 2883 struct command_block *cb; 2884 u32 last_cb_element = 0; 2885 2886 IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n", 2887 src_address, dest_address, length); 2888 2889 if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL) 2890 return -1; 2891 2892 last_cb_element = priv->sram_desc.last_cb_index; 2893 cb = &priv->sram_desc.cb_list[last_cb_element]; 2894 priv->sram_desc.last_cb_index++; 2895 2896 /* Calculate the new CB control word */ 2897 if (interrupt_enabled) 2898 control |= CB_INT_ENABLED; 2899 2900 if (is_last) 2901 control |= CB_LAST_VALID; 2902 2903 control |= length; 2904 2905 /* Calculate the CB Element's checksum value */ 2906 cb->status = control ^ src_address ^ dest_address; 2907 2908 /* Copy the Source and Destination addresses */ 2909 cb->dest_addr = dest_address; 2910 cb->source_addr = src_address; 2911 2912 /* Copy the Control Word last */ 2913 cb->control = control; 2914 2915 return 0; 2916 } 2917 2918 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv, dma_addr_t *src_address, 2919 int nr, u32 dest_address, u32 len) 2920 { 2921 int ret, i; 2922 u32 size; 2923 2924 IPW_DEBUG_FW(">>\n"); 2925 IPW_DEBUG_FW_INFO("nr=%d dest_address=0x%x len=0x%x\n", 2926 nr, dest_address, len); 2927 2928 for (i = 0; i < nr; i++) { 2929 size = min_t(u32, len - i * CB_MAX_LENGTH, CB_MAX_LENGTH); 2930 ret = ipw_fw_dma_add_command_block(priv, src_address[i], 2931 dest_address + 2932 i * CB_MAX_LENGTH, size, 2933 0, 0); 2934 if (ret) { 2935 IPW_DEBUG_FW_INFO(": Failed\n"); 2936 return -1; 2937 } else 2938 IPW_DEBUG_FW_INFO(": Added new cb\n"); 2939 } 2940 2941 IPW_DEBUG_FW("<<\n"); 2942 return 0; 2943 } 2944 2945 static int ipw_fw_dma_wait(struct ipw_priv *priv) 2946 { 2947 u32 current_index = 0, previous_index; 2948 u32 watchdog = 0; 2949 2950 IPW_DEBUG_FW(">> :\n"); 2951 2952 current_index = ipw_fw_dma_command_block_index(priv); 2953 IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n", 2954 (int)priv->sram_desc.last_cb_index); 2955 2956 while (current_index < priv->sram_desc.last_cb_index) { 2957 udelay(50); 2958 previous_index = current_index; 2959 current_index = ipw_fw_dma_command_block_index(priv); 2960 2961 if (previous_index < current_index) { 2962 watchdog = 0; 2963 continue; 2964 } 2965 if (++watchdog > 400) { 2966 IPW_DEBUG_FW_INFO("Timeout\n"); 2967 ipw_fw_dma_dump_command_block(priv); 2968 ipw_fw_dma_abort(priv); 2969 return -1; 2970 } 2971 } 2972 2973 ipw_fw_dma_abort(priv); 2974 2975 /*Disable the DMA in the CSR register */ 2976 ipw_set_bit(priv, IPW_RESET_REG, 2977 IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER); 2978 2979 IPW_DEBUG_FW("<< dmaWaitSync\n"); 2980 return 0; 2981 } 2982 2983 static void ipw_remove_current_network(struct ipw_priv *priv) 2984 { 2985 struct list_head *element, *safe; 2986 struct libipw_network *network = NULL; 2987 unsigned long flags; 2988 2989 spin_lock_irqsave(&priv->ieee->lock, flags); 2990 list_for_each_safe(element, safe, &priv->ieee->network_list) { 2991 network = list_entry(element, struct libipw_network, list); 2992 if (ether_addr_equal(network->bssid, priv->bssid)) { 2993 list_del(element); 2994 list_add_tail(&network->list, 2995 &priv->ieee->network_free_list); 2996 } 2997 } 2998 spin_unlock_irqrestore(&priv->ieee->lock, flags); 2999 } 3000 3001 /** 3002 * Check that card is still alive. 3003 * Reads debug register from domain0. 3004 * If card is present, pre-defined value should 3005 * be found there. 3006 * 3007 * @param priv 3008 * @return 1 if card is present, 0 otherwise 3009 */ 3010 static inline int ipw_alive(struct ipw_priv *priv) 3011 { 3012 return ipw_read32(priv, 0x90) == 0xd55555d5; 3013 } 3014 3015 /* timeout in msec, attempted in 10-msec quanta */ 3016 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask, 3017 int timeout) 3018 { 3019 int i = 0; 3020 3021 do { 3022 if ((ipw_read32(priv, addr) & mask) == mask) 3023 return i; 3024 mdelay(10); 3025 i += 10; 3026 } while (i < timeout); 3027 3028 return -ETIME; 3029 } 3030 3031 /* These functions load the firmware and micro code for the operation of 3032 * the ipw hardware. It assumes the buffer has all the bits for the 3033 * image and the caller is handling the memory allocation and clean up. 3034 */ 3035 3036 static int ipw_stop_master(struct ipw_priv *priv) 3037 { 3038 int rc; 3039 3040 IPW_DEBUG_TRACE(">>\n"); 3041 /* stop master. typical delay - 0 */ 3042 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER); 3043 3044 /* timeout is in msec, polled in 10-msec quanta */ 3045 rc = ipw_poll_bit(priv, IPW_RESET_REG, 3046 IPW_RESET_REG_MASTER_DISABLED, 100); 3047 if (rc < 0) { 3048 IPW_ERROR("wait for stop master failed after 100ms\n"); 3049 return -1; 3050 } 3051 3052 IPW_DEBUG_INFO("stop master %dms\n", rc); 3053 3054 return rc; 3055 } 3056 3057 static void ipw_arc_release(struct ipw_priv *priv) 3058 { 3059 IPW_DEBUG_TRACE(">>\n"); 3060 mdelay(5); 3061 3062 ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET); 3063 3064 /* no one knows timing, for safety add some delay */ 3065 mdelay(5); 3066 } 3067 3068 struct fw_chunk { 3069 __le32 address; 3070 __le32 length; 3071 }; 3072 3073 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len) 3074 { 3075 int rc = 0, i, addr; 3076 u8 cr = 0; 3077 __le16 *image; 3078 3079 image = (__le16 *) data; 3080 3081 IPW_DEBUG_TRACE(">>\n"); 3082 3083 rc = ipw_stop_master(priv); 3084 3085 if (rc < 0) 3086 return rc; 3087 3088 for (addr = IPW_SHARED_LOWER_BOUND; 3089 addr < IPW_REGISTER_DOMAIN1_END; addr += 4) { 3090 ipw_write32(priv, addr, 0); 3091 } 3092 3093 /* no ucode (yet) */ 3094 memset(&priv->dino_alive, 0, sizeof(priv->dino_alive)); 3095 /* destroy DMA queues */ 3096 /* reset sequence */ 3097 3098 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON); 3099 ipw_arc_release(priv); 3100 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF); 3101 mdelay(1); 3102 3103 /* reset PHY */ 3104 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN); 3105 mdelay(1); 3106 3107 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0); 3108 mdelay(1); 3109 3110 /* enable ucode store */ 3111 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0); 3112 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS); 3113 mdelay(1); 3114 3115 /* write ucode */ 3116 /** 3117 * @bug 3118 * Do NOT set indirect address register once and then 3119 * store data to indirect data register in the loop. 3120 * It seems very reasonable, but in this case DINO do not 3121 * accept ucode. It is essential to set address each time. 3122 */ 3123 /* load new ipw uCode */ 3124 for (i = 0; i < len / 2; i++) 3125 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE, 3126 le16_to_cpu(image[i])); 3127 3128 /* enable DINO */ 3129 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0); 3130 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM); 3131 3132 /* this is where the igx / win driver deveates from the VAP driver. */ 3133 3134 /* wait for alive response */ 3135 for (i = 0; i < 100; i++) { 3136 /* poll for incoming data */ 3137 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS); 3138 if (cr & DINO_RXFIFO_DATA) 3139 break; 3140 mdelay(1); 3141 } 3142 3143 if (cr & DINO_RXFIFO_DATA) { 3144 /* alive_command_responce size is NOT multiple of 4 */ 3145 __le32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4]; 3146 3147 for (i = 0; i < ARRAY_SIZE(response_buffer); i++) 3148 response_buffer[i] = 3149 cpu_to_le32(ipw_read_reg32(priv, 3150 IPW_BASEBAND_RX_FIFO_READ)); 3151 memcpy(&priv->dino_alive, response_buffer, 3152 sizeof(priv->dino_alive)); 3153 if (priv->dino_alive.alive_command == 1 3154 && priv->dino_alive.ucode_valid == 1) { 3155 rc = 0; 3156 IPW_DEBUG_INFO 3157 ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) " 3158 "of %02d/%02d/%02d %02d:%02d\n", 3159 priv->dino_alive.software_revision, 3160 priv->dino_alive.software_revision, 3161 priv->dino_alive.device_identifier, 3162 priv->dino_alive.device_identifier, 3163 priv->dino_alive.time_stamp[0], 3164 priv->dino_alive.time_stamp[1], 3165 priv->dino_alive.time_stamp[2], 3166 priv->dino_alive.time_stamp[3], 3167 priv->dino_alive.time_stamp[4]); 3168 } else { 3169 IPW_DEBUG_INFO("Microcode is not alive\n"); 3170 rc = -EINVAL; 3171 } 3172 } else { 3173 IPW_DEBUG_INFO("No alive response from DINO\n"); 3174 rc = -ETIME; 3175 } 3176 3177 /* disable DINO, otherwise for some reason 3178 firmware have problem getting alive resp. */ 3179 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0); 3180 3181 return rc; 3182 } 3183 3184 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len) 3185 { 3186 int ret = -1; 3187 int offset = 0; 3188 struct fw_chunk *chunk; 3189 int total_nr = 0; 3190 int i; 3191 struct dma_pool *pool; 3192 void **virts; 3193 dma_addr_t *phys; 3194 3195 IPW_DEBUG_TRACE("<< :\n"); 3196 3197 virts = kmalloc_array(CB_NUMBER_OF_ELEMENTS_SMALL, sizeof(void *), 3198 GFP_KERNEL); 3199 if (!virts) 3200 return -ENOMEM; 3201 3202 phys = kmalloc_array(CB_NUMBER_OF_ELEMENTS_SMALL, sizeof(dma_addr_t), 3203 GFP_KERNEL); 3204 if (!phys) { 3205 kfree(virts); 3206 return -ENOMEM; 3207 } 3208 pool = dma_pool_create("ipw2200", &priv->pci_dev->dev, CB_MAX_LENGTH, 0, 3209 0); 3210 if (!pool) { 3211 IPW_ERROR("dma_pool_create failed\n"); 3212 kfree(phys); 3213 kfree(virts); 3214 return -ENOMEM; 3215 } 3216 3217 /* Start the Dma */ 3218 ret = ipw_fw_dma_enable(priv); 3219 3220 /* the DMA is already ready this would be a bug. */ 3221 BUG_ON(priv->sram_desc.last_cb_index > 0); 3222 3223 do { 3224 u32 chunk_len; 3225 u8 *start; 3226 int size; 3227 int nr = 0; 3228 3229 chunk = (struct fw_chunk *)(data + offset); 3230 offset += sizeof(struct fw_chunk); 3231 chunk_len = le32_to_cpu(chunk->length); 3232 start = data + offset; 3233 3234 nr = (chunk_len + CB_MAX_LENGTH - 1) / CB_MAX_LENGTH; 3235 for (i = 0; i < nr; i++) { 3236 virts[total_nr] = dma_pool_alloc(pool, GFP_KERNEL, 3237 &phys[total_nr]); 3238 if (!virts[total_nr]) { 3239 ret = -ENOMEM; 3240 goto out; 3241 } 3242 size = min_t(u32, chunk_len - i * CB_MAX_LENGTH, 3243 CB_MAX_LENGTH); 3244 memcpy(virts[total_nr], start, size); 3245 start += size; 3246 total_nr++; 3247 /* We don't support fw chunk larger than 64*8K */ 3248 BUG_ON(total_nr > CB_NUMBER_OF_ELEMENTS_SMALL); 3249 } 3250 3251 /* build DMA packet and queue up for sending */ 3252 /* dma to chunk->address, the chunk->length bytes from data + 3253 * offeset*/ 3254 /* Dma loading */ 3255 ret = ipw_fw_dma_add_buffer(priv, &phys[total_nr - nr], 3256 nr, le32_to_cpu(chunk->address), 3257 chunk_len); 3258 if (ret) { 3259 IPW_DEBUG_INFO("dmaAddBuffer Failed\n"); 3260 goto out; 3261 } 3262 3263 offset += chunk_len; 3264 } while (offset < len); 3265 3266 /* Run the DMA and wait for the answer */ 3267 ret = ipw_fw_dma_kick(priv); 3268 if (ret) { 3269 IPW_ERROR("dmaKick Failed\n"); 3270 goto out; 3271 } 3272 3273 ret = ipw_fw_dma_wait(priv); 3274 if (ret) { 3275 IPW_ERROR("dmaWaitSync Failed\n"); 3276 goto out; 3277 } 3278 out: 3279 for (i = 0; i < total_nr; i++) 3280 dma_pool_free(pool, virts[i], phys[i]); 3281 3282 dma_pool_destroy(pool); 3283 kfree(phys); 3284 kfree(virts); 3285 3286 return ret; 3287 } 3288 3289 /* stop nic */ 3290 static int ipw_stop_nic(struct ipw_priv *priv) 3291 { 3292 int rc = 0; 3293 3294 /* stop */ 3295 ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER); 3296 3297 rc = ipw_poll_bit(priv, IPW_RESET_REG, 3298 IPW_RESET_REG_MASTER_DISABLED, 500); 3299 if (rc < 0) { 3300 IPW_ERROR("wait for reg master disabled failed after 500ms\n"); 3301 return rc; 3302 } 3303 3304 ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET); 3305 3306 return rc; 3307 } 3308 3309 static void ipw_start_nic(struct ipw_priv *priv) 3310 { 3311 IPW_DEBUG_TRACE(">>\n"); 3312 3313 /* prvHwStartNic release ARC */ 3314 ipw_clear_bit(priv, IPW_RESET_REG, 3315 IPW_RESET_REG_MASTER_DISABLED | 3316 IPW_RESET_REG_STOP_MASTER | 3317 CBD_RESET_REG_PRINCETON_RESET); 3318 3319 /* enable power management */ 3320 ipw_set_bit(priv, IPW_GP_CNTRL_RW, 3321 IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY); 3322 3323 IPW_DEBUG_TRACE("<<\n"); 3324 } 3325 3326 static int ipw_init_nic(struct ipw_priv *priv) 3327 { 3328 int rc; 3329 3330 IPW_DEBUG_TRACE(">>\n"); 3331 /* reset */ 3332 /*prvHwInitNic */ 3333 /* set "initialization complete" bit to move adapter to D0 state */ 3334 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE); 3335 3336 /* low-level PLL activation */ 3337 ipw_write32(priv, IPW_READ_INT_REGISTER, 3338 IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER); 3339 3340 /* wait for clock stabilization */ 3341 rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW, 3342 IPW_GP_CNTRL_BIT_CLOCK_READY, 250); 3343 if (rc < 0) 3344 IPW_DEBUG_INFO("FAILED wait for clock stablization\n"); 3345 3346 /* assert SW reset */ 3347 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET); 3348 3349 udelay(10); 3350 3351 /* set "initialization complete" bit to move adapter to D0 state */ 3352 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE); 3353 3354 IPW_DEBUG_TRACE(">>\n"); 3355 return 0; 3356 } 3357 3358 /* Call this function from process context, it will sleep in request_firmware. 3359 * Probe is an ok place to call this from. 3360 */ 3361 static int ipw_reset_nic(struct ipw_priv *priv) 3362 { 3363 int rc = 0; 3364 unsigned long flags; 3365 3366 IPW_DEBUG_TRACE(">>\n"); 3367 3368 rc = ipw_init_nic(priv); 3369 3370 spin_lock_irqsave(&priv->lock, flags); 3371 /* Clear the 'host command active' bit... */ 3372 priv->status &= ~STATUS_HCMD_ACTIVE; 3373 wake_up_interruptible(&priv->wait_command_queue); 3374 priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING); 3375 wake_up_interruptible(&priv->wait_state); 3376 spin_unlock_irqrestore(&priv->lock, flags); 3377 3378 IPW_DEBUG_TRACE("<<\n"); 3379 return rc; 3380 } 3381 3382 3383 struct ipw_fw { 3384 __le32 ver; 3385 __le32 boot_size; 3386 __le32 ucode_size; 3387 __le32 fw_size; 3388 u8 data[0]; 3389 }; 3390 3391 static int ipw_get_fw(struct ipw_priv *priv, 3392 const struct firmware **raw, const char *name) 3393 { 3394 struct ipw_fw *fw; 3395 int rc; 3396 3397 /* ask firmware_class module to get the boot firmware off disk */ 3398 rc = request_firmware(raw, name, &priv->pci_dev->dev); 3399 if (rc < 0) { 3400 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc); 3401 return rc; 3402 } 3403 3404 if ((*raw)->size < sizeof(*fw)) { 3405 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size); 3406 return -EINVAL; 3407 } 3408 3409 fw = (void *)(*raw)->data; 3410 3411 if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) + 3412 le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) { 3413 IPW_ERROR("%s is too small or corrupt (%zd)\n", 3414 name, (*raw)->size); 3415 return -EINVAL; 3416 } 3417 3418 IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n", 3419 name, 3420 le32_to_cpu(fw->ver) >> 16, 3421 le32_to_cpu(fw->ver) & 0xff, 3422 (*raw)->size - sizeof(*fw)); 3423 return 0; 3424 } 3425 3426 #define IPW_RX_BUF_SIZE (3000) 3427 3428 static void ipw_rx_queue_reset(struct ipw_priv *priv, 3429 struct ipw_rx_queue *rxq) 3430 { 3431 unsigned long flags; 3432 int i; 3433 3434 spin_lock_irqsave(&rxq->lock, flags); 3435 3436 INIT_LIST_HEAD(&rxq->rx_free); 3437 INIT_LIST_HEAD(&rxq->rx_used); 3438 3439 /* Fill the rx_used queue with _all_ of the Rx buffers */ 3440 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) { 3441 /* In the reset function, these buffers may have been allocated 3442 * to an SKB, so we need to unmap and free potential storage */ 3443 if (rxq->pool[i].skb != NULL) { 3444 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr, 3445 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE); 3446 dev_kfree_skb(rxq->pool[i].skb); 3447 rxq->pool[i].skb = NULL; 3448 } 3449 list_add_tail(&rxq->pool[i].list, &rxq->rx_used); 3450 } 3451 3452 /* Set us so that we have processed and used all buffers, but have 3453 * not restocked the Rx queue with fresh buffers */ 3454 rxq->read = rxq->write = 0; 3455 rxq->free_count = 0; 3456 spin_unlock_irqrestore(&rxq->lock, flags); 3457 } 3458 3459 #ifdef CONFIG_PM 3460 static int fw_loaded = 0; 3461 static const struct firmware *raw = NULL; 3462 3463 static void free_firmware(void) 3464 { 3465 if (fw_loaded) { 3466 release_firmware(raw); 3467 raw = NULL; 3468 fw_loaded = 0; 3469 } 3470 } 3471 #else 3472 #define free_firmware() do {} while (0) 3473 #endif 3474 3475 static int ipw_load(struct ipw_priv *priv) 3476 { 3477 #ifndef CONFIG_PM 3478 const struct firmware *raw = NULL; 3479 #endif 3480 struct ipw_fw *fw; 3481 u8 *boot_img, *ucode_img, *fw_img; 3482 u8 *name = NULL; 3483 int rc = 0, retries = 3; 3484 3485 switch (priv->ieee->iw_mode) { 3486 case IW_MODE_ADHOC: 3487 name = "ipw2200-ibss.fw"; 3488 break; 3489 #ifdef CONFIG_IPW2200_MONITOR 3490 case IW_MODE_MONITOR: 3491 name = "ipw2200-sniffer.fw"; 3492 break; 3493 #endif 3494 case IW_MODE_INFRA: 3495 name = "ipw2200-bss.fw"; 3496 break; 3497 } 3498 3499 if (!name) { 3500 rc = -EINVAL; 3501 goto error; 3502 } 3503 3504 #ifdef CONFIG_PM 3505 if (!fw_loaded) { 3506 #endif 3507 rc = ipw_get_fw(priv, &raw, name); 3508 if (rc < 0) 3509 goto error; 3510 #ifdef CONFIG_PM 3511 } 3512 #endif 3513 3514 fw = (void *)raw->data; 3515 boot_img = &fw->data[0]; 3516 ucode_img = &fw->data[le32_to_cpu(fw->boot_size)]; 3517 fw_img = &fw->data[le32_to_cpu(fw->boot_size) + 3518 le32_to_cpu(fw->ucode_size)]; 3519 3520 if (!priv->rxq) 3521 priv->rxq = ipw_rx_queue_alloc(priv); 3522 else 3523 ipw_rx_queue_reset(priv, priv->rxq); 3524 if (!priv->rxq) { 3525 IPW_ERROR("Unable to initialize Rx queue\n"); 3526 rc = -ENOMEM; 3527 goto error; 3528 } 3529 3530 retry: 3531 /* Ensure interrupts are disabled */ 3532 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL); 3533 priv->status &= ~STATUS_INT_ENABLED; 3534 3535 /* ack pending interrupts */ 3536 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL); 3537 3538 ipw_stop_nic(priv); 3539 3540 rc = ipw_reset_nic(priv); 3541 if (rc < 0) { 3542 IPW_ERROR("Unable to reset NIC\n"); 3543 goto error; 3544 } 3545 3546 ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND, 3547 IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND); 3548 3549 /* DMA the initial boot firmware into the device */ 3550 rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size)); 3551 if (rc < 0) { 3552 IPW_ERROR("Unable to load boot firmware: %d\n", rc); 3553 goto error; 3554 } 3555 3556 /* kick start the device */ 3557 ipw_start_nic(priv); 3558 3559 /* wait for the device to finish its initial startup sequence */ 3560 rc = ipw_poll_bit(priv, IPW_INTA_RW, 3561 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500); 3562 if (rc < 0) { 3563 IPW_ERROR("device failed to boot initial fw image\n"); 3564 goto error; 3565 } 3566 IPW_DEBUG_INFO("initial device response after %dms\n", rc); 3567 3568 /* ack fw init done interrupt */ 3569 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE); 3570 3571 /* DMA the ucode into the device */ 3572 rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size)); 3573 if (rc < 0) { 3574 IPW_ERROR("Unable to load ucode: %d\n", rc); 3575 goto error; 3576 } 3577 3578 /* stop nic */ 3579 ipw_stop_nic(priv); 3580 3581 /* DMA bss firmware into the device */ 3582 rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size)); 3583 if (rc < 0) { 3584 IPW_ERROR("Unable to load firmware: %d\n", rc); 3585 goto error; 3586 } 3587 #ifdef CONFIG_PM 3588 fw_loaded = 1; 3589 #endif 3590 3591 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0); 3592 3593 rc = ipw_queue_reset(priv); 3594 if (rc < 0) { 3595 IPW_ERROR("Unable to initialize queues\n"); 3596 goto error; 3597 } 3598 3599 /* Ensure interrupts are disabled */ 3600 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL); 3601 /* ack pending interrupts */ 3602 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL); 3603 3604 /* kick start the device */ 3605 ipw_start_nic(priv); 3606 3607 if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) { 3608 if (retries > 0) { 3609 IPW_WARNING("Parity error. Retrying init.\n"); 3610 retries--; 3611 goto retry; 3612 } 3613 3614 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n"); 3615 rc = -EIO; 3616 goto error; 3617 } 3618 3619 /* wait for the device */ 3620 rc = ipw_poll_bit(priv, IPW_INTA_RW, 3621 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500); 3622 if (rc < 0) { 3623 IPW_ERROR("device failed to start within 500ms\n"); 3624 goto error; 3625 } 3626 IPW_DEBUG_INFO("device response after %dms\n", rc); 3627 3628 /* ack fw init done interrupt */ 3629 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE); 3630 3631 /* read eeprom data */ 3632 priv->eeprom_delay = 1; 3633 ipw_read_eeprom(priv); 3634 /* initialize the eeprom region of sram */ 3635 ipw_eeprom_init_sram(priv); 3636 3637 /* enable interrupts */ 3638 ipw_enable_interrupts(priv); 3639 3640 /* Ensure our queue has valid packets */ 3641 ipw_rx_queue_replenish(priv); 3642 3643 ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read); 3644 3645 /* ack pending interrupts */ 3646 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL); 3647 3648 #ifndef CONFIG_PM 3649 release_firmware(raw); 3650 #endif 3651 return 0; 3652 3653 error: 3654 if (priv->rxq) { 3655 ipw_rx_queue_free(priv, priv->rxq); 3656 priv->rxq = NULL; 3657 } 3658 ipw_tx_queue_free(priv); 3659 release_firmware(raw); 3660 #ifdef CONFIG_PM 3661 fw_loaded = 0; 3662 raw = NULL; 3663 #endif 3664 3665 return rc; 3666 } 3667 3668 /** 3669 * DMA services 3670 * 3671 * Theory of operation 3672 * 3673 * A queue is a circular buffers with 'Read' and 'Write' pointers. 3674 * 2 empty entries always kept in the buffer to protect from overflow. 3675 * 3676 * For Tx queue, there are low mark and high mark limits. If, after queuing 3677 * the packet for Tx, free space become < low mark, Tx queue stopped. When 3678 * reclaiming packets (on 'tx done IRQ), if free space become > high mark, 3679 * Tx queue resumed. 3680 * 3681 * The IPW operates with six queues, one receive queue in the device's 3682 * sram, one transmit queue for sending commands to the device firmware, 3683 * and four transmit queues for data. 3684 * 3685 * The four transmit queues allow for performing quality of service (qos) 3686 * transmissions as per the 802.11 protocol. Currently Linux does not 3687 * provide a mechanism to the user for utilizing prioritized queues, so 3688 * we only utilize the first data transmit queue (queue1). 3689 */ 3690 3691 /** 3692 * Driver allocates buffers of this size for Rx 3693 */ 3694 3695 /** 3696 * ipw_rx_queue_space - Return number of free slots available in queue. 3697 */ 3698 static int ipw_rx_queue_space(const struct ipw_rx_queue *q) 3699 { 3700 int s = q->read - q->write; 3701 if (s <= 0) 3702 s += RX_QUEUE_SIZE; 3703 /* keep some buffer to not confuse full and empty queue */ 3704 s -= 2; 3705 if (s < 0) 3706 s = 0; 3707 return s; 3708 } 3709 3710 static inline int ipw_tx_queue_space(const struct clx2_queue *q) 3711 { 3712 int s = q->last_used - q->first_empty; 3713 if (s <= 0) 3714 s += q->n_bd; 3715 s -= 2; /* keep some reserve to not confuse empty and full situations */ 3716 if (s < 0) 3717 s = 0; 3718 return s; 3719 } 3720 3721 static inline int ipw_queue_inc_wrap(int index, int n_bd) 3722 { 3723 return (++index == n_bd) ? 0 : index; 3724 } 3725 3726 /** 3727 * Initialize common DMA queue structure 3728 * 3729 * @param q queue to init 3730 * @param count Number of BD's to allocate. Should be power of 2 3731 * @param read_register Address for 'read' register 3732 * (not offset within BAR, full address) 3733 * @param write_register Address for 'write' register 3734 * (not offset within BAR, full address) 3735 * @param base_register Address for 'base' register 3736 * (not offset within BAR, full address) 3737 * @param size Address for 'size' register 3738 * (not offset within BAR, full address) 3739 */ 3740 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q, 3741 int count, u32 read, u32 write, u32 base, u32 size) 3742 { 3743 q->n_bd = count; 3744 3745 q->low_mark = q->n_bd / 4; 3746 if (q->low_mark < 4) 3747 q->low_mark = 4; 3748 3749 q->high_mark = q->n_bd / 8; 3750 if (q->high_mark < 2) 3751 q->high_mark = 2; 3752 3753 q->first_empty = q->last_used = 0; 3754 q->reg_r = read; 3755 q->reg_w = write; 3756 3757 ipw_write32(priv, base, q->dma_addr); 3758 ipw_write32(priv, size, count); 3759 ipw_write32(priv, read, 0); 3760 ipw_write32(priv, write, 0); 3761 3762 _ipw_read32(priv, 0x90); 3763 } 3764 3765 static int ipw_queue_tx_init(struct ipw_priv *priv, 3766 struct clx2_tx_queue *q, 3767 int count, u32 read, u32 write, u32 base, u32 size) 3768 { 3769 struct pci_dev *dev = priv->pci_dev; 3770 3771 q->txb = kmalloc_array(count, sizeof(q->txb[0]), GFP_KERNEL); 3772 if (!q->txb) { 3773 IPW_ERROR("vmalloc for auxiliary BD structures failed\n"); 3774 return -ENOMEM; 3775 } 3776 3777 q->bd = 3778 pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr); 3779 if (!q->bd) { 3780 IPW_ERROR("pci_alloc_consistent(%zd) failed\n", 3781 sizeof(q->bd[0]) * count); 3782 kfree(q->txb); 3783 q->txb = NULL; 3784 return -ENOMEM; 3785 } 3786 3787 ipw_queue_init(priv, &q->q, count, read, write, base, size); 3788 return 0; 3789 } 3790 3791 /** 3792 * Free one TFD, those at index [txq->q.last_used]. 3793 * Do NOT advance any indexes 3794 * 3795 * @param dev 3796 * @param txq 3797 */ 3798 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv, 3799 struct clx2_tx_queue *txq) 3800 { 3801 struct tfd_frame *bd = &txq->bd[txq->q.last_used]; 3802 struct pci_dev *dev = priv->pci_dev; 3803 int i; 3804 3805 /* classify bd */ 3806 if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE) 3807 /* nothing to cleanup after for host commands */ 3808 return; 3809 3810 /* sanity check */ 3811 if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) { 3812 IPW_ERROR("Too many chunks: %i\n", 3813 le32_to_cpu(bd->u.data.num_chunks)); 3814 /** @todo issue fatal error, it is quite serious situation */ 3815 return; 3816 } 3817 3818 /* unmap chunks if any */ 3819 for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) { 3820 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]), 3821 le16_to_cpu(bd->u.data.chunk_len[i]), 3822 PCI_DMA_TODEVICE); 3823 if (txq->txb[txq->q.last_used]) { 3824 libipw_txb_free(txq->txb[txq->q.last_used]); 3825 txq->txb[txq->q.last_used] = NULL; 3826 } 3827 } 3828 } 3829 3830 /** 3831 * Deallocate DMA queue. 3832 * 3833 * Empty queue by removing and destroying all BD's. 3834 * Free all buffers. 3835 * 3836 * @param dev 3837 * @param q 3838 */ 3839 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq) 3840 { 3841 struct clx2_queue *q = &txq->q; 3842 struct pci_dev *dev = priv->pci_dev; 3843 3844 if (q->n_bd == 0) 3845 return; 3846 3847 /* first, empty all BD's */ 3848 for (; q->first_empty != q->last_used; 3849 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) { 3850 ipw_queue_tx_free_tfd(priv, txq); 3851 } 3852 3853 /* free buffers belonging to queue itself */ 3854 pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd, 3855 q->dma_addr); 3856 kfree(txq->txb); 3857 3858 /* 0 fill whole structure */ 3859 memset(txq, 0, sizeof(*txq)); 3860 } 3861 3862 /** 3863 * Destroy all DMA queues and structures 3864 * 3865 * @param priv 3866 */ 3867 static void ipw_tx_queue_free(struct ipw_priv *priv) 3868 { 3869 /* Tx CMD queue */ 3870 ipw_queue_tx_free(priv, &priv->txq_cmd); 3871 3872 /* Tx queues */ 3873 ipw_queue_tx_free(priv, &priv->txq[0]); 3874 ipw_queue_tx_free(priv, &priv->txq[1]); 3875 ipw_queue_tx_free(priv, &priv->txq[2]); 3876 ipw_queue_tx_free(priv, &priv->txq[3]); 3877 } 3878 3879 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid) 3880 { 3881 /* First 3 bytes are manufacturer */ 3882 bssid[0] = priv->mac_addr[0]; 3883 bssid[1] = priv->mac_addr[1]; 3884 bssid[2] = priv->mac_addr[2]; 3885 3886 /* Last bytes are random */ 3887 get_random_bytes(&bssid[3], ETH_ALEN - 3); 3888 3889 bssid[0] &= 0xfe; /* clear multicast bit */ 3890 bssid[0] |= 0x02; /* set local assignment bit (IEEE802) */ 3891 } 3892 3893 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid) 3894 { 3895 struct ipw_station_entry entry; 3896 int i; 3897 3898 for (i = 0; i < priv->num_stations; i++) { 3899 if (ether_addr_equal(priv->stations[i], bssid)) { 3900 /* Another node is active in network */ 3901 priv->missed_adhoc_beacons = 0; 3902 if (!(priv->config & CFG_STATIC_CHANNEL)) 3903 /* when other nodes drop out, we drop out */ 3904 priv->config &= ~CFG_ADHOC_PERSIST; 3905 3906 return i; 3907 } 3908 } 3909 3910 if (i == MAX_STATIONS) 3911 return IPW_INVALID_STATION; 3912 3913 IPW_DEBUG_SCAN("Adding AdHoc station: %pM\n", bssid); 3914 3915 entry.reserved = 0; 3916 entry.support_mode = 0; 3917 memcpy(entry.mac_addr, bssid, ETH_ALEN); 3918 memcpy(priv->stations[i], bssid, ETH_ALEN); 3919 ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry), 3920 &entry, sizeof(entry)); 3921 priv->num_stations++; 3922 3923 return i; 3924 } 3925 3926 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid) 3927 { 3928 int i; 3929 3930 for (i = 0; i < priv->num_stations; i++) 3931 if (ether_addr_equal(priv->stations[i], bssid)) 3932 return i; 3933 3934 return IPW_INVALID_STATION; 3935 } 3936 3937 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet) 3938 { 3939 int err; 3940 3941 if (priv->status & STATUS_ASSOCIATING) { 3942 IPW_DEBUG_ASSOC("Disassociating while associating.\n"); 3943 schedule_work(&priv->disassociate); 3944 return; 3945 } 3946 3947 if (!(priv->status & STATUS_ASSOCIATED)) { 3948 IPW_DEBUG_ASSOC("Disassociating while not associated.\n"); 3949 return; 3950 } 3951 3952 IPW_DEBUG_ASSOC("Disassociation attempt from %pM " 3953 "on channel %d.\n", 3954 priv->assoc_request.bssid, 3955 priv->assoc_request.channel); 3956 3957 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED); 3958 priv->status |= STATUS_DISASSOCIATING; 3959 3960 if (quiet) 3961 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET; 3962 else 3963 priv->assoc_request.assoc_type = HC_DISASSOCIATE; 3964 3965 err = ipw_send_associate(priv, &priv->assoc_request); 3966 if (err) { 3967 IPW_DEBUG_HC("Attempt to send [dis]associate command " 3968 "failed.\n"); 3969 return; 3970 } 3971 3972 } 3973 3974 static int ipw_disassociate(void *data) 3975 { 3976 struct ipw_priv *priv = data; 3977 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) 3978 return 0; 3979 ipw_send_disassociate(data, 0); 3980 netif_carrier_off(priv->net_dev); 3981 return 1; 3982 } 3983 3984 static void ipw_bg_disassociate(struct work_struct *work) 3985 { 3986 struct ipw_priv *priv = 3987 container_of(work, struct ipw_priv, disassociate); 3988 mutex_lock(&priv->mutex); 3989 ipw_disassociate(priv); 3990 mutex_unlock(&priv->mutex); 3991 } 3992 3993 static void ipw_system_config(struct work_struct *work) 3994 { 3995 struct ipw_priv *priv = 3996 container_of(work, struct ipw_priv, system_config); 3997 3998 #ifdef CONFIG_IPW2200_PROMISCUOUS 3999 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) { 4000 priv->sys_config.accept_all_data_frames = 1; 4001 priv->sys_config.accept_non_directed_frames = 1; 4002 priv->sys_config.accept_all_mgmt_bcpr = 1; 4003 priv->sys_config.accept_all_mgmt_frames = 1; 4004 } 4005 #endif 4006 4007 ipw_send_system_config(priv); 4008 } 4009 4010 struct ipw_status_code { 4011 u16 status; 4012 const char *reason; 4013 }; 4014 4015 static const struct ipw_status_code ipw_status_codes[] = { 4016 {0x00, "Successful"}, 4017 {0x01, "Unspecified failure"}, 4018 {0x0A, "Cannot support all requested capabilities in the " 4019 "Capability information field"}, 4020 {0x0B, "Reassociation denied due to inability to confirm that " 4021 "association exists"}, 4022 {0x0C, "Association denied due to reason outside the scope of this " 4023 "standard"}, 4024 {0x0D, 4025 "Responding station does not support the specified authentication " 4026 "algorithm"}, 4027 {0x0E, 4028 "Received an Authentication frame with authentication sequence " 4029 "transaction sequence number out of expected sequence"}, 4030 {0x0F, "Authentication rejected because of challenge failure"}, 4031 {0x10, "Authentication rejected due to timeout waiting for next " 4032 "frame in sequence"}, 4033 {0x11, "Association denied because AP is unable to handle additional " 4034 "associated stations"}, 4035 {0x12, 4036 "Association denied due to requesting station not supporting all " 4037 "of the datarates in the BSSBasicServiceSet Parameter"}, 4038 {0x13, 4039 "Association denied due to requesting station not supporting " 4040 "short preamble operation"}, 4041 {0x14, 4042 "Association denied due to requesting station not supporting " 4043 "PBCC encoding"}, 4044 {0x15, 4045 "Association denied due to requesting station not supporting " 4046 "channel agility"}, 4047 {0x19, 4048 "Association denied due to requesting station not supporting " 4049 "short slot operation"}, 4050 {0x1A, 4051 "Association denied due to requesting station not supporting " 4052 "DSSS-OFDM operation"}, 4053 {0x28, "Invalid Information Element"}, 4054 {0x29, "Group Cipher is not valid"}, 4055 {0x2A, "Pairwise Cipher is not valid"}, 4056 {0x2B, "AKMP is not valid"}, 4057 {0x2C, "Unsupported RSN IE version"}, 4058 {0x2D, "Invalid RSN IE Capabilities"}, 4059 {0x2E, "Cipher suite is rejected per security policy"}, 4060 }; 4061 4062 static const char *ipw_get_status_code(u16 status) 4063 { 4064 int i; 4065 for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++) 4066 if (ipw_status_codes[i].status == (status & 0xff)) 4067 return ipw_status_codes[i].reason; 4068 return "Unknown status value."; 4069 } 4070 4071 static inline void average_init(struct average *avg) 4072 { 4073 memset(avg, 0, sizeof(*avg)); 4074 } 4075 4076 #define DEPTH_RSSI 8 4077 #define DEPTH_NOISE 16 4078 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth) 4079 { 4080 return ((depth-1)*prev_avg + val)/depth; 4081 } 4082 4083 static void average_add(struct average *avg, s16 val) 4084 { 4085 avg->sum -= avg->entries[avg->pos]; 4086 avg->sum += val; 4087 avg->entries[avg->pos++] = val; 4088 if (unlikely(avg->pos == AVG_ENTRIES)) { 4089 avg->init = 1; 4090 avg->pos = 0; 4091 } 4092 } 4093 4094 static s16 average_value(struct average *avg) 4095 { 4096 if (!unlikely(avg->init)) { 4097 if (avg->pos) 4098 return avg->sum / avg->pos; 4099 return 0; 4100 } 4101 4102 return avg->sum / AVG_ENTRIES; 4103 } 4104 4105 static void ipw_reset_stats(struct ipw_priv *priv) 4106 { 4107 u32 len = sizeof(u32); 4108 4109 priv->quality = 0; 4110 4111 average_init(&priv->average_missed_beacons); 4112 priv->exp_avg_rssi = -60; 4113 priv->exp_avg_noise = -85 + 0x100; 4114 4115 priv->last_rate = 0; 4116 priv->last_missed_beacons = 0; 4117 priv->last_rx_packets = 0; 4118 priv->last_tx_packets = 0; 4119 priv->last_tx_failures = 0; 4120 4121 /* Firmware managed, reset only when NIC is restarted, so we have to 4122 * normalize on the current value */ 4123 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, 4124 &priv->last_rx_err, &len); 4125 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, 4126 &priv->last_tx_failures, &len); 4127 4128 /* Driver managed, reset with each association */ 4129 priv->missed_adhoc_beacons = 0; 4130 priv->missed_beacons = 0; 4131 priv->tx_packets = 0; 4132 priv->rx_packets = 0; 4133 4134 } 4135 4136 static u32 ipw_get_max_rate(struct ipw_priv *priv) 4137 { 4138 u32 i = 0x80000000; 4139 u32 mask = priv->rates_mask; 4140 /* If currently associated in B mode, restrict the maximum 4141 * rate match to B rates */ 4142 if (priv->assoc_request.ieee_mode == IPW_B_MODE) 4143 mask &= LIBIPW_CCK_RATES_MASK; 4144 4145 /* TODO: Verify that the rate is supported by the current rates 4146 * list. */ 4147 4148 while (i && !(mask & i)) 4149 i >>= 1; 4150 switch (i) { 4151 case LIBIPW_CCK_RATE_1MB_MASK: 4152 return 1000000; 4153 case LIBIPW_CCK_RATE_2MB_MASK: 4154 return 2000000; 4155 case LIBIPW_CCK_RATE_5MB_MASK: 4156 return 5500000; 4157 case LIBIPW_OFDM_RATE_6MB_MASK: 4158 return 6000000; 4159 case LIBIPW_OFDM_RATE_9MB_MASK: 4160 return 9000000; 4161 case LIBIPW_CCK_RATE_11MB_MASK: 4162 return 11000000; 4163 case LIBIPW_OFDM_RATE_12MB_MASK: 4164 return 12000000; 4165 case LIBIPW_OFDM_RATE_18MB_MASK: 4166 return 18000000; 4167 case LIBIPW_OFDM_RATE_24MB_MASK: 4168 return 24000000; 4169 case LIBIPW_OFDM_RATE_36MB_MASK: 4170 return 36000000; 4171 case LIBIPW_OFDM_RATE_48MB_MASK: 4172 return 48000000; 4173 case LIBIPW_OFDM_RATE_54MB_MASK: 4174 return 54000000; 4175 } 4176 4177 if (priv->ieee->mode == IEEE_B) 4178 return 11000000; 4179 else 4180 return 54000000; 4181 } 4182 4183 static u32 ipw_get_current_rate(struct ipw_priv *priv) 4184 { 4185 u32 rate, len = sizeof(rate); 4186 int err; 4187 4188 if (!(priv->status & STATUS_ASSOCIATED)) 4189 return 0; 4190 4191 if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) { 4192 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate, 4193 &len); 4194 if (err) { 4195 IPW_DEBUG_INFO("failed querying ordinals.\n"); 4196 return 0; 4197 } 4198 } else 4199 return ipw_get_max_rate(priv); 4200 4201 switch (rate) { 4202 case IPW_TX_RATE_1MB: 4203 return 1000000; 4204 case IPW_TX_RATE_2MB: 4205 return 2000000; 4206 case IPW_TX_RATE_5MB: 4207 return 5500000; 4208 case IPW_TX_RATE_6MB: 4209 return 6000000; 4210 case IPW_TX_RATE_9MB: 4211 return 9000000; 4212 case IPW_TX_RATE_11MB: 4213 return 11000000; 4214 case IPW_TX_RATE_12MB: 4215 return 12000000; 4216 case IPW_TX_RATE_18MB: 4217 return 18000000; 4218 case IPW_TX_RATE_24MB: 4219 return 24000000; 4220 case IPW_TX_RATE_36MB: 4221 return 36000000; 4222 case IPW_TX_RATE_48MB: 4223 return 48000000; 4224 case IPW_TX_RATE_54MB: 4225 return 54000000; 4226 } 4227 4228 return 0; 4229 } 4230 4231 #define IPW_STATS_INTERVAL (2 * HZ) 4232 static void ipw_gather_stats(struct ipw_priv *priv) 4233 { 4234 u32 rx_err, rx_err_delta, rx_packets_delta; 4235 u32 tx_failures, tx_failures_delta, tx_packets_delta; 4236 u32 missed_beacons_percent, missed_beacons_delta; 4237 u32 quality = 0; 4238 u32 len = sizeof(u32); 4239 s16 rssi; 4240 u32 beacon_quality, signal_quality, tx_quality, rx_quality, 4241 rate_quality; 4242 u32 max_rate; 4243 4244 if (!(priv->status & STATUS_ASSOCIATED)) { 4245 priv->quality = 0; 4246 return; 4247 } 4248 4249 /* Update the statistics */ 4250 ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS, 4251 &priv->missed_beacons, &len); 4252 missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons; 4253 priv->last_missed_beacons = priv->missed_beacons; 4254 if (priv->assoc_request.beacon_interval) { 4255 missed_beacons_percent = missed_beacons_delta * 4256 (HZ * le16_to_cpu(priv->assoc_request.beacon_interval)) / 4257 (IPW_STATS_INTERVAL * 10); 4258 } else { 4259 missed_beacons_percent = 0; 4260 } 4261 average_add(&priv->average_missed_beacons, missed_beacons_percent); 4262 4263 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len); 4264 rx_err_delta = rx_err - priv->last_rx_err; 4265 priv->last_rx_err = rx_err; 4266 4267 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len); 4268 tx_failures_delta = tx_failures - priv->last_tx_failures; 4269 priv->last_tx_failures = tx_failures; 4270 4271 rx_packets_delta = priv->rx_packets - priv->last_rx_packets; 4272 priv->last_rx_packets = priv->rx_packets; 4273 4274 tx_packets_delta = priv->tx_packets - priv->last_tx_packets; 4275 priv->last_tx_packets = priv->tx_packets; 4276 4277 /* Calculate quality based on the following: 4278 * 4279 * Missed beacon: 100% = 0, 0% = 70% missed 4280 * Rate: 60% = 1Mbs, 100% = Max 4281 * Rx and Tx errors represent a straight % of total Rx/Tx 4282 * RSSI: 100% = > -50, 0% = < -80 4283 * Rx errors: 100% = 0, 0% = 50% missed 4284 * 4285 * The lowest computed quality is used. 4286 * 4287 */ 4288 #define BEACON_THRESHOLD 5 4289 beacon_quality = 100 - missed_beacons_percent; 4290 if (beacon_quality < BEACON_THRESHOLD) 4291 beacon_quality = 0; 4292 else 4293 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 / 4294 (100 - BEACON_THRESHOLD); 4295 IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n", 4296 beacon_quality, missed_beacons_percent); 4297 4298 priv->last_rate = ipw_get_current_rate(priv); 4299 max_rate = ipw_get_max_rate(priv); 4300 rate_quality = priv->last_rate * 40 / max_rate + 60; 4301 IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n", 4302 rate_quality, priv->last_rate / 1000000); 4303 4304 if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta) 4305 rx_quality = 100 - (rx_err_delta * 100) / 4306 (rx_packets_delta + rx_err_delta); 4307 else 4308 rx_quality = 100; 4309 IPW_DEBUG_STATS("Rx quality : %3d%% (%u errors, %u packets)\n", 4310 rx_quality, rx_err_delta, rx_packets_delta); 4311 4312 if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta) 4313 tx_quality = 100 - (tx_failures_delta * 100) / 4314 (tx_packets_delta + tx_failures_delta); 4315 else 4316 tx_quality = 100; 4317 IPW_DEBUG_STATS("Tx quality : %3d%% (%u errors, %u packets)\n", 4318 tx_quality, tx_failures_delta, tx_packets_delta); 4319 4320 rssi = priv->exp_avg_rssi; 4321 signal_quality = 4322 (100 * 4323 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) * 4324 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) - 4325 (priv->ieee->perfect_rssi - rssi) * 4326 (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) + 4327 62 * (priv->ieee->perfect_rssi - rssi))) / 4328 ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) * 4329 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi)); 4330 if (signal_quality > 100) 4331 signal_quality = 100; 4332 else if (signal_quality < 1) 4333 signal_quality = 0; 4334 4335 IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n", 4336 signal_quality, rssi); 4337 4338 quality = min(rx_quality, signal_quality); 4339 quality = min(tx_quality, quality); 4340 quality = min(rate_quality, quality); 4341 quality = min(beacon_quality, quality); 4342 if (quality == beacon_quality) 4343 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n", 4344 quality); 4345 if (quality == rate_quality) 4346 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n", 4347 quality); 4348 if (quality == tx_quality) 4349 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n", 4350 quality); 4351 if (quality == rx_quality) 4352 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n", 4353 quality); 4354 if (quality == signal_quality) 4355 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n", 4356 quality); 4357 4358 priv->quality = quality; 4359 4360 schedule_delayed_work(&priv->gather_stats, IPW_STATS_INTERVAL); 4361 } 4362 4363 static void ipw_bg_gather_stats(struct work_struct *work) 4364 { 4365 struct ipw_priv *priv = 4366 container_of(work, struct ipw_priv, gather_stats.work); 4367 mutex_lock(&priv->mutex); 4368 ipw_gather_stats(priv); 4369 mutex_unlock(&priv->mutex); 4370 } 4371 4372 /* Missed beacon behavior: 4373 * 1st missed -> roaming_threshold, just wait, don't do any scan/roam. 4374 * roaming_threshold -> disassociate_threshold, scan and roam for better signal. 4375 * Above disassociate threshold, give up and stop scanning. 4376 * Roaming is disabled if disassociate_threshold <= roaming_threshold */ 4377 static void ipw_handle_missed_beacon(struct ipw_priv *priv, 4378 int missed_count) 4379 { 4380 priv->notif_missed_beacons = missed_count; 4381 4382 if (missed_count > priv->disassociate_threshold && 4383 priv->status & STATUS_ASSOCIATED) { 4384 /* If associated and we've hit the missed 4385 * beacon threshold, disassociate, turn 4386 * off roaming, and abort any active scans */ 4387 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | 4388 IPW_DL_STATE | IPW_DL_ASSOC, 4389 "Missed beacon: %d - disassociate\n", missed_count); 4390 priv->status &= ~STATUS_ROAMING; 4391 if (priv->status & STATUS_SCANNING) { 4392 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | 4393 IPW_DL_STATE, 4394 "Aborting scan with missed beacon.\n"); 4395 schedule_work(&priv->abort_scan); 4396 } 4397 4398 schedule_work(&priv->disassociate); 4399 return; 4400 } 4401 4402 if (priv->status & STATUS_ROAMING) { 4403 /* If we are currently roaming, then just 4404 * print a debug statement... */ 4405 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE, 4406 "Missed beacon: %d - roam in progress\n", 4407 missed_count); 4408 return; 4409 } 4410 4411 if (roaming && 4412 (missed_count > priv->roaming_threshold && 4413 missed_count <= priv->disassociate_threshold)) { 4414 /* If we are not already roaming, set the ROAM 4415 * bit in the status and kick off a scan. 4416 * This can happen several times before we reach 4417 * disassociate_threshold. */ 4418 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE, 4419 "Missed beacon: %d - initiate " 4420 "roaming\n", missed_count); 4421 if (!(priv->status & STATUS_ROAMING)) { 4422 priv->status |= STATUS_ROAMING; 4423 if (!(priv->status & STATUS_SCANNING)) 4424 schedule_delayed_work(&priv->request_scan, 0); 4425 } 4426 return; 4427 } 4428 4429 if (priv->status & STATUS_SCANNING && 4430 missed_count > IPW_MB_SCAN_CANCEL_THRESHOLD) { 4431 /* Stop scan to keep fw from getting 4432 * stuck (only if we aren't roaming -- 4433 * otherwise we'll never scan more than 2 or 3 4434 * channels..) */ 4435 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE, 4436 "Aborting scan with missed beacon.\n"); 4437 schedule_work(&priv->abort_scan); 4438 } 4439 4440 IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count); 4441 } 4442 4443 static void ipw_scan_event(struct work_struct *work) 4444 { 4445 union iwreq_data wrqu; 4446 4447 struct ipw_priv *priv = 4448 container_of(work, struct ipw_priv, scan_event.work); 4449 4450 wrqu.data.length = 0; 4451 wrqu.data.flags = 0; 4452 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL); 4453 } 4454 4455 static void handle_scan_event(struct ipw_priv *priv) 4456 { 4457 /* Only userspace-requested scan completion events go out immediately */ 4458 if (!priv->user_requested_scan) { 4459 schedule_delayed_work(&priv->scan_event, 4460 round_jiffies_relative(msecs_to_jiffies(4000))); 4461 } else { 4462 priv->user_requested_scan = 0; 4463 mod_delayed_work(system_wq, &priv->scan_event, 0); 4464 } 4465 } 4466 4467 /** 4468 * Handle host notification packet. 4469 * Called from interrupt routine 4470 */ 4471 static void ipw_rx_notification(struct ipw_priv *priv, 4472 struct ipw_rx_notification *notif) 4473 { 4474 u16 size = le16_to_cpu(notif->size); 4475 4476 IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, size); 4477 4478 switch (notif->subtype) { 4479 case HOST_NOTIFICATION_STATUS_ASSOCIATED:{ 4480 struct notif_association *assoc = ¬if->u.assoc; 4481 4482 switch (assoc->state) { 4483 case CMAS_ASSOCIATED:{ 4484 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4485 IPW_DL_ASSOC, 4486 "associated: '%*pE' %pM\n", 4487 priv->essid_len, priv->essid, 4488 priv->bssid); 4489 4490 switch (priv->ieee->iw_mode) { 4491 case IW_MODE_INFRA: 4492 memcpy(priv->ieee->bssid, 4493 priv->bssid, ETH_ALEN); 4494 break; 4495 4496 case IW_MODE_ADHOC: 4497 memcpy(priv->ieee->bssid, 4498 priv->bssid, ETH_ALEN); 4499 4500 /* clear out the station table */ 4501 priv->num_stations = 0; 4502 4503 IPW_DEBUG_ASSOC 4504 ("queueing adhoc check\n"); 4505 schedule_delayed_work( 4506 &priv->adhoc_check, 4507 le16_to_cpu(priv-> 4508 assoc_request. 4509 beacon_interval)); 4510 break; 4511 } 4512 4513 priv->status &= ~STATUS_ASSOCIATING; 4514 priv->status |= STATUS_ASSOCIATED; 4515 schedule_work(&priv->system_config); 4516 4517 #ifdef CONFIG_IPW2200_QOS 4518 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \ 4519 le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_control)) 4520 if ((priv->status & STATUS_AUTH) && 4521 (IPW_GET_PACKET_STYPE(¬if->u.raw) 4522 == IEEE80211_STYPE_ASSOC_RESP)) { 4523 if ((sizeof 4524 (struct 4525 libipw_assoc_response) 4526 <= size) 4527 && (size <= 2314)) { 4528 struct 4529 libipw_rx_stats 4530 stats = { 4531 .len = size - 1, 4532 }; 4533 4534 IPW_DEBUG_QOS 4535 ("QoS Associate " 4536 "size %d\n", size); 4537 libipw_rx_mgt(priv-> 4538 ieee, 4539 (struct 4540 libipw_hdr_4addr 4541 *) 4542 ¬if->u.raw, &stats); 4543 } 4544 } 4545 #endif 4546 4547 schedule_work(&priv->link_up); 4548 4549 break; 4550 } 4551 4552 case CMAS_AUTHENTICATED:{ 4553 if (priv-> 4554 status & (STATUS_ASSOCIATED | 4555 STATUS_AUTH)) { 4556 struct notif_authenticate *auth 4557 = ¬if->u.auth; 4558 IPW_DEBUG(IPW_DL_NOTIF | 4559 IPW_DL_STATE | 4560 IPW_DL_ASSOC, 4561 "deauthenticated: '%*pE' %pM: (0x%04X) - %s\n", 4562 priv->essid_len, 4563 priv->essid, 4564 priv->bssid, 4565 le16_to_cpu(auth->status), 4566 ipw_get_status_code 4567 (le16_to_cpu 4568 (auth->status))); 4569 4570 priv->status &= 4571 ~(STATUS_ASSOCIATING | 4572 STATUS_AUTH | 4573 STATUS_ASSOCIATED); 4574 4575 schedule_work(&priv->link_down); 4576 break; 4577 } 4578 4579 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4580 IPW_DL_ASSOC, 4581 "authenticated: '%*pE' %pM\n", 4582 priv->essid_len, priv->essid, 4583 priv->bssid); 4584 break; 4585 } 4586 4587 case CMAS_INIT:{ 4588 if (priv->status & STATUS_AUTH) { 4589 struct 4590 libipw_assoc_response 4591 *resp; 4592 resp = 4593 (struct 4594 libipw_assoc_response 4595 *)¬if->u.raw; 4596 IPW_DEBUG(IPW_DL_NOTIF | 4597 IPW_DL_STATE | 4598 IPW_DL_ASSOC, 4599 "association failed (0x%04X): %s\n", 4600 le16_to_cpu(resp->status), 4601 ipw_get_status_code 4602 (le16_to_cpu 4603 (resp->status))); 4604 } 4605 4606 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4607 IPW_DL_ASSOC, 4608 "disassociated: '%*pE' %pM\n", 4609 priv->essid_len, priv->essid, 4610 priv->bssid); 4611 4612 priv->status &= 4613 ~(STATUS_DISASSOCIATING | 4614 STATUS_ASSOCIATING | 4615 STATUS_ASSOCIATED | STATUS_AUTH); 4616 if (priv->assoc_network 4617 && (priv->assoc_network-> 4618 capability & 4619 WLAN_CAPABILITY_IBSS)) 4620 ipw_remove_current_network 4621 (priv); 4622 4623 schedule_work(&priv->link_down); 4624 4625 break; 4626 } 4627 4628 case CMAS_RX_ASSOC_RESP: 4629 break; 4630 4631 default: 4632 IPW_ERROR("assoc: unknown (%d)\n", 4633 assoc->state); 4634 break; 4635 } 4636 4637 break; 4638 } 4639 4640 case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{ 4641 struct notif_authenticate *auth = ¬if->u.auth; 4642 switch (auth->state) { 4643 case CMAS_AUTHENTICATED: 4644 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE, 4645 "authenticated: '%*pE' %pM\n", 4646 priv->essid_len, priv->essid, 4647 priv->bssid); 4648 priv->status |= STATUS_AUTH; 4649 break; 4650 4651 case CMAS_INIT: 4652 if (priv->status & STATUS_AUTH) { 4653 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4654 IPW_DL_ASSOC, 4655 "authentication failed (0x%04X): %s\n", 4656 le16_to_cpu(auth->status), 4657 ipw_get_status_code(le16_to_cpu 4658 (auth-> 4659 status))); 4660 } 4661 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4662 IPW_DL_ASSOC, 4663 "deauthenticated: '%*pE' %pM\n", 4664 priv->essid_len, priv->essid, 4665 priv->bssid); 4666 4667 priv->status &= ~(STATUS_ASSOCIATING | 4668 STATUS_AUTH | 4669 STATUS_ASSOCIATED); 4670 4671 schedule_work(&priv->link_down); 4672 break; 4673 4674 case CMAS_TX_AUTH_SEQ_1: 4675 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4676 IPW_DL_ASSOC, "AUTH_SEQ_1\n"); 4677 break; 4678 case CMAS_RX_AUTH_SEQ_2: 4679 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4680 IPW_DL_ASSOC, "AUTH_SEQ_2\n"); 4681 break; 4682 case CMAS_AUTH_SEQ_1_PASS: 4683 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4684 IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n"); 4685 break; 4686 case CMAS_AUTH_SEQ_1_FAIL: 4687 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4688 IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n"); 4689 break; 4690 case CMAS_TX_AUTH_SEQ_3: 4691 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4692 IPW_DL_ASSOC, "AUTH_SEQ_3\n"); 4693 break; 4694 case CMAS_RX_AUTH_SEQ_4: 4695 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4696 IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n"); 4697 break; 4698 case CMAS_AUTH_SEQ_2_PASS: 4699 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4700 IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n"); 4701 break; 4702 case CMAS_AUTH_SEQ_2_FAIL: 4703 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4704 IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n"); 4705 break; 4706 case CMAS_TX_ASSOC: 4707 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4708 IPW_DL_ASSOC, "TX_ASSOC\n"); 4709 break; 4710 case CMAS_RX_ASSOC_RESP: 4711 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4712 IPW_DL_ASSOC, "RX_ASSOC_RESP\n"); 4713 4714 break; 4715 case CMAS_ASSOCIATED: 4716 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4717 IPW_DL_ASSOC, "ASSOCIATED\n"); 4718 break; 4719 default: 4720 IPW_DEBUG_NOTIF("auth: failure - %d\n", 4721 auth->state); 4722 break; 4723 } 4724 break; 4725 } 4726 4727 case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{ 4728 struct notif_channel_result *x = 4729 ¬if->u.channel_result; 4730 4731 if (size == sizeof(*x)) { 4732 IPW_DEBUG_SCAN("Scan result for channel %d\n", 4733 x->channel_num); 4734 } else { 4735 IPW_DEBUG_SCAN("Scan result of wrong size %d " 4736 "(should be %zd)\n", 4737 size, sizeof(*x)); 4738 } 4739 break; 4740 } 4741 4742 case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{ 4743 struct notif_scan_complete *x = ¬if->u.scan_complete; 4744 if (size == sizeof(*x)) { 4745 IPW_DEBUG_SCAN 4746 ("Scan completed: type %d, %d channels, " 4747 "%d status\n", x->scan_type, 4748 x->num_channels, x->status); 4749 } else { 4750 IPW_ERROR("Scan completed of wrong size %d " 4751 "(should be %zd)\n", 4752 size, sizeof(*x)); 4753 } 4754 4755 priv->status &= 4756 ~(STATUS_SCANNING | STATUS_SCAN_ABORTING); 4757 4758 wake_up_interruptible(&priv->wait_state); 4759 cancel_delayed_work(&priv->scan_check); 4760 4761 if (priv->status & STATUS_EXIT_PENDING) 4762 break; 4763 4764 priv->ieee->scans++; 4765 4766 #ifdef CONFIG_IPW2200_MONITOR 4767 if (priv->ieee->iw_mode == IW_MODE_MONITOR) { 4768 priv->status |= STATUS_SCAN_FORCED; 4769 schedule_delayed_work(&priv->request_scan, 0); 4770 break; 4771 } 4772 priv->status &= ~STATUS_SCAN_FORCED; 4773 #endif /* CONFIG_IPW2200_MONITOR */ 4774 4775 /* Do queued direct scans first */ 4776 if (priv->status & STATUS_DIRECT_SCAN_PENDING) 4777 schedule_delayed_work(&priv->request_direct_scan, 0); 4778 4779 if (!(priv->status & (STATUS_ASSOCIATED | 4780 STATUS_ASSOCIATING | 4781 STATUS_ROAMING | 4782 STATUS_DISASSOCIATING))) 4783 schedule_work(&priv->associate); 4784 else if (priv->status & STATUS_ROAMING) { 4785 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE) 4786 /* If a scan completed and we are in roam mode, then 4787 * the scan that completed was the one requested as a 4788 * result of entering roam... so, schedule the 4789 * roam work */ 4790 schedule_work(&priv->roam); 4791 else 4792 /* Don't schedule if we aborted the scan */ 4793 priv->status &= ~STATUS_ROAMING; 4794 } else if (priv->status & STATUS_SCAN_PENDING) 4795 schedule_delayed_work(&priv->request_scan, 0); 4796 else if (priv->config & CFG_BACKGROUND_SCAN 4797 && priv->status & STATUS_ASSOCIATED) 4798 schedule_delayed_work(&priv->request_scan, 4799 round_jiffies_relative(HZ)); 4800 4801 /* Send an empty event to user space. 4802 * We don't send the received data on the event because 4803 * it would require us to do complex transcoding, and 4804 * we want to minimise the work done in the irq handler 4805 * Use a request to extract the data. 4806 * Also, we generate this even for any scan, regardless 4807 * on how the scan was initiated. User space can just 4808 * sync on periodic scan to get fresh data... 4809 * Jean II */ 4810 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE) 4811 handle_scan_event(priv); 4812 break; 4813 } 4814 4815 case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{ 4816 struct notif_frag_length *x = ¬if->u.frag_len; 4817 4818 if (size == sizeof(*x)) 4819 IPW_ERROR("Frag length: %d\n", 4820 le16_to_cpu(x->frag_length)); 4821 else 4822 IPW_ERROR("Frag length of wrong size %d " 4823 "(should be %zd)\n", 4824 size, sizeof(*x)); 4825 break; 4826 } 4827 4828 case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{ 4829 struct notif_link_deterioration *x = 4830 ¬if->u.link_deterioration; 4831 4832 if (size == sizeof(*x)) { 4833 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE, 4834 "link deterioration: type %d, cnt %d\n", 4835 x->silence_notification_type, 4836 x->silence_count); 4837 memcpy(&priv->last_link_deterioration, x, 4838 sizeof(*x)); 4839 } else { 4840 IPW_ERROR("Link Deterioration of wrong size %d " 4841 "(should be %zd)\n", 4842 size, sizeof(*x)); 4843 } 4844 break; 4845 } 4846 4847 case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{ 4848 IPW_ERROR("Dino config\n"); 4849 if (priv->hcmd 4850 && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG) 4851 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n"); 4852 4853 break; 4854 } 4855 4856 case HOST_NOTIFICATION_STATUS_BEACON_STATE:{ 4857 struct notif_beacon_state *x = ¬if->u.beacon_state; 4858 if (size != sizeof(*x)) { 4859 IPW_ERROR 4860 ("Beacon state of wrong size %d (should " 4861 "be %zd)\n", size, sizeof(*x)); 4862 break; 4863 } 4864 4865 if (le32_to_cpu(x->state) == 4866 HOST_NOTIFICATION_STATUS_BEACON_MISSING) 4867 ipw_handle_missed_beacon(priv, 4868 le32_to_cpu(x-> 4869 number)); 4870 4871 break; 4872 } 4873 4874 case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{ 4875 struct notif_tgi_tx_key *x = ¬if->u.tgi_tx_key; 4876 if (size == sizeof(*x)) { 4877 IPW_ERROR("TGi Tx Key: state 0x%02x sec type " 4878 "0x%02x station %d\n", 4879 x->key_state, x->security_type, 4880 x->station_index); 4881 break; 4882 } 4883 4884 IPW_ERROR 4885 ("TGi Tx Key of wrong size %d (should be %zd)\n", 4886 size, sizeof(*x)); 4887 break; 4888 } 4889 4890 case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{ 4891 struct notif_calibration *x = ¬if->u.calibration; 4892 4893 if (size == sizeof(*x)) { 4894 memcpy(&priv->calib, x, sizeof(*x)); 4895 IPW_DEBUG_INFO("TODO: Calibration\n"); 4896 break; 4897 } 4898 4899 IPW_ERROR 4900 ("Calibration of wrong size %d (should be %zd)\n", 4901 size, sizeof(*x)); 4902 break; 4903 } 4904 4905 case HOST_NOTIFICATION_NOISE_STATS:{ 4906 if (size == sizeof(u32)) { 4907 priv->exp_avg_noise = 4908 exponential_average(priv->exp_avg_noise, 4909 (u8) (le32_to_cpu(notif->u.noise.value) & 0xff), 4910 DEPTH_NOISE); 4911 break; 4912 } 4913 4914 IPW_ERROR 4915 ("Noise stat is wrong size %d (should be %zd)\n", 4916 size, sizeof(u32)); 4917 break; 4918 } 4919 4920 default: 4921 IPW_DEBUG_NOTIF("Unknown notification: " 4922 "subtype=%d,flags=0x%2x,size=%d\n", 4923 notif->subtype, notif->flags, size); 4924 } 4925 } 4926 4927 /** 4928 * Destroys all DMA structures and initialise them again 4929 * 4930 * @param priv 4931 * @return error code 4932 */ 4933 static int ipw_queue_reset(struct ipw_priv *priv) 4934 { 4935 int rc = 0; 4936 /** @todo customize queue sizes */ 4937 int nTx = 64, nTxCmd = 8; 4938 ipw_tx_queue_free(priv); 4939 /* Tx CMD queue */ 4940 rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd, 4941 IPW_TX_CMD_QUEUE_READ_INDEX, 4942 IPW_TX_CMD_QUEUE_WRITE_INDEX, 4943 IPW_TX_CMD_QUEUE_BD_BASE, 4944 IPW_TX_CMD_QUEUE_BD_SIZE); 4945 if (rc) { 4946 IPW_ERROR("Tx Cmd queue init failed\n"); 4947 goto error; 4948 } 4949 /* Tx queue(s) */ 4950 rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx, 4951 IPW_TX_QUEUE_0_READ_INDEX, 4952 IPW_TX_QUEUE_0_WRITE_INDEX, 4953 IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE); 4954 if (rc) { 4955 IPW_ERROR("Tx 0 queue init failed\n"); 4956 goto error; 4957 } 4958 rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx, 4959 IPW_TX_QUEUE_1_READ_INDEX, 4960 IPW_TX_QUEUE_1_WRITE_INDEX, 4961 IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE); 4962 if (rc) { 4963 IPW_ERROR("Tx 1 queue init failed\n"); 4964 goto error; 4965 } 4966 rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx, 4967 IPW_TX_QUEUE_2_READ_INDEX, 4968 IPW_TX_QUEUE_2_WRITE_INDEX, 4969 IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE); 4970 if (rc) { 4971 IPW_ERROR("Tx 2 queue init failed\n"); 4972 goto error; 4973 } 4974 rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx, 4975 IPW_TX_QUEUE_3_READ_INDEX, 4976 IPW_TX_QUEUE_3_WRITE_INDEX, 4977 IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE); 4978 if (rc) { 4979 IPW_ERROR("Tx 3 queue init failed\n"); 4980 goto error; 4981 } 4982 /* statistics */ 4983 priv->rx_bufs_min = 0; 4984 priv->rx_pend_max = 0; 4985 return rc; 4986 4987 error: 4988 ipw_tx_queue_free(priv); 4989 return rc; 4990 } 4991 4992 /** 4993 * Reclaim Tx queue entries no more used by NIC. 4994 * 4995 * When FW advances 'R' index, all entries between old and 4996 * new 'R' index need to be reclaimed. As result, some free space 4997 * forms. If there is enough free space (> low mark), wake Tx queue. 4998 * 4999 * @note Need to protect against garbage in 'R' index 5000 * @param priv 5001 * @param txq 5002 * @param qindex 5003 * @return Number of used entries remains in the queue 5004 */ 5005 static int ipw_queue_tx_reclaim(struct ipw_priv *priv, 5006 struct clx2_tx_queue *txq, int qindex) 5007 { 5008 u32 hw_tail; 5009 int used; 5010 struct clx2_queue *q = &txq->q; 5011 5012 hw_tail = ipw_read32(priv, q->reg_r); 5013 if (hw_tail >= q->n_bd) { 5014 IPW_ERROR 5015 ("Read index for DMA queue (%d) is out of range [0-%d)\n", 5016 hw_tail, q->n_bd); 5017 goto done; 5018 } 5019 for (; q->last_used != hw_tail; 5020 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) { 5021 ipw_queue_tx_free_tfd(priv, txq); 5022 priv->tx_packets++; 5023 } 5024 done: 5025 if ((ipw_tx_queue_space(q) > q->low_mark) && 5026 (qindex >= 0)) 5027 netif_wake_queue(priv->net_dev); 5028 used = q->first_empty - q->last_used; 5029 if (used < 0) 5030 used += q->n_bd; 5031 5032 return used; 5033 } 5034 5035 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf, 5036 int len, int sync) 5037 { 5038 struct clx2_tx_queue *txq = &priv->txq_cmd; 5039 struct clx2_queue *q = &txq->q; 5040 struct tfd_frame *tfd; 5041 5042 if (ipw_tx_queue_space(q) < (sync ? 1 : 2)) { 5043 IPW_ERROR("No space for Tx\n"); 5044 return -EBUSY; 5045 } 5046 5047 tfd = &txq->bd[q->first_empty]; 5048 txq->txb[q->first_empty] = NULL; 5049 5050 memset(tfd, 0, sizeof(*tfd)); 5051 tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE; 5052 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK; 5053 priv->hcmd_seq++; 5054 tfd->u.cmd.index = hcmd; 5055 tfd->u.cmd.length = len; 5056 memcpy(tfd->u.cmd.payload, buf, len); 5057 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd); 5058 ipw_write32(priv, q->reg_w, q->first_empty); 5059 _ipw_read32(priv, 0x90); 5060 5061 return 0; 5062 } 5063 5064 /* 5065 * Rx theory of operation 5066 * 5067 * The host allocates 32 DMA target addresses and passes the host address 5068 * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is 5069 * 0 to 31 5070 * 5071 * Rx Queue Indexes 5072 * The host/firmware share two index registers for managing the Rx buffers. 5073 * 5074 * The READ index maps to the first position that the firmware may be writing 5075 * to -- the driver can read up to (but not including) this position and get 5076 * good data. 5077 * The READ index is managed by the firmware once the card is enabled. 5078 * 5079 * The WRITE index maps to the last position the driver has read from -- the 5080 * position preceding WRITE is the last slot the firmware can place a packet. 5081 * 5082 * The queue is empty (no good data) if WRITE = READ - 1, and is full if 5083 * WRITE = READ. 5084 * 5085 * During initialization the host sets up the READ queue position to the first 5086 * INDEX position, and WRITE to the last (READ - 1 wrapped) 5087 * 5088 * When the firmware places a packet in a buffer it will advance the READ index 5089 * and fire the RX interrupt. The driver can then query the READ index and 5090 * process as many packets as possible, moving the WRITE index forward as it 5091 * resets the Rx queue buffers with new memory. 5092 * 5093 * The management in the driver is as follows: 5094 * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free. When 5095 * ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled 5096 * to replensish the ipw->rxq->rx_free. 5097 * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the 5098 * ipw->rxq is replenished and the READ INDEX is updated (updating the 5099 * 'processed' and 'read' driver indexes as well) 5100 * + A received packet is processed and handed to the kernel network stack, 5101 * detached from the ipw->rxq. The driver 'processed' index is updated. 5102 * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free 5103 * list. If there are no allocated buffers in ipw->rxq->rx_free, the READ 5104 * INDEX is not incremented and ipw->status(RX_STALLED) is set. If there 5105 * were enough free buffers and RX_STALLED is set it is cleared. 5106 * 5107 * 5108 * Driver sequence: 5109 * 5110 * ipw_rx_queue_alloc() Allocates rx_free 5111 * ipw_rx_queue_replenish() Replenishes rx_free list from rx_used, and calls 5112 * ipw_rx_queue_restock 5113 * ipw_rx_queue_restock() Moves available buffers from rx_free into Rx 5114 * queue, updates firmware pointers, and updates 5115 * the WRITE index. If insufficient rx_free buffers 5116 * are available, schedules ipw_rx_queue_replenish 5117 * 5118 * -- enable interrupts -- 5119 * ISR - ipw_rx() Detach ipw_rx_mem_buffers from pool up to the 5120 * READ INDEX, detaching the SKB from the pool. 5121 * Moves the packet buffer from queue to rx_used. 5122 * Calls ipw_rx_queue_restock to refill any empty 5123 * slots. 5124 * ... 5125 * 5126 */ 5127 5128 /* 5129 * If there are slots in the RX queue that need to be restocked, 5130 * and we have free pre-allocated buffers, fill the ranks as much 5131 * as we can pulling from rx_free. 5132 * 5133 * This moves the 'write' index forward to catch up with 'processed', and 5134 * also updates the memory address in the firmware to reference the new 5135 * target buffer. 5136 */ 5137 static void ipw_rx_queue_restock(struct ipw_priv *priv) 5138 { 5139 struct ipw_rx_queue *rxq = priv->rxq; 5140 struct list_head *element; 5141 struct ipw_rx_mem_buffer *rxb; 5142 unsigned long flags; 5143 int write; 5144 5145 spin_lock_irqsave(&rxq->lock, flags); 5146 write = rxq->write; 5147 while ((ipw_rx_queue_space(rxq) > 0) && (rxq->free_count)) { 5148 element = rxq->rx_free.next; 5149 rxb = list_entry(element, struct ipw_rx_mem_buffer, list); 5150 list_del(element); 5151 5152 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE, 5153 rxb->dma_addr); 5154 rxq->queue[rxq->write] = rxb; 5155 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE; 5156 rxq->free_count--; 5157 } 5158 spin_unlock_irqrestore(&rxq->lock, flags); 5159 5160 /* If the pre-allocated buffer pool is dropping low, schedule to 5161 * refill it */ 5162 if (rxq->free_count <= RX_LOW_WATERMARK) 5163 schedule_work(&priv->rx_replenish); 5164 5165 /* If we've added more space for the firmware to place data, tell it */ 5166 if (write != rxq->write) 5167 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write); 5168 } 5169 5170 /* 5171 * Move all used packet from rx_used to rx_free, allocating a new SKB for each. 5172 * Also restock the Rx queue via ipw_rx_queue_restock. 5173 * 5174 * This is called as a scheduled work item (except for during initialization) 5175 */ 5176 static void ipw_rx_queue_replenish(void *data) 5177 { 5178 struct ipw_priv *priv = data; 5179 struct ipw_rx_queue *rxq = priv->rxq; 5180 struct list_head *element; 5181 struct ipw_rx_mem_buffer *rxb; 5182 unsigned long flags; 5183 5184 spin_lock_irqsave(&rxq->lock, flags); 5185 while (!list_empty(&rxq->rx_used)) { 5186 element = rxq->rx_used.next; 5187 rxb = list_entry(element, struct ipw_rx_mem_buffer, list); 5188 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC); 5189 if (!rxb->skb) { 5190 printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n", 5191 priv->net_dev->name); 5192 /* We don't reschedule replenish work here -- we will 5193 * call the restock method and if it still needs 5194 * more buffers it will schedule replenish */ 5195 break; 5196 } 5197 list_del(element); 5198 5199 rxb->dma_addr = 5200 pci_map_single(priv->pci_dev, rxb->skb->data, 5201 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE); 5202 5203 list_add_tail(&rxb->list, &rxq->rx_free); 5204 rxq->free_count++; 5205 } 5206 spin_unlock_irqrestore(&rxq->lock, flags); 5207 5208 ipw_rx_queue_restock(priv); 5209 } 5210 5211 static void ipw_bg_rx_queue_replenish(struct work_struct *work) 5212 { 5213 struct ipw_priv *priv = 5214 container_of(work, struct ipw_priv, rx_replenish); 5215 mutex_lock(&priv->mutex); 5216 ipw_rx_queue_replenish(priv); 5217 mutex_unlock(&priv->mutex); 5218 } 5219 5220 /* Assumes that the skb field of the buffers in 'pool' is kept accurate. 5221 * If an SKB has been detached, the POOL needs to have its SKB set to NULL 5222 * This free routine walks the list of POOL entries and if SKB is set to 5223 * non NULL it is unmapped and freed 5224 */ 5225 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq) 5226 { 5227 int i; 5228 5229 if (!rxq) 5230 return; 5231 5232 for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) { 5233 if (rxq->pool[i].skb != NULL) { 5234 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr, 5235 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE); 5236 dev_kfree_skb(rxq->pool[i].skb); 5237 } 5238 } 5239 5240 kfree(rxq); 5241 } 5242 5243 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv) 5244 { 5245 struct ipw_rx_queue *rxq; 5246 int i; 5247 5248 rxq = kzalloc(sizeof(*rxq), GFP_KERNEL); 5249 if (unlikely(!rxq)) { 5250 IPW_ERROR("memory allocation failed\n"); 5251 return NULL; 5252 } 5253 spin_lock_init(&rxq->lock); 5254 INIT_LIST_HEAD(&rxq->rx_free); 5255 INIT_LIST_HEAD(&rxq->rx_used); 5256 5257 /* Fill the rx_used queue with _all_ of the Rx buffers */ 5258 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) 5259 list_add_tail(&rxq->pool[i].list, &rxq->rx_used); 5260 5261 /* Set us so that we have processed and used all buffers, but have 5262 * not restocked the Rx queue with fresh buffers */ 5263 rxq->read = rxq->write = 0; 5264 rxq->free_count = 0; 5265 5266 return rxq; 5267 } 5268 5269 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate) 5270 { 5271 rate &= ~LIBIPW_BASIC_RATE_MASK; 5272 if (ieee_mode == IEEE_A) { 5273 switch (rate) { 5274 case LIBIPW_OFDM_RATE_6MB: 5275 return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ? 5276 1 : 0; 5277 case LIBIPW_OFDM_RATE_9MB: 5278 return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ? 5279 1 : 0; 5280 case LIBIPW_OFDM_RATE_12MB: 5281 return priv-> 5282 rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0; 5283 case LIBIPW_OFDM_RATE_18MB: 5284 return priv-> 5285 rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0; 5286 case LIBIPW_OFDM_RATE_24MB: 5287 return priv-> 5288 rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0; 5289 case LIBIPW_OFDM_RATE_36MB: 5290 return priv-> 5291 rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0; 5292 case LIBIPW_OFDM_RATE_48MB: 5293 return priv-> 5294 rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0; 5295 case LIBIPW_OFDM_RATE_54MB: 5296 return priv-> 5297 rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0; 5298 default: 5299 return 0; 5300 } 5301 } 5302 5303 /* B and G mixed */ 5304 switch (rate) { 5305 case LIBIPW_CCK_RATE_1MB: 5306 return priv->rates_mask & LIBIPW_CCK_RATE_1MB_MASK ? 1 : 0; 5307 case LIBIPW_CCK_RATE_2MB: 5308 return priv->rates_mask & LIBIPW_CCK_RATE_2MB_MASK ? 1 : 0; 5309 case LIBIPW_CCK_RATE_5MB: 5310 return priv->rates_mask & LIBIPW_CCK_RATE_5MB_MASK ? 1 : 0; 5311 case LIBIPW_CCK_RATE_11MB: 5312 return priv->rates_mask & LIBIPW_CCK_RATE_11MB_MASK ? 1 : 0; 5313 } 5314 5315 /* If we are limited to B modulations, bail at this point */ 5316 if (ieee_mode == IEEE_B) 5317 return 0; 5318 5319 /* G */ 5320 switch (rate) { 5321 case LIBIPW_OFDM_RATE_6MB: 5322 return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ? 1 : 0; 5323 case LIBIPW_OFDM_RATE_9MB: 5324 return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ? 1 : 0; 5325 case LIBIPW_OFDM_RATE_12MB: 5326 return priv->rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0; 5327 case LIBIPW_OFDM_RATE_18MB: 5328 return priv->rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0; 5329 case LIBIPW_OFDM_RATE_24MB: 5330 return priv->rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0; 5331 case LIBIPW_OFDM_RATE_36MB: 5332 return priv->rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0; 5333 case LIBIPW_OFDM_RATE_48MB: 5334 return priv->rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0; 5335 case LIBIPW_OFDM_RATE_54MB: 5336 return priv->rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0; 5337 } 5338 5339 return 0; 5340 } 5341 5342 static int ipw_compatible_rates(struct ipw_priv *priv, 5343 const struct libipw_network *network, 5344 struct ipw_supported_rates *rates) 5345 { 5346 int num_rates, i; 5347 5348 memset(rates, 0, sizeof(*rates)); 5349 num_rates = min(network->rates_len, (u8) IPW_MAX_RATES); 5350 rates->num_rates = 0; 5351 for (i = 0; i < num_rates; i++) { 5352 if (!ipw_is_rate_in_mask(priv, network->mode, 5353 network->rates[i])) { 5354 5355 if (network->rates[i] & LIBIPW_BASIC_RATE_MASK) { 5356 IPW_DEBUG_SCAN("Adding masked mandatory " 5357 "rate %02X\n", 5358 network->rates[i]); 5359 rates->supported_rates[rates->num_rates++] = 5360 network->rates[i]; 5361 continue; 5362 } 5363 5364 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n", 5365 network->rates[i], priv->rates_mask); 5366 continue; 5367 } 5368 5369 rates->supported_rates[rates->num_rates++] = network->rates[i]; 5370 } 5371 5372 num_rates = min(network->rates_ex_len, 5373 (u8) (IPW_MAX_RATES - num_rates)); 5374 for (i = 0; i < num_rates; i++) { 5375 if (!ipw_is_rate_in_mask(priv, network->mode, 5376 network->rates_ex[i])) { 5377 if (network->rates_ex[i] & LIBIPW_BASIC_RATE_MASK) { 5378 IPW_DEBUG_SCAN("Adding masked mandatory " 5379 "rate %02X\n", 5380 network->rates_ex[i]); 5381 rates->supported_rates[rates->num_rates++] = 5382 network->rates[i]; 5383 continue; 5384 } 5385 5386 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n", 5387 network->rates_ex[i], priv->rates_mask); 5388 continue; 5389 } 5390 5391 rates->supported_rates[rates->num_rates++] = 5392 network->rates_ex[i]; 5393 } 5394 5395 return 1; 5396 } 5397 5398 static void ipw_copy_rates(struct ipw_supported_rates *dest, 5399 const struct ipw_supported_rates *src) 5400 { 5401 u8 i; 5402 for (i = 0; i < src->num_rates; i++) 5403 dest->supported_rates[i] = src->supported_rates[i]; 5404 dest->num_rates = src->num_rates; 5405 } 5406 5407 /* TODO: Look at sniffed packets in the air to determine if the basic rate 5408 * mask should ever be used -- right now all callers to add the scan rates are 5409 * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */ 5410 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates, 5411 u8 modulation, u32 rate_mask) 5412 { 5413 u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ? 5414 LIBIPW_BASIC_RATE_MASK : 0; 5415 5416 if (rate_mask & LIBIPW_CCK_RATE_1MB_MASK) 5417 rates->supported_rates[rates->num_rates++] = 5418 LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_1MB; 5419 5420 if (rate_mask & LIBIPW_CCK_RATE_2MB_MASK) 5421 rates->supported_rates[rates->num_rates++] = 5422 LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_2MB; 5423 5424 if (rate_mask & LIBIPW_CCK_RATE_5MB_MASK) 5425 rates->supported_rates[rates->num_rates++] = basic_mask | 5426 LIBIPW_CCK_RATE_5MB; 5427 5428 if (rate_mask & LIBIPW_CCK_RATE_11MB_MASK) 5429 rates->supported_rates[rates->num_rates++] = basic_mask | 5430 LIBIPW_CCK_RATE_11MB; 5431 } 5432 5433 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates, 5434 u8 modulation, u32 rate_mask) 5435 { 5436 u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ? 5437 LIBIPW_BASIC_RATE_MASK : 0; 5438 5439 if (rate_mask & LIBIPW_OFDM_RATE_6MB_MASK) 5440 rates->supported_rates[rates->num_rates++] = basic_mask | 5441 LIBIPW_OFDM_RATE_6MB; 5442 5443 if (rate_mask & LIBIPW_OFDM_RATE_9MB_MASK) 5444 rates->supported_rates[rates->num_rates++] = 5445 LIBIPW_OFDM_RATE_9MB; 5446 5447 if (rate_mask & LIBIPW_OFDM_RATE_12MB_MASK) 5448 rates->supported_rates[rates->num_rates++] = basic_mask | 5449 LIBIPW_OFDM_RATE_12MB; 5450 5451 if (rate_mask & LIBIPW_OFDM_RATE_18MB_MASK) 5452 rates->supported_rates[rates->num_rates++] = 5453 LIBIPW_OFDM_RATE_18MB; 5454 5455 if (rate_mask & LIBIPW_OFDM_RATE_24MB_MASK) 5456 rates->supported_rates[rates->num_rates++] = basic_mask | 5457 LIBIPW_OFDM_RATE_24MB; 5458 5459 if (rate_mask & LIBIPW_OFDM_RATE_36MB_MASK) 5460 rates->supported_rates[rates->num_rates++] = 5461 LIBIPW_OFDM_RATE_36MB; 5462 5463 if (rate_mask & LIBIPW_OFDM_RATE_48MB_MASK) 5464 rates->supported_rates[rates->num_rates++] = 5465 LIBIPW_OFDM_RATE_48MB; 5466 5467 if (rate_mask & LIBIPW_OFDM_RATE_54MB_MASK) 5468 rates->supported_rates[rates->num_rates++] = 5469 LIBIPW_OFDM_RATE_54MB; 5470 } 5471 5472 struct ipw_network_match { 5473 struct libipw_network *network; 5474 struct ipw_supported_rates rates; 5475 }; 5476 5477 static int ipw_find_adhoc_network(struct ipw_priv *priv, 5478 struct ipw_network_match *match, 5479 struct libipw_network *network, 5480 int roaming) 5481 { 5482 struct ipw_supported_rates rates; 5483 5484 /* Verify that this network's capability is compatible with the 5485 * current mode (AdHoc or Infrastructure) */ 5486 if ((priv->ieee->iw_mode == IW_MODE_ADHOC && 5487 !(network->capability & WLAN_CAPABILITY_IBSS))) { 5488 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded due to capability mismatch.\n", 5489 network->ssid_len, network->ssid, 5490 network->bssid); 5491 return 0; 5492 } 5493 5494 if (unlikely(roaming)) { 5495 /* If we are roaming, then ensure check if this is a valid 5496 * network to try and roam to */ 5497 if ((network->ssid_len != match->network->ssid_len) || 5498 memcmp(network->ssid, match->network->ssid, 5499 network->ssid_len)) { 5500 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of non-network ESSID.\n", 5501 network->ssid_len, network->ssid, 5502 network->bssid); 5503 return 0; 5504 } 5505 } else { 5506 /* If an ESSID has been configured then compare the broadcast 5507 * ESSID to ours */ 5508 if ((priv->config & CFG_STATIC_ESSID) && 5509 ((network->ssid_len != priv->essid_len) || 5510 memcmp(network->ssid, priv->essid, 5511 min(network->ssid_len, priv->essid_len)))) { 5512 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of ESSID mismatch: '%*pE'.\n", 5513 network->ssid_len, network->ssid, 5514 network->bssid, priv->essid_len, 5515 priv->essid); 5516 return 0; 5517 } 5518 } 5519 5520 /* If the old network rate is better than this one, don't bother 5521 * testing everything else. */ 5522 5523 if (network->time_stamp[0] < match->network->time_stamp[0]) { 5524 IPW_DEBUG_MERGE("Network '%*pE excluded because newer than current network.\n", 5525 match->network->ssid_len, match->network->ssid); 5526 return 0; 5527 } else if (network->time_stamp[1] < match->network->time_stamp[1]) { 5528 IPW_DEBUG_MERGE("Network '%*pE excluded because newer than current network.\n", 5529 match->network->ssid_len, match->network->ssid); 5530 return 0; 5531 } 5532 5533 /* Now go through and see if the requested network is valid... */ 5534 if (priv->ieee->scan_age != 0 && 5535 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) { 5536 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of age: %ums.\n", 5537 network->ssid_len, network->ssid, 5538 network->bssid, 5539 jiffies_to_msecs(jiffies - 5540 network->last_scanned)); 5541 return 0; 5542 } 5543 5544 if ((priv->config & CFG_STATIC_CHANNEL) && 5545 (network->channel != priv->channel)) { 5546 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of channel mismatch: %d != %d.\n", 5547 network->ssid_len, network->ssid, 5548 network->bssid, 5549 network->channel, priv->channel); 5550 return 0; 5551 } 5552 5553 /* Verify privacy compatibility */ 5554 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) != 5555 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) { 5556 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of privacy mismatch: %s != %s.\n", 5557 network->ssid_len, network->ssid, 5558 network->bssid, 5559 priv-> 5560 capability & CAP_PRIVACY_ON ? "on" : "off", 5561 network-> 5562 capability & WLAN_CAPABILITY_PRIVACY ? "on" : 5563 "off"); 5564 return 0; 5565 } 5566 5567 if (ether_addr_equal(network->bssid, priv->bssid)) { 5568 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of the same BSSID match: %pM.\n", 5569 network->ssid_len, network->ssid, 5570 network->bssid, priv->bssid); 5571 return 0; 5572 } 5573 5574 /* Filter out any incompatible freq / mode combinations */ 5575 if (!libipw_is_valid_mode(priv->ieee, network->mode)) { 5576 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of invalid frequency/mode combination.\n", 5577 network->ssid_len, network->ssid, 5578 network->bssid); 5579 return 0; 5580 } 5581 5582 /* Ensure that the rates supported by the driver are compatible with 5583 * this AP, including verification of basic rates (mandatory) */ 5584 if (!ipw_compatible_rates(priv, network, &rates)) { 5585 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because configured rate mask excludes AP mandatory rate.\n", 5586 network->ssid_len, network->ssid, 5587 network->bssid); 5588 return 0; 5589 } 5590 5591 if (rates.num_rates == 0) { 5592 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of no compatible rates.\n", 5593 network->ssid_len, network->ssid, 5594 network->bssid); 5595 return 0; 5596 } 5597 5598 /* TODO: Perform any further minimal comparititive tests. We do not 5599 * want to put too much policy logic here; intelligent scan selection 5600 * should occur within a generic IEEE 802.11 user space tool. */ 5601 5602 /* Set up 'new' AP to this network */ 5603 ipw_copy_rates(&match->rates, &rates); 5604 match->network = network; 5605 IPW_DEBUG_MERGE("Network '%*pE (%pM)' is a viable match.\n", 5606 network->ssid_len, network->ssid, network->bssid); 5607 5608 return 1; 5609 } 5610 5611 static void ipw_merge_adhoc_network(struct work_struct *work) 5612 { 5613 struct ipw_priv *priv = 5614 container_of(work, struct ipw_priv, merge_networks); 5615 struct libipw_network *network = NULL; 5616 struct ipw_network_match match = { 5617 .network = priv->assoc_network 5618 }; 5619 5620 if ((priv->status & STATUS_ASSOCIATED) && 5621 (priv->ieee->iw_mode == IW_MODE_ADHOC)) { 5622 /* First pass through ROAM process -- look for a better 5623 * network */ 5624 unsigned long flags; 5625 5626 spin_lock_irqsave(&priv->ieee->lock, flags); 5627 list_for_each_entry(network, &priv->ieee->network_list, list) { 5628 if (network != priv->assoc_network) 5629 ipw_find_adhoc_network(priv, &match, network, 5630 1); 5631 } 5632 spin_unlock_irqrestore(&priv->ieee->lock, flags); 5633 5634 if (match.network == priv->assoc_network) { 5635 IPW_DEBUG_MERGE("No better ADHOC in this network to " 5636 "merge to.\n"); 5637 return; 5638 } 5639 5640 mutex_lock(&priv->mutex); 5641 if (priv->ieee->iw_mode == IW_MODE_ADHOC) { 5642 IPW_DEBUG_MERGE("remove network %*pE\n", 5643 priv->essid_len, priv->essid); 5644 ipw_remove_current_network(priv); 5645 } 5646 5647 ipw_disassociate(priv); 5648 priv->assoc_network = match.network; 5649 mutex_unlock(&priv->mutex); 5650 return; 5651 } 5652 } 5653 5654 static int ipw_best_network(struct ipw_priv *priv, 5655 struct ipw_network_match *match, 5656 struct libipw_network *network, int roaming) 5657 { 5658 struct ipw_supported_rates rates; 5659 5660 /* Verify that this network's capability is compatible with the 5661 * current mode (AdHoc or Infrastructure) */ 5662 if ((priv->ieee->iw_mode == IW_MODE_INFRA && 5663 !(network->capability & WLAN_CAPABILITY_ESS)) || 5664 (priv->ieee->iw_mode == IW_MODE_ADHOC && 5665 !(network->capability & WLAN_CAPABILITY_IBSS))) { 5666 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded due to capability mismatch.\n", 5667 network->ssid_len, network->ssid, 5668 network->bssid); 5669 return 0; 5670 } 5671 5672 if (unlikely(roaming)) { 5673 /* If we are roaming, then ensure check if this is a valid 5674 * network to try and roam to */ 5675 if ((network->ssid_len != match->network->ssid_len) || 5676 memcmp(network->ssid, match->network->ssid, 5677 network->ssid_len)) { 5678 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of non-network ESSID.\n", 5679 network->ssid_len, network->ssid, 5680 network->bssid); 5681 return 0; 5682 } 5683 } else { 5684 /* If an ESSID has been configured then compare the broadcast 5685 * ESSID to ours */ 5686 if ((priv->config & CFG_STATIC_ESSID) && 5687 ((network->ssid_len != priv->essid_len) || 5688 memcmp(network->ssid, priv->essid, 5689 min(network->ssid_len, priv->essid_len)))) { 5690 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of ESSID mismatch: '%*pE'.\n", 5691 network->ssid_len, network->ssid, 5692 network->bssid, priv->essid_len, 5693 priv->essid); 5694 return 0; 5695 } 5696 } 5697 5698 /* If the old network rate is better than this one, don't bother 5699 * testing everything else. */ 5700 if (match->network && match->network->stats.rssi > network->stats.rssi) { 5701 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because '%*pE (%pM)' has a stronger signal.\n", 5702 network->ssid_len, network->ssid, 5703 network->bssid, match->network->ssid_len, 5704 match->network->ssid, match->network->bssid); 5705 return 0; 5706 } 5707 5708 /* If this network has already had an association attempt within the 5709 * last 3 seconds, do not try and associate again... */ 5710 if (network->last_associate && 5711 time_after(network->last_associate + (HZ * 3UL), jiffies)) { 5712 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of storming (%ums since last assoc attempt).\n", 5713 network->ssid_len, network->ssid, 5714 network->bssid, 5715 jiffies_to_msecs(jiffies - 5716 network->last_associate)); 5717 return 0; 5718 } 5719 5720 /* Now go through and see if the requested network is valid... */ 5721 if (priv->ieee->scan_age != 0 && 5722 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) { 5723 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of age: %ums.\n", 5724 network->ssid_len, network->ssid, 5725 network->bssid, 5726 jiffies_to_msecs(jiffies - 5727 network->last_scanned)); 5728 return 0; 5729 } 5730 5731 if ((priv->config & CFG_STATIC_CHANNEL) && 5732 (network->channel != priv->channel)) { 5733 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of channel mismatch: %d != %d.\n", 5734 network->ssid_len, network->ssid, 5735 network->bssid, 5736 network->channel, priv->channel); 5737 return 0; 5738 } 5739 5740 /* Verify privacy compatibility */ 5741 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) != 5742 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) { 5743 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of privacy mismatch: %s != %s.\n", 5744 network->ssid_len, network->ssid, 5745 network->bssid, 5746 priv->capability & CAP_PRIVACY_ON ? "on" : 5747 "off", 5748 network->capability & 5749 WLAN_CAPABILITY_PRIVACY ? "on" : "off"); 5750 return 0; 5751 } 5752 5753 if ((priv->config & CFG_STATIC_BSSID) && 5754 !ether_addr_equal(network->bssid, priv->bssid)) { 5755 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of BSSID mismatch: %pM.\n", 5756 network->ssid_len, network->ssid, 5757 network->bssid, priv->bssid); 5758 return 0; 5759 } 5760 5761 /* Filter out any incompatible freq / mode combinations */ 5762 if (!libipw_is_valid_mode(priv->ieee, network->mode)) { 5763 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of invalid frequency/mode combination.\n", 5764 network->ssid_len, network->ssid, 5765 network->bssid); 5766 return 0; 5767 } 5768 5769 /* Filter out invalid channel in current GEO */ 5770 if (!libipw_is_valid_channel(priv->ieee, network->channel)) { 5771 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of invalid channel in current GEO\n", 5772 network->ssid_len, network->ssid, 5773 network->bssid); 5774 return 0; 5775 } 5776 5777 /* Ensure that the rates supported by the driver are compatible with 5778 * this AP, including verification of basic rates (mandatory) */ 5779 if (!ipw_compatible_rates(priv, network, &rates)) { 5780 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because configured rate mask excludes AP mandatory rate.\n", 5781 network->ssid_len, network->ssid, 5782 network->bssid); 5783 return 0; 5784 } 5785 5786 if (rates.num_rates == 0) { 5787 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of no compatible rates.\n", 5788 network->ssid_len, network->ssid, 5789 network->bssid); 5790 return 0; 5791 } 5792 5793 /* TODO: Perform any further minimal comparititive tests. We do not 5794 * want to put too much policy logic here; intelligent scan selection 5795 * should occur within a generic IEEE 802.11 user space tool. */ 5796 5797 /* Set up 'new' AP to this network */ 5798 ipw_copy_rates(&match->rates, &rates); 5799 match->network = network; 5800 5801 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' is a viable match.\n", 5802 network->ssid_len, network->ssid, network->bssid); 5803 5804 return 1; 5805 } 5806 5807 static void ipw_adhoc_create(struct ipw_priv *priv, 5808 struct libipw_network *network) 5809 { 5810 const struct libipw_geo *geo = libipw_get_geo(priv->ieee); 5811 int i; 5812 5813 /* 5814 * For the purposes of scanning, we can set our wireless mode 5815 * to trigger scans across combinations of bands, but when it 5816 * comes to creating a new ad-hoc network, we have tell the FW 5817 * exactly which band to use. 5818 * 5819 * We also have the possibility of an invalid channel for the 5820 * chossen band. Attempting to create a new ad-hoc network 5821 * with an invalid channel for wireless mode will trigger a 5822 * FW fatal error. 5823 * 5824 */ 5825 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) { 5826 case LIBIPW_52GHZ_BAND: 5827 network->mode = IEEE_A; 5828 i = libipw_channel_to_index(priv->ieee, priv->channel); 5829 BUG_ON(i == -1); 5830 if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY) { 5831 IPW_WARNING("Overriding invalid channel\n"); 5832 priv->channel = geo->a[0].channel; 5833 } 5834 break; 5835 5836 case LIBIPW_24GHZ_BAND: 5837 if (priv->ieee->mode & IEEE_G) 5838 network->mode = IEEE_G; 5839 else 5840 network->mode = IEEE_B; 5841 i = libipw_channel_to_index(priv->ieee, priv->channel); 5842 BUG_ON(i == -1); 5843 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY) { 5844 IPW_WARNING("Overriding invalid channel\n"); 5845 priv->channel = geo->bg[0].channel; 5846 } 5847 break; 5848 5849 default: 5850 IPW_WARNING("Overriding invalid channel\n"); 5851 if (priv->ieee->mode & IEEE_A) { 5852 network->mode = IEEE_A; 5853 priv->channel = geo->a[0].channel; 5854 } else if (priv->ieee->mode & IEEE_G) { 5855 network->mode = IEEE_G; 5856 priv->channel = geo->bg[0].channel; 5857 } else { 5858 network->mode = IEEE_B; 5859 priv->channel = geo->bg[0].channel; 5860 } 5861 break; 5862 } 5863 5864 network->channel = priv->channel; 5865 priv->config |= CFG_ADHOC_PERSIST; 5866 ipw_create_bssid(priv, network->bssid); 5867 network->ssid_len = priv->essid_len; 5868 memcpy(network->ssid, priv->essid, priv->essid_len); 5869 memset(&network->stats, 0, sizeof(network->stats)); 5870 network->capability = WLAN_CAPABILITY_IBSS; 5871 if (!(priv->config & CFG_PREAMBLE_LONG)) 5872 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE; 5873 if (priv->capability & CAP_PRIVACY_ON) 5874 network->capability |= WLAN_CAPABILITY_PRIVACY; 5875 network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH); 5876 memcpy(network->rates, priv->rates.supported_rates, network->rates_len); 5877 network->rates_ex_len = priv->rates.num_rates - network->rates_len; 5878 memcpy(network->rates_ex, 5879 &priv->rates.supported_rates[network->rates_len], 5880 network->rates_ex_len); 5881 network->last_scanned = 0; 5882 network->flags = 0; 5883 network->last_associate = 0; 5884 network->time_stamp[0] = 0; 5885 network->time_stamp[1] = 0; 5886 network->beacon_interval = 100; /* Default */ 5887 network->listen_interval = 10; /* Default */ 5888 network->atim_window = 0; /* Default */ 5889 network->wpa_ie_len = 0; 5890 network->rsn_ie_len = 0; 5891 } 5892 5893 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index) 5894 { 5895 struct ipw_tgi_tx_key key; 5896 5897 if (!(priv->ieee->sec.flags & (1 << index))) 5898 return; 5899 5900 key.key_id = index; 5901 memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH); 5902 key.security_type = type; 5903 key.station_index = 0; /* always 0 for BSS */ 5904 key.flags = 0; 5905 /* 0 for new key; previous value of counter (after fatal error) */ 5906 key.tx_counter[0] = cpu_to_le32(0); 5907 key.tx_counter[1] = cpu_to_le32(0); 5908 5909 ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key); 5910 } 5911 5912 static void ipw_send_wep_keys(struct ipw_priv *priv, int type) 5913 { 5914 struct ipw_wep_key key; 5915 int i; 5916 5917 key.cmd_id = DINO_CMD_WEP_KEY; 5918 key.seq_num = 0; 5919 5920 /* Note: AES keys cannot be set for multiple times. 5921 * Only set it at the first time. */ 5922 for (i = 0; i < 4; i++) { 5923 key.key_index = i | type; 5924 if (!(priv->ieee->sec.flags & (1 << i))) { 5925 key.key_size = 0; 5926 continue; 5927 } 5928 5929 key.key_size = priv->ieee->sec.key_sizes[i]; 5930 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size); 5931 5932 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key); 5933 } 5934 } 5935 5936 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level) 5937 { 5938 if (priv->ieee->host_encrypt) 5939 return; 5940 5941 switch (level) { 5942 case SEC_LEVEL_3: 5943 priv->sys_config.disable_unicast_decryption = 0; 5944 priv->ieee->host_decrypt = 0; 5945 break; 5946 case SEC_LEVEL_2: 5947 priv->sys_config.disable_unicast_decryption = 1; 5948 priv->ieee->host_decrypt = 1; 5949 break; 5950 case SEC_LEVEL_1: 5951 priv->sys_config.disable_unicast_decryption = 0; 5952 priv->ieee->host_decrypt = 0; 5953 break; 5954 case SEC_LEVEL_0: 5955 priv->sys_config.disable_unicast_decryption = 1; 5956 break; 5957 default: 5958 break; 5959 } 5960 } 5961 5962 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level) 5963 { 5964 if (priv->ieee->host_encrypt) 5965 return; 5966 5967 switch (level) { 5968 case SEC_LEVEL_3: 5969 priv->sys_config.disable_multicast_decryption = 0; 5970 break; 5971 case SEC_LEVEL_2: 5972 priv->sys_config.disable_multicast_decryption = 1; 5973 break; 5974 case SEC_LEVEL_1: 5975 priv->sys_config.disable_multicast_decryption = 0; 5976 break; 5977 case SEC_LEVEL_0: 5978 priv->sys_config.disable_multicast_decryption = 1; 5979 break; 5980 default: 5981 break; 5982 } 5983 } 5984 5985 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv) 5986 { 5987 switch (priv->ieee->sec.level) { 5988 case SEC_LEVEL_3: 5989 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY) 5990 ipw_send_tgi_tx_key(priv, 5991 DCT_FLAG_EXT_SECURITY_CCM, 5992 priv->ieee->sec.active_key); 5993 5994 if (!priv->ieee->host_mc_decrypt) 5995 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM); 5996 break; 5997 case SEC_LEVEL_2: 5998 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY) 5999 ipw_send_tgi_tx_key(priv, 6000 DCT_FLAG_EXT_SECURITY_TKIP, 6001 priv->ieee->sec.active_key); 6002 break; 6003 case SEC_LEVEL_1: 6004 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP); 6005 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level); 6006 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level); 6007 break; 6008 case SEC_LEVEL_0: 6009 default: 6010 break; 6011 } 6012 } 6013 6014 static void ipw_adhoc_check(void *data) 6015 { 6016 struct ipw_priv *priv = data; 6017 6018 if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold && 6019 !(priv->config & CFG_ADHOC_PERSIST)) { 6020 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | 6021 IPW_DL_STATE | IPW_DL_ASSOC, 6022 "Missed beacon: %d - disassociate\n", 6023 priv->missed_adhoc_beacons); 6024 ipw_remove_current_network(priv); 6025 ipw_disassociate(priv); 6026 return; 6027 } 6028 6029 schedule_delayed_work(&priv->adhoc_check, 6030 le16_to_cpu(priv->assoc_request.beacon_interval)); 6031 } 6032 6033 static void ipw_bg_adhoc_check(struct work_struct *work) 6034 { 6035 struct ipw_priv *priv = 6036 container_of(work, struct ipw_priv, adhoc_check.work); 6037 mutex_lock(&priv->mutex); 6038 ipw_adhoc_check(priv); 6039 mutex_unlock(&priv->mutex); 6040 } 6041 6042 static void ipw_debug_config(struct ipw_priv *priv) 6043 { 6044 IPW_DEBUG_INFO("Scan completed, no valid APs matched " 6045 "[CFG 0x%08X]\n", priv->config); 6046 if (priv->config & CFG_STATIC_CHANNEL) 6047 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel); 6048 else 6049 IPW_DEBUG_INFO("Channel unlocked.\n"); 6050 if (priv->config & CFG_STATIC_ESSID) 6051 IPW_DEBUG_INFO("ESSID locked to '%*pE'\n", 6052 priv->essid_len, priv->essid); 6053 else 6054 IPW_DEBUG_INFO("ESSID unlocked.\n"); 6055 if (priv->config & CFG_STATIC_BSSID) 6056 IPW_DEBUG_INFO("BSSID locked to %pM\n", priv->bssid); 6057 else 6058 IPW_DEBUG_INFO("BSSID unlocked.\n"); 6059 if (priv->capability & CAP_PRIVACY_ON) 6060 IPW_DEBUG_INFO("PRIVACY on\n"); 6061 else 6062 IPW_DEBUG_INFO("PRIVACY off\n"); 6063 IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask); 6064 } 6065 6066 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode) 6067 { 6068 /* TODO: Verify that this works... */ 6069 struct ipw_fixed_rate fr; 6070 u32 reg; 6071 u16 mask = 0; 6072 u16 new_tx_rates = priv->rates_mask; 6073 6074 /* Identify 'current FW band' and match it with the fixed 6075 * Tx rates */ 6076 6077 switch (priv->ieee->freq_band) { 6078 case LIBIPW_52GHZ_BAND: /* A only */ 6079 /* IEEE_A */ 6080 if (priv->rates_mask & ~LIBIPW_OFDM_RATES_MASK) { 6081 /* Invalid fixed rate mask */ 6082 IPW_DEBUG_WX 6083 ("invalid fixed rate mask in ipw_set_fixed_rate\n"); 6084 new_tx_rates = 0; 6085 break; 6086 } 6087 6088 new_tx_rates >>= LIBIPW_OFDM_SHIFT_MASK_A; 6089 break; 6090 6091 default: /* 2.4Ghz or Mixed */ 6092 /* IEEE_B */ 6093 if (mode == IEEE_B) { 6094 if (new_tx_rates & ~LIBIPW_CCK_RATES_MASK) { 6095 /* Invalid fixed rate mask */ 6096 IPW_DEBUG_WX 6097 ("invalid fixed rate mask in ipw_set_fixed_rate\n"); 6098 new_tx_rates = 0; 6099 } 6100 break; 6101 } 6102 6103 /* IEEE_G */ 6104 if (new_tx_rates & ~(LIBIPW_CCK_RATES_MASK | 6105 LIBIPW_OFDM_RATES_MASK)) { 6106 /* Invalid fixed rate mask */ 6107 IPW_DEBUG_WX 6108 ("invalid fixed rate mask in ipw_set_fixed_rate\n"); 6109 new_tx_rates = 0; 6110 break; 6111 } 6112 6113 if (LIBIPW_OFDM_RATE_6MB_MASK & new_tx_rates) { 6114 mask |= (LIBIPW_OFDM_RATE_6MB_MASK >> 1); 6115 new_tx_rates &= ~LIBIPW_OFDM_RATE_6MB_MASK; 6116 } 6117 6118 if (LIBIPW_OFDM_RATE_9MB_MASK & new_tx_rates) { 6119 mask |= (LIBIPW_OFDM_RATE_9MB_MASK >> 1); 6120 new_tx_rates &= ~LIBIPW_OFDM_RATE_9MB_MASK; 6121 } 6122 6123 if (LIBIPW_OFDM_RATE_12MB_MASK & new_tx_rates) { 6124 mask |= (LIBIPW_OFDM_RATE_12MB_MASK >> 1); 6125 new_tx_rates &= ~LIBIPW_OFDM_RATE_12MB_MASK; 6126 } 6127 6128 new_tx_rates |= mask; 6129 break; 6130 } 6131 6132 fr.tx_rates = cpu_to_le16(new_tx_rates); 6133 6134 reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE); 6135 ipw_write_reg32(priv, reg, *(u32 *) & fr); 6136 } 6137 6138 static void ipw_abort_scan(struct ipw_priv *priv) 6139 { 6140 int err; 6141 6142 if (priv->status & STATUS_SCAN_ABORTING) { 6143 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n"); 6144 return; 6145 } 6146 priv->status |= STATUS_SCAN_ABORTING; 6147 6148 err = ipw_send_scan_abort(priv); 6149 if (err) 6150 IPW_DEBUG_HC("Request to abort scan failed.\n"); 6151 } 6152 6153 static void ipw_add_scan_channels(struct ipw_priv *priv, 6154 struct ipw_scan_request_ext *scan, 6155 int scan_type) 6156 { 6157 int channel_index = 0; 6158 const struct libipw_geo *geo; 6159 int i; 6160 6161 geo = libipw_get_geo(priv->ieee); 6162 6163 if (priv->ieee->freq_band & LIBIPW_52GHZ_BAND) { 6164 int start = channel_index; 6165 for (i = 0; i < geo->a_channels; i++) { 6166 if ((priv->status & STATUS_ASSOCIATED) && 6167 geo->a[i].channel == priv->channel) 6168 continue; 6169 channel_index++; 6170 scan->channels_list[channel_index] = geo->a[i].channel; 6171 ipw_set_scan_type(scan, channel_index, 6172 geo->a[i]. 6173 flags & LIBIPW_CH_PASSIVE_ONLY ? 6174 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN : 6175 scan_type); 6176 } 6177 6178 if (start != channel_index) { 6179 scan->channels_list[start] = (u8) (IPW_A_MODE << 6) | 6180 (channel_index - start); 6181 channel_index++; 6182 } 6183 } 6184 6185 if (priv->ieee->freq_band & LIBIPW_24GHZ_BAND) { 6186 int start = channel_index; 6187 if (priv->config & CFG_SPEED_SCAN) { 6188 int index; 6189 u8 channels[LIBIPW_24GHZ_CHANNELS] = { 6190 /* nop out the list */ 6191 [0] = 0 6192 }; 6193 6194 u8 channel; 6195 while (channel_index < IPW_SCAN_CHANNELS - 1) { 6196 channel = 6197 priv->speed_scan[priv->speed_scan_pos]; 6198 if (channel == 0) { 6199 priv->speed_scan_pos = 0; 6200 channel = priv->speed_scan[0]; 6201 } 6202 if ((priv->status & STATUS_ASSOCIATED) && 6203 channel == priv->channel) { 6204 priv->speed_scan_pos++; 6205 continue; 6206 } 6207 6208 /* If this channel has already been 6209 * added in scan, break from loop 6210 * and this will be the first channel 6211 * in the next scan. 6212 */ 6213 if (channels[channel - 1] != 0) 6214 break; 6215 6216 channels[channel - 1] = 1; 6217 priv->speed_scan_pos++; 6218 channel_index++; 6219 scan->channels_list[channel_index] = channel; 6220 index = 6221 libipw_channel_to_index(priv->ieee, channel); 6222 ipw_set_scan_type(scan, channel_index, 6223 geo->bg[index]. 6224 flags & 6225 LIBIPW_CH_PASSIVE_ONLY ? 6226 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN 6227 : scan_type); 6228 } 6229 } else { 6230 for (i = 0; i < geo->bg_channels; i++) { 6231 if ((priv->status & STATUS_ASSOCIATED) && 6232 geo->bg[i].channel == priv->channel) 6233 continue; 6234 channel_index++; 6235 scan->channels_list[channel_index] = 6236 geo->bg[i].channel; 6237 ipw_set_scan_type(scan, channel_index, 6238 geo->bg[i]. 6239 flags & 6240 LIBIPW_CH_PASSIVE_ONLY ? 6241 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN 6242 : scan_type); 6243 } 6244 } 6245 6246 if (start != channel_index) { 6247 scan->channels_list[start] = (u8) (IPW_B_MODE << 6) | 6248 (channel_index - start); 6249 } 6250 } 6251 } 6252 6253 static int ipw_passive_dwell_time(struct ipw_priv *priv) 6254 { 6255 /* staying on passive channels longer than the DTIM interval during a 6256 * scan, while associated, causes the firmware to cancel the scan 6257 * without notification. Hence, don't stay on passive channels longer 6258 * than the beacon interval. 6259 */ 6260 if (priv->status & STATUS_ASSOCIATED 6261 && priv->assoc_network->beacon_interval > 10) 6262 return priv->assoc_network->beacon_interval - 10; 6263 else 6264 return 120; 6265 } 6266 6267 static int ipw_request_scan_helper(struct ipw_priv *priv, int type, int direct) 6268 { 6269 struct ipw_scan_request_ext scan; 6270 int err = 0, scan_type; 6271 6272 if (!(priv->status & STATUS_INIT) || 6273 (priv->status & STATUS_EXIT_PENDING)) 6274 return 0; 6275 6276 mutex_lock(&priv->mutex); 6277 6278 if (direct && (priv->direct_scan_ssid_len == 0)) { 6279 IPW_DEBUG_HC("Direct scan requested but no SSID to scan for\n"); 6280 priv->status &= ~STATUS_DIRECT_SCAN_PENDING; 6281 goto done; 6282 } 6283 6284 if (priv->status & STATUS_SCANNING) { 6285 IPW_DEBUG_HC("Concurrent scan requested. Queuing.\n"); 6286 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING : 6287 STATUS_SCAN_PENDING; 6288 goto done; 6289 } 6290 6291 if (!(priv->status & STATUS_SCAN_FORCED) && 6292 priv->status & STATUS_SCAN_ABORTING) { 6293 IPW_DEBUG_HC("Scan request while abort pending. Queuing.\n"); 6294 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING : 6295 STATUS_SCAN_PENDING; 6296 goto done; 6297 } 6298 6299 if (priv->status & STATUS_RF_KILL_MASK) { 6300 IPW_DEBUG_HC("Queuing scan due to RF Kill activation\n"); 6301 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING : 6302 STATUS_SCAN_PENDING; 6303 goto done; 6304 } 6305 6306 memset(&scan, 0, sizeof(scan)); 6307 scan.full_scan_index = cpu_to_le32(libipw_get_scans(priv->ieee)); 6308 6309 if (type == IW_SCAN_TYPE_PASSIVE) { 6310 IPW_DEBUG_WX("use passive scanning\n"); 6311 scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN; 6312 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = 6313 cpu_to_le16(ipw_passive_dwell_time(priv)); 6314 ipw_add_scan_channels(priv, &scan, scan_type); 6315 goto send_request; 6316 } 6317 6318 /* Use active scan by default. */ 6319 if (priv->config & CFG_SPEED_SCAN) 6320 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] = 6321 cpu_to_le16(30); 6322 else 6323 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] = 6324 cpu_to_le16(20); 6325 6326 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] = 6327 cpu_to_le16(20); 6328 6329 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = 6330 cpu_to_le16(ipw_passive_dwell_time(priv)); 6331 scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20); 6332 6333 #ifdef CONFIG_IPW2200_MONITOR 6334 if (priv->ieee->iw_mode == IW_MODE_MONITOR) { 6335 u8 channel; 6336 u8 band = 0; 6337 6338 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) { 6339 case LIBIPW_52GHZ_BAND: 6340 band = (u8) (IPW_A_MODE << 6) | 1; 6341 channel = priv->channel; 6342 break; 6343 6344 case LIBIPW_24GHZ_BAND: 6345 band = (u8) (IPW_B_MODE << 6) | 1; 6346 channel = priv->channel; 6347 break; 6348 6349 default: 6350 band = (u8) (IPW_B_MODE << 6) | 1; 6351 channel = 9; 6352 break; 6353 } 6354 6355 scan.channels_list[0] = band; 6356 scan.channels_list[1] = channel; 6357 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN); 6358 6359 /* NOTE: The card will sit on this channel for this time 6360 * period. Scan aborts are timing sensitive and frequently 6361 * result in firmware restarts. As such, it is best to 6362 * set a small dwell_time here and just keep re-issuing 6363 * scans. Otherwise fast channel hopping will not actually 6364 * hop channels. 6365 * 6366 * TODO: Move SPEED SCAN support to all modes and bands */ 6367 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = 6368 cpu_to_le16(2000); 6369 } else { 6370 #endif /* CONFIG_IPW2200_MONITOR */ 6371 /* Honor direct scans first, otherwise if we are roaming make 6372 * this a direct scan for the current network. Finally, 6373 * ensure that every other scan is a fast channel hop scan */ 6374 if (direct) { 6375 err = ipw_send_ssid(priv, priv->direct_scan_ssid, 6376 priv->direct_scan_ssid_len); 6377 if (err) { 6378 IPW_DEBUG_HC("Attempt to send SSID command " 6379 "failed\n"); 6380 goto done; 6381 } 6382 6383 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN; 6384 } else if ((priv->status & STATUS_ROAMING) 6385 || (!(priv->status & STATUS_ASSOCIATED) 6386 && (priv->config & CFG_STATIC_ESSID) 6387 && (le32_to_cpu(scan.full_scan_index) % 2))) { 6388 err = ipw_send_ssid(priv, priv->essid, priv->essid_len); 6389 if (err) { 6390 IPW_DEBUG_HC("Attempt to send SSID command " 6391 "failed.\n"); 6392 goto done; 6393 } 6394 6395 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN; 6396 } else 6397 scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN; 6398 6399 ipw_add_scan_channels(priv, &scan, scan_type); 6400 #ifdef CONFIG_IPW2200_MONITOR 6401 } 6402 #endif 6403 6404 send_request: 6405 err = ipw_send_scan_request_ext(priv, &scan); 6406 if (err) { 6407 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err); 6408 goto done; 6409 } 6410 6411 priv->status |= STATUS_SCANNING; 6412 if (direct) { 6413 priv->status &= ~STATUS_DIRECT_SCAN_PENDING; 6414 priv->direct_scan_ssid_len = 0; 6415 } else 6416 priv->status &= ~STATUS_SCAN_PENDING; 6417 6418 schedule_delayed_work(&priv->scan_check, IPW_SCAN_CHECK_WATCHDOG); 6419 done: 6420 mutex_unlock(&priv->mutex); 6421 return err; 6422 } 6423 6424 static void ipw_request_passive_scan(struct work_struct *work) 6425 { 6426 struct ipw_priv *priv = 6427 container_of(work, struct ipw_priv, request_passive_scan.work); 6428 ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE, 0); 6429 } 6430 6431 static void ipw_request_scan(struct work_struct *work) 6432 { 6433 struct ipw_priv *priv = 6434 container_of(work, struct ipw_priv, request_scan.work); 6435 ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 0); 6436 } 6437 6438 static void ipw_request_direct_scan(struct work_struct *work) 6439 { 6440 struct ipw_priv *priv = 6441 container_of(work, struct ipw_priv, request_direct_scan.work); 6442 ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 1); 6443 } 6444 6445 static void ipw_bg_abort_scan(struct work_struct *work) 6446 { 6447 struct ipw_priv *priv = 6448 container_of(work, struct ipw_priv, abort_scan); 6449 mutex_lock(&priv->mutex); 6450 ipw_abort_scan(priv); 6451 mutex_unlock(&priv->mutex); 6452 } 6453 6454 static int ipw_wpa_enable(struct ipw_priv *priv, int value) 6455 { 6456 /* This is called when wpa_supplicant loads and closes the driver 6457 * interface. */ 6458 priv->ieee->wpa_enabled = value; 6459 return 0; 6460 } 6461 6462 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value) 6463 { 6464 struct libipw_device *ieee = priv->ieee; 6465 struct libipw_security sec = { 6466 .flags = SEC_AUTH_MODE, 6467 }; 6468 int ret = 0; 6469 6470 if (value & IW_AUTH_ALG_SHARED_KEY) { 6471 sec.auth_mode = WLAN_AUTH_SHARED_KEY; 6472 ieee->open_wep = 0; 6473 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) { 6474 sec.auth_mode = WLAN_AUTH_OPEN; 6475 ieee->open_wep = 1; 6476 } else if (value & IW_AUTH_ALG_LEAP) { 6477 sec.auth_mode = WLAN_AUTH_LEAP; 6478 ieee->open_wep = 1; 6479 } else 6480 return -EINVAL; 6481 6482 if (ieee->set_security) 6483 ieee->set_security(ieee->dev, &sec); 6484 else 6485 ret = -EOPNOTSUPP; 6486 6487 return ret; 6488 } 6489 6490 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie, 6491 int wpa_ie_len) 6492 { 6493 /* make sure WPA is enabled */ 6494 ipw_wpa_enable(priv, 1); 6495 } 6496 6497 static int ipw_set_rsn_capa(struct ipw_priv *priv, 6498 char *capabilities, int length) 6499 { 6500 IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n"); 6501 6502 return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length, 6503 capabilities); 6504 } 6505 6506 /* 6507 * WE-18 support 6508 */ 6509 6510 /* SIOCSIWGENIE */ 6511 static int ipw_wx_set_genie(struct net_device *dev, 6512 struct iw_request_info *info, 6513 union iwreq_data *wrqu, char *extra) 6514 { 6515 struct ipw_priv *priv = libipw_priv(dev); 6516 struct libipw_device *ieee = priv->ieee; 6517 u8 *buf; 6518 int err = 0; 6519 6520 if (wrqu->data.length > MAX_WPA_IE_LEN || 6521 (wrqu->data.length && extra == NULL)) 6522 return -EINVAL; 6523 6524 if (wrqu->data.length) { 6525 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL); 6526 if (buf == NULL) { 6527 err = -ENOMEM; 6528 goto out; 6529 } 6530 6531 kfree(ieee->wpa_ie); 6532 ieee->wpa_ie = buf; 6533 ieee->wpa_ie_len = wrqu->data.length; 6534 } else { 6535 kfree(ieee->wpa_ie); 6536 ieee->wpa_ie = NULL; 6537 ieee->wpa_ie_len = 0; 6538 } 6539 6540 ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len); 6541 out: 6542 return err; 6543 } 6544 6545 /* SIOCGIWGENIE */ 6546 static int ipw_wx_get_genie(struct net_device *dev, 6547 struct iw_request_info *info, 6548 union iwreq_data *wrqu, char *extra) 6549 { 6550 struct ipw_priv *priv = libipw_priv(dev); 6551 struct libipw_device *ieee = priv->ieee; 6552 int err = 0; 6553 6554 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) { 6555 wrqu->data.length = 0; 6556 goto out; 6557 } 6558 6559 if (wrqu->data.length < ieee->wpa_ie_len) { 6560 err = -E2BIG; 6561 goto out; 6562 } 6563 6564 wrqu->data.length = ieee->wpa_ie_len; 6565 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len); 6566 6567 out: 6568 return err; 6569 } 6570 6571 static int wext_cipher2level(int cipher) 6572 { 6573 switch (cipher) { 6574 case IW_AUTH_CIPHER_NONE: 6575 return SEC_LEVEL_0; 6576 case IW_AUTH_CIPHER_WEP40: 6577 case IW_AUTH_CIPHER_WEP104: 6578 return SEC_LEVEL_1; 6579 case IW_AUTH_CIPHER_TKIP: 6580 return SEC_LEVEL_2; 6581 case IW_AUTH_CIPHER_CCMP: 6582 return SEC_LEVEL_3; 6583 default: 6584 return -1; 6585 } 6586 } 6587 6588 /* SIOCSIWAUTH */ 6589 static int ipw_wx_set_auth(struct net_device *dev, 6590 struct iw_request_info *info, 6591 union iwreq_data *wrqu, char *extra) 6592 { 6593 struct ipw_priv *priv = libipw_priv(dev); 6594 struct libipw_device *ieee = priv->ieee; 6595 struct iw_param *param = &wrqu->param; 6596 struct lib80211_crypt_data *crypt; 6597 unsigned long flags; 6598 int ret = 0; 6599 6600 switch (param->flags & IW_AUTH_INDEX) { 6601 case IW_AUTH_WPA_VERSION: 6602 break; 6603 case IW_AUTH_CIPHER_PAIRWISE: 6604 ipw_set_hw_decrypt_unicast(priv, 6605 wext_cipher2level(param->value)); 6606 break; 6607 case IW_AUTH_CIPHER_GROUP: 6608 ipw_set_hw_decrypt_multicast(priv, 6609 wext_cipher2level(param->value)); 6610 break; 6611 case IW_AUTH_KEY_MGMT: 6612 /* 6613 * ipw2200 does not use these parameters 6614 */ 6615 break; 6616 6617 case IW_AUTH_TKIP_COUNTERMEASURES: 6618 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx]; 6619 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags) 6620 break; 6621 6622 flags = crypt->ops->get_flags(crypt->priv); 6623 6624 if (param->value) 6625 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES; 6626 else 6627 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES; 6628 6629 crypt->ops->set_flags(flags, crypt->priv); 6630 6631 break; 6632 6633 case IW_AUTH_DROP_UNENCRYPTED:{ 6634 /* HACK: 6635 * 6636 * wpa_supplicant calls set_wpa_enabled when the driver 6637 * is loaded and unloaded, regardless of if WPA is being 6638 * used. No other calls are made which can be used to 6639 * determine if encryption will be used or not prior to 6640 * association being expected. If encryption is not being 6641 * used, drop_unencrypted is set to false, else true -- we 6642 * can use this to determine if the CAP_PRIVACY_ON bit should 6643 * be set. 6644 */ 6645 struct libipw_security sec = { 6646 .flags = SEC_ENABLED, 6647 .enabled = param->value, 6648 }; 6649 priv->ieee->drop_unencrypted = param->value; 6650 /* We only change SEC_LEVEL for open mode. Others 6651 * are set by ipw_wpa_set_encryption. 6652 */ 6653 if (!param->value) { 6654 sec.flags |= SEC_LEVEL; 6655 sec.level = SEC_LEVEL_0; 6656 } else { 6657 sec.flags |= SEC_LEVEL; 6658 sec.level = SEC_LEVEL_1; 6659 } 6660 if (priv->ieee->set_security) 6661 priv->ieee->set_security(priv->ieee->dev, &sec); 6662 break; 6663 } 6664 6665 case IW_AUTH_80211_AUTH_ALG: 6666 ret = ipw_wpa_set_auth_algs(priv, param->value); 6667 break; 6668 6669 case IW_AUTH_WPA_ENABLED: 6670 ret = ipw_wpa_enable(priv, param->value); 6671 ipw_disassociate(priv); 6672 break; 6673 6674 case IW_AUTH_RX_UNENCRYPTED_EAPOL: 6675 ieee->ieee802_1x = param->value; 6676 break; 6677 6678 case IW_AUTH_PRIVACY_INVOKED: 6679 ieee->privacy_invoked = param->value; 6680 break; 6681 6682 default: 6683 return -EOPNOTSUPP; 6684 } 6685 return ret; 6686 } 6687 6688 /* SIOCGIWAUTH */ 6689 static int ipw_wx_get_auth(struct net_device *dev, 6690 struct iw_request_info *info, 6691 union iwreq_data *wrqu, char *extra) 6692 { 6693 struct ipw_priv *priv = libipw_priv(dev); 6694 struct libipw_device *ieee = priv->ieee; 6695 struct lib80211_crypt_data *crypt; 6696 struct iw_param *param = &wrqu->param; 6697 6698 switch (param->flags & IW_AUTH_INDEX) { 6699 case IW_AUTH_WPA_VERSION: 6700 case IW_AUTH_CIPHER_PAIRWISE: 6701 case IW_AUTH_CIPHER_GROUP: 6702 case IW_AUTH_KEY_MGMT: 6703 /* 6704 * wpa_supplicant will control these internally 6705 */ 6706 return -EOPNOTSUPP; 6707 6708 case IW_AUTH_TKIP_COUNTERMEASURES: 6709 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx]; 6710 if (!crypt || !crypt->ops->get_flags) 6711 break; 6712 6713 param->value = (crypt->ops->get_flags(crypt->priv) & 6714 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0; 6715 6716 break; 6717 6718 case IW_AUTH_DROP_UNENCRYPTED: 6719 param->value = ieee->drop_unencrypted; 6720 break; 6721 6722 case IW_AUTH_80211_AUTH_ALG: 6723 param->value = ieee->sec.auth_mode; 6724 break; 6725 6726 case IW_AUTH_WPA_ENABLED: 6727 param->value = ieee->wpa_enabled; 6728 break; 6729 6730 case IW_AUTH_RX_UNENCRYPTED_EAPOL: 6731 param->value = ieee->ieee802_1x; 6732 break; 6733 6734 case IW_AUTH_ROAMING_CONTROL: 6735 case IW_AUTH_PRIVACY_INVOKED: 6736 param->value = ieee->privacy_invoked; 6737 break; 6738 6739 default: 6740 return -EOPNOTSUPP; 6741 } 6742 return 0; 6743 } 6744 6745 /* SIOCSIWENCODEEXT */ 6746 static int ipw_wx_set_encodeext(struct net_device *dev, 6747 struct iw_request_info *info, 6748 union iwreq_data *wrqu, char *extra) 6749 { 6750 struct ipw_priv *priv = libipw_priv(dev); 6751 struct iw_encode_ext *ext = (struct iw_encode_ext *)extra; 6752 6753 if (hwcrypto) { 6754 if (ext->alg == IW_ENCODE_ALG_TKIP) { 6755 /* IPW HW can't build TKIP MIC, 6756 host decryption still needed */ 6757 if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY) 6758 priv->ieee->host_mc_decrypt = 1; 6759 else { 6760 priv->ieee->host_encrypt = 0; 6761 priv->ieee->host_encrypt_msdu = 1; 6762 priv->ieee->host_decrypt = 1; 6763 } 6764 } else { 6765 priv->ieee->host_encrypt = 0; 6766 priv->ieee->host_encrypt_msdu = 0; 6767 priv->ieee->host_decrypt = 0; 6768 priv->ieee->host_mc_decrypt = 0; 6769 } 6770 } 6771 6772 return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra); 6773 } 6774 6775 /* SIOCGIWENCODEEXT */ 6776 static int ipw_wx_get_encodeext(struct net_device *dev, 6777 struct iw_request_info *info, 6778 union iwreq_data *wrqu, char *extra) 6779 { 6780 struct ipw_priv *priv = libipw_priv(dev); 6781 return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra); 6782 } 6783 6784 /* SIOCSIWMLME */ 6785 static int ipw_wx_set_mlme(struct net_device *dev, 6786 struct iw_request_info *info, 6787 union iwreq_data *wrqu, char *extra) 6788 { 6789 struct ipw_priv *priv = libipw_priv(dev); 6790 struct iw_mlme *mlme = (struct iw_mlme *)extra; 6791 __le16 reason; 6792 6793 reason = cpu_to_le16(mlme->reason_code); 6794 6795 switch (mlme->cmd) { 6796 case IW_MLME_DEAUTH: 6797 /* silently ignore */ 6798 break; 6799 6800 case IW_MLME_DISASSOC: 6801 ipw_disassociate(priv); 6802 break; 6803 6804 default: 6805 return -EOPNOTSUPP; 6806 } 6807 return 0; 6808 } 6809 6810 #ifdef CONFIG_IPW2200_QOS 6811 6812 /* QoS */ 6813 /* 6814 * get the modulation type of the current network or 6815 * the card current mode 6816 */ 6817 static u8 ipw_qos_current_mode(struct ipw_priv * priv) 6818 { 6819 u8 mode = 0; 6820 6821 if (priv->status & STATUS_ASSOCIATED) { 6822 unsigned long flags; 6823 6824 spin_lock_irqsave(&priv->ieee->lock, flags); 6825 mode = priv->assoc_network->mode; 6826 spin_unlock_irqrestore(&priv->ieee->lock, flags); 6827 } else { 6828 mode = priv->ieee->mode; 6829 } 6830 IPW_DEBUG_QOS("QoS network/card mode %d\n", mode); 6831 return mode; 6832 } 6833 6834 /* 6835 * Handle management frame beacon and probe response 6836 */ 6837 static int ipw_qos_handle_probe_response(struct ipw_priv *priv, 6838 int active_network, 6839 struct libipw_network *network) 6840 { 6841 u32 size = sizeof(struct libipw_qos_parameters); 6842 6843 if (network->capability & WLAN_CAPABILITY_IBSS) 6844 network->qos_data.active = network->qos_data.supported; 6845 6846 if (network->flags & NETWORK_HAS_QOS_MASK) { 6847 if (active_network && 6848 (network->flags & NETWORK_HAS_QOS_PARAMETERS)) 6849 network->qos_data.active = network->qos_data.supported; 6850 6851 if ((network->qos_data.active == 1) && (active_network == 1) && 6852 (network->flags & NETWORK_HAS_QOS_PARAMETERS) && 6853 (network->qos_data.old_param_count != 6854 network->qos_data.param_count)) { 6855 network->qos_data.old_param_count = 6856 network->qos_data.param_count; 6857 schedule_work(&priv->qos_activate); 6858 IPW_DEBUG_QOS("QoS parameters change call " 6859 "qos_activate\n"); 6860 } 6861 } else { 6862 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B)) 6863 memcpy(&network->qos_data.parameters, 6864 &def_parameters_CCK, size); 6865 else 6866 memcpy(&network->qos_data.parameters, 6867 &def_parameters_OFDM, size); 6868 6869 if ((network->qos_data.active == 1) && (active_network == 1)) { 6870 IPW_DEBUG_QOS("QoS was disabled call qos_activate\n"); 6871 schedule_work(&priv->qos_activate); 6872 } 6873 6874 network->qos_data.active = 0; 6875 network->qos_data.supported = 0; 6876 } 6877 if ((priv->status & STATUS_ASSOCIATED) && 6878 (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) { 6879 if (!ether_addr_equal(network->bssid, priv->bssid)) 6880 if (network->capability & WLAN_CAPABILITY_IBSS) 6881 if ((network->ssid_len == 6882 priv->assoc_network->ssid_len) && 6883 !memcmp(network->ssid, 6884 priv->assoc_network->ssid, 6885 network->ssid_len)) { 6886 schedule_work(&priv->merge_networks); 6887 } 6888 } 6889 6890 return 0; 6891 } 6892 6893 /* 6894 * This function set up the firmware to support QoS. It sends 6895 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO 6896 */ 6897 static int ipw_qos_activate(struct ipw_priv *priv, 6898 struct libipw_qos_data *qos_network_data) 6899 { 6900 int err; 6901 struct libipw_qos_parameters qos_parameters[QOS_QOS_SETS]; 6902 struct libipw_qos_parameters *active_one = NULL; 6903 u32 size = sizeof(struct libipw_qos_parameters); 6904 u32 burst_duration; 6905 int i; 6906 u8 type; 6907 6908 type = ipw_qos_current_mode(priv); 6909 6910 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]); 6911 memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size); 6912 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]); 6913 memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size); 6914 6915 if (qos_network_data == NULL) { 6916 if (type == IEEE_B) { 6917 IPW_DEBUG_QOS("QoS activate network mode %d\n", type); 6918 active_one = &def_parameters_CCK; 6919 } else 6920 active_one = &def_parameters_OFDM; 6921 6922 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size); 6923 burst_duration = ipw_qos_get_burst_duration(priv); 6924 for (i = 0; i < QOS_QUEUE_NUM; i++) 6925 qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] = 6926 cpu_to_le16(burst_duration); 6927 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) { 6928 if (type == IEEE_B) { 6929 IPW_DEBUG_QOS("QoS activate IBSS network mode %d\n", 6930 type); 6931 if (priv->qos_data.qos_enable == 0) 6932 active_one = &def_parameters_CCK; 6933 else 6934 active_one = priv->qos_data.def_qos_parm_CCK; 6935 } else { 6936 if (priv->qos_data.qos_enable == 0) 6937 active_one = &def_parameters_OFDM; 6938 else 6939 active_one = priv->qos_data.def_qos_parm_OFDM; 6940 } 6941 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size); 6942 } else { 6943 unsigned long flags; 6944 int active; 6945 6946 spin_lock_irqsave(&priv->ieee->lock, flags); 6947 active_one = &(qos_network_data->parameters); 6948 qos_network_data->old_param_count = 6949 qos_network_data->param_count; 6950 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size); 6951 active = qos_network_data->supported; 6952 spin_unlock_irqrestore(&priv->ieee->lock, flags); 6953 6954 if (active == 0) { 6955 burst_duration = ipw_qos_get_burst_duration(priv); 6956 for (i = 0; i < QOS_QUEUE_NUM; i++) 6957 qos_parameters[QOS_PARAM_SET_ACTIVE]. 6958 tx_op_limit[i] = cpu_to_le16(burst_duration); 6959 } 6960 } 6961 6962 IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n"); 6963 err = ipw_send_qos_params_command(priv, &qos_parameters[0]); 6964 if (err) 6965 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n"); 6966 6967 return err; 6968 } 6969 6970 /* 6971 * send IPW_CMD_WME_INFO to the firmware 6972 */ 6973 static int ipw_qos_set_info_element(struct ipw_priv *priv) 6974 { 6975 int ret = 0; 6976 struct libipw_qos_information_element qos_info; 6977 6978 if (priv == NULL) 6979 return -1; 6980 6981 qos_info.elementID = QOS_ELEMENT_ID; 6982 qos_info.length = sizeof(struct libipw_qos_information_element) - 2; 6983 6984 qos_info.version = QOS_VERSION_1; 6985 qos_info.ac_info = 0; 6986 6987 memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN); 6988 qos_info.qui_type = QOS_OUI_TYPE; 6989 qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE; 6990 6991 ret = ipw_send_qos_info_command(priv, &qos_info); 6992 if (ret != 0) { 6993 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n"); 6994 } 6995 return ret; 6996 } 6997 6998 /* 6999 * Set the QoS parameter with the association request structure 7000 */ 7001 static int ipw_qos_association(struct ipw_priv *priv, 7002 struct libipw_network *network) 7003 { 7004 int err = 0; 7005 struct libipw_qos_data *qos_data = NULL; 7006 struct libipw_qos_data ibss_data = { 7007 .supported = 1, 7008 .active = 1, 7009 }; 7010 7011 switch (priv->ieee->iw_mode) { 7012 case IW_MODE_ADHOC: 7013 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS)); 7014 7015 qos_data = &ibss_data; 7016 break; 7017 7018 case IW_MODE_INFRA: 7019 qos_data = &network->qos_data; 7020 break; 7021 7022 default: 7023 BUG(); 7024 break; 7025 } 7026 7027 err = ipw_qos_activate(priv, qos_data); 7028 if (err) { 7029 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC; 7030 return err; 7031 } 7032 7033 if (priv->qos_data.qos_enable && qos_data->supported) { 7034 IPW_DEBUG_QOS("QoS will be enabled for this association\n"); 7035 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC; 7036 return ipw_qos_set_info_element(priv); 7037 } 7038 7039 return 0; 7040 } 7041 7042 /* 7043 * handling the beaconing responses. if we get different QoS setting 7044 * off the network from the associated setting, adjust the QoS 7045 * setting 7046 */ 7047 static int ipw_qos_association_resp(struct ipw_priv *priv, 7048 struct libipw_network *network) 7049 { 7050 int ret = 0; 7051 unsigned long flags; 7052 u32 size = sizeof(struct libipw_qos_parameters); 7053 int set_qos_param = 0; 7054 7055 if ((priv == NULL) || (network == NULL) || 7056 (priv->assoc_network == NULL)) 7057 return ret; 7058 7059 if (!(priv->status & STATUS_ASSOCIATED)) 7060 return ret; 7061 7062 if ((priv->ieee->iw_mode != IW_MODE_INFRA)) 7063 return ret; 7064 7065 spin_lock_irqsave(&priv->ieee->lock, flags); 7066 if (network->flags & NETWORK_HAS_QOS_PARAMETERS) { 7067 memcpy(&priv->assoc_network->qos_data, &network->qos_data, 7068 sizeof(struct libipw_qos_data)); 7069 priv->assoc_network->qos_data.active = 1; 7070 if ((network->qos_data.old_param_count != 7071 network->qos_data.param_count)) { 7072 set_qos_param = 1; 7073 network->qos_data.old_param_count = 7074 network->qos_data.param_count; 7075 } 7076 7077 } else { 7078 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B)) 7079 memcpy(&priv->assoc_network->qos_data.parameters, 7080 &def_parameters_CCK, size); 7081 else 7082 memcpy(&priv->assoc_network->qos_data.parameters, 7083 &def_parameters_OFDM, size); 7084 priv->assoc_network->qos_data.active = 0; 7085 priv->assoc_network->qos_data.supported = 0; 7086 set_qos_param = 1; 7087 } 7088 7089 spin_unlock_irqrestore(&priv->ieee->lock, flags); 7090 7091 if (set_qos_param == 1) 7092 schedule_work(&priv->qos_activate); 7093 7094 return ret; 7095 } 7096 7097 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv) 7098 { 7099 u32 ret = 0; 7100 7101 if (!priv) 7102 return 0; 7103 7104 if (!(priv->ieee->modulation & LIBIPW_OFDM_MODULATION)) 7105 ret = priv->qos_data.burst_duration_CCK; 7106 else 7107 ret = priv->qos_data.burst_duration_OFDM; 7108 7109 return ret; 7110 } 7111 7112 /* 7113 * Initialize the setting of QoS global 7114 */ 7115 static void ipw_qos_init(struct ipw_priv *priv, int enable, 7116 int burst_enable, u32 burst_duration_CCK, 7117 u32 burst_duration_OFDM) 7118 { 7119 priv->qos_data.qos_enable = enable; 7120 7121 if (priv->qos_data.qos_enable) { 7122 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK; 7123 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM; 7124 IPW_DEBUG_QOS("QoS is enabled\n"); 7125 } else { 7126 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK; 7127 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM; 7128 IPW_DEBUG_QOS("QoS is not enabled\n"); 7129 } 7130 7131 priv->qos_data.burst_enable = burst_enable; 7132 7133 if (burst_enable) { 7134 priv->qos_data.burst_duration_CCK = burst_duration_CCK; 7135 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM; 7136 } else { 7137 priv->qos_data.burst_duration_CCK = 0; 7138 priv->qos_data.burst_duration_OFDM = 0; 7139 } 7140 } 7141 7142 /* 7143 * map the packet priority to the right TX Queue 7144 */ 7145 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority) 7146 { 7147 if (priority > 7 || !priv->qos_data.qos_enable) 7148 priority = 0; 7149 7150 return from_priority_to_tx_queue[priority] - 1; 7151 } 7152 7153 static int ipw_is_qos_active(struct net_device *dev, 7154 struct sk_buff *skb) 7155 { 7156 struct ipw_priv *priv = libipw_priv(dev); 7157 struct libipw_qos_data *qos_data = NULL; 7158 int active, supported; 7159 u8 *daddr = skb->data + ETH_ALEN; 7160 int unicast = !is_multicast_ether_addr(daddr); 7161 7162 if (!(priv->status & STATUS_ASSOCIATED)) 7163 return 0; 7164 7165 qos_data = &priv->assoc_network->qos_data; 7166 7167 if (priv->ieee->iw_mode == IW_MODE_ADHOC) { 7168 if (unicast == 0) 7169 qos_data->active = 0; 7170 else 7171 qos_data->active = qos_data->supported; 7172 } 7173 active = qos_data->active; 7174 supported = qos_data->supported; 7175 IPW_DEBUG_QOS("QoS %d network is QoS active %d supported %d " 7176 "unicast %d\n", 7177 priv->qos_data.qos_enable, active, supported, unicast); 7178 if (active && priv->qos_data.qos_enable) 7179 return 1; 7180 7181 return 0; 7182 7183 } 7184 /* 7185 * add QoS parameter to the TX command 7186 */ 7187 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv, 7188 u16 priority, 7189 struct tfd_data *tfd) 7190 { 7191 int tx_queue_id = 0; 7192 7193 7194 tx_queue_id = from_priority_to_tx_queue[priority] - 1; 7195 tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED; 7196 7197 if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) { 7198 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD; 7199 tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK); 7200 } 7201 return 0; 7202 } 7203 7204 /* 7205 * background support to run QoS activate functionality 7206 */ 7207 static void ipw_bg_qos_activate(struct work_struct *work) 7208 { 7209 struct ipw_priv *priv = 7210 container_of(work, struct ipw_priv, qos_activate); 7211 7212 mutex_lock(&priv->mutex); 7213 7214 if (priv->status & STATUS_ASSOCIATED) 7215 ipw_qos_activate(priv, &(priv->assoc_network->qos_data)); 7216 7217 mutex_unlock(&priv->mutex); 7218 } 7219 7220 static int ipw_handle_probe_response(struct net_device *dev, 7221 struct libipw_probe_response *resp, 7222 struct libipw_network *network) 7223 { 7224 struct ipw_priv *priv = libipw_priv(dev); 7225 int active_network = ((priv->status & STATUS_ASSOCIATED) && 7226 (network == priv->assoc_network)); 7227 7228 ipw_qos_handle_probe_response(priv, active_network, network); 7229 7230 return 0; 7231 } 7232 7233 static int ipw_handle_beacon(struct net_device *dev, 7234 struct libipw_beacon *resp, 7235 struct libipw_network *network) 7236 { 7237 struct ipw_priv *priv = libipw_priv(dev); 7238 int active_network = ((priv->status & STATUS_ASSOCIATED) && 7239 (network == priv->assoc_network)); 7240 7241 ipw_qos_handle_probe_response(priv, active_network, network); 7242 7243 return 0; 7244 } 7245 7246 static int ipw_handle_assoc_response(struct net_device *dev, 7247 struct libipw_assoc_response *resp, 7248 struct libipw_network *network) 7249 { 7250 struct ipw_priv *priv = libipw_priv(dev); 7251 ipw_qos_association_resp(priv, network); 7252 return 0; 7253 } 7254 7255 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters 7256 *qos_param) 7257 { 7258 return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS, 7259 sizeof(*qos_param) * 3, qos_param); 7260 } 7261 7262 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element 7263 *qos_param) 7264 { 7265 return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param), 7266 qos_param); 7267 } 7268 7269 #endif /* CONFIG_IPW2200_QOS */ 7270 7271 static int ipw_associate_network(struct ipw_priv *priv, 7272 struct libipw_network *network, 7273 struct ipw_supported_rates *rates, int roaming) 7274 { 7275 int err; 7276 7277 if (priv->config & CFG_FIXED_RATE) 7278 ipw_set_fixed_rate(priv, network->mode); 7279 7280 if (!(priv->config & CFG_STATIC_ESSID)) { 7281 priv->essid_len = min(network->ssid_len, 7282 (u8) IW_ESSID_MAX_SIZE); 7283 memcpy(priv->essid, network->ssid, priv->essid_len); 7284 } 7285 7286 network->last_associate = jiffies; 7287 7288 memset(&priv->assoc_request, 0, sizeof(priv->assoc_request)); 7289 priv->assoc_request.channel = network->channel; 7290 priv->assoc_request.auth_key = 0; 7291 7292 if ((priv->capability & CAP_PRIVACY_ON) && 7293 (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) { 7294 priv->assoc_request.auth_type = AUTH_SHARED_KEY; 7295 priv->assoc_request.auth_key = priv->ieee->sec.active_key; 7296 7297 if (priv->ieee->sec.level == SEC_LEVEL_1) 7298 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP); 7299 7300 } else if ((priv->capability & CAP_PRIVACY_ON) && 7301 (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)) 7302 priv->assoc_request.auth_type = AUTH_LEAP; 7303 else 7304 priv->assoc_request.auth_type = AUTH_OPEN; 7305 7306 if (priv->ieee->wpa_ie_len) { 7307 priv->assoc_request.policy_support = cpu_to_le16(0x02); /* RSN active */ 7308 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie, 7309 priv->ieee->wpa_ie_len); 7310 } 7311 7312 /* 7313 * It is valid for our ieee device to support multiple modes, but 7314 * when it comes to associating to a given network we have to choose 7315 * just one mode. 7316 */ 7317 if (network->mode & priv->ieee->mode & IEEE_A) 7318 priv->assoc_request.ieee_mode = IPW_A_MODE; 7319 else if (network->mode & priv->ieee->mode & IEEE_G) 7320 priv->assoc_request.ieee_mode = IPW_G_MODE; 7321 else if (network->mode & priv->ieee->mode & IEEE_B) 7322 priv->assoc_request.ieee_mode = IPW_B_MODE; 7323 7324 priv->assoc_request.capability = cpu_to_le16(network->capability); 7325 if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE) 7326 && !(priv->config & CFG_PREAMBLE_LONG)) { 7327 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE; 7328 } else { 7329 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE; 7330 7331 /* Clear the short preamble if we won't be supporting it */ 7332 priv->assoc_request.capability &= 7333 ~cpu_to_le16(WLAN_CAPABILITY_SHORT_PREAMBLE); 7334 } 7335 7336 /* Clear capability bits that aren't used in Ad Hoc */ 7337 if (priv->ieee->iw_mode == IW_MODE_ADHOC) 7338 priv->assoc_request.capability &= 7339 ~cpu_to_le16(WLAN_CAPABILITY_SHORT_SLOT_TIME); 7340 7341 IPW_DEBUG_ASSOC("%ssociation attempt: '%*pE', channel %d, 802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n", 7342 roaming ? "Rea" : "A", 7343 priv->essid_len, priv->essid, 7344 network->channel, 7345 ipw_modes[priv->assoc_request.ieee_mode], 7346 rates->num_rates, 7347 (priv->assoc_request.preamble_length == 7348 DCT_FLAG_LONG_PREAMBLE) ? "long" : "short", 7349 network->capability & 7350 WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long", 7351 priv->capability & CAP_PRIVACY_ON ? "on " : "off", 7352 priv->capability & CAP_PRIVACY_ON ? 7353 (priv->capability & CAP_SHARED_KEY ? "(shared)" : 7354 "(open)") : "", 7355 priv->capability & CAP_PRIVACY_ON ? " key=" : "", 7356 priv->capability & CAP_PRIVACY_ON ? 7357 '1' + priv->ieee->sec.active_key : '.', 7358 priv->capability & CAP_PRIVACY_ON ? '.' : ' '); 7359 7360 priv->assoc_request.beacon_interval = cpu_to_le16(network->beacon_interval); 7361 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) && 7362 (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) { 7363 priv->assoc_request.assoc_type = HC_IBSS_START; 7364 priv->assoc_request.assoc_tsf_msw = 0; 7365 priv->assoc_request.assoc_tsf_lsw = 0; 7366 } else { 7367 if (unlikely(roaming)) 7368 priv->assoc_request.assoc_type = HC_REASSOCIATE; 7369 else 7370 priv->assoc_request.assoc_type = HC_ASSOCIATE; 7371 priv->assoc_request.assoc_tsf_msw = cpu_to_le32(network->time_stamp[1]); 7372 priv->assoc_request.assoc_tsf_lsw = cpu_to_le32(network->time_stamp[0]); 7373 } 7374 7375 memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN); 7376 7377 if (priv->ieee->iw_mode == IW_MODE_ADHOC) { 7378 eth_broadcast_addr(priv->assoc_request.dest); 7379 priv->assoc_request.atim_window = cpu_to_le16(network->atim_window); 7380 } else { 7381 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN); 7382 priv->assoc_request.atim_window = 0; 7383 } 7384 7385 priv->assoc_request.listen_interval = cpu_to_le16(network->listen_interval); 7386 7387 err = ipw_send_ssid(priv, priv->essid, priv->essid_len); 7388 if (err) { 7389 IPW_DEBUG_HC("Attempt to send SSID command failed.\n"); 7390 return err; 7391 } 7392 7393 rates->ieee_mode = priv->assoc_request.ieee_mode; 7394 rates->purpose = IPW_RATE_CONNECT; 7395 ipw_send_supported_rates(priv, rates); 7396 7397 if (priv->assoc_request.ieee_mode == IPW_G_MODE) 7398 priv->sys_config.dot11g_auto_detection = 1; 7399 else 7400 priv->sys_config.dot11g_auto_detection = 0; 7401 7402 if (priv->ieee->iw_mode == IW_MODE_ADHOC) 7403 priv->sys_config.answer_broadcast_ssid_probe = 1; 7404 else 7405 priv->sys_config.answer_broadcast_ssid_probe = 0; 7406 7407 err = ipw_send_system_config(priv); 7408 if (err) { 7409 IPW_DEBUG_HC("Attempt to send sys config command failed.\n"); 7410 return err; 7411 } 7412 7413 IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi); 7414 err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM); 7415 if (err) { 7416 IPW_DEBUG_HC("Attempt to send associate command failed.\n"); 7417 return err; 7418 } 7419 7420 /* 7421 * If preemption is enabled, it is possible for the association 7422 * to complete before we return from ipw_send_associate. Therefore 7423 * we have to be sure and update our priviate data first. 7424 */ 7425 priv->channel = network->channel; 7426 memcpy(priv->bssid, network->bssid, ETH_ALEN); 7427 priv->status |= STATUS_ASSOCIATING; 7428 priv->status &= ~STATUS_SECURITY_UPDATED; 7429 7430 priv->assoc_network = network; 7431 7432 #ifdef CONFIG_IPW2200_QOS 7433 ipw_qos_association(priv, network); 7434 #endif 7435 7436 err = ipw_send_associate(priv, &priv->assoc_request); 7437 if (err) { 7438 IPW_DEBUG_HC("Attempt to send associate command failed.\n"); 7439 return err; 7440 } 7441 7442 IPW_DEBUG(IPW_DL_STATE, "associating: '%*pE' %pM\n", 7443 priv->essid_len, priv->essid, priv->bssid); 7444 7445 return 0; 7446 } 7447 7448 static void ipw_roam(void *data) 7449 { 7450 struct ipw_priv *priv = data; 7451 struct libipw_network *network = NULL; 7452 struct ipw_network_match match = { 7453 .network = priv->assoc_network 7454 }; 7455 7456 /* The roaming process is as follows: 7457 * 7458 * 1. Missed beacon threshold triggers the roaming process by 7459 * setting the status ROAM bit and requesting a scan. 7460 * 2. When the scan completes, it schedules the ROAM work 7461 * 3. The ROAM work looks at all of the known networks for one that 7462 * is a better network than the currently associated. If none 7463 * found, the ROAM process is over (ROAM bit cleared) 7464 * 4. If a better network is found, a disassociation request is 7465 * sent. 7466 * 5. When the disassociation completes, the roam work is again 7467 * scheduled. The second time through, the driver is no longer 7468 * associated, and the newly selected network is sent an 7469 * association request. 7470 * 6. At this point ,the roaming process is complete and the ROAM 7471 * status bit is cleared. 7472 */ 7473 7474 /* If we are no longer associated, and the roaming bit is no longer 7475 * set, then we are not actively roaming, so just return */ 7476 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING))) 7477 return; 7478 7479 if (priv->status & STATUS_ASSOCIATED) { 7480 /* First pass through ROAM process -- look for a better 7481 * network */ 7482 unsigned long flags; 7483 u8 rssi = priv->assoc_network->stats.rssi; 7484 priv->assoc_network->stats.rssi = -128; 7485 spin_lock_irqsave(&priv->ieee->lock, flags); 7486 list_for_each_entry(network, &priv->ieee->network_list, list) { 7487 if (network != priv->assoc_network) 7488 ipw_best_network(priv, &match, network, 1); 7489 } 7490 spin_unlock_irqrestore(&priv->ieee->lock, flags); 7491 priv->assoc_network->stats.rssi = rssi; 7492 7493 if (match.network == priv->assoc_network) { 7494 IPW_DEBUG_ASSOC("No better APs in this network to " 7495 "roam to.\n"); 7496 priv->status &= ~STATUS_ROAMING; 7497 ipw_debug_config(priv); 7498 return; 7499 } 7500 7501 ipw_send_disassociate(priv, 1); 7502 priv->assoc_network = match.network; 7503 7504 return; 7505 } 7506 7507 /* Second pass through ROAM process -- request association */ 7508 ipw_compatible_rates(priv, priv->assoc_network, &match.rates); 7509 ipw_associate_network(priv, priv->assoc_network, &match.rates, 1); 7510 priv->status &= ~STATUS_ROAMING; 7511 } 7512 7513 static void ipw_bg_roam(struct work_struct *work) 7514 { 7515 struct ipw_priv *priv = 7516 container_of(work, struct ipw_priv, roam); 7517 mutex_lock(&priv->mutex); 7518 ipw_roam(priv); 7519 mutex_unlock(&priv->mutex); 7520 } 7521 7522 static int ipw_associate(void *data) 7523 { 7524 struct ipw_priv *priv = data; 7525 7526 struct libipw_network *network = NULL; 7527 struct ipw_network_match match = { 7528 .network = NULL 7529 }; 7530 struct ipw_supported_rates *rates; 7531 struct list_head *element; 7532 unsigned long flags; 7533 7534 if (priv->ieee->iw_mode == IW_MODE_MONITOR) { 7535 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n"); 7536 return 0; 7537 } 7538 7539 if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) { 7540 IPW_DEBUG_ASSOC("Not attempting association (already in " 7541 "progress)\n"); 7542 return 0; 7543 } 7544 7545 if (priv->status & STATUS_DISASSOCIATING) { 7546 IPW_DEBUG_ASSOC("Not attempting association (in disassociating)\n"); 7547 schedule_work(&priv->associate); 7548 return 0; 7549 } 7550 7551 if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) { 7552 IPW_DEBUG_ASSOC("Not attempting association (scanning or not " 7553 "initialized)\n"); 7554 return 0; 7555 } 7556 7557 if (!(priv->config & CFG_ASSOCIATE) && 7558 !(priv->config & (CFG_STATIC_ESSID | CFG_STATIC_BSSID))) { 7559 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n"); 7560 return 0; 7561 } 7562 7563 /* Protect our use of the network_list */ 7564 spin_lock_irqsave(&priv->ieee->lock, flags); 7565 list_for_each_entry(network, &priv->ieee->network_list, list) 7566 ipw_best_network(priv, &match, network, 0); 7567 7568 network = match.network; 7569 rates = &match.rates; 7570 7571 if (network == NULL && 7572 priv->ieee->iw_mode == IW_MODE_ADHOC && 7573 priv->config & CFG_ADHOC_CREATE && 7574 priv->config & CFG_STATIC_ESSID && 7575 priv->config & CFG_STATIC_CHANNEL) { 7576 /* Use oldest network if the free list is empty */ 7577 if (list_empty(&priv->ieee->network_free_list)) { 7578 struct libipw_network *oldest = NULL; 7579 struct libipw_network *target; 7580 7581 list_for_each_entry(target, &priv->ieee->network_list, list) { 7582 if ((oldest == NULL) || 7583 (target->last_scanned < oldest->last_scanned)) 7584 oldest = target; 7585 } 7586 7587 /* If there are no more slots, expire the oldest */ 7588 list_del(&oldest->list); 7589 target = oldest; 7590 IPW_DEBUG_ASSOC("Expired '%*pE' (%pM) from network list.\n", 7591 target->ssid_len, target->ssid, 7592 target->bssid); 7593 list_add_tail(&target->list, 7594 &priv->ieee->network_free_list); 7595 } 7596 7597 element = priv->ieee->network_free_list.next; 7598 network = list_entry(element, struct libipw_network, list); 7599 ipw_adhoc_create(priv, network); 7600 rates = &priv->rates; 7601 list_del(element); 7602 list_add_tail(&network->list, &priv->ieee->network_list); 7603 } 7604 spin_unlock_irqrestore(&priv->ieee->lock, flags); 7605 7606 /* If we reached the end of the list, then we don't have any valid 7607 * matching APs */ 7608 if (!network) { 7609 ipw_debug_config(priv); 7610 7611 if (!(priv->status & STATUS_SCANNING)) { 7612 if (!(priv->config & CFG_SPEED_SCAN)) 7613 schedule_delayed_work(&priv->request_scan, 7614 SCAN_INTERVAL); 7615 else 7616 schedule_delayed_work(&priv->request_scan, 0); 7617 } 7618 7619 return 0; 7620 } 7621 7622 ipw_associate_network(priv, network, rates, 0); 7623 7624 return 1; 7625 } 7626 7627 static void ipw_bg_associate(struct work_struct *work) 7628 { 7629 struct ipw_priv *priv = 7630 container_of(work, struct ipw_priv, associate); 7631 mutex_lock(&priv->mutex); 7632 ipw_associate(priv); 7633 mutex_unlock(&priv->mutex); 7634 } 7635 7636 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv, 7637 struct sk_buff *skb) 7638 { 7639 struct ieee80211_hdr *hdr; 7640 u16 fc; 7641 7642 hdr = (struct ieee80211_hdr *)skb->data; 7643 fc = le16_to_cpu(hdr->frame_control); 7644 if (!(fc & IEEE80211_FCTL_PROTECTED)) 7645 return; 7646 7647 fc &= ~IEEE80211_FCTL_PROTECTED; 7648 hdr->frame_control = cpu_to_le16(fc); 7649 switch (priv->ieee->sec.level) { 7650 case SEC_LEVEL_3: 7651 /* Remove CCMP HDR */ 7652 memmove(skb->data + LIBIPW_3ADDR_LEN, 7653 skb->data + LIBIPW_3ADDR_LEN + 8, 7654 skb->len - LIBIPW_3ADDR_LEN - 8); 7655 skb_trim(skb, skb->len - 16); /* CCMP_HDR_LEN + CCMP_MIC_LEN */ 7656 break; 7657 case SEC_LEVEL_2: 7658 break; 7659 case SEC_LEVEL_1: 7660 /* Remove IV */ 7661 memmove(skb->data + LIBIPW_3ADDR_LEN, 7662 skb->data + LIBIPW_3ADDR_LEN + 4, 7663 skb->len - LIBIPW_3ADDR_LEN - 4); 7664 skb_trim(skb, skb->len - 8); /* IV + ICV */ 7665 break; 7666 case SEC_LEVEL_0: 7667 break; 7668 default: 7669 printk(KERN_ERR "Unknown security level %d\n", 7670 priv->ieee->sec.level); 7671 break; 7672 } 7673 } 7674 7675 static void ipw_handle_data_packet(struct ipw_priv *priv, 7676 struct ipw_rx_mem_buffer *rxb, 7677 struct libipw_rx_stats *stats) 7678 { 7679 struct net_device *dev = priv->net_dev; 7680 struct libipw_hdr_4addr *hdr; 7681 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data; 7682 7683 /* We received data from the HW, so stop the watchdog */ 7684 netif_trans_update(dev); 7685 7686 /* We only process data packets if the 7687 * interface is open */ 7688 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) > 7689 skb_tailroom(rxb->skb))) { 7690 dev->stats.rx_errors++; 7691 priv->wstats.discard.misc++; 7692 IPW_DEBUG_DROP("Corruption detected! Oh no!\n"); 7693 return; 7694 } else if (unlikely(!netif_running(priv->net_dev))) { 7695 dev->stats.rx_dropped++; 7696 priv->wstats.discard.misc++; 7697 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n"); 7698 return; 7699 } 7700 7701 /* Advance skb->data to the start of the actual payload */ 7702 skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data)); 7703 7704 /* Set the size of the skb to the size of the frame */ 7705 skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length)); 7706 7707 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len); 7708 7709 /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */ 7710 hdr = (struct libipw_hdr_4addr *)rxb->skb->data; 7711 if (priv->ieee->iw_mode != IW_MODE_MONITOR && 7712 (is_multicast_ether_addr(hdr->addr1) ? 7713 !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt)) 7714 ipw_rebuild_decrypted_skb(priv, rxb->skb); 7715 7716 if (!libipw_rx(priv->ieee, rxb->skb, stats)) 7717 dev->stats.rx_errors++; 7718 else { /* libipw_rx succeeded, so it now owns the SKB */ 7719 rxb->skb = NULL; 7720 __ipw_led_activity_on(priv); 7721 } 7722 } 7723 7724 #ifdef CONFIG_IPW2200_RADIOTAP 7725 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv, 7726 struct ipw_rx_mem_buffer *rxb, 7727 struct libipw_rx_stats *stats) 7728 { 7729 struct net_device *dev = priv->net_dev; 7730 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data; 7731 struct ipw_rx_frame *frame = &pkt->u.frame; 7732 7733 /* initial pull of some data */ 7734 u16 received_channel = frame->received_channel; 7735 u8 antennaAndPhy = frame->antennaAndPhy; 7736 s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM; /* call it signed anyhow */ 7737 u16 pktrate = frame->rate; 7738 7739 /* Magic struct that slots into the radiotap header -- no reason 7740 * to build this manually element by element, we can write it much 7741 * more efficiently than we can parse it. ORDER MATTERS HERE */ 7742 struct ipw_rt_hdr *ipw_rt; 7743 7744 unsigned short len = le16_to_cpu(pkt->u.frame.length); 7745 7746 /* We received data from the HW, so stop the watchdog */ 7747 netif_trans_update(dev); 7748 7749 /* We only process data packets if the 7750 * interface is open */ 7751 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) > 7752 skb_tailroom(rxb->skb))) { 7753 dev->stats.rx_errors++; 7754 priv->wstats.discard.misc++; 7755 IPW_DEBUG_DROP("Corruption detected! Oh no!\n"); 7756 return; 7757 } else if (unlikely(!netif_running(priv->net_dev))) { 7758 dev->stats.rx_dropped++; 7759 priv->wstats.discard.misc++; 7760 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n"); 7761 return; 7762 } 7763 7764 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use 7765 * that now */ 7766 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) { 7767 /* FIXME: Should alloc bigger skb instead */ 7768 dev->stats.rx_dropped++; 7769 priv->wstats.discard.misc++; 7770 IPW_DEBUG_DROP("Dropping too large packet in monitor\n"); 7771 return; 7772 } 7773 7774 /* copy the frame itself */ 7775 memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr), 7776 rxb->skb->data + IPW_RX_FRAME_SIZE, len); 7777 7778 ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data; 7779 7780 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION; 7781 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */ 7782 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total header+data */ 7783 7784 /* Big bitfield of all the fields we provide in radiotap */ 7785 ipw_rt->rt_hdr.it_present = cpu_to_le32( 7786 (1 << IEEE80211_RADIOTAP_TSFT) | 7787 (1 << IEEE80211_RADIOTAP_FLAGS) | 7788 (1 << IEEE80211_RADIOTAP_RATE) | 7789 (1 << IEEE80211_RADIOTAP_CHANNEL) | 7790 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) | 7791 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) | 7792 (1 << IEEE80211_RADIOTAP_ANTENNA)); 7793 7794 /* Zero the flags, we'll add to them as we go */ 7795 ipw_rt->rt_flags = 0; 7796 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 | 7797 frame->parent_tsf[2] << 16 | 7798 frame->parent_tsf[1] << 8 | 7799 frame->parent_tsf[0]); 7800 7801 /* Convert signal to DBM */ 7802 ipw_rt->rt_dbmsignal = antsignal; 7803 ipw_rt->rt_dbmnoise = (s8) le16_to_cpu(frame->noise); 7804 7805 /* Convert the channel data and set the flags */ 7806 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel)); 7807 if (received_channel > 14) { /* 802.11a */ 7808 ipw_rt->rt_chbitmask = 7809 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ)); 7810 } else if (antennaAndPhy & 32) { /* 802.11b */ 7811 ipw_rt->rt_chbitmask = 7812 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ)); 7813 } else { /* 802.11g */ 7814 ipw_rt->rt_chbitmask = 7815 cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ); 7816 } 7817 7818 /* set the rate in multiples of 500k/s */ 7819 switch (pktrate) { 7820 case IPW_TX_RATE_1MB: 7821 ipw_rt->rt_rate = 2; 7822 break; 7823 case IPW_TX_RATE_2MB: 7824 ipw_rt->rt_rate = 4; 7825 break; 7826 case IPW_TX_RATE_5MB: 7827 ipw_rt->rt_rate = 10; 7828 break; 7829 case IPW_TX_RATE_6MB: 7830 ipw_rt->rt_rate = 12; 7831 break; 7832 case IPW_TX_RATE_9MB: 7833 ipw_rt->rt_rate = 18; 7834 break; 7835 case IPW_TX_RATE_11MB: 7836 ipw_rt->rt_rate = 22; 7837 break; 7838 case IPW_TX_RATE_12MB: 7839 ipw_rt->rt_rate = 24; 7840 break; 7841 case IPW_TX_RATE_18MB: 7842 ipw_rt->rt_rate = 36; 7843 break; 7844 case IPW_TX_RATE_24MB: 7845 ipw_rt->rt_rate = 48; 7846 break; 7847 case IPW_TX_RATE_36MB: 7848 ipw_rt->rt_rate = 72; 7849 break; 7850 case IPW_TX_RATE_48MB: 7851 ipw_rt->rt_rate = 96; 7852 break; 7853 case IPW_TX_RATE_54MB: 7854 ipw_rt->rt_rate = 108; 7855 break; 7856 default: 7857 ipw_rt->rt_rate = 0; 7858 break; 7859 } 7860 7861 /* antenna number */ 7862 ipw_rt->rt_antenna = (antennaAndPhy & 3); /* Is this right? */ 7863 7864 /* set the preamble flag if we have it */ 7865 if ((antennaAndPhy & 64)) 7866 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 7867 7868 /* Set the size of the skb to the size of the frame */ 7869 skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr)); 7870 7871 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len); 7872 7873 if (!libipw_rx(priv->ieee, rxb->skb, stats)) 7874 dev->stats.rx_errors++; 7875 else { /* libipw_rx succeeded, so it now owns the SKB */ 7876 rxb->skb = NULL; 7877 /* no LED during capture */ 7878 } 7879 } 7880 #endif 7881 7882 #ifdef CONFIG_IPW2200_PROMISCUOUS 7883 #define libipw_is_probe_response(fc) \ 7884 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \ 7885 (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP ) 7886 7887 #define libipw_is_management(fc) \ 7888 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT) 7889 7890 #define libipw_is_control(fc) \ 7891 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL) 7892 7893 #define libipw_is_data(fc) \ 7894 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA) 7895 7896 #define libipw_is_assoc_request(fc) \ 7897 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ) 7898 7899 #define libipw_is_reassoc_request(fc) \ 7900 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ) 7901 7902 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv, 7903 struct ipw_rx_mem_buffer *rxb, 7904 struct libipw_rx_stats *stats) 7905 { 7906 struct net_device *dev = priv->prom_net_dev; 7907 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data; 7908 struct ipw_rx_frame *frame = &pkt->u.frame; 7909 struct ipw_rt_hdr *ipw_rt; 7910 7911 /* First cache any information we need before we overwrite 7912 * the information provided in the skb from the hardware */ 7913 struct ieee80211_hdr *hdr; 7914 u16 channel = frame->received_channel; 7915 u8 phy_flags = frame->antennaAndPhy; 7916 s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM; 7917 s8 noise = (s8) le16_to_cpu(frame->noise); 7918 u8 rate = frame->rate; 7919 unsigned short len = le16_to_cpu(pkt->u.frame.length); 7920 struct sk_buff *skb; 7921 int hdr_only = 0; 7922 u16 filter = priv->prom_priv->filter; 7923 7924 /* If the filter is set to not include Rx frames then return */ 7925 if (filter & IPW_PROM_NO_RX) 7926 return; 7927 7928 /* We received data from the HW, so stop the watchdog */ 7929 netif_trans_update(dev); 7930 7931 if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) { 7932 dev->stats.rx_errors++; 7933 IPW_DEBUG_DROP("Corruption detected! Oh no!\n"); 7934 return; 7935 } 7936 7937 /* We only process data packets if the interface is open */ 7938 if (unlikely(!netif_running(dev))) { 7939 dev->stats.rx_dropped++; 7940 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n"); 7941 return; 7942 } 7943 7944 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use 7945 * that now */ 7946 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) { 7947 /* FIXME: Should alloc bigger skb instead */ 7948 dev->stats.rx_dropped++; 7949 IPW_DEBUG_DROP("Dropping too large packet in monitor\n"); 7950 return; 7951 } 7952 7953 hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE; 7954 if (libipw_is_management(le16_to_cpu(hdr->frame_control))) { 7955 if (filter & IPW_PROM_NO_MGMT) 7956 return; 7957 if (filter & IPW_PROM_MGMT_HEADER_ONLY) 7958 hdr_only = 1; 7959 } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) { 7960 if (filter & IPW_PROM_NO_CTL) 7961 return; 7962 if (filter & IPW_PROM_CTL_HEADER_ONLY) 7963 hdr_only = 1; 7964 } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) { 7965 if (filter & IPW_PROM_NO_DATA) 7966 return; 7967 if (filter & IPW_PROM_DATA_HEADER_ONLY) 7968 hdr_only = 1; 7969 } 7970 7971 /* Copy the SKB since this is for the promiscuous side */ 7972 skb = skb_copy(rxb->skb, GFP_ATOMIC); 7973 if (skb == NULL) { 7974 IPW_ERROR("skb_clone failed for promiscuous copy.\n"); 7975 return; 7976 } 7977 7978 /* copy the frame data to write after where the radiotap header goes */ 7979 ipw_rt = (void *)skb->data; 7980 7981 if (hdr_only) 7982 len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control)); 7983 7984 memcpy(ipw_rt->payload, hdr, len); 7985 7986 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION; 7987 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */ 7988 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(*ipw_rt)); /* total header+data */ 7989 7990 /* Set the size of the skb to the size of the frame */ 7991 skb_put(skb, sizeof(*ipw_rt) + len); 7992 7993 /* Big bitfield of all the fields we provide in radiotap */ 7994 ipw_rt->rt_hdr.it_present = cpu_to_le32( 7995 (1 << IEEE80211_RADIOTAP_TSFT) | 7996 (1 << IEEE80211_RADIOTAP_FLAGS) | 7997 (1 << IEEE80211_RADIOTAP_RATE) | 7998 (1 << IEEE80211_RADIOTAP_CHANNEL) | 7999 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) | 8000 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) | 8001 (1 << IEEE80211_RADIOTAP_ANTENNA)); 8002 8003 /* Zero the flags, we'll add to them as we go */ 8004 ipw_rt->rt_flags = 0; 8005 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 | 8006 frame->parent_tsf[2] << 16 | 8007 frame->parent_tsf[1] << 8 | 8008 frame->parent_tsf[0]); 8009 8010 /* Convert to DBM */ 8011 ipw_rt->rt_dbmsignal = signal; 8012 ipw_rt->rt_dbmnoise = noise; 8013 8014 /* Convert the channel data and set the flags */ 8015 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel)); 8016 if (channel > 14) { /* 802.11a */ 8017 ipw_rt->rt_chbitmask = 8018 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ)); 8019 } else if (phy_flags & (1 << 5)) { /* 802.11b */ 8020 ipw_rt->rt_chbitmask = 8021 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ)); 8022 } else { /* 802.11g */ 8023 ipw_rt->rt_chbitmask = 8024 cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ); 8025 } 8026 8027 /* set the rate in multiples of 500k/s */ 8028 switch (rate) { 8029 case IPW_TX_RATE_1MB: 8030 ipw_rt->rt_rate = 2; 8031 break; 8032 case IPW_TX_RATE_2MB: 8033 ipw_rt->rt_rate = 4; 8034 break; 8035 case IPW_TX_RATE_5MB: 8036 ipw_rt->rt_rate = 10; 8037 break; 8038 case IPW_TX_RATE_6MB: 8039 ipw_rt->rt_rate = 12; 8040 break; 8041 case IPW_TX_RATE_9MB: 8042 ipw_rt->rt_rate = 18; 8043 break; 8044 case IPW_TX_RATE_11MB: 8045 ipw_rt->rt_rate = 22; 8046 break; 8047 case IPW_TX_RATE_12MB: 8048 ipw_rt->rt_rate = 24; 8049 break; 8050 case IPW_TX_RATE_18MB: 8051 ipw_rt->rt_rate = 36; 8052 break; 8053 case IPW_TX_RATE_24MB: 8054 ipw_rt->rt_rate = 48; 8055 break; 8056 case IPW_TX_RATE_36MB: 8057 ipw_rt->rt_rate = 72; 8058 break; 8059 case IPW_TX_RATE_48MB: 8060 ipw_rt->rt_rate = 96; 8061 break; 8062 case IPW_TX_RATE_54MB: 8063 ipw_rt->rt_rate = 108; 8064 break; 8065 default: 8066 ipw_rt->rt_rate = 0; 8067 break; 8068 } 8069 8070 /* antenna number */ 8071 ipw_rt->rt_antenna = (phy_flags & 3); 8072 8073 /* set the preamble flag if we have it */ 8074 if (phy_flags & (1 << 6)) 8075 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 8076 8077 IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len); 8078 8079 if (!libipw_rx(priv->prom_priv->ieee, skb, stats)) { 8080 dev->stats.rx_errors++; 8081 dev_kfree_skb_any(skb); 8082 } 8083 } 8084 #endif 8085 8086 static int is_network_packet(struct ipw_priv *priv, 8087 struct libipw_hdr_4addr *header) 8088 { 8089 /* Filter incoming packets to determine if they are targeted toward 8090 * this network, discarding packets coming from ourselves */ 8091 switch (priv->ieee->iw_mode) { 8092 case IW_MODE_ADHOC: /* Header: Dest. | Source | BSSID */ 8093 /* packets from our adapter are dropped (echo) */ 8094 if (ether_addr_equal(header->addr2, priv->net_dev->dev_addr)) 8095 return 0; 8096 8097 /* {broad,multi}cast packets to our BSSID go through */ 8098 if (is_multicast_ether_addr(header->addr1)) 8099 return ether_addr_equal(header->addr3, priv->bssid); 8100 8101 /* packets to our adapter go through */ 8102 return ether_addr_equal(header->addr1, 8103 priv->net_dev->dev_addr); 8104 8105 case IW_MODE_INFRA: /* Header: Dest. | BSSID | Source */ 8106 /* packets from our adapter are dropped (echo) */ 8107 if (ether_addr_equal(header->addr3, priv->net_dev->dev_addr)) 8108 return 0; 8109 8110 /* {broad,multi}cast packets to our BSS go through */ 8111 if (is_multicast_ether_addr(header->addr1)) 8112 return ether_addr_equal(header->addr2, priv->bssid); 8113 8114 /* packets to our adapter go through */ 8115 return ether_addr_equal(header->addr1, 8116 priv->net_dev->dev_addr); 8117 } 8118 8119 return 1; 8120 } 8121 8122 #define IPW_PACKET_RETRY_TIME HZ 8123 8124 static int is_duplicate_packet(struct ipw_priv *priv, 8125 struct libipw_hdr_4addr *header) 8126 { 8127 u16 sc = le16_to_cpu(header->seq_ctl); 8128 u16 seq = WLAN_GET_SEQ_SEQ(sc); 8129 u16 frag = WLAN_GET_SEQ_FRAG(sc); 8130 u16 *last_seq, *last_frag; 8131 unsigned long *last_time; 8132 8133 switch (priv->ieee->iw_mode) { 8134 case IW_MODE_ADHOC: 8135 { 8136 struct list_head *p; 8137 struct ipw_ibss_seq *entry = NULL; 8138 u8 *mac = header->addr2; 8139 int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE; 8140 8141 list_for_each(p, &priv->ibss_mac_hash[index]) { 8142 entry = 8143 list_entry(p, struct ipw_ibss_seq, list); 8144 if (ether_addr_equal(entry->mac, mac)) 8145 break; 8146 } 8147 if (p == &priv->ibss_mac_hash[index]) { 8148 entry = kmalloc(sizeof(*entry), GFP_ATOMIC); 8149 if (!entry) { 8150 IPW_ERROR 8151 ("Cannot malloc new mac entry\n"); 8152 return 0; 8153 } 8154 memcpy(entry->mac, mac, ETH_ALEN); 8155 entry->seq_num = seq; 8156 entry->frag_num = frag; 8157 entry->packet_time = jiffies; 8158 list_add(&entry->list, 8159 &priv->ibss_mac_hash[index]); 8160 return 0; 8161 } 8162 last_seq = &entry->seq_num; 8163 last_frag = &entry->frag_num; 8164 last_time = &entry->packet_time; 8165 break; 8166 } 8167 case IW_MODE_INFRA: 8168 last_seq = &priv->last_seq_num; 8169 last_frag = &priv->last_frag_num; 8170 last_time = &priv->last_packet_time; 8171 break; 8172 default: 8173 return 0; 8174 } 8175 if ((*last_seq == seq) && 8176 time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) { 8177 if (*last_frag == frag) 8178 goto drop; 8179 if (*last_frag + 1 != frag) 8180 /* out-of-order fragment */ 8181 goto drop; 8182 } else 8183 *last_seq = seq; 8184 8185 *last_frag = frag; 8186 *last_time = jiffies; 8187 return 0; 8188 8189 drop: 8190 /* Comment this line now since we observed the card receives 8191 * duplicate packets but the FCTL_RETRY bit is not set in the 8192 * IBSS mode with fragmentation enabled. 8193 BUG_ON(!(le16_to_cpu(header->frame_control) & IEEE80211_FCTL_RETRY)); */ 8194 return 1; 8195 } 8196 8197 static void ipw_handle_mgmt_packet(struct ipw_priv *priv, 8198 struct ipw_rx_mem_buffer *rxb, 8199 struct libipw_rx_stats *stats) 8200 { 8201 struct sk_buff *skb = rxb->skb; 8202 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data; 8203 struct libipw_hdr_4addr *header = (struct libipw_hdr_4addr *) 8204 (skb->data + IPW_RX_FRAME_SIZE); 8205 8206 libipw_rx_mgt(priv->ieee, header, stats); 8207 8208 if (priv->ieee->iw_mode == IW_MODE_ADHOC && 8209 ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) == 8210 IEEE80211_STYPE_PROBE_RESP) || 8211 (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) == 8212 IEEE80211_STYPE_BEACON))) { 8213 if (ether_addr_equal(header->addr3, priv->bssid)) 8214 ipw_add_station(priv, header->addr2); 8215 } 8216 8217 if (priv->config & CFG_NET_STATS) { 8218 IPW_DEBUG_HC("sending stat packet\n"); 8219 8220 /* Set the size of the skb to the size of the full 8221 * ipw header and 802.11 frame */ 8222 skb_put(skb, le16_to_cpu(pkt->u.frame.length) + 8223 IPW_RX_FRAME_SIZE); 8224 8225 /* Advance past the ipw packet header to the 802.11 frame */ 8226 skb_pull(skb, IPW_RX_FRAME_SIZE); 8227 8228 /* Push the libipw_rx_stats before the 802.11 frame */ 8229 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats)); 8230 8231 skb->dev = priv->ieee->dev; 8232 8233 /* Point raw at the libipw_stats */ 8234 skb_reset_mac_header(skb); 8235 8236 skb->pkt_type = PACKET_OTHERHOST; 8237 skb->protocol = cpu_to_be16(ETH_P_80211_STATS); 8238 memset(skb->cb, 0, sizeof(rxb->skb->cb)); 8239 netif_rx(skb); 8240 rxb->skb = NULL; 8241 } 8242 } 8243 8244 /* 8245 * Main entry function for receiving a packet with 80211 headers. This 8246 * should be called when ever the FW has notified us that there is a new 8247 * skb in the receive queue. 8248 */ 8249 static void ipw_rx(struct ipw_priv *priv) 8250 { 8251 struct ipw_rx_mem_buffer *rxb; 8252 struct ipw_rx_packet *pkt; 8253 struct libipw_hdr_4addr *header; 8254 u32 r, w, i; 8255 u8 network_packet; 8256 u8 fill_rx = 0; 8257 8258 r = ipw_read32(priv, IPW_RX_READ_INDEX); 8259 w = ipw_read32(priv, IPW_RX_WRITE_INDEX); 8260 i = priv->rxq->read; 8261 8262 if (ipw_rx_queue_space (priv->rxq) > (RX_QUEUE_SIZE / 2)) 8263 fill_rx = 1; 8264 8265 while (i != r) { 8266 rxb = priv->rxq->queue[i]; 8267 if (unlikely(rxb == NULL)) { 8268 printk(KERN_CRIT "Queue not allocated!\n"); 8269 break; 8270 } 8271 priv->rxq->queue[i] = NULL; 8272 8273 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr, 8274 IPW_RX_BUF_SIZE, 8275 PCI_DMA_FROMDEVICE); 8276 8277 pkt = (struct ipw_rx_packet *)rxb->skb->data; 8278 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n", 8279 pkt->header.message_type, 8280 pkt->header.rx_seq_num, pkt->header.control_bits); 8281 8282 switch (pkt->header.message_type) { 8283 case RX_FRAME_TYPE: /* 802.11 frame */ { 8284 struct libipw_rx_stats stats = { 8285 .rssi = pkt->u.frame.rssi_dbm - 8286 IPW_RSSI_TO_DBM, 8287 .signal = 8288 pkt->u.frame.rssi_dbm - 8289 IPW_RSSI_TO_DBM + 0x100, 8290 .noise = 8291 le16_to_cpu(pkt->u.frame.noise), 8292 .rate = pkt->u.frame.rate, 8293 .mac_time = jiffies, 8294 .received_channel = 8295 pkt->u.frame.received_channel, 8296 .freq = 8297 (pkt->u.frame. 8298 control & (1 << 0)) ? 8299 LIBIPW_24GHZ_BAND : 8300 LIBIPW_52GHZ_BAND, 8301 .len = le16_to_cpu(pkt->u.frame.length), 8302 }; 8303 8304 if (stats.rssi != 0) 8305 stats.mask |= LIBIPW_STATMASK_RSSI; 8306 if (stats.signal != 0) 8307 stats.mask |= LIBIPW_STATMASK_SIGNAL; 8308 if (stats.noise != 0) 8309 stats.mask |= LIBIPW_STATMASK_NOISE; 8310 if (stats.rate != 0) 8311 stats.mask |= LIBIPW_STATMASK_RATE; 8312 8313 priv->rx_packets++; 8314 8315 #ifdef CONFIG_IPW2200_PROMISCUOUS 8316 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) 8317 ipw_handle_promiscuous_rx(priv, rxb, &stats); 8318 #endif 8319 8320 #ifdef CONFIG_IPW2200_MONITOR 8321 if (priv->ieee->iw_mode == IW_MODE_MONITOR) { 8322 #ifdef CONFIG_IPW2200_RADIOTAP 8323 8324 ipw_handle_data_packet_monitor(priv, 8325 rxb, 8326 &stats); 8327 #else 8328 ipw_handle_data_packet(priv, rxb, 8329 &stats); 8330 #endif 8331 break; 8332 } 8333 #endif 8334 8335 header = 8336 (struct libipw_hdr_4addr *)(rxb->skb-> 8337 data + 8338 IPW_RX_FRAME_SIZE); 8339 /* TODO: Check Ad-Hoc dest/source and make sure 8340 * that we are actually parsing these packets 8341 * correctly -- we should probably use the 8342 * frame control of the packet and disregard 8343 * the current iw_mode */ 8344 8345 network_packet = 8346 is_network_packet(priv, header); 8347 if (network_packet && priv->assoc_network) { 8348 priv->assoc_network->stats.rssi = 8349 stats.rssi; 8350 priv->exp_avg_rssi = 8351 exponential_average(priv->exp_avg_rssi, 8352 stats.rssi, DEPTH_RSSI); 8353 } 8354 8355 IPW_DEBUG_RX("Frame: len=%u\n", 8356 le16_to_cpu(pkt->u.frame.length)); 8357 8358 if (le16_to_cpu(pkt->u.frame.length) < 8359 libipw_get_hdrlen(le16_to_cpu( 8360 header->frame_ctl))) { 8361 IPW_DEBUG_DROP 8362 ("Received packet is too small. " 8363 "Dropping.\n"); 8364 priv->net_dev->stats.rx_errors++; 8365 priv->wstats.discard.misc++; 8366 break; 8367 } 8368 8369 switch (WLAN_FC_GET_TYPE 8370 (le16_to_cpu(header->frame_ctl))) { 8371 8372 case IEEE80211_FTYPE_MGMT: 8373 ipw_handle_mgmt_packet(priv, rxb, 8374 &stats); 8375 break; 8376 8377 case IEEE80211_FTYPE_CTL: 8378 break; 8379 8380 case IEEE80211_FTYPE_DATA: 8381 if (unlikely(!network_packet || 8382 is_duplicate_packet(priv, 8383 header))) 8384 { 8385 IPW_DEBUG_DROP("Dropping: " 8386 "%pM, " 8387 "%pM, " 8388 "%pM\n", 8389 header->addr1, 8390 header->addr2, 8391 header->addr3); 8392 break; 8393 } 8394 8395 ipw_handle_data_packet(priv, rxb, 8396 &stats); 8397 8398 break; 8399 } 8400 break; 8401 } 8402 8403 case RX_HOST_NOTIFICATION_TYPE:{ 8404 IPW_DEBUG_RX 8405 ("Notification: subtype=%02X flags=%02X size=%d\n", 8406 pkt->u.notification.subtype, 8407 pkt->u.notification.flags, 8408 le16_to_cpu(pkt->u.notification.size)); 8409 ipw_rx_notification(priv, &pkt->u.notification); 8410 break; 8411 } 8412 8413 default: 8414 IPW_DEBUG_RX("Bad Rx packet of type %d\n", 8415 pkt->header.message_type); 8416 break; 8417 } 8418 8419 /* For now we just don't re-use anything. We can tweak this 8420 * later to try and re-use notification packets and SKBs that 8421 * fail to Rx correctly */ 8422 if (rxb->skb != NULL) { 8423 dev_kfree_skb_any(rxb->skb); 8424 rxb->skb = NULL; 8425 } 8426 8427 pci_unmap_single(priv->pci_dev, rxb->dma_addr, 8428 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE); 8429 list_add_tail(&rxb->list, &priv->rxq->rx_used); 8430 8431 i = (i + 1) % RX_QUEUE_SIZE; 8432 8433 /* If there are a lot of unsued frames, restock the Rx queue 8434 * so the ucode won't assert */ 8435 if (fill_rx) { 8436 priv->rxq->read = i; 8437 ipw_rx_queue_replenish(priv); 8438 } 8439 } 8440 8441 /* Backtrack one entry */ 8442 priv->rxq->read = i; 8443 ipw_rx_queue_restock(priv); 8444 } 8445 8446 #define DEFAULT_RTS_THRESHOLD 2304U 8447 #define MIN_RTS_THRESHOLD 1U 8448 #define MAX_RTS_THRESHOLD 2304U 8449 #define DEFAULT_BEACON_INTERVAL 100U 8450 #define DEFAULT_SHORT_RETRY_LIMIT 7U 8451 #define DEFAULT_LONG_RETRY_LIMIT 4U 8452 8453 /** 8454 * ipw_sw_reset 8455 * @option: options to control different reset behaviour 8456 * 0 = reset everything except the 'disable' module_param 8457 * 1 = reset everything and print out driver info (for probe only) 8458 * 2 = reset everything 8459 */ 8460 static int ipw_sw_reset(struct ipw_priv *priv, int option) 8461 { 8462 int band, modulation; 8463 int old_mode = priv->ieee->iw_mode; 8464 8465 /* Initialize module parameter values here */ 8466 priv->config = 0; 8467 8468 /* We default to disabling the LED code as right now it causes 8469 * too many systems to lock up... */ 8470 if (!led_support) 8471 priv->config |= CFG_NO_LED; 8472 8473 if (associate) 8474 priv->config |= CFG_ASSOCIATE; 8475 else 8476 IPW_DEBUG_INFO("Auto associate disabled.\n"); 8477 8478 if (auto_create) 8479 priv->config |= CFG_ADHOC_CREATE; 8480 else 8481 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n"); 8482 8483 priv->config &= ~CFG_STATIC_ESSID; 8484 priv->essid_len = 0; 8485 memset(priv->essid, 0, IW_ESSID_MAX_SIZE); 8486 8487 if (disable && option) { 8488 priv->status |= STATUS_RF_KILL_SW; 8489 IPW_DEBUG_INFO("Radio disabled.\n"); 8490 } 8491 8492 if (default_channel != 0) { 8493 priv->config |= CFG_STATIC_CHANNEL; 8494 priv->channel = default_channel; 8495 IPW_DEBUG_INFO("Bind to static channel %d\n", default_channel); 8496 /* TODO: Validate that provided channel is in range */ 8497 } 8498 #ifdef CONFIG_IPW2200_QOS 8499 ipw_qos_init(priv, qos_enable, qos_burst_enable, 8500 burst_duration_CCK, burst_duration_OFDM); 8501 #endif /* CONFIG_IPW2200_QOS */ 8502 8503 switch (network_mode) { 8504 case 1: 8505 priv->ieee->iw_mode = IW_MODE_ADHOC; 8506 priv->net_dev->type = ARPHRD_ETHER; 8507 8508 break; 8509 #ifdef CONFIG_IPW2200_MONITOR 8510 case 2: 8511 priv->ieee->iw_mode = IW_MODE_MONITOR; 8512 #ifdef CONFIG_IPW2200_RADIOTAP 8513 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP; 8514 #else 8515 priv->net_dev->type = ARPHRD_IEEE80211; 8516 #endif 8517 break; 8518 #endif 8519 default: 8520 case 0: 8521 priv->net_dev->type = ARPHRD_ETHER; 8522 priv->ieee->iw_mode = IW_MODE_INFRA; 8523 break; 8524 } 8525 8526 if (hwcrypto) { 8527 priv->ieee->host_encrypt = 0; 8528 priv->ieee->host_encrypt_msdu = 0; 8529 priv->ieee->host_decrypt = 0; 8530 priv->ieee->host_mc_decrypt = 0; 8531 } 8532 IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off"); 8533 8534 /* IPW2200/2915 is abled to do hardware fragmentation. */ 8535 priv->ieee->host_open_frag = 0; 8536 8537 if ((priv->pci_dev->device == 0x4223) || 8538 (priv->pci_dev->device == 0x4224)) { 8539 if (option == 1) 8540 printk(KERN_INFO DRV_NAME 8541 ": Detected Intel PRO/Wireless 2915ABG Network " 8542 "Connection\n"); 8543 priv->ieee->abg_true = 1; 8544 band = LIBIPW_52GHZ_BAND | LIBIPW_24GHZ_BAND; 8545 modulation = LIBIPW_OFDM_MODULATION | 8546 LIBIPW_CCK_MODULATION; 8547 priv->adapter = IPW_2915ABG; 8548 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B; 8549 } else { 8550 if (option == 1) 8551 printk(KERN_INFO DRV_NAME 8552 ": Detected Intel PRO/Wireless 2200BG Network " 8553 "Connection\n"); 8554 8555 priv->ieee->abg_true = 0; 8556 band = LIBIPW_24GHZ_BAND; 8557 modulation = LIBIPW_OFDM_MODULATION | 8558 LIBIPW_CCK_MODULATION; 8559 priv->adapter = IPW_2200BG; 8560 priv->ieee->mode = IEEE_G | IEEE_B; 8561 } 8562 8563 priv->ieee->freq_band = band; 8564 priv->ieee->modulation = modulation; 8565 8566 priv->rates_mask = LIBIPW_DEFAULT_RATES_MASK; 8567 8568 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT; 8569 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT; 8570 8571 priv->rts_threshold = DEFAULT_RTS_THRESHOLD; 8572 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT; 8573 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT; 8574 8575 /* If power management is turned on, default to AC mode */ 8576 priv->power_mode = IPW_POWER_AC; 8577 priv->tx_power = IPW_TX_POWER_DEFAULT; 8578 8579 return old_mode == priv->ieee->iw_mode; 8580 } 8581 8582 /* 8583 * This file defines the Wireless Extension handlers. It does not 8584 * define any methods of hardware manipulation and relies on the 8585 * functions defined in ipw_main to provide the HW interaction. 8586 * 8587 * The exception to this is the use of the ipw_get_ordinal() 8588 * function used to poll the hardware vs. making unnecessary calls. 8589 * 8590 */ 8591 8592 static int ipw_set_channel(struct ipw_priv *priv, u8 channel) 8593 { 8594 if (channel == 0) { 8595 IPW_DEBUG_INFO("Setting channel to ANY (0)\n"); 8596 priv->config &= ~CFG_STATIC_CHANNEL; 8597 IPW_DEBUG_ASSOC("Attempting to associate with new " 8598 "parameters.\n"); 8599 ipw_associate(priv); 8600 return 0; 8601 } 8602 8603 priv->config |= CFG_STATIC_CHANNEL; 8604 8605 if (priv->channel == channel) { 8606 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n", 8607 channel); 8608 return 0; 8609 } 8610 8611 IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel); 8612 priv->channel = channel; 8613 8614 #ifdef CONFIG_IPW2200_MONITOR 8615 if (priv->ieee->iw_mode == IW_MODE_MONITOR) { 8616 int i; 8617 if (priv->status & STATUS_SCANNING) { 8618 IPW_DEBUG_SCAN("Scan abort triggered due to " 8619 "channel change.\n"); 8620 ipw_abort_scan(priv); 8621 } 8622 8623 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--) 8624 udelay(10); 8625 8626 if (priv->status & STATUS_SCANNING) 8627 IPW_DEBUG_SCAN("Still scanning...\n"); 8628 else 8629 IPW_DEBUG_SCAN("Took %dms to abort current scan\n", 8630 1000 - i); 8631 8632 return 0; 8633 } 8634 #endif /* CONFIG_IPW2200_MONITOR */ 8635 8636 /* Network configuration changed -- force [re]association */ 8637 IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n"); 8638 if (!ipw_disassociate(priv)) 8639 ipw_associate(priv); 8640 8641 return 0; 8642 } 8643 8644 static int ipw_wx_set_freq(struct net_device *dev, 8645 struct iw_request_info *info, 8646 union iwreq_data *wrqu, char *extra) 8647 { 8648 struct ipw_priv *priv = libipw_priv(dev); 8649 const struct libipw_geo *geo = libipw_get_geo(priv->ieee); 8650 struct iw_freq *fwrq = &wrqu->freq; 8651 int ret = 0, i; 8652 u8 channel, flags; 8653 int band; 8654 8655 if (fwrq->m == 0) { 8656 IPW_DEBUG_WX("SET Freq/Channel -> any\n"); 8657 mutex_lock(&priv->mutex); 8658 ret = ipw_set_channel(priv, 0); 8659 mutex_unlock(&priv->mutex); 8660 return ret; 8661 } 8662 /* if setting by freq convert to channel */ 8663 if (fwrq->e == 1) { 8664 channel = libipw_freq_to_channel(priv->ieee, fwrq->m); 8665 if (channel == 0) 8666 return -EINVAL; 8667 } else 8668 channel = fwrq->m; 8669 8670 if (!(band = libipw_is_valid_channel(priv->ieee, channel))) 8671 return -EINVAL; 8672 8673 if (priv->ieee->iw_mode == IW_MODE_ADHOC) { 8674 i = libipw_channel_to_index(priv->ieee, channel); 8675 if (i == -1) 8676 return -EINVAL; 8677 8678 flags = (band == LIBIPW_24GHZ_BAND) ? 8679 geo->bg[i].flags : geo->a[i].flags; 8680 if (flags & LIBIPW_CH_PASSIVE_ONLY) { 8681 IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n"); 8682 return -EINVAL; 8683 } 8684 } 8685 8686 IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m); 8687 mutex_lock(&priv->mutex); 8688 ret = ipw_set_channel(priv, channel); 8689 mutex_unlock(&priv->mutex); 8690 return ret; 8691 } 8692 8693 static int ipw_wx_get_freq(struct net_device *dev, 8694 struct iw_request_info *info, 8695 union iwreq_data *wrqu, char *extra) 8696 { 8697 struct ipw_priv *priv = libipw_priv(dev); 8698 8699 wrqu->freq.e = 0; 8700 8701 /* If we are associated, trying to associate, or have a statically 8702 * configured CHANNEL then return that; otherwise return ANY */ 8703 mutex_lock(&priv->mutex); 8704 if (priv->config & CFG_STATIC_CHANNEL || 8705 priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) { 8706 int i; 8707 8708 i = libipw_channel_to_index(priv->ieee, priv->channel); 8709 BUG_ON(i == -1); 8710 wrqu->freq.e = 1; 8711 8712 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) { 8713 case LIBIPW_52GHZ_BAND: 8714 wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000; 8715 break; 8716 8717 case LIBIPW_24GHZ_BAND: 8718 wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000; 8719 break; 8720 8721 default: 8722 BUG(); 8723 } 8724 } else 8725 wrqu->freq.m = 0; 8726 8727 mutex_unlock(&priv->mutex); 8728 IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel); 8729 return 0; 8730 } 8731 8732 static int ipw_wx_set_mode(struct net_device *dev, 8733 struct iw_request_info *info, 8734 union iwreq_data *wrqu, char *extra) 8735 { 8736 struct ipw_priv *priv = libipw_priv(dev); 8737 int err = 0; 8738 8739 IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode); 8740 8741 switch (wrqu->mode) { 8742 #ifdef CONFIG_IPW2200_MONITOR 8743 case IW_MODE_MONITOR: 8744 #endif 8745 case IW_MODE_ADHOC: 8746 case IW_MODE_INFRA: 8747 break; 8748 case IW_MODE_AUTO: 8749 wrqu->mode = IW_MODE_INFRA; 8750 break; 8751 default: 8752 return -EINVAL; 8753 } 8754 if (wrqu->mode == priv->ieee->iw_mode) 8755 return 0; 8756 8757 mutex_lock(&priv->mutex); 8758 8759 ipw_sw_reset(priv, 0); 8760 8761 #ifdef CONFIG_IPW2200_MONITOR 8762 if (priv->ieee->iw_mode == IW_MODE_MONITOR) 8763 priv->net_dev->type = ARPHRD_ETHER; 8764 8765 if (wrqu->mode == IW_MODE_MONITOR) 8766 #ifdef CONFIG_IPW2200_RADIOTAP 8767 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP; 8768 #else 8769 priv->net_dev->type = ARPHRD_IEEE80211; 8770 #endif 8771 #endif /* CONFIG_IPW2200_MONITOR */ 8772 8773 /* Free the existing firmware and reset the fw_loaded 8774 * flag so ipw_load() will bring in the new firmware */ 8775 free_firmware(); 8776 8777 priv->ieee->iw_mode = wrqu->mode; 8778 8779 schedule_work(&priv->adapter_restart); 8780 mutex_unlock(&priv->mutex); 8781 return err; 8782 } 8783 8784 static int ipw_wx_get_mode(struct net_device *dev, 8785 struct iw_request_info *info, 8786 union iwreq_data *wrqu, char *extra) 8787 { 8788 struct ipw_priv *priv = libipw_priv(dev); 8789 mutex_lock(&priv->mutex); 8790 wrqu->mode = priv->ieee->iw_mode; 8791 IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode); 8792 mutex_unlock(&priv->mutex); 8793 return 0; 8794 } 8795 8796 /* Values are in microsecond */ 8797 static const s32 timeout_duration[] = { 8798 350000, 8799 250000, 8800 75000, 8801 37000, 8802 25000, 8803 }; 8804 8805 static const s32 period_duration[] = { 8806 400000, 8807 700000, 8808 1000000, 8809 1000000, 8810 1000000 8811 }; 8812 8813 static int ipw_wx_get_range(struct net_device *dev, 8814 struct iw_request_info *info, 8815 union iwreq_data *wrqu, char *extra) 8816 { 8817 struct ipw_priv *priv = libipw_priv(dev); 8818 struct iw_range *range = (struct iw_range *)extra; 8819 const struct libipw_geo *geo = libipw_get_geo(priv->ieee); 8820 int i = 0, j; 8821 8822 wrqu->data.length = sizeof(*range); 8823 memset(range, 0, sizeof(*range)); 8824 8825 /* 54Mbs == ~27 Mb/s real (802.11g) */ 8826 range->throughput = 27 * 1000 * 1000; 8827 8828 range->max_qual.qual = 100; 8829 /* TODO: Find real max RSSI and stick here */ 8830 range->max_qual.level = 0; 8831 range->max_qual.noise = 0; 8832 range->max_qual.updated = 7; /* Updated all three */ 8833 8834 range->avg_qual.qual = 70; 8835 /* TODO: Find real 'good' to 'bad' threshold value for RSSI */ 8836 range->avg_qual.level = 0; /* FIXME to real average level */ 8837 range->avg_qual.noise = 0; 8838 range->avg_qual.updated = 7; /* Updated all three */ 8839 mutex_lock(&priv->mutex); 8840 range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES); 8841 8842 for (i = 0; i < range->num_bitrates; i++) 8843 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) * 8844 500000; 8845 8846 range->max_rts = DEFAULT_RTS_THRESHOLD; 8847 range->min_frag = MIN_FRAG_THRESHOLD; 8848 range->max_frag = MAX_FRAG_THRESHOLD; 8849 8850 range->encoding_size[0] = 5; 8851 range->encoding_size[1] = 13; 8852 range->num_encoding_sizes = 2; 8853 range->max_encoding_tokens = WEP_KEYS; 8854 8855 /* Set the Wireless Extension versions */ 8856 range->we_version_compiled = WIRELESS_EXT; 8857 range->we_version_source = 18; 8858 8859 i = 0; 8860 if (priv->ieee->mode & (IEEE_B | IEEE_G)) { 8861 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) { 8862 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) && 8863 (geo->bg[j].flags & LIBIPW_CH_PASSIVE_ONLY)) 8864 continue; 8865 8866 range->freq[i].i = geo->bg[j].channel; 8867 range->freq[i].m = geo->bg[j].freq * 100000; 8868 range->freq[i].e = 1; 8869 i++; 8870 } 8871 } 8872 8873 if (priv->ieee->mode & IEEE_A) { 8874 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) { 8875 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) && 8876 (geo->a[j].flags & LIBIPW_CH_PASSIVE_ONLY)) 8877 continue; 8878 8879 range->freq[i].i = geo->a[j].channel; 8880 range->freq[i].m = geo->a[j].freq * 100000; 8881 range->freq[i].e = 1; 8882 i++; 8883 } 8884 } 8885 8886 range->num_channels = i; 8887 range->num_frequency = i; 8888 8889 mutex_unlock(&priv->mutex); 8890 8891 /* Event capability (kernel + driver) */ 8892 range->event_capa[0] = (IW_EVENT_CAPA_K_0 | 8893 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) | 8894 IW_EVENT_CAPA_MASK(SIOCGIWAP) | 8895 IW_EVENT_CAPA_MASK(SIOCGIWSCAN)); 8896 range->event_capa[1] = IW_EVENT_CAPA_K_1; 8897 8898 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 | 8899 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP; 8900 8901 range->scan_capa = IW_SCAN_CAPA_ESSID | IW_SCAN_CAPA_TYPE; 8902 8903 IPW_DEBUG_WX("GET Range\n"); 8904 return 0; 8905 } 8906 8907 static int ipw_wx_set_wap(struct net_device *dev, 8908 struct iw_request_info *info, 8909 union iwreq_data *wrqu, char *extra) 8910 { 8911 struct ipw_priv *priv = libipw_priv(dev); 8912 8913 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER) 8914 return -EINVAL; 8915 mutex_lock(&priv->mutex); 8916 if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) || 8917 is_zero_ether_addr(wrqu->ap_addr.sa_data)) { 8918 /* we disable mandatory BSSID association */ 8919 IPW_DEBUG_WX("Setting AP BSSID to ANY\n"); 8920 priv->config &= ~CFG_STATIC_BSSID; 8921 IPW_DEBUG_ASSOC("Attempting to associate with new " 8922 "parameters.\n"); 8923 ipw_associate(priv); 8924 mutex_unlock(&priv->mutex); 8925 return 0; 8926 } 8927 8928 priv->config |= CFG_STATIC_BSSID; 8929 if (ether_addr_equal(priv->bssid, wrqu->ap_addr.sa_data)) { 8930 IPW_DEBUG_WX("BSSID set to current BSSID.\n"); 8931 mutex_unlock(&priv->mutex); 8932 return 0; 8933 } 8934 8935 IPW_DEBUG_WX("Setting mandatory BSSID to %pM\n", 8936 wrqu->ap_addr.sa_data); 8937 8938 memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN); 8939 8940 /* Network configuration changed -- force [re]association */ 8941 IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n"); 8942 if (!ipw_disassociate(priv)) 8943 ipw_associate(priv); 8944 8945 mutex_unlock(&priv->mutex); 8946 return 0; 8947 } 8948 8949 static int ipw_wx_get_wap(struct net_device *dev, 8950 struct iw_request_info *info, 8951 union iwreq_data *wrqu, char *extra) 8952 { 8953 struct ipw_priv *priv = libipw_priv(dev); 8954 8955 /* If we are associated, trying to associate, or have a statically 8956 * configured BSSID then return that; otherwise return ANY */ 8957 mutex_lock(&priv->mutex); 8958 if (priv->config & CFG_STATIC_BSSID || 8959 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) { 8960 wrqu->ap_addr.sa_family = ARPHRD_ETHER; 8961 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN); 8962 } else 8963 eth_zero_addr(wrqu->ap_addr.sa_data); 8964 8965 IPW_DEBUG_WX("Getting WAP BSSID: %pM\n", 8966 wrqu->ap_addr.sa_data); 8967 mutex_unlock(&priv->mutex); 8968 return 0; 8969 } 8970 8971 static int ipw_wx_set_essid(struct net_device *dev, 8972 struct iw_request_info *info, 8973 union iwreq_data *wrqu, char *extra) 8974 { 8975 struct ipw_priv *priv = libipw_priv(dev); 8976 int length; 8977 8978 mutex_lock(&priv->mutex); 8979 8980 if (!wrqu->essid.flags) 8981 { 8982 IPW_DEBUG_WX("Setting ESSID to ANY\n"); 8983 ipw_disassociate(priv); 8984 priv->config &= ~CFG_STATIC_ESSID; 8985 ipw_associate(priv); 8986 mutex_unlock(&priv->mutex); 8987 return 0; 8988 } 8989 8990 length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE); 8991 8992 priv->config |= CFG_STATIC_ESSID; 8993 8994 if (priv->essid_len == length && !memcmp(priv->essid, extra, length) 8995 && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) { 8996 IPW_DEBUG_WX("ESSID set to current ESSID.\n"); 8997 mutex_unlock(&priv->mutex); 8998 return 0; 8999 } 9000 9001 IPW_DEBUG_WX("Setting ESSID: '%*pE' (%d)\n", length, extra, length); 9002 9003 priv->essid_len = length; 9004 memcpy(priv->essid, extra, priv->essid_len); 9005 9006 /* Network configuration changed -- force [re]association */ 9007 IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n"); 9008 if (!ipw_disassociate(priv)) 9009 ipw_associate(priv); 9010 9011 mutex_unlock(&priv->mutex); 9012 return 0; 9013 } 9014 9015 static int ipw_wx_get_essid(struct net_device *dev, 9016 struct iw_request_info *info, 9017 union iwreq_data *wrqu, char *extra) 9018 { 9019 struct ipw_priv *priv = libipw_priv(dev); 9020 9021 /* If we are associated, trying to associate, or have a statically 9022 * configured ESSID then return that; otherwise return ANY */ 9023 mutex_lock(&priv->mutex); 9024 if (priv->config & CFG_STATIC_ESSID || 9025 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) { 9026 IPW_DEBUG_WX("Getting essid: '%*pE'\n", 9027 priv->essid_len, priv->essid); 9028 memcpy(extra, priv->essid, priv->essid_len); 9029 wrqu->essid.length = priv->essid_len; 9030 wrqu->essid.flags = 1; /* active */ 9031 } else { 9032 IPW_DEBUG_WX("Getting essid: ANY\n"); 9033 wrqu->essid.length = 0; 9034 wrqu->essid.flags = 0; /* active */ 9035 } 9036 mutex_unlock(&priv->mutex); 9037 return 0; 9038 } 9039 9040 static int ipw_wx_set_nick(struct net_device *dev, 9041 struct iw_request_info *info, 9042 union iwreq_data *wrqu, char *extra) 9043 { 9044 struct ipw_priv *priv = libipw_priv(dev); 9045 9046 IPW_DEBUG_WX("Setting nick to '%s'\n", extra); 9047 if (wrqu->data.length > IW_ESSID_MAX_SIZE) 9048 return -E2BIG; 9049 mutex_lock(&priv->mutex); 9050 wrqu->data.length = min_t(size_t, wrqu->data.length, sizeof(priv->nick)); 9051 memset(priv->nick, 0, sizeof(priv->nick)); 9052 memcpy(priv->nick, extra, wrqu->data.length); 9053 IPW_DEBUG_TRACE("<<\n"); 9054 mutex_unlock(&priv->mutex); 9055 return 0; 9056 9057 } 9058 9059 static int ipw_wx_get_nick(struct net_device *dev, 9060 struct iw_request_info *info, 9061 union iwreq_data *wrqu, char *extra) 9062 { 9063 struct ipw_priv *priv = libipw_priv(dev); 9064 IPW_DEBUG_WX("Getting nick\n"); 9065 mutex_lock(&priv->mutex); 9066 wrqu->data.length = strlen(priv->nick); 9067 memcpy(extra, priv->nick, wrqu->data.length); 9068 wrqu->data.flags = 1; /* active */ 9069 mutex_unlock(&priv->mutex); 9070 return 0; 9071 } 9072 9073 static int ipw_wx_set_sens(struct net_device *dev, 9074 struct iw_request_info *info, 9075 union iwreq_data *wrqu, char *extra) 9076 { 9077 struct ipw_priv *priv = libipw_priv(dev); 9078 int err = 0; 9079 9080 IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value); 9081 IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value); 9082 mutex_lock(&priv->mutex); 9083 9084 if (wrqu->sens.fixed == 0) 9085 { 9086 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT; 9087 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT; 9088 goto out; 9089 } 9090 if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) || 9091 (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) { 9092 err = -EINVAL; 9093 goto out; 9094 } 9095 9096 priv->roaming_threshold = wrqu->sens.value; 9097 priv->disassociate_threshold = 3*wrqu->sens.value; 9098 out: 9099 mutex_unlock(&priv->mutex); 9100 return err; 9101 } 9102 9103 static int ipw_wx_get_sens(struct net_device *dev, 9104 struct iw_request_info *info, 9105 union iwreq_data *wrqu, char *extra) 9106 { 9107 struct ipw_priv *priv = libipw_priv(dev); 9108 mutex_lock(&priv->mutex); 9109 wrqu->sens.fixed = 1; 9110 wrqu->sens.value = priv->roaming_threshold; 9111 mutex_unlock(&priv->mutex); 9112 9113 IPW_DEBUG_WX("GET roaming threshold -> %s %d\n", 9114 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value); 9115 9116 return 0; 9117 } 9118 9119 static int ipw_wx_set_rate(struct net_device *dev, 9120 struct iw_request_info *info, 9121 union iwreq_data *wrqu, char *extra) 9122 { 9123 /* TODO: We should use semaphores or locks for access to priv */ 9124 struct ipw_priv *priv = libipw_priv(dev); 9125 u32 target_rate = wrqu->bitrate.value; 9126 u32 fixed, mask; 9127 9128 /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */ 9129 /* value = X, fixed = 1 means only rate X */ 9130 /* value = X, fixed = 0 means all rates lower equal X */ 9131 9132 if (target_rate == -1) { 9133 fixed = 0; 9134 mask = LIBIPW_DEFAULT_RATES_MASK; 9135 /* Now we should reassociate */ 9136 goto apply; 9137 } 9138 9139 mask = 0; 9140 fixed = wrqu->bitrate.fixed; 9141 9142 if (target_rate == 1000000 || !fixed) 9143 mask |= LIBIPW_CCK_RATE_1MB_MASK; 9144 if (target_rate == 1000000) 9145 goto apply; 9146 9147 if (target_rate == 2000000 || !fixed) 9148 mask |= LIBIPW_CCK_RATE_2MB_MASK; 9149 if (target_rate == 2000000) 9150 goto apply; 9151 9152 if (target_rate == 5500000 || !fixed) 9153 mask |= LIBIPW_CCK_RATE_5MB_MASK; 9154 if (target_rate == 5500000) 9155 goto apply; 9156 9157 if (target_rate == 6000000 || !fixed) 9158 mask |= LIBIPW_OFDM_RATE_6MB_MASK; 9159 if (target_rate == 6000000) 9160 goto apply; 9161 9162 if (target_rate == 9000000 || !fixed) 9163 mask |= LIBIPW_OFDM_RATE_9MB_MASK; 9164 if (target_rate == 9000000) 9165 goto apply; 9166 9167 if (target_rate == 11000000 || !fixed) 9168 mask |= LIBIPW_CCK_RATE_11MB_MASK; 9169 if (target_rate == 11000000) 9170 goto apply; 9171 9172 if (target_rate == 12000000 || !fixed) 9173 mask |= LIBIPW_OFDM_RATE_12MB_MASK; 9174 if (target_rate == 12000000) 9175 goto apply; 9176 9177 if (target_rate == 18000000 || !fixed) 9178 mask |= LIBIPW_OFDM_RATE_18MB_MASK; 9179 if (target_rate == 18000000) 9180 goto apply; 9181 9182 if (target_rate == 24000000 || !fixed) 9183 mask |= LIBIPW_OFDM_RATE_24MB_MASK; 9184 if (target_rate == 24000000) 9185 goto apply; 9186 9187 if (target_rate == 36000000 || !fixed) 9188 mask |= LIBIPW_OFDM_RATE_36MB_MASK; 9189 if (target_rate == 36000000) 9190 goto apply; 9191 9192 if (target_rate == 48000000 || !fixed) 9193 mask |= LIBIPW_OFDM_RATE_48MB_MASK; 9194 if (target_rate == 48000000) 9195 goto apply; 9196 9197 if (target_rate == 54000000 || !fixed) 9198 mask |= LIBIPW_OFDM_RATE_54MB_MASK; 9199 if (target_rate == 54000000) 9200 goto apply; 9201 9202 IPW_DEBUG_WX("invalid rate specified, returning error\n"); 9203 return -EINVAL; 9204 9205 apply: 9206 IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n", 9207 mask, fixed ? "fixed" : "sub-rates"); 9208 mutex_lock(&priv->mutex); 9209 if (mask == LIBIPW_DEFAULT_RATES_MASK) { 9210 priv->config &= ~CFG_FIXED_RATE; 9211 ipw_set_fixed_rate(priv, priv->ieee->mode); 9212 } else 9213 priv->config |= CFG_FIXED_RATE; 9214 9215 if (priv->rates_mask == mask) { 9216 IPW_DEBUG_WX("Mask set to current mask.\n"); 9217 mutex_unlock(&priv->mutex); 9218 return 0; 9219 } 9220 9221 priv->rates_mask = mask; 9222 9223 /* Network configuration changed -- force [re]association */ 9224 IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n"); 9225 if (!ipw_disassociate(priv)) 9226 ipw_associate(priv); 9227 9228 mutex_unlock(&priv->mutex); 9229 return 0; 9230 } 9231 9232 static int ipw_wx_get_rate(struct net_device *dev, 9233 struct iw_request_info *info, 9234 union iwreq_data *wrqu, char *extra) 9235 { 9236 struct ipw_priv *priv = libipw_priv(dev); 9237 mutex_lock(&priv->mutex); 9238 wrqu->bitrate.value = priv->last_rate; 9239 wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0; 9240 mutex_unlock(&priv->mutex); 9241 IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value); 9242 return 0; 9243 } 9244 9245 static int ipw_wx_set_rts(struct net_device *dev, 9246 struct iw_request_info *info, 9247 union iwreq_data *wrqu, char *extra) 9248 { 9249 struct ipw_priv *priv = libipw_priv(dev); 9250 mutex_lock(&priv->mutex); 9251 if (wrqu->rts.disabled || !wrqu->rts.fixed) 9252 priv->rts_threshold = DEFAULT_RTS_THRESHOLD; 9253 else { 9254 if (wrqu->rts.value < MIN_RTS_THRESHOLD || 9255 wrqu->rts.value > MAX_RTS_THRESHOLD) { 9256 mutex_unlock(&priv->mutex); 9257 return -EINVAL; 9258 } 9259 priv->rts_threshold = wrqu->rts.value; 9260 } 9261 9262 ipw_send_rts_threshold(priv, priv->rts_threshold); 9263 mutex_unlock(&priv->mutex); 9264 IPW_DEBUG_WX("SET RTS Threshold -> %d\n", priv->rts_threshold); 9265 return 0; 9266 } 9267 9268 static int ipw_wx_get_rts(struct net_device *dev, 9269 struct iw_request_info *info, 9270 union iwreq_data *wrqu, char *extra) 9271 { 9272 struct ipw_priv *priv = libipw_priv(dev); 9273 mutex_lock(&priv->mutex); 9274 wrqu->rts.value = priv->rts_threshold; 9275 wrqu->rts.fixed = 0; /* no auto select */ 9276 wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD); 9277 mutex_unlock(&priv->mutex); 9278 IPW_DEBUG_WX("GET RTS Threshold -> %d\n", wrqu->rts.value); 9279 return 0; 9280 } 9281 9282 static int ipw_wx_set_txpow(struct net_device *dev, 9283 struct iw_request_info *info, 9284 union iwreq_data *wrqu, char *extra) 9285 { 9286 struct ipw_priv *priv = libipw_priv(dev); 9287 int err = 0; 9288 9289 mutex_lock(&priv->mutex); 9290 if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) { 9291 err = -EINPROGRESS; 9292 goto out; 9293 } 9294 9295 if (!wrqu->power.fixed) 9296 wrqu->power.value = IPW_TX_POWER_DEFAULT; 9297 9298 if (wrqu->power.flags != IW_TXPOW_DBM) { 9299 err = -EINVAL; 9300 goto out; 9301 } 9302 9303 if ((wrqu->power.value > IPW_TX_POWER_MAX) || 9304 (wrqu->power.value < IPW_TX_POWER_MIN)) { 9305 err = -EINVAL; 9306 goto out; 9307 } 9308 9309 priv->tx_power = wrqu->power.value; 9310 err = ipw_set_tx_power(priv); 9311 out: 9312 mutex_unlock(&priv->mutex); 9313 return err; 9314 } 9315 9316 static int ipw_wx_get_txpow(struct net_device *dev, 9317 struct iw_request_info *info, 9318 union iwreq_data *wrqu, char *extra) 9319 { 9320 struct ipw_priv *priv = libipw_priv(dev); 9321 mutex_lock(&priv->mutex); 9322 wrqu->power.value = priv->tx_power; 9323 wrqu->power.fixed = 1; 9324 wrqu->power.flags = IW_TXPOW_DBM; 9325 wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0; 9326 mutex_unlock(&priv->mutex); 9327 9328 IPW_DEBUG_WX("GET TX Power -> %s %d\n", 9329 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value); 9330 9331 return 0; 9332 } 9333 9334 static int ipw_wx_set_frag(struct net_device *dev, 9335 struct iw_request_info *info, 9336 union iwreq_data *wrqu, char *extra) 9337 { 9338 struct ipw_priv *priv = libipw_priv(dev); 9339 mutex_lock(&priv->mutex); 9340 if (wrqu->frag.disabled || !wrqu->frag.fixed) 9341 priv->ieee->fts = DEFAULT_FTS; 9342 else { 9343 if (wrqu->frag.value < MIN_FRAG_THRESHOLD || 9344 wrqu->frag.value > MAX_FRAG_THRESHOLD) { 9345 mutex_unlock(&priv->mutex); 9346 return -EINVAL; 9347 } 9348 9349 priv->ieee->fts = wrqu->frag.value & ~0x1; 9350 } 9351 9352 ipw_send_frag_threshold(priv, wrqu->frag.value); 9353 mutex_unlock(&priv->mutex); 9354 IPW_DEBUG_WX("SET Frag Threshold -> %d\n", wrqu->frag.value); 9355 return 0; 9356 } 9357 9358 static int ipw_wx_get_frag(struct net_device *dev, 9359 struct iw_request_info *info, 9360 union iwreq_data *wrqu, char *extra) 9361 { 9362 struct ipw_priv *priv = libipw_priv(dev); 9363 mutex_lock(&priv->mutex); 9364 wrqu->frag.value = priv->ieee->fts; 9365 wrqu->frag.fixed = 0; /* no auto select */ 9366 wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS); 9367 mutex_unlock(&priv->mutex); 9368 IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value); 9369 9370 return 0; 9371 } 9372 9373 static int ipw_wx_set_retry(struct net_device *dev, 9374 struct iw_request_info *info, 9375 union iwreq_data *wrqu, char *extra) 9376 { 9377 struct ipw_priv *priv = libipw_priv(dev); 9378 9379 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled) 9380 return -EINVAL; 9381 9382 if (!(wrqu->retry.flags & IW_RETRY_LIMIT)) 9383 return 0; 9384 9385 if (wrqu->retry.value < 0 || wrqu->retry.value >= 255) 9386 return -EINVAL; 9387 9388 mutex_lock(&priv->mutex); 9389 if (wrqu->retry.flags & IW_RETRY_SHORT) 9390 priv->short_retry_limit = (u8) wrqu->retry.value; 9391 else if (wrqu->retry.flags & IW_RETRY_LONG) 9392 priv->long_retry_limit = (u8) wrqu->retry.value; 9393 else { 9394 priv->short_retry_limit = (u8) wrqu->retry.value; 9395 priv->long_retry_limit = (u8) wrqu->retry.value; 9396 } 9397 9398 ipw_send_retry_limit(priv, priv->short_retry_limit, 9399 priv->long_retry_limit); 9400 mutex_unlock(&priv->mutex); 9401 IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n", 9402 priv->short_retry_limit, priv->long_retry_limit); 9403 return 0; 9404 } 9405 9406 static int ipw_wx_get_retry(struct net_device *dev, 9407 struct iw_request_info *info, 9408 union iwreq_data *wrqu, char *extra) 9409 { 9410 struct ipw_priv *priv = libipw_priv(dev); 9411 9412 mutex_lock(&priv->mutex); 9413 wrqu->retry.disabled = 0; 9414 9415 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) { 9416 mutex_unlock(&priv->mutex); 9417 return -EINVAL; 9418 } 9419 9420 if (wrqu->retry.flags & IW_RETRY_LONG) { 9421 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG; 9422 wrqu->retry.value = priv->long_retry_limit; 9423 } else if (wrqu->retry.flags & IW_RETRY_SHORT) { 9424 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT; 9425 wrqu->retry.value = priv->short_retry_limit; 9426 } else { 9427 wrqu->retry.flags = IW_RETRY_LIMIT; 9428 wrqu->retry.value = priv->short_retry_limit; 9429 } 9430 mutex_unlock(&priv->mutex); 9431 9432 IPW_DEBUG_WX("GET retry -> %d\n", wrqu->retry.value); 9433 9434 return 0; 9435 } 9436 9437 static int ipw_wx_set_scan(struct net_device *dev, 9438 struct iw_request_info *info, 9439 union iwreq_data *wrqu, char *extra) 9440 { 9441 struct ipw_priv *priv = libipw_priv(dev); 9442 struct iw_scan_req *req = (struct iw_scan_req *)extra; 9443 struct delayed_work *work = NULL; 9444 9445 mutex_lock(&priv->mutex); 9446 9447 priv->user_requested_scan = 1; 9448 9449 if (wrqu->data.length == sizeof(struct iw_scan_req)) { 9450 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) { 9451 int len = min((int)req->essid_len, 9452 (int)sizeof(priv->direct_scan_ssid)); 9453 memcpy(priv->direct_scan_ssid, req->essid, len); 9454 priv->direct_scan_ssid_len = len; 9455 work = &priv->request_direct_scan; 9456 } else if (req->scan_type == IW_SCAN_TYPE_PASSIVE) { 9457 work = &priv->request_passive_scan; 9458 } 9459 } else { 9460 /* Normal active broadcast scan */ 9461 work = &priv->request_scan; 9462 } 9463 9464 mutex_unlock(&priv->mutex); 9465 9466 IPW_DEBUG_WX("Start scan\n"); 9467 9468 schedule_delayed_work(work, 0); 9469 9470 return 0; 9471 } 9472 9473 static int ipw_wx_get_scan(struct net_device *dev, 9474 struct iw_request_info *info, 9475 union iwreq_data *wrqu, char *extra) 9476 { 9477 struct ipw_priv *priv = libipw_priv(dev); 9478 return libipw_wx_get_scan(priv->ieee, info, wrqu, extra); 9479 } 9480 9481 static int ipw_wx_set_encode(struct net_device *dev, 9482 struct iw_request_info *info, 9483 union iwreq_data *wrqu, char *key) 9484 { 9485 struct ipw_priv *priv = libipw_priv(dev); 9486 int ret; 9487 u32 cap = priv->capability; 9488 9489 mutex_lock(&priv->mutex); 9490 ret = libipw_wx_set_encode(priv->ieee, info, wrqu, key); 9491 9492 /* In IBSS mode, we need to notify the firmware to update 9493 * the beacon info after we changed the capability. */ 9494 if (cap != priv->capability && 9495 priv->ieee->iw_mode == IW_MODE_ADHOC && 9496 priv->status & STATUS_ASSOCIATED) 9497 ipw_disassociate(priv); 9498 9499 mutex_unlock(&priv->mutex); 9500 return ret; 9501 } 9502 9503 static int ipw_wx_get_encode(struct net_device *dev, 9504 struct iw_request_info *info, 9505 union iwreq_data *wrqu, char *key) 9506 { 9507 struct ipw_priv *priv = libipw_priv(dev); 9508 return libipw_wx_get_encode(priv->ieee, info, wrqu, key); 9509 } 9510 9511 static int ipw_wx_set_power(struct net_device *dev, 9512 struct iw_request_info *info, 9513 union iwreq_data *wrqu, char *extra) 9514 { 9515 struct ipw_priv *priv = libipw_priv(dev); 9516 int err; 9517 mutex_lock(&priv->mutex); 9518 if (wrqu->power.disabled) { 9519 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode); 9520 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM); 9521 if (err) { 9522 IPW_DEBUG_WX("failed setting power mode.\n"); 9523 mutex_unlock(&priv->mutex); 9524 return err; 9525 } 9526 IPW_DEBUG_WX("SET Power Management Mode -> off\n"); 9527 mutex_unlock(&priv->mutex); 9528 return 0; 9529 } 9530 9531 switch (wrqu->power.flags & IW_POWER_MODE) { 9532 case IW_POWER_ON: /* If not specified */ 9533 case IW_POWER_MODE: /* If set all mask */ 9534 case IW_POWER_ALL_R: /* If explicitly state all */ 9535 break; 9536 default: /* Otherwise we don't support it */ 9537 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n", 9538 wrqu->power.flags); 9539 mutex_unlock(&priv->mutex); 9540 return -EOPNOTSUPP; 9541 } 9542 9543 /* If the user hasn't specified a power management mode yet, default 9544 * to BATTERY */ 9545 if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC) 9546 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY; 9547 else 9548 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode; 9549 9550 err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode)); 9551 if (err) { 9552 IPW_DEBUG_WX("failed setting power mode.\n"); 9553 mutex_unlock(&priv->mutex); 9554 return err; 9555 } 9556 9557 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode); 9558 mutex_unlock(&priv->mutex); 9559 return 0; 9560 } 9561 9562 static int ipw_wx_get_power(struct net_device *dev, 9563 struct iw_request_info *info, 9564 union iwreq_data *wrqu, char *extra) 9565 { 9566 struct ipw_priv *priv = libipw_priv(dev); 9567 mutex_lock(&priv->mutex); 9568 if (!(priv->power_mode & IPW_POWER_ENABLED)) 9569 wrqu->power.disabled = 1; 9570 else 9571 wrqu->power.disabled = 0; 9572 9573 mutex_unlock(&priv->mutex); 9574 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode); 9575 9576 return 0; 9577 } 9578 9579 static int ipw_wx_set_powermode(struct net_device *dev, 9580 struct iw_request_info *info, 9581 union iwreq_data *wrqu, char *extra) 9582 { 9583 struct ipw_priv *priv = libipw_priv(dev); 9584 int mode = *(int *)extra; 9585 int err; 9586 9587 mutex_lock(&priv->mutex); 9588 if ((mode < 1) || (mode > IPW_POWER_LIMIT)) 9589 mode = IPW_POWER_AC; 9590 9591 if (IPW_POWER_LEVEL(priv->power_mode) != mode) { 9592 err = ipw_send_power_mode(priv, mode); 9593 if (err) { 9594 IPW_DEBUG_WX("failed setting power mode.\n"); 9595 mutex_unlock(&priv->mutex); 9596 return err; 9597 } 9598 priv->power_mode = IPW_POWER_ENABLED | mode; 9599 } 9600 mutex_unlock(&priv->mutex); 9601 return 0; 9602 } 9603 9604 #define MAX_WX_STRING 80 9605 static int ipw_wx_get_powermode(struct net_device *dev, 9606 struct iw_request_info *info, 9607 union iwreq_data *wrqu, char *extra) 9608 { 9609 struct ipw_priv *priv = libipw_priv(dev); 9610 int level = IPW_POWER_LEVEL(priv->power_mode); 9611 char *p = extra; 9612 9613 p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level); 9614 9615 switch (level) { 9616 case IPW_POWER_AC: 9617 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)"); 9618 break; 9619 case IPW_POWER_BATTERY: 9620 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)"); 9621 break; 9622 default: 9623 p += snprintf(p, MAX_WX_STRING - (p - extra), 9624 "(Timeout %dms, Period %dms)", 9625 timeout_duration[level - 1] / 1000, 9626 period_duration[level - 1] / 1000); 9627 } 9628 9629 if (!(priv->power_mode & IPW_POWER_ENABLED)) 9630 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF"); 9631 9632 wrqu->data.length = p - extra + 1; 9633 9634 return 0; 9635 } 9636 9637 static int ipw_wx_set_wireless_mode(struct net_device *dev, 9638 struct iw_request_info *info, 9639 union iwreq_data *wrqu, char *extra) 9640 { 9641 struct ipw_priv *priv = libipw_priv(dev); 9642 int mode = *(int *)extra; 9643 u8 band = 0, modulation = 0; 9644 9645 if (mode == 0 || mode & ~IEEE_MODE_MASK) { 9646 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode); 9647 return -EINVAL; 9648 } 9649 mutex_lock(&priv->mutex); 9650 if (priv->adapter == IPW_2915ABG) { 9651 priv->ieee->abg_true = 1; 9652 if (mode & IEEE_A) { 9653 band |= LIBIPW_52GHZ_BAND; 9654 modulation |= LIBIPW_OFDM_MODULATION; 9655 } else 9656 priv->ieee->abg_true = 0; 9657 } else { 9658 if (mode & IEEE_A) { 9659 IPW_WARNING("Attempt to set 2200BG into " 9660 "802.11a mode\n"); 9661 mutex_unlock(&priv->mutex); 9662 return -EINVAL; 9663 } 9664 9665 priv->ieee->abg_true = 0; 9666 } 9667 9668 if (mode & IEEE_B) { 9669 band |= LIBIPW_24GHZ_BAND; 9670 modulation |= LIBIPW_CCK_MODULATION; 9671 } else 9672 priv->ieee->abg_true = 0; 9673 9674 if (mode & IEEE_G) { 9675 band |= LIBIPW_24GHZ_BAND; 9676 modulation |= LIBIPW_OFDM_MODULATION; 9677 } else 9678 priv->ieee->abg_true = 0; 9679 9680 priv->ieee->mode = mode; 9681 priv->ieee->freq_band = band; 9682 priv->ieee->modulation = modulation; 9683 init_supported_rates(priv, &priv->rates); 9684 9685 /* Network configuration changed -- force [re]association */ 9686 IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n"); 9687 if (!ipw_disassociate(priv)) { 9688 ipw_send_supported_rates(priv, &priv->rates); 9689 ipw_associate(priv); 9690 } 9691 9692 /* Update the band LEDs */ 9693 ipw_led_band_on(priv); 9694 9695 IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n", 9696 mode & IEEE_A ? 'a' : '.', 9697 mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.'); 9698 mutex_unlock(&priv->mutex); 9699 return 0; 9700 } 9701 9702 static int ipw_wx_get_wireless_mode(struct net_device *dev, 9703 struct iw_request_info *info, 9704 union iwreq_data *wrqu, char *extra) 9705 { 9706 struct ipw_priv *priv = libipw_priv(dev); 9707 mutex_lock(&priv->mutex); 9708 switch (priv->ieee->mode) { 9709 case IEEE_A: 9710 strncpy(extra, "802.11a (1)", MAX_WX_STRING); 9711 break; 9712 case IEEE_B: 9713 strncpy(extra, "802.11b (2)", MAX_WX_STRING); 9714 break; 9715 case IEEE_A | IEEE_B: 9716 strncpy(extra, "802.11ab (3)", MAX_WX_STRING); 9717 break; 9718 case IEEE_G: 9719 strncpy(extra, "802.11g (4)", MAX_WX_STRING); 9720 break; 9721 case IEEE_A | IEEE_G: 9722 strncpy(extra, "802.11ag (5)", MAX_WX_STRING); 9723 break; 9724 case IEEE_B | IEEE_G: 9725 strncpy(extra, "802.11bg (6)", MAX_WX_STRING); 9726 break; 9727 case IEEE_A | IEEE_B | IEEE_G: 9728 strncpy(extra, "802.11abg (7)", MAX_WX_STRING); 9729 break; 9730 default: 9731 strncpy(extra, "unknown", MAX_WX_STRING); 9732 break; 9733 } 9734 extra[MAX_WX_STRING - 1] = '\0'; 9735 9736 IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra); 9737 9738 wrqu->data.length = strlen(extra) + 1; 9739 mutex_unlock(&priv->mutex); 9740 9741 return 0; 9742 } 9743 9744 static int ipw_wx_set_preamble(struct net_device *dev, 9745 struct iw_request_info *info, 9746 union iwreq_data *wrqu, char *extra) 9747 { 9748 struct ipw_priv *priv = libipw_priv(dev); 9749 int mode = *(int *)extra; 9750 mutex_lock(&priv->mutex); 9751 /* Switching from SHORT -> LONG requires a disassociation */ 9752 if (mode == 1) { 9753 if (!(priv->config & CFG_PREAMBLE_LONG)) { 9754 priv->config |= CFG_PREAMBLE_LONG; 9755 9756 /* Network configuration changed -- force [re]association */ 9757 IPW_DEBUG_ASSOC 9758 ("[re]association triggered due to preamble change.\n"); 9759 if (!ipw_disassociate(priv)) 9760 ipw_associate(priv); 9761 } 9762 goto done; 9763 } 9764 9765 if (mode == 0) { 9766 priv->config &= ~CFG_PREAMBLE_LONG; 9767 goto done; 9768 } 9769 mutex_unlock(&priv->mutex); 9770 return -EINVAL; 9771 9772 done: 9773 mutex_unlock(&priv->mutex); 9774 return 0; 9775 } 9776 9777 static int ipw_wx_get_preamble(struct net_device *dev, 9778 struct iw_request_info *info, 9779 union iwreq_data *wrqu, char *extra) 9780 { 9781 struct ipw_priv *priv = libipw_priv(dev); 9782 mutex_lock(&priv->mutex); 9783 if (priv->config & CFG_PREAMBLE_LONG) 9784 snprintf(wrqu->name, IFNAMSIZ, "long (1)"); 9785 else 9786 snprintf(wrqu->name, IFNAMSIZ, "auto (0)"); 9787 mutex_unlock(&priv->mutex); 9788 return 0; 9789 } 9790 9791 #ifdef CONFIG_IPW2200_MONITOR 9792 static int ipw_wx_set_monitor(struct net_device *dev, 9793 struct iw_request_info *info, 9794 union iwreq_data *wrqu, char *extra) 9795 { 9796 struct ipw_priv *priv = libipw_priv(dev); 9797 int *parms = (int *)extra; 9798 int enable = (parms[0] > 0); 9799 mutex_lock(&priv->mutex); 9800 IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]); 9801 if (enable) { 9802 if (priv->ieee->iw_mode != IW_MODE_MONITOR) { 9803 #ifdef CONFIG_IPW2200_RADIOTAP 9804 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP; 9805 #else 9806 priv->net_dev->type = ARPHRD_IEEE80211; 9807 #endif 9808 schedule_work(&priv->adapter_restart); 9809 } 9810 9811 ipw_set_channel(priv, parms[1]); 9812 } else { 9813 if (priv->ieee->iw_mode != IW_MODE_MONITOR) { 9814 mutex_unlock(&priv->mutex); 9815 return 0; 9816 } 9817 priv->net_dev->type = ARPHRD_ETHER; 9818 schedule_work(&priv->adapter_restart); 9819 } 9820 mutex_unlock(&priv->mutex); 9821 return 0; 9822 } 9823 9824 #endif /* CONFIG_IPW2200_MONITOR */ 9825 9826 static int ipw_wx_reset(struct net_device *dev, 9827 struct iw_request_info *info, 9828 union iwreq_data *wrqu, char *extra) 9829 { 9830 struct ipw_priv *priv = libipw_priv(dev); 9831 IPW_DEBUG_WX("RESET\n"); 9832 schedule_work(&priv->adapter_restart); 9833 return 0; 9834 } 9835 9836 static int ipw_wx_sw_reset(struct net_device *dev, 9837 struct iw_request_info *info, 9838 union iwreq_data *wrqu, char *extra) 9839 { 9840 struct ipw_priv *priv = libipw_priv(dev); 9841 union iwreq_data wrqu_sec = { 9842 .encoding = { 9843 .flags = IW_ENCODE_DISABLED, 9844 }, 9845 }; 9846 int ret; 9847 9848 IPW_DEBUG_WX("SW_RESET\n"); 9849 9850 mutex_lock(&priv->mutex); 9851 9852 ret = ipw_sw_reset(priv, 2); 9853 if (!ret) { 9854 free_firmware(); 9855 ipw_adapter_restart(priv); 9856 } 9857 9858 /* The SW reset bit might have been toggled on by the 'disable' 9859 * module parameter, so take appropriate action */ 9860 ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW); 9861 9862 mutex_unlock(&priv->mutex); 9863 libipw_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL); 9864 mutex_lock(&priv->mutex); 9865 9866 if (!(priv->status & STATUS_RF_KILL_MASK)) { 9867 /* Configuration likely changed -- force [re]association */ 9868 IPW_DEBUG_ASSOC("[re]association triggered due to sw " 9869 "reset.\n"); 9870 if (!ipw_disassociate(priv)) 9871 ipw_associate(priv); 9872 } 9873 9874 mutex_unlock(&priv->mutex); 9875 9876 return 0; 9877 } 9878 9879 /* Rebase the WE IOCTLs to zero for the handler array */ 9880 static iw_handler ipw_wx_handlers[] = { 9881 IW_HANDLER(SIOCGIWNAME, (iw_handler)cfg80211_wext_giwname), 9882 IW_HANDLER(SIOCSIWFREQ, ipw_wx_set_freq), 9883 IW_HANDLER(SIOCGIWFREQ, ipw_wx_get_freq), 9884 IW_HANDLER(SIOCSIWMODE, ipw_wx_set_mode), 9885 IW_HANDLER(SIOCGIWMODE, ipw_wx_get_mode), 9886 IW_HANDLER(SIOCSIWSENS, ipw_wx_set_sens), 9887 IW_HANDLER(SIOCGIWSENS, ipw_wx_get_sens), 9888 IW_HANDLER(SIOCGIWRANGE, ipw_wx_get_range), 9889 IW_HANDLER(SIOCSIWAP, ipw_wx_set_wap), 9890 IW_HANDLER(SIOCGIWAP, ipw_wx_get_wap), 9891 IW_HANDLER(SIOCSIWSCAN, ipw_wx_set_scan), 9892 IW_HANDLER(SIOCGIWSCAN, ipw_wx_get_scan), 9893 IW_HANDLER(SIOCSIWESSID, ipw_wx_set_essid), 9894 IW_HANDLER(SIOCGIWESSID, ipw_wx_get_essid), 9895 IW_HANDLER(SIOCSIWNICKN, ipw_wx_set_nick), 9896 IW_HANDLER(SIOCGIWNICKN, ipw_wx_get_nick), 9897 IW_HANDLER(SIOCSIWRATE, ipw_wx_set_rate), 9898 IW_HANDLER(SIOCGIWRATE, ipw_wx_get_rate), 9899 IW_HANDLER(SIOCSIWRTS, ipw_wx_set_rts), 9900 IW_HANDLER(SIOCGIWRTS, ipw_wx_get_rts), 9901 IW_HANDLER(SIOCSIWFRAG, ipw_wx_set_frag), 9902 IW_HANDLER(SIOCGIWFRAG, ipw_wx_get_frag), 9903 IW_HANDLER(SIOCSIWTXPOW, ipw_wx_set_txpow), 9904 IW_HANDLER(SIOCGIWTXPOW, ipw_wx_get_txpow), 9905 IW_HANDLER(SIOCSIWRETRY, ipw_wx_set_retry), 9906 IW_HANDLER(SIOCGIWRETRY, ipw_wx_get_retry), 9907 IW_HANDLER(SIOCSIWENCODE, ipw_wx_set_encode), 9908 IW_HANDLER(SIOCGIWENCODE, ipw_wx_get_encode), 9909 IW_HANDLER(SIOCSIWPOWER, ipw_wx_set_power), 9910 IW_HANDLER(SIOCGIWPOWER, ipw_wx_get_power), 9911 IW_HANDLER(SIOCSIWSPY, iw_handler_set_spy), 9912 IW_HANDLER(SIOCGIWSPY, iw_handler_get_spy), 9913 IW_HANDLER(SIOCSIWTHRSPY, iw_handler_set_thrspy), 9914 IW_HANDLER(SIOCGIWTHRSPY, iw_handler_get_thrspy), 9915 IW_HANDLER(SIOCSIWGENIE, ipw_wx_set_genie), 9916 IW_HANDLER(SIOCGIWGENIE, ipw_wx_get_genie), 9917 IW_HANDLER(SIOCSIWMLME, ipw_wx_set_mlme), 9918 IW_HANDLER(SIOCSIWAUTH, ipw_wx_set_auth), 9919 IW_HANDLER(SIOCGIWAUTH, ipw_wx_get_auth), 9920 IW_HANDLER(SIOCSIWENCODEEXT, ipw_wx_set_encodeext), 9921 IW_HANDLER(SIOCGIWENCODEEXT, ipw_wx_get_encodeext), 9922 }; 9923 9924 enum { 9925 IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV, 9926 IPW_PRIV_GET_POWER, 9927 IPW_PRIV_SET_MODE, 9928 IPW_PRIV_GET_MODE, 9929 IPW_PRIV_SET_PREAMBLE, 9930 IPW_PRIV_GET_PREAMBLE, 9931 IPW_PRIV_RESET, 9932 IPW_PRIV_SW_RESET, 9933 #ifdef CONFIG_IPW2200_MONITOR 9934 IPW_PRIV_SET_MONITOR, 9935 #endif 9936 }; 9937 9938 static struct iw_priv_args ipw_priv_args[] = { 9939 { 9940 .cmd = IPW_PRIV_SET_POWER, 9941 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 9942 .name = "set_power"}, 9943 { 9944 .cmd = IPW_PRIV_GET_POWER, 9945 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING, 9946 .name = "get_power"}, 9947 { 9948 .cmd = IPW_PRIV_SET_MODE, 9949 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 9950 .name = "set_mode"}, 9951 { 9952 .cmd = IPW_PRIV_GET_MODE, 9953 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING, 9954 .name = "get_mode"}, 9955 { 9956 .cmd = IPW_PRIV_SET_PREAMBLE, 9957 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 9958 .name = "set_preamble"}, 9959 { 9960 .cmd = IPW_PRIV_GET_PREAMBLE, 9961 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, 9962 .name = "get_preamble"}, 9963 { 9964 IPW_PRIV_RESET, 9965 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"}, 9966 { 9967 IPW_PRIV_SW_RESET, 9968 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"}, 9969 #ifdef CONFIG_IPW2200_MONITOR 9970 { 9971 IPW_PRIV_SET_MONITOR, 9972 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"}, 9973 #endif /* CONFIG_IPW2200_MONITOR */ 9974 }; 9975 9976 static iw_handler ipw_priv_handler[] = { 9977 ipw_wx_set_powermode, 9978 ipw_wx_get_powermode, 9979 ipw_wx_set_wireless_mode, 9980 ipw_wx_get_wireless_mode, 9981 ipw_wx_set_preamble, 9982 ipw_wx_get_preamble, 9983 ipw_wx_reset, 9984 ipw_wx_sw_reset, 9985 #ifdef CONFIG_IPW2200_MONITOR 9986 ipw_wx_set_monitor, 9987 #endif 9988 }; 9989 9990 static const struct iw_handler_def ipw_wx_handler_def = { 9991 .standard = ipw_wx_handlers, 9992 .num_standard = ARRAY_SIZE(ipw_wx_handlers), 9993 .num_private = ARRAY_SIZE(ipw_priv_handler), 9994 .num_private_args = ARRAY_SIZE(ipw_priv_args), 9995 .private = ipw_priv_handler, 9996 .private_args = ipw_priv_args, 9997 .get_wireless_stats = ipw_get_wireless_stats, 9998 }; 9999 10000 /* 10001 * Get wireless statistics. 10002 * Called by /proc/net/wireless 10003 * Also called by SIOCGIWSTATS 10004 */ 10005 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev) 10006 { 10007 struct ipw_priv *priv = libipw_priv(dev); 10008 struct iw_statistics *wstats; 10009 10010 wstats = &priv->wstats; 10011 10012 /* if hw is disabled, then ipw_get_ordinal() can't be called. 10013 * netdev->get_wireless_stats seems to be called before fw is 10014 * initialized. STATUS_ASSOCIATED will only be set if the hw is up 10015 * and associated; if not associcated, the values are all meaningless 10016 * anyway, so set them all to NULL and INVALID */ 10017 if (!(priv->status & STATUS_ASSOCIATED)) { 10018 wstats->miss.beacon = 0; 10019 wstats->discard.retries = 0; 10020 wstats->qual.qual = 0; 10021 wstats->qual.level = 0; 10022 wstats->qual.noise = 0; 10023 wstats->qual.updated = 7; 10024 wstats->qual.updated |= IW_QUAL_NOISE_INVALID | 10025 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID; 10026 return wstats; 10027 } 10028 10029 wstats->qual.qual = priv->quality; 10030 wstats->qual.level = priv->exp_avg_rssi; 10031 wstats->qual.noise = priv->exp_avg_noise; 10032 wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED | 10033 IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM; 10034 10035 wstats->miss.beacon = average_value(&priv->average_missed_beacons); 10036 wstats->discard.retries = priv->last_tx_failures; 10037 wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable; 10038 10039 /* if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len)) 10040 goto fail_get_ordinal; 10041 wstats->discard.retries += tx_retry; */ 10042 10043 return wstats; 10044 } 10045 10046 /* net device stuff */ 10047 10048 static void init_sys_config(struct ipw_sys_config *sys_config) 10049 { 10050 memset(sys_config, 0, sizeof(struct ipw_sys_config)); 10051 sys_config->bt_coexistence = 0; 10052 sys_config->answer_broadcast_ssid_probe = 0; 10053 sys_config->accept_all_data_frames = 0; 10054 sys_config->accept_non_directed_frames = 1; 10055 sys_config->exclude_unicast_unencrypted = 0; 10056 sys_config->disable_unicast_decryption = 1; 10057 sys_config->exclude_multicast_unencrypted = 0; 10058 sys_config->disable_multicast_decryption = 1; 10059 if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B) 10060 antenna = CFG_SYS_ANTENNA_BOTH; 10061 sys_config->antenna_diversity = antenna; 10062 sys_config->pass_crc_to_host = 0; /* TODO: See if 1 gives us FCS */ 10063 sys_config->dot11g_auto_detection = 0; 10064 sys_config->enable_cts_to_self = 0; 10065 sys_config->bt_coexist_collision_thr = 0; 10066 sys_config->pass_noise_stats_to_host = 1; /* 1 -- fix for 256 */ 10067 sys_config->silence_threshold = 0x1e; 10068 } 10069 10070 static int ipw_net_open(struct net_device *dev) 10071 { 10072 IPW_DEBUG_INFO("dev->open\n"); 10073 netif_start_queue(dev); 10074 return 0; 10075 } 10076 10077 static int ipw_net_stop(struct net_device *dev) 10078 { 10079 IPW_DEBUG_INFO("dev->close\n"); 10080 netif_stop_queue(dev); 10081 return 0; 10082 } 10083 10084 /* 10085 todo: 10086 10087 modify to send one tfd per fragment instead of using chunking. otherwise 10088 we need to heavily modify the libipw_skb_to_txb. 10089 */ 10090 10091 static int ipw_tx_skb(struct ipw_priv *priv, struct libipw_txb *txb, 10092 int pri) 10093 { 10094 struct libipw_hdr_3addrqos *hdr = (struct libipw_hdr_3addrqos *) 10095 txb->fragments[0]->data; 10096 int i = 0; 10097 struct tfd_frame *tfd; 10098 #ifdef CONFIG_IPW2200_QOS 10099 int tx_id = ipw_get_tx_queue_number(priv, pri); 10100 struct clx2_tx_queue *txq = &priv->txq[tx_id]; 10101 #else 10102 struct clx2_tx_queue *txq = &priv->txq[0]; 10103 #endif 10104 struct clx2_queue *q = &txq->q; 10105 u8 id, hdr_len, unicast; 10106 int fc; 10107 10108 if (!(priv->status & STATUS_ASSOCIATED)) 10109 goto drop; 10110 10111 hdr_len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_ctl)); 10112 switch (priv->ieee->iw_mode) { 10113 case IW_MODE_ADHOC: 10114 unicast = !is_multicast_ether_addr(hdr->addr1); 10115 id = ipw_find_station(priv, hdr->addr1); 10116 if (id == IPW_INVALID_STATION) { 10117 id = ipw_add_station(priv, hdr->addr1); 10118 if (id == IPW_INVALID_STATION) { 10119 IPW_WARNING("Attempt to send data to " 10120 "invalid cell: %pM\n", 10121 hdr->addr1); 10122 goto drop; 10123 } 10124 } 10125 break; 10126 10127 case IW_MODE_INFRA: 10128 default: 10129 unicast = !is_multicast_ether_addr(hdr->addr3); 10130 id = 0; 10131 break; 10132 } 10133 10134 tfd = &txq->bd[q->first_empty]; 10135 txq->txb[q->first_empty] = txb; 10136 memset(tfd, 0, sizeof(*tfd)); 10137 tfd->u.data.station_number = id; 10138 10139 tfd->control_flags.message_type = TX_FRAME_TYPE; 10140 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK; 10141 10142 tfd->u.data.cmd_id = DINO_CMD_TX; 10143 tfd->u.data.len = cpu_to_le16(txb->payload_size); 10144 10145 if (priv->assoc_request.ieee_mode == IPW_B_MODE) 10146 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK; 10147 else 10148 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM; 10149 10150 if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE) 10151 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE; 10152 10153 fc = le16_to_cpu(hdr->frame_ctl); 10154 hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS); 10155 10156 memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len); 10157 10158 if (likely(unicast)) 10159 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD; 10160 10161 if (txb->encrypted && !priv->ieee->host_encrypt) { 10162 switch (priv->ieee->sec.level) { 10163 case SEC_LEVEL_3: 10164 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |= 10165 cpu_to_le16(IEEE80211_FCTL_PROTECTED); 10166 /* XXX: ACK flag must be set for CCMP even if it 10167 * is a multicast/broadcast packet, because CCMP 10168 * group communication encrypted by GTK is 10169 * actually done by the AP. */ 10170 if (!unicast) 10171 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD; 10172 10173 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP; 10174 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM; 10175 tfd->u.data.key_index = 0; 10176 tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE; 10177 break; 10178 case SEC_LEVEL_2: 10179 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |= 10180 cpu_to_le16(IEEE80211_FCTL_PROTECTED); 10181 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP; 10182 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP; 10183 tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE; 10184 break; 10185 case SEC_LEVEL_1: 10186 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |= 10187 cpu_to_le16(IEEE80211_FCTL_PROTECTED); 10188 tfd->u.data.key_index = priv->ieee->crypt_info.tx_keyidx; 10189 if (priv->ieee->sec.key_sizes[priv->ieee->crypt_info.tx_keyidx] <= 10190 40) 10191 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit; 10192 else 10193 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit; 10194 break; 10195 case SEC_LEVEL_0: 10196 break; 10197 default: 10198 printk(KERN_ERR "Unknown security level %d\n", 10199 priv->ieee->sec.level); 10200 break; 10201 } 10202 } else 10203 /* No hardware encryption */ 10204 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP; 10205 10206 #ifdef CONFIG_IPW2200_QOS 10207 if (fc & IEEE80211_STYPE_QOS_DATA) 10208 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data)); 10209 #endif /* CONFIG_IPW2200_QOS */ 10210 10211 /* payload */ 10212 tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2), 10213 txb->nr_frags)); 10214 IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n", 10215 txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks)); 10216 for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) { 10217 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n", 10218 i, le32_to_cpu(tfd->u.data.num_chunks), 10219 txb->fragments[i]->len - hdr_len); 10220 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n", 10221 i, tfd->u.data.num_chunks, 10222 txb->fragments[i]->len - hdr_len); 10223 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len, 10224 txb->fragments[i]->len - hdr_len); 10225 10226 tfd->u.data.chunk_ptr[i] = 10227 cpu_to_le32(pci_map_single 10228 (priv->pci_dev, 10229 txb->fragments[i]->data + hdr_len, 10230 txb->fragments[i]->len - hdr_len, 10231 PCI_DMA_TODEVICE)); 10232 tfd->u.data.chunk_len[i] = 10233 cpu_to_le16(txb->fragments[i]->len - hdr_len); 10234 } 10235 10236 if (i != txb->nr_frags) { 10237 struct sk_buff *skb; 10238 u16 remaining_bytes = 0; 10239 int j; 10240 10241 for (j = i; j < txb->nr_frags; j++) 10242 remaining_bytes += txb->fragments[j]->len - hdr_len; 10243 10244 printk(KERN_INFO "Trying to reallocate for %d bytes\n", 10245 remaining_bytes); 10246 skb = alloc_skb(remaining_bytes, GFP_ATOMIC); 10247 if (skb != NULL) { 10248 tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes); 10249 for (j = i; j < txb->nr_frags; j++) { 10250 int size = txb->fragments[j]->len - hdr_len; 10251 10252 printk(KERN_INFO "Adding frag %d %d...\n", 10253 j, size); 10254 skb_put_data(skb, 10255 txb->fragments[j]->data + hdr_len, 10256 size); 10257 } 10258 dev_kfree_skb_any(txb->fragments[i]); 10259 txb->fragments[i] = skb; 10260 tfd->u.data.chunk_ptr[i] = 10261 cpu_to_le32(pci_map_single 10262 (priv->pci_dev, skb->data, 10263 remaining_bytes, 10264 PCI_DMA_TODEVICE)); 10265 10266 le32_add_cpu(&tfd->u.data.num_chunks, 1); 10267 } 10268 } 10269 10270 /* kick DMA */ 10271 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd); 10272 ipw_write32(priv, q->reg_w, q->first_empty); 10273 10274 if (ipw_tx_queue_space(q) < q->high_mark) 10275 netif_stop_queue(priv->net_dev); 10276 10277 return NETDEV_TX_OK; 10278 10279 drop: 10280 IPW_DEBUG_DROP("Silently dropping Tx packet.\n"); 10281 libipw_txb_free(txb); 10282 return NETDEV_TX_OK; 10283 } 10284 10285 static int ipw_net_is_queue_full(struct net_device *dev, int pri) 10286 { 10287 struct ipw_priv *priv = libipw_priv(dev); 10288 #ifdef CONFIG_IPW2200_QOS 10289 int tx_id = ipw_get_tx_queue_number(priv, pri); 10290 struct clx2_tx_queue *txq = &priv->txq[tx_id]; 10291 #else 10292 struct clx2_tx_queue *txq = &priv->txq[0]; 10293 #endif /* CONFIG_IPW2200_QOS */ 10294 10295 if (ipw_tx_queue_space(&txq->q) < txq->q.high_mark) 10296 return 1; 10297 10298 return 0; 10299 } 10300 10301 #ifdef CONFIG_IPW2200_PROMISCUOUS 10302 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv, 10303 struct libipw_txb *txb) 10304 { 10305 struct libipw_rx_stats dummystats; 10306 struct ieee80211_hdr *hdr; 10307 u8 n; 10308 u16 filter = priv->prom_priv->filter; 10309 int hdr_only = 0; 10310 10311 if (filter & IPW_PROM_NO_TX) 10312 return; 10313 10314 memset(&dummystats, 0, sizeof(dummystats)); 10315 10316 /* Filtering of fragment chains is done against the first fragment */ 10317 hdr = (void *)txb->fragments[0]->data; 10318 if (libipw_is_management(le16_to_cpu(hdr->frame_control))) { 10319 if (filter & IPW_PROM_NO_MGMT) 10320 return; 10321 if (filter & IPW_PROM_MGMT_HEADER_ONLY) 10322 hdr_only = 1; 10323 } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) { 10324 if (filter & IPW_PROM_NO_CTL) 10325 return; 10326 if (filter & IPW_PROM_CTL_HEADER_ONLY) 10327 hdr_only = 1; 10328 } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) { 10329 if (filter & IPW_PROM_NO_DATA) 10330 return; 10331 if (filter & IPW_PROM_DATA_HEADER_ONLY) 10332 hdr_only = 1; 10333 } 10334 10335 for(n=0; n<txb->nr_frags; ++n) { 10336 struct sk_buff *src = txb->fragments[n]; 10337 struct sk_buff *dst; 10338 struct ieee80211_radiotap_header *rt_hdr; 10339 int len; 10340 10341 if (hdr_only) { 10342 hdr = (void *)src->data; 10343 len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control)); 10344 } else 10345 len = src->len; 10346 10347 dst = alloc_skb(len + sizeof(*rt_hdr) + sizeof(u16)*2, GFP_ATOMIC); 10348 if (!dst) 10349 continue; 10350 10351 rt_hdr = skb_put(dst, sizeof(*rt_hdr)); 10352 10353 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION; 10354 rt_hdr->it_pad = 0; 10355 rt_hdr->it_present = 0; /* after all, it's just an idea */ 10356 rt_hdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_CHANNEL); 10357 10358 *(__le16*)skb_put(dst, sizeof(u16)) = cpu_to_le16( 10359 ieee80211chan2mhz(priv->channel)); 10360 if (priv->channel > 14) /* 802.11a */ 10361 *(__le16*)skb_put(dst, sizeof(u16)) = 10362 cpu_to_le16(IEEE80211_CHAN_OFDM | 10363 IEEE80211_CHAN_5GHZ); 10364 else if (priv->ieee->mode == IEEE_B) /* 802.11b */ 10365 *(__le16*)skb_put(dst, sizeof(u16)) = 10366 cpu_to_le16(IEEE80211_CHAN_CCK | 10367 IEEE80211_CHAN_2GHZ); 10368 else /* 802.11g */ 10369 *(__le16*)skb_put(dst, sizeof(u16)) = 10370 cpu_to_le16(IEEE80211_CHAN_OFDM | 10371 IEEE80211_CHAN_2GHZ); 10372 10373 rt_hdr->it_len = cpu_to_le16(dst->len); 10374 10375 skb_copy_from_linear_data(src, skb_put(dst, len), len); 10376 10377 if (!libipw_rx(priv->prom_priv->ieee, dst, &dummystats)) 10378 dev_kfree_skb_any(dst); 10379 } 10380 } 10381 #endif 10382 10383 static netdev_tx_t ipw_net_hard_start_xmit(struct libipw_txb *txb, 10384 struct net_device *dev, int pri) 10385 { 10386 struct ipw_priv *priv = libipw_priv(dev); 10387 unsigned long flags; 10388 netdev_tx_t ret; 10389 10390 IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size); 10391 spin_lock_irqsave(&priv->lock, flags); 10392 10393 #ifdef CONFIG_IPW2200_PROMISCUOUS 10394 if (rtap_iface && netif_running(priv->prom_net_dev)) 10395 ipw_handle_promiscuous_tx(priv, txb); 10396 #endif 10397 10398 ret = ipw_tx_skb(priv, txb, pri); 10399 if (ret == NETDEV_TX_OK) 10400 __ipw_led_activity_on(priv); 10401 spin_unlock_irqrestore(&priv->lock, flags); 10402 10403 return ret; 10404 } 10405 10406 static void ipw_net_set_multicast_list(struct net_device *dev) 10407 { 10408 10409 } 10410 10411 static int ipw_net_set_mac_address(struct net_device *dev, void *p) 10412 { 10413 struct ipw_priv *priv = libipw_priv(dev); 10414 struct sockaddr *addr = p; 10415 10416 if (!is_valid_ether_addr(addr->sa_data)) 10417 return -EADDRNOTAVAIL; 10418 mutex_lock(&priv->mutex); 10419 priv->config |= CFG_CUSTOM_MAC; 10420 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN); 10421 printk(KERN_INFO "%s: Setting MAC to %pM\n", 10422 priv->net_dev->name, priv->mac_addr); 10423 schedule_work(&priv->adapter_restart); 10424 mutex_unlock(&priv->mutex); 10425 return 0; 10426 } 10427 10428 static void ipw_ethtool_get_drvinfo(struct net_device *dev, 10429 struct ethtool_drvinfo *info) 10430 { 10431 struct ipw_priv *p = libipw_priv(dev); 10432 char vers[64]; 10433 char date[32]; 10434 u32 len; 10435 10436 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 10437 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 10438 10439 len = sizeof(vers); 10440 ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len); 10441 len = sizeof(date); 10442 ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len); 10443 10444 snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)", 10445 vers, date); 10446 strlcpy(info->bus_info, pci_name(p->pci_dev), 10447 sizeof(info->bus_info)); 10448 } 10449 10450 static u32 ipw_ethtool_get_link(struct net_device *dev) 10451 { 10452 struct ipw_priv *priv = libipw_priv(dev); 10453 return (priv->status & STATUS_ASSOCIATED) != 0; 10454 } 10455 10456 static int ipw_ethtool_get_eeprom_len(struct net_device *dev) 10457 { 10458 return IPW_EEPROM_IMAGE_SIZE; 10459 } 10460 10461 static int ipw_ethtool_get_eeprom(struct net_device *dev, 10462 struct ethtool_eeprom *eeprom, u8 * bytes) 10463 { 10464 struct ipw_priv *p = libipw_priv(dev); 10465 10466 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE) 10467 return -EINVAL; 10468 mutex_lock(&p->mutex); 10469 memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len); 10470 mutex_unlock(&p->mutex); 10471 return 0; 10472 } 10473 10474 static int ipw_ethtool_set_eeprom(struct net_device *dev, 10475 struct ethtool_eeprom *eeprom, u8 * bytes) 10476 { 10477 struct ipw_priv *p = libipw_priv(dev); 10478 int i; 10479 10480 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE) 10481 return -EINVAL; 10482 mutex_lock(&p->mutex); 10483 memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len); 10484 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++) 10485 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]); 10486 mutex_unlock(&p->mutex); 10487 return 0; 10488 } 10489 10490 static const struct ethtool_ops ipw_ethtool_ops = { 10491 .get_link = ipw_ethtool_get_link, 10492 .get_drvinfo = ipw_ethtool_get_drvinfo, 10493 .get_eeprom_len = ipw_ethtool_get_eeprom_len, 10494 .get_eeprom = ipw_ethtool_get_eeprom, 10495 .set_eeprom = ipw_ethtool_set_eeprom, 10496 }; 10497 10498 static irqreturn_t ipw_isr(int irq, void *data) 10499 { 10500 struct ipw_priv *priv = data; 10501 u32 inta, inta_mask; 10502 10503 if (!priv) 10504 return IRQ_NONE; 10505 10506 spin_lock(&priv->irq_lock); 10507 10508 if (!(priv->status & STATUS_INT_ENABLED)) { 10509 /* IRQ is disabled */ 10510 goto none; 10511 } 10512 10513 inta = ipw_read32(priv, IPW_INTA_RW); 10514 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R); 10515 10516 if (inta == 0xFFFFFFFF) { 10517 /* Hardware disappeared */ 10518 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n"); 10519 goto none; 10520 } 10521 10522 if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) { 10523 /* Shared interrupt */ 10524 goto none; 10525 } 10526 10527 /* tell the device to stop sending interrupts */ 10528 __ipw_disable_interrupts(priv); 10529 10530 /* ack current interrupts */ 10531 inta &= (IPW_INTA_MASK_ALL & inta_mask); 10532 ipw_write32(priv, IPW_INTA_RW, inta); 10533 10534 /* Cache INTA value for our tasklet */ 10535 priv->isr_inta = inta; 10536 10537 tasklet_schedule(&priv->irq_tasklet); 10538 10539 spin_unlock(&priv->irq_lock); 10540 10541 return IRQ_HANDLED; 10542 none: 10543 spin_unlock(&priv->irq_lock); 10544 return IRQ_NONE; 10545 } 10546 10547 static void ipw_rf_kill(void *adapter) 10548 { 10549 struct ipw_priv *priv = adapter; 10550 unsigned long flags; 10551 10552 spin_lock_irqsave(&priv->lock, flags); 10553 10554 if (rf_kill_active(priv)) { 10555 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n"); 10556 schedule_delayed_work(&priv->rf_kill, 2 * HZ); 10557 goto exit_unlock; 10558 } 10559 10560 /* RF Kill is now disabled, so bring the device back up */ 10561 10562 if (!(priv->status & STATUS_RF_KILL_MASK)) { 10563 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting " 10564 "device\n"); 10565 10566 /* we can not do an adapter restart while inside an irq lock */ 10567 schedule_work(&priv->adapter_restart); 10568 } else 10569 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still " 10570 "enabled\n"); 10571 10572 exit_unlock: 10573 spin_unlock_irqrestore(&priv->lock, flags); 10574 } 10575 10576 static void ipw_bg_rf_kill(struct work_struct *work) 10577 { 10578 struct ipw_priv *priv = 10579 container_of(work, struct ipw_priv, rf_kill.work); 10580 mutex_lock(&priv->mutex); 10581 ipw_rf_kill(priv); 10582 mutex_unlock(&priv->mutex); 10583 } 10584 10585 static void ipw_link_up(struct ipw_priv *priv) 10586 { 10587 priv->last_seq_num = -1; 10588 priv->last_frag_num = -1; 10589 priv->last_packet_time = 0; 10590 10591 netif_carrier_on(priv->net_dev); 10592 10593 cancel_delayed_work(&priv->request_scan); 10594 cancel_delayed_work(&priv->request_direct_scan); 10595 cancel_delayed_work(&priv->request_passive_scan); 10596 cancel_delayed_work(&priv->scan_event); 10597 ipw_reset_stats(priv); 10598 /* Ensure the rate is updated immediately */ 10599 priv->last_rate = ipw_get_current_rate(priv); 10600 ipw_gather_stats(priv); 10601 ipw_led_link_up(priv); 10602 notify_wx_assoc_event(priv); 10603 10604 if (priv->config & CFG_BACKGROUND_SCAN) 10605 schedule_delayed_work(&priv->request_scan, HZ); 10606 } 10607 10608 static void ipw_bg_link_up(struct work_struct *work) 10609 { 10610 struct ipw_priv *priv = 10611 container_of(work, struct ipw_priv, link_up); 10612 mutex_lock(&priv->mutex); 10613 ipw_link_up(priv); 10614 mutex_unlock(&priv->mutex); 10615 } 10616 10617 static void ipw_link_down(struct ipw_priv *priv) 10618 { 10619 ipw_led_link_down(priv); 10620 netif_carrier_off(priv->net_dev); 10621 notify_wx_assoc_event(priv); 10622 10623 /* Cancel any queued work ... */ 10624 cancel_delayed_work(&priv->request_scan); 10625 cancel_delayed_work(&priv->request_direct_scan); 10626 cancel_delayed_work(&priv->request_passive_scan); 10627 cancel_delayed_work(&priv->adhoc_check); 10628 cancel_delayed_work(&priv->gather_stats); 10629 10630 ipw_reset_stats(priv); 10631 10632 if (!(priv->status & STATUS_EXIT_PENDING)) { 10633 /* Queue up another scan... */ 10634 schedule_delayed_work(&priv->request_scan, 0); 10635 } else 10636 cancel_delayed_work(&priv->scan_event); 10637 } 10638 10639 static void ipw_bg_link_down(struct work_struct *work) 10640 { 10641 struct ipw_priv *priv = 10642 container_of(work, struct ipw_priv, link_down); 10643 mutex_lock(&priv->mutex); 10644 ipw_link_down(priv); 10645 mutex_unlock(&priv->mutex); 10646 } 10647 10648 static int ipw_setup_deferred_work(struct ipw_priv *priv) 10649 { 10650 int ret = 0; 10651 10652 init_waitqueue_head(&priv->wait_command_queue); 10653 init_waitqueue_head(&priv->wait_state); 10654 10655 INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check); 10656 INIT_WORK(&priv->associate, ipw_bg_associate); 10657 INIT_WORK(&priv->disassociate, ipw_bg_disassociate); 10658 INIT_WORK(&priv->system_config, ipw_system_config); 10659 INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish); 10660 INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart); 10661 INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill); 10662 INIT_WORK(&priv->up, ipw_bg_up); 10663 INIT_WORK(&priv->down, ipw_bg_down); 10664 INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan); 10665 INIT_DELAYED_WORK(&priv->request_direct_scan, ipw_request_direct_scan); 10666 INIT_DELAYED_WORK(&priv->request_passive_scan, ipw_request_passive_scan); 10667 INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event); 10668 INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats); 10669 INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan); 10670 INIT_WORK(&priv->roam, ipw_bg_roam); 10671 INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check); 10672 INIT_WORK(&priv->link_up, ipw_bg_link_up); 10673 INIT_WORK(&priv->link_down, ipw_bg_link_down); 10674 INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on); 10675 INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off); 10676 INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off); 10677 INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network); 10678 10679 #ifdef CONFIG_IPW2200_QOS 10680 INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate); 10681 #endif /* CONFIG_IPW2200_QOS */ 10682 10683 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long)) 10684 ipw_irq_tasklet, (unsigned long)priv); 10685 10686 return ret; 10687 } 10688 10689 static void shim__set_security(struct net_device *dev, 10690 struct libipw_security *sec) 10691 { 10692 struct ipw_priv *priv = libipw_priv(dev); 10693 int i; 10694 for (i = 0; i < 4; i++) { 10695 if (sec->flags & (1 << i)) { 10696 priv->ieee->sec.encode_alg[i] = sec->encode_alg[i]; 10697 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i]; 10698 if (sec->key_sizes[i] == 0) 10699 priv->ieee->sec.flags &= ~(1 << i); 10700 else { 10701 memcpy(priv->ieee->sec.keys[i], sec->keys[i], 10702 sec->key_sizes[i]); 10703 priv->ieee->sec.flags |= (1 << i); 10704 } 10705 priv->status |= STATUS_SECURITY_UPDATED; 10706 } else if (sec->level != SEC_LEVEL_1) 10707 priv->ieee->sec.flags &= ~(1 << i); 10708 } 10709 10710 if (sec->flags & SEC_ACTIVE_KEY) { 10711 priv->ieee->sec.active_key = sec->active_key; 10712 priv->ieee->sec.flags |= SEC_ACTIVE_KEY; 10713 priv->status |= STATUS_SECURITY_UPDATED; 10714 } else 10715 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY; 10716 10717 if ((sec->flags & SEC_AUTH_MODE) && 10718 (priv->ieee->sec.auth_mode != sec->auth_mode)) { 10719 priv->ieee->sec.auth_mode = sec->auth_mode; 10720 priv->ieee->sec.flags |= SEC_AUTH_MODE; 10721 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY) 10722 priv->capability |= CAP_SHARED_KEY; 10723 else 10724 priv->capability &= ~CAP_SHARED_KEY; 10725 priv->status |= STATUS_SECURITY_UPDATED; 10726 } 10727 10728 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) { 10729 priv->ieee->sec.flags |= SEC_ENABLED; 10730 priv->ieee->sec.enabled = sec->enabled; 10731 priv->status |= STATUS_SECURITY_UPDATED; 10732 if (sec->enabled) 10733 priv->capability |= CAP_PRIVACY_ON; 10734 else 10735 priv->capability &= ~CAP_PRIVACY_ON; 10736 } 10737 10738 if (sec->flags & SEC_ENCRYPT) 10739 priv->ieee->sec.encrypt = sec->encrypt; 10740 10741 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) { 10742 priv->ieee->sec.level = sec->level; 10743 priv->ieee->sec.flags |= SEC_LEVEL; 10744 priv->status |= STATUS_SECURITY_UPDATED; 10745 } 10746 10747 if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT)) 10748 ipw_set_hwcrypto_keys(priv); 10749 10750 /* To match current functionality of ipw2100 (which works well w/ 10751 * various supplicants, we don't force a disassociate if the 10752 * privacy capability changes ... */ 10753 #if 0 10754 if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) && 10755 (((priv->assoc_request.capability & 10756 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && !sec->enabled) || 10757 (!(priv->assoc_request.capability & 10758 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && sec->enabled))) { 10759 IPW_DEBUG_ASSOC("Disassociating due to capability " 10760 "change.\n"); 10761 ipw_disassociate(priv); 10762 } 10763 #endif 10764 } 10765 10766 static int init_supported_rates(struct ipw_priv *priv, 10767 struct ipw_supported_rates *rates) 10768 { 10769 /* TODO: Mask out rates based on priv->rates_mask */ 10770 10771 memset(rates, 0, sizeof(*rates)); 10772 /* configure supported rates */ 10773 switch (priv->ieee->freq_band) { 10774 case LIBIPW_52GHZ_BAND: 10775 rates->ieee_mode = IPW_A_MODE; 10776 rates->purpose = IPW_RATE_CAPABILITIES; 10777 ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION, 10778 LIBIPW_OFDM_DEFAULT_RATES_MASK); 10779 break; 10780 10781 default: /* Mixed or 2.4Ghz */ 10782 rates->ieee_mode = IPW_G_MODE; 10783 rates->purpose = IPW_RATE_CAPABILITIES; 10784 ipw_add_cck_scan_rates(rates, LIBIPW_CCK_MODULATION, 10785 LIBIPW_CCK_DEFAULT_RATES_MASK); 10786 if (priv->ieee->modulation & LIBIPW_OFDM_MODULATION) { 10787 ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION, 10788 LIBIPW_OFDM_DEFAULT_RATES_MASK); 10789 } 10790 break; 10791 } 10792 10793 return 0; 10794 } 10795 10796 static int ipw_config(struct ipw_priv *priv) 10797 { 10798 /* This is only called from ipw_up, which resets/reloads the firmware 10799 so, we don't need to first disable the card before we configure 10800 it */ 10801 if (ipw_set_tx_power(priv)) 10802 goto error; 10803 10804 /* initialize adapter address */ 10805 if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr)) 10806 goto error; 10807 10808 /* set basic system config settings */ 10809 init_sys_config(&priv->sys_config); 10810 10811 /* Support Bluetooth if we have BT h/w on board, and user wants to. 10812 * Does not support BT priority yet (don't abort or defer our Tx) */ 10813 if (bt_coexist) { 10814 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY]; 10815 10816 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG) 10817 priv->sys_config.bt_coexistence 10818 |= CFG_BT_COEXISTENCE_SIGNAL_CHNL; 10819 if (bt_caps & EEPROM_SKU_CAP_BT_OOB) 10820 priv->sys_config.bt_coexistence 10821 |= CFG_BT_COEXISTENCE_OOB; 10822 } 10823 10824 #ifdef CONFIG_IPW2200_PROMISCUOUS 10825 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) { 10826 priv->sys_config.accept_all_data_frames = 1; 10827 priv->sys_config.accept_non_directed_frames = 1; 10828 priv->sys_config.accept_all_mgmt_bcpr = 1; 10829 priv->sys_config.accept_all_mgmt_frames = 1; 10830 } 10831 #endif 10832 10833 if (priv->ieee->iw_mode == IW_MODE_ADHOC) 10834 priv->sys_config.answer_broadcast_ssid_probe = 1; 10835 else 10836 priv->sys_config.answer_broadcast_ssid_probe = 0; 10837 10838 if (ipw_send_system_config(priv)) 10839 goto error; 10840 10841 init_supported_rates(priv, &priv->rates); 10842 if (ipw_send_supported_rates(priv, &priv->rates)) 10843 goto error; 10844 10845 /* Set request-to-send threshold */ 10846 if (priv->rts_threshold) { 10847 if (ipw_send_rts_threshold(priv, priv->rts_threshold)) 10848 goto error; 10849 } 10850 #ifdef CONFIG_IPW2200_QOS 10851 IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n"); 10852 ipw_qos_activate(priv, NULL); 10853 #endif /* CONFIG_IPW2200_QOS */ 10854 10855 if (ipw_set_random_seed(priv)) 10856 goto error; 10857 10858 /* final state transition to the RUN state */ 10859 if (ipw_send_host_complete(priv)) 10860 goto error; 10861 10862 priv->status |= STATUS_INIT; 10863 10864 ipw_led_init(priv); 10865 ipw_led_radio_on(priv); 10866 priv->notif_missed_beacons = 0; 10867 10868 /* Set hardware WEP key if it is configured. */ 10869 if ((priv->capability & CAP_PRIVACY_ON) && 10870 (priv->ieee->sec.level == SEC_LEVEL_1) && 10871 !(priv->ieee->host_encrypt || priv->ieee->host_decrypt)) 10872 ipw_set_hwcrypto_keys(priv); 10873 10874 return 0; 10875 10876 error: 10877 return -EIO; 10878 } 10879 10880 /* 10881 * NOTE: 10882 * 10883 * These tables have been tested in conjunction with the 10884 * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters. 10885 * 10886 * Altering this values, using it on other hardware, or in geographies 10887 * not intended for resale of the above mentioned Intel adapters has 10888 * not been tested. 10889 * 10890 * Remember to update the table in README.ipw2200 when changing this 10891 * table. 10892 * 10893 */ 10894 static const struct libipw_geo ipw_geos[] = { 10895 { /* Restricted */ 10896 "---", 10897 .bg_channels = 11, 10898 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 10899 {2427, 4}, {2432, 5}, {2437, 6}, 10900 {2442, 7}, {2447, 8}, {2452, 9}, 10901 {2457, 10}, {2462, 11}}, 10902 }, 10903 10904 { /* Custom US/Canada */ 10905 "ZZF", 10906 .bg_channels = 11, 10907 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 10908 {2427, 4}, {2432, 5}, {2437, 6}, 10909 {2442, 7}, {2447, 8}, {2452, 9}, 10910 {2457, 10}, {2462, 11}}, 10911 .a_channels = 8, 10912 .a = {{5180, 36}, 10913 {5200, 40}, 10914 {5220, 44}, 10915 {5240, 48}, 10916 {5260, 52, LIBIPW_CH_PASSIVE_ONLY}, 10917 {5280, 56, LIBIPW_CH_PASSIVE_ONLY}, 10918 {5300, 60, LIBIPW_CH_PASSIVE_ONLY}, 10919 {5320, 64, LIBIPW_CH_PASSIVE_ONLY}}, 10920 }, 10921 10922 { /* Rest of World */ 10923 "ZZD", 10924 .bg_channels = 13, 10925 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 10926 {2427, 4}, {2432, 5}, {2437, 6}, 10927 {2442, 7}, {2447, 8}, {2452, 9}, 10928 {2457, 10}, {2462, 11}, {2467, 12}, 10929 {2472, 13}}, 10930 }, 10931 10932 { /* Custom USA & Europe & High */ 10933 "ZZA", 10934 .bg_channels = 11, 10935 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 10936 {2427, 4}, {2432, 5}, {2437, 6}, 10937 {2442, 7}, {2447, 8}, {2452, 9}, 10938 {2457, 10}, {2462, 11}}, 10939 .a_channels = 13, 10940 .a = {{5180, 36}, 10941 {5200, 40}, 10942 {5220, 44}, 10943 {5240, 48}, 10944 {5260, 52, LIBIPW_CH_PASSIVE_ONLY}, 10945 {5280, 56, LIBIPW_CH_PASSIVE_ONLY}, 10946 {5300, 60, LIBIPW_CH_PASSIVE_ONLY}, 10947 {5320, 64, LIBIPW_CH_PASSIVE_ONLY}, 10948 {5745, 149}, 10949 {5765, 153}, 10950 {5785, 157}, 10951 {5805, 161}, 10952 {5825, 165}}, 10953 }, 10954 10955 { /* Custom NA & Europe */ 10956 "ZZB", 10957 .bg_channels = 11, 10958 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 10959 {2427, 4}, {2432, 5}, {2437, 6}, 10960 {2442, 7}, {2447, 8}, {2452, 9}, 10961 {2457, 10}, {2462, 11}}, 10962 .a_channels = 13, 10963 .a = {{5180, 36}, 10964 {5200, 40}, 10965 {5220, 44}, 10966 {5240, 48}, 10967 {5260, 52, LIBIPW_CH_PASSIVE_ONLY}, 10968 {5280, 56, LIBIPW_CH_PASSIVE_ONLY}, 10969 {5300, 60, LIBIPW_CH_PASSIVE_ONLY}, 10970 {5320, 64, LIBIPW_CH_PASSIVE_ONLY}, 10971 {5745, 149, LIBIPW_CH_PASSIVE_ONLY}, 10972 {5765, 153, LIBIPW_CH_PASSIVE_ONLY}, 10973 {5785, 157, LIBIPW_CH_PASSIVE_ONLY}, 10974 {5805, 161, LIBIPW_CH_PASSIVE_ONLY}, 10975 {5825, 165, LIBIPW_CH_PASSIVE_ONLY}}, 10976 }, 10977 10978 { /* Custom Japan */ 10979 "ZZC", 10980 .bg_channels = 11, 10981 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 10982 {2427, 4}, {2432, 5}, {2437, 6}, 10983 {2442, 7}, {2447, 8}, {2452, 9}, 10984 {2457, 10}, {2462, 11}}, 10985 .a_channels = 4, 10986 .a = {{5170, 34}, {5190, 38}, 10987 {5210, 42}, {5230, 46}}, 10988 }, 10989 10990 { /* Custom */ 10991 "ZZM", 10992 .bg_channels = 11, 10993 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 10994 {2427, 4}, {2432, 5}, {2437, 6}, 10995 {2442, 7}, {2447, 8}, {2452, 9}, 10996 {2457, 10}, {2462, 11}}, 10997 }, 10998 10999 { /* Europe */ 11000 "ZZE", 11001 .bg_channels = 13, 11002 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 11003 {2427, 4}, {2432, 5}, {2437, 6}, 11004 {2442, 7}, {2447, 8}, {2452, 9}, 11005 {2457, 10}, {2462, 11}, {2467, 12}, 11006 {2472, 13}}, 11007 .a_channels = 19, 11008 .a = {{5180, 36}, 11009 {5200, 40}, 11010 {5220, 44}, 11011 {5240, 48}, 11012 {5260, 52, LIBIPW_CH_PASSIVE_ONLY}, 11013 {5280, 56, LIBIPW_CH_PASSIVE_ONLY}, 11014 {5300, 60, LIBIPW_CH_PASSIVE_ONLY}, 11015 {5320, 64, LIBIPW_CH_PASSIVE_ONLY}, 11016 {5500, 100, LIBIPW_CH_PASSIVE_ONLY}, 11017 {5520, 104, LIBIPW_CH_PASSIVE_ONLY}, 11018 {5540, 108, LIBIPW_CH_PASSIVE_ONLY}, 11019 {5560, 112, LIBIPW_CH_PASSIVE_ONLY}, 11020 {5580, 116, LIBIPW_CH_PASSIVE_ONLY}, 11021 {5600, 120, LIBIPW_CH_PASSIVE_ONLY}, 11022 {5620, 124, LIBIPW_CH_PASSIVE_ONLY}, 11023 {5640, 128, LIBIPW_CH_PASSIVE_ONLY}, 11024 {5660, 132, LIBIPW_CH_PASSIVE_ONLY}, 11025 {5680, 136, LIBIPW_CH_PASSIVE_ONLY}, 11026 {5700, 140, LIBIPW_CH_PASSIVE_ONLY}}, 11027 }, 11028 11029 { /* Custom Japan */ 11030 "ZZJ", 11031 .bg_channels = 14, 11032 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 11033 {2427, 4}, {2432, 5}, {2437, 6}, 11034 {2442, 7}, {2447, 8}, {2452, 9}, 11035 {2457, 10}, {2462, 11}, {2467, 12}, 11036 {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY}}, 11037 .a_channels = 4, 11038 .a = {{5170, 34}, {5190, 38}, 11039 {5210, 42}, {5230, 46}}, 11040 }, 11041 11042 { /* Rest of World */ 11043 "ZZR", 11044 .bg_channels = 14, 11045 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 11046 {2427, 4}, {2432, 5}, {2437, 6}, 11047 {2442, 7}, {2447, 8}, {2452, 9}, 11048 {2457, 10}, {2462, 11}, {2467, 12}, 11049 {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY | 11050 LIBIPW_CH_PASSIVE_ONLY}}, 11051 }, 11052 11053 { /* High Band */ 11054 "ZZH", 11055 .bg_channels = 13, 11056 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 11057 {2427, 4}, {2432, 5}, {2437, 6}, 11058 {2442, 7}, {2447, 8}, {2452, 9}, 11059 {2457, 10}, {2462, 11}, 11060 {2467, 12, LIBIPW_CH_PASSIVE_ONLY}, 11061 {2472, 13, LIBIPW_CH_PASSIVE_ONLY}}, 11062 .a_channels = 4, 11063 .a = {{5745, 149}, {5765, 153}, 11064 {5785, 157}, {5805, 161}}, 11065 }, 11066 11067 { /* Custom Europe */ 11068 "ZZG", 11069 .bg_channels = 13, 11070 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 11071 {2427, 4}, {2432, 5}, {2437, 6}, 11072 {2442, 7}, {2447, 8}, {2452, 9}, 11073 {2457, 10}, {2462, 11}, 11074 {2467, 12}, {2472, 13}}, 11075 .a_channels = 4, 11076 .a = {{5180, 36}, {5200, 40}, 11077 {5220, 44}, {5240, 48}}, 11078 }, 11079 11080 { /* Europe */ 11081 "ZZK", 11082 .bg_channels = 13, 11083 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 11084 {2427, 4}, {2432, 5}, {2437, 6}, 11085 {2442, 7}, {2447, 8}, {2452, 9}, 11086 {2457, 10}, {2462, 11}, 11087 {2467, 12, LIBIPW_CH_PASSIVE_ONLY}, 11088 {2472, 13, LIBIPW_CH_PASSIVE_ONLY}}, 11089 .a_channels = 24, 11090 .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY}, 11091 {5200, 40, LIBIPW_CH_PASSIVE_ONLY}, 11092 {5220, 44, LIBIPW_CH_PASSIVE_ONLY}, 11093 {5240, 48, LIBIPW_CH_PASSIVE_ONLY}, 11094 {5260, 52, LIBIPW_CH_PASSIVE_ONLY}, 11095 {5280, 56, LIBIPW_CH_PASSIVE_ONLY}, 11096 {5300, 60, LIBIPW_CH_PASSIVE_ONLY}, 11097 {5320, 64, LIBIPW_CH_PASSIVE_ONLY}, 11098 {5500, 100, LIBIPW_CH_PASSIVE_ONLY}, 11099 {5520, 104, LIBIPW_CH_PASSIVE_ONLY}, 11100 {5540, 108, LIBIPW_CH_PASSIVE_ONLY}, 11101 {5560, 112, LIBIPW_CH_PASSIVE_ONLY}, 11102 {5580, 116, LIBIPW_CH_PASSIVE_ONLY}, 11103 {5600, 120, LIBIPW_CH_PASSIVE_ONLY}, 11104 {5620, 124, LIBIPW_CH_PASSIVE_ONLY}, 11105 {5640, 128, LIBIPW_CH_PASSIVE_ONLY}, 11106 {5660, 132, LIBIPW_CH_PASSIVE_ONLY}, 11107 {5680, 136, LIBIPW_CH_PASSIVE_ONLY}, 11108 {5700, 140, LIBIPW_CH_PASSIVE_ONLY}, 11109 {5745, 149, LIBIPW_CH_PASSIVE_ONLY}, 11110 {5765, 153, LIBIPW_CH_PASSIVE_ONLY}, 11111 {5785, 157, LIBIPW_CH_PASSIVE_ONLY}, 11112 {5805, 161, LIBIPW_CH_PASSIVE_ONLY}, 11113 {5825, 165, LIBIPW_CH_PASSIVE_ONLY}}, 11114 }, 11115 11116 { /* Europe */ 11117 "ZZL", 11118 .bg_channels = 11, 11119 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 11120 {2427, 4}, {2432, 5}, {2437, 6}, 11121 {2442, 7}, {2447, 8}, {2452, 9}, 11122 {2457, 10}, {2462, 11}}, 11123 .a_channels = 13, 11124 .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY}, 11125 {5200, 40, LIBIPW_CH_PASSIVE_ONLY}, 11126 {5220, 44, LIBIPW_CH_PASSIVE_ONLY}, 11127 {5240, 48, LIBIPW_CH_PASSIVE_ONLY}, 11128 {5260, 52, LIBIPW_CH_PASSIVE_ONLY}, 11129 {5280, 56, LIBIPW_CH_PASSIVE_ONLY}, 11130 {5300, 60, LIBIPW_CH_PASSIVE_ONLY}, 11131 {5320, 64, LIBIPW_CH_PASSIVE_ONLY}, 11132 {5745, 149, LIBIPW_CH_PASSIVE_ONLY}, 11133 {5765, 153, LIBIPW_CH_PASSIVE_ONLY}, 11134 {5785, 157, LIBIPW_CH_PASSIVE_ONLY}, 11135 {5805, 161, LIBIPW_CH_PASSIVE_ONLY}, 11136 {5825, 165, LIBIPW_CH_PASSIVE_ONLY}}, 11137 } 11138 }; 11139 11140 static void ipw_set_geo(struct ipw_priv *priv) 11141 { 11142 int j; 11143 11144 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) { 11145 if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE], 11146 ipw_geos[j].name, 3)) 11147 break; 11148 } 11149 11150 if (j == ARRAY_SIZE(ipw_geos)) { 11151 IPW_WARNING("SKU [%c%c%c] not recognized.\n", 11152 priv->eeprom[EEPROM_COUNTRY_CODE + 0], 11153 priv->eeprom[EEPROM_COUNTRY_CODE + 1], 11154 priv->eeprom[EEPROM_COUNTRY_CODE + 2]); 11155 j = 0; 11156 } 11157 11158 libipw_set_geo(priv->ieee, &ipw_geos[j]); 11159 } 11160 11161 #define MAX_HW_RESTARTS 5 11162 static int ipw_up(struct ipw_priv *priv) 11163 { 11164 int rc, i; 11165 11166 /* Age scan list entries found before suspend */ 11167 if (priv->suspend_time) { 11168 libipw_networks_age(priv->ieee, priv->suspend_time); 11169 priv->suspend_time = 0; 11170 } 11171 11172 if (priv->status & STATUS_EXIT_PENDING) 11173 return -EIO; 11174 11175 if (cmdlog && !priv->cmdlog) { 11176 priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog), 11177 GFP_KERNEL); 11178 if (priv->cmdlog == NULL) { 11179 IPW_ERROR("Error allocating %d command log entries.\n", 11180 cmdlog); 11181 return -ENOMEM; 11182 } else { 11183 priv->cmdlog_len = cmdlog; 11184 } 11185 } 11186 11187 for (i = 0; i < MAX_HW_RESTARTS; i++) { 11188 /* Load the microcode, firmware, and eeprom. 11189 * Also start the clocks. */ 11190 rc = ipw_load(priv); 11191 if (rc) { 11192 IPW_ERROR("Unable to load firmware: %d\n", rc); 11193 return rc; 11194 } 11195 11196 ipw_init_ordinals(priv); 11197 if (!(priv->config & CFG_CUSTOM_MAC)) 11198 eeprom_parse_mac(priv, priv->mac_addr); 11199 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN); 11200 11201 ipw_set_geo(priv); 11202 11203 if (priv->status & STATUS_RF_KILL_SW) { 11204 IPW_WARNING("Radio disabled by module parameter.\n"); 11205 return 0; 11206 } else if (rf_kill_active(priv)) { 11207 IPW_WARNING("Radio Frequency Kill Switch is On:\n" 11208 "Kill switch must be turned off for " 11209 "wireless networking to work.\n"); 11210 schedule_delayed_work(&priv->rf_kill, 2 * HZ); 11211 return 0; 11212 } 11213 11214 rc = ipw_config(priv); 11215 if (!rc) { 11216 IPW_DEBUG_INFO("Configured device on count %i\n", i); 11217 11218 /* If configure to try and auto-associate, kick 11219 * off a scan. */ 11220 schedule_delayed_work(&priv->request_scan, 0); 11221 11222 return 0; 11223 } 11224 11225 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc); 11226 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n", 11227 i, MAX_HW_RESTARTS); 11228 11229 /* We had an error bringing up the hardware, so take it 11230 * all the way back down so we can try again */ 11231 ipw_down(priv); 11232 } 11233 11234 /* tried to restart and config the device for as long as our 11235 * patience could withstand */ 11236 IPW_ERROR("Unable to initialize device after %d attempts.\n", i); 11237 11238 return -EIO; 11239 } 11240 11241 static void ipw_bg_up(struct work_struct *work) 11242 { 11243 struct ipw_priv *priv = 11244 container_of(work, struct ipw_priv, up); 11245 mutex_lock(&priv->mutex); 11246 ipw_up(priv); 11247 mutex_unlock(&priv->mutex); 11248 } 11249 11250 static void ipw_deinit(struct ipw_priv *priv) 11251 { 11252 int i; 11253 11254 if (priv->status & STATUS_SCANNING) { 11255 IPW_DEBUG_INFO("Aborting scan during shutdown.\n"); 11256 ipw_abort_scan(priv); 11257 } 11258 11259 if (priv->status & STATUS_ASSOCIATED) { 11260 IPW_DEBUG_INFO("Disassociating during shutdown.\n"); 11261 ipw_disassociate(priv); 11262 } 11263 11264 ipw_led_shutdown(priv); 11265 11266 /* Wait up to 1s for status to change to not scanning and not 11267 * associated (disassociation can take a while for a ful 802.11 11268 * exchange */ 11269 for (i = 1000; i && (priv->status & 11270 (STATUS_DISASSOCIATING | 11271 STATUS_ASSOCIATED | STATUS_SCANNING)); i--) 11272 udelay(10); 11273 11274 if (priv->status & (STATUS_DISASSOCIATING | 11275 STATUS_ASSOCIATED | STATUS_SCANNING)) 11276 IPW_DEBUG_INFO("Still associated or scanning...\n"); 11277 else 11278 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i); 11279 11280 /* Attempt to disable the card */ 11281 ipw_send_card_disable(priv, 0); 11282 11283 priv->status &= ~STATUS_INIT; 11284 } 11285 11286 static void ipw_down(struct ipw_priv *priv) 11287 { 11288 int exit_pending = priv->status & STATUS_EXIT_PENDING; 11289 11290 priv->status |= STATUS_EXIT_PENDING; 11291 11292 if (ipw_is_init(priv)) 11293 ipw_deinit(priv); 11294 11295 /* Wipe out the EXIT_PENDING status bit if we are not actually 11296 * exiting the module */ 11297 if (!exit_pending) 11298 priv->status &= ~STATUS_EXIT_PENDING; 11299 11300 /* tell the device to stop sending interrupts */ 11301 ipw_disable_interrupts(priv); 11302 11303 /* Clear all bits but the RF Kill */ 11304 priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING; 11305 netif_carrier_off(priv->net_dev); 11306 11307 ipw_stop_nic(priv); 11308 11309 ipw_led_radio_off(priv); 11310 } 11311 11312 static void ipw_bg_down(struct work_struct *work) 11313 { 11314 struct ipw_priv *priv = 11315 container_of(work, struct ipw_priv, down); 11316 mutex_lock(&priv->mutex); 11317 ipw_down(priv); 11318 mutex_unlock(&priv->mutex); 11319 } 11320 11321 static int ipw_wdev_init(struct net_device *dev) 11322 { 11323 int i, rc = 0; 11324 struct ipw_priv *priv = libipw_priv(dev); 11325 const struct libipw_geo *geo = libipw_get_geo(priv->ieee); 11326 struct wireless_dev *wdev = &priv->ieee->wdev; 11327 11328 memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN); 11329 11330 /* fill-out priv->ieee->bg_band */ 11331 if (geo->bg_channels) { 11332 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band; 11333 11334 bg_band->band = NL80211_BAND_2GHZ; 11335 bg_band->n_channels = geo->bg_channels; 11336 bg_band->channels = kcalloc(geo->bg_channels, 11337 sizeof(struct ieee80211_channel), 11338 GFP_KERNEL); 11339 if (!bg_band->channels) { 11340 rc = -ENOMEM; 11341 goto out; 11342 } 11343 /* translate geo->bg to bg_band.channels */ 11344 for (i = 0; i < geo->bg_channels; i++) { 11345 bg_band->channels[i].band = NL80211_BAND_2GHZ; 11346 bg_band->channels[i].center_freq = geo->bg[i].freq; 11347 bg_band->channels[i].hw_value = geo->bg[i].channel; 11348 bg_band->channels[i].max_power = geo->bg[i].max_power; 11349 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY) 11350 bg_band->channels[i].flags |= 11351 IEEE80211_CHAN_NO_IR; 11352 if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS) 11353 bg_band->channels[i].flags |= 11354 IEEE80211_CHAN_NO_IR; 11355 if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT) 11356 bg_band->channels[i].flags |= 11357 IEEE80211_CHAN_RADAR; 11358 /* No equivalent for LIBIPW_CH_80211H_RULES, 11359 LIBIPW_CH_UNIFORM_SPREADING, or 11360 LIBIPW_CH_B_ONLY... */ 11361 } 11362 /* point at bitrate info */ 11363 bg_band->bitrates = ipw2200_bg_rates; 11364 bg_band->n_bitrates = ipw2200_num_bg_rates; 11365 11366 wdev->wiphy->bands[NL80211_BAND_2GHZ] = bg_band; 11367 } 11368 11369 /* fill-out priv->ieee->a_band */ 11370 if (geo->a_channels) { 11371 struct ieee80211_supported_band *a_band = &priv->ieee->a_band; 11372 11373 a_band->band = NL80211_BAND_5GHZ; 11374 a_band->n_channels = geo->a_channels; 11375 a_band->channels = kcalloc(geo->a_channels, 11376 sizeof(struct ieee80211_channel), 11377 GFP_KERNEL); 11378 if (!a_band->channels) { 11379 rc = -ENOMEM; 11380 goto out; 11381 } 11382 /* translate geo->a to a_band.channels */ 11383 for (i = 0; i < geo->a_channels; i++) { 11384 a_band->channels[i].band = NL80211_BAND_5GHZ; 11385 a_band->channels[i].center_freq = geo->a[i].freq; 11386 a_band->channels[i].hw_value = geo->a[i].channel; 11387 a_band->channels[i].max_power = geo->a[i].max_power; 11388 if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY) 11389 a_band->channels[i].flags |= 11390 IEEE80211_CHAN_NO_IR; 11391 if (geo->a[i].flags & LIBIPW_CH_NO_IBSS) 11392 a_band->channels[i].flags |= 11393 IEEE80211_CHAN_NO_IR; 11394 if (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT) 11395 a_band->channels[i].flags |= 11396 IEEE80211_CHAN_RADAR; 11397 /* No equivalent for LIBIPW_CH_80211H_RULES, 11398 LIBIPW_CH_UNIFORM_SPREADING, or 11399 LIBIPW_CH_B_ONLY... */ 11400 } 11401 /* point at bitrate info */ 11402 a_band->bitrates = ipw2200_a_rates; 11403 a_band->n_bitrates = ipw2200_num_a_rates; 11404 11405 wdev->wiphy->bands[NL80211_BAND_5GHZ] = a_band; 11406 } 11407 11408 wdev->wiphy->cipher_suites = ipw_cipher_suites; 11409 wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites); 11410 11411 set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev); 11412 11413 /* With that information in place, we can now register the wiphy... */ 11414 if (wiphy_register(wdev->wiphy)) 11415 rc = -EIO; 11416 out: 11417 return rc; 11418 } 11419 11420 /* PCI driver stuff */ 11421 static const struct pci_device_id card_ids[] = { 11422 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0}, 11423 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0}, 11424 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0}, 11425 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0}, 11426 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0}, 11427 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0}, 11428 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0}, 11429 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0}, 11430 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0}, 11431 {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0}, 11432 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0}, 11433 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0}, 11434 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0}, 11435 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0}, 11436 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0}, 11437 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0}, 11438 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0}, 11439 {PCI_VDEVICE(INTEL, 0x104f), 0}, 11440 {PCI_VDEVICE(INTEL, 0x4220), 0}, /* BG */ 11441 {PCI_VDEVICE(INTEL, 0x4221), 0}, /* BG */ 11442 {PCI_VDEVICE(INTEL, 0x4223), 0}, /* ABG */ 11443 {PCI_VDEVICE(INTEL, 0x4224), 0}, /* ABG */ 11444 11445 /* required last entry */ 11446 {0,} 11447 }; 11448 11449 MODULE_DEVICE_TABLE(pci, card_ids); 11450 11451 static struct attribute *ipw_sysfs_entries[] = { 11452 &dev_attr_rf_kill.attr, 11453 &dev_attr_direct_dword.attr, 11454 &dev_attr_indirect_byte.attr, 11455 &dev_attr_indirect_dword.attr, 11456 &dev_attr_mem_gpio_reg.attr, 11457 &dev_attr_command_event_reg.attr, 11458 &dev_attr_nic_type.attr, 11459 &dev_attr_status.attr, 11460 &dev_attr_cfg.attr, 11461 &dev_attr_error.attr, 11462 &dev_attr_event_log.attr, 11463 &dev_attr_cmd_log.attr, 11464 &dev_attr_eeprom_delay.attr, 11465 &dev_attr_ucode_version.attr, 11466 &dev_attr_rtc.attr, 11467 &dev_attr_scan_age.attr, 11468 &dev_attr_led.attr, 11469 &dev_attr_speed_scan.attr, 11470 &dev_attr_net_stats.attr, 11471 &dev_attr_channels.attr, 11472 #ifdef CONFIG_IPW2200_PROMISCUOUS 11473 &dev_attr_rtap_iface.attr, 11474 &dev_attr_rtap_filter.attr, 11475 #endif 11476 NULL 11477 }; 11478 11479 static const struct attribute_group ipw_attribute_group = { 11480 .name = NULL, /* put in device directory */ 11481 .attrs = ipw_sysfs_entries, 11482 }; 11483 11484 #ifdef CONFIG_IPW2200_PROMISCUOUS 11485 static int ipw_prom_open(struct net_device *dev) 11486 { 11487 struct ipw_prom_priv *prom_priv = libipw_priv(dev); 11488 struct ipw_priv *priv = prom_priv->priv; 11489 11490 IPW_DEBUG_INFO("prom dev->open\n"); 11491 netif_carrier_off(dev); 11492 11493 if (priv->ieee->iw_mode != IW_MODE_MONITOR) { 11494 priv->sys_config.accept_all_data_frames = 1; 11495 priv->sys_config.accept_non_directed_frames = 1; 11496 priv->sys_config.accept_all_mgmt_bcpr = 1; 11497 priv->sys_config.accept_all_mgmt_frames = 1; 11498 11499 ipw_send_system_config(priv); 11500 } 11501 11502 return 0; 11503 } 11504 11505 static int ipw_prom_stop(struct net_device *dev) 11506 { 11507 struct ipw_prom_priv *prom_priv = libipw_priv(dev); 11508 struct ipw_priv *priv = prom_priv->priv; 11509 11510 IPW_DEBUG_INFO("prom dev->stop\n"); 11511 11512 if (priv->ieee->iw_mode != IW_MODE_MONITOR) { 11513 priv->sys_config.accept_all_data_frames = 0; 11514 priv->sys_config.accept_non_directed_frames = 0; 11515 priv->sys_config.accept_all_mgmt_bcpr = 0; 11516 priv->sys_config.accept_all_mgmt_frames = 0; 11517 11518 ipw_send_system_config(priv); 11519 } 11520 11521 return 0; 11522 } 11523 11524 static netdev_tx_t ipw_prom_hard_start_xmit(struct sk_buff *skb, 11525 struct net_device *dev) 11526 { 11527 IPW_DEBUG_INFO("prom dev->xmit\n"); 11528 dev_kfree_skb(skb); 11529 return NETDEV_TX_OK; 11530 } 11531 11532 static const struct net_device_ops ipw_prom_netdev_ops = { 11533 .ndo_open = ipw_prom_open, 11534 .ndo_stop = ipw_prom_stop, 11535 .ndo_start_xmit = ipw_prom_hard_start_xmit, 11536 .ndo_set_mac_address = eth_mac_addr, 11537 .ndo_validate_addr = eth_validate_addr, 11538 }; 11539 11540 static int ipw_prom_alloc(struct ipw_priv *priv) 11541 { 11542 int rc = 0; 11543 11544 if (priv->prom_net_dev) 11545 return -EPERM; 11546 11547 priv->prom_net_dev = alloc_libipw(sizeof(struct ipw_prom_priv), 1); 11548 if (priv->prom_net_dev == NULL) 11549 return -ENOMEM; 11550 11551 priv->prom_priv = libipw_priv(priv->prom_net_dev); 11552 priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev); 11553 priv->prom_priv->priv = priv; 11554 11555 strcpy(priv->prom_net_dev->name, "rtap%d"); 11556 memcpy(priv->prom_net_dev->dev_addr, priv->mac_addr, ETH_ALEN); 11557 11558 priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP; 11559 priv->prom_net_dev->netdev_ops = &ipw_prom_netdev_ops; 11560 11561 priv->prom_net_dev->min_mtu = 68; 11562 priv->prom_net_dev->max_mtu = LIBIPW_DATA_LEN; 11563 11564 priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR; 11565 SET_NETDEV_DEV(priv->prom_net_dev, &priv->pci_dev->dev); 11566 11567 rc = register_netdev(priv->prom_net_dev); 11568 if (rc) { 11569 free_libipw(priv->prom_net_dev, 1); 11570 priv->prom_net_dev = NULL; 11571 return rc; 11572 } 11573 11574 return 0; 11575 } 11576 11577 static void ipw_prom_free(struct ipw_priv *priv) 11578 { 11579 if (!priv->prom_net_dev) 11580 return; 11581 11582 unregister_netdev(priv->prom_net_dev); 11583 free_libipw(priv->prom_net_dev, 1); 11584 11585 priv->prom_net_dev = NULL; 11586 } 11587 11588 #endif 11589 11590 static const struct net_device_ops ipw_netdev_ops = { 11591 .ndo_open = ipw_net_open, 11592 .ndo_stop = ipw_net_stop, 11593 .ndo_set_rx_mode = ipw_net_set_multicast_list, 11594 .ndo_set_mac_address = ipw_net_set_mac_address, 11595 .ndo_start_xmit = libipw_xmit, 11596 .ndo_validate_addr = eth_validate_addr, 11597 }; 11598 11599 static int ipw_pci_probe(struct pci_dev *pdev, 11600 const struct pci_device_id *ent) 11601 { 11602 int err = 0; 11603 struct net_device *net_dev; 11604 void __iomem *base; 11605 u32 length, val; 11606 struct ipw_priv *priv; 11607 int i; 11608 11609 net_dev = alloc_libipw(sizeof(struct ipw_priv), 0); 11610 if (net_dev == NULL) { 11611 err = -ENOMEM; 11612 goto out; 11613 } 11614 11615 priv = libipw_priv(net_dev); 11616 priv->ieee = netdev_priv(net_dev); 11617 11618 priv->net_dev = net_dev; 11619 priv->pci_dev = pdev; 11620 ipw_debug_level = debug; 11621 spin_lock_init(&priv->irq_lock); 11622 spin_lock_init(&priv->lock); 11623 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) 11624 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]); 11625 11626 mutex_init(&priv->mutex); 11627 if (pci_enable_device(pdev)) { 11628 err = -ENODEV; 11629 goto out_free_libipw; 11630 } 11631 11632 pci_set_master(pdev); 11633 11634 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 11635 if (!err) 11636 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); 11637 if (err) { 11638 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n"); 11639 goto out_pci_disable_device; 11640 } 11641 11642 pci_set_drvdata(pdev, priv); 11643 11644 err = pci_request_regions(pdev, DRV_NAME); 11645 if (err) 11646 goto out_pci_disable_device; 11647 11648 /* We disable the RETRY_TIMEOUT register (0x41) to keep 11649 * PCI Tx retries from interfering with C3 CPU state */ 11650 pci_read_config_dword(pdev, 0x40, &val); 11651 if ((val & 0x0000ff00) != 0) 11652 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff); 11653 11654 length = pci_resource_len(pdev, 0); 11655 priv->hw_len = length; 11656 11657 base = pci_ioremap_bar(pdev, 0); 11658 if (!base) { 11659 err = -ENODEV; 11660 goto out_pci_release_regions; 11661 } 11662 11663 priv->hw_base = base; 11664 IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length); 11665 IPW_DEBUG_INFO("pci_resource_base = %p\n", base); 11666 11667 err = ipw_setup_deferred_work(priv); 11668 if (err) { 11669 IPW_ERROR("Unable to setup deferred work\n"); 11670 goto out_iounmap; 11671 } 11672 11673 ipw_sw_reset(priv, 1); 11674 11675 err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv); 11676 if (err) { 11677 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq); 11678 goto out_iounmap; 11679 } 11680 11681 SET_NETDEV_DEV(net_dev, &pdev->dev); 11682 11683 mutex_lock(&priv->mutex); 11684 11685 priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit; 11686 priv->ieee->set_security = shim__set_security; 11687 priv->ieee->is_queue_full = ipw_net_is_queue_full; 11688 11689 #ifdef CONFIG_IPW2200_QOS 11690 priv->ieee->is_qos_active = ipw_is_qos_active; 11691 priv->ieee->handle_probe_response = ipw_handle_beacon; 11692 priv->ieee->handle_beacon = ipw_handle_probe_response; 11693 priv->ieee->handle_assoc_response = ipw_handle_assoc_response; 11694 #endif /* CONFIG_IPW2200_QOS */ 11695 11696 priv->ieee->perfect_rssi = -20; 11697 priv->ieee->worst_rssi = -85; 11698 11699 net_dev->netdev_ops = &ipw_netdev_ops; 11700 priv->wireless_data.spy_data = &priv->ieee->spy_data; 11701 net_dev->wireless_data = &priv->wireless_data; 11702 net_dev->wireless_handlers = &ipw_wx_handler_def; 11703 net_dev->ethtool_ops = &ipw_ethtool_ops; 11704 11705 net_dev->min_mtu = 68; 11706 net_dev->max_mtu = LIBIPW_DATA_LEN; 11707 11708 err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group); 11709 if (err) { 11710 IPW_ERROR("failed to create sysfs device attributes\n"); 11711 mutex_unlock(&priv->mutex); 11712 goto out_release_irq; 11713 } 11714 11715 if (ipw_up(priv)) { 11716 mutex_unlock(&priv->mutex); 11717 err = -EIO; 11718 goto out_remove_sysfs; 11719 } 11720 11721 mutex_unlock(&priv->mutex); 11722 11723 err = ipw_wdev_init(net_dev); 11724 if (err) { 11725 IPW_ERROR("failed to register wireless device\n"); 11726 goto out_remove_sysfs; 11727 } 11728 11729 err = register_netdev(net_dev); 11730 if (err) { 11731 IPW_ERROR("failed to register network device\n"); 11732 goto out_unregister_wiphy; 11733 } 11734 11735 #ifdef CONFIG_IPW2200_PROMISCUOUS 11736 if (rtap_iface) { 11737 err = ipw_prom_alloc(priv); 11738 if (err) { 11739 IPW_ERROR("Failed to register promiscuous network " 11740 "device (error %d).\n", err); 11741 unregister_netdev(priv->net_dev); 11742 goto out_unregister_wiphy; 11743 } 11744 } 11745 #endif 11746 11747 printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg " 11748 "channels, %d 802.11a channels)\n", 11749 priv->ieee->geo.name, priv->ieee->geo.bg_channels, 11750 priv->ieee->geo.a_channels); 11751 11752 return 0; 11753 11754 out_unregister_wiphy: 11755 wiphy_unregister(priv->ieee->wdev.wiphy); 11756 kfree(priv->ieee->a_band.channels); 11757 kfree(priv->ieee->bg_band.channels); 11758 out_remove_sysfs: 11759 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group); 11760 out_release_irq: 11761 free_irq(pdev->irq, priv); 11762 out_iounmap: 11763 iounmap(priv->hw_base); 11764 out_pci_release_regions: 11765 pci_release_regions(pdev); 11766 out_pci_disable_device: 11767 pci_disable_device(pdev); 11768 out_free_libipw: 11769 free_libipw(priv->net_dev, 0); 11770 out: 11771 return err; 11772 } 11773 11774 static void ipw_pci_remove(struct pci_dev *pdev) 11775 { 11776 struct ipw_priv *priv = pci_get_drvdata(pdev); 11777 struct list_head *p, *q; 11778 int i; 11779 11780 if (!priv) 11781 return; 11782 11783 mutex_lock(&priv->mutex); 11784 11785 priv->status |= STATUS_EXIT_PENDING; 11786 ipw_down(priv); 11787 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group); 11788 11789 mutex_unlock(&priv->mutex); 11790 11791 unregister_netdev(priv->net_dev); 11792 11793 if (priv->rxq) { 11794 ipw_rx_queue_free(priv, priv->rxq); 11795 priv->rxq = NULL; 11796 } 11797 ipw_tx_queue_free(priv); 11798 11799 if (priv->cmdlog) { 11800 kfree(priv->cmdlog); 11801 priv->cmdlog = NULL; 11802 } 11803 11804 /* make sure all works are inactive */ 11805 cancel_delayed_work_sync(&priv->adhoc_check); 11806 cancel_work_sync(&priv->associate); 11807 cancel_work_sync(&priv->disassociate); 11808 cancel_work_sync(&priv->system_config); 11809 cancel_work_sync(&priv->rx_replenish); 11810 cancel_work_sync(&priv->adapter_restart); 11811 cancel_delayed_work_sync(&priv->rf_kill); 11812 cancel_work_sync(&priv->up); 11813 cancel_work_sync(&priv->down); 11814 cancel_delayed_work_sync(&priv->request_scan); 11815 cancel_delayed_work_sync(&priv->request_direct_scan); 11816 cancel_delayed_work_sync(&priv->request_passive_scan); 11817 cancel_delayed_work_sync(&priv->scan_event); 11818 cancel_delayed_work_sync(&priv->gather_stats); 11819 cancel_work_sync(&priv->abort_scan); 11820 cancel_work_sync(&priv->roam); 11821 cancel_delayed_work_sync(&priv->scan_check); 11822 cancel_work_sync(&priv->link_up); 11823 cancel_work_sync(&priv->link_down); 11824 cancel_delayed_work_sync(&priv->led_link_on); 11825 cancel_delayed_work_sync(&priv->led_link_off); 11826 cancel_delayed_work_sync(&priv->led_act_off); 11827 cancel_work_sync(&priv->merge_networks); 11828 11829 /* Free MAC hash list for ADHOC */ 11830 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) { 11831 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) { 11832 list_del(p); 11833 kfree(list_entry(p, struct ipw_ibss_seq, list)); 11834 } 11835 } 11836 11837 kfree(priv->error); 11838 priv->error = NULL; 11839 11840 #ifdef CONFIG_IPW2200_PROMISCUOUS 11841 ipw_prom_free(priv); 11842 #endif 11843 11844 free_irq(pdev->irq, priv); 11845 iounmap(priv->hw_base); 11846 pci_release_regions(pdev); 11847 pci_disable_device(pdev); 11848 /* wiphy_unregister needs to be here, before free_libipw */ 11849 wiphy_unregister(priv->ieee->wdev.wiphy); 11850 kfree(priv->ieee->a_band.channels); 11851 kfree(priv->ieee->bg_band.channels); 11852 free_libipw(priv->net_dev, 0); 11853 free_firmware(); 11854 } 11855 11856 #ifdef CONFIG_PM 11857 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state) 11858 { 11859 struct ipw_priv *priv = pci_get_drvdata(pdev); 11860 struct net_device *dev = priv->net_dev; 11861 11862 printk(KERN_INFO "%s: Going into suspend...\n", dev->name); 11863 11864 /* Take down the device; powers it off, etc. */ 11865 ipw_down(priv); 11866 11867 /* Remove the PRESENT state of the device */ 11868 netif_device_detach(dev); 11869 11870 pci_save_state(pdev); 11871 pci_disable_device(pdev); 11872 pci_set_power_state(pdev, pci_choose_state(pdev, state)); 11873 11874 priv->suspend_at = ktime_get_boottime_seconds(); 11875 11876 return 0; 11877 } 11878 11879 static int ipw_pci_resume(struct pci_dev *pdev) 11880 { 11881 struct ipw_priv *priv = pci_get_drvdata(pdev); 11882 struct net_device *dev = priv->net_dev; 11883 int err; 11884 u32 val; 11885 11886 printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name); 11887 11888 pci_set_power_state(pdev, PCI_D0); 11889 err = pci_enable_device(pdev); 11890 if (err) { 11891 printk(KERN_ERR "%s: pci_enable_device failed on resume\n", 11892 dev->name); 11893 return err; 11894 } 11895 pci_restore_state(pdev); 11896 11897 /* 11898 * Suspend/Resume resets the PCI configuration space, so we have to 11899 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries 11900 * from interfering with C3 CPU state. pci_restore_state won't help 11901 * here since it only restores the first 64 bytes pci config header. 11902 */ 11903 pci_read_config_dword(pdev, 0x40, &val); 11904 if ((val & 0x0000ff00) != 0) 11905 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff); 11906 11907 /* Set the device back into the PRESENT state; this will also wake 11908 * the queue of needed */ 11909 netif_device_attach(dev); 11910 11911 priv->suspend_time = ktime_get_boottime_seconds() - priv->suspend_at; 11912 11913 /* Bring the device back up */ 11914 schedule_work(&priv->up); 11915 11916 return 0; 11917 } 11918 #endif 11919 11920 static void ipw_pci_shutdown(struct pci_dev *pdev) 11921 { 11922 struct ipw_priv *priv = pci_get_drvdata(pdev); 11923 11924 /* Take down the device; powers it off, etc. */ 11925 ipw_down(priv); 11926 11927 pci_disable_device(pdev); 11928 } 11929 11930 /* driver initialization stuff */ 11931 static struct pci_driver ipw_driver = { 11932 .name = DRV_NAME, 11933 .id_table = card_ids, 11934 .probe = ipw_pci_probe, 11935 .remove = ipw_pci_remove, 11936 #ifdef CONFIG_PM 11937 .suspend = ipw_pci_suspend, 11938 .resume = ipw_pci_resume, 11939 #endif 11940 .shutdown = ipw_pci_shutdown, 11941 }; 11942 11943 static int __init ipw_init(void) 11944 { 11945 int ret; 11946 11947 printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n"); 11948 printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n"); 11949 11950 ret = pci_register_driver(&ipw_driver); 11951 if (ret) { 11952 IPW_ERROR("Unable to initialize PCI module\n"); 11953 return ret; 11954 } 11955 11956 ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level); 11957 if (ret) { 11958 IPW_ERROR("Unable to create driver sysfs file\n"); 11959 pci_unregister_driver(&ipw_driver); 11960 return ret; 11961 } 11962 11963 return ret; 11964 } 11965 11966 static void __exit ipw_exit(void) 11967 { 11968 driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level); 11969 pci_unregister_driver(&ipw_driver); 11970 } 11971 11972 module_param(disable, int, 0444); 11973 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])"); 11974 11975 module_param(associate, int, 0444); 11976 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)"); 11977 11978 module_param(auto_create, int, 0444); 11979 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)"); 11980 11981 module_param_named(led, led_support, int, 0444); 11982 MODULE_PARM_DESC(led, "enable led control on some systems (default 1 on)"); 11983 11984 module_param(debug, int, 0444); 11985 MODULE_PARM_DESC(debug, "debug output mask"); 11986 11987 module_param_named(channel, default_channel, int, 0444); 11988 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])"); 11989 11990 #ifdef CONFIG_IPW2200_PROMISCUOUS 11991 module_param(rtap_iface, int, 0444); 11992 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)"); 11993 #endif 11994 11995 #ifdef CONFIG_IPW2200_QOS 11996 module_param(qos_enable, int, 0444); 11997 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalities"); 11998 11999 module_param(qos_burst_enable, int, 0444); 12000 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode"); 12001 12002 module_param(qos_no_ack_mask, int, 0444); 12003 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack"); 12004 12005 module_param(burst_duration_CCK, int, 0444); 12006 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value"); 12007 12008 module_param(burst_duration_OFDM, int, 0444); 12009 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value"); 12010 #endif /* CONFIG_IPW2200_QOS */ 12011 12012 #ifdef CONFIG_IPW2200_MONITOR 12013 module_param_named(mode, network_mode, int, 0444); 12014 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)"); 12015 #else 12016 module_param_named(mode, network_mode, int, 0444); 12017 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)"); 12018 #endif 12019 12020 module_param(bt_coexist, int, 0444); 12021 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)"); 12022 12023 module_param(hwcrypto, int, 0444); 12024 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)"); 12025 12026 module_param(cmdlog, int, 0444); 12027 MODULE_PARM_DESC(cmdlog, 12028 "allocate a ring buffer for logging firmware commands"); 12029 12030 module_param(roaming, int, 0444); 12031 MODULE_PARM_DESC(roaming, "enable roaming support (default on)"); 12032 12033 module_param(antenna, int, 0444); 12034 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)"); 12035 12036 module_exit(ipw_exit); 12037 module_init(ipw_init); 12038