1 // SPDX-License-Identifier: GPL-2.0-only
2 /******************************************************************************
3 
4   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
5 
6   802.11 status code portion of this file from ethereal-0.10.6:
7     Copyright 2000, Axis Communications AB
8     Ethereal - Network traffic analyzer
9     By Gerald Combs <gerald@ethereal.com>
10     Copyright 1998 Gerald Combs
11 
12 
13   Contact Information:
14   Intel Linux Wireless <ilw@linux.intel.com>
15   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
16 
17 ******************************************************************************/
18 
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <net/cfg80211-wext.h>
22 #include "ipw2200.h"
23 #include "ipw.h"
24 
25 
26 #ifndef KBUILD_EXTMOD
27 #define VK "k"
28 #else
29 #define VK
30 #endif
31 
32 #ifdef CONFIG_IPW2200_DEBUG
33 #define VD "d"
34 #else
35 #define VD
36 #endif
37 
38 #ifdef CONFIG_IPW2200_MONITOR
39 #define VM "m"
40 #else
41 #define VM
42 #endif
43 
44 #ifdef CONFIG_IPW2200_PROMISCUOUS
45 #define VP "p"
46 #else
47 #define VP
48 #endif
49 
50 #ifdef CONFIG_IPW2200_RADIOTAP
51 #define VR "r"
52 #else
53 #define VR
54 #endif
55 
56 #ifdef CONFIG_IPW2200_QOS
57 #define VQ "q"
58 #else
59 #define VQ
60 #endif
61 
62 #define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
63 #define DRV_DESCRIPTION	"Intel(R) PRO/Wireless 2200/2915 Network Driver"
64 #define DRV_COPYRIGHT	"Copyright(c) 2003-2006 Intel Corporation"
65 #define DRV_VERSION     IPW2200_VERSION
66 
67 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
68 
69 MODULE_DESCRIPTION(DRV_DESCRIPTION);
70 MODULE_VERSION(DRV_VERSION);
71 MODULE_AUTHOR(DRV_COPYRIGHT);
72 MODULE_LICENSE("GPL");
73 MODULE_FIRMWARE("ipw2200-ibss.fw");
74 #ifdef CONFIG_IPW2200_MONITOR
75 MODULE_FIRMWARE("ipw2200-sniffer.fw");
76 #endif
77 MODULE_FIRMWARE("ipw2200-bss.fw");
78 
79 static int cmdlog = 0;
80 static int debug = 0;
81 static int default_channel = 0;
82 static int network_mode = 0;
83 
84 static u32 ipw_debug_level;
85 static int associate;
86 static int auto_create = 1;
87 static int led_support = 1;
88 static int disable = 0;
89 static int bt_coexist = 0;
90 static int hwcrypto = 0;
91 static int roaming = 1;
92 static const char ipw_modes[] = {
93 	'a', 'b', 'g', '?'
94 };
95 static int antenna = CFG_SYS_ANTENNA_BOTH;
96 
97 #ifdef CONFIG_IPW2200_PROMISCUOUS
98 static int rtap_iface = 0;     /* def: 0 -- do not create rtap interface */
99 #endif
100 
101 static struct ieee80211_rate ipw2200_rates[] = {
102 	{ .bitrate = 10 },
103 	{ .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
104 	{ .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
105 	{ .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
106 	{ .bitrate = 60 },
107 	{ .bitrate = 90 },
108 	{ .bitrate = 120 },
109 	{ .bitrate = 180 },
110 	{ .bitrate = 240 },
111 	{ .bitrate = 360 },
112 	{ .bitrate = 480 },
113 	{ .bitrate = 540 }
114 };
115 
116 #define ipw2200_a_rates		(ipw2200_rates + 4)
117 #define ipw2200_num_a_rates	8
118 #define ipw2200_bg_rates	(ipw2200_rates + 0)
119 #define ipw2200_num_bg_rates	12
120 
121 /* Ugly macro to convert literal channel numbers into their mhz equivalents
122  * There are certianly some conditions that will break this (like feeding it '30')
123  * but they shouldn't arise since nothing talks on channel 30. */
124 #define ieee80211chan2mhz(x) \
125 	(((x) <= 14) ? \
126 	(((x) == 14) ? 2484 : ((x) * 5) + 2407) : \
127 	((x) + 1000) * 5)
128 
129 #ifdef CONFIG_IPW2200_QOS
130 static int qos_enable = 0;
131 static int qos_burst_enable = 0;
132 static int qos_no_ack_mask = 0;
133 static int burst_duration_CCK = 0;
134 static int burst_duration_OFDM = 0;
135 
136 static struct libipw_qos_parameters def_qos_parameters_OFDM = {
137 	{QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
138 	 QOS_TX3_CW_MIN_OFDM},
139 	{QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
140 	 QOS_TX3_CW_MAX_OFDM},
141 	{QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
142 	{QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
143 	{QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
144 	 QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
145 };
146 
147 static struct libipw_qos_parameters def_qos_parameters_CCK = {
148 	{QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
149 	 QOS_TX3_CW_MIN_CCK},
150 	{QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
151 	 QOS_TX3_CW_MAX_CCK},
152 	{QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
153 	{QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
154 	{QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
155 	 QOS_TX3_TXOP_LIMIT_CCK}
156 };
157 
158 static struct libipw_qos_parameters def_parameters_OFDM = {
159 	{DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
160 	 DEF_TX3_CW_MIN_OFDM},
161 	{DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
162 	 DEF_TX3_CW_MAX_OFDM},
163 	{DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
164 	{DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
165 	{DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
166 	 DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
167 };
168 
169 static struct libipw_qos_parameters def_parameters_CCK = {
170 	{DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
171 	 DEF_TX3_CW_MIN_CCK},
172 	{DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
173 	 DEF_TX3_CW_MAX_CCK},
174 	{DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
175 	{DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
176 	{DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
177 	 DEF_TX3_TXOP_LIMIT_CCK}
178 };
179 
180 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
181 
182 static int from_priority_to_tx_queue[] = {
183 	IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
184 	IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
185 };
186 
187 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
188 
189 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
190 				       *qos_param);
191 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
192 				     *qos_param);
193 #endif				/* CONFIG_IPW2200_QOS */
194 
195 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
196 static void ipw_remove_current_network(struct ipw_priv *priv);
197 static void ipw_rx(struct ipw_priv *priv);
198 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
199 				struct clx2_tx_queue *txq, int qindex);
200 static int ipw_queue_reset(struct ipw_priv *priv);
201 
202 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
203 			     int len, int sync);
204 
205 static void ipw_tx_queue_free(struct ipw_priv *);
206 
207 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
208 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
209 static void ipw_rx_queue_replenish(void *);
210 static int ipw_up(struct ipw_priv *);
211 static void ipw_bg_up(struct work_struct *work);
212 static void ipw_down(struct ipw_priv *);
213 static void ipw_bg_down(struct work_struct *work);
214 static int ipw_config(struct ipw_priv *);
215 static int init_supported_rates(struct ipw_priv *priv,
216 				struct ipw_supported_rates *prates);
217 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
218 static void ipw_send_wep_keys(struct ipw_priv *, int);
219 
220 static int snprint_line(char *buf, size_t count,
221 			const u8 * data, u32 len, u32 ofs)
222 {
223 	int out, i, j, l;
224 	char c;
225 
226 	out = snprintf(buf, count, "%08X", ofs);
227 
228 	for (l = 0, i = 0; i < 2; i++) {
229 		out += snprintf(buf + out, count - out, " ");
230 		for (j = 0; j < 8 && l < len; j++, l++)
231 			out += snprintf(buf + out, count - out, "%02X ",
232 					data[(i * 8 + j)]);
233 		for (; j < 8; j++)
234 			out += snprintf(buf + out, count - out, "   ");
235 	}
236 
237 	out += snprintf(buf + out, count - out, " ");
238 	for (l = 0, i = 0; i < 2; i++) {
239 		out += snprintf(buf + out, count - out, " ");
240 		for (j = 0; j < 8 && l < len; j++, l++) {
241 			c = data[(i * 8 + j)];
242 			if (!isascii(c) || !isprint(c))
243 				c = '.';
244 
245 			out += snprintf(buf + out, count - out, "%c", c);
246 		}
247 
248 		for (; j < 8; j++)
249 			out += snprintf(buf + out, count - out, " ");
250 	}
251 
252 	return out;
253 }
254 
255 static void printk_buf(int level, const u8 * data, u32 len)
256 {
257 	char line[81];
258 	u32 ofs = 0;
259 	if (!(ipw_debug_level & level))
260 		return;
261 
262 	while (len) {
263 		snprint_line(line, sizeof(line), &data[ofs],
264 			     min(len, 16U), ofs);
265 		printk(KERN_DEBUG "%s\n", line);
266 		ofs += 16;
267 		len -= min(len, 16U);
268 	}
269 }
270 
271 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
272 {
273 	size_t out = size;
274 	u32 ofs = 0;
275 	int total = 0;
276 
277 	while (size && len) {
278 		out = snprint_line(output, size, &data[ofs],
279 				   min_t(size_t, len, 16U), ofs);
280 
281 		ofs += 16;
282 		output += out;
283 		size -= out;
284 		len -= min_t(size_t, len, 16U);
285 		total += out;
286 	}
287 	return total;
288 }
289 
290 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
291 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
292 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
293 
294 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
295 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
296 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
297 
298 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
299 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
300 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
301 {
302 	IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
303 		     __LINE__, (u32) (b), (u32) (c));
304 	_ipw_write_reg8(a, b, c);
305 }
306 
307 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
308 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
309 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
310 {
311 	IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
312 		     __LINE__, (u32) (b), (u32) (c));
313 	_ipw_write_reg16(a, b, c);
314 }
315 
316 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
317 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
318 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
319 {
320 	IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
321 		     __LINE__, (u32) (b), (u32) (c));
322 	_ipw_write_reg32(a, b, c);
323 }
324 
325 /* 8-bit direct write (low 4K) */
326 static inline void _ipw_write8(struct ipw_priv *ipw, unsigned long ofs,
327 		u8 val)
328 {
329 	writeb(val, ipw->hw_base + ofs);
330 }
331 
332 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
333 #define ipw_write8(ipw, ofs, val) do { \
334 	IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, \
335 			__LINE__, (u32)(ofs), (u32)(val)); \
336 	_ipw_write8(ipw, ofs, val); \
337 } while (0)
338 
339 /* 16-bit direct write (low 4K) */
340 static inline void _ipw_write16(struct ipw_priv *ipw, unsigned long ofs,
341 		u16 val)
342 {
343 	writew(val, ipw->hw_base + ofs);
344 }
345 
346 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
347 #define ipw_write16(ipw, ofs, val) do { \
348 	IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, \
349 			__LINE__, (u32)(ofs), (u32)(val)); \
350 	_ipw_write16(ipw, ofs, val); \
351 } while (0)
352 
353 /* 32-bit direct write (low 4K) */
354 static inline void _ipw_write32(struct ipw_priv *ipw, unsigned long ofs,
355 		u32 val)
356 {
357 	writel(val, ipw->hw_base + ofs);
358 }
359 
360 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
361 #define ipw_write32(ipw, ofs, val) do { \
362 	IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, \
363 			__LINE__, (u32)(ofs), (u32)(val)); \
364 	_ipw_write32(ipw, ofs, val); \
365 } while (0)
366 
367 /* 8-bit direct read (low 4K) */
368 static inline u8 _ipw_read8(struct ipw_priv *ipw, unsigned long ofs)
369 {
370 	return readb(ipw->hw_base + ofs);
371 }
372 
373 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
374 #define ipw_read8(ipw, ofs) ({ \
375 	IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", __FILE__, __LINE__, \
376 			(u32)(ofs)); \
377 	_ipw_read8(ipw, ofs); \
378 })
379 
380 /* 16-bit direct read (low 4K) */
381 static inline u16 _ipw_read16(struct ipw_priv *ipw, unsigned long ofs)
382 {
383 	return readw(ipw->hw_base + ofs);
384 }
385 
386 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
387 #define ipw_read16(ipw, ofs) ({ \
388 	IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", __FILE__, __LINE__, \
389 			(u32)(ofs)); \
390 	_ipw_read16(ipw, ofs); \
391 })
392 
393 /* 32-bit direct read (low 4K) */
394 static inline u32 _ipw_read32(struct ipw_priv *ipw, unsigned long ofs)
395 {
396 	return readl(ipw->hw_base + ofs);
397 }
398 
399 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
400 #define ipw_read32(ipw, ofs) ({ \
401 	IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", __FILE__, __LINE__, \
402 			(u32)(ofs)); \
403 	_ipw_read32(ipw, ofs); \
404 })
405 
406 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
407 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
408 #define ipw_read_indirect(a, b, c, d) ({ \
409 	IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %u bytes\n", __FILE__, \
410 			__LINE__, (u32)(b), (u32)(d)); \
411 	_ipw_read_indirect(a, b, c, d); \
412 })
413 
414 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
415 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
416 				int num);
417 #define ipw_write_indirect(a, b, c, d) do { \
418 	IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %u bytes\n", __FILE__, \
419 			__LINE__, (u32)(b), (u32)(d)); \
420 	_ipw_write_indirect(a, b, c, d); \
421 } while (0)
422 
423 /* 32-bit indirect write (above 4K) */
424 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
425 {
426 	IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
427 	_ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
428 	_ipw_write32(priv, IPW_INDIRECT_DATA, value);
429 }
430 
431 /* 8-bit indirect write (above 4K) */
432 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
433 {
434 	u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;	/* dword align */
435 	u32 dif_len = reg - aligned_addr;
436 
437 	IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
438 	_ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
439 	_ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
440 }
441 
442 /* 16-bit indirect write (above 4K) */
443 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
444 {
445 	u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;	/* dword align */
446 	u32 dif_len = (reg - aligned_addr) & (~0x1ul);
447 
448 	IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
449 	_ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
450 	_ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
451 }
452 
453 /* 8-bit indirect read (above 4K) */
454 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
455 {
456 	u32 word;
457 	_ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
458 	IPW_DEBUG_IO(" reg = 0x%8X :\n", reg);
459 	word = _ipw_read32(priv, IPW_INDIRECT_DATA);
460 	return (word >> ((reg & 0x3) * 8)) & 0xff;
461 }
462 
463 /* 32-bit indirect read (above 4K) */
464 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
465 {
466 	u32 value;
467 
468 	IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
469 
470 	_ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
471 	value = _ipw_read32(priv, IPW_INDIRECT_DATA);
472 	IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x\n", reg, value);
473 	return value;
474 }
475 
476 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
477 /*    for area above 1st 4K of SRAM/reg space */
478 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
479 			       int num)
480 {
481 	u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;	/* dword align */
482 	u32 dif_len = addr - aligned_addr;
483 	u32 i;
484 
485 	IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
486 
487 	if (num <= 0) {
488 		return;
489 	}
490 
491 	/* Read the first dword (or portion) byte by byte */
492 	if (unlikely(dif_len)) {
493 		_ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
494 		/* Start reading at aligned_addr + dif_len */
495 		for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
496 			*buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
497 		aligned_addr += 4;
498 	}
499 
500 	/* Read all of the middle dwords as dwords, with auto-increment */
501 	_ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
502 	for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
503 		*(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
504 
505 	/* Read the last dword (or portion) byte by byte */
506 	if (unlikely(num)) {
507 		_ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
508 		for (i = 0; num > 0; i++, num--)
509 			*buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
510 	}
511 }
512 
513 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
514 /*    for area above 1st 4K of SRAM/reg space */
515 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
516 				int num)
517 {
518 	u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;	/* dword align */
519 	u32 dif_len = addr - aligned_addr;
520 	u32 i;
521 
522 	IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
523 
524 	if (num <= 0) {
525 		return;
526 	}
527 
528 	/* Write the first dword (or portion) byte by byte */
529 	if (unlikely(dif_len)) {
530 		_ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
531 		/* Start writing at aligned_addr + dif_len */
532 		for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
533 			_ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
534 		aligned_addr += 4;
535 	}
536 
537 	/* Write all of the middle dwords as dwords, with auto-increment */
538 	_ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
539 	for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
540 		_ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
541 
542 	/* Write the last dword (or portion) byte by byte */
543 	if (unlikely(num)) {
544 		_ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
545 		for (i = 0; num > 0; i++, num--, buf++)
546 			_ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
547 	}
548 }
549 
550 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
551 /*    for 1st 4K of SRAM/regs space */
552 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
553 			     int num)
554 {
555 	memcpy_toio((priv->hw_base + addr), buf, num);
556 }
557 
558 /* Set bit(s) in low 4K of SRAM/regs */
559 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
560 {
561 	ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
562 }
563 
564 /* Clear bit(s) in low 4K of SRAM/regs */
565 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
566 {
567 	ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
568 }
569 
570 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
571 {
572 	if (priv->status & STATUS_INT_ENABLED)
573 		return;
574 	priv->status |= STATUS_INT_ENABLED;
575 	ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
576 }
577 
578 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
579 {
580 	if (!(priv->status & STATUS_INT_ENABLED))
581 		return;
582 	priv->status &= ~STATUS_INT_ENABLED;
583 	ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
584 }
585 
586 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
587 {
588 	unsigned long flags;
589 
590 	spin_lock_irqsave(&priv->irq_lock, flags);
591 	__ipw_enable_interrupts(priv);
592 	spin_unlock_irqrestore(&priv->irq_lock, flags);
593 }
594 
595 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
596 {
597 	unsigned long flags;
598 
599 	spin_lock_irqsave(&priv->irq_lock, flags);
600 	__ipw_disable_interrupts(priv);
601 	spin_unlock_irqrestore(&priv->irq_lock, flags);
602 }
603 
604 static char *ipw_error_desc(u32 val)
605 {
606 	switch (val) {
607 	case IPW_FW_ERROR_OK:
608 		return "ERROR_OK";
609 	case IPW_FW_ERROR_FAIL:
610 		return "ERROR_FAIL";
611 	case IPW_FW_ERROR_MEMORY_UNDERFLOW:
612 		return "MEMORY_UNDERFLOW";
613 	case IPW_FW_ERROR_MEMORY_OVERFLOW:
614 		return "MEMORY_OVERFLOW";
615 	case IPW_FW_ERROR_BAD_PARAM:
616 		return "BAD_PARAM";
617 	case IPW_FW_ERROR_BAD_CHECKSUM:
618 		return "BAD_CHECKSUM";
619 	case IPW_FW_ERROR_NMI_INTERRUPT:
620 		return "NMI_INTERRUPT";
621 	case IPW_FW_ERROR_BAD_DATABASE:
622 		return "BAD_DATABASE";
623 	case IPW_FW_ERROR_ALLOC_FAIL:
624 		return "ALLOC_FAIL";
625 	case IPW_FW_ERROR_DMA_UNDERRUN:
626 		return "DMA_UNDERRUN";
627 	case IPW_FW_ERROR_DMA_STATUS:
628 		return "DMA_STATUS";
629 	case IPW_FW_ERROR_DINO_ERROR:
630 		return "DINO_ERROR";
631 	case IPW_FW_ERROR_EEPROM_ERROR:
632 		return "EEPROM_ERROR";
633 	case IPW_FW_ERROR_SYSASSERT:
634 		return "SYSASSERT";
635 	case IPW_FW_ERROR_FATAL_ERROR:
636 		return "FATAL_ERROR";
637 	default:
638 		return "UNKNOWN_ERROR";
639 	}
640 }
641 
642 static void ipw_dump_error_log(struct ipw_priv *priv,
643 			       struct ipw_fw_error *error)
644 {
645 	u32 i;
646 
647 	if (!error) {
648 		IPW_ERROR("Error allocating and capturing error log.  "
649 			  "Nothing to dump.\n");
650 		return;
651 	}
652 
653 	IPW_ERROR("Start IPW Error Log Dump:\n");
654 	IPW_ERROR("Status: 0x%08X, Config: %08X\n",
655 		  error->status, error->config);
656 
657 	for (i = 0; i < error->elem_len; i++)
658 		IPW_ERROR("%s %i 0x%08x  0x%08x  0x%08x  0x%08x  0x%08x\n",
659 			  ipw_error_desc(error->elem[i].desc),
660 			  error->elem[i].time,
661 			  error->elem[i].blink1,
662 			  error->elem[i].blink2,
663 			  error->elem[i].link1,
664 			  error->elem[i].link2, error->elem[i].data);
665 	for (i = 0; i < error->log_len; i++)
666 		IPW_ERROR("%i\t0x%08x\t%i\n",
667 			  error->log[i].time,
668 			  error->log[i].data, error->log[i].event);
669 }
670 
671 static inline int ipw_is_init(struct ipw_priv *priv)
672 {
673 	return (priv->status & STATUS_INIT) ? 1 : 0;
674 }
675 
676 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
677 {
678 	u32 addr, field_info, field_len, field_count, total_len;
679 
680 	IPW_DEBUG_ORD("ordinal = %i\n", ord);
681 
682 	if (!priv || !val || !len) {
683 		IPW_DEBUG_ORD("Invalid argument\n");
684 		return -EINVAL;
685 	}
686 
687 	/* verify device ordinal tables have been initialized */
688 	if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
689 		IPW_DEBUG_ORD("Access ordinals before initialization\n");
690 		return -EINVAL;
691 	}
692 
693 	switch (IPW_ORD_TABLE_ID_MASK & ord) {
694 	case IPW_ORD_TABLE_0_MASK:
695 		/*
696 		 * TABLE 0: Direct access to a table of 32 bit values
697 		 *
698 		 * This is a very simple table with the data directly
699 		 * read from the table
700 		 */
701 
702 		/* remove the table id from the ordinal */
703 		ord &= IPW_ORD_TABLE_VALUE_MASK;
704 
705 		/* boundary check */
706 		if (ord > priv->table0_len) {
707 			IPW_DEBUG_ORD("ordinal value (%i) longer then "
708 				      "max (%i)\n", ord, priv->table0_len);
709 			return -EINVAL;
710 		}
711 
712 		/* verify we have enough room to store the value */
713 		if (*len < sizeof(u32)) {
714 			IPW_DEBUG_ORD("ordinal buffer length too small, "
715 				      "need %zd\n", sizeof(u32));
716 			return -EINVAL;
717 		}
718 
719 		IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
720 			      ord, priv->table0_addr + (ord << 2));
721 
722 		*len = sizeof(u32);
723 		ord <<= 2;
724 		*((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
725 		break;
726 
727 	case IPW_ORD_TABLE_1_MASK:
728 		/*
729 		 * TABLE 1: Indirect access to a table of 32 bit values
730 		 *
731 		 * This is a fairly large table of u32 values each
732 		 * representing starting addr for the data (which is
733 		 * also a u32)
734 		 */
735 
736 		/* remove the table id from the ordinal */
737 		ord &= IPW_ORD_TABLE_VALUE_MASK;
738 
739 		/* boundary check */
740 		if (ord > priv->table1_len) {
741 			IPW_DEBUG_ORD("ordinal value too long\n");
742 			return -EINVAL;
743 		}
744 
745 		/* verify we have enough room to store the value */
746 		if (*len < sizeof(u32)) {
747 			IPW_DEBUG_ORD("ordinal buffer length too small, "
748 				      "need %zd\n", sizeof(u32));
749 			return -EINVAL;
750 		}
751 
752 		*((u32 *) val) =
753 		    ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
754 		*len = sizeof(u32);
755 		break;
756 
757 	case IPW_ORD_TABLE_2_MASK:
758 		/*
759 		 * TABLE 2: Indirect access to a table of variable sized values
760 		 *
761 		 * This table consist of six values, each containing
762 		 *     - dword containing the starting offset of the data
763 		 *     - dword containing the lengh in the first 16bits
764 		 *       and the count in the second 16bits
765 		 */
766 
767 		/* remove the table id from the ordinal */
768 		ord &= IPW_ORD_TABLE_VALUE_MASK;
769 
770 		/* boundary check */
771 		if (ord > priv->table2_len) {
772 			IPW_DEBUG_ORD("ordinal value too long\n");
773 			return -EINVAL;
774 		}
775 
776 		/* get the address of statistic */
777 		addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
778 
779 		/* get the second DW of statistics ;
780 		 * two 16-bit words - first is length, second is count */
781 		field_info =
782 		    ipw_read_reg32(priv,
783 				   priv->table2_addr + (ord << 3) +
784 				   sizeof(u32));
785 
786 		/* get each entry length */
787 		field_len = *((u16 *) & field_info);
788 
789 		/* get number of entries */
790 		field_count = *(((u16 *) & field_info) + 1);
791 
792 		/* abort if not enough memory */
793 		total_len = field_len * field_count;
794 		if (total_len > *len) {
795 			*len = total_len;
796 			return -EINVAL;
797 		}
798 
799 		*len = total_len;
800 		if (!total_len)
801 			return 0;
802 
803 		IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
804 			      "field_info = 0x%08x\n",
805 			      addr, total_len, field_info);
806 		ipw_read_indirect(priv, addr, val, total_len);
807 		break;
808 
809 	default:
810 		IPW_DEBUG_ORD("Invalid ordinal!\n");
811 		return -EINVAL;
812 
813 	}
814 
815 	return 0;
816 }
817 
818 static void ipw_init_ordinals(struct ipw_priv *priv)
819 {
820 	priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
821 	priv->table0_len = ipw_read32(priv, priv->table0_addr);
822 
823 	IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
824 		      priv->table0_addr, priv->table0_len);
825 
826 	priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
827 	priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
828 
829 	IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
830 		      priv->table1_addr, priv->table1_len);
831 
832 	priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
833 	priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
834 	priv->table2_len &= 0x0000ffff;	/* use first two bytes */
835 
836 	IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
837 		      priv->table2_addr, priv->table2_len);
838 
839 }
840 
841 static u32 ipw_register_toggle(u32 reg)
842 {
843 	reg &= ~IPW_START_STANDBY;
844 	if (reg & IPW_GATE_ODMA)
845 		reg &= ~IPW_GATE_ODMA;
846 	if (reg & IPW_GATE_IDMA)
847 		reg &= ~IPW_GATE_IDMA;
848 	if (reg & IPW_GATE_ADMA)
849 		reg &= ~IPW_GATE_ADMA;
850 	return reg;
851 }
852 
853 /*
854  * LED behavior:
855  * - On radio ON, turn on any LEDs that require to be on during start
856  * - On initialization, start unassociated blink
857  * - On association, disable unassociated blink
858  * - On disassociation, start unassociated blink
859  * - On radio OFF, turn off any LEDs started during radio on
860  *
861  */
862 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
863 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
864 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
865 
866 static void ipw_led_link_on(struct ipw_priv *priv)
867 {
868 	unsigned long flags;
869 	u32 led;
870 
871 	/* If configured to not use LEDs, or nic_type is 1,
872 	 * then we don't toggle a LINK led */
873 	if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
874 		return;
875 
876 	spin_lock_irqsave(&priv->lock, flags);
877 
878 	if (!(priv->status & STATUS_RF_KILL_MASK) &&
879 	    !(priv->status & STATUS_LED_LINK_ON)) {
880 		IPW_DEBUG_LED("Link LED On\n");
881 		led = ipw_read_reg32(priv, IPW_EVENT_REG);
882 		led |= priv->led_association_on;
883 
884 		led = ipw_register_toggle(led);
885 
886 		IPW_DEBUG_LED("Reg: 0x%08X\n", led);
887 		ipw_write_reg32(priv, IPW_EVENT_REG, led);
888 
889 		priv->status |= STATUS_LED_LINK_ON;
890 
891 		/* If we aren't associated, schedule turning the LED off */
892 		if (!(priv->status & STATUS_ASSOCIATED))
893 			schedule_delayed_work(&priv->led_link_off,
894 					      LD_TIME_LINK_ON);
895 	}
896 
897 	spin_unlock_irqrestore(&priv->lock, flags);
898 }
899 
900 static void ipw_bg_led_link_on(struct work_struct *work)
901 {
902 	struct ipw_priv *priv =
903 		container_of(work, struct ipw_priv, led_link_on.work);
904 	mutex_lock(&priv->mutex);
905 	ipw_led_link_on(priv);
906 	mutex_unlock(&priv->mutex);
907 }
908 
909 static void ipw_led_link_off(struct ipw_priv *priv)
910 {
911 	unsigned long flags;
912 	u32 led;
913 
914 	/* If configured not to use LEDs, or nic type is 1,
915 	 * then we don't goggle the LINK led. */
916 	if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
917 		return;
918 
919 	spin_lock_irqsave(&priv->lock, flags);
920 
921 	if (priv->status & STATUS_LED_LINK_ON) {
922 		led = ipw_read_reg32(priv, IPW_EVENT_REG);
923 		led &= priv->led_association_off;
924 		led = ipw_register_toggle(led);
925 
926 		IPW_DEBUG_LED("Reg: 0x%08X\n", led);
927 		ipw_write_reg32(priv, IPW_EVENT_REG, led);
928 
929 		IPW_DEBUG_LED("Link LED Off\n");
930 
931 		priv->status &= ~STATUS_LED_LINK_ON;
932 
933 		/* If we aren't associated and the radio is on, schedule
934 		 * turning the LED on (blink while unassociated) */
935 		if (!(priv->status & STATUS_RF_KILL_MASK) &&
936 		    !(priv->status & STATUS_ASSOCIATED))
937 			schedule_delayed_work(&priv->led_link_on,
938 					      LD_TIME_LINK_OFF);
939 
940 	}
941 
942 	spin_unlock_irqrestore(&priv->lock, flags);
943 }
944 
945 static void ipw_bg_led_link_off(struct work_struct *work)
946 {
947 	struct ipw_priv *priv =
948 		container_of(work, struct ipw_priv, led_link_off.work);
949 	mutex_lock(&priv->mutex);
950 	ipw_led_link_off(priv);
951 	mutex_unlock(&priv->mutex);
952 }
953 
954 static void __ipw_led_activity_on(struct ipw_priv *priv)
955 {
956 	u32 led;
957 
958 	if (priv->config & CFG_NO_LED)
959 		return;
960 
961 	if (priv->status & STATUS_RF_KILL_MASK)
962 		return;
963 
964 	if (!(priv->status & STATUS_LED_ACT_ON)) {
965 		led = ipw_read_reg32(priv, IPW_EVENT_REG);
966 		led |= priv->led_activity_on;
967 
968 		led = ipw_register_toggle(led);
969 
970 		IPW_DEBUG_LED("Reg: 0x%08X\n", led);
971 		ipw_write_reg32(priv, IPW_EVENT_REG, led);
972 
973 		IPW_DEBUG_LED("Activity LED On\n");
974 
975 		priv->status |= STATUS_LED_ACT_ON;
976 
977 		cancel_delayed_work(&priv->led_act_off);
978 		schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON);
979 	} else {
980 		/* Reschedule LED off for full time period */
981 		cancel_delayed_work(&priv->led_act_off);
982 		schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON);
983 	}
984 }
985 
986 #if 0
987 void ipw_led_activity_on(struct ipw_priv *priv)
988 {
989 	unsigned long flags;
990 	spin_lock_irqsave(&priv->lock, flags);
991 	__ipw_led_activity_on(priv);
992 	spin_unlock_irqrestore(&priv->lock, flags);
993 }
994 #endif  /*  0  */
995 
996 static void ipw_led_activity_off(struct ipw_priv *priv)
997 {
998 	unsigned long flags;
999 	u32 led;
1000 
1001 	if (priv->config & CFG_NO_LED)
1002 		return;
1003 
1004 	spin_lock_irqsave(&priv->lock, flags);
1005 
1006 	if (priv->status & STATUS_LED_ACT_ON) {
1007 		led = ipw_read_reg32(priv, IPW_EVENT_REG);
1008 		led &= priv->led_activity_off;
1009 
1010 		led = ipw_register_toggle(led);
1011 
1012 		IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1013 		ipw_write_reg32(priv, IPW_EVENT_REG, led);
1014 
1015 		IPW_DEBUG_LED("Activity LED Off\n");
1016 
1017 		priv->status &= ~STATUS_LED_ACT_ON;
1018 	}
1019 
1020 	spin_unlock_irqrestore(&priv->lock, flags);
1021 }
1022 
1023 static void ipw_bg_led_activity_off(struct work_struct *work)
1024 {
1025 	struct ipw_priv *priv =
1026 		container_of(work, struct ipw_priv, led_act_off.work);
1027 	mutex_lock(&priv->mutex);
1028 	ipw_led_activity_off(priv);
1029 	mutex_unlock(&priv->mutex);
1030 }
1031 
1032 static void ipw_led_band_on(struct ipw_priv *priv)
1033 {
1034 	unsigned long flags;
1035 	u32 led;
1036 
1037 	/* Only nic type 1 supports mode LEDs */
1038 	if (priv->config & CFG_NO_LED ||
1039 	    priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1040 		return;
1041 
1042 	spin_lock_irqsave(&priv->lock, flags);
1043 
1044 	led = ipw_read_reg32(priv, IPW_EVENT_REG);
1045 	if (priv->assoc_network->mode == IEEE_A) {
1046 		led |= priv->led_ofdm_on;
1047 		led &= priv->led_association_off;
1048 		IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1049 	} else if (priv->assoc_network->mode == IEEE_G) {
1050 		led |= priv->led_ofdm_on;
1051 		led |= priv->led_association_on;
1052 		IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1053 	} else {
1054 		led &= priv->led_ofdm_off;
1055 		led |= priv->led_association_on;
1056 		IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1057 	}
1058 
1059 	led = ipw_register_toggle(led);
1060 
1061 	IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1062 	ipw_write_reg32(priv, IPW_EVENT_REG, led);
1063 
1064 	spin_unlock_irqrestore(&priv->lock, flags);
1065 }
1066 
1067 static void ipw_led_band_off(struct ipw_priv *priv)
1068 {
1069 	unsigned long flags;
1070 	u32 led;
1071 
1072 	/* Only nic type 1 supports mode LEDs */
1073 	if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1074 		return;
1075 
1076 	spin_lock_irqsave(&priv->lock, flags);
1077 
1078 	led = ipw_read_reg32(priv, IPW_EVENT_REG);
1079 	led &= priv->led_ofdm_off;
1080 	led &= priv->led_association_off;
1081 
1082 	led = ipw_register_toggle(led);
1083 
1084 	IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1085 	ipw_write_reg32(priv, IPW_EVENT_REG, led);
1086 
1087 	spin_unlock_irqrestore(&priv->lock, flags);
1088 }
1089 
1090 static void ipw_led_radio_on(struct ipw_priv *priv)
1091 {
1092 	ipw_led_link_on(priv);
1093 }
1094 
1095 static void ipw_led_radio_off(struct ipw_priv *priv)
1096 {
1097 	ipw_led_activity_off(priv);
1098 	ipw_led_link_off(priv);
1099 }
1100 
1101 static void ipw_led_link_up(struct ipw_priv *priv)
1102 {
1103 	/* Set the Link Led on for all nic types */
1104 	ipw_led_link_on(priv);
1105 }
1106 
1107 static void ipw_led_link_down(struct ipw_priv *priv)
1108 {
1109 	ipw_led_activity_off(priv);
1110 	ipw_led_link_off(priv);
1111 
1112 	if (priv->status & STATUS_RF_KILL_MASK)
1113 		ipw_led_radio_off(priv);
1114 }
1115 
1116 static void ipw_led_init(struct ipw_priv *priv)
1117 {
1118 	priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1119 
1120 	/* Set the default PINs for the link and activity leds */
1121 	priv->led_activity_on = IPW_ACTIVITY_LED;
1122 	priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1123 
1124 	priv->led_association_on = IPW_ASSOCIATED_LED;
1125 	priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1126 
1127 	/* Set the default PINs for the OFDM leds */
1128 	priv->led_ofdm_on = IPW_OFDM_LED;
1129 	priv->led_ofdm_off = ~(IPW_OFDM_LED);
1130 
1131 	switch (priv->nic_type) {
1132 	case EEPROM_NIC_TYPE_1:
1133 		/* In this NIC type, the LEDs are reversed.... */
1134 		priv->led_activity_on = IPW_ASSOCIATED_LED;
1135 		priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1136 		priv->led_association_on = IPW_ACTIVITY_LED;
1137 		priv->led_association_off = ~(IPW_ACTIVITY_LED);
1138 
1139 		if (!(priv->config & CFG_NO_LED))
1140 			ipw_led_band_on(priv);
1141 
1142 		/* And we don't blink link LEDs for this nic, so
1143 		 * just return here */
1144 		return;
1145 
1146 	case EEPROM_NIC_TYPE_3:
1147 	case EEPROM_NIC_TYPE_2:
1148 	case EEPROM_NIC_TYPE_4:
1149 	case EEPROM_NIC_TYPE_0:
1150 		break;
1151 
1152 	default:
1153 		IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1154 			       priv->nic_type);
1155 		priv->nic_type = EEPROM_NIC_TYPE_0;
1156 		break;
1157 	}
1158 
1159 	if (!(priv->config & CFG_NO_LED)) {
1160 		if (priv->status & STATUS_ASSOCIATED)
1161 			ipw_led_link_on(priv);
1162 		else
1163 			ipw_led_link_off(priv);
1164 	}
1165 }
1166 
1167 static void ipw_led_shutdown(struct ipw_priv *priv)
1168 {
1169 	ipw_led_activity_off(priv);
1170 	ipw_led_link_off(priv);
1171 	ipw_led_band_off(priv);
1172 	cancel_delayed_work(&priv->led_link_on);
1173 	cancel_delayed_work(&priv->led_link_off);
1174 	cancel_delayed_work(&priv->led_act_off);
1175 }
1176 
1177 /*
1178  * The following adds a new attribute to the sysfs representation
1179  * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1180  * used for controlling the debug level.
1181  *
1182  * See the level definitions in ipw for details.
1183  */
1184 static ssize_t debug_level_show(struct device_driver *d, char *buf)
1185 {
1186 	return sprintf(buf, "0x%08X\n", ipw_debug_level);
1187 }
1188 
1189 static ssize_t debug_level_store(struct device_driver *d, const char *buf,
1190 				 size_t count)
1191 {
1192 	char *p = (char *)buf;
1193 	u32 val;
1194 
1195 	if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1196 		p++;
1197 		if (p[0] == 'x' || p[0] == 'X')
1198 			p++;
1199 		val = simple_strtoul(p, &p, 16);
1200 	} else
1201 		val = simple_strtoul(p, &p, 10);
1202 	if (p == buf)
1203 		printk(KERN_INFO DRV_NAME
1204 		       ": %s is not in hex or decimal form.\n", buf);
1205 	else
1206 		ipw_debug_level = val;
1207 
1208 	return strnlen(buf, count);
1209 }
1210 static DRIVER_ATTR_RW(debug_level);
1211 
1212 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1213 {
1214 	/* length = 1st dword in log */
1215 	return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1216 }
1217 
1218 static void ipw_capture_event_log(struct ipw_priv *priv,
1219 				  u32 log_len, struct ipw_event *log)
1220 {
1221 	u32 base;
1222 
1223 	if (log_len) {
1224 		base = ipw_read32(priv, IPW_EVENT_LOG);
1225 		ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1226 				  (u8 *) log, sizeof(*log) * log_len);
1227 	}
1228 }
1229 
1230 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1231 {
1232 	struct ipw_fw_error *error;
1233 	u32 log_len = ipw_get_event_log_len(priv);
1234 	u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1235 	u32 elem_len = ipw_read_reg32(priv, base);
1236 
1237 	error = kmalloc(sizeof(*error) +
1238 			sizeof(*error->elem) * elem_len +
1239 			sizeof(*error->log) * log_len, GFP_ATOMIC);
1240 	if (!error) {
1241 		IPW_ERROR("Memory allocation for firmware error log "
1242 			  "failed.\n");
1243 		return NULL;
1244 	}
1245 	error->jiffies = jiffies;
1246 	error->status = priv->status;
1247 	error->config = priv->config;
1248 	error->elem_len = elem_len;
1249 	error->log_len = log_len;
1250 	error->elem = (struct ipw_error_elem *)error->payload;
1251 	error->log = (struct ipw_event *)(error->elem + elem_len);
1252 
1253 	ipw_capture_event_log(priv, log_len, error->log);
1254 
1255 	if (elem_len)
1256 		ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1257 				  sizeof(*error->elem) * elem_len);
1258 
1259 	return error;
1260 }
1261 
1262 static ssize_t show_event_log(struct device *d,
1263 			      struct device_attribute *attr, char *buf)
1264 {
1265 	struct ipw_priv *priv = dev_get_drvdata(d);
1266 	u32 log_len = ipw_get_event_log_len(priv);
1267 	u32 log_size;
1268 	struct ipw_event *log;
1269 	u32 len = 0, i;
1270 
1271 	/* not using min() because of its strict type checking */
1272 	log_size = PAGE_SIZE / sizeof(*log) > log_len ?
1273 			sizeof(*log) * log_len : PAGE_SIZE;
1274 	log = kzalloc(log_size, GFP_KERNEL);
1275 	if (!log) {
1276 		IPW_ERROR("Unable to allocate memory for log\n");
1277 		return 0;
1278 	}
1279 	log_len = log_size / sizeof(*log);
1280 	ipw_capture_event_log(priv, log_len, log);
1281 
1282 	len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1283 	for (i = 0; i < log_len; i++)
1284 		len += snprintf(buf + len, PAGE_SIZE - len,
1285 				"\n%08X%08X%08X",
1286 				log[i].time, log[i].event, log[i].data);
1287 	len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1288 	kfree(log);
1289 	return len;
1290 }
1291 
1292 static DEVICE_ATTR(event_log, 0444, show_event_log, NULL);
1293 
1294 static ssize_t show_error(struct device *d,
1295 			  struct device_attribute *attr, char *buf)
1296 {
1297 	struct ipw_priv *priv = dev_get_drvdata(d);
1298 	u32 len = 0, i;
1299 	if (!priv->error)
1300 		return 0;
1301 	len += snprintf(buf + len, PAGE_SIZE - len,
1302 			"%08lX%08X%08X%08X",
1303 			priv->error->jiffies,
1304 			priv->error->status,
1305 			priv->error->config, priv->error->elem_len);
1306 	for (i = 0; i < priv->error->elem_len; i++)
1307 		len += snprintf(buf + len, PAGE_SIZE - len,
1308 				"\n%08X%08X%08X%08X%08X%08X%08X",
1309 				priv->error->elem[i].time,
1310 				priv->error->elem[i].desc,
1311 				priv->error->elem[i].blink1,
1312 				priv->error->elem[i].blink2,
1313 				priv->error->elem[i].link1,
1314 				priv->error->elem[i].link2,
1315 				priv->error->elem[i].data);
1316 
1317 	len += snprintf(buf + len, PAGE_SIZE - len,
1318 			"\n%08X", priv->error->log_len);
1319 	for (i = 0; i < priv->error->log_len; i++)
1320 		len += snprintf(buf + len, PAGE_SIZE - len,
1321 				"\n%08X%08X%08X",
1322 				priv->error->log[i].time,
1323 				priv->error->log[i].event,
1324 				priv->error->log[i].data);
1325 	len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1326 	return len;
1327 }
1328 
1329 static ssize_t clear_error(struct device *d,
1330 			   struct device_attribute *attr,
1331 			   const char *buf, size_t count)
1332 {
1333 	struct ipw_priv *priv = dev_get_drvdata(d);
1334 
1335 	kfree(priv->error);
1336 	priv->error = NULL;
1337 	return count;
1338 }
1339 
1340 static DEVICE_ATTR(error, 0644, show_error, clear_error);
1341 
1342 static ssize_t show_cmd_log(struct device *d,
1343 			    struct device_attribute *attr, char *buf)
1344 {
1345 	struct ipw_priv *priv = dev_get_drvdata(d);
1346 	u32 len = 0, i;
1347 	if (!priv->cmdlog)
1348 		return 0;
1349 	for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1350 	     (i != priv->cmdlog_pos) && (len < PAGE_SIZE);
1351 	     i = (i + 1) % priv->cmdlog_len) {
1352 		len +=
1353 		    snprintf(buf + len, PAGE_SIZE - len,
1354 			     "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1355 			     priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1356 			     priv->cmdlog[i].cmd.len);
1357 		len +=
1358 		    snprintk_buf(buf + len, PAGE_SIZE - len,
1359 				 (u8 *) priv->cmdlog[i].cmd.param,
1360 				 priv->cmdlog[i].cmd.len);
1361 		len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1362 	}
1363 	len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1364 	return len;
1365 }
1366 
1367 static DEVICE_ATTR(cmd_log, 0444, show_cmd_log, NULL);
1368 
1369 #ifdef CONFIG_IPW2200_PROMISCUOUS
1370 static void ipw_prom_free(struct ipw_priv *priv);
1371 static int ipw_prom_alloc(struct ipw_priv *priv);
1372 static ssize_t store_rtap_iface(struct device *d,
1373 			 struct device_attribute *attr,
1374 			 const char *buf, size_t count)
1375 {
1376 	struct ipw_priv *priv = dev_get_drvdata(d);
1377 	int rc = 0;
1378 
1379 	if (count < 1)
1380 		return -EINVAL;
1381 
1382 	switch (buf[0]) {
1383 	case '0':
1384 		if (!rtap_iface)
1385 			return count;
1386 
1387 		if (netif_running(priv->prom_net_dev)) {
1388 			IPW_WARNING("Interface is up.  Cannot unregister.\n");
1389 			return count;
1390 		}
1391 
1392 		ipw_prom_free(priv);
1393 		rtap_iface = 0;
1394 		break;
1395 
1396 	case '1':
1397 		if (rtap_iface)
1398 			return count;
1399 
1400 		rc = ipw_prom_alloc(priv);
1401 		if (!rc)
1402 			rtap_iface = 1;
1403 		break;
1404 
1405 	default:
1406 		return -EINVAL;
1407 	}
1408 
1409 	if (rc) {
1410 		IPW_ERROR("Failed to register promiscuous network "
1411 			  "device (error %d).\n", rc);
1412 	}
1413 
1414 	return count;
1415 }
1416 
1417 static ssize_t show_rtap_iface(struct device *d,
1418 			struct device_attribute *attr,
1419 			char *buf)
1420 {
1421 	struct ipw_priv *priv = dev_get_drvdata(d);
1422 	if (rtap_iface)
1423 		return sprintf(buf, "%s", priv->prom_net_dev->name);
1424 	else {
1425 		buf[0] = '-';
1426 		buf[1] = '1';
1427 		buf[2] = '\0';
1428 		return 3;
1429 	}
1430 }
1431 
1432 static DEVICE_ATTR(rtap_iface, 0600, show_rtap_iface, store_rtap_iface);
1433 
1434 static ssize_t store_rtap_filter(struct device *d,
1435 			 struct device_attribute *attr,
1436 			 const char *buf, size_t count)
1437 {
1438 	struct ipw_priv *priv = dev_get_drvdata(d);
1439 
1440 	if (!priv->prom_priv) {
1441 		IPW_ERROR("Attempting to set filter without "
1442 			  "rtap_iface enabled.\n");
1443 		return -EPERM;
1444 	}
1445 
1446 	priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1447 
1448 	IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1449 		       BIT_ARG16(priv->prom_priv->filter));
1450 
1451 	return count;
1452 }
1453 
1454 static ssize_t show_rtap_filter(struct device *d,
1455 			struct device_attribute *attr,
1456 			char *buf)
1457 {
1458 	struct ipw_priv *priv = dev_get_drvdata(d);
1459 	return sprintf(buf, "0x%04X",
1460 		       priv->prom_priv ? priv->prom_priv->filter : 0);
1461 }
1462 
1463 static DEVICE_ATTR(rtap_filter, 0600, show_rtap_filter, store_rtap_filter);
1464 #endif
1465 
1466 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1467 			     char *buf)
1468 {
1469 	struct ipw_priv *priv = dev_get_drvdata(d);
1470 	return sprintf(buf, "%d\n", priv->ieee->scan_age);
1471 }
1472 
1473 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1474 			      const char *buf, size_t count)
1475 {
1476 	struct ipw_priv *priv = dev_get_drvdata(d);
1477 	struct net_device *dev = priv->net_dev;
1478 	char buffer[] = "00000000";
1479 	unsigned long len =
1480 	    (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1481 	unsigned long val;
1482 	char *p = buffer;
1483 
1484 	IPW_DEBUG_INFO("enter\n");
1485 
1486 	strncpy(buffer, buf, len);
1487 	buffer[len] = 0;
1488 
1489 	if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1490 		p++;
1491 		if (p[0] == 'x' || p[0] == 'X')
1492 			p++;
1493 		val = simple_strtoul(p, &p, 16);
1494 	} else
1495 		val = simple_strtoul(p, &p, 10);
1496 	if (p == buffer) {
1497 		IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1498 	} else {
1499 		priv->ieee->scan_age = val;
1500 		IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1501 	}
1502 
1503 	IPW_DEBUG_INFO("exit\n");
1504 	return len;
1505 }
1506 
1507 static DEVICE_ATTR(scan_age, 0644, show_scan_age, store_scan_age);
1508 
1509 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1510 			char *buf)
1511 {
1512 	struct ipw_priv *priv = dev_get_drvdata(d);
1513 	return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1514 }
1515 
1516 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1517 			 const char *buf, size_t count)
1518 {
1519 	struct ipw_priv *priv = dev_get_drvdata(d);
1520 
1521 	IPW_DEBUG_INFO("enter\n");
1522 
1523 	if (count == 0)
1524 		return 0;
1525 
1526 	if (*buf == 0) {
1527 		IPW_DEBUG_LED("Disabling LED control.\n");
1528 		priv->config |= CFG_NO_LED;
1529 		ipw_led_shutdown(priv);
1530 	} else {
1531 		IPW_DEBUG_LED("Enabling LED control.\n");
1532 		priv->config &= ~CFG_NO_LED;
1533 		ipw_led_init(priv);
1534 	}
1535 
1536 	IPW_DEBUG_INFO("exit\n");
1537 	return count;
1538 }
1539 
1540 static DEVICE_ATTR(led, 0644, show_led, store_led);
1541 
1542 static ssize_t show_status(struct device *d,
1543 			   struct device_attribute *attr, char *buf)
1544 {
1545 	struct ipw_priv *p = dev_get_drvdata(d);
1546 	return sprintf(buf, "0x%08x\n", (int)p->status);
1547 }
1548 
1549 static DEVICE_ATTR(status, 0444, show_status, NULL);
1550 
1551 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1552 			char *buf)
1553 {
1554 	struct ipw_priv *p = dev_get_drvdata(d);
1555 	return sprintf(buf, "0x%08x\n", (int)p->config);
1556 }
1557 
1558 static DEVICE_ATTR(cfg, 0444, show_cfg, NULL);
1559 
1560 static ssize_t show_nic_type(struct device *d,
1561 			     struct device_attribute *attr, char *buf)
1562 {
1563 	struct ipw_priv *priv = dev_get_drvdata(d);
1564 	return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1565 }
1566 
1567 static DEVICE_ATTR(nic_type, 0444, show_nic_type, NULL);
1568 
1569 static ssize_t show_ucode_version(struct device *d,
1570 				  struct device_attribute *attr, char *buf)
1571 {
1572 	u32 len = sizeof(u32), tmp = 0;
1573 	struct ipw_priv *p = dev_get_drvdata(d);
1574 
1575 	if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1576 		return 0;
1577 
1578 	return sprintf(buf, "0x%08x\n", tmp);
1579 }
1580 
1581 static DEVICE_ATTR(ucode_version, 0644, show_ucode_version, NULL);
1582 
1583 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1584 			char *buf)
1585 {
1586 	u32 len = sizeof(u32), tmp = 0;
1587 	struct ipw_priv *p = dev_get_drvdata(d);
1588 
1589 	if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1590 		return 0;
1591 
1592 	return sprintf(buf, "0x%08x\n", tmp);
1593 }
1594 
1595 static DEVICE_ATTR(rtc, 0644, show_rtc, NULL);
1596 
1597 /*
1598  * Add a device attribute to view/control the delay between eeprom
1599  * operations.
1600  */
1601 static ssize_t show_eeprom_delay(struct device *d,
1602 				 struct device_attribute *attr, char *buf)
1603 {
1604 	struct ipw_priv *p = dev_get_drvdata(d);
1605 	int n = p->eeprom_delay;
1606 	return sprintf(buf, "%i\n", n);
1607 }
1608 static ssize_t store_eeprom_delay(struct device *d,
1609 				  struct device_attribute *attr,
1610 				  const char *buf, size_t count)
1611 {
1612 	struct ipw_priv *p = dev_get_drvdata(d);
1613 	sscanf(buf, "%i", &p->eeprom_delay);
1614 	return strnlen(buf, count);
1615 }
1616 
1617 static DEVICE_ATTR(eeprom_delay, 0644, show_eeprom_delay, store_eeprom_delay);
1618 
1619 static ssize_t show_command_event_reg(struct device *d,
1620 				      struct device_attribute *attr, char *buf)
1621 {
1622 	u32 reg = 0;
1623 	struct ipw_priv *p = dev_get_drvdata(d);
1624 
1625 	reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1626 	return sprintf(buf, "0x%08x\n", reg);
1627 }
1628 static ssize_t store_command_event_reg(struct device *d,
1629 				       struct device_attribute *attr,
1630 				       const char *buf, size_t count)
1631 {
1632 	u32 reg;
1633 	struct ipw_priv *p = dev_get_drvdata(d);
1634 
1635 	sscanf(buf, "%x", &reg);
1636 	ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1637 	return strnlen(buf, count);
1638 }
1639 
1640 static DEVICE_ATTR(command_event_reg, 0644,
1641 		   show_command_event_reg, store_command_event_reg);
1642 
1643 static ssize_t show_mem_gpio_reg(struct device *d,
1644 				 struct device_attribute *attr, char *buf)
1645 {
1646 	u32 reg = 0;
1647 	struct ipw_priv *p = dev_get_drvdata(d);
1648 
1649 	reg = ipw_read_reg32(p, 0x301100);
1650 	return sprintf(buf, "0x%08x\n", reg);
1651 }
1652 static ssize_t store_mem_gpio_reg(struct device *d,
1653 				  struct device_attribute *attr,
1654 				  const char *buf, size_t count)
1655 {
1656 	u32 reg;
1657 	struct ipw_priv *p = dev_get_drvdata(d);
1658 
1659 	sscanf(buf, "%x", &reg);
1660 	ipw_write_reg32(p, 0x301100, reg);
1661 	return strnlen(buf, count);
1662 }
1663 
1664 static DEVICE_ATTR(mem_gpio_reg, 0644, show_mem_gpio_reg, store_mem_gpio_reg);
1665 
1666 static ssize_t show_indirect_dword(struct device *d,
1667 				   struct device_attribute *attr, char *buf)
1668 {
1669 	u32 reg = 0;
1670 	struct ipw_priv *priv = dev_get_drvdata(d);
1671 
1672 	if (priv->status & STATUS_INDIRECT_DWORD)
1673 		reg = ipw_read_reg32(priv, priv->indirect_dword);
1674 	else
1675 		reg = 0;
1676 
1677 	return sprintf(buf, "0x%08x\n", reg);
1678 }
1679 static ssize_t store_indirect_dword(struct device *d,
1680 				    struct device_attribute *attr,
1681 				    const char *buf, size_t count)
1682 {
1683 	struct ipw_priv *priv = dev_get_drvdata(d);
1684 
1685 	sscanf(buf, "%x", &priv->indirect_dword);
1686 	priv->status |= STATUS_INDIRECT_DWORD;
1687 	return strnlen(buf, count);
1688 }
1689 
1690 static DEVICE_ATTR(indirect_dword, 0644,
1691 		   show_indirect_dword, store_indirect_dword);
1692 
1693 static ssize_t show_indirect_byte(struct device *d,
1694 				  struct device_attribute *attr, char *buf)
1695 {
1696 	u8 reg = 0;
1697 	struct ipw_priv *priv = dev_get_drvdata(d);
1698 
1699 	if (priv->status & STATUS_INDIRECT_BYTE)
1700 		reg = ipw_read_reg8(priv, priv->indirect_byte);
1701 	else
1702 		reg = 0;
1703 
1704 	return sprintf(buf, "0x%02x\n", reg);
1705 }
1706 static ssize_t store_indirect_byte(struct device *d,
1707 				   struct device_attribute *attr,
1708 				   const char *buf, size_t count)
1709 {
1710 	struct ipw_priv *priv = dev_get_drvdata(d);
1711 
1712 	sscanf(buf, "%x", &priv->indirect_byte);
1713 	priv->status |= STATUS_INDIRECT_BYTE;
1714 	return strnlen(buf, count);
1715 }
1716 
1717 static DEVICE_ATTR(indirect_byte, 0644,
1718 		   show_indirect_byte, store_indirect_byte);
1719 
1720 static ssize_t show_direct_dword(struct device *d,
1721 				 struct device_attribute *attr, char *buf)
1722 {
1723 	u32 reg = 0;
1724 	struct ipw_priv *priv = dev_get_drvdata(d);
1725 
1726 	if (priv->status & STATUS_DIRECT_DWORD)
1727 		reg = ipw_read32(priv, priv->direct_dword);
1728 	else
1729 		reg = 0;
1730 
1731 	return sprintf(buf, "0x%08x\n", reg);
1732 }
1733 static ssize_t store_direct_dword(struct device *d,
1734 				  struct device_attribute *attr,
1735 				  const char *buf, size_t count)
1736 {
1737 	struct ipw_priv *priv = dev_get_drvdata(d);
1738 
1739 	sscanf(buf, "%x", &priv->direct_dword);
1740 	priv->status |= STATUS_DIRECT_DWORD;
1741 	return strnlen(buf, count);
1742 }
1743 
1744 static DEVICE_ATTR(direct_dword, 0644, show_direct_dword, store_direct_dword);
1745 
1746 static int rf_kill_active(struct ipw_priv *priv)
1747 {
1748 	if (0 == (ipw_read32(priv, 0x30) & 0x10000)) {
1749 		priv->status |= STATUS_RF_KILL_HW;
1750 		wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1751 	} else {
1752 		priv->status &= ~STATUS_RF_KILL_HW;
1753 		wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1754 	}
1755 
1756 	return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1757 }
1758 
1759 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1760 			    char *buf)
1761 {
1762 	/* 0 - RF kill not enabled
1763 	   1 - SW based RF kill active (sysfs)
1764 	   2 - HW based RF kill active
1765 	   3 - Both HW and SW baed RF kill active */
1766 	struct ipw_priv *priv = dev_get_drvdata(d);
1767 	int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1768 	    (rf_kill_active(priv) ? 0x2 : 0x0);
1769 	return sprintf(buf, "%i\n", val);
1770 }
1771 
1772 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1773 {
1774 	if ((disable_radio ? 1 : 0) ==
1775 	    ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1776 		return 0;
1777 
1778 	IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
1779 			  disable_radio ? "OFF" : "ON");
1780 
1781 	if (disable_radio) {
1782 		priv->status |= STATUS_RF_KILL_SW;
1783 
1784 		cancel_delayed_work(&priv->request_scan);
1785 		cancel_delayed_work(&priv->request_direct_scan);
1786 		cancel_delayed_work(&priv->request_passive_scan);
1787 		cancel_delayed_work(&priv->scan_event);
1788 		schedule_work(&priv->down);
1789 	} else {
1790 		priv->status &= ~STATUS_RF_KILL_SW;
1791 		if (rf_kill_active(priv)) {
1792 			IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1793 					  "disabled by HW switch\n");
1794 			/* Make sure the RF_KILL check timer is running */
1795 			cancel_delayed_work(&priv->rf_kill);
1796 			schedule_delayed_work(&priv->rf_kill,
1797 					      round_jiffies_relative(2 * HZ));
1798 		} else
1799 			schedule_work(&priv->up);
1800 	}
1801 
1802 	return 1;
1803 }
1804 
1805 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1806 			     const char *buf, size_t count)
1807 {
1808 	struct ipw_priv *priv = dev_get_drvdata(d);
1809 
1810 	ipw_radio_kill_sw(priv, buf[0] == '1');
1811 
1812 	return count;
1813 }
1814 
1815 static DEVICE_ATTR(rf_kill, 0644, show_rf_kill, store_rf_kill);
1816 
1817 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1818 			       char *buf)
1819 {
1820 	struct ipw_priv *priv = dev_get_drvdata(d);
1821 	int pos = 0, len = 0;
1822 	if (priv->config & CFG_SPEED_SCAN) {
1823 		while (priv->speed_scan[pos] != 0)
1824 			len += sprintf(&buf[len], "%d ",
1825 				       priv->speed_scan[pos++]);
1826 		return len + sprintf(&buf[len], "\n");
1827 	}
1828 
1829 	return sprintf(buf, "0\n");
1830 }
1831 
1832 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1833 				const char *buf, size_t count)
1834 {
1835 	struct ipw_priv *priv = dev_get_drvdata(d);
1836 	int channel, pos = 0;
1837 	const char *p = buf;
1838 
1839 	/* list of space separated channels to scan, optionally ending with 0 */
1840 	while ((channel = simple_strtol(p, NULL, 0))) {
1841 		if (pos == MAX_SPEED_SCAN - 1) {
1842 			priv->speed_scan[pos] = 0;
1843 			break;
1844 		}
1845 
1846 		if (libipw_is_valid_channel(priv->ieee, channel))
1847 			priv->speed_scan[pos++] = channel;
1848 		else
1849 			IPW_WARNING("Skipping invalid channel request: %d\n",
1850 				    channel);
1851 		p = strchr(p, ' ');
1852 		if (!p)
1853 			break;
1854 		while (*p == ' ' || *p == '\t')
1855 			p++;
1856 	}
1857 
1858 	if (pos == 0)
1859 		priv->config &= ~CFG_SPEED_SCAN;
1860 	else {
1861 		priv->speed_scan_pos = 0;
1862 		priv->config |= CFG_SPEED_SCAN;
1863 	}
1864 
1865 	return count;
1866 }
1867 
1868 static DEVICE_ATTR(speed_scan, 0644, show_speed_scan, store_speed_scan);
1869 
1870 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1871 			      char *buf)
1872 {
1873 	struct ipw_priv *priv = dev_get_drvdata(d);
1874 	return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1875 }
1876 
1877 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1878 			       const char *buf, size_t count)
1879 {
1880 	struct ipw_priv *priv = dev_get_drvdata(d);
1881 	if (buf[0] == '1')
1882 		priv->config |= CFG_NET_STATS;
1883 	else
1884 		priv->config &= ~CFG_NET_STATS;
1885 
1886 	return count;
1887 }
1888 
1889 static DEVICE_ATTR(net_stats, 0644, show_net_stats, store_net_stats);
1890 
1891 static ssize_t show_channels(struct device *d,
1892 			     struct device_attribute *attr,
1893 			     char *buf)
1894 {
1895 	struct ipw_priv *priv = dev_get_drvdata(d);
1896 	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1897 	int len = 0, i;
1898 
1899 	len = sprintf(&buf[len],
1900 		      "Displaying %d channels in 2.4Ghz band "
1901 		      "(802.11bg):\n", geo->bg_channels);
1902 
1903 	for (i = 0; i < geo->bg_channels; i++) {
1904 		len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
1905 			       geo->bg[i].channel,
1906 			       geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT ?
1907 			       " (radar spectrum)" : "",
1908 			       ((geo->bg[i].flags & LIBIPW_CH_NO_IBSS) ||
1909 				(geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT))
1910 			       ? "" : ", IBSS",
1911 			       geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1912 			       "passive only" : "active/passive",
1913 			       geo->bg[i].flags & LIBIPW_CH_B_ONLY ?
1914 			       "B" : "B/G");
1915 	}
1916 
1917 	len += sprintf(&buf[len],
1918 		       "Displaying %d channels in 5.2Ghz band "
1919 		       "(802.11a):\n", geo->a_channels);
1920 	for (i = 0; i < geo->a_channels; i++) {
1921 		len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
1922 			       geo->a[i].channel,
1923 			       geo->a[i].flags & LIBIPW_CH_RADAR_DETECT ?
1924 			       " (radar spectrum)" : "",
1925 			       ((geo->a[i].flags & LIBIPW_CH_NO_IBSS) ||
1926 				(geo->a[i].flags & LIBIPW_CH_RADAR_DETECT))
1927 			       ? "" : ", IBSS",
1928 			       geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1929 			       "passive only" : "active/passive");
1930 	}
1931 
1932 	return len;
1933 }
1934 
1935 static DEVICE_ATTR(channels, 0400, show_channels, NULL);
1936 
1937 static void notify_wx_assoc_event(struct ipw_priv *priv)
1938 {
1939 	union iwreq_data wrqu;
1940 	wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1941 	if (priv->status & STATUS_ASSOCIATED)
1942 		memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1943 	else
1944 		eth_zero_addr(wrqu.ap_addr.sa_data);
1945 	wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1946 }
1947 
1948 static void ipw_irq_tasklet(unsigned long data)
1949 {
1950 	struct ipw_priv *priv = (struct ipw_priv *)data;
1951 	u32 inta, inta_mask, handled = 0;
1952 	unsigned long flags;
1953 	int rc = 0;
1954 
1955 	spin_lock_irqsave(&priv->irq_lock, flags);
1956 
1957 	inta = ipw_read32(priv, IPW_INTA_RW);
1958 	inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1959 
1960 	if (inta == 0xFFFFFFFF) {
1961 		/* Hardware disappeared */
1962 		IPW_WARNING("TASKLET INTA == 0xFFFFFFFF\n");
1963 		/* Only handle the cached INTA values */
1964 		inta = 0;
1965 	}
1966 	inta &= (IPW_INTA_MASK_ALL & inta_mask);
1967 
1968 	/* Add any cached INTA values that need to be handled */
1969 	inta |= priv->isr_inta;
1970 
1971 	spin_unlock_irqrestore(&priv->irq_lock, flags);
1972 
1973 	spin_lock_irqsave(&priv->lock, flags);
1974 
1975 	/* handle all the justifications for the interrupt */
1976 	if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1977 		ipw_rx(priv);
1978 		handled |= IPW_INTA_BIT_RX_TRANSFER;
1979 	}
1980 
1981 	if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1982 		IPW_DEBUG_HC("Command completed.\n");
1983 		rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1984 		priv->status &= ~STATUS_HCMD_ACTIVE;
1985 		wake_up_interruptible(&priv->wait_command_queue);
1986 		handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1987 	}
1988 
1989 	if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
1990 		IPW_DEBUG_TX("TX_QUEUE_1\n");
1991 		rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
1992 		handled |= IPW_INTA_BIT_TX_QUEUE_1;
1993 	}
1994 
1995 	if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
1996 		IPW_DEBUG_TX("TX_QUEUE_2\n");
1997 		rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
1998 		handled |= IPW_INTA_BIT_TX_QUEUE_2;
1999 	}
2000 
2001 	if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
2002 		IPW_DEBUG_TX("TX_QUEUE_3\n");
2003 		rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
2004 		handled |= IPW_INTA_BIT_TX_QUEUE_3;
2005 	}
2006 
2007 	if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
2008 		IPW_DEBUG_TX("TX_QUEUE_4\n");
2009 		rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
2010 		handled |= IPW_INTA_BIT_TX_QUEUE_4;
2011 	}
2012 
2013 	if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
2014 		IPW_WARNING("STATUS_CHANGE\n");
2015 		handled |= IPW_INTA_BIT_STATUS_CHANGE;
2016 	}
2017 
2018 	if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
2019 		IPW_WARNING("TX_PERIOD_EXPIRED\n");
2020 		handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
2021 	}
2022 
2023 	if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
2024 		IPW_WARNING("HOST_CMD_DONE\n");
2025 		handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
2026 	}
2027 
2028 	if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
2029 		IPW_WARNING("FW_INITIALIZATION_DONE\n");
2030 		handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
2031 	}
2032 
2033 	if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
2034 		IPW_WARNING("PHY_OFF_DONE\n");
2035 		handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
2036 	}
2037 
2038 	if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
2039 		IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
2040 		priv->status |= STATUS_RF_KILL_HW;
2041 		wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2042 		wake_up_interruptible(&priv->wait_command_queue);
2043 		priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2044 		cancel_delayed_work(&priv->request_scan);
2045 		cancel_delayed_work(&priv->request_direct_scan);
2046 		cancel_delayed_work(&priv->request_passive_scan);
2047 		cancel_delayed_work(&priv->scan_event);
2048 		schedule_work(&priv->link_down);
2049 		schedule_delayed_work(&priv->rf_kill, 2 * HZ);
2050 		handled |= IPW_INTA_BIT_RF_KILL_DONE;
2051 	}
2052 
2053 	if (inta & IPW_INTA_BIT_FATAL_ERROR) {
2054 		IPW_WARNING("Firmware error detected.  Restarting.\n");
2055 		if (priv->error) {
2056 			IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2057 			if (ipw_debug_level & IPW_DL_FW_ERRORS) {
2058 				struct ipw_fw_error *error =
2059 				    ipw_alloc_error_log(priv);
2060 				ipw_dump_error_log(priv, error);
2061 				kfree(error);
2062 			}
2063 		} else {
2064 			priv->error = ipw_alloc_error_log(priv);
2065 			if (priv->error)
2066 				IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2067 			else
2068 				IPW_DEBUG_FW("Error allocating sysfs 'error' "
2069 					     "log.\n");
2070 			if (ipw_debug_level & IPW_DL_FW_ERRORS)
2071 				ipw_dump_error_log(priv, priv->error);
2072 		}
2073 
2074 		/* XXX: If hardware encryption is for WPA/WPA2,
2075 		 * we have to notify the supplicant. */
2076 		if (priv->ieee->sec.encrypt) {
2077 			priv->status &= ~STATUS_ASSOCIATED;
2078 			notify_wx_assoc_event(priv);
2079 		}
2080 
2081 		/* Keep the restart process from trying to send host
2082 		 * commands by clearing the INIT status bit */
2083 		priv->status &= ~STATUS_INIT;
2084 
2085 		/* Cancel currently queued command. */
2086 		priv->status &= ~STATUS_HCMD_ACTIVE;
2087 		wake_up_interruptible(&priv->wait_command_queue);
2088 
2089 		schedule_work(&priv->adapter_restart);
2090 		handled |= IPW_INTA_BIT_FATAL_ERROR;
2091 	}
2092 
2093 	if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2094 		IPW_ERROR("Parity error\n");
2095 		handled |= IPW_INTA_BIT_PARITY_ERROR;
2096 	}
2097 
2098 	if (handled != inta) {
2099 		IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2100 	}
2101 
2102 	spin_unlock_irqrestore(&priv->lock, flags);
2103 
2104 	/* enable all interrupts */
2105 	ipw_enable_interrupts(priv);
2106 }
2107 
2108 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2109 static char *get_cmd_string(u8 cmd)
2110 {
2111 	switch (cmd) {
2112 		IPW_CMD(HOST_COMPLETE);
2113 		IPW_CMD(POWER_DOWN);
2114 		IPW_CMD(SYSTEM_CONFIG);
2115 		IPW_CMD(MULTICAST_ADDRESS);
2116 		IPW_CMD(SSID);
2117 		IPW_CMD(ADAPTER_ADDRESS);
2118 		IPW_CMD(PORT_TYPE);
2119 		IPW_CMD(RTS_THRESHOLD);
2120 		IPW_CMD(FRAG_THRESHOLD);
2121 		IPW_CMD(POWER_MODE);
2122 		IPW_CMD(WEP_KEY);
2123 		IPW_CMD(TGI_TX_KEY);
2124 		IPW_CMD(SCAN_REQUEST);
2125 		IPW_CMD(SCAN_REQUEST_EXT);
2126 		IPW_CMD(ASSOCIATE);
2127 		IPW_CMD(SUPPORTED_RATES);
2128 		IPW_CMD(SCAN_ABORT);
2129 		IPW_CMD(TX_FLUSH);
2130 		IPW_CMD(QOS_PARAMETERS);
2131 		IPW_CMD(DINO_CONFIG);
2132 		IPW_CMD(RSN_CAPABILITIES);
2133 		IPW_CMD(RX_KEY);
2134 		IPW_CMD(CARD_DISABLE);
2135 		IPW_CMD(SEED_NUMBER);
2136 		IPW_CMD(TX_POWER);
2137 		IPW_CMD(COUNTRY_INFO);
2138 		IPW_CMD(AIRONET_INFO);
2139 		IPW_CMD(AP_TX_POWER);
2140 		IPW_CMD(CCKM_INFO);
2141 		IPW_CMD(CCX_VER_INFO);
2142 		IPW_CMD(SET_CALIBRATION);
2143 		IPW_CMD(SENSITIVITY_CALIB);
2144 		IPW_CMD(RETRY_LIMIT);
2145 		IPW_CMD(IPW_PRE_POWER_DOWN);
2146 		IPW_CMD(VAP_BEACON_TEMPLATE);
2147 		IPW_CMD(VAP_DTIM_PERIOD);
2148 		IPW_CMD(EXT_SUPPORTED_RATES);
2149 		IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2150 		IPW_CMD(VAP_QUIET_INTERVALS);
2151 		IPW_CMD(VAP_CHANNEL_SWITCH);
2152 		IPW_CMD(VAP_MANDATORY_CHANNELS);
2153 		IPW_CMD(VAP_CELL_PWR_LIMIT);
2154 		IPW_CMD(VAP_CF_PARAM_SET);
2155 		IPW_CMD(VAP_SET_BEACONING_STATE);
2156 		IPW_CMD(MEASUREMENT);
2157 		IPW_CMD(POWER_CAPABILITY);
2158 		IPW_CMD(SUPPORTED_CHANNELS);
2159 		IPW_CMD(TPC_REPORT);
2160 		IPW_CMD(WME_INFO);
2161 		IPW_CMD(PRODUCTION_COMMAND);
2162 	default:
2163 		return "UNKNOWN";
2164 	}
2165 }
2166 
2167 #define HOST_COMPLETE_TIMEOUT HZ
2168 
2169 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2170 {
2171 	int rc = 0;
2172 	unsigned long flags;
2173 	unsigned long now, end;
2174 
2175 	spin_lock_irqsave(&priv->lock, flags);
2176 	if (priv->status & STATUS_HCMD_ACTIVE) {
2177 		IPW_ERROR("Failed to send %s: Already sending a command.\n",
2178 			  get_cmd_string(cmd->cmd));
2179 		spin_unlock_irqrestore(&priv->lock, flags);
2180 		return -EAGAIN;
2181 	}
2182 
2183 	priv->status |= STATUS_HCMD_ACTIVE;
2184 
2185 	if (priv->cmdlog) {
2186 		priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2187 		priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2188 		priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2189 		memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2190 		       cmd->len);
2191 		priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2192 	}
2193 
2194 	IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2195 		     get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2196 		     priv->status);
2197 
2198 #ifndef DEBUG_CMD_WEP_KEY
2199 	if (cmd->cmd == IPW_CMD_WEP_KEY)
2200 		IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2201 	else
2202 #endif
2203 		printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2204 
2205 	rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2206 	if (rc) {
2207 		priv->status &= ~STATUS_HCMD_ACTIVE;
2208 		IPW_ERROR("Failed to send %s: Reason %d\n",
2209 			  get_cmd_string(cmd->cmd), rc);
2210 		spin_unlock_irqrestore(&priv->lock, flags);
2211 		goto exit;
2212 	}
2213 	spin_unlock_irqrestore(&priv->lock, flags);
2214 
2215 	now = jiffies;
2216 	end = now + HOST_COMPLETE_TIMEOUT;
2217 again:
2218 	rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2219 					      !(priv->
2220 						status & STATUS_HCMD_ACTIVE),
2221 					      end - now);
2222 	if (rc < 0) {
2223 		now = jiffies;
2224 		if (time_before(now, end))
2225 			goto again;
2226 		rc = 0;
2227 	}
2228 
2229 	if (rc == 0) {
2230 		spin_lock_irqsave(&priv->lock, flags);
2231 		if (priv->status & STATUS_HCMD_ACTIVE) {
2232 			IPW_ERROR("Failed to send %s: Command timed out.\n",
2233 				  get_cmd_string(cmd->cmd));
2234 			priv->status &= ~STATUS_HCMD_ACTIVE;
2235 			spin_unlock_irqrestore(&priv->lock, flags);
2236 			rc = -EIO;
2237 			goto exit;
2238 		}
2239 		spin_unlock_irqrestore(&priv->lock, flags);
2240 	} else
2241 		rc = 0;
2242 
2243 	if (priv->status & STATUS_RF_KILL_HW) {
2244 		IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2245 			  get_cmd_string(cmd->cmd));
2246 		rc = -EIO;
2247 		goto exit;
2248 	}
2249 
2250       exit:
2251 	if (priv->cmdlog) {
2252 		priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2253 		priv->cmdlog_pos %= priv->cmdlog_len;
2254 	}
2255 	return rc;
2256 }
2257 
2258 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2259 {
2260 	struct host_cmd cmd = {
2261 		.cmd = command,
2262 	};
2263 
2264 	return __ipw_send_cmd(priv, &cmd);
2265 }
2266 
2267 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2268 			    void *data)
2269 {
2270 	struct host_cmd cmd = {
2271 		.cmd = command,
2272 		.len = len,
2273 		.param = data,
2274 	};
2275 
2276 	return __ipw_send_cmd(priv, &cmd);
2277 }
2278 
2279 static int ipw_send_host_complete(struct ipw_priv *priv)
2280 {
2281 	if (!priv) {
2282 		IPW_ERROR("Invalid args\n");
2283 		return -1;
2284 	}
2285 
2286 	return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2287 }
2288 
2289 static int ipw_send_system_config(struct ipw_priv *priv)
2290 {
2291 	return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2292 				sizeof(priv->sys_config),
2293 				&priv->sys_config);
2294 }
2295 
2296 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2297 {
2298 	if (!priv || !ssid) {
2299 		IPW_ERROR("Invalid args\n");
2300 		return -1;
2301 	}
2302 
2303 	return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2304 				ssid);
2305 }
2306 
2307 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2308 {
2309 	if (!priv || !mac) {
2310 		IPW_ERROR("Invalid args\n");
2311 		return -1;
2312 	}
2313 
2314 	IPW_DEBUG_INFO("%s: Setting MAC to %pM\n",
2315 		       priv->net_dev->name, mac);
2316 
2317 	return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2318 }
2319 
2320 static void ipw_adapter_restart(void *adapter)
2321 {
2322 	struct ipw_priv *priv = adapter;
2323 
2324 	if (priv->status & STATUS_RF_KILL_MASK)
2325 		return;
2326 
2327 	ipw_down(priv);
2328 
2329 	if (priv->assoc_network &&
2330 	    (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2331 		ipw_remove_current_network(priv);
2332 
2333 	if (ipw_up(priv)) {
2334 		IPW_ERROR("Failed to up device\n");
2335 		return;
2336 	}
2337 }
2338 
2339 static void ipw_bg_adapter_restart(struct work_struct *work)
2340 {
2341 	struct ipw_priv *priv =
2342 		container_of(work, struct ipw_priv, adapter_restart);
2343 	mutex_lock(&priv->mutex);
2344 	ipw_adapter_restart(priv);
2345 	mutex_unlock(&priv->mutex);
2346 }
2347 
2348 static void ipw_abort_scan(struct ipw_priv *priv);
2349 
2350 #define IPW_SCAN_CHECK_WATCHDOG	(5 * HZ)
2351 
2352 static void ipw_scan_check(void *data)
2353 {
2354 	struct ipw_priv *priv = data;
2355 
2356 	if (priv->status & STATUS_SCAN_ABORTING) {
2357 		IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2358 			       "adapter after (%dms).\n",
2359 			       jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2360 		schedule_work(&priv->adapter_restart);
2361 	} else if (priv->status & STATUS_SCANNING) {
2362 		IPW_DEBUG_SCAN("Scan completion watchdog aborting scan "
2363 			       "after (%dms).\n",
2364 			       jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2365 		ipw_abort_scan(priv);
2366 		schedule_delayed_work(&priv->scan_check, HZ);
2367 	}
2368 }
2369 
2370 static void ipw_bg_scan_check(struct work_struct *work)
2371 {
2372 	struct ipw_priv *priv =
2373 		container_of(work, struct ipw_priv, scan_check.work);
2374 	mutex_lock(&priv->mutex);
2375 	ipw_scan_check(priv);
2376 	mutex_unlock(&priv->mutex);
2377 }
2378 
2379 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2380 				     struct ipw_scan_request_ext *request)
2381 {
2382 	return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2383 				sizeof(*request), request);
2384 }
2385 
2386 static int ipw_send_scan_abort(struct ipw_priv *priv)
2387 {
2388 	if (!priv) {
2389 		IPW_ERROR("Invalid args\n");
2390 		return -1;
2391 	}
2392 
2393 	return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2394 }
2395 
2396 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2397 {
2398 	struct ipw_sensitivity_calib calib = {
2399 		.beacon_rssi_raw = cpu_to_le16(sens),
2400 	};
2401 
2402 	return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2403 				&calib);
2404 }
2405 
2406 static int ipw_send_associate(struct ipw_priv *priv,
2407 			      struct ipw_associate *associate)
2408 {
2409 	if (!priv || !associate) {
2410 		IPW_ERROR("Invalid args\n");
2411 		return -1;
2412 	}
2413 
2414 	return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(*associate),
2415 				associate);
2416 }
2417 
2418 static int ipw_send_supported_rates(struct ipw_priv *priv,
2419 				    struct ipw_supported_rates *rates)
2420 {
2421 	if (!priv || !rates) {
2422 		IPW_ERROR("Invalid args\n");
2423 		return -1;
2424 	}
2425 
2426 	return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2427 				rates);
2428 }
2429 
2430 static int ipw_set_random_seed(struct ipw_priv *priv)
2431 {
2432 	u32 val;
2433 
2434 	if (!priv) {
2435 		IPW_ERROR("Invalid args\n");
2436 		return -1;
2437 	}
2438 
2439 	get_random_bytes(&val, sizeof(val));
2440 
2441 	return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2442 }
2443 
2444 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2445 {
2446 	__le32 v = cpu_to_le32(phy_off);
2447 	if (!priv) {
2448 		IPW_ERROR("Invalid args\n");
2449 		return -1;
2450 	}
2451 
2452 	return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(v), &v);
2453 }
2454 
2455 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2456 {
2457 	if (!priv || !power) {
2458 		IPW_ERROR("Invalid args\n");
2459 		return -1;
2460 	}
2461 
2462 	return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2463 }
2464 
2465 static int ipw_set_tx_power(struct ipw_priv *priv)
2466 {
2467 	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
2468 	struct ipw_tx_power tx_power;
2469 	s8 max_power;
2470 	int i;
2471 
2472 	memset(&tx_power, 0, sizeof(tx_power));
2473 
2474 	/* configure device for 'G' band */
2475 	tx_power.ieee_mode = IPW_G_MODE;
2476 	tx_power.num_channels = geo->bg_channels;
2477 	for (i = 0; i < geo->bg_channels; i++) {
2478 		max_power = geo->bg[i].max_power;
2479 		tx_power.channels_tx_power[i].channel_number =
2480 		    geo->bg[i].channel;
2481 		tx_power.channels_tx_power[i].tx_power = max_power ?
2482 		    min(max_power, priv->tx_power) : priv->tx_power;
2483 	}
2484 	if (ipw_send_tx_power(priv, &tx_power))
2485 		return -EIO;
2486 
2487 	/* configure device to also handle 'B' band */
2488 	tx_power.ieee_mode = IPW_B_MODE;
2489 	if (ipw_send_tx_power(priv, &tx_power))
2490 		return -EIO;
2491 
2492 	/* configure device to also handle 'A' band */
2493 	if (priv->ieee->abg_true) {
2494 		tx_power.ieee_mode = IPW_A_MODE;
2495 		tx_power.num_channels = geo->a_channels;
2496 		for (i = 0; i < tx_power.num_channels; i++) {
2497 			max_power = geo->a[i].max_power;
2498 			tx_power.channels_tx_power[i].channel_number =
2499 			    geo->a[i].channel;
2500 			tx_power.channels_tx_power[i].tx_power = max_power ?
2501 			    min(max_power, priv->tx_power) : priv->tx_power;
2502 		}
2503 		if (ipw_send_tx_power(priv, &tx_power))
2504 			return -EIO;
2505 	}
2506 	return 0;
2507 }
2508 
2509 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2510 {
2511 	struct ipw_rts_threshold rts_threshold = {
2512 		.rts_threshold = cpu_to_le16(rts),
2513 	};
2514 
2515 	if (!priv) {
2516 		IPW_ERROR("Invalid args\n");
2517 		return -1;
2518 	}
2519 
2520 	return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2521 				sizeof(rts_threshold), &rts_threshold);
2522 }
2523 
2524 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2525 {
2526 	struct ipw_frag_threshold frag_threshold = {
2527 		.frag_threshold = cpu_to_le16(frag),
2528 	};
2529 
2530 	if (!priv) {
2531 		IPW_ERROR("Invalid args\n");
2532 		return -1;
2533 	}
2534 
2535 	return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2536 				sizeof(frag_threshold), &frag_threshold);
2537 }
2538 
2539 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2540 {
2541 	__le32 param;
2542 
2543 	if (!priv) {
2544 		IPW_ERROR("Invalid args\n");
2545 		return -1;
2546 	}
2547 
2548 	/* If on battery, set to 3, if AC set to CAM, else user
2549 	 * level */
2550 	switch (mode) {
2551 	case IPW_POWER_BATTERY:
2552 		param = cpu_to_le32(IPW_POWER_INDEX_3);
2553 		break;
2554 	case IPW_POWER_AC:
2555 		param = cpu_to_le32(IPW_POWER_MODE_CAM);
2556 		break;
2557 	default:
2558 		param = cpu_to_le32(mode);
2559 		break;
2560 	}
2561 
2562 	return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2563 				&param);
2564 }
2565 
2566 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2567 {
2568 	struct ipw_retry_limit retry_limit = {
2569 		.short_retry_limit = slimit,
2570 		.long_retry_limit = llimit
2571 	};
2572 
2573 	if (!priv) {
2574 		IPW_ERROR("Invalid args\n");
2575 		return -1;
2576 	}
2577 
2578 	return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2579 				&retry_limit);
2580 }
2581 
2582 /*
2583  * The IPW device contains a Microwire compatible EEPROM that stores
2584  * various data like the MAC address.  Usually the firmware has exclusive
2585  * access to the eeprom, but during device initialization (before the
2586  * device driver has sent the HostComplete command to the firmware) the
2587  * device driver has read access to the EEPROM by way of indirect addressing
2588  * through a couple of memory mapped registers.
2589  *
2590  * The following is a simplified implementation for pulling data out of the
2591  * the eeprom, along with some helper functions to find information in
2592  * the per device private data's copy of the eeprom.
2593  *
2594  * NOTE: To better understand how these functions work (i.e what is a chip
2595  *       select and why do have to keep driving the eeprom clock?), read
2596  *       just about any data sheet for a Microwire compatible EEPROM.
2597  */
2598 
2599 /* write a 32 bit value into the indirect accessor register */
2600 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2601 {
2602 	ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2603 
2604 	/* the eeprom requires some time to complete the operation */
2605 	udelay(p->eeprom_delay);
2606 }
2607 
2608 /* perform a chip select operation */
2609 static void eeprom_cs(struct ipw_priv *priv)
2610 {
2611 	eeprom_write_reg(priv, 0);
2612 	eeprom_write_reg(priv, EEPROM_BIT_CS);
2613 	eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2614 	eeprom_write_reg(priv, EEPROM_BIT_CS);
2615 }
2616 
2617 /* perform a chip select operation */
2618 static void eeprom_disable_cs(struct ipw_priv *priv)
2619 {
2620 	eeprom_write_reg(priv, EEPROM_BIT_CS);
2621 	eeprom_write_reg(priv, 0);
2622 	eeprom_write_reg(priv, EEPROM_BIT_SK);
2623 }
2624 
2625 /* push a single bit down to the eeprom */
2626 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2627 {
2628 	int d = (bit ? EEPROM_BIT_DI : 0);
2629 	eeprom_write_reg(p, EEPROM_BIT_CS | d);
2630 	eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2631 }
2632 
2633 /* push an opcode followed by an address down to the eeprom */
2634 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2635 {
2636 	int i;
2637 
2638 	eeprom_cs(priv);
2639 	eeprom_write_bit(priv, 1);
2640 	eeprom_write_bit(priv, op & 2);
2641 	eeprom_write_bit(priv, op & 1);
2642 	for (i = 7; i >= 0; i--) {
2643 		eeprom_write_bit(priv, addr & (1 << i));
2644 	}
2645 }
2646 
2647 /* pull 16 bits off the eeprom, one bit at a time */
2648 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2649 {
2650 	int i;
2651 	u16 r = 0;
2652 
2653 	/* Send READ Opcode */
2654 	eeprom_op(priv, EEPROM_CMD_READ, addr);
2655 
2656 	/* Send dummy bit */
2657 	eeprom_write_reg(priv, EEPROM_BIT_CS);
2658 
2659 	/* Read the byte off the eeprom one bit at a time */
2660 	for (i = 0; i < 16; i++) {
2661 		u32 data = 0;
2662 		eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2663 		eeprom_write_reg(priv, EEPROM_BIT_CS);
2664 		data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2665 		r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2666 	}
2667 
2668 	/* Send another dummy bit */
2669 	eeprom_write_reg(priv, 0);
2670 	eeprom_disable_cs(priv);
2671 
2672 	return r;
2673 }
2674 
2675 /* helper function for pulling the mac address out of the private */
2676 /* data's copy of the eeprom data                                 */
2677 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2678 {
2679 	memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], ETH_ALEN);
2680 }
2681 
2682 static void ipw_read_eeprom(struct ipw_priv *priv)
2683 {
2684 	int i;
2685 	__le16 *eeprom = (__le16 *) priv->eeprom;
2686 
2687 	IPW_DEBUG_TRACE(">>\n");
2688 
2689 	/* read entire contents of eeprom into private buffer */
2690 	for (i = 0; i < 128; i++)
2691 		eeprom[i] = cpu_to_le16(eeprom_read_u16(priv, (u8) i));
2692 
2693 	IPW_DEBUG_TRACE("<<\n");
2694 }
2695 
2696 /*
2697  * Either the device driver (i.e. the host) or the firmware can
2698  * load eeprom data into the designated region in SRAM.  If neither
2699  * happens then the FW will shutdown with a fatal error.
2700  *
2701  * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2702  * bit needs region of shared SRAM needs to be non-zero.
2703  */
2704 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2705 {
2706 	int i;
2707 
2708 	IPW_DEBUG_TRACE(">>\n");
2709 
2710 	/*
2711 	   If the data looks correct, then copy it to our private
2712 	   copy.  Otherwise let the firmware know to perform the operation
2713 	   on its own.
2714 	 */
2715 	if (priv->eeprom[EEPROM_VERSION] != 0) {
2716 		IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2717 
2718 		/* write the eeprom data to sram */
2719 		for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2720 			ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2721 
2722 		/* Do not load eeprom data on fatal error or suspend */
2723 		ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2724 	} else {
2725 		IPW_DEBUG_INFO("Enabling FW initialization of SRAM\n");
2726 
2727 		/* Load eeprom data on fatal error or suspend */
2728 		ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2729 	}
2730 
2731 	IPW_DEBUG_TRACE("<<\n");
2732 }
2733 
2734 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2735 {
2736 	count >>= 2;
2737 	if (!count)
2738 		return;
2739 	_ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2740 	while (count--)
2741 		_ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2742 }
2743 
2744 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2745 {
2746 	ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2747 			CB_NUMBER_OF_ELEMENTS_SMALL *
2748 			sizeof(struct command_block));
2749 }
2750 
2751 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2752 {				/* start dma engine but no transfers yet */
2753 
2754 	IPW_DEBUG_FW(">> :\n");
2755 
2756 	/* Start the dma */
2757 	ipw_fw_dma_reset_command_blocks(priv);
2758 
2759 	/* Write CB base address */
2760 	ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2761 
2762 	IPW_DEBUG_FW("<< :\n");
2763 	return 0;
2764 }
2765 
2766 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2767 {
2768 	u32 control = 0;
2769 
2770 	IPW_DEBUG_FW(">> :\n");
2771 
2772 	/* set the Stop and Abort bit */
2773 	control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2774 	ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2775 	priv->sram_desc.last_cb_index = 0;
2776 
2777 	IPW_DEBUG_FW("<<\n");
2778 }
2779 
2780 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2781 					  struct command_block *cb)
2782 {
2783 	u32 address =
2784 	    IPW_SHARED_SRAM_DMA_CONTROL +
2785 	    (sizeof(struct command_block) * index);
2786 	IPW_DEBUG_FW(">> :\n");
2787 
2788 	ipw_write_indirect(priv, address, (u8 *) cb,
2789 			   (int)sizeof(struct command_block));
2790 
2791 	IPW_DEBUG_FW("<< :\n");
2792 	return 0;
2793 
2794 }
2795 
2796 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2797 {
2798 	u32 control = 0;
2799 	u32 index = 0;
2800 
2801 	IPW_DEBUG_FW(">> :\n");
2802 
2803 	for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2804 		ipw_fw_dma_write_command_block(priv, index,
2805 					       &priv->sram_desc.cb_list[index]);
2806 
2807 	/* Enable the DMA in the CSR register */
2808 	ipw_clear_bit(priv, IPW_RESET_REG,
2809 		      IPW_RESET_REG_MASTER_DISABLED |
2810 		      IPW_RESET_REG_STOP_MASTER);
2811 
2812 	/* Set the Start bit. */
2813 	control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2814 	ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2815 
2816 	IPW_DEBUG_FW("<< :\n");
2817 	return 0;
2818 }
2819 
2820 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2821 {
2822 	u32 address;
2823 	u32 register_value = 0;
2824 	u32 cb_fields_address = 0;
2825 
2826 	IPW_DEBUG_FW(">> :\n");
2827 	address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2828 	IPW_DEBUG_FW_INFO("Current CB is 0x%x\n", address);
2829 
2830 	/* Read the DMA Controlor register */
2831 	register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2832 	IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x\n", register_value);
2833 
2834 	/* Print the CB values */
2835 	cb_fields_address = address;
2836 	register_value = ipw_read_reg32(priv, cb_fields_address);
2837 	IPW_DEBUG_FW_INFO("Current CB Control Field is 0x%x\n", register_value);
2838 
2839 	cb_fields_address += sizeof(u32);
2840 	register_value = ipw_read_reg32(priv, cb_fields_address);
2841 	IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x\n", register_value);
2842 
2843 	cb_fields_address += sizeof(u32);
2844 	register_value = ipw_read_reg32(priv, cb_fields_address);
2845 	IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x\n",
2846 			  register_value);
2847 
2848 	cb_fields_address += sizeof(u32);
2849 	register_value = ipw_read_reg32(priv, cb_fields_address);
2850 	IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x\n", register_value);
2851 
2852 	IPW_DEBUG_FW(">> :\n");
2853 }
2854 
2855 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2856 {
2857 	u32 current_cb_address = 0;
2858 	u32 current_cb_index = 0;
2859 
2860 	IPW_DEBUG_FW("<< :\n");
2861 	current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2862 
2863 	current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2864 	    sizeof(struct command_block);
2865 
2866 	IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X\n",
2867 			  current_cb_index, current_cb_address);
2868 
2869 	IPW_DEBUG_FW(">> :\n");
2870 	return current_cb_index;
2871 
2872 }
2873 
2874 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2875 					u32 src_address,
2876 					u32 dest_address,
2877 					u32 length,
2878 					int interrupt_enabled, int is_last)
2879 {
2880 
2881 	u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2882 	    CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2883 	    CB_DEST_SIZE_LONG;
2884 	struct command_block *cb;
2885 	u32 last_cb_element = 0;
2886 
2887 	IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2888 			  src_address, dest_address, length);
2889 
2890 	if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2891 		return -1;
2892 
2893 	last_cb_element = priv->sram_desc.last_cb_index;
2894 	cb = &priv->sram_desc.cb_list[last_cb_element];
2895 	priv->sram_desc.last_cb_index++;
2896 
2897 	/* Calculate the new CB control word */
2898 	if (interrupt_enabled)
2899 		control |= CB_INT_ENABLED;
2900 
2901 	if (is_last)
2902 		control |= CB_LAST_VALID;
2903 
2904 	control |= length;
2905 
2906 	/* Calculate the CB Element's checksum value */
2907 	cb->status = control ^ src_address ^ dest_address;
2908 
2909 	/* Copy the Source and Destination addresses */
2910 	cb->dest_addr = dest_address;
2911 	cb->source_addr = src_address;
2912 
2913 	/* Copy the Control Word last */
2914 	cb->control = control;
2915 
2916 	return 0;
2917 }
2918 
2919 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv, dma_addr_t *src_address,
2920 				 int nr, u32 dest_address, u32 len)
2921 {
2922 	int ret, i;
2923 	u32 size;
2924 
2925 	IPW_DEBUG_FW(">>\n");
2926 	IPW_DEBUG_FW_INFO("nr=%d dest_address=0x%x len=0x%x\n",
2927 			  nr, dest_address, len);
2928 
2929 	for (i = 0; i < nr; i++) {
2930 		size = min_t(u32, len - i * CB_MAX_LENGTH, CB_MAX_LENGTH);
2931 		ret = ipw_fw_dma_add_command_block(priv, src_address[i],
2932 						   dest_address +
2933 						   i * CB_MAX_LENGTH, size,
2934 						   0, 0);
2935 		if (ret) {
2936 			IPW_DEBUG_FW_INFO(": Failed\n");
2937 			return -1;
2938 		} else
2939 			IPW_DEBUG_FW_INFO(": Added new cb\n");
2940 	}
2941 
2942 	IPW_DEBUG_FW("<<\n");
2943 	return 0;
2944 }
2945 
2946 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2947 {
2948 	u32 current_index = 0, previous_index;
2949 	u32 watchdog = 0;
2950 
2951 	IPW_DEBUG_FW(">> :\n");
2952 
2953 	current_index = ipw_fw_dma_command_block_index(priv);
2954 	IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2955 			  (int)priv->sram_desc.last_cb_index);
2956 
2957 	while (current_index < priv->sram_desc.last_cb_index) {
2958 		udelay(50);
2959 		previous_index = current_index;
2960 		current_index = ipw_fw_dma_command_block_index(priv);
2961 
2962 		if (previous_index < current_index) {
2963 			watchdog = 0;
2964 			continue;
2965 		}
2966 		if (++watchdog > 400) {
2967 			IPW_DEBUG_FW_INFO("Timeout\n");
2968 			ipw_fw_dma_dump_command_block(priv);
2969 			ipw_fw_dma_abort(priv);
2970 			return -1;
2971 		}
2972 	}
2973 
2974 	ipw_fw_dma_abort(priv);
2975 
2976 	/*Disable the DMA in the CSR register */
2977 	ipw_set_bit(priv, IPW_RESET_REG,
2978 		    IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2979 
2980 	IPW_DEBUG_FW("<< dmaWaitSync\n");
2981 	return 0;
2982 }
2983 
2984 static void ipw_remove_current_network(struct ipw_priv *priv)
2985 {
2986 	struct list_head *element, *safe;
2987 	struct libipw_network *network = NULL;
2988 	unsigned long flags;
2989 
2990 	spin_lock_irqsave(&priv->ieee->lock, flags);
2991 	list_for_each_safe(element, safe, &priv->ieee->network_list) {
2992 		network = list_entry(element, struct libipw_network, list);
2993 		if (ether_addr_equal(network->bssid, priv->bssid)) {
2994 			list_del(element);
2995 			list_add_tail(&network->list,
2996 				      &priv->ieee->network_free_list);
2997 		}
2998 	}
2999 	spin_unlock_irqrestore(&priv->ieee->lock, flags);
3000 }
3001 
3002 /**
3003  * Check that card is still alive.
3004  * Reads debug register from domain0.
3005  * If card is present, pre-defined value should
3006  * be found there.
3007  *
3008  * @param priv
3009  * @return 1 if card is present, 0 otherwise
3010  */
3011 static inline int ipw_alive(struct ipw_priv *priv)
3012 {
3013 	return ipw_read32(priv, 0x90) == 0xd55555d5;
3014 }
3015 
3016 /* timeout in msec, attempted in 10-msec quanta */
3017 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
3018 			       int timeout)
3019 {
3020 	int i = 0;
3021 
3022 	do {
3023 		if ((ipw_read32(priv, addr) & mask) == mask)
3024 			return i;
3025 		mdelay(10);
3026 		i += 10;
3027 	} while (i < timeout);
3028 
3029 	return -ETIME;
3030 }
3031 
3032 /* These functions load the firmware and micro code for the operation of
3033  * the ipw hardware.  It assumes the buffer has all the bits for the
3034  * image and the caller is handling the memory allocation and clean up.
3035  */
3036 
3037 static int ipw_stop_master(struct ipw_priv *priv)
3038 {
3039 	int rc;
3040 
3041 	IPW_DEBUG_TRACE(">>\n");
3042 	/* stop master. typical delay - 0 */
3043 	ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3044 
3045 	/* timeout is in msec, polled in 10-msec quanta */
3046 	rc = ipw_poll_bit(priv, IPW_RESET_REG,
3047 			  IPW_RESET_REG_MASTER_DISABLED, 100);
3048 	if (rc < 0) {
3049 		IPW_ERROR("wait for stop master failed after 100ms\n");
3050 		return -1;
3051 	}
3052 
3053 	IPW_DEBUG_INFO("stop master %dms\n", rc);
3054 
3055 	return rc;
3056 }
3057 
3058 static void ipw_arc_release(struct ipw_priv *priv)
3059 {
3060 	IPW_DEBUG_TRACE(">>\n");
3061 	mdelay(5);
3062 
3063 	ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3064 
3065 	/* no one knows timing, for safety add some delay */
3066 	mdelay(5);
3067 }
3068 
3069 struct fw_chunk {
3070 	__le32 address;
3071 	__le32 length;
3072 };
3073 
3074 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
3075 {
3076 	int rc = 0, i, addr;
3077 	u8 cr = 0;
3078 	__le16 *image;
3079 
3080 	image = (__le16 *) data;
3081 
3082 	IPW_DEBUG_TRACE(">>\n");
3083 
3084 	rc = ipw_stop_master(priv);
3085 
3086 	if (rc < 0)
3087 		return rc;
3088 
3089 	for (addr = IPW_SHARED_LOWER_BOUND;
3090 	     addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3091 		ipw_write32(priv, addr, 0);
3092 	}
3093 
3094 	/* no ucode (yet) */
3095 	memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3096 	/* destroy DMA queues */
3097 	/* reset sequence */
3098 
3099 	ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3100 	ipw_arc_release(priv);
3101 	ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3102 	mdelay(1);
3103 
3104 	/* reset PHY */
3105 	ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3106 	mdelay(1);
3107 
3108 	ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3109 	mdelay(1);
3110 
3111 	/* enable ucode store */
3112 	ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3113 	ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3114 	mdelay(1);
3115 
3116 	/* write ucode */
3117 	/**
3118 	 * @bug
3119 	 * Do NOT set indirect address register once and then
3120 	 * store data to indirect data register in the loop.
3121 	 * It seems very reasonable, but in this case DINO do not
3122 	 * accept ucode. It is essential to set address each time.
3123 	 */
3124 	/* load new ipw uCode */
3125 	for (i = 0; i < len / 2; i++)
3126 		ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3127 				le16_to_cpu(image[i]));
3128 
3129 	/* enable DINO */
3130 	ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3131 	ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3132 
3133 	/* this is where the igx / win driver deveates from the VAP driver. */
3134 
3135 	/* wait for alive response */
3136 	for (i = 0; i < 100; i++) {
3137 		/* poll for incoming data */
3138 		cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3139 		if (cr & DINO_RXFIFO_DATA)
3140 			break;
3141 		mdelay(1);
3142 	}
3143 
3144 	if (cr & DINO_RXFIFO_DATA) {
3145 		/* alive_command_responce size is NOT multiple of 4 */
3146 		__le32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3147 
3148 		for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3149 			response_buffer[i] =
3150 			    cpu_to_le32(ipw_read_reg32(priv,
3151 						       IPW_BASEBAND_RX_FIFO_READ));
3152 		memcpy(&priv->dino_alive, response_buffer,
3153 		       sizeof(priv->dino_alive));
3154 		if (priv->dino_alive.alive_command == 1
3155 		    && priv->dino_alive.ucode_valid == 1) {
3156 			rc = 0;
3157 			IPW_DEBUG_INFO
3158 			    ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3159 			     "of %02d/%02d/%02d %02d:%02d\n",
3160 			     priv->dino_alive.software_revision,
3161 			     priv->dino_alive.software_revision,
3162 			     priv->dino_alive.device_identifier,
3163 			     priv->dino_alive.device_identifier,
3164 			     priv->dino_alive.time_stamp[0],
3165 			     priv->dino_alive.time_stamp[1],
3166 			     priv->dino_alive.time_stamp[2],
3167 			     priv->dino_alive.time_stamp[3],
3168 			     priv->dino_alive.time_stamp[4]);
3169 		} else {
3170 			IPW_DEBUG_INFO("Microcode is not alive\n");
3171 			rc = -EINVAL;
3172 		}
3173 	} else {
3174 		IPW_DEBUG_INFO("No alive response from DINO\n");
3175 		rc = -ETIME;
3176 	}
3177 
3178 	/* disable DINO, otherwise for some reason
3179 	   firmware have problem getting alive resp. */
3180 	ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3181 
3182 	return rc;
3183 }
3184 
3185 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3186 {
3187 	int ret = -1;
3188 	int offset = 0;
3189 	struct fw_chunk *chunk;
3190 	int total_nr = 0;
3191 	int i;
3192 	struct dma_pool *pool;
3193 	void **virts;
3194 	dma_addr_t *phys;
3195 
3196 	IPW_DEBUG_TRACE("<< :\n");
3197 
3198 	virts = kmalloc_array(CB_NUMBER_OF_ELEMENTS_SMALL, sizeof(void *),
3199 			      GFP_KERNEL);
3200 	if (!virts)
3201 		return -ENOMEM;
3202 
3203 	phys = kmalloc_array(CB_NUMBER_OF_ELEMENTS_SMALL, sizeof(dma_addr_t),
3204 			     GFP_KERNEL);
3205 	if (!phys) {
3206 		kfree(virts);
3207 		return -ENOMEM;
3208 	}
3209 	pool = dma_pool_create("ipw2200", &priv->pci_dev->dev, CB_MAX_LENGTH, 0,
3210 			       0);
3211 	if (!pool) {
3212 		IPW_ERROR("dma_pool_create failed\n");
3213 		kfree(phys);
3214 		kfree(virts);
3215 		return -ENOMEM;
3216 	}
3217 
3218 	/* Start the Dma */
3219 	ret = ipw_fw_dma_enable(priv);
3220 
3221 	/* the DMA is already ready this would be a bug. */
3222 	BUG_ON(priv->sram_desc.last_cb_index > 0);
3223 
3224 	do {
3225 		u32 chunk_len;
3226 		u8 *start;
3227 		int size;
3228 		int nr = 0;
3229 
3230 		chunk = (struct fw_chunk *)(data + offset);
3231 		offset += sizeof(struct fw_chunk);
3232 		chunk_len = le32_to_cpu(chunk->length);
3233 		start = data + offset;
3234 
3235 		nr = (chunk_len + CB_MAX_LENGTH - 1) / CB_MAX_LENGTH;
3236 		for (i = 0; i < nr; i++) {
3237 			virts[total_nr] = dma_pool_alloc(pool, GFP_KERNEL,
3238 							 &phys[total_nr]);
3239 			if (!virts[total_nr]) {
3240 				ret = -ENOMEM;
3241 				goto out;
3242 			}
3243 			size = min_t(u32, chunk_len - i * CB_MAX_LENGTH,
3244 				     CB_MAX_LENGTH);
3245 			memcpy(virts[total_nr], start, size);
3246 			start += size;
3247 			total_nr++;
3248 			/* We don't support fw chunk larger than 64*8K */
3249 			BUG_ON(total_nr > CB_NUMBER_OF_ELEMENTS_SMALL);
3250 		}
3251 
3252 		/* build DMA packet and queue up for sending */
3253 		/* dma to chunk->address, the chunk->length bytes from data +
3254 		 * offeset*/
3255 		/* Dma loading */
3256 		ret = ipw_fw_dma_add_buffer(priv, &phys[total_nr - nr],
3257 					    nr, le32_to_cpu(chunk->address),
3258 					    chunk_len);
3259 		if (ret) {
3260 			IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3261 			goto out;
3262 		}
3263 
3264 		offset += chunk_len;
3265 	} while (offset < len);
3266 
3267 	/* Run the DMA and wait for the answer */
3268 	ret = ipw_fw_dma_kick(priv);
3269 	if (ret) {
3270 		IPW_ERROR("dmaKick Failed\n");
3271 		goto out;
3272 	}
3273 
3274 	ret = ipw_fw_dma_wait(priv);
3275 	if (ret) {
3276 		IPW_ERROR("dmaWaitSync Failed\n");
3277 		goto out;
3278 	}
3279  out:
3280 	for (i = 0; i < total_nr; i++)
3281 		dma_pool_free(pool, virts[i], phys[i]);
3282 
3283 	dma_pool_destroy(pool);
3284 	kfree(phys);
3285 	kfree(virts);
3286 
3287 	return ret;
3288 }
3289 
3290 /* stop nic */
3291 static int ipw_stop_nic(struct ipw_priv *priv)
3292 {
3293 	int rc = 0;
3294 
3295 	/* stop */
3296 	ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3297 
3298 	rc = ipw_poll_bit(priv, IPW_RESET_REG,
3299 			  IPW_RESET_REG_MASTER_DISABLED, 500);
3300 	if (rc < 0) {
3301 		IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3302 		return rc;
3303 	}
3304 
3305 	ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3306 
3307 	return rc;
3308 }
3309 
3310 static void ipw_start_nic(struct ipw_priv *priv)
3311 {
3312 	IPW_DEBUG_TRACE(">>\n");
3313 
3314 	/* prvHwStartNic  release ARC */
3315 	ipw_clear_bit(priv, IPW_RESET_REG,
3316 		      IPW_RESET_REG_MASTER_DISABLED |
3317 		      IPW_RESET_REG_STOP_MASTER |
3318 		      CBD_RESET_REG_PRINCETON_RESET);
3319 
3320 	/* enable power management */
3321 	ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3322 		    IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3323 
3324 	IPW_DEBUG_TRACE("<<\n");
3325 }
3326 
3327 static int ipw_init_nic(struct ipw_priv *priv)
3328 {
3329 	int rc;
3330 
3331 	IPW_DEBUG_TRACE(">>\n");
3332 	/* reset */
3333 	/*prvHwInitNic */
3334 	/* set "initialization complete" bit to move adapter to D0 state */
3335 	ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3336 
3337 	/* low-level PLL activation */
3338 	ipw_write32(priv, IPW_READ_INT_REGISTER,
3339 		    IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3340 
3341 	/* wait for clock stabilization */
3342 	rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3343 			  IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3344 	if (rc < 0)
3345 		IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3346 
3347 	/* assert SW reset */
3348 	ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3349 
3350 	udelay(10);
3351 
3352 	/* set "initialization complete" bit to move adapter to D0 state */
3353 	ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3354 
3355 	IPW_DEBUG_TRACE(">>\n");
3356 	return 0;
3357 }
3358 
3359 /* Call this function from process context, it will sleep in request_firmware.
3360  * Probe is an ok place to call this from.
3361  */
3362 static int ipw_reset_nic(struct ipw_priv *priv)
3363 {
3364 	int rc = 0;
3365 	unsigned long flags;
3366 
3367 	IPW_DEBUG_TRACE(">>\n");
3368 
3369 	rc = ipw_init_nic(priv);
3370 
3371 	spin_lock_irqsave(&priv->lock, flags);
3372 	/* Clear the 'host command active' bit... */
3373 	priv->status &= ~STATUS_HCMD_ACTIVE;
3374 	wake_up_interruptible(&priv->wait_command_queue);
3375 	priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3376 	wake_up_interruptible(&priv->wait_state);
3377 	spin_unlock_irqrestore(&priv->lock, flags);
3378 
3379 	IPW_DEBUG_TRACE("<<\n");
3380 	return rc;
3381 }
3382 
3383 
3384 struct ipw_fw {
3385 	__le32 ver;
3386 	__le32 boot_size;
3387 	__le32 ucode_size;
3388 	__le32 fw_size;
3389 	u8 data[0];
3390 };
3391 
3392 static int ipw_get_fw(struct ipw_priv *priv,
3393 		      const struct firmware **raw, const char *name)
3394 {
3395 	struct ipw_fw *fw;
3396 	int rc;
3397 
3398 	/* ask firmware_class module to get the boot firmware off disk */
3399 	rc = request_firmware(raw, name, &priv->pci_dev->dev);
3400 	if (rc < 0) {
3401 		IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3402 		return rc;
3403 	}
3404 
3405 	if ((*raw)->size < sizeof(*fw)) {
3406 		IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3407 		return -EINVAL;
3408 	}
3409 
3410 	fw = (void *)(*raw)->data;
3411 
3412 	if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3413 	    le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3414 		IPW_ERROR("%s is too small or corrupt (%zd)\n",
3415 			  name, (*raw)->size);
3416 		return -EINVAL;
3417 	}
3418 
3419 	IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3420 		       name,
3421 		       le32_to_cpu(fw->ver) >> 16,
3422 		       le32_to_cpu(fw->ver) & 0xff,
3423 		       (*raw)->size - sizeof(*fw));
3424 	return 0;
3425 }
3426 
3427 #define IPW_RX_BUF_SIZE (3000)
3428 
3429 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3430 				      struct ipw_rx_queue *rxq)
3431 {
3432 	unsigned long flags;
3433 	int i;
3434 
3435 	spin_lock_irqsave(&rxq->lock, flags);
3436 
3437 	INIT_LIST_HEAD(&rxq->rx_free);
3438 	INIT_LIST_HEAD(&rxq->rx_used);
3439 
3440 	/* Fill the rx_used queue with _all_ of the Rx buffers */
3441 	for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3442 		/* In the reset function, these buffers may have been allocated
3443 		 * to an SKB, so we need to unmap and free potential storage */
3444 		if (rxq->pool[i].skb != NULL) {
3445 			pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3446 					 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3447 			dev_kfree_skb(rxq->pool[i].skb);
3448 			rxq->pool[i].skb = NULL;
3449 		}
3450 		list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3451 	}
3452 
3453 	/* Set us so that we have processed and used all buffers, but have
3454 	 * not restocked the Rx queue with fresh buffers */
3455 	rxq->read = rxq->write = 0;
3456 	rxq->free_count = 0;
3457 	spin_unlock_irqrestore(&rxq->lock, flags);
3458 }
3459 
3460 #ifdef CONFIG_PM
3461 static int fw_loaded = 0;
3462 static const struct firmware *raw = NULL;
3463 
3464 static void free_firmware(void)
3465 {
3466 	if (fw_loaded) {
3467 		release_firmware(raw);
3468 		raw = NULL;
3469 		fw_loaded = 0;
3470 	}
3471 }
3472 #else
3473 #define free_firmware() do {} while (0)
3474 #endif
3475 
3476 static int ipw_load(struct ipw_priv *priv)
3477 {
3478 #ifndef CONFIG_PM
3479 	const struct firmware *raw = NULL;
3480 #endif
3481 	struct ipw_fw *fw;
3482 	u8 *boot_img, *ucode_img, *fw_img;
3483 	u8 *name = NULL;
3484 	int rc = 0, retries = 3;
3485 
3486 	switch (priv->ieee->iw_mode) {
3487 	case IW_MODE_ADHOC:
3488 		name = "ipw2200-ibss.fw";
3489 		break;
3490 #ifdef CONFIG_IPW2200_MONITOR
3491 	case IW_MODE_MONITOR:
3492 		name = "ipw2200-sniffer.fw";
3493 		break;
3494 #endif
3495 	case IW_MODE_INFRA:
3496 		name = "ipw2200-bss.fw";
3497 		break;
3498 	}
3499 
3500 	if (!name) {
3501 		rc = -EINVAL;
3502 		goto error;
3503 	}
3504 
3505 #ifdef CONFIG_PM
3506 	if (!fw_loaded) {
3507 #endif
3508 		rc = ipw_get_fw(priv, &raw, name);
3509 		if (rc < 0)
3510 			goto error;
3511 #ifdef CONFIG_PM
3512 	}
3513 #endif
3514 
3515 	fw = (void *)raw->data;
3516 	boot_img = &fw->data[0];
3517 	ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3518 	fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3519 			   le32_to_cpu(fw->ucode_size)];
3520 
3521 	if (!priv->rxq)
3522 		priv->rxq = ipw_rx_queue_alloc(priv);
3523 	else
3524 		ipw_rx_queue_reset(priv, priv->rxq);
3525 	if (!priv->rxq) {
3526 		IPW_ERROR("Unable to initialize Rx queue\n");
3527 		rc = -ENOMEM;
3528 		goto error;
3529 	}
3530 
3531       retry:
3532 	/* Ensure interrupts are disabled */
3533 	ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3534 	priv->status &= ~STATUS_INT_ENABLED;
3535 
3536 	/* ack pending interrupts */
3537 	ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3538 
3539 	ipw_stop_nic(priv);
3540 
3541 	rc = ipw_reset_nic(priv);
3542 	if (rc < 0) {
3543 		IPW_ERROR("Unable to reset NIC\n");
3544 		goto error;
3545 	}
3546 
3547 	ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3548 			IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3549 
3550 	/* DMA the initial boot firmware into the device */
3551 	rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3552 	if (rc < 0) {
3553 		IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3554 		goto error;
3555 	}
3556 
3557 	/* kick start the device */
3558 	ipw_start_nic(priv);
3559 
3560 	/* wait for the device to finish its initial startup sequence */
3561 	rc = ipw_poll_bit(priv, IPW_INTA_RW,
3562 			  IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3563 	if (rc < 0) {
3564 		IPW_ERROR("device failed to boot initial fw image\n");
3565 		goto error;
3566 	}
3567 	IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3568 
3569 	/* ack fw init done interrupt */
3570 	ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3571 
3572 	/* DMA the ucode into the device */
3573 	rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3574 	if (rc < 0) {
3575 		IPW_ERROR("Unable to load ucode: %d\n", rc);
3576 		goto error;
3577 	}
3578 
3579 	/* stop nic */
3580 	ipw_stop_nic(priv);
3581 
3582 	/* DMA bss firmware into the device */
3583 	rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3584 	if (rc < 0) {
3585 		IPW_ERROR("Unable to load firmware: %d\n", rc);
3586 		goto error;
3587 	}
3588 #ifdef CONFIG_PM
3589 	fw_loaded = 1;
3590 #endif
3591 
3592 	ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3593 
3594 	rc = ipw_queue_reset(priv);
3595 	if (rc < 0) {
3596 		IPW_ERROR("Unable to initialize queues\n");
3597 		goto error;
3598 	}
3599 
3600 	/* Ensure interrupts are disabled */
3601 	ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3602 	/* ack pending interrupts */
3603 	ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3604 
3605 	/* kick start the device */
3606 	ipw_start_nic(priv);
3607 
3608 	if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3609 		if (retries > 0) {
3610 			IPW_WARNING("Parity error.  Retrying init.\n");
3611 			retries--;
3612 			goto retry;
3613 		}
3614 
3615 		IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3616 		rc = -EIO;
3617 		goto error;
3618 	}
3619 
3620 	/* wait for the device */
3621 	rc = ipw_poll_bit(priv, IPW_INTA_RW,
3622 			  IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3623 	if (rc < 0) {
3624 		IPW_ERROR("device failed to start within 500ms\n");
3625 		goto error;
3626 	}
3627 	IPW_DEBUG_INFO("device response after %dms\n", rc);
3628 
3629 	/* ack fw init done interrupt */
3630 	ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3631 
3632 	/* read eeprom data */
3633 	priv->eeprom_delay = 1;
3634 	ipw_read_eeprom(priv);
3635 	/* initialize the eeprom region of sram */
3636 	ipw_eeprom_init_sram(priv);
3637 
3638 	/* enable interrupts */
3639 	ipw_enable_interrupts(priv);
3640 
3641 	/* Ensure our queue has valid packets */
3642 	ipw_rx_queue_replenish(priv);
3643 
3644 	ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3645 
3646 	/* ack pending interrupts */
3647 	ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3648 
3649 #ifndef CONFIG_PM
3650 	release_firmware(raw);
3651 #endif
3652 	return 0;
3653 
3654       error:
3655 	if (priv->rxq) {
3656 		ipw_rx_queue_free(priv, priv->rxq);
3657 		priv->rxq = NULL;
3658 	}
3659 	ipw_tx_queue_free(priv);
3660 	release_firmware(raw);
3661 #ifdef CONFIG_PM
3662 	fw_loaded = 0;
3663 	raw = NULL;
3664 #endif
3665 
3666 	return rc;
3667 }
3668 
3669 /**
3670  * DMA services
3671  *
3672  * Theory of operation
3673  *
3674  * A queue is a circular buffers with 'Read' and 'Write' pointers.
3675  * 2 empty entries always kept in the buffer to protect from overflow.
3676  *
3677  * For Tx queue, there are low mark and high mark limits. If, after queuing
3678  * the packet for Tx, free space become < low mark, Tx queue stopped. When
3679  * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3680  * Tx queue resumed.
3681  *
3682  * The IPW operates with six queues, one receive queue in the device's
3683  * sram, one transmit queue for sending commands to the device firmware,
3684  * and four transmit queues for data.
3685  *
3686  * The four transmit queues allow for performing quality of service (qos)
3687  * transmissions as per the 802.11 protocol.  Currently Linux does not
3688  * provide a mechanism to the user for utilizing prioritized queues, so
3689  * we only utilize the first data transmit queue (queue1).
3690  */
3691 
3692 /**
3693  * Driver allocates buffers of this size for Rx
3694  */
3695 
3696 /**
3697  * ipw_rx_queue_space - Return number of free slots available in queue.
3698  */
3699 static int ipw_rx_queue_space(const struct ipw_rx_queue *q)
3700 {
3701 	int s = q->read - q->write;
3702 	if (s <= 0)
3703 		s += RX_QUEUE_SIZE;
3704 	/* keep some buffer to not confuse full and empty queue */
3705 	s -= 2;
3706 	if (s < 0)
3707 		s = 0;
3708 	return s;
3709 }
3710 
3711 static inline int ipw_tx_queue_space(const struct clx2_queue *q)
3712 {
3713 	int s = q->last_used - q->first_empty;
3714 	if (s <= 0)
3715 		s += q->n_bd;
3716 	s -= 2;			/* keep some reserve to not confuse empty and full situations */
3717 	if (s < 0)
3718 		s = 0;
3719 	return s;
3720 }
3721 
3722 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3723 {
3724 	return (++index == n_bd) ? 0 : index;
3725 }
3726 
3727 /**
3728  * Initialize common DMA queue structure
3729  *
3730  * @param q                queue to init
3731  * @param count            Number of BD's to allocate. Should be power of 2
3732  * @param read_register    Address for 'read' register
3733  *                         (not offset within BAR, full address)
3734  * @param write_register   Address for 'write' register
3735  *                         (not offset within BAR, full address)
3736  * @param base_register    Address for 'base' register
3737  *                         (not offset within BAR, full address)
3738  * @param size             Address for 'size' register
3739  *                         (not offset within BAR, full address)
3740  */
3741 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3742 			   int count, u32 read, u32 write, u32 base, u32 size)
3743 {
3744 	q->n_bd = count;
3745 
3746 	q->low_mark = q->n_bd / 4;
3747 	if (q->low_mark < 4)
3748 		q->low_mark = 4;
3749 
3750 	q->high_mark = q->n_bd / 8;
3751 	if (q->high_mark < 2)
3752 		q->high_mark = 2;
3753 
3754 	q->first_empty = q->last_used = 0;
3755 	q->reg_r = read;
3756 	q->reg_w = write;
3757 
3758 	ipw_write32(priv, base, q->dma_addr);
3759 	ipw_write32(priv, size, count);
3760 	ipw_write32(priv, read, 0);
3761 	ipw_write32(priv, write, 0);
3762 
3763 	_ipw_read32(priv, 0x90);
3764 }
3765 
3766 static int ipw_queue_tx_init(struct ipw_priv *priv,
3767 			     struct clx2_tx_queue *q,
3768 			     int count, u32 read, u32 write, u32 base, u32 size)
3769 {
3770 	struct pci_dev *dev = priv->pci_dev;
3771 
3772 	q->txb = kmalloc_array(count, sizeof(q->txb[0]), GFP_KERNEL);
3773 	if (!q->txb) {
3774 		IPW_ERROR("vmalloc for auxiliary BD structures failed\n");
3775 		return -ENOMEM;
3776 	}
3777 
3778 	q->bd =
3779 	    pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3780 	if (!q->bd) {
3781 		IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3782 			  sizeof(q->bd[0]) * count);
3783 		kfree(q->txb);
3784 		q->txb = NULL;
3785 		return -ENOMEM;
3786 	}
3787 
3788 	ipw_queue_init(priv, &q->q, count, read, write, base, size);
3789 	return 0;
3790 }
3791 
3792 /**
3793  * Free one TFD, those at index [txq->q.last_used].
3794  * Do NOT advance any indexes
3795  *
3796  * @param dev
3797  * @param txq
3798  */
3799 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3800 				  struct clx2_tx_queue *txq)
3801 {
3802 	struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3803 	struct pci_dev *dev = priv->pci_dev;
3804 	int i;
3805 
3806 	/* classify bd */
3807 	if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3808 		/* nothing to cleanup after for host commands */
3809 		return;
3810 
3811 	/* sanity check */
3812 	if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3813 		IPW_ERROR("Too many chunks: %i\n",
3814 			  le32_to_cpu(bd->u.data.num_chunks));
3815 		/** @todo issue fatal error, it is quite serious situation */
3816 		return;
3817 	}
3818 
3819 	/* unmap chunks if any */
3820 	for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3821 		pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3822 				 le16_to_cpu(bd->u.data.chunk_len[i]),
3823 				 PCI_DMA_TODEVICE);
3824 		if (txq->txb[txq->q.last_used]) {
3825 			libipw_txb_free(txq->txb[txq->q.last_used]);
3826 			txq->txb[txq->q.last_used] = NULL;
3827 		}
3828 	}
3829 }
3830 
3831 /**
3832  * Deallocate DMA queue.
3833  *
3834  * Empty queue by removing and destroying all BD's.
3835  * Free all buffers.
3836  *
3837  * @param dev
3838  * @param q
3839  */
3840 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3841 {
3842 	struct clx2_queue *q = &txq->q;
3843 	struct pci_dev *dev = priv->pci_dev;
3844 
3845 	if (q->n_bd == 0)
3846 		return;
3847 
3848 	/* first, empty all BD's */
3849 	for (; q->first_empty != q->last_used;
3850 	     q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3851 		ipw_queue_tx_free_tfd(priv, txq);
3852 	}
3853 
3854 	/* free buffers belonging to queue itself */
3855 	pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3856 			    q->dma_addr);
3857 	kfree(txq->txb);
3858 
3859 	/* 0 fill whole structure */
3860 	memset(txq, 0, sizeof(*txq));
3861 }
3862 
3863 /**
3864  * Destroy all DMA queues and structures
3865  *
3866  * @param priv
3867  */
3868 static void ipw_tx_queue_free(struct ipw_priv *priv)
3869 {
3870 	/* Tx CMD queue */
3871 	ipw_queue_tx_free(priv, &priv->txq_cmd);
3872 
3873 	/* Tx queues */
3874 	ipw_queue_tx_free(priv, &priv->txq[0]);
3875 	ipw_queue_tx_free(priv, &priv->txq[1]);
3876 	ipw_queue_tx_free(priv, &priv->txq[2]);
3877 	ipw_queue_tx_free(priv, &priv->txq[3]);
3878 }
3879 
3880 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3881 {
3882 	/* First 3 bytes are manufacturer */
3883 	bssid[0] = priv->mac_addr[0];
3884 	bssid[1] = priv->mac_addr[1];
3885 	bssid[2] = priv->mac_addr[2];
3886 
3887 	/* Last bytes are random */
3888 	get_random_bytes(&bssid[3], ETH_ALEN - 3);
3889 
3890 	bssid[0] &= 0xfe;	/* clear multicast bit */
3891 	bssid[0] |= 0x02;	/* set local assignment bit (IEEE802) */
3892 }
3893 
3894 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3895 {
3896 	struct ipw_station_entry entry;
3897 	int i;
3898 
3899 	for (i = 0; i < priv->num_stations; i++) {
3900 		if (ether_addr_equal(priv->stations[i], bssid)) {
3901 			/* Another node is active in network */
3902 			priv->missed_adhoc_beacons = 0;
3903 			if (!(priv->config & CFG_STATIC_CHANNEL))
3904 				/* when other nodes drop out, we drop out */
3905 				priv->config &= ~CFG_ADHOC_PERSIST;
3906 
3907 			return i;
3908 		}
3909 	}
3910 
3911 	if (i == MAX_STATIONS)
3912 		return IPW_INVALID_STATION;
3913 
3914 	IPW_DEBUG_SCAN("Adding AdHoc station: %pM\n", bssid);
3915 
3916 	entry.reserved = 0;
3917 	entry.support_mode = 0;
3918 	memcpy(entry.mac_addr, bssid, ETH_ALEN);
3919 	memcpy(priv->stations[i], bssid, ETH_ALEN);
3920 	ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3921 			 &entry, sizeof(entry));
3922 	priv->num_stations++;
3923 
3924 	return i;
3925 }
3926 
3927 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3928 {
3929 	int i;
3930 
3931 	for (i = 0; i < priv->num_stations; i++)
3932 		if (ether_addr_equal(priv->stations[i], bssid))
3933 			return i;
3934 
3935 	return IPW_INVALID_STATION;
3936 }
3937 
3938 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3939 {
3940 	int err;
3941 
3942 	if (priv->status & STATUS_ASSOCIATING) {
3943 		IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3944 		schedule_work(&priv->disassociate);
3945 		return;
3946 	}
3947 
3948 	if (!(priv->status & STATUS_ASSOCIATED)) {
3949 		IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3950 		return;
3951 	}
3952 
3953 	IPW_DEBUG_ASSOC("Disassociation attempt from %pM "
3954 			"on channel %d.\n",
3955 			priv->assoc_request.bssid,
3956 			priv->assoc_request.channel);
3957 
3958 	priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3959 	priv->status |= STATUS_DISASSOCIATING;
3960 
3961 	if (quiet)
3962 		priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3963 	else
3964 		priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3965 
3966 	err = ipw_send_associate(priv, &priv->assoc_request);
3967 	if (err) {
3968 		IPW_DEBUG_HC("Attempt to send [dis]associate command "
3969 			     "failed.\n");
3970 		return;
3971 	}
3972 
3973 }
3974 
3975 static int ipw_disassociate(void *data)
3976 {
3977 	struct ipw_priv *priv = data;
3978 	if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3979 		return 0;
3980 	ipw_send_disassociate(data, 0);
3981 	netif_carrier_off(priv->net_dev);
3982 	return 1;
3983 }
3984 
3985 static void ipw_bg_disassociate(struct work_struct *work)
3986 {
3987 	struct ipw_priv *priv =
3988 		container_of(work, struct ipw_priv, disassociate);
3989 	mutex_lock(&priv->mutex);
3990 	ipw_disassociate(priv);
3991 	mutex_unlock(&priv->mutex);
3992 }
3993 
3994 static void ipw_system_config(struct work_struct *work)
3995 {
3996 	struct ipw_priv *priv =
3997 		container_of(work, struct ipw_priv, system_config);
3998 
3999 #ifdef CONFIG_IPW2200_PROMISCUOUS
4000 	if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
4001 		priv->sys_config.accept_all_data_frames = 1;
4002 		priv->sys_config.accept_non_directed_frames = 1;
4003 		priv->sys_config.accept_all_mgmt_bcpr = 1;
4004 		priv->sys_config.accept_all_mgmt_frames = 1;
4005 	}
4006 #endif
4007 
4008 	ipw_send_system_config(priv);
4009 }
4010 
4011 struct ipw_status_code {
4012 	u16 status;
4013 	const char *reason;
4014 };
4015 
4016 static const struct ipw_status_code ipw_status_codes[] = {
4017 	{0x00, "Successful"},
4018 	{0x01, "Unspecified failure"},
4019 	{0x0A, "Cannot support all requested capabilities in the "
4020 	 "Capability information field"},
4021 	{0x0B, "Reassociation denied due to inability to confirm that "
4022 	 "association exists"},
4023 	{0x0C, "Association denied due to reason outside the scope of this "
4024 	 "standard"},
4025 	{0x0D,
4026 	 "Responding station does not support the specified authentication "
4027 	 "algorithm"},
4028 	{0x0E,
4029 	 "Received an Authentication frame with authentication sequence "
4030 	 "transaction sequence number out of expected sequence"},
4031 	{0x0F, "Authentication rejected because of challenge failure"},
4032 	{0x10, "Authentication rejected due to timeout waiting for next "
4033 	 "frame in sequence"},
4034 	{0x11, "Association denied because AP is unable to handle additional "
4035 	 "associated stations"},
4036 	{0x12,
4037 	 "Association denied due to requesting station not supporting all "
4038 	 "of the datarates in the BSSBasicServiceSet Parameter"},
4039 	{0x13,
4040 	 "Association denied due to requesting station not supporting "
4041 	 "short preamble operation"},
4042 	{0x14,
4043 	 "Association denied due to requesting station not supporting "
4044 	 "PBCC encoding"},
4045 	{0x15,
4046 	 "Association denied due to requesting station not supporting "
4047 	 "channel agility"},
4048 	{0x19,
4049 	 "Association denied due to requesting station not supporting "
4050 	 "short slot operation"},
4051 	{0x1A,
4052 	 "Association denied due to requesting station not supporting "
4053 	 "DSSS-OFDM operation"},
4054 	{0x28, "Invalid Information Element"},
4055 	{0x29, "Group Cipher is not valid"},
4056 	{0x2A, "Pairwise Cipher is not valid"},
4057 	{0x2B, "AKMP is not valid"},
4058 	{0x2C, "Unsupported RSN IE version"},
4059 	{0x2D, "Invalid RSN IE Capabilities"},
4060 	{0x2E, "Cipher suite is rejected per security policy"},
4061 };
4062 
4063 static const char *ipw_get_status_code(u16 status)
4064 {
4065 	int i;
4066 	for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
4067 		if (ipw_status_codes[i].status == (status & 0xff))
4068 			return ipw_status_codes[i].reason;
4069 	return "Unknown status value.";
4070 }
4071 
4072 static inline void average_init(struct average *avg)
4073 {
4074 	memset(avg, 0, sizeof(*avg));
4075 }
4076 
4077 #define DEPTH_RSSI 8
4078 #define DEPTH_NOISE 16
4079 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
4080 {
4081 	return ((depth-1)*prev_avg +  val)/depth;
4082 }
4083 
4084 static void average_add(struct average *avg, s16 val)
4085 {
4086 	avg->sum -= avg->entries[avg->pos];
4087 	avg->sum += val;
4088 	avg->entries[avg->pos++] = val;
4089 	if (unlikely(avg->pos == AVG_ENTRIES)) {
4090 		avg->init = 1;
4091 		avg->pos = 0;
4092 	}
4093 }
4094 
4095 static s16 average_value(struct average *avg)
4096 {
4097 	if (!unlikely(avg->init)) {
4098 		if (avg->pos)
4099 			return avg->sum / avg->pos;
4100 		return 0;
4101 	}
4102 
4103 	return avg->sum / AVG_ENTRIES;
4104 }
4105 
4106 static void ipw_reset_stats(struct ipw_priv *priv)
4107 {
4108 	u32 len = sizeof(u32);
4109 
4110 	priv->quality = 0;
4111 
4112 	average_init(&priv->average_missed_beacons);
4113 	priv->exp_avg_rssi = -60;
4114 	priv->exp_avg_noise = -85 + 0x100;
4115 
4116 	priv->last_rate = 0;
4117 	priv->last_missed_beacons = 0;
4118 	priv->last_rx_packets = 0;
4119 	priv->last_tx_packets = 0;
4120 	priv->last_tx_failures = 0;
4121 
4122 	/* Firmware managed, reset only when NIC is restarted, so we have to
4123 	 * normalize on the current value */
4124 	ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
4125 			&priv->last_rx_err, &len);
4126 	ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
4127 			&priv->last_tx_failures, &len);
4128 
4129 	/* Driver managed, reset with each association */
4130 	priv->missed_adhoc_beacons = 0;
4131 	priv->missed_beacons = 0;
4132 	priv->tx_packets = 0;
4133 	priv->rx_packets = 0;
4134 
4135 }
4136 
4137 static u32 ipw_get_max_rate(struct ipw_priv *priv)
4138 {
4139 	u32 i = 0x80000000;
4140 	u32 mask = priv->rates_mask;
4141 	/* If currently associated in B mode, restrict the maximum
4142 	 * rate match to B rates */
4143 	if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4144 		mask &= LIBIPW_CCK_RATES_MASK;
4145 
4146 	/* TODO: Verify that the rate is supported by the current rates
4147 	 * list. */
4148 
4149 	while (i && !(mask & i))
4150 		i >>= 1;
4151 	switch (i) {
4152 	case LIBIPW_CCK_RATE_1MB_MASK:
4153 		return 1000000;
4154 	case LIBIPW_CCK_RATE_2MB_MASK:
4155 		return 2000000;
4156 	case LIBIPW_CCK_RATE_5MB_MASK:
4157 		return 5500000;
4158 	case LIBIPW_OFDM_RATE_6MB_MASK:
4159 		return 6000000;
4160 	case LIBIPW_OFDM_RATE_9MB_MASK:
4161 		return 9000000;
4162 	case LIBIPW_CCK_RATE_11MB_MASK:
4163 		return 11000000;
4164 	case LIBIPW_OFDM_RATE_12MB_MASK:
4165 		return 12000000;
4166 	case LIBIPW_OFDM_RATE_18MB_MASK:
4167 		return 18000000;
4168 	case LIBIPW_OFDM_RATE_24MB_MASK:
4169 		return 24000000;
4170 	case LIBIPW_OFDM_RATE_36MB_MASK:
4171 		return 36000000;
4172 	case LIBIPW_OFDM_RATE_48MB_MASK:
4173 		return 48000000;
4174 	case LIBIPW_OFDM_RATE_54MB_MASK:
4175 		return 54000000;
4176 	}
4177 
4178 	if (priv->ieee->mode == IEEE_B)
4179 		return 11000000;
4180 	else
4181 		return 54000000;
4182 }
4183 
4184 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4185 {
4186 	u32 rate, len = sizeof(rate);
4187 	int err;
4188 
4189 	if (!(priv->status & STATUS_ASSOCIATED))
4190 		return 0;
4191 
4192 	if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4193 		err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4194 				      &len);
4195 		if (err) {
4196 			IPW_DEBUG_INFO("failed querying ordinals.\n");
4197 			return 0;
4198 		}
4199 	} else
4200 		return ipw_get_max_rate(priv);
4201 
4202 	switch (rate) {
4203 	case IPW_TX_RATE_1MB:
4204 		return 1000000;
4205 	case IPW_TX_RATE_2MB:
4206 		return 2000000;
4207 	case IPW_TX_RATE_5MB:
4208 		return 5500000;
4209 	case IPW_TX_RATE_6MB:
4210 		return 6000000;
4211 	case IPW_TX_RATE_9MB:
4212 		return 9000000;
4213 	case IPW_TX_RATE_11MB:
4214 		return 11000000;
4215 	case IPW_TX_RATE_12MB:
4216 		return 12000000;
4217 	case IPW_TX_RATE_18MB:
4218 		return 18000000;
4219 	case IPW_TX_RATE_24MB:
4220 		return 24000000;
4221 	case IPW_TX_RATE_36MB:
4222 		return 36000000;
4223 	case IPW_TX_RATE_48MB:
4224 		return 48000000;
4225 	case IPW_TX_RATE_54MB:
4226 		return 54000000;
4227 	}
4228 
4229 	return 0;
4230 }
4231 
4232 #define IPW_STATS_INTERVAL (2 * HZ)
4233 static void ipw_gather_stats(struct ipw_priv *priv)
4234 {
4235 	u32 rx_err, rx_err_delta, rx_packets_delta;
4236 	u32 tx_failures, tx_failures_delta, tx_packets_delta;
4237 	u32 missed_beacons_percent, missed_beacons_delta;
4238 	u32 quality = 0;
4239 	u32 len = sizeof(u32);
4240 	s16 rssi;
4241 	u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4242 	    rate_quality;
4243 	u32 max_rate;
4244 
4245 	if (!(priv->status & STATUS_ASSOCIATED)) {
4246 		priv->quality = 0;
4247 		return;
4248 	}
4249 
4250 	/* Update the statistics */
4251 	ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4252 			&priv->missed_beacons, &len);
4253 	missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4254 	priv->last_missed_beacons = priv->missed_beacons;
4255 	if (priv->assoc_request.beacon_interval) {
4256 		missed_beacons_percent = missed_beacons_delta *
4257 		    (HZ * le16_to_cpu(priv->assoc_request.beacon_interval)) /
4258 		    (IPW_STATS_INTERVAL * 10);
4259 	} else {
4260 		missed_beacons_percent = 0;
4261 	}
4262 	average_add(&priv->average_missed_beacons, missed_beacons_percent);
4263 
4264 	ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4265 	rx_err_delta = rx_err - priv->last_rx_err;
4266 	priv->last_rx_err = rx_err;
4267 
4268 	ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4269 	tx_failures_delta = tx_failures - priv->last_tx_failures;
4270 	priv->last_tx_failures = tx_failures;
4271 
4272 	rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4273 	priv->last_rx_packets = priv->rx_packets;
4274 
4275 	tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4276 	priv->last_tx_packets = priv->tx_packets;
4277 
4278 	/* Calculate quality based on the following:
4279 	 *
4280 	 * Missed beacon: 100% = 0, 0% = 70% missed
4281 	 * Rate: 60% = 1Mbs, 100% = Max
4282 	 * Rx and Tx errors represent a straight % of total Rx/Tx
4283 	 * RSSI: 100% = > -50,  0% = < -80
4284 	 * Rx errors: 100% = 0, 0% = 50% missed
4285 	 *
4286 	 * The lowest computed quality is used.
4287 	 *
4288 	 */
4289 #define BEACON_THRESHOLD 5
4290 	beacon_quality = 100 - missed_beacons_percent;
4291 	if (beacon_quality < BEACON_THRESHOLD)
4292 		beacon_quality = 0;
4293 	else
4294 		beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4295 		    (100 - BEACON_THRESHOLD);
4296 	IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4297 			beacon_quality, missed_beacons_percent);
4298 
4299 	priv->last_rate = ipw_get_current_rate(priv);
4300 	max_rate = ipw_get_max_rate(priv);
4301 	rate_quality = priv->last_rate * 40 / max_rate + 60;
4302 	IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4303 			rate_quality, priv->last_rate / 1000000);
4304 
4305 	if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4306 		rx_quality = 100 - (rx_err_delta * 100) /
4307 		    (rx_packets_delta + rx_err_delta);
4308 	else
4309 		rx_quality = 100;
4310 	IPW_DEBUG_STATS("Rx quality   : %3d%% (%u errors, %u packets)\n",
4311 			rx_quality, rx_err_delta, rx_packets_delta);
4312 
4313 	if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4314 		tx_quality = 100 - (tx_failures_delta * 100) /
4315 		    (tx_packets_delta + tx_failures_delta);
4316 	else
4317 		tx_quality = 100;
4318 	IPW_DEBUG_STATS("Tx quality   : %3d%% (%u errors, %u packets)\n",
4319 			tx_quality, tx_failures_delta, tx_packets_delta);
4320 
4321 	rssi = priv->exp_avg_rssi;
4322 	signal_quality =
4323 	    (100 *
4324 	     (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4325 	     (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4326 	     (priv->ieee->perfect_rssi - rssi) *
4327 	     (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4328 	      62 * (priv->ieee->perfect_rssi - rssi))) /
4329 	    ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4330 	     (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4331 	if (signal_quality > 100)
4332 		signal_quality = 100;
4333 	else if (signal_quality < 1)
4334 		signal_quality = 0;
4335 
4336 	IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4337 			signal_quality, rssi);
4338 
4339 	quality = min(rx_quality, signal_quality);
4340 	quality = min(tx_quality, quality);
4341 	quality = min(rate_quality, quality);
4342 	quality = min(beacon_quality, quality);
4343 	if (quality == beacon_quality)
4344 		IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4345 				quality);
4346 	if (quality == rate_quality)
4347 		IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4348 				quality);
4349 	if (quality == tx_quality)
4350 		IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4351 				quality);
4352 	if (quality == rx_quality)
4353 		IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4354 				quality);
4355 	if (quality == signal_quality)
4356 		IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4357 				quality);
4358 
4359 	priv->quality = quality;
4360 
4361 	schedule_delayed_work(&priv->gather_stats, IPW_STATS_INTERVAL);
4362 }
4363 
4364 static void ipw_bg_gather_stats(struct work_struct *work)
4365 {
4366 	struct ipw_priv *priv =
4367 		container_of(work, struct ipw_priv, gather_stats.work);
4368 	mutex_lock(&priv->mutex);
4369 	ipw_gather_stats(priv);
4370 	mutex_unlock(&priv->mutex);
4371 }
4372 
4373 /* Missed beacon behavior:
4374  * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4375  * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4376  * Above disassociate threshold, give up and stop scanning.
4377  * Roaming is disabled if disassociate_threshold <= roaming_threshold  */
4378 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4379 					    int missed_count)
4380 {
4381 	priv->notif_missed_beacons = missed_count;
4382 
4383 	if (missed_count > priv->disassociate_threshold &&
4384 	    priv->status & STATUS_ASSOCIATED) {
4385 		/* If associated and we've hit the missed
4386 		 * beacon threshold, disassociate, turn
4387 		 * off roaming, and abort any active scans */
4388 		IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4389 			  IPW_DL_STATE | IPW_DL_ASSOC,
4390 			  "Missed beacon: %d - disassociate\n", missed_count);
4391 		priv->status &= ~STATUS_ROAMING;
4392 		if (priv->status & STATUS_SCANNING) {
4393 			IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4394 				  IPW_DL_STATE,
4395 				  "Aborting scan with missed beacon.\n");
4396 			schedule_work(&priv->abort_scan);
4397 		}
4398 
4399 		schedule_work(&priv->disassociate);
4400 		return;
4401 	}
4402 
4403 	if (priv->status & STATUS_ROAMING) {
4404 		/* If we are currently roaming, then just
4405 		 * print a debug statement... */
4406 		IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4407 			  "Missed beacon: %d - roam in progress\n",
4408 			  missed_count);
4409 		return;
4410 	}
4411 
4412 	if (roaming &&
4413 	    (missed_count > priv->roaming_threshold &&
4414 	     missed_count <= priv->disassociate_threshold)) {
4415 		/* If we are not already roaming, set the ROAM
4416 		 * bit in the status and kick off a scan.
4417 		 * This can happen several times before we reach
4418 		 * disassociate_threshold. */
4419 		IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4420 			  "Missed beacon: %d - initiate "
4421 			  "roaming\n", missed_count);
4422 		if (!(priv->status & STATUS_ROAMING)) {
4423 			priv->status |= STATUS_ROAMING;
4424 			if (!(priv->status & STATUS_SCANNING))
4425 				schedule_delayed_work(&priv->request_scan, 0);
4426 		}
4427 		return;
4428 	}
4429 
4430 	if (priv->status & STATUS_SCANNING &&
4431 	    missed_count > IPW_MB_SCAN_CANCEL_THRESHOLD) {
4432 		/* Stop scan to keep fw from getting
4433 		 * stuck (only if we aren't roaming --
4434 		 * otherwise we'll never scan more than 2 or 3
4435 		 * channels..) */
4436 		IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4437 			  "Aborting scan with missed beacon.\n");
4438 		schedule_work(&priv->abort_scan);
4439 	}
4440 
4441 	IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4442 }
4443 
4444 static void ipw_scan_event(struct work_struct *work)
4445 {
4446 	union iwreq_data wrqu;
4447 
4448 	struct ipw_priv *priv =
4449 		container_of(work, struct ipw_priv, scan_event.work);
4450 
4451 	wrqu.data.length = 0;
4452 	wrqu.data.flags = 0;
4453 	wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4454 }
4455 
4456 static void handle_scan_event(struct ipw_priv *priv)
4457 {
4458 	/* Only userspace-requested scan completion events go out immediately */
4459 	if (!priv->user_requested_scan) {
4460 		schedule_delayed_work(&priv->scan_event,
4461 				      round_jiffies_relative(msecs_to_jiffies(4000)));
4462 	} else {
4463 		priv->user_requested_scan = 0;
4464 		mod_delayed_work(system_wq, &priv->scan_event, 0);
4465 	}
4466 }
4467 
4468 /**
4469  * Handle host notification packet.
4470  * Called from interrupt routine
4471  */
4472 static void ipw_rx_notification(struct ipw_priv *priv,
4473 				       struct ipw_rx_notification *notif)
4474 {
4475 	u16 size = le16_to_cpu(notif->size);
4476 
4477 	IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, size);
4478 
4479 	switch (notif->subtype) {
4480 	case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4481 			struct notif_association *assoc = &notif->u.assoc;
4482 
4483 			switch (assoc->state) {
4484 			case CMAS_ASSOCIATED:{
4485 					IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4486 						  IPW_DL_ASSOC,
4487 						  "associated: '%*pE' %pM\n",
4488 						  priv->essid_len, priv->essid,
4489 						  priv->bssid);
4490 
4491 					switch (priv->ieee->iw_mode) {
4492 					case IW_MODE_INFRA:
4493 						memcpy(priv->ieee->bssid,
4494 						       priv->bssid, ETH_ALEN);
4495 						break;
4496 
4497 					case IW_MODE_ADHOC:
4498 						memcpy(priv->ieee->bssid,
4499 						       priv->bssid, ETH_ALEN);
4500 
4501 						/* clear out the station table */
4502 						priv->num_stations = 0;
4503 
4504 						IPW_DEBUG_ASSOC
4505 						    ("queueing adhoc check\n");
4506 						schedule_delayed_work(
4507 							&priv->adhoc_check,
4508 							le16_to_cpu(priv->
4509 							assoc_request.
4510 							beacon_interval));
4511 						break;
4512 					}
4513 
4514 					priv->status &= ~STATUS_ASSOCIATING;
4515 					priv->status |= STATUS_ASSOCIATED;
4516 					schedule_work(&priv->system_config);
4517 
4518 #ifdef CONFIG_IPW2200_QOS
4519 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4520 			 le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_control))
4521 					if ((priv->status & STATUS_AUTH) &&
4522 					    (IPW_GET_PACKET_STYPE(&notif->u.raw)
4523 					     == IEEE80211_STYPE_ASSOC_RESP)) {
4524 						if ((sizeof
4525 						     (struct
4526 						      libipw_assoc_response)
4527 						     <= size)
4528 						    && (size <= 2314)) {
4529 							struct
4530 							libipw_rx_stats
4531 							    stats = {
4532 								.len = size - 1,
4533 							};
4534 
4535 							IPW_DEBUG_QOS
4536 							    ("QoS Associate "
4537 							     "size %d\n", size);
4538 							libipw_rx_mgt(priv->
4539 									 ieee,
4540 									 (struct
4541 									  libipw_hdr_4addr
4542 									  *)
4543 									 &notif->u.raw, &stats);
4544 						}
4545 					}
4546 #endif
4547 
4548 					schedule_work(&priv->link_up);
4549 
4550 					break;
4551 				}
4552 
4553 			case CMAS_AUTHENTICATED:{
4554 					if (priv->
4555 					    status & (STATUS_ASSOCIATED |
4556 						      STATUS_AUTH)) {
4557 						struct notif_authenticate *auth
4558 						    = &notif->u.auth;
4559 						IPW_DEBUG(IPW_DL_NOTIF |
4560 							  IPW_DL_STATE |
4561 							  IPW_DL_ASSOC,
4562 							  "deauthenticated: '%*pE' %pM: (0x%04X) - %s\n",
4563 							  priv->essid_len,
4564 							  priv->essid,
4565 							  priv->bssid,
4566 							  le16_to_cpu(auth->status),
4567 							  ipw_get_status_code
4568 							  (le16_to_cpu
4569 							   (auth->status)));
4570 
4571 						priv->status &=
4572 						    ~(STATUS_ASSOCIATING |
4573 						      STATUS_AUTH |
4574 						      STATUS_ASSOCIATED);
4575 
4576 						schedule_work(&priv->link_down);
4577 						break;
4578 					}
4579 
4580 					IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4581 						  IPW_DL_ASSOC,
4582 						  "authenticated: '%*pE' %pM\n",
4583 						  priv->essid_len, priv->essid,
4584 						  priv->bssid);
4585 					break;
4586 				}
4587 
4588 			case CMAS_INIT:{
4589 					if (priv->status & STATUS_AUTH) {
4590 						struct
4591 						    libipw_assoc_response
4592 						*resp;
4593 						resp =
4594 						    (struct
4595 						     libipw_assoc_response
4596 						     *)&notif->u.raw;
4597 						IPW_DEBUG(IPW_DL_NOTIF |
4598 							  IPW_DL_STATE |
4599 							  IPW_DL_ASSOC,
4600 							  "association failed (0x%04X): %s\n",
4601 							  le16_to_cpu(resp->status),
4602 							  ipw_get_status_code
4603 							  (le16_to_cpu
4604 							   (resp->status)));
4605 					}
4606 
4607 					IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4608 						  IPW_DL_ASSOC,
4609 						  "disassociated: '%*pE' %pM\n",
4610 						  priv->essid_len, priv->essid,
4611 						  priv->bssid);
4612 
4613 					priv->status &=
4614 					    ~(STATUS_DISASSOCIATING |
4615 					      STATUS_ASSOCIATING |
4616 					      STATUS_ASSOCIATED | STATUS_AUTH);
4617 					if (priv->assoc_network
4618 					    && (priv->assoc_network->
4619 						capability &
4620 						WLAN_CAPABILITY_IBSS))
4621 						ipw_remove_current_network
4622 						    (priv);
4623 
4624 					schedule_work(&priv->link_down);
4625 
4626 					break;
4627 				}
4628 
4629 			case CMAS_RX_ASSOC_RESP:
4630 				break;
4631 
4632 			default:
4633 				IPW_ERROR("assoc: unknown (%d)\n",
4634 					  assoc->state);
4635 				break;
4636 			}
4637 
4638 			break;
4639 		}
4640 
4641 	case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4642 			struct notif_authenticate *auth = &notif->u.auth;
4643 			switch (auth->state) {
4644 			case CMAS_AUTHENTICATED:
4645 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4646 					  "authenticated: '%*pE' %pM\n",
4647 					  priv->essid_len, priv->essid,
4648 					  priv->bssid);
4649 				priv->status |= STATUS_AUTH;
4650 				break;
4651 
4652 			case CMAS_INIT:
4653 				if (priv->status & STATUS_AUTH) {
4654 					IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4655 						  IPW_DL_ASSOC,
4656 						  "authentication failed (0x%04X): %s\n",
4657 						  le16_to_cpu(auth->status),
4658 						  ipw_get_status_code(le16_to_cpu
4659 								      (auth->
4660 								       status)));
4661 				}
4662 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4663 					  IPW_DL_ASSOC,
4664 					  "deauthenticated: '%*pE' %pM\n",
4665 					  priv->essid_len, priv->essid,
4666 					  priv->bssid);
4667 
4668 				priv->status &= ~(STATUS_ASSOCIATING |
4669 						  STATUS_AUTH |
4670 						  STATUS_ASSOCIATED);
4671 
4672 				schedule_work(&priv->link_down);
4673 				break;
4674 
4675 			case CMAS_TX_AUTH_SEQ_1:
4676 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4677 					  IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4678 				break;
4679 			case CMAS_RX_AUTH_SEQ_2:
4680 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4681 					  IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4682 				break;
4683 			case CMAS_AUTH_SEQ_1_PASS:
4684 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4685 					  IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4686 				break;
4687 			case CMAS_AUTH_SEQ_1_FAIL:
4688 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4689 					  IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4690 				break;
4691 			case CMAS_TX_AUTH_SEQ_3:
4692 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4693 					  IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4694 				break;
4695 			case CMAS_RX_AUTH_SEQ_4:
4696 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4697 					  IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4698 				break;
4699 			case CMAS_AUTH_SEQ_2_PASS:
4700 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4701 					  IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4702 				break;
4703 			case CMAS_AUTH_SEQ_2_FAIL:
4704 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4705 					  IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4706 				break;
4707 			case CMAS_TX_ASSOC:
4708 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4709 					  IPW_DL_ASSOC, "TX_ASSOC\n");
4710 				break;
4711 			case CMAS_RX_ASSOC_RESP:
4712 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4713 					  IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4714 
4715 				break;
4716 			case CMAS_ASSOCIATED:
4717 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4718 					  IPW_DL_ASSOC, "ASSOCIATED\n");
4719 				break;
4720 			default:
4721 				IPW_DEBUG_NOTIF("auth: failure - %d\n",
4722 						auth->state);
4723 				break;
4724 			}
4725 			break;
4726 		}
4727 
4728 	case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4729 			struct notif_channel_result *x =
4730 			    &notif->u.channel_result;
4731 
4732 			if (size == sizeof(*x)) {
4733 				IPW_DEBUG_SCAN("Scan result for channel %d\n",
4734 					       x->channel_num);
4735 			} else {
4736 				IPW_DEBUG_SCAN("Scan result of wrong size %d "
4737 					       "(should be %zd)\n",
4738 					       size, sizeof(*x));
4739 			}
4740 			break;
4741 		}
4742 
4743 	case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4744 			struct notif_scan_complete *x = &notif->u.scan_complete;
4745 			if (size == sizeof(*x)) {
4746 				IPW_DEBUG_SCAN
4747 				    ("Scan completed: type %d, %d channels, "
4748 				     "%d status\n", x->scan_type,
4749 				     x->num_channels, x->status);
4750 			} else {
4751 				IPW_ERROR("Scan completed of wrong size %d "
4752 					  "(should be %zd)\n",
4753 					  size, sizeof(*x));
4754 			}
4755 
4756 			priv->status &=
4757 			    ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4758 
4759 			wake_up_interruptible(&priv->wait_state);
4760 			cancel_delayed_work(&priv->scan_check);
4761 
4762 			if (priv->status & STATUS_EXIT_PENDING)
4763 				break;
4764 
4765 			priv->ieee->scans++;
4766 
4767 #ifdef CONFIG_IPW2200_MONITOR
4768 			if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4769 				priv->status |= STATUS_SCAN_FORCED;
4770 				schedule_delayed_work(&priv->request_scan, 0);
4771 				break;
4772 			}
4773 			priv->status &= ~STATUS_SCAN_FORCED;
4774 #endif				/* CONFIG_IPW2200_MONITOR */
4775 
4776 			/* Do queued direct scans first */
4777 			if (priv->status & STATUS_DIRECT_SCAN_PENDING)
4778 				schedule_delayed_work(&priv->request_direct_scan, 0);
4779 
4780 			if (!(priv->status & (STATUS_ASSOCIATED |
4781 					      STATUS_ASSOCIATING |
4782 					      STATUS_ROAMING |
4783 					      STATUS_DISASSOCIATING)))
4784 				schedule_work(&priv->associate);
4785 			else if (priv->status & STATUS_ROAMING) {
4786 				if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4787 					/* If a scan completed and we are in roam mode, then
4788 					 * the scan that completed was the one requested as a
4789 					 * result of entering roam... so, schedule the
4790 					 * roam work */
4791 					schedule_work(&priv->roam);
4792 				else
4793 					/* Don't schedule if we aborted the scan */
4794 					priv->status &= ~STATUS_ROAMING;
4795 			} else if (priv->status & STATUS_SCAN_PENDING)
4796 				schedule_delayed_work(&priv->request_scan, 0);
4797 			else if (priv->config & CFG_BACKGROUND_SCAN
4798 				 && priv->status & STATUS_ASSOCIATED)
4799 				schedule_delayed_work(&priv->request_scan,
4800 						      round_jiffies_relative(HZ));
4801 
4802 			/* Send an empty event to user space.
4803 			 * We don't send the received data on the event because
4804 			 * it would require us to do complex transcoding, and
4805 			 * we want to minimise the work done in the irq handler
4806 			 * Use a request to extract the data.
4807 			 * Also, we generate this even for any scan, regardless
4808 			 * on how the scan was initiated. User space can just
4809 			 * sync on periodic scan to get fresh data...
4810 			 * Jean II */
4811 			if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4812 				handle_scan_event(priv);
4813 			break;
4814 		}
4815 
4816 	case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4817 			struct notif_frag_length *x = &notif->u.frag_len;
4818 
4819 			if (size == sizeof(*x))
4820 				IPW_ERROR("Frag length: %d\n",
4821 					  le16_to_cpu(x->frag_length));
4822 			else
4823 				IPW_ERROR("Frag length of wrong size %d "
4824 					  "(should be %zd)\n",
4825 					  size, sizeof(*x));
4826 			break;
4827 		}
4828 
4829 	case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4830 			struct notif_link_deterioration *x =
4831 			    &notif->u.link_deterioration;
4832 
4833 			if (size == sizeof(*x)) {
4834 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4835 					"link deterioration: type %d, cnt %d\n",
4836 					x->silence_notification_type,
4837 					x->silence_count);
4838 				memcpy(&priv->last_link_deterioration, x,
4839 				       sizeof(*x));
4840 			} else {
4841 				IPW_ERROR("Link Deterioration of wrong size %d "
4842 					  "(should be %zd)\n",
4843 					  size, sizeof(*x));
4844 			}
4845 			break;
4846 		}
4847 
4848 	case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4849 			IPW_ERROR("Dino config\n");
4850 			if (priv->hcmd
4851 			    && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4852 				IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4853 
4854 			break;
4855 		}
4856 
4857 	case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4858 			struct notif_beacon_state *x = &notif->u.beacon_state;
4859 			if (size != sizeof(*x)) {
4860 				IPW_ERROR
4861 				    ("Beacon state of wrong size %d (should "
4862 				     "be %zd)\n", size, sizeof(*x));
4863 				break;
4864 			}
4865 
4866 			if (le32_to_cpu(x->state) ==
4867 			    HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4868 				ipw_handle_missed_beacon(priv,
4869 							 le32_to_cpu(x->
4870 								     number));
4871 
4872 			break;
4873 		}
4874 
4875 	case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4876 			struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4877 			if (size == sizeof(*x)) {
4878 				IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4879 					  "0x%02x station %d\n",
4880 					  x->key_state, x->security_type,
4881 					  x->station_index);
4882 				break;
4883 			}
4884 
4885 			IPW_ERROR
4886 			    ("TGi Tx Key of wrong size %d (should be %zd)\n",
4887 			     size, sizeof(*x));
4888 			break;
4889 		}
4890 
4891 	case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4892 			struct notif_calibration *x = &notif->u.calibration;
4893 
4894 			if (size == sizeof(*x)) {
4895 				memcpy(&priv->calib, x, sizeof(*x));
4896 				IPW_DEBUG_INFO("TODO: Calibration\n");
4897 				break;
4898 			}
4899 
4900 			IPW_ERROR
4901 			    ("Calibration of wrong size %d (should be %zd)\n",
4902 			     size, sizeof(*x));
4903 			break;
4904 		}
4905 
4906 	case HOST_NOTIFICATION_NOISE_STATS:{
4907 			if (size == sizeof(u32)) {
4908 				priv->exp_avg_noise =
4909 				    exponential_average(priv->exp_avg_noise,
4910 				    (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4911 				    DEPTH_NOISE);
4912 				break;
4913 			}
4914 
4915 			IPW_ERROR
4916 			    ("Noise stat is wrong size %d (should be %zd)\n",
4917 			     size, sizeof(u32));
4918 			break;
4919 		}
4920 
4921 	default:
4922 		IPW_DEBUG_NOTIF("Unknown notification: "
4923 				"subtype=%d,flags=0x%2x,size=%d\n",
4924 				notif->subtype, notif->flags, size);
4925 	}
4926 }
4927 
4928 /**
4929  * Destroys all DMA structures and initialise them again
4930  *
4931  * @param priv
4932  * @return error code
4933  */
4934 static int ipw_queue_reset(struct ipw_priv *priv)
4935 {
4936 	int rc = 0;
4937 	/** @todo customize queue sizes */
4938 	int nTx = 64, nTxCmd = 8;
4939 	ipw_tx_queue_free(priv);
4940 	/* Tx CMD queue */
4941 	rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4942 			       IPW_TX_CMD_QUEUE_READ_INDEX,
4943 			       IPW_TX_CMD_QUEUE_WRITE_INDEX,
4944 			       IPW_TX_CMD_QUEUE_BD_BASE,
4945 			       IPW_TX_CMD_QUEUE_BD_SIZE);
4946 	if (rc) {
4947 		IPW_ERROR("Tx Cmd queue init failed\n");
4948 		goto error;
4949 	}
4950 	/* Tx queue(s) */
4951 	rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4952 			       IPW_TX_QUEUE_0_READ_INDEX,
4953 			       IPW_TX_QUEUE_0_WRITE_INDEX,
4954 			       IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4955 	if (rc) {
4956 		IPW_ERROR("Tx 0 queue init failed\n");
4957 		goto error;
4958 	}
4959 	rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4960 			       IPW_TX_QUEUE_1_READ_INDEX,
4961 			       IPW_TX_QUEUE_1_WRITE_INDEX,
4962 			       IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4963 	if (rc) {
4964 		IPW_ERROR("Tx 1 queue init failed\n");
4965 		goto error;
4966 	}
4967 	rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4968 			       IPW_TX_QUEUE_2_READ_INDEX,
4969 			       IPW_TX_QUEUE_2_WRITE_INDEX,
4970 			       IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4971 	if (rc) {
4972 		IPW_ERROR("Tx 2 queue init failed\n");
4973 		goto error;
4974 	}
4975 	rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4976 			       IPW_TX_QUEUE_3_READ_INDEX,
4977 			       IPW_TX_QUEUE_3_WRITE_INDEX,
4978 			       IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4979 	if (rc) {
4980 		IPW_ERROR("Tx 3 queue init failed\n");
4981 		goto error;
4982 	}
4983 	/* statistics */
4984 	priv->rx_bufs_min = 0;
4985 	priv->rx_pend_max = 0;
4986 	return rc;
4987 
4988       error:
4989 	ipw_tx_queue_free(priv);
4990 	return rc;
4991 }
4992 
4993 /**
4994  * Reclaim Tx queue entries no more used by NIC.
4995  *
4996  * When FW advances 'R' index, all entries between old and
4997  * new 'R' index need to be reclaimed. As result, some free space
4998  * forms. If there is enough free space (> low mark), wake Tx queue.
4999  *
5000  * @note Need to protect against garbage in 'R' index
5001  * @param priv
5002  * @param txq
5003  * @param qindex
5004  * @return Number of used entries remains in the queue
5005  */
5006 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
5007 				struct clx2_tx_queue *txq, int qindex)
5008 {
5009 	u32 hw_tail;
5010 	int used;
5011 	struct clx2_queue *q = &txq->q;
5012 
5013 	hw_tail = ipw_read32(priv, q->reg_r);
5014 	if (hw_tail >= q->n_bd) {
5015 		IPW_ERROR
5016 		    ("Read index for DMA queue (%d) is out of range [0-%d)\n",
5017 		     hw_tail, q->n_bd);
5018 		goto done;
5019 	}
5020 	for (; q->last_used != hw_tail;
5021 	     q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
5022 		ipw_queue_tx_free_tfd(priv, txq);
5023 		priv->tx_packets++;
5024 	}
5025       done:
5026 	if ((ipw_tx_queue_space(q) > q->low_mark) &&
5027 	    (qindex >= 0))
5028 		netif_wake_queue(priv->net_dev);
5029 	used = q->first_empty - q->last_used;
5030 	if (used < 0)
5031 		used += q->n_bd;
5032 
5033 	return used;
5034 }
5035 
5036 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
5037 			     int len, int sync)
5038 {
5039 	struct clx2_tx_queue *txq = &priv->txq_cmd;
5040 	struct clx2_queue *q = &txq->q;
5041 	struct tfd_frame *tfd;
5042 
5043 	if (ipw_tx_queue_space(q) < (sync ? 1 : 2)) {
5044 		IPW_ERROR("No space for Tx\n");
5045 		return -EBUSY;
5046 	}
5047 
5048 	tfd = &txq->bd[q->first_empty];
5049 	txq->txb[q->first_empty] = NULL;
5050 
5051 	memset(tfd, 0, sizeof(*tfd));
5052 	tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
5053 	tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
5054 	priv->hcmd_seq++;
5055 	tfd->u.cmd.index = hcmd;
5056 	tfd->u.cmd.length = len;
5057 	memcpy(tfd->u.cmd.payload, buf, len);
5058 	q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
5059 	ipw_write32(priv, q->reg_w, q->first_empty);
5060 	_ipw_read32(priv, 0x90);
5061 
5062 	return 0;
5063 }
5064 
5065 /*
5066  * Rx theory of operation
5067  *
5068  * The host allocates 32 DMA target addresses and passes the host address
5069  * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
5070  * 0 to 31
5071  *
5072  * Rx Queue Indexes
5073  * The host/firmware share two index registers for managing the Rx buffers.
5074  *
5075  * The READ index maps to the first position that the firmware may be writing
5076  * to -- the driver can read up to (but not including) this position and get
5077  * good data.
5078  * The READ index is managed by the firmware once the card is enabled.
5079  *
5080  * The WRITE index maps to the last position the driver has read from -- the
5081  * position preceding WRITE is the last slot the firmware can place a packet.
5082  *
5083  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
5084  * WRITE = READ.
5085  *
5086  * During initialization the host sets up the READ queue position to the first
5087  * INDEX position, and WRITE to the last (READ - 1 wrapped)
5088  *
5089  * When the firmware places a packet in a buffer it will advance the READ index
5090  * and fire the RX interrupt.  The driver can then query the READ index and
5091  * process as many packets as possible, moving the WRITE index forward as it
5092  * resets the Rx queue buffers with new memory.
5093  *
5094  * The management in the driver is as follows:
5095  * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free.  When
5096  *   ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
5097  *   to replensish the ipw->rxq->rx_free.
5098  * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
5099  *   ipw->rxq is replenished and the READ INDEX is updated (updating the
5100  *   'processed' and 'read' driver indexes as well)
5101  * + A received packet is processed and handed to the kernel network stack,
5102  *   detached from the ipw->rxq.  The driver 'processed' index is updated.
5103  * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5104  *   list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5105  *   INDEX is not incremented and ipw->status(RX_STALLED) is set.  If there
5106  *   were enough free buffers and RX_STALLED is set it is cleared.
5107  *
5108  *
5109  * Driver sequence:
5110  *
5111  * ipw_rx_queue_alloc()       Allocates rx_free
5112  * ipw_rx_queue_replenish()   Replenishes rx_free list from rx_used, and calls
5113  *                            ipw_rx_queue_restock
5114  * ipw_rx_queue_restock()     Moves available buffers from rx_free into Rx
5115  *                            queue, updates firmware pointers, and updates
5116  *                            the WRITE index.  If insufficient rx_free buffers
5117  *                            are available, schedules ipw_rx_queue_replenish
5118  *
5119  * -- enable interrupts --
5120  * ISR - ipw_rx()             Detach ipw_rx_mem_buffers from pool up to the
5121  *                            READ INDEX, detaching the SKB from the pool.
5122  *                            Moves the packet buffer from queue to rx_used.
5123  *                            Calls ipw_rx_queue_restock to refill any empty
5124  *                            slots.
5125  * ...
5126  *
5127  */
5128 
5129 /*
5130  * If there are slots in the RX queue that  need to be restocked,
5131  * and we have free pre-allocated buffers, fill the ranks as much
5132  * as we can pulling from rx_free.
5133  *
5134  * This moves the 'write' index forward to catch up with 'processed', and
5135  * also updates the memory address in the firmware to reference the new
5136  * target buffer.
5137  */
5138 static void ipw_rx_queue_restock(struct ipw_priv *priv)
5139 {
5140 	struct ipw_rx_queue *rxq = priv->rxq;
5141 	struct list_head *element;
5142 	struct ipw_rx_mem_buffer *rxb;
5143 	unsigned long flags;
5144 	int write;
5145 
5146 	spin_lock_irqsave(&rxq->lock, flags);
5147 	write = rxq->write;
5148 	while ((ipw_rx_queue_space(rxq) > 0) && (rxq->free_count)) {
5149 		element = rxq->rx_free.next;
5150 		rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5151 		list_del(element);
5152 
5153 		ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5154 			    rxb->dma_addr);
5155 		rxq->queue[rxq->write] = rxb;
5156 		rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5157 		rxq->free_count--;
5158 	}
5159 	spin_unlock_irqrestore(&rxq->lock, flags);
5160 
5161 	/* If the pre-allocated buffer pool is dropping low, schedule to
5162 	 * refill it */
5163 	if (rxq->free_count <= RX_LOW_WATERMARK)
5164 		schedule_work(&priv->rx_replenish);
5165 
5166 	/* If we've added more space for the firmware to place data, tell it */
5167 	if (write != rxq->write)
5168 		ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5169 }
5170 
5171 /*
5172  * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5173  * Also restock the Rx queue via ipw_rx_queue_restock.
5174  *
5175  * This is called as a scheduled work item (except for during initialization)
5176  */
5177 static void ipw_rx_queue_replenish(void *data)
5178 {
5179 	struct ipw_priv *priv = data;
5180 	struct ipw_rx_queue *rxq = priv->rxq;
5181 	struct list_head *element;
5182 	struct ipw_rx_mem_buffer *rxb;
5183 	unsigned long flags;
5184 
5185 	spin_lock_irqsave(&rxq->lock, flags);
5186 	while (!list_empty(&rxq->rx_used)) {
5187 		element = rxq->rx_used.next;
5188 		rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5189 		rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5190 		if (!rxb->skb) {
5191 			printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5192 			       priv->net_dev->name);
5193 			/* We don't reschedule replenish work here -- we will
5194 			 * call the restock method and if it still needs
5195 			 * more buffers it will schedule replenish */
5196 			break;
5197 		}
5198 		list_del(element);
5199 
5200 		rxb->dma_addr =
5201 		    pci_map_single(priv->pci_dev, rxb->skb->data,
5202 				   IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5203 
5204 		list_add_tail(&rxb->list, &rxq->rx_free);
5205 		rxq->free_count++;
5206 	}
5207 	spin_unlock_irqrestore(&rxq->lock, flags);
5208 
5209 	ipw_rx_queue_restock(priv);
5210 }
5211 
5212 static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5213 {
5214 	struct ipw_priv *priv =
5215 		container_of(work, struct ipw_priv, rx_replenish);
5216 	mutex_lock(&priv->mutex);
5217 	ipw_rx_queue_replenish(priv);
5218 	mutex_unlock(&priv->mutex);
5219 }
5220 
5221 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5222  * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5223  * This free routine walks the list of POOL entries and if SKB is set to
5224  * non NULL it is unmapped and freed
5225  */
5226 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5227 {
5228 	int i;
5229 
5230 	if (!rxq)
5231 		return;
5232 
5233 	for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5234 		if (rxq->pool[i].skb != NULL) {
5235 			pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
5236 					 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5237 			dev_kfree_skb(rxq->pool[i].skb);
5238 		}
5239 	}
5240 
5241 	kfree(rxq);
5242 }
5243 
5244 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5245 {
5246 	struct ipw_rx_queue *rxq;
5247 	int i;
5248 
5249 	rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5250 	if (unlikely(!rxq)) {
5251 		IPW_ERROR("memory allocation failed\n");
5252 		return NULL;
5253 	}
5254 	spin_lock_init(&rxq->lock);
5255 	INIT_LIST_HEAD(&rxq->rx_free);
5256 	INIT_LIST_HEAD(&rxq->rx_used);
5257 
5258 	/* Fill the rx_used queue with _all_ of the Rx buffers */
5259 	for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5260 		list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5261 
5262 	/* Set us so that we have processed and used all buffers, but have
5263 	 * not restocked the Rx queue with fresh buffers */
5264 	rxq->read = rxq->write = 0;
5265 	rxq->free_count = 0;
5266 
5267 	return rxq;
5268 }
5269 
5270 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5271 {
5272 	rate &= ~LIBIPW_BASIC_RATE_MASK;
5273 	if (ieee_mode == IEEE_A) {
5274 		switch (rate) {
5275 		case LIBIPW_OFDM_RATE_6MB:
5276 			return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ?
5277 			    1 : 0;
5278 		case LIBIPW_OFDM_RATE_9MB:
5279 			return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ?
5280 			    1 : 0;
5281 		case LIBIPW_OFDM_RATE_12MB:
5282 			return priv->
5283 			    rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5284 		case LIBIPW_OFDM_RATE_18MB:
5285 			return priv->
5286 			    rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5287 		case LIBIPW_OFDM_RATE_24MB:
5288 			return priv->
5289 			    rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5290 		case LIBIPW_OFDM_RATE_36MB:
5291 			return priv->
5292 			    rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5293 		case LIBIPW_OFDM_RATE_48MB:
5294 			return priv->
5295 			    rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5296 		case LIBIPW_OFDM_RATE_54MB:
5297 			return priv->
5298 			    rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5299 		default:
5300 			return 0;
5301 		}
5302 	}
5303 
5304 	/* B and G mixed */
5305 	switch (rate) {
5306 	case LIBIPW_CCK_RATE_1MB:
5307 		return priv->rates_mask & LIBIPW_CCK_RATE_1MB_MASK ? 1 : 0;
5308 	case LIBIPW_CCK_RATE_2MB:
5309 		return priv->rates_mask & LIBIPW_CCK_RATE_2MB_MASK ? 1 : 0;
5310 	case LIBIPW_CCK_RATE_5MB:
5311 		return priv->rates_mask & LIBIPW_CCK_RATE_5MB_MASK ? 1 : 0;
5312 	case LIBIPW_CCK_RATE_11MB:
5313 		return priv->rates_mask & LIBIPW_CCK_RATE_11MB_MASK ? 1 : 0;
5314 	}
5315 
5316 	/* If we are limited to B modulations, bail at this point */
5317 	if (ieee_mode == IEEE_B)
5318 		return 0;
5319 
5320 	/* G */
5321 	switch (rate) {
5322 	case LIBIPW_OFDM_RATE_6MB:
5323 		return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ? 1 : 0;
5324 	case LIBIPW_OFDM_RATE_9MB:
5325 		return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ? 1 : 0;
5326 	case LIBIPW_OFDM_RATE_12MB:
5327 		return priv->rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5328 	case LIBIPW_OFDM_RATE_18MB:
5329 		return priv->rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5330 	case LIBIPW_OFDM_RATE_24MB:
5331 		return priv->rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5332 	case LIBIPW_OFDM_RATE_36MB:
5333 		return priv->rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5334 	case LIBIPW_OFDM_RATE_48MB:
5335 		return priv->rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5336 	case LIBIPW_OFDM_RATE_54MB:
5337 		return priv->rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5338 	}
5339 
5340 	return 0;
5341 }
5342 
5343 static int ipw_compatible_rates(struct ipw_priv *priv,
5344 				const struct libipw_network *network,
5345 				struct ipw_supported_rates *rates)
5346 {
5347 	int num_rates, i;
5348 
5349 	memset(rates, 0, sizeof(*rates));
5350 	num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5351 	rates->num_rates = 0;
5352 	for (i = 0; i < num_rates; i++) {
5353 		if (!ipw_is_rate_in_mask(priv, network->mode,
5354 					 network->rates[i])) {
5355 
5356 			if (network->rates[i] & LIBIPW_BASIC_RATE_MASK) {
5357 				IPW_DEBUG_SCAN("Adding masked mandatory "
5358 					       "rate %02X\n",
5359 					       network->rates[i]);
5360 				rates->supported_rates[rates->num_rates++] =
5361 				    network->rates[i];
5362 				continue;
5363 			}
5364 
5365 			IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5366 				       network->rates[i], priv->rates_mask);
5367 			continue;
5368 		}
5369 
5370 		rates->supported_rates[rates->num_rates++] = network->rates[i];
5371 	}
5372 
5373 	num_rates = min(network->rates_ex_len,
5374 			(u8) (IPW_MAX_RATES - num_rates));
5375 	for (i = 0; i < num_rates; i++) {
5376 		if (!ipw_is_rate_in_mask(priv, network->mode,
5377 					 network->rates_ex[i])) {
5378 			if (network->rates_ex[i] & LIBIPW_BASIC_RATE_MASK) {
5379 				IPW_DEBUG_SCAN("Adding masked mandatory "
5380 					       "rate %02X\n",
5381 					       network->rates_ex[i]);
5382 				rates->supported_rates[rates->num_rates++] =
5383 				    network->rates[i];
5384 				continue;
5385 			}
5386 
5387 			IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5388 				       network->rates_ex[i], priv->rates_mask);
5389 			continue;
5390 		}
5391 
5392 		rates->supported_rates[rates->num_rates++] =
5393 		    network->rates_ex[i];
5394 	}
5395 
5396 	return 1;
5397 }
5398 
5399 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5400 				  const struct ipw_supported_rates *src)
5401 {
5402 	u8 i;
5403 	for (i = 0; i < src->num_rates; i++)
5404 		dest->supported_rates[i] = src->supported_rates[i];
5405 	dest->num_rates = src->num_rates;
5406 }
5407 
5408 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5409  * mask should ever be used -- right now all callers to add the scan rates are
5410  * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5411 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5412 				   u8 modulation, u32 rate_mask)
5413 {
5414 	u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5415 	    LIBIPW_BASIC_RATE_MASK : 0;
5416 
5417 	if (rate_mask & LIBIPW_CCK_RATE_1MB_MASK)
5418 		rates->supported_rates[rates->num_rates++] =
5419 		    LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_1MB;
5420 
5421 	if (rate_mask & LIBIPW_CCK_RATE_2MB_MASK)
5422 		rates->supported_rates[rates->num_rates++] =
5423 		    LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_2MB;
5424 
5425 	if (rate_mask & LIBIPW_CCK_RATE_5MB_MASK)
5426 		rates->supported_rates[rates->num_rates++] = basic_mask |
5427 		    LIBIPW_CCK_RATE_5MB;
5428 
5429 	if (rate_mask & LIBIPW_CCK_RATE_11MB_MASK)
5430 		rates->supported_rates[rates->num_rates++] = basic_mask |
5431 		    LIBIPW_CCK_RATE_11MB;
5432 }
5433 
5434 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5435 				    u8 modulation, u32 rate_mask)
5436 {
5437 	u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5438 	    LIBIPW_BASIC_RATE_MASK : 0;
5439 
5440 	if (rate_mask & LIBIPW_OFDM_RATE_6MB_MASK)
5441 		rates->supported_rates[rates->num_rates++] = basic_mask |
5442 		    LIBIPW_OFDM_RATE_6MB;
5443 
5444 	if (rate_mask & LIBIPW_OFDM_RATE_9MB_MASK)
5445 		rates->supported_rates[rates->num_rates++] =
5446 		    LIBIPW_OFDM_RATE_9MB;
5447 
5448 	if (rate_mask & LIBIPW_OFDM_RATE_12MB_MASK)
5449 		rates->supported_rates[rates->num_rates++] = basic_mask |
5450 		    LIBIPW_OFDM_RATE_12MB;
5451 
5452 	if (rate_mask & LIBIPW_OFDM_RATE_18MB_MASK)
5453 		rates->supported_rates[rates->num_rates++] =
5454 		    LIBIPW_OFDM_RATE_18MB;
5455 
5456 	if (rate_mask & LIBIPW_OFDM_RATE_24MB_MASK)
5457 		rates->supported_rates[rates->num_rates++] = basic_mask |
5458 		    LIBIPW_OFDM_RATE_24MB;
5459 
5460 	if (rate_mask & LIBIPW_OFDM_RATE_36MB_MASK)
5461 		rates->supported_rates[rates->num_rates++] =
5462 		    LIBIPW_OFDM_RATE_36MB;
5463 
5464 	if (rate_mask & LIBIPW_OFDM_RATE_48MB_MASK)
5465 		rates->supported_rates[rates->num_rates++] =
5466 		    LIBIPW_OFDM_RATE_48MB;
5467 
5468 	if (rate_mask & LIBIPW_OFDM_RATE_54MB_MASK)
5469 		rates->supported_rates[rates->num_rates++] =
5470 		    LIBIPW_OFDM_RATE_54MB;
5471 }
5472 
5473 struct ipw_network_match {
5474 	struct libipw_network *network;
5475 	struct ipw_supported_rates rates;
5476 };
5477 
5478 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5479 				  struct ipw_network_match *match,
5480 				  struct libipw_network *network,
5481 				  int roaming)
5482 {
5483 	struct ipw_supported_rates rates;
5484 
5485 	/* Verify that this network's capability is compatible with the
5486 	 * current mode (AdHoc or Infrastructure) */
5487 	if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5488 	     !(network->capability & WLAN_CAPABILITY_IBSS))) {
5489 		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded due to capability mismatch.\n",
5490 				network->ssid_len, network->ssid,
5491 				network->bssid);
5492 		return 0;
5493 	}
5494 
5495 	if (unlikely(roaming)) {
5496 		/* If we are roaming, then ensure check if this is a valid
5497 		 * network to try and roam to */
5498 		if ((network->ssid_len != match->network->ssid_len) ||
5499 		    memcmp(network->ssid, match->network->ssid,
5500 			   network->ssid_len)) {
5501 			IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of non-network ESSID.\n",
5502 					network->ssid_len, network->ssid,
5503 					network->bssid);
5504 			return 0;
5505 		}
5506 	} else {
5507 		/* If an ESSID has been configured then compare the broadcast
5508 		 * ESSID to ours */
5509 		if ((priv->config & CFG_STATIC_ESSID) &&
5510 		    ((network->ssid_len != priv->essid_len) ||
5511 		     memcmp(network->ssid, priv->essid,
5512 			    min(network->ssid_len, priv->essid_len)))) {
5513 			IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of ESSID mismatch: '%*pE'.\n",
5514 					network->ssid_len, network->ssid,
5515 					network->bssid, priv->essid_len,
5516 					priv->essid);
5517 			return 0;
5518 		}
5519 	}
5520 
5521 	/* If the old network rate is better than this one, don't bother
5522 	 * testing everything else. */
5523 
5524 	if (network->time_stamp[0] < match->network->time_stamp[0]) {
5525 		IPW_DEBUG_MERGE("Network '%*pE excluded because newer than current network.\n",
5526 				match->network->ssid_len, match->network->ssid);
5527 		return 0;
5528 	} else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5529 		IPW_DEBUG_MERGE("Network '%*pE excluded because newer than current network.\n",
5530 				match->network->ssid_len, match->network->ssid);
5531 		return 0;
5532 	}
5533 
5534 	/* Now go through and see if the requested network is valid... */
5535 	if (priv->ieee->scan_age != 0 &&
5536 	    time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5537 		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of age: %ums.\n",
5538 				network->ssid_len, network->ssid,
5539 				network->bssid,
5540 				jiffies_to_msecs(jiffies -
5541 						 network->last_scanned));
5542 		return 0;
5543 	}
5544 
5545 	if ((priv->config & CFG_STATIC_CHANNEL) &&
5546 	    (network->channel != priv->channel)) {
5547 		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of channel mismatch: %d != %d.\n",
5548 				network->ssid_len, network->ssid,
5549 				network->bssid,
5550 				network->channel, priv->channel);
5551 		return 0;
5552 	}
5553 
5554 	/* Verify privacy compatibility */
5555 	if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5556 	    ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5557 		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of privacy mismatch: %s != %s.\n",
5558 				network->ssid_len, network->ssid,
5559 				network->bssid,
5560 				priv->
5561 				capability & CAP_PRIVACY_ON ? "on" : "off",
5562 				network->
5563 				capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5564 				"off");
5565 		return 0;
5566 	}
5567 
5568 	if (ether_addr_equal(network->bssid, priv->bssid)) {
5569 		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of the same BSSID match: %pM.\n",
5570 				network->ssid_len, network->ssid,
5571 				network->bssid, priv->bssid);
5572 		return 0;
5573 	}
5574 
5575 	/* Filter out any incompatible freq / mode combinations */
5576 	if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5577 		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of invalid frequency/mode combination.\n",
5578 				network->ssid_len, network->ssid,
5579 				network->bssid);
5580 		return 0;
5581 	}
5582 
5583 	/* Ensure that the rates supported by the driver are compatible with
5584 	 * this AP, including verification of basic rates (mandatory) */
5585 	if (!ipw_compatible_rates(priv, network, &rates)) {
5586 		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because configured rate mask excludes AP mandatory rate.\n",
5587 				network->ssid_len, network->ssid,
5588 				network->bssid);
5589 		return 0;
5590 	}
5591 
5592 	if (rates.num_rates == 0) {
5593 		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of no compatible rates.\n",
5594 				network->ssid_len, network->ssid,
5595 				network->bssid);
5596 		return 0;
5597 	}
5598 
5599 	/* TODO: Perform any further minimal comparititive tests.  We do not
5600 	 * want to put too much policy logic here; intelligent scan selection
5601 	 * should occur within a generic IEEE 802.11 user space tool.  */
5602 
5603 	/* Set up 'new' AP to this network */
5604 	ipw_copy_rates(&match->rates, &rates);
5605 	match->network = network;
5606 	IPW_DEBUG_MERGE("Network '%*pE (%pM)' is a viable match.\n",
5607 			network->ssid_len, network->ssid, network->bssid);
5608 
5609 	return 1;
5610 }
5611 
5612 static void ipw_merge_adhoc_network(struct work_struct *work)
5613 {
5614 	struct ipw_priv *priv =
5615 		container_of(work, struct ipw_priv, merge_networks);
5616 	struct libipw_network *network = NULL;
5617 	struct ipw_network_match match = {
5618 		.network = priv->assoc_network
5619 	};
5620 
5621 	if ((priv->status & STATUS_ASSOCIATED) &&
5622 	    (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5623 		/* First pass through ROAM process -- look for a better
5624 		 * network */
5625 		unsigned long flags;
5626 
5627 		spin_lock_irqsave(&priv->ieee->lock, flags);
5628 		list_for_each_entry(network, &priv->ieee->network_list, list) {
5629 			if (network != priv->assoc_network)
5630 				ipw_find_adhoc_network(priv, &match, network,
5631 						       1);
5632 		}
5633 		spin_unlock_irqrestore(&priv->ieee->lock, flags);
5634 
5635 		if (match.network == priv->assoc_network) {
5636 			IPW_DEBUG_MERGE("No better ADHOC in this network to "
5637 					"merge to.\n");
5638 			return;
5639 		}
5640 
5641 		mutex_lock(&priv->mutex);
5642 		if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5643 			IPW_DEBUG_MERGE("remove network %*pE\n",
5644 					priv->essid_len, priv->essid);
5645 			ipw_remove_current_network(priv);
5646 		}
5647 
5648 		ipw_disassociate(priv);
5649 		priv->assoc_network = match.network;
5650 		mutex_unlock(&priv->mutex);
5651 		return;
5652 	}
5653 }
5654 
5655 static int ipw_best_network(struct ipw_priv *priv,
5656 			    struct ipw_network_match *match,
5657 			    struct libipw_network *network, int roaming)
5658 {
5659 	struct ipw_supported_rates rates;
5660 
5661 	/* Verify that this network's capability is compatible with the
5662 	 * current mode (AdHoc or Infrastructure) */
5663 	if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5664 	     !(network->capability & WLAN_CAPABILITY_ESS)) ||
5665 	    (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5666 	     !(network->capability & WLAN_CAPABILITY_IBSS))) {
5667 		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded due to capability mismatch.\n",
5668 				network->ssid_len, network->ssid,
5669 				network->bssid);
5670 		return 0;
5671 	}
5672 
5673 	if (unlikely(roaming)) {
5674 		/* If we are roaming, then ensure check if this is a valid
5675 		 * network to try and roam to */
5676 		if ((network->ssid_len != match->network->ssid_len) ||
5677 		    memcmp(network->ssid, match->network->ssid,
5678 			   network->ssid_len)) {
5679 			IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of non-network ESSID.\n",
5680 					network->ssid_len, network->ssid,
5681 					network->bssid);
5682 			return 0;
5683 		}
5684 	} else {
5685 		/* If an ESSID has been configured then compare the broadcast
5686 		 * ESSID to ours */
5687 		if ((priv->config & CFG_STATIC_ESSID) &&
5688 		    ((network->ssid_len != priv->essid_len) ||
5689 		     memcmp(network->ssid, priv->essid,
5690 			    min(network->ssid_len, priv->essid_len)))) {
5691 			IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of ESSID mismatch: '%*pE'.\n",
5692 					network->ssid_len, network->ssid,
5693 					network->bssid, priv->essid_len,
5694 					priv->essid);
5695 			return 0;
5696 		}
5697 	}
5698 
5699 	/* If the old network rate is better than this one, don't bother
5700 	 * testing everything else. */
5701 	if (match->network && match->network->stats.rssi > network->stats.rssi) {
5702 		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because '%*pE (%pM)' has a stronger signal.\n",
5703 				network->ssid_len, network->ssid,
5704 				network->bssid, match->network->ssid_len,
5705 				match->network->ssid, match->network->bssid);
5706 		return 0;
5707 	}
5708 
5709 	/* If this network has already had an association attempt within the
5710 	 * last 3 seconds, do not try and associate again... */
5711 	if (network->last_associate &&
5712 	    time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5713 		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of storming (%ums since last assoc attempt).\n",
5714 				network->ssid_len, network->ssid,
5715 				network->bssid,
5716 				jiffies_to_msecs(jiffies -
5717 						 network->last_associate));
5718 		return 0;
5719 	}
5720 
5721 	/* Now go through and see if the requested network is valid... */
5722 	if (priv->ieee->scan_age != 0 &&
5723 	    time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5724 		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of age: %ums.\n",
5725 				network->ssid_len, network->ssid,
5726 				network->bssid,
5727 				jiffies_to_msecs(jiffies -
5728 						 network->last_scanned));
5729 		return 0;
5730 	}
5731 
5732 	if ((priv->config & CFG_STATIC_CHANNEL) &&
5733 	    (network->channel != priv->channel)) {
5734 		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of channel mismatch: %d != %d.\n",
5735 				network->ssid_len, network->ssid,
5736 				network->bssid,
5737 				network->channel, priv->channel);
5738 		return 0;
5739 	}
5740 
5741 	/* Verify privacy compatibility */
5742 	if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5743 	    ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5744 		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of privacy mismatch: %s != %s.\n",
5745 				network->ssid_len, network->ssid,
5746 				network->bssid,
5747 				priv->capability & CAP_PRIVACY_ON ? "on" :
5748 				"off",
5749 				network->capability &
5750 				WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5751 		return 0;
5752 	}
5753 
5754 	if ((priv->config & CFG_STATIC_BSSID) &&
5755 	    !ether_addr_equal(network->bssid, priv->bssid)) {
5756 		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of BSSID mismatch: %pM.\n",
5757 				network->ssid_len, network->ssid,
5758 				network->bssid, priv->bssid);
5759 		return 0;
5760 	}
5761 
5762 	/* Filter out any incompatible freq / mode combinations */
5763 	if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5764 		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of invalid frequency/mode combination.\n",
5765 				network->ssid_len, network->ssid,
5766 				network->bssid);
5767 		return 0;
5768 	}
5769 
5770 	/* Filter out invalid channel in current GEO */
5771 	if (!libipw_is_valid_channel(priv->ieee, network->channel)) {
5772 		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of invalid channel in current GEO\n",
5773 				network->ssid_len, network->ssid,
5774 				network->bssid);
5775 		return 0;
5776 	}
5777 
5778 	/* Ensure that the rates supported by the driver are compatible with
5779 	 * this AP, including verification of basic rates (mandatory) */
5780 	if (!ipw_compatible_rates(priv, network, &rates)) {
5781 		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because configured rate mask excludes AP mandatory rate.\n",
5782 				network->ssid_len, network->ssid,
5783 				network->bssid);
5784 		return 0;
5785 	}
5786 
5787 	if (rates.num_rates == 0) {
5788 		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of no compatible rates.\n",
5789 				network->ssid_len, network->ssid,
5790 				network->bssid);
5791 		return 0;
5792 	}
5793 
5794 	/* TODO: Perform any further minimal comparititive tests.  We do not
5795 	 * want to put too much policy logic here; intelligent scan selection
5796 	 * should occur within a generic IEEE 802.11 user space tool.  */
5797 
5798 	/* Set up 'new' AP to this network */
5799 	ipw_copy_rates(&match->rates, &rates);
5800 	match->network = network;
5801 
5802 	IPW_DEBUG_ASSOC("Network '%*pE (%pM)' is a viable match.\n",
5803 			network->ssid_len, network->ssid, network->bssid);
5804 
5805 	return 1;
5806 }
5807 
5808 static void ipw_adhoc_create(struct ipw_priv *priv,
5809 			     struct libipw_network *network)
5810 {
5811 	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
5812 	int i;
5813 
5814 	/*
5815 	 * For the purposes of scanning, we can set our wireless mode
5816 	 * to trigger scans across combinations of bands, but when it
5817 	 * comes to creating a new ad-hoc network, we have tell the FW
5818 	 * exactly which band to use.
5819 	 *
5820 	 * We also have the possibility of an invalid channel for the
5821 	 * chossen band.  Attempting to create a new ad-hoc network
5822 	 * with an invalid channel for wireless mode will trigger a
5823 	 * FW fatal error.
5824 	 *
5825 	 */
5826 	switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
5827 	case LIBIPW_52GHZ_BAND:
5828 		network->mode = IEEE_A;
5829 		i = libipw_channel_to_index(priv->ieee, priv->channel);
5830 		BUG_ON(i == -1);
5831 		if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5832 			IPW_WARNING("Overriding invalid channel\n");
5833 			priv->channel = geo->a[0].channel;
5834 		}
5835 		break;
5836 
5837 	case LIBIPW_24GHZ_BAND:
5838 		if (priv->ieee->mode & IEEE_G)
5839 			network->mode = IEEE_G;
5840 		else
5841 			network->mode = IEEE_B;
5842 		i = libipw_channel_to_index(priv->ieee, priv->channel);
5843 		BUG_ON(i == -1);
5844 		if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5845 			IPW_WARNING("Overriding invalid channel\n");
5846 			priv->channel = geo->bg[0].channel;
5847 		}
5848 		break;
5849 
5850 	default:
5851 		IPW_WARNING("Overriding invalid channel\n");
5852 		if (priv->ieee->mode & IEEE_A) {
5853 			network->mode = IEEE_A;
5854 			priv->channel = geo->a[0].channel;
5855 		} else if (priv->ieee->mode & IEEE_G) {
5856 			network->mode = IEEE_G;
5857 			priv->channel = geo->bg[0].channel;
5858 		} else {
5859 			network->mode = IEEE_B;
5860 			priv->channel = geo->bg[0].channel;
5861 		}
5862 		break;
5863 	}
5864 
5865 	network->channel = priv->channel;
5866 	priv->config |= CFG_ADHOC_PERSIST;
5867 	ipw_create_bssid(priv, network->bssid);
5868 	network->ssid_len = priv->essid_len;
5869 	memcpy(network->ssid, priv->essid, priv->essid_len);
5870 	memset(&network->stats, 0, sizeof(network->stats));
5871 	network->capability = WLAN_CAPABILITY_IBSS;
5872 	if (!(priv->config & CFG_PREAMBLE_LONG))
5873 		network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5874 	if (priv->capability & CAP_PRIVACY_ON)
5875 		network->capability |= WLAN_CAPABILITY_PRIVACY;
5876 	network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5877 	memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5878 	network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5879 	memcpy(network->rates_ex,
5880 	       &priv->rates.supported_rates[network->rates_len],
5881 	       network->rates_ex_len);
5882 	network->last_scanned = 0;
5883 	network->flags = 0;
5884 	network->last_associate = 0;
5885 	network->time_stamp[0] = 0;
5886 	network->time_stamp[1] = 0;
5887 	network->beacon_interval = 100;	/* Default */
5888 	network->listen_interval = 10;	/* Default */
5889 	network->atim_window = 0;	/* Default */
5890 	network->wpa_ie_len = 0;
5891 	network->rsn_ie_len = 0;
5892 }
5893 
5894 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5895 {
5896 	struct ipw_tgi_tx_key key;
5897 
5898 	if (!(priv->ieee->sec.flags & (1 << index)))
5899 		return;
5900 
5901 	key.key_id = index;
5902 	memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5903 	key.security_type = type;
5904 	key.station_index = 0;	/* always 0 for BSS */
5905 	key.flags = 0;
5906 	/* 0 for new key; previous value of counter (after fatal error) */
5907 	key.tx_counter[0] = cpu_to_le32(0);
5908 	key.tx_counter[1] = cpu_to_le32(0);
5909 
5910 	ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
5911 }
5912 
5913 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5914 {
5915 	struct ipw_wep_key key;
5916 	int i;
5917 
5918 	key.cmd_id = DINO_CMD_WEP_KEY;
5919 	key.seq_num = 0;
5920 
5921 	/* Note: AES keys cannot be set for multiple times.
5922 	 * Only set it at the first time. */
5923 	for (i = 0; i < 4; i++) {
5924 		key.key_index = i | type;
5925 		if (!(priv->ieee->sec.flags & (1 << i))) {
5926 			key.key_size = 0;
5927 			continue;
5928 		}
5929 
5930 		key.key_size = priv->ieee->sec.key_sizes[i];
5931 		memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
5932 
5933 		ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
5934 	}
5935 }
5936 
5937 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5938 {
5939 	if (priv->ieee->host_encrypt)
5940 		return;
5941 
5942 	switch (level) {
5943 	case SEC_LEVEL_3:
5944 		priv->sys_config.disable_unicast_decryption = 0;
5945 		priv->ieee->host_decrypt = 0;
5946 		break;
5947 	case SEC_LEVEL_2:
5948 		priv->sys_config.disable_unicast_decryption = 1;
5949 		priv->ieee->host_decrypt = 1;
5950 		break;
5951 	case SEC_LEVEL_1:
5952 		priv->sys_config.disable_unicast_decryption = 0;
5953 		priv->ieee->host_decrypt = 0;
5954 		break;
5955 	case SEC_LEVEL_0:
5956 		priv->sys_config.disable_unicast_decryption = 1;
5957 		break;
5958 	default:
5959 		break;
5960 	}
5961 }
5962 
5963 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5964 {
5965 	if (priv->ieee->host_encrypt)
5966 		return;
5967 
5968 	switch (level) {
5969 	case SEC_LEVEL_3:
5970 		priv->sys_config.disable_multicast_decryption = 0;
5971 		break;
5972 	case SEC_LEVEL_2:
5973 		priv->sys_config.disable_multicast_decryption = 1;
5974 		break;
5975 	case SEC_LEVEL_1:
5976 		priv->sys_config.disable_multicast_decryption = 0;
5977 		break;
5978 	case SEC_LEVEL_0:
5979 		priv->sys_config.disable_multicast_decryption = 1;
5980 		break;
5981 	default:
5982 		break;
5983 	}
5984 }
5985 
5986 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
5987 {
5988 	switch (priv->ieee->sec.level) {
5989 	case SEC_LEVEL_3:
5990 		if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
5991 			ipw_send_tgi_tx_key(priv,
5992 					    DCT_FLAG_EXT_SECURITY_CCM,
5993 					    priv->ieee->sec.active_key);
5994 
5995 		if (!priv->ieee->host_mc_decrypt)
5996 			ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
5997 		break;
5998 	case SEC_LEVEL_2:
5999 		if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6000 			ipw_send_tgi_tx_key(priv,
6001 					    DCT_FLAG_EXT_SECURITY_TKIP,
6002 					    priv->ieee->sec.active_key);
6003 		break;
6004 	case SEC_LEVEL_1:
6005 		ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
6006 		ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
6007 		ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
6008 		break;
6009 	case SEC_LEVEL_0:
6010 	default:
6011 		break;
6012 	}
6013 }
6014 
6015 static void ipw_adhoc_check(void *data)
6016 {
6017 	struct ipw_priv *priv = data;
6018 
6019 	if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
6020 	    !(priv->config & CFG_ADHOC_PERSIST)) {
6021 		IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
6022 			  IPW_DL_STATE | IPW_DL_ASSOC,
6023 			  "Missed beacon: %d - disassociate\n",
6024 			  priv->missed_adhoc_beacons);
6025 		ipw_remove_current_network(priv);
6026 		ipw_disassociate(priv);
6027 		return;
6028 	}
6029 
6030 	schedule_delayed_work(&priv->adhoc_check,
6031 			      le16_to_cpu(priv->assoc_request.beacon_interval));
6032 }
6033 
6034 static void ipw_bg_adhoc_check(struct work_struct *work)
6035 {
6036 	struct ipw_priv *priv =
6037 		container_of(work, struct ipw_priv, adhoc_check.work);
6038 	mutex_lock(&priv->mutex);
6039 	ipw_adhoc_check(priv);
6040 	mutex_unlock(&priv->mutex);
6041 }
6042 
6043 static void ipw_debug_config(struct ipw_priv *priv)
6044 {
6045 	IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6046 		       "[CFG 0x%08X]\n", priv->config);
6047 	if (priv->config & CFG_STATIC_CHANNEL)
6048 		IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
6049 	else
6050 		IPW_DEBUG_INFO("Channel unlocked.\n");
6051 	if (priv->config & CFG_STATIC_ESSID)
6052 		IPW_DEBUG_INFO("ESSID locked to '%*pE'\n",
6053 			       priv->essid_len, priv->essid);
6054 	else
6055 		IPW_DEBUG_INFO("ESSID unlocked.\n");
6056 	if (priv->config & CFG_STATIC_BSSID)
6057 		IPW_DEBUG_INFO("BSSID locked to %pM\n", priv->bssid);
6058 	else
6059 		IPW_DEBUG_INFO("BSSID unlocked.\n");
6060 	if (priv->capability & CAP_PRIVACY_ON)
6061 		IPW_DEBUG_INFO("PRIVACY on\n");
6062 	else
6063 		IPW_DEBUG_INFO("PRIVACY off\n");
6064 	IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
6065 }
6066 
6067 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6068 {
6069 	/* TODO: Verify that this works... */
6070 	struct ipw_fixed_rate fr;
6071 	u32 reg;
6072 	u16 mask = 0;
6073 	u16 new_tx_rates = priv->rates_mask;
6074 
6075 	/* Identify 'current FW band' and match it with the fixed
6076 	 * Tx rates */
6077 
6078 	switch (priv->ieee->freq_band) {
6079 	case LIBIPW_52GHZ_BAND:	/* A only */
6080 		/* IEEE_A */
6081 		if (priv->rates_mask & ~LIBIPW_OFDM_RATES_MASK) {
6082 			/* Invalid fixed rate mask */
6083 			IPW_DEBUG_WX
6084 			    ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6085 			new_tx_rates = 0;
6086 			break;
6087 		}
6088 
6089 		new_tx_rates >>= LIBIPW_OFDM_SHIFT_MASK_A;
6090 		break;
6091 
6092 	default:		/* 2.4Ghz or Mixed */
6093 		/* IEEE_B */
6094 		if (mode == IEEE_B) {
6095 			if (new_tx_rates & ~LIBIPW_CCK_RATES_MASK) {
6096 				/* Invalid fixed rate mask */
6097 				IPW_DEBUG_WX
6098 				    ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6099 				new_tx_rates = 0;
6100 			}
6101 			break;
6102 		}
6103 
6104 		/* IEEE_G */
6105 		if (new_tx_rates & ~(LIBIPW_CCK_RATES_MASK |
6106 				    LIBIPW_OFDM_RATES_MASK)) {
6107 			/* Invalid fixed rate mask */
6108 			IPW_DEBUG_WX
6109 			    ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6110 			new_tx_rates = 0;
6111 			break;
6112 		}
6113 
6114 		if (LIBIPW_OFDM_RATE_6MB_MASK & new_tx_rates) {
6115 			mask |= (LIBIPW_OFDM_RATE_6MB_MASK >> 1);
6116 			new_tx_rates &= ~LIBIPW_OFDM_RATE_6MB_MASK;
6117 		}
6118 
6119 		if (LIBIPW_OFDM_RATE_9MB_MASK & new_tx_rates) {
6120 			mask |= (LIBIPW_OFDM_RATE_9MB_MASK >> 1);
6121 			new_tx_rates &= ~LIBIPW_OFDM_RATE_9MB_MASK;
6122 		}
6123 
6124 		if (LIBIPW_OFDM_RATE_12MB_MASK & new_tx_rates) {
6125 			mask |= (LIBIPW_OFDM_RATE_12MB_MASK >> 1);
6126 			new_tx_rates &= ~LIBIPW_OFDM_RATE_12MB_MASK;
6127 		}
6128 
6129 		new_tx_rates |= mask;
6130 		break;
6131 	}
6132 
6133 	fr.tx_rates = cpu_to_le16(new_tx_rates);
6134 
6135 	reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6136 	ipw_write_reg32(priv, reg, *(u32 *) & fr);
6137 }
6138 
6139 static void ipw_abort_scan(struct ipw_priv *priv)
6140 {
6141 	int err;
6142 
6143 	if (priv->status & STATUS_SCAN_ABORTING) {
6144 		IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6145 		return;
6146 	}
6147 	priv->status |= STATUS_SCAN_ABORTING;
6148 
6149 	err = ipw_send_scan_abort(priv);
6150 	if (err)
6151 		IPW_DEBUG_HC("Request to abort scan failed.\n");
6152 }
6153 
6154 static void ipw_add_scan_channels(struct ipw_priv *priv,
6155 				  struct ipw_scan_request_ext *scan,
6156 				  int scan_type)
6157 {
6158 	int channel_index = 0;
6159 	const struct libipw_geo *geo;
6160 	int i;
6161 
6162 	geo = libipw_get_geo(priv->ieee);
6163 
6164 	if (priv->ieee->freq_band & LIBIPW_52GHZ_BAND) {
6165 		int start = channel_index;
6166 		for (i = 0; i < geo->a_channels; i++) {
6167 			if ((priv->status & STATUS_ASSOCIATED) &&
6168 			    geo->a[i].channel == priv->channel)
6169 				continue;
6170 			channel_index++;
6171 			scan->channels_list[channel_index] = geo->a[i].channel;
6172 			ipw_set_scan_type(scan, channel_index,
6173 					  geo->a[i].
6174 					  flags & LIBIPW_CH_PASSIVE_ONLY ?
6175 					  IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6176 					  scan_type);
6177 		}
6178 
6179 		if (start != channel_index) {
6180 			scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6181 			    (channel_index - start);
6182 			channel_index++;
6183 		}
6184 	}
6185 
6186 	if (priv->ieee->freq_band & LIBIPW_24GHZ_BAND) {
6187 		int start = channel_index;
6188 		if (priv->config & CFG_SPEED_SCAN) {
6189 			int index;
6190 			u8 channels[LIBIPW_24GHZ_CHANNELS] = {
6191 				/* nop out the list */
6192 				[0] = 0
6193 			};
6194 
6195 			u8 channel;
6196 			while (channel_index < IPW_SCAN_CHANNELS - 1) {
6197 				channel =
6198 				    priv->speed_scan[priv->speed_scan_pos];
6199 				if (channel == 0) {
6200 					priv->speed_scan_pos = 0;
6201 					channel = priv->speed_scan[0];
6202 				}
6203 				if ((priv->status & STATUS_ASSOCIATED) &&
6204 				    channel == priv->channel) {
6205 					priv->speed_scan_pos++;
6206 					continue;
6207 				}
6208 
6209 				/* If this channel has already been
6210 				 * added in scan, break from loop
6211 				 * and this will be the first channel
6212 				 * in the next scan.
6213 				 */
6214 				if (channels[channel - 1] != 0)
6215 					break;
6216 
6217 				channels[channel - 1] = 1;
6218 				priv->speed_scan_pos++;
6219 				channel_index++;
6220 				scan->channels_list[channel_index] = channel;
6221 				index =
6222 				    libipw_channel_to_index(priv->ieee, channel);
6223 				ipw_set_scan_type(scan, channel_index,
6224 						  geo->bg[index].
6225 						  flags &
6226 						  LIBIPW_CH_PASSIVE_ONLY ?
6227 						  IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6228 						  : scan_type);
6229 			}
6230 		} else {
6231 			for (i = 0; i < geo->bg_channels; i++) {
6232 				if ((priv->status & STATUS_ASSOCIATED) &&
6233 				    geo->bg[i].channel == priv->channel)
6234 					continue;
6235 				channel_index++;
6236 				scan->channels_list[channel_index] =
6237 				    geo->bg[i].channel;
6238 				ipw_set_scan_type(scan, channel_index,
6239 						  geo->bg[i].
6240 						  flags &
6241 						  LIBIPW_CH_PASSIVE_ONLY ?
6242 						  IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6243 						  : scan_type);
6244 			}
6245 		}
6246 
6247 		if (start != channel_index) {
6248 			scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6249 			    (channel_index - start);
6250 		}
6251 	}
6252 }
6253 
6254 static int ipw_passive_dwell_time(struct ipw_priv *priv)
6255 {
6256 	/* staying on passive channels longer than the DTIM interval during a
6257 	 * scan, while associated, causes the firmware to cancel the scan
6258 	 * without notification. Hence, don't stay on passive channels longer
6259 	 * than the beacon interval.
6260 	 */
6261 	if (priv->status & STATUS_ASSOCIATED
6262 	    && priv->assoc_network->beacon_interval > 10)
6263 		return priv->assoc_network->beacon_interval - 10;
6264 	else
6265 		return 120;
6266 }
6267 
6268 static int ipw_request_scan_helper(struct ipw_priv *priv, int type, int direct)
6269 {
6270 	struct ipw_scan_request_ext scan;
6271 	int err = 0, scan_type;
6272 
6273 	if (!(priv->status & STATUS_INIT) ||
6274 	    (priv->status & STATUS_EXIT_PENDING))
6275 		return 0;
6276 
6277 	mutex_lock(&priv->mutex);
6278 
6279 	if (direct && (priv->direct_scan_ssid_len == 0)) {
6280 		IPW_DEBUG_HC("Direct scan requested but no SSID to scan for\n");
6281 		priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6282 		goto done;
6283 	}
6284 
6285 	if (priv->status & STATUS_SCANNING) {
6286 		IPW_DEBUG_HC("Concurrent scan requested.  Queuing.\n");
6287 		priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6288 					STATUS_SCAN_PENDING;
6289 		goto done;
6290 	}
6291 
6292 	if (!(priv->status & STATUS_SCAN_FORCED) &&
6293 	    priv->status & STATUS_SCAN_ABORTING) {
6294 		IPW_DEBUG_HC("Scan request while abort pending.  Queuing.\n");
6295 		priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6296 					STATUS_SCAN_PENDING;
6297 		goto done;
6298 	}
6299 
6300 	if (priv->status & STATUS_RF_KILL_MASK) {
6301 		IPW_DEBUG_HC("Queuing scan due to RF Kill activation\n");
6302 		priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6303 					STATUS_SCAN_PENDING;
6304 		goto done;
6305 	}
6306 
6307 	memset(&scan, 0, sizeof(scan));
6308 	scan.full_scan_index = cpu_to_le32(libipw_get_scans(priv->ieee));
6309 
6310 	if (type == IW_SCAN_TYPE_PASSIVE) {
6311 		IPW_DEBUG_WX("use passive scanning\n");
6312 		scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6313 		scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6314 			cpu_to_le16(ipw_passive_dwell_time(priv));
6315 		ipw_add_scan_channels(priv, &scan, scan_type);
6316 		goto send_request;
6317 	}
6318 
6319 	/* Use active scan by default. */
6320 	if (priv->config & CFG_SPEED_SCAN)
6321 		scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6322 			cpu_to_le16(30);
6323 	else
6324 		scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6325 			cpu_to_le16(20);
6326 
6327 	scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6328 		cpu_to_le16(20);
6329 
6330 	scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6331 		cpu_to_le16(ipw_passive_dwell_time(priv));
6332 	scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
6333 
6334 #ifdef CONFIG_IPW2200_MONITOR
6335 	if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6336 		u8 channel;
6337 		u8 band = 0;
6338 
6339 		switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
6340 		case LIBIPW_52GHZ_BAND:
6341 			band = (u8) (IPW_A_MODE << 6) | 1;
6342 			channel = priv->channel;
6343 			break;
6344 
6345 		case LIBIPW_24GHZ_BAND:
6346 			band = (u8) (IPW_B_MODE << 6) | 1;
6347 			channel = priv->channel;
6348 			break;
6349 
6350 		default:
6351 			band = (u8) (IPW_B_MODE << 6) | 1;
6352 			channel = 9;
6353 			break;
6354 		}
6355 
6356 		scan.channels_list[0] = band;
6357 		scan.channels_list[1] = channel;
6358 		ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6359 
6360 		/* NOTE:  The card will sit on this channel for this time
6361 		 * period.  Scan aborts are timing sensitive and frequently
6362 		 * result in firmware restarts.  As such, it is best to
6363 		 * set a small dwell_time here and just keep re-issuing
6364 		 * scans.  Otherwise fast channel hopping will not actually
6365 		 * hop channels.
6366 		 *
6367 		 * TODO: Move SPEED SCAN support to all modes and bands */
6368 		scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6369 			cpu_to_le16(2000);
6370 	} else {
6371 #endif				/* CONFIG_IPW2200_MONITOR */
6372 		/* Honor direct scans first, otherwise if we are roaming make
6373 		 * this a direct scan for the current network.  Finally,
6374 		 * ensure that every other scan is a fast channel hop scan */
6375 		if (direct) {
6376 			err = ipw_send_ssid(priv, priv->direct_scan_ssid,
6377 			                    priv->direct_scan_ssid_len);
6378 			if (err) {
6379 				IPW_DEBUG_HC("Attempt to send SSID command  "
6380 					     "failed\n");
6381 				goto done;
6382 			}
6383 
6384 			scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6385 		} else if ((priv->status & STATUS_ROAMING)
6386 			   || (!(priv->status & STATUS_ASSOCIATED)
6387 			       && (priv->config & CFG_STATIC_ESSID)
6388 			       && (le32_to_cpu(scan.full_scan_index) % 2))) {
6389 			err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6390 			if (err) {
6391 				IPW_DEBUG_HC("Attempt to send SSID command "
6392 					     "failed.\n");
6393 				goto done;
6394 			}
6395 
6396 			scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6397 		} else
6398 			scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6399 
6400 		ipw_add_scan_channels(priv, &scan, scan_type);
6401 #ifdef CONFIG_IPW2200_MONITOR
6402 	}
6403 #endif
6404 
6405 send_request:
6406 	err = ipw_send_scan_request_ext(priv, &scan);
6407 	if (err) {
6408 		IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6409 		goto done;
6410 	}
6411 
6412 	priv->status |= STATUS_SCANNING;
6413 	if (direct) {
6414 		priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6415 		priv->direct_scan_ssid_len = 0;
6416 	} else
6417 		priv->status &= ~STATUS_SCAN_PENDING;
6418 
6419 	schedule_delayed_work(&priv->scan_check, IPW_SCAN_CHECK_WATCHDOG);
6420 done:
6421 	mutex_unlock(&priv->mutex);
6422 	return err;
6423 }
6424 
6425 static void ipw_request_passive_scan(struct work_struct *work)
6426 {
6427 	struct ipw_priv *priv =
6428 		container_of(work, struct ipw_priv, request_passive_scan.work);
6429 	ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE, 0);
6430 }
6431 
6432 static void ipw_request_scan(struct work_struct *work)
6433 {
6434 	struct ipw_priv *priv =
6435 		container_of(work, struct ipw_priv, request_scan.work);
6436 	ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 0);
6437 }
6438 
6439 static void ipw_request_direct_scan(struct work_struct *work)
6440 {
6441 	struct ipw_priv *priv =
6442 		container_of(work, struct ipw_priv, request_direct_scan.work);
6443 	ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 1);
6444 }
6445 
6446 static void ipw_bg_abort_scan(struct work_struct *work)
6447 {
6448 	struct ipw_priv *priv =
6449 		container_of(work, struct ipw_priv, abort_scan);
6450 	mutex_lock(&priv->mutex);
6451 	ipw_abort_scan(priv);
6452 	mutex_unlock(&priv->mutex);
6453 }
6454 
6455 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6456 {
6457 	/* This is called when wpa_supplicant loads and closes the driver
6458 	 * interface. */
6459 	priv->ieee->wpa_enabled = value;
6460 	return 0;
6461 }
6462 
6463 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6464 {
6465 	struct libipw_device *ieee = priv->ieee;
6466 	struct libipw_security sec = {
6467 		.flags = SEC_AUTH_MODE,
6468 	};
6469 	int ret = 0;
6470 
6471 	if (value & IW_AUTH_ALG_SHARED_KEY) {
6472 		sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6473 		ieee->open_wep = 0;
6474 	} else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6475 		sec.auth_mode = WLAN_AUTH_OPEN;
6476 		ieee->open_wep = 1;
6477 	} else if (value & IW_AUTH_ALG_LEAP) {
6478 		sec.auth_mode = WLAN_AUTH_LEAP;
6479 		ieee->open_wep = 1;
6480 	} else
6481 		return -EINVAL;
6482 
6483 	if (ieee->set_security)
6484 		ieee->set_security(ieee->dev, &sec);
6485 	else
6486 		ret = -EOPNOTSUPP;
6487 
6488 	return ret;
6489 }
6490 
6491 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6492 				int wpa_ie_len)
6493 {
6494 	/* make sure WPA is enabled */
6495 	ipw_wpa_enable(priv, 1);
6496 }
6497 
6498 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6499 			    char *capabilities, int length)
6500 {
6501 	IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6502 
6503 	return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6504 				capabilities);
6505 }
6506 
6507 /*
6508  * WE-18 support
6509  */
6510 
6511 /* SIOCSIWGENIE */
6512 static int ipw_wx_set_genie(struct net_device *dev,
6513 			    struct iw_request_info *info,
6514 			    union iwreq_data *wrqu, char *extra)
6515 {
6516 	struct ipw_priv *priv = libipw_priv(dev);
6517 	struct libipw_device *ieee = priv->ieee;
6518 	u8 *buf;
6519 	int err = 0;
6520 
6521 	if (wrqu->data.length > MAX_WPA_IE_LEN ||
6522 	    (wrqu->data.length && extra == NULL))
6523 		return -EINVAL;
6524 
6525 	if (wrqu->data.length) {
6526 		buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
6527 		if (buf == NULL) {
6528 			err = -ENOMEM;
6529 			goto out;
6530 		}
6531 
6532 		kfree(ieee->wpa_ie);
6533 		ieee->wpa_ie = buf;
6534 		ieee->wpa_ie_len = wrqu->data.length;
6535 	} else {
6536 		kfree(ieee->wpa_ie);
6537 		ieee->wpa_ie = NULL;
6538 		ieee->wpa_ie_len = 0;
6539 	}
6540 
6541 	ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6542       out:
6543 	return err;
6544 }
6545 
6546 /* SIOCGIWGENIE */
6547 static int ipw_wx_get_genie(struct net_device *dev,
6548 			    struct iw_request_info *info,
6549 			    union iwreq_data *wrqu, char *extra)
6550 {
6551 	struct ipw_priv *priv = libipw_priv(dev);
6552 	struct libipw_device *ieee = priv->ieee;
6553 	int err = 0;
6554 
6555 	if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6556 		wrqu->data.length = 0;
6557 		goto out;
6558 	}
6559 
6560 	if (wrqu->data.length < ieee->wpa_ie_len) {
6561 		err = -E2BIG;
6562 		goto out;
6563 	}
6564 
6565 	wrqu->data.length = ieee->wpa_ie_len;
6566 	memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6567 
6568       out:
6569 	return err;
6570 }
6571 
6572 static int wext_cipher2level(int cipher)
6573 {
6574 	switch (cipher) {
6575 	case IW_AUTH_CIPHER_NONE:
6576 		return SEC_LEVEL_0;
6577 	case IW_AUTH_CIPHER_WEP40:
6578 	case IW_AUTH_CIPHER_WEP104:
6579 		return SEC_LEVEL_1;
6580 	case IW_AUTH_CIPHER_TKIP:
6581 		return SEC_LEVEL_2;
6582 	case IW_AUTH_CIPHER_CCMP:
6583 		return SEC_LEVEL_3;
6584 	default:
6585 		return -1;
6586 	}
6587 }
6588 
6589 /* SIOCSIWAUTH */
6590 static int ipw_wx_set_auth(struct net_device *dev,
6591 			   struct iw_request_info *info,
6592 			   union iwreq_data *wrqu, char *extra)
6593 {
6594 	struct ipw_priv *priv = libipw_priv(dev);
6595 	struct libipw_device *ieee = priv->ieee;
6596 	struct iw_param *param = &wrqu->param;
6597 	struct lib80211_crypt_data *crypt;
6598 	unsigned long flags;
6599 	int ret = 0;
6600 
6601 	switch (param->flags & IW_AUTH_INDEX) {
6602 	case IW_AUTH_WPA_VERSION:
6603 		break;
6604 	case IW_AUTH_CIPHER_PAIRWISE:
6605 		ipw_set_hw_decrypt_unicast(priv,
6606 					   wext_cipher2level(param->value));
6607 		break;
6608 	case IW_AUTH_CIPHER_GROUP:
6609 		ipw_set_hw_decrypt_multicast(priv,
6610 					     wext_cipher2level(param->value));
6611 		break;
6612 	case IW_AUTH_KEY_MGMT:
6613 		/*
6614 		 * ipw2200 does not use these parameters
6615 		 */
6616 		break;
6617 
6618 	case IW_AUTH_TKIP_COUNTERMEASURES:
6619 		crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6620 		if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6621 			break;
6622 
6623 		flags = crypt->ops->get_flags(crypt->priv);
6624 
6625 		if (param->value)
6626 			flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6627 		else
6628 			flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6629 
6630 		crypt->ops->set_flags(flags, crypt->priv);
6631 
6632 		break;
6633 
6634 	case IW_AUTH_DROP_UNENCRYPTED:{
6635 			/* HACK:
6636 			 *
6637 			 * wpa_supplicant calls set_wpa_enabled when the driver
6638 			 * is loaded and unloaded, regardless of if WPA is being
6639 			 * used.  No other calls are made which can be used to
6640 			 * determine if encryption will be used or not prior to
6641 			 * association being expected.  If encryption is not being
6642 			 * used, drop_unencrypted is set to false, else true -- we
6643 			 * can use this to determine if the CAP_PRIVACY_ON bit should
6644 			 * be set.
6645 			 */
6646 			struct libipw_security sec = {
6647 				.flags = SEC_ENABLED,
6648 				.enabled = param->value,
6649 			};
6650 			priv->ieee->drop_unencrypted = param->value;
6651 			/* We only change SEC_LEVEL for open mode. Others
6652 			 * are set by ipw_wpa_set_encryption.
6653 			 */
6654 			if (!param->value) {
6655 				sec.flags |= SEC_LEVEL;
6656 				sec.level = SEC_LEVEL_0;
6657 			} else {
6658 				sec.flags |= SEC_LEVEL;
6659 				sec.level = SEC_LEVEL_1;
6660 			}
6661 			if (priv->ieee->set_security)
6662 				priv->ieee->set_security(priv->ieee->dev, &sec);
6663 			break;
6664 		}
6665 
6666 	case IW_AUTH_80211_AUTH_ALG:
6667 		ret = ipw_wpa_set_auth_algs(priv, param->value);
6668 		break;
6669 
6670 	case IW_AUTH_WPA_ENABLED:
6671 		ret = ipw_wpa_enable(priv, param->value);
6672 		ipw_disassociate(priv);
6673 		break;
6674 
6675 	case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6676 		ieee->ieee802_1x = param->value;
6677 		break;
6678 
6679 	case IW_AUTH_PRIVACY_INVOKED:
6680 		ieee->privacy_invoked = param->value;
6681 		break;
6682 
6683 	default:
6684 		return -EOPNOTSUPP;
6685 	}
6686 	return ret;
6687 }
6688 
6689 /* SIOCGIWAUTH */
6690 static int ipw_wx_get_auth(struct net_device *dev,
6691 			   struct iw_request_info *info,
6692 			   union iwreq_data *wrqu, char *extra)
6693 {
6694 	struct ipw_priv *priv = libipw_priv(dev);
6695 	struct libipw_device *ieee = priv->ieee;
6696 	struct lib80211_crypt_data *crypt;
6697 	struct iw_param *param = &wrqu->param;
6698 
6699 	switch (param->flags & IW_AUTH_INDEX) {
6700 	case IW_AUTH_WPA_VERSION:
6701 	case IW_AUTH_CIPHER_PAIRWISE:
6702 	case IW_AUTH_CIPHER_GROUP:
6703 	case IW_AUTH_KEY_MGMT:
6704 		/*
6705 		 * wpa_supplicant will control these internally
6706 		 */
6707 		return -EOPNOTSUPP;
6708 
6709 	case IW_AUTH_TKIP_COUNTERMEASURES:
6710 		crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6711 		if (!crypt || !crypt->ops->get_flags)
6712 			break;
6713 
6714 		param->value = (crypt->ops->get_flags(crypt->priv) &
6715 				IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6716 
6717 		break;
6718 
6719 	case IW_AUTH_DROP_UNENCRYPTED:
6720 		param->value = ieee->drop_unencrypted;
6721 		break;
6722 
6723 	case IW_AUTH_80211_AUTH_ALG:
6724 		param->value = ieee->sec.auth_mode;
6725 		break;
6726 
6727 	case IW_AUTH_WPA_ENABLED:
6728 		param->value = ieee->wpa_enabled;
6729 		break;
6730 
6731 	case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6732 		param->value = ieee->ieee802_1x;
6733 		break;
6734 
6735 	case IW_AUTH_ROAMING_CONTROL:
6736 	case IW_AUTH_PRIVACY_INVOKED:
6737 		param->value = ieee->privacy_invoked;
6738 		break;
6739 
6740 	default:
6741 		return -EOPNOTSUPP;
6742 	}
6743 	return 0;
6744 }
6745 
6746 /* SIOCSIWENCODEEXT */
6747 static int ipw_wx_set_encodeext(struct net_device *dev,
6748 				struct iw_request_info *info,
6749 				union iwreq_data *wrqu, char *extra)
6750 {
6751 	struct ipw_priv *priv = libipw_priv(dev);
6752 	struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6753 
6754 	if (hwcrypto) {
6755 		if (ext->alg == IW_ENCODE_ALG_TKIP) {
6756 			/* IPW HW can't build TKIP MIC,
6757 			   host decryption still needed */
6758 			if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6759 				priv->ieee->host_mc_decrypt = 1;
6760 			else {
6761 				priv->ieee->host_encrypt = 0;
6762 				priv->ieee->host_encrypt_msdu = 1;
6763 				priv->ieee->host_decrypt = 1;
6764 			}
6765 		} else {
6766 			priv->ieee->host_encrypt = 0;
6767 			priv->ieee->host_encrypt_msdu = 0;
6768 			priv->ieee->host_decrypt = 0;
6769 			priv->ieee->host_mc_decrypt = 0;
6770 		}
6771 	}
6772 
6773 	return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6774 }
6775 
6776 /* SIOCGIWENCODEEXT */
6777 static int ipw_wx_get_encodeext(struct net_device *dev,
6778 				struct iw_request_info *info,
6779 				union iwreq_data *wrqu, char *extra)
6780 {
6781 	struct ipw_priv *priv = libipw_priv(dev);
6782 	return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6783 }
6784 
6785 /* SIOCSIWMLME */
6786 static int ipw_wx_set_mlme(struct net_device *dev,
6787 			   struct iw_request_info *info,
6788 			   union iwreq_data *wrqu, char *extra)
6789 {
6790 	struct ipw_priv *priv = libipw_priv(dev);
6791 	struct iw_mlme *mlme = (struct iw_mlme *)extra;
6792 
6793 	switch (mlme->cmd) {
6794 	case IW_MLME_DEAUTH:
6795 		/* silently ignore */
6796 		break;
6797 
6798 	case IW_MLME_DISASSOC:
6799 		ipw_disassociate(priv);
6800 		break;
6801 
6802 	default:
6803 		return -EOPNOTSUPP;
6804 	}
6805 	return 0;
6806 }
6807 
6808 #ifdef CONFIG_IPW2200_QOS
6809 
6810 /* QoS */
6811 /*
6812 * get the modulation type of the current network or
6813 * the card current mode
6814 */
6815 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6816 {
6817 	u8 mode = 0;
6818 
6819 	if (priv->status & STATUS_ASSOCIATED) {
6820 		unsigned long flags;
6821 
6822 		spin_lock_irqsave(&priv->ieee->lock, flags);
6823 		mode = priv->assoc_network->mode;
6824 		spin_unlock_irqrestore(&priv->ieee->lock, flags);
6825 	} else {
6826 		mode = priv->ieee->mode;
6827 	}
6828 	IPW_DEBUG_QOS("QoS network/card mode %d\n", mode);
6829 	return mode;
6830 }
6831 
6832 /*
6833 * Handle management frame beacon and probe response
6834 */
6835 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6836 					 int active_network,
6837 					 struct libipw_network *network)
6838 {
6839 	u32 size = sizeof(struct libipw_qos_parameters);
6840 
6841 	if (network->capability & WLAN_CAPABILITY_IBSS)
6842 		network->qos_data.active = network->qos_data.supported;
6843 
6844 	if (network->flags & NETWORK_HAS_QOS_MASK) {
6845 		if (active_network &&
6846 		    (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6847 			network->qos_data.active = network->qos_data.supported;
6848 
6849 		if ((network->qos_data.active == 1) && (active_network == 1) &&
6850 		    (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6851 		    (network->qos_data.old_param_count !=
6852 		     network->qos_data.param_count)) {
6853 			network->qos_data.old_param_count =
6854 			    network->qos_data.param_count;
6855 			schedule_work(&priv->qos_activate);
6856 			IPW_DEBUG_QOS("QoS parameters change call "
6857 				      "qos_activate\n");
6858 		}
6859 	} else {
6860 		if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6861 			memcpy(&network->qos_data.parameters,
6862 			       &def_parameters_CCK, size);
6863 		else
6864 			memcpy(&network->qos_data.parameters,
6865 			       &def_parameters_OFDM, size);
6866 
6867 		if ((network->qos_data.active == 1) && (active_network == 1)) {
6868 			IPW_DEBUG_QOS("QoS was disabled call qos_activate\n");
6869 			schedule_work(&priv->qos_activate);
6870 		}
6871 
6872 		network->qos_data.active = 0;
6873 		network->qos_data.supported = 0;
6874 	}
6875 	if ((priv->status & STATUS_ASSOCIATED) &&
6876 	    (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6877 		if (!ether_addr_equal(network->bssid, priv->bssid))
6878 			if (network->capability & WLAN_CAPABILITY_IBSS)
6879 				if ((network->ssid_len ==
6880 				     priv->assoc_network->ssid_len) &&
6881 				    !memcmp(network->ssid,
6882 					    priv->assoc_network->ssid,
6883 					    network->ssid_len)) {
6884 					schedule_work(&priv->merge_networks);
6885 				}
6886 	}
6887 
6888 	return 0;
6889 }
6890 
6891 /*
6892 * This function set up the firmware to support QoS. It sends
6893 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6894 */
6895 static int ipw_qos_activate(struct ipw_priv *priv,
6896 			    struct libipw_qos_data *qos_network_data)
6897 {
6898 	int err;
6899 	struct libipw_qos_parameters qos_parameters[QOS_QOS_SETS];
6900 	struct libipw_qos_parameters *active_one = NULL;
6901 	u32 size = sizeof(struct libipw_qos_parameters);
6902 	u32 burst_duration;
6903 	int i;
6904 	u8 type;
6905 
6906 	type = ipw_qos_current_mode(priv);
6907 
6908 	active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6909 	memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6910 	active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6911 	memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6912 
6913 	if (qos_network_data == NULL) {
6914 		if (type == IEEE_B) {
6915 			IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6916 			active_one = &def_parameters_CCK;
6917 		} else
6918 			active_one = &def_parameters_OFDM;
6919 
6920 		memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6921 		burst_duration = ipw_qos_get_burst_duration(priv);
6922 		for (i = 0; i < QOS_QUEUE_NUM; i++)
6923 			qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6924 			    cpu_to_le16(burst_duration);
6925 	} else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6926 		if (type == IEEE_B) {
6927 			IPW_DEBUG_QOS("QoS activate IBSS network mode %d\n",
6928 				      type);
6929 			if (priv->qos_data.qos_enable == 0)
6930 				active_one = &def_parameters_CCK;
6931 			else
6932 				active_one = priv->qos_data.def_qos_parm_CCK;
6933 		} else {
6934 			if (priv->qos_data.qos_enable == 0)
6935 				active_one = &def_parameters_OFDM;
6936 			else
6937 				active_one = priv->qos_data.def_qos_parm_OFDM;
6938 		}
6939 		memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6940 	} else {
6941 		unsigned long flags;
6942 		int active;
6943 
6944 		spin_lock_irqsave(&priv->ieee->lock, flags);
6945 		active_one = &(qos_network_data->parameters);
6946 		qos_network_data->old_param_count =
6947 		    qos_network_data->param_count;
6948 		memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6949 		active = qos_network_data->supported;
6950 		spin_unlock_irqrestore(&priv->ieee->lock, flags);
6951 
6952 		if (active == 0) {
6953 			burst_duration = ipw_qos_get_burst_duration(priv);
6954 			for (i = 0; i < QOS_QUEUE_NUM; i++)
6955 				qos_parameters[QOS_PARAM_SET_ACTIVE].
6956 				    tx_op_limit[i] = cpu_to_le16(burst_duration);
6957 		}
6958 	}
6959 
6960 	IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
6961 	err = ipw_send_qos_params_command(priv, &qos_parameters[0]);
6962 	if (err)
6963 		IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
6964 
6965 	return err;
6966 }
6967 
6968 /*
6969 * send IPW_CMD_WME_INFO to the firmware
6970 */
6971 static int ipw_qos_set_info_element(struct ipw_priv *priv)
6972 {
6973 	int ret = 0;
6974 	struct libipw_qos_information_element qos_info;
6975 
6976 	if (priv == NULL)
6977 		return -1;
6978 
6979 	qos_info.elementID = QOS_ELEMENT_ID;
6980 	qos_info.length = sizeof(struct libipw_qos_information_element) - 2;
6981 
6982 	qos_info.version = QOS_VERSION_1;
6983 	qos_info.ac_info = 0;
6984 
6985 	memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
6986 	qos_info.qui_type = QOS_OUI_TYPE;
6987 	qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
6988 
6989 	ret = ipw_send_qos_info_command(priv, &qos_info);
6990 	if (ret != 0) {
6991 		IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
6992 	}
6993 	return ret;
6994 }
6995 
6996 /*
6997 * Set the QoS parameter with the association request structure
6998 */
6999 static int ipw_qos_association(struct ipw_priv *priv,
7000 			       struct libipw_network *network)
7001 {
7002 	int err = 0;
7003 	struct libipw_qos_data *qos_data = NULL;
7004 	struct libipw_qos_data ibss_data = {
7005 		.supported = 1,
7006 		.active = 1,
7007 	};
7008 
7009 	switch (priv->ieee->iw_mode) {
7010 	case IW_MODE_ADHOC:
7011 		BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
7012 
7013 		qos_data = &ibss_data;
7014 		break;
7015 
7016 	case IW_MODE_INFRA:
7017 		qos_data = &network->qos_data;
7018 		break;
7019 
7020 	default:
7021 		BUG();
7022 		break;
7023 	}
7024 
7025 	err = ipw_qos_activate(priv, qos_data);
7026 	if (err) {
7027 		priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
7028 		return err;
7029 	}
7030 
7031 	if (priv->qos_data.qos_enable && qos_data->supported) {
7032 		IPW_DEBUG_QOS("QoS will be enabled for this association\n");
7033 		priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
7034 		return ipw_qos_set_info_element(priv);
7035 	}
7036 
7037 	return 0;
7038 }
7039 
7040 /*
7041 * handling the beaconing responses. if we get different QoS setting
7042 * off the network from the associated setting, adjust the QoS
7043 * setting
7044 */
7045 static int ipw_qos_association_resp(struct ipw_priv *priv,
7046 				    struct libipw_network *network)
7047 {
7048 	int ret = 0;
7049 	unsigned long flags;
7050 	u32 size = sizeof(struct libipw_qos_parameters);
7051 	int set_qos_param = 0;
7052 
7053 	if ((priv == NULL) || (network == NULL) ||
7054 	    (priv->assoc_network == NULL))
7055 		return ret;
7056 
7057 	if (!(priv->status & STATUS_ASSOCIATED))
7058 		return ret;
7059 
7060 	if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7061 		return ret;
7062 
7063 	spin_lock_irqsave(&priv->ieee->lock, flags);
7064 	if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7065 		memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7066 		       sizeof(struct libipw_qos_data));
7067 		priv->assoc_network->qos_data.active = 1;
7068 		if ((network->qos_data.old_param_count !=
7069 		     network->qos_data.param_count)) {
7070 			set_qos_param = 1;
7071 			network->qos_data.old_param_count =
7072 			    network->qos_data.param_count;
7073 		}
7074 
7075 	} else {
7076 		if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7077 			memcpy(&priv->assoc_network->qos_data.parameters,
7078 			       &def_parameters_CCK, size);
7079 		else
7080 			memcpy(&priv->assoc_network->qos_data.parameters,
7081 			       &def_parameters_OFDM, size);
7082 		priv->assoc_network->qos_data.active = 0;
7083 		priv->assoc_network->qos_data.supported = 0;
7084 		set_qos_param = 1;
7085 	}
7086 
7087 	spin_unlock_irqrestore(&priv->ieee->lock, flags);
7088 
7089 	if (set_qos_param == 1)
7090 		schedule_work(&priv->qos_activate);
7091 
7092 	return ret;
7093 }
7094 
7095 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7096 {
7097 	u32 ret = 0;
7098 
7099 	if (!priv)
7100 		return 0;
7101 
7102 	if (!(priv->ieee->modulation & LIBIPW_OFDM_MODULATION))
7103 		ret = priv->qos_data.burst_duration_CCK;
7104 	else
7105 		ret = priv->qos_data.burst_duration_OFDM;
7106 
7107 	return ret;
7108 }
7109 
7110 /*
7111 * Initialize the setting of QoS global
7112 */
7113 static void ipw_qos_init(struct ipw_priv *priv, int enable,
7114 			 int burst_enable, u32 burst_duration_CCK,
7115 			 u32 burst_duration_OFDM)
7116 {
7117 	priv->qos_data.qos_enable = enable;
7118 
7119 	if (priv->qos_data.qos_enable) {
7120 		priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7121 		priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7122 		IPW_DEBUG_QOS("QoS is enabled\n");
7123 	} else {
7124 		priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7125 		priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7126 		IPW_DEBUG_QOS("QoS is not enabled\n");
7127 	}
7128 
7129 	priv->qos_data.burst_enable = burst_enable;
7130 
7131 	if (burst_enable) {
7132 		priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7133 		priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7134 	} else {
7135 		priv->qos_data.burst_duration_CCK = 0;
7136 		priv->qos_data.burst_duration_OFDM = 0;
7137 	}
7138 }
7139 
7140 /*
7141 * map the packet priority to the right TX Queue
7142 */
7143 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7144 {
7145 	if (priority > 7 || !priv->qos_data.qos_enable)
7146 		priority = 0;
7147 
7148 	return from_priority_to_tx_queue[priority] - 1;
7149 }
7150 
7151 static int ipw_is_qos_active(struct net_device *dev,
7152 			     struct sk_buff *skb)
7153 {
7154 	struct ipw_priv *priv = libipw_priv(dev);
7155 	struct libipw_qos_data *qos_data = NULL;
7156 	int active, supported;
7157 	u8 *daddr = skb->data + ETH_ALEN;
7158 	int unicast = !is_multicast_ether_addr(daddr);
7159 
7160 	if (!(priv->status & STATUS_ASSOCIATED))
7161 		return 0;
7162 
7163 	qos_data = &priv->assoc_network->qos_data;
7164 
7165 	if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7166 		if (unicast == 0)
7167 			qos_data->active = 0;
7168 		else
7169 			qos_data->active = qos_data->supported;
7170 	}
7171 	active = qos_data->active;
7172 	supported = qos_data->supported;
7173 	IPW_DEBUG_QOS("QoS  %d network is QoS active %d  supported %d  "
7174 		      "unicast %d\n",
7175 		      priv->qos_data.qos_enable, active, supported, unicast);
7176 	if (active && priv->qos_data.qos_enable)
7177 		return 1;
7178 
7179 	return 0;
7180 
7181 }
7182 /*
7183 * add QoS parameter to the TX command
7184 */
7185 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7186 					u16 priority,
7187 					struct tfd_data *tfd)
7188 {
7189 	int tx_queue_id = 0;
7190 
7191 
7192 	tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7193 	tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7194 
7195 	if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7196 		tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7197 		tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7198 	}
7199 	return 0;
7200 }
7201 
7202 /*
7203 * background support to run QoS activate functionality
7204 */
7205 static void ipw_bg_qos_activate(struct work_struct *work)
7206 {
7207 	struct ipw_priv *priv =
7208 		container_of(work, struct ipw_priv, qos_activate);
7209 
7210 	mutex_lock(&priv->mutex);
7211 
7212 	if (priv->status & STATUS_ASSOCIATED)
7213 		ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7214 
7215 	mutex_unlock(&priv->mutex);
7216 }
7217 
7218 static int ipw_handle_probe_response(struct net_device *dev,
7219 				     struct libipw_probe_response *resp,
7220 				     struct libipw_network *network)
7221 {
7222 	struct ipw_priv *priv = libipw_priv(dev);
7223 	int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7224 			      (network == priv->assoc_network));
7225 
7226 	ipw_qos_handle_probe_response(priv, active_network, network);
7227 
7228 	return 0;
7229 }
7230 
7231 static int ipw_handle_beacon(struct net_device *dev,
7232 			     struct libipw_beacon *resp,
7233 			     struct libipw_network *network)
7234 {
7235 	struct ipw_priv *priv = libipw_priv(dev);
7236 	int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7237 			      (network == priv->assoc_network));
7238 
7239 	ipw_qos_handle_probe_response(priv, active_network, network);
7240 
7241 	return 0;
7242 }
7243 
7244 static int ipw_handle_assoc_response(struct net_device *dev,
7245 				     struct libipw_assoc_response *resp,
7246 				     struct libipw_network *network)
7247 {
7248 	struct ipw_priv *priv = libipw_priv(dev);
7249 	ipw_qos_association_resp(priv, network);
7250 	return 0;
7251 }
7252 
7253 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
7254 				       *qos_param)
7255 {
7256 	return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7257 				sizeof(*qos_param) * 3, qos_param);
7258 }
7259 
7260 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
7261 				     *qos_param)
7262 {
7263 	return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7264 				qos_param);
7265 }
7266 
7267 #endif				/* CONFIG_IPW2200_QOS */
7268 
7269 static int ipw_associate_network(struct ipw_priv *priv,
7270 				 struct libipw_network *network,
7271 				 struct ipw_supported_rates *rates, int roaming)
7272 {
7273 	int err;
7274 
7275 	if (priv->config & CFG_FIXED_RATE)
7276 		ipw_set_fixed_rate(priv, network->mode);
7277 
7278 	if (!(priv->config & CFG_STATIC_ESSID)) {
7279 		priv->essid_len = min(network->ssid_len,
7280 				      (u8) IW_ESSID_MAX_SIZE);
7281 		memcpy(priv->essid, network->ssid, priv->essid_len);
7282 	}
7283 
7284 	network->last_associate = jiffies;
7285 
7286 	memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7287 	priv->assoc_request.channel = network->channel;
7288 	priv->assoc_request.auth_key = 0;
7289 
7290 	if ((priv->capability & CAP_PRIVACY_ON) &&
7291 	    (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7292 		priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7293 		priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7294 
7295 		if (priv->ieee->sec.level == SEC_LEVEL_1)
7296 			ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7297 
7298 	} else if ((priv->capability & CAP_PRIVACY_ON) &&
7299 		   (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7300 		priv->assoc_request.auth_type = AUTH_LEAP;
7301 	else
7302 		priv->assoc_request.auth_type = AUTH_OPEN;
7303 
7304 	if (priv->ieee->wpa_ie_len) {
7305 		priv->assoc_request.policy_support = cpu_to_le16(0x02);	/* RSN active */
7306 		ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7307 				 priv->ieee->wpa_ie_len);
7308 	}
7309 
7310 	/*
7311 	 * It is valid for our ieee device to support multiple modes, but
7312 	 * when it comes to associating to a given network we have to choose
7313 	 * just one mode.
7314 	 */
7315 	if (network->mode & priv->ieee->mode & IEEE_A)
7316 		priv->assoc_request.ieee_mode = IPW_A_MODE;
7317 	else if (network->mode & priv->ieee->mode & IEEE_G)
7318 		priv->assoc_request.ieee_mode = IPW_G_MODE;
7319 	else if (network->mode & priv->ieee->mode & IEEE_B)
7320 		priv->assoc_request.ieee_mode = IPW_B_MODE;
7321 
7322 	priv->assoc_request.capability = cpu_to_le16(network->capability);
7323 	if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7324 	    && !(priv->config & CFG_PREAMBLE_LONG)) {
7325 		priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7326 	} else {
7327 		priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7328 
7329 		/* Clear the short preamble if we won't be supporting it */
7330 		priv->assoc_request.capability &=
7331 		    ~cpu_to_le16(WLAN_CAPABILITY_SHORT_PREAMBLE);
7332 	}
7333 
7334 	/* Clear capability bits that aren't used in Ad Hoc */
7335 	if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7336 		priv->assoc_request.capability &=
7337 		    ~cpu_to_le16(WLAN_CAPABILITY_SHORT_SLOT_TIME);
7338 
7339 	IPW_DEBUG_ASSOC("%ssociation attempt: '%*pE', channel %d, 802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7340 			roaming ? "Rea" : "A",
7341 			priv->essid_len, priv->essid,
7342 			network->channel,
7343 			ipw_modes[priv->assoc_request.ieee_mode],
7344 			rates->num_rates,
7345 			(priv->assoc_request.preamble_length ==
7346 			 DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7347 			network->capability &
7348 			WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7349 			priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7350 			priv->capability & CAP_PRIVACY_ON ?
7351 			(priv->capability & CAP_SHARED_KEY ? "(shared)" :
7352 			 "(open)") : "",
7353 			priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7354 			priv->capability & CAP_PRIVACY_ON ?
7355 			'1' + priv->ieee->sec.active_key : '.',
7356 			priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7357 
7358 	priv->assoc_request.beacon_interval = cpu_to_le16(network->beacon_interval);
7359 	if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7360 	    (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7361 		priv->assoc_request.assoc_type = HC_IBSS_START;
7362 		priv->assoc_request.assoc_tsf_msw = 0;
7363 		priv->assoc_request.assoc_tsf_lsw = 0;
7364 	} else {
7365 		if (unlikely(roaming))
7366 			priv->assoc_request.assoc_type = HC_REASSOCIATE;
7367 		else
7368 			priv->assoc_request.assoc_type = HC_ASSOCIATE;
7369 		priv->assoc_request.assoc_tsf_msw = cpu_to_le32(network->time_stamp[1]);
7370 		priv->assoc_request.assoc_tsf_lsw = cpu_to_le32(network->time_stamp[0]);
7371 	}
7372 
7373 	memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7374 
7375 	if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7376 		eth_broadcast_addr(priv->assoc_request.dest);
7377 		priv->assoc_request.atim_window = cpu_to_le16(network->atim_window);
7378 	} else {
7379 		memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7380 		priv->assoc_request.atim_window = 0;
7381 	}
7382 
7383 	priv->assoc_request.listen_interval = cpu_to_le16(network->listen_interval);
7384 
7385 	err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7386 	if (err) {
7387 		IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7388 		return err;
7389 	}
7390 
7391 	rates->ieee_mode = priv->assoc_request.ieee_mode;
7392 	rates->purpose = IPW_RATE_CONNECT;
7393 	ipw_send_supported_rates(priv, rates);
7394 
7395 	if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7396 		priv->sys_config.dot11g_auto_detection = 1;
7397 	else
7398 		priv->sys_config.dot11g_auto_detection = 0;
7399 
7400 	if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7401 		priv->sys_config.answer_broadcast_ssid_probe = 1;
7402 	else
7403 		priv->sys_config.answer_broadcast_ssid_probe = 0;
7404 
7405 	err = ipw_send_system_config(priv);
7406 	if (err) {
7407 		IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7408 		return err;
7409 	}
7410 
7411 	IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7412 	err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7413 	if (err) {
7414 		IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7415 		return err;
7416 	}
7417 
7418 	/*
7419 	 * If preemption is enabled, it is possible for the association
7420 	 * to complete before we return from ipw_send_associate.  Therefore
7421 	 * we have to be sure and update our priviate data first.
7422 	 */
7423 	priv->channel = network->channel;
7424 	memcpy(priv->bssid, network->bssid, ETH_ALEN);
7425 	priv->status |= STATUS_ASSOCIATING;
7426 	priv->status &= ~STATUS_SECURITY_UPDATED;
7427 
7428 	priv->assoc_network = network;
7429 
7430 #ifdef CONFIG_IPW2200_QOS
7431 	ipw_qos_association(priv, network);
7432 #endif
7433 
7434 	err = ipw_send_associate(priv, &priv->assoc_request);
7435 	if (err) {
7436 		IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7437 		return err;
7438 	}
7439 
7440 	IPW_DEBUG(IPW_DL_STATE, "associating: '%*pE' %pM\n",
7441 		  priv->essid_len, priv->essid, priv->bssid);
7442 
7443 	return 0;
7444 }
7445 
7446 static void ipw_roam(void *data)
7447 {
7448 	struct ipw_priv *priv = data;
7449 	struct libipw_network *network = NULL;
7450 	struct ipw_network_match match = {
7451 		.network = priv->assoc_network
7452 	};
7453 
7454 	/* The roaming process is as follows:
7455 	 *
7456 	 * 1.  Missed beacon threshold triggers the roaming process by
7457 	 *     setting the status ROAM bit and requesting a scan.
7458 	 * 2.  When the scan completes, it schedules the ROAM work
7459 	 * 3.  The ROAM work looks at all of the known networks for one that
7460 	 *     is a better network than the currently associated.  If none
7461 	 *     found, the ROAM process is over (ROAM bit cleared)
7462 	 * 4.  If a better network is found, a disassociation request is
7463 	 *     sent.
7464 	 * 5.  When the disassociation completes, the roam work is again
7465 	 *     scheduled.  The second time through, the driver is no longer
7466 	 *     associated, and the newly selected network is sent an
7467 	 *     association request.
7468 	 * 6.  At this point ,the roaming process is complete and the ROAM
7469 	 *     status bit is cleared.
7470 	 */
7471 
7472 	/* If we are no longer associated, and the roaming bit is no longer
7473 	 * set, then we are not actively roaming, so just return */
7474 	if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7475 		return;
7476 
7477 	if (priv->status & STATUS_ASSOCIATED) {
7478 		/* First pass through ROAM process -- look for a better
7479 		 * network */
7480 		unsigned long flags;
7481 		u8 rssi = priv->assoc_network->stats.rssi;
7482 		priv->assoc_network->stats.rssi = -128;
7483 		spin_lock_irqsave(&priv->ieee->lock, flags);
7484 		list_for_each_entry(network, &priv->ieee->network_list, list) {
7485 			if (network != priv->assoc_network)
7486 				ipw_best_network(priv, &match, network, 1);
7487 		}
7488 		spin_unlock_irqrestore(&priv->ieee->lock, flags);
7489 		priv->assoc_network->stats.rssi = rssi;
7490 
7491 		if (match.network == priv->assoc_network) {
7492 			IPW_DEBUG_ASSOC("No better APs in this network to "
7493 					"roam to.\n");
7494 			priv->status &= ~STATUS_ROAMING;
7495 			ipw_debug_config(priv);
7496 			return;
7497 		}
7498 
7499 		ipw_send_disassociate(priv, 1);
7500 		priv->assoc_network = match.network;
7501 
7502 		return;
7503 	}
7504 
7505 	/* Second pass through ROAM process -- request association */
7506 	ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7507 	ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7508 	priv->status &= ~STATUS_ROAMING;
7509 }
7510 
7511 static void ipw_bg_roam(struct work_struct *work)
7512 {
7513 	struct ipw_priv *priv =
7514 		container_of(work, struct ipw_priv, roam);
7515 	mutex_lock(&priv->mutex);
7516 	ipw_roam(priv);
7517 	mutex_unlock(&priv->mutex);
7518 }
7519 
7520 static int ipw_associate(void *data)
7521 {
7522 	struct ipw_priv *priv = data;
7523 
7524 	struct libipw_network *network = NULL;
7525 	struct ipw_network_match match = {
7526 		.network = NULL
7527 	};
7528 	struct ipw_supported_rates *rates;
7529 	struct list_head *element;
7530 	unsigned long flags;
7531 
7532 	if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7533 		IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7534 		return 0;
7535 	}
7536 
7537 	if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7538 		IPW_DEBUG_ASSOC("Not attempting association (already in "
7539 				"progress)\n");
7540 		return 0;
7541 	}
7542 
7543 	if (priv->status & STATUS_DISASSOCIATING) {
7544 		IPW_DEBUG_ASSOC("Not attempting association (in disassociating)\n");
7545 		schedule_work(&priv->associate);
7546 		return 0;
7547 	}
7548 
7549 	if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7550 		IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7551 				"initialized)\n");
7552 		return 0;
7553 	}
7554 
7555 	if (!(priv->config & CFG_ASSOCIATE) &&
7556 	    !(priv->config & (CFG_STATIC_ESSID | CFG_STATIC_BSSID))) {
7557 		IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7558 		return 0;
7559 	}
7560 
7561 	/* Protect our use of the network_list */
7562 	spin_lock_irqsave(&priv->ieee->lock, flags);
7563 	list_for_each_entry(network, &priv->ieee->network_list, list)
7564 	    ipw_best_network(priv, &match, network, 0);
7565 
7566 	network = match.network;
7567 	rates = &match.rates;
7568 
7569 	if (network == NULL &&
7570 	    priv->ieee->iw_mode == IW_MODE_ADHOC &&
7571 	    priv->config & CFG_ADHOC_CREATE &&
7572 	    priv->config & CFG_STATIC_ESSID &&
7573 	    priv->config & CFG_STATIC_CHANNEL) {
7574 		/* Use oldest network if the free list is empty */
7575 		if (list_empty(&priv->ieee->network_free_list)) {
7576 			struct libipw_network *oldest = NULL;
7577 			struct libipw_network *target;
7578 
7579 			list_for_each_entry(target, &priv->ieee->network_list, list) {
7580 				if ((oldest == NULL) ||
7581 				    (target->last_scanned < oldest->last_scanned))
7582 					oldest = target;
7583 			}
7584 
7585 			/* If there are no more slots, expire the oldest */
7586 			list_del(&oldest->list);
7587 			target = oldest;
7588 			IPW_DEBUG_ASSOC("Expired '%*pE' (%pM) from network list.\n",
7589 					target->ssid_len, target->ssid,
7590 					target->bssid);
7591 			list_add_tail(&target->list,
7592 				      &priv->ieee->network_free_list);
7593 		}
7594 
7595 		element = priv->ieee->network_free_list.next;
7596 		network = list_entry(element, struct libipw_network, list);
7597 		ipw_adhoc_create(priv, network);
7598 		rates = &priv->rates;
7599 		list_del(element);
7600 		list_add_tail(&network->list, &priv->ieee->network_list);
7601 	}
7602 	spin_unlock_irqrestore(&priv->ieee->lock, flags);
7603 
7604 	/* If we reached the end of the list, then we don't have any valid
7605 	 * matching APs */
7606 	if (!network) {
7607 		ipw_debug_config(priv);
7608 
7609 		if (!(priv->status & STATUS_SCANNING)) {
7610 			if (!(priv->config & CFG_SPEED_SCAN))
7611 				schedule_delayed_work(&priv->request_scan,
7612 						      SCAN_INTERVAL);
7613 			else
7614 				schedule_delayed_work(&priv->request_scan, 0);
7615 		}
7616 
7617 		return 0;
7618 	}
7619 
7620 	ipw_associate_network(priv, network, rates, 0);
7621 
7622 	return 1;
7623 }
7624 
7625 static void ipw_bg_associate(struct work_struct *work)
7626 {
7627 	struct ipw_priv *priv =
7628 		container_of(work, struct ipw_priv, associate);
7629 	mutex_lock(&priv->mutex);
7630 	ipw_associate(priv);
7631 	mutex_unlock(&priv->mutex);
7632 }
7633 
7634 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7635 				      struct sk_buff *skb)
7636 {
7637 	struct ieee80211_hdr *hdr;
7638 	u16 fc;
7639 
7640 	hdr = (struct ieee80211_hdr *)skb->data;
7641 	fc = le16_to_cpu(hdr->frame_control);
7642 	if (!(fc & IEEE80211_FCTL_PROTECTED))
7643 		return;
7644 
7645 	fc &= ~IEEE80211_FCTL_PROTECTED;
7646 	hdr->frame_control = cpu_to_le16(fc);
7647 	switch (priv->ieee->sec.level) {
7648 	case SEC_LEVEL_3:
7649 		/* Remove CCMP HDR */
7650 		memmove(skb->data + LIBIPW_3ADDR_LEN,
7651 			skb->data + LIBIPW_3ADDR_LEN + 8,
7652 			skb->len - LIBIPW_3ADDR_LEN - 8);
7653 		skb_trim(skb, skb->len - 16);	/* CCMP_HDR_LEN + CCMP_MIC_LEN */
7654 		break;
7655 	case SEC_LEVEL_2:
7656 		break;
7657 	case SEC_LEVEL_1:
7658 		/* Remove IV */
7659 		memmove(skb->data + LIBIPW_3ADDR_LEN,
7660 			skb->data + LIBIPW_3ADDR_LEN + 4,
7661 			skb->len - LIBIPW_3ADDR_LEN - 4);
7662 		skb_trim(skb, skb->len - 8);	/* IV + ICV */
7663 		break;
7664 	case SEC_LEVEL_0:
7665 		break;
7666 	default:
7667 		printk(KERN_ERR "Unknown security level %d\n",
7668 		       priv->ieee->sec.level);
7669 		break;
7670 	}
7671 }
7672 
7673 static void ipw_handle_data_packet(struct ipw_priv *priv,
7674 				   struct ipw_rx_mem_buffer *rxb,
7675 				   struct libipw_rx_stats *stats)
7676 {
7677 	struct net_device *dev = priv->net_dev;
7678 	struct libipw_hdr_4addr *hdr;
7679 	struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7680 
7681 	/* We received data from the HW, so stop the watchdog */
7682 	netif_trans_update(dev);
7683 
7684 	/* We only process data packets if the
7685 	 * interface is open */
7686 	if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7687 		     skb_tailroom(rxb->skb))) {
7688 		dev->stats.rx_errors++;
7689 		priv->wstats.discard.misc++;
7690 		IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7691 		return;
7692 	} else if (unlikely(!netif_running(priv->net_dev))) {
7693 		dev->stats.rx_dropped++;
7694 		priv->wstats.discard.misc++;
7695 		IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7696 		return;
7697 	}
7698 
7699 	/* Advance skb->data to the start of the actual payload */
7700 	skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7701 
7702 	/* Set the size of the skb to the size of the frame */
7703 	skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7704 
7705 	IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7706 
7707 	/* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7708 	hdr = (struct libipw_hdr_4addr *)rxb->skb->data;
7709 	if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7710 	    (is_multicast_ether_addr(hdr->addr1) ?
7711 	     !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7712 		ipw_rebuild_decrypted_skb(priv, rxb->skb);
7713 
7714 	if (!libipw_rx(priv->ieee, rxb->skb, stats))
7715 		dev->stats.rx_errors++;
7716 	else {			/* libipw_rx succeeded, so it now owns the SKB */
7717 		rxb->skb = NULL;
7718 		__ipw_led_activity_on(priv);
7719 	}
7720 }
7721 
7722 #ifdef CONFIG_IPW2200_RADIOTAP
7723 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7724 					   struct ipw_rx_mem_buffer *rxb,
7725 					   struct libipw_rx_stats *stats)
7726 {
7727 	struct net_device *dev = priv->net_dev;
7728 	struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7729 	struct ipw_rx_frame *frame = &pkt->u.frame;
7730 
7731 	/* initial pull of some data */
7732 	u16 received_channel = frame->received_channel;
7733 	u8 antennaAndPhy = frame->antennaAndPhy;
7734 	s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM;	/* call it signed anyhow */
7735 	u16 pktrate = frame->rate;
7736 
7737 	/* Magic struct that slots into the radiotap header -- no reason
7738 	 * to build this manually element by element, we can write it much
7739 	 * more efficiently than we can parse it. ORDER MATTERS HERE */
7740 	struct ipw_rt_hdr *ipw_rt;
7741 
7742 	unsigned short len = le16_to_cpu(pkt->u.frame.length);
7743 
7744 	/* We received data from the HW, so stop the watchdog */
7745 	netif_trans_update(dev);
7746 
7747 	/* We only process data packets if the
7748 	 * interface is open */
7749 	if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7750 		     skb_tailroom(rxb->skb))) {
7751 		dev->stats.rx_errors++;
7752 		priv->wstats.discard.misc++;
7753 		IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7754 		return;
7755 	} else if (unlikely(!netif_running(priv->net_dev))) {
7756 		dev->stats.rx_dropped++;
7757 		priv->wstats.discard.misc++;
7758 		IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7759 		return;
7760 	}
7761 
7762 	/* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7763 	 * that now */
7764 	if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7765 		/* FIXME: Should alloc bigger skb instead */
7766 		dev->stats.rx_dropped++;
7767 		priv->wstats.discard.misc++;
7768 		IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7769 		return;
7770 	}
7771 
7772 	/* copy the frame itself */
7773 	memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7774 		rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7775 
7776 	ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7777 
7778 	ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7779 	ipw_rt->rt_hdr.it_pad = 0;	/* always good to zero */
7780 	ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr));	/* total header+data */
7781 
7782 	/* Big bitfield of all the fields we provide in radiotap */
7783 	ipw_rt->rt_hdr.it_present = cpu_to_le32(
7784 	     (1 << IEEE80211_RADIOTAP_TSFT) |
7785 	     (1 << IEEE80211_RADIOTAP_FLAGS) |
7786 	     (1 << IEEE80211_RADIOTAP_RATE) |
7787 	     (1 << IEEE80211_RADIOTAP_CHANNEL) |
7788 	     (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7789 	     (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7790 	     (1 << IEEE80211_RADIOTAP_ANTENNA));
7791 
7792 	/* Zero the flags, we'll add to them as we go */
7793 	ipw_rt->rt_flags = 0;
7794 	ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7795 			       frame->parent_tsf[2] << 16 |
7796 			       frame->parent_tsf[1] << 8  |
7797 			       frame->parent_tsf[0]);
7798 
7799 	/* Convert signal to DBM */
7800 	ipw_rt->rt_dbmsignal = antsignal;
7801 	ipw_rt->rt_dbmnoise = (s8) le16_to_cpu(frame->noise);
7802 
7803 	/* Convert the channel data and set the flags */
7804 	ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7805 	if (received_channel > 14) {	/* 802.11a */
7806 		ipw_rt->rt_chbitmask =
7807 		    cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7808 	} else if (antennaAndPhy & 32) {	/* 802.11b */
7809 		ipw_rt->rt_chbitmask =
7810 		    cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7811 	} else {		/* 802.11g */
7812 		ipw_rt->rt_chbitmask =
7813 		    cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7814 	}
7815 
7816 	/* set the rate in multiples of 500k/s */
7817 	switch (pktrate) {
7818 	case IPW_TX_RATE_1MB:
7819 		ipw_rt->rt_rate = 2;
7820 		break;
7821 	case IPW_TX_RATE_2MB:
7822 		ipw_rt->rt_rate = 4;
7823 		break;
7824 	case IPW_TX_RATE_5MB:
7825 		ipw_rt->rt_rate = 10;
7826 		break;
7827 	case IPW_TX_RATE_6MB:
7828 		ipw_rt->rt_rate = 12;
7829 		break;
7830 	case IPW_TX_RATE_9MB:
7831 		ipw_rt->rt_rate = 18;
7832 		break;
7833 	case IPW_TX_RATE_11MB:
7834 		ipw_rt->rt_rate = 22;
7835 		break;
7836 	case IPW_TX_RATE_12MB:
7837 		ipw_rt->rt_rate = 24;
7838 		break;
7839 	case IPW_TX_RATE_18MB:
7840 		ipw_rt->rt_rate = 36;
7841 		break;
7842 	case IPW_TX_RATE_24MB:
7843 		ipw_rt->rt_rate = 48;
7844 		break;
7845 	case IPW_TX_RATE_36MB:
7846 		ipw_rt->rt_rate = 72;
7847 		break;
7848 	case IPW_TX_RATE_48MB:
7849 		ipw_rt->rt_rate = 96;
7850 		break;
7851 	case IPW_TX_RATE_54MB:
7852 		ipw_rt->rt_rate = 108;
7853 		break;
7854 	default:
7855 		ipw_rt->rt_rate = 0;
7856 		break;
7857 	}
7858 
7859 	/* antenna number */
7860 	ipw_rt->rt_antenna = (antennaAndPhy & 3);	/* Is this right? */
7861 
7862 	/* set the preamble flag if we have it */
7863 	if ((antennaAndPhy & 64))
7864 		ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7865 
7866 	/* Set the size of the skb to the size of the frame */
7867 	skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7868 
7869 	IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7870 
7871 	if (!libipw_rx(priv->ieee, rxb->skb, stats))
7872 		dev->stats.rx_errors++;
7873 	else {			/* libipw_rx succeeded, so it now owns the SKB */
7874 		rxb->skb = NULL;
7875 		/* no LED during capture */
7876 	}
7877 }
7878 #endif
7879 
7880 #ifdef CONFIG_IPW2200_PROMISCUOUS
7881 #define libipw_is_probe_response(fc) \
7882    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7883     (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7884 
7885 #define libipw_is_management(fc) \
7886    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7887 
7888 #define libipw_is_control(fc) \
7889    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
7890 
7891 #define libipw_is_data(fc) \
7892    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
7893 
7894 #define libipw_is_assoc_request(fc) \
7895    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
7896 
7897 #define libipw_is_reassoc_request(fc) \
7898    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
7899 
7900 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
7901 				      struct ipw_rx_mem_buffer *rxb,
7902 				      struct libipw_rx_stats *stats)
7903 {
7904 	struct net_device *dev = priv->prom_net_dev;
7905 	struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7906 	struct ipw_rx_frame *frame = &pkt->u.frame;
7907 	struct ipw_rt_hdr *ipw_rt;
7908 
7909 	/* First cache any information we need before we overwrite
7910 	 * the information provided in the skb from the hardware */
7911 	struct ieee80211_hdr *hdr;
7912 	u16 channel = frame->received_channel;
7913 	u8 phy_flags = frame->antennaAndPhy;
7914 	s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
7915 	s8 noise = (s8) le16_to_cpu(frame->noise);
7916 	u8 rate = frame->rate;
7917 	unsigned short len = le16_to_cpu(pkt->u.frame.length);
7918 	struct sk_buff *skb;
7919 	int hdr_only = 0;
7920 	u16 filter = priv->prom_priv->filter;
7921 
7922 	/* If the filter is set to not include Rx frames then return */
7923 	if (filter & IPW_PROM_NO_RX)
7924 		return;
7925 
7926 	/* We received data from the HW, so stop the watchdog */
7927 	netif_trans_update(dev);
7928 
7929 	if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
7930 		dev->stats.rx_errors++;
7931 		IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7932 		return;
7933 	}
7934 
7935 	/* We only process data packets if the interface is open */
7936 	if (unlikely(!netif_running(dev))) {
7937 		dev->stats.rx_dropped++;
7938 		IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7939 		return;
7940 	}
7941 
7942 	/* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7943 	 * that now */
7944 	if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7945 		/* FIXME: Should alloc bigger skb instead */
7946 		dev->stats.rx_dropped++;
7947 		IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7948 		return;
7949 	}
7950 
7951 	hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
7952 	if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
7953 		if (filter & IPW_PROM_NO_MGMT)
7954 			return;
7955 		if (filter & IPW_PROM_MGMT_HEADER_ONLY)
7956 			hdr_only = 1;
7957 	} else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
7958 		if (filter & IPW_PROM_NO_CTL)
7959 			return;
7960 		if (filter & IPW_PROM_CTL_HEADER_ONLY)
7961 			hdr_only = 1;
7962 	} else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
7963 		if (filter & IPW_PROM_NO_DATA)
7964 			return;
7965 		if (filter & IPW_PROM_DATA_HEADER_ONLY)
7966 			hdr_only = 1;
7967 	}
7968 
7969 	/* Copy the SKB since this is for the promiscuous side */
7970 	skb = skb_copy(rxb->skb, GFP_ATOMIC);
7971 	if (skb == NULL) {
7972 		IPW_ERROR("skb_clone failed for promiscuous copy.\n");
7973 		return;
7974 	}
7975 
7976 	/* copy the frame data to write after where the radiotap header goes */
7977 	ipw_rt = (void *)skb->data;
7978 
7979 	if (hdr_only)
7980 		len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
7981 
7982 	memcpy(ipw_rt->payload, hdr, len);
7983 
7984 	ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7985 	ipw_rt->rt_hdr.it_pad = 0;	/* always good to zero */
7986 	ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(*ipw_rt));	/* total header+data */
7987 
7988 	/* Set the size of the skb to the size of the frame */
7989 	skb_put(skb, sizeof(*ipw_rt) + len);
7990 
7991 	/* Big bitfield of all the fields we provide in radiotap */
7992 	ipw_rt->rt_hdr.it_present = cpu_to_le32(
7993 	     (1 << IEEE80211_RADIOTAP_TSFT) |
7994 	     (1 << IEEE80211_RADIOTAP_FLAGS) |
7995 	     (1 << IEEE80211_RADIOTAP_RATE) |
7996 	     (1 << IEEE80211_RADIOTAP_CHANNEL) |
7997 	     (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7998 	     (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7999 	     (1 << IEEE80211_RADIOTAP_ANTENNA));
8000 
8001 	/* Zero the flags, we'll add to them as we go */
8002 	ipw_rt->rt_flags = 0;
8003 	ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
8004 			       frame->parent_tsf[2] << 16 |
8005 			       frame->parent_tsf[1] << 8  |
8006 			       frame->parent_tsf[0]);
8007 
8008 	/* Convert to DBM */
8009 	ipw_rt->rt_dbmsignal = signal;
8010 	ipw_rt->rt_dbmnoise = noise;
8011 
8012 	/* Convert the channel data and set the flags */
8013 	ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
8014 	if (channel > 14) {	/* 802.11a */
8015 		ipw_rt->rt_chbitmask =
8016 		    cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
8017 	} else if (phy_flags & (1 << 5)) {	/* 802.11b */
8018 		ipw_rt->rt_chbitmask =
8019 		    cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
8020 	} else {		/* 802.11g */
8021 		ipw_rt->rt_chbitmask =
8022 		    cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
8023 	}
8024 
8025 	/* set the rate in multiples of 500k/s */
8026 	switch (rate) {
8027 	case IPW_TX_RATE_1MB:
8028 		ipw_rt->rt_rate = 2;
8029 		break;
8030 	case IPW_TX_RATE_2MB:
8031 		ipw_rt->rt_rate = 4;
8032 		break;
8033 	case IPW_TX_RATE_5MB:
8034 		ipw_rt->rt_rate = 10;
8035 		break;
8036 	case IPW_TX_RATE_6MB:
8037 		ipw_rt->rt_rate = 12;
8038 		break;
8039 	case IPW_TX_RATE_9MB:
8040 		ipw_rt->rt_rate = 18;
8041 		break;
8042 	case IPW_TX_RATE_11MB:
8043 		ipw_rt->rt_rate = 22;
8044 		break;
8045 	case IPW_TX_RATE_12MB:
8046 		ipw_rt->rt_rate = 24;
8047 		break;
8048 	case IPW_TX_RATE_18MB:
8049 		ipw_rt->rt_rate = 36;
8050 		break;
8051 	case IPW_TX_RATE_24MB:
8052 		ipw_rt->rt_rate = 48;
8053 		break;
8054 	case IPW_TX_RATE_36MB:
8055 		ipw_rt->rt_rate = 72;
8056 		break;
8057 	case IPW_TX_RATE_48MB:
8058 		ipw_rt->rt_rate = 96;
8059 		break;
8060 	case IPW_TX_RATE_54MB:
8061 		ipw_rt->rt_rate = 108;
8062 		break;
8063 	default:
8064 		ipw_rt->rt_rate = 0;
8065 		break;
8066 	}
8067 
8068 	/* antenna number */
8069 	ipw_rt->rt_antenna = (phy_flags & 3);
8070 
8071 	/* set the preamble flag if we have it */
8072 	if (phy_flags & (1 << 6))
8073 		ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8074 
8075 	IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
8076 
8077 	if (!libipw_rx(priv->prom_priv->ieee, skb, stats)) {
8078 		dev->stats.rx_errors++;
8079 		dev_kfree_skb_any(skb);
8080 	}
8081 }
8082 #endif
8083 
8084 static int is_network_packet(struct ipw_priv *priv,
8085 				    struct libipw_hdr_4addr *header)
8086 {
8087 	/* Filter incoming packets to determine if they are targeted toward
8088 	 * this network, discarding packets coming from ourselves */
8089 	switch (priv->ieee->iw_mode) {
8090 	case IW_MODE_ADHOC:	/* Header: Dest. | Source    | BSSID */
8091 		/* packets from our adapter are dropped (echo) */
8092 		if (ether_addr_equal(header->addr2, priv->net_dev->dev_addr))
8093 			return 0;
8094 
8095 		/* {broad,multi}cast packets to our BSSID go through */
8096 		if (is_multicast_ether_addr(header->addr1))
8097 			return ether_addr_equal(header->addr3, priv->bssid);
8098 
8099 		/* packets to our adapter go through */
8100 		return ether_addr_equal(header->addr1,
8101 					priv->net_dev->dev_addr);
8102 
8103 	case IW_MODE_INFRA:	/* Header: Dest. | BSSID | Source */
8104 		/* packets from our adapter are dropped (echo) */
8105 		if (ether_addr_equal(header->addr3, priv->net_dev->dev_addr))
8106 			return 0;
8107 
8108 		/* {broad,multi}cast packets to our BSS go through */
8109 		if (is_multicast_ether_addr(header->addr1))
8110 			return ether_addr_equal(header->addr2, priv->bssid);
8111 
8112 		/* packets to our adapter go through */
8113 		return ether_addr_equal(header->addr1,
8114 					priv->net_dev->dev_addr);
8115 	}
8116 
8117 	return 1;
8118 }
8119 
8120 #define IPW_PACKET_RETRY_TIME HZ
8121 
8122 static  int is_duplicate_packet(struct ipw_priv *priv,
8123 				      struct libipw_hdr_4addr *header)
8124 {
8125 	u16 sc = le16_to_cpu(header->seq_ctl);
8126 	u16 seq = WLAN_GET_SEQ_SEQ(sc);
8127 	u16 frag = WLAN_GET_SEQ_FRAG(sc);
8128 	u16 *last_seq, *last_frag;
8129 	unsigned long *last_time;
8130 
8131 	switch (priv->ieee->iw_mode) {
8132 	case IW_MODE_ADHOC:
8133 		{
8134 			struct list_head *p;
8135 			struct ipw_ibss_seq *entry = NULL;
8136 			u8 *mac = header->addr2;
8137 			int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8138 
8139 			list_for_each(p, &priv->ibss_mac_hash[index]) {
8140 				entry =
8141 				    list_entry(p, struct ipw_ibss_seq, list);
8142 				if (ether_addr_equal(entry->mac, mac))
8143 					break;
8144 			}
8145 			if (p == &priv->ibss_mac_hash[index]) {
8146 				entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8147 				if (!entry) {
8148 					IPW_ERROR
8149 					    ("Cannot malloc new mac entry\n");
8150 					return 0;
8151 				}
8152 				memcpy(entry->mac, mac, ETH_ALEN);
8153 				entry->seq_num = seq;
8154 				entry->frag_num = frag;
8155 				entry->packet_time = jiffies;
8156 				list_add(&entry->list,
8157 					 &priv->ibss_mac_hash[index]);
8158 				return 0;
8159 			}
8160 			last_seq = &entry->seq_num;
8161 			last_frag = &entry->frag_num;
8162 			last_time = &entry->packet_time;
8163 			break;
8164 		}
8165 	case IW_MODE_INFRA:
8166 		last_seq = &priv->last_seq_num;
8167 		last_frag = &priv->last_frag_num;
8168 		last_time = &priv->last_packet_time;
8169 		break;
8170 	default:
8171 		return 0;
8172 	}
8173 	if ((*last_seq == seq) &&
8174 	    time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8175 		if (*last_frag == frag)
8176 			goto drop;
8177 		if (*last_frag + 1 != frag)
8178 			/* out-of-order fragment */
8179 			goto drop;
8180 	} else
8181 		*last_seq = seq;
8182 
8183 	*last_frag = frag;
8184 	*last_time = jiffies;
8185 	return 0;
8186 
8187       drop:
8188 	/* Comment this line now since we observed the card receives
8189 	 * duplicate packets but the FCTL_RETRY bit is not set in the
8190 	 * IBSS mode with fragmentation enabled.
8191 	 BUG_ON(!(le16_to_cpu(header->frame_control) & IEEE80211_FCTL_RETRY)); */
8192 	return 1;
8193 }
8194 
8195 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8196 				   struct ipw_rx_mem_buffer *rxb,
8197 				   struct libipw_rx_stats *stats)
8198 {
8199 	struct sk_buff *skb = rxb->skb;
8200 	struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8201 	struct libipw_hdr_4addr *header = (struct libipw_hdr_4addr *)
8202 	    (skb->data + IPW_RX_FRAME_SIZE);
8203 
8204 	libipw_rx_mgt(priv->ieee, header, stats);
8205 
8206 	if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8207 	    ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8208 	      IEEE80211_STYPE_PROBE_RESP) ||
8209 	     (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8210 	      IEEE80211_STYPE_BEACON))) {
8211 		if (ether_addr_equal(header->addr3, priv->bssid))
8212 			ipw_add_station(priv, header->addr2);
8213 	}
8214 
8215 	if (priv->config & CFG_NET_STATS) {
8216 		IPW_DEBUG_HC("sending stat packet\n");
8217 
8218 		/* Set the size of the skb to the size of the full
8219 		 * ipw header and 802.11 frame */
8220 		skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8221 			IPW_RX_FRAME_SIZE);
8222 
8223 		/* Advance past the ipw packet header to the 802.11 frame */
8224 		skb_pull(skb, IPW_RX_FRAME_SIZE);
8225 
8226 		/* Push the libipw_rx_stats before the 802.11 frame */
8227 		memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8228 
8229 		skb->dev = priv->ieee->dev;
8230 
8231 		/* Point raw at the libipw_stats */
8232 		skb_reset_mac_header(skb);
8233 
8234 		skb->pkt_type = PACKET_OTHERHOST;
8235 		skb->protocol = cpu_to_be16(ETH_P_80211_STATS);
8236 		memset(skb->cb, 0, sizeof(rxb->skb->cb));
8237 		netif_rx(skb);
8238 		rxb->skb = NULL;
8239 	}
8240 }
8241 
8242 /*
8243  * Main entry function for receiving a packet with 80211 headers.  This
8244  * should be called when ever the FW has notified us that there is a new
8245  * skb in the receive queue.
8246  */
8247 static void ipw_rx(struct ipw_priv *priv)
8248 {
8249 	struct ipw_rx_mem_buffer *rxb;
8250 	struct ipw_rx_packet *pkt;
8251 	struct libipw_hdr_4addr *header;
8252 	u32 r, w, i;
8253 	u8 network_packet;
8254 	u8 fill_rx = 0;
8255 
8256 	r = ipw_read32(priv, IPW_RX_READ_INDEX);
8257 	w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8258 	i = priv->rxq->read;
8259 
8260 	if (ipw_rx_queue_space (priv->rxq) > (RX_QUEUE_SIZE / 2))
8261 		fill_rx = 1;
8262 
8263 	while (i != r) {
8264 		rxb = priv->rxq->queue[i];
8265 		if (unlikely(rxb == NULL)) {
8266 			printk(KERN_CRIT "Queue not allocated!\n");
8267 			break;
8268 		}
8269 		priv->rxq->queue[i] = NULL;
8270 
8271 		pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8272 					    IPW_RX_BUF_SIZE,
8273 					    PCI_DMA_FROMDEVICE);
8274 
8275 		pkt = (struct ipw_rx_packet *)rxb->skb->data;
8276 		IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8277 			     pkt->header.message_type,
8278 			     pkt->header.rx_seq_num, pkt->header.control_bits);
8279 
8280 		switch (pkt->header.message_type) {
8281 		case RX_FRAME_TYPE:	/* 802.11 frame */  {
8282 				struct libipw_rx_stats stats = {
8283 					.rssi = pkt->u.frame.rssi_dbm -
8284 					    IPW_RSSI_TO_DBM,
8285 					.signal =
8286 					    pkt->u.frame.rssi_dbm -
8287 					    IPW_RSSI_TO_DBM + 0x100,
8288 					.noise =
8289 					    le16_to_cpu(pkt->u.frame.noise),
8290 					.rate = pkt->u.frame.rate,
8291 					.mac_time = jiffies,
8292 					.received_channel =
8293 					    pkt->u.frame.received_channel,
8294 					.freq =
8295 					    (pkt->u.frame.
8296 					     control & (1 << 0)) ?
8297 					    LIBIPW_24GHZ_BAND :
8298 					    LIBIPW_52GHZ_BAND,
8299 					.len = le16_to_cpu(pkt->u.frame.length),
8300 				};
8301 
8302 				if (stats.rssi != 0)
8303 					stats.mask |= LIBIPW_STATMASK_RSSI;
8304 				if (stats.signal != 0)
8305 					stats.mask |= LIBIPW_STATMASK_SIGNAL;
8306 				if (stats.noise != 0)
8307 					stats.mask |= LIBIPW_STATMASK_NOISE;
8308 				if (stats.rate != 0)
8309 					stats.mask |= LIBIPW_STATMASK_RATE;
8310 
8311 				priv->rx_packets++;
8312 
8313 #ifdef CONFIG_IPW2200_PROMISCUOUS
8314 	if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8315 		ipw_handle_promiscuous_rx(priv, rxb, &stats);
8316 #endif
8317 
8318 #ifdef CONFIG_IPW2200_MONITOR
8319 				if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8320 #ifdef CONFIG_IPW2200_RADIOTAP
8321 
8322                 ipw_handle_data_packet_monitor(priv,
8323 					       rxb,
8324 					       &stats);
8325 #else
8326 		ipw_handle_data_packet(priv, rxb,
8327 				       &stats);
8328 #endif
8329 					break;
8330 				}
8331 #endif
8332 
8333 				header =
8334 				    (struct libipw_hdr_4addr *)(rxb->skb->
8335 								   data +
8336 								   IPW_RX_FRAME_SIZE);
8337 				/* TODO: Check Ad-Hoc dest/source and make sure
8338 				 * that we are actually parsing these packets
8339 				 * correctly -- we should probably use the
8340 				 * frame control of the packet and disregard
8341 				 * the current iw_mode */
8342 
8343 				network_packet =
8344 				    is_network_packet(priv, header);
8345 				if (network_packet && priv->assoc_network) {
8346 					priv->assoc_network->stats.rssi =
8347 					    stats.rssi;
8348 					priv->exp_avg_rssi =
8349 					    exponential_average(priv->exp_avg_rssi,
8350 					    stats.rssi, DEPTH_RSSI);
8351 				}
8352 
8353 				IPW_DEBUG_RX("Frame: len=%u\n",
8354 					     le16_to_cpu(pkt->u.frame.length));
8355 
8356 				if (le16_to_cpu(pkt->u.frame.length) <
8357 				    libipw_get_hdrlen(le16_to_cpu(
8358 						    header->frame_ctl))) {
8359 					IPW_DEBUG_DROP
8360 					    ("Received packet is too small. "
8361 					     "Dropping.\n");
8362 					priv->net_dev->stats.rx_errors++;
8363 					priv->wstats.discard.misc++;
8364 					break;
8365 				}
8366 
8367 				switch (WLAN_FC_GET_TYPE
8368 					(le16_to_cpu(header->frame_ctl))) {
8369 
8370 				case IEEE80211_FTYPE_MGMT:
8371 					ipw_handle_mgmt_packet(priv, rxb,
8372 							       &stats);
8373 					break;
8374 
8375 				case IEEE80211_FTYPE_CTL:
8376 					break;
8377 
8378 				case IEEE80211_FTYPE_DATA:
8379 					if (unlikely(!network_packet ||
8380 						     is_duplicate_packet(priv,
8381 									 header)))
8382 					{
8383 						IPW_DEBUG_DROP("Dropping: "
8384 							       "%pM, "
8385 							       "%pM, "
8386 							       "%pM\n",
8387 							       header->addr1,
8388 							       header->addr2,
8389 							       header->addr3);
8390 						break;
8391 					}
8392 
8393 					ipw_handle_data_packet(priv, rxb,
8394 							       &stats);
8395 
8396 					break;
8397 				}
8398 				break;
8399 			}
8400 
8401 		case RX_HOST_NOTIFICATION_TYPE:{
8402 				IPW_DEBUG_RX
8403 				    ("Notification: subtype=%02X flags=%02X size=%d\n",
8404 				     pkt->u.notification.subtype,
8405 				     pkt->u.notification.flags,
8406 				     le16_to_cpu(pkt->u.notification.size));
8407 				ipw_rx_notification(priv, &pkt->u.notification);
8408 				break;
8409 			}
8410 
8411 		default:
8412 			IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8413 				     pkt->header.message_type);
8414 			break;
8415 		}
8416 
8417 		/* For now we just don't re-use anything.  We can tweak this
8418 		 * later to try and re-use notification packets and SKBs that
8419 		 * fail to Rx correctly */
8420 		if (rxb->skb != NULL) {
8421 			dev_kfree_skb_any(rxb->skb);
8422 			rxb->skb = NULL;
8423 		}
8424 
8425 		pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8426 				 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8427 		list_add_tail(&rxb->list, &priv->rxq->rx_used);
8428 
8429 		i = (i + 1) % RX_QUEUE_SIZE;
8430 
8431 		/* If there are a lot of unsued frames, restock the Rx queue
8432 		 * so the ucode won't assert */
8433 		if (fill_rx) {
8434 			priv->rxq->read = i;
8435 			ipw_rx_queue_replenish(priv);
8436 		}
8437 	}
8438 
8439 	/* Backtrack one entry */
8440 	priv->rxq->read = i;
8441 	ipw_rx_queue_restock(priv);
8442 }
8443 
8444 #define DEFAULT_RTS_THRESHOLD     2304U
8445 #define MIN_RTS_THRESHOLD         1U
8446 #define MAX_RTS_THRESHOLD         2304U
8447 #define DEFAULT_BEACON_INTERVAL   100U
8448 #define	DEFAULT_SHORT_RETRY_LIMIT 7U
8449 #define	DEFAULT_LONG_RETRY_LIMIT  4U
8450 
8451 /**
8452  * ipw_sw_reset
8453  * @option: options to control different reset behaviour
8454  * 	    0 = reset everything except the 'disable' module_param
8455  * 	    1 = reset everything and print out driver info (for probe only)
8456  * 	    2 = reset everything
8457  */
8458 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8459 {
8460 	int band, modulation;
8461 	int old_mode = priv->ieee->iw_mode;
8462 
8463 	/* Initialize module parameter values here */
8464 	priv->config = 0;
8465 
8466 	/* We default to disabling the LED code as right now it causes
8467 	 * too many systems to lock up... */
8468 	if (!led_support)
8469 		priv->config |= CFG_NO_LED;
8470 
8471 	if (associate)
8472 		priv->config |= CFG_ASSOCIATE;
8473 	else
8474 		IPW_DEBUG_INFO("Auto associate disabled.\n");
8475 
8476 	if (auto_create)
8477 		priv->config |= CFG_ADHOC_CREATE;
8478 	else
8479 		IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8480 
8481 	priv->config &= ~CFG_STATIC_ESSID;
8482 	priv->essid_len = 0;
8483 	memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8484 
8485 	if (disable && option) {
8486 		priv->status |= STATUS_RF_KILL_SW;
8487 		IPW_DEBUG_INFO("Radio disabled.\n");
8488 	}
8489 
8490 	if (default_channel != 0) {
8491 		priv->config |= CFG_STATIC_CHANNEL;
8492 		priv->channel = default_channel;
8493 		IPW_DEBUG_INFO("Bind to static channel %d\n", default_channel);
8494 		/* TODO: Validate that provided channel is in range */
8495 	}
8496 #ifdef CONFIG_IPW2200_QOS
8497 	ipw_qos_init(priv, qos_enable, qos_burst_enable,
8498 		     burst_duration_CCK, burst_duration_OFDM);
8499 #endif				/* CONFIG_IPW2200_QOS */
8500 
8501 	switch (network_mode) {
8502 	case 1:
8503 		priv->ieee->iw_mode = IW_MODE_ADHOC;
8504 		priv->net_dev->type = ARPHRD_ETHER;
8505 
8506 		break;
8507 #ifdef CONFIG_IPW2200_MONITOR
8508 	case 2:
8509 		priv->ieee->iw_mode = IW_MODE_MONITOR;
8510 #ifdef CONFIG_IPW2200_RADIOTAP
8511 		priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8512 #else
8513 		priv->net_dev->type = ARPHRD_IEEE80211;
8514 #endif
8515 		break;
8516 #endif
8517 	default:
8518 	case 0:
8519 		priv->net_dev->type = ARPHRD_ETHER;
8520 		priv->ieee->iw_mode = IW_MODE_INFRA;
8521 		break;
8522 	}
8523 
8524 	if (hwcrypto) {
8525 		priv->ieee->host_encrypt = 0;
8526 		priv->ieee->host_encrypt_msdu = 0;
8527 		priv->ieee->host_decrypt = 0;
8528 		priv->ieee->host_mc_decrypt = 0;
8529 	}
8530 	IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8531 
8532 	/* IPW2200/2915 is abled to do hardware fragmentation. */
8533 	priv->ieee->host_open_frag = 0;
8534 
8535 	if ((priv->pci_dev->device == 0x4223) ||
8536 	    (priv->pci_dev->device == 0x4224)) {
8537 		if (option == 1)
8538 			printk(KERN_INFO DRV_NAME
8539 			       ": Detected Intel PRO/Wireless 2915ABG Network "
8540 			       "Connection\n");
8541 		priv->ieee->abg_true = 1;
8542 		band = LIBIPW_52GHZ_BAND | LIBIPW_24GHZ_BAND;
8543 		modulation = LIBIPW_OFDM_MODULATION |
8544 		    LIBIPW_CCK_MODULATION;
8545 		priv->adapter = IPW_2915ABG;
8546 		priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8547 	} else {
8548 		if (option == 1)
8549 			printk(KERN_INFO DRV_NAME
8550 			       ": Detected Intel PRO/Wireless 2200BG Network "
8551 			       "Connection\n");
8552 
8553 		priv->ieee->abg_true = 0;
8554 		band = LIBIPW_24GHZ_BAND;
8555 		modulation = LIBIPW_OFDM_MODULATION |
8556 		    LIBIPW_CCK_MODULATION;
8557 		priv->adapter = IPW_2200BG;
8558 		priv->ieee->mode = IEEE_G | IEEE_B;
8559 	}
8560 
8561 	priv->ieee->freq_band = band;
8562 	priv->ieee->modulation = modulation;
8563 
8564 	priv->rates_mask = LIBIPW_DEFAULT_RATES_MASK;
8565 
8566 	priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8567 	priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8568 
8569 	priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8570 	priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8571 	priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8572 
8573 	/* If power management is turned on, default to AC mode */
8574 	priv->power_mode = IPW_POWER_AC;
8575 	priv->tx_power = IPW_TX_POWER_DEFAULT;
8576 
8577 	return old_mode == priv->ieee->iw_mode;
8578 }
8579 
8580 /*
8581  * This file defines the Wireless Extension handlers.  It does not
8582  * define any methods of hardware manipulation and relies on the
8583  * functions defined in ipw_main to provide the HW interaction.
8584  *
8585  * The exception to this is the use of the ipw_get_ordinal()
8586  * function used to poll the hardware vs. making unnecessary calls.
8587  *
8588  */
8589 
8590 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8591 {
8592 	if (channel == 0) {
8593 		IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8594 		priv->config &= ~CFG_STATIC_CHANNEL;
8595 		IPW_DEBUG_ASSOC("Attempting to associate with new "
8596 				"parameters.\n");
8597 		ipw_associate(priv);
8598 		return 0;
8599 	}
8600 
8601 	priv->config |= CFG_STATIC_CHANNEL;
8602 
8603 	if (priv->channel == channel) {
8604 		IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8605 			       channel);
8606 		return 0;
8607 	}
8608 
8609 	IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8610 	priv->channel = channel;
8611 
8612 #ifdef CONFIG_IPW2200_MONITOR
8613 	if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8614 		int i;
8615 		if (priv->status & STATUS_SCANNING) {
8616 			IPW_DEBUG_SCAN("Scan abort triggered due to "
8617 				       "channel change.\n");
8618 			ipw_abort_scan(priv);
8619 		}
8620 
8621 		for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8622 			udelay(10);
8623 
8624 		if (priv->status & STATUS_SCANNING)
8625 			IPW_DEBUG_SCAN("Still scanning...\n");
8626 		else
8627 			IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8628 				       1000 - i);
8629 
8630 		return 0;
8631 	}
8632 #endif				/* CONFIG_IPW2200_MONITOR */
8633 
8634 	/* Network configuration changed -- force [re]association */
8635 	IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8636 	if (!ipw_disassociate(priv))
8637 		ipw_associate(priv);
8638 
8639 	return 0;
8640 }
8641 
8642 static int ipw_wx_set_freq(struct net_device *dev,
8643 			   struct iw_request_info *info,
8644 			   union iwreq_data *wrqu, char *extra)
8645 {
8646 	struct ipw_priv *priv = libipw_priv(dev);
8647 	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8648 	struct iw_freq *fwrq = &wrqu->freq;
8649 	int ret = 0, i;
8650 	u8 channel, flags;
8651 	int band;
8652 
8653 	if (fwrq->m == 0) {
8654 		IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8655 		mutex_lock(&priv->mutex);
8656 		ret = ipw_set_channel(priv, 0);
8657 		mutex_unlock(&priv->mutex);
8658 		return ret;
8659 	}
8660 	/* if setting by freq convert to channel */
8661 	if (fwrq->e == 1) {
8662 		channel = libipw_freq_to_channel(priv->ieee, fwrq->m);
8663 		if (channel == 0)
8664 			return -EINVAL;
8665 	} else
8666 		channel = fwrq->m;
8667 
8668 	if (!(band = libipw_is_valid_channel(priv->ieee, channel)))
8669 		return -EINVAL;
8670 
8671 	if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8672 		i = libipw_channel_to_index(priv->ieee, channel);
8673 		if (i == -1)
8674 			return -EINVAL;
8675 
8676 		flags = (band == LIBIPW_24GHZ_BAND) ?
8677 		    geo->bg[i].flags : geo->a[i].flags;
8678 		if (flags & LIBIPW_CH_PASSIVE_ONLY) {
8679 			IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8680 			return -EINVAL;
8681 		}
8682 	}
8683 
8684 	IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
8685 	mutex_lock(&priv->mutex);
8686 	ret = ipw_set_channel(priv, channel);
8687 	mutex_unlock(&priv->mutex);
8688 	return ret;
8689 }
8690 
8691 static int ipw_wx_get_freq(struct net_device *dev,
8692 			   struct iw_request_info *info,
8693 			   union iwreq_data *wrqu, char *extra)
8694 {
8695 	struct ipw_priv *priv = libipw_priv(dev);
8696 
8697 	wrqu->freq.e = 0;
8698 
8699 	/* If we are associated, trying to associate, or have a statically
8700 	 * configured CHANNEL then return that; otherwise return ANY */
8701 	mutex_lock(&priv->mutex);
8702 	if (priv->config & CFG_STATIC_CHANNEL ||
8703 	    priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8704 		int i;
8705 
8706 		i = libipw_channel_to_index(priv->ieee, priv->channel);
8707 		BUG_ON(i == -1);
8708 		wrqu->freq.e = 1;
8709 
8710 		switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
8711 		case LIBIPW_52GHZ_BAND:
8712 			wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8713 			break;
8714 
8715 		case LIBIPW_24GHZ_BAND:
8716 			wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8717 			break;
8718 
8719 		default:
8720 			BUG();
8721 		}
8722 	} else
8723 		wrqu->freq.m = 0;
8724 
8725 	mutex_unlock(&priv->mutex);
8726 	IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
8727 	return 0;
8728 }
8729 
8730 static int ipw_wx_set_mode(struct net_device *dev,
8731 			   struct iw_request_info *info,
8732 			   union iwreq_data *wrqu, char *extra)
8733 {
8734 	struct ipw_priv *priv = libipw_priv(dev);
8735 	int err = 0;
8736 
8737 	IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8738 
8739 	switch (wrqu->mode) {
8740 #ifdef CONFIG_IPW2200_MONITOR
8741 	case IW_MODE_MONITOR:
8742 #endif
8743 	case IW_MODE_ADHOC:
8744 	case IW_MODE_INFRA:
8745 		break;
8746 	case IW_MODE_AUTO:
8747 		wrqu->mode = IW_MODE_INFRA;
8748 		break;
8749 	default:
8750 		return -EINVAL;
8751 	}
8752 	if (wrqu->mode == priv->ieee->iw_mode)
8753 		return 0;
8754 
8755 	mutex_lock(&priv->mutex);
8756 
8757 	ipw_sw_reset(priv, 0);
8758 
8759 #ifdef CONFIG_IPW2200_MONITOR
8760 	if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8761 		priv->net_dev->type = ARPHRD_ETHER;
8762 
8763 	if (wrqu->mode == IW_MODE_MONITOR)
8764 #ifdef CONFIG_IPW2200_RADIOTAP
8765 		priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8766 #else
8767 		priv->net_dev->type = ARPHRD_IEEE80211;
8768 #endif
8769 #endif				/* CONFIG_IPW2200_MONITOR */
8770 
8771 	/* Free the existing firmware and reset the fw_loaded
8772 	 * flag so ipw_load() will bring in the new firmware */
8773 	free_firmware();
8774 
8775 	priv->ieee->iw_mode = wrqu->mode;
8776 
8777 	schedule_work(&priv->adapter_restart);
8778 	mutex_unlock(&priv->mutex);
8779 	return err;
8780 }
8781 
8782 static int ipw_wx_get_mode(struct net_device *dev,
8783 			   struct iw_request_info *info,
8784 			   union iwreq_data *wrqu, char *extra)
8785 {
8786 	struct ipw_priv *priv = libipw_priv(dev);
8787 	mutex_lock(&priv->mutex);
8788 	wrqu->mode = priv->ieee->iw_mode;
8789 	IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8790 	mutex_unlock(&priv->mutex);
8791 	return 0;
8792 }
8793 
8794 /* Values are in microsecond */
8795 static const s32 timeout_duration[] = {
8796 	350000,
8797 	250000,
8798 	75000,
8799 	37000,
8800 	25000,
8801 };
8802 
8803 static const s32 period_duration[] = {
8804 	400000,
8805 	700000,
8806 	1000000,
8807 	1000000,
8808 	1000000
8809 };
8810 
8811 static int ipw_wx_get_range(struct net_device *dev,
8812 			    struct iw_request_info *info,
8813 			    union iwreq_data *wrqu, char *extra)
8814 {
8815 	struct ipw_priv *priv = libipw_priv(dev);
8816 	struct iw_range *range = (struct iw_range *)extra;
8817 	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8818 	int i = 0, j;
8819 
8820 	wrqu->data.length = sizeof(*range);
8821 	memset(range, 0, sizeof(*range));
8822 
8823 	/* 54Mbs == ~27 Mb/s real (802.11g) */
8824 	range->throughput = 27 * 1000 * 1000;
8825 
8826 	range->max_qual.qual = 100;
8827 	/* TODO: Find real max RSSI and stick here */
8828 	range->max_qual.level = 0;
8829 	range->max_qual.noise = 0;
8830 	range->max_qual.updated = 7;	/* Updated all three */
8831 
8832 	range->avg_qual.qual = 70;
8833 	/* TODO: Find real 'good' to 'bad' threshold value for RSSI */
8834 	range->avg_qual.level = 0;	/* FIXME to real average level */
8835 	range->avg_qual.noise = 0;
8836 	range->avg_qual.updated = 7;	/* Updated all three */
8837 	mutex_lock(&priv->mutex);
8838 	range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8839 
8840 	for (i = 0; i < range->num_bitrates; i++)
8841 		range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8842 		    500000;
8843 
8844 	range->max_rts = DEFAULT_RTS_THRESHOLD;
8845 	range->min_frag = MIN_FRAG_THRESHOLD;
8846 	range->max_frag = MAX_FRAG_THRESHOLD;
8847 
8848 	range->encoding_size[0] = 5;
8849 	range->encoding_size[1] = 13;
8850 	range->num_encoding_sizes = 2;
8851 	range->max_encoding_tokens = WEP_KEYS;
8852 
8853 	/* Set the Wireless Extension versions */
8854 	range->we_version_compiled = WIRELESS_EXT;
8855 	range->we_version_source = 18;
8856 
8857 	i = 0;
8858 	if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8859 		for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8860 			if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8861 			    (geo->bg[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8862 				continue;
8863 
8864 			range->freq[i].i = geo->bg[j].channel;
8865 			range->freq[i].m = geo->bg[j].freq * 100000;
8866 			range->freq[i].e = 1;
8867 			i++;
8868 		}
8869 	}
8870 
8871 	if (priv->ieee->mode & IEEE_A) {
8872 		for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8873 			if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8874 			    (geo->a[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8875 				continue;
8876 
8877 			range->freq[i].i = geo->a[j].channel;
8878 			range->freq[i].m = geo->a[j].freq * 100000;
8879 			range->freq[i].e = 1;
8880 			i++;
8881 		}
8882 	}
8883 
8884 	range->num_channels = i;
8885 	range->num_frequency = i;
8886 
8887 	mutex_unlock(&priv->mutex);
8888 
8889 	/* Event capability (kernel + driver) */
8890 	range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8891 				IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8892 				IW_EVENT_CAPA_MASK(SIOCGIWAP) |
8893 				IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
8894 	range->event_capa[1] = IW_EVENT_CAPA_K_1;
8895 
8896 	range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
8897 		IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
8898 
8899 	range->scan_capa = IW_SCAN_CAPA_ESSID | IW_SCAN_CAPA_TYPE;
8900 
8901 	IPW_DEBUG_WX("GET Range\n");
8902 	return 0;
8903 }
8904 
8905 static int ipw_wx_set_wap(struct net_device *dev,
8906 			  struct iw_request_info *info,
8907 			  union iwreq_data *wrqu, char *extra)
8908 {
8909 	struct ipw_priv *priv = libipw_priv(dev);
8910 
8911 	if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8912 		return -EINVAL;
8913 	mutex_lock(&priv->mutex);
8914 	if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) ||
8915 	    is_zero_ether_addr(wrqu->ap_addr.sa_data)) {
8916 		/* we disable mandatory BSSID association */
8917 		IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
8918 		priv->config &= ~CFG_STATIC_BSSID;
8919 		IPW_DEBUG_ASSOC("Attempting to associate with new "
8920 				"parameters.\n");
8921 		ipw_associate(priv);
8922 		mutex_unlock(&priv->mutex);
8923 		return 0;
8924 	}
8925 
8926 	priv->config |= CFG_STATIC_BSSID;
8927 	if (ether_addr_equal(priv->bssid, wrqu->ap_addr.sa_data)) {
8928 		IPW_DEBUG_WX("BSSID set to current BSSID.\n");
8929 		mutex_unlock(&priv->mutex);
8930 		return 0;
8931 	}
8932 
8933 	IPW_DEBUG_WX("Setting mandatory BSSID to %pM\n",
8934 		     wrqu->ap_addr.sa_data);
8935 
8936 	memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
8937 
8938 	/* Network configuration changed -- force [re]association */
8939 	IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
8940 	if (!ipw_disassociate(priv))
8941 		ipw_associate(priv);
8942 
8943 	mutex_unlock(&priv->mutex);
8944 	return 0;
8945 }
8946 
8947 static int ipw_wx_get_wap(struct net_device *dev,
8948 			  struct iw_request_info *info,
8949 			  union iwreq_data *wrqu, char *extra)
8950 {
8951 	struct ipw_priv *priv = libipw_priv(dev);
8952 
8953 	/* If we are associated, trying to associate, or have a statically
8954 	 * configured BSSID then return that; otherwise return ANY */
8955 	mutex_lock(&priv->mutex);
8956 	if (priv->config & CFG_STATIC_BSSID ||
8957 	    priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8958 		wrqu->ap_addr.sa_family = ARPHRD_ETHER;
8959 		memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
8960 	} else
8961 		eth_zero_addr(wrqu->ap_addr.sa_data);
8962 
8963 	IPW_DEBUG_WX("Getting WAP BSSID: %pM\n",
8964 		     wrqu->ap_addr.sa_data);
8965 	mutex_unlock(&priv->mutex);
8966 	return 0;
8967 }
8968 
8969 static int ipw_wx_set_essid(struct net_device *dev,
8970 			    struct iw_request_info *info,
8971 			    union iwreq_data *wrqu, char *extra)
8972 {
8973 	struct ipw_priv *priv = libipw_priv(dev);
8974         int length;
8975 
8976         mutex_lock(&priv->mutex);
8977 
8978         if (!wrqu->essid.flags)
8979         {
8980                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
8981                 ipw_disassociate(priv);
8982                 priv->config &= ~CFG_STATIC_ESSID;
8983                 ipw_associate(priv);
8984                 mutex_unlock(&priv->mutex);
8985                 return 0;
8986         }
8987 
8988 	length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
8989 
8990 	priv->config |= CFG_STATIC_ESSID;
8991 
8992 	if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
8993 	    && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
8994 		IPW_DEBUG_WX("ESSID set to current ESSID.\n");
8995 		mutex_unlock(&priv->mutex);
8996 		return 0;
8997 	}
8998 
8999 	IPW_DEBUG_WX("Setting ESSID: '%*pE' (%d)\n", length, extra, length);
9000 
9001 	priv->essid_len = length;
9002 	memcpy(priv->essid, extra, priv->essid_len);
9003 
9004 	/* Network configuration changed -- force [re]association */
9005 	IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
9006 	if (!ipw_disassociate(priv))
9007 		ipw_associate(priv);
9008 
9009 	mutex_unlock(&priv->mutex);
9010 	return 0;
9011 }
9012 
9013 static int ipw_wx_get_essid(struct net_device *dev,
9014 			    struct iw_request_info *info,
9015 			    union iwreq_data *wrqu, char *extra)
9016 {
9017 	struct ipw_priv *priv = libipw_priv(dev);
9018 
9019 	/* If we are associated, trying to associate, or have a statically
9020 	 * configured ESSID then return that; otherwise return ANY */
9021 	mutex_lock(&priv->mutex);
9022 	if (priv->config & CFG_STATIC_ESSID ||
9023 	    priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9024 		IPW_DEBUG_WX("Getting essid: '%*pE'\n",
9025 			     priv->essid_len, priv->essid);
9026 		memcpy(extra, priv->essid, priv->essid_len);
9027 		wrqu->essid.length = priv->essid_len;
9028 		wrqu->essid.flags = 1;	/* active */
9029 	} else {
9030 		IPW_DEBUG_WX("Getting essid: ANY\n");
9031 		wrqu->essid.length = 0;
9032 		wrqu->essid.flags = 0;	/* active */
9033 	}
9034 	mutex_unlock(&priv->mutex);
9035 	return 0;
9036 }
9037 
9038 static int ipw_wx_set_nick(struct net_device *dev,
9039 			   struct iw_request_info *info,
9040 			   union iwreq_data *wrqu, char *extra)
9041 {
9042 	struct ipw_priv *priv = libipw_priv(dev);
9043 
9044 	IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
9045 	if (wrqu->data.length > IW_ESSID_MAX_SIZE)
9046 		return -E2BIG;
9047 	mutex_lock(&priv->mutex);
9048 	wrqu->data.length = min_t(size_t, wrqu->data.length, sizeof(priv->nick));
9049 	memset(priv->nick, 0, sizeof(priv->nick));
9050 	memcpy(priv->nick, extra, wrqu->data.length);
9051 	IPW_DEBUG_TRACE("<<\n");
9052 	mutex_unlock(&priv->mutex);
9053 	return 0;
9054 
9055 }
9056 
9057 static int ipw_wx_get_nick(struct net_device *dev,
9058 			   struct iw_request_info *info,
9059 			   union iwreq_data *wrqu, char *extra)
9060 {
9061 	struct ipw_priv *priv = libipw_priv(dev);
9062 	IPW_DEBUG_WX("Getting nick\n");
9063 	mutex_lock(&priv->mutex);
9064 	wrqu->data.length = strlen(priv->nick);
9065 	memcpy(extra, priv->nick, wrqu->data.length);
9066 	wrqu->data.flags = 1;	/* active */
9067 	mutex_unlock(&priv->mutex);
9068 	return 0;
9069 }
9070 
9071 static int ipw_wx_set_sens(struct net_device *dev,
9072 			    struct iw_request_info *info,
9073 			    union iwreq_data *wrqu, char *extra)
9074 {
9075 	struct ipw_priv *priv = libipw_priv(dev);
9076 	int err = 0;
9077 
9078 	IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
9079 	IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
9080 	mutex_lock(&priv->mutex);
9081 
9082 	if (wrqu->sens.fixed == 0)
9083 	{
9084 		priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
9085 		priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
9086 		goto out;
9087 	}
9088 	if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9089 	    (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9090 		err = -EINVAL;
9091 		goto out;
9092 	}
9093 
9094 	priv->roaming_threshold = wrqu->sens.value;
9095 	priv->disassociate_threshold = 3*wrqu->sens.value;
9096       out:
9097 	mutex_unlock(&priv->mutex);
9098 	return err;
9099 }
9100 
9101 static int ipw_wx_get_sens(struct net_device *dev,
9102 			    struct iw_request_info *info,
9103 			    union iwreq_data *wrqu, char *extra)
9104 {
9105 	struct ipw_priv *priv = libipw_priv(dev);
9106 	mutex_lock(&priv->mutex);
9107 	wrqu->sens.fixed = 1;
9108 	wrqu->sens.value = priv->roaming_threshold;
9109 	mutex_unlock(&priv->mutex);
9110 
9111 	IPW_DEBUG_WX("GET roaming threshold -> %s %d\n",
9112 		     wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9113 
9114 	return 0;
9115 }
9116 
9117 static int ipw_wx_set_rate(struct net_device *dev,
9118 			   struct iw_request_info *info,
9119 			   union iwreq_data *wrqu, char *extra)
9120 {
9121 	/* TODO: We should use semaphores or locks for access to priv */
9122 	struct ipw_priv *priv = libipw_priv(dev);
9123 	u32 target_rate = wrqu->bitrate.value;
9124 	u32 fixed, mask;
9125 
9126 	/* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9127 	/* value = X, fixed = 1 means only rate X */
9128 	/* value = X, fixed = 0 means all rates lower equal X */
9129 
9130 	if (target_rate == -1) {
9131 		fixed = 0;
9132 		mask = LIBIPW_DEFAULT_RATES_MASK;
9133 		/* Now we should reassociate */
9134 		goto apply;
9135 	}
9136 
9137 	mask = 0;
9138 	fixed = wrqu->bitrate.fixed;
9139 
9140 	if (target_rate == 1000000 || !fixed)
9141 		mask |= LIBIPW_CCK_RATE_1MB_MASK;
9142 	if (target_rate == 1000000)
9143 		goto apply;
9144 
9145 	if (target_rate == 2000000 || !fixed)
9146 		mask |= LIBIPW_CCK_RATE_2MB_MASK;
9147 	if (target_rate == 2000000)
9148 		goto apply;
9149 
9150 	if (target_rate == 5500000 || !fixed)
9151 		mask |= LIBIPW_CCK_RATE_5MB_MASK;
9152 	if (target_rate == 5500000)
9153 		goto apply;
9154 
9155 	if (target_rate == 6000000 || !fixed)
9156 		mask |= LIBIPW_OFDM_RATE_6MB_MASK;
9157 	if (target_rate == 6000000)
9158 		goto apply;
9159 
9160 	if (target_rate == 9000000 || !fixed)
9161 		mask |= LIBIPW_OFDM_RATE_9MB_MASK;
9162 	if (target_rate == 9000000)
9163 		goto apply;
9164 
9165 	if (target_rate == 11000000 || !fixed)
9166 		mask |= LIBIPW_CCK_RATE_11MB_MASK;
9167 	if (target_rate == 11000000)
9168 		goto apply;
9169 
9170 	if (target_rate == 12000000 || !fixed)
9171 		mask |= LIBIPW_OFDM_RATE_12MB_MASK;
9172 	if (target_rate == 12000000)
9173 		goto apply;
9174 
9175 	if (target_rate == 18000000 || !fixed)
9176 		mask |= LIBIPW_OFDM_RATE_18MB_MASK;
9177 	if (target_rate == 18000000)
9178 		goto apply;
9179 
9180 	if (target_rate == 24000000 || !fixed)
9181 		mask |= LIBIPW_OFDM_RATE_24MB_MASK;
9182 	if (target_rate == 24000000)
9183 		goto apply;
9184 
9185 	if (target_rate == 36000000 || !fixed)
9186 		mask |= LIBIPW_OFDM_RATE_36MB_MASK;
9187 	if (target_rate == 36000000)
9188 		goto apply;
9189 
9190 	if (target_rate == 48000000 || !fixed)
9191 		mask |= LIBIPW_OFDM_RATE_48MB_MASK;
9192 	if (target_rate == 48000000)
9193 		goto apply;
9194 
9195 	if (target_rate == 54000000 || !fixed)
9196 		mask |= LIBIPW_OFDM_RATE_54MB_MASK;
9197 	if (target_rate == 54000000)
9198 		goto apply;
9199 
9200 	IPW_DEBUG_WX("invalid rate specified, returning error\n");
9201 	return -EINVAL;
9202 
9203       apply:
9204 	IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9205 		     mask, fixed ? "fixed" : "sub-rates");
9206 	mutex_lock(&priv->mutex);
9207 	if (mask == LIBIPW_DEFAULT_RATES_MASK) {
9208 		priv->config &= ~CFG_FIXED_RATE;
9209 		ipw_set_fixed_rate(priv, priv->ieee->mode);
9210 	} else
9211 		priv->config |= CFG_FIXED_RATE;
9212 
9213 	if (priv->rates_mask == mask) {
9214 		IPW_DEBUG_WX("Mask set to current mask.\n");
9215 		mutex_unlock(&priv->mutex);
9216 		return 0;
9217 	}
9218 
9219 	priv->rates_mask = mask;
9220 
9221 	/* Network configuration changed -- force [re]association */
9222 	IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9223 	if (!ipw_disassociate(priv))
9224 		ipw_associate(priv);
9225 
9226 	mutex_unlock(&priv->mutex);
9227 	return 0;
9228 }
9229 
9230 static int ipw_wx_get_rate(struct net_device *dev,
9231 			   struct iw_request_info *info,
9232 			   union iwreq_data *wrqu, char *extra)
9233 {
9234 	struct ipw_priv *priv = libipw_priv(dev);
9235 	mutex_lock(&priv->mutex);
9236 	wrqu->bitrate.value = priv->last_rate;
9237 	wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9238 	mutex_unlock(&priv->mutex);
9239 	IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
9240 	return 0;
9241 }
9242 
9243 static int ipw_wx_set_rts(struct net_device *dev,
9244 			  struct iw_request_info *info,
9245 			  union iwreq_data *wrqu, char *extra)
9246 {
9247 	struct ipw_priv *priv = libipw_priv(dev);
9248 	mutex_lock(&priv->mutex);
9249 	if (wrqu->rts.disabled || !wrqu->rts.fixed)
9250 		priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9251 	else {
9252 		if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9253 		    wrqu->rts.value > MAX_RTS_THRESHOLD) {
9254 			mutex_unlock(&priv->mutex);
9255 			return -EINVAL;
9256 		}
9257 		priv->rts_threshold = wrqu->rts.value;
9258 	}
9259 
9260 	ipw_send_rts_threshold(priv, priv->rts_threshold);
9261 	mutex_unlock(&priv->mutex);
9262 	IPW_DEBUG_WX("SET RTS Threshold -> %d\n", priv->rts_threshold);
9263 	return 0;
9264 }
9265 
9266 static int ipw_wx_get_rts(struct net_device *dev,
9267 			  struct iw_request_info *info,
9268 			  union iwreq_data *wrqu, char *extra)
9269 {
9270 	struct ipw_priv *priv = libipw_priv(dev);
9271 	mutex_lock(&priv->mutex);
9272 	wrqu->rts.value = priv->rts_threshold;
9273 	wrqu->rts.fixed = 0;	/* no auto select */
9274 	wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9275 	mutex_unlock(&priv->mutex);
9276 	IPW_DEBUG_WX("GET RTS Threshold -> %d\n", wrqu->rts.value);
9277 	return 0;
9278 }
9279 
9280 static int ipw_wx_set_txpow(struct net_device *dev,
9281 			    struct iw_request_info *info,
9282 			    union iwreq_data *wrqu, char *extra)
9283 {
9284 	struct ipw_priv *priv = libipw_priv(dev);
9285 	int err = 0;
9286 
9287 	mutex_lock(&priv->mutex);
9288 	if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9289 		err = -EINPROGRESS;
9290 		goto out;
9291 	}
9292 
9293 	if (!wrqu->power.fixed)
9294 		wrqu->power.value = IPW_TX_POWER_DEFAULT;
9295 
9296 	if (wrqu->power.flags != IW_TXPOW_DBM) {
9297 		err = -EINVAL;
9298 		goto out;
9299 	}
9300 
9301 	if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9302 	    (wrqu->power.value < IPW_TX_POWER_MIN)) {
9303 		err = -EINVAL;
9304 		goto out;
9305 	}
9306 
9307 	priv->tx_power = wrqu->power.value;
9308 	err = ipw_set_tx_power(priv);
9309       out:
9310 	mutex_unlock(&priv->mutex);
9311 	return err;
9312 }
9313 
9314 static int ipw_wx_get_txpow(struct net_device *dev,
9315 			    struct iw_request_info *info,
9316 			    union iwreq_data *wrqu, char *extra)
9317 {
9318 	struct ipw_priv *priv = libipw_priv(dev);
9319 	mutex_lock(&priv->mutex);
9320 	wrqu->power.value = priv->tx_power;
9321 	wrqu->power.fixed = 1;
9322 	wrqu->power.flags = IW_TXPOW_DBM;
9323 	wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9324 	mutex_unlock(&priv->mutex);
9325 
9326 	IPW_DEBUG_WX("GET TX Power -> %s %d\n",
9327 		     wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9328 
9329 	return 0;
9330 }
9331 
9332 static int ipw_wx_set_frag(struct net_device *dev,
9333 			   struct iw_request_info *info,
9334 			   union iwreq_data *wrqu, char *extra)
9335 {
9336 	struct ipw_priv *priv = libipw_priv(dev);
9337 	mutex_lock(&priv->mutex);
9338 	if (wrqu->frag.disabled || !wrqu->frag.fixed)
9339 		priv->ieee->fts = DEFAULT_FTS;
9340 	else {
9341 		if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9342 		    wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9343 			mutex_unlock(&priv->mutex);
9344 			return -EINVAL;
9345 		}
9346 
9347 		priv->ieee->fts = wrqu->frag.value & ~0x1;
9348 	}
9349 
9350 	ipw_send_frag_threshold(priv, wrqu->frag.value);
9351 	mutex_unlock(&priv->mutex);
9352 	IPW_DEBUG_WX("SET Frag Threshold -> %d\n", wrqu->frag.value);
9353 	return 0;
9354 }
9355 
9356 static int ipw_wx_get_frag(struct net_device *dev,
9357 			   struct iw_request_info *info,
9358 			   union iwreq_data *wrqu, char *extra)
9359 {
9360 	struct ipw_priv *priv = libipw_priv(dev);
9361 	mutex_lock(&priv->mutex);
9362 	wrqu->frag.value = priv->ieee->fts;
9363 	wrqu->frag.fixed = 0;	/* no auto select */
9364 	wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9365 	mutex_unlock(&priv->mutex);
9366 	IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
9367 
9368 	return 0;
9369 }
9370 
9371 static int ipw_wx_set_retry(struct net_device *dev,
9372 			    struct iw_request_info *info,
9373 			    union iwreq_data *wrqu, char *extra)
9374 {
9375 	struct ipw_priv *priv = libipw_priv(dev);
9376 
9377 	if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9378 		return -EINVAL;
9379 
9380 	if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9381 		return 0;
9382 
9383 	if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9384 		return -EINVAL;
9385 
9386 	mutex_lock(&priv->mutex);
9387 	if (wrqu->retry.flags & IW_RETRY_SHORT)
9388 		priv->short_retry_limit = (u8) wrqu->retry.value;
9389 	else if (wrqu->retry.flags & IW_RETRY_LONG)
9390 		priv->long_retry_limit = (u8) wrqu->retry.value;
9391 	else {
9392 		priv->short_retry_limit = (u8) wrqu->retry.value;
9393 		priv->long_retry_limit = (u8) wrqu->retry.value;
9394 	}
9395 
9396 	ipw_send_retry_limit(priv, priv->short_retry_limit,
9397 			     priv->long_retry_limit);
9398 	mutex_unlock(&priv->mutex);
9399 	IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9400 		     priv->short_retry_limit, priv->long_retry_limit);
9401 	return 0;
9402 }
9403 
9404 static int ipw_wx_get_retry(struct net_device *dev,
9405 			    struct iw_request_info *info,
9406 			    union iwreq_data *wrqu, char *extra)
9407 {
9408 	struct ipw_priv *priv = libipw_priv(dev);
9409 
9410 	mutex_lock(&priv->mutex);
9411 	wrqu->retry.disabled = 0;
9412 
9413 	if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9414 		mutex_unlock(&priv->mutex);
9415 		return -EINVAL;
9416 	}
9417 
9418 	if (wrqu->retry.flags & IW_RETRY_LONG) {
9419 		wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9420 		wrqu->retry.value = priv->long_retry_limit;
9421 	} else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9422 		wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9423 		wrqu->retry.value = priv->short_retry_limit;
9424 	} else {
9425 		wrqu->retry.flags = IW_RETRY_LIMIT;
9426 		wrqu->retry.value = priv->short_retry_limit;
9427 	}
9428 	mutex_unlock(&priv->mutex);
9429 
9430 	IPW_DEBUG_WX("GET retry -> %d\n", wrqu->retry.value);
9431 
9432 	return 0;
9433 }
9434 
9435 static int ipw_wx_set_scan(struct net_device *dev,
9436 			   struct iw_request_info *info,
9437 			   union iwreq_data *wrqu, char *extra)
9438 {
9439 	struct ipw_priv *priv = libipw_priv(dev);
9440 	struct iw_scan_req *req = (struct iw_scan_req *)extra;
9441 	struct delayed_work *work = NULL;
9442 
9443 	mutex_lock(&priv->mutex);
9444 
9445 	priv->user_requested_scan = 1;
9446 
9447 	if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9448 		if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9449 			int len = min((int)req->essid_len,
9450 			              (int)sizeof(priv->direct_scan_ssid));
9451 			memcpy(priv->direct_scan_ssid, req->essid, len);
9452 			priv->direct_scan_ssid_len = len;
9453 			work = &priv->request_direct_scan;
9454 		} else if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9455 			work = &priv->request_passive_scan;
9456 		}
9457 	} else {
9458 		/* Normal active broadcast scan */
9459 		work = &priv->request_scan;
9460 	}
9461 
9462 	mutex_unlock(&priv->mutex);
9463 
9464 	IPW_DEBUG_WX("Start scan\n");
9465 
9466 	schedule_delayed_work(work, 0);
9467 
9468 	return 0;
9469 }
9470 
9471 static int ipw_wx_get_scan(struct net_device *dev,
9472 			   struct iw_request_info *info,
9473 			   union iwreq_data *wrqu, char *extra)
9474 {
9475 	struct ipw_priv *priv = libipw_priv(dev);
9476 	return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
9477 }
9478 
9479 static int ipw_wx_set_encode(struct net_device *dev,
9480 			     struct iw_request_info *info,
9481 			     union iwreq_data *wrqu, char *key)
9482 {
9483 	struct ipw_priv *priv = libipw_priv(dev);
9484 	int ret;
9485 	u32 cap = priv->capability;
9486 
9487 	mutex_lock(&priv->mutex);
9488 	ret = libipw_wx_set_encode(priv->ieee, info, wrqu, key);
9489 
9490 	/* In IBSS mode, we need to notify the firmware to update
9491 	 * the beacon info after we changed the capability. */
9492 	if (cap != priv->capability &&
9493 	    priv->ieee->iw_mode == IW_MODE_ADHOC &&
9494 	    priv->status & STATUS_ASSOCIATED)
9495 		ipw_disassociate(priv);
9496 
9497 	mutex_unlock(&priv->mutex);
9498 	return ret;
9499 }
9500 
9501 static int ipw_wx_get_encode(struct net_device *dev,
9502 			     struct iw_request_info *info,
9503 			     union iwreq_data *wrqu, char *key)
9504 {
9505 	struct ipw_priv *priv = libipw_priv(dev);
9506 	return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
9507 }
9508 
9509 static int ipw_wx_set_power(struct net_device *dev,
9510 			    struct iw_request_info *info,
9511 			    union iwreq_data *wrqu, char *extra)
9512 {
9513 	struct ipw_priv *priv = libipw_priv(dev);
9514 	int err;
9515 	mutex_lock(&priv->mutex);
9516 	if (wrqu->power.disabled) {
9517 		priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9518 		err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9519 		if (err) {
9520 			IPW_DEBUG_WX("failed setting power mode.\n");
9521 			mutex_unlock(&priv->mutex);
9522 			return err;
9523 		}
9524 		IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9525 		mutex_unlock(&priv->mutex);
9526 		return 0;
9527 	}
9528 
9529 	switch (wrqu->power.flags & IW_POWER_MODE) {
9530 	case IW_POWER_ON:	/* If not specified */
9531 	case IW_POWER_MODE:	/* If set all mask */
9532 	case IW_POWER_ALL_R:	/* If explicitly state all */
9533 		break;
9534 	default:		/* Otherwise we don't support it */
9535 		IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9536 			     wrqu->power.flags);
9537 		mutex_unlock(&priv->mutex);
9538 		return -EOPNOTSUPP;
9539 	}
9540 
9541 	/* If the user hasn't specified a power management mode yet, default
9542 	 * to BATTERY */
9543 	if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9544 		priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9545 	else
9546 		priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9547 
9548 	err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9549 	if (err) {
9550 		IPW_DEBUG_WX("failed setting power mode.\n");
9551 		mutex_unlock(&priv->mutex);
9552 		return err;
9553 	}
9554 
9555 	IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9556 	mutex_unlock(&priv->mutex);
9557 	return 0;
9558 }
9559 
9560 static int ipw_wx_get_power(struct net_device *dev,
9561 			    struct iw_request_info *info,
9562 			    union iwreq_data *wrqu, char *extra)
9563 {
9564 	struct ipw_priv *priv = libipw_priv(dev);
9565 	mutex_lock(&priv->mutex);
9566 	if (!(priv->power_mode & IPW_POWER_ENABLED))
9567 		wrqu->power.disabled = 1;
9568 	else
9569 		wrqu->power.disabled = 0;
9570 
9571 	mutex_unlock(&priv->mutex);
9572 	IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9573 
9574 	return 0;
9575 }
9576 
9577 static int ipw_wx_set_powermode(struct net_device *dev,
9578 				struct iw_request_info *info,
9579 				union iwreq_data *wrqu, char *extra)
9580 {
9581 	struct ipw_priv *priv = libipw_priv(dev);
9582 	int mode = *(int *)extra;
9583 	int err;
9584 
9585 	mutex_lock(&priv->mutex);
9586 	if ((mode < 1) || (mode > IPW_POWER_LIMIT))
9587 		mode = IPW_POWER_AC;
9588 
9589 	if (IPW_POWER_LEVEL(priv->power_mode) != mode) {
9590 		err = ipw_send_power_mode(priv, mode);
9591 		if (err) {
9592 			IPW_DEBUG_WX("failed setting power mode.\n");
9593 			mutex_unlock(&priv->mutex);
9594 			return err;
9595 		}
9596 		priv->power_mode = IPW_POWER_ENABLED | mode;
9597 	}
9598 	mutex_unlock(&priv->mutex);
9599 	return 0;
9600 }
9601 
9602 #define MAX_WX_STRING 80
9603 static int ipw_wx_get_powermode(struct net_device *dev,
9604 				struct iw_request_info *info,
9605 				union iwreq_data *wrqu, char *extra)
9606 {
9607 	struct ipw_priv *priv = libipw_priv(dev);
9608 	int level = IPW_POWER_LEVEL(priv->power_mode);
9609 	char *p = extra;
9610 
9611 	p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9612 
9613 	switch (level) {
9614 	case IPW_POWER_AC:
9615 		p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9616 		break;
9617 	case IPW_POWER_BATTERY:
9618 		p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9619 		break;
9620 	default:
9621 		p += snprintf(p, MAX_WX_STRING - (p - extra),
9622 			      "(Timeout %dms, Period %dms)",
9623 			      timeout_duration[level - 1] / 1000,
9624 			      period_duration[level - 1] / 1000);
9625 	}
9626 
9627 	if (!(priv->power_mode & IPW_POWER_ENABLED))
9628 		p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9629 
9630 	wrqu->data.length = p - extra + 1;
9631 
9632 	return 0;
9633 }
9634 
9635 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9636 				    struct iw_request_info *info,
9637 				    union iwreq_data *wrqu, char *extra)
9638 {
9639 	struct ipw_priv *priv = libipw_priv(dev);
9640 	int mode = *(int *)extra;
9641 	u8 band = 0, modulation = 0;
9642 
9643 	if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9644 		IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9645 		return -EINVAL;
9646 	}
9647 	mutex_lock(&priv->mutex);
9648 	if (priv->adapter == IPW_2915ABG) {
9649 		priv->ieee->abg_true = 1;
9650 		if (mode & IEEE_A) {
9651 			band |= LIBIPW_52GHZ_BAND;
9652 			modulation |= LIBIPW_OFDM_MODULATION;
9653 		} else
9654 			priv->ieee->abg_true = 0;
9655 	} else {
9656 		if (mode & IEEE_A) {
9657 			IPW_WARNING("Attempt to set 2200BG into "
9658 				    "802.11a mode\n");
9659 			mutex_unlock(&priv->mutex);
9660 			return -EINVAL;
9661 		}
9662 
9663 		priv->ieee->abg_true = 0;
9664 	}
9665 
9666 	if (mode & IEEE_B) {
9667 		band |= LIBIPW_24GHZ_BAND;
9668 		modulation |= LIBIPW_CCK_MODULATION;
9669 	} else
9670 		priv->ieee->abg_true = 0;
9671 
9672 	if (mode & IEEE_G) {
9673 		band |= LIBIPW_24GHZ_BAND;
9674 		modulation |= LIBIPW_OFDM_MODULATION;
9675 	} else
9676 		priv->ieee->abg_true = 0;
9677 
9678 	priv->ieee->mode = mode;
9679 	priv->ieee->freq_band = band;
9680 	priv->ieee->modulation = modulation;
9681 	init_supported_rates(priv, &priv->rates);
9682 
9683 	/* Network configuration changed -- force [re]association */
9684 	IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9685 	if (!ipw_disassociate(priv)) {
9686 		ipw_send_supported_rates(priv, &priv->rates);
9687 		ipw_associate(priv);
9688 	}
9689 
9690 	/* Update the band LEDs */
9691 	ipw_led_band_on(priv);
9692 
9693 	IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9694 		     mode & IEEE_A ? 'a' : '.',
9695 		     mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9696 	mutex_unlock(&priv->mutex);
9697 	return 0;
9698 }
9699 
9700 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9701 				    struct iw_request_info *info,
9702 				    union iwreq_data *wrqu, char *extra)
9703 {
9704 	struct ipw_priv *priv = libipw_priv(dev);
9705 	mutex_lock(&priv->mutex);
9706 	switch (priv->ieee->mode) {
9707 	case IEEE_A:
9708 		strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9709 		break;
9710 	case IEEE_B:
9711 		strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9712 		break;
9713 	case IEEE_A | IEEE_B:
9714 		strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9715 		break;
9716 	case IEEE_G:
9717 		strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9718 		break;
9719 	case IEEE_A | IEEE_G:
9720 		strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9721 		break;
9722 	case IEEE_B | IEEE_G:
9723 		strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9724 		break;
9725 	case IEEE_A | IEEE_B | IEEE_G:
9726 		strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9727 		break;
9728 	default:
9729 		strncpy(extra, "unknown", MAX_WX_STRING);
9730 		break;
9731 	}
9732 	extra[MAX_WX_STRING - 1] = '\0';
9733 
9734 	IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9735 
9736 	wrqu->data.length = strlen(extra) + 1;
9737 	mutex_unlock(&priv->mutex);
9738 
9739 	return 0;
9740 }
9741 
9742 static int ipw_wx_set_preamble(struct net_device *dev,
9743 			       struct iw_request_info *info,
9744 			       union iwreq_data *wrqu, char *extra)
9745 {
9746 	struct ipw_priv *priv = libipw_priv(dev);
9747 	int mode = *(int *)extra;
9748 	mutex_lock(&priv->mutex);
9749 	/* Switching from SHORT -> LONG requires a disassociation */
9750 	if (mode == 1) {
9751 		if (!(priv->config & CFG_PREAMBLE_LONG)) {
9752 			priv->config |= CFG_PREAMBLE_LONG;
9753 
9754 			/* Network configuration changed -- force [re]association */
9755 			IPW_DEBUG_ASSOC
9756 			    ("[re]association triggered due to preamble change.\n");
9757 			if (!ipw_disassociate(priv))
9758 				ipw_associate(priv);
9759 		}
9760 		goto done;
9761 	}
9762 
9763 	if (mode == 0) {
9764 		priv->config &= ~CFG_PREAMBLE_LONG;
9765 		goto done;
9766 	}
9767 	mutex_unlock(&priv->mutex);
9768 	return -EINVAL;
9769 
9770       done:
9771 	mutex_unlock(&priv->mutex);
9772 	return 0;
9773 }
9774 
9775 static int ipw_wx_get_preamble(struct net_device *dev,
9776 			       struct iw_request_info *info,
9777 			       union iwreq_data *wrqu, char *extra)
9778 {
9779 	struct ipw_priv *priv = libipw_priv(dev);
9780 	mutex_lock(&priv->mutex);
9781 	if (priv->config & CFG_PREAMBLE_LONG)
9782 		snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9783 	else
9784 		snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9785 	mutex_unlock(&priv->mutex);
9786 	return 0;
9787 }
9788 
9789 #ifdef CONFIG_IPW2200_MONITOR
9790 static int ipw_wx_set_monitor(struct net_device *dev,
9791 			      struct iw_request_info *info,
9792 			      union iwreq_data *wrqu, char *extra)
9793 {
9794 	struct ipw_priv *priv = libipw_priv(dev);
9795 	int *parms = (int *)extra;
9796 	int enable = (parms[0] > 0);
9797 	mutex_lock(&priv->mutex);
9798 	IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9799 	if (enable) {
9800 		if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9801 #ifdef CONFIG_IPW2200_RADIOTAP
9802 			priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9803 #else
9804 			priv->net_dev->type = ARPHRD_IEEE80211;
9805 #endif
9806 			schedule_work(&priv->adapter_restart);
9807 		}
9808 
9809 		ipw_set_channel(priv, parms[1]);
9810 	} else {
9811 		if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9812 			mutex_unlock(&priv->mutex);
9813 			return 0;
9814 		}
9815 		priv->net_dev->type = ARPHRD_ETHER;
9816 		schedule_work(&priv->adapter_restart);
9817 	}
9818 	mutex_unlock(&priv->mutex);
9819 	return 0;
9820 }
9821 
9822 #endif				/* CONFIG_IPW2200_MONITOR */
9823 
9824 static int ipw_wx_reset(struct net_device *dev,
9825 			struct iw_request_info *info,
9826 			union iwreq_data *wrqu, char *extra)
9827 {
9828 	struct ipw_priv *priv = libipw_priv(dev);
9829 	IPW_DEBUG_WX("RESET\n");
9830 	schedule_work(&priv->adapter_restart);
9831 	return 0;
9832 }
9833 
9834 static int ipw_wx_sw_reset(struct net_device *dev,
9835 			   struct iw_request_info *info,
9836 			   union iwreq_data *wrqu, char *extra)
9837 {
9838 	struct ipw_priv *priv = libipw_priv(dev);
9839 	union iwreq_data wrqu_sec = {
9840 		.encoding = {
9841 			     .flags = IW_ENCODE_DISABLED,
9842 			     },
9843 	};
9844 	int ret;
9845 
9846 	IPW_DEBUG_WX("SW_RESET\n");
9847 
9848 	mutex_lock(&priv->mutex);
9849 
9850 	ret = ipw_sw_reset(priv, 2);
9851 	if (!ret) {
9852 		free_firmware();
9853 		ipw_adapter_restart(priv);
9854 	}
9855 
9856 	/* The SW reset bit might have been toggled on by the 'disable'
9857 	 * module parameter, so take appropriate action */
9858 	ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9859 
9860 	mutex_unlock(&priv->mutex);
9861 	libipw_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9862 	mutex_lock(&priv->mutex);
9863 
9864 	if (!(priv->status & STATUS_RF_KILL_MASK)) {
9865 		/* Configuration likely changed -- force [re]association */
9866 		IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9867 				"reset.\n");
9868 		if (!ipw_disassociate(priv))
9869 			ipw_associate(priv);
9870 	}
9871 
9872 	mutex_unlock(&priv->mutex);
9873 
9874 	return 0;
9875 }
9876 
9877 /* Rebase the WE IOCTLs to zero for the handler array */
9878 static iw_handler ipw_wx_handlers[] = {
9879 	IW_HANDLER(SIOCGIWNAME, (iw_handler)cfg80211_wext_giwname),
9880 	IW_HANDLER(SIOCSIWFREQ, ipw_wx_set_freq),
9881 	IW_HANDLER(SIOCGIWFREQ, ipw_wx_get_freq),
9882 	IW_HANDLER(SIOCSIWMODE, ipw_wx_set_mode),
9883 	IW_HANDLER(SIOCGIWMODE, ipw_wx_get_mode),
9884 	IW_HANDLER(SIOCSIWSENS, ipw_wx_set_sens),
9885 	IW_HANDLER(SIOCGIWSENS, ipw_wx_get_sens),
9886 	IW_HANDLER(SIOCGIWRANGE, ipw_wx_get_range),
9887 	IW_HANDLER(SIOCSIWAP, ipw_wx_set_wap),
9888 	IW_HANDLER(SIOCGIWAP, ipw_wx_get_wap),
9889 	IW_HANDLER(SIOCSIWSCAN, ipw_wx_set_scan),
9890 	IW_HANDLER(SIOCGIWSCAN, ipw_wx_get_scan),
9891 	IW_HANDLER(SIOCSIWESSID, ipw_wx_set_essid),
9892 	IW_HANDLER(SIOCGIWESSID, ipw_wx_get_essid),
9893 	IW_HANDLER(SIOCSIWNICKN, ipw_wx_set_nick),
9894 	IW_HANDLER(SIOCGIWNICKN, ipw_wx_get_nick),
9895 	IW_HANDLER(SIOCSIWRATE, ipw_wx_set_rate),
9896 	IW_HANDLER(SIOCGIWRATE, ipw_wx_get_rate),
9897 	IW_HANDLER(SIOCSIWRTS, ipw_wx_set_rts),
9898 	IW_HANDLER(SIOCGIWRTS, ipw_wx_get_rts),
9899 	IW_HANDLER(SIOCSIWFRAG, ipw_wx_set_frag),
9900 	IW_HANDLER(SIOCGIWFRAG, ipw_wx_get_frag),
9901 	IW_HANDLER(SIOCSIWTXPOW, ipw_wx_set_txpow),
9902 	IW_HANDLER(SIOCGIWTXPOW, ipw_wx_get_txpow),
9903 	IW_HANDLER(SIOCSIWRETRY, ipw_wx_set_retry),
9904 	IW_HANDLER(SIOCGIWRETRY, ipw_wx_get_retry),
9905 	IW_HANDLER(SIOCSIWENCODE, ipw_wx_set_encode),
9906 	IW_HANDLER(SIOCGIWENCODE, ipw_wx_get_encode),
9907 	IW_HANDLER(SIOCSIWPOWER, ipw_wx_set_power),
9908 	IW_HANDLER(SIOCGIWPOWER, ipw_wx_get_power),
9909 	IW_HANDLER(SIOCSIWSPY, iw_handler_set_spy),
9910 	IW_HANDLER(SIOCGIWSPY, iw_handler_get_spy),
9911 	IW_HANDLER(SIOCSIWTHRSPY, iw_handler_set_thrspy),
9912 	IW_HANDLER(SIOCGIWTHRSPY, iw_handler_get_thrspy),
9913 	IW_HANDLER(SIOCSIWGENIE, ipw_wx_set_genie),
9914 	IW_HANDLER(SIOCGIWGENIE, ipw_wx_get_genie),
9915 	IW_HANDLER(SIOCSIWMLME, ipw_wx_set_mlme),
9916 	IW_HANDLER(SIOCSIWAUTH, ipw_wx_set_auth),
9917 	IW_HANDLER(SIOCGIWAUTH, ipw_wx_get_auth),
9918 	IW_HANDLER(SIOCSIWENCODEEXT, ipw_wx_set_encodeext),
9919 	IW_HANDLER(SIOCGIWENCODEEXT, ipw_wx_get_encodeext),
9920 };
9921 
9922 enum {
9923 	IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
9924 	IPW_PRIV_GET_POWER,
9925 	IPW_PRIV_SET_MODE,
9926 	IPW_PRIV_GET_MODE,
9927 	IPW_PRIV_SET_PREAMBLE,
9928 	IPW_PRIV_GET_PREAMBLE,
9929 	IPW_PRIV_RESET,
9930 	IPW_PRIV_SW_RESET,
9931 #ifdef CONFIG_IPW2200_MONITOR
9932 	IPW_PRIV_SET_MONITOR,
9933 #endif
9934 };
9935 
9936 static struct iw_priv_args ipw_priv_args[] = {
9937 	{
9938 	 .cmd = IPW_PRIV_SET_POWER,
9939 	 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9940 	 .name = "set_power"},
9941 	{
9942 	 .cmd = IPW_PRIV_GET_POWER,
9943 	 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9944 	 .name = "get_power"},
9945 	{
9946 	 .cmd = IPW_PRIV_SET_MODE,
9947 	 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9948 	 .name = "set_mode"},
9949 	{
9950 	 .cmd = IPW_PRIV_GET_MODE,
9951 	 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9952 	 .name = "get_mode"},
9953 	{
9954 	 .cmd = IPW_PRIV_SET_PREAMBLE,
9955 	 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9956 	 .name = "set_preamble"},
9957 	{
9958 	 .cmd = IPW_PRIV_GET_PREAMBLE,
9959 	 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
9960 	 .name = "get_preamble"},
9961 	{
9962 	 IPW_PRIV_RESET,
9963 	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
9964 	{
9965 	 IPW_PRIV_SW_RESET,
9966 	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
9967 #ifdef CONFIG_IPW2200_MONITOR
9968 	{
9969 	 IPW_PRIV_SET_MONITOR,
9970 	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
9971 #endif				/* CONFIG_IPW2200_MONITOR */
9972 };
9973 
9974 static iw_handler ipw_priv_handler[] = {
9975 	ipw_wx_set_powermode,
9976 	ipw_wx_get_powermode,
9977 	ipw_wx_set_wireless_mode,
9978 	ipw_wx_get_wireless_mode,
9979 	ipw_wx_set_preamble,
9980 	ipw_wx_get_preamble,
9981 	ipw_wx_reset,
9982 	ipw_wx_sw_reset,
9983 #ifdef CONFIG_IPW2200_MONITOR
9984 	ipw_wx_set_monitor,
9985 #endif
9986 };
9987 
9988 static const struct iw_handler_def ipw_wx_handler_def = {
9989 	.standard = ipw_wx_handlers,
9990 	.num_standard = ARRAY_SIZE(ipw_wx_handlers),
9991 	.num_private = ARRAY_SIZE(ipw_priv_handler),
9992 	.num_private_args = ARRAY_SIZE(ipw_priv_args),
9993 	.private = ipw_priv_handler,
9994 	.private_args = ipw_priv_args,
9995 	.get_wireless_stats = ipw_get_wireless_stats,
9996 };
9997 
9998 /*
9999  * Get wireless statistics.
10000  * Called by /proc/net/wireless
10001  * Also called by SIOCGIWSTATS
10002  */
10003 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
10004 {
10005 	struct ipw_priv *priv = libipw_priv(dev);
10006 	struct iw_statistics *wstats;
10007 
10008 	wstats = &priv->wstats;
10009 
10010 	/* if hw is disabled, then ipw_get_ordinal() can't be called.
10011 	 * netdev->get_wireless_stats seems to be called before fw is
10012 	 * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
10013 	 * and associated; if not associcated, the values are all meaningless
10014 	 * anyway, so set them all to NULL and INVALID */
10015 	if (!(priv->status & STATUS_ASSOCIATED)) {
10016 		wstats->miss.beacon = 0;
10017 		wstats->discard.retries = 0;
10018 		wstats->qual.qual = 0;
10019 		wstats->qual.level = 0;
10020 		wstats->qual.noise = 0;
10021 		wstats->qual.updated = 7;
10022 		wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
10023 		    IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
10024 		return wstats;
10025 	}
10026 
10027 	wstats->qual.qual = priv->quality;
10028 	wstats->qual.level = priv->exp_avg_rssi;
10029 	wstats->qual.noise = priv->exp_avg_noise;
10030 	wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
10031 	    IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
10032 
10033 	wstats->miss.beacon = average_value(&priv->average_missed_beacons);
10034 	wstats->discard.retries = priv->last_tx_failures;
10035 	wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
10036 
10037 /*	if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10038 	goto fail_get_ordinal;
10039 	wstats->discard.retries += tx_retry; */
10040 
10041 	return wstats;
10042 }
10043 
10044 /* net device stuff */
10045 
10046 static  void init_sys_config(struct ipw_sys_config *sys_config)
10047 {
10048 	memset(sys_config, 0, sizeof(struct ipw_sys_config));
10049 	sys_config->bt_coexistence = 0;
10050 	sys_config->answer_broadcast_ssid_probe = 0;
10051 	sys_config->accept_all_data_frames = 0;
10052 	sys_config->accept_non_directed_frames = 1;
10053 	sys_config->exclude_unicast_unencrypted = 0;
10054 	sys_config->disable_unicast_decryption = 1;
10055 	sys_config->exclude_multicast_unencrypted = 0;
10056 	sys_config->disable_multicast_decryption = 1;
10057 	if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10058 		antenna = CFG_SYS_ANTENNA_BOTH;
10059 	sys_config->antenna_diversity = antenna;
10060 	sys_config->pass_crc_to_host = 0;	/* TODO: See if 1 gives us FCS */
10061 	sys_config->dot11g_auto_detection = 0;
10062 	sys_config->enable_cts_to_self = 0;
10063 	sys_config->bt_coexist_collision_thr = 0;
10064 	sys_config->pass_noise_stats_to_host = 1;	/* 1 -- fix for 256 */
10065 	sys_config->silence_threshold = 0x1e;
10066 }
10067 
10068 static int ipw_net_open(struct net_device *dev)
10069 {
10070 	IPW_DEBUG_INFO("dev->open\n");
10071 	netif_start_queue(dev);
10072 	return 0;
10073 }
10074 
10075 static int ipw_net_stop(struct net_device *dev)
10076 {
10077 	IPW_DEBUG_INFO("dev->close\n");
10078 	netif_stop_queue(dev);
10079 	return 0;
10080 }
10081 
10082 /*
10083 todo:
10084 
10085 modify to send one tfd per fragment instead of using chunking.  otherwise
10086 we need to heavily modify the libipw_skb_to_txb.
10087 */
10088 
10089 static int ipw_tx_skb(struct ipw_priv *priv, struct libipw_txb *txb,
10090 			     int pri)
10091 {
10092 	struct libipw_hdr_3addrqos *hdr = (struct libipw_hdr_3addrqos *)
10093 	    txb->fragments[0]->data;
10094 	int i = 0;
10095 	struct tfd_frame *tfd;
10096 #ifdef CONFIG_IPW2200_QOS
10097 	int tx_id = ipw_get_tx_queue_number(priv, pri);
10098 	struct clx2_tx_queue *txq = &priv->txq[tx_id];
10099 #else
10100 	struct clx2_tx_queue *txq = &priv->txq[0];
10101 #endif
10102 	struct clx2_queue *q = &txq->q;
10103 	u8 id, hdr_len, unicast;
10104 	int fc;
10105 
10106 	if (!(priv->status & STATUS_ASSOCIATED))
10107 		goto drop;
10108 
10109 	hdr_len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10110 	switch (priv->ieee->iw_mode) {
10111 	case IW_MODE_ADHOC:
10112 		unicast = !is_multicast_ether_addr(hdr->addr1);
10113 		id = ipw_find_station(priv, hdr->addr1);
10114 		if (id == IPW_INVALID_STATION) {
10115 			id = ipw_add_station(priv, hdr->addr1);
10116 			if (id == IPW_INVALID_STATION) {
10117 				IPW_WARNING("Attempt to send data to "
10118 					    "invalid cell: %pM\n",
10119 					    hdr->addr1);
10120 				goto drop;
10121 			}
10122 		}
10123 		break;
10124 
10125 	case IW_MODE_INFRA:
10126 	default:
10127 		unicast = !is_multicast_ether_addr(hdr->addr3);
10128 		id = 0;
10129 		break;
10130 	}
10131 
10132 	tfd = &txq->bd[q->first_empty];
10133 	txq->txb[q->first_empty] = txb;
10134 	memset(tfd, 0, sizeof(*tfd));
10135 	tfd->u.data.station_number = id;
10136 
10137 	tfd->control_flags.message_type = TX_FRAME_TYPE;
10138 	tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10139 
10140 	tfd->u.data.cmd_id = DINO_CMD_TX;
10141 	tfd->u.data.len = cpu_to_le16(txb->payload_size);
10142 
10143 	if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10144 		tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10145 	else
10146 		tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10147 
10148 	if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10149 		tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10150 
10151 	fc = le16_to_cpu(hdr->frame_ctl);
10152 	hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10153 
10154 	memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10155 
10156 	if (likely(unicast))
10157 		tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10158 
10159 	if (txb->encrypted && !priv->ieee->host_encrypt) {
10160 		switch (priv->ieee->sec.level) {
10161 		case SEC_LEVEL_3:
10162 			tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10163 			    cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10164 			/* XXX: ACK flag must be set for CCMP even if it
10165 			 * is a multicast/broadcast packet, because CCMP
10166 			 * group communication encrypted by GTK is
10167 			 * actually done by the AP. */
10168 			if (!unicast)
10169 				tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10170 
10171 			tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10172 			tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10173 			tfd->u.data.key_index = 0;
10174 			tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10175 			break;
10176 		case SEC_LEVEL_2:
10177 			tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10178 			    cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10179 			tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10180 			tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10181 			tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10182 			break;
10183 		case SEC_LEVEL_1:
10184 			tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10185 			    cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10186 			tfd->u.data.key_index = priv->ieee->crypt_info.tx_keyidx;
10187 			if (priv->ieee->sec.key_sizes[priv->ieee->crypt_info.tx_keyidx] <=
10188 			    40)
10189 				tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10190 			else
10191 				tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10192 			break;
10193 		case SEC_LEVEL_0:
10194 			break;
10195 		default:
10196 			printk(KERN_ERR "Unknown security level %d\n",
10197 			       priv->ieee->sec.level);
10198 			break;
10199 		}
10200 	} else
10201 		/* No hardware encryption */
10202 		tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10203 
10204 #ifdef CONFIG_IPW2200_QOS
10205 	if (fc & IEEE80211_STYPE_QOS_DATA)
10206 		ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10207 #endif				/* CONFIG_IPW2200_QOS */
10208 
10209 	/* payload */
10210 	tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10211 						 txb->nr_frags));
10212 	IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10213 		       txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10214 	for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10215 		IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10216 			       i, le32_to_cpu(tfd->u.data.num_chunks),
10217 			       txb->fragments[i]->len - hdr_len);
10218 		IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10219 			     i, tfd->u.data.num_chunks,
10220 			     txb->fragments[i]->len - hdr_len);
10221 		printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10222 			   txb->fragments[i]->len - hdr_len);
10223 
10224 		tfd->u.data.chunk_ptr[i] =
10225 		    cpu_to_le32(pci_map_single
10226 				(priv->pci_dev,
10227 				 txb->fragments[i]->data + hdr_len,
10228 				 txb->fragments[i]->len - hdr_len,
10229 				 PCI_DMA_TODEVICE));
10230 		tfd->u.data.chunk_len[i] =
10231 		    cpu_to_le16(txb->fragments[i]->len - hdr_len);
10232 	}
10233 
10234 	if (i != txb->nr_frags) {
10235 		struct sk_buff *skb;
10236 		u16 remaining_bytes = 0;
10237 		int j;
10238 
10239 		for (j = i; j < txb->nr_frags; j++)
10240 			remaining_bytes += txb->fragments[j]->len - hdr_len;
10241 
10242 		printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10243 		       remaining_bytes);
10244 		skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10245 		if (skb != NULL) {
10246 			tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10247 			for (j = i; j < txb->nr_frags; j++) {
10248 				int size = txb->fragments[j]->len - hdr_len;
10249 
10250 				printk(KERN_INFO "Adding frag %d %d...\n",
10251 				       j, size);
10252 				skb_put_data(skb,
10253 					     txb->fragments[j]->data + hdr_len,
10254 					     size);
10255 			}
10256 			dev_kfree_skb_any(txb->fragments[i]);
10257 			txb->fragments[i] = skb;
10258 			tfd->u.data.chunk_ptr[i] =
10259 			    cpu_to_le32(pci_map_single
10260 					(priv->pci_dev, skb->data,
10261 					 remaining_bytes,
10262 					 PCI_DMA_TODEVICE));
10263 
10264 			le32_add_cpu(&tfd->u.data.num_chunks, 1);
10265 		}
10266 	}
10267 
10268 	/* kick DMA */
10269 	q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10270 	ipw_write32(priv, q->reg_w, q->first_empty);
10271 
10272 	if (ipw_tx_queue_space(q) < q->high_mark)
10273 		netif_stop_queue(priv->net_dev);
10274 
10275 	return NETDEV_TX_OK;
10276 
10277       drop:
10278 	IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10279 	libipw_txb_free(txb);
10280 	return NETDEV_TX_OK;
10281 }
10282 
10283 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10284 {
10285 	struct ipw_priv *priv = libipw_priv(dev);
10286 #ifdef CONFIG_IPW2200_QOS
10287 	int tx_id = ipw_get_tx_queue_number(priv, pri);
10288 	struct clx2_tx_queue *txq = &priv->txq[tx_id];
10289 #else
10290 	struct clx2_tx_queue *txq = &priv->txq[0];
10291 #endif				/* CONFIG_IPW2200_QOS */
10292 
10293 	if (ipw_tx_queue_space(&txq->q) < txq->q.high_mark)
10294 		return 1;
10295 
10296 	return 0;
10297 }
10298 
10299 #ifdef CONFIG_IPW2200_PROMISCUOUS
10300 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10301 				      struct libipw_txb *txb)
10302 {
10303 	struct libipw_rx_stats dummystats;
10304 	struct ieee80211_hdr *hdr;
10305 	u8 n;
10306 	u16 filter = priv->prom_priv->filter;
10307 	int hdr_only = 0;
10308 
10309 	if (filter & IPW_PROM_NO_TX)
10310 		return;
10311 
10312 	memset(&dummystats, 0, sizeof(dummystats));
10313 
10314 	/* Filtering of fragment chains is done against the first fragment */
10315 	hdr = (void *)txb->fragments[0]->data;
10316 	if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
10317 		if (filter & IPW_PROM_NO_MGMT)
10318 			return;
10319 		if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10320 			hdr_only = 1;
10321 	} else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
10322 		if (filter & IPW_PROM_NO_CTL)
10323 			return;
10324 		if (filter & IPW_PROM_CTL_HEADER_ONLY)
10325 			hdr_only = 1;
10326 	} else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
10327 		if (filter & IPW_PROM_NO_DATA)
10328 			return;
10329 		if (filter & IPW_PROM_DATA_HEADER_ONLY)
10330 			hdr_only = 1;
10331 	}
10332 
10333 	for(n=0; n<txb->nr_frags; ++n) {
10334 		struct sk_buff *src = txb->fragments[n];
10335 		struct sk_buff *dst;
10336 		struct ieee80211_radiotap_header *rt_hdr;
10337 		int len;
10338 
10339 		if (hdr_only) {
10340 			hdr = (void *)src->data;
10341 			len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
10342 		} else
10343 			len = src->len;
10344 
10345 		dst = alloc_skb(len + sizeof(*rt_hdr) + sizeof(u16)*2, GFP_ATOMIC);
10346 		if (!dst)
10347 			continue;
10348 
10349 		rt_hdr = skb_put(dst, sizeof(*rt_hdr));
10350 
10351 		rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10352 		rt_hdr->it_pad = 0;
10353 		rt_hdr->it_present = 0; /* after all, it's just an idea */
10354 		rt_hdr->it_present |=  cpu_to_le32(1 << IEEE80211_RADIOTAP_CHANNEL);
10355 
10356 		*(__le16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10357 			ieee80211chan2mhz(priv->channel));
10358 		if (priv->channel > 14) 	/* 802.11a */
10359 			*(__le16*)skb_put(dst, sizeof(u16)) =
10360 				cpu_to_le16(IEEE80211_CHAN_OFDM |
10361 					     IEEE80211_CHAN_5GHZ);
10362 		else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10363 			*(__le16*)skb_put(dst, sizeof(u16)) =
10364 				cpu_to_le16(IEEE80211_CHAN_CCK |
10365 					     IEEE80211_CHAN_2GHZ);
10366 		else 		/* 802.11g */
10367 			*(__le16*)skb_put(dst, sizeof(u16)) =
10368 				cpu_to_le16(IEEE80211_CHAN_OFDM |
10369 				 IEEE80211_CHAN_2GHZ);
10370 
10371 		rt_hdr->it_len = cpu_to_le16(dst->len);
10372 
10373 		skb_copy_from_linear_data(src, skb_put(dst, len), len);
10374 
10375 		if (!libipw_rx(priv->prom_priv->ieee, dst, &dummystats))
10376 			dev_kfree_skb_any(dst);
10377 	}
10378 }
10379 #endif
10380 
10381 static netdev_tx_t ipw_net_hard_start_xmit(struct libipw_txb *txb,
10382 					   struct net_device *dev, int pri)
10383 {
10384 	struct ipw_priv *priv = libipw_priv(dev);
10385 	unsigned long flags;
10386 	netdev_tx_t ret;
10387 
10388 	IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10389 	spin_lock_irqsave(&priv->lock, flags);
10390 
10391 #ifdef CONFIG_IPW2200_PROMISCUOUS
10392 	if (rtap_iface && netif_running(priv->prom_net_dev))
10393 		ipw_handle_promiscuous_tx(priv, txb);
10394 #endif
10395 
10396 	ret = ipw_tx_skb(priv, txb, pri);
10397 	if (ret == NETDEV_TX_OK)
10398 		__ipw_led_activity_on(priv);
10399 	spin_unlock_irqrestore(&priv->lock, flags);
10400 
10401 	return ret;
10402 }
10403 
10404 static void ipw_net_set_multicast_list(struct net_device *dev)
10405 {
10406 
10407 }
10408 
10409 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10410 {
10411 	struct ipw_priv *priv = libipw_priv(dev);
10412 	struct sockaddr *addr = p;
10413 
10414 	if (!is_valid_ether_addr(addr->sa_data))
10415 		return -EADDRNOTAVAIL;
10416 	mutex_lock(&priv->mutex);
10417 	priv->config |= CFG_CUSTOM_MAC;
10418 	memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10419 	printk(KERN_INFO "%s: Setting MAC to %pM\n",
10420 	       priv->net_dev->name, priv->mac_addr);
10421 	schedule_work(&priv->adapter_restart);
10422 	mutex_unlock(&priv->mutex);
10423 	return 0;
10424 }
10425 
10426 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10427 				    struct ethtool_drvinfo *info)
10428 {
10429 	struct ipw_priv *p = libipw_priv(dev);
10430 	char vers[64];
10431 	char date[32];
10432 	u32 len;
10433 
10434 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
10435 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
10436 
10437 	len = sizeof(vers);
10438 	ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10439 	len = sizeof(date);
10440 	ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10441 
10442 	snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10443 		 vers, date);
10444 	strlcpy(info->bus_info, pci_name(p->pci_dev),
10445 		sizeof(info->bus_info));
10446 }
10447 
10448 static u32 ipw_ethtool_get_link(struct net_device *dev)
10449 {
10450 	struct ipw_priv *priv = libipw_priv(dev);
10451 	return (priv->status & STATUS_ASSOCIATED) != 0;
10452 }
10453 
10454 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10455 {
10456 	return IPW_EEPROM_IMAGE_SIZE;
10457 }
10458 
10459 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10460 				  struct ethtool_eeprom *eeprom, u8 * bytes)
10461 {
10462 	struct ipw_priv *p = libipw_priv(dev);
10463 
10464 	if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10465 		return -EINVAL;
10466 	mutex_lock(&p->mutex);
10467 	memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10468 	mutex_unlock(&p->mutex);
10469 	return 0;
10470 }
10471 
10472 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10473 				  struct ethtool_eeprom *eeprom, u8 * bytes)
10474 {
10475 	struct ipw_priv *p = libipw_priv(dev);
10476 	int i;
10477 
10478 	if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10479 		return -EINVAL;
10480 	mutex_lock(&p->mutex);
10481 	memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10482 	for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10483 		ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10484 	mutex_unlock(&p->mutex);
10485 	return 0;
10486 }
10487 
10488 static const struct ethtool_ops ipw_ethtool_ops = {
10489 	.get_link = ipw_ethtool_get_link,
10490 	.get_drvinfo = ipw_ethtool_get_drvinfo,
10491 	.get_eeprom_len = ipw_ethtool_get_eeprom_len,
10492 	.get_eeprom = ipw_ethtool_get_eeprom,
10493 	.set_eeprom = ipw_ethtool_set_eeprom,
10494 };
10495 
10496 static irqreturn_t ipw_isr(int irq, void *data)
10497 {
10498 	struct ipw_priv *priv = data;
10499 	u32 inta, inta_mask;
10500 
10501 	if (!priv)
10502 		return IRQ_NONE;
10503 
10504 	spin_lock(&priv->irq_lock);
10505 
10506 	if (!(priv->status & STATUS_INT_ENABLED)) {
10507 		/* IRQ is disabled */
10508 		goto none;
10509 	}
10510 
10511 	inta = ipw_read32(priv, IPW_INTA_RW);
10512 	inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10513 
10514 	if (inta == 0xFFFFFFFF) {
10515 		/* Hardware disappeared */
10516 		IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10517 		goto none;
10518 	}
10519 
10520 	if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10521 		/* Shared interrupt */
10522 		goto none;
10523 	}
10524 
10525 	/* tell the device to stop sending interrupts */
10526 	__ipw_disable_interrupts(priv);
10527 
10528 	/* ack current interrupts */
10529 	inta &= (IPW_INTA_MASK_ALL & inta_mask);
10530 	ipw_write32(priv, IPW_INTA_RW, inta);
10531 
10532 	/* Cache INTA value for our tasklet */
10533 	priv->isr_inta = inta;
10534 
10535 	tasklet_schedule(&priv->irq_tasklet);
10536 
10537 	spin_unlock(&priv->irq_lock);
10538 
10539 	return IRQ_HANDLED;
10540       none:
10541 	spin_unlock(&priv->irq_lock);
10542 	return IRQ_NONE;
10543 }
10544 
10545 static void ipw_rf_kill(void *adapter)
10546 {
10547 	struct ipw_priv *priv = adapter;
10548 	unsigned long flags;
10549 
10550 	spin_lock_irqsave(&priv->lock, flags);
10551 
10552 	if (rf_kill_active(priv)) {
10553 		IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10554 		schedule_delayed_work(&priv->rf_kill, 2 * HZ);
10555 		goto exit_unlock;
10556 	}
10557 
10558 	/* RF Kill is now disabled, so bring the device back up */
10559 
10560 	if (!(priv->status & STATUS_RF_KILL_MASK)) {
10561 		IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10562 				  "device\n");
10563 
10564 		/* we can not do an adapter restart while inside an irq lock */
10565 		schedule_work(&priv->adapter_restart);
10566 	} else
10567 		IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
10568 				  "enabled\n");
10569 
10570       exit_unlock:
10571 	spin_unlock_irqrestore(&priv->lock, flags);
10572 }
10573 
10574 static void ipw_bg_rf_kill(struct work_struct *work)
10575 {
10576 	struct ipw_priv *priv =
10577 		container_of(work, struct ipw_priv, rf_kill.work);
10578 	mutex_lock(&priv->mutex);
10579 	ipw_rf_kill(priv);
10580 	mutex_unlock(&priv->mutex);
10581 }
10582 
10583 static void ipw_link_up(struct ipw_priv *priv)
10584 {
10585 	priv->last_seq_num = -1;
10586 	priv->last_frag_num = -1;
10587 	priv->last_packet_time = 0;
10588 
10589 	netif_carrier_on(priv->net_dev);
10590 
10591 	cancel_delayed_work(&priv->request_scan);
10592 	cancel_delayed_work(&priv->request_direct_scan);
10593 	cancel_delayed_work(&priv->request_passive_scan);
10594 	cancel_delayed_work(&priv->scan_event);
10595 	ipw_reset_stats(priv);
10596 	/* Ensure the rate is updated immediately */
10597 	priv->last_rate = ipw_get_current_rate(priv);
10598 	ipw_gather_stats(priv);
10599 	ipw_led_link_up(priv);
10600 	notify_wx_assoc_event(priv);
10601 
10602 	if (priv->config & CFG_BACKGROUND_SCAN)
10603 		schedule_delayed_work(&priv->request_scan, HZ);
10604 }
10605 
10606 static void ipw_bg_link_up(struct work_struct *work)
10607 {
10608 	struct ipw_priv *priv =
10609 		container_of(work, struct ipw_priv, link_up);
10610 	mutex_lock(&priv->mutex);
10611 	ipw_link_up(priv);
10612 	mutex_unlock(&priv->mutex);
10613 }
10614 
10615 static void ipw_link_down(struct ipw_priv *priv)
10616 {
10617 	ipw_led_link_down(priv);
10618 	netif_carrier_off(priv->net_dev);
10619 	notify_wx_assoc_event(priv);
10620 
10621 	/* Cancel any queued work ... */
10622 	cancel_delayed_work(&priv->request_scan);
10623 	cancel_delayed_work(&priv->request_direct_scan);
10624 	cancel_delayed_work(&priv->request_passive_scan);
10625 	cancel_delayed_work(&priv->adhoc_check);
10626 	cancel_delayed_work(&priv->gather_stats);
10627 
10628 	ipw_reset_stats(priv);
10629 
10630 	if (!(priv->status & STATUS_EXIT_PENDING)) {
10631 		/* Queue up another scan... */
10632 		schedule_delayed_work(&priv->request_scan, 0);
10633 	} else
10634 		cancel_delayed_work(&priv->scan_event);
10635 }
10636 
10637 static void ipw_bg_link_down(struct work_struct *work)
10638 {
10639 	struct ipw_priv *priv =
10640 		container_of(work, struct ipw_priv, link_down);
10641 	mutex_lock(&priv->mutex);
10642 	ipw_link_down(priv);
10643 	mutex_unlock(&priv->mutex);
10644 }
10645 
10646 static int ipw_setup_deferred_work(struct ipw_priv *priv)
10647 {
10648 	int ret = 0;
10649 
10650 	init_waitqueue_head(&priv->wait_command_queue);
10651 	init_waitqueue_head(&priv->wait_state);
10652 
10653 	INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10654 	INIT_WORK(&priv->associate, ipw_bg_associate);
10655 	INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10656 	INIT_WORK(&priv->system_config, ipw_system_config);
10657 	INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10658 	INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10659 	INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10660 	INIT_WORK(&priv->up, ipw_bg_up);
10661 	INIT_WORK(&priv->down, ipw_bg_down);
10662 	INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10663 	INIT_DELAYED_WORK(&priv->request_direct_scan, ipw_request_direct_scan);
10664 	INIT_DELAYED_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10665 	INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event);
10666 	INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10667 	INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10668 	INIT_WORK(&priv->roam, ipw_bg_roam);
10669 	INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10670 	INIT_WORK(&priv->link_up, ipw_bg_link_up);
10671 	INIT_WORK(&priv->link_down, ipw_bg_link_down);
10672 	INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10673 	INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10674 	INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10675 	INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10676 
10677 #ifdef CONFIG_IPW2200_QOS
10678 	INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10679 #endif				/* CONFIG_IPW2200_QOS */
10680 
10681 	tasklet_init(&priv->irq_tasklet,
10682 		     ipw_irq_tasklet, (unsigned long)priv);
10683 
10684 	return ret;
10685 }
10686 
10687 static void shim__set_security(struct net_device *dev,
10688 			       struct libipw_security *sec)
10689 {
10690 	struct ipw_priv *priv = libipw_priv(dev);
10691 	int i;
10692 	for (i = 0; i < 4; i++) {
10693 		if (sec->flags & (1 << i)) {
10694 			priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10695 			priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10696 			if (sec->key_sizes[i] == 0)
10697 				priv->ieee->sec.flags &= ~(1 << i);
10698 			else {
10699 				memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10700 				       sec->key_sizes[i]);
10701 				priv->ieee->sec.flags |= (1 << i);
10702 			}
10703 			priv->status |= STATUS_SECURITY_UPDATED;
10704 		} else if (sec->level != SEC_LEVEL_1)
10705 			priv->ieee->sec.flags &= ~(1 << i);
10706 	}
10707 
10708 	if (sec->flags & SEC_ACTIVE_KEY) {
10709 		priv->ieee->sec.active_key = sec->active_key;
10710 		priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10711 		priv->status |= STATUS_SECURITY_UPDATED;
10712 	} else
10713 		priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10714 
10715 	if ((sec->flags & SEC_AUTH_MODE) &&
10716 	    (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10717 		priv->ieee->sec.auth_mode = sec->auth_mode;
10718 		priv->ieee->sec.flags |= SEC_AUTH_MODE;
10719 		if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10720 			priv->capability |= CAP_SHARED_KEY;
10721 		else
10722 			priv->capability &= ~CAP_SHARED_KEY;
10723 		priv->status |= STATUS_SECURITY_UPDATED;
10724 	}
10725 
10726 	if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10727 		priv->ieee->sec.flags |= SEC_ENABLED;
10728 		priv->ieee->sec.enabled = sec->enabled;
10729 		priv->status |= STATUS_SECURITY_UPDATED;
10730 		if (sec->enabled)
10731 			priv->capability |= CAP_PRIVACY_ON;
10732 		else
10733 			priv->capability &= ~CAP_PRIVACY_ON;
10734 	}
10735 
10736 	if (sec->flags & SEC_ENCRYPT)
10737 		priv->ieee->sec.encrypt = sec->encrypt;
10738 
10739 	if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10740 		priv->ieee->sec.level = sec->level;
10741 		priv->ieee->sec.flags |= SEC_LEVEL;
10742 		priv->status |= STATUS_SECURITY_UPDATED;
10743 	}
10744 
10745 	if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10746 		ipw_set_hwcrypto_keys(priv);
10747 
10748 	/* To match current functionality of ipw2100 (which works well w/
10749 	 * various supplicants, we don't force a disassociate if the
10750 	 * privacy capability changes ... */
10751 #if 0
10752 	if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10753 	    (((priv->assoc_request.capability &
10754 	       cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && !sec->enabled) ||
10755 	     (!(priv->assoc_request.capability &
10756 		cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && sec->enabled))) {
10757 		IPW_DEBUG_ASSOC("Disassociating due to capability "
10758 				"change.\n");
10759 		ipw_disassociate(priv);
10760 	}
10761 #endif
10762 }
10763 
10764 static int init_supported_rates(struct ipw_priv *priv,
10765 				struct ipw_supported_rates *rates)
10766 {
10767 	/* TODO: Mask out rates based on priv->rates_mask */
10768 
10769 	memset(rates, 0, sizeof(*rates));
10770 	/* configure supported rates */
10771 	switch (priv->ieee->freq_band) {
10772 	case LIBIPW_52GHZ_BAND:
10773 		rates->ieee_mode = IPW_A_MODE;
10774 		rates->purpose = IPW_RATE_CAPABILITIES;
10775 		ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10776 					LIBIPW_OFDM_DEFAULT_RATES_MASK);
10777 		break;
10778 
10779 	default:		/* Mixed or 2.4Ghz */
10780 		rates->ieee_mode = IPW_G_MODE;
10781 		rates->purpose = IPW_RATE_CAPABILITIES;
10782 		ipw_add_cck_scan_rates(rates, LIBIPW_CCK_MODULATION,
10783 				       LIBIPW_CCK_DEFAULT_RATES_MASK);
10784 		if (priv->ieee->modulation & LIBIPW_OFDM_MODULATION) {
10785 			ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10786 						LIBIPW_OFDM_DEFAULT_RATES_MASK);
10787 		}
10788 		break;
10789 	}
10790 
10791 	return 0;
10792 }
10793 
10794 static int ipw_config(struct ipw_priv *priv)
10795 {
10796 	/* This is only called from ipw_up, which resets/reloads the firmware
10797 	   so, we don't need to first disable the card before we configure
10798 	   it */
10799 	if (ipw_set_tx_power(priv))
10800 		goto error;
10801 
10802 	/* initialize adapter address */
10803 	if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10804 		goto error;
10805 
10806 	/* set basic system config settings */
10807 	init_sys_config(&priv->sys_config);
10808 
10809 	/* Support Bluetooth if we have BT h/w on board, and user wants to.
10810 	 * Does not support BT priority yet (don't abort or defer our Tx) */
10811 	if (bt_coexist) {
10812 		unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10813 
10814 		if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10815 			priv->sys_config.bt_coexistence
10816 			    |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10817 		if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10818 			priv->sys_config.bt_coexistence
10819 			    |= CFG_BT_COEXISTENCE_OOB;
10820 	}
10821 
10822 #ifdef CONFIG_IPW2200_PROMISCUOUS
10823 	if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10824 		priv->sys_config.accept_all_data_frames = 1;
10825 		priv->sys_config.accept_non_directed_frames = 1;
10826 		priv->sys_config.accept_all_mgmt_bcpr = 1;
10827 		priv->sys_config.accept_all_mgmt_frames = 1;
10828 	}
10829 #endif
10830 
10831 	if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10832 		priv->sys_config.answer_broadcast_ssid_probe = 1;
10833 	else
10834 		priv->sys_config.answer_broadcast_ssid_probe = 0;
10835 
10836 	if (ipw_send_system_config(priv))
10837 		goto error;
10838 
10839 	init_supported_rates(priv, &priv->rates);
10840 	if (ipw_send_supported_rates(priv, &priv->rates))
10841 		goto error;
10842 
10843 	/* Set request-to-send threshold */
10844 	if (priv->rts_threshold) {
10845 		if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10846 			goto error;
10847 	}
10848 #ifdef CONFIG_IPW2200_QOS
10849 	IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10850 	ipw_qos_activate(priv, NULL);
10851 #endif				/* CONFIG_IPW2200_QOS */
10852 
10853 	if (ipw_set_random_seed(priv))
10854 		goto error;
10855 
10856 	/* final state transition to the RUN state */
10857 	if (ipw_send_host_complete(priv))
10858 		goto error;
10859 
10860 	priv->status |= STATUS_INIT;
10861 
10862 	ipw_led_init(priv);
10863 	ipw_led_radio_on(priv);
10864 	priv->notif_missed_beacons = 0;
10865 
10866 	/* Set hardware WEP key if it is configured. */
10867 	if ((priv->capability & CAP_PRIVACY_ON) &&
10868 	    (priv->ieee->sec.level == SEC_LEVEL_1) &&
10869 	    !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10870 		ipw_set_hwcrypto_keys(priv);
10871 
10872 	return 0;
10873 
10874       error:
10875 	return -EIO;
10876 }
10877 
10878 /*
10879  * NOTE:
10880  *
10881  * These tables have been tested in conjunction with the
10882  * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10883  *
10884  * Altering this values, using it on other hardware, or in geographies
10885  * not intended for resale of the above mentioned Intel adapters has
10886  * not been tested.
10887  *
10888  * Remember to update the table in README.ipw2200 when changing this
10889  * table.
10890  *
10891  */
10892 static const struct libipw_geo ipw_geos[] = {
10893 	{			/* Restricted */
10894 	 "---",
10895 	 .bg_channels = 11,
10896 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10897 		{2427, 4}, {2432, 5}, {2437, 6},
10898 		{2442, 7}, {2447, 8}, {2452, 9},
10899 		{2457, 10}, {2462, 11}},
10900 	 },
10901 
10902 	{			/* Custom US/Canada */
10903 	 "ZZF",
10904 	 .bg_channels = 11,
10905 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10906 		{2427, 4}, {2432, 5}, {2437, 6},
10907 		{2442, 7}, {2447, 8}, {2452, 9},
10908 		{2457, 10}, {2462, 11}},
10909 	 .a_channels = 8,
10910 	 .a = {{5180, 36},
10911 	       {5200, 40},
10912 	       {5220, 44},
10913 	       {5240, 48},
10914 	       {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10915 	       {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10916 	       {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10917 	       {5320, 64, LIBIPW_CH_PASSIVE_ONLY}},
10918 	 },
10919 
10920 	{			/* Rest of World */
10921 	 "ZZD",
10922 	 .bg_channels = 13,
10923 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10924 		{2427, 4}, {2432, 5}, {2437, 6},
10925 		{2442, 7}, {2447, 8}, {2452, 9},
10926 		{2457, 10}, {2462, 11}, {2467, 12},
10927 		{2472, 13}},
10928 	 },
10929 
10930 	{			/* Custom USA & Europe & High */
10931 	 "ZZA",
10932 	 .bg_channels = 11,
10933 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10934 		{2427, 4}, {2432, 5}, {2437, 6},
10935 		{2442, 7}, {2447, 8}, {2452, 9},
10936 		{2457, 10}, {2462, 11}},
10937 	 .a_channels = 13,
10938 	 .a = {{5180, 36},
10939 	       {5200, 40},
10940 	       {5220, 44},
10941 	       {5240, 48},
10942 	       {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10943 	       {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10944 	       {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10945 	       {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
10946 	       {5745, 149},
10947 	       {5765, 153},
10948 	       {5785, 157},
10949 	       {5805, 161},
10950 	       {5825, 165}},
10951 	 },
10952 
10953 	{			/* Custom NA & Europe */
10954 	 "ZZB",
10955 	 .bg_channels = 11,
10956 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10957 		{2427, 4}, {2432, 5}, {2437, 6},
10958 		{2442, 7}, {2447, 8}, {2452, 9},
10959 		{2457, 10}, {2462, 11}},
10960 	 .a_channels = 13,
10961 	 .a = {{5180, 36},
10962 	       {5200, 40},
10963 	       {5220, 44},
10964 	       {5240, 48},
10965 	       {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10966 	       {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10967 	       {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10968 	       {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
10969 	       {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
10970 	       {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
10971 	       {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
10972 	       {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
10973 	       {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
10974 	 },
10975 
10976 	{			/* Custom Japan */
10977 	 "ZZC",
10978 	 .bg_channels = 11,
10979 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10980 		{2427, 4}, {2432, 5}, {2437, 6},
10981 		{2442, 7}, {2447, 8}, {2452, 9},
10982 		{2457, 10}, {2462, 11}},
10983 	 .a_channels = 4,
10984 	 .a = {{5170, 34}, {5190, 38},
10985 	       {5210, 42}, {5230, 46}},
10986 	 },
10987 
10988 	{			/* Custom */
10989 	 "ZZM",
10990 	 .bg_channels = 11,
10991 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10992 		{2427, 4}, {2432, 5}, {2437, 6},
10993 		{2442, 7}, {2447, 8}, {2452, 9},
10994 		{2457, 10}, {2462, 11}},
10995 	 },
10996 
10997 	{			/* Europe */
10998 	 "ZZE",
10999 	 .bg_channels = 13,
11000 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11001 		{2427, 4}, {2432, 5}, {2437, 6},
11002 		{2442, 7}, {2447, 8}, {2452, 9},
11003 		{2457, 10}, {2462, 11}, {2467, 12},
11004 		{2472, 13}},
11005 	 .a_channels = 19,
11006 	 .a = {{5180, 36},
11007 	       {5200, 40},
11008 	       {5220, 44},
11009 	       {5240, 48},
11010 	       {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11011 	       {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11012 	       {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11013 	       {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11014 	       {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11015 	       {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11016 	       {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11017 	       {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11018 	       {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11019 	       {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11020 	       {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11021 	       {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11022 	       {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11023 	       {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11024 	       {5700, 140, LIBIPW_CH_PASSIVE_ONLY}},
11025 	 },
11026 
11027 	{			/* Custom Japan */
11028 	 "ZZJ",
11029 	 .bg_channels = 14,
11030 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11031 		{2427, 4}, {2432, 5}, {2437, 6},
11032 		{2442, 7}, {2447, 8}, {2452, 9},
11033 		{2457, 10}, {2462, 11}, {2467, 12},
11034 		{2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY}},
11035 	 .a_channels = 4,
11036 	 .a = {{5170, 34}, {5190, 38},
11037 	       {5210, 42}, {5230, 46}},
11038 	 },
11039 
11040 	{			/* Rest of World */
11041 	 "ZZR",
11042 	 .bg_channels = 14,
11043 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11044 		{2427, 4}, {2432, 5}, {2437, 6},
11045 		{2442, 7}, {2447, 8}, {2452, 9},
11046 		{2457, 10}, {2462, 11}, {2467, 12},
11047 		{2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY |
11048 			     LIBIPW_CH_PASSIVE_ONLY}},
11049 	 },
11050 
11051 	{			/* High Band */
11052 	 "ZZH",
11053 	 .bg_channels = 13,
11054 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11055 		{2427, 4}, {2432, 5}, {2437, 6},
11056 		{2442, 7}, {2447, 8}, {2452, 9},
11057 		{2457, 10}, {2462, 11},
11058 		{2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11059 		{2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11060 	 .a_channels = 4,
11061 	 .a = {{5745, 149}, {5765, 153},
11062 	       {5785, 157}, {5805, 161}},
11063 	 },
11064 
11065 	{			/* Custom Europe */
11066 	 "ZZG",
11067 	 .bg_channels = 13,
11068 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11069 		{2427, 4}, {2432, 5}, {2437, 6},
11070 		{2442, 7}, {2447, 8}, {2452, 9},
11071 		{2457, 10}, {2462, 11},
11072 		{2467, 12}, {2472, 13}},
11073 	 .a_channels = 4,
11074 	 .a = {{5180, 36}, {5200, 40},
11075 	       {5220, 44}, {5240, 48}},
11076 	 },
11077 
11078 	{			/* Europe */
11079 	 "ZZK",
11080 	 .bg_channels = 13,
11081 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11082 		{2427, 4}, {2432, 5}, {2437, 6},
11083 		{2442, 7}, {2447, 8}, {2452, 9},
11084 		{2457, 10}, {2462, 11},
11085 		{2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11086 		{2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11087 	 .a_channels = 24,
11088 	 .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11089 	       {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11090 	       {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11091 	       {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11092 	       {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11093 	       {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11094 	       {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11095 	       {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11096 	       {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11097 	       {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11098 	       {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11099 	       {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11100 	       {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11101 	       {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11102 	       {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11103 	       {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11104 	       {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11105 	       {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11106 	       {5700, 140, LIBIPW_CH_PASSIVE_ONLY},
11107 	       {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11108 	       {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11109 	       {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11110 	       {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11111 	       {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11112 	 },
11113 
11114 	{			/* Europe */
11115 	 "ZZL",
11116 	 .bg_channels = 11,
11117 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11118 		{2427, 4}, {2432, 5}, {2437, 6},
11119 		{2442, 7}, {2447, 8}, {2452, 9},
11120 		{2457, 10}, {2462, 11}},
11121 	 .a_channels = 13,
11122 	 .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11123 	       {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11124 	       {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11125 	       {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11126 	       {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11127 	       {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11128 	       {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11129 	       {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11130 	       {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11131 	       {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11132 	       {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11133 	       {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11134 	       {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11135 	 }
11136 };
11137 
11138 static void ipw_set_geo(struct ipw_priv *priv)
11139 {
11140 	int j;
11141 
11142 	for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11143 		if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11144 			    ipw_geos[j].name, 3))
11145 			break;
11146 	}
11147 
11148 	if (j == ARRAY_SIZE(ipw_geos)) {
11149 		IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11150 			    priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11151 			    priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11152 			    priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11153 		j = 0;
11154 	}
11155 
11156 	libipw_set_geo(priv->ieee, &ipw_geos[j]);
11157 }
11158 
11159 #define MAX_HW_RESTARTS 5
11160 static int ipw_up(struct ipw_priv *priv)
11161 {
11162 	int rc, i;
11163 
11164 	/* Age scan list entries found before suspend */
11165 	if (priv->suspend_time) {
11166 		libipw_networks_age(priv->ieee, priv->suspend_time);
11167 		priv->suspend_time = 0;
11168 	}
11169 
11170 	if (priv->status & STATUS_EXIT_PENDING)
11171 		return -EIO;
11172 
11173 	if (cmdlog && !priv->cmdlog) {
11174 		priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
11175 				       GFP_KERNEL);
11176 		if (priv->cmdlog == NULL) {
11177 			IPW_ERROR("Error allocating %d command log entries.\n",
11178 				  cmdlog);
11179 			return -ENOMEM;
11180 		} else {
11181 			priv->cmdlog_len = cmdlog;
11182 		}
11183 	}
11184 
11185 	for (i = 0; i < MAX_HW_RESTARTS; i++) {
11186 		/* Load the microcode, firmware, and eeprom.
11187 		 * Also start the clocks. */
11188 		rc = ipw_load(priv);
11189 		if (rc) {
11190 			IPW_ERROR("Unable to load firmware: %d\n", rc);
11191 			return rc;
11192 		}
11193 
11194 		ipw_init_ordinals(priv);
11195 		if (!(priv->config & CFG_CUSTOM_MAC))
11196 			eeprom_parse_mac(priv, priv->mac_addr);
11197 		memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11198 
11199 		ipw_set_geo(priv);
11200 
11201 		if (priv->status & STATUS_RF_KILL_SW) {
11202 			IPW_WARNING("Radio disabled by module parameter.\n");
11203 			return 0;
11204 		} else if (rf_kill_active(priv)) {
11205 			IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11206 				    "Kill switch must be turned off for "
11207 				    "wireless networking to work.\n");
11208 			schedule_delayed_work(&priv->rf_kill, 2 * HZ);
11209 			return 0;
11210 		}
11211 
11212 		rc = ipw_config(priv);
11213 		if (!rc) {
11214 			IPW_DEBUG_INFO("Configured device on count %i\n", i);
11215 
11216 			/* If configure to try and auto-associate, kick
11217 			 * off a scan. */
11218 			schedule_delayed_work(&priv->request_scan, 0);
11219 
11220 			return 0;
11221 		}
11222 
11223 		IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11224 		IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11225 			       i, MAX_HW_RESTARTS);
11226 
11227 		/* We had an error bringing up the hardware, so take it
11228 		 * all the way back down so we can try again */
11229 		ipw_down(priv);
11230 	}
11231 
11232 	/* tried to restart and config the device for as long as our
11233 	 * patience could withstand */
11234 	IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11235 
11236 	return -EIO;
11237 }
11238 
11239 static void ipw_bg_up(struct work_struct *work)
11240 {
11241 	struct ipw_priv *priv =
11242 		container_of(work, struct ipw_priv, up);
11243 	mutex_lock(&priv->mutex);
11244 	ipw_up(priv);
11245 	mutex_unlock(&priv->mutex);
11246 }
11247 
11248 static void ipw_deinit(struct ipw_priv *priv)
11249 {
11250 	int i;
11251 
11252 	if (priv->status & STATUS_SCANNING) {
11253 		IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11254 		ipw_abort_scan(priv);
11255 	}
11256 
11257 	if (priv->status & STATUS_ASSOCIATED) {
11258 		IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11259 		ipw_disassociate(priv);
11260 	}
11261 
11262 	ipw_led_shutdown(priv);
11263 
11264 	/* Wait up to 1s for status to change to not scanning and not
11265 	 * associated (disassociation can take a while for a ful 802.11
11266 	 * exchange */
11267 	for (i = 1000; i && (priv->status &
11268 			     (STATUS_DISASSOCIATING |
11269 			      STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11270 		udelay(10);
11271 
11272 	if (priv->status & (STATUS_DISASSOCIATING |
11273 			    STATUS_ASSOCIATED | STATUS_SCANNING))
11274 		IPW_DEBUG_INFO("Still associated or scanning...\n");
11275 	else
11276 		IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11277 
11278 	/* Attempt to disable the card */
11279 	ipw_send_card_disable(priv, 0);
11280 
11281 	priv->status &= ~STATUS_INIT;
11282 }
11283 
11284 static void ipw_down(struct ipw_priv *priv)
11285 {
11286 	int exit_pending = priv->status & STATUS_EXIT_PENDING;
11287 
11288 	priv->status |= STATUS_EXIT_PENDING;
11289 
11290 	if (ipw_is_init(priv))
11291 		ipw_deinit(priv);
11292 
11293 	/* Wipe out the EXIT_PENDING status bit if we are not actually
11294 	 * exiting the module */
11295 	if (!exit_pending)
11296 		priv->status &= ~STATUS_EXIT_PENDING;
11297 
11298 	/* tell the device to stop sending interrupts */
11299 	ipw_disable_interrupts(priv);
11300 
11301 	/* Clear all bits but the RF Kill */
11302 	priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11303 	netif_carrier_off(priv->net_dev);
11304 
11305 	ipw_stop_nic(priv);
11306 
11307 	ipw_led_radio_off(priv);
11308 }
11309 
11310 static void ipw_bg_down(struct work_struct *work)
11311 {
11312 	struct ipw_priv *priv =
11313 		container_of(work, struct ipw_priv, down);
11314 	mutex_lock(&priv->mutex);
11315 	ipw_down(priv);
11316 	mutex_unlock(&priv->mutex);
11317 }
11318 
11319 static int ipw_wdev_init(struct net_device *dev)
11320 {
11321 	int i, rc = 0;
11322 	struct ipw_priv *priv = libipw_priv(dev);
11323 	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
11324 	struct wireless_dev *wdev = &priv->ieee->wdev;
11325 
11326 	memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
11327 
11328 	/* fill-out priv->ieee->bg_band */
11329 	if (geo->bg_channels) {
11330 		struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
11331 
11332 		bg_band->band = NL80211_BAND_2GHZ;
11333 		bg_band->n_channels = geo->bg_channels;
11334 		bg_band->channels = kcalloc(geo->bg_channels,
11335 					    sizeof(struct ieee80211_channel),
11336 					    GFP_KERNEL);
11337 		if (!bg_band->channels) {
11338 			rc = -ENOMEM;
11339 			goto out;
11340 		}
11341 		/* translate geo->bg to bg_band.channels */
11342 		for (i = 0; i < geo->bg_channels; i++) {
11343 			bg_band->channels[i].band = NL80211_BAND_2GHZ;
11344 			bg_band->channels[i].center_freq = geo->bg[i].freq;
11345 			bg_band->channels[i].hw_value = geo->bg[i].channel;
11346 			bg_band->channels[i].max_power = geo->bg[i].max_power;
11347 			if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11348 				bg_band->channels[i].flags |=
11349 					IEEE80211_CHAN_NO_IR;
11350 			if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
11351 				bg_band->channels[i].flags |=
11352 					IEEE80211_CHAN_NO_IR;
11353 			if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
11354 				bg_band->channels[i].flags |=
11355 					IEEE80211_CHAN_RADAR;
11356 			/* No equivalent for LIBIPW_CH_80211H_RULES,
11357 			   LIBIPW_CH_UNIFORM_SPREADING, or
11358 			   LIBIPW_CH_B_ONLY... */
11359 		}
11360 		/* point at bitrate info */
11361 		bg_band->bitrates = ipw2200_bg_rates;
11362 		bg_band->n_bitrates = ipw2200_num_bg_rates;
11363 
11364 		wdev->wiphy->bands[NL80211_BAND_2GHZ] = bg_band;
11365 	}
11366 
11367 	/* fill-out priv->ieee->a_band */
11368 	if (geo->a_channels) {
11369 		struct ieee80211_supported_band *a_band = &priv->ieee->a_band;
11370 
11371 		a_band->band = NL80211_BAND_5GHZ;
11372 		a_band->n_channels = geo->a_channels;
11373 		a_band->channels = kcalloc(geo->a_channels,
11374 					   sizeof(struct ieee80211_channel),
11375 					   GFP_KERNEL);
11376 		if (!a_band->channels) {
11377 			rc = -ENOMEM;
11378 			goto out;
11379 		}
11380 		/* translate geo->a to a_band.channels */
11381 		for (i = 0; i < geo->a_channels; i++) {
11382 			a_band->channels[i].band = NL80211_BAND_5GHZ;
11383 			a_band->channels[i].center_freq = geo->a[i].freq;
11384 			a_band->channels[i].hw_value = geo->a[i].channel;
11385 			a_band->channels[i].max_power = geo->a[i].max_power;
11386 			if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11387 				a_band->channels[i].flags |=
11388 					IEEE80211_CHAN_NO_IR;
11389 			if (geo->a[i].flags & LIBIPW_CH_NO_IBSS)
11390 				a_band->channels[i].flags |=
11391 					IEEE80211_CHAN_NO_IR;
11392 			if (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT)
11393 				a_band->channels[i].flags |=
11394 					IEEE80211_CHAN_RADAR;
11395 			/* No equivalent for LIBIPW_CH_80211H_RULES,
11396 			   LIBIPW_CH_UNIFORM_SPREADING, or
11397 			   LIBIPW_CH_B_ONLY... */
11398 		}
11399 		/* point at bitrate info */
11400 		a_band->bitrates = ipw2200_a_rates;
11401 		a_band->n_bitrates = ipw2200_num_a_rates;
11402 
11403 		wdev->wiphy->bands[NL80211_BAND_5GHZ] = a_band;
11404 	}
11405 
11406 	wdev->wiphy->cipher_suites = ipw_cipher_suites;
11407 	wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
11408 
11409 	set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
11410 
11411 	/* With that information in place, we can now register the wiphy... */
11412 	if (wiphy_register(wdev->wiphy))
11413 		rc = -EIO;
11414 out:
11415 	return rc;
11416 }
11417 
11418 /* PCI driver stuff */
11419 static const struct pci_device_id card_ids[] = {
11420 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11421 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11422 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11423 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11424 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11425 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11426 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11427 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11428 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11429 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11430 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11431 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11432 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11433 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11434 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11435 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11436 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11437 	{PCI_VDEVICE(INTEL, 0x104f), 0},
11438 	{PCI_VDEVICE(INTEL, 0x4220), 0},	/* BG */
11439 	{PCI_VDEVICE(INTEL, 0x4221), 0},	/* BG */
11440 	{PCI_VDEVICE(INTEL, 0x4223), 0},	/* ABG */
11441 	{PCI_VDEVICE(INTEL, 0x4224), 0},	/* ABG */
11442 
11443 	/* required last entry */
11444 	{0,}
11445 };
11446 
11447 MODULE_DEVICE_TABLE(pci, card_ids);
11448 
11449 static struct attribute *ipw_sysfs_entries[] = {
11450 	&dev_attr_rf_kill.attr,
11451 	&dev_attr_direct_dword.attr,
11452 	&dev_attr_indirect_byte.attr,
11453 	&dev_attr_indirect_dword.attr,
11454 	&dev_attr_mem_gpio_reg.attr,
11455 	&dev_attr_command_event_reg.attr,
11456 	&dev_attr_nic_type.attr,
11457 	&dev_attr_status.attr,
11458 	&dev_attr_cfg.attr,
11459 	&dev_attr_error.attr,
11460 	&dev_attr_event_log.attr,
11461 	&dev_attr_cmd_log.attr,
11462 	&dev_attr_eeprom_delay.attr,
11463 	&dev_attr_ucode_version.attr,
11464 	&dev_attr_rtc.attr,
11465 	&dev_attr_scan_age.attr,
11466 	&dev_attr_led.attr,
11467 	&dev_attr_speed_scan.attr,
11468 	&dev_attr_net_stats.attr,
11469 	&dev_attr_channels.attr,
11470 #ifdef CONFIG_IPW2200_PROMISCUOUS
11471 	&dev_attr_rtap_iface.attr,
11472 	&dev_attr_rtap_filter.attr,
11473 #endif
11474 	NULL
11475 };
11476 
11477 static const struct attribute_group ipw_attribute_group = {
11478 	.name = NULL,		/* put in device directory */
11479 	.attrs = ipw_sysfs_entries,
11480 };
11481 
11482 #ifdef CONFIG_IPW2200_PROMISCUOUS
11483 static int ipw_prom_open(struct net_device *dev)
11484 {
11485 	struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11486 	struct ipw_priv *priv = prom_priv->priv;
11487 
11488 	IPW_DEBUG_INFO("prom dev->open\n");
11489 	netif_carrier_off(dev);
11490 
11491 	if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11492 		priv->sys_config.accept_all_data_frames = 1;
11493 		priv->sys_config.accept_non_directed_frames = 1;
11494 		priv->sys_config.accept_all_mgmt_bcpr = 1;
11495 		priv->sys_config.accept_all_mgmt_frames = 1;
11496 
11497 		ipw_send_system_config(priv);
11498 	}
11499 
11500 	return 0;
11501 }
11502 
11503 static int ipw_prom_stop(struct net_device *dev)
11504 {
11505 	struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11506 	struct ipw_priv *priv = prom_priv->priv;
11507 
11508 	IPW_DEBUG_INFO("prom dev->stop\n");
11509 
11510 	if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11511 		priv->sys_config.accept_all_data_frames = 0;
11512 		priv->sys_config.accept_non_directed_frames = 0;
11513 		priv->sys_config.accept_all_mgmt_bcpr = 0;
11514 		priv->sys_config.accept_all_mgmt_frames = 0;
11515 
11516 		ipw_send_system_config(priv);
11517 	}
11518 
11519 	return 0;
11520 }
11521 
11522 static netdev_tx_t ipw_prom_hard_start_xmit(struct sk_buff *skb,
11523 					    struct net_device *dev)
11524 {
11525 	IPW_DEBUG_INFO("prom dev->xmit\n");
11526 	dev_kfree_skb(skb);
11527 	return NETDEV_TX_OK;
11528 }
11529 
11530 static const struct net_device_ops ipw_prom_netdev_ops = {
11531 	.ndo_open 		= ipw_prom_open,
11532 	.ndo_stop		= ipw_prom_stop,
11533 	.ndo_start_xmit		= ipw_prom_hard_start_xmit,
11534 	.ndo_set_mac_address 	= eth_mac_addr,
11535 	.ndo_validate_addr	= eth_validate_addr,
11536 };
11537 
11538 static int ipw_prom_alloc(struct ipw_priv *priv)
11539 {
11540 	int rc = 0;
11541 
11542 	if (priv->prom_net_dev)
11543 		return -EPERM;
11544 
11545 	priv->prom_net_dev = alloc_libipw(sizeof(struct ipw_prom_priv), 1);
11546 	if (priv->prom_net_dev == NULL)
11547 		return -ENOMEM;
11548 
11549 	priv->prom_priv = libipw_priv(priv->prom_net_dev);
11550 	priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11551 	priv->prom_priv->priv = priv;
11552 
11553 	strcpy(priv->prom_net_dev->name, "rtap%d");
11554 	memcpy(priv->prom_net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11555 
11556 	priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11557 	priv->prom_net_dev->netdev_ops = &ipw_prom_netdev_ops;
11558 
11559 	priv->prom_net_dev->min_mtu = 68;
11560 	priv->prom_net_dev->max_mtu = LIBIPW_DATA_LEN;
11561 
11562 	priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11563 	SET_NETDEV_DEV(priv->prom_net_dev, &priv->pci_dev->dev);
11564 
11565 	rc = register_netdev(priv->prom_net_dev);
11566 	if (rc) {
11567 		free_libipw(priv->prom_net_dev, 1);
11568 		priv->prom_net_dev = NULL;
11569 		return rc;
11570 	}
11571 
11572 	return 0;
11573 }
11574 
11575 static void ipw_prom_free(struct ipw_priv *priv)
11576 {
11577 	if (!priv->prom_net_dev)
11578 		return;
11579 
11580 	unregister_netdev(priv->prom_net_dev);
11581 	free_libipw(priv->prom_net_dev, 1);
11582 
11583 	priv->prom_net_dev = NULL;
11584 }
11585 
11586 #endif
11587 
11588 static const struct net_device_ops ipw_netdev_ops = {
11589 	.ndo_open		= ipw_net_open,
11590 	.ndo_stop		= ipw_net_stop,
11591 	.ndo_set_rx_mode	= ipw_net_set_multicast_list,
11592 	.ndo_set_mac_address	= ipw_net_set_mac_address,
11593 	.ndo_start_xmit		= libipw_xmit,
11594 	.ndo_validate_addr	= eth_validate_addr,
11595 };
11596 
11597 static int ipw_pci_probe(struct pci_dev *pdev,
11598 				   const struct pci_device_id *ent)
11599 {
11600 	int err = 0;
11601 	struct net_device *net_dev;
11602 	void __iomem *base;
11603 	u32 length, val;
11604 	struct ipw_priv *priv;
11605 	int i;
11606 
11607 	net_dev = alloc_libipw(sizeof(struct ipw_priv), 0);
11608 	if (net_dev == NULL) {
11609 		err = -ENOMEM;
11610 		goto out;
11611 	}
11612 
11613 	priv = libipw_priv(net_dev);
11614 	priv->ieee = netdev_priv(net_dev);
11615 
11616 	priv->net_dev = net_dev;
11617 	priv->pci_dev = pdev;
11618 	ipw_debug_level = debug;
11619 	spin_lock_init(&priv->irq_lock);
11620 	spin_lock_init(&priv->lock);
11621 	for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11622 		INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11623 
11624 	mutex_init(&priv->mutex);
11625 	if (pci_enable_device(pdev)) {
11626 		err = -ENODEV;
11627 		goto out_free_libipw;
11628 	}
11629 
11630 	pci_set_master(pdev);
11631 
11632 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
11633 	if (!err)
11634 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
11635 	if (err) {
11636 		printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11637 		goto out_pci_disable_device;
11638 	}
11639 
11640 	pci_set_drvdata(pdev, priv);
11641 
11642 	err = pci_request_regions(pdev, DRV_NAME);
11643 	if (err)
11644 		goto out_pci_disable_device;
11645 
11646 	/* We disable the RETRY_TIMEOUT register (0x41) to keep
11647 	 * PCI Tx retries from interfering with C3 CPU state */
11648 	pci_read_config_dword(pdev, 0x40, &val);
11649 	if ((val & 0x0000ff00) != 0)
11650 		pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11651 
11652 	length = pci_resource_len(pdev, 0);
11653 	priv->hw_len = length;
11654 
11655 	base = pci_ioremap_bar(pdev, 0);
11656 	if (!base) {
11657 		err = -ENODEV;
11658 		goto out_pci_release_regions;
11659 	}
11660 
11661 	priv->hw_base = base;
11662 	IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11663 	IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11664 
11665 	err = ipw_setup_deferred_work(priv);
11666 	if (err) {
11667 		IPW_ERROR("Unable to setup deferred work\n");
11668 		goto out_iounmap;
11669 	}
11670 
11671 	ipw_sw_reset(priv, 1);
11672 
11673 	err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11674 	if (err) {
11675 		IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11676 		goto out_iounmap;
11677 	}
11678 
11679 	SET_NETDEV_DEV(net_dev, &pdev->dev);
11680 
11681 	mutex_lock(&priv->mutex);
11682 
11683 	priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11684 	priv->ieee->set_security = shim__set_security;
11685 	priv->ieee->is_queue_full = ipw_net_is_queue_full;
11686 
11687 #ifdef CONFIG_IPW2200_QOS
11688 	priv->ieee->is_qos_active = ipw_is_qos_active;
11689 	priv->ieee->handle_probe_response = ipw_handle_beacon;
11690 	priv->ieee->handle_beacon = ipw_handle_probe_response;
11691 	priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11692 #endif				/* CONFIG_IPW2200_QOS */
11693 
11694 	priv->ieee->perfect_rssi = -20;
11695 	priv->ieee->worst_rssi = -85;
11696 
11697 	net_dev->netdev_ops = &ipw_netdev_ops;
11698 	priv->wireless_data.spy_data = &priv->ieee->spy_data;
11699 	net_dev->wireless_data = &priv->wireless_data;
11700 	net_dev->wireless_handlers = &ipw_wx_handler_def;
11701 	net_dev->ethtool_ops = &ipw_ethtool_ops;
11702 
11703 	net_dev->min_mtu = 68;
11704 	net_dev->max_mtu = LIBIPW_DATA_LEN;
11705 
11706 	err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11707 	if (err) {
11708 		IPW_ERROR("failed to create sysfs device attributes\n");
11709 		mutex_unlock(&priv->mutex);
11710 		goto out_release_irq;
11711 	}
11712 
11713 	if (ipw_up(priv)) {
11714 		mutex_unlock(&priv->mutex);
11715 		err = -EIO;
11716 		goto out_remove_sysfs;
11717 	}
11718 
11719 	mutex_unlock(&priv->mutex);
11720 
11721 	err = ipw_wdev_init(net_dev);
11722 	if (err) {
11723 		IPW_ERROR("failed to register wireless device\n");
11724 		goto out_remove_sysfs;
11725 	}
11726 
11727 	err = register_netdev(net_dev);
11728 	if (err) {
11729 		IPW_ERROR("failed to register network device\n");
11730 		goto out_unregister_wiphy;
11731 	}
11732 
11733 #ifdef CONFIG_IPW2200_PROMISCUOUS
11734 	if (rtap_iface) {
11735 	        err = ipw_prom_alloc(priv);
11736 		if (err) {
11737 			IPW_ERROR("Failed to register promiscuous network "
11738 				  "device (error %d).\n", err);
11739 			unregister_netdev(priv->net_dev);
11740 			goto out_unregister_wiphy;
11741 		}
11742 	}
11743 #endif
11744 
11745 	printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11746 	       "channels, %d 802.11a channels)\n",
11747 	       priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11748 	       priv->ieee->geo.a_channels);
11749 
11750 	return 0;
11751 
11752       out_unregister_wiphy:
11753 	wiphy_unregister(priv->ieee->wdev.wiphy);
11754 	kfree(priv->ieee->a_band.channels);
11755 	kfree(priv->ieee->bg_band.channels);
11756       out_remove_sysfs:
11757 	sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11758       out_release_irq:
11759 	free_irq(pdev->irq, priv);
11760       out_iounmap:
11761 	iounmap(priv->hw_base);
11762       out_pci_release_regions:
11763 	pci_release_regions(pdev);
11764       out_pci_disable_device:
11765 	pci_disable_device(pdev);
11766       out_free_libipw:
11767 	free_libipw(priv->net_dev, 0);
11768       out:
11769 	return err;
11770 }
11771 
11772 static void ipw_pci_remove(struct pci_dev *pdev)
11773 {
11774 	struct ipw_priv *priv = pci_get_drvdata(pdev);
11775 	struct list_head *p, *q;
11776 	int i;
11777 
11778 	if (!priv)
11779 		return;
11780 
11781 	mutex_lock(&priv->mutex);
11782 
11783 	priv->status |= STATUS_EXIT_PENDING;
11784 	ipw_down(priv);
11785 	sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11786 
11787 	mutex_unlock(&priv->mutex);
11788 
11789 	unregister_netdev(priv->net_dev);
11790 
11791 	if (priv->rxq) {
11792 		ipw_rx_queue_free(priv, priv->rxq);
11793 		priv->rxq = NULL;
11794 	}
11795 	ipw_tx_queue_free(priv);
11796 
11797 	if (priv->cmdlog) {
11798 		kfree(priv->cmdlog);
11799 		priv->cmdlog = NULL;
11800 	}
11801 
11802 	/* make sure all works are inactive */
11803 	cancel_delayed_work_sync(&priv->adhoc_check);
11804 	cancel_work_sync(&priv->associate);
11805 	cancel_work_sync(&priv->disassociate);
11806 	cancel_work_sync(&priv->system_config);
11807 	cancel_work_sync(&priv->rx_replenish);
11808 	cancel_work_sync(&priv->adapter_restart);
11809 	cancel_delayed_work_sync(&priv->rf_kill);
11810 	cancel_work_sync(&priv->up);
11811 	cancel_work_sync(&priv->down);
11812 	cancel_delayed_work_sync(&priv->request_scan);
11813 	cancel_delayed_work_sync(&priv->request_direct_scan);
11814 	cancel_delayed_work_sync(&priv->request_passive_scan);
11815 	cancel_delayed_work_sync(&priv->scan_event);
11816 	cancel_delayed_work_sync(&priv->gather_stats);
11817 	cancel_work_sync(&priv->abort_scan);
11818 	cancel_work_sync(&priv->roam);
11819 	cancel_delayed_work_sync(&priv->scan_check);
11820 	cancel_work_sync(&priv->link_up);
11821 	cancel_work_sync(&priv->link_down);
11822 	cancel_delayed_work_sync(&priv->led_link_on);
11823 	cancel_delayed_work_sync(&priv->led_link_off);
11824 	cancel_delayed_work_sync(&priv->led_act_off);
11825 	cancel_work_sync(&priv->merge_networks);
11826 
11827 	/* Free MAC hash list for ADHOC */
11828 	for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11829 		list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11830 			list_del(p);
11831 			kfree(list_entry(p, struct ipw_ibss_seq, list));
11832 		}
11833 	}
11834 
11835 	kfree(priv->error);
11836 	priv->error = NULL;
11837 
11838 #ifdef CONFIG_IPW2200_PROMISCUOUS
11839 	ipw_prom_free(priv);
11840 #endif
11841 
11842 	free_irq(pdev->irq, priv);
11843 	iounmap(priv->hw_base);
11844 	pci_release_regions(pdev);
11845 	pci_disable_device(pdev);
11846 	/* wiphy_unregister needs to be here, before free_libipw */
11847 	wiphy_unregister(priv->ieee->wdev.wiphy);
11848 	kfree(priv->ieee->a_band.channels);
11849 	kfree(priv->ieee->bg_band.channels);
11850 	free_libipw(priv->net_dev, 0);
11851 	free_firmware();
11852 }
11853 
11854 #ifdef CONFIG_PM
11855 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11856 {
11857 	struct ipw_priv *priv = pci_get_drvdata(pdev);
11858 	struct net_device *dev = priv->net_dev;
11859 
11860 	printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11861 
11862 	/* Take down the device; powers it off, etc. */
11863 	ipw_down(priv);
11864 
11865 	/* Remove the PRESENT state of the device */
11866 	netif_device_detach(dev);
11867 
11868 	pci_save_state(pdev);
11869 	pci_disable_device(pdev);
11870 	pci_set_power_state(pdev, pci_choose_state(pdev, state));
11871 
11872 	priv->suspend_at = ktime_get_boottime_seconds();
11873 
11874 	return 0;
11875 }
11876 
11877 static int ipw_pci_resume(struct pci_dev *pdev)
11878 {
11879 	struct ipw_priv *priv = pci_get_drvdata(pdev);
11880 	struct net_device *dev = priv->net_dev;
11881 	int err;
11882 	u32 val;
11883 
11884 	printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11885 
11886 	pci_set_power_state(pdev, PCI_D0);
11887 	err = pci_enable_device(pdev);
11888 	if (err) {
11889 		printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
11890 		       dev->name);
11891 		return err;
11892 	}
11893 	pci_restore_state(pdev);
11894 
11895 	/*
11896 	 * Suspend/Resume resets the PCI configuration space, so we have to
11897 	 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11898 	 * from interfering with C3 CPU state. pci_restore_state won't help
11899 	 * here since it only restores the first 64 bytes pci config header.
11900 	 */
11901 	pci_read_config_dword(pdev, 0x40, &val);
11902 	if ((val & 0x0000ff00) != 0)
11903 		pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11904 
11905 	/* Set the device back into the PRESENT state; this will also wake
11906 	 * the queue of needed */
11907 	netif_device_attach(dev);
11908 
11909 	priv->suspend_time = ktime_get_boottime_seconds() - priv->suspend_at;
11910 
11911 	/* Bring the device back up */
11912 	schedule_work(&priv->up);
11913 
11914 	return 0;
11915 }
11916 #endif
11917 
11918 static void ipw_pci_shutdown(struct pci_dev *pdev)
11919 {
11920 	struct ipw_priv *priv = pci_get_drvdata(pdev);
11921 
11922 	/* Take down the device; powers it off, etc. */
11923 	ipw_down(priv);
11924 
11925 	pci_disable_device(pdev);
11926 }
11927 
11928 /* driver initialization stuff */
11929 static struct pci_driver ipw_driver = {
11930 	.name = DRV_NAME,
11931 	.id_table = card_ids,
11932 	.probe = ipw_pci_probe,
11933 	.remove = ipw_pci_remove,
11934 #ifdef CONFIG_PM
11935 	.suspend = ipw_pci_suspend,
11936 	.resume = ipw_pci_resume,
11937 #endif
11938 	.shutdown = ipw_pci_shutdown,
11939 };
11940 
11941 static int __init ipw_init(void)
11942 {
11943 	int ret;
11944 
11945 	printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11946 	printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11947 
11948 	ret = pci_register_driver(&ipw_driver);
11949 	if (ret) {
11950 		IPW_ERROR("Unable to initialize PCI module\n");
11951 		return ret;
11952 	}
11953 
11954 	ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11955 	if (ret) {
11956 		IPW_ERROR("Unable to create driver sysfs file\n");
11957 		pci_unregister_driver(&ipw_driver);
11958 		return ret;
11959 	}
11960 
11961 	return ret;
11962 }
11963 
11964 static void __exit ipw_exit(void)
11965 {
11966 	driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11967 	pci_unregister_driver(&ipw_driver);
11968 }
11969 
11970 module_param(disable, int, 0444);
11971 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11972 
11973 module_param(associate, int, 0444);
11974 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
11975 
11976 module_param(auto_create, int, 0444);
11977 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
11978 
11979 module_param_named(led, led_support, int, 0444);
11980 MODULE_PARM_DESC(led, "enable led control on some systems (default 1 on)");
11981 
11982 module_param(debug, int, 0444);
11983 MODULE_PARM_DESC(debug, "debug output mask");
11984 
11985 module_param_named(channel, default_channel, int, 0444);
11986 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
11987 
11988 #ifdef CONFIG_IPW2200_PROMISCUOUS
11989 module_param(rtap_iface, int, 0444);
11990 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
11991 #endif
11992 
11993 #ifdef CONFIG_IPW2200_QOS
11994 module_param(qos_enable, int, 0444);
11995 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalities");
11996 
11997 module_param(qos_burst_enable, int, 0444);
11998 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
11999 
12000 module_param(qos_no_ack_mask, int, 0444);
12001 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
12002 
12003 module_param(burst_duration_CCK, int, 0444);
12004 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
12005 
12006 module_param(burst_duration_OFDM, int, 0444);
12007 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
12008 #endif				/* CONFIG_IPW2200_QOS */
12009 
12010 #ifdef CONFIG_IPW2200_MONITOR
12011 module_param_named(mode, network_mode, int, 0444);
12012 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
12013 #else
12014 module_param_named(mode, network_mode, int, 0444);
12015 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
12016 #endif
12017 
12018 module_param(bt_coexist, int, 0444);
12019 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
12020 
12021 module_param(hwcrypto, int, 0444);
12022 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
12023 
12024 module_param(cmdlog, int, 0444);
12025 MODULE_PARM_DESC(cmdlog,
12026 		 "allocate a ring buffer for logging firmware commands");
12027 
12028 module_param(roaming, int, 0444);
12029 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
12030 
12031 module_param(antenna, int, 0444);
12032 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
12033 
12034 module_exit(ipw_exit);
12035 module_init(ipw_init);
12036