1 /****************************************************************************** 2 3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved. 4 5 802.11 status code portion of this file from ethereal-0.10.6: 6 Copyright 2000, Axis Communications AB 7 Ethereal - Network traffic analyzer 8 By Gerald Combs <gerald@ethereal.com> 9 Copyright 1998 Gerald Combs 10 11 This program is free software; you can redistribute it and/or modify it 12 under the terms of version 2 of the GNU General Public License as 13 published by the Free Software Foundation. 14 15 This program is distributed in the hope that it will be useful, but WITHOUT 16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 18 more details. 19 20 You should have received a copy of the GNU General Public License along with 21 this program; if not, write to the Free Software Foundation, Inc., 59 22 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 23 24 The full GNU General Public License is included in this distribution in the 25 file called LICENSE. 26 27 Contact Information: 28 Intel Linux Wireless <ilw@linux.intel.com> 29 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 30 31 ******************************************************************************/ 32 33 #include <linux/sched.h> 34 #include <linux/slab.h> 35 #include <net/cfg80211-wext.h> 36 #include "ipw2200.h" 37 #include "ipw.h" 38 39 40 #ifndef KBUILD_EXTMOD 41 #define VK "k" 42 #else 43 #define VK 44 #endif 45 46 #ifdef CONFIG_IPW2200_DEBUG 47 #define VD "d" 48 #else 49 #define VD 50 #endif 51 52 #ifdef CONFIG_IPW2200_MONITOR 53 #define VM "m" 54 #else 55 #define VM 56 #endif 57 58 #ifdef CONFIG_IPW2200_PROMISCUOUS 59 #define VP "p" 60 #else 61 #define VP 62 #endif 63 64 #ifdef CONFIG_IPW2200_RADIOTAP 65 #define VR "r" 66 #else 67 #define VR 68 #endif 69 70 #ifdef CONFIG_IPW2200_QOS 71 #define VQ "q" 72 #else 73 #define VQ 74 #endif 75 76 #define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ 77 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver" 78 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation" 79 #define DRV_VERSION IPW2200_VERSION 80 81 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1) 82 83 MODULE_DESCRIPTION(DRV_DESCRIPTION); 84 MODULE_VERSION(DRV_VERSION); 85 MODULE_AUTHOR(DRV_COPYRIGHT); 86 MODULE_LICENSE("GPL"); 87 MODULE_FIRMWARE("ipw2200-ibss.fw"); 88 #ifdef CONFIG_IPW2200_MONITOR 89 MODULE_FIRMWARE("ipw2200-sniffer.fw"); 90 #endif 91 MODULE_FIRMWARE("ipw2200-bss.fw"); 92 93 static int cmdlog = 0; 94 static int debug = 0; 95 static int default_channel = 0; 96 static int network_mode = 0; 97 98 static u32 ipw_debug_level; 99 static int associate; 100 static int auto_create = 1; 101 static int led_support = 1; 102 static int disable = 0; 103 static int bt_coexist = 0; 104 static int hwcrypto = 0; 105 static int roaming = 1; 106 static const char ipw_modes[] = { 107 'a', 'b', 'g', '?' 108 }; 109 static int antenna = CFG_SYS_ANTENNA_BOTH; 110 111 #ifdef CONFIG_IPW2200_PROMISCUOUS 112 static int rtap_iface = 0; /* def: 0 -- do not create rtap interface */ 113 #endif 114 115 static struct ieee80211_rate ipw2200_rates[] = { 116 { .bitrate = 10 }, 117 { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 118 { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 119 { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 120 { .bitrate = 60 }, 121 { .bitrate = 90 }, 122 { .bitrate = 120 }, 123 { .bitrate = 180 }, 124 { .bitrate = 240 }, 125 { .bitrate = 360 }, 126 { .bitrate = 480 }, 127 { .bitrate = 540 } 128 }; 129 130 #define ipw2200_a_rates (ipw2200_rates + 4) 131 #define ipw2200_num_a_rates 8 132 #define ipw2200_bg_rates (ipw2200_rates + 0) 133 #define ipw2200_num_bg_rates 12 134 135 /* Ugly macro to convert literal channel numbers into their mhz equivalents 136 * There are certianly some conditions that will break this (like feeding it '30') 137 * but they shouldn't arise since nothing talks on channel 30. */ 138 #define ieee80211chan2mhz(x) \ 139 (((x) <= 14) ? \ 140 (((x) == 14) ? 2484 : ((x) * 5) + 2407) : \ 141 ((x) + 1000) * 5) 142 143 #ifdef CONFIG_IPW2200_QOS 144 static int qos_enable = 0; 145 static int qos_burst_enable = 0; 146 static int qos_no_ack_mask = 0; 147 static int burst_duration_CCK = 0; 148 static int burst_duration_OFDM = 0; 149 150 static struct libipw_qos_parameters def_qos_parameters_OFDM = { 151 {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM, 152 QOS_TX3_CW_MIN_OFDM}, 153 {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM, 154 QOS_TX3_CW_MAX_OFDM}, 155 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS}, 156 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM}, 157 {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM, 158 QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM} 159 }; 160 161 static struct libipw_qos_parameters def_qos_parameters_CCK = { 162 {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK, 163 QOS_TX3_CW_MIN_CCK}, 164 {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK, 165 QOS_TX3_CW_MAX_CCK}, 166 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS}, 167 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM}, 168 {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK, 169 QOS_TX3_TXOP_LIMIT_CCK} 170 }; 171 172 static struct libipw_qos_parameters def_parameters_OFDM = { 173 {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM, 174 DEF_TX3_CW_MIN_OFDM}, 175 {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM, 176 DEF_TX3_CW_MAX_OFDM}, 177 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS}, 178 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM}, 179 {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM, 180 DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM} 181 }; 182 183 static struct libipw_qos_parameters def_parameters_CCK = { 184 {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK, 185 DEF_TX3_CW_MIN_CCK}, 186 {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK, 187 DEF_TX3_CW_MAX_CCK}, 188 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS}, 189 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM}, 190 {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK, 191 DEF_TX3_TXOP_LIMIT_CCK} 192 }; 193 194 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 }; 195 196 static int from_priority_to_tx_queue[] = { 197 IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1, 198 IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4 199 }; 200 201 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv); 202 203 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters 204 *qos_param); 205 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element 206 *qos_param); 207 #endif /* CONFIG_IPW2200_QOS */ 208 209 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev); 210 static void ipw_remove_current_network(struct ipw_priv *priv); 211 static void ipw_rx(struct ipw_priv *priv); 212 static int ipw_queue_tx_reclaim(struct ipw_priv *priv, 213 struct clx2_tx_queue *txq, int qindex); 214 static int ipw_queue_reset(struct ipw_priv *priv); 215 216 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf, 217 int len, int sync); 218 219 static void ipw_tx_queue_free(struct ipw_priv *); 220 221 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *); 222 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *); 223 static void ipw_rx_queue_replenish(void *); 224 static int ipw_up(struct ipw_priv *); 225 static void ipw_bg_up(struct work_struct *work); 226 static void ipw_down(struct ipw_priv *); 227 static void ipw_bg_down(struct work_struct *work); 228 static int ipw_config(struct ipw_priv *); 229 static int init_supported_rates(struct ipw_priv *priv, 230 struct ipw_supported_rates *prates); 231 static void ipw_set_hwcrypto_keys(struct ipw_priv *); 232 static void ipw_send_wep_keys(struct ipw_priv *, int); 233 234 static int snprint_line(char *buf, size_t count, 235 const u8 * data, u32 len, u32 ofs) 236 { 237 int out, i, j, l; 238 char c; 239 240 out = snprintf(buf, count, "%08X", ofs); 241 242 for (l = 0, i = 0; i < 2; i++) { 243 out += snprintf(buf + out, count - out, " "); 244 for (j = 0; j < 8 && l < len; j++, l++) 245 out += snprintf(buf + out, count - out, "%02X ", 246 data[(i * 8 + j)]); 247 for (; j < 8; j++) 248 out += snprintf(buf + out, count - out, " "); 249 } 250 251 out += snprintf(buf + out, count - out, " "); 252 for (l = 0, i = 0; i < 2; i++) { 253 out += snprintf(buf + out, count - out, " "); 254 for (j = 0; j < 8 && l < len; j++, l++) { 255 c = data[(i * 8 + j)]; 256 if (!isascii(c) || !isprint(c)) 257 c = '.'; 258 259 out += snprintf(buf + out, count - out, "%c", c); 260 } 261 262 for (; j < 8; j++) 263 out += snprintf(buf + out, count - out, " "); 264 } 265 266 return out; 267 } 268 269 static void printk_buf(int level, const u8 * data, u32 len) 270 { 271 char line[81]; 272 u32 ofs = 0; 273 if (!(ipw_debug_level & level)) 274 return; 275 276 while (len) { 277 snprint_line(line, sizeof(line), &data[ofs], 278 min(len, 16U), ofs); 279 printk(KERN_DEBUG "%s\n", line); 280 ofs += 16; 281 len -= min(len, 16U); 282 } 283 } 284 285 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len) 286 { 287 size_t out = size; 288 u32 ofs = 0; 289 int total = 0; 290 291 while (size && len) { 292 out = snprint_line(output, size, &data[ofs], 293 min_t(size_t, len, 16U), ofs); 294 295 ofs += 16; 296 output += out; 297 size -= out; 298 len -= min_t(size_t, len, 16U); 299 total += out; 300 } 301 return total; 302 } 303 304 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */ 305 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg); 306 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b) 307 308 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */ 309 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg); 310 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b) 311 312 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */ 313 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value); 314 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c) 315 { 316 IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__, 317 __LINE__, (u32) (b), (u32) (c)); 318 _ipw_write_reg8(a, b, c); 319 } 320 321 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */ 322 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value); 323 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c) 324 { 325 IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__, 326 __LINE__, (u32) (b), (u32) (c)); 327 _ipw_write_reg16(a, b, c); 328 } 329 330 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */ 331 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value); 332 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c) 333 { 334 IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__, 335 __LINE__, (u32) (b), (u32) (c)); 336 _ipw_write_reg32(a, b, c); 337 } 338 339 /* 8-bit direct write (low 4K) */ 340 static inline void _ipw_write8(struct ipw_priv *ipw, unsigned long ofs, 341 u8 val) 342 { 343 writeb(val, ipw->hw_base + ofs); 344 } 345 346 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */ 347 #define ipw_write8(ipw, ofs, val) do { \ 348 IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, \ 349 __LINE__, (u32)(ofs), (u32)(val)); \ 350 _ipw_write8(ipw, ofs, val); \ 351 } while (0) 352 353 /* 16-bit direct write (low 4K) */ 354 static inline void _ipw_write16(struct ipw_priv *ipw, unsigned long ofs, 355 u16 val) 356 { 357 writew(val, ipw->hw_base + ofs); 358 } 359 360 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */ 361 #define ipw_write16(ipw, ofs, val) do { \ 362 IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, \ 363 __LINE__, (u32)(ofs), (u32)(val)); \ 364 _ipw_write16(ipw, ofs, val); \ 365 } while (0) 366 367 /* 32-bit direct write (low 4K) */ 368 static inline void _ipw_write32(struct ipw_priv *ipw, unsigned long ofs, 369 u32 val) 370 { 371 writel(val, ipw->hw_base + ofs); 372 } 373 374 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */ 375 #define ipw_write32(ipw, ofs, val) do { \ 376 IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, \ 377 __LINE__, (u32)(ofs), (u32)(val)); \ 378 _ipw_write32(ipw, ofs, val); \ 379 } while (0) 380 381 /* 8-bit direct read (low 4K) */ 382 static inline u8 _ipw_read8(struct ipw_priv *ipw, unsigned long ofs) 383 { 384 return readb(ipw->hw_base + ofs); 385 } 386 387 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */ 388 #define ipw_read8(ipw, ofs) ({ \ 389 IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", __FILE__, __LINE__, \ 390 (u32)(ofs)); \ 391 _ipw_read8(ipw, ofs); \ 392 }) 393 394 /* 16-bit direct read (low 4K) */ 395 static inline u16 _ipw_read16(struct ipw_priv *ipw, unsigned long ofs) 396 { 397 return readw(ipw->hw_base + ofs); 398 } 399 400 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */ 401 #define ipw_read16(ipw, ofs) ({ \ 402 IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", __FILE__, __LINE__, \ 403 (u32)(ofs)); \ 404 _ipw_read16(ipw, ofs); \ 405 }) 406 407 /* 32-bit direct read (low 4K) */ 408 static inline u32 _ipw_read32(struct ipw_priv *ipw, unsigned long ofs) 409 { 410 return readl(ipw->hw_base + ofs); 411 } 412 413 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */ 414 #define ipw_read32(ipw, ofs) ({ \ 415 IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", __FILE__, __LINE__, \ 416 (u32)(ofs)); \ 417 _ipw_read32(ipw, ofs); \ 418 }) 419 420 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int); 421 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */ 422 #define ipw_read_indirect(a, b, c, d) ({ \ 423 IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %u bytes\n", __FILE__, \ 424 __LINE__, (u32)(b), (u32)(d)); \ 425 _ipw_read_indirect(a, b, c, d); \ 426 }) 427 428 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */ 429 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data, 430 int num); 431 #define ipw_write_indirect(a, b, c, d) do { \ 432 IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %u bytes\n", __FILE__, \ 433 __LINE__, (u32)(b), (u32)(d)); \ 434 _ipw_write_indirect(a, b, c, d); \ 435 } while (0) 436 437 /* 32-bit indirect write (above 4K) */ 438 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value) 439 { 440 IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value); 441 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg); 442 _ipw_write32(priv, IPW_INDIRECT_DATA, value); 443 } 444 445 /* 8-bit indirect write (above 4K) */ 446 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value) 447 { 448 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */ 449 u32 dif_len = reg - aligned_addr; 450 451 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value); 452 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr); 453 _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value); 454 } 455 456 /* 16-bit indirect write (above 4K) */ 457 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value) 458 { 459 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */ 460 u32 dif_len = (reg - aligned_addr) & (~0x1ul); 461 462 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value); 463 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr); 464 _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value); 465 } 466 467 /* 8-bit indirect read (above 4K) */ 468 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg) 469 { 470 u32 word; 471 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK); 472 IPW_DEBUG_IO(" reg = 0x%8X :\n", reg); 473 word = _ipw_read32(priv, IPW_INDIRECT_DATA); 474 return (word >> ((reg & 0x3) * 8)) & 0xff; 475 } 476 477 /* 32-bit indirect read (above 4K) */ 478 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg) 479 { 480 u32 value; 481 482 IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg); 483 484 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg); 485 value = _ipw_read32(priv, IPW_INDIRECT_DATA); 486 IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x\n", reg, value); 487 return value; 488 } 489 490 /* General purpose, no alignment requirement, iterative (multi-byte) read, */ 491 /* for area above 1st 4K of SRAM/reg space */ 492 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf, 493 int num) 494 { 495 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */ 496 u32 dif_len = addr - aligned_addr; 497 u32 i; 498 499 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num); 500 501 if (num <= 0) { 502 return; 503 } 504 505 /* Read the first dword (or portion) byte by byte */ 506 if (unlikely(dif_len)) { 507 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr); 508 /* Start reading at aligned_addr + dif_len */ 509 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--) 510 *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i); 511 aligned_addr += 4; 512 } 513 514 /* Read all of the middle dwords as dwords, with auto-increment */ 515 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr); 516 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4) 517 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA); 518 519 /* Read the last dword (or portion) byte by byte */ 520 if (unlikely(num)) { 521 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr); 522 for (i = 0; num > 0; i++, num--) 523 *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i); 524 } 525 } 526 527 /* General purpose, no alignment requirement, iterative (multi-byte) write, */ 528 /* for area above 1st 4K of SRAM/reg space */ 529 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf, 530 int num) 531 { 532 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */ 533 u32 dif_len = addr - aligned_addr; 534 u32 i; 535 536 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num); 537 538 if (num <= 0) { 539 return; 540 } 541 542 /* Write the first dword (or portion) byte by byte */ 543 if (unlikely(dif_len)) { 544 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr); 545 /* Start writing at aligned_addr + dif_len */ 546 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++) 547 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf); 548 aligned_addr += 4; 549 } 550 551 /* Write all of the middle dwords as dwords, with auto-increment */ 552 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr); 553 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4) 554 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf); 555 556 /* Write the last dword (or portion) byte by byte */ 557 if (unlikely(num)) { 558 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr); 559 for (i = 0; num > 0; i++, num--, buf++) 560 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf); 561 } 562 } 563 564 /* General purpose, no alignment requirement, iterative (multi-byte) write, */ 565 /* for 1st 4K of SRAM/regs space */ 566 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf, 567 int num) 568 { 569 memcpy_toio((priv->hw_base + addr), buf, num); 570 } 571 572 /* Set bit(s) in low 4K of SRAM/regs */ 573 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask) 574 { 575 ipw_write32(priv, reg, ipw_read32(priv, reg) | mask); 576 } 577 578 /* Clear bit(s) in low 4K of SRAM/regs */ 579 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask) 580 { 581 ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask); 582 } 583 584 static inline void __ipw_enable_interrupts(struct ipw_priv *priv) 585 { 586 if (priv->status & STATUS_INT_ENABLED) 587 return; 588 priv->status |= STATUS_INT_ENABLED; 589 ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL); 590 } 591 592 static inline void __ipw_disable_interrupts(struct ipw_priv *priv) 593 { 594 if (!(priv->status & STATUS_INT_ENABLED)) 595 return; 596 priv->status &= ~STATUS_INT_ENABLED; 597 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL); 598 } 599 600 static inline void ipw_enable_interrupts(struct ipw_priv *priv) 601 { 602 unsigned long flags; 603 604 spin_lock_irqsave(&priv->irq_lock, flags); 605 __ipw_enable_interrupts(priv); 606 spin_unlock_irqrestore(&priv->irq_lock, flags); 607 } 608 609 static inline void ipw_disable_interrupts(struct ipw_priv *priv) 610 { 611 unsigned long flags; 612 613 spin_lock_irqsave(&priv->irq_lock, flags); 614 __ipw_disable_interrupts(priv); 615 spin_unlock_irqrestore(&priv->irq_lock, flags); 616 } 617 618 static char *ipw_error_desc(u32 val) 619 { 620 switch (val) { 621 case IPW_FW_ERROR_OK: 622 return "ERROR_OK"; 623 case IPW_FW_ERROR_FAIL: 624 return "ERROR_FAIL"; 625 case IPW_FW_ERROR_MEMORY_UNDERFLOW: 626 return "MEMORY_UNDERFLOW"; 627 case IPW_FW_ERROR_MEMORY_OVERFLOW: 628 return "MEMORY_OVERFLOW"; 629 case IPW_FW_ERROR_BAD_PARAM: 630 return "BAD_PARAM"; 631 case IPW_FW_ERROR_BAD_CHECKSUM: 632 return "BAD_CHECKSUM"; 633 case IPW_FW_ERROR_NMI_INTERRUPT: 634 return "NMI_INTERRUPT"; 635 case IPW_FW_ERROR_BAD_DATABASE: 636 return "BAD_DATABASE"; 637 case IPW_FW_ERROR_ALLOC_FAIL: 638 return "ALLOC_FAIL"; 639 case IPW_FW_ERROR_DMA_UNDERRUN: 640 return "DMA_UNDERRUN"; 641 case IPW_FW_ERROR_DMA_STATUS: 642 return "DMA_STATUS"; 643 case IPW_FW_ERROR_DINO_ERROR: 644 return "DINO_ERROR"; 645 case IPW_FW_ERROR_EEPROM_ERROR: 646 return "EEPROM_ERROR"; 647 case IPW_FW_ERROR_SYSASSERT: 648 return "SYSASSERT"; 649 case IPW_FW_ERROR_FATAL_ERROR: 650 return "FATAL_ERROR"; 651 default: 652 return "UNKNOWN_ERROR"; 653 } 654 } 655 656 static void ipw_dump_error_log(struct ipw_priv *priv, 657 struct ipw_fw_error *error) 658 { 659 u32 i; 660 661 if (!error) { 662 IPW_ERROR("Error allocating and capturing error log. " 663 "Nothing to dump.\n"); 664 return; 665 } 666 667 IPW_ERROR("Start IPW Error Log Dump:\n"); 668 IPW_ERROR("Status: 0x%08X, Config: %08X\n", 669 error->status, error->config); 670 671 for (i = 0; i < error->elem_len; i++) 672 IPW_ERROR("%s %i 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", 673 ipw_error_desc(error->elem[i].desc), 674 error->elem[i].time, 675 error->elem[i].blink1, 676 error->elem[i].blink2, 677 error->elem[i].link1, 678 error->elem[i].link2, error->elem[i].data); 679 for (i = 0; i < error->log_len; i++) 680 IPW_ERROR("%i\t0x%08x\t%i\n", 681 error->log[i].time, 682 error->log[i].data, error->log[i].event); 683 } 684 685 static inline int ipw_is_init(struct ipw_priv *priv) 686 { 687 return (priv->status & STATUS_INIT) ? 1 : 0; 688 } 689 690 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len) 691 { 692 u32 addr, field_info, field_len, field_count, total_len; 693 694 IPW_DEBUG_ORD("ordinal = %i\n", ord); 695 696 if (!priv || !val || !len) { 697 IPW_DEBUG_ORD("Invalid argument\n"); 698 return -EINVAL; 699 } 700 701 /* verify device ordinal tables have been initialized */ 702 if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) { 703 IPW_DEBUG_ORD("Access ordinals before initialization\n"); 704 return -EINVAL; 705 } 706 707 switch (IPW_ORD_TABLE_ID_MASK & ord) { 708 case IPW_ORD_TABLE_0_MASK: 709 /* 710 * TABLE 0: Direct access to a table of 32 bit values 711 * 712 * This is a very simple table with the data directly 713 * read from the table 714 */ 715 716 /* remove the table id from the ordinal */ 717 ord &= IPW_ORD_TABLE_VALUE_MASK; 718 719 /* boundary check */ 720 if (ord > priv->table0_len) { 721 IPW_DEBUG_ORD("ordinal value (%i) longer then " 722 "max (%i)\n", ord, priv->table0_len); 723 return -EINVAL; 724 } 725 726 /* verify we have enough room to store the value */ 727 if (*len < sizeof(u32)) { 728 IPW_DEBUG_ORD("ordinal buffer length too small, " 729 "need %zd\n", sizeof(u32)); 730 return -EINVAL; 731 } 732 733 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n", 734 ord, priv->table0_addr + (ord << 2)); 735 736 *len = sizeof(u32); 737 ord <<= 2; 738 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord); 739 break; 740 741 case IPW_ORD_TABLE_1_MASK: 742 /* 743 * TABLE 1: Indirect access to a table of 32 bit values 744 * 745 * This is a fairly large table of u32 values each 746 * representing starting addr for the data (which is 747 * also a u32) 748 */ 749 750 /* remove the table id from the ordinal */ 751 ord &= IPW_ORD_TABLE_VALUE_MASK; 752 753 /* boundary check */ 754 if (ord > priv->table1_len) { 755 IPW_DEBUG_ORD("ordinal value too long\n"); 756 return -EINVAL; 757 } 758 759 /* verify we have enough room to store the value */ 760 if (*len < sizeof(u32)) { 761 IPW_DEBUG_ORD("ordinal buffer length too small, " 762 "need %zd\n", sizeof(u32)); 763 return -EINVAL; 764 } 765 766 *((u32 *) val) = 767 ipw_read_reg32(priv, (priv->table1_addr + (ord << 2))); 768 *len = sizeof(u32); 769 break; 770 771 case IPW_ORD_TABLE_2_MASK: 772 /* 773 * TABLE 2: Indirect access to a table of variable sized values 774 * 775 * This table consist of six values, each containing 776 * - dword containing the starting offset of the data 777 * - dword containing the lengh in the first 16bits 778 * and the count in the second 16bits 779 */ 780 781 /* remove the table id from the ordinal */ 782 ord &= IPW_ORD_TABLE_VALUE_MASK; 783 784 /* boundary check */ 785 if (ord > priv->table2_len) { 786 IPW_DEBUG_ORD("ordinal value too long\n"); 787 return -EINVAL; 788 } 789 790 /* get the address of statistic */ 791 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3)); 792 793 /* get the second DW of statistics ; 794 * two 16-bit words - first is length, second is count */ 795 field_info = 796 ipw_read_reg32(priv, 797 priv->table2_addr + (ord << 3) + 798 sizeof(u32)); 799 800 /* get each entry length */ 801 field_len = *((u16 *) & field_info); 802 803 /* get number of entries */ 804 field_count = *(((u16 *) & field_info) + 1); 805 806 /* abort if not enough memory */ 807 total_len = field_len * field_count; 808 if (total_len > *len) { 809 *len = total_len; 810 return -EINVAL; 811 } 812 813 *len = total_len; 814 if (!total_len) 815 return 0; 816 817 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, " 818 "field_info = 0x%08x\n", 819 addr, total_len, field_info); 820 ipw_read_indirect(priv, addr, val, total_len); 821 break; 822 823 default: 824 IPW_DEBUG_ORD("Invalid ordinal!\n"); 825 return -EINVAL; 826 827 } 828 829 return 0; 830 } 831 832 static void ipw_init_ordinals(struct ipw_priv *priv) 833 { 834 priv->table0_addr = IPW_ORDINALS_TABLE_LOWER; 835 priv->table0_len = ipw_read32(priv, priv->table0_addr); 836 837 IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n", 838 priv->table0_addr, priv->table0_len); 839 840 priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1); 841 priv->table1_len = ipw_read_reg32(priv, priv->table1_addr); 842 843 IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n", 844 priv->table1_addr, priv->table1_len); 845 846 priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2); 847 priv->table2_len = ipw_read_reg32(priv, priv->table2_addr); 848 priv->table2_len &= 0x0000ffff; /* use first two bytes */ 849 850 IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n", 851 priv->table2_addr, priv->table2_len); 852 853 } 854 855 static u32 ipw_register_toggle(u32 reg) 856 { 857 reg &= ~IPW_START_STANDBY; 858 if (reg & IPW_GATE_ODMA) 859 reg &= ~IPW_GATE_ODMA; 860 if (reg & IPW_GATE_IDMA) 861 reg &= ~IPW_GATE_IDMA; 862 if (reg & IPW_GATE_ADMA) 863 reg &= ~IPW_GATE_ADMA; 864 return reg; 865 } 866 867 /* 868 * LED behavior: 869 * - On radio ON, turn on any LEDs that require to be on during start 870 * - On initialization, start unassociated blink 871 * - On association, disable unassociated blink 872 * - On disassociation, start unassociated blink 873 * - On radio OFF, turn off any LEDs started during radio on 874 * 875 */ 876 #define LD_TIME_LINK_ON msecs_to_jiffies(300) 877 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700) 878 #define LD_TIME_ACT_ON msecs_to_jiffies(250) 879 880 static void ipw_led_link_on(struct ipw_priv *priv) 881 { 882 unsigned long flags; 883 u32 led; 884 885 /* If configured to not use LEDs, or nic_type is 1, 886 * then we don't toggle a LINK led */ 887 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1) 888 return; 889 890 spin_lock_irqsave(&priv->lock, flags); 891 892 if (!(priv->status & STATUS_RF_KILL_MASK) && 893 !(priv->status & STATUS_LED_LINK_ON)) { 894 IPW_DEBUG_LED("Link LED On\n"); 895 led = ipw_read_reg32(priv, IPW_EVENT_REG); 896 led |= priv->led_association_on; 897 898 led = ipw_register_toggle(led); 899 900 IPW_DEBUG_LED("Reg: 0x%08X\n", led); 901 ipw_write_reg32(priv, IPW_EVENT_REG, led); 902 903 priv->status |= STATUS_LED_LINK_ON; 904 905 /* If we aren't associated, schedule turning the LED off */ 906 if (!(priv->status & STATUS_ASSOCIATED)) 907 schedule_delayed_work(&priv->led_link_off, 908 LD_TIME_LINK_ON); 909 } 910 911 spin_unlock_irqrestore(&priv->lock, flags); 912 } 913 914 static void ipw_bg_led_link_on(struct work_struct *work) 915 { 916 struct ipw_priv *priv = 917 container_of(work, struct ipw_priv, led_link_on.work); 918 mutex_lock(&priv->mutex); 919 ipw_led_link_on(priv); 920 mutex_unlock(&priv->mutex); 921 } 922 923 static void ipw_led_link_off(struct ipw_priv *priv) 924 { 925 unsigned long flags; 926 u32 led; 927 928 /* If configured not to use LEDs, or nic type is 1, 929 * then we don't goggle the LINK led. */ 930 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1) 931 return; 932 933 spin_lock_irqsave(&priv->lock, flags); 934 935 if (priv->status & STATUS_LED_LINK_ON) { 936 led = ipw_read_reg32(priv, IPW_EVENT_REG); 937 led &= priv->led_association_off; 938 led = ipw_register_toggle(led); 939 940 IPW_DEBUG_LED("Reg: 0x%08X\n", led); 941 ipw_write_reg32(priv, IPW_EVENT_REG, led); 942 943 IPW_DEBUG_LED("Link LED Off\n"); 944 945 priv->status &= ~STATUS_LED_LINK_ON; 946 947 /* If we aren't associated and the radio is on, schedule 948 * turning the LED on (blink while unassociated) */ 949 if (!(priv->status & STATUS_RF_KILL_MASK) && 950 !(priv->status & STATUS_ASSOCIATED)) 951 schedule_delayed_work(&priv->led_link_on, 952 LD_TIME_LINK_OFF); 953 954 } 955 956 spin_unlock_irqrestore(&priv->lock, flags); 957 } 958 959 static void ipw_bg_led_link_off(struct work_struct *work) 960 { 961 struct ipw_priv *priv = 962 container_of(work, struct ipw_priv, led_link_off.work); 963 mutex_lock(&priv->mutex); 964 ipw_led_link_off(priv); 965 mutex_unlock(&priv->mutex); 966 } 967 968 static void __ipw_led_activity_on(struct ipw_priv *priv) 969 { 970 u32 led; 971 972 if (priv->config & CFG_NO_LED) 973 return; 974 975 if (priv->status & STATUS_RF_KILL_MASK) 976 return; 977 978 if (!(priv->status & STATUS_LED_ACT_ON)) { 979 led = ipw_read_reg32(priv, IPW_EVENT_REG); 980 led |= priv->led_activity_on; 981 982 led = ipw_register_toggle(led); 983 984 IPW_DEBUG_LED("Reg: 0x%08X\n", led); 985 ipw_write_reg32(priv, IPW_EVENT_REG, led); 986 987 IPW_DEBUG_LED("Activity LED On\n"); 988 989 priv->status |= STATUS_LED_ACT_ON; 990 991 cancel_delayed_work(&priv->led_act_off); 992 schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON); 993 } else { 994 /* Reschedule LED off for full time period */ 995 cancel_delayed_work(&priv->led_act_off); 996 schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON); 997 } 998 } 999 1000 #if 0 1001 void ipw_led_activity_on(struct ipw_priv *priv) 1002 { 1003 unsigned long flags; 1004 spin_lock_irqsave(&priv->lock, flags); 1005 __ipw_led_activity_on(priv); 1006 spin_unlock_irqrestore(&priv->lock, flags); 1007 } 1008 #endif /* 0 */ 1009 1010 static void ipw_led_activity_off(struct ipw_priv *priv) 1011 { 1012 unsigned long flags; 1013 u32 led; 1014 1015 if (priv->config & CFG_NO_LED) 1016 return; 1017 1018 spin_lock_irqsave(&priv->lock, flags); 1019 1020 if (priv->status & STATUS_LED_ACT_ON) { 1021 led = ipw_read_reg32(priv, IPW_EVENT_REG); 1022 led &= priv->led_activity_off; 1023 1024 led = ipw_register_toggle(led); 1025 1026 IPW_DEBUG_LED("Reg: 0x%08X\n", led); 1027 ipw_write_reg32(priv, IPW_EVENT_REG, led); 1028 1029 IPW_DEBUG_LED("Activity LED Off\n"); 1030 1031 priv->status &= ~STATUS_LED_ACT_ON; 1032 } 1033 1034 spin_unlock_irqrestore(&priv->lock, flags); 1035 } 1036 1037 static void ipw_bg_led_activity_off(struct work_struct *work) 1038 { 1039 struct ipw_priv *priv = 1040 container_of(work, struct ipw_priv, led_act_off.work); 1041 mutex_lock(&priv->mutex); 1042 ipw_led_activity_off(priv); 1043 mutex_unlock(&priv->mutex); 1044 } 1045 1046 static void ipw_led_band_on(struct ipw_priv *priv) 1047 { 1048 unsigned long flags; 1049 u32 led; 1050 1051 /* Only nic type 1 supports mode LEDs */ 1052 if (priv->config & CFG_NO_LED || 1053 priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network) 1054 return; 1055 1056 spin_lock_irqsave(&priv->lock, flags); 1057 1058 led = ipw_read_reg32(priv, IPW_EVENT_REG); 1059 if (priv->assoc_network->mode == IEEE_A) { 1060 led |= priv->led_ofdm_on; 1061 led &= priv->led_association_off; 1062 IPW_DEBUG_LED("Mode LED On: 802.11a\n"); 1063 } else if (priv->assoc_network->mode == IEEE_G) { 1064 led |= priv->led_ofdm_on; 1065 led |= priv->led_association_on; 1066 IPW_DEBUG_LED("Mode LED On: 802.11g\n"); 1067 } else { 1068 led &= priv->led_ofdm_off; 1069 led |= priv->led_association_on; 1070 IPW_DEBUG_LED("Mode LED On: 802.11b\n"); 1071 } 1072 1073 led = ipw_register_toggle(led); 1074 1075 IPW_DEBUG_LED("Reg: 0x%08X\n", led); 1076 ipw_write_reg32(priv, IPW_EVENT_REG, led); 1077 1078 spin_unlock_irqrestore(&priv->lock, flags); 1079 } 1080 1081 static void ipw_led_band_off(struct ipw_priv *priv) 1082 { 1083 unsigned long flags; 1084 u32 led; 1085 1086 /* Only nic type 1 supports mode LEDs */ 1087 if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1) 1088 return; 1089 1090 spin_lock_irqsave(&priv->lock, flags); 1091 1092 led = ipw_read_reg32(priv, IPW_EVENT_REG); 1093 led &= priv->led_ofdm_off; 1094 led &= priv->led_association_off; 1095 1096 led = ipw_register_toggle(led); 1097 1098 IPW_DEBUG_LED("Reg: 0x%08X\n", led); 1099 ipw_write_reg32(priv, IPW_EVENT_REG, led); 1100 1101 spin_unlock_irqrestore(&priv->lock, flags); 1102 } 1103 1104 static void ipw_led_radio_on(struct ipw_priv *priv) 1105 { 1106 ipw_led_link_on(priv); 1107 } 1108 1109 static void ipw_led_radio_off(struct ipw_priv *priv) 1110 { 1111 ipw_led_activity_off(priv); 1112 ipw_led_link_off(priv); 1113 } 1114 1115 static void ipw_led_link_up(struct ipw_priv *priv) 1116 { 1117 /* Set the Link Led on for all nic types */ 1118 ipw_led_link_on(priv); 1119 } 1120 1121 static void ipw_led_link_down(struct ipw_priv *priv) 1122 { 1123 ipw_led_activity_off(priv); 1124 ipw_led_link_off(priv); 1125 1126 if (priv->status & STATUS_RF_KILL_MASK) 1127 ipw_led_radio_off(priv); 1128 } 1129 1130 static void ipw_led_init(struct ipw_priv *priv) 1131 { 1132 priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE]; 1133 1134 /* Set the default PINs for the link and activity leds */ 1135 priv->led_activity_on = IPW_ACTIVITY_LED; 1136 priv->led_activity_off = ~(IPW_ACTIVITY_LED); 1137 1138 priv->led_association_on = IPW_ASSOCIATED_LED; 1139 priv->led_association_off = ~(IPW_ASSOCIATED_LED); 1140 1141 /* Set the default PINs for the OFDM leds */ 1142 priv->led_ofdm_on = IPW_OFDM_LED; 1143 priv->led_ofdm_off = ~(IPW_OFDM_LED); 1144 1145 switch (priv->nic_type) { 1146 case EEPROM_NIC_TYPE_1: 1147 /* In this NIC type, the LEDs are reversed.... */ 1148 priv->led_activity_on = IPW_ASSOCIATED_LED; 1149 priv->led_activity_off = ~(IPW_ASSOCIATED_LED); 1150 priv->led_association_on = IPW_ACTIVITY_LED; 1151 priv->led_association_off = ~(IPW_ACTIVITY_LED); 1152 1153 if (!(priv->config & CFG_NO_LED)) 1154 ipw_led_band_on(priv); 1155 1156 /* And we don't blink link LEDs for this nic, so 1157 * just return here */ 1158 return; 1159 1160 case EEPROM_NIC_TYPE_3: 1161 case EEPROM_NIC_TYPE_2: 1162 case EEPROM_NIC_TYPE_4: 1163 case EEPROM_NIC_TYPE_0: 1164 break; 1165 1166 default: 1167 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n", 1168 priv->nic_type); 1169 priv->nic_type = EEPROM_NIC_TYPE_0; 1170 break; 1171 } 1172 1173 if (!(priv->config & CFG_NO_LED)) { 1174 if (priv->status & STATUS_ASSOCIATED) 1175 ipw_led_link_on(priv); 1176 else 1177 ipw_led_link_off(priv); 1178 } 1179 } 1180 1181 static void ipw_led_shutdown(struct ipw_priv *priv) 1182 { 1183 ipw_led_activity_off(priv); 1184 ipw_led_link_off(priv); 1185 ipw_led_band_off(priv); 1186 cancel_delayed_work(&priv->led_link_on); 1187 cancel_delayed_work(&priv->led_link_off); 1188 cancel_delayed_work(&priv->led_act_off); 1189 } 1190 1191 /* 1192 * The following adds a new attribute to the sysfs representation 1193 * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/) 1194 * used for controlling the debug level. 1195 * 1196 * See the level definitions in ipw for details. 1197 */ 1198 static ssize_t debug_level_show(struct device_driver *d, char *buf) 1199 { 1200 return sprintf(buf, "0x%08X\n", ipw_debug_level); 1201 } 1202 1203 static ssize_t debug_level_store(struct device_driver *d, const char *buf, 1204 size_t count) 1205 { 1206 char *p = (char *)buf; 1207 u32 val; 1208 1209 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') { 1210 p++; 1211 if (p[0] == 'x' || p[0] == 'X') 1212 p++; 1213 val = simple_strtoul(p, &p, 16); 1214 } else 1215 val = simple_strtoul(p, &p, 10); 1216 if (p == buf) 1217 printk(KERN_INFO DRV_NAME 1218 ": %s is not in hex or decimal form.\n", buf); 1219 else 1220 ipw_debug_level = val; 1221 1222 return strnlen(buf, count); 1223 } 1224 static DRIVER_ATTR_RW(debug_level); 1225 1226 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv) 1227 { 1228 /* length = 1st dword in log */ 1229 return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG)); 1230 } 1231 1232 static void ipw_capture_event_log(struct ipw_priv *priv, 1233 u32 log_len, struct ipw_event *log) 1234 { 1235 u32 base; 1236 1237 if (log_len) { 1238 base = ipw_read32(priv, IPW_EVENT_LOG); 1239 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32), 1240 (u8 *) log, sizeof(*log) * log_len); 1241 } 1242 } 1243 1244 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv) 1245 { 1246 struct ipw_fw_error *error; 1247 u32 log_len = ipw_get_event_log_len(priv); 1248 u32 base = ipw_read32(priv, IPW_ERROR_LOG); 1249 u32 elem_len = ipw_read_reg32(priv, base); 1250 1251 error = kmalloc(sizeof(*error) + 1252 sizeof(*error->elem) * elem_len + 1253 sizeof(*error->log) * log_len, GFP_ATOMIC); 1254 if (!error) { 1255 IPW_ERROR("Memory allocation for firmware error log " 1256 "failed.\n"); 1257 return NULL; 1258 } 1259 error->jiffies = jiffies; 1260 error->status = priv->status; 1261 error->config = priv->config; 1262 error->elem_len = elem_len; 1263 error->log_len = log_len; 1264 error->elem = (struct ipw_error_elem *)error->payload; 1265 error->log = (struct ipw_event *)(error->elem + elem_len); 1266 1267 ipw_capture_event_log(priv, log_len, error->log); 1268 1269 if (elem_len) 1270 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem, 1271 sizeof(*error->elem) * elem_len); 1272 1273 return error; 1274 } 1275 1276 static ssize_t show_event_log(struct device *d, 1277 struct device_attribute *attr, char *buf) 1278 { 1279 struct ipw_priv *priv = dev_get_drvdata(d); 1280 u32 log_len = ipw_get_event_log_len(priv); 1281 u32 log_size; 1282 struct ipw_event *log; 1283 u32 len = 0, i; 1284 1285 /* not using min() because of its strict type checking */ 1286 log_size = PAGE_SIZE / sizeof(*log) > log_len ? 1287 sizeof(*log) * log_len : PAGE_SIZE; 1288 log = kzalloc(log_size, GFP_KERNEL); 1289 if (!log) { 1290 IPW_ERROR("Unable to allocate memory for log\n"); 1291 return 0; 1292 } 1293 log_len = log_size / sizeof(*log); 1294 ipw_capture_event_log(priv, log_len, log); 1295 1296 len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len); 1297 for (i = 0; i < log_len; i++) 1298 len += snprintf(buf + len, PAGE_SIZE - len, 1299 "\n%08X%08X%08X", 1300 log[i].time, log[i].event, log[i].data); 1301 len += snprintf(buf + len, PAGE_SIZE - len, "\n"); 1302 kfree(log); 1303 return len; 1304 } 1305 1306 static DEVICE_ATTR(event_log, 0444, show_event_log, NULL); 1307 1308 static ssize_t show_error(struct device *d, 1309 struct device_attribute *attr, char *buf) 1310 { 1311 struct ipw_priv *priv = dev_get_drvdata(d); 1312 u32 len = 0, i; 1313 if (!priv->error) 1314 return 0; 1315 len += snprintf(buf + len, PAGE_SIZE - len, 1316 "%08lX%08X%08X%08X", 1317 priv->error->jiffies, 1318 priv->error->status, 1319 priv->error->config, priv->error->elem_len); 1320 for (i = 0; i < priv->error->elem_len; i++) 1321 len += snprintf(buf + len, PAGE_SIZE - len, 1322 "\n%08X%08X%08X%08X%08X%08X%08X", 1323 priv->error->elem[i].time, 1324 priv->error->elem[i].desc, 1325 priv->error->elem[i].blink1, 1326 priv->error->elem[i].blink2, 1327 priv->error->elem[i].link1, 1328 priv->error->elem[i].link2, 1329 priv->error->elem[i].data); 1330 1331 len += snprintf(buf + len, PAGE_SIZE - len, 1332 "\n%08X", priv->error->log_len); 1333 for (i = 0; i < priv->error->log_len; i++) 1334 len += snprintf(buf + len, PAGE_SIZE - len, 1335 "\n%08X%08X%08X", 1336 priv->error->log[i].time, 1337 priv->error->log[i].event, 1338 priv->error->log[i].data); 1339 len += snprintf(buf + len, PAGE_SIZE - len, "\n"); 1340 return len; 1341 } 1342 1343 static ssize_t clear_error(struct device *d, 1344 struct device_attribute *attr, 1345 const char *buf, size_t count) 1346 { 1347 struct ipw_priv *priv = dev_get_drvdata(d); 1348 1349 kfree(priv->error); 1350 priv->error = NULL; 1351 return count; 1352 } 1353 1354 static DEVICE_ATTR(error, 0644, show_error, clear_error); 1355 1356 static ssize_t show_cmd_log(struct device *d, 1357 struct device_attribute *attr, char *buf) 1358 { 1359 struct ipw_priv *priv = dev_get_drvdata(d); 1360 u32 len = 0, i; 1361 if (!priv->cmdlog) 1362 return 0; 1363 for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len; 1364 (i != priv->cmdlog_pos) && (len < PAGE_SIZE); 1365 i = (i + 1) % priv->cmdlog_len) { 1366 len += 1367 snprintf(buf + len, PAGE_SIZE - len, 1368 "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies, 1369 priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd, 1370 priv->cmdlog[i].cmd.len); 1371 len += 1372 snprintk_buf(buf + len, PAGE_SIZE - len, 1373 (u8 *) priv->cmdlog[i].cmd.param, 1374 priv->cmdlog[i].cmd.len); 1375 len += snprintf(buf + len, PAGE_SIZE - len, "\n"); 1376 } 1377 len += snprintf(buf + len, PAGE_SIZE - len, "\n"); 1378 return len; 1379 } 1380 1381 static DEVICE_ATTR(cmd_log, 0444, show_cmd_log, NULL); 1382 1383 #ifdef CONFIG_IPW2200_PROMISCUOUS 1384 static void ipw_prom_free(struct ipw_priv *priv); 1385 static int ipw_prom_alloc(struct ipw_priv *priv); 1386 static ssize_t store_rtap_iface(struct device *d, 1387 struct device_attribute *attr, 1388 const char *buf, size_t count) 1389 { 1390 struct ipw_priv *priv = dev_get_drvdata(d); 1391 int rc = 0; 1392 1393 if (count < 1) 1394 return -EINVAL; 1395 1396 switch (buf[0]) { 1397 case '0': 1398 if (!rtap_iface) 1399 return count; 1400 1401 if (netif_running(priv->prom_net_dev)) { 1402 IPW_WARNING("Interface is up. Cannot unregister.\n"); 1403 return count; 1404 } 1405 1406 ipw_prom_free(priv); 1407 rtap_iface = 0; 1408 break; 1409 1410 case '1': 1411 if (rtap_iface) 1412 return count; 1413 1414 rc = ipw_prom_alloc(priv); 1415 if (!rc) 1416 rtap_iface = 1; 1417 break; 1418 1419 default: 1420 return -EINVAL; 1421 } 1422 1423 if (rc) { 1424 IPW_ERROR("Failed to register promiscuous network " 1425 "device (error %d).\n", rc); 1426 } 1427 1428 return count; 1429 } 1430 1431 static ssize_t show_rtap_iface(struct device *d, 1432 struct device_attribute *attr, 1433 char *buf) 1434 { 1435 struct ipw_priv *priv = dev_get_drvdata(d); 1436 if (rtap_iface) 1437 return sprintf(buf, "%s", priv->prom_net_dev->name); 1438 else { 1439 buf[0] = '-'; 1440 buf[1] = '1'; 1441 buf[2] = '\0'; 1442 return 3; 1443 } 1444 } 1445 1446 static DEVICE_ATTR(rtap_iface, 0600, show_rtap_iface, store_rtap_iface); 1447 1448 static ssize_t store_rtap_filter(struct device *d, 1449 struct device_attribute *attr, 1450 const char *buf, size_t count) 1451 { 1452 struct ipw_priv *priv = dev_get_drvdata(d); 1453 1454 if (!priv->prom_priv) { 1455 IPW_ERROR("Attempting to set filter without " 1456 "rtap_iface enabled.\n"); 1457 return -EPERM; 1458 } 1459 1460 priv->prom_priv->filter = simple_strtol(buf, NULL, 0); 1461 1462 IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n", 1463 BIT_ARG16(priv->prom_priv->filter)); 1464 1465 return count; 1466 } 1467 1468 static ssize_t show_rtap_filter(struct device *d, 1469 struct device_attribute *attr, 1470 char *buf) 1471 { 1472 struct ipw_priv *priv = dev_get_drvdata(d); 1473 return sprintf(buf, "0x%04X", 1474 priv->prom_priv ? priv->prom_priv->filter : 0); 1475 } 1476 1477 static DEVICE_ATTR(rtap_filter, 0600, show_rtap_filter, store_rtap_filter); 1478 #endif 1479 1480 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr, 1481 char *buf) 1482 { 1483 struct ipw_priv *priv = dev_get_drvdata(d); 1484 return sprintf(buf, "%d\n", priv->ieee->scan_age); 1485 } 1486 1487 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr, 1488 const char *buf, size_t count) 1489 { 1490 struct ipw_priv *priv = dev_get_drvdata(d); 1491 struct net_device *dev = priv->net_dev; 1492 char buffer[] = "00000000"; 1493 unsigned long len = 1494 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1; 1495 unsigned long val; 1496 char *p = buffer; 1497 1498 IPW_DEBUG_INFO("enter\n"); 1499 1500 strncpy(buffer, buf, len); 1501 buffer[len] = 0; 1502 1503 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') { 1504 p++; 1505 if (p[0] == 'x' || p[0] == 'X') 1506 p++; 1507 val = simple_strtoul(p, &p, 16); 1508 } else 1509 val = simple_strtoul(p, &p, 10); 1510 if (p == buffer) { 1511 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name); 1512 } else { 1513 priv->ieee->scan_age = val; 1514 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age); 1515 } 1516 1517 IPW_DEBUG_INFO("exit\n"); 1518 return len; 1519 } 1520 1521 static DEVICE_ATTR(scan_age, 0644, show_scan_age, store_scan_age); 1522 1523 static ssize_t show_led(struct device *d, struct device_attribute *attr, 1524 char *buf) 1525 { 1526 struct ipw_priv *priv = dev_get_drvdata(d); 1527 return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1); 1528 } 1529 1530 static ssize_t store_led(struct device *d, struct device_attribute *attr, 1531 const char *buf, size_t count) 1532 { 1533 struct ipw_priv *priv = dev_get_drvdata(d); 1534 1535 IPW_DEBUG_INFO("enter\n"); 1536 1537 if (count == 0) 1538 return 0; 1539 1540 if (*buf == 0) { 1541 IPW_DEBUG_LED("Disabling LED control.\n"); 1542 priv->config |= CFG_NO_LED; 1543 ipw_led_shutdown(priv); 1544 } else { 1545 IPW_DEBUG_LED("Enabling LED control.\n"); 1546 priv->config &= ~CFG_NO_LED; 1547 ipw_led_init(priv); 1548 } 1549 1550 IPW_DEBUG_INFO("exit\n"); 1551 return count; 1552 } 1553 1554 static DEVICE_ATTR(led, 0644, show_led, store_led); 1555 1556 static ssize_t show_status(struct device *d, 1557 struct device_attribute *attr, char *buf) 1558 { 1559 struct ipw_priv *p = dev_get_drvdata(d); 1560 return sprintf(buf, "0x%08x\n", (int)p->status); 1561 } 1562 1563 static DEVICE_ATTR(status, 0444, show_status, NULL); 1564 1565 static ssize_t show_cfg(struct device *d, struct device_attribute *attr, 1566 char *buf) 1567 { 1568 struct ipw_priv *p = dev_get_drvdata(d); 1569 return sprintf(buf, "0x%08x\n", (int)p->config); 1570 } 1571 1572 static DEVICE_ATTR(cfg, 0444, show_cfg, NULL); 1573 1574 static ssize_t show_nic_type(struct device *d, 1575 struct device_attribute *attr, char *buf) 1576 { 1577 struct ipw_priv *priv = dev_get_drvdata(d); 1578 return sprintf(buf, "TYPE: %d\n", priv->nic_type); 1579 } 1580 1581 static DEVICE_ATTR(nic_type, 0444, show_nic_type, NULL); 1582 1583 static ssize_t show_ucode_version(struct device *d, 1584 struct device_attribute *attr, char *buf) 1585 { 1586 u32 len = sizeof(u32), tmp = 0; 1587 struct ipw_priv *p = dev_get_drvdata(d); 1588 1589 if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len)) 1590 return 0; 1591 1592 return sprintf(buf, "0x%08x\n", tmp); 1593 } 1594 1595 static DEVICE_ATTR(ucode_version, 0644, show_ucode_version, NULL); 1596 1597 static ssize_t show_rtc(struct device *d, struct device_attribute *attr, 1598 char *buf) 1599 { 1600 u32 len = sizeof(u32), tmp = 0; 1601 struct ipw_priv *p = dev_get_drvdata(d); 1602 1603 if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len)) 1604 return 0; 1605 1606 return sprintf(buf, "0x%08x\n", tmp); 1607 } 1608 1609 static DEVICE_ATTR(rtc, 0644, show_rtc, NULL); 1610 1611 /* 1612 * Add a device attribute to view/control the delay between eeprom 1613 * operations. 1614 */ 1615 static ssize_t show_eeprom_delay(struct device *d, 1616 struct device_attribute *attr, char *buf) 1617 { 1618 struct ipw_priv *p = dev_get_drvdata(d); 1619 int n = p->eeprom_delay; 1620 return sprintf(buf, "%i\n", n); 1621 } 1622 static ssize_t store_eeprom_delay(struct device *d, 1623 struct device_attribute *attr, 1624 const char *buf, size_t count) 1625 { 1626 struct ipw_priv *p = dev_get_drvdata(d); 1627 sscanf(buf, "%i", &p->eeprom_delay); 1628 return strnlen(buf, count); 1629 } 1630 1631 static DEVICE_ATTR(eeprom_delay, 0644, show_eeprom_delay, store_eeprom_delay); 1632 1633 static ssize_t show_command_event_reg(struct device *d, 1634 struct device_attribute *attr, char *buf) 1635 { 1636 u32 reg = 0; 1637 struct ipw_priv *p = dev_get_drvdata(d); 1638 1639 reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT); 1640 return sprintf(buf, "0x%08x\n", reg); 1641 } 1642 static ssize_t store_command_event_reg(struct device *d, 1643 struct device_attribute *attr, 1644 const char *buf, size_t count) 1645 { 1646 u32 reg; 1647 struct ipw_priv *p = dev_get_drvdata(d); 1648 1649 sscanf(buf, "%x", ®); 1650 ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg); 1651 return strnlen(buf, count); 1652 } 1653 1654 static DEVICE_ATTR(command_event_reg, 0644, 1655 show_command_event_reg, store_command_event_reg); 1656 1657 static ssize_t show_mem_gpio_reg(struct device *d, 1658 struct device_attribute *attr, char *buf) 1659 { 1660 u32 reg = 0; 1661 struct ipw_priv *p = dev_get_drvdata(d); 1662 1663 reg = ipw_read_reg32(p, 0x301100); 1664 return sprintf(buf, "0x%08x\n", reg); 1665 } 1666 static ssize_t store_mem_gpio_reg(struct device *d, 1667 struct device_attribute *attr, 1668 const char *buf, size_t count) 1669 { 1670 u32 reg; 1671 struct ipw_priv *p = dev_get_drvdata(d); 1672 1673 sscanf(buf, "%x", ®); 1674 ipw_write_reg32(p, 0x301100, reg); 1675 return strnlen(buf, count); 1676 } 1677 1678 static DEVICE_ATTR(mem_gpio_reg, 0644, show_mem_gpio_reg, store_mem_gpio_reg); 1679 1680 static ssize_t show_indirect_dword(struct device *d, 1681 struct device_attribute *attr, char *buf) 1682 { 1683 u32 reg = 0; 1684 struct ipw_priv *priv = dev_get_drvdata(d); 1685 1686 if (priv->status & STATUS_INDIRECT_DWORD) 1687 reg = ipw_read_reg32(priv, priv->indirect_dword); 1688 else 1689 reg = 0; 1690 1691 return sprintf(buf, "0x%08x\n", reg); 1692 } 1693 static ssize_t store_indirect_dword(struct device *d, 1694 struct device_attribute *attr, 1695 const char *buf, size_t count) 1696 { 1697 struct ipw_priv *priv = dev_get_drvdata(d); 1698 1699 sscanf(buf, "%x", &priv->indirect_dword); 1700 priv->status |= STATUS_INDIRECT_DWORD; 1701 return strnlen(buf, count); 1702 } 1703 1704 static DEVICE_ATTR(indirect_dword, 0644, 1705 show_indirect_dword, store_indirect_dword); 1706 1707 static ssize_t show_indirect_byte(struct device *d, 1708 struct device_attribute *attr, char *buf) 1709 { 1710 u8 reg = 0; 1711 struct ipw_priv *priv = dev_get_drvdata(d); 1712 1713 if (priv->status & STATUS_INDIRECT_BYTE) 1714 reg = ipw_read_reg8(priv, priv->indirect_byte); 1715 else 1716 reg = 0; 1717 1718 return sprintf(buf, "0x%02x\n", reg); 1719 } 1720 static ssize_t store_indirect_byte(struct device *d, 1721 struct device_attribute *attr, 1722 const char *buf, size_t count) 1723 { 1724 struct ipw_priv *priv = dev_get_drvdata(d); 1725 1726 sscanf(buf, "%x", &priv->indirect_byte); 1727 priv->status |= STATUS_INDIRECT_BYTE; 1728 return strnlen(buf, count); 1729 } 1730 1731 static DEVICE_ATTR(indirect_byte, 0644, 1732 show_indirect_byte, store_indirect_byte); 1733 1734 static ssize_t show_direct_dword(struct device *d, 1735 struct device_attribute *attr, char *buf) 1736 { 1737 u32 reg = 0; 1738 struct ipw_priv *priv = dev_get_drvdata(d); 1739 1740 if (priv->status & STATUS_DIRECT_DWORD) 1741 reg = ipw_read32(priv, priv->direct_dword); 1742 else 1743 reg = 0; 1744 1745 return sprintf(buf, "0x%08x\n", reg); 1746 } 1747 static ssize_t store_direct_dword(struct device *d, 1748 struct device_attribute *attr, 1749 const char *buf, size_t count) 1750 { 1751 struct ipw_priv *priv = dev_get_drvdata(d); 1752 1753 sscanf(buf, "%x", &priv->direct_dword); 1754 priv->status |= STATUS_DIRECT_DWORD; 1755 return strnlen(buf, count); 1756 } 1757 1758 static DEVICE_ATTR(direct_dword, 0644, show_direct_dword, store_direct_dword); 1759 1760 static int rf_kill_active(struct ipw_priv *priv) 1761 { 1762 if (0 == (ipw_read32(priv, 0x30) & 0x10000)) { 1763 priv->status |= STATUS_RF_KILL_HW; 1764 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true); 1765 } else { 1766 priv->status &= ~STATUS_RF_KILL_HW; 1767 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false); 1768 } 1769 1770 return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0; 1771 } 1772 1773 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr, 1774 char *buf) 1775 { 1776 /* 0 - RF kill not enabled 1777 1 - SW based RF kill active (sysfs) 1778 2 - HW based RF kill active 1779 3 - Both HW and SW baed RF kill active */ 1780 struct ipw_priv *priv = dev_get_drvdata(d); 1781 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) | 1782 (rf_kill_active(priv) ? 0x2 : 0x0); 1783 return sprintf(buf, "%i\n", val); 1784 } 1785 1786 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio) 1787 { 1788 if ((disable_radio ? 1 : 0) == 1789 ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0)) 1790 return 0; 1791 1792 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n", 1793 disable_radio ? "OFF" : "ON"); 1794 1795 if (disable_radio) { 1796 priv->status |= STATUS_RF_KILL_SW; 1797 1798 cancel_delayed_work(&priv->request_scan); 1799 cancel_delayed_work(&priv->request_direct_scan); 1800 cancel_delayed_work(&priv->request_passive_scan); 1801 cancel_delayed_work(&priv->scan_event); 1802 schedule_work(&priv->down); 1803 } else { 1804 priv->status &= ~STATUS_RF_KILL_SW; 1805 if (rf_kill_active(priv)) { 1806 IPW_DEBUG_RF_KILL("Can not turn radio back on - " 1807 "disabled by HW switch\n"); 1808 /* Make sure the RF_KILL check timer is running */ 1809 cancel_delayed_work(&priv->rf_kill); 1810 schedule_delayed_work(&priv->rf_kill, 1811 round_jiffies_relative(2 * HZ)); 1812 } else 1813 schedule_work(&priv->up); 1814 } 1815 1816 return 1; 1817 } 1818 1819 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr, 1820 const char *buf, size_t count) 1821 { 1822 struct ipw_priv *priv = dev_get_drvdata(d); 1823 1824 ipw_radio_kill_sw(priv, buf[0] == '1'); 1825 1826 return count; 1827 } 1828 1829 static DEVICE_ATTR(rf_kill, 0644, show_rf_kill, store_rf_kill); 1830 1831 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr, 1832 char *buf) 1833 { 1834 struct ipw_priv *priv = dev_get_drvdata(d); 1835 int pos = 0, len = 0; 1836 if (priv->config & CFG_SPEED_SCAN) { 1837 while (priv->speed_scan[pos] != 0) 1838 len += sprintf(&buf[len], "%d ", 1839 priv->speed_scan[pos++]); 1840 return len + sprintf(&buf[len], "\n"); 1841 } 1842 1843 return sprintf(buf, "0\n"); 1844 } 1845 1846 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr, 1847 const char *buf, size_t count) 1848 { 1849 struct ipw_priv *priv = dev_get_drvdata(d); 1850 int channel, pos = 0; 1851 const char *p = buf; 1852 1853 /* list of space separated channels to scan, optionally ending with 0 */ 1854 while ((channel = simple_strtol(p, NULL, 0))) { 1855 if (pos == MAX_SPEED_SCAN - 1) { 1856 priv->speed_scan[pos] = 0; 1857 break; 1858 } 1859 1860 if (libipw_is_valid_channel(priv->ieee, channel)) 1861 priv->speed_scan[pos++] = channel; 1862 else 1863 IPW_WARNING("Skipping invalid channel request: %d\n", 1864 channel); 1865 p = strchr(p, ' '); 1866 if (!p) 1867 break; 1868 while (*p == ' ' || *p == '\t') 1869 p++; 1870 } 1871 1872 if (pos == 0) 1873 priv->config &= ~CFG_SPEED_SCAN; 1874 else { 1875 priv->speed_scan_pos = 0; 1876 priv->config |= CFG_SPEED_SCAN; 1877 } 1878 1879 return count; 1880 } 1881 1882 static DEVICE_ATTR(speed_scan, 0644, show_speed_scan, store_speed_scan); 1883 1884 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr, 1885 char *buf) 1886 { 1887 struct ipw_priv *priv = dev_get_drvdata(d); 1888 return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0'); 1889 } 1890 1891 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr, 1892 const char *buf, size_t count) 1893 { 1894 struct ipw_priv *priv = dev_get_drvdata(d); 1895 if (buf[0] == '1') 1896 priv->config |= CFG_NET_STATS; 1897 else 1898 priv->config &= ~CFG_NET_STATS; 1899 1900 return count; 1901 } 1902 1903 static DEVICE_ATTR(net_stats, 0644, show_net_stats, store_net_stats); 1904 1905 static ssize_t show_channels(struct device *d, 1906 struct device_attribute *attr, 1907 char *buf) 1908 { 1909 struct ipw_priv *priv = dev_get_drvdata(d); 1910 const struct libipw_geo *geo = libipw_get_geo(priv->ieee); 1911 int len = 0, i; 1912 1913 len = sprintf(&buf[len], 1914 "Displaying %d channels in 2.4Ghz band " 1915 "(802.11bg):\n", geo->bg_channels); 1916 1917 for (i = 0; i < geo->bg_channels; i++) { 1918 len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n", 1919 geo->bg[i].channel, 1920 geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT ? 1921 " (radar spectrum)" : "", 1922 ((geo->bg[i].flags & LIBIPW_CH_NO_IBSS) || 1923 (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)) 1924 ? "" : ", IBSS", 1925 geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY ? 1926 "passive only" : "active/passive", 1927 geo->bg[i].flags & LIBIPW_CH_B_ONLY ? 1928 "B" : "B/G"); 1929 } 1930 1931 len += sprintf(&buf[len], 1932 "Displaying %d channels in 5.2Ghz band " 1933 "(802.11a):\n", geo->a_channels); 1934 for (i = 0; i < geo->a_channels; i++) { 1935 len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n", 1936 geo->a[i].channel, 1937 geo->a[i].flags & LIBIPW_CH_RADAR_DETECT ? 1938 " (radar spectrum)" : "", 1939 ((geo->a[i].flags & LIBIPW_CH_NO_IBSS) || 1940 (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT)) 1941 ? "" : ", IBSS", 1942 geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY ? 1943 "passive only" : "active/passive"); 1944 } 1945 1946 return len; 1947 } 1948 1949 static DEVICE_ATTR(channels, 0400, show_channels, NULL); 1950 1951 static void notify_wx_assoc_event(struct ipw_priv *priv) 1952 { 1953 union iwreq_data wrqu; 1954 wrqu.ap_addr.sa_family = ARPHRD_ETHER; 1955 if (priv->status & STATUS_ASSOCIATED) 1956 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN); 1957 else 1958 eth_zero_addr(wrqu.ap_addr.sa_data); 1959 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL); 1960 } 1961 1962 static void ipw_irq_tasklet(struct ipw_priv *priv) 1963 { 1964 u32 inta, inta_mask, handled = 0; 1965 unsigned long flags; 1966 int rc = 0; 1967 1968 spin_lock_irqsave(&priv->irq_lock, flags); 1969 1970 inta = ipw_read32(priv, IPW_INTA_RW); 1971 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R); 1972 1973 if (inta == 0xFFFFFFFF) { 1974 /* Hardware disappeared */ 1975 IPW_WARNING("TASKLET INTA == 0xFFFFFFFF\n"); 1976 /* Only handle the cached INTA values */ 1977 inta = 0; 1978 } 1979 inta &= (IPW_INTA_MASK_ALL & inta_mask); 1980 1981 /* Add any cached INTA values that need to be handled */ 1982 inta |= priv->isr_inta; 1983 1984 spin_unlock_irqrestore(&priv->irq_lock, flags); 1985 1986 spin_lock_irqsave(&priv->lock, flags); 1987 1988 /* handle all the justifications for the interrupt */ 1989 if (inta & IPW_INTA_BIT_RX_TRANSFER) { 1990 ipw_rx(priv); 1991 handled |= IPW_INTA_BIT_RX_TRANSFER; 1992 } 1993 1994 if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) { 1995 IPW_DEBUG_HC("Command completed.\n"); 1996 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1); 1997 priv->status &= ~STATUS_HCMD_ACTIVE; 1998 wake_up_interruptible(&priv->wait_command_queue); 1999 handled |= IPW_INTA_BIT_TX_CMD_QUEUE; 2000 } 2001 2002 if (inta & IPW_INTA_BIT_TX_QUEUE_1) { 2003 IPW_DEBUG_TX("TX_QUEUE_1\n"); 2004 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0); 2005 handled |= IPW_INTA_BIT_TX_QUEUE_1; 2006 } 2007 2008 if (inta & IPW_INTA_BIT_TX_QUEUE_2) { 2009 IPW_DEBUG_TX("TX_QUEUE_2\n"); 2010 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1); 2011 handled |= IPW_INTA_BIT_TX_QUEUE_2; 2012 } 2013 2014 if (inta & IPW_INTA_BIT_TX_QUEUE_3) { 2015 IPW_DEBUG_TX("TX_QUEUE_3\n"); 2016 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2); 2017 handled |= IPW_INTA_BIT_TX_QUEUE_3; 2018 } 2019 2020 if (inta & IPW_INTA_BIT_TX_QUEUE_4) { 2021 IPW_DEBUG_TX("TX_QUEUE_4\n"); 2022 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3); 2023 handled |= IPW_INTA_BIT_TX_QUEUE_4; 2024 } 2025 2026 if (inta & IPW_INTA_BIT_STATUS_CHANGE) { 2027 IPW_WARNING("STATUS_CHANGE\n"); 2028 handled |= IPW_INTA_BIT_STATUS_CHANGE; 2029 } 2030 2031 if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) { 2032 IPW_WARNING("TX_PERIOD_EXPIRED\n"); 2033 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED; 2034 } 2035 2036 if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) { 2037 IPW_WARNING("HOST_CMD_DONE\n"); 2038 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE; 2039 } 2040 2041 if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) { 2042 IPW_WARNING("FW_INITIALIZATION_DONE\n"); 2043 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE; 2044 } 2045 2046 if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) { 2047 IPW_WARNING("PHY_OFF_DONE\n"); 2048 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE; 2049 } 2050 2051 if (inta & IPW_INTA_BIT_RF_KILL_DONE) { 2052 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n"); 2053 priv->status |= STATUS_RF_KILL_HW; 2054 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true); 2055 wake_up_interruptible(&priv->wait_command_queue); 2056 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING); 2057 cancel_delayed_work(&priv->request_scan); 2058 cancel_delayed_work(&priv->request_direct_scan); 2059 cancel_delayed_work(&priv->request_passive_scan); 2060 cancel_delayed_work(&priv->scan_event); 2061 schedule_work(&priv->link_down); 2062 schedule_delayed_work(&priv->rf_kill, 2 * HZ); 2063 handled |= IPW_INTA_BIT_RF_KILL_DONE; 2064 } 2065 2066 if (inta & IPW_INTA_BIT_FATAL_ERROR) { 2067 IPW_WARNING("Firmware error detected. Restarting.\n"); 2068 if (priv->error) { 2069 IPW_DEBUG_FW("Sysfs 'error' log already exists.\n"); 2070 if (ipw_debug_level & IPW_DL_FW_ERRORS) { 2071 struct ipw_fw_error *error = 2072 ipw_alloc_error_log(priv); 2073 ipw_dump_error_log(priv, error); 2074 kfree(error); 2075 } 2076 } else { 2077 priv->error = ipw_alloc_error_log(priv); 2078 if (priv->error) 2079 IPW_DEBUG_FW("Sysfs 'error' log captured.\n"); 2080 else 2081 IPW_DEBUG_FW("Error allocating sysfs 'error' " 2082 "log.\n"); 2083 if (ipw_debug_level & IPW_DL_FW_ERRORS) 2084 ipw_dump_error_log(priv, priv->error); 2085 } 2086 2087 /* XXX: If hardware encryption is for WPA/WPA2, 2088 * we have to notify the supplicant. */ 2089 if (priv->ieee->sec.encrypt) { 2090 priv->status &= ~STATUS_ASSOCIATED; 2091 notify_wx_assoc_event(priv); 2092 } 2093 2094 /* Keep the restart process from trying to send host 2095 * commands by clearing the INIT status bit */ 2096 priv->status &= ~STATUS_INIT; 2097 2098 /* Cancel currently queued command. */ 2099 priv->status &= ~STATUS_HCMD_ACTIVE; 2100 wake_up_interruptible(&priv->wait_command_queue); 2101 2102 schedule_work(&priv->adapter_restart); 2103 handled |= IPW_INTA_BIT_FATAL_ERROR; 2104 } 2105 2106 if (inta & IPW_INTA_BIT_PARITY_ERROR) { 2107 IPW_ERROR("Parity error\n"); 2108 handled |= IPW_INTA_BIT_PARITY_ERROR; 2109 } 2110 2111 if (handled != inta) { 2112 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled); 2113 } 2114 2115 spin_unlock_irqrestore(&priv->lock, flags); 2116 2117 /* enable all interrupts */ 2118 ipw_enable_interrupts(priv); 2119 } 2120 2121 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x 2122 static char *get_cmd_string(u8 cmd) 2123 { 2124 switch (cmd) { 2125 IPW_CMD(HOST_COMPLETE); 2126 IPW_CMD(POWER_DOWN); 2127 IPW_CMD(SYSTEM_CONFIG); 2128 IPW_CMD(MULTICAST_ADDRESS); 2129 IPW_CMD(SSID); 2130 IPW_CMD(ADAPTER_ADDRESS); 2131 IPW_CMD(PORT_TYPE); 2132 IPW_CMD(RTS_THRESHOLD); 2133 IPW_CMD(FRAG_THRESHOLD); 2134 IPW_CMD(POWER_MODE); 2135 IPW_CMD(WEP_KEY); 2136 IPW_CMD(TGI_TX_KEY); 2137 IPW_CMD(SCAN_REQUEST); 2138 IPW_CMD(SCAN_REQUEST_EXT); 2139 IPW_CMD(ASSOCIATE); 2140 IPW_CMD(SUPPORTED_RATES); 2141 IPW_CMD(SCAN_ABORT); 2142 IPW_CMD(TX_FLUSH); 2143 IPW_CMD(QOS_PARAMETERS); 2144 IPW_CMD(DINO_CONFIG); 2145 IPW_CMD(RSN_CAPABILITIES); 2146 IPW_CMD(RX_KEY); 2147 IPW_CMD(CARD_DISABLE); 2148 IPW_CMD(SEED_NUMBER); 2149 IPW_CMD(TX_POWER); 2150 IPW_CMD(COUNTRY_INFO); 2151 IPW_CMD(AIRONET_INFO); 2152 IPW_CMD(AP_TX_POWER); 2153 IPW_CMD(CCKM_INFO); 2154 IPW_CMD(CCX_VER_INFO); 2155 IPW_CMD(SET_CALIBRATION); 2156 IPW_CMD(SENSITIVITY_CALIB); 2157 IPW_CMD(RETRY_LIMIT); 2158 IPW_CMD(IPW_PRE_POWER_DOWN); 2159 IPW_CMD(VAP_BEACON_TEMPLATE); 2160 IPW_CMD(VAP_DTIM_PERIOD); 2161 IPW_CMD(EXT_SUPPORTED_RATES); 2162 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT); 2163 IPW_CMD(VAP_QUIET_INTERVALS); 2164 IPW_CMD(VAP_CHANNEL_SWITCH); 2165 IPW_CMD(VAP_MANDATORY_CHANNELS); 2166 IPW_CMD(VAP_CELL_PWR_LIMIT); 2167 IPW_CMD(VAP_CF_PARAM_SET); 2168 IPW_CMD(VAP_SET_BEACONING_STATE); 2169 IPW_CMD(MEASUREMENT); 2170 IPW_CMD(POWER_CAPABILITY); 2171 IPW_CMD(SUPPORTED_CHANNELS); 2172 IPW_CMD(TPC_REPORT); 2173 IPW_CMD(WME_INFO); 2174 IPW_CMD(PRODUCTION_COMMAND); 2175 default: 2176 return "UNKNOWN"; 2177 } 2178 } 2179 2180 #define HOST_COMPLETE_TIMEOUT HZ 2181 2182 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd) 2183 { 2184 int rc = 0; 2185 unsigned long flags; 2186 unsigned long now, end; 2187 2188 spin_lock_irqsave(&priv->lock, flags); 2189 if (priv->status & STATUS_HCMD_ACTIVE) { 2190 IPW_ERROR("Failed to send %s: Already sending a command.\n", 2191 get_cmd_string(cmd->cmd)); 2192 spin_unlock_irqrestore(&priv->lock, flags); 2193 return -EAGAIN; 2194 } 2195 2196 priv->status |= STATUS_HCMD_ACTIVE; 2197 2198 if (priv->cmdlog) { 2199 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies; 2200 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd; 2201 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len; 2202 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param, 2203 cmd->len); 2204 priv->cmdlog[priv->cmdlog_pos].retcode = -1; 2205 } 2206 2207 IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n", 2208 get_cmd_string(cmd->cmd), cmd->cmd, cmd->len, 2209 priv->status); 2210 2211 #ifndef DEBUG_CMD_WEP_KEY 2212 if (cmd->cmd == IPW_CMD_WEP_KEY) 2213 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n"); 2214 else 2215 #endif 2216 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len); 2217 2218 rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0); 2219 if (rc) { 2220 priv->status &= ~STATUS_HCMD_ACTIVE; 2221 IPW_ERROR("Failed to send %s: Reason %d\n", 2222 get_cmd_string(cmd->cmd), rc); 2223 spin_unlock_irqrestore(&priv->lock, flags); 2224 goto exit; 2225 } 2226 spin_unlock_irqrestore(&priv->lock, flags); 2227 2228 now = jiffies; 2229 end = now + HOST_COMPLETE_TIMEOUT; 2230 again: 2231 rc = wait_event_interruptible_timeout(priv->wait_command_queue, 2232 !(priv-> 2233 status & STATUS_HCMD_ACTIVE), 2234 end - now); 2235 if (rc < 0) { 2236 now = jiffies; 2237 if (time_before(now, end)) 2238 goto again; 2239 rc = 0; 2240 } 2241 2242 if (rc == 0) { 2243 spin_lock_irqsave(&priv->lock, flags); 2244 if (priv->status & STATUS_HCMD_ACTIVE) { 2245 IPW_ERROR("Failed to send %s: Command timed out.\n", 2246 get_cmd_string(cmd->cmd)); 2247 priv->status &= ~STATUS_HCMD_ACTIVE; 2248 spin_unlock_irqrestore(&priv->lock, flags); 2249 rc = -EIO; 2250 goto exit; 2251 } 2252 spin_unlock_irqrestore(&priv->lock, flags); 2253 } else 2254 rc = 0; 2255 2256 if (priv->status & STATUS_RF_KILL_HW) { 2257 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n", 2258 get_cmd_string(cmd->cmd)); 2259 rc = -EIO; 2260 goto exit; 2261 } 2262 2263 exit: 2264 if (priv->cmdlog) { 2265 priv->cmdlog[priv->cmdlog_pos++].retcode = rc; 2266 priv->cmdlog_pos %= priv->cmdlog_len; 2267 } 2268 return rc; 2269 } 2270 2271 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command) 2272 { 2273 struct host_cmd cmd = { 2274 .cmd = command, 2275 }; 2276 2277 return __ipw_send_cmd(priv, &cmd); 2278 } 2279 2280 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len, 2281 void *data) 2282 { 2283 struct host_cmd cmd = { 2284 .cmd = command, 2285 .len = len, 2286 .param = data, 2287 }; 2288 2289 return __ipw_send_cmd(priv, &cmd); 2290 } 2291 2292 static int ipw_send_host_complete(struct ipw_priv *priv) 2293 { 2294 if (!priv) { 2295 IPW_ERROR("Invalid args\n"); 2296 return -1; 2297 } 2298 2299 return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE); 2300 } 2301 2302 static int ipw_send_system_config(struct ipw_priv *priv) 2303 { 2304 return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG, 2305 sizeof(priv->sys_config), 2306 &priv->sys_config); 2307 } 2308 2309 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len) 2310 { 2311 if (!priv || !ssid) { 2312 IPW_ERROR("Invalid args\n"); 2313 return -1; 2314 } 2315 2316 return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE), 2317 ssid); 2318 } 2319 2320 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac) 2321 { 2322 if (!priv || !mac) { 2323 IPW_ERROR("Invalid args\n"); 2324 return -1; 2325 } 2326 2327 IPW_DEBUG_INFO("%s: Setting MAC to %pM\n", 2328 priv->net_dev->name, mac); 2329 2330 return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac); 2331 } 2332 2333 static void ipw_adapter_restart(void *adapter) 2334 { 2335 struct ipw_priv *priv = adapter; 2336 2337 if (priv->status & STATUS_RF_KILL_MASK) 2338 return; 2339 2340 ipw_down(priv); 2341 2342 if (priv->assoc_network && 2343 (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS)) 2344 ipw_remove_current_network(priv); 2345 2346 if (ipw_up(priv)) { 2347 IPW_ERROR("Failed to up device\n"); 2348 return; 2349 } 2350 } 2351 2352 static void ipw_bg_adapter_restart(struct work_struct *work) 2353 { 2354 struct ipw_priv *priv = 2355 container_of(work, struct ipw_priv, adapter_restart); 2356 mutex_lock(&priv->mutex); 2357 ipw_adapter_restart(priv); 2358 mutex_unlock(&priv->mutex); 2359 } 2360 2361 static void ipw_abort_scan(struct ipw_priv *priv); 2362 2363 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ) 2364 2365 static void ipw_scan_check(void *data) 2366 { 2367 struct ipw_priv *priv = data; 2368 2369 if (priv->status & STATUS_SCAN_ABORTING) { 2370 IPW_DEBUG_SCAN("Scan completion watchdog resetting " 2371 "adapter after (%dms).\n", 2372 jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG)); 2373 schedule_work(&priv->adapter_restart); 2374 } else if (priv->status & STATUS_SCANNING) { 2375 IPW_DEBUG_SCAN("Scan completion watchdog aborting scan " 2376 "after (%dms).\n", 2377 jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG)); 2378 ipw_abort_scan(priv); 2379 schedule_delayed_work(&priv->scan_check, HZ); 2380 } 2381 } 2382 2383 static void ipw_bg_scan_check(struct work_struct *work) 2384 { 2385 struct ipw_priv *priv = 2386 container_of(work, struct ipw_priv, scan_check.work); 2387 mutex_lock(&priv->mutex); 2388 ipw_scan_check(priv); 2389 mutex_unlock(&priv->mutex); 2390 } 2391 2392 static int ipw_send_scan_request_ext(struct ipw_priv *priv, 2393 struct ipw_scan_request_ext *request) 2394 { 2395 return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT, 2396 sizeof(*request), request); 2397 } 2398 2399 static int ipw_send_scan_abort(struct ipw_priv *priv) 2400 { 2401 if (!priv) { 2402 IPW_ERROR("Invalid args\n"); 2403 return -1; 2404 } 2405 2406 return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT); 2407 } 2408 2409 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens) 2410 { 2411 struct ipw_sensitivity_calib calib = { 2412 .beacon_rssi_raw = cpu_to_le16(sens), 2413 }; 2414 2415 return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib), 2416 &calib); 2417 } 2418 2419 static int ipw_send_associate(struct ipw_priv *priv, 2420 struct ipw_associate *associate) 2421 { 2422 if (!priv || !associate) { 2423 IPW_ERROR("Invalid args\n"); 2424 return -1; 2425 } 2426 2427 return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(*associate), 2428 associate); 2429 } 2430 2431 static int ipw_send_supported_rates(struct ipw_priv *priv, 2432 struct ipw_supported_rates *rates) 2433 { 2434 if (!priv || !rates) { 2435 IPW_ERROR("Invalid args\n"); 2436 return -1; 2437 } 2438 2439 return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates), 2440 rates); 2441 } 2442 2443 static int ipw_set_random_seed(struct ipw_priv *priv) 2444 { 2445 u32 val; 2446 2447 if (!priv) { 2448 IPW_ERROR("Invalid args\n"); 2449 return -1; 2450 } 2451 2452 get_random_bytes(&val, sizeof(val)); 2453 2454 return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val); 2455 } 2456 2457 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off) 2458 { 2459 __le32 v = cpu_to_le32(phy_off); 2460 if (!priv) { 2461 IPW_ERROR("Invalid args\n"); 2462 return -1; 2463 } 2464 2465 return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(v), &v); 2466 } 2467 2468 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power) 2469 { 2470 if (!priv || !power) { 2471 IPW_ERROR("Invalid args\n"); 2472 return -1; 2473 } 2474 2475 return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power); 2476 } 2477 2478 static int ipw_set_tx_power(struct ipw_priv *priv) 2479 { 2480 const struct libipw_geo *geo = libipw_get_geo(priv->ieee); 2481 struct ipw_tx_power tx_power; 2482 s8 max_power; 2483 int i; 2484 2485 memset(&tx_power, 0, sizeof(tx_power)); 2486 2487 /* configure device for 'G' band */ 2488 tx_power.ieee_mode = IPW_G_MODE; 2489 tx_power.num_channels = geo->bg_channels; 2490 for (i = 0; i < geo->bg_channels; i++) { 2491 max_power = geo->bg[i].max_power; 2492 tx_power.channels_tx_power[i].channel_number = 2493 geo->bg[i].channel; 2494 tx_power.channels_tx_power[i].tx_power = max_power ? 2495 min(max_power, priv->tx_power) : priv->tx_power; 2496 } 2497 if (ipw_send_tx_power(priv, &tx_power)) 2498 return -EIO; 2499 2500 /* configure device to also handle 'B' band */ 2501 tx_power.ieee_mode = IPW_B_MODE; 2502 if (ipw_send_tx_power(priv, &tx_power)) 2503 return -EIO; 2504 2505 /* configure device to also handle 'A' band */ 2506 if (priv->ieee->abg_true) { 2507 tx_power.ieee_mode = IPW_A_MODE; 2508 tx_power.num_channels = geo->a_channels; 2509 for (i = 0; i < tx_power.num_channels; i++) { 2510 max_power = geo->a[i].max_power; 2511 tx_power.channels_tx_power[i].channel_number = 2512 geo->a[i].channel; 2513 tx_power.channels_tx_power[i].tx_power = max_power ? 2514 min(max_power, priv->tx_power) : priv->tx_power; 2515 } 2516 if (ipw_send_tx_power(priv, &tx_power)) 2517 return -EIO; 2518 } 2519 return 0; 2520 } 2521 2522 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts) 2523 { 2524 struct ipw_rts_threshold rts_threshold = { 2525 .rts_threshold = cpu_to_le16(rts), 2526 }; 2527 2528 if (!priv) { 2529 IPW_ERROR("Invalid args\n"); 2530 return -1; 2531 } 2532 2533 return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD, 2534 sizeof(rts_threshold), &rts_threshold); 2535 } 2536 2537 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag) 2538 { 2539 struct ipw_frag_threshold frag_threshold = { 2540 .frag_threshold = cpu_to_le16(frag), 2541 }; 2542 2543 if (!priv) { 2544 IPW_ERROR("Invalid args\n"); 2545 return -1; 2546 } 2547 2548 return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD, 2549 sizeof(frag_threshold), &frag_threshold); 2550 } 2551 2552 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode) 2553 { 2554 __le32 param; 2555 2556 if (!priv) { 2557 IPW_ERROR("Invalid args\n"); 2558 return -1; 2559 } 2560 2561 /* If on battery, set to 3, if AC set to CAM, else user 2562 * level */ 2563 switch (mode) { 2564 case IPW_POWER_BATTERY: 2565 param = cpu_to_le32(IPW_POWER_INDEX_3); 2566 break; 2567 case IPW_POWER_AC: 2568 param = cpu_to_le32(IPW_POWER_MODE_CAM); 2569 break; 2570 default: 2571 param = cpu_to_le32(mode); 2572 break; 2573 } 2574 2575 return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param), 2576 ¶m); 2577 } 2578 2579 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit) 2580 { 2581 struct ipw_retry_limit retry_limit = { 2582 .short_retry_limit = slimit, 2583 .long_retry_limit = llimit 2584 }; 2585 2586 if (!priv) { 2587 IPW_ERROR("Invalid args\n"); 2588 return -1; 2589 } 2590 2591 return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit), 2592 &retry_limit); 2593 } 2594 2595 /* 2596 * The IPW device contains a Microwire compatible EEPROM that stores 2597 * various data like the MAC address. Usually the firmware has exclusive 2598 * access to the eeprom, but during device initialization (before the 2599 * device driver has sent the HostComplete command to the firmware) the 2600 * device driver has read access to the EEPROM by way of indirect addressing 2601 * through a couple of memory mapped registers. 2602 * 2603 * The following is a simplified implementation for pulling data out of the 2604 * the eeprom, along with some helper functions to find information in 2605 * the per device private data's copy of the eeprom. 2606 * 2607 * NOTE: To better understand how these functions work (i.e what is a chip 2608 * select and why do have to keep driving the eeprom clock?), read 2609 * just about any data sheet for a Microwire compatible EEPROM. 2610 */ 2611 2612 /* write a 32 bit value into the indirect accessor register */ 2613 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data) 2614 { 2615 ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data); 2616 2617 /* the eeprom requires some time to complete the operation */ 2618 udelay(p->eeprom_delay); 2619 } 2620 2621 /* perform a chip select operation */ 2622 static void eeprom_cs(struct ipw_priv *priv) 2623 { 2624 eeprom_write_reg(priv, 0); 2625 eeprom_write_reg(priv, EEPROM_BIT_CS); 2626 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK); 2627 eeprom_write_reg(priv, EEPROM_BIT_CS); 2628 } 2629 2630 /* perform a chip select operation */ 2631 static void eeprom_disable_cs(struct ipw_priv *priv) 2632 { 2633 eeprom_write_reg(priv, EEPROM_BIT_CS); 2634 eeprom_write_reg(priv, 0); 2635 eeprom_write_reg(priv, EEPROM_BIT_SK); 2636 } 2637 2638 /* push a single bit down to the eeprom */ 2639 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit) 2640 { 2641 int d = (bit ? EEPROM_BIT_DI : 0); 2642 eeprom_write_reg(p, EEPROM_BIT_CS | d); 2643 eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK); 2644 } 2645 2646 /* push an opcode followed by an address down to the eeprom */ 2647 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr) 2648 { 2649 int i; 2650 2651 eeprom_cs(priv); 2652 eeprom_write_bit(priv, 1); 2653 eeprom_write_bit(priv, op & 2); 2654 eeprom_write_bit(priv, op & 1); 2655 for (i = 7; i >= 0; i--) { 2656 eeprom_write_bit(priv, addr & (1 << i)); 2657 } 2658 } 2659 2660 /* pull 16 bits off the eeprom, one bit at a time */ 2661 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr) 2662 { 2663 int i; 2664 u16 r = 0; 2665 2666 /* Send READ Opcode */ 2667 eeprom_op(priv, EEPROM_CMD_READ, addr); 2668 2669 /* Send dummy bit */ 2670 eeprom_write_reg(priv, EEPROM_BIT_CS); 2671 2672 /* Read the byte off the eeprom one bit at a time */ 2673 for (i = 0; i < 16; i++) { 2674 u32 data = 0; 2675 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK); 2676 eeprom_write_reg(priv, EEPROM_BIT_CS); 2677 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS); 2678 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0); 2679 } 2680 2681 /* Send another dummy bit */ 2682 eeprom_write_reg(priv, 0); 2683 eeprom_disable_cs(priv); 2684 2685 return r; 2686 } 2687 2688 /* helper function for pulling the mac address out of the private */ 2689 /* data's copy of the eeprom data */ 2690 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac) 2691 { 2692 memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], ETH_ALEN); 2693 } 2694 2695 static void ipw_read_eeprom(struct ipw_priv *priv) 2696 { 2697 int i; 2698 __le16 *eeprom = (__le16 *) priv->eeprom; 2699 2700 IPW_DEBUG_TRACE(">>\n"); 2701 2702 /* read entire contents of eeprom into private buffer */ 2703 for (i = 0; i < 128; i++) 2704 eeprom[i] = cpu_to_le16(eeprom_read_u16(priv, (u8) i)); 2705 2706 IPW_DEBUG_TRACE("<<\n"); 2707 } 2708 2709 /* 2710 * Either the device driver (i.e. the host) or the firmware can 2711 * load eeprom data into the designated region in SRAM. If neither 2712 * happens then the FW will shutdown with a fatal error. 2713 * 2714 * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE 2715 * bit needs region of shared SRAM needs to be non-zero. 2716 */ 2717 static void ipw_eeprom_init_sram(struct ipw_priv *priv) 2718 { 2719 int i; 2720 2721 IPW_DEBUG_TRACE(">>\n"); 2722 2723 /* 2724 If the data looks correct, then copy it to our private 2725 copy. Otherwise let the firmware know to perform the operation 2726 on its own. 2727 */ 2728 if (priv->eeprom[EEPROM_VERSION] != 0) { 2729 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n"); 2730 2731 /* write the eeprom data to sram */ 2732 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++) 2733 ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]); 2734 2735 /* Do not load eeprom data on fatal error or suspend */ 2736 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0); 2737 } else { 2738 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n"); 2739 2740 /* Load eeprom data on fatal error or suspend */ 2741 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1); 2742 } 2743 2744 IPW_DEBUG_TRACE("<<\n"); 2745 } 2746 2747 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count) 2748 { 2749 count >>= 2; 2750 if (!count) 2751 return; 2752 _ipw_write32(priv, IPW_AUTOINC_ADDR, start); 2753 while (count--) 2754 _ipw_write32(priv, IPW_AUTOINC_DATA, 0); 2755 } 2756 2757 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv) 2758 { 2759 ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL, 2760 CB_NUMBER_OF_ELEMENTS_SMALL * 2761 sizeof(struct command_block)); 2762 } 2763 2764 static int ipw_fw_dma_enable(struct ipw_priv *priv) 2765 { /* start dma engine but no transfers yet */ 2766 2767 IPW_DEBUG_FW(">> :\n"); 2768 2769 /* Start the dma */ 2770 ipw_fw_dma_reset_command_blocks(priv); 2771 2772 /* Write CB base address */ 2773 ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL); 2774 2775 IPW_DEBUG_FW("<< :\n"); 2776 return 0; 2777 } 2778 2779 static void ipw_fw_dma_abort(struct ipw_priv *priv) 2780 { 2781 u32 control = 0; 2782 2783 IPW_DEBUG_FW(">> :\n"); 2784 2785 /* set the Stop and Abort bit */ 2786 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT; 2787 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control); 2788 priv->sram_desc.last_cb_index = 0; 2789 2790 IPW_DEBUG_FW("<<\n"); 2791 } 2792 2793 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index, 2794 struct command_block *cb) 2795 { 2796 u32 address = 2797 IPW_SHARED_SRAM_DMA_CONTROL + 2798 (sizeof(struct command_block) * index); 2799 IPW_DEBUG_FW(">> :\n"); 2800 2801 ipw_write_indirect(priv, address, (u8 *) cb, 2802 (int)sizeof(struct command_block)); 2803 2804 IPW_DEBUG_FW("<< :\n"); 2805 return 0; 2806 2807 } 2808 2809 static int ipw_fw_dma_kick(struct ipw_priv *priv) 2810 { 2811 u32 control = 0; 2812 u32 index = 0; 2813 2814 IPW_DEBUG_FW(">> :\n"); 2815 2816 for (index = 0; index < priv->sram_desc.last_cb_index; index++) 2817 ipw_fw_dma_write_command_block(priv, index, 2818 &priv->sram_desc.cb_list[index]); 2819 2820 /* Enable the DMA in the CSR register */ 2821 ipw_clear_bit(priv, IPW_RESET_REG, 2822 IPW_RESET_REG_MASTER_DISABLED | 2823 IPW_RESET_REG_STOP_MASTER); 2824 2825 /* Set the Start bit. */ 2826 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START; 2827 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control); 2828 2829 IPW_DEBUG_FW("<< :\n"); 2830 return 0; 2831 } 2832 2833 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv) 2834 { 2835 u32 address; 2836 u32 register_value = 0; 2837 u32 cb_fields_address = 0; 2838 2839 IPW_DEBUG_FW(">> :\n"); 2840 address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB); 2841 IPW_DEBUG_FW_INFO("Current CB is 0x%x\n", address); 2842 2843 /* Read the DMA Controlor register */ 2844 register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL); 2845 IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x\n", register_value); 2846 2847 /* Print the CB values */ 2848 cb_fields_address = address; 2849 register_value = ipw_read_reg32(priv, cb_fields_address); 2850 IPW_DEBUG_FW_INFO("Current CB Control Field is 0x%x\n", register_value); 2851 2852 cb_fields_address += sizeof(u32); 2853 register_value = ipw_read_reg32(priv, cb_fields_address); 2854 IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x\n", register_value); 2855 2856 cb_fields_address += sizeof(u32); 2857 register_value = ipw_read_reg32(priv, cb_fields_address); 2858 IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x\n", 2859 register_value); 2860 2861 cb_fields_address += sizeof(u32); 2862 register_value = ipw_read_reg32(priv, cb_fields_address); 2863 IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x\n", register_value); 2864 2865 IPW_DEBUG_FW(">> :\n"); 2866 } 2867 2868 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv) 2869 { 2870 u32 current_cb_address = 0; 2871 u32 current_cb_index = 0; 2872 2873 IPW_DEBUG_FW("<< :\n"); 2874 current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB); 2875 2876 current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) / 2877 sizeof(struct command_block); 2878 2879 IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X\n", 2880 current_cb_index, current_cb_address); 2881 2882 IPW_DEBUG_FW(">> :\n"); 2883 return current_cb_index; 2884 2885 } 2886 2887 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv, 2888 u32 src_address, 2889 u32 dest_address, 2890 u32 length, 2891 int interrupt_enabled, int is_last) 2892 { 2893 2894 u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC | 2895 CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG | 2896 CB_DEST_SIZE_LONG; 2897 struct command_block *cb; 2898 u32 last_cb_element = 0; 2899 2900 IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n", 2901 src_address, dest_address, length); 2902 2903 if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL) 2904 return -1; 2905 2906 last_cb_element = priv->sram_desc.last_cb_index; 2907 cb = &priv->sram_desc.cb_list[last_cb_element]; 2908 priv->sram_desc.last_cb_index++; 2909 2910 /* Calculate the new CB control word */ 2911 if (interrupt_enabled) 2912 control |= CB_INT_ENABLED; 2913 2914 if (is_last) 2915 control |= CB_LAST_VALID; 2916 2917 control |= length; 2918 2919 /* Calculate the CB Element's checksum value */ 2920 cb->status = control ^ src_address ^ dest_address; 2921 2922 /* Copy the Source and Destination addresses */ 2923 cb->dest_addr = dest_address; 2924 cb->source_addr = src_address; 2925 2926 /* Copy the Control Word last */ 2927 cb->control = control; 2928 2929 return 0; 2930 } 2931 2932 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv, dma_addr_t *src_address, 2933 int nr, u32 dest_address, u32 len) 2934 { 2935 int ret, i; 2936 u32 size; 2937 2938 IPW_DEBUG_FW(">>\n"); 2939 IPW_DEBUG_FW_INFO("nr=%d dest_address=0x%x len=0x%x\n", 2940 nr, dest_address, len); 2941 2942 for (i = 0; i < nr; i++) { 2943 size = min_t(u32, len - i * CB_MAX_LENGTH, CB_MAX_LENGTH); 2944 ret = ipw_fw_dma_add_command_block(priv, src_address[i], 2945 dest_address + 2946 i * CB_MAX_LENGTH, size, 2947 0, 0); 2948 if (ret) { 2949 IPW_DEBUG_FW_INFO(": Failed\n"); 2950 return -1; 2951 } else 2952 IPW_DEBUG_FW_INFO(": Added new cb\n"); 2953 } 2954 2955 IPW_DEBUG_FW("<<\n"); 2956 return 0; 2957 } 2958 2959 static int ipw_fw_dma_wait(struct ipw_priv *priv) 2960 { 2961 u32 current_index = 0, previous_index; 2962 u32 watchdog = 0; 2963 2964 IPW_DEBUG_FW(">> :\n"); 2965 2966 current_index = ipw_fw_dma_command_block_index(priv); 2967 IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n", 2968 (int)priv->sram_desc.last_cb_index); 2969 2970 while (current_index < priv->sram_desc.last_cb_index) { 2971 udelay(50); 2972 previous_index = current_index; 2973 current_index = ipw_fw_dma_command_block_index(priv); 2974 2975 if (previous_index < current_index) { 2976 watchdog = 0; 2977 continue; 2978 } 2979 if (++watchdog > 400) { 2980 IPW_DEBUG_FW_INFO("Timeout\n"); 2981 ipw_fw_dma_dump_command_block(priv); 2982 ipw_fw_dma_abort(priv); 2983 return -1; 2984 } 2985 } 2986 2987 ipw_fw_dma_abort(priv); 2988 2989 /*Disable the DMA in the CSR register */ 2990 ipw_set_bit(priv, IPW_RESET_REG, 2991 IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER); 2992 2993 IPW_DEBUG_FW("<< dmaWaitSync\n"); 2994 return 0; 2995 } 2996 2997 static void ipw_remove_current_network(struct ipw_priv *priv) 2998 { 2999 struct list_head *element, *safe; 3000 struct libipw_network *network = NULL; 3001 unsigned long flags; 3002 3003 spin_lock_irqsave(&priv->ieee->lock, flags); 3004 list_for_each_safe(element, safe, &priv->ieee->network_list) { 3005 network = list_entry(element, struct libipw_network, list); 3006 if (ether_addr_equal(network->bssid, priv->bssid)) { 3007 list_del(element); 3008 list_add_tail(&network->list, 3009 &priv->ieee->network_free_list); 3010 } 3011 } 3012 spin_unlock_irqrestore(&priv->ieee->lock, flags); 3013 } 3014 3015 /** 3016 * Check that card is still alive. 3017 * Reads debug register from domain0. 3018 * If card is present, pre-defined value should 3019 * be found there. 3020 * 3021 * @param priv 3022 * @return 1 if card is present, 0 otherwise 3023 */ 3024 static inline int ipw_alive(struct ipw_priv *priv) 3025 { 3026 return ipw_read32(priv, 0x90) == 0xd55555d5; 3027 } 3028 3029 /* timeout in msec, attempted in 10-msec quanta */ 3030 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask, 3031 int timeout) 3032 { 3033 int i = 0; 3034 3035 do { 3036 if ((ipw_read32(priv, addr) & mask) == mask) 3037 return i; 3038 mdelay(10); 3039 i += 10; 3040 } while (i < timeout); 3041 3042 return -ETIME; 3043 } 3044 3045 /* These functions load the firmware and micro code for the operation of 3046 * the ipw hardware. It assumes the buffer has all the bits for the 3047 * image and the caller is handling the memory allocation and clean up. 3048 */ 3049 3050 static int ipw_stop_master(struct ipw_priv *priv) 3051 { 3052 int rc; 3053 3054 IPW_DEBUG_TRACE(">>\n"); 3055 /* stop master. typical delay - 0 */ 3056 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER); 3057 3058 /* timeout is in msec, polled in 10-msec quanta */ 3059 rc = ipw_poll_bit(priv, IPW_RESET_REG, 3060 IPW_RESET_REG_MASTER_DISABLED, 100); 3061 if (rc < 0) { 3062 IPW_ERROR("wait for stop master failed after 100ms\n"); 3063 return -1; 3064 } 3065 3066 IPW_DEBUG_INFO("stop master %dms\n", rc); 3067 3068 return rc; 3069 } 3070 3071 static void ipw_arc_release(struct ipw_priv *priv) 3072 { 3073 IPW_DEBUG_TRACE(">>\n"); 3074 mdelay(5); 3075 3076 ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET); 3077 3078 /* no one knows timing, for safety add some delay */ 3079 mdelay(5); 3080 } 3081 3082 struct fw_chunk { 3083 __le32 address; 3084 __le32 length; 3085 }; 3086 3087 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len) 3088 { 3089 int rc = 0, i, addr; 3090 u8 cr = 0; 3091 __le16 *image; 3092 3093 image = (__le16 *) data; 3094 3095 IPW_DEBUG_TRACE(">>\n"); 3096 3097 rc = ipw_stop_master(priv); 3098 3099 if (rc < 0) 3100 return rc; 3101 3102 for (addr = IPW_SHARED_LOWER_BOUND; 3103 addr < IPW_REGISTER_DOMAIN1_END; addr += 4) { 3104 ipw_write32(priv, addr, 0); 3105 } 3106 3107 /* no ucode (yet) */ 3108 memset(&priv->dino_alive, 0, sizeof(priv->dino_alive)); 3109 /* destroy DMA queues */ 3110 /* reset sequence */ 3111 3112 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON); 3113 ipw_arc_release(priv); 3114 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF); 3115 mdelay(1); 3116 3117 /* reset PHY */ 3118 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN); 3119 mdelay(1); 3120 3121 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0); 3122 mdelay(1); 3123 3124 /* enable ucode store */ 3125 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0); 3126 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS); 3127 mdelay(1); 3128 3129 /* write ucode */ 3130 /** 3131 * @bug 3132 * Do NOT set indirect address register once and then 3133 * store data to indirect data register in the loop. 3134 * It seems very reasonable, but in this case DINO do not 3135 * accept ucode. It is essential to set address each time. 3136 */ 3137 /* load new ipw uCode */ 3138 for (i = 0; i < len / 2; i++) 3139 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE, 3140 le16_to_cpu(image[i])); 3141 3142 /* enable DINO */ 3143 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0); 3144 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM); 3145 3146 /* this is where the igx / win driver deveates from the VAP driver. */ 3147 3148 /* wait for alive response */ 3149 for (i = 0; i < 100; i++) { 3150 /* poll for incoming data */ 3151 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS); 3152 if (cr & DINO_RXFIFO_DATA) 3153 break; 3154 mdelay(1); 3155 } 3156 3157 if (cr & DINO_RXFIFO_DATA) { 3158 /* alive_command_responce size is NOT multiple of 4 */ 3159 __le32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4]; 3160 3161 for (i = 0; i < ARRAY_SIZE(response_buffer); i++) 3162 response_buffer[i] = 3163 cpu_to_le32(ipw_read_reg32(priv, 3164 IPW_BASEBAND_RX_FIFO_READ)); 3165 memcpy(&priv->dino_alive, response_buffer, 3166 sizeof(priv->dino_alive)); 3167 if (priv->dino_alive.alive_command == 1 3168 && priv->dino_alive.ucode_valid == 1) { 3169 rc = 0; 3170 IPW_DEBUG_INFO 3171 ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) " 3172 "of %02d/%02d/%02d %02d:%02d\n", 3173 priv->dino_alive.software_revision, 3174 priv->dino_alive.software_revision, 3175 priv->dino_alive.device_identifier, 3176 priv->dino_alive.device_identifier, 3177 priv->dino_alive.time_stamp[0], 3178 priv->dino_alive.time_stamp[1], 3179 priv->dino_alive.time_stamp[2], 3180 priv->dino_alive.time_stamp[3], 3181 priv->dino_alive.time_stamp[4]); 3182 } else { 3183 IPW_DEBUG_INFO("Microcode is not alive\n"); 3184 rc = -EINVAL; 3185 } 3186 } else { 3187 IPW_DEBUG_INFO("No alive response from DINO\n"); 3188 rc = -ETIME; 3189 } 3190 3191 /* disable DINO, otherwise for some reason 3192 firmware have problem getting alive resp. */ 3193 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0); 3194 3195 return rc; 3196 } 3197 3198 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len) 3199 { 3200 int ret = -1; 3201 int offset = 0; 3202 struct fw_chunk *chunk; 3203 int total_nr = 0; 3204 int i; 3205 struct dma_pool *pool; 3206 void **virts; 3207 dma_addr_t *phys; 3208 3209 IPW_DEBUG_TRACE("<< :\n"); 3210 3211 virts = kmalloc_array(CB_NUMBER_OF_ELEMENTS_SMALL, sizeof(void *), 3212 GFP_KERNEL); 3213 if (!virts) 3214 return -ENOMEM; 3215 3216 phys = kmalloc_array(CB_NUMBER_OF_ELEMENTS_SMALL, sizeof(dma_addr_t), 3217 GFP_KERNEL); 3218 if (!phys) { 3219 kfree(virts); 3220 return -ENOMEM; 3221 } 3222 pool = dma_pool_create("ipw2200", &priv->pci_dev->dev, CB_MAX_LENGTH, 0, 3223 0); 3224 if (!pool) { 3225 IPW_ERROR("dma_pool_create failed\n"); 3226 kfree(phys); 3227 kfree(virts); 3228 return -ENOMEM; 3229 } 3230 3231 /* Start the Dma */ 3232 ret = ipw_fw_dma_enable(priv); 3233 3234 /* the DMA is already ready this would be a bug. */ 3235 BUG_ON(priv->sram_desc.last_cb_index > 0); 3236 3237 do { 3238 u32 chunk_len; 3239 u8 *start; 3240 int size; 3241 int nr = 0; 3242 3243 chunk = (struct fw_chunk *)(data + offset); 3244 offset += sizeof(struct fw_chunk); 3245 chunk_len = le32_to_cpu(chunk->length); 3246 start = data + offset; 3247 3248 nr = (chunk_len + CB_MAX_LENGTH - 1) / CB_MAX_LENGTH; 3249 for (i = 0; i < nr; i++) { 3250 virts[total_nr] = dma_pool_alloc(pool, GFP_KERNEL, 3251 &phys[total_nr]); 3252 if (!virts[total_nr]) { 3253 ret = -ENOMEM; 3254 goto out; 3255 } 3256 size = min_t(u32, chunk_len - i * CB_MAX_LENGTH, 3257 CB_MAX_LENGTH); 3258 memcpy(virts[total_nr], start, size); 3259 start += size; 3260 total_nr++; 3261 /* We don't support fw chunk larger than 64*8K */ 3262 BUG_ON(total_nr > CB_NUMBER_OF_ELEMENTS_SMALL); 3263 } 3264 3265 /* build DMA packet and queue up for sending */ 3266 /* dma to chunk->address, the chunk->length bytes from data + 3267 * offeset*/ 3268 /* Dma loading */ 3269 ret = ipw_fw_dma_add_buffer(priv, &phys[total_nr - nr], 3270 nr, le32_to_cpu(chunk->address), 3271 chunk_len); 3272 if (ret) { 3273 IPW_DEBUG_INFO("dmaAddBuffer Failed\n"); 3274 goto out; 3275 } 3276 3277 offset += chunk_len; 3278 } while (offset < len); 3279 3280 /* Run the DMA and wait for the answer */ 3281 ret = ipw_fw_dma_kick(priv); 3282 if (ret) { 3283 IPW_ERROR("dmaKick Failed\n"); 3284 goto out; 3285 } 3286 3287 ret = ipw_fw_dma_wait(priv); 3288 if (ret) { 3289 IPW_ERROR("dmaWaitSync Failed\n"); 3290 goto out; 3291 } 3292 out: 3293 for (i = 0; i < total_nr; i++) 3294 dma_pool_free(pool, virts[i], phys[i]); 3295 3296 dma_pool_destroy(pool); 3297 kfree(phys); 3298 kfree(virts); 3299 3300 return ret; 3301 } 3302 3303 /* stop nic */ 3304 static int ipw_stop_nic(struct ipw_priv *priv) 3305 { 3306 int rc = 0; 3307 3308 /* stop */ 3309 ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER); 3310 3311 rc = ipw_poll_bit(priv, IPW_RESET_REG, 3312 IPW_RESET_REG_MASTER_DISABLED, 500); 3313 if (rc < 0) { 3314 IPW_ERROR("wait for reg master disabled failed after 500ms\n"); 3315 return rc; 3316 } 3317 3318 ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET); 3319 3320 return rc; 3321 } 3322 3323 static void ipw_start_nic(struct ipw_priv *priv) 3324 { 3325 IPW_DEBUG_TRACE(">>\n"); 3326 3327 /* prvHwStartNic release ARC */ 3328 ipw_clear_bit(priv, IPW_RESET_REG, 3329 IPW_RESET_REG_MASTER_DISABLED | 3330 IPW_RESET_REG_STOP_MASTER | 3331 CBD_RESET_REG_PRINCETON_RESET); 3332 3333 /* enable power management */ 3334 ipw_set_bit(priv, IPW_GP_CNTRL_RW, 3335 IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY); 3336 3337 IPW_DEBUG_TRACE("<<\n"); 3338 } 3339 3340 static int ipw_init_nic(struct ipw_priv *priv) 3341 { 3342 int rc; 3343 3344 IPW_DEBUG_TRACE(">>\n"); 3345 /* reset */ 3346 /*prvHwInitNic */ 3347 /* set "initialization complete" bit to move adapter to D0 state */ 3348 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE); 3349 3350 /* low-level PLL activation */ 3351 ipw_write32(priv, IPW_READ_INT_REGISTER, 3352 IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER); 3353 3354 /* wait for clock stabilization */ 3355 rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW, 3356 IPW_GP_CNTRL_BIT_CLOCK_READY, 250); 3357 if (rc < 0) 3358 IPW_DEBUG_INFO("FAILED wait for clock stablization\n"); 3359 3360 /* assert SW reset */ 3361 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET); 3362 3363 udelay(10); 3364 3365 /* set "initialization complete" bit to move adapter to D0 state */ 3366 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE); 3367 3368 IPW_DEBUG_TRACE(">>\n"); 3369 return 0; 3370 } 3371 3372 /* Call this function from process context, it will sleep in request_firmware. 3373 * Probe is an ok place to call this from. 3374 */ 3375 static int ipw_reset_nic(struct ipw_priv *priv) 3376 { 3377 int rc = 0; 3378 unsigned long flags; 3379 3380 IPW_DEBUG_TRACE(">>\n"); 3381 3382 rc = ipw_init_nic(priv); 3383 3384 spin_lock_irqsave(&priv->lock, flags); 3385 /* Clear the 'host command active' bit... */ 3386 priv->status &= ~STATUS_HCMD_ACTIVE; 3387 wake_up_interruptible(&priv->wait_command_queue); 3388 priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING); 3389 wake_up_interruptible(&priv->wait_state); 3390 spin_unlock_irqrestore(&priv->lock, flags); 3391 3392 IPW_DEBUG_TRACE("<<\n"); 3393 return rc; 3394 } 3395 3396 3397 struct ipw_fw { 3398 __le32 ver; 3399 __le32 boot_size; 3400 __le32 ucode_size; 3401 __le32 fw_size; 3402 u8 data[0]; 3403 }; 3404 3405 static int ipw_get_fw(struct ipw_priv *priv, 3406 const struct firmware **raw, const char *name) 3407 { 3408 struct ipw_fw *fw; 3409 int rc; 3410 3411 /* ask firmware_class module to get the boot firmware off disk */ 3412 rc = request_firmware(raw, name, &priv->pci_dev->dev); 3413 if (rc < 0) { 3414 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc); 3415 return rc; 3416 } 3417 3418 if ((*raw)->size < sizeof(*fw)) { 3419 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size); 3420 return -EINVAL; 3421 } 3422 3423 fw = (void *)(*raw)->data; 3424 3425 if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) + 3426 le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) { 3427 IPW_ERROR("%s is too small or corrupt (%zd)\n", 3428 name, (*raw)->size); 3429 return -EINVAL; 3430 } 3431 3432 IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n", 3433 name, 3434 le32_to_cpu(fw->ver) >> 16, 3435 le32_to_cpu(fw->ver) & 0xff, 3436 (*raw)->size - sizeof(*fw)); 3437 return 0; 3438 } 3439 3440 #define IPW_RX_BUF_SIZE (3000) 3441 3442 static void ipw_rx_queue_reset(struct ipw_priv *priv, 3443 struct ipw_rx_queue *rxq) 3444 { 3445 unsigned long flags; 3446 int i; 3447 3448 spin_lock_irqsave(&rxq->lock, flags); 3449 3450 INIT_LIST_HEAD(&rxq->rx_free); 3451 INIT_LIST_HEAD(&rxq->rx_used); 3452 3453 /* Fill the rx_used queue with _all_ of the Rx buffers */ 3454 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) { 3455 /* In the reset function, these buffers may have been allocated 3456 * to an SKB, so we need to unmap and free potential storage */ 3457 if (rxq->pool[i].skb != NULL) { 3458 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr, 3459 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE); 3460 dev_kfree_skb(rxq->pool[i].skb); 3461 rxq->pool[i].skb = NULL; 3462 } 3463 list_add_tail(&rxq->pool[i].list, &rxq->rx_used); 3464 } 3465 3466 /* Set us so that we have processed and used all buffers, but have 3467 * not restocked the Rx queue with fresh buffers */ 3468 rxq->read = rxq->write = 0; 3469 rxq->free_count = 0; 3470 spin_unlock_irqrestore(&rxq->lock, flags); 3471 } 3472 3473 #ifdef CONFIG_PM 3474 static int fw_loaded = 0; 3475 static const struct firmware *raw = NULL; 3476 3477 static void free_firmware(void) 3478 { 3479 if (fw_loaded) { 3480 release_firmware(raw); 3481 raw = NULL; 3482 fw_loaded = 0; 3483 } 3484 } 3485 #else 3486 #define free_firmware() do {} while (0) 3487 #endif 3488 3489 static int ipw_load(struct ipw_priv *priv) 3490 { 3491 #ifndef CONFIG_PM 3492 const struct firmware *raw = NULL; 3493 #endif 3494 struct ipw_fw *fw; 3495 u8 *boot_img, *ucode_img, *fw_img; 3496 u8 *name = NULL; 3497 int rc = 0, retries = 3; 3498 3499 switch (priv->ieee->iw_mode) { 3500 case IW_MODE_ADHOC: 3501 name = "ipw2200-ibss.fw"; 3502 break; 3503 #ifdef CONFIG_IPW2200_MONITOR 3504 case IW_MODE_MONITOR: 3505 name = "ipw2200-sniffer.fw"; 3506 break; 3507 #endif 3508 case IW_MODE_INFRA: 3509 name = "ipw2200-bss.fw"; 3510 break; 3511 } 3512 3513 if (!name) { 3514 rc = -EINVAL; 3515 goto error; 3516 } 3517 3518 #ifdef CONFIG_PM 3519 if (!fw_loaded) { 3520 #endif 3521 rc = ipw_get_fw(priv, &raw, name); 3522 if (rc < 0) 3523 goto error; 3524 #ifdef CONFIG_PM 3525 } 3526 #endif 3527 3528 fw = (void *)raw->data; 3529 boot_img = &fw->data[0]; 3530 ucode_img = &fw->data[le32_to_cpu(fw->boot_size)]; 3531 fw_img = &fw->data[le32_to_cpu(fw->boot_size) + 3532 le32_to_cpu(fw->ucode_size)]; 3533 3534 if (!priv->rxq) 3535 priv->rxq = ipw_rx_queue_alloc(priv); 3536 else 3537 ipw_rx_queue_reset(priv, priv->rxq); 3538 if (!priv->rxq) { 3539 IPW_ERROR("Unable to initialize Rx queue\n"); 3540 rc = -ENOMEM; 3541 goto error; 3542 } 3543 3544 retry: 3545 /* Ensure interrupts are disabled */ 3546 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL); 3547 priv->status &= ~STATUS_INT_ENABLED; 3548 3549 /* ack pending interrupts */ 3550 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL); 3551 3552 ipw_stop_nic(priv); 3553 3554 rc = ipw_reset_nic(priv); 3555 if (rc < 0) { 3556 IPW_ERROR("Unable to reset NIC\n"); 3557 goto error; 3558 } 3559 3560 ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND, 3561 IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND); 3562 3563 /* DMA the initial boot firmware into the device */ 3564 rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size)); 3565 if (rc < 0) { 3566 IPW_ERROR("Unable to load boot firmware: %d\n", rc); 3567 goto error; 3568 } 3569 3570 /* kick start the device */ 3571 ipw_start_nic(priv); 3572 3573 /* wait for the device to finish its initial startup sequence */ 3574 rc = ipw_poll_bit(priv, IPW_INTA_RW, 3575 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500); 3576 if (rc < 0) { 3577 IPW_ERROR("device failed to boot initial fw image\n"); 3578 goto error; 3579 } 3580 IPW_DEBUG_INFO("initial device response after %dms\n", rc); 3581 3582 /* ack fw init done interrupt */ 3583 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE); 3584 3585 /* DMA the ucode into the device */ 3586 rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size)); 3587 if (rc < 0) { 3588 IPW_ERROR("Unable to load ucode: %d\n", rc); 3589 goto error; 3590 } 3591 3592 /* stop nic */ 3593 ipw_stop_nic(priv); 3594 3595 /* DMA bss firmware into the device */ 3596 rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size)); 3597 if (rc < 0) { 3598 IPW_ERROR("Unable to load firmware: %d\n", rc); 3599 goto error; 3600 } 3601 #ifdef CONFIG_PM 3602 fw_loaded = 1; 3603 #endif 3604 3605 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0); 3606 3607 rc = ipw_queue_reset(priv); 3608 if (rc < 0) { 3609 IPW_ERROR("Unable to initialize queues\n"); 3610 goto error; 3611 } 3612 3613 /* Ensure interrupts are disabled */ 3614 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL); 3615 /* ack pending interrupts */ 3616 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL); 3617 3618 /* kick start the device */ 3619 ipw_start_nic(priv); 3620 3621 if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) { 3622 if (retries > 0) { 3623 IPW_WARNING("Parity error. Retrying init.\n"); 3624 retries--; 3625 goto retry; 3626 } 3627 3628 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n"); 3629 rc = -EIO; 3630 goto error; 3631 } 3632 3633 /* wait for the device */ 3634 rc = ipw_poll_bit(priv, IPW_INTA_RW, 3635 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500); 3636 if (rc < 0) { 3637 IPW_ERROR("device failed to start within 500ms\n"); 3638 goto error; 3639 } 3640 IPW_DEBUG_INFO("device response after %dms\n", rc); 3641 3642 /* ack fw init done interrupt */ 3643 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE); 3644 3645 /* read eeprom data */ 3646 priv->eeprom_delay = 1; 3647 ipw_read_eeprom(priv); 3648 /* initialize the eeprom region of sram */ 3649 ipw_eeprom_init_sram(priv); 3650 3651 /* enable interrupts */ 3652 ipw_enable_interrupts(priv); 3653 3654 /* Ensure our queue has valid packets */ 3655 ipw_rx_queue_replenish(priv); 3656 3657 ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read); 3658 3659 /* ack pending interrupts */ 3660 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL); 3661 3662 #ifndef CONFIG_PM 3663 release_firmware(raw); 3664 #endif 3665 return 0; 3666 3667 error: 3668 if (priv->rxq) { 3669 ipw_rx_queue_free(priv, priv->rxq); 3670 priv->rxq = NULL; 3671 } 3672 ipw_tx_queue_free(priv); 3673 release_firmware(raw); 3674 #ifdef CONFIG_PM 3675 fw_loaded = 0; 3676 raw = NULL; 3677 #endif 3678 3679 return rc; 3680 } 3681 3682 /** 3683 * DMA services 3684 * 3685 * Theory of operation 3686 * 3687 * A queue is a circular buffers with 'Read' and 'Write' pointers. 3688 * 2 empty entries always kept in the buffer to protect from overflow. 3689 * 3690 * For Tx queue, there are low mark and high mark limits. If, after queuing 3691 * the packet for Tx, free space become < low mark, Tx queue stopped. When 3692 * reclaiming packets (on 'tx done IRQ), if free space become > high mark, 3693 * Tx queue resumed. 3694 * 3695 * The IPW operates with six queues, one receive queue in the device's 3696 * sram, one transmit queue for sending commands to the device firmware, 3697 * and four transmit queues for data. 3698 * 3699 * The four transmit queues allow for performing quality of service (qos) 3700 * transmissions as per the 802.11 protocol. Currently Linux does not 3701 * provide a mechanism to the user for utilizing prioritized queues, so 3702 * we only utilize the first data transmit queue (queue1). 3703 */ 3704 3705 /** 3706 * Driver allocates buffers of this size for Rx 3707 */ 3708 3709 /** 3710 * ipw_rx_queue_space - Return number of free slots available in queue. 3711 */ 3712 static int ipw_rx_queue_space(const struct ipw_rx_queue *q) 3713 { 3714 int s = q->read - q->write; 3715 if (s <= 0) 3716 s += RX_QUEUE_SIZE; 3717 /* keep some buffer to not confuse full and empty queue */ 3718 s -= 2; 3719 if (s < 0) 3720 s = 0; 3721 return s; 3722 } 3723 3724 static inline int ipw_tx_queue_space(const struct clx2_queue *q) 3725 { 3726 int s = q->last_used - q->first_empty; 3727 if (s <= 0) 3728 s += q->n_bd; 3729 s -= 2; /* keep some reserve to not confuse empty and full situations */ 3730 if (s < 0) 3731 s = 0; 3732 return s; 3733 } 3734 3735 static inline int ipw_queue_inc_wrap(int index, int n_bd) 3736 { 3737 return (++index == n_bd) ? 0 : index; 3738 } 3739 3740 /** 3741 * Initialize common DMA queue structure 3742 * 3743 * @param q queue to init 3744 * @param count Number of BD's to allocate. Should be power of 2 3745 * @param read_register Address for 'read' register 3746 * (not offset within BAR, full address) 3747 * @param write_register Address for 'write' register 3748 * (not offset within BAR, full address) 3749 * @param base_register Address for 'base' register 3750 * (not offset within BAR, full address) 3751 * @param size Address for 'size' register 3752 * (not offset within BAR, full address) 3753 */ 3754 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q, 3755 int count, u32 read, u32 write, u32 base, u32 size) 3756 { 3757 q->n_bd = count; 3758 3759 q->low_mark = q->n_bd / 4; 3760 if (q->low_mark < 4) 3761 q->low_mark = 4; 3762 3763 q->high_mark = q->n_bd / 8; 3764 if (q->high_mark < 2) 3765 q->high_mark = 2; 3766 3767 q->first_empty = q->last_used = 0; 3768 q->reg_r = read; 3769 q->reg_w = write; 3770 3771 ipw_write32(priv, base, q->dma_addr); 3772 ipw_write32(priv, size, count); 3773 ipw_write32(priv, read, 0); 3774 ipw_write32(priv, write, 0); 3775 3776 _ipw_read32(priv, 0x90); 3777 } 3778 3779 static int ipw_queue_tx_init(struct ipw_priv *priv, 3780 struct clx2_tx_queue *q, 3781 int count, u32 read, u32 write, u32 base, u32 size) 3782 { 3783 struct pci_dev *dev = priv->pci_dev; 3784 3785 q->txb = kmalloc_array(count, sizeof(q->txb[0]), GFP_KERNEL); 3786 if (!q->txb) { 3787 IPW_ERROR("vmalloc for auxiliary BD structures failed\n"); 3788 return -ENOMEM; 3789 } 3790 3791 q->bd = 3792 pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr); 3793 if (!q->bd) { 3794 IPW_ERROR("pci_alloc_consistent(%zd) failed\n", 3795 sizeof(q->bd[0]) * count); 3796 kfree(q->txb); 3797 q->txb = NULL; 3798 return -ENOMEM; 3799 } 3800 3801 ipw_queue_init(priv, &q->q, count, read, write, base, size); 3802 return 0; 3803 } 3804 3805 /** 3806 * Free one TFD, those at index [txq->q.last_used]. 3807 * Do NOT advance any indexes 3808 * 3809 * @param dev 3810 * @param txq 3811 */ 3812 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv, 3813 struct clx2_tx_queue *txq) 3814 { 3815 struct tfd_frame *bd = &txq->bd[txq->q.last_used]; 3816 struct pci_dev *dev = priv->pci_dev; 3817 int i; 3818 3819 /* classify bd */ 3820 if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE) 3821 /* nothing to cleanup after for host commands */ 3822 return; 3823 3824 /* sanity check */ 3825 if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) { 3826 IPW_ERROR("Too many chunks: %i\n", 3827 le32_to_cpu(bd->u.data.num_chunks)); 3828 /** @todo issue fatal error, it is quite serious situation */ 3829 return; 3830 } 3831 3832 /* unmap chunks if any */ 3833 for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) { 3834 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]), 3835 le16_to_cpu(bd->u.data.chunk_len[i]), 3836 PCI_DMA_TODEVICE); 3837 if (txq->txb[txq->q.last_used]) { 3838 libipw_txb_free(txq->txb[txq->q.last_used]); 3839 txq->txb[txq->q.last_used] = NULL; 3840 } 3841 } 3842 } 3843 3844 /** 3845 * Deallocate DMA queue. 3846 * 3847 * Empty queue by removing and destroying all BD's. 3848 * Free all buffers. 3849 * 3850 * @param dev 3851 * @param q 3852 */ 3853 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq) 3854 { 3855 struct clx2_queue *q = &txq->q; 3856 struct pci_dev *dev = priv->pci_dev; 3857 3858 if (q->n_bd == 0) 3859 return; 3860 3861 /* first, empty all BD's */ 3862 for (; q->first_empty != q->last_used; 3863 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) { 3864 ipw_queue_tx_free_tfd(priv, txq); 3865 } 3866 3867 /* free buffers belonging to queue itself */ 3868 pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd, 3869 q->dma_addr); 3870 kfree(txq->txb); 3871 3872 /* 0 fill whole structure */ 3873 memset(txq, 0, sizeof(*txq)); 3874 } 3875 3876 /** 3877 * Destroy all DMA queues and structures 3878 * 3879 * @param priv 3880 */ 3881 static void ipw_tx_queue_free(struct ipw_priv *priv) 3882 { 3883 /* Tx CMD queue */ 3884 ipw_queue_tx_free(priv, &priv->txq_cmd); 3885 3886 /* Tx queues */ 3887 ipw_queue_tx_free(priv, &priv->txq[0]); 3888 ipw_queue_tx_free(priv, &priv->txq[1]); 3889 ipw_queue_tx_free(priv, &priv->txq[2]); 3890 ipw_queue_tx_free(priv, &priv->txq[3]); 3891 } 3892 3893 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid) 3894 { 3895 /* First 3 bytes are manufacturer */ 3896 bssid[0] = priv->mac_addr[0]; 3897 bssid[1] = priv->mac_addr[1]; 3898 bssid[2] = priv->mac_addr[2]; 3899 3900 /* Last bytes are random */ 3901 get_random_bytes(&bssid[3], ETH_ALEN - 3); 3902 3903 bssid[0] &= 0xfe; /* clear multicast bit */ 3904 bssid[0] |= 0x02; /* set local assignment bit (IEEE802) */ 3905 } 3906 3907 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid) 3908 { 3909 struct ipw_station_entry entry; 3910 int i; 3911 3912 for (i = 0; i < priv->num_stations; i++) { 3913 if (ether_addr_equal(priv->stations[i], bssid)) { 3914 /* Another node is active in network */ 3915 priv->missed_adhoc_beacons = 0; 3916 if (!(priv->config & CFG_STATIC_CHANNEL)) 3917 /* when other nodes drop out, we drop out */ 3918 priv->config &= ~CFG_ADHOC_PERSIST; 3919 3920 return i; 3921 } 3922 } 3923 3924 if (i == MAX_STATIONS) 3925 return IPW_INVALID_STATION; 3926 3927 IPW_DEBUG_SCAN("Adding AdHoc station: %pM\n", bssid); 3928 3929 entry.reserved = 0; 3930 entry.support_mode = 0; 3931 memcpy(entry.mac_addr, bssid, ETH_ALEN); 3932 memcpy(priv->stations[i], bssid, ETH_ALEN); 3933 ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry), 3934 &entry, sizeof(entry)); 3935 priv->num_stations++; 3936 3937 return i; 3938 } 3939 3940 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid) 3941 { 3942 int i; 3943 3944 for (i = 0; i < priv->num_stations; i++) 3945 if (ether_addr_equal(priv->stations[i], bssid)) 3946 return i; 3947 3948 return IPW_INVALID_STATION; 3949 } 3950 3951 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet) 3952 { 3953 int err; 3954 3955 if (priv->status & STATUS_ASSOCIATING) { 3956 IPW_DEBUG_ASSOC("Disassociating while associating.\n"); 3957 schedule_work(&priv->disassociate); 3958 return; 3959 } 3960 3961 if (!(priv->status & STATUS_ASSOCIATED)) { 3962 IPW_DEBUG_ASSOC("Disassociating while not associated.\n"); 3963 return; 3964 } 3965 3966 IPW_DEBUG_ASSOC("Disassociation attempt from %pM " 3967 "on channel %d.\n", 3968 priv->assoc_request.bssid, 3969 priv->assoc_request.channel); 3970 3971 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED); 3972 priv->status |= STATUS_DISASSOCIATING; 3973 3974 if (quiet) 3975 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET; 3976 else 3977 priv->assoc_request.assoc_type = HC_DISASSOCIATE; 3978 3979 err = ipw_send_associate(priv, &priv->assoc_request); 3980 if (err) { 3981 IPW_DEBUG_HC("Attempt to send [dis]associate command " 3982 "failed.\n"); 3983 return; 3984 } 3985 3986 } 3987 3988 static int ipw_disassociate(void *data) 3989 { 3990 struct ipw_priv *priv = data; 3991 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) 3992 return 0; 3993 ipw_send_disassociate(data, 0); 3994 netif_carrier_off(priv->net_dev); 3995 return 1; 3996 } 3997 3998 static void ipw_bg_disassociate(struct work_struct *work) 3999 { 4000 struct ipw_priv *priv = 4001 container_of(work, struct ipw_priv, disassociate); 4002 mutex_lock(&priv->mutex); 4003 ipw_disassociate(priv); 4004 mutex_unlock(&priv->mutex); 4005 } 4006 4007 static void ipw_system_config(struct work_struct *work) 4008 { 4009 struct ipw_priv *priv = 4010 container_of(work, struct ipw_priv, system_config); 4011 4012 #ifdef CONFIG_IPW2200_PROMISCUOUS 4013 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) { 4014 priv->sys_config.accept_all_data_frames = 1; 4015 priv->sys_config.accept_non_directed_frames = 1; 4016 priv->sys_config.accept_all_mgmt_bcpr = 1; 4017 priv->sys_config.accept_all_mgmt_frames = 1; 4018 } 4019 #endif 4020 4021 ipw_send_system_config(priv); 4022 } 4023 4024 struct ipw_status_code { 4025 u16 status; 4026 const char *reason; 4027 }; 4028 4029 static const struct ipw_status_code ipw_status_codes[] = { 4030 {0x00, "Successful"}, 4031 {0x01, "Unspecified failure"}, 4032 {0x0A, "Cannot support all requested capabilities in the " 4033 "Capability information field"}, 4034 {0x0B, "Reassociation denied due to inability to confirm that " 4035 "association exists"}, 4036 {0x0C, "Association denied due to reason outside the scope of this " 4037 "standard"}, 4038 {0x0D, 4039 "Responding station does not support the specified authentication " 4040 "algorithm"}, 4041 {0x0E, 4042 "Received an Authentication frame with authentication sequence " 4043 "transaction sequence number out of expected sequence"}, 4044 {0x0F, "Authentication rejected because of challenge failure"}, 4045 {0x10, "Authentication rejected due to timeout waiting for next " 4046 "frame in sequence"}, 4047 {0x11, "Association denied because AP is unable to handle additional " 4048 "associated stations"}, 4049 {0x12, 4050 "Association denied due to requesting station not supporting all " 4051 "of the datarates in the BSSBasicServiceSet Parameter"}, 4052 {0x13, 4053 "Association denied due to requesting station not supporting " 4054 "short preamble operation"}, 4055 {0x14, 4056 "Association denied due to requesting station not supporting " 4057 "PBCC encoding"}, 4058 {0x15, 4059 "Association denied due to requesting station not supporting " 4060 "channel agility"}, 4061 {0x19, 4062 "Association denied due to requesting station not supporting " 4063 "short slot operation"}, 4064 {0x1A, 4065 "Association denied due to requesting station not supporting " 4066 "DSSS-OFDM operation"}, 4067 {0x28, "Invalid Information Element"}, 4068 {0x29, "Group Cipher is not valid"}, 4069 {0x2A, "Pairwise Cipher is not valid"}, 4070 {0x2B, "AKMP is not valid"}, 4071 {0x2C, "Unsupported RSN IE version"}, 4072 {0x2D, "Invalid RSN IE Capabilities"}, 4073 {0x2E, "Cipher suite is rejected per security policy"}, 4074 }; 4075 4076 static const char *ipw_get_status_code(u16 status) 4077 { 4078 int i; 4079 for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++) 4080 if (ipw_status_codes[i].status == (status & 0xff)) 4081 return ipw_status_codes[i].reason; 4082 return "Unknown status value."; 4083 } 4084 4085 static inline void average_init(struct average *avg) 4086 { 4087 memset(avg, 0, sizeof(*avg)); 4088 } 4089 4090 #define DEPTH_RSSI 8 4091 #define DEPTH_NOISE 16 4092 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth) 4093 { 4094 return ((depth-1)*prev_avg + val)/depth; 4095 } 4096 4097 static void average_add(struct average *avg, s16 val) 4098 { 4099 avg->sum -= avg->entries[avg->pos]; 4100 avg->sum += val; 4101 avg->entries[avg->pos++] = val; 4102 if (unlikely(avg->pos == AVG_ENTRIES)) { 4103 avg->init = 1; 4104 avg->pos = 0; 4105 } 4106 } 4107 4108 static s16 average_value(struct average *avg) 4109 { 4110 if (!unlikely(avg->init)) { 4111 if (avg->pos) 4112 return avg->sum / avg->pos; 4113 return 0; 4114 } 4115 4116 return avg->sum / AVG_ENTRIES; 4117 } 4118 4119 static void ipw_reset_stats(struct ipw_priv *priv) 4120 { 4121 u32 len = sizeof(u32); 4122 4123 priv->quality = 0; 4124 4125 average_init(&priv->average_missed_beacons); 4126 priv->exp_avg_rssi = -60; 4127 priv->exp_avg_noise = -85 + 0x100; 4128 4129 priv->last_rate = 0; 4130 priv->last_missed_beacons = 0; 4131 priv->last_rx_packets = 0; 4132 priv->last_tx_packets = 0; 4133 priv->last_tx_failures = 0; 4134 4135 /* Firmware managed, reset only when NIC is restarted, so we have to 4136 * normalize on the current value */ 4137 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, 4138 &priv->last_rx_err, &len); 4139 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, 4140 &priv->last_tx_failures, &len); 4141 4142 /* Driver managed, reset with each association */ 4143 priv->missed_adhoc_beacons = 0; 4144 priv->missed_beacons = 0; 4145 priv->tx_packets = 0; 4146 priv->rx_packets = 0; 4147 4148 } 4149 4150 static u32 ipw_get_max_rate(struct ipw_priv *priv) 4151 { 4152 u32 i = 0x80000000; 4153 u32 mask = priv->rates_mask; 4154 /* If currently associated in B mode, restrict the maximum 4155 * rate match to B rates */ 4156 if (priv->assoc_request.ieee_mode == IPW_B_MODE) 4157 mask &= LIBIPW_CCK_RATES_MASK; 4158 4159 /* TODO: Verify that the rate is supported by the current rates 4160 * list. */ 4161 4162 while (i && !(mask & i)) 4163 i >>= 1; 4164 switch (i) { 4165 case LIBIPW_CCK_RATE_1MB_MASK: 4166 return 1000000; 4167 case LIBIPW_CCK_RATE_2MB_MASK: 4168 return 2000000; 4169 case LIBIPW_CCK_RATE_5MB_MASK: 4170 return 5500000; 4171 case LIBIPW_OFDM_RATE_6MB_MASK: 4172 return 6000000; 4173 case LIBIPW_OFDM_RATE_9MB_MASK: 4174 return 9000000; 4175 case LIBIPW_CCK_RATE_11MB_MASK: 4176 return 11000000; 4177 case LIBIPW_OFDM_RATE_12MB_MASK: 4178 return 12000000; 4179 case LIBIPW_OFDM_RATE_18MB_MASK: 4180 return 18000000; 4181 case LIBIPW_OFDM_RATE_24MB_MASK: 4182 return 24000000; 4183 case LIBIPW_OFDM_RATE_36MB_MASK: 4184 return 36000000; 4185 case LIBIPW_OFDM_RATE_48MB_MASK: 4186 return 48000000; 4187 case LIBIPW_OFDM_RATE_54MB_MASK: 4188 return 54000000; 4189 } 4190 4191 if (priv->ieee->mode == IEEE_B) 4192 return 11000000; 4193 else 4194 return 54000000; 4195 } 4196 4197 static u32 ipw_get_current_rate(struct ipw_priv *priv) 4198 { 4199 u32 rate, len = sizeof(rate); 4200 int err; 4201 4202 if (!(priv->status & STATUS_ASSOCIATED)) 4203 return 0; 4204 4205 if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) { 4206 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate, 4207 &len); 4208 if (err) { 4209 IPW_DEBUG_INFO("failed querying ordinals.\n"); 4210 return 0; 4211 } 4212 } else 4213 return ipw_get_max_rate(priv); 4214 4215 switch (rate) { 4216 case IPW_TX_RATE_1MB: 4217 return 1000000; 4218 case IPW_TX_RATE_2MB: 4219 return 2000000; 4220 case IPW_TX_RATE_5MB: 4221 return 5500000; 4222 case IPW_TX_RATE_6MB: 4223 return 6000000; 4224 case IPW_TX_RATE_9MB: 4225 return 9000000; 4226 case IPW_TX_RATE_11MB: 4227 return 11000000; 4228 case IPW_TX_RATE_12MB: 4229 return 12000000; 4230 case IPW_TX_RATE_18MB: 4231 return 18000000; 4232 case IPW_TX_RATE_24MB: 4233 return 24000000; 4234 case IPW_TX_RATE_36MB: 4235 return 36000000; 4236 case IPW_TX_RATE_48MB: 4237 return 48000000; 4238 case IPW_TX_RATE_54MB: 4239 return 54000000; 4240 } 4241 4242 return 0; 4243 } 4244 4245 #define IPW_STATS_INTERVAL (2 * HZ) 4246 static void ipw_gather_stats(struct ipw_priv *priv) 4247 { 4248 u32 rx_err, rx_err_delta, rx_packets_delta; 4249 u32 tx_failures, tx_failures_delta, tx_packets_delta; 4250 u32 missed_beacons_percent, missed_beacons_delta; 4251 u32 quality = 0; 4252 u32 len = sizeof(u32); 4253 s16 rssi; 4254 u32 beacon_quality, signal_quality, tx_quality, rx_quality, 4255 rate_quality; 4256 u32 max_rate; 4257 4258 if (!(priv->status & STATUS_ASSOCIATED)) { 4259 priv->quality = 0; 4260 return; 4261 } 4262 4263 /* Update the statistics */ 4264 ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS, 4265 &priv->missed_beacons, &len); 4266 missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons; 4267 priv->last_missed_beacons = priv->missed_beacons; 4268 if (priv->assoc_request.beacon_interval) { 4269 missed_beacons_percent = missed_beacons_delta * 4270 (HZ * le16_to_cpu(priv->assoc_request.beacon_interval)) / 4271 (IPW_STATS_INTERVAL * 10); 4272 } else { 4273 missed_beacons_percent = 0; 4274 } 4275 average_add(&priv->average_missed_beacons, missed_beacons_percent); 4276 4277 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len); 4278 rx_err_delta = rx_err - priv->last_rx_err; 4279 priv->last_rx_err = rx_err; 4280 4281 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len); 4282 tx_failures_delta = tx_failures - priv->last_tx_failures; 4283 priv->last_tx_failures = tx_failures; 4284 4285 rx_packets_delta = priv->rx_packets - priv->last_rx_packets; 4286 priv->last_rx_packets = priv->rx_packets; 4287 4288 tx_packets_delta = priv->tx_packets - priv->last_tx_packets; 4289 priv->last_tx_packets = priv->tx_packets; 4290 4291 /* Calculate quality based on the following: 4292 * 4293 * Missed beacon: 100% = 0, 0% = 70% missed 4294 * Rate: 60% = 1Mbs, 100% = Max 4295 * Rx and Tx errors represent a straight % of total Rx/Tx 4296 * RSSI: 100% = > -50, 0% = < -80 4297 * Rx errors: 100% = 0, 0% = 50% missed 4298 * 4299 * The lowest computed quality is used. 4300 * 4301 */ 4302 #define BEACON_THRESHOLD 5 4303 beacon_quality = 100 - missed_beacons_percent; 4304 if (beacon_quality < BEACON_THRESHOLD) 4305 beacon_quality = 0; 4306 else 4307 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 / 4308 (100 - BEACON_THRESHOLD); 4309 IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n", 4310 beacon_quality, missed_beacons_percent); 4311 4312 priv->last_rate = ipw_get_current_rate(priv); 4313 max_rate = ipw_get_max_rate(priv); 4314 rate_quality = priv->last_rate * 40 / max_rate + 60; 4315 IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n", 4316 rate_quality, priv->last_rate / 1000000); 4317 4318 if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta) 4319 rx_quality = 100 - (rx_err_delta * 100) / 4320 (rx_packets_delta + rx_err_delta); 4321 else 4322 rx_quality = 100; 4323 IPW_DEBUG_STATS("Rx quality : %3d%% (%u errors, %u packets)\n", 4324 rx_quality, rx_err_delta, rx_packets_delta); 4325 4326 if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta) 4327 tx_quality = 100 - (tx_failures_delta * 100) / 4328 (tx_packets_delta + tx_failures_delta); 4329 else 4330 tx_quality = 100; 4331 IPW_DEBUG_STATS("Tx quality : %3d%% (%u errors, %u packets)\n", 4332 tx_quality, tx_failures_delta, tx_packets_delta); 4333 4334 rssi = priv->exp_avg_rssi; 4335 signal_quality = 4336 (100 * 4337 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) * 4338 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) - 4339 (priv->ieee->perfect_rssi - rssi) * 4340 (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) + 4341 62 * (priv->ieee->perfect_rssi - rssi))) / 4342 ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) * 4343 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi)); 4344 if (signal_quality > 100) 4345 signal_quality = 100; 4346 else if (signal_quality < 1) 4347 signal_quality = 0; 4348 4349 IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n", 4350 signal_quality, rssi); 4351 4352 quality = min(rx_quality, signal_quality); 4353 quality = min(tx_quality, quality); 4354 quality = min(rate_quality, quality); 4355 quality = min(beacon_quality, quality); 4356 if (quality == beacon_quality) 4357 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n", 4358 quality); 4359 if (quality == rate_quality) 4360 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n", 4361 quality); 4362 if (quality == tx_quality) 4363 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n", 4364 quality); 4365 if (quality == rx_quality) 4366 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n", 4367 quality); 4368 if (quality == signal_quality) 4369 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n", 4370 quality); 4371 4372 priv->quality = quality; 4373 4374 schedule_delayed_work(&priv->gather_stats, IPW_STATS_INTERVAL); 4375 } 4376 4377 static void ipw_bg_gather_stats(struct work_struct *work) 4378 { 4379 struct ipw_priv *priv = 4380 container_of(work, struct ipw_priv, gather_stats.work); 4381 mutex_lock(&priv->mutex); 4382 ipw_gather_stats(priv); 4383 mutex_unlock(&priv->mutex); 4384 } 4385 4386 /* Missed beacon behavior: 4387 * 1st missed -> roaming_threshold, just wait, don't do any scan/roam. 4388 * roaming_threshold -> disassociate_threshold, scan and roam for better signal. 4389 * Above disassociate threshold, give up and stop scanning. 4390 * Roaming is disabled if disassociate_threshold <= roaming_threshold */ 4391 static void ipw_handle_missed_beacon(struct ipw_priv *priv, 4392 int missed_count) 4393 { 4394 priv->notif_missed_beacons = missed_count; 4395 4396 if (missed_count > priv->disassociate_threshold && 4397 priv->status & STATUS_ASSOCIATED) { 4398 /* If associated and we've hit the missed 4399 * beacon threshold, disassociate, turn 4400 * off roaming, and abort any active scans */ 4401 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | 4402 IPW_DL_STATE | IPW_DL_ASSOC, 4403 "Missed beacon: %d - disassociate\n", missed_count); 4404 priv->status &= ~STATUS_ROAMING; 4405 if (priv->status & STATUS_SCANNING) { 4406 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | 4407 IPW_DL_STATE, 4408 "Aborting scan with missed beacon.\n"); 4409 schedule_work(&priv->abort_scan); 4410 } 4411 4412 schedule_work(&priv->disassociate); 4413 return; 4414 } 4415 4416 if (priv->status & STATUS_ROAMING) { 4417 /* If we are currently roaming, then just 4418 * print a debug statement... */ 4419 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE, 4420 "Missed beacon: %d - roam in progress\n", 4421 missed_count); 4422 return; 4423 } 4424 4425 if (roaming && 4426 (missed_count > priv->roaming_threshold && 4427 missed_count <= priv->disassociate_threshold)) { 4428 /* If we are not already roaming, set the ROAM 4429 * bit in the status and kick off a scan. 4430 * This can happen several times before we reach 4431 * disassociate_threshold. */ 4432 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE, 4433 "Missed beacon: %d - initiate " 4434 "roaming\n", missed_count); 4435 if (!(priv->status & STATUS_ROAMING)) { 4436 priv->status |= STATUS_ROAMING; 4437 if (!(priv->status & STATUS_SCANNING)) 4438 schedule_delayed_work(&priv->request_scan, 0); 4439 } 4440 return; 4441 } 4442 4443 if (priv->status & STATUS_SCANNING && 4444 missed_count > IPW_MB_SCAN_CANCEL_THRESHOLD) { 4445 /* Stop scan to keep fw from getting 4446 * stuck (only if we aren't roaming -- 4447 * otherwise we'll never scan more than 2 or 3 4448 * channels..) */ 4449 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE, 4450 "Aborting scan with missed beacon.\n"); 4451 schedule_work(&priv->abort_scan); 4452 } 4453 4454 IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count); 4455 } 4456 4457 static void ipw_scan_event(struct work_struct *work) 4458 { 4459 union iwreq_data wrqu; 4460 4461 struct ipw_priv *priv = 4462 container_of(work, struct ipw_priv, scan_event.work); 4463 4464 wrqu.data.length = 0; 4465 wrqu.data.flags = 0; 4466 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL); 4467 } 4468 4469 static void handle_scan_event(struct ipw_priv *priv) 4470 { 4471 /* Only userspace-requested scan completion events go out immediately */ 4472 if (!priv->user_requested_scan) { 4473 schedule_delayed_work(&priv->scan_event, 4474 round_jiffies_relative(msecs_to_jiffies(4000))); 4475 } else { 4476 priv->user_requested_scan = 0; 4477 mod_delayed_work(system_wq, &priv->scan_event, 0); 4478 } 4479 } 4480 4481 /** 4482 * Handle host notification packet. 4483 * Called from interrupt routine 4484 */ 4485 static void ipw_rx_notification(struct ipw_priv *priv, 4486 struct ipw_rx_notification *notif) 4487 { 4488 u16 size = le16_to_cpu(notif->size); 4489 4490 IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, size); 4491 4492 switch (notif->subtype) { 4493 case HOST_NOTIFICATION_STATUS_ASSOCIATED:{ 4494 struct notif_association *assoc = ¬if->u.assoc; 4495 4496 switch (assoc->state) { 4497 case CMAS_ASSOCIATED:{ 4498 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4499 IPW_DL_ASSOC, 4500 "associated: '%*pE' %pM\n", 4501 priv->essid_len, priv->essid, 4502 priv->bssid); 4503 4504 switch (priv->ieee->iw_mode) { 4505 case IW_MODE_INFRA: 4506 memcpy(priv->ieee->bssid, 4507 priv->bssid, ETH_ALEN); 4508 break; 4509 4510 case IW_MODE_ADHOC: 4511 memcpy(priv->ieee->bssid, 4512 priv->bssid, ETH_ALEN); 4513 4514 /* clear out the station table */ 4515 priv->num_stations = 0; 4516 4517 IPW_DEBUG_ASSOC 4518 ("queueing adhoc check\n"); 4519 schedule_delayed_work( 4520 &priv->adhoc_check, 4521 le16_to_cpu(priv-> 4522 assoc_request. 4523 beacon_interval)); 4524 break; 4525 } 4526 4527 priv->status &= ~STATUS_ASSOCIATING; 4528 priv->status |= STATUS_ASSOCIATED; 4529 schedule_work(&priv->system_config); 4530 4531 #ifdef CONFIG_IPW2200_QOS 4532 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \ 4533 le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_control)) 4534 if ((priv->status & STATUS_AUTH) && 4535 (IPW_GET_PACKET_STYPE(¬if->u.raw) 4536 == IEEE80211_STYPE_ASSOC_RESP)) { 4537 if ((sizeof 4538 (struct 4539 libipw_assoc_response) 4540 <= size) 4541 && (size <= 2314)) { 4542 struct 4543 libipw_rx_stats 4544 stats = { 4545 .len = size - 1, 4546 }; 4547 4548 IPW_DEBUG_QOS 4549 ("QoS Associate " 4550 "size %d\n", size); 4551 libipw_rx_mgt(priv-> 4552 ieee, 4553 (struct 4554 libipw_hdr_4addr 4555 *) 4556 ¬if->u.raw, &stats); 4557 } 4558 } 4559 #endif 4560 4561 schedule_work(&priv->link_up); 4562 4563 break; 4564 } 4565 4566 case CMAS_AUTHENTICATED:{ 4567 if (priv-> 4568 status & (STATUS_ASSOCIATED | 4569 STATUS_AUTH)) { 4570 struct notif_authenticate *auth 4571 = ¬if->u.auth; 4572 IPW_DEBUG(IPW_DL_NOTIF | 4573 IPW_DL_STATE | 4574 IPW_DL_ASSOC, 4575 "deauthenticated: '%*pE' %pM: (0x%04X) - %s\n", 4576 priv->essid_len, 4577 priv->essid, 4578 priv->bssid, 4579 le16_to_cpu(auth->status), 4580 ipw_get_status_code 4581 (le16_to_cpu 4582 (auth->status))); 4583 4584 priv->status &= 4585 ~(STATUS_ASSOCIATING | 4586 STATUS_AUTH | 4587 STATUS_ASSOCIATED); 4588 4589 schedule_work(&priv->link_down); 4590 break; 4591 } 4592 4593 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4594 IPW_DL_ASSOC, 4595 "authenticated: '%*pE' %pM\n", 4596 priv->essid_len, priv->essid, 4597 priv->bssid); 4598 break; 4599 } 4600 4601 case CMAS_INIT:{ 4602 if (priv->status & STATUS_AUTH) { 4603 struct 4604 libipw_assoc_response 4605 *resp; 4606 resp = 4607 (struct 4608 libipw_assoc_response 4609 *)¬if->u.raw; 4610 IPW_DEBUG(IPW_DL_NOTIF | 4611 IPW_DL_STATE | 4612 IPW_DL_ASSOC, 4613 "association failed (0x%04X): %s\n", 4614 le16_to_cpu(resp->status), 4615 ipw_get_status_code 4616 (le16_to_cpu 4617 (resp->status))); 4618 } 4619 4620 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4621 IPW_DL_ASSOC, 4622 "disassociated: '%*pE' %pM\n", 4623 priv->essid_len, priv->essid, 4624 priv->bssid); 4625 4626 priv->status &= 4627 ~(STATUS_DISASSOCIATING | 4628 STATUS_ASSOCIATING | 4629 STATUS_ASSOCIATED | STATUS_AUTH); 4630 if (priv->assoc_network 4631 && (priv->assoc_network-> 4632 capability & 4633 WLAN_CAPABILITY_IBSS)) 4634 ipw_remove_current_network 4635 (priv); 4636 4637 schedule_work(&priv->link_down); 4638 4639 break; 4640 } 4641 4642 case CMAS_RX_ASSOC_RESP: 4643 break; 4644 4645 default: 4646 IPW_ERROR("assoc: unknown (%d)\n", 4647 assoc->state); 4648 break; 4649 } 4650 4651 break; 4652 } 4653 4654 case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{ 4655 struct notif_authenticate *auth = ¬if->u.auth; 4656 switch (auth->state) { 4657 case CMAS_AUTHENTICATED: 4658 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE, 4659 "authenticated: '%*pE' %pM\n", 4660 priv->essid_len, priv->essid, 4661 priv->bssid); 4662 priv->status |= STATUS_AUTH; 4663 break; 4664 4665 case CMAS_INIT: 4666 if (priv->status & STATUS_AUTH) { 4667 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4668 IPW_DL_ASSOC, 4669 "authentication failed (0x%04X): %s\n", 4670 le16_to_cpu(auth->status), 4671 ipw_get_status_code(le16_to_cpu 4672 (auth-> 4673 status))); 4674 } 4675 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4676 IPW_DL_ASSOC, 4677 "deauthenticated: '%*pE' %pM\n", 4678 priv->essid_len, priv->essid, 4679 priv->bssid); 4680 4681 priv->status &= ~(STATUS_ASSOCIATING | 4682 STATUS_AUTH | 4683 STATUS_ASSOCIATED); 4684 4685 schedule_work(&priv->link_down); 4686 break; 4687 4688 case CMAS_TX_AUTH_SEQ_1: 4689 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4690 IPW_DL_ASSOC, "AUTH_SEQ_1\n"); 4691 break; 4692 case CMAS_RX_AUTH_SEQ_2: 4693 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4694 IPW_DL_ASSOC, "AUTH_SEQ_2\n"); 4695 break; 4696 case CMAS_AUTH_SEQ_1_PASS: 4697 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4698 IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n"); 4699 break; 4700 case CMAS_AUTH_SEQ_1_FAIL: 4701 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4702 IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n"); 4703 break; 4704 case CMAS_TX_AUTH_SEQ_3: 4705 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4706 IPW_DL_ASSOC, "AUTH_SEQ_3\n"); 4707 break; 4708 case CMAS_RX_AUTH_SEQ_4: 4709 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4710 IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n"); 4711 break; 4712 case CMAS_AUTH_SEQ_2_PASS: 4713 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4714 IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n"); 4715 break; 4716 case CMAS_AUTH_SEQ_2_FAIL: 4717 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4718 IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n"); 4719 break; 4720 case CMAS_TX_ASSOC: 4721 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4722 IPW_DL_ASSOC, "TX_ASSOC\n"); 4723 break; 4724 case CMAS_RX_ASSOC_RESP: 4725 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4726 IPW_DL_ASSOC, "RX_ASSOC_RESP\n"); 4727 4728 break; 4729 case CMAS_ASSOCIATED: 4730 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4731 IPW_DL_ASSOC, "ASSOCIATED\n"); 4732 break; 4733 default: 4734 IPW_DEBUG_NOTIF("auth: failure - %d\n", 4735 auth->state); 4736 break; 4737 } 4738 break; 4739 } 4740 4741 case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{ 4742 struct notif_channel_result *x = 4743 ¬if->u.channel_result; 4744 4745 if (size == sizeof(*x)) { 4746 IPW_DEBUG_SCAN("Scan result for channel %d\n", 4747 x->channel_num); 4748 } else { 4749 IPW_DEBUG_SCAN("Scan result of wrong size %d " 4750 "(should be %zd)\n", 4751 size, sizeof(*x)); 4752 } 4753 break; 4754 } 4755 4756 case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{ 4757 struct notif_scan_complete *x = ¬if->u.scan_complete; 4758 if (size == sizeof(*x)) { 4759 IPW_DEBUG_SCAN 4760 ("Scan completed: type %d, %d channels, " 4761 "%d status\n", x->scan_type, 4762 x->num_channels, x->status); 4763 } else { 4764 IPW_ERROR("Scan completed of wrong size %d " 4765 "(should be %zd)\n", 4766 size, sizeof(*x)); 4767 } 4768 4769 priv->status &= 4770 ~(STATUS_SCANNING | STATUS_SCAN_ABORTING); 4771 4772 wake_up_interruptible(&priv->wait_state); 4773 cancel_delayed_work(&priv->scan_check); 4774 4775 if (priv->status & STATUS_EXIT_PENDING) 4776 break; 4777 4778 priv->ieee->scans++; 4779 4780 #ifdef CONFIG_IPW2200_MONITOR 4781 if (priv->ieee->iw_mode == IW_MODE_MONITOR) { 4782 priv->status |= STATUS_SCAN_FORCED; 4783 schedule_delayed_work(&priv->request_scan, 0); 4784 break; 4785 } 4786 priv->status &= ~STATUS_SCAN_FORCED; 4787 #endif /* CONFIG_IPW2200_MONITOR */ 4788 4789 /* Do queued direct scans first */ 4790 if (priv->status & STATUS_DIRECT_SCAN_PENDING) 4791 schedule_delayed_work(&priv->request_direct_scan, 0); 4792 4793 if (!(priv->status & (STATUS_ASSOCIATED | 4794 STATUS_ASSOCIATING | 4795 STATUS_ROAMING | 4796 STATUS_DISASSOCIATING))) 4797 schedule_work(&priv->associate); 4798 else if (priv->status & STATUS_ROAMING) { 4799 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE) 4800 /* If a scan completed and we are in roam mode, then 4801 * the scan that completed was the one requested as a 4802 * result of entering roam... so, schedule the 4803 * roam work */ 4804 schedule_work(&priv->roam); 4805 else 4806 /* Don't schedule if we aborted the scan */ 4807 priv->status &= ~STATUS_ROAMING; 4808 } else if (priv->status & STATUS_SCAN_PENDING) 4809 schedule_delayed_work(&priv->request_scan, 0); 4810 else if (priv->config & CFG_BACKGROUND_SCAN 4811 && priv->status & STATUS_ASSOCIATED) 4812 schedule_delayed_work(&priv->request_scan, 4813 round_jiffies_relative(HZ)); 4814 4815 /* Send an empty event to user space. 4816 * We don't send the received data on the event because 4817 * it would require us to do complex transcoding, and 4818 * we want to minimise the work done in the irq handler 4819 * Use a request to extract the data. 4820 * Also, we generate this even for any scan, regardless 4821 * on how the scan was initiated. User space can just 4822 * sync on periodic scan to get fresh data... 4823 * Jean II */ 4824 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE) 4825 handle_scan_event(priv); 4826 break; 4827 } 4828 4829 case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{ 4830 struct notif_frag_length *x = ¬if->u.frag_len; 4831 4832 if (size == sizeof(*x)) 4833 IPW_ERROR("Frag length: %d\n", 4834 le16_to_cpu(x->frag_length)); 4835 else 4836 IPW_ERROR("Frag length of wrong size %d " 4837 "(should be %zd)\n", 4838 size, sizeof(*x)); 4839 break; 4840 } 4841 4842 case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{ 4843 struct notif_link_deterioration *x = 4844 ¬if->u.link_deterioration; 4845 4846 if (size == sizeof(*x)) { 4847 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE, 4848 "link deterioration: type %d, cnt %d\n", 4849 x->silence_notification_type, 4850 x->silence_count); 4851 memcpy(&priv->last_link_deterioration, x, 4852 sizeof(*x)); 4853 } else { 4854 IPW_ERROR("Link Deterioration of wrong size %d " 4855 "(should be %zd)\n", 4856 size, sizeof(*x)); 4857 } 4858 break; 4859 } 4860 4861 case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{ 4862 IPW_ERROR("Dino config\n"); 4863 if (priv->hcmd 4864 && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG) 4865 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n"); 4866 4867 break; 4868 } 4869 4870 case HOST_NOTIFICATION_STATUS_BEACON_STATE:{ 4871 struct notif_beacon_state *x = ¬if->u.beacon_state; 4872 if (size != sizeof(*x)) { 4873 IPW_ERROR 4874 ("Beacon state of wrong size %d (should " 4875 "be %zd)\n", size, sizeof(*x)); 4876 break; 4877 } 4878 4879 if (le32_to_cpu(x->state) == 4880 HOST_NOTIFICATION_STATUS_BEACON_MISSING) 4881 ipw_handle_missed_beacon(priv, 4882 le32_to_cpu(x-> 4883 number)); 4884 4885 break; 4886 } 4887 4888 case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{ 4889 struct notif_tgi_tx_key *x = ¬if->u.tgi_tx_key; 4890 if (size == sizeof(*x)) { 4891 IPW_ERROR("TGi Tx Key: state 0x%02x sec type " 4892 "0x%02x station %d\n", 4893 x->key_state, x->security_type, 4894 x->station_index); 4895 break; 4896 } 4897 4898 IPW_ERROR 4899 ("TGi Tx Key of wrong size %d (should be %zd)\n", 4900 size, sizeof(*x)); 4901 break; 4902 } 4903 4904 case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{ 4905 struct notif_calibration *x = ¬if->u.calibration; 4906 4907 if (size == sizeof(*x)) { 4908 memcpy(&priv->calib, x, sizeof(*x)); 4909 IPW_DEBUG_INFO("TODO: Calibration\n"); 4910 break; 4911 } 4912 4913 IPW_ERROR 4914 ("Calibration of wrong size %d (should be %zd)\n", 4915 size, sizeof(*x)); 4916 break; 4917 } 4918 4919 case HOST_NOTIFICATION_NOISE_STATS:{ 4920 if (size == sizeof(u32)) { 4921 priv->exp_avg_noise = 4922 exponential_average(priv->exp_avg_noise, 4923 (u8) (le32_to_cpu(notif->u.noise.value) & 0xff), 4924 DEPTH_NOISE); 4925 break; 4926 } 4927 4928 IPW_ERROR 4929 ("Noise stat is wrong size %d (should be %zd)\n", 4930 size, sizeof(u32)); 4931 break; 4932 } 4933 4934 default: 4935 IPW_DEBUG_NOTIF("Unknown notification: " 4936 "subtype=%d,flags=0x%2x,size=%d\n", 4937 notif->subtype, notif->flags, size); 4938 } 4939 } 4940 4941 /** 4942 * Destroys all DMA structures and initialise them again 4943 * 4944 * @param priv 4945 * @return error code 4946 */ 4947 static int ipw_queue_reset(struct ipw_priv *priv) 4948 { 4949 int rc = 0; 4950 /** @todo customize queue sizes */ 4951 int nTx = 64, nTxCmd = 8; 4952 ipw_tx_queue_free(priv); 4953 /* Tx CMD queue */ 4954 rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd, 4955 IPW_TX_CMD_QUEUE_READ_INDEX, 4956 IPW_TX_CMD_QUEUE_WRITE_INDEX, 4957 IPW_TX_CMD_QUEUE_BD_BASE, 4958 IPW_TX_CMD_QUEUE_BD_SIZE); 4959 if (rc) { 4960 IPW_ERROR("Tx Cmd queue init failed\n"); 4961 goto error; 4962 } 4963 /* Tx queue(s) */ 4964 rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx, 4965 IPW_TX_QUEUE_0_READ_INDEX, 4966 IPW_TX_QUEUE_0_WRITE_INDEX, 4967 IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE); 4968 if (rc) { 4969 IPW_ERROR("Tx 0 queue init failed\n"); 4970 goto error; 4971 } 4972 rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx, 4973 IPW_TX_QUEUE_1_READ_INDEX, 4974 IPW_TX_QUEUE_1_WRITE_INDEX, 4975 IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE); 4976 if (rc) { 4977 IPW_ERROR("Tx 1 queue init failed\n"); 4978 goto error; 4979 } 4980 rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx, 4981 IPW_TX_QUEUE_2_READ_INDEX, 4982 IPW_TX_QUEUE_2_WRITE_INDEX, 4983 IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE); 4984 if (rc) { 4985 IPW_ERROR("Tx 2 queue init failed\n"); 4986 goto error; 4987 } 4988 rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx, 4989 IPW_TX_QUEUE_3_READ_INDEX, 4990 IPW_TX_QUEUE_3_WRITE_INDEX, 4991 IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE); 4992 if (rc) { 4993 IPW_ERROR("Tx 3 queue init failed\n"); 4994 goto error; 4995 } 4996 /* statistics */ 4997 priv->rx_bufs_min = 0; 4998 priv->rx_pend_max = 0; 4999 return rc; 5000 5001 error: 5002 ipw_tx_queue_free(priv); 5003 return rc; 5004 } 5005 5006 /** 5007 * Reclaim Tx queue entries no more used by NIC. 5008 * 5009 * When FW advances 'R' index, all entries between old and 5010 * new 'R' index need to be reclaimed. As result, some free space 5011 * forms. If there is enough free space (> low mark), wake Tx queue. 5012 * 5013 * @note Need to protect against garbage in 'R' index 5014 * @param priv 5015 * @param txq 5016 * @param qindex 5017 * @return Number of used entries remains in the queue 5018 */ 5019 static int ipw_queue_tx_reclaim(struct ipw_priv *priv, 5020 struct clx2_tx_queue *txq, int qindex) 5021 { 5022 u32 hw_tail; 5023 int used; 5024 struct clx2_queue *q = &txq->q; 5025 5026 hw_tail = ipw_read32(priv, q->reg_r); 5027 if (hw_tail >= q->n_bd) { 5028 IPW_ERROR 5029 ("Read index for DMA queue (%d) is out of range [0-%d)\n", 5030 hw_tail, q->n_bd); 5031 goto done; 5032 } 5033 for (; q->last_used != hw_tail; 5034 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) { 5035 ipw_queue_tx_free_tfd(priv, txq); 5036 priv->tx_packets++; 5037 } 5038 done: 5039 if ((ipw_tx_queue_space(q) > q->low_mark) && 5040 (qindex >= 0)) 5041 netif_wake_queue(priv->net_dev); 5042 used = q->first_empty - q->last_used; 5043 if (used < 0) 5044 used += q->n_bd; 5045 5046 return used; 5047 } 5048 5049 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf, 5050 int len, int sync) 5051 { 5052 struct clx2_tx_queue *txq = &priv->txq_cmd; 5053 struct clx2_queue *q = &txq->q; 5054 struct tfd_frame *tfd; 5055 5056 if (ipw_tx_queue_space(q) < (sync ? 1 : 2)) { 5057 IPW_ERROR("No space for Tx\n"); 5058 return -EBUSY; 5059 } 5060 5061 tfd = &txq->bd[q->first_empty]; 5062 txq->txb[q->first_empty] = NULL; 5063 5064 memset(tfd, 0, sizeof(*tfd)); 5065 tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE; 5066 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK; 5067 priv->hcmd_seq++; 5068 tfd->u.cmd.index = hcmd; 5069 tfd->u.cmd.length = len; 5070 memcpy(tfd->u.cmd.payload, buf, len); 5071 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd); 5072 ipw_write32(priv, q->reg_w, q->first_empty); 5073 _ipw_read32(priv, 0x90); 5074 5075 return 0; 5076 } 5077 5078 /* 5079 * Rx theory of operation 5080 * 5081 * The host allocates 32 DMA target addresses and passes the host address 5082 * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is 5083 * 0 to 31 5084 * 5085 * Rx Queue Indexes 5086 * The host/firmware share two index registers for managing the Rx buffers. 5087 * 5088 * The READ index maps to the first position that the firmware may be writing 5089 * to -- the driver can read up to (but not including) this position and get 5090 * good data. 5091 * The READ index is managed by the firmware once the card is enabled. 5092 * 5093 * The WRITE index maps to the last position the driver has read from -- the 5094 * position preceding WRITE is the last slot the firmware can place a packet. 5095 * 5096 * The queue is empty (no good data) if WRITE = READ - 1, and is full if 5097 * WRITE = READ. 5098 * 5099 * During initialization the host sets up the READ queue position to the first 5100 * INDEX position, and WRITE to the last (READ - 1 wrapped) 5101 * 5102 * When the firmware places a packet in a buffer it will advance the READ index 5103 * and fire the RX interrupt. The driver can then query the READ index and 5104 * process as many packets as possible, moving the WRITE index forward as it 5105 * resets the Rx queue buffers with new memory. 5106 * 5107 * The management in the driver is as follows: 5108 * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free. When 5109 * ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled 5110 * to replensish the ipw->rxq->rx_free. 5111 * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the 5112 * ipw->rxq is replenished and the READ INDEX is updated (updating the 5113 * 'processed' and 'read' driver indexes as well) 5114 * + A received packet is processed and handed to the kernel network stack, 5115 * detached from the ipw->rxq. The driver 'processed' index is updated. 5116 * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free 5117 * list. If there are no allocated buffers in ipw->rxq->rx_free, the READ 5118 * INDEX is not incremented and ipw->status(RX_STALLED) is set. If there 5119 * were enough free buffers and RX_STALLED is set it is cleared. 5120 * 5121 * 5122 * Driver sequence: 5123 * 5124 * ipw_rx_queue_alloc() Allocates rx_free 5125 * ipw_rx_queue_replenish() Replenishes rx_free list from rx_used, and calls 5126 * ipw_rx_queue_restock 5127 * ipw_rx_queue_restock() Moves available buffers from rx_free into Rx 5128 * queue, updates firmware pointers, and updates 5129 * the WRITE index. If insufficient rx_free buffers 5130 * are available, schedules ipw_rx_queue_replenish 5131 * 5132 * -- enable interrupts -- 5133 * ISR - ipw_rx() Detach ipw_rx_mem_buffers from pool up to the 5134 * READ INDEX, detaching the SKB from the pool. 5135 * Moves the packet buffer from queue to rx_used. 5136 * Calls ipw_rx_queue_restock to refill any empty 5137 * slots. 5138 * ... 5139 * 5140 */ 5141 5142 /* 5143 * If there are slots in the RX queue that need to be restocked, 5144 * and we have free pre-allocated buffers, fill the ranks as much 5145 * as we can pulling from rx_free. 5146 * 5147 * This moves the 'write' index forward to catch up with 'processed', and 5148 * also updates the memory address in the firmware to reference the new 5149 * target buffer. 5150 */ 5151 static void ipw_rx_queue_restock(struct ipw_priv *priv) 5152 { 5153 struct ipw_rx_queue *rxq = priv->rxq; 5154 struct list_head *element; 5155 struct ipw_rx_mem_buffer *rxb; 5156 unsigned long flags; 5157 int write; 5158 5159 spin_lock_irqsave(&rxq->lock, flags); 5160 write = rxq->write; 5161 while ((ipw_rx_queue_space(rxq) > 0) && (rxq->free_count)) { 5162 element = rxq->rx_free.next; 5163 rxb = list_entry(element, struct ipw_rx_mem_buffer, list); 5164 list_del(element); 5165 5166 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE, 5167 rxb->dma_addr); 5168 rxq->queue[rxq->write] = rxb; 5169 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE; 5170 rxq->free_count--; 5171 } 5172 spin_unlock_irqrestore(&rxq->lock, flags); 5173 5174 /* If the pre-allocated buffer pool is dropping low, schedule to 5175 * refill it */ 5176 if (rxq->free_count <= RX_LOW_WATERMARK) 5177 schedule_work(&priv->rx_replenish); 5178 5179 /* If we've added more space for the firmware to place data, tell it */ 5180 if (write != rxq->write) 5181 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write); 5182 } 5183 5184 /* 5185 * Move all used packet from rx_used to rx_free, allocating a new SKB for each. 5186 * Also restock the Rx queue via ipw_rx_queue_restock. 5187 * 5188 * This is called as a scheduled work item (except for during initialization) 5189 */ 5190 static void ipw_rx_queue_replenish(void *data) 5191 { 5192 struct ipw_priv *priv = data; 5193 struct ipw_rx_queue *rxq = priv->rxq; 5194 struct list_head *element; 5195 struct ipw_rx_mem_buffer *rxb; 5196 unsigned long flags; 5197 5198 spin_lock_irqsave(&rxq->lock, flags); 5199 while (!list_empty(&rxq->rx_used)) { 5200 element = rxq->rx_used.next; 5201 rxb = list_entry(element, struct ipw_rx_mem_buffer, list); 5202 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC); 5203 if (!rxb->skb) { 5204 printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n", 5205 priv->net_dev->name); 5206 /* We don't reschedule replenish work here -- we will 5207 * call the restock method and if it still needs 5208 * more buffers it will schedule replenish */ 5209 break; 5210 } 5211 list_del(element); 5212 5213 rxb->dma_addr = 5214 pci_map_single(priv->pci_dev, rxb->skb->data, 5215 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE); 5216 5217 list_add_tail(&rxb->list, &rxq->rx_free); 5218 rxq->free_count++; 5219 } 5220 spin_unlock_irqrestore(&rxq->lock, flags); 5221 5222 ipw_rx_queue_restock(priv); 5223 } 5224 5225 static void ipw_bg_rx_queue_replenish(struct work_struct *work) 5226 { 5227 struct ipw_priv *priv = 5228 container_of(work, struct ipw_priv, rx_replenish); 5229 mutex_lock(&priv->mutex); 5230 ipw_rx_queue_replenish(priv); 5231 mutex_unlock(&priv->mutex); 5232 } 5233 5234 /* Assumes that the skb field of the buffers in 'pool' is kept accurate. 5235 * If an SKB has been detached, the POOL needs to have its SKB set to NULL 5236 * This free routine walks the list of POOL entries and if SKB is set to 5237 * non NULL it is unmapped and freed 5238 */ 5239 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq) 5240 { 5241 int i; 5242 5243 if (!rxq) 5244 return; 5245 5246 for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) { 5247 if (rxq->pool[i].skb != NULL) { 5248 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr, 5249 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE); 5250 dev_kfree_skb(rxq->pool[i].skb); 5251 } 5252 } 5253 5254 kfree(rxq); 5255 } 5256 5257 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv) 5258 { 5259 struct ipw_rx_queue *rxq; 5260 int i; 5261 5262 rxq = kzalloc(sizeof(*rxq), GFP_KERNEL); 5263 if (unlikely(!rxq)) { 5264 IPW_ERROR("memory allocation failed\n"); 5265 return NULL; 5266 } 5267 spin_lock_init(&rxq->lock); 5268 INIT_LIST_HEAD(&rxq->rx_free); 5269 INIT_LIST_HEAD(&rxq->rx_used); 5270 5271 /* Fill the rx_used queue with _all_ of the Rx buffers */ 5272 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) 5273 list_add_tail(&rxq->pool[i].list, &rxq->rx_used); 5274 5275 /* Set us so that we have processed and used all buffers, but have 5276 * not restocked the Rx queue with fresh buffers */ 5277 rxq->read = rxq->write = 0; 5278 rxq->free_count = 0; 5279 5280 return rxq; 5281 } 5282 5283 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate) 5284 { 5285 rate &= ~LIBIPW_BASIC_RATE_MASK; 5286 if (ieee_mode == IEEE_A) { 5287 switch (rate) { 5288 case LIBIPW_OFDM_RATE_6MB: 5289 return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ? 5290 1 : 0; 5291 case LIBIPW_OFDM_RATE_9MB: 5292 return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ? 5293 1 : 0; 5294 case LIBIPW_OFDM_RATE_12MB: 5295 return priv-> 5296 rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0; 5297 case LIBIPW_OFDM_RATE_18MB: 5298 return priv-> 5299 rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0; 5300 case LIBIPW_OFDM_RATE_24MB: 5301 return priv-> 5302 rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0; 5303 case LIBIPW_OFDM_RATE_36MB: 5304 return priv-> 5305 rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0; 5306 case LIBIPW_OFDM_RATE_48MB: 5307 return priv-> 5308 rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0; 5309 case LIBIPW_OFDM_RATE_54MB: 5310 return priv-> 5311 rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0; 5312 default: 5313 return 0; 5314 } 5315 } 5316 5317 /* B and G mixed */ 5318 switch (rate) { 5319 case LIBIPW_CCK_RATE_1MB: 5320 return priv->rates_mask & LIBIPW_CCK_RATE_1MB_MASK ? 1 : 0; 5321 case LIBIPW_CCK_RATE_2MB: 5322 return priv->rates_mask & LIBIPW_CCK_RATE_2MB_MASK ? 1 : 0; 5323 case LIBIPW_CCK_RATE_5MB: 5324 return priv->rates_mask & LIBIPW_CCK_RATE_5MB_MASK ? 1 : 0; 5325 case LIBIPW_CCK_RATE_11MB: 5326 return priv->rates_mask & LIBIPW_CCK_RATE_11MB_MASK ? 1 : 0; 5327 } 5328 5329 /* If we are limited to B modulations, bail at this point */ 5330 if (ieee_mode == IEEE_B) 5331 return 0; 5332 5333 /* G */ 5334 switch (rate) { 5335 case LIBIPW_OFDM_RATE_6MB: 5336 return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ? 1 : 0; 5337 case LIBIPW_OFDM_RATE_9MB: 5338 return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ? 1 : 0; 5339 case LIBIPW_OFDM_RATE_12MB: 5340 return priv->rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0; 5341 case LIBIPW_OFDM_RATE_18MB: 5342 return priv->rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0; 5343 case LIBIPW_OFDM_RATE_24MB: 5344 return priv->rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0; 5345 case LIBIPW_OFDM_RATE_36MB: 5346 return priv->rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0; 5347 case LIBIPW_OFDM_RATE_48MB: 5348 return priv->rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0; 5349 case LIBIPW_OFDM_RATE_54MB: 5350 return priv->rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0; 5351 } 5352 5353 return 0; 5354 } 5355 5356 static int ipw_compatible_rates(struct ipw_priv *priv, 5357 const struct libipw_network *network, 5358 struct ipw_supported_rates *rates) 5359 { 5360 int num_rates, i; 5361 5362 memset(rates, 0, sizeof(*rates)); 5363 num_rates = min(network->rates_len, (u8) IPW_MAX_RATES); 5364 rates->num_rates = 0; 5365 for (i = 0; i < num_rates; i++) { 5366 if (!ipw_is_rate_in_mask(priv, network->mode, 5367 network->rates[i])) { 5368 5369 if (network->rates[i] & LIBIPW_BASIC_RATE_MASK) { 5370 IPW_DEBUG_SCAN("Adding masked mandatory " 5371 "rate %02X\n", 5372 network->rates[i]); 5373 rates->supported_rates[rates->num_rates++] = 5374 network->rates[i]; 5375 continue; 5376 } 5377 5378 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n", 5379 network->rates[i], priv->rates_mask); 5380 continue; 5381 } 5382 5383 rates->supported_rates[rates->num_rates++] = network->rates[i]; 5384 } 5385 5386 num_rates = min(network->rates_ex_len, 5387 (u8) (IPW_MAX_RATES - num_rates)); 5388 for (i = 0; i < num_rates; i++) { 5389 if (!ipw_is_rate_in_mask(priv, network->mode, 5390 network->rates_ex[i])) { 5391 if (network->rates_ex[i] & LIBIPW_BASIC_RATE_MASK) { 5392 IPW_DEBUG_SCAN("Adding masked mandatory " 5393 "rate %02X\n", 5394 network->rates_ex[i]); 5395 rates->supported_rates[rates->num_rates++] = 5396 network->rates[i]; 5397 continue; 5398 } 5399 5400 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n", 5401 network->rates_ex[i], priv->rates_mask); 5402 continue; 5403 } 5404 5405 rates->supported_rates[rates->num_rates++] = 5406 network->rates_ex[i]; 5407 } 5408 5409 return 1; 5410 } 5411 5412 static void ipw_copy_rates(struct ipw_supported_rates *dest, 5413 const struct ipw_supported_rates *src) 5414 { 5415 u8 i; 5416 for (i = 0; i < src->num_rates; i++) 5417 dest->supported_rates[i] = src->supported_rates[i]; 5418 dest->num_rates = src->num_rates; 5419 } 5420 5421 /* TODO: Look at sniffed packets in the air to determine if the basic rate 5422 * mask should ever be used -- right now all callers to add the scan rates are 5423 * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */ 5424 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates, 5425 u8 modulation, u32 rate_mask) 5426 { 5427 u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ? 5428 LIBIPW_BASIC_RATE_MASK : 0; 5429 5430 if (rate_mask & LIBIPW_CCK_RATE_1MB_MASK) 5431 rates->supported_rates[rates->num_rates++] = 5432 LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_1MB; 5433 5434 if (rate_mask & LIBIPW_CCK_RATE_2MB_MASK) 5435 rates->supported_rates[rates->num_rates++] = 5436 LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_2MB; 5437 5438 if (rate_mask & LIBIPW_CCK_RATE_5MB_MASK) 5439 rates->supported_rates[rates->num_rates++] = basic_mask | 5440 LIBIPW_CCK_RATE_5MB; 5441 5442 if (rate_mask & LIBIPW_CCK_RATE_11MB_MASK) 5443 rates->supported_rates[rates->num_rates++] = basic_mask | 5444 LIBIPW_CCK_RATE_11MB; 5445 } 5446 5447 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates, 5448 u8 modulation, u32 rate_mask) 5449 { 5450 u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ? 5451 LIBIPW_BASIC_RATE_MASK : 0; 5452 5453 if (rate_mask & LIBIPW_OFDM_RATE_6MB_MASK) 5454 rates->supported_rates[rates->num_rates++] = basic_mask | 5455 LIBIPW_OFDM_RATE_6MB; 5456 5457 if (rate_mask & LIBIPW_OFDM_RATE_9MB_MASK) 5458 rates->supported_rates[rates->num_rates++] = 5459 LIBIPW_OFDM_RATE_9MB; 5460 5461 if (rate_mask & LIBIPW_OFDM_RATE_12MB_MASK) 5462 rates->supported_rates[rates->num_rates++] = basic_mask | 5463 LIBIPW_OFDM_RATE_12MB; 5464 5465 if (rate_mask & LIBIPW_OFDM_RATE_18MB_MASK) 5466 rates->supported_rates[rates->num_rates++] = 5467 LIBIPW_OFDM_RATE_18MB; 5468 5469 if (rate_mask & LIBIPW_OFDM_RATE_24MB_MASK) 5470 rates->supported_rates[rates->num_rates++] = basic_mask | 5471 LIBIPW_OFDM_RATE_24MB; 5472 5473 if (rate_mask & LIBIPW_OFDM_RATE_36MB_MASK) 5474 rates->supported_rates[rates->num_rates++] = 5475 LIBIPW_OFDM_RATE_36MB; 5476 5477 if (rate_mask & LIBIPW_OFDM_RATE_48MB_MASK) 5478 rates->supported_rates[rates->num_rates++] = 5479 LIBIPW_OFDM_RATE_48MB; 5480 5481 if (rate_mask & LIBIPW_OFDM_RATE_54MB_MASK) 5482 rates->supported_rates[rates->num_rates++] = 5483 LIBIPW_OFDM_RATE_54MB; 5484 } 5485 5486 struct ipw_network_match { 5487 struct libipw_network *network; 5488 struct ipw_supported_rates rates; 5489 }; 5490 5491 static int ipw_find_adhoc_network(struct ipw_priv *priv, 5492 struct ipw_network_match *match, 5493 struct libipw_network *network, 5494 int roaming) 5495 { 5496 struct ipw_supported_rates rates; 5497 5498 /* Verify that this network's capability is compatible with the 5499 * current mode (AdHoc or Infrastructure) */ 5500 if ((priv->ieee->iw_mode == IW_MODE_ADHOC && 5501 !(network->capability & WLAN_CAPABILITY_IBSS))) { 5502 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded due to capability mismatch.\n", 5503 network->ssid_len, network->ssid, 5504 network->bssid); 5505 return 0; 5506 } 5507 5508 if (unlikely(roaming)) { 5509 /* If we are roaming, then ensure check if this is a valid 5510 * network to try and roam to */ 5511 if ((network->ssid_len != match->network->ssid_len) || 5512 memcmp(network->ssid, match->network->ssid, 5513 network->ssid_len)) { 5514 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of non-network ESSID.\n", 5515 network->ssid_len, network->ssid, 5516 network->bssid); 5517 return 0; 5518 } 5519 } else { 5520 /* If an ESSID has been configured then compare the broadcast 5521 * ESSID to ours */ 5522 if ((priv->config & CFG_STATIC_ESSID) && 5523 ((network->ssid_len != priv->essid_len) || 5524 memcmp(network->ssid, priv->essid, 5525 min(network->ssid_len, priv->essid_len)))) { 5526 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of ESSID mismatch: '%*pE'.\n", 5527 network->ssid_len, network->ssid, 5528 network->bssid, priv->essid_len, 5529 priv->essid); 5530 return 0; 5531 } 5532 } 5533 5534 /* If the old network rate is better than this one, don't bother 5535 * testing everything else. */ 5536 5537 if (network->time_stamp[0] < match->network->time_stamp[0]) { 5538 IPW_DEBUG_MERGE("Network '%*pE excluded because newer than current network.\n", 5539 match->network->ssid_len, match->network->ssid); 5540 return 0; 5541 } else if (network->time_stamp[1] < match->network->time_stamp[1]) { 5542 IPW_DEBUG_MERGE("Network '%*pE excluded because newer than current network.\n", 5543 match->network->ssid_len, match->network->ssid); 5544 return 0; 5545 } 5546 5547 /* Now go through and see if the requested network is valid... */ 5548 if (priv->ieee->scan_age != 0 && 5549 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) { 5550 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of age: %ums.\n", 5551 network->ssid_len, network->ssid, 5552 network->bssid, 5553 jiffies_to_msecs(jiffies - 5554 network->last_scanned)); 5555 return 0; 5556 } 5557 5558 if ((priv->config & CFG_STATIC_CHANNEL) && 5559 (network->channel != priv->channel)) { 5560 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of channel mismatch: %d != %d.\n", 5561 network->ssid_len, network->ssid, 5562 network->bssid, 5563 network->channel, priv->channel); 5564 return 0; 5565 } 5566 5567 /* Verify privacy compatibility */ 5568 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) != 5569 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) { 5570 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of privacy mismatch: %s != %s.\n", 5571 network->ssid_len, network->ssid, 5572 network->bssid, 5573 priv-> 5574 capability & CAP_PRIVACY_ON ? "on" : "off", 5575 network-> 5576 capability & WLAN_CAPABILITY_PRIVACY ? "on" : 5577 "off"); 5578 return 0; 5579 } 5580 5581 if (ether_addr_equal(network->bssid, priv->bssid)) { 5582 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of the same BSSID match: %pM.\n", 5583 network->ssid_len, network->ssid, 5584 network->bssid, priv->bssid); 5585 return 0; 5586 } 5587 5588 /* Filter out any incompatible freq / mode combinations */ 5589 if (!libipw_is_valid_mode(priv->ieee, network->mode)) { 5590 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of invalid frequency/mode combination.\n", 5591 network->ssid_len, network->ssid, 5592 network->bssid); 5593 return 0; 5594 } 5595 5596 /* Ensure that the rates supported by the driver are compatible with 5597 * this AP, including verification of basic rates (mandatory) */ 5598 if (!ipw_compatible_rates(priv, network, &rates)) { 5599 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because configured rate mask excludes AP mandatory rate.\n", 5600 network->ssid_len, network->ssid, 5601 network->bssid); 5602 return 0; 5603 } 5604 5605 if (rates.num_rates == 0) { 5606 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of no compatible rates.\n", 5607 network->ssid_len, network->ssid, 5608 network->bssid); 5609 return 0; 5610 } 5611 5612 /* TODO: Perform any further minimal comparititive tests. We do not 5613 * want to put too much policy logic here; intelligent scan selection 5614 * should occur within a generic IEEE 802.11 user space tool. */ 5615 5616 /* Set up 'new' AP to this network */ 5617 ipw_copy_rates(&match->rates, &rates); 5618 match->network = network; 5619 IPW_DEBUG_MERGE("Network '%*pE (%pM)' is a viable match.\n", 5620 network->ssid_len, network->ssid, network->bssid); 5621 5622 return 1; 5623 } 5624 5625 static void ipw_merge_adhoc_network(struct work_struct *work) 5626 { 5627 struct ipw_priv *priv = 5628 container_of(work, struct ipw_priv, merge_networks); 5629 struct libipw_network *network = NULL; 5630 struct ipw_network_match match = { 5631 .network = priv->assoc_network 5632 }; 5633 5634 if ((priv->status & STATUS_ASSOCIATED) && 5635 (priv->ieee->iw_mode == IW_MODE_ADHOC)) { 5636 /* First pass through ROAM process -- look for a better 5637 * network */ 5638 unsigned long flags; 5639 5640 spin_lock_irqsave(&priv->ieee->lock, flags); 5641 list_for_each_entry(network, &priv->ieee->network_list, list) { 5642 if (network != priv->assoc_network) 5643 ipw_find_adhoc_network(priv, &match, network, 5644 1); 5645 } 5646 spin_unlock_irqrestore(&priv->ieee->lock, flags); 5647 5648 if (match.network == priv->assoc_network) { 5649 IPW_DEBUG_MERGE("No better ADHOC in this network to " 5650 "merge to.\n"); 5651 return; 5652 } 5653 5654 mutex_lock(&priv->mutex); 5655 if (priv->ieee->iw_mode == IW_MODE_ADHOC) { 5656 IPW_DEBUG_MERGE("remove network %*pE\n", 5657 priv->essid_len, priv->essid); 5658 ipw_remove_current_network(priv); 5659 } 5660 5661 ipw_disassociate(priv); 5662 priv->assoc_network = match.network; 5663 mutex_unlock(&priv->mutex); 5664 return; 5665 } 5666 } 5667 5668 static int ipw_best_network(struct ipw_priv *priv, 5669 struct ipw_network_match *match, 5670 struct libipw_network *network, int roaming) 5671 { 5672 struct ipw_supported_rates rates; 5673 5674 /* Verify that this network's capability is compatible with the 5675 * current mode (AdHoc or Infrastructure) */ 5676 if ((priv->ieee->iw_mode == IW_MODE_INFRA && 5677 !(network->capability & WLAN_CAPABILITY_ESS)) || 5678 (priv->ieee->iw_mode == IW_MODE_ADHOC && 5679 !(network->capability & WLAN_CAPABILITY_IBSS))) { 5680 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded due to capability mismatch.\n", 5681 network->ssid_len, network->ssid, 5682 network->bssid); 5683 return 0; 5684 } 5685 5686 if (unlikely(roaming)) { 5687 /* If we are roaming, then ensure check if this is a valid 5688 * network to try and roam to */ 5689 if ((network->ssid_len != match->network->ssid_len) || 5690 memcmp(network->ssid, match->network->ssid, 5691 network->ssid_len)) { 5692 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of non-network ESSID.\n", 5693 network->ssid_len, network->ssid, 5694 network->bssid); 5695 return 0; 5696 } 5697 } else { 5698 /* If an ESSID has been configured then compare the broadcast 5699 * ESSID to ours */ 5700 if ((priv->config & CFG_STATIC_ESSID) && 5701 ((network->ssid_len != priv->essid_len) || 5702 memcmp(network->ssid, priv->essid, 5703 min(network->ssid_len, priv->essid_len)))) { 5704 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of ESSID mismatch: '%*pE'.\n", 5705 network->ssid_len, network->ssid, 5706 network->bssid, priv->essid_len, 5707 priv->essid); 5708 return 0; 5709 } 5710 } 5711 5712 /* If the old network rate is better than this one, don't bother 5713 * testing everything else. */ 5714 if (match->network && match->network->stats.rssi > network->stats.rssi) { 5715 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because '%*pE (%pM)' has a stronger signal.\n", 5716 network->ssid_len, network->ssid, 5717 network->bssid, match->network->ssid_len, 5718 match->network->ssid, match->network->bssid); 5719 return 0; 5720 } 5721 5722 /* If this network has already had an association attempt within the 5723 * last 3 seconds, do not try and associate again... */ 5724 if (network->last_associate && 5725 time_after(network->last_associate + (HZ * 3UL), jiffies)) { 5726 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of storming (%ums since last assoc attempt).\n", 5727 network->ssid_len, network->ssid, 5728 network->bssid, 5729 jiffies_to_msecs(jiffies - 5730 network->last_associate)); 5731 return 0; 5732 } 5733 5734 /* Now go through and see if the requested network is valid... */ 5735 if (priv->ieee->scan_age != 0 && 5736 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) { 5737 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of age: %ums.\n", 5738 network->ssid_len, network->ssid, 5739 network->bssid, 5740 jiffies_to_msecs(jiffies - 5741 network->last_scanned)); 5742 return 0; 5743 } 5744 5745 if ((priv->config & CFG_STATIC_CHANNEL) && 5746 (network->channel != priv->channel)) { 5747 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of channel mismatch: %d != %d.\n", 5748 network->ssid_len, network->ssid, 5749 network->bssid, 5750 network->channel, priv->channel); 5751 return 0; 5752 } 5753 5754 /* Verify privacy compatibility */ 5755 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) != 5756 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) { 5757 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of privacy mismatch: %s != %s.\n", 5758 network->ssid_len, network->ssid, 5759 network->bssid, 5760 priv->capability & CAP_PRIVACY_ON ? "on" : 5761 "off", 5762 network->capability & 5763 WLAN_CAPABILITY_PRIVACY ? "on" : "off"); 5764 return 0; 5765 } 5766 5767 if ((priv->config & CFG_STATIC_BSSID) && 5768 !ether_addr_equal(network->bssid, priv->bssid)) { 5769 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of BSSID mismatch: %pM.\n", 5770 network->ssid_len, network->ssid, 5771 network->bssid, priv->bssid); 5772 return 0; 5773 } 5774 5775 /* Filter out any incompatible freq / mode combinations */ 5776 if (!libipw_is_valid_mode(priv->ieee, network->mode)) { 5777 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of invalid frequency/mode combination.\n", 5778 network->ssid_len, network->ssid, 5779 network->bssid); 5780 return 0; 5781 } 5782 5783 /* Filter out invalid channel in current GEO */ 5784 if (!libipw_is_valid_channel(priv->ieee, network->channel)) { 5785 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of invalid channel in current GEO\n", 5786 network->ssid_len, network->ssid, 5787 network->bssid); 5788 return 0; 5789 } 5790 5791 /* Ensure that the rates supported by the driver are compatible with 5792 * this AP, including verification of basic rates (mandatory) */ 5793 if (!ipw_compatible_rates(priv, network, &rates)) { 5794 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because configured rate mask excludes AP mandatory rate.\n", 5795 network->ssid_len, network->ssid, 5796 network->bssid); 5797 return 0; 5798 } 5799 5800 if (rates.num_rates == 0) { 5801 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of no compatible rates.\n", 5802 network->ssid_len, network->ssid, 5803 network->bssid); 5804 return 0; 5805 } 5806 5807 /* TODO: Perform any further minimal comparititive tests. We do not 5808 * want to put too much policy logic here; intelligent scan selection 5809 * should occur within a generic IEEE 802.11 user space tool. */ 5810 5811 /* Set up 'new' AP to this network */ 5812 ipw_copy_rates(&match->rates, &rates); 5813 match->network = network; 5814 5815 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' is a viable match.\n", 5816 network->ssid_len, network->ssid, network->bssid); 5817 5818 return 1; 5819 } 5820 5821 static void ipw_adhoc_create(struct ipw_priv *priv, 5822 struct libipw_network *network) 5823 { 5824 const struct libipw_geo *geo = libipw_get_geo(priv->ieee); 5825 int i; 5826 5827 /* 5828 * For the purposes of scanning, we can set our wireless mode 5829 * to trigger scans across combinations of bands, but when it 5830 * comes to creating a new ad-hoc network, we have tell the FW 5831 * exactly which band to use. 5832 * 5833 * We also have the possibility of an invalid channel for the 5834 * chossen band. Attempting to create a new ad-hoc network 5835 * with an invalid channel for wireless mode will trigger a 5836 * FW fatal error. 5837 * 5838 */ 5839 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) { 5840 case LIBIPW_52GHZ_BAND: 5841 network->mode = IEEE_A; 5842 i = libipw_channel_to_index(priv->ieee, priv->channel); 5843 BUG_ON(i == -1); 5844 if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY) { 5845 IPW_WARNING("Overriding invalid channel\n"); 5846 priv->channel = geo->a[0].channel; 5847 } 5848 break; 5849 5850 case LIBIPW_24GHZ_BAND: 5851 if (priv->ieee->mode & IEEE_G) 5852 network->mode = IEEE_G; 5853 else 5854 network->mode = IEEE_B; 5855 i = libipw_channel_to_index(priv->ieee, priv->channel); 5856 BUG_ON(i == -1); 5857 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY) { 5858 IPW_WARNING("Overriding invalid channel\n"); 5859 priv->channel = geo->bg[0].channel; 5860 } 5861 break; 5862 5863 default: 5864 IPW_WARNING("Overriding invalid channel\n"); 5865 if (priv->ieee->mode & IEEE_A) { 5866 network->mode = IEEE_A; 5867 priv->channel = geo->a[0].channel; 5868 } else if (priv->ieee->mode & IEEE_G) { 5869 network->mode = IEEE_G; 5870 priv->channel = geo->bg[0].channel; 5871 } else { 5872 network->mode = IEEE_B; 5873 priv->channel = geo->bg[0].channel; 5874 } 5875 break; 5876 } 5877 5878 network->channel = priv->channel; 5879 priv->config |= CFG_ADHOC_PERSIST; 5880 ipw_create_bssid(priv, network->bssid); 5881 network->ssid_len = priv->essid_len; 5882 memcpy(network->ssid, priv->essid, priv->essid_len); 5883 memset(&network->stats, 0, sizeof(network->stats)); 5884 network->capability = WLAN_CAPABILITY_IBSS; 5885 if (!(priv->config & CFG_PREAMBLE_LONG)) 5886 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE; 5887 if (priv->capability & CAP_PRIVACY_ON) 5888 network->capability |= WLAN_CAPABILITY_PRIVACY; 5889 network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH); 5890 memcpy(network->rates, priv->rates.supported_rates, network->rates_len); 5891 network->rates_ex_len = priv->rates.num_rates - network->rates_len; 5892 memcpy(network->rates_ex, 5893 &priv->rates.supported_rates[network->rates_len], 5894 network->rates_ex_len); 5895 network->last_scanned = 0; 5896 network->flags = 0; 5897 network->last_associate = 0; 5898 network->time_stamp[0] = 0; 5899 network->time_stamp[1] = 0; 5900 network->beacon_interval = 100; /* Default */ 5901 network->listen_interval = 10; /* Default */ 5902 network->atim_window = 0; /* Default */ 5903 network->wpa_ie_len = 0; 5904 network->rsn_ie_len = 0; 5905 } 5906 5907 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index) 5908 { 5909 struct ipw_tgi_tx_key key; 5910 5911 if (!(priv->ieee->sec.flags & (1 << index))) 5912 return; 5913 5914 key.key_id = index; 5915 memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH); 5916 key.security_type = type; 5917 key.station_index = 0; /* always 0 for BSS */ 5918 key.flags = 0; 5919 /* 0 for new key; previous value of counter (after fatal error) */ 5920 key.tx_counter[0] = cpu_to_le32(0); 5921 key.tx_counter[1] = cpu_to_le32(0); 5922 5923 ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key); 5924 } 5925 5926 static void ipw_send_wep_keys(struct ipw_priv *priv, int type) 5927 { 5928 struct ipw_wep_key key; 5929 int i; 5930 5931 key.cmd_id = DINO_CMD_WEP_KEY; 5932 key.seq_num = 0; 5933 5934 /* Note: AES keys cannot be set for multiple times. 5935 * Only set it at the first time. */ 5936 for (i = 0; i < 4; i++) { 5937 key.key_index = i | type; 5938 if (!(priv->ieee->sec.flags & (1 << i))) { 5939 key.key_size = 0; 5940 continue; 5941 } 5942 5943 key.key_size = priv->ieee->sec.key_sizes[i]; 5944 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size); 5945 5946 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key); 5947 } 5948 } 5949 5950 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level) 5951 { 5952 if (priv->ieee->host_encrypt) 5953 return; 5954 5955 switch (level) { 5956 case SEC_LEVEL_3: 5957 priv->sys_config.disable_unicast_decryption = 0; 5958 priv->ieee->host_decrypt = 0; 5959 break; 5960 case SEC_LEVEL_2: 5961 priv->sys_config.disable_unicast_decryption = 1; 5962 priv->ieee->host_decrypt = 1; 5963 break; 5964 case SEC_LEVEL_1: 5965 priv->sys_config.disable_unicast_decryption = 0; 5966 priv->ieee->host_decrypt = 0; 5967 break; 5968 case SEC_LEVEL_0: 5969 priv->sys_config.disable_unicast_decryption = 1; 5970 break; 5971 default: 5972 break; 5973 } 5974 } 5975 5976 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level) 5977 { 5978 if (priv->ieee->host_encrypt) 5979 return; 5980 5981 switch (level) { 5982 case SEC_LEVEL_3: 5983 priv->sys_config.disable_multicast_decryption = 0; 5984 break; 5985 case SEC_LEVEL_2: 5986 priv->sys_config.disable_multicast_decryption = 1; 5987 break; 5988 case SEC_LEVEL_1: 5989 priv->sys_config.disable_multicast_decryption = 0; 5990 break; 5991 case SEC_LEVEL_0: 5992 priv->sys_config.disable_multicast_decryption = 1; 5993 break; 5994 default: 5995 break; 5996 } 5997 } 5998 5999 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv) 6000 { 6001 switch (priv->ieee->sec.level) { 6002 case SEC_LEVEL_3: 6003 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY) 6004 ipw_send_tgi_tx_key(priv, 6005 DCT_FLAG_EXT_SECURITY_CCM, 6006 priv->ieee->sec.active_key); 6007 6008 if (!priv->ieee->host_mc_decrypt) 6009 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM); 6010 break; 6011 case SEC_LEVEL_2: 6012 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY) 6013 ipw_send_tgi_tx_key(priv, 6014 DCT_FLAG_EXT_SECURITY_TKIP, 6015 priv->ieee->sec.active_key); 6016 break; 6017 case SEC_LEVEL_1: 6018 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP); 6019 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level); 6020 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level); 6021 break; 6022 case SEC_LEVEL_0: 6023 default: 6024 break; 6025 } 6026 } 6027 6028 static void ipw_adhoc_check(void *data) 6029 { 6030 struct ipw_priv *priv = data; 6031 6032 if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold && 6033 !(priv->config & CFG_ADHOC_PERSIST)) { 6034 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | 6035 IPW_DL_STATE | IPW_DL_ASSOC, 6036 "Missed beacon: %d - disassociate\n", 6037 priv->missed_adhoc_beacons); 6038 ipw_remove_current_network(priv); 6039 ipw_disassociate(priv); 6040 return; 6041 } 6042 6043 schedule_delayed_work(&priv->adhoc_check, 6044 le16_to_cpu(priv->assoc_request.beacon_interval)); 6045 } 6046 6047 static void ipw_bg_adhoc_check(struct work_struct *work) 6048 { 6049 struct ipw_priv *priv = 6050 container_of(work, struct ipw_priv, adhoc_check.work); 6051 mutex_lock(&priv->mutex); 6052 ipw_adhoc_check(priv); 6053 mutex_unlock(&priv->mutex); 6054 } 6055 6056 static void ipw_debug_config(struct ipw_priv *priv) 6057 { 6058 IPW_DEBUG_INFO("Scan completed, no valid APs matched " 6059 "[CFG 0x%08X]\n", priv->config); 6060 if (priv->config & CFG_STATIC_CHANNEL) 6061 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel); 6062 else 6063 IPW_DEBUG_INFO("Channel unlocked.\n"); 6064 if (priv->config & CFG_STATIC_ESSID) 6065 IPW_DEBUG_INFO("ESSID locked to '%*pE'\n", 6066 priv->essid_len, priv->essid); 6067 else 6068 IPW_DEBUG_INFO("ESSID unlocked.\n"); 6069 if (priv->config & CFG_STATIC_BSSID) 6070 IPW_DEBUG_INFO("BSSID locked to %pM\n", priv->bssid); 6071 else 6072 IPW_DEBUG_INFO("BSSID unlocked.\n"); 6073 if (priv->capability & CAP_PRIVACY_ON) 6074 IPW_DEBUG_INFO("PRIVACY on\n"); 6075 else 6076 IPW_DEBUG_INFO("PRIVACY off\n"); 6077 IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask); 6078 } 6079 6080 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode) 6081 { 6082 /* TODO: Verify that this works... */ 6083 struct ipw_fixed_rate fr; 6084 u32 reg; 6085 u16 mask = 0; 6086 u16 new_tx_rates = priv->rates_mask; 6087 6088 /* Identify 'current FW band' and match it with the fixed 6089 * Tx rates */ 6090 6091 switch (priv->ieee->freq_band) { 6092 case LIBIPW_52GHZ_BAND: /* A only */ 6093 /* IEEE_A */ 6094 if (priv->rates_mask & ~LIBIPW_OFDM_RATES_MASK) { 6095 /* Invalid fixed rate mask */ 6096 IPW_DEBUG_WX 6097 ("invalid fixed rate mask in ipw_set_fixed_rate\n"); 6098 new_tx_rates = 0; 6099 break; 6100 } 6101 6102 new_tx_rates >>= LIBIPW_OFDM_SHIFT_MASK_A; 6103 break; 6104 6105 default: /* 2.4Ghz or Mixed */ 6106 /* IEEE_B */ 6107 if (mode == IEEE_B) { 6108 if (new_tx_rates & ~LIBIPW_CCK_RATES_MASK) { 6109 /* Invalid fixed rate mask */ 6110 IPW_DEBUG_WX 6111 ("invalid fixed rate mask in ipw_set_fixed_rate\n"); 6112 new_tx_rates = 0; 6113 } 6114 break; 6115 } 6116 6117 /* IEEE_G */ 6118 if (new_tx_rates & ~(LIBIPW_CCK_RATES_MASK | 6119 LIBIPW_OFDM_RATES_MASK)) { 6120 /* Invalid fixed rate mask */ 6121 IPW_DEBUG_WX 6122 ("invalid fixed rate mask in ipw_set_fixed_rate\n"); 6123 new_tx_rates = 0; 6124 break; 6125 } 6126 6127 if (LIBIPW_OFDM_RATE_6MB_MASK & new_tx_rates) { 6128 mask |= (LIBIPW_OFDM_RATE_6MB_MASK >> 1); 6129 new_tx_rates &= ~LIBIPW_OFDM_RATE_6MB_MASK; 6130 } 6131 6132 if (LIBIPW_OFDM_RATE_9MB_MASK & new_tx_rates) { 6133 mask |= (LIBIPW_OFDM_RATE_9MB_MASK >> 1); 6134 new_tx_rates &= ~LIBIPW_OFDM_RATE_9MB_MASK; 6135 } 6136 6137 if (LIBIPW_OFDM_RATE_12MB_MASK & new_tx_rates) { 6138 mask |= (LIBIPW_OFDM_RATE_12MB_MASK >> 1); 6139 new_tx_rates &= ~LIBIPW_OFDM_RATE_12MB_MASK; 6140 } 6141 6142 new_tx_rates |= mask; 6143 break; 6144 } 6145 6146 fr.tx_rates = cpu_to_le16(new_tx_rates); 6147 6148 reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE); 6149 ipw_write_reg32(priv, reg, *(u32 *) & fr); 6150 } 6151 6152 static void ipw_abort_scan(struct ipw_priv *priv) 6153 { 6154 int err; 6155 6156 if (priv->status & STATUS_SCAN_ABORTING) { 6157 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n"); 6158 return; 6159 } 6160 priv->status |= STATUS_SCAN_ABORTING; 6161 6162 err = ipw_send_scan_abort(priv); 6163 if (err) 6164 IPW_DEBUG_HC("Request to abort scan failed.\n"); 6165 } 6166 6167 static void ipw_add_scan_channels(struct ipw_priv *priv, 6168 struct ipw_scan_request_ext *scan, 6169 int scan_type) 6170 { 6171 int channel_index = 0; 6172 const struct libipw_geo *geo; 6173 int i; 6174 6175 geo = libipw_get_geo(priv->ieee); 6176 6177 if (priv->ieee->freq_band & LIBIPW_52GHZ_BAND) { 6178 int start = channel_index; 6179 for (i = 0; i < geo->a_channels; i++) { 6180 if ((priv->status & STATUS_ASSOCIATED) && 6181 geo->a[i].channel == priv->channel) 6182 continue; 6183 channel_index++; 6184 scan->channels_list[channel_index] = geo->a[i].channel; 6185 ipw_set_scan_type(scan, channel_index, 6186 geo->a[i]. 6187 flags & LIBIPW_CH_PASSIVE_ONLY ? 6188 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN : 6189 scan_type); 6190 } 6191 6192 if (start != channel_index) { 6193 scan->channels_list[start] = (u8) (IPW_A_MODE << 6) | 6194 (channel_index - start); 6195 channel_index++; 6196 } 6197 } 6198 6199 if (priv->ieee->freq_band & LIBIPW_24GHZ_BAND) { 6200 int start = channel_index; 6201 if (priv->config & CFG_SPEED_SCAN) { 6202 int index; 6203 u8 channels[LIBIPW_24GHZ_CHANNELS] = { 6204 /* nop out the list */ 6205 [0] = 0 6206 }; 6207 6208 u8 channel; 6209 while (channel_index < IPW_SCAN_CHANNELS - 1) { 6210 channel = 6211 priv->speed_scan[priv->speed_scan_pos]; 6212 if (channel == 0) { 6213 priv->speed_scan_pos = 0; 6214 channel = priv->speed_scan[0]; 6215 } 6216 if ((priv->status & STATUS_ASSOCIATED) && 6217 channel == priv->channel) { 6218 priv->speed_scan_pos++; 6219 continue; 6220 } 6221 6222 /* If this channel has already been 6223 * added in scan, break from loop 6224 * and this will be the first channel 6225 * in the next scan. 6226 */ 6227 if (channels[channel - 1] != 0) 6228 break; 6229 6230 channels[channel - 1] = 1; 6231 priv->speed_scan_pos++; 6232 channel_index++; 6233 scan->channels_list[channel_index] = channel; 6234 index = 6235 libipw_channel_to_index(priv->ieee, channel); 6236 ipw_set_scan_type(scan, channel_index, 6237 geo->bg[index]. 6238 flags & 6239 LIBIPW_CH_PASSIVE_ONLY ? 6240 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN 6241 : scan_type); 6242 } 6243 } else { 6244 for (i = 0; i < geo->bg_channels; i++) { 6245 if ((priv->status & STATUS_ASSOCIATED) && 6246 geo->bg[i].channel == priv->channel) 6247 continue; 6248 channel_index++; 6249 scan->channels_list[channel_index] = 6250 geo->bg[i].channel; 6251 ipw_set_scan_type(scan, channel_index, 6252 geo->bg[i]. 6253 flags & 6254 LIBIPW_CH_PASSIVE_ONLY ? 6255 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN 6256 : scan_type); 6257 } 6258 } 6259 6260 if (start != channel_index) { 6261 scan->channels_list[start] = (u8) (IPW_B_MODE << 6) | 6262 (channel_index - start); 6263 } 6264 } 6265 } 6266 6267 static int ipw_passive_dwell_time(struct ipw_priv *priv) 6268 { 6269 /* staying on passive channels longer than the DTIM interval during a 6270 * scan, while associated, causes the firmware to cancel the scan 6271 * without notification. Hence, don't stay on passive channels longer 6272 * than the beacon interval. 6273 */ 6274 if (priv->status & STATUS_ASSOCIATED 6275 && priv->assoc_network->beacon_interval > 10) 6276 return priv->assoc_network->beacon_interval - 10; 6277 else 6278 return 120; 6279 } 6280 6281 static int ipw_request_scan_helper(struct ipw_priv *priv, int type, int direct) 6282 { 6283 struct ipw_scan_request_ext scan; 6284 int err = 0, scan_type; 6285 6286 if (!(priv->status & STATUS_INIT) || 6287 (priv->status & STATUS_EXIT_PENDING)) 6288 return 0; 6289 6290 mutex_lock(&priv->mutex); 6291 6292 if (direct && (priv->direct_scan_ssid_len == 0)) { 6293 IPW_DEBUG_HC("Direct scan requested but no SSID to scan for\n"); 6294 priv->status &= ~STATUS_DIRECT_SCAN_PENDING; 6295 goto done; 6296 } 6297 6298 if (priv->status & STATUS_SCANNING) { 6299 IPW_DEBUG_HC("Concurrent scan requested. Queuing.\n"); 6300 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING : 6301 STATUS_SCAN_PENDING; 6302 goto done; 6303 } 6304 6305 if (!(priv->status & STATUS_SCAN_FORCED) && 6306 priv->status & STATUS_SCAN_ABORTING) { 6307 IPW_DEBUG_HC("Scan request while abort pending. Queuing.\n"); 6308 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING : 6309 STATUS_SCAN_PENDING; 6310 goto done; 6311 } 6312 6313 if (priv->status & STATUS_RF_KILL_MASK) { 6314 IPW_DEBUG_HC("Queuing scan due to RF Kill activation\n"); 6315 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING : 6316 STATUS_SCAN_PENDING; 6317 goto done; 6318 } 6319 6320 memset(&scan, 0, sizeof(scan)); 6321 scan.full_scan_index = cpu_to_le32(libipw_get_scans(priv->ieee)); 6322 6323 if (type == IW_SCAN_TYPE_PASSIVE) { 6324 IPW_DEBUG_WX("use passive scanning\n"); 6325 scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN; 6326 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = 6327 cpu_to_le16(ipw_passive_dwell_time(priv)); 6328 ipw_add_scan_channels(priv, &scan, scan_type); 6329 goto send_request; 6330 } 6331 6332 /* Use active scan by default. */ 6333 if (priv->config & CFG_SPEED_SCAN) 6334 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] = 6335 cpu_to_le16(30); 6336 else 6337 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] = 6338 cpu_to_le16(20); 6339 6340 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] = 6341 cpu_to_le16(20); 6342 6343 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = 6344 cpu_to_le16(ipw_passive_dwell_time(priv)); 6345 scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20); 6346 6347 #ifdef CONFIG_IPW2200_MONITOR 6348 if (priv->ieee->iw_mode == IW_MODE_MONITOR) { 6349 u8 channel; 6350 u8 band = 0; 6351 6352 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) { 6353 case LIBIPW_52GHZ_BAND: 6354 band = (u8) (IPW_A_MODE << 6) | 1; 6355 channel = priv->channel; 6356 break; 6357 6358 case LIBIPW_24GHZ_BAND: 6359 band = (u8) (IPW_B_MODE << 6) | 1; 6360 channel = priv->channel; 6361 break; 6362 6363 default: 6364 band = (u8) (IPW_B_MODE << 6) | 1; 6365 channel = 9; 6366 break; 6367 } 6368 6369 scan.channels_list[0] = band; 6370 scan.channels_list[1] = channel; 6371 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN); 6372 6373 /* NOTE: The card will sit on this channel for this time 6374 * period. Scan aborts are timing sensitive and frequently 6375 * result in firmware restarts. As such, it is best to 6376 * set a small dwell_time here and just keep re-issuing 6377 * scans. Otherwise fast channel hopping will not actually 6378 * hop channels. 6379 * 6380 * TODO: Move SPEED SCAN support to all modes and bands */ 6381 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = 6382 cpu_to_le16(2000); 6383 } else { 6384 #endif /* CONFIG_IPW2200_MONITOR */ 6385 /* Honor direct scans first, otherwise if we are roaming make 6386 * this a direct scan for the current network. Finally, 6387 * ensure that every other scan is a fast channel hop scan */ 6388 if (direct) { 6389 err = ipw_send_ssid(priv, priv->direct_scan_ssid, 6390 priv->direct_scan_ssid_len); 6391 if (err) { 6392 IPW_DEBUG_HC("Attempt to send SSID command " 6393 "failed\n"); 6394 goto done; 6395 } 6396 6397 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN; 6398 } else if ((priv->status & STATUS_ROAMING) 6399 || (!(priv->status & STATUS_ASSOCIATED) 6400 && (priv->config & CFG_STATIC_ESSID) 6401 && (le32_to_cpu(scan.full_scan_index) % 2))) { 6402 err = ipw_send_ssid(priv, priv->essid, priv->essid_len); 6403 if (err) { 6404 IPW_DEBUG_HC("Attempt to send SSID command " 6405 "failed.\n"); 6406 goto done; 6407 } 6408 6409 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN; 6410 } else 6411 scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN; 6412 6413 ipw_add_scan_channels(priv, &scan, scan_type); 6414 #ifdef CONFIG_IPW2200_MONITOR 6415 } 6416 #endif 6417 6418 send_request: 6419 err = ipw_send_scan_request_ext(priv, &scan); 6420 if (err) { 6421 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err); 6422 goto done; 6423 } 6424 6425 priv->status |= STATUS_SCANNING; 6426 if (direct) { 6427 priv->status &= ~STATUS_DIRECT_SCAN_PENDING; 6428 priv->direct_scan_ssid_len = 0; 6429 } else 6430 priv->status &= ~STATUS_SCAN_PENDING; 6431 6432 schedule_delayed_work(&priv->scan_check, IPW_SCAN_CHECK_WATCHDOG); 6433 done: 6434 mutex_unlock(&priv->mutex); 6435 return err; 6436 } 6437 6438 static void ipw_request_passive_scan(struct work_struct *work) 6439 { 6440 struct ipw_priv *priv = 6441 container_of(work, struct ipw_priv, request_passive_scan.work); 6442 ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE, 0); 6443 } 6444 6445 static void ipw_request_scan(struct work_struct *work) 6446 { 6447 struct ipw_priv *priv = 6448 container_of(work, struct ipw_priv, request_scan.work); 6449 ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 0); 6450 } 6451 6452 static void ipw_request_direct_scan(struct work_struct *work) 6453 { 6454 struct ipw_priv *priv = 6455 container_of(work, struct ipw_priv, request_direct_scan.work); 6456 ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 1); 6457 } 6458 6459 static void ipw_bg_abort_scan(struct work_struct *work) 6460 { 6461 struct ipw_priv *priv = 6462 container_of(work, struct ipw_priv, abort_scan); 6463 mutex_lock(&priv->mutex); 6464 ipw_abort_scan(priv); 6465 mutex_unlock(&priv->mutex); 6466 } 6467 6468 static int ipw_wpa_enable(struct ipw_priv *priv, int value) 6469 { 6470 /* This is called when wpa_supplicant loads and closes the driver 6471 * interface. */ 6472 priv->ieee->wpa_enabled = value; 6473 return 0; 6474 } 6475 6476 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value) 6477 { 6478 struct libipw_device *ieee = priv->ieee; 6479 struct libipw_security sec = { 6480 .flags = SEC_AUTH_MODE, 6481 }; 6482 int ret = 0; 6483 6484 if (value & IW_AUTH_ALG_SHARED_KEY) { 6485 sec.auth_mode = WLAN_AUTH_SHARED_KEY; 6486 ieee->open_wep = 0; 6487 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) { 6488 sec.auth_mode = WLAN_AUTH_OPEN; 6489 ieee->open_wep = 1; 6490 } else if (value & IW_AUTH_ALG_LEAP) { 6491 sec.auth_mode = WLAN_AUTH_LEAP; 6492 ieee->open_wep = 1; 6493 } else 6494 return -EINVAL; 6495 6496 if (ieee->set_security) 6497 ieee->set_security(ieee->dev, &sec); 6498 else 6499 ret = -EOPNOTSUPP; 6500 6501 return ret; 6502 } 6503 6504 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie, 6505 int wpa_ie_len) 6506 { 6507 /* make sure WPA is enabled */ 6508 ipw_wpa_enable(priv, 1); 6509 } 6510 6511 static int ipw_set_rsn_capa(struct ipw_priv *priv, 6512 char *capabilities, int length) 6513 { 6514 IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n"); 6515 6516 return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length, 6517 capabilities); 6518 } 6519 6520 /* 6521 * WE-18 support 6522 */ 6523 6524 /* SIOCSIWGENIE */ 6525 static int ipw_wx_set_genie(struct net_device *dev, 6526 struct iw_request_info *info, 6527 union iwreq_data *wrqu, char *extra) 6528 { 6529 struct ipw_priv *priv = libipw_priv(dev); 6530 struct libipw_device *ieee = priv->ieee; 6531 u8 *buf; 6532 int err = 0; 6533 6534 if (wrqu->data.length > MAX_WPA_IE_LEN || 6535 (wrqu->data.length && extra == NULL)) 6536 return -EINVAL; 6537 6538 if (wrqu->data.length) { 6539 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL); 6540 if (buf == NULL) { 6541 err = -ENOMEM; 6542 goto out; 6543 } 6544 6545 kfree(ieee->wpa_ie); 6546 ieee->wpa_ie = buf; 6547 ieee->wpa_ie_len = wrqu->data.length; 6548 } else { 6549 kfree(ieee->wpa_ie); 6550 ieee->wpa_ie = NULL; 6551 ieee->wpa_ie_len = 0; 6552 } 6553 6554 ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len); 6555 out: 6556 return err; 6557 } 6558 6559 /* SIOCGIWGENIE */ 6560 static int ipw_wx_get_genie(struct net_device *dev, 6561 struct iw_request_info *info, 6562 union iwreq_data *wrqu, char *extra) 6563 { 6564 struct ipw_priv *priv = libipw_priv(dev); 6565 struct libipw_device *ieee = priv->ieee; 6566 int err = 0; 6567 6568 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) { 6569 wrqu->data.length = 0; 6570 goto out; 6571 } 6572 6573 if (wrqu->data.length < ieee->wpa_ie_len) { 6574 err = -E2BIG; 6575 goto out; 6576 } 6577 6578 wrqu->data.length = ieee->wpa_ie_len; 6579 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len); 6580 6581 out: 6582 return err; 6583 } 6584 6585 static int wext_cipher2level(int cipher) 6586 { 6587 switch (cipher) { 6588 case IW_AUTH_CIPHER_NONE: 6589 return SEC_LEVEL_0; 6590 case IW_AUTH_CIPHER_WEP40: 6591 case IW_AUTH_CIPHER_WEP104: 6592 return SEC_LEVEL_1; 6593 case IW_AUTH_CIPHER_TKIP: 6594 return SEC_LEVEL_2; 6595 case IW_AUTH_CIPHER_CCMP: 6596 return SEC_LEVEL_3; 6597 default: 6598 return -1; 6599 } 6600 } 6601 6602 /* SIOCSIWAUTH */ 6603 static int ipw_wx_set_auth(struct net_device *dev, 6604 struct iw_request_info *info, 6605 union iwreq_data *wrqu, char *extra) 6606 { 6607 struct ipw_priv *priv = libipw_priv(dev); 6608 struct libipw_device *ieee = priv->ieee; 6609 struct iw_param *param = &wrqu->param; 6610 struct lib80211_crypt_data *crypt; 6611 unsigned long flags; 6612 int ret = 0; 6613 6614 switch (param->flags & IW_AUTH_INDEX) { 6615 case IW_AUTH_WPA_VERSION: 6616 break; 6617 case IW_AUTH_CIPHER_PAIRWISE: 6618 ipw_set_hw_decrypt_unicast(priv, 6619 wext_cipher2level(param->value)); 6620 break; 6621 case IW_AUTH_CIPHER_GROUP: 6622 ipw_set_hw_decrypt_multicast(priv, 6623 wext_cipher2level(param->value)); 6624 break; 6625 case IW_AUTH_KEY_MGMT: 6626 /* 6627 * ipw2200 does not use these parameters 6628 */ 6629 break; 6630 6631 case IW_AUTH_TKIP_COUNTERMEASURES: 6632 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx]; 6633 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags) 6634 break; 6635 6636 flags = crypt->ops->get_flags(crypt->priv); 6637 6638 if (param->value) 6639 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES; 6640 else 6641 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES; 6642 6643 crypt->ops->set_flags(flags, crypt->priv); 6644 6645 break; 6646 6647 case IW_AUTH_DROP_UNENCRYPTED:{ 6648 /* HACK: 6649 * 6650 * wpa_supplicant calls set_wpa_enabled when the driver 6651 * is loaded and unloaded, regardless of if WPA is being 6652 * used. No other calls are made which can be used to 6653 * determine if encryption will be used or not prior to 6654 * association being expected. If encryption is not being 6655 * used, drop_unencrypted is set to false, else true -- we 6656 * can use this to determine if the CAP_PRIVACY_ON bit should 6657 * be set. 6658 */ 6659 struct libipw_security sec = { 6660 .flags = SEC_ENABLED, 6661 .enabled = param->value, 6662 }; 6663 priv->ieee->drop_unencrypted = param->value; 6664 /* We only change SEC_LEVEL for open mode. Others 6665 * are set by ipw_wpa_set_encryption. 6666 */ 6667 if (!param->value) { 6668 sec.flags |= SEC_LEVEL; 6669 sec.level = SEC_LEVEL_0; 6670 } else { 6671 sec.flags |= SEC_LEVEL; 6672 sec.level = SEC_LEVEL_1; 6673 } 6674 if (priv->ieee->set_security) 6675 priv->ieee->set_security(priv->ieee->dev, &sec); 6676 break; 6677 } 6678 6679 case IW_AUTH_80211_AUTH_ALG: 6680 ret = ipw_wpa_set_auth_algs(priv, param->value); 6681 break; 6682 6683 case IW_AUTH_WPA_ENABLED: 6684 ret = ipw_wpa_enable(priv, param->value); 6685 ipw_disassociate(priv); 6686 break; 6687 6688 case IW_AUTH_RX_UNENCRYPTED_EAPOL: 6689 ieee->ieee802_1x = param->value; 6690 break; 6691 6692 case IW_AUTH_PRIVACY_INVOKED: 6693 ieee->privacy_invoked = param->value; 6694 break; 6695 6696 default: 6697 return -EOPNOTSUPP; 6698 } 6699 return ret; 6700 } 6701 6702 /* SIOCGIWAUTH */ 6703 static int ipw_wx_get_auth(struct net_device *dev, 6704 struct iw_request_info *info, 6705 union iwreq_data *wrqu, char *extra) 6706 { 6707 struct ipw_priv *priv = libipw_priv(dev); 6708 struct libipw_device *ieee = priv->ieee; 6709 struct lib80211_crypt_data *crypt; 6710 struct iw_param *param = &wrqu->param; 6711 6712 switch (param->flags & IW_AUTH_INDEX) { 6713 case IW_AUTH_WPA_VERSION: 6714 case IW_AUTH_CIPHER_PAIRWISE: 6715 case IW_AUTH_CIPHER_GROUP: 6716 case IW_AUTH_KEY_MGMT: 6717 /* 6718 * wpa_supplicant will control these internally 6719 */ 6720 return -EOPNOTSUPP; 6721 6722 case IW_AUTH_TKIP_COUNTERMEASURES: 6723 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx]; 6724 if (!crypt || !crypt->ops->get_flags) 6725 break; 6726 6727 param->value = (crypt->ops->get_flags(crypt->priv) & 6728 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0; 6729 6730 break; 6731 6732 case IW_AUTH_DROP_UNENCRYPTED: 6733 param->value = ieee->drop_unencrypted; 6734 break; 6735 6736 case IW_AUTH_80211_AUTH_ALG: 6737 param->value = ieee->sec.auth_mode; 6738 break; 6739 6740 case IW_AUTH_WPA_ENABLED: 6741 param->value = ieee->wpa_enabled; 6742 break; 6743 6744 case IW_AUTH_RX_UNENCRYPTED_EAPOL: 6745 param->value = ieee->ieee802_1x; 6746 break; 6747 6748 case IW_AUTH_ROAMING_CONTROL: 6749 case IW_AUTH_PRIVACY_INVOKED: 6750 param->value = ieee->privacy_invoked; 6751 break; 6752 6753 default: 6754 return -EOPNOTSUPP; 6755 } 6756 return 0; 6757 } 6758 6759 /* SIOCSIWENCODEEXT */ 6760 static int ipw_wx_set_encodeext(struct net_device *dev, 6761 struct iw_request_info *info, 6762 union iwreq_data *wrqu, char *extra) 6763 { 6764 struct ipw_priv *priv = libipw_priv(dev); 6765 struct iw_encode_ext *ext = (struct iw_encode_ext *)extra; 6766 6767 if (hwcrypto) { 6768 if (ext->alg == IW_ENCODE_ALG_TKIP) { 6769 /* IPW HW can't build TKIP MIC, 6770 host decryption still needed */ 6771 if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY) 6772 priv->ieee->host_mc_decrypt = 1; 6773 else { 6774 priv->ieee->host_encrypt = 0; 6775 priv->ieee->host_encrypt_msdu = 1; 6776 priv->ieee->host_decrypt = 1; 6777 } 6778 } else { 6779 priv->ieee->host_encrypt = 0; 6780 priv->ieee->host_encrypt_msdu = 0; 6781 priv->ieee->host_decrypt = 0; 6782 priv->ieee->host_mc_decrypt = 0; 6783 } 6784 } 6785 6786 return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra); 6787 } 6788 6789 /* SIOCGIWENCODEEXT */ 6790 static int ipw_wx_get_encodeext(struct net_device *dev, 6791 struct iw_request_info *info, 6792 union iwreq_data *wrqu, char *extra) 6793 { 6794 struct ipw_priv *priv = libipw_priv(dev); 6795 return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra); 6796 } 6797 6798 /* SIOCSIWMLME */ 6799 static int ipw_wx_set_mlme(struct net_device *dev, 6800 struct iw_request_info *info, 6801 union iwreq_data *wrqu, char *extra) 6802 { 6803 struct ipw_priv *priv = libipw_priv(dev); 6804 struct iw_mlme *mlme = (struct iw_mlme *)extra; 6805 __le16 reason; 6806 6807 reason = cpu_to_le16(mlme->reason_code); 6808 6809 switch (mlme->cmd) { 6810 case IW_MLME_DEAUTH: 6811 /* silently ignore */ 6812 break; 6813 6814 case IW_MLME_DISASSOC: 6815 ipw_disassociate(priv); 6816 break; 6817 6818 default: 6819 return -EOPNOTSUPP; 6820 } 6821 return 0; 6822 } 6823 6824 #ifdef CONFIG_IPW2200_QOS 6825 6826 /* QoS */ 6827 /* 6828 * get the modulation type of the current network or 6829 * the card current mode 6830 */ 6831 static u8 ipw_qos_current_mode(struct ipw_priv * priv) 6832 { 6833 u8 mode = 0; 6834 6835 if (priv->status & STATUS_ASSOCIATED) { 6836 unsigned long flags; 6837 6838 spin_lock_irqsave(&priv->ieee->lock, flags); 6839 mode = priv->assoc_network->mode; 6840 spin_unlock_irqrestore(&priv->ieee->lock, flags); 6841 } else { 6842 mode = priv->ieee->mode; 6843 } 6844 IPW_DEBUG_QOS("QoS network/card mode %d\n", mode); 6845 return mode; 6846 } 6847 6848 /* 6849 * Handle management frame beacon and probe response 6850 */ 6851 static int ipw_qos_handle_probe_response(struct ipw_priv *priv, 6852 int active_network, 6853 struct libipw_network *network) 6854 { 6855 u32 size = sizeof(struct libipw_qos_parameters); 6856 6857 if (network->capability & WLAN_CAPABILITY_IBSS) 6858 network->qos_data.active = network->qos_data.supported; 6859 6860 if (network->flags & NETWORK_HAS_QOS_MASK) { 6861 if (active_network && 6862 (network->flags & NETWORK_HAS_QOS_PARAMETERS)) 6863 network->qos_data.active = network->qos_data.supported; 6864 6865 if ((network->qos_data.active == 1) && (active_network == 1) && 6866 (network->flags & NETWORK_HAS_QOS_PARAMETERS) && 6867 (network->qos_data.old_param_count != 6868 network->qos_data.param_count)) { 6869 network->qos_data.old_param_count = 6870 network->qos_data.param_count; 6871 schedule_work(&priv->qos_activate); 6872 IPW_DEBUG_QOS("QoS parameters change call " 6873 "qos_activate\n"); 6874 } 6875 } else { 6876 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B)) 6877 memcpy(&network->qos_data.parameters, 6878 &def_parameters_CCK, size); 6879 else 6880 memcpy(&network->qos_data.parameters, 6881 &def_parameters_OFDM, size); 6882 6883 if ((network->qos_data.active == 1) && (active_network == 1)) { 6884 IPW_DEBUG_QOS("QoS was disabled call qos_activate\n"); 6885 schedule_work(&priv->qos_activate); 6886 } 6887 6888 network->qos_data.active = 0; 6889 network->qos_data.supported = 0; 6890 } 6891 if ((priv->status & STATUS_ASSOCIATED) && 6892 (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) { 6893 if (!ether_addr_equal(network->bssid, priv->bssid)) 6894 if (network->capability & WLAN_CAPABILITY_IBSS) 6895 if ((network->ssid_len == 6896 priv->assoc_network->ssid_len) && 6897 !memcmp(network->ssid, 6898 priv->assoc_network->ssid, 6899 network->ssid_len)) { 6900 schedule_work(&priv->merge_networks); 6901 } 6902 } 6903 6904 return 0; 6905 } 6906 6907 /* 6908 * This function set up the firmware to support QoS. It sends 6909 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO 6910 */ 6911 static int ipw_qos_activate(struct ipw_priv *priv, 6912 struct libipw_qos_data *qos_network_data) 6913 { 6914 int err; 6915 struct libipw_qos_parameters qos_parameters[QOS_QOS_SETS]; 6916 struct libipw_qos_parameters *active_one = NULL; 6917 u32 size = sizeof(struct libipw_qos_parameters); 6918 u32 burst_duration; 6919 int i; 6920 u8 type; 6921 6922 type = ipw_qos_current_mode(priv); 6923 6924 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]); 6925 memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size); 6926 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]); 6927 memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size); 6928 6929 if (qos_network_data == NULL) { 6930 if (type == IEEE_B) { 6931 IPW_DEBUG_QOS("QoS activate network mode %d\n", type); 6932 active_one = &def_parameters_CCK; 6933 } else 6934 active_one = &def_parameters_OFDM; 6935 6936 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size); 6937 burst_duration = ipw_qos_get_burst_duration(priv); 6938 for (i = 0; i < QOS_QUEUE_NUM; i++) 6939 qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] = 6940 cpu_to_le16(burst_duration); 6941 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) { 6942 if (type == IEEE_B) { 6943 IPW_DEBUG_QOS("QoS activate IBSS network mode %d\n", 6944 type); 6945 if (priv->qos_data.qos_enable == 0) 6946 active_one = &def_parameters_CCK; 6947 else 6948 active_one = priv->qos_data.def_qos_parm_CCK; 6949 } else { 6950 if (priv->qos_data.qos_enable == 0) 6951 active_one = &def_parameters_OFDM; 6952 else 6953 active_one = priv->qos_data.def_qos_parm_OFDM; 6954 } 6955 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size); 6956 } else { 6957 unsigned long flags; 6958 int active; 6959 6960 spin_lock_irqsave(&priv->ieee->lock, flags); 6961 active_one = &(qos_network_data->parameters); 6962 qos_network_data->old_param_count = 6963 qos_network_data->param_count; 6964 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size); 6965 active = qos_network_data->supported; 6966 spin_unlock_irqrestore(&priv->ieee->lock, flags); 6967 6968 if (active == 0) { 6969 burst_duration = ipw_qos_get_burst_duration(priv); 6970 for (i = 0; i < QOS_QUEUE_NUM; i++) 6971 qos_parameters[QOS_PARAM_SET_ACTIVE]. 6972 tx_op_limit[i] = cpu_to_le16(burst_duration); 6973 } 6974 } 6975 6976 IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n"); 6977 err = ipw_send_qos_params_command(priv, &qos_parameters[0]); 6978 if (err) 6979 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n"); 6980 6981 return err; 6982 } 6983 6984 /* 6985 * send IPW_CMD_WME_INFO to the firmware 6986 */ 6987 static int ipw_qos_set_info_element(struct ipw_priv *priv) 6988 { 6989 int ret = 0; 6990 struct libipw_qos_information_element qos_info; 6991 6992 if (priv == NULL) 6993 return -1; 6994 6995 qos_info.elementID = QOS_ELEMENT_ID; 6996 qos_info.length = sizeof(struct libipw_qos_information_element) - 2; 6997 6998 qos_info.version = QOS_VERSION_1; 6999 qos_info.ac_info = 0; 7000 7001 memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN); 7002 qos_info.qui_type = QOS_OUI_TYPE; 7003 qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE; 7004 7005 ret = ipw_send_qos_info_command(priv, &qos_info); 7006 if (ret != 0) { 7007 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n"); 7008 } 7009 return ret; 7010 } 7011 7012 /* 7013 * Set the QoS parameter with the association request structure 7014 */ 7015 static int ipw_qos_association(struct ipw_priv *priv, 7016 struct libipw_network *network) 7017 { 7018 int err = 0; 7019 struct libipw_qos_data *qos_data = NULL; 7020 struct libipw_qos_data ibss_data = { 7021 .supported = 1, 7022 .active = 1, 7023 }; 7024 7025 switch (priv->ieee->iw_mode) { 7026 case IW_MODE_ADHOC: 7027 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS)); 7028 7029 qos_data = &ibss_data; 7030 break; 7031 7032 case IW_MODE_INFRA: 7033 qos_data = &network->qos_data; 7034 break; 7035 7036 default: 7037 BUG(); 7038 break; 7039 } 7040 7041 err = ipw_qos_activate(priv, qos_data); 7042 if (err) { 7043 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC; 7044 return err; 7045 } 7046 7047 if (priv->qos_data.qos_enable && qos_data->supported) { 7048 IPW_DEBUG_QOS("QoS will be enabled for this association\n"); 7049 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC; 7050 return ipw_qos_set_info_element(priv); 7051 } 7052 7053 return 0; 7054 } 7055 7056 /* 7057 * handling the beaconing responses. if we get different QoS setting 7058 * off the network from the associated setting, adjust the QoS 7059 * setting 7060 */ 7061 static int ipw_qos_association_resp(struct ipw_priv *priv, 7062 struct libipw_network *network) 7063 { 7064 int ret = 0; 7065 unsigned long flags; 7066 u32 size = sizeof(struct libipw_qos_parameters); 7067 int set_qos_param = 0; 7068 7069 if ((priv == NULL) || (network == NULL) || 7070 (priv->assoc_network == NULL)) 7071 return ret; 7072 7073 if (!(priv->status & STATUS_ASSOCIATED)) 7074 return ret; 7075 7076 if ((priv->ieee->iw_mode != IW_MODE_INFRA)) 7077 return ret; 7078 7079 spin_lock_irqsave(&priv->ieee->lock, flags); 7080 if (network->flags & NETWORK_HAS_QOS_PARAMETERS) { 7081 memcpy(&priv->assoc_network->qos_data, &network->qos_data, 7082 sizeof(struct libipw_qos_data)); 7083 priv->assoc_network->qos_data.active = 1; 7084 if ((network->qos_data.old_param_count != 7085 network->qos_data.param_count)) { 7086 set_qos_param = 1; 7087 network->qos_data.old_param_count = 7088 network->qos_data.param_count; 7089 } 7090 7091 } else { 7092 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B)) 7093 memcpy(&priv->assoc_network->qos_data.parameters, 7094 &def_parameters_CCK, size); 7095 else 7096 memcpy(&priv->assoc_network->qos_data.parameters, 7097 &def_parameters_OFDM, size); 7098 priv->assoc_network->qos_data.active = 0; 7099 priv->assoc_network->qos_data.supported = 0; 7100 set_qos_param = 1; 7101 } 7102 7103 spin_unlock_irqrestore(&priv->ieee->lock, flags); 7104 7105 if (set_qos_param == 1) 7106 schedule_work(&priv->qos_activate); 7107 7108 return ret; 7109 } 7110 7111 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv) 7112 { 7113 u32 ret = 0; 7114 7115 if (!priv) 7116 return 0; 7117 7118 if (!(priv->ieee->modulation & LIBIPW_OFDM_MODULATION)) 7119 ret = priv->qos_data.burst_duration_CCK; 7120 else 7121 ret = priv->qos_data.burst_duration_OFDM; 7122 7123 return ret; 7124 } 7125 7126 /* 7127 * Initialize the setting of QoS global 7128 */ 7129 static void ipw_qos_init(struct ipw_priv *priv, int enable, 7130 int burst_enable, u32 burst_duration_CCK, 7131 u32 burst_duration_OFDM) 7132 { 7133 priv->qos_data.qos_enable = enable; 7134 7135 if (priv->qos_data.qos_enable) { 7136 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK; 7137 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM; 7138 IPW_DEBUG_QOS("QoS is enabled\n"); 7139 } else { 7140 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK; 7141 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM; 7142 IPW_DEBUG_QOS("QoS is not enabled\n"); 7143 } 7144 7145 priv->qos_data.burst_enable = burst_enable; 7146 7147 if (burst_enable) { 7148 priv->qos_data.burst_duration_CCK = burst_duration_CCK; 7149 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM; 7150 } else { 7151 priv->qos_data.burst_duration_CCK = 0; 7152 priv->qos_data.burst_duration_OFDM = 0; 7153 } 7154 } 7155 7156 /* 7157 * map the packet priority to the right TX Queue 7158 */ 7159 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority) 7160 { 7161 if (priority > 7 || !priv->qos_data.qos_enable) 7162 priority = 0; 7163 7164 return from_priority_to_tx_queue[priority] - 1; 7165 } 7166 7167 static int ipw_is_qos_active(struct net_device *dev, 7168 struct sk_buff *skb) 7169 { 7170 struct ipw_priv *priv = libipw_priv(dev); 7171 struct libipw_qos_data *qos_data = NULL; 7172 int active, supported; 7173 u8 *daddr = skb->data + ETH_ALEN; 7174 int unicast = !is_multicast_ether_addr(daddr); 7175 7176 if (!(priv->status & STATUS_ASSOCIATED)) 7177 return 0; 7178 7179 qos_data = &priv->assoc_network->qos_data; 7180 7181 if (priv->ieee->iw_mode == IW_MODE_ADHOC) { 7182 if (unicast == 0) 7183 qos_data->active = 0; 7184 else 7185 qos_data->active = qos_data->supported; 7186 } 7187 active = qos_data->active; 7188 supported = qos_data->supported; 7189 IPW_DEBUG_QOS("QoS %d network is QoS active %d supported %d " 7190 "unicast %d\n", 7191 priv->qos_data.qos_enable, active, supported, unicast); 7192 if (active && priv->qos_data.qos_enable) 7193 return 1; 7194 7195 return 0; 7196 7197 } 7198 /* 7199 * add QoS parameter to the TX command 7200 */ 7201 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv, 7202 u16 priority, 7203 struct tfd_data *tfd) 7204 { 7205 int tx_queue_id = 0; 7206 7207 7208 tx_queue_id = from_priority_to_tx_queue[priority] - 1; 7209 tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED; 7210 7211 if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) { 7212 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD; 7213 tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK); 7214 } 7215 return 0; 7216 } 7217 7218 /* 7219 * background support to run QoS activate functionality 7220 */ 7221 static void ipw_bg_qos_activate(struct work_struct *work) 7222 { 7223 struct ipw_priv *priv = 7224 container_of(work, struct ipw_priv, qos_activate); 7225 7226 mutex_lock(&priv->mutex); 7227 7228 if (priv->status & STATUS_ASSOCIATED) 7229 ipw_qos_activate(priv, &(priv->assoc_network->qos_data)); 7230 7231 mutex_unlock(&priv->mutex); 7232 } 7233 7234 static int ipw_handle_probe_response(struct net_device *dev, 7235 struct libipw_probe_response *resp, 7236 struct libipw_network *network) 7237 { 7238 struct ipw_priv *priv = libipw_priv(dev); 7239 int active_network = ((priv->status & STATUS_ASSOCIATED) && 7240 (network == priv->assoc_network)); 7241 7242 ipw_qos_handle_probe_response(priv, active_network, network); 7243 7244 return 0; 7245 } 7246 7247 static int ipw_handle_beacon(struct net_device *dev, 7248 struct libipw_beacon *resp, 7249 struct libipw_network *network) 7250 { 7251 struct ipw_priv *priv = libipw_priv(dev); 7252 int active_network = ((priv->status & STATUS_ASSOCIATED) && 7253 (network == priv->assoc_network)); 7254 7255 ipw_qos_handle_probe_response(priv, active_network, network); 7256 7257 return 0; 7258 } 7259 7260 static int ipw_handle_assoc_response(struct net_device *dev, 7261 struct libipw_assoc_response *resp, 7262 struct libipw_network *network) 7263 { 7264 struct ipw_priv *priv = libipw_priv(dev); 7265 ipw_qos_association_resp(priv, network); 7266 return 0; 7267 } 7268 7269 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters 7270 *qos_param) 7271 { 7272 return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS, 7273 sizeof(*qos_param) * 3, qos_param); 7274 } 7275 7276 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element 7277 *qos_param) 7278 { 7279 return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param), 7280 qos_param); 7281 } 7282 7283 #endif /* CONFIG_IPW2200_QOS */ 7284 7285 static int ipw_associate_network(struct ipw_priv *priv, 7286 struct libipw_network *network, 7287 struct ipw_supported_rates *rates, int roaming) 7288 { 7289 int err; 7290 7291 if (priv->config & CFG_FIXED_RATE) 7292 ipw_set_fixed_rate(priv, network->mode); 7293 7294 if (!(priv->config & CFG_STATIC_ESSID)) { 7295 priv->essid_len = min(network->ssid_len, 7296 (u8) IW_ESSID_MAX_SIZE); 7297 memcpy(priv->essid, network->ssid, priv->essid_len); 7298 } 7299 7300 network->last_associate = jiffies; 7301 7302 memset(&priv->assoc_request, 0, sizeof(priv->assoc_request)); 7303 priv->assoc_request.channel = network->channel; 7304 priv->assoc_request.auth_key = 0; 7305 7306 if ((priv->capability & CAP_PRIVACY_ON) && 7307 (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) { 7308 priv->assoc_request.auth_type = AUTH_SHARED_KEY; 7309 priv->assoc_request.auth_key = priv->ieee->sec.active_key; 7310 7311 if (priv->ieee->sec.level == SEC_LEVEL_1) 7312 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP); 7313 7314 } else if ((priv->capability & CAP_PRIVACY_ON) && 7315 (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)) 7316 priv->assoc_request.auth_type = AUTH_LEAP; 7317 else 7318 priv->assoc_request.auth_type = AUTH_OPEN; 7319 7320 if (priv->ieee->wpa_ie_len) { 7321 priv->assoc_request.policy_support = cpu_to_le16(0x02); /* RSN active */ 7322 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie, 7323 priv->ieee->wpa_ie_len); 7324 } 7325 7326 /* 7327 * It is valid for our ieee device to support multiple modes, but 7328 * when it comes to associating to a given network we have to choose 7329 * just one mode. 7330 */ 7331 if (network->mode & priv->ieee->mode & IEEE_A) 7332 priv->assoc_request.ieee_mode = IPW_A_MODE; 7333 else if (network->mode & priv->ieee->mode & IEEE_G) 7334 priv->assoc_request.ieee_mode = IPW_G_MODE; 7335 else if (network->mode & priv->ieee->mode & IEEE_B) 7336 priv->assoc_request.ieee_mode = IPW_B_MODE; 7337 7338 priv->assoc_request.capability = cpu_to_le16(network->capability); 7339 if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE) 7340 && !(priv->config & CFG_PREAMBLE_LONG)) { 7341 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE; 7342 } else { 7343 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE; 7344 7345 /* Clear the short preamble if we won't be supporting it */ 7346 priv->assoc_request.capability &= 7347 ~cpu_to_le16(WLAN_CAPABILITY_SHORT_PREAMBLE); 7348 } 7349 7350 /* Clear capability bits that aren't used in Ad Hoc */ 7351 if (priv->ieee->iw_mode == IW_MODE_ADHOC) 7352 priv->assoc_request.capability &= 7353 ~cpu_to_le16(WLAN_CAPABILITY_SHORT_SLOT_TIME); 7354 7355 IPW_DEBUG_ASSOC("%ssociation attempt: '%*pE', channel %d, 802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n", 7356 roaming ? "Rea" : "A", 7357 priv->essid_len, priv->essid, 7358 network->channel, 7359 ipw_modes[priv->assoc_request.ieee_mode], 7360 rates->num_rates, 7361 (priv->assoc_request.preamble_length == 7362 DCT_FLAG_LONG_PREAMBLE) ? "long" : "short", 7363 network->capability & 7364 WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long", 7365 priv->capability & CAP_PRIVACY_ON ? "on " : "off", 7366 priv->capability & CAP_PRIVACY_ON ? 7367 (priv->capability & CAP_SHARED_KEY ? "(shared)" : 7368 "(open)") : "", 7369 priv->capability & CAP_PRIVACY_ON ? " key=" : "", 7370 priv->capability & CAP_PRIVACY_ON ? 7371 '1' + priv->ieee->sec.active_key : '.', 7372 priv->capability & CAP_PRIVACY_ON ? '.' : ' '); 7373 7374 priv->assoc_request.beacon_interval = cpu_to_le16(network->beacon_interval); 7375 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) && 7376 (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) { 7377 priv->assoc_request.assoc_type = HC_IBSS_START; 7378 priv->assoc_request.assoc_tsf_msw = 0; 7379 priv->assoc_request.assoc_tsf_lsw = 0; 7380 } else { 7381 if (unlikely(roaming)) 7382 priv->assoc_request.assoc_type = HC_REASSOCIATE; 7383 else 7384 priv->assoc_request.assoc_type = HC_ASSOCIATE; 7385 priv->assoc_request.assoc_tsf_msw = cpu_to_le32(network->time_stamp[1]); 7386 priv->assoc_request.assoc_tsf_lsw = cpu_to_le32(network->time_stamp[0]); 7387 } 7388 7389 memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN); 7390 7391 if (priv->ieee->iw_mode == IW_MODE_ADHOC) { 7392 eth_broadcast_addr(priv->assoc_request.dest); 7393 priv->assoc_request.atim_window = cpu_to_le16(network->atim_window); 7394 } else { 7395 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN); 7396 priv->assoc_request.atim_window = 0; 7397 } 7398 7399 priv->assoc_request.listen_interval = cpu_to_le16(network->listen_interval); 7400 7401 err = ipw_send_ssid(priv, priv->essid, priv->essid_len); 7402 if (err) { 7403 IPW_DEBUG_HC("Attempt to send SSID command failed.\n"); 7404 return err; 7405 } 7406 7407 rates->ieee_mode = priv->assoc_request.ieee_mode; 7408 rates->purpose = IPW_RATE_CONNECT; 7409 ipw_send_supported_rates(priv, rates); 7410 7411 if (priv->assoc_request.ieee_mode == IPW_G_MODE) 7412 priv->sys_config.dot11g_auto_detection = 1; 7413 else 7414 priv->sys_config.dot11g_auto_detection = 0; 7415 7416 if (priv->ieee->iw_mode == IW_MODE_ADHOC) 7417 priv->sys_config.answer_broadcast_ssid_probe = 1; 7418 else 7419 priv->sys_config.answer_broadcast_ssid_probe = 0; 7420 7421 err = ipw_send_system_config(priv); 7422 if (err) { 7423 IPW_DEBUG_HC("Attempt to send sys config command failed.\n"); 7424 return err; 7425 } 7426 7427 IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi); 7428 err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM); 7429 if (err) { 7430 IPW_DEBUG_HC("Attempt to send associate command failed.\n"); 7431 return err; 7432 } 7433 7434 /* 7435 * If preemption is enabled, it is possible for the association 7436 * to complete before we return from ipw_send_associate. Therefore 7437 * we have to be sure and update our priviate data first. 7438 */ 7439 priv->channel = network->channel; 7440 memcpy(priv->bssid, network->bssid, ETH_ALEN); 7441 priv->status |= STATUS_ASSOCIATING; 7442 priv->status &= ~STATUS_SECURITY_UPDATED; 7443 7444 priv->assoc_network = network; 7445 7446 #ifdef CONFIG_IPW2200_QOS 7447 ipw_qos_association(priv, network); 7448 #endif 7449 7450 err = ipw_send_associate(priv, &priv->assoc_request); 7451 if (err) { 7452 IPW_DEBUG_HC("Attempt to send associate command failed.\n"); 7453 return err; 7454 } 7455 7456 IPW_DEBUG(IPW_DL_STATE, "associating: '%*pE' %pM\n", 7457 priv->essid_len, priv->essid, priv->bssid); 7458 7459 return 0; 7460 } 7461 7462 static void ipw_roam(void *data) 7463 { 7464 struct ipw_priv *priv = data; 7465 struct libipw_network *network = NULL; 7466 struct ipw_network_match match = { 7467 .network = priv->assoc_network 7468 }; 7469 7470 /* The roaming process is as follows: 7471 * 7472 * 1. Missed beacon threshold triggers the roaming process by 7473 * setting the status ROAM bit and requesting a scan. 7474 * 2. When the scan completes, it schedules the ROAM work 7475 * 3. The ROAM work looks at all of the known networks for one that 7476 * is a better network than the currently associated. If none 7477 * found, the ROAM process is over (ROAM bit cleared) 7478 * 4. If a better network is found, a disassociation request is 7479 * sent. 7480 * 5. When the disassociation completes, the roam work is again 7481 * scheduled. The second time through, the driver is no longer 7482 * associated, and the newly selected network is sent an 7483 * association request. 7484 * 6. At this point ,the roaming process is complete and the ROAM 7485 * status bit is cleared. 7486 */ 7487 7488 /* If we are no longer associated, and the roaming bit is no longer 7489 * set, then we are not actively roaming, so just return */ 7490 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING))) 7491 return; 7492 7493 if (priv->status & STATUS_ASSOCIATED) { 7494 /* First pass through ROAM process -- look for a better 7495 * network */ 7496 unsigned long flags; 7497 u8 rssi = priv->assoc_network->stats.rssi; 7498 priv->assoc_network->stats.rssi = -128; 7499 spin_lock_irqsave(&priv->ieee->lock, flags); 7500 list_for_each_entry(network, &priv->ieee->network_list, list) { 7501 if (network != priv->assoc_network) 7502 ipw_best_network(priv, &match, network, 1); 7503 } 7504 spin_unlock_irqrestore(&priv->ieee->lock, flags); 7505 priv->assoc_network->stats.rssi = rssi; 7506 7507 if (match.network == priv->assoc_network) { 7508 IPW_DEBUG_ASSOC("No better APs in this network to " 7509 "roam to.\n"); 7510 priv->status &= ~STATUS_ROAMING; 7511 ipw_debug_config(priv); 7512 return; 7513 } 7514 7515 ipw_send_disassociate(priv, 1); 7516 priv->assoc_network = match.network; 7517 7518 return; 7519 } 7520 7521 /* Second pass through ROAM process -- request association */ 7522 ipw_compatible_rates(priv, priv->assoc_network, &match.rates); 7523 ipw_associate_network(priv, priv->assoc_network, &match.rates, 1); 7524 priv->status &= ~STATUS_ROAMING; 7525 } 7526 7527 static void ipw_bg_roam(struct work_struct *work) 7528 { 7529 struct ipw_priv *priv = 7530 container_of(work, struct ipw_priv, roam); 7531 mutex_lock(&priv->mutex); 7532 ipw_roam(priv); 7533 mutex_unlock(&priv->mutex); 7534 } 7535 7536 static int ipw_associate(void *data) 7537 { 7538 struct ipw_priv *priv = data; 7539 7540 struct libipw_network *network = NULL; 7541 struct ipw_network_match match = { 7542 .network = NULL 7543 }; 7544 struct ipw_supported_rates *rates; 7545 struct list_head *element; 7546 unsigned long flags; 7547 7548 if (priv->ieee->iw_mode == IW_MODE_MONITOR) { 7549 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n"); 7550 return 0; 7551 } 7552 7553 if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) { 7554 IPW_DEBUG_ASSOC("Not attempting association (already in " 7555 "progress)\n"); 7556 return 0; 7557 } 7558 7559 if (priv->status & STATUS_DISASSOCIATING) { 7560 IPW_DEBUG_ASSOC("Not attempting association (in disassociating)\n"); 7561 schedule_work(&priv->associate); 7562 return 0; 7563 } 7564 7565 if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) { 7566 IPW_DEBUG_ASSOC("Not attempting association (scanning or not " 7567 "initialized)\n"); 7568 return 0; 7569 } 7570 7571 if (!(priv->config & CFG_ASSOCIATE) && 7572 !(priv->config & (CFG_STATIC_ESSID | CFG_STATIC_BSSID))) { 7573 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n"); 7574 return 0; 7575 } 7576 7577 /* Protect our use of the network_list */ 7578 spin_lock_irqsave(&priv->ieee->lock, flags); 7579 list_for_each_entry(network, &priv->ieee->network_list, list) 7580 ipw_best_network(priv, &match, network, 0); 7581 7582 network = match.network; 7583 rates = &match.rates; 7584 7585 if (network == NULL && 7586 priv->ieee->iw_mode == IW_MODE_ADHOC && 7587 priv->config & CFG_ADHOC_CREATE && 7588 priv->config & CFG_STATIC_ESSID && 7589 priv->config & CFG_STATIC_CHANNEL) { 7590 /* Use oldest network if the free list is empty */ 7591 if (list_empty(&priv->ieee->network_free_list)) { 7592 struct libipw_network *oldest = NULL; 7593 struct libipw_network *target; 7594 7595 list_for_each_entry(target, &priv->ieee->network_list, list) { 7596 if ((oldest == NULL) || 7597 (target->last_scanned < oldest->last_scanned)) 7598 oldest = target; 7599 } 7600 7601 /* If there are no more slots, expire the oldest */ 7602 list_del(&oldest->list); 7603 target = oldest; 7604 IPW_DEBUG_ASSOC("Expired '%*pE' (%pM) from network list.\n", 7605 target->ssid_len, target->ssid, 7606 target->bssid); 7607 list_add_tail(&target->list, 7608 &priv->ieee->network_free_list); 7609 } 7610 7611 element = priv->ieee->network_free_list.next; 7612 network = list_entry(element, struct libipw_network, list); 7613 ipw_adhoc_create(priv, network); 7614 rates = &priv->rates; 7615 list_del(element); 7616 list_add_tail(&network->list, &priv->ieee->network_list); 7617 } 7618 spin_unlock_irqrestore(&priv->ieee->lock, flags); 7619 7620 /* If we reached the end of the list, then we don't have any valid 7621 * matching APs */ 7622 if (!network) { 7623 ipw_debug_config(priv); 7624 7625 if (!(priv->status & STATUS_SCANNING)) { 7626 if (!(priv->config & CFG_SPEED_SCAN)) 7627 schedule_delayed_work(&priv->request_scan, 7628 SCAN_INTERVAL); 7629 else 7630 schedule_delayed_work(&priv->request_scan, 0); 7631 } 7632 7633 return 0; 7634 } 7635 7636 ipw_associate_network(priv, network, rates, 0); 7637 7638 return 1; 7639 } 7640 7641 static void ipw_bg_associate(struct work_struct *work) 7642 { 7643 struct ipw_priv *priv = 7644 container_of(work, struct ipw_priv, associate); 7645 mutex_lock(&priv->mutex); 7646 ipw_associate(priv); 7647 mutex_unlock(&priv->mutex); 7648 } 7649 7650 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv, 7651 struct sk_buff *skb) 7652 { 7653 struct ieee80211_hdr *hdr; 7654 u16 fc; 7655 7656 hdr = (struct ieee80211_hdr *)skb->data; 7657 fc = le16_to_cpu(hdr->frame_control); 7658 if (!(fc & IEEE80211_FCTL_PROTECTED)) 7659 return; 7660 7661 fc &= ~IEEE80211_FCTL_PROTECTED; 7662 hdr->frame_control = cpu_to_le16(fc); 7663 switch (priv->ieee->sec.level) { 7664 case SEC_LEVEL_3: 7665 /* Remove CCMP HDR */ 7666 memmove(skb->data + LIBIPW_3ADDR_LEN, 7667 skb->data + LIBIPW_3ADDR_LEN + 8, 7668 skb->len - LIBIPW_3ADDR_LEN - 8); 7669 skb_trim(skb, skb->len - 16); /* CCMP_HDR_LEN + CCMP_MIC_LEN */ 7670 break; 7671 case SEC_LEVEL_2: 7672 break; 7673 case SEC_LEVEL_1: 7674 /* Remove IV */ 7675 memmove(skb->data + LIBIPW_3ADDR_LEN, 7676 skb->data + LIBIPW_3ADDR_LEN + 4, 7677 skb->len - LIBIPW_3ADDR_LEN - 4); 7678 skb_trim(skb, skb->len - 8); /* IV + ICV */ 7679 break; 7680 case SEC_LEVEL_0: 7681 break; 7682 default: 7683 printk(KERN_ERR "Unknown security level %d\n", 7684 priv->ieee->sec.level); 7685 break; 7686 } 7687 } 7688 7689 static void ipw_handle_data_packet(struct ipw_priv *priv, 7690 struct ipw_rx_mem_buffer *rxb, 7691 struct libipw_rx_stats *stats) 7692 { 7693 struct net_device *dev = priv->net_dev; 7694 struct libipw_hdr_4addr *hdr; 7695 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data; 7696 7697 /* We received data from the HW, so stop the watchdog */ 7698 netif_trans_update(dev); 7699 7700 /* We only process data packets if the 7701 * interface is open */ 7702 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) > 7703 skb_tailroom(rxb->skb))) { 7704 dev->stats.rx_errors++; 7705 priv->wstats.discard.misc++; 7706 IPW_DEBUG_DROP("Corruption detected! Oh no!\n"); 7707 return; 7708 } else if (unlikely(!netif_running(priv->net_dev))) { 7709 dev->stats.rx_dropped++; 7710 priv->wstats.discard.misc++; 7711 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n"); 7712 return; 7713 } 7714 7715 /* Advance skb->data to the start of the actual payload */ 7716 skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data)); 7717 7718 /* Set the size of the skb to the size of the frame */ 7719 skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length)); 7720 7721 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len); 7722 7723 /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */ 7724 hdr = (struct libipw_hdr_4addr *)rxb->skb->data; 7725 if (priv->ieee->iw_mode != IW_MODE_MONITOR && 7726 (is_multicast_ether_addr(hdr->addr1) ? 7727 !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt)) 7728 ipw_rebuild_decrypted_skb(priv, rxb->skb); 7729 7730 if (!libipw_rx(priv->ieee, rxb->skb, stats)) 7731 dev->stats.rx_errors++; 7732 else { /* libipw_rx succeeded, so it now owns the SKB */ 7733 rxb->skb = NULL; 7734 __ipw_led_activity_on(priv); 7735 } 7736 } 7737 7738 #ifdef CONFIG_IPW2200_RADIOTAP 7739 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv, 7740 struct ipw_rx_mem_buffer *rxb, 7741 struct libipw_rx_stats *stats) 7742 { 7743 struct net_device *dev = priv->net_dev; 7744 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data; 7745 struct ipw_rx_frame *frame = &pkt->u.frame; 7746 7747 /* initial pull of some data */ 7748 u16 received_channel = frame->received_channel; 7749 u8 antennaAndPhy = frame->antennaAndPhy; 7750 s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM; /* call it signed anyhow */ 7751 u16 pktrate = frame->rate; 7752 7753 /* Magic struct that slots into the radiotap header -- no reason 7754 * to build this manually element by element, we can write it much 7755 * more efficiently than we can parse it. ORDER MATTERS HERE */ 7756 struct ipw_rt_hdr *ipw_rt; 7757 7758 unsigned short len = le16_to_cpu(pkt->u.frame.length); 7759 7760 /* We received data from the HW, so stop the watchdog */ 7761 netif_trans_update(dev); 7762 7763 /* We only process data packets if the 7764 * interface is open */ 7765 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) > 7766 skb_tailroom(rxb->skb))) { 7767 dev->stats.rx_errors++; 7768 priv->wstats.discard.misc++; 7769 IPW_DEBUG_DROP("Corruption detected! Oh no!\n"); 7770 return; 7771 } else if (unlikely(!netif_running(priv->net_dev))) { 7772 dev->stats.rx_dropped++; 7773 priv->wstats.discard.misc++; 7774 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n"); 7775 return; 7776 } 7777 7778 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use 7779 * that now */ 7780 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) { 7781 /* FIXME: Should alloc bigger skb instead */ 7782 dev->stats.rx_dropped++; 7783 priv->wstats.discard.misc++; 7784 IPW_DEBUG_DROP("Dropping too large packet in monitor\n"); 7785 return; 7786 } 7787 7788 /* copy the frame itself */ 7789 memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr), 7790 rxb->skb->data + IPW_RX_FRAME_SIZE, len); 7791 7792 ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data; 7793 7794 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION; 7795 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */ 7796 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total header+data */ 7797 7798 /* Big bitfield of all the fields we provide in radiotap */ 7799 ipw_rt->rt_hdr.it_present = cpu_to_le32( 7800 (1 << IEEE80211_RADIOTAP_TSFT) | 7801 (1 << IEEE80211_RADIOTAP_FLAGS) | 7802 (1 << IEEE80211_RADIOTAP_RATE) | 7803 (1 << IEEE80211_RADIOTAP_CHANNEL) | 7804 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) | 7805 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) | 7806 (1 << IEEE80211_RADIOTAP_ANTENNA)); 7807 7808 /* Zero the flags, we'll add to them as we go */ 7809 ipw_rt->rt_flags = 0; 7810 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 | 7811 frame->parent_tsf[2] << 16 | 7812 frame->parent_tsf[1] << 8 | 7813 frame->parent_tsf[0]); 7814 7815 /* Convert signal to DBM */ 7816 ipw_rt->rt_dbmsignal = antsignal; 7817 ipw_rt->rt_dbmnoise = (s8) le16_to_cpu(frame->noise); 7818 7819 /* Convert the channel data and set the flags */ 7820 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel)); 7821 if (received_channel > 14) { /* 802.11a */ 7822 ipw_rt->rt_chbitmask = 7823 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ)); 7824 } else if (antennaAndPhy & 32) { /* 802.11b */ 7825 ipw_rt->rt_chbitmask = 7826 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ)); 7827 } else { /* 802.11g */ 7828 ipw_rt->rt_chbitmask = 7829 cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ); 7830 } 7831 7832 /* set the rate in multiples of 500k/s */ 7833 switch (pktrate) { 7834 case IPW_TX_RATE_1MB: 7835 ipw_rt->rt_rate = 2; 7836 break; 7837 case IPW_TX_RATE_2MB: 7838 ipw_rt->rt_rate = 4; 7839 break; 7840 case IPW_TX_RATE_5MB: 7841 ipw_rt->rt_rate = 10; 7842 break; 7843 case IPW_TX_RATE_6MB: 7844 ipw_rt->rt_rate = 12; 7845 break; 7846 case IPW_TX_RATE_9MB: 7847 ipw_rt->rt_rate = 18; 7848 break; 7849 case IPW_TX_RATE_11MB: 7850 ipw_rt->rt_rate = 22; 7851 break; 7852 case IPW_TX_RATE_12MB: 7853 ipw_rt->rt_rate = 24; 7854 break; 7855 case IPW_TX_RATE_18MB: 7856 ipw_rt->rt_rate = 36; 7857 break; 7858 case IPW_TX_RATE_24MB: 7859 ipw_rt->rt_rate = 48; 7860 break; 7861 case IPW_TX_RATE_36MB: 7862 ipw_rt->rt_rate = 72; 7863 break; 7864 case IPW_TX_RATE_48MB: 7865 ipw_rt->rt_rate = 96; 7866 break; 7867 case IPW_TX_RATE_54MB: 7868 ipw_rt->rt_rate = 108; 7869 break; 7870 default: 7871 ipw_rt->rt_rate = 0; 7872 break; 7873 } 7874 7875 /* antenna number */ 7876 ipw_rt->rt_antenna = (antennaAndPhy & 3); /* Is this right? */ 7877 7878 /* set the preamble flag if we have it */ 7879 if ((antennaAndPhy & 64)) 7880 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 7881 7882 /* Set the size of the skb to the size of the frame */ 7883 skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr)); 7884 7885 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len); 7886 7887 if (!libipw_rx(priv->ieee, rxb->skb, stats)) 7888 dev->stats.rx_errors++; 7889 else { /* libipw_rx succeeded, so it now owns the SKB */ 7890 rxb->skb = NULL; 7891 /* no LED during capture */ 7892 } 7893 } 7894 #endif 7895 7896 #ifdef CONFIG_IPW2200_PROMISCUOUS 7897 #define libipw_is_probe_response(fc) \ 7898 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \ 7899 (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP ) 7900 7901 #define libipw_is_management(fc) \ 7902 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT) 7903 7904 #define libipw_is_control(fc) \ 7905 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL) 7906 7907 #define libipw_is_data(fc) \ 7908 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA) 7909 7910 #define libipw_is_assoc_request(fc) \ 7911 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ) 7912 7913 #define libipw_is_reassoc_request(fc) \ 7914 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ) 7915 7916 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv, 7917 struct ipw_rx_mem_buffer *rxb, 7918 struct libipw_rx_stats *stats) 7919 { 7920 struct net_device *dev = priv->prom_net_dev; 7921 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data; 7922 struct ipw_rx_frame *frame = &pkt->u.frame; 7923 struct ipw_rt_hdr *ipw_rt; 7924 7925 /* First cache any information we need before we overwrite 7926 * the information provided in the skb from the hardware */ 7927 struct ieee80211_hdr *hdr; 7928 u16 channel = frame->received_channel; 7929 u8 phy_flags = frame->antennaAndPhy; 7930 s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM; 7931 s8 noise = (s8) le16_to_cpu(frame->noise); 7932 u8 rate = frame->rate; 7933 unsigned short len = le16_to_cpu(pkt->u.frame.length); 7934 struct sk_buff *skb; 7935 int hdr_only = 0; 7936 u16 filter = priv->prom_priv->filter; 7937 7938 /* If the filter is set to not include Rx frames then return */ 7939 if (filter & IPW_PROM_NO_RX) 7940 return; 7941 7942 /* We received data from the HW, so stop the watchdog */ 7943 netif_trans_update(dev); 7944 7945 if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) { 7946 dev->stats.rx_errors++; 7947 IPW_DEBUG_DROP("Corruption detected! Oh no!\n"); 7948 return; 7949 } 7950 7951 /* We only process data packets if the interface is open */ 7952 if (unlikely(!netif_running(dev))) { 7953 dev->stats.rx_dropped++; 7954 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n"); 7955 return; 7956 } 7957 7958 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use 7959 * that now */ 7960 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) { 7961 /* FIXME: Should alloc bigger skb instead */ 7962 dev->stats.rx_dropped++; 7963 IPW_DEBUG_DROP("Dropping too large packet in monitor\n"); 7964 return; 7965 } 7966 7967 hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE; 7968 if (libipw_is_management(le16_to_cpu(hdr->frame_control))) { 7969 if (filter & IPW_PROM_NO_MGMT) 7970 return; 7971 if (filter & IPW_PROM_MGMT_HEADER_ONLY) 7972 hdr_only = 1; 7973 } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) { 7974 if (filter & IPW_PROM_NO_CTL) 7975 return; 7976 if (filter & IPW_PROM_CTL_HEADER_ONLY) 7977 hdr_only = 1; 7978 } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) { 7979 if (filter & IPW_PROM_NO_DATA) 7980 return; 7981 if (filter & IPW_PROM_DATA_HEADER_ONLY) 7982 hdr_only = 1; 7983 } 7984 7985 /* Copy the SKB since this is for the promiscuous side */ 7986 skb = skb_copy(rxb->skb, GFP_ATOMIC); 7987 if (skb == NULL) { 7988 IPW_ERROR("skb_clone failed for promiscuous copy.\n"); 7989 return; 7990 } 7991 7992 /* copy the frame data to write after where the radiotap header goes */ 7993 ipw_rt = (void *)skb->data; 7994 7995 if (hdr_only) 7996 len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control)); 7997 7998 memcpy(ipw_rt->payload, hdr, len); 7999 8000 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION; 8001 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */ 8002 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(*ipw_rt)); /* total header+data */ 8003 8004 /* Set the size of the skb to the size of the frame */ 8005 skb_put(skb, sizeof(*ipw_rt) + len); 8006 8007 /* Big bitfield of all the fields we provide in radiotap */ 8008 ipw_rt->rt_hdr.it_present = cpu_to_le32( 8009 (1 << IEEE80211_RADIOTAP_TSFT) | 8010 (1 << IEEE80211_RADIOTAP_FLAGS) | 8011 (1 << IEEE80211_RADIOTAP_RATE) | 8012 (1 << IEEE80211_RADIOTAP_CHANNEL) | 8013 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) | 8014 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) | 8015 (1 << IEEE80211_RADIOTAP_ANTENNA)); 8016 8017 /* Zero the flags, we'll add to them as we go */ 8018 ipw_rt->rt_flags = 0; 8019 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 | 8020 frame->parent_tsf[2] << 16 | 8021 frame->parent_tsf[1] << 8 | 8022 frame->parent_tsf[0]); 8023 8024 /* Convert to DBM */ 8025 ipw_rt->rt_dbmsignal = signal; 8026 ipw_rt->rt_dbmnoise = noise; 8027 8028 /* Convert the channel data and set the flags */ 8029 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel)); 8030 if (channel > 14) { /* 802.11a */ 8031 ipw_rt->rt_chbitmask = 8032 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ)); 8033 } else if (phy_flags & (1 << 5)) { /* 802.11b */ 8034 ipw_rt->rt_chbitmask = 8035 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ)); 8036 } else { /* 802.11g */ 8037 ipw_rt->rt_chbitmask = 8038 cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ); 8039 } 8040 8041 /* set the rate in multiples of 500k/s */ 8042 switch (rate) { 8043 case IPW_TX_RATE_1MB: 8044 ipw_rt->rt_rate = 2; 8045 break; 8046 case IPW_TX_RATE_2MB: 8047 ipw_rt->rt_rate = 4; 8048 break; 8049 case IPW_TX_RATE_5MB: 8050 ipw_rt->rt_rate = 10; 8051 break; 8052 case IPW_TX_RATE_6MB: 8053 ipw_rt->rt_rate = 12; 8054 break; 8055 case IPW_TX_RATE_9MB: 8056 ipw_rt->rt_rate = 18; 8057 break; 8058 case IPW_TX_RATE_11MB: 8059 ipw_rt->rt_rate = 22; 8060 break; 8061 case IPW_TX_RATE_12MB: 8062 ipw_rt->rt_rate = 24; 8063 break; 8064 case IPW_TX_RATE_18MB: 8065 ipw_rt->rt_rate = 36; 8066 break; 8067 case IPW_TX_RATE_24MB: 8068 ipw_rt->rt_rate = 48; 8069 break; 8070 case IPW_TX_RATE_36MB: 8071 ipw_rt->rt_rate = 72; 8072 break; 8073 case IPW_TX_RATE_48MB: 8074 ipw_rt->rt_rate = 96; 8075 break; 8076 case IPW_TX_RATE_54MB: 8077 ipw_rt->rt_rate = 108; 8078 break; 8079 default: 8080 ipw_rt->rt_rate = 0; 8081 break; 8082 } 8083 8084 /* antenna number */ 8085 ipw_rt->rt_antenna = (phy_flags & 3); 8086 8087 /* set the preamble flag if we have it */ 8088 if (phy_flags & (1 << 6)) 8089 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 8090 8091 IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len); 8092 8093 if (!libipw_rx(priv->prom_priv->ieee, skb, stats)) { 8094 dev->stats.rx_errors++; 8095 dev_kfree_skb_any(skb); 8096 } 8097 } 8098 #endif 8099 8100 static int is_network_packet(struct ipw_priv *priv, 8101 struct libipw_hdr_4addr *header) 8102 { 8103 /* Filter incoming packets to determine if they are targeted toward 8104 * this network, discarding packets coming from ourselves */ 8105 switch (priv->ieee->iw_mode) { 8106 case IW_MODE_ADHOC: /* Header: Dest. | Source | BSSID */ 8107 /* packets from our adapter are dropped (echo) */ 8108 if (ether_addr_equal(header->addr2, priv->net_dev->dev_addr)) 8109 return 0; 8110 8111 /* {broad,multi}cast packets to our BSSID go through */ 8112 if (is_multicast_ether_addr(header->addr1)) 8113 return ether_addr_equal(header->addr3, priv->bssid); 8114 8115 /* packets to our adapter go through */ 8116 return ether_addr_equal(header->addr1, 8117 priv->net_dev->dev_addr); 8118 8119 case IW_MODE_INFRA: /* Header: Dest. | BSSID | Source */ 8120 /* packets from our adapter are dropped (echo) */ 8121 if (ether_addr_equal(header->addr3, priv->net_dev->dev_addr)) 8122 return 0; 8123 8124 /* {broad,multi}cast packets to our BSS go through */ 8125 if (is_multicast_ether_addr(header->addr1)) 8126 return ether_addr_equal(header->addr2, priv->bssid); 8127 8128 /* packets to our adapter go through */ 8129 return ether_addr_equal(header->addr1, 8130 priv->net_dev->dev_addr); 8131 } 8132 8133 return 1; 8134 } 8135 8136 #define IPW_PACKET_RETRY_TIME HZ 8137 8138 static int is_duplicate_packet(struct ipw_priv *priv, 8139 struct libipw_hdr_4addr *header) 8140 { 8141 u16 sc = le16_to_cpu(header->seq_ctl); 8142 u16 seq = WLAN_GET_SEQ_SEQ(sc); 8143 u16 frag = WLAN_GET_SEQ_FRAG(sc); 8144 u16 *last_seq, *last_frag; 8145 unsigned long *last_time; 8146 8147 switch (priv->ieee->iw_mode) { 8148 case IW_MODE_ADHOC: 8149 { 8150 struct list_head *p; 8151 struct ipw_ibss_seq *entry = NULL; 8152 u8 *mac = header->addr2; 8153 int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE; 8154 8155 list_for_each(p, &priv->ibss_mac_hash[index]) { 8156 entry = 8157 list_entry(p, struct ipw_ibss_seq, list); 8158 if (ether_addr_equal(entry->mac, mac)) 8159 break; 8160 } 8161 if (p == &priv->ibss_mac_hash[index]) { 8162 entry = kmalloc(sizeof(*entry), GFP_ATOMIC); 8163 if (!entry) { 8164 IPW_ERROR 8165 ("Cannot malloc new mac entry\n"); 8166 return 0; 8167 } 8168 memcpy(entry->mac, mac, ETH_ALEN); 8169 entry->seq_num = seq; 8170 entry->frag_num = frag; 8171 entry->packet_time = jiffies; 8172 list_add(&entry->list, 8173 &priv->ibss_mac_hash[index]); 8174 return 0; 8175 } 8176 last_seq = &entry->seq_num; 8177 last_frag = &entry->frag_num; 8178 last_time = &entry->packet_time; 8179 break; 8180 } 8181 case IW_MODE_INFRA: 8182 last_seq = &priv->last_seq_num; 8183 last_frag = &priv->last_frag_num; 8184 last_time = &priv->last_packet_time; 8185 break; 8186 default: 8187 return 0; 8188 } 8189 if ((*last_seq == seq) && 8190 time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) { 8191 if (*last_frag == frag) 8192 goto drop; 8193 if (*last_frag + 1 != frag) 8194 /* out-of-order fragment */ 8195 goto drop; 8196 } else 8197 *last_seq = seq; 8198 8199 *last_frag = frag; 8200 *last_time = jiffies; 8201 return 0; 8202 8203 drop: 8204 /* Comment this line now since we observed the card receives 8205 * duplicate packets but the FCTL_RETRY bit is not set in the 8206 * IBSS mode with fragmentation enabled. 8207 BUG_ON(!(le16_to_cpu(header->frame_control) & IEEE80211_FCTL_RETRY)); */ 8208 return 1; 8209 } 8210 8211 static void ipw_handle_mgmt_packet(struct ipw_priv *priv, 8212 struct ipw_rx_mem_buffer *rxb, 8213 struct libipw_rx_stats *stats) 8214 { 8215 struct sk_buff *skb = rxb->skb; 8216 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data; 8217 struct libipw_hdr_4addr *header = (struct libipw_hdr_4addr *) 8218 (skb->data + IPW_RX_FRAME_SIZE); 8219 8220 libipw_rx_mgt(priv->ieee, header, stats); 8221 8222 if (priv->ieee->iw_mode == IW_MODE_ADHOC && 8223 ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) == 8224 IEEE80211_STYPE_PROBE_RESP) || 8225 (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) == 8226 IEEE80211_STYPE_BEACON))) { 8227 if (ether_addr_equal(header->addr3, priv->bssid)) 8228 ipw_add_station(priv, header->addr2); 8229 } 8230 8231 if (priv->config & CFG_NET_STATS) { 8232 IPW_DEBUG_HC("sending stat packet\n"); 8233 8234 /* Set the size of the skb to the size of the full 8235 * ipw header and 802.11 frame */ 8236 skb_put(skb, le16_to_cpu(pkt->u.frame.length) + 8237 IPW_RX_FRAME_SIZE); 8238 8239 /* Advance past the ipw packet header to the 802.11 frame */ 8240 skb_pull(skb, IPW_RX_FRAME_SIZE); 8241 8242 /* Push the libipw_rx_stats before the 802.11 frame */ 8243 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats)); 8244 8245 skb->dev = priv->ieee->dev; 8246 8247 /* Point raw at the libipw_stats */ 8248 skb_reset_mac_header(skb); 8249 8250 skb->pkt_type = PACKET_OTHERHOST; 8251 skb->protocol = cpu_to_be16(ETH_P_80211_STATS); 8252 memset(skb->cb, 0, sizeof(rxb->skb->cb)); 8253 netif_rx(skb); 8254 rxb->skb = NULL; 8255 } 8256 } 8257 8258 /* 8259 * Main entry function for receiving a packet with 80211 headers. This 8260 * should be called when ever the FW has notified us that there is a new 8261 * skb in the receive queue. 8262 */ 8263 static void ipw_rx(struct ipw_priv *priv) 8264 { 8265 struct ipw_rx_mem_buffer *rxb; 8266 struct ipw_rx_packet *pkt; 8267 struct libipw_hdr_4addr *header; 8268 u32 r, w, i; 8269 u8 network_packet; 8270 u8 fill_rx = 0; 8271 8272 r = ipw_read32(priv, IPW_RX_READ_INDEX); 8273 w = ipw_read32(priv, IPW_RX_WRITE_INDEX); 8274 i = priv->rxq->read; 8275 8276 if (ipw_rx_queue_space (priv->rxq) > (RX_QUEUE_SIZE / 2)) 8277 fill_rx = 1; 8278 8279 while (i != r) { 8280 rxb = priv->rxq->queue[i]; 8281 if (unlikely(rxb == NULL)) { 8282 printk(KERN_CRIT "Queue not allocated!\n"); 8283 break; 8284 } 8285 priv->rxq->queue[i] = NULL; 8286 8287 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr, 8288 IPW_RX_BUF_SIZE, 8289 PCI_DMA_FROMDEVICE); 8290 8291 pkt = (struct ipw_rx_packet *)rxb->skb->data; 8292 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n", 8293 pkt->header.message_type, 8294 pkt->header.rx_seq_num, pkt->header.control_bits); 8295 8296 switch (pkt->header.message_type) { 8297 case RX_FRAME_TYPE: /* 802.11 frame */ { 8298 struct libipw_rx_stats stats = { 8299 .rssi = pkt->u.frame.rssi_dbm - 8300 IPW_RSSI_TO_DBM, 8301 .signal = 8302 pkt->u.frame.rssi_dbm - 8303 IPW_RSSI_TO_DBM + 0x100, 8304 .noise = 8305 le16_to_cpu(pkt->u.frame.noise), 8306 .rate = pkt->u.frame.rate, 8307 .mac_time = jiffies, 8308 .received_channel = 8309 pkt->u.frame.received_channel, 8310 .freq = 8311 (pkt->u.frame. 8312 control & (1 << 0)) ? 8313 LIBIPW_24GHZ_BAND : 8314 LIBIPW_52GHZ_BAND, 8315 .len = le16_to_cpu(pkt->u.frame.length), 8316 }; 8317 8318 if (stats.rssi != 0) 8319 stats.mask |= LIBIPW_STATMASK_RSSI; 8320 if (stats.signal != 0) 8321 stats.mask |= LIBIPW_STATMASK_SIGNAL; 8322 if (stats.noise != 0) 8323 stats.mask |= LIBIPW_STATMASK_NOISE; 8324 if (stats.rate != 0) 8325 stats.mask |= LIBIPW_STATMASK_RATE; 8326 8327 priv->rx_packets++; 8328 8329 #ifdef CONFIG_IPW2200_PROMISCUOUS 8330 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) 8331 ipw_handle_promiscuous_rx(priv, rxb, &stats); 8332 #endif 8333 8334 #ifdef CONFIG_IPW2200_MONITOR 8335 if (priv->ieee->iw_mode == IW_MODE_MONITOR) { 8336 #ifdef CONFIG_IPW2200_RADIOTAP 8337 8338 ipw_handle_data_packet_monitor(priv, 8339 rxb, 8340 &stats); 8341 #else 8342 ipw_handle_data_packet(priv, rxb, 8343 &stats); 8344 #endif 8345 break; 8346 } 8347 #endif 8348 8349 header = 8350 (struct libipw_hdr_4addr *)(rxb->skb-> 8351 data + 8352 IPW_RX_FRAME_SIZE); 8353 /* TODO: Check Ad-Hoc dest/source and make sure 8354 * that we are actually parsing these packets 8355 * correctly -- we should probably use the 8356 * frame control of the packet and disregard 8357 * the current iw_mode */ 8358 8359 network_packet = 8360 is_network_packet(priv, header); 8361 if (network_packet && priv->assoc_network) { 8362 priv->assoc_network->stats.rssi = 8363 stats.rssi; 8364 priv->exp_avg_rssi = 8365 exponential_average(priv->exp_avg_rssi, 8366 stats.rssi, DEPTH_RSSI); 8367 } 8368 8369 IPW_DEBUG_RX("Frame: len=%u\n", 8370 le16_to_cpu(pkt->u.frame.length)); 8371 8372 if (le16_to_cpu(pkt->u.frame.length) < 8373 libipw_get_hdrlen(le16_to_cpu( 8374 header->frame_ctl))) { 8375 IPW_DEBUG_DROP 8376 ("Received packet is too small. " 8377 "Dropping.\n"); 8378 priv->net_dev->stats.rx_errors++; 8379 priv->wstats.discard.misc++; 8380 break; 8381 } 8382 8383 switch (WLAN_FC_GET_TYPE 8384 (le16_to_cpu(header->frame_ctl))) { 8385 8386 case IEEE80211_FTYPE_MGMT: 8387 ipw_handle_mgmt_packet(priv, rxb, 8388 &stats); 8389 break; 8390 8391 case IEEE80211_FTYPE_CTL: 8392 break; 8393 8394 case IEEE80211_FTYPE_DATA: 8395 if (unlikely(!network_packet || 8396 is_duplicate_packet(priv, 8397 header))) 8398 { 8399 IPW_DEBUG_DROP("Dropping: " 8400 "%pM, " 8401 "%pM, " 8402 "%pM\n", 8403 header->addr1, 8404 header->addr2, 8405 header->addr3); 8406 break; 8407 } 8408 8409 ipw_handle_data_packet(priv, rxb, 8410 &stats); 8411 8412 break; 8413 } 8414 break; 8415 } 8416 8417 case RX_HOST_NOTIFICATION_TYPE:{ 8418 IPW_DEBUG_RX 8419 ("Notification: subtype=%02X flags=%02X size=%d\n", 8420 pkt->u.notification.subtype, 8421 pkt->u.notification.flags, 8422 le16_to_cpu(pkt->u.notification.size)); 8423 ipw_rx_notification(priv, &pkt->u.notification); 8424 break; 8425 } 8426 8427 default: 8428 IPW_DEBUG_RX("Bad Rx packet of type %d\n", 8429 pkt->header.message_type); 8430 break; 8431 } 8432 8433 /* For now we just don't re-use anything. We can tweak this 8434 * later to try and re-use notification packets and SKBs that 8435 * fail to Rx correctly */ 8436 if (rxb->skb != NULL) { 8437 dev_kfree_skb_any(rxb->skb); 8438 rxb->skb = NULL; 8439 } 8440 8441 pci_unmap_single(priv->pci_dev, rxb->dma_addr, 8442 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE); 8443 list_add_tail(&rxb->list, &priv->rxq->rx_used); 8444 8445 i = (i + 1) % RX_QUEUE_SIZE; 8446 8447 /* If there are a lot of unsued frames, restock the Rx queue 8448 * so the ucode won't assert */ 8449 if (fill_rx) { 8450 priv->rxq->read = i; 8451 ipw_rx_queue_replenish(priv); 8452 } 8453 } 8454 8455 /* Backtrack one entry */ 8456 priv->rxq->read = i; 8457 ipw_rx_queue_restock(priv); 8458 } 8459 8460 #define DEFAULT_RTS_THRESHOLD 2304U 8461 #define MIN_RTS_THRESHOLD 1U 8462 #define MAX_RTS_THRESHOLD 2304U 8463 #define DEFAULT_BEACON_INTERVAL 100U 8464 #define DEFAULT_SHORT_RETRY_LIMIT 7U 8465 #define DEFAULT_LONG_RETRY_LIMIT 4U 8466 8467 /** 8468 * ipw_sw_reset 8469 * @option: options to control different reset behaviour 8470 * 0 = reset everything except the 'disable' module_param 8471 * 1 = reset everything and print out driver info (for probe only) 8472 * 2 = reset everything 8473 */ 8474 static int ipw_sw_reset(struct ipw_priv *priv, int option) 8475 { 8476 int band, modulation; 8477 int old_mode = priv->ieee->iw_mode; 8478 8479 /* Initialize module parameter values here */ 8480 priv->config = 0; 8481 8482 /* We default to disabling the LED code as right now it causes 8483 * too many systems to lock up... */ 8484 if (!led_support) 8485 priv->config |= CFG_NO_LED; 8486 8487 if (associate) 8488 priv->config |= CFG_ASSOCIATE; 8489 else 8490 IPW_DEBUG_INFO("Auto associate disabled.\n"); 8491 8492 if (auto_create) 8493 priv->config |= CFG_ADHOC_CREATE; 8494 else 8495 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n"); 8496 8497 priv->config &= ~CFG_STATIC_ESSID; 8498 priv->essid_len = 0; 8499 memset(priv->essid, 0, IW_ESSID_MAX_SIZE); 8500 8501 if (disable && option) { 8502 priv->status |= STATUS_RF_KILL_SW; 8503 IPW_DEBUG_INFO("Radio disabled.\n"); 8504 } 8505 8506 if (default_channel != 0) { 8507 priv->config |= CFG_STATIC_CHANNEL; 8508 priv->channel = default_channel; 8509 IPW_DEBUG_INFO("Bind to static channel %d\n", default_channel); 8510 /* TODO: Validate that provided channel is in range */ 8511 } 8512 #ifdef CONFIG_IPW2200_QOS 8513 ipw_qos_init(priv, qos_enable, qos_burst_enable, 8514 burst_duration_CCK, burst_duration_OFDM); 8515 #endif /* CONFIG_IPW2200_QOS */ 8516 8517 switch (network_mode) { 8518 case 1: 8519 priv->ieee->iw_mode = IW_MODE_ADHOC; 8520 priv->net_dev->type = ARPHRD_ETHER; 8521 8522 break; 8523 #ifdef CONFIG_IPW2200_MONITOR 8524 case 2: 8525 priv->ieee->iw_mode = IW_MODE_MONITOR; 8526 #ifdef CONFIG_IPW2200_RADIOTAP 8527 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP; 8528 #else 8529 priv->net_dev->type = ARPHRD_IEEE80211; 8530 #endif 8531 break; 8532 #endif 8533 default: 8534 case 0: 8535 priv->net_dev->type = ARPHRD_ETHER; 8536 priv->ieee->iw_mode = IW_MODE_INFRA; 8537 break; 8538 } 8539 8540 if (hwcrypto) { 8541 priv->ieee->host_encrypt = 0; 8542 priv->ieee->host_encrypt_msdu = 0; 8543 priv->ieee->host_decrypt = 0; 8544 priv->ieee->host_mc_decrypt = 0; 8545 } 8546 IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off"); 8547 8548 /* IPW2200/2915 is abled to do hardware fragmentation. */ 8549 priv->ieee->host_open_frag = 0; 8550 8551 if ((priv->pci_dev->device == 0x4223) || 8552 (priv->pci_dev->device == 0x4224)) { 8553 if (option == 1) 8554 printk(KERN_INFO DRV_NAME 8555 ": Detected Intel PRO/Wireless 2915ABG Network " 8556 "Connection\n"); 8557 priv->ieee->abg_true = 1; 8558 band = LIBIPW_52GHZ_BAND | LIBIPW_24GHZ_BAND; 8559 modulation = LIBIPW_OFDM_MODULATION | 8560 LIBIPW_CCK_MODULATION; 8561 priv->adapter = IPW_2915ABG; 8562 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B; 8563 } else { 8564 if (option == 1) 8565 printk(KERN_INFO DRV_NAME 8566 ": Detected Intel PRO/Wireless 2200BG Network " 8567 "Connection\n"); 8568 8569 priv->ieee->abg_true = 0; 8570 band = LIBIPW_24GHZ_BAND; 8571 modulation = LIBIPW_OFDM_MODULATION | 8572 LIBIPW_CCK_MODULATION; 8573 priv->adapter = IPW_2200BG; 8574 priv->ieee->mode = IEEE_G | IEEE_B; 8575 } 8576 8577 priv->ieee->freq_band = band; 8578 priv->ieee->modulation = modulation; 8579 8580 priv->rates_mask = LIBIPW_DEFAULT_RATES_MASK; 8581 8582 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT; 8583 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT; 8584 8585 priv->rts_threshold = DEFAULT_RTS_THRESHOLD; 8586 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT; 8587 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT; 8588 8589 /* If power management is turned on, default to AC mode */ 8590 priv->power_mode = IPW_POWER_AC; 8591 priv->tx_power = IPW_TX_POWER_DEFAULT; 8592 8593 return old_mode == priv->ieee->iw_mode; 8594 } 8595 8596 /* 8597 * This file defines the Wireless Extension handlers. It does not 8598 * define any methods of hardware manipulation and relies on the 8599 * functions defined in ipw_main to provide the HW interaction. 8600 * 8601 * The exception to this is the use of the ipw_get_ordinal() 8602 * function used to poll the hardware vs. making unnecessary calls. 8603 * 8604 */ 8605 8606 static int ipw_set_channel(struct ipw_priv *priv, u8 channel) 8607 { 8608 if (channel == 0) { 8609 IPW_DEBUG_INFO("Setting channel to ANY (0)\n"); 8610 priv->config &= ~CFG_STATIC_CHANNEL; 8611 IPW_DEBUG_ASSOC("Attempting to associate with new " 8612 "parameters.\n"); 8613 ipw_associate(priv); 8614 return 0; 8615 } 8616 8617 priv->config |= CFG_STATIC_CHANNEL; 8618 8619 if (priv->channel == channel) { 8620 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n", 8621 channel); 8622 return 0; 8623 } 8624 8625 IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel); 8626 priv->channel = channel; 8627 8628 #ifdef CONFIG_IPW2200_MONITOR 8629 if (priv->ieee->iw_mode == IW_MODE_MONITOR) { 8630 int i; 8631 if (priv->status & STATUS_SCANNING) { 8632 IPW_DEBUG_SCAN("Scan abort triggered due to " 8633 "channel change.\n"); 8634 ipw_abort_scan(priv); 8635 } 8636 8637 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--) 8638 udelay(10); 8639 8640 if (priv->status & STATUS_SCANNING) 8641 IPW_DEBUG_SCAN("Still scanning...\n"); 8642 else 8643 IPW_DEBUG_SCAN("Took %dms to abort current scan\n", 8644 1000 - i); 8645 8646 return 0; 8647 } 8648 #endif /* CONFIG_IPW2200_MONITOR */ 8649 8650 /* Network configuration changed -- force [re]association */ 8651 IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n"); 8652 if (!ipw_disassociate(priv)) 8653 ipw_associate(priv); 8654 8655 return 0; 8656 } 8657 8658 static int ipw_wx_set_freq(struct net_device *dev, 8659 struct iw_request_info *info, 8660 union iwreq_data *wrqu, char *extra) 8661 { 8662 struct ipw_priv *priv = libipw_priv(dev); 8663 const struct libipw_geo *geo = libipw_get_geo(priv->ieee); 8664 struct iw_freq *fwrq = &wrqu->freq; 8665 int ret = 0, i; 8666 u8 channel, flags; 8667 int band; 8668 8669 if (fwrq->m == 0) { 8670 IPW_DEBUG_WX("SET Freq/Channel -> any\n"); 8671 mutex_lock(&priv->mutex); 8672 ret = ipw_set_channel(priv, 0); 8673 mutex_unlock(&priv->mutex); 8674 return ret; 8675 } 8676 /* if setting by freq convert to channel */ 8677 if (fwrq->e == 1) { 8678 channel = libipw_freq_to_channel(priv->ieee, fwrq->m); 8679 if (channel == 0) 8680 return -EINVAL; 8681 } else 8682 channel = fwrq->m; 8683 8684 if (!(band = libipw_is_valid_channel(priv->ieee, channel))) 8685 return -EINVAL; 8686 8687 if (priv->ieee->iw_mode == IW_MODE_ADHOC) { 8688 i = libipw_channel_to_index(priv->ieee, channel); 8689 if (i == -1) 8690 return -EINVAL; 8691 8692 flags = (band == LIBIPW_24GHZ_BAND) ? 8693 geo->bg[i].flags : geo->a[i].flags; 8694 if (flags & LIBIPW_CH_PASSIVE_ONLY) { 8695 IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n"); 8696 return -EINVAL; 8697 } 8698 } 8699 8700 IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m); 8701 mutex_lock(&priv->mutex); 8702 ret = ipw_set_channel(priv, channel); 8703 mutex_unlock(&priv->mutex); 8704 return ret; 8705 } 8706 8707 static int ipw_wx_get_freq(struct net_device *dev, 8708 struct iw_request_info *info, 8709 union iwreq_data *wrqu, char *extra) 8710 { 8711 struct ipw_priv *priv = libipw_priv(dev); 8712 8713 wrqu->freq.e = 0; 8714 8715 /* If we are associated, trying to associate, or have a statically 8716 * configured CHANNEL then return that; otherwise return ANY */ 8717 mutex_lock(&priv->mutex); 8718 if (priv->config & CFG_STATIC_CHANNEL || 8719 priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) { 8720 int i; 8721 8722 i = libipw_channel_to_index(priv->ieee, priv->channel); 8723 BUG_ON(i == -1); 8724 wrqu->freq.e = 1; 8725 8726 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) { 8727 case LIBIPW_52GHZ_BAND: 8728 wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000; 8729 break; 8730 8731 case LIBIPW_24GHZ_BAND: 8732 wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000; 8733 break; 8734 8735 default: 8736 BUG(); 8737 } 8738 } else 8739 wrqu->freq.m = 0; 8740 8741 mutex_unlock(&priv->mutex); 8742 IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel); 8743 return 0; 8744 } 8745 8746 static int ipw_wx_set_mode(struct net_device *dev, 8747 struct iw_request_info *info, 8748 union iwreq_data *wrqu, char *extra) 8749 { 8750 struct ipw_priv *priv = libipw_priv(dev); 8751 int err = 0; 8752 8753 IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode); 8754 8755 switch (wrqu->mode) { 8756 #ifdef CONFIG_IPW2200_MONITOR 8757 case IW_MODE_MONITOR: 8758 #endif 8759 case IW_MODE_ADHOC: 8760 case IW_MODE_INFRA: 8761 break; 8762 case IW_MODE_AUTO: 8763 wrqu->mode = IW_MODE_INFRA; 8764 break; 8765 default: 8766 return -EINVAL; 8767 } 8768 if (wrqu->mode == priv->ieee->iw_mode) 8769 return 0; 8770 8771 mutex_lock(&priv->mutex); 8772 8773 ipw_sw_reset(priv, 0); 8774 8775 #ifdef CONFIG_IPW2200_MONITOR 8776 if (priv->ieee->iw_mode == IW_MODE_MONITOR) 8777 priv->net_dev->type = ARPHRD_ETHER; 8778 8779 if (wrqu->mode == IW_MODE_MONITOR) 8780 #ifdef CONFIG_IPW2200_RADIOTAP 8781 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP; 8782 #else 8783 priv->net_dev->type = ARPHRD_IEEE80211; 8784 #endif 8785 #endif /* CONFIG_IPW2200_MONITOR */ 8786 8787 /* Free the existing firmware and reset the fw_loaded 8788 * flag so ipw_load() will bring in the new firmware */ 8789 free_firmware(); 8790 8791 priv->ieee->iw_mode = wrqu->mode; 8792 8793 schedule_work(&priv->adapter_restart); 8794 mutex_unlock(&priv->mutex); 8795 return err; 8796 } 8797 8798 static int ipw_wx_get_mode(struct net_device *dev, 8799 struct iw_request_info *info, 8800 union iwreq_data *wrqu, char *extra) 8801 { 8802 struct ipw_priv *priv = libipw_priv(dev); 8803 mutex_lock(&priv->mutex); 8804 wrqu->mode = priv->ieee->iw_mode; 8805 IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode); 8806 mutex_unlock(&priv->mutex); 8807 return 0; 8808 } 8809 8810 /* Values are in microsecond */ 8811 static const s32 timeout_duration[] = { 8812 350000, 8813 250000, 8814 75000, 8815 37000, 8816 25000, 8817 }; 8818 8819 static const s32 period_duration[] = { 8820 400000, 8821 700000, 8822 1000000, 8823 1000000, 8824 1000000 8825 }; 8826 8827 static int ipw_wx_get_range(struct net_device *dev, 8828 struct iw_request_info *info, 8829 union iwreq_data *wrqu, char *extra) 8830 { 8831 struct ipw_priv *priv = libipw_priv(dev); 8832 struct iw_range *range = (struct iw_range *)extra; 8833 const struct libipw_geo *geo = libipw_get_geo(priv->ieee); 8834 int i = 0, j; 8835 8836 wrqu->data.length = sizeof(*range); 8837 memset(range, 0, sizeof(*range)); 8838 8839 /* 54Mbs == ~27 Mb/s real (802.11g) */ 8840 range->throughput = 27 * 1000 * 1000; 8841 8842 range->max_qual.qual = 100; 8843 /* TODO: Find real max RSSI and stick here */ 8844 range->max_qual.level = 0; 8845 range->max_qual.noise = 0; 8846 range->max_qual.updated = 7; /* Updated all three */ 8847 8848 range->avg_qual.qual = 70; 8849 /* TODO: Find real 'good' to 'bad' threshold value for RSSI */ 8850 range->avg_qual.level = 0; /* FIXME to real average level */ 8851 range->avg_qual.noise = 0; 8852 range->avg_qual.updated = 7; /* Updated all three */ 8853 mutex_lock(&priv->mutex); 8854 range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES); 8855 8856 for (i = 0; i < range->num_bitrates; i++) 8857 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) * 8858 500000; 8859 8860 range->max_rts = DEFAULT_RTS_THRESHOLD; 8861 range->min_frag = MIN_FRAG_THRESHOLD; 8862 range->max_frag = MAX_FRAG_THRESHOLD; 8863 8864 range->encoding_size[0] = 5; 8865 range->encoding_size[1] = 13; 8866 range->num_encoding_sizes = 2; 8867 range->max_encoding_tokens = WEP_KEYS; 8868 8869 /* Set the Wireless Extension versions */ 8870 range->we_version_compiled = WIRELESS_EXT; 8871 range->we_version_source = 18; 8872 8873 i = 0; 8874 if (priv->ieee->mode & (IEEE_B | IEEE_G)) { 8875 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) { 8876 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) && 8877 (geo->bg[j].flags & LIBIPW_CH_PASSIVE_ONLY)) 8878 continue; 8879 8880 range->freq[i].i = geo->bg[j].channel; 8881 range->freq[i].m = geo->bg[j].freq * 100000; 8882 range->freq[i].e = 1; 8883 i++; 8884 } 8885 } 8886 8887 if (priv->ieee->mode & IEEE_A) { 8888 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) { 8889 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) && 8890 (geo->a[j].flags & LIBIPW_CH_PASSIVE_ONLY)) 8891 continue; 8892 8893 range->freq[i].i = geo->a[j].channel; 8894 range->freq[i].m = geo->a[j].freq * 100000; 8895 range->freq[i].e = 1; 8896 i++; 8897 } 8898 } 8899 8900 range->num_channels = i; 8901 range->num_frequency = i; 8902 8903 mutex_unlock(&priv->mutex); 8904 8905 /* Event capability (kernel + driver) */ 8906 range->event_capa[0] = (IW_EVENT_CAPA_K_0 | 8907 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) | 8908 IW_EVENT_CAPA_MASK(SIOCGIWAP) | 8909 IW_EVENT_CAPA_MASK(SIOCGIWSCAN)); 8910 range->event_capa[1] = IW_EVENT_CAPA_K_1; 8911 8912 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 | 8913 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP; 8914 8915 range->scan_capa = IW_SCAN_CAPA_ESSID | IW_SCAN_CAPA_TYPE; 8916 8917 IPW_DEBUG_WX("GET Range\n"); 8918 return 0; 8919 } 8920 8921 static int ipw_wx_set_wap(struct net_device *dev, 8922 struct iw_request_info *info, 8923 union iwreq_data *wrqu, char *extra) 8924 { 8925 struct ipw_priv *priv = libipw_priv(dev); 8926 8927 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER) 8928 return -EINVAL; 8929 mutex_lock(&priv->mutex); 8930 if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) || 8931 is_zero_ether_addr(wrqu->ap_addr.sa_data)) { 8932 /* we disable mandatory BSSID association */ 8933 IPW_DEBUG_WX("Setting AP BSSID to ANY\n"); 8934 priv->config &= ~CFG_STATIC_BSSID; 8935 IPW_DEBUG_ASSOC("Attempting to associate with new " 8936 "parameters.\n"); 8937 ipw_associate(priv); 8938 mutex_unlock(&priv->mutex); 8939 return 0; 8940 } 8941 8942 priv->config |= CFG_STATIC_BSSID; 8943 if (ether_addr_equal(priv->bssid, wrqu->ap_addr.sa_data)) { 8944 IPW_DEBUG_WX("BSSID set to current BSSID.\n"); 8945 mutex_unlock(&priv->mutex); 8946 return 0; 8947 } 8948 8949 IPW_DEBUG_WX("Setting mandatory BSSID to %pM\n", 8950 wrqu->ap_addr.sa_data); 8951 8952 memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN); 8953 8954 /* Network configuration changed -- force [re]association */ 8955 IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n"); 8956 if (!ipw_disassociate(priv)) 8957 ipw_associate(priv); 8958 8959 mutex_unlock(&priv->mutex); 8960 return 0; 8961 } 8962 8963 static int ipw_wx_get_wap(struct net_device *dev, 8964 struct iw_request_info *info, 8965 union iwreq_data *wrqu, char *extra) 8966 { 8967 struct ipw_priv *priv = libipw_priv(dev); 8968 8969 /* If we are associated, trying to associate, or have a statically 8970 * configured BSSID then return that; otherwise return ANY */ 8971 mutex_lock(&priv->mutex); 8972 if (priv->config & CFG_STATIC_BSSID || 8973 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) { 8974 wrqu->ap_addr.sa_family = ARPHRD_ETHER; 8975 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN); 8976 } else 8977 eth_zero_addr(wrqu->ap_addr.sa_data); 8978 8979 IPW_DEBUG_WX("Getting WAP BSSID: %pM\n", 8980 wrqu->ap_addr.sa_data); 8981 mutex_unlock(&priv->mutex); 8982 return 0; 8983 } 8984 8985 static int ipw_wx_set_essid(struct net_device *dev, 8986 struct iw_request_info *info, 8987 union iwreq_data *wrqu, char *extra) 8988 { 8989 struct ipw_priv *priv = libipw_priv(dev); 8990 int length; 8991 8992 mutex_lock(&priv->mutex); 8993 8994 if (!wrqu->essid.flags) 8995 { 8996 IPW_DEBUG_WX("Setting ESSID to ANY\n"); 8997 ipw_disassociate(priv); 8998 priv->config &= ~CFG_STATIC_ESSID; 8999 ipw_associate(priv); 9000 mutex_unlock(&priv->mutex); 9001 return 0; 9002 } 9003 9004 length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE); 9005 9006 priv->config |= CFG_STATIC_ESSID; 9007 9008 if (priv->essid_len == length && !memcmp(priv->essid, extra, length) 9009 && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) { 9010 IPW_DEBUG_WX("ESSID set to current ESSID.\n"); 9011 mutex_unlock(&priv->mutex); 9012 return 0; 9013 } 9014 9015 IPW_DEBUG_WX("Setting ESSID: '%*pE' (%d)\n", length, extra, length); 9016 9017 priv->essid_len = length; 9018 memcpy(priv->essid, extra, priv->essid_len); 9019 9020 /* Network configuration changed -- force [re]association */ 9021 IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n"); 9022 if (!ipw_disassociate(priv)) 9023 ipw_associate(priv); 9024 9025 mutex_unlock(&priv->mutex); 9026 return 0; 9027 } 9028 9029 static int ipw_wx_get_essid(struct net_device *dev, 9030 struct iw_request_info *info, 9031 union iwreq_data *wrqu, char *extra) 9032 { 9033 struct ipw_priv *priv = libipw_priv(dev); 9034 9035 /* If we are associated, trying to associate, or have a statically 9036 * configured ESSID then return that; otherwise return ANY */ 9037 mutex_lock(&priv->mutex); 9038 if (priv->config & CFG_STATIC_ESSID || 9039 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) { 9040 IPW_DEBUG_WX("Getting essid: '%*pE'\n", 9041 priv->essid_len, priv->essid); 9042 memcpy(extra, priv->essid, priv->essid_len); 9043 wrqu->essid.length = priv->essid_len; 9044 wrqu->essid.flags = 1; /* active */ 9045 } else { 9046 IPW_DEBUG_WX("Getting essid: ANY\n"); 9047 wrqu->essid.length = 0; 9048 wrqu->essid.flags = 0; /* active */ 9049 } 9050 mutex_unlock(&priv->mutex); 9051 return 0; 9052 } 9053 9054 static int ipw_wx_set_nick(struct net_device *dev, 9055 struct iw_request_info *info, 9056 union iwreq_data *wrqu, char *extra) 9057 { 9058 struct ipw_priv *priv = libipw_priv(dev); 9059 9060 IPW_DEBUG_WX("Setting nick to '%s'\n", extra); 9061 if (wrqu->data.length > IW_ESSID_MAX_SIZE) 9062 return -E2BIG; 9063 mutex_lock(&priv->mutex); 9064 wrqu->data.length = min_t(size_t, wrqu->data.length, sizeof(priv->nick)); 9065 memset(priv->nick, 0, sizeof(priv->nick)); 9066 memcpy(priv->nick, extra, wrqu->data.length); 9067 IPW_DEBUG_TRACE("<<\n"); 9068 mutex_unlock(&priv->mutex); 9069 return 0; 9070 9071 } 9072 9073 static int ipw_wx_get_nick(struct net_device *dev, 9074 struct iw_request_info *info, 9075 union iwreq_data *wrqu, char *extra) 9076 { 9077 struct ipw_priv *priv = libipw_priv(dev); 9078 IPW_DEBUG_WX("Getting nick\n"); 9079 mutex_lock(&priv->mutex); 9080 wrqu->data.length = strlen(priv->nick); 9081 memcpy(extra, priv->nick, wrqu->data.length); 9082 wrqu->data.flags = 1; /* active */ 9083 mutex_unlock(&priv->mutex); 9084 return 0; 9085 } 9086 9087 static int ipw_wx_set_sens(struct net_device *dev, 9088 struct iw_request_info *info, 9089 union iwreq_data *wrqu, char *extra) 9090 { 9091 struct ipw_priv *priv = libipw_priv(dev); 9092 int err = 0; 9093 9094 IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value); 9095 IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value); 9096 mutex_lock(&priv->mutex); 9097 9098 if (wrqu->sens.fixed == 0) 9099 { 9100 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT; 9101 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT; 9102 goto out; 9103 } 9104 if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) || 9105 (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) { 9106 err = -EINVAL; 9107 goto out; 9108 } 9109 9110 priv->roaming_threshold = wrqu->sens.value; 9111 priv->disassociate_threshold = 3*wrqu->sens.value; 9112 out: 9113 mutex_unlock(&priv->mutex); 9114 return err; 9115 } 9116 9117 static int ipw_wx_get_sens(struct net_device *dev, 9118 struct iw_request_info *info, 9119 union iwreq_data *wrqu, char *extra) 9120 { 9121 struct ipw_priv *priv = libipw_priv(dev); 9122 mutex_lock(&priv->mutex); 9123 wrqu->sens.fixed = 1; 9124 wrqu->sens.value = priv->roaming_threshold; 9125 mutex_unlock(&priv->mutex); 9126 9127 IPW_DEBUG_WX("GET roaming threshold -> %s %d\n", 9128 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value); 9129 9130 return 0; 9131 } 9132 9133 static int ipw_wx_set_rate(struct net_device *dev, 9134 struct iw_request_info *info, 9135 union iwreq_data *wrqu, char *extra) 9136 { 9137 /* TODO: We should use semaphores or locks for access to priv */ 9138 struct ipw_priv *priv = libipw_priv(dev); 9139 u32 target_rate = wrqu->bitrate.value; 9140 u32 fixed, mask; 9141 9142 /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */ 9143 /* value = X, fixed = 1 means only rate X */ 9144 /* value = X, fixed = 0 means all rates lower equal X */ 9145 9146 if (target_rate == -1) { 9147 fixed = 0; 9148 mask = LIBIPW_DEFAULT_RATES_MASK; 9149 /* Now we should reassociate */ 9150 goto apply; 9151 } 9152 9153 mask = 0; 9154 fixed = wrqu->bitrate.fixed; 9155 9156 if (target_rate == 1000000 || !fixed) 9157 mask |= LIBIPW_CCK_RATE_1MB_MASK; 9158 if (target_rate == 1000000) 9159 goto apply; 9160 9161 if (target_rate == 2000000 || !fixed) 9162 mask |= LIBIPW_CCK_RATE_2MB_MASK; 9163 if (target_rate == 2000000) 9164 goto apply; 9165 9166 if (target_rate == 5500000 || !fixed) 9167 mask |= LIBIPW_CCK_RATE_5MB_MASK; 9168 if (target_rate == 5500000) 9169 goto apply; 9170 9171 if (target_rate == 6000000 || !fixed) 9172 mask |= LIBIPW_OFDM_RATE_6MB_MASK; 9173 if (target_rate == 6000000) 9174 goto apply; 9175 9176 if (target_rate == 9000000 || !fixed) 9177 mask |= LIBIPW_OFDM_RATE_9MB_MASK; 9178 if (target_rate == 9000000) 9179 goto apply; 9180 9181 if (target_rate == 11000000 || !fixed) 9182 mask |= LIBIPW_CCK_RATE_11MB_MASK; 9183 if (target_rate == 11000000) 9184 goto apply; 9185 9186 if (target_rate == 12000000 || !fixed) 9187 mask |= LIBIPW_OFDM_RATE_12MB_MASK; 9188 if (target_rate == 12000000) 9189 goto apply; 9190 9191 if (target_rate == 18000000 || !fixed) 9192 mask |= LIBIPW_OFDM_RATE_18MB_MASK; 9193 if (target_rate == 18000000) 9194 goto apply; 9195 9196 if (target_rate == 24000000 || !fixed) 9197 mask |= LIBIPW_OFDM_RATE_24MB_MASK; 9198 if (target_rate == 24000000) 9199 goto apply; 9200 9201 if (target_rate == 36000000 || !fixed) 9202 mask |= LIBIPW_OFDM_RATE_36MB_MASK; 9203 if (target_rate == 36000000) 9204 goto apply; 9205 9206 if (target_rate == 48000000 || !fixed) 9207 mask |= LIBIPW_OFDM_RATE_48MB_MASK; 9208 if (target_rate == 48000000) 9209 goto apply; 9210 9211 if (target_rate == 54000000 || !fixed) 9212 mask |= LIBIPW_OFDM_RATE_54MB_MASK; 9213 if (target_rate == 54000000) 9214 goto apply; 9215 9216 IPW_DEBUG_WX("invalid rate specified, returning error\n"); 9217 return -EINVAL; 9218 9219 apply: 9220 IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n", 9221 mask, fixed ? "fixed" : "sub-rates"); 9222 mutex_lock(&priv->mutex); 9223 if (mask == LIBIPW_DEFAULT_RATES_MASK) { 9224 priv->config &= ~CFG_FIXED_RATE; 9225 ipw_set_fixed_rate(priv, priv->ieee->mode); 9226 } else 9227 priv->config |= CFG_FIXED_RATE; 9228 9229 if (priv->rates_mask == mask) { 9230 IPW_DEBUG_WX("Mask set to current mask.\n"); 9231 mutex_unlock(&priv->mutex); 9232 return 0; 9233 } 9234 9235 priv->rates_mask = mask; 9236 9237 /* Network configuration changed -- force [re]association */ 9238 IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n"); 9239 if (!ipw_disassociate(priv)) 9240 ipw_associate(priv); 9241 9242 mutex_unlock(&priv->mutex); 9243 return 0; 9244 } 9245 9246 static int ipw_wx_get_rate(struct net_device *dev, 9247 struct iw_request_info *info, 9248 union iwreq_data *wrqu, char *extra) 9249 { 9250 struct ipw_priv *priv = libipw_priv(dev); 9251 mutex_lock(&priv->mutex); 9252 wrqu->bitrate.value = priv->last_rate; 9253 wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0; 9254 mutex_unlock(&priv->mutex); 9255 IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value); 9256 return 0; 9257 } 9258 9259 static int ipw_wx_set_rts(struct net_device *dev, 9260 struct iw_request_info *info, 9261 union iwreq_data *wrqu, char *extra) 9262 { 9263 struct ipw_priv *priv = libipw_priv(dev); 9264 mutex_lock(&priv->mutex); 9265 if (wrqu->rts.disabled || !wrqu->rts.fixed) 9266 priv->rts_threshold = DEFAULT_RTS_THRESHOLD; 9267 else { 9268 if (wrqu->rts.value < MIN_RTS_THRESHOLD || 9269 wrqu->rts.value > MAX_RTS_THRESHOLD) { 9270 mutex_unlock(&priv->mutex); 9271 return -EINVAL; 9272 } 9273 priv->rts_threshold = wrqu->rts.value; 9274 } 9275 9276 ipw_send_rts_threshold(priv, priv->rts_threshold); 9277 mutex_unlock(&priv->mutex); 9278 IPW_DEBUG_WX("SET RTS Threshold -> %d\n", priv->rts_threshold); 9279 return 0; 9280 } 9281 9282 static int ipw_wx_get_rts(struct net_device *dev, 9283 struct iw_request_info *info, 9284 union iwreq_data *wrqu, char *extra) 9285 { 9286 struct ipw_priv *priv = libipw_priv(dev); 9287 mutex_lock(&priv->mutex); 9288 wrqu->rts.value = priv->rts_threshold; 9289 wrqu->rts.fixed = 0; /* no auto select */ 9290 wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD); 9291 mutex_unlock(&priv->mutex); 9292 IPW_DEBUG_WX("GET RTS Threshold -> %d\n", wrqu->rts.value); 9293 return 0; 9294 } 9295 9296 static int ipw_wx_set_txpow(struct net_device *dev, 9297 struct iw_request_info *info, 9298 union iwreq_data *wrqu, char *extra) 9299 { 9300 struct ipw_priv *priv = libipw_priv(dev); 9301 int err = 0; 9302 9303 mutex_lock(&priv->mutex); 9304 if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) { 9305 err = -EINPROGRESS; 9306 goto out; 9307 } 9308 9309 if (!wrqu->power.fixed) 9310 wrqu->power.value = IPW_TX_POWER_DEFAULT; 9311 9312 if (wrqu->power.flags != IW_TXPOW_DBM) { 9313 err = -EINVAL; 9314 goto out; 9315 } 9316 9317 if ((wrqu->power.value > IPW_TX_POWER_MAX) || 9318 (wrqu->power.value < IPW_TX_POWER_MIN)) { 9319 err = -EINVAL; 9320 goto out; 9321 } 9322 9323 priv->tx_power = wrqu->power.value; 9324 err = ipw_set_tx_power(priv); 9325 out: 9326 mutex_unlock(&priv->mutex); 9327 return err; 9328 } 9329 9330 static int ipw_wx_get_txpow(struct net_device *dev, 9331 struct iw_request_info *info, 9332 union iwreq_data *wrqu, char *extra) 9333 { 9334 struct ipw_priv *priv = libipw_priv(dev); 9335 mutex_lock(&priv->mutex); 9336 wrqu->power.value = priv->tx_power; 9337 wrqu->power.fixed = 1; 9338 wrqu->power.flags = IW_TXPOW_DBM; 9339 wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0; 9340 mutex_unlock(&priv->mutex); 9341 9342 IPW_DEBUG_WX("GET TX Power -> %s %d\n", 9343 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value); 9344 9345 return 0; 9346 } 9347 9348 static int ipw_wx_set_frag(struct net_device *dev, 9349 struct iw_request_info *info, 9350 union iwreq_data *wrqu, char *extra) 9351 { 9352 struct ipw_priv *priv = libipw_priv(dev); 9353 mutex_lock(&priv->mutex); 9354 if (wrqu->frag.disabled || !wrqu->frag.fixed) 9355 priv->ieee->fts = DEFAULT_FTS; 9356 else { 9357 if (wrqu->frag.value < MIN_FRAG_THRESHOLD || 9358 wrqu->frag.value > MAX_FRAG_THRESHOLD) { 9359 mutex_unlock(&priv->mutex); 9360 return -EINVAL; 9361 } 9362 9363 priv->ieee->fts = wrqu->frag.value & ~0x1; 9364 } 9365 9366 ipw_send_frag_threshold(priv, wrqu->frag.value); 9367 mutex_unlock(&priv->mutex); 9368 IPW_DEBUG_WX("SET Frag Threshold -> %d\n", wrqu->frag.value); 9369 return 0; 9370 } 9371 9372 static int ipw_wx_get_frag(struct net_device *dev, 9373 struct iw_request_info *info, 9374 union iwreq_data *wrqu, char *extra) 9375 { 9376 struct ipw_priv *priv = libipw_priv(dev); 9377 mutex_lock(&priv->mutex); 9378 wrqu->frag.value = priv->ieee->fts; 9379 wrqu->frag.fixed = 0; /* no auto select */ 9380 wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS); 9381 mutex_unlock(&priv->mutex); 9382 IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value); 9383 9384 return 0; 9385 } 9386 9387 static int ipw_wx_set_retry(struct net_device *dev, 9388 struct iw_request_info *info, 9389 union iwreq_data *wrqu, char *extra) 9390 { 9391 struct ipw_priv *priv = libipw_priv(dev); 9392 9393 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled) 9394 return -EINVAL; 9395 9396 if (!(wrqu->retry.flags & IW_RETRY_LIMIT)) 9397 return 0; 9398 9399 if (wrqu->retry.value < 0 || wrqu->retry.value >= 255) 9400 return -EINVAL; 9401 9402 mutex_lock(&priv->mutex); 9403 if (wrqu->retry.flags & IW_RETRY_SHORT) 9404 priv->short_retry_limit = (u8) wrqu->retry.value; 9405 else if (wrqu->retry.flags & IW_RETRY_LONG) 9406 priv->long_retry_limit = (u8) wrqu->retry.value; 9407 else { 9408 priv->short_retry_limit = (u8) wrqu->retry.value; 9409 priv->long_retry_limit = (u8) wrqu->retry.value; 9410 } 9411 9412 ipw_send_retry_limit(priv, priv->short_retry_limit, 9413 priv->long_retry_limit); 9414 mutex_unlock(&priv->mutex); 9415 IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n", 9416 priv->short_retry_limit, priv->long_retry_limit); 9417 return 0; 9418 } 9419 9420 static int ipw_wx_get_retry(struct net_device *dev, 9421 struct iw_request_info *info, 9422 union iwreq_data *wrqu, char *extra) 9423 { 9424 struct ipw_priv *priv = libipw_priv(dev); 9425 9426 mutex_lock(&priv->mutex); 9427 wrqu->retry.disabled = 0; 9428 9429 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) { 9430 mutex_unlock(&priv->mutex); 9431 return -EINVAL; 9432 } 9433 9434 if (wrqu->retry.flags & IW_RETRY_LONG) { 9435 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG; 9436 wrqu->retry.value = priv->long_retry_limit; 9437 } else if (wrqu->retry.flags & IW_RETRY_SHORT) { 9438 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT; 9439 wrqu->retry.value = priv->short_retry_limit; 9440 } else { 9441 wrqu->retry.flags = IW_RETRY_LIMIT; 9442 wrqu->retry.value = priv->short_retry_limit; 9443 } 9444 mutex_unlock(&priv->mutex); 9445 9446 IPW_DEBUG_WX("GET retry -> %d\n", wrqu->retry.value); 9447 9448 return 0; 9449 } 9450 9451 static int ipw_wx_set_scan(struct net_device *dev, 9452 struct iw_request_info *info, 9453 union iwreq_data *wrqu, char *extra) 9454 { 9455 struct ipw_priv *priv = libipw_priv(dev); 9456 struct iw_scan_req *req = (struct iw_scan_req *)extra; 9457 struct delayed_work *work = NULL; 9458 9459 mutex_lock(&priv->mutex); 9460 9461 priv->user_requested_scan = 1; 9462 9463 if (wrqu->data.length == sizeof(struct iw_scan_req)) { 9464 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) { 9465 int len = min((int)req->essid_len, 9466 (int)sizeof(priv->direct_scan_ssid)); 9467 memcpy(priv->direct_scan_ssid, req->essid, len); 9468 priv->direct_scan_ssid_len = len; 9469 work = &priv->request_direct_scan; 9470 } else if (req->scan_type == IW_SCAN_TYPE_PASSIVE) { 9471 work = &priv->request_passive_scan; 9472 } 9473 } else { 9474 /* Normal active broadcast scan */ 9475 work = &priv->request_scan; 9476 } 9477 9478 mutex_unlock(&priv->mutex); 9479 9480 IPW_DEBUG_WX("Start scan\n"); 9481 9482 schedule_delayed_work(work, 0); 9483 9484 return 0; 9485 } 9486 9487 static int ipw_wx_get_scan(struct net_device *dev, 9488 struct iw_request_info *info, 9489 union iwreq_data *wrqu, char *extra) 9490 { 9491 struct ipw_priv *priv = libipw_priv(dev); 9492 return libipw_wx_get_scan(priv->ieee, info, wrqu, extra); 9493 } 9494 9495 static int ipw_wx_set_encode(struct net_device *dev, 9496 struct iw_request_info *info, 9497 union iwreq_data *wrqu, char *key) 9498 { 9499 struct ipw_priv *priv = libipw_priv(dev); 9500 int ret; 9501 u32 cap = priv->capability; 9502 9503 mutex_lock(&priv->mutex); 9504 ret = libipw_wx_set_encode(priv->ieee, info, wrqu, key); 9505 9506 /* In IBSS mode, we need to notify the firmware to update 9507 * the beacon info after we changed the capability. */ 9508 if (cap != priv->capability && 9509 priv->ieee->iw_mode == IW_MODE_ADHOC && 9510 priv->status & STATUS_ASSOCIATED) 9511 ipw_disassociate(priv); 9512 9513 mutex_unlock(&priv->mutex); 9514 return ret; 9515 } 9516 9517 static int ipw_wx_get_encode(struct net_device *dev, 9518 struct iw_request_info *info, 9519 union iwreq_data *wrqu, char *key) 9520 { 9521 struct ipw_priv *priv = libipw_priv(dev); 9522 return libipw_wx_get_encode(priv->ieee, info, wrqu, key); 9523 } 9524 9525 static int ipw_wx_set_power(struct net_device *dev, 9526 struct iw_request_info *info, 9527 union iwreq_data *wrqu, char *extra) 9528 { 9529 struct ipw_priv *priv = libipw_priv(dev); 9530 int err; 9531 mutex_lock(&priv->mutex); 9532 if (wrqu->power.disabled) { 9533 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode); 9534 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM); 9535 if (err) { 9536 IPW_DEBUG_WX("failed setting power mode.\n"); 9537 mutex_unlock(&priv->mutex); 9538 return err; 9539 } 9540 IPW_DEBUG_WX("SET Power Management Mode -> off\n"); 9541 mutex_unlock(&priv->mutex); 9542 return 0; 9543 } 9544 9545 switch (wrqu->power.flags & IW_POWER_MODE) { 9546 case IW_POWER_ON: /* If not specified */ 9547 case IW_POWER_MODE: /* If set all mask */ 9548 case IW_POWER_ALL_R: /* If explicitly state all */ 9549 break; 9550 default: /* Otherwise we don't support it */ 9551 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n", 9552 wrqu->power.flags); 9553 mutex_unlock(&priv->mutex); 9554 return -EOPNOTSUPP; 9555 } 9556 9557 /* If the user hasn't specified a power management mode yet, default 9558 * to BATTERY */ 9559 if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC) 9560 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY; 9561 else 9562 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode; 9563 9564 err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode)); 9565 if (err) { 9566 IPW_DEBUG_WX("failed setting power mode.\n"); 9567 mutex_unlock(&priv->mutex); 9568 return err; 9569 } 9570 9571 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode); 9572 mutex_unlock(&priv->mutex); 9573 return 0; 9574 } 9575 9576 static int ipw_wx_get_power(struct net_device *dev, 9577 struct iw_request_info *info, 9578 union iwreq_data *wrqu, char *extra) 9579 { 9580 struct ipw_priv *priv = libipw_priv(dev); 9581 mutex_lock(&priv->mutex); 9582 if (!(priv->power_mode & IPW_POWER_ENABLED)) 9583 wrqu->power.disabled = 1; 9584 else 9585 wrqu->power.disabled = 0; 9586 9587 mutex_unlock(&priv->mutex); 9588 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode); 9589 9590 return 0; 9591 } 9592 9593 static int ipw_wx_set_powermode(struct net_device *dev, 9594 struct iw_request_info *info, 9595 union iwreq_data *wrqu, char *extra) 9596 { 9597 struct ipw_priv *priv = libipw_priv(dev); 9598 int mode = *(int *)extra; 9599 int err; 9600 9601 mutex_lock(&priv->mutex); 9602 if ((mode < 1) || (mode > IPW_POWER_LIMIT)) 9603 mode = IPW_POWER_AC; 9604 9605 if (IPW_POWER_LEVEL(priv->power_mode) != mode) { 9606 err = ipw_send_power_mode(priv, mode); 9607 if (err) { 9608 IPW_DEBUG_WX("failed setting power mode.\n"); 9609 mutex_unlock(&priv->mutex); 9610 return err; 9611 } 9612 priv->power_mode = IPW_POWER_ENABLED | mode; 9613 } 9614 mutex_unlock(&priv->mutex); 9615 return 0; 9616 } 9617 9618 #define MAX_WX_STRING 80 9619 static int ipw_wx_get_powermode(struct net_device *dev, 9620 struct iw_request_info *info, 9621 union iwreq_data *wrqu, char *extra) 9622 { 9623 struct ipw_priv *priv = libipw_priv(dev); 9624 int level = IPW_POWER_LEVEL(priv->power_mode); 9625 char *p = extra; 9626 9627 p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level); 9628 9629 switch (level) { 9630 case IPW_POWER_AC: 9631 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)"); 9632 break; 9633 case IPW_POWER_BATTERY: 9634 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)"); 9635 break; 9636 default: 9637 p += snprintf(p, MAX_WX_STRING - (p - extra), 9638 "(Timeout %dms, Period %dms)", 9639 timeout_duration[level - 1] / 1000, 9640 period_duration[level - 1] / 1000); 9641 } 9642 9643 if (!(priv->power_mode & IPW_POWER_ENABLED)) 9644 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF"); 9645 9646 wrqu->data.length = p - extra + 1; 9647 9648 return 0; 9649 } 9650 9651 static int ipw_wx_set_wireless_mode(struct net_device *dev, 9652 struct iw_request_info *info, 9653 union iwreq_data *wrqu, char *extra) 9654 { 9655 struct ipw_priv *priv = libipw_priv(dev); 9656 int mode = *(int *)extra; 9657 u8 band = 0, modulation = 0; 9658 9659 if (mode == 0 || mode & ~IEEE_MODE_MASK) { 9660 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode); 9661 return -EINVAL; 9662 } 9663 mutex_lock(&priv->mutex); 9664 if (priv->adapter == IPW_2915ABG) { 9665 priv->ieee->abg_true = 1; 9666 if (mode & IEEE_A) { 9667 band |= LIBIPW_52GHZ_BAND; 9668 modulation |= LIBIPW_OFDM_MODULATION; 9669 } else 9670 priv->ieee->abg_true = 0; 9671 } else { 9672 if (mode & IEEE_A) { 9673 IPW_WARNING("Attempt to set 2200BG into " 9674 "802.11a mode\n"); 9675 mutex_unlock(&priv->mutex); 9676 return -EINVAL; 9677 } 9678 9679 priv->ieee->abg_true = 0; 9680 } 9681 9682 if (mode & IEEE_B) { 9683 band |= LIBIPW_24GHZ_BAND; 9684 modulation |= LIBIPW_CCK_MODULATION; 9685 } else 9686 priv->ieee->abg_true = 0; 9687 9688 if (mode & IEEE_G) { 9689 band |= LIBIPW_24GHZ_BAND; 9690 modulation |= LIBIPW_OFDM_MODULATION; 9691 } else 9692 priv->ieee->abg_true = 0; 9693 9694 priv->ieee->mode = mode; 9695 priv->ieee->freq_band = band; 9696 priv->ieee->modulation = modulation; 9697 init_supported_rates(priv, &priv->rates); 9698 9699 /* Network configuration changed -- force [re]association */ 9700 IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n"); 9701 if (!ipw_disassociate(priv)) { 9702 ipw_send_supported_rates(priv, &priv->rates); 9703 ipw_associate(priv); 9704 } 9705 9706 /* Update the band LEDs */ 9707 ipw_led_band_on(priv); 9708 9709 IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n", 9710 mode & IEEE_A ? 'a' : '.', 9711 mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.'); 9712 mutex_unlock(&priv->mutex); 9713 return 0; 9714 } 9715 9716 static int ipw_wx_get_wireless_mode(struct net_device *dev, 9717 struct iw_request_info *info, 9718 union iwreq_data *wrqu, char *extra) 9719 { 9720 struct ipw_priv *priv = libipw_priv(dev); 9721 mutex_lock(&priv->mutex); 9722 switch (priv->ieee->mode) { 9723 case IEEE_A: 9724 strncpy(extra, "802.11a (1)", MAX_WX_STRING); 9725 break; 9726 case IEEE_B: 9727 strncpy(extra, "802.11b (2)", MAX_WX_STRING); 9728 break; 9729 case IEEE_A | IEEE_B: 9730 strncpy(extra, "802.11ab (3)", MAX_WX_STRING); 9731 break; 9732 case IEEE_G: 9733 strncpy(extra, "802.11g (4)", MAX_WX_STRING); 9734 break; 9735 case IEEE_A | IEEE_G: 9736 strncpy(extra, "802.11ag (5)", MAX_WX_STRING); 9737 break; 9738 case IEEE_B | IEEE_G: 9739 strncpy(extra, "802.11bg (6)", MAX_WX_STRING); 9740 break; 9741 case IEEE_A | IEEE_B | IEEE_G: 9742 strncpy(extra, "802.11abg (7)", MAX_WX_STRING); 9743 break; 9744 default: 9745 strncpy(extra, "unknown", MAX_WX_STRING); 9746 break; 9747 } 9748 extra[MAX_WX_STRING - 1] = '\0'; 9749 9750 IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra); 9751 9752 wrqu->data.length = strlen(extra) + 1; 9753 mutex_unlock(&priv->mutex); 9754 9755 return 0; 9756 } 9757 9758 static int ipw_wx_set_preamble(struct net_device *dev, 9759 struct iw_request_info *info, 9760 union iwreq_data *wrqu, char *extra) 9761 { 9762 struct ipw_priv *priv = libipw_priv(dev); 9763 int mode = *(int *)extra; 9764 mutex_lock(&priv->mutex); 9765 /* Switching from SHORT -> LONG requires a disassociation */ 9766 if (mode == 1) { 9767 if (!(priv->config & CFG_PREAMBLE_LONG)) { 9768 priv->config |= CFG_PREAMBLE_LONG; 9769 9770 /* Network configuration changed -- force [re]association */ 9771 IPW_DEBUG_ASSOC 9772 ("[re]association triggered due to preamble change.\n"); 9773 if (!ipw_disassociate(priv)) 9774 ipw_associate(priv); 9775 } 9776 goto done; 9777 } 9778 9779 if (mode == 0) { 9780 priv->config &= ~CFG_PREAMBLE_LONG; 9781 goto done; 9782 } 9783 mutex_unlock(&priv->mutex); 9784 return -EINVAL; 9785 9786 done: 9787 mutex_unlock(&priv->mutex); 9788 return 0; 9789 } 9790 9791 static int ipw_wx_get_preamble(struct net_device *dev, 9792 struct iw_request_info *info, 9793 union iwreq_data *wrqu, char *extra) 9794 { 9795 struct ipw_priv *priv = libipw_priv(dev); 9796 mutex_lock(&priv->mutex); 9797 if (priv->config & CFG_PREAMBLE_LONG) 9798 snprintf(wrqu->name, IFNAMSIZ, "long (1)"); 9799 else 9800 snprintf(wrqu->name, IFNAMSIZ, "auto (0)"); 9801 mutex_unlock(&priv->mutex); 9802 return 0; 9803 } 9804 9805 #ifdef CONFIG_IPW2200_MONITOR 9806 static int ipw_wx_set_monitor(struct net_device *dev, 9807 struct iw_request_info *info, 9808 union iwreq_data *wrqu, char *extra) 9809 { 9810 struct ipw_priv *priv = libipw_priv(dev); 9811 int *parms = (int *)extra; 9812 int enable = (parms[0] > 0); 9813 mutex_lock(&priv->mutex); 9814 IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]); 9815 if (enable) { 9816 if (priv->ieee->iw_mode != IW_MODE_MONITOR) { 9817 #ifdef CONFIG_IPW2200_RADIOTAP 9818 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP; 9819 #else 9820 priv->net_dev->type = ARPHRD_IEEE80211; 9821 #endif 9822 schedule_work(&priv->adapter_restart); 9823 } 9824 9825 ipw_set_channel(priv, parms[1]); 9826 } else { 9827 if (priv->ieee->iw_mode != IW_MODE_MONITOR) { 9828 mutex_unlock(&priv->mutex); 9829 return 0; 9830 } 9831 priv->net_dev->type = ARPHRD_ETHER; 9832 schedule_work(&priv->adapter_restart); 9833 } 9834 mutex_unlock(&priv->mutex); 9835 return 0; 9836 } 9837 9838 #endif /* CONFIG_IPW2200_MONITOR */ 9839 9840 static int ipw_wx_reset(struct net_device *dev, 9841 struct iw_request_info *info, 9842 union iwreq_data *wrqu, char *extra) 9843 { 9844 struct ipw_priv *priv = libipw_priv(dev); 9845 IPW_DEBUG_WX("RESET\n"); 9846 schedule_work(&priv->adapter_restart); 9847 return 0; 9848 } 9849 9850 static int ipw_wx_sw_reset(struct net_device *dev, 9851 struct iw_request_info *info, 9852 union iwreq_data *wrqu, char *extra) 9853 { 9854 struct ipw_priv *priv = libipw_priv(dev); 9855 union iwreq_data wrqu_sec = { 9856 .encoding = { 9857 .flags = IW_ENCODE_DISABLED, 9858 }, 9859 }; 9860 int ret; 9861 9862 IPW_DEBUG_WX("SW_RESET\n"); 9863 9864 mutex_lock(&priv->mutex); 9865 9866 ret = ipw_sw_reset(priv, 2); 9867 if (!ret) { 9868 free_firmware(); 9869 ipw_adapter_restart(priv); 9870 } 9871 9872 /* The SW reset bit might have been toggled on by the 'disable' 9873 * module parameter, so take appropriate action */ 9874 ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW); 9875 9876 mutex_unlock(&priv->mutex); 9877 libipw_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL); 9878 mutex_lock(&priv->mutex); 9879 9880 if (!(priv->status & STATUS_RF_KILL_MASK)) { 9881 /* Configuration likely changed -- force [re]association */ 9882 IPW_DEBUG_ASSOC("[re]association triggered due to sw " 9883 "reset.\n"); 9884 if (!ipw_disassociate(priv)) 9885 ipw_associate(priv); 9886 } 9887 9888 mutex_unlock(&priv->mutex); 9889 9890 return 0; 9891 } 9892 9893 /* Rebase the WE IOCTLs to zero for the handler array */ 9894 static iw_handler ipw_wx_handlers[] = { 9895 IW_HANDLER(SIOCGIWNAME, (iw_handler)cfg80211_wext_giwname), 9896 IW_HANDLER(SIOCSIWFREQ, ipw_wx_set_freq), 9897 IW_HANDLER(SIOCGIWFREQ, ipw_wx_get_freq), 9898 IW_HANDLER(SIOCSIWMODE, ipw_wx_set_mode), 9899 IW_HANDLER(SIOCGIWMODE, ipw_wx_get_mode), 9900 IW_HANDLER(SIOCSIWSENS, ipw_wx_set_sens), 9901 IW_HANDLER(SIOCGIWSENS, ipw_wx_get_sens), 9902 IW_HANDLER(SIOCGIWRANGE, ipw_wx_get_range), 9903 IW_HANDLER(SIOCSIWAP, ipw_wx_set_wap), 9904 IW_HANDLER(SIOCGIWAP, ipw_wx_get_wap), 9905 IW_HANDLER(SIOCSIWSCAN, ipw_wx_set_scan), 9906 IW_HANDLER(SIOCGIWSCAN, ipw_wx_get_scan), 9907 IW_HANDLER(SIOCSIWESSID, ipw_wx_set_essid), 9908 IW_HANDLER(SIOCGIWESSID, ipw_wx_get_essid), 9909 IW_HANDLER(SIOCSIWNICKN, ipw_wx_set_nick), 9910 IW_HANDLER(SIOCGIWNICKN, ipw_wx_get_nick), 9911 IW_HANDLER(SIOCSIWRATE, ipw_wx_set_rate), 9912 IW_HANDLER(SIOCGIWRATE, ipw_wx_get_rate), 9913 IW_HANDLER(SIOCSIWRTS, ipw_wx_set_rts), 9914 IW_HANDLER(SIOCGIWRTS, ipw_wx_get_rts), 9915 IW_HANDLER(SIOCSIWFRAG, ipw_wx_set_frag), 9916 IW_HANDLER(SIOCGIWFRAG, ipw_wx_get_frag), 9917 IW_HANDLER(SIOCSIWTXPOW, ipw_wx_set_txpow), 9918 IW_HANDLER(SIOCGIWTXPOW, ipw_wx_get_txpow), 9919 IW_HANDLER(SIOCSIWRETRY, ipw_wx_set_retry), 9920 IW_HANDLER(SIOCGIWRETRY, ipw_wx_get_retry), 9921 IW_HANDLER(SIOCSIWENCODE, ipw_wx_set_encode), 9922 IW_HANDLER(SIOCGIWENCODE, ipw_wx_get_encode), 9923 IW_HANDLER(SIOCSIWPOWER, ipw_wx_set_power), 9924 IW_HANDLER(SIOCGIWPOWER, ipw_wx_get_power), 9925 IW_HANDLER(SIOCSIWSPY, iw_handler_set_spy), 9926 IW_HANDLER(SIOCGIWSPY, iw_handler_get_spy), 9927 IW_HANDLER(SIOCSIWTHRSPY, iw_handler_set_thrspy), 9928 IW_HANDLER(SIOCGIWTHRSPY, iw_handler_get_thrspy), 9929 IW_HANDLER(SIOCSIWGENIE, ipw_wx_set_genie), 9930 IW_HANDLER(SIOCGIWGENIE, ipw_wx_get_genie), 9931 IW_HANDLER(SIOCSIWMLME, ipw_wx_set_mlme), 9932 IW_HANDLER(SIOCSIWAUTH, ipw_wx_set_auth), 9933 IW_HANDLER(SIOCGIWAUTH, ipw_wx_get_auth), 9934 IW_HANDLER(SIOCSIWENCODEEXT, ipw_wx_set_encodeext), 9935 IW_HANDLER(SIOCGIWENCODEEXT, ipw_wx_get_encodeext), 9936 }; 9937 9938 enum { 9939 IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV, 9940 IPW_PRIV_GET_POWER, 9941 IPW_PRIV_SET_MODE, 9942 IPW_PRIV_GET_MODE, 9943 IPW_PRIV_SET_PREAMBLE, 9944 IPW_PRIV_GET_PREAMBLE, 9945 IPW_PRIV_RESET, 9946 IPW_PRIV_SW_RESET, 9947 #ifdef CONFIG_IPW2200_MONITOR 9948 IPW_PRIV_SET_MONITOR, 9949 #endif 9950 }; 9951 9952 static struct iw_priv_args ipw_priv_args[] = { 9953 { 9954 .cmd = IPW_PRIV_SET_POWER, 9955 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 9956 .name = "set_power"}, 9957 { 9958 .cmd = IPW_PRIV_GET_POWER, 9959 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING, 9960 .name = "get_power"}, 9961 { 9962 .cmd = IPW_PRIV_SET_MODE, 9963 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 9964 .name = "set_mode"}, 9965 { 9966 .cmd = IPW_PRIV_GET_MODE, 9967 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING, 9968 .name = "get_mode"}, 9969 { 9970 .cmd = IPW_PRIV_SET_PREAMBLE, 9971 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 9972 .name = "set_preamble"}, 9973 { 9974 .cmd = IPW_PRIV_GET_PREAMBLE, 9975 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, 9976 .name = "get_preamble"}, 9977 { 9978 IPW_PRIV_RESET, 9979 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"}, 9980 { 9981 IPW_PRIV_SW_RESET, 9982 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"}, 9983 #ifdef CONFIG_IPW2200_MONITOR 9984 { 9985 IPW_PRIV_SET_MONITOR, 9986 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"}, 9987 #endif /* CONFIG_IPW2200_MONITOR */ 9988 }; 9989 9990 static iw_handler ipw_priv_handler[] = { 9991 ipw_wx_set_powermode, 9992 ipw_wx_get_powermode, 9993 ipw_wx_set_wireless_mode, 9994 ipw_wx_get_wireless_mode, 9995 ipw_wx_set_preamble, 9996 ipw_wx_get_preamble, 9997 ipw_wx_reset, 9998 ipw_wx_sw_reset, 9999 #ifdef CONFIG_IPW2200_MONITOR 10000 ipw_wx_set_monitor, 10001 #endif 10002 }; 10003 10004 static const struct iw_handler_def ipw_wx_handler_def = { 10005 .standard = ipw_wx_handlers, 10006 .num_standard = ARRAY_SIZE(ipw_wx_handlers), 10007 .num_private = ARRAY_SIZE(ipw_priv_handler), 10008 .num_private_args = ARRAY_SIZE(ipw_priv_args), 10009 .private = ipw_priv_handler, 10010 .private_args = ipw_priv_args, 10011 .get_wireless_stats = ipw_get_wireless_stats, 10012 }; 10013 10014 /* 10015 * Get wireless statistics. 10016 * Called by /proc/net/wireless 10017 * Also called by SIOCGIWSTATS 10018 */ 10019 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev) 10020 { 10021 struct ipw_priv *priv = libipw_priv(dev); 10022 struct iw_statistics *wstats; 10023 10024 wstats = &priv->wstats; 10025 10026 /* if hw is disabled, then ipw_get_ordinal() can't be called. 10027 * netdev->get_wireless_stats seems to be called before fw is 10028 * initialized. STATUS_ASSOCIATED will only be set if the hw is up 10029 * and associated; if not associcated, the values are all meaningless 10030 * anyway, so set them all to NULL and INVALID */ 10031 if (!(priv->status & STATUS_ASSOCIATED)) { 10032 wstats->miss.beacon = 0; 10033 wstats->discard.retries = 0; 10034 wstats->qual.qual = 0; 10035 wstats->qual.level = 0; 10036 wstats->qual.noise = 0; 10037 wstats->qual.updated = 7; 10038 wstats->qual.updated |= IW_QUAL_NOISE_INVALID | 10039 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID; 10040 return wstats; 10041 } 10042 10043 wstats->qual.qual = priv->quality; 10044 wstats->qual.level = priv->exp_avg_rssi; 10045 wstats->qual.noise = priv->exp_avg_noise; 10046 wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED | 10047 IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM; 10048 10049 wstats->miss.beacon = average_value(&priv->average_missed_beacons); 10050 wstats->discard.retries = priv->last_tx_failures; 10051 wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable; 10052 10053 /* if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len)) 10054 goto fail_get_ordinal; 10055 wstats->discard.retries += tx_retry; */ 10056 10057 return wstats; 10058 } 10059 10060 /* net device stuff */ 10061 10062 static void init_sys_config(struct ipw_sys_config *sys_config) 10063 { 10064 memset(sys_config, 0, sizeof(struct ipw_sys_config)); 10065 sys_config->bt_coexistence = 0; 10066 sys_config->answer_broadcast_ssid_probe = 0; 10067 sys_config->accept_all_data_frames = 0; 10068 sys_config->accept_non_directed_frames = 1; 10069 sys_config->exclude_unicast_unencrypted = 0; 10070 sys_config->disable_unicast_decryption = 1; 10071 sys_config->exclude_multicast_unencrypted = 0; 10072 sys_config->disable_multicast_decryption = 1; 10073 if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B) 10074 antenna = CFG_SYS_ANTENNA_BOTH; 10075 sys_config->antenna_diversity = antenna; 10076 sys_config->pass_crc_to_host = 0; /* TODO: See if 1 gives us FCS */ 10077 sys_config->dot11g_auto_detection = 0; 10078 sys_config->enable_cts_to_self = 0; 10079 sys_config->bt_coexist_collision_thr = 0; 10080 sys_config->pass_noise_stats_to_host = 1; /* 1 -- fix for 256 */ 10081 sys_config->silence_threshold = 0x1e; 10082 } 10083 10084 static int ipw_net_open(struct net_device *dev) 10085 { 10086 IPW_DEBUG_INFO("dev->open\n"); 10087 netif_start_queue(dev); 10088 return 0; 10089 } 10090 10091 static int ipw_net_stop(struct net_device *dev) 10092 { 10093 IPW_DEBUG_INFO("dev->close\n"); 10094 netif_stop_queue(dev); 10095 return 0; 10096 } 10097 10098 /* 10099 todo: 10100 10101 modify to send one tfd per fragment instead of using chunking. otherwise 10102 we need to heavily modify the libipw_skb_to_txb. 10103 */ 10104 10105 static int ipw_tx_skb(struct ipw_priv *priv, struct libipw_txb *txb, 10106 int pri) 10107 { 10108 struct libipw_hdr_3addrqos *hdr = (struct libipw_hdr_3addrqos *) 10109 txb->fragments[0]->data; 10110 int i = 0; 10111 struct tfd_frame *tfd; 10112 #ifdef CONFIG_IPW2200_QOS 10113 int tx_id = ipw_get_tx_queue_number(priv, pri); 10114 struct clx2_tx_queue *txq = &priv->txq[tx_id]; 10115 #else 10116 struct clx2_tx_queue *txq = &priv->txq[0]; 10117 #endif 10118 struct clx2_queue *q = &txq->q; 10119 u8 id, hdr_len, unicast; 10120 int fc; 10121 10122 if (!(priv->status & STATUS_ASSOCIATED)) 10123 goto drop; 10124 10125 hdr_len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_ctl)); 10126 switch (priv->ieee->iw_mode) { 10127 case IW_MODE_ADHOC: 10128 unicast = !is_multicast_ether_addr(hdr->addr1); 10129 id = ipw_find_station(priv, hdr->addr1); 10130 if (id == IPW_INVALID_STATION) { 10131 id = ipw_add_station(priv, hdr->addr1); 10132 if (id == IPW_INVALID_STATION) { 10133 IPW_WARNING("Attempt to send data to " 10134 "invalid cell: %pM\n", 10135 hdr->addr1); 10136 goto drop; 10137 } 10138 } 10139 break; 10140 10141 case IW_MODE_INFRA: 10142 default: 10143 unicast = !is_multicast_ether_addr(hdr->addr3); 10144 id = 0; 10145 break; 10146 } 10147 10148 tfd = &txq->bd[q->first_empty]; 10149 txq->txb[q->first_empty] = txb; 10150 memset(tfd, 0, sizeof(*tfd)); 10151 tfd->u.data.station_number = id; 10152 10153 tfd->control_flags.message_type = TX_FRAME_TYPE; 10154 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK; 10155 10156 tfd->u.data.cmd_id = DINO_CMD_TX; 10157 tfd->u.data.len = cpu_to_le16(txb->payload_size); 10158 10159 if (priv->assoc_request.ieee_mode == IPW_B_MODE) 10160 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK; 10161 else 10162 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM; 10163 10164 if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE) 10165 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE; 10166 10167 fc = le16_to_cpu(hdr->frame_ctl); 10168 hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS); 10169 10170 memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len); 10171 10172 if (likely(unicast)) 10173 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD; 10174 10175 if (txb->encrypted && !priv->ieee->host_encrypt) { 10176 switch (priv->ieee->sec.level) { 10177 case SEC_LEVEL_3: 10178 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |= 10179 cpu_to_le16(IEEE80211_FCTL_PROTECTED); 10180 /* XXX: ACK flag must be set for CCMP even if it 10181 * is a multicast/broadcast packet, because CCMP 10182 * group communication encrypted by GTK is 10183 * actually done by the AP. */ 10184 if (!unicast) 10185 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD; 10186 10187 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP; 10188 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM; 10189 tfd->u.data.key_index = 0; 10190 tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE; 10191 break; 10192 case SEC_LEVEL_2: 10193 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |= 10194 cpu_to_le16(IEEE80211_FCTL_PROTECTED); 10195 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP; 10196 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP; 10197 tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE; 10198 break; 10199 case SEC_LEVEL_1: 10200 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |= 10201 cpu_to_le16(IEEE80211_FCTL_PROTECTED); 10202 tfd->u.data.key_index = priv->ieee->crypt_info.tx_keyidx; 10203 if (priv->ieee->sec.key_sizes[priv->ieee->crypt_info.tx_keyidx] <= 10204 40) 10205 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit; 10206 else 10207 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit; 10208 break; 10209 case SEC_LEVEL_0: 10210 break; 10211 default: 10212 printk(KERN_ERR "Unknown security level %d\n", 10213 priv->ieee->sec.level); 10214 break; 10215 } 10216 } else 10217 /* No hardware encryption */ 10218 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP; 10219 10220 #ifdef CONFIG_IPW2200_QOS 10221 if (fc & IEEE80211_STYPE_QOS_DATA) 10222 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data)); 10223 #endif /* CONFIG_IPW2200_QOS */ 10224 10225 /* payload */ 10226 tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2), 10227 txb->nr_frags)); 10228 IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n", 10229 txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks)); 10230 for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) { 10231 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n", 10232 i, le32_to_cpu(tfd->u.data.num_chunks), 10233 txb->fragments[i]->len - hdr_len); 10234 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n", 10235 i, tfd->u.data.num_chunks, 10236 txb->fragments[i]->len - hdr_len); 10237 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len, 10238 txb->fragments[i]->len - hdr_len); 10239 10240 tfd->u.data.chunk_ptr[i] = 10241 cpu_to_le32(pci_map_single 10242 (priv->pci_dev, 10243 txb->fragments[i]->data + hdr_len, 10244 txb->fragments[i]->len - hdr_len, 10245 PCI_DMA_TODEVICE)); 10246 tfd->u.data.chunk_len[i] = 10247 cpu_to_le16(txb->fragments[i]->len - hdr_len); 10248 } 10249 10250 if (i != txb->nr_frags) { 10251 struct sk_buff *skb; 10252 u16 remaining_bytes = 0; 10253 int j; 10254 10255 for (j = i; j < txb->nr_frags; j++) 10256 remaining_bytes += txb->fragments[j]->len - hdr_len; 10257 10258 printk(KERN_INFO "Trying to reallocate for %d bytes\n", 10259 remaining_bytes); 10260 skb = alloc_skb(remaining_bytes, GFP_ATOMIC); 10261 if (skb != NULL) { 10262 tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes); 10263 for (j = i; j < txb->nr_frags; j++) { 10264 int size = txb->fragments[j]->len - hdr_len; 10265 10266 printk(KERN_INFO "Adding frag %d %d...\n", 10267 j, size); 10268 skb_put_data(skb, 10269 txb->fragments[j]->data + hdr_len, 10270 size); 10271 } 10272 dev_kfree_skb_any(txb->fragments[i]); 10273 txb->fragments[i] = skb; 10274 tfd->u.data.chunk_ptr[i] = 10275 cpu_to_le32(pci_map_single 10276 (priv->pci_dev, skb->data, 10277 remaining_bytes, 10278 PCI_DMA_TODEVICE)); 10279 10280 le32_add_cpu(&tfd->u.data.num_chunks, 1); 10281 } 10282 } 10283 10284 /* kick DMA */ 10285 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd); 10286 ipw_write32(priv, q->reg_w, q->first_empty); 10287 10288 if (ipw_tx_queue_space(q) < q->high_mark) 10289 netif_stop_queue(priv->net_dev); 10290 10291 return NETDEV_TX_OK; 10292 10293 drop: 10294 IPW_DEBUG_DROP("Silently dropping Tx packet.\n"); 10295 libipw_txb_free(txb); 10296 return NETDEV_TX_OK; 10297 } 10298 10299 static int ipw_net_is_queue_full(struct net_device *dev, int pri) 10300 { 10301 struct ipw_priv *priv = libipw_priv(dev); 10302 #ifdef CONFIG_IPW2200_QOS 10303 int tx_id = ipw_get_tx_queue_number(priv, pri); 10304 struct clx2_tx_queue *txq = &priv->txq[tx_id]; 10305 #else 10306 struct clx2_tx_queue *txq = &priv->txq[0]; 10307 #endif /* CONFIG_IPW2200_QOS */ 10308 10309 if (ipw_tx_queue_space(&txq->q) < txq->q.high_mark) 10310 return 1; 10311 10312 return 0; 10313 } 10314 10315 #ifdef CONFIG_IPW2200_PROMISCUOUS 10316 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv, 10317 struct libipw_txb *txb) 10318 { 10319 struct libipw_rx_stats dummystats; 10320 struct ieee80211_hdr *hdr; 10321 u8 n; 10322 u16 filter = priv->prom_priv->filter; 10323 int hdr_only = 0; 10324 10325 if (filter & IPW_PROM_NO_TX) 10326 return; 10327 10328 memset(&dummystats, 0, sizeof(dummystats)); 10329 10330 /* Filtering of fragment chains is done against the first fragment */ 10331 hdr = (void *)txb->fragments[0]->data; 10332 if (libipw_is_management(le16_to_cpu(hdr->frame_control))) { 10333 if (filter & IPW_PROM_NO_MGMT) 10334 return; 10335 if (filter & IPW_PROM_MGMT_HEADER_ONLY) 10336 hdr_only = 1; 10337 } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) { 10338 if (filter & IPW_PROM_NO_CTL) 10339 return; 10340 if (filter & IPW_PROM_CTL_HEADER_ONLY) 10341 hdr_only = 1; 10342 } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) { 10343 if (filter & IPW_PROM_NO_DATA) 10344 return; 10345 if (filter & IPW_PROM_DATA_HEADER_ONLY) 10346 hdr_only = 1; 10347 } 10348 10349 for(n=0; n<txb->nr_frags; ++n) { 10350 struct sk_buff *src = txb->fragments[n]; 10351 struct sk_buff *dst; 10352 struct ieee80211_radiotap_header *rt_hdr; 10353 int len; 10354 10355 if (hdr_only) { 10356 hdr = (void *)src->data; 10357 len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control)); 10358 } else 10359 len = src->len; 10360 10361 dst = alloc_skb(len + sizeof(*rt_hdr) + sizeof(u16)*2, GFP_ATOMIC); 10362 if (!dst) 10363 continue; 10364 10365 rt_hdr = skb_put(dst, sizeof(*rt_hdr)); 10366 10367 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION; 10368 rt_hdr->it_pad = 0; 10369 rt_hdr->it_present = 0; /* after all, it's just an idea */ 10370 rt_hdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_CHANNEL); 10371 10372 *(__le16*)skb_put(dst, sizeof(u16)) = cpu_to_le16( 10373 ieee80211chan2mhz(priv->channel)); 10374 if (priv->channel > 14) /* 802.11a */ 10375 *(__le16*)skb_put(dst, sizeof(u16)) = 10376 cpu_to_le16(IEEE80211_CHAN_OFDM | 10377 IEEE80211_CHAN_5GHZ); 10378 else if (priv->ieee->mode == IEEE_B) /* 802.11b */ 10379 *(__le16*)skb_put(dst, sizeof(u16)) = 10380 cpu_to_le16(IEEE80211_CHAN_CCK | 10381 IEEE80211_CHAN_2GHZ); 10382 else /* 802.11g */ 10383 *(__le16*)skb_put(dst, sizeof(u16)) = 10384 cpu_to_le16(IEEE80211_CHAN_OFDM | 10385 IEEE80211_CHAN_2GHZ); 10386 10387 rt_hdr->it_len = cpu_to_le16(dst->len); 10388 10389 skb_copy_from_linear_data(src, skb_put(dst, len), len); 10390 10391 if (!libipw_rx(priv->prom_priv->ieee, dst, &dummystats)) 10392 dev_kfree_skb_any(dst); 10393 } 10394 } 10395 #endif 10396 10397 static netdev_tx_t ipw_net_hard_start_xmit(struct libipw_txb *txb, 10398 struct net_device *dev, int pri) 10399 { 10400 struct ipw_priv *priv = libipw_priv(dev); 10401 unsigned long flags; 10402 netdev_tx_t ret; 10403 10404 IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size); 10405 spin_lock_irqsave(&priv->lock, flags); 10406 10407 #ifdef CONFIG_IPW2200_PROMISCUOUS 10408 if (rtap_iface && netif_running(priv->prom_net_dev)) 10409 ipw_handle_promiscuous_tx(priv, txb); 10410 #endif 10411 10412 ret = ipw_tx_skb(priv, txb, pri); 10413 if (ret == NETDEV_TX_OK) 10414 __ipw_led_activity_on(priv); 10415 spin_unlock_irqrestore(&priv->lock, flags); 10416 10417 return ret; 10418 } 10419 10420 static void ipw_net_set_multicast_list(struct net_device *dev) 10421 { 10422 10423 } 10424 10425 static int ipw_net_set_mac_address(struct net_device *dev, void *p) 10426 { 10427 struct ipw_priv *priv = libipw_priv(dev); 10428 struct sockaddr *addr = p; 10429 10430 if (!is_valid_ether_addr(addr->sa_data)) 10431 return -EADDRNOTAVAIL; 10432 mutex_lock(&priv->mutex); 10433 priv->config |= CFG_CUSTOM_MAC; 10434 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN); 10435 printk(KERN_INFO "%s: Setting MAC to %pM\n", 10436 priv->net_dev->name, priv->mac_addr); 10437 schedule_work(&priv->adapter_restart); 10438 mutex_unlock(&priv->mutex); 10439 return 0; 10440 } 10441 10442 static void ipw_ethtool_get_drvinfo(struct net_device *dev, 10443 struct ethtool_drvinfo *info) 10444 { 10445 struct ipw_priv *p = libipw_priv(dev); 10446 char vers[64]; 10447 char date[32]; 10448 u32 len; 10449 10450 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 10451 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 10452 10453 len = sizeof(vers); 10454 ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len); 10455 len = sizeof(date); 10456 ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len); 10457 10458 snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)", 10459 vers, date); 10460 strlcpy(info->bus_info, pci_name(p->pci_dev), 10461 sizeof(info->bus_info)); 10462 } 10463 10464 static u32 ipw_ethtool_get_link(struct net_device *dev) 10465 { 10466 struct ipw_priv *priv = libipw_priv(dev); 10467 return (priv->status & STATUS_ASSOCIATED) != 0; 10468 } 10469 10470 static int ipw_ethtool_get_eeprom_len(struct net_device *dev) 10471 { 10472 return IPW_EEPROM_IMAGE_SIZE; 10473 } 10474 10475 static int ipw_ethtool_get_eeprom(struct net_device *dev, 10476 struct ethtool_eeprom *eeprom, u8 * bytes) 10477 { 10478 struct ipw_priv *p = libipw_priv(dev); 10479 10480 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE) 10481 return -EINVAL; 10482 mutex_lock(&p->mutex); 10483 memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len); 10484 mutex_unlock(&p->mutex); 10485 return 0; 10486 } 10487 10488 static int ipw_ethtool_set_eeprom(struct net_device *dev, 10489 struct ethtool_eeprom *eeprom, u8 * bytes) 10490 { 10491 struct ipw_priv *p = libipw_priv(dev); 10492 int i; 10493 10494 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE) 10495 return -EINVAL; 10496 mutex_lock(&p->mutex); 10497 memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len); 10498 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++) 10499 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]); 10500 mutex_unlock(&p->mutex); 10501 return 0; 10502 } 10503 10504 static const struct ethtool_ops ipw_ethtool_ops = { 10505 .get_link = ipw_ethtool_get_link, 10506 .get_drvinfo = ipw_ethtool_get_drvinfo, 10507 .get_eeprom_len = ipw_ethtool_get_eeprom_len, 10508 .get_eeprom = ipw_ethtool_get_eeprom, 10509 .set_eeprom = ipw_ethtool_set_eeprom, 10510 }; 10511 10512 static irqreturn_t ipw_isr(int irq, void *data) 10513 { 10514 struct ipw_priv *priv = data; 10515 u32 inta, inta_mask; 10516 10517 if (!priv) 10518 return IRQ_NONE; 10519 10520 spin_lock(&priv->irq_lock); 10521 10522 if (!(priv->status & STATUS_INT_ENABLED)) { 10523 /* IRQ is disabled */ 10524 goto none; 10525 } 10526 10527 inta = ipw_read32(priv, IPW_INTA_RW); 10528 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R); 10529 10530 if (inta == 0xFFFFFFFF) { 10531 /* Hardware disappeared */ 10532 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n"); 10533 goto none; 10534 } 10535 10536 if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) { 10537 /* Shared interrupt */ 10538 goto none; 10539 } 10540 10541 /* tell the device to stop sending interrupts */ 10542 __ipw_disable_interrupts(priv); 10543 10544 /* ack current interrupts */ 10545 inta &= (IPW_INTA_MASK_ALL & inta_mask); 10546 ipw_write32(priv, IPW_INTA_RW, inta); 10547 10548 /* Cache INTA value for our tasklet */ 10549 priv->isr_inta = inta; 10550 10551 tasklet_schedule(&priv->irq_tasklet); 10552 10553 spin_unlock(&priv->irq_lock); 10554 10555 return IRQ_HANDLED; 10556 none: 10557 spin_unlock(&priv->irq_lock); 10558 return IRQ_NONE; 10559 } 10560 10561 static void ipw_rf_kill(void *adapter) 10562 { 10563 struct ipw_priv *priv = adapter; 10564 unsigned long flags; 10565 10566 spin_lock_irqsave(&priv->lock, flags); 10567 10568 if (rf_kill_active(priv)) { 10569 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n"); 10570 schedule_delayed_work(&priv->rf_kill, 2 * HZ); 10571 goto exit_unlock; 10572 } 10573 10574 /* RF Kill is now disabled, so bring the device back up */ 10575 10576 if (!(priv->status & STATUS_RF_KILL_MASK)) { 10577 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting " 10578 "device\n"); 10579 10580 /* we can not do an adapter restart while inside an irq lock */ 10581 schedule_work(&priv->adapter_restart); 10582 } else 10583 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still " 10584 "enabled\n"); 10585 10586 exit_unlock: 10587 spin_unlock_irqrestore(&priv->lock, flags); 10588 } 10589 10590 static void ipw_bg_rf_kill(struct work_struct *work) 10591 { 10592 struct ipw_priv *priv = 10593 container_of(work, struct ipw_priv, rf_kill.work); 10594 mutex_lock(&priv->mutex); 10595 ipw_rf_kill(priv); 10596 mutex_unlock(&priv->mutex); 10597 } 10598 10599 static void ipw_link_up(struct ipw_priv *priv) 10600 { 10601 priv->last_seq_num = -1; 10602 priv->last_frag_num = -1; 10603 priv->last_packet_time = 0; 10604 10605 netif_carrier_on(priv->net_dev); 10606 10607 cancel_delayed_work(&priv->request_scan); 10608 cancel_delayed_work(&priv->request_direct_scan); 10609 cancel_delayed_work(&priv->request_passive_scan); 10610 cancel_delayed_work(&priv->scan_event); 10611 ipw_reset_stats(priv); 10612 /* Ensure the rate is updated immediately */ 10613 priv->last_rate = ipw_get_current_rate(priv); 10614 ipw_gather_stats(priv); 10615 ipw_led_link_up(priv); 10616 notify_wx_assoc_event(priv); 10617 10618 if (priv->config & CFG_BACKGROUND_SCAN) 10619 schedule_delayed_work(&priv->request_scan, HZ); 10620 } 10621 10622 static void ipw_bg_link_up(struct work_struct *work) 10623 { 10624 struct ipw_priv *priv = 10625 container_of(work, struct ipw_priv, link_up); 10626 mutex_lock(&priv->mutex); 10627 ipw_link_up(priv); 10628 mutex_unlock(&priv->mutex); 10629 } 10630 10631 static void ipw_link_down(struct ipw_priv *priv) 10632 { 10633 ipw_led_link_down(priv); 10634 netif_carrier_off(priv->net_dev); 10635 notify_wx_assoc_event(priv); 10636 10637 /* Cancel any queued work ... */ 10638 cancel_delayed_work(&priv->request_scan); 10639 cancel_delayed_work(&priv->request_direct_scan); 10640 cancel_delayed_work(&priv->request_passive_scan); 10641 cancel_delayed_work(&priv->adhoc_check); 10642 cancel_delayed_work(&priv->gather_stats); 10643 10644 ipw_reset_stats(priv); 10645 10646 if (!(priv->status & STATUS_EXIT_PENDING)) { 10647 /* Queue up another scan... */ 10648 schedule_delayed_work(&priv->request_scan, 0); 10649 } else 10650 cancel_delayed_work(&priv->scan_event); 10651 } 10652 10653 static void ipw_bg_link_down(struct work_struct *work) 10654 { 10655 struct ipw_priv *priv = 10656 container_of(work, struct ipw_priv, link_down); 10657 mutex_lock(&priv->mutex); 10658 ipw_link_down(priv); 10659 mutex_unlock(&priv->mutex); 10660 } 10661 10662 static int ipw_setup_deferred_work(struct ipw_priv *priv) 10663 { 10664 int ret = 0; 10665 10666 init_waitqueue_head(&priv->wait_command_queue); 10667 init_waitqueue_head(&priv->wait_state); 10668 10669 INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check); 10670 INIT_WORK(&priv->associate, ipw_bg_associate); 10671 INIT_WORK(&priv->disassociate, ipw_bg_disassociate); 10672 INIT_WORK(&priv->system_config, ipw_system_config); 10673 INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish); 10674 INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart); 10675 INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill); 10676 INIT_WORK(&priv->up, ipw_bg_up); 10677 INIT_WORK(&priv->down, ipw_bg_down); 10678 INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan); 10679 INIT_DELAYED_WORK(&priv->request_direct_scan, ipw_request_direct_scan); 10680 INIT_DELAYED_WORK(&priv->request_passive_scan, ipw_request_passive_scan); 10681 INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event); 10682 INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats); 10683 INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan); 10684 INIT_WORK(&priv->roam, ipw_bg_roam); 10685 INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check); 10686 INIT_WORK(&priv->link_up, ipw_bg_link_up); 10687 INIT_WORK(&priv->link_down, ipw_bg_link_down); 10688 INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on); 10689 INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off); 10690 INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off); 10691 INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network); 10692 10693 #ifdef CONFIG_IPW2200_QOS 10694 INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate); 10695 #endif /* CONFIG_IPW2200_QOS */ 10696 10697 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long)) 10698 ipw_irq_tasklet, (unsigned long)priv); 10699 10700 return ret; 10701 } 10702 10703 static void shim__set_security(struct net_device *dev, 10704 struct libipw_security *sec) 10705 { 10706 struct ipw_priv *priv = libipw_priv(dev); 10707 int i; 10708 for (i = 0; i < 4; i++) { 10709 if (sec->flags & (1 << i)) { 10710 priv->ieee->sec.encode_alg[i] = sec->encode_alg[i]; 10711 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i]; 10712 if (sec->key_sizes[i] == 0) 10713 priv->ieee->sec.flags &= ~(1 << i); 10714 else { 10715 memcpy(priv->ieee->sec.keys[i], sec->keys[i], 10716 sec->key_sizes[i]); 10717 priv->ieee->sec.flags |= (1 << i); 10718 } 10719 priv->status |= STATUS_SECURITY_UPDATED; 10720 } else if (sec->level != SEC_LEVEL_1) 10721 priv->ieee->sec.flags &= ~(1 << i); 10722 } 10723 10724 if (sec->flags & SEC_ACTIVE_KEY) { 10725 priv->ieee->sec.active_key = sec->active_key; 10726 priv->ieee->sec.flags |= SEC_ACTIVE_KEY; 10727 priv->status |= STATUS_SECURITY_UPDATED; 10728 } else 10729 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY; 10730 10731 if ((sec->flags & SEC_AUTH_MODE) && 10732 (priv->ieee->sec.auth_mode != sec->auth_mode)) { 10733 priv->ieee->sec.auth_mode = sec->auth_mode; 10734 priv->ieee->sec.flags |= SEC_AUTH_MODE; 10735 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY) 10736 priv->capability |= CAP_SHARED_KEY; 10737 else 10738 priv->capability &= ~CAP_SHARED_KEY; 10739 priv->status |= STATUS_SECURITY_UPDATED; 10740 } 10741 10742 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) { 10743 priv->ieee->sec.flags |= SEC_ENABLED; 10744 priv->ieee->sec.enabled = sec->enabled; 10745 priv->status |= STATUS_SECURITY_UPDATED; 10746 if (sec->enabled) 10747 priv->capability |= CAP_PRIVACY_ON; 10748 else 10749 priv->capability &= ~CAP_PRIVACY_ON; 10750 } 10751 10752 if (sec->flags & SEC_ENCRYPT) 10753 priv->ieee->sec.encrypt = sec->encrypt; 10754 10755 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) { 10756 priv->ieee->sec.level = sec->level; 10757 priv->ieee->sec.flags |= SEC_LEVEL; 10758 priv->status |= STATUS_SECURITY_UPDATED; 10759 } 10760 10761 if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT)) 10762 ipw_set_hwcrypto_keys(priv); 10763 10764 /* To match current functionality of ipw2100 (which works well w/ 10765 * various supplicants, we don't force a disassociate if the 10766 * privacy capability changes ... */ 10767 #if 0 10768 if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) && 10769 (((priv->assoc_request.capability & 10770 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && !sec->enabled) || 10771 (!(priv->assoc_request.capability & 10772 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && sec->enabled))) { 10773 IPW_DEBUG_ASSOC("Disassociating due to capability " 10774 "change.\n"); 10775 ipw_disassociate(priv); 10776 } 10777 #endif 10778 } 10779 10780 static int init_supported_rates(struct ipw_priv *priv, 10781 struct ipw_supported_rates *rates) 10782 { 10783 /* TODO: Mask out rates based on priv->rates_mask */ 10784 10785 memset(rates, 0, sizeof(*rates)); 10786 /* configure supported rates */ 10787 switch (priv->ieee->freq_band) { 10788 case LIBIPW_52GHZ_BAND: 10789 rates->ieee_mode = IPW_A_MODE; 10790 rates->purpose = IPW_RATE_CAPABILITIES; 10791 ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION, 10792 LIBIPW_OFDM_DEFAULT_RATES_MASK); 10793 break; 10794 10795 default: /* Mixed or 2.4Ghz */ 10796 rates->ieee_mode = IPW_G_MODE; 10797 rates->purpose = IPW_RATE_CAPABILITIES; 10798 ipw_add_cck_scan_rates(rates, LIBIPW_CCK_MODULATION, 10799 LIBIPW_CCK_DEFAULT_RATES_MASK); 10800 if (priv->ieee->modulation & LIBIPW_OFDM_MODULATION) { 10801 ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION, 10802 LIBIPW_OFDM_DEFAULT_RATES_MASK); 10803 } 10804 break; 10805 } 10806 10807 return 0; 10808 } 10809 10810 static int ipw_config(struct ipw_priv *priv) 10811 { 10812 /* This is only called from ipw_up, which resets/reloads the firmware 10813 so, we don't need to first disable the card before we configure 10814 it */ 10815 if (ipw_set_tx_power(priv)) 10816 goto error; 10817 10818 /* initialize adapter address */ 10819 if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr)) 10820 goto error; 10821 10822 /* set basic system config settings */ 10823 init_sys_config(&priv->sys_config); 10824 10825 /* Support Bluetooth if we have BT h/w on board, and user wants to. 10826 * Does not support BT priority yet (don't abort or defer our Tx) */ 10827 if (bt_coexist) { 10828 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY]; 10829 10830 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG) 10831 priv->sys_config.bt_coexistence 10832 |= CFG_BT_COEXISTENCE_SIGNAL_CHNL; 10833 if (bt_caps & EEPROM_SKU_CAP_BT_OOB) 10834 priv->sys_config.bt_coexistence 10835 |= CFG_BT_COEXISTENCE_OOB; 10836 } 10837 10838 #ifdef CONFIG_IPW2200_PROMISCUOUS 10839 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) { 10840 priv->sys_config.accept_all_data_frames = 1; 10841 priv->sys_config.accept_non_directed_frames = 1; 10842 priv->sys_config.accept_all_mgmt_bcpr = 1; 10843 priv->sys_config.accept_all_mgmt_frames = 1; 10844 } 10845 #endif 10846 10847 if (priv->ieee->iw_mode == IW_MODE_ADHOC) 10848 priv->sys_config.answer_broadcast_ssid_probe = 1; 10849 else 10850 priv->sys_config.answer_broadcast_ssid_probe = 0; 10851 10852 if (ipw_send_system_config(priv)) 10853 goto error; 10854 10855 init_supported_rates(priv, &priv->rates); 10856 if (ipw_send_supported_rates(priv, &priv->rates)) 10857 goto error; 10858 10859 /* Set request-to-send threshold */ 10860 if (priv->rts_threshold) { 10861 if (ipw_send_rts_threshold(priv, priv->rts_threshold)) 10862 goto error; 10863 } 10864 #ifdef CONFIG_IPW2200_QOS 10865 IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n"); 10866 ipw_qos_activate(priv, NULL); 10867 #endif /* CONFIG_IPW2200_QOS */ 10868 10869 if (ipw_set_random_seed(priv)) 10870 goto error; 10871 10872 /* final state transition to the RUN state */ 10873 if (ipw_send_host_complete(priv)) 10874 goto error; 10875 10876 priv->status |= STATUS_INIT; 10877 10878 ipw_led_init(priv); 10879 ipw_led_radio_on(priv); 10880 priv->notif_missed_beacons = 0; 10881 10882 /* Set hardware WEP key if it is configured. */ 10883 if ((priv->capability & CAP_PRIVACY_ON) && 10884 (priv->ieee->sec.level == SEC_LEVEL_1) && 10885 !(priv->ieee->host_encrypt || priv->ieee->host_decrypt)) 10886 ipw_set_hwcrypto_keys(priv); 10887 10888 return 0; 10889 10890 error: 10891 return -EIO; 10892 } 10893 10894 /* 10895 * NOTE: 10896 * 10897 * These tables have been tested in conjunction with the 10898 * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters. 10899 * 10900 * Altering this values, using it on other hardware, or in geographies 10901 * not intended for resale of the above mentioned Intel adapters has 10902 * not been tested. 10903 * 10904 * Remember to update the table in README.ipw2200 when changing this 10905 * table. 10906 * 10907 */ 10908 static const struct libipw_geo ipw_geos[] = { 10909 { /* Restricted */ 10910 "---", 10911 .bg_channels = 11, 10912 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 10913 {2427, 4}, {2432, 5}, {2437, 6}, 10914 {2442, 7}, {2447, 8}, {2452, 9}, 10915 {2457, 10}, {2462, 11}}, 10916 }, 10917 10918 { /* Custom US/Canada */ 10919 "ZZF", 10920 .bg_channels = 11, 10921 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 10922 {2427, 4}, {2432, 5}, {2437, 6}, 10923 {2442, 7}, {2447, 8}, {2452, 9}, 10924 {2457, 10}, {2462, 11}}, 10925 .a_channels = 8, 10926 .a = {{5180, 36}, 10927 {5200, 40}, 10928 {5220, 44}, 10929 {5240, 48}, 10930 {5260, 52, LIBIPW_CH_PASSIVE_ONLY}, 10931 {5280, 56, LIBIPW_CH_PASSIVE_ONLY}, 10932 {5300, 60, LIBIPW_CH_PASSIVE_ONLY}, 10933 {5320, 64, LIBIPW_CH_PASSIVE_ONLY}}, 10934 }, 10935 10936 { /* Rest of World */ 10937 "ZZD", 10938 .bg_channels = 13, 10939 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 10940 {2427, 4}, {2432, 5}, {2437, 6}, 10941 {2442, 7}, {2447, 8}, {2452, 9}, 10942 {2457, 10}, {2462, 11}, {2467, 12}, 10943 {2472, 13}}, 10944 }, 10945 10946 { /* Custom USA & Europe & High */ 10947 "ZZA", 10948 .bg_channels = 11, 10949 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 10950 {2427, 4}, {2432, 5}, {2437, 6}, 10951 {2442, 7}, {2447, 8}, {2452, 9}, 10952 {2457, 10}, {2462, 11}}, 10953 .a_channels = 13, 10954 .a = {{5180, 36}, 10955 {5200, 40}, 10956 {5220, 44}, 10957 {5240, 48}, 10958 {5260, 52, LIBIPW_CH_PASSIVE_ONLY}, 10959 {5280, 56, LIBIPW_CH_PASSIVE_ONLY}, 10960 {5300, 60, LIBIPW_CH_PASSIVE_ONLY}, 10961 {5320, 64, LIBIPW_CH_PASSIVE_ONLY}, 10962 {5745, 149}, 10963 {5765, 153}, 10964 {5785, 157}, 10965 {5805, 161}, 10966 {5825, 165}}, 10967 }, 10968 10969 { /* Custom NA & Europe */ 10970 "ZZB", 10971 .bg_channels = 11, 10972 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 10973 {2427, 4}, {2432, 5}, {2437, 6}, 10974 {2442, 7}, {2447, 8}, {2452, 9}, 10975 {2457, 10}, {2462, 11}}, 10976 .a_channels = 13, 10977 .a = {{5180, 36}, 10978 {5200, 40}, 10979 {5220, 44}, 10980 {5240, 48}, 10981 {5260, 52, LIBIPW_CH_PASSIVE_ONLY}, 10982 {5280, 56, LIBIPW_CH_PASSIVE_ONLY}, 10983 {5300, 60, LIBIPW_CH_PASSIVE_ONLY}, 10984 {5320, 64, LIBIPW_CH_PASSIVE_ONLY}, 10985 {5745, 149, LIBIPW_CH_PASSIVE_ONLY}, 10986 {5765, 153, LIBIPW_CH_PASSIVE_ONLY}, 10987 {5785, 157, LIBIPW_CH_PASSIVE_ONLY}, 10988 {5805, 161, LIBIPW_CH_PASSIVE_ONLY}, 10989 {5825, 165, LIBIPW_CH_PASSIVE_ONLY}}, 10990 }, 10991 10992 { /* Custom Japan */ 10993 "ZZC", 10994 .bg_channels = 11, 10995 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 10996 {2427, 4}, {2432, 5}, {2437, 6}, 10997 {2442, 7}, {2447, 8}, {2452, 9}, 10998 {2457, 10}, {2462, 11}}, 10999 .a_channels = 4, 11000 .a = {{5170, 34}, {5190, 38}, 11001 {5210, 42}, {5230, 46}}, 11002 }, 11003 11004 { /* Custom */ 11005 "ZZM", 11006 .bg_channels = 11, 11007 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 11008 {2427, 4}, {2432, 5}, {2437, 6}, 11009 {2442, 7}, {2447, 8}, {2452, 9}, 11010 {2457, 10}, {2462, 11}}, 11011 }, 11012 11013 { /* Europe */ 11014 "ZZE", 11015 .bg_channels = 13, 11016 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 11017 {2427, 4}, {2432, 5}, {2437, 6}, 11018 {2442, 7}, {2447, 8}, {2452, 9}, 11019 {2457, 10}, {2462, 11}, {2467, 12}, 11020 {2472, 13}}, 11021 .a_channels = 19, 11022 .a = {{5180, 36}, 11023 {5200, 40}, 11024 {5220, 44}, 11025 {5240, 48}, 11026 {5260, 52, LIBIPW_CH_PASSIVE_ONLY}, 11027 {5280, 56, LIBIPW_CH_PASSIVE_ONLY}, 11028 {5300, 60, LIBIPW_CH_PASSIVE_ONLY}, 11029 {5320, 64, LIBIPW_CH_PASSIVE_ONLY}, 11030 {5500, 100, LIBIPW_CH_PASSIVE_ONLY}, 11031 {5520, 104, LIBIPW_CH_PASSIVE_ONLY}, 11032 {5540, 108, LIBIPW_CH_PASSIVE_ONLY}, 11033 {5560, 112, LIBIPW_CH_PASSIVE_ONLY}, 11034 {5580, 116, LIBIPW_CH_PASSIVE_ONLY}, 11035 {5600, 120, LIBIPW_CH_PASSIVE_ONLY}, 11036 {5620, 124, LIBIPW_CH_PASSIVE_ONLY}, 11037 {5640, 128, LIBIPW_CH_PASSIVE_ONLY}, 11038 {5660, 132, LIBIPW_CH_PASSIVE_ONLY}, 11039 {5680, 136, LIBIPW_CH_PASSIVE_ONLY}, 11040 {5700, 140, LIBIPW_CH_PASSIVE_ONLY}}, 11041 }, 11042 11043 { /* Custom Japan */ 11044 "ZZJ", 11045 .bg_channels = 14, 11046 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 11047 {2427, 4}, {2432, 5}, {2437, 6}, 11048 {2442, 7}, {2447, 8}, {2452, 9}, 11049 {2457, 10}, {2462, 11}, {2467, 12}, 11050 {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY}}, 11051 .a_channels = 4, 11052 .a = {{5170, 34}, {5190, 38}, 11053 {5210, 42}, {5230, 46}}, 11054 }, 11055 11056 { /* Rest of World */ 11057 "ZZR", 11058 .bg_channels = 14, 11059 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 11060 {2427, 4}, {2432, 5}, {2437, 6}, 11061 {2442, 7}, {2447, 8}, {2452, 9}, 11062 {2457, 10}, {2462, 11}, {2467, 12}, 11063 {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY | 11064 LIBIPW_CH_PASSIVE_ONLY}}, 11065 }, 11066 11067 { /* High Band */ 11068 "ZZH", 11069 .bg_channels = 13, 11070 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 11071 {2427, 4}, {2432, 5}, {2437, 6}, 11072 {2442, 7}, {2447, 8}, {2452, 9}, 11073 {2457, 10}, {2462, 11}, 11074 {2467, 12, LIBIPW_CH_PASSIVE_ONLY}, 11075 {2472, 13, LIBIPW_CH_PASSIVE_ONLY}}, 11076 .a_channels = 4, 11077 .a = {{5745, 149}, {5765, 153}, 11078 {5785, 157}, {5805, 161}}, 11079 }, 11080 11081 { /* Custom Europe */ 11082 "ZZG", 11083 .bg_channels = 13, 11084 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 11085 {2427, 4}, {2432, 5}, {2437, 6}, 11086 {2442, 7}, {2447, 8}, {2452, 9}, 11087 {2457, 10}, {2462, 11}, 11088 {2467, 12}, {2472, 13}}, 11089 .a_channels = 4, 11090 .a = {{5180, 36}, {5200, 40}, 11091 {5220, 44}, {5240, 48}}, 11092 }, 11093 11094 { /* Europe */ 11095 "ZZK", 11096 .bg_channels = 13, 11097 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 11098 {2427, 4}, {2432, 5}, {2437, 6}, 11099 {2442, 7}, {2447, 8}, {2452, 9}, 11100 {2457, 10}, {2462, 11}, 11101 {2467, 12, LIBIPW_CH_PASSIVE_ONLY}, 11102 {2472, 13, LIBIPW_CH_PASSIVE_ONLY}}, 11103 .a_channels = 24, 11104 .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY}, 11105 {5200, 40, LIBIPW_CH_PASSIVE_ONLY}, 11106 {5220, 44, LIBIPW_CH_PASSIVE_ONLY}, 11107 {5240, 48, LIBIPW_CH_PASSIVE_ONLY}, 11108 {5260, 52, LIBIPW_CH_PASSIVE_ONLY}, 11109 {5280, 56, LIBIPW_CH_PASSIVE_ONLY}, 11110 {5300, 60, LIBIPW_CH_PASSIVE_ONLY}, 11111 {5320, 64, LIBIPW_CH_PASSIVE_ONLY}, 11112 {5500, 100, LIBIPW_CH_PASSIVE_ONLY}, 11113 {5520, 104, LIBIPW_CH_PASSIVE_ONLY}, 11114 {5540, 108, LIBIPW_CH_PASSIVE_ONLY}, 11115 {5560, 112, LIBIPW_CH_PASSIVE_ONLY}, 11116 {5580, 116, LIBIPW_CH_PASSIVE_ONLY}, 11117 {5600, 120, LIBIPW_CH_PASSIVE_ONLY}, 11118 {5620, 124, LIBIPW_CH_PASSIVE_ONLY}, 11119 {5640, 128, LIBIPW_CH_PASSIVE_ONLY}, 11120 {5660, 132, LIBIPW_CH_PASSIVE_ONLY}, 11121 {5680, 136, LIBIPW_CH_PASSIVE_ONLY}, 11122 {5700, 140, LIBIPW_CH_PASSIVE_ONLY}, 11123 {5745, 149, LIBIPW_CH_PASSIVE_ONLY}, 11124 {5765, 153, LIBIPW_CH_PASSIVE_ONLY}, 11125 {5785, 157, LIBIPW_CH_PASSIVE_ONLY}, 11126 {5805, 161, LIBIPW_CH_PASSIVE_ONLY}, 11127 {5825, 165, LIBIPW_CH_PASSIVE_ONLY}}, 11128 }, 11129 11130 { /* Europe */ 11131 "ZZL", 11132 .bg_channels = 11, 11133 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 11134 {2427, 4}, {2432, 5}, {2437, 6}, 11135 {2442, 7}, {2447, 8}, {2452, 9}, 11136 {2457, 10}, {2462, 11}}, 11137 .a_channels = 13, 11138 .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY}, 11139 {5200, 40, LIBIPW_CH_PASSIVE_ONLY}, 11140 {5220, 44, LIBIPW_CH_PASSIVE_ONLY}, 11141 {5240, 48, LIBIPW_CH_PASSIVE_ONLY}, 11142 {5260, 52, LIBIPW_CH_PASSIVE_ONLY}, 11143 {5280, 56, LIBIPW_CH_PASSIVE_ONLY}, 11144 {5300, 60, LIBIPW_CH_PASSIVE_ONLY}, 11145 {5320, 64, LIBIPW_CH_PASSIVE_ONLY}, 11146 {5745, 149, LIBIPW_CH_PASSIVE_ONLY}, 11147 {5765, 153, LIBIPW_CH_PASSIVE_ONLY}, 11148 {5785, 157, LIBIPW_CH_PASSIVE_ONLY}, 11149 {5805, 161, LIBIPW_CH_PASSIVE_ONLY}, 11150 {5825, 165, LIBIPW_CH_PASSIVE_ONLY}}, 11151 } 11152 }; 11153 11154 static void ipw_set_geo(struct ipw_priv *priv) 11155 { 11156 int j; 11157 11158 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) { 11159 if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE], 11160 ipw_geos[j].name, 3)) 11161 break; 11162 } 11163 11164 if (j == ARRAY_SIZE(ipw_geos)) { 11165 IPW_WARNING("SKU [%c%c%c] not recognized.\n", 11166 priv->eeprom[EEPROM_COUNTRY_CODE + 0], 11167 priv->eeprom[EEPROM_COUNTRY_CODE + 1], 11168 priv->eeprom[EEPROM_COUNTRY_CODE + 2]); 11169 j = 0; 11170 } 11171 11172 libipw_set_geo(priv->ieee, &ipw_geos[j]); 11173 } 11174 11175 #define MAX_HW_RESTARTS 5 11176 static int ipw_up(struct ipw_priv *priv) 11177 { 11178 int rc, i; 11179 11180 /* Age scan list entries found before suspend */ 11181 if (priv->suspend_time) { 11182 libipw_networks_age(priv->ieee, priv->suspend_time); 11183 priv->suspend_time = 0; 11184 } 11185 11186 if (priv->status & STATUS_EXIT_PENDING) 11187 return -EIO; 11188 11189 if (cmdlog && !priv->cmdlog) { 11190 priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog), 11191 GFP_KERNEL); 11192 if (priv->cmdlog == NULL) { 11193 IPW_ERROR("Error allocating %d command log entries.\n", 11194 cmdlog); 11195 return -ENOMEM; 11196 } else { 11197 priv->cmdlog_len = cmdlog; 11198 } 11199 } 11200 11201 for (i = 0; i < MAX_HW_RESTARTS; i++) { 11202 /* Load the microcode, firmware, and eeprom. 11203 * Also start the clocks. */ 11204 rc = ipw_load(priv); 11205 if (rc) { 11206 IPW_ERROR("Unable to load firmware: %d\n", rc); 11207 return rc; 11208 } 11209 11210 ipw_init_ordinals(priv); 11211 if (!(priv->config & CFG_CUSTOM_MAC)) 11212 eeprom_parse_mac(priv, priv->mac_addr); 11213 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN); 11214 11215 ipw_set_geo(priv); 11216 11217 if (priv->status & STATUS_RF_KILL_SW) { 11218 IPW_WARNING("Radio disabled by module parameter.\n"); 11219 return 0; 11220 } else if (rf_kill_active(priv)) { 11221 IPW_WARNING("Radio Frequency Kill Switch is On:\n" 11222 "Kill switch must be turned off for " 11223 "wireless networking to work.\n"); 11224 schedule_delayed_work(&priv->rf_kill, 2 * HZ); 11225 return 0; 11226 } 11227 11228 rc = ipw_config(priv); 11229 if (!rc) { 11230 IPW_DEBUG_INFO("Configured device on count %i\n", i); 11231 11232 /* If configure to try and auto-associate, kick 11233 * off a scan. */ 11234 schedule_delayed_work(&priv->request_scan, 0); 11235 11236 return 0; 11237 } 11238 11239 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc); 11240 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n", 11241 i, MAX_HW_RESTARTS); 11242 11243 /* We had an error bringing up the hardware, so take it 11244 * all the way back down so we can try again */ 11245 ipw_down(priv); 11246 } 11247 11248 /* tried to restart and config the device for as long as our 11249 * patience could withstand */ 11250 IPW_ERROR("Unable to initialize device after %d attempts.\n", i); 11251 11252 return -EIO; 11253 } 11254 11255 static void ipw_bg_up(struct work_struct *work) 11256 { 11257 struct ipw_priv *priv = 11258 container_of(work, struct ipw_priv, up); 11259 mutex_lock(&priv->mutex); 11260 ipw_up(priv); 11261 mutex_unlock(&priv->mutex); 11262 } 11263 11264 static void ipw_deinit(struct ipw_priv *priv) 11265 { 11266 int i; 11267 11268 if (priv->status & STATUS_SCANNING) { 11269 IPW_DEBUG_INFO("Aborting scan during shutdown.\n"); 11270 ipw_abort_scan(priv); 11271 } 11272 11273 if (priv->status & STATUS_ASSOCIATED) { 11274 IPW_DEBUG_INFO("Disassociating during shutdown.\n"); 11275 ipw_disassociate(priv); 11276 } 11277 11278 ipw_led_shutdown(priv); 11279 11280 /* Wait up to 1s for status to change to not scanning and not 11281 * associated (disassociation can take a while for a ful 802.11 11282 * exchange */ 11283 for (i = 1000; i && (priv->status & 11284 (STATUS_DISASSOCIATING | 11285 STATUS_ASSOCIATED | STATUS_SCANNING)); i--) 11286 udelay(10); 11287 11288 if (priv->status & (STATUS_DISASSOCIATING | 11289 STATUS_ASSOCIATED | STATUS_SCANNING)) 11290 IPW_DEBUG_INFO("Still associated or scanning...\n"); 11291 else 11292 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i); 11293 11294 /* Attempt to disable the card */ 11295 ipw_send_card_disable(priv, 0); 11296 11297 priv->status &= ~STATUS_INIT; 11298 } 11299 11300 static void ipw_down(struct ipw_priv *priv) 11301 { 11302 int exit_pending = priv->status & STATUS_EXIT_PENDING; 11303 11304 priv->status |= STATUS_EXIT_PENDING; 11305 11306 if (ipw_is_init(priv)) 11307 ipw_deinit(priv); 11308 11309 /* Wipe out the EXIT_PENDING status bit if we are not actually 11310 * exiting the module */ 11311 if (!exit_pending) 11312 priv->status &= ~STATUS_EXIT_PENDING; 11313 11314 /* tell the device to stop sending interrupts */ 11315 ipw_disable_interrupts(priv); 11316 11317 /* Clear all bits but the RF Kill */ 11318 priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING; 11319 netif_carrier_off(priv->net_dev); 11320 11321 ipw_stop_nic(priv); 11322 11323 ipw_led_radio_off(priv); 11324 } 11325 11326 static void ipw_bg_down(struct work_struct *work) 11327 { 11328 struct ipw_priv *priv = 11329 container_of(work, struct ipw_priv, down); 11330 mutex_lock(&priv->mutex); 11331 ipw_down(priv); 11332 mutex_unlock(&priv->mutex); 11333 } 11334 11335 static int ipw_wdev_init(struct net_device *dev) 11336 { 11337 int i, rc = 0; 11338 struct ipw_priv *priv = libipw_priv(dev); 11339 const struct libipw_geo *geo = libipw_get_geo(priv->ieee); 11340 struct wireless_dev *wdev = &priv->ieee->wdev; 11341 11342 memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN); 11343 11344 /* fill-out priv->ieee->bg_band */ 11345 if (geo->bg_channels) { 11346 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band; 11347 11348 bg_band->band = NL80211_BAND_2GHZ; 11349 bg_band->n_channels = geo->bg_channels; 11350 bg_band->channels = kcalloc(geo->bg_channels, 11351 sizeof(struct ieee80211_channel), 11352 GFP_KERNEL); 11353 if (!bg_band->channels) { 11354 rc = -ENOMEM; 11355 goto out; 11356 } 11357 /* translate geo->bg to bg_band.channels */ 11358 for (i = 0; i < geo->bg_channels; i++) { 11359 bg_band->channels[i].band = NL80211_BAND_2GHZ; 11360 bg_band->channels[i].center_freq = geo->bg[i].freq; 11361 bg_band->channels[i].hw_value = geo->bg[i].channel; 11362 bg_band->channels[i].max_power = geo->bg[i].max_power; 11363 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY) 11364 bg_band->channels[i].flags |= 11365 IEEE80211_CHAN_NO_IR; 11366 if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS) 11367 bg_band->channels[i].flags |= 11368 IEEE80211_CHAN_NO_IR; 11369 if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT) 11370 bg_band->channels[i].flags |= 11371 IEEE80211_CHAN_RADAR; 11372 /* No equivalent for LIBIPW_CH_80211H_RULES, 11373 LIBIPW_CH_UNIFORM_SPREADING, or 11374 LIBIPW_CH_B_ONLY... */ 11375 } 11376 /* point at bitrate info */ 11377 bg_band->bitrates = ipw2200_bg_rates; 11378 bg_band->n_bitrates = ipw2200_num_bg_rates; 11379 11380 wdev->wiphy->bands[NL80211_BAND_2GHZ] = bg_band; 11381 } 11382 11383 /* fill-out priv->ieee->a_band */ 11384 if (geo->a_channels) { 11385 struct ieee80211_supported_band *a_band = &priv->ieee->a_band; 11386 11387 a_band->band = NL80211_BAND_5GHZ; 11388 a_band->n_channels = geo->a_channels; 11389 a_band->channels = kcalloc(geo->a_channels, 11390 sizeof(struct ieee80211_channel), 11391 GFP_KERNEL); 11392 if (!a_band->channels) { 11393 rc = -ENOMEM; 11394 goto out; 11395 } 11396 /* translate geo->a to a_band.channels */ 11397 for (i = 0; i < geo->a_channels; i++) { 11398 a_band->channels[i].band = NL80211_BAND_5GHZ; 11399 a_band->channels[i].center_freq = geo->a[i].freq; 11400 a_band->channels[i].hw_value = geo->a[i].channel; 11401 a_band->channels[i].max_power = geo->a[i].max_power; 11402 if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY) 11403 a_band->channels[i].flags |= 11404 IEEE80211_CHAN_NO_IR; 11405 if (geo->a[i].flags & LIBIPW_CH_NO_IBSS) 11406 a_band->channels[i].flags |= 11407 IEEE80211_CHAN_NO_IR; 11408 if (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT) 11409 a_band->channels[i].flags |= 11410 IEEE80211_CHAN_RADAR; 11411 /* No equivalent for LIBIPW_CH_80211H_RULES, 11412 LIBIPW_CH_UNIFORM_SPREADING, or 11413 LIBIPW_CH_B_ONLY... */ 11414 } 11415 /* point at bitrate info */ 11416 a_band->bitrates = ipw2200_a_rates; 11417 a_band->n_bitrates = ipw2200_num_a_rates; 11418 11419 wdev->wiphy->bands[NL80211_BAND_5GHZ] = a_band; 11420 } 11421 11422 wdev->wiphy->cipher_suites = ipw_cipher_suites; 11423 wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites); 11424 11425 set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev); 11426 11427 /* With that information in place, we can now register the wiphy... */ 11428 if (wiphy_register(wdev->wiphy)) 11429 rc = -EIO; 11430 out: 11431 return rc; 11432 } 11433 11434 /* PCI driver stuff */ 11435 static const struct pci_device_id card_ids[] = { 11436 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0}, 11437 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0}, 11438 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0}, 11439 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0}, 11440 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0}, 11441 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0}, 11442 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0}, 11443 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0}, 11444 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0}, 11445 {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0}, 11446 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0}, 11447 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0}, 11448 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0}, 11449 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0}, 11450 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0}, 11451 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0}, 11452 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0}, 11453 {PCI_VDEVICE(INTEL, 0x104f), 0}, 11454 {PCI_VDEVICE(INTEL, 0x4220), 0}, /* BG */ 11455 {PCI_VDEVICE(INTEL, 0x4221), 0}, /* BG */ 11456 {PCI_VDEVICE(INTEL, 0x4223), 0}, /* ABG */ 11457 {PCI_VDEVICE(INTEL, 0x4224), 0}, /* ABG */ 11458 11459 /* required last entry */ 11460 {0,} 11461 }; 11462 11463 MODULE_DEVICE_TABLE(pci, card_ids); 11464 11465 static struct attribute *ipw_sysfs_entries[] = { 11466 &dev_attr_rf_kill.attr, 11467 &dev_attr_direct_dword.attr, 11468 &dev_attr_indirect_byte.attr, 11469 &dev_attr_indirect_dword.attr, 11470 &dev_attr_mem_gpio_reg.attr, 11471 &dev_attr_command_event_reg.attr, 11472 &dev_attr_nic_type.attr, 11473 &dev_attr_status.attr, 11474 &dev_attr_cfg.attr, 11475 &dev_attr_error.attr, 11476 &dev_attr_event_log.attr, 11477 &dev_attr_cmd_log.attr, 11478 &dev_attr_eeprom_delay.attr, 11479 &dev_attr_ucode_version.attr, 11480 &dev_attr_rtc.attr, 11481 &dev_attr_scan_age.attr, 11482 &dev_attr_led.attr, 11483 &dev_attr_speed_scan.attr, 11484 &dev_attr_net_stats.attr, 11485 &dev_attr_channels.attr, 11486 #ifdef CONFIG_IPW2200_PROMISCUOUS 11487 &dev_attr_rtap_iface.attr, 11488 &dev_attr_rtap_filter.attr, 11489 #endif 11490 NULL 11491 }; 11492 11493 static const struct attribute_group ipw_attribute_group = { 11494 .name = NULL, /* put in device directory */ 11495 .attrs = ipw_sysfs_entries, 11496 }; 11497 11498 #ifdef CONFIG_IPW2200_PROMISCUOUS 11499 static int ipw_prom_open(struct net_device *dev) 11500 { 11501 struct ipw_prom_priv *prom_priv = libipw_priv(dev); 11502 struct ipw_priv *priv = prom_priv->priv; 11503 11504 IPW_DEBUG_INFO("prom dev->open\n"); 11505 netif_carrier_off(dev); 11506 11507 if (priv->ieee->iw_mode != IW_MODE_MONITOR) { 11508 priv->sys_config.accept_all_data_frames = 1; 11509 priv->sys_config.accept_non_directed_frames = 1; 11510 priv->sys_config.accept_all_mgmt_bcpr = 1; 11511 priv->sys_config.accept_all_mgmt_frames = 1; 11512 11513 ipw_send_system_config(priv); 11514 } 11515 11516 return 0; 11517 } 11518 11519 static int ipw_prom_stop(struct net_device *dev) 11520 { 11521 struct ipw_prom_priv *prom_priv = libipw_priv(dev); 11522 struct ipw_priv *priv = prom_priv->priv; 11523 11524 IPW_DEBUG_INFO("prom dev->stop\n"); 11525 11526 if (priv->ieee->iw_mode != IW_MODE_MONITOR) { 11527 priv->sys_config.accept_all_data_frames = 0; 11528 priv->sys_config.accept_non_directed_frames = 0; 11529 priv->sys_config.accept_all_mgmt_bcpr = 0; 11530 priv->sys_config.accept_all_mgmt_frames = 0; 11531 11532 ipw_send_system_config(priv); 11533 } 11534 11535 return 0; 11536 } 11537 11538 static netdev_tx_t ipw_prom_hard_start_xmit(struct sk_buff *skb, 11539 struct net_device *dev) 11540 { 11541 IPW_DEBUG_INFO("prom dev->xmit\n"); 11542 dev_kfree_skb(skb); 11543 return NETDEV_TX_OK; 11544 } 11545 11546 static const struct net_device_ops ipw_prom_netdev_ops = { 11547 .ndo_open = ipw_prom_open, 11548 .ndo_stop = ipw_prom_stop, 11549 .ndo_start_xmit = ipw_prom_hard_start_xmit, 11550 .ndo_set_mac_address = eth_mac_addr, 11551 .ndo_validate_addr = eth_validate_addr, 11552 }; 11553 11554 static int ipw_prom_alloc(struct ipw_priv *priv) 11555 { 11556 int rc = 0; 11557 11558 if (priv->prom_net_dev) 11559 return -EPERM; 11560 11561 priv->prom_net_dev = alloc_libipw(sizeof(struct ipw_prom_priv), 1); 11562 if (priv->prom_net_dev == NULL) 11563 return -ENOMEM; 11564 11565 priv->prom_priv = libipw_priv(priv->prom_net_dev); 11566 priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev); 11567 priv->prom_priv->priv = priv; 11568 11569 strcpy(priv->prom_net_dev->name, "rtap%d"); 11570 memcpy(priv->prom_net_dev->dev_addr, priv->mac_addr, ETH_ALEN); 11571 11572 priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP; 11573 priv->prom_net_dev->netdev_ops = &ipw_prom_netdev_ops; 11574 11575 priv->prom_net_dev->min_mtu = 68; 11576 priv->prom_net_dev->max_mtu = LIBIPW_DATA_LEN; 11577 11578 priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR; 11579 SET_NETDEV_DEV(priv->prom_net_dev, &priv->pci_dev->dev); 11580 11581 rc = register_netdev(priv->prom_net_dev); 11582 if (rc) { 11583 free_libipw(priv->prom_net_dev, 1); 11584 priv->prom_net_dev = NULL; 11585 return rc; 11586 } 11587 11588 return 0; 11589 } 11590 11591 static void ipw_prom_free(struct ipw_priv *priv) 11592 { 11593 if (!priv->prom_net_dev) 11594 return; 11595 11596 unregister_netdev(priv->prom_net_dev); 11597 free_libipw(priv->prom_net_dev, 1); 11598 11599 priv->prom_net_dev = NULL; 11600 } 11601 11602 #endif 11603 11604 static const struct net_device_ops ipw_netdev_ops = { 11605 .ndo_open = ipw_net_open, 11606 .ndo_stop = ipw_net_stop, 11607 .ndo_set_rx_mode = ipw_net_set_multicast_list, 11608 .ndo_set_mac_address = ipw_net_set_mac_address, 11609 .ndo_start_xmit = libipw_xmit, 11610 .ndo_validate_addr = eth_validate_addr, 11611 }; 11612 11613 static int ipw_pci_probe(struct pci_dev *pdev, 11614 const struct pci_device_id *ent) 11615 { 11616 int err = 0; 11617 struct net_device *net_dev; 11618 void __iomem *base; 11619 u32 length, val; 11620 struct ipw_priv *priv; 11621 int i; 11622 11623 net_dev = alloc_libipw(sizeof(struct ipw_priv), 0); 11624 if (net_dev == NULL) { 11625 err = -ENOMEM; 11626 goto out; 11627 } 11628 11629 priv = libipw_priv(net_dev); 11630 priv->ieee = netdev_priv(net_dev); 11631 11632 priv->net_dev = net_dev; 11633 priv->pci_dev = pdev; 11634 ipw_debug_level = debug; 11635 spin_lock_init(&priv->irq_lock); 11636 spin_lock_init(&priv->lock); 11637 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) 11638 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]); 11639 11640 mutex_init(&priv->mutex); 11641 if (pci_enable_device(pdev)) { 11642 err = -ENODEV; 11643 goto out_free_libipw; 11644 } 11645 11646 pci_set_master(pdev); 11647 11648 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 11649 if (!err) 11650 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); 11651 if (err) { 11652 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n"); 11653 goto out_pci_disable_device; 11654 } 11655 11656 pci_set_drvdata(pdev, priv); 11657 11658 err = pci_request_regions(pdev, DRV_NAME); 11659 if (err) 11660 goto out_pci_disable_device; 11661 11662 /* We disable the RETRY_TIMEOUT register (0x41) to keep 11663 * PCI Tx retries from interfering with C3 CPU state */ 11664 pci_read_config_dword(pdev, 0x40, &val); 11665 if ((val & 0x0000ff00) != 0) 11666 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff); 11667 11668 length = pci_resource_len(pdev, 0); 11669 priv->hw_len = length; 11670 11671 base = pci_ioremap_bar(pdev, 0); 11672 if (!base) { 11673 err = -ENODEV; 11674 goto out_pci_release_regions; 11675 } 11676 11677 priv->hw_base = base; 11678 IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length); 11679 IPW_DEBUG_INFO("pci_resource_base = %p\n", base); 11680 11681 err = ipw_setup_deferred_work(priv); 11682 if (err) { 11683 IPW_ERROR("Unable to setup deferred work\n"); 11684 goto out_iounmap; 11685 } 11686 11687 ipw_sw_reset(priv, 1); 11688 11689 err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv); 11690 if (err) { 11691 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq); 11692 goto out_iounmap; 11693 } 11694 11695 SET_NETDEV_DEV(net_dev, &pdev->dev); 11696 11697 mutex_lock(&priv->mutex); 11698 11699 priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit; 11700 priv->ieee->set_security = shim__set_security; 11701 priv->ieee->is_queue_full = ipw_net_is_queue_full; 11702 11703 #ifdef CONFIG_IPW2200_QOS 11704 priv->ieee->is_qos_active = ipw_is_qos_active; 11705 priv->ieee->handle_probe_response = ipw_handle_beacon; 11706 priv->ieee->handle_beacon = ipw_handle_probe_response; 11707 priv->ieee->handle_assoc_response = ipw_handle_assoc_response; 11708 #endif /* CONFIG_IPW2200_QOS */ 11709 11710 priv->ieee->perfect_rssi = -20; 11711 priv->ieee->worst_rssi = -85; 11712 11713 net_dev->netdev_ops = &ipw_netdev_ops; 11714 priv->wireless_data.spy_data = &priv->ieee->spy_data; 11715 net_dev->wireless_data = &priv->wireless_data; 11716 net_dev->wireless_handlers = &ipw_wx_handler_def; 11717 net_dev->ethtool_ops = &ipw_ethtool_ops; 11718 11719 net_dev->min_mtu = 68; 11720 net_dev->max_mtu = LIBIPW_DATA_LEN; 11721 11722 err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group); 11723 if (err) { 11724 IPW_ERROR("failed to create sysfs device attributes\n"); 11725 mutex_unlock(&priv->mutex); 11726 goto out_release_irq; 11727 } 11728 11729 if (ipw_up(priv)) { 11730 mutex_unlock(&priv->mutex); 11731 err = -EIO; 11732 goto out_remove_sysfs; 11733 } 11734 11735 mutex_unlock(&priv->mutex); 11736 11737 err = ipw_wdev_init(net_dev); 11738 if (err) { 11739 IPW_ERROR("failed to register wireless device\n"); 11740 goto out_remove_sysfs; 11741 } 11742 11743 err = register_netdev(net_dev); 11744 if (err) { 11745 IPW_ERROR("failed to register network device\n"); 11746 goto out_unregister_wiphy; 11747 } 11748 11749 #ifdef CONFIG_IPW2200_PROMISCUOUS 11750 if (rtap_iface) { 11751 err = ipw_prom_alloc(priv); 11752 if (err) { 11753 IPW_ERROR("Failed to register promiscuous network " 11754 "device (error %d).\n", err); 11755 unregister_netdev(priv->net_dev); 11756 goto out_unregister_wiphy; 11757 } 11758 } 11759 #endif 11760 11761 printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg " 11762 "channels, %d 802.11a channels)\n", 11763 priv->ieee->geo.name, priv->ieee->geo.bg_channels, 11764 priv->ieee->geo.a_channels); 11765 11766 return 0; 11767 11768 out_unregister_wiphy: 11769 wiphy_unregister(priv->ieee->wdev.wiphy); 11770 kfree(priv->ieee->a_band.channels); 11771 kfree(priv->ieee->bg_band.channels); 11772 out_remove_sysfs: 11773 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group); 11774 out_release_irq: 11775 free_irq(pdev->irq, priv); 11776 out_iounmap: 11777 iounmap(priv->hw_base); 11778 out_pci_release_regions: 11779 pci_release_regions(pdev); 11780 out_pci_disable_device: 11781 pci_disable_device(pdev); 11782 out_free_libipw: 11783 free_libipw(priv->net_dev, 0); 11784 out: 11785 return err; 11786 } 11787 11788 static void ipw_pci_remove(struct pci_dev *pdev) 11789 { 11790 struct ipw_priv *priv = pci_get_drvdata(pdev); 11791 struct list_head *p, *q; 11792 int i; 11793 11794 if (!priv) 11795 return; 11796 11797 mutex_lock(&priv->mutex); 11798 11799 priv->status |= STATUS_EXIT_PENDING; 11800 ipw_down(priv); 11801 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group); 11802 11803 mutex_unlock(&priv->mutex); 11804 11805 unregister_netdev(priv->net_dev); 11806 11807 if (priv->rxq) { 11808 ipw_rx_queue_free(priv, priv->rxq); 11809 priv->rxq = NULL; 11810 } 11811 ipw_tx_queue_free(priv); 11812 11813 if (priv->cmdlog) { 11814 kfree(priv->cmdlog); 11815 priv->cmdlog = NULL; 11816 } 11817 11818 /* make sure all works are inactive */ 11819 cancel_delayed_work_sync(&priv->adhoc_check); 11820 cancel_work_sync(&priv->associate); 11821 cancel_work_sync(&priv->disassociate); 11822 cancel_work_sync(&priv->system_config); 11823 cancel_work_sync(&priv->rx_replenish); 11824 cancel_work_sync(&priv->adapter_restart); 11825 cancel_delayed_work_sync(&priv->rf_kill); 11826 cancel_work_sync(&priv->up); 11827 cancel_work_sync(&priv->down); 11828 cancel_delayed_work_sync(&priv->request_scan); 11829 cancel_delayed_work_sync(&priv->request_direct_scan); 11830 cancel_delayed_work_sync(&priv->request_passive_scan); 11831 cancel_delayed_work_sync(&priv->scan_event); 11832 cancel_delayed_work_sync(&priv->gather_stats); 11833 cancel_work_sync(&priv->abort_scan); 11834 cancel_work_sync(&priv->roam); 11835 cancel_delayed_work_sync(&priv->scan_check); 11836 cancel_work_sync(&priv->link_up); 11837 cancel_work_sync(&priv->link_down); 11838 cancel_delayed_work_sync(&priv->led_link_on); 11839 cancel_delayed_work_sync(&priv->led_link_off); 11840 cancel_delayed_work_sync(&priv->led_act_off); 11841 cancel_work_sync(&priv->merge_networks); 11842 11843 /* Free MAC hash list for ADHOC */ 11844 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) { 11845 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) { 11846 list_del(p); 11847 kfree(list_entry(p, struct ipw_ibss_seq, list)); 11848 } 11849 } 11850 11851 kfree(priv->error); 11852 priv->error = NULL; 11853 11854 #ifdef CONFIG_IPW2200_PROMISCUOUS 11855 ipw_prom_free(priv); 11856 #endif 11857 11858 free_irq(pdev->irq, priv); 11859 iounmap(priv->hw_base); 11860 pci_release_regions(pdev); 11861 pci_disable_device(pdev); 11862 /* wiphy_unregister needs to be here, before free_libipw */ 11863 wiphy_unregister(priv->ieee->wdev.wiphy); 11864 kfree(priv->ieee->a_band.channels); 11865 kfree(priv->ieee->bg_band.channels); 11866 free_libipw(priv->net_dev, 0); 11867 free_firmware(); 11868 } 11869 11870 #ifdef CONFIG_PM 11871 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state) 11872 { 11873 struct ipw_priv *priv = pci_get_drvdata(pdev); 11874 struct net_device *dev = priv->net_dev; 11875 11876 printk(KERN_INFO "%s: Going into suspend...\n", dev->name); 11877 11878 /* Take down the device; powers it off, etc. */ 11879 ipw_down(priv); 11880 11881 /* Remove the PRESENT state of the device */ 11882 netif_device_detach(dev); 11883 11884 pci_save_state(pdev); 11885 pci_disable_device(pdev); 11886 pci_set_power_state(pdev, pci_choose_state(pdev, state)); 11887 11888 priv->suspend_at = ktime_get_boottime_seconds(); 11889 11890 return 0; 11891 } 11892 11893 static int ipw_pci_resume(struct pci_dev *pdev) 11894 { 11895 struct ipw_priv *priv = pci_get_drvdata(pdev); 11896 struct net_device *dev = priv->net_dev; 11897 int err; 11898 u32 val; 11899 11900 printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name); 11901 11902 pci_set_power_state(pdev, PCI_D0); 11903 err = pci_enable_device(pdev); 11904 if (err) { 11905 printk(KERN_ERR "%s: pci_enable_device failed on resume\n", 11906 dev->name); 11907 return err; 11908 } 11909 pci_restore_state(pdev); 11910 11911 /* 11912 * Suspend/Resume resets the PCI configuration space, so we have to 11913 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries 11914 * from interfering with C3 CPU state. pci_restore_state won't help 11915 * here since it only restores the first 64 bytes pci config header. 11916 */ 11917 pci_read_config_dword(pdev, 0x40, &val); 11918 if ((val & 0x0000ff00) != 0) 11919 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff); 11920 11921 /* Set the device back into the PRESENT state; this will also wake 11922 * the queue of needed */ 11923 netif_device_attach(dev); 11924 11925 priv->suspend_time = ktime_get_boottime_seconds() - priv->suspend_at; 11926 11927 /* Bring the device back up */ 11928 schedule_work(&priv->up); 11929 11930 return 0; 11931 } 11932 #endif 11933 11934 static void ipw_pci_shutdown(struct pci_dev *pdev) 11935 { 11936 struct ipw_priv *priv = pci_get_drvdata(pdev); 11937 11938 /* Take down the device; powers it off, etc. */ 11939 ipw_down(priv); 11940 11941 pci_disable_device(pdev); 11942 } 11943 11944 /* driver initialization stuff */ 11945 static struct pci_driver ipw_driver = { 11946 .name = DRV_NAME, 11947 .id_table = card_ids, 11948 .probe = ipw_pci_probe, 11949 .remove = ipw_pci_remove, 11950 #ifdef CONFIG_PM 11951 .suspend = ipw_pci_suspend, 11952 .resume = ipw_pci_resume, 11953 #endif 11954 .shutdown = ipw_pci_shutdown, 11955 }; 11956 11957 static int __init ipw_init(void) 11958 { 11959 int ret; 11960 11961 printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n"); 11962 printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n"); 11963 11964 ret = pci_register_driver(&ipw_driver); 11965 if (ret) { 11966 IPW_ERROR("Unable to initialize PCI module\n"); 11967 return ret; 11968 } 11969 11970 ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level); 11971 if (ret) { 11972 IPW_ERROR("Unable to create driver sysfs file\n"); 11973 pci_unregister_driver(&ipw_driver); 11974 return ret; 11975 } 11976 11977 return ret; 11978 } 11979 11980 static void __exit ipw_exit(void) 11981 { 11982 driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level); 11983 pci_unregister_driver(&ipw_driver); 11984 } 11985 11986 module_param(disable, int, 0444); 11987 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])"); 11988 11989 module_param(associate, int, 0444); 11990 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)"); 11991 11992 module_param(auto_create, int, 0444); 11993 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)"); 11994 11995 module_param_named(led, led_support, int, 0444); 11996 MODULE_PARM_DESC(led, "enable led control on some systems (default 1 on)"); 11997 11998 module_param(debug, int, 0444); 11999 MODULE_PARM_DESC(debug, "debug output mask"); 12000 12001 module_param_named(channel, default_channel, int, 0444); 12002 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])"); 12003 12004 #ifdef CONFIG_IPW2200_PROMISCUOUS 12005 module_param(rtap_iface, int, 0444); 12006 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)"); 12007 #endif 12008 12009 #ifdef CONFIG_IPW2200_QOS 12010 module_param(qos_enable, int, 0444); 12011 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalities"); 12012 12013 module_param(qos_burst_enable, int, 0444); 12014 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode"); 12015 12016 module_param(qos_no_ack_mask, int, 0444); 12017 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack"); 12018 12019 module_param(burst_duration_CCK, int, 0444); 12020 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value"); 12021 12022 module_param(burst_duration_OFDM, int, 0444); 12023 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value"); 12024 #endif /* CONFIG_IPW2200_QOS */ 12025 12026 #ifdef CONFIG_IPW2200_MONITOR 12027 module_param_named(mode, network_mode, int, 0444); 12028 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)"); 12029 #else 12030 module_param_named(mode, network_mode, int, 0444); 12031 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)"); 12032 #endif 12033 12034 module_param(bt_coexist, int, 0444); 12035 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)"); 12036 12037 module_param(hwcrypto, int, 0444); 12038 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)"); 12039 12040 module_param(cmdlog, int, 0444); 12041 MODULE_PARM_DESC(cmdlog, 12042 "allocate a ring buffer for logging firmware commands"); 12043 12044 module_param(roaming, int, 0444); 12045 MODULE_PARM_DESC(roaming, "enable roaming support (default on)"); 12046 12047 module_param(antenna, int, 0444); 12048 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)"); 12049 12050 module_exit(ipw_exit); 12051 module_init(ipw_init); 12052