1 // SPDX-License-Identifier: GPL-2.0-only 2 /****************************************************************************** 3 4 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved. 5 6 802.11 status code portion of this file from ethereal-0.10.6: 7 Copyright 2000, Axis Communications AB 8 Ethereal - Network traffic analyzer 9 By Gerald Combs <gerald@ethereal.com> 10 Copyright 1998 Gerald Combs 11 12 13 Contact Information: 14 Intel Linux Wireless <ilw@linux.intel.com> 15 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 16 17 ******************************************************************************/ 18 19 #include <linux/sched.h> 20 #include <linux/slab.h> 21 #include <net/cfg80211-wext.h> 22 #include "ipw2200.h" 23 #include "ipw.h" 24 25 26 #ifndef KBUILD_EXTMOD 27 #define VK "k" 28 #else 29 #define VK 30 #endif 31 32 #ifdef CONFIG_IPW2200_DEBUG 33 #define VD "d" 34 #else 35 #define VD 36 #endif 37 38 #ifdef CONFIG_IPW2200_MONITOR 39 #define VM "m" 40 #else 41 #define VM 42 #endif 43 44 #ifdef CONFIG_IPW2200_PROMISCUOUS 45 #define VP "p" 46 #else 47 #define VP 48 #endif 49 50 #ifdef CONFIG_IPW2200_RADIOTAP 51 #define VR "r" 52 #else 53 #define VR 54 #endif 55 56 #ifdef CONFIG_IPW2200_QOS 57 #define VQ "q" 58 #else 59 #define VQ 60 #endif 61 62 #define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ 63 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver" 64 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation" 65 #define DRV_VERSION IPW2200_VERSION 66 67 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1) 68 69 MODULE_DESCRIPTION(DRV_DESCRIPTION); 70 MODULE_VERSION(DRV_VERSION); 71 MODULE_AUTHOR(DRV_COPYRIGHT); 72 MODULE_LICENSE("GPL"); 73 MODULE_FIRMWARE("ipw2200-ibss.fw"); 74 #ifdef CONFIG_IPW2200_MONITOR 75 MODULE_FIRMWARE("ipw2200-sniffer.fw"); 76 #endif 77 MODULE_FIRMWARE("ipw2200-bss.fw"); 78 79 static int cmdlog = 0; 80 static int debug = 0; 81 static int default_channel = 0; 82 static int network_mode = 0; 83 84 static u32 ipw_debug_level; 85 static int associate; 86 static int auto_create = 1; 87 static int led_support = 1; 88 static int disable = 0; 89 static int bt_coexist = 0; 90 static int hwcrypto = 0; 91 static int roaming = 1; 92 static const char ipw_modes[] = { 93 'a', 'b', 'g', '?' 94 }; 95 static int antenna = CFG_SYS_ANTENNA_BOTH; 96 97 #ifdef CONFIG_IPW2200_PROMISCUOUS 98 static int rtap_iface = 0; /* def: 0 -- do not create rtap interface */ 99 #endif 100 101 static struct ieee80211_rate ipw2200_rates[] = { 102 { .bitrate = 10 }, 103 { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 104 { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 105 { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 106 { .bitrate = 60 }, 107 { .bitrate = 90 }, 108 { .bitrate = 120 }, 109 { .bitrate = 180 }, 110 { .bitrate = 240 }, 111 { .bitrate = 360 }, 112 { .bitrate = 480 }, 113 { .bitrate = 540 } 114 }; 115 116 #define ipw2200_a_rates (ipw2200_rates + 4) 117 #define ipw2200_num_a_rates 8 118 #define ipw2200_bg_rates (ipw2200_rates + 0) 119 #define ipw2200_num_bg_rates 12 120 121 /* Ugly macro to convert literal channel numbers into their mhz equivalents 122 * There are certianly some conditions that will break this (like feeding it '30') 123 * but they shouldn't arise since nothing talks on channel 30. */ 124 #define ieee80211chan2mhz(x) \ 125 (((x) <= 14) ? \ 126 (((x) == 14) ? 2484 : ((x) * 5) + 2407) : \ 127 ((x) + 1000) * 5) 128 129 #ifdef CONFIG_IPW2200_QOS 130 static int qos_enable = 0; 131 static int qos_burst_enable = 0; 132 static int qos_no_ack_mask = 0; 133 static int burst_duration_CCK = 0; 134 static int burst_duration_OFDM = 0; 135 136 static struct libipw_qos_parameters def_qos_parameters_OFDM = { 137 {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM, 138 QOS_TX3_CW_MIN_OFDM}, 139 {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM, 140 QOS_TX3_CW_MAX_OFDM}, 141 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS}, 142 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM}, 143 {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM, 144 QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM} 145 }; 146 147 static struct libipw_qos_parameters def_qos_parameters_CCK = { 148 {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK, 149 QOS_TX3_CW_MIN_CCK}, 150 {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK, 151 QOS_TX3_CW_MAX_CCK}, 152 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS}, 153 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM}, 154 {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK, 155 QOS_TX3_TXOP_LIMIT_CCK} 156 }; 157 158 static struct libipw_qos_parameters def_parameters_OFDM = { 159 {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM, 160 DEF_TX3_CW_MIN_OFDM}, 161 {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM, 162 DEF_TX3_CW_MAX_OFDM}, 163 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS}, 164 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM}, 165 {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM, 166 DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM} 167 }; 168 169 static struct libipw_qos_parameters def_parameters_CCK = { 170 {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK, 171 DEF_TX3_CW_MIN_CCK}, 172 {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK, 173 DEF_TX3_CW_MAX_CCK}, 174 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS}, 175 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM}, 176 {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK, 177 DEF_TX3_TXOP_LIMIT_CCK} 178 }; 179 180 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 }; 181 182 static int from_priority_to_tx_queue[] = { 183 IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1, 184 IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4 185 }; 186 187 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv); 188 189 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters 190 *qos_param); 191 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element 192 *qos_param); 193 #endif /* CONFIG_IPW2200_QOS */ 194 195 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev); 196 static void ipw_remove_current_network(struct ipw_priv *priv); 197 static void ipw_rx(struct ipw_priv *priv); 198 static int ipw_queue_tx_reclaim(struct ipw_priv *priv, 199 struct clx2_tx_queue *txq, int qindex); 200 static int ipw_queue_reset(struct ipw_priv *priv); 201 202 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf, 203 int len, int sync); 204 205 static void ipw_tx_queue_free(struct ipw_priv *); 206 207 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *); 208 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *); 209 static void ipw_rx_queue_replenish(void *); 210 static int ipw_up(struct ipw_priv *); 211 static void ipw_bg_up(struct work_struct *work); 212 static void ipw_down(struct ipw_priv *); 213 static void ipw_bg_down(struct work_struct *work); 214 static int ipw_config(struct ipw_priv *); 215 static int init_supported_rates(struct ipw_priv *priv, 216 struct ipw_supported_rates *prates); 217 static void ipw_set_hwcrypto_keys(struct ipw_priv *); 218 static void ipw_send_wep_keys(struct ipw_priv *, int); 219 220 static int snprint_line(char *buf, size_t count, 221 const u8 * data, u32 len, u32 ofs) 222 { 223 int out, i, j, l; 224 char c; 225 226 out = scnprintf(buf, count, "%08X", ofs); 227 228 for (l = 0, i = 0; i < 2; i++) { 229 out += scnprintf(buf + out, count - out, " "); 230 for (j = 0; j < 8 && l < len; j++, l++) 231 out += scnprintf(buf + out, count - out, "%02X ", 232 data[(i * 8 + j)]); 233 for (; j < 8; j++) 234 out += scnprintf(buf + out, count - out, " "); 235 } 236 237 out += scnprintf(buf + out, count - out, " "); 238 for (l = 0, i = 0; i < 2; i++) { 239 out += scnprintf(buf + out, count - out, " "); 240 for (j = 0; j < 8 && l < len; j++, l++) { 241 c = data[(i * 8 + j)]; 242 if (!isascii(c) || !isprint(c)) 243 c = '.'; 244 245 out += scnprintf(buf + out, count - out, "%c", c); 246 } 247 248 for (; j < 8; j++) 249 out += scnprintf(buf + out, count - out, " "); 250 } 251 252 return out; 253 } 254 255 static void printk_buf(int level, const u8 * data, u32 len) 256 { 257 char line[81]; 258 u32 ofs = 0; 259 if (!(ipw_debug_level & level)) 260 return; 261 262 while (len) { 263 snprint_line(line, sizeof(line), &data[ofs], 264 min(len, 16U), ofs); 265 printk(KERN_DEBUG "%s\n", line); 266 ofs += 16; 267 len -= min(len, 16U); 268 } 269 } 270 271 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len) 272 { 273 size_t out = size; 274 u32 ofs = 0; 275 int total = 0; 276 277 while (size && len) { 278 out = snprint_line(output, size, &data[ofs], 279 min_t(size_t, len, 16U), ofs); 280 281 ofs += 16; 282 output += out; 283 size -= out; 284 len -= min_t(size_t, len, 16U); 285 total += out; 286 } 287 return total; 288 } 289 290 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */ 291 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg); 292 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b) 293 294 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */ 295 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg); 296 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b) 297 298 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */ 299 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value); 300 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c) 301 { 302 IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__, 303 __LINE__, (u32) (b), (u32) (c)); 304 _ipw_write_reg8(a, b, c); 305 } 306 307 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */ 308 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value); 309 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c) 310 { 311 IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__, 312 __LINE__, (u32) (b), (u32) (c)); 313 _ipw_write_reg16(a, b, c); 314 } 315 316 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */ 317 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value); 318 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c) 319 { 320 IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__, 321 __LINE__, (u32) (b), (u32) (c)); 322 _ipw_write_reg32(a, b, c); 323 } 324 325 /* 8-bit direct write (low 4K) */ 326 static inline void _ipw_write8(struct ipw_priv *ipw, unsigned long ofs, 327 u8 val) 328 { 329 writeb(val, ipw->hw_base + ofs); 330 } 331 332 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */ 333 #define ipw_write8(ipw, ofs, val) do { \ 334 IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, \ 335 __LINE__, (u32)(ofs), (u32)(val)); \ 336 _ipw_write8(ipw, ofs, val); \ 337 } while (0) 338 339 /* 16-bit direct write (low 4K) */ 340 static inline void _ipw_write16(struct ipw_priv *ipw, unsigned long ofs, 341 u16 val) 342 { 343 writew(val, ipw->hw_base + ofs); 344 } 345 346 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */ 347 #define ipw_write16(ipw, ofs, val) do { \ 348 IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, \ 349 __LINE__, (u32)(ofs), (u32)(val)); \ 350 _ipw_write16(ipw, ofs, val); \ 351 } while (0) 352 353 /* 32-bit direct write (low 4K) */ 354 static inline void _ipw_write32(struct ipw_priv *ipw, unsigned long ofs, 355 u32 val) 356 { 357 writel(val, ipw->hw_base + ofs); 358 } 359 360 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */ 361 #define ipw_write32(ipw, ofs, val) do { \ 362 IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, \ 363 __LINE__, (u32)(ofs), (u32)(val)); \ 364 _ipw_write32(ipw, ofs, val); \ 365 } while (0) 366 367 /* 8-bit direct read (low 4K) */ 368 static inline u8 _ipw_read8(struct ipw_priv *ipw, unsigned long ofs) 369 { 370 return readb(ipw->hw_base + ofs); 371 } 372 373 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */ 374 #define ipw_read8(ipw, ofs) ({ \ 375 IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", __FILE__, __LINE__, \ 376 (u32)(ofs)); \ 377 _ipw_read8(ipw, ofs); \ 378 }) 379 380 /* 16-bit direct read (low 4K) */ 381 static inline u16 _ipw_read16(struct ipw_priv *ipw, unsigned long ofs) 382 { 383 return readw(ipw->hw_base + ofs); 384 } 385 386 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */ 387 #define ipw_read16(ipw, ofs) ({ \ 388 IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", __FILE__, __LINE__, \ 389 (u32)(ofs)); \ 390 _ipw_read16(ipw, ofs); \ 391 }) 392 393 /* 32-bit direct read (low 4K) */ 394 static inline u32 _ipw_read32(struct ipw_priv *ipw, unsigned long ofs) 395 { 396 return readl(ipw->hw_base + ofs); 397 } 398 399 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */ 400 #define ipw_read32(ipw, ofs) ({ \ 401 IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", __FILE__, __LINE__, \ 402 (u32)(ofs)); \ 403 _ipw_read32(ipw, ofs); \ 404 }) 405 406 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int); 407 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */ 408 #define ipw_read_indirect(a, b, c, d) ({ \ 409 IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %u bytes\n", __FILE__, \ 410 __LINE__, (u32)(b), (u32)(d)); \ 411 _ipw_read_indirect(a, b, c, d); \ 412 }) 413 414 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */ 415 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data, 416 int num); 417 #define ipw_write_indirect(a, b, c, d) do { \ 418 IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %u bytes\n", __FILE__, \ 419 __LINE__, (u32)(b), (u32)(d)); \ 420 _ipw_write_indirect(a, b, c, d); \ 421 } while (0) 422 423 /* 32-bit indirect write (above 4K) */ 424 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value) 425 { 426 IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value); 427 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg); 428 _ipw_write32(priv, IPW_INDIRECT_DATA, value); 429 } 430 431 /* 8-bit indirect write (above 4K) */ 432 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value) 433 { 434 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */ 435 u32 dif_len = reg - aligned_addr; 436 437 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value); 438 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr); 439 _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value); 440 } 441 442 /* 16-bit indirect write (above 4K) */ 443 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value) 444 { 445 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */ 446 u32 dif_len = (reg - aligned_addr) & (~0x1ul); 447 448 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value); 449 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr); 450 _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value); 451 } 452 453 /* 8-bit indirect read (above 4K) */ 454 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg) 455 { 456 u32 word; 457 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK); 458 IPW_DEBUG_IO(" reg = 0x%8X :\n", reg); 459 word = _ipw_read32(priv, IPW_INDIRECT_DATA); 460 return (word >> ((reg & 0x3) * 8)) & 0xff; 461 } 462 463 /* 32-bit indirect read (above 4K) */ 464 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg) 465 { 466 u32 value; 467 468 IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg); 469 470 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg); 471 value = _ipw_read32(priv, IPW_INDIRECT_DATA); 472 IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x\n", reg, value); 473 return value; 474 } 475 476 /* General purpose, no alignment requirement, iterative (multi-byte) read, */ 477 /* for area above 1st 4K of SRAM/reg space */ 478 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf, 479 int num) 480 { 481 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */ 482 u32 dif_len = addr - aligned_addr; 483 u32 i; 484 485 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num); 486 487 if (num <= 0) { 488 return; 489 } 490 491 /* Read the first dword (or portion) byte by byte */ 492 if (unlikely(dif_len)) { 493 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr); 494 /* Start reading at aligned_addr + dif_len */ 495 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--) 496 *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i); 497 aligned_addr += 4; 498 } 499 500 /* Read all of the middle dwords as dwords, with auto-increment */ 501 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr); 502 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4) 503 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA); 504 505 /* Read the last dword (or portion) byte by byte */ 506 if (unlikely(num)) { 507 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr); 508 for (i = 0; num > 0; i++, num--) 509 *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i); 510 } 511 } 512 513 /* General purpose, no alignment requirement, iterative (multi-byte) write, */ 514 /* for area above 1st 4K of SRAM/reg space */ 515 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf, 516 int num) 517 { 518 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */ 519 u32 dif_len = addr - aligned_addr; 520 u32 i; 521 522 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num); 523 524 if (num <= 0) { 525 return; 526 } 527 528 /* Write the first dword (or portion) byte by byte */ 529 if (unlikely(dif_len)) { 530 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr); 531 /* Start writing at aligned_addr + dif_len */ 532 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++) 533 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf); 534 aligned_addr += 4; 535 } 536 537 /* Write all of the middle dwords as dwords, with auto-increment */ 538 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr); 539 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4) 540 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf); 541 542 /* Write the last dword (or portion) byte by byte */ 543 if (unlikely(num)) { 544 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr); 545 for (i = 0; num > 0; i++, num--, buf++) 546 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf); 547 } 548 } 549 550 /* General purpose, no alignment requirement, iterative (multi-byte) write, */ 551 /* for 1st 4K of SRAM/regs space */ 552 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf, 553 int num) 554 { 555 memcpy_toio((priv->hw_base + addr), buf, num); 556 } 557 558 /* Set bit(s) in low 4K of SRAM/regs */ 559 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask) 560 { 561 ipw_write32(priv, reg, ipw_read32(priv, reg) | mask); 562 } 563 564 /* Clear bit(s) in low 4K of SRAM/regs */ 565 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask) 566 { 567 ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask); 568 } 569 570 static inline void __ipw_enable_interrupts(struct ipw_priv *priv) 571 { 572 if (priv->status & STATUS_INT_ENABLED) 573 return; 574 priv->status |= STATUS_INT_ENABLED; 575 ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL); 576 } 577 578 static inline void __ipw_disable_interrupts(struct ipw_priv *priv) 579 { 580 if (!(priv->status & STATUS_INT_ENABLED)) 581 return; 582 priv->status &= ~STATUS_INT_ENABLED; 583 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL); 584 } 585 586 static inline void ipw_enable_interrupts(struct ipw_priv *priv) 587 { 588 unsigned long flags; 589 590 spin_lock_irqsave(&priv->irq_lock, flags); 591 __ipw_enable_interrupts(priv); 592 spin_unlock_irqrestore(&priv->irq_lock, flags); 593 } 594 595 static inline void ipw_disable_interrupts(struct ipw_priv *priv) 596 { 597 unsigned long flags; 598 599 spin_lock_irqsave(&priv->irq_lock, flags); 600 __ipw_disable_interrupts(priv); 601 spin_unlock_irqrestore(&priv->irq_lock, flags); 602 } 603 604 static char *ipw_error_desc(u32 val) 605 { 606 switch (val) { 607 case IPW_FW_ERROR_OK: 608 return "ERROR_OK"; 609 case IPW_FW_ERROR_FAIL: 610 return "ERROR_FAIL"; 611 case IPW_FW_ERROR_MEMORY_UNDERFLOW: 612 return "MEMORY_UNDERFLOW"; 613 case IPW_FW_ERROR_MEMORY_OVERFLOW: 614 return "MEMORY_OVERFLOW"; 615 case IPW_FW_ERROR_BAD_PARAM: 616 return "BAD_PARAM"; 617 case IPW_FW_ERROR_BAD_CHECKSUM: 618 return "BAD_CHECKSUM"; 619 case IPW_FW_ERROR_NMI_INTERRUPT: 620 return "NMI_INTERRUPT"; 621 case IPW_FW_ERROR_BAD_DATABASE: 622 return "BAD_DATABASE"; 623 case IPW_FW_ERROR_ALLOC_FAIL: 624 return "ALLOC_FAIL"; 625 case IPW_FW_ERROR_DMA_UNDERRUN: 626 return "DMA_UNDERRUN"; 627 case IPW_FW_ERROR_DMA_STATUS: 628 return "DMA_STATUS"; 629 case IPW_FW_ERROR_DINO_ERROR: 630 return "DINO_ERROR"; 631 case IPW_FW_ERROR_EEPROM_ERROR: 632 return "EEPROM_ERROR"; 633 case IPW_FW_ERROR_SYSASSERT: 634 return "SYSASSERT"; 635 case IPW_FW_ERROR_FATAL_ERROR: 636 return "FATAL_ERROR"; 637 default: 638 return "UNKNOWN_ERROR"; 639 } 640 } 641 642 static void ipw_dump_error_log(struct ipw_priv *priv, 643 struct ipw_fw_error *error) 644 { 645 u32 i; 646 647 if (!error) { 648 IPW_ERROR("Error allocating and capturing error log. " 649 "Nothing to dump.\n"); 650 return; 651 } 652 653 IPW_ERROR("Start IPW Error Log Dump:\n"); 654 IPW_ERROR("Status: 0x%08X, Config: %08X\n", 655 error->status, error->config); 656 657 for (i = 0; i < error->elem_len; i++) 658 IPW_ERROR("%s %i 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", 659 ipw_error_desc(error->elem[i].desc), 660 error->elem[i].time, 661 error->elem[i].blink1, 662 error->elem[i].blink2, 663 error->elem[i].link1, 664 error->elem[i].link2, error->elem[i].data); 665 for (i = 0; i < error->log_len; i++) 666 IPW_ERROR("%i\t0x%08x\t%i\n", 667 error->log[i].time, 668 error->log[i].data, error->log[i].event); 669 } 670 671 static inline int ipw_is_init(struct ipw_priv *priv) 672 { 673 return (priv->status & STATUS_INIT) ? 1 : 0; 674 } 675 676 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len) 677 { 678 u32 addr, field_info, field_len, field_count, total_len; 679 680 IPW_DEBUG_ORD("ordinal = %i\n", ord); 681 682 if (!priv || !val || !len) { 683 IPW_DEBUG_ORD("Invalid argument\n"); 684 return -EINVAL; 685 } 686 687 /* verify device ordinal tables have been initialized */ 688 if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) { 689 IPW_DEBUG_ORD("Access ordinals before initialization\n"); 690 return -EINVAL; 691 } 692 693 switch (IPW_ORD_TABLE_ID_MASK & ord) { 694 case IPW_ORD_TABLE_0_MASK: 695 /* 696 * TABLE 0: Direct access to a table of 32 bit values 697 * 698 * This is a very simple table with the data directly 699 * read from the table 700 */ 701 702 /* remove the table id from the ordinal */ 703 ord &= IPW_ORD_TABLE_VALUE_MASK; 704 705 /* boundary check */ 706 if (ord > priv->table0_len) { 707 IPW_DEBUG_ORD("ordinal value (%i) longer then " 708 "max (%i)\n", ord, priv->table0_len); 709 return -EINVAL; 710 } 711 712 /* verify we have enough room to store the value */ 713 if (*len < sizeof(u32)) { 714 IPW_DEBUG_ORD("ordinal buffer length too small, " 715 "need %zd\n", sizeof(u32)); 716 return -EINVAL; 717 } 718 719 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n", 720 ord, priv->table0_addr + (ord << 2)); 721 722 *len = sizeof(u32); 723 ord <<= 2; 724 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord); 725 break; 726 727 case IPW_ORD_TABLE_1_MASK: 728 /* 729 * TABLE 1: Indirect access to a table of 32 bit values 730 * 731 * This is a fairly large table of u32 values each 732 * representing starting addr for the data (which is 733 * also a u32) 734 */ 735 736 /* remove the table id from the ordinal */ 737 ord &= IPW_ORD_TABLE_VALUE_MASK; 738 739 /* boundary check */ 740 if (ord > priv->table1_len) { 741 IPW_DEBUG_ORD("ordinal value too long\n"); 742 return -EINVAL; 743 } 744 745 /* verify we have enough room to store the value */ 746 if (*len < sizeof(u32)) { 747 IPW_DEBUG_ORD("ordinal buffer length too small, " 748 "need %zd\n", sizeof(u32)); 749 return -EINVAL; 750 } 751 752 *((u32 *) val) = 753 ipw_read_reg32(priv, (priv->table1_addr + (ord << 2))); 754 *len = sizeof(u32); 755 break; 756 757 case IPW_ORD_TABLE_2_MASK: 758 /* 759 * TABLE 2: Indirect access to a table of variable sized values 760 * 761 * This table consist of six values, each containing 762 * - dword containing the starting offset of the data 763 * - dword containing the lengh in the first 16bits 764 * and the count in the second 16bits 765 */ 766 767 /* remove the table id from the ordinal */ 768 ord &= IPW_ORD_TABLE_VALUE_MASK; 769 770 /* boundary check */ 771 if (ord > priv->table2_len) { 772 IPW_DEBUG_ORD("ordinal value too long\n"); 773 return -EINVAL; 774 } 775 776 /* get the address of statistic */ 777 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3)); 778 779 /* get the second DW of statistics ; 780 * two 16-bit words - first is length, second is count */ 781 field_info = 782 ipw_read_reg32(priv, 783 priv->table2_addr + (ord << 3) + 784 sizeof(u32)); 785 786 /* get each entry length */ 787 field_len = *((u16 *) & field_info); 788 789 /* get number of entries */ 790 field_count = *(((u16 *) & field_info) + 1); 791 792 /* abort if not enough memory */ 793 total_len = field_len * field_count; 794 if (total_len > *len) { 795 *len = total_len; 796 return -EINVAL; 797 } 798 799 *len = total_len; 800 if (!total_len) 801 return 0; 802 803 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, " 804 "field_info = 0x%08x\n", 805 addr, total_len, field_info); 806 ipw_read_indirect(priv, addr, val, total_len); 807 break; 808 809 default: 810 IPW_DEBUG_ORD("Invalid ordinal!\n"); 811 return -EINVAL; 812 813 } 814 815 return 0; 816 } 817 818 static void ipw_init_ordinals(struct ipw_priv *priv) 819 { 820 priv->table0_addr = IPW_ORDINALS_TABLE_LOWER; 821 priv->table0_len = ipw_read32(priv, priv->table0_addr); 822 823 IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n", 824 priv->table0_addr, priv->table0_len); 825 826 priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1); 827 priv->table1_len = ipw_read_reg32(priv, priv->table1_addr); 828 829 IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n", 830 priv->table1_addr, priv->table1_len); 831 832 priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2); 833 priv->table2_len = ipw_read_reg32(priv, priv->table2_addr); 834 priv->table2_len &= 0x0000ffff; /* use first two bytes */ 835 836 IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n", 837 priv->table2_addr, priv->table2_len); 838 839 } 840 841 static u32 ipw_register_toggle(u32 reg) 842 { 843 reg &= ~IPW_START_STANDBY; 844 if (reg & IPW_GATE_ODMA) 845 reg &= ~IPW_GATE_ODMA; 846 if (reg & IPW_GATE_IDMA) 847 reg &= ~IPW_GATE_IDMA; 848 if (reg & IPW_GATE_ADMA) 849 reg &= ~IPW_GATE_ADMA; 850 return reg; 851 } 852 853 /* 854 * LED behavior: 855 * - On radio ON, turn on any LEDs that require to be on during start 856 * - On initialization, start unassociated blink 857 * - On association, disable unassociated blink 858 * - On disassociation, start unassociated blink 859 * - On radio OFF, turn off any LEDs started during radio on 860 * 861 */ 862 #define LD_TIME_LINK_ON msecs_to_jiffies(300) 863 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700) 864 #define LD_TIME_ACT_ON msecs_to_jiffies(250) 865 866 static void ipw_led_link_on(struct ipw_priv *priv) 867 { 868 unsigned long flags; 869 u32 led; 870 871 /* If configured to not use LEDs, or nic_type is 1, 872 * then we don't toggle a LINK led */ 873 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1) 874 return; 875 876 spin_lock_irqsave(&priv->lock, flags); 877 878 if (!(priv->status & STATUS_RF_KILL_MASK) && 879 !(priv->status & STATUS_LED_LINK_ON)) { 880 IPW_DEBUG_LED("Link LED On\n"); 881 led = ipw_read_reg32(priv, IPW_EVENT_REG); 882 led |= priv->led_association_on; 883 884 led = ipw_register_toggle(led); 885 886 IPW_DEBUG_LED("Reg: 0x%08X\n", led); 887 ipw_write_reg32(priv, IPW_EVENT_REG, led); 888 889 priv->status |= STATUS_LED_LINK_ON; 890 891 /* If we aren't associated, schedule turning the LED off */ 892 if (!(priv->status & STATUS_ASSOCIATED)) 893 schedule_delayed_work(&priv->led_link_off, 894 LD_TIME_LINK_ON); 895 } 896 897 spin_unlock_irqrestore(&priv->lock, flags); 898 } 899 900 static void ipw_bg_led_link_on(struct work_struct *work) 901 { 902 struct ipw_priv *priv = 903 container_of(work, struct ipw_priv, led_link_on.work); 904 mutex_lock(&priv->mutex); 905 ipw_led_link_on(priv); 906 mutex_unlock(&priv->mutex); 907 } 908 909 static void ipw_led_link_off(struct ipw_priv *priv) 910 { 911 unsigned long flags; 912 u32 led; 913 914 /* If configured not to use LEDs, or nic type is 1, 915 * then we don't goggle the LINK led. */ 916 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1) 917 return; 918 919 spin_lock_irqsave(&priv->lock, flags); 920 921 if (priv->status & STATUS_LED_LINK_ON) { 922 led = ipw_read_reg32(priv, IPW_EVENT_REG); 923 led &= priv->led_association_off; 924 led = ipw_register_toggle(led); 925 926 IPW_DEBUG_LED("Reg: 0x%08X\n", led); 927 ipw_write_reg32(priv, IPW_EVENT_REG, led); 928 929 IPW_DEBUG_LED("Link LED Off\n"); 930 931 priv->status &= ~STATUS_LED_LINK_ON; 932 933 /* If we aren't associated and the radio is on, schedule 934 * turning the LED on (blink while unassociated) */ 935 if (!(priv->status & STATUS_RF_KILL_MASK) && 936 !(priv->status & STATUS_ASSOCIATED)) 937 schedule_delayed_work(&priv->led_link_on, 938 LD_TIME_LINK_OFF); 939 940 } 941 942 spin_unlock_irqrestore(&priv->lock, flags); 943 } 944 945 static void ipw_bg_led_link_off(struct work_struct *work) 946 { 947 struct ipw_priv *priv = 948 container_of(work, struct ipw_priv, led_link_off.work); 949 mutex_lock(&priv->mutex); 950 ipw_led_link_off(priv); 951 mutex_unlock(&priv->mutex); 952 } 953 954 static void __ipw_led_activity_on(struct ipw_priv *priv) 955 { 956 u32 led; 957 958 if (priv->config & CFG_NO_LED) 959 return; 960 961 if (priv->status & STATUS_RF_KILL_MASK) 962 return; 963 964 if (!(priv->status & STATUS_LED_ACT_ON)) { 965 led = ipw_read_reg32(priv, IPW_EVENT_REG); 966 led |= priv->led_activity_on; 967 968 led = ipw_register_toggle(led); 969 970 IPW_DEBUG_LED("Reg: 0x%08X\n", led); 971 ipw_write_reg32(priv, IPW_EVENT_REG, led); 972 973 IPW_DEBUG_LED("Activity LED On\n"); 974 975 priv->status |= STATUS_LED_ACT_ON; 976 977 cancel_delayed_work(&priv->led_act_off); 978 schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON); 979 } else { 980 /* Reschedule LED off for full time period */ 981 cancel_delayed_work(&priv->led_act_off); 982 schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON); 983 } 984 } 985 986 #if 0 987 void ipw_led_activity_on(struct ipw_priv *priv) 988 { 989 unsigned long flags; 990 spin_lock_irqsave(&priv->lock, flags); 991 __ipw_led_activity_on(priv); 992 spin_unlock_irqrestore(&priv->lock, flags); 993 } 994 #endif /* 0 */ 995 996 static void ipw_led_activity_off(struct ipw_priv *priv) 997 { 998 unsigned long flags; 999 u32 led; 1000 1001 if (priv->config & CFG_NO_LED) 1002 return; 1003 1004 spin_lock_irqsave(&priv->lock, flags); 1005 1006 if (priv->status & STATUS_LED_ACT_ON) { 1007 led = ipw_read_reg32(priv, IPW_EVENT_REG); 1008 led &= priv->led_activity_off; 1009 1010 led = ipw_register_toggle(led); 1011 1012 IPW_DEBUG_LED("Reg: 0x%08X\n", led); 1013 ipw_write_reg32(priv, IPW_EVENT_REG, led); 1014 1015 IPW_DEBUG_LED("Activity LED Off\n"); 1016 1017 priv->status &= ~STATUS_LED_ACT_ON; 1018 } 1019 1020 spin_unlock_irqrestore(&priv->lock, flags); 1021 } 1022 1023 static void ipw_bg_led_activity_off(struct work_struct *work) 1024 { 1025 struct ipw_priv *priv = 1026 container_of(work, struct ipw_priv, led_act_off.work); 1027 mutex_lock(&priv->mutex); 1028 ipw_led_activity_off(priv); 1029 mutex_unlock(&priv->mutex); 1030 } 1031 1032 static void ipw_led_band_on(struct ipw_priv *priv) 1033 { 1034 unsigned long flags; 1035 u32 led; 1036 1037 /* Only nic type 1 supports mode LEDs */ 1038 if (priv->config & CFG_NO_LED || 1039 priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network) 1040 return; 1041 1042 spin_lock_irqsave(&priv->lock, flags); 1043 1044 led = ipw_read_reg32(priv, IPW_EVENT_REG); 1045 if (priv->assoc_network->mode == IEEE_A) { 1046 led |= priv->led_ofdm_on; 1047 led &= priv->led_association_off; 1048 IPW_DEBUG_LED("Mode LED On: 802.11a\n"); 1049 } else if (priv->assoc_network->mode == IEEE_G) { 1050 led |= priv->led_ofdm_on; 1051 led |= priv->led_association_on; 1052 IPW_DEBUG_LED("Mode LED On: 802.11g\n"); 1053 } else { 1054 led &= priv->led_ofdm_off; 1055 led |= priv->led_association_on; 1056 IPW_DEBUG_LED("Mode LED On: 802.11b\n"); 1057 } 1058 1059 led = ipw_register_toggle(led); 1060 1061 IPW_DEBUG_LED("Reg: 0x%08X\n", led); 1062 ipw_write_reg32(priv, IPW_EVENT_REG, led); 1063 1064 spin_unlock_irqrestore(&priv->lock, flags); 1065 } 1066 1067 static void ipw_led_band_off(struct ipw_priv *priv) 1068 { 1069 unsigned long flags; 1070 u32 led; 1071 1072 /* Only nic type 1 supports mode LEDs */ 1073 if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1) 1074 return; 1075 1076 spin_lock_irqsave(&priv->lock, flags); 1077 1078 led = ipw_read_reg32(priv, IPW_EVENT_REG); 1079 led &= priv->led_ofdm_off; 1080 led &= priv->led_association_off; 1081 1082 led = ipw_register_toggle(led); 1083 1084 IPW_DEBUG_LED("Reg: 0x%08X\n", led); 1085 ipw_write_reg32(priv, IPW_EVENT_REG, led); 1086 1087 spin_unlock_irqrestore(&priv->lock, flags); 1088 } 1089 1090 static void ipw_led_radio_on(struct ipw_priv *priv) 1091 { 1092 ipw_led_link_on(priv); 1093 } 1094 1095 static void ipw_led_radio_off(struct ipw_priv *priv) 1096 { 1097 ipw_led_activity_off(priv); 1098 ipw_led_link_off(priv); 1099 } 1100 1101 static void ipw_led_link_up(struct ipw_priv *priv) 1102 { 1103 /* Set the Link Led on for all nic types */ 1104 ipw_led_link_on(priv); 1105 } 1106 1107 static void ipw_led_link_down(struct ipw_priv *priv) 1108 { 1109 ipw_led_activity_off(priv); 1110 ipw_led_link_off(priv); 1111 1112 if (priv->status & STATUS_RF_KILL_MASK) 1113 ipw_led_radio_off(priv); 1114 } 1115 1116 static void ipw_led_init(struct ipw_priv *priv) 1117 { 1118 priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE]; 1119 1120 /* Set the default PINs for the link and activity leds */ 1121 priv->led_activity_on = IPW_ACTIVITY_LED; 1122 priv->led_activity_off = ~(IPW_ACTIVITY_LED); 1123 1124 priv->led_association_on = IPW_ASSOCIATED_LED; 1125 priv->led_association_off = ~(IPW_ASSOCIATED_LED); 1126 1127 /* Set the default PINs for the OFDM leds */ 1128 priv->led_ofdm_on = IPW_OFDM_LED; 1129 priv->led_ofdm_off = ~(IPW_OFDM_LED); 1130 1131 switch (priv->nic_type) { 1132 case EEPROM_NIC_TYPE_1: 1133 /* In this NIC type, the LEDs are reversed.... */ 1134 priv->led_activity_on = IPW_ASSOCIATED_LED; 1135 priv->led_activity_off = ~(IPW_ASSOCIATED_LED); 1136 priv->led_association_on = IPW_ACTIVITY_LED; 1137 priv->led_association_off = ~(IPW_ACTIVITY_LED); 1138 1139 if (!(priv->config & CFG_NO_LED)) 1140 ipw_led_band_on(priv); 1141 1142 /* And we don't blink link LEDs for this nic, so 1143 * just return here */ 1144 return; 1145 1146 case EEPROM_NIC_TYPE_3: 1147 case EEPROM_NIC_TYPE_2: 1148 case EEPROM_NIC_TYPE_4: 1149 case EEPROM_NIC_TYPE_0: 1150 break; 1151 1152 default: 1153 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n", 1154 priv->nic_type); 1155 priv->nic_type = EEPROM_NIC_TYPE_0; 1156 break; 1157 } 1158 1159 if (!(priv->config & CFG_NO_LED)) { 1160 if (priv->status & STATUS_ASSOCIATED) 1161 ipw_led_link_on(priv); 1162 else 1163 ipw_led_link_off(priv); 1164 } 1165 } 1166 1167 static void ipw_led_shutdown(struct ipw_priv *priv) 1168 { 1169 ipw_led_activity_off(priv); 1170 ipw_led_link_off(priv); 1171 ipw_led_band_off(priv); 1172 cancel_delayed_work(&priv->led_link_on); 1173 cancel_delayed_work(&priv->led_link_off); 1174 cancel_delayed_work(&priv->led_act_off); 1175 } 1176 1177 /* 1178 * The following adds a new attribute to the sysfs representation 1179 * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/) 1180 * used for controlling the debug level. 1181 * 1182 * See the level definitions in ipw for details. 1183 */ 1184 static ssize_t debug_level_show(struct device_driver *d, char *buf) 1185 { 1186 return sprintf(buf, "0x%08X\n", ipw_debug_level); 1187 } 1188 1189 static ssize_t debug_level_store(struct device_driver *d, const char *buf, 1190 size_t count) 1191 { 1192 char *p = (char *)buf; 1193 u32 val; 1194 1195 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') { 1196 p++; 1197 if (p[0] == 'x' || p[0] == 'X') 1198 p++; 1199 val = simple_strtoul(p, &p, 16); 1200 } else 1201 val = simple_strtoul(p, &p, 10); 1202 if (p == buf) 1203 printk(KERN_INFO DRV_NAME 1204 ": %s is not in hex or decimal form.\n", buf); 1205 else 1206 ipw_debug_level = val; 1207 1208 return strnlen(buf, count); 1209 } 1210 static DRIVER_ATTR_RW(debug_level); 1211 1212 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv) 1213 { 1214 /* length = 1st dword in log */ 1215 return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG)); 1216 } 1217 1218 static void ipw_capture_event_log(struct ipw_priv *priv, 1219 u32 log_len, struct ipw_event *log) 1220 { 1221 u32 base; 1222 1223 if (log_len) { 1224 base = ipw_read32(priv, IPW_EVENT_LOG); 1225 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32), 1226 (u8 *) log, sizeof(*log) * log_len); 1227 } 1228 } 1229 1230 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv) 1231 { 1232 struct ipw_fw_error *error; 1233 u32 log_len = ipw_get_event_log_len(priv); 1234 u32 base = ipw_read32(priv, IPW_ERROR_LOG); 1235 u32 elem_len = ipw_read_reg32(priv, base); 1236 1237 error = kmalloc(sizeof(*error) + 1238 sizeof(*error->elem) * elem_len + 1239 sizeof(*error->log) * log_len, GFP_ATOMIC); 1240 if (!error) { 1241 IPW_ERROR("Memory allocation for firmware error log " 1242 "failed.\n"); 1243 return NULL; 1244 } 1245 error->jiffies = jiffies; 1246 error->status = priv->status; 1247 error->config = priv->config; 1248 error->elem_len = elem_len; 1249 error->log_len = log_len; 1250 error->elem = (struct ipw_error_elem *)error->payload; 1251 error->log = (struct ipw_event *)(error->elem + elem_len); 1252 1253 ipw_capture_event_log(priv, log_len, error->log); 1254 1255 if (elem_len) 1256 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem, 1257 sizeof(*error->elem) * elem_len); 1258 1259 return error; 1260 } 1261 1262 static ssize_t show_event_log(struct device *d, 1263 struct device_attribute *attr, char *buf) 1264 { 1265 struct ipw_priv *priv = dev_get_drvdata(d); 1266 u32 log_len = ipw_get_event_log_len(priv); 1267 u32 log_size; 1268 struct ipw_event *log; 1269 u32 len = 0, i; 1270 1271 /* not using min() because of its strict type checking */ 1272 log_size = PAGE_SIZE / sizeof(*log) > log_len ? 1273 sizeof(*log) * log_len : PAGE_SIZE; 1274 log = kzalloc(log_size, GFP_KERNEL); 1275 if (!log) { 1276 IPW_ERROR("Unable to allocate memory for log\n"); 1277 return 0; 1278 } 1279 log_len = log_size / sizeof(*log); 1280 ipw_capture_event_log(priv, log_len, log); 1281 1282 len += scnprintf(buf + len, PAGE_SIZE - len, "%08X", log_len); 1283 for (i = 0; i < log_len; i++) 1284 len += scnprintf(buf + len, PAGE_SIZE - len, 1285 "\n%08X%08X%08X", 1286 log[i].time, log[i].event, log[i].data); 1287 len += scnprintf(buf + len, PAGE_SIZE - len, "\n"); 1288 kfree(log); 1289 return len; 1290 } 1291 1292 static DEVICE_ATTR(event_log, 0444, show_event_log, NULL); 1293 1294 static ssize_t show_error(struct device *d, 1295 struct device_attribute *attr, char *buf) 1296 { 1297 struct ipw_priv *priv = dev_get_drvdata(d); 1298 u32 len = 0, i; 1299 if (!priv->error) 1300 return 0; 1301 len += scnprintf(buf + len, PAGE_SIZE - len, 1302 "%08lX%08X%08X%08X", 1303 priv->error->jiffies, 1304 priv->error->status, 1305 priv->error->config, priv->error->elem_len); 1306 for (i = 0; i < priv->error->elem_len; i++) 1307 len += scnprintf(buf + len, PAGE_SIZE - len, 1308 "\n%08X%08X%08X%08X%08X%08X%08X", 1309 priv->error->elem[i].time, 1310 priv->error->elem[i].desc, 1311 priv->error->elem[i].blink1, 1312 priv->error->elem[i].blink2, 1313 priv->error->elem[i].link1, 1314 priv->error->elem[i].link2, 1315 priv->error->elem[i].data); 1316 1317 len += scnprintf(buf + len, PAGE_SIZE - len, 1318 "\n%08X", priv->error->log_len); 1319 for (i = 0; i < priv->error->log_len; i++) 1320 len += scnprintf(buf + len, PAGE_SIZE - len, 1321 "\n%08X%08X%08X", 1322 priv->error->log[i].time, 1323 priv->error->log[i].event, 1324 priv->error->log[i].data); 1325 len += scnprintf(buf + len, PAGE_SIZE - len, "\n"); 1326 return len; 1327 } 1328 1329 static ssize_t clear_error(struct device *d, 1330 struct device_attribute *attr, 1331 const char *buf, size_t count) 1332 { 1333 struct ipw_priv *priv = dev_get_drvdata(d); 1334 1335 kfree(priv->error); 1336 priv->error = NULL; 1337 return count; 1338 } 1339 1340 static DEVICE_ATTR(error, 0644, show_error, clear_error); 1341 1342 static ssize_t show_cmd_log(struct device *d, 1343 struct device_attribute *attr, char *buf) 1344 { 1345 struct ipw_priv *priv = dev_get_drvdata(d); 1346 u32 len = 0, i; 1347 if (!priv->cmdlog) 1348 return 0; 1349 for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len; 1350 (i != priv->cmdlog_pos) && (len < PAGE_SIZE); 1351 i = (i + 1) % priv->cmdlog_len) { 1352 len += 1353 scnprintf(buf + len, PAGE_SIZE - len, 1354 "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies, 1355 priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd, 1356 priv->cmdlog[i].cmd.len); 1357 len += 1358 snprintk_buf(buf + len, PAGE_SIZE - len, 1359 (u8 *) priv->cmdlog[i].cmd.param, 1360 priv->cmdlog[i].cmd.len); 1361 len += scnprintf(buf + len, PAGE_SIZE - len, "\n"); 1362 } 1363 len += scnprintf(buf + len, PAGE_SIZE - len, "\n"); 1364 return len; 1365 } 1366 1367 static DEVICE_ATTR(cmd_log, 0444, show_cmd_log, NULL); 1368 1369 #ifdef CONFIG_IPW2200_PROMISCUOUS 1370 static void ipw_prom_free(struct ipw_priv *priv); 1371 static int ipw_prom_alloc(struct ipw_priv *priv); 1372 static ssize_t store_rtap_iface(struct device *d, 1373 struct device_attribute *attr, 1374 const char *buf, size_t count) 1375 { 1376 struct ipw_priv *priv = dev_get_drvdata(d); 1377 int rc = 0; 1378 1379 if (count < 1) 1380 return -EINVAL; 1381 1382 switch (buf[0]) { 1383 case '0': 1384 if (!rtap_iface) 1385 return count; 1386 1387 if (netif_running(priv->prom_net_dev)) { 1388 IPW_WARNING("Interface is up. Cannot unregister.\n"); 1389 return count; 1390 } 1391 1392 ipw_prom_free(priv); 1393 rtap_iface = 0; 1394 break; 1395 1396 case '1': 1397 if (rtap_iface) 1398 return count; 1399 1400 rc = ipw_prom_alloc(priv); 1401 if (!rc) 1402 rtap_iface = 1; 1403 break; 1404 1405 default: 1406 return -EINVAL; 1407 } 1408 1409 if (rc) { 1410 IPW_ERROR("Failed to register promiscuous network " 1411 "device (error %d).\n", rc); 1412 } 1413 1414 return count; 1415 } 1416 1417 static ssize_t show_rtap_iface(struct device *d, 1418 struct device_attribute *attr, 1419 char *buf) 1420 { 1421 struct ipw_priv *priv = dev_get_drvdata(d); 1422 if (rtap_iface) 1423 return sprintf(buf, "%s", priv->prom_net_dev->name); 1424 else { 1425 buf[0] = '-'; 1426 buf[1] = '1'; 1427 buf[2] = '\0'; 1428 return 3; 1429 } 1430 } 1431 1432 static DEVICE_ATTR(rtap_iface, 0600, show_rtap_iface, store_rtap_iface); 1433 1434 static ssize_t store_rtap_filter(struct device *d, 1435 struct device_attribute *attr, 1436 const char *buf, size_t count) 1437 { 1438 struct ipw_priv *priv = dev_get_drvdata(d); 1439 1440 if (!priv->prom_priv) { 1441 IPW_ERROR("Attempting to set filter without " 1442 "rtap_iface enabled.\n"); 1443 return -EPERM; 1444 } 1445 1446 priv->prom_priv->filter = simple_strtol(buf, NULL, 0); 1447 1448 IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n", 1449 BIT_ARG16(priv->prom_priv->filter)); 1450 1451 return count; 1452 } 1453 1454 static ssize_t show_rtap_filter(struct device *d, 1455 struct device_attribute *attr, 1456 char *buf) 1457 { 1458 struct ipw_priv *priv = dev_get_drvdata(d); 1459 return sprintf(buf, "0x%04X", 1460 priv->prom_priv ? priv->prom_priv->filter : 0); 1461 } 1462 1463 static DEVICE_ATTR(rtap_filter, 0600, show_rtap_filter, store_rtap_filter); 1464 #endif 1465 1466 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr, 1467 char *buf) 1468 { 1469 struct ipw_priv *priv = dev_get_drvdata(d); 1470 return sprintf(buf, "%d\n", priv->ieee->scan_age); 1471 } 1472 1473 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr, 1474 const char *buf, size_t count) 1475 { 1476 struct ipw_priv *priv = dev_get_drvdata(d); 1477 struct net_device *dev = priv->net_dev; 1478 char buffer[] = "00000000"; 1479 unsigned long len = 1480 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1; 1481 unsigned long val; 1482 char *p = buffer; 1483 1484 IPW_DEBUG_INFO("enter\n"); 1485 1486 strncpy(buffer, buf, len); 1487 buffer[len] = 0; 1488 1489 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') { 1490 p++; 1491 if (p[0] == 'x' || p[0] == 'X') 1492 p++; 1493 val = simple_strtoul(p, &p, 16); 1494 } else 1495 val = simple_strtoul(p, &p, 10); 1496 if (p == buffer) { 1497 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name); 1498 } else { 1499 priv->ieee->scan_age = val; 1500 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age); 1501 } 1502 1503 IPW_DEBUG_INFO("exit\n"); 1504 return len; 1505 } 1506 1507 static DEVICE_ATTR(scan_age, 0644, show_scan_age, store_scan_age); 1508 1509 static ssize_t show_led(struct device *d, struct device_attribute *attr, 1510 char *buf) 1511 { 1512 struct ipw_priv *priv = dev_get_drvdata(d); 1513 return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1); 1514 } 1515 1516 static ssize_t store_led(struct device *d, struct device_attribute *attr, 1517 const char *buf, size_t count) 1518 { 1519 struct ipw_priv *priv = dev_get_drvdata(d); 1520 1521 IPW_DEBUG_INFO("enter\n"); 1522 1523 if (count == 0) 1524 return 0; 1525 1526 if (*buf == 0) { 1527 IPW_DEBUG_LED("Disabling LED control.\n"); 1528 priv->config |= CFG_NO_LED; 1529 ipw_led_shutdown(priv); 1530 } else { 1531 IPW_DEBUG_LED("Enabling LED control.\n"); 1532 priv->config &= ~CFG_NO_LED; 1533 ipw_led_init(priv); 1534 } 1535 1536 IPW_DEBUG_INFO("exit\n"); 1537 return count; 1538 } 1539 1540 static DEVICE_ATTR(led, 0644, show_led, store_led); 1541 1542 static ssize_t show_status(struct device *d, 1543 struct device_attribute *attr, char *buf) 1544 { 1545 struct ipw_priv *p = dev_get_drvdata(d); 1546 return sprintf(buf, "0x%08x\n", (int)p->status); 1547 } 1548 1549 static DEVICE_ATTR(status, 0444, show_status, NULL); 1550 1551 static ssize_t show_cfg(struct device *d, struct device_attribute *attr, 1552 char *buf) 1553 { 1554 struct ipw_priv *p = dev_get_drvdata(d); 1555 return sprintf(buf, "0x%08x\n", (int)p->config); 1556 } 1557 1558 static DEVICE_ATTR(cfg, 0444, show_cfg, NULL); 1559 1560 static ssize_t show_nic_type(struct device *d, 1561 struct device_attribute *attr, char *buf) 1562 { 1563 struct ipw_priv *priv = dev_get_drvdata(d); 1564 return sprintf(buf, "TYPE: %d\n", priv->nic_type); 1565 } 1566 1567 static DEVICE_ATTR(nic_type, 0444, show_nic_type, NULL); 1568 1569 static ssize_t show_ucode_version(struct device *d, 1570 struct device_attribute *attr, char *buf) 1571 { 1572 u32 len = sizeof(u32), tmp = 0; 1573 struct ipw_priv *p = dev_get_drvdata(d); 1574 1575 if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len)) 1576 return 0; 1577 1578 return sprintf(buf, "0x%08x\n", tmp); 1579 } 1580 1581 static DEVICE_ATTR(ucode_version, 0644, show_ucode_version, NULL); 1582 1583 static ssize_t show_rtc(struct device *d, struct device_attribute *attr, 1584 char *buf) 1585 { 1586 u32 len = sizeof(u32), tmp = 0; 1587 struct ipw_priv *p = dev_get_drvdata(d); 1588 1589 if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len)) 1590 return 0; 1591 1592 return sprintf(buf, "0x%08x\n", tmp); 1593 } 1594 1595 static DEVICE_ATTR(rtc, 0644, show_rtc, NULL); 1596 1597 /* 1598 * Add a device attribute to view/control the delay between eeprom 1599 * operations. 1600 */ 1601 static ssize_t show_eeprom_delay(struct device *d, 1602 struct device_attribute *attr, char *buf) 1603 { 1604 struct ipw_priv *p = dev_get_drvdata(d); 1605 int n = p->eeprom_delay; 1606 return sprintf(buf, "%i\n", n); 1607 } 1608 static ssize_t store_eeprom_delay(struct device *d, 1609 struct device_attribute *attr, 1610 const char *buf, size_t count) 1611 { 1612 struct ipw_priv *p = dev_get_drvdata(d); 1613 sscanf(buf, "%i", &p->eeprom_delay); 1614 return strnlen(buf, count); 1615 } 1616 1617 static DEVICE_ATTR(eeprom_delay, 0644, show_eeprom_delay, store_eeprom_delay); 1618 1619 static ssize_t show_command_event_reg(struct device *d, 1620 struct device_attribute *attr, char *buf) 1621 { 1622 u32 reg = 0; 1623 struct ipw_priv *p = dev_get_drvdata(d); 1624 1625 reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT); 1626 return sprintf(buf, "0x%08x\n", reg); 1627 } 1628 static ssize_t store_command_event_reg(struct device *d, 1629 struct device_attribute *attr, 1630 const char *buf, size_t count) 1631 { 1632 u32 reg; 1633 struct ipw_priv *p = dev_get_drvdata(d); 1634 1635 sscanf(buf, "%x", ®); 1636 ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg); 1637 return strnlen(buf, count); 1638 } 1639 1640 static DEVICE_ATTR(command_event_reg, 0644, 1641 show_command_event_reg, store_command_event_reg); 1642 1643 static ssize_t show_mem_gpio_reg(struct device *d, 1644 struct device_attribute *attr, char *buf) 1645 { 1646 u32 reg = 0; 1647 struct ipw_priv *p = dev_get_drvdata(d); 1648 1649 reg = ipw_read_reg32(p, 0x301100); 1650 return sprintf(buf, "0x%08x\n", reg); 1651 } 1652 static ssize_t store_mem_gpio_reg(struct device *d, 1653 struct device_attribute *attr, 1654 const char *buf, size_t count) 1655 { 1656 u32 reg; 1657 struct ipw_priv *p = dev_get_drvdata(d); 1658 1659 sscanf(buf, "%x", ®); 1660 ipw_write_reg32(p, 0x301100, reg); 1661 return strnlen(buf, count); 1662 } 1663 1664 static DEVICE_ATTR(mem_gpio_reg, 0644, show_mem_gpio_reg, store_mem_gpio_reg); 1665 1666 static ssize_t show_indirect_dword(struct device *d, 1667 struct device_attribute *attr, char *buf) 1668 { 1669 u32 reg = 0; 1670 struct ipw_priv *priv = dev_get_drvdata(d); 1671 1672 if (priv->status & STATUS_INDIRECT_DWORD) 1673 reg = ipw_read_reg32(priv, priv->indirect_dword); 1674 else 1675 reg = 0; 1676 1677 return sprintf(buf, "0x%08x\n", reg); 1678 } 1679 static ssize_t store_indirect_dword(struct device *d, 1680 struct device_attribute *attr, 1681 const char *buf, size_t count) 1682 { 1683 struct ipw_priv *priv = dev_get_drvdata(d); 1684 1685 sscanf(buf, "%x", &priv->indirect_dword); 1686 priv->status |= STATUS_INDIRECT_DWORD; 1687 return strnlen(buf, count); 1688 } 1689 1690 static DEVICE_ATTR(indirect_dword, 0644, 1691 show_indirect_dword, store_indirect_dword); 1692 1693 static ssize_t show_indirect_byte(struct device *d, 1694 struct device_attribute *attr, char *buf) 1695 { 1696 u8 reg = 0; 1697 struct ipw_priv *priv = dev_get_drvdata(d); 1698 1699 if (priv->status & STATUS_INDIRECT_BYTE) 1700 reg = ipw_read_reg8(priv, priv->indirect_byte); 1701 else 1702 reg = 0; 1703 1704 return sprintf(buf, "0x%02x\n", reg); 1705 } 1706 static ssize_t store_indirect_byte(struct device *d, 1707 struct device_attribute *attr, 1708 const char *buf, size_t count) 1709 { 1710 struct ipw_priv *priv = dev_get_drvdata(d); 1711 1712 sscanf(buf, "%x", &priv->indirect_byte); 1713 priv->status |= STATUS_INDIRECT_BYTE; 1714 return strnlen(buf, count); 1715 } 1716 1717 static DEVICE_ATTR(indirect_byte, 0644, 1718 show_indirect_byte, store_indirect_byte); 1719 1720 static ssize_t show_direct_dword(struct device *d, 1721 struct device_attribute *attr, char *buf) 1722 { 1723 u32 reg = 0; 1724 struct ipw_priv *priv = dev_get_drvdata(d); 1725 1726 if (priv->status & STATUS_DIRECT_DWORD) 1727 reg = ipw_read32(priv, priv->direct_dword); 1728 else 1729 reg = 0; 1730 1731 return sprintf(buf, "0x%08x\n", reg); 1732 } 1733 static ssize_t store_direct_dword(struct device *d, 1734 struct device_attribute *attr, 1735 const char *buf, size_t count) 1736 { 1737 struct ipw_priv *priv = dev_get_drvdata(d); 1738 1739 sscanf(buf, "%x", &priv->direct_dword); 1740 priv->status |= STATUS_DIRECT_DWORD; 1741 return strnlen(buf, count); 1742 } 1743 1744 static DEVICE_ATTR(direct_dword, 0644, show_direct_dword, store_direct_dword); 1745 1746 static int rf_kill_active(struct ipw_priv *priv) 1747 { 1748 if (0 == (ipw_read32(priv, 0x30) & 0x10000)) { 1749 priv->status |= STATUS_RF_KILL_HW; 1750 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true); 1751 } else { 1752 priv->status &= ~STATUS_RF_KILL_HW; 1753 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false); 1754 } 1755 1756 return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0; 1757 } 1758 1759 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr, 1760 char *buf) 1761 { 1762 /* 0 - RF kill not enabled 1763 1 - SW based RF kill active (sysfs) 1764 2 - HW based RF kill active 1765 3 - Both HW and SW baed RF kill active */ 1766 struct ipw_priv *priv = dev_get_drvdata(d); 1767 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) | 1768 (rf_kill_active(priv) ? 0x2 : 0x0); 1769 return sprintf(buf, "%i\n", val); 1770 } 1771 1772 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio) 1773 { 1774 if ((disable_radio ? 1 : 0) == 1775 ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0)) 1776 return 0; 1777 1778 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n", 1779 disable_radio ? "OFF" : "ON"); 1780 1781 if (disable_radio) { 1782 priv->status |= STATUS_RF_KILL_SW; 1783 1784 cancel_delayed_work(&priv->request_scan); 1785 cancel_delayed_work(&priv->request_direct_scan); 1786 cancel_delayed_work(&priv->request_passive_scan); 1787 cancel_delayed_work(&priv->scan_event); 1788 schedule_work(&priv->down); 1789 } else { 1790 priv->status &= ~STATUS_RF_KILL_SW; 1791 if (rf_kill_active(priv)) { 1792 IPW_DEBUG_RF_KILL("Can not turn radio back on - " 1793 "disabled by HW switch\n"); 1794 /* Make sure the RF_KILL check timer is running */ 1795 cancel_delayed_work(&priv->rf_kill); 1796 schedule_delayed_work(&priv->rf_kill, 1797 round_jiffies_relative(2 * HZ)); 1798 } else 1799 schedule_work(&priv->up); 1800 } 1801 1802 return 1; 1803 } 1804 1805 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr, 1806 const char *buf, size_t count) 1807 { 1808 struct ipw_priv *priv = dev_get_drvdata(d); 1809 1810 ipw_radio_kill_sw(priv, buf[0] == '1'); 1811 1812 return count; 1813 } 1814 1815 static DEVICE_ATTR(rf_kill, 0644, show_rf_kill, store_rf_kill); 1816 1817 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr, 1818 char *buf) 1819 { 1820 struct ipw_priv *priv = dev_get_drvdata(d); 1821 int pos = 0, len = 0; 1822 if (priv->config & CFG_SPEED_SCAN) { 1823 while (priv->speed_scan[pos] != 0) 1824 len += sprintf(&buf[len], "%d ", 1825 priv->speed_scan[pos++]); 1826 return len + sprintf(&buf[len], "\n"); 1827 } 1828 1829 return sprintf(buf, "0\n"); 1830 } 1831 1832 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr, 1833 const char *buf, size_t count) 1834 { 1835 struct ipw_priv *priv = dev_get_drvdata(d); 1836 int channel, pos = 0; 1837 const char *p = buf; 1838 1839 /* list of space separated channels to scan, optionally ending with 0 */ 1840 while ((channel = simple_strtol(p, NULL, 0))) { 1841 if (pos == MAX_SPEED_SCAN - 1) { 1842 priv->speed_scan[pos] = 0; 1843 break; 1844 } 1845 1846 if (libipw_is_valid_channel(priv->ieee, channel)) 1847 priv->speed_scan[pos++] = channel; 1848 else 1849 IPW_WARNING("Skipping invalid channel request: %d\n", 1850 channel); 1851 p = strchr(p, ' '); 1852 if (!p) 1853 break; 1854 while (*p == ' ' || *p == '\t') 1855 p++; 1856 } 1857 1858 if (pos == 0) 1859 priv->config &= ~CFG_SPEED_SCAN; 1860 else { 1861 priv->speed_scan_pos = 0; 1862 priv->config |= CFG_SPEED_SCAN; 1863 } 1864 1865 return count; 1866 } 1867 1868 static DEVICE_ATTR(speed_scan, 0644, show_speed_scan, store_speed_scan); 1869 1870 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr, 1871 char *buf) 1872 { 1873 struct ipw_priv *priv = dev_get_drvdata(d); 1874 return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0'); 1875 } 1876 1877 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr, 1878 const char *buf, size_t count) 1879 { 1880 struct ipw_priv *priv = dev_get_drvdata(d); 1881 if (buf[0] == '1') 1882 priv->config |= CFG_NET_STATS; 1883 else 1884 priv->config &= ~CFG_NET_STATS; 1885 1886 return count; 1887 } 1888 1889 static DEVICE_ATTR(net_stats, 0644, show_net_stats, store_net_stats); 1890 1891 static ssize_t show_channels(struct device *d, 1892 struct device_attribute *attr, 1893 char *buf) 1894 { 1895 struct ipw_priv *priv = dev_get_drvdata(d); 1896 const struct libipw_geo *geo = libipw_get_geo(priv->ieee); 1897 int len = 0, i; 1898 1899 len = sprintf(&buf[len], 1900 "Displaying %d channels in 2.4Ghz band " 1901 "(802.11bg):\n", geo->bg_channels); 1902 1903 for (i = 0; i < geo->bg_channels; i++) { 1904 len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n", 1905 geo->bg[i].channel, 1906 geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT ? 1907 " (radar spectrum)" : "", 1908 ((geo->bg[i].flags & LIBIPW_CH_NO_IBSS) || 1909 (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)) 1910 ? "" : ", IBSS", 1911 geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY ? 1912 "passive only" : "active/passive", 1913 geo->bg[i].flags & LIBIPW_CH_B_ONLY ? 1914 "B" : "B/G"); 1915 } 1916 1917 len += sprintf(&buf[len], 1918 "Displaying %d channels in 5.2Ghz band " 1919 "(802.11a):\n", geo->a_channels); 1920 for (i = 0; i < geo->a_channels; i++) { 1921 len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n", 1922 geo->a[i].channel, 1923 geo->a[i].flags & LIBIPW_CH_RADAR_DETECT ? 1924 " (radar spectrum)" : "", 1925 ((geo->a[i].flags & LIBIPW_CH_NO_IBSS) || 1926 (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT)) 1927 ? "" : ", IBSS", 1928 geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY ? 1929 "passive only" : "active/passive"); 1930 } 1931 1932 return len; 1933 } 1934 1935 static DEVICE_ATTR(channels, 0400, show_channels, NULL); 1936 1937 static void notify_wx_assoc_event(struct ipw_priv *priv) 1938 { 1939 union iwreq_data wrqu; 1940 wrqu.ap_addr.sa_family = ARPHRD_ETHER; 1941 if (priv->status & STATUS_ASSOCIATED) 1942 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN); 1943 else 1944 eth_zero_addr(wrqu.ap_addr.sa_data); 1945 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL); 1946 } 1947 1948 static void ipw_irq_tasklet(unsigned long data) 1949 { 1950 struct ipw_priv *priv = (struct ipw_priv *)data; 1951 u32 inta, inta_mask, handled = 0; 1952 unsigned long flags; 1953 int rc = 0; 1954 1955 spin_lock_irqsave(&priv->irq_lock, flags); 1956 1957 inta = ipw_read32(priv, IPW_INTA_RW); 1958 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R); 1959 1960 if (inta == 0xFFFFFFFF) { 1961 /* Hardware disappeared */ 1962 IPW_WARNING("TASKLET INTA == 0xFFFFFFFF\n"); 1963 /* Only handle the cached INTA values */ 1964 inta = 0; 1965 } 1966 inta &= (IPW_INTA_MASK_ALL & inta_mask); 1967 1968 /* Add any cached INTA values that need to be handled */ 1969 inta |= priv->isr_inta; 1970 1971 spin_unlock_irqrestore(&priv->irq_lock, flags); 1972 1973 spin_lock_irqsave(&priv->lock, flags); 1974 1975 /* handle all the justifications for the interrupt */ 1976 if (inta & IPW_INTA_BIT_RX_TRANSFER) { 1977 ipw_rx(priv); 1978 handled |= IPW_INTA_BIT_RX_TRANSFER; 1979 } 1980 1981 if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) { 1982 IPW_DEBUG_HC("Command completed.\n"); 1983 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1); 1984 priv->status &= ~STATUS_HCMD_ACTIVE; 1985 wake_up_interruptible(&priv->wait_command_queue); 1986 handled |= IPW_INTA_BIT_TX_CMD_QUEUE; 1987 } 1988 1989 if (inta & IPW_INTA_BIT_TX_QUEUE_1) { 1990 IPW_DEBUG_TX("TX_QUEUE_1\n"); 1991 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0); 1992 handled |= IPW_INTA_BIT_TX_QUEUE_1; 1993 } 1994 1995 if (inta & IPW_INTA_BIT_TX_QUEUE_2) { 1996 IPW_DEBUG_TX("TX_QUEUE_2\n"); 1997 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1); 1998 handled |= IPW_INTA_BIT_TX_QUEUE_2; 1999 } 2000 2001 if (inta & IPW_INTA_BIT_TX_QUEUE_3) { 2002 IPW_DEBUG_TX("TX_QUEUE_3\n"); 2003 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2); 2004 handled |= IPW_INTA_BIT_TX_QUEUE_3; 2005 } 2006 2007 if (inta & IPW_INTA_BIT_TX_QUEUE_4) { 2008 IPW_DEBUG_TX("TX_QUEUE_4\n"); 2009 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3); 2010 handled |= IPW_INTA_BIT_TX_QUEUE_4; 2011 } 2012 2013 if (inta & IPW_INTA_BIT_STATUS_CHANGE) { 2014 IPW_WARNING("STATUS_CHANGE\n"); 2015 handled |= IPW_INTA_BIT_STATUS_CHANGE; 2016 } 2017 2018 if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) { 2019 IPW_WARNING("TX_PERIOD_EXPIRED\n"); 2020 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED; 2021 } 2022 2023 if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) { 2024 IPW_WARNING("HOST_CMD_DONE\n"); 2025 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE; 2026 } 2027 2028 if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) { 2029 IPW_WARNING("FW_INITIALIZATION_DONE\n"); 2030 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE; 2031 } 2032 2033 if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) { 2034 IPW_WARNING("PHY_OFF_DONE\n"); 2035 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE; 2036 } 2037 2038 if (inta & IPW_INTA_BIT_RF_KILL_DONE) { 2039 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n"); 2040 priv->status |= STATUS_RF_KILL_HW; 2041 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true); 2042 wake_up_interruptible(&priv->wait_command_queue); 2043 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING); 2044 cancel_delayed_work(&priv->request_scan); 2045 cancel_delayed_work(&priv->request_direct_scan); 2046 cancel_delayed_work(&priv->request_passive_scan); 2047 cancel_delayed_work(&priv->scan_event); 2048 schedule_work(&priv->link_down); 2049 schedule_delayed_work(&priv->rf_kill, 2 * HZ); 2050 handled |= IPW_INTA_BIT_RF_KILL_DONE; 2051 } 2052 2053 if (inta & IPW_INTA_BIT_FATAL_ERROR) { 2054 IPW_WARNING("Firmware error detected. Restarting.\n"); 2055 if (priv->error) { 2056 IPW_DEBUG_FW("Sysfs 'error' log already exists.\n"); 2057 if (ipw_debug_level & IPW_DL_FW_ERRORS) { 2058 struct ipw_fw_error *error = 2059 ipw_alloc_error_log(priv); 2060 ipw_dump_error_log(priv, error); 2061 kfree(error); 2062 } 2063 } else { 2064 priv->error = ipw_alloc_error_log(priv); 2065 if (priv->error) 2066 IPW_DEBUG_FW("Sysfs 'error' log captured.\n"); 2067 else 2068 IPW_DEBUG_FW("Error allocating sysfs 'error' " 2069 "log.\n"); 2070 if (ipw_debug_level & IPW_DL_FW_ERRORS) 2071 ipw_dump_error_log(priv, priv->error); 2072 } 2073 2074 /* XXX: If hardware encryption is for WPA/WPA2, 2075 * we have to notify the supplicant. */ 2076 if (priv->ieee->sec.encrypt) { 2077 priv->status &= ~STATUS_ASSOCIATED; 2078 notify_wx_assoc_event(priv); 2079 } 2080 2081 /* Keep the restart process from trying to send host 2082 * commands by clearing the INIT status bit */ 2083 priv->status &= ~STATUS_INIT; 2084 2085 /* Cancel currently queued command. */ 2086 priv->status &= ~STATUS_HCMD_ACTIVE; 2087 wake_up_interruptible(&priv->wait_command_queue); 2088 2089 schedule_work(&priv->adapter_restart); 2090 handled |= IPW_INTA_BIT_FATAL_ERROR; 2091 } 2092 2093 if (inta & IPW_INTA_BIT_PARITY_ERROR) { 2094 IPW_ERROR("Parity error\n"); 2095 handled |= IPW_INTA_BIT_PARITY_ERROR; 2096 } 2097 2098 if (handled != inta) { 2099 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled); 2100 } 2101 2102 spin_unlock_irqrestore(&priv->lock, flags); 2103 2104 /* enable all interrupts */ 2105 ipw_enable_interrupts(priv); 2106 } 2107 2108 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x 2109 static char *get_cmd_string(u8 cmd) 2110 { 2111 switch (cmd) { 2112 IPW_CMD(HOST_COMPLETE); 2113 IPW_CMD(POWER_DOWN); 2114 IPW_CMD(SYSTEM_CONFIG); 2115 IPW_CMD(MULTICAST_ADDRESS); 2116 IPW_CMD(SSID); 2117 IPW_CMD(ADAPTER_ADDRESS); 2118 IPW_CMD(PORT_TYPE); 2119 IPW_CMD(RTS_THRESHOLD); 2120 IPW_CMD(FRAG_THRESHOLD); 2121 IPW_CMD(POWER_MODE); 2122 IPW_CMD(WEP_KEY); 2123 IPW_CMD(TGI_TX_KEY); 2124 IPW_CMD(SCAN_REQUEST); 2125 IPW_CMD(SCAN_REQUEST_EXT); 2126 IPW_CMD(ASSOCIATE); 2127 IPW_CMD(SUPPORTED_RATES); 2128 IPW_CMD(SCAN_ABORT); 2129 IPW_CMD(TX_FLUSH); 2130 IPW_CMD(QOS_PARAMETERS); 2131 IPW_CMD(DINO_CONFIG); 2132 IPW_CMD(RSN_CAPABILITIES); 2133 IPW_CMD(RX_KEY); 2134 IPW_CMD(CARD_DISABLE); 2135 IPW_CMD(SEED_NUMBER); 2136 IPW_CMD(TX_POWER); 2137 IPW_CMD(COUNTRY_INFO); 2138 IPW_CMD(AIRONET_INFO); 2139 IPW_CMD(AP_TX_POWER); 2140 IPW_CMD(CCKM_INFO); 2141 IPW_CMD(CCX_VER_INFO); 2142 IPW_CMD(SET_CALIBRATION); 2143 IPW_CMD(SENSITIVITY_CALIB); 2144 IPW_CMD(RETRY_LIMIT); 2145 IPW_CMD(IPW_PRE_POWER_DOWN); 2146 IPW_CMD(VAP_BEACON_TEMPLATE); 2147 IPW_CMD(VAP_DTIM_PERIOD); 2148 IPW_CMD(EXT_SUPPORTED_RATES); 2149 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT); 2150 IPW_CMD(VAP_QUIET_INTERVALS); 2151 IPW_CMD(VAP_CHANNEL_SWITCH); 2152 IPW_CMD(VAP_MANDATORY_CHANNELS); 2153 IPW_CMD(VAP_CELL_PWR_LIMIT); 2154 IPW_CMD(VAP_CF_PARAM_SET); 2155 IPW_CMD(VAP_SET_BEACONING_STATE); 2156 IPW_CMD(MEASUREMENT); 2157 IPW_CMD(POWER_CAPABILITY); 2158 IPW_CMD(SUPPORTED_CHANNELS); 2159 IPW_CMD(TPC_REPORT); 2160 IPW_CMD(WME_INFO); 2161 IPW_CMD(PRODUCTION_COMMAND); 2162 default: 2163 return "UNKNOWN"; 2164 } 2165 } 2166 2167 #define HOST_COMPLETE_TIMEOUT HZ 2168 2169 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd) 2170 { 2171 int rc = 0; 2172 unsigned long flags; 2173 unsigned long now, end; 2174 2175 spin_lock_irqsave(&priv->lock, flags); 2176 if (priv->status & STATUS_HCMD_ACTIVE) { 2177 IPW_ERROR("Failed to send %s: Already sending a command.\n", 2178 get_cmd_string(cmd->cmd)); 2179 spin_unlock_irqrestore(&priv->lock, flags); 2180 return -EAGAIN; 2181 } 2182 2183 priv->status |= STATUS_HCMD_ACTIVE; 2184 2185 if (priv->cmdlog) { 2186 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies; 2187 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd; 2188 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len; 2189 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param, 2190 cmd->len); 2191 priv->cmdlog[priv->cmdlog_pos].retcode = -1; 2192 } 2193 2194 IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n", 2195 get_cmd_string(cmd->cmd), cmd->cmd, cmd->len, 2196 priv->status); 2197 2198 #ifndef DEBUG_CMD_WEP_KEY 2199 if (cmd->cmd == IPW_CMD_WEP_KEY) 2200 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n"); 2201 else 2202 #endif 2203 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len); 2204 2205 rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0); 2206 if (rc) { 2207 priv->status &= ~STATUS_HCMD_ACTIVE; 2208 IPW_ERROR("Failed to send %s: Reason %d\n", 2209 get_cmd_string(cmd->cmd), rc); 2210 spin_unlock_irqrestore(&priv->lock, flags); 2211 goto exit; 2212 } 2213 spin_unlock_irqrestore(&priv->lock, flags); 2214 2215 now = jiffies; 2216 end = now + HOST_COMPLETE_TIMEOUT; 2217 again: 2218 rc = wait_event_interruptible_timeout(priv->wait_command_queue, 2219 !(priv-> 2220 status & STATUS_HCMD_ACTIVE), 2221 end - now); 2222 if (rc < 0) { 2223 now = jiffies; 2224 if (time_before(now, end)) 2225 goto again; 2226 rc = 0; 2227 } 2228 2229 if (rc == 0) { 2230 spin_lock_irqsave(&priv->lock, flags); 2231 if (priv->status & STATUS_HCMD_ACTIVE) { 2232 IPW_ERROR("Failed to send %s: Command timed out.\n", 2233 get_cmd_string(cmd->cmd)); 2234 priv->status &= ~STATUS_HCMD_ACTIVE; 2235 spin_unlock_irqrestore(&priv->lock, flags); 2236 rc = -EIO; 2237 goto exit; 2238 } 2239 spin_unlock_irqrestore(&priv->lock, flags); 2240 } else 2241 rc = 0; 2242 2243 if (priv->status & STATUS_RF_KILL_HW) { 2244 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n", 2245 get_cmd_string(cmd->cmd)); 2246 rc = -EIO; 2247 goto exit; 2248 } 2249 2250 exit: 2251 if (priv->cmdlog) { 2252 priv->cmdlog[priv->cmdlog_pos++].retcode = rc; 2253 priv->cmdlog_pos %= priv->cmdlog_len; 2254 } 2255 return rc; 2256 } 2257 2258 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command) 2259 { 2260 struct host_cmd cmd = { 2261 .cmd = command, 2262 }; 2263 2264 return __ipw_send_cmd(priv, &cmd); 2265 } 2266 2267 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len, 2268 void *data) 2269 { 2270 struct host_cmd cmd = { 2271 .cmd = command, 2272 .len = len, 2273 .param = data, 2274 }; 2275 2276 return __ipw_send_cmd(priv, &cmd); 2277 } 2278 2279 static int ipw_send_host_complete(struct ipw_priv *priv) 2280 { 2281 if (!priv) { 2282 IPW_ERROR("Invalid args\n"); 2283 return -1; 2284 } 2285 2286 return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE); 2287 } 2288 2289 static int ipw_send_system_config(struct ipw_priv *priv) 2290 { 2291 return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG, 2292 sizeof(priv->sys_config), 2293 &priv->sys_config); 2294 } 2295 2296 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len) 2297 { 2298 if (!priv || !ssid) { 2299 IPW_ERROR("Invalid args\n"); 2300 return -1; 2301 } 2302 2303 return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE), 2304 ssid); 2305 } 2306 2307 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac) 2308 { 2309 if (!priv || !mac) { 2310 IPW_ERROR("Invalid args\n"); 2311 return -1; 2312 } 2313 2314 IPW_DEBUG_INFO("%s: Setting MAC to %pM\n", 2315 priv->net_dev->name, mac); 2316 2317 return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac); 2318 } 2319 2320 static void ipw_adapter_restart(void *adapter) 2321 { 2322 struct ipw_priv *priv = adapter; 2323 2324 if (priv->status & STATUS_RF_KILL_MASK) 2325 return; 2326 2327 ipw_down(priv); 2328 2329 if (priv->assoc_network && 2330 (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS)) 2331 ipw_remove_current_network(priv); 2332 2333 if (ipw_up(priv)) { 2334 IPW_ERROR("Failed to up device\n"); 2335 return; 2336 } 2337 } 2338 2339 static void ipw_bg_adapter_restart(struct work_struct *work) 2340 { 2341 struct ipw_priv *priv = 2342 container_of(work, struct ipw_priv, adapter_restart); 2343 mutex_lock(&priv->mutex); 2344 ipw_adapter_restart(priv); 2345 mutex_unlock(&priv->mutex); 2346 } 2347 2348 static void ipw_abort_scan(struct ipw_priv *priv); 2349 2350 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ) 2351 2352 static void ipw_scan_check(void *data) 2353 { 2354 struct ipw_priv *priv = data; 2355 2356 if (priv->status & STATUS_SCAN_ABORTING) { 2357 IPW_DEBUG_SCAN("Scan completion watchdog resetting " 2358 "adapter after (%dms).\n", 2359 jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG)); 2360 schedule_work(&priv->adapter_restart); 2361 } else if (priv->status & STATUS_SCANNING) { 2362 IPW_DEBUG_SCAN("Scan completion watchdog aborting scan " 2363 "after (%dms).\n", 2364 jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG)); 2365 ipw_abort_scan(priv); 2366 schedule_delayed_work(&priv->scan_check, HZ); 2367 } 2368 } 2369 2370 static void ipw_bg_scan_check(struct work_struct *work) 2371 { 2372 struct ipw_priv *priv = 2373 container_of(work, struct ipw_priv, scan_check.work); 2374 mutex_lock(&priv->mutex); 2375 ipw_scan_check(priv); 2376 mutex_unlock(&priv->mutex); 2377 } 2378 2379 static int ipw_send_scan_request_ext(struct ipw_priv *priv, 2380 struct ipw_scan_request_ext *request) 2381 { 2382 return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT, 2383 sizeof(*request), request); 2384 } 2385 2386 static int ipw_send_scan_abort(struct ipw_priv *priv) 2387 { 2388 if (!priv) { 2389 IPW_ERROR("Invalid args\n"); 2390 return -1; 2391 } 2392 2393 return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT); 2394 } 2395 2396 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens) 2397 { 2398 struct ipw_sensitivity_calib calib = { 2399 .beacon_rssi_raw = cpu_to_le16(sens), 2400 }; 2401 2402 return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib), 2403 &calib); 2404 } 2405 2406 static int ipw_send_associate(struct ipw_priv *priv, 2407 struct ipw_associate *associate) 2408 { 2409 if (!priv || !associate) { 2410 IPW_ERROR("Invalid args\n"); 2411 return -1; 2412 } 2413 2414 return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(*associate), 2415 associate); 2416 } 2417 2418 static int ipw_send_supported_rates(struct ipw_priv *priv, 2419 struct ipw_supported_rates *rates) 2420 { 2421 if (!priv || !rates) { 2422 IPW_ERROR("Invalid args\n"); 2423 return -1; 2424 } 2425 2426 return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates), 2427 rates); 2428 } 2429 2430 static int ipw_set_random_seed(struct ipw_priv *priv) 2431 { 2432 u32 val; 2433 2434 if (!priv) { 2435 IPW_ERROR("Invalid args\n"); 2436 return -1; 2437 } 2438 2439 get_random_bytes(&val, sizeof(val)); 2440 2441 return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val); 2442 } 2443 2444 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off) 2445 { 2446 __le32 v = cpu_to_le32(phy_off); 2447 if (!priv) { 2448 IPW_ERROR("Invalid args\n"); 2449 return -1; 2450 } 2451 2452 return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(v), &v); 2453 } 2454 2455 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power) 2456 { 2457 if (!priv || !power) { 2458 IPW_ERROR("Invalid args\n"); 2459 return -1; 2460 } 2461 2462 return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power); 2463 } 2464 2465 static int ipw_set_tx_power(struct ipw_priv *priv) 2466 { 2467 const struct libipw_geo *geo = libipw_get_geo(priv->ieee); 2468 struct ipw_tx_power tx_power; 2469 s8 max_power; 2470 int i; 2471 2472 memset(&tx_power, 0, sizeof(tx_power)); 2473 2474 /* configure device for 'G' band */ 2475 tx_power.ieee_mode = IPW_G_MODE; 2476 tx_power.num_channels = geo->bg_channels; 2477 for (i = 0; i < geo->bg_channels; i++) { 2478 max_power = geo->bg[i].max_power; 2479 tx_power.channels_tx_power[i].channel_number = 2480 geo->bg[i].channel; 2481 tx_power.channels_tx_power[i].tx_power = max_power ? 2482 min(max_power, priv->tx_power) : priv->tx_power; 2483 } 2484 if (ipw_send_tx_power(priv, &tx_power)) 2485 return -EIO; 2486 2487 /* configure device to also handle 'B' band */ 2488 tx_power.ieee_mode = IPW_B_MODE; 2489 if (ipw_send_tx_power(priv, &tx_power)) 2490 return -EIO; 2491 2492 /* configure device to also handle 'A' band */ 2493 if (priv->ieee->abg_true) { 2494 tx_power.ieee_mode = IPW_A_MODE; 2495 tx_power.num_channels = geo->a_channels; 2496 for (i = 0; i < tx_power.num_channels; i++) { 2497 max_power = geo->a[i].max_power; 2498 tx_power.channels_tx_power[i].channel_number = 2499 geo->a[i].channel; 2500 tx_power.channels_tx_power[i].tx_power = max_power ? 2501 min(max_power, priv->tx_power) : priv->tx_power; 2502 } 2503 if (ipw_send_tx_power(priv, &tx_power)) 2504 return -EIO; 2505 } 2506 return 0; 2507 } 2508 2509 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts) 2510 { 2511 struct ipw_rts_threshold rts_threshold = { 2512 .rts_threshold = cpu_to_le16(rts), 2513 }; 2514 2515 if (!priv) { 2516 IPW_ERROR("Invalid args\n"); 2517 return -1; 2518 } 2519 2520 return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD, 2521 sizeof(rts_threshold), &rts_threshold); 2522 } 2523 2524 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag) 2525 { 2526 struct ipw_frag_threshold frag_threshold = { 2527 .frag_threshold = cpu_to_le16(frag), 2528 }; 2529 2530 if (!priv) { 2531 IPW_ERROR("Invalid args\n"); 2532 return -1; 2533 } 2534 2535 return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD, 2536 sizeof(frag_threshold), &frag_threshold); 2537 } 2538 2539 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode) 2540 { 2541 __le32 param; 2542 2543 if (!priv) { 2544 IPW_ERROR("Invalid args\n"); 2545 return -1; 2546 } 2547 2548 /* If on battery, set to 3, if AC set to CAM, else user 2549 * level */ 2550 switch (mode) { 2551 case IPW_POWER_BATTERY: 2552 param = cpu_to_le32(IPW_POWER_INDEX_3); 2553 break; 2554 case IPW_POWER_AC: 2555 param = cpu_to_le32(IPW_POWER_MODE_CAM); 2556 break; 2557 default: 2558 param = cpu_to_le32(mode); 2559 break; 2560 } 2561 2562 return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param), 2563 ¶m); 2564 } 2565 2566 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit) 2567 { 2568 struct ipw_retry_limit retry_limit = { 2569 .short_retry_limit = slimit, 2570 .long_retry_limit = llimit 2571 }; 2572 2573 if (!priv) { 2574 IPW_ERROR("Invalid args\n"); 2575 return -1; 2576 } 2577 2578 return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit), 2579 &retry_limit); 2580 } 2581 2582 /* 2583 * The IPW device contains a Microwire compatible EEPROM that stores 2584 * various data like the MAC address. Usually the firmware has exclusive 2585 * access to the eeprom, but during device initialization (before the 2586 * device driver has sent the HostComplete command to the firmware) the 2587 * device driver has read access to the EEPROM by way of indirect addressing 2588 * through a couple of memory mapped registers. 2589 * 2590 * The following is a simplified implementation for pulling data out of the 2591 * the eeprom, along with some helper functions to find information in 2592 * the per device private data's copy of the eeprom. 2593 * 2594 * NOTE: To better understand how these functions work (i.e what is a chip 2595 * select and why do have to keep driving the eeprom clock?), read 2596 * just about any data sheet for a Microwire compatible EEPROM. 2597 */ 2598 2599 /* write a 32 bit value into the indirect accessor register */ 2600 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data) 2601 { 2602 ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data); 2603 2604 /* the eeprom requires some time to complete the operation */ 2605 udelay(p->eeprom_delay); 2606 } 2607 2608 /* perform a chip select operation */ 2609 static void eeprom_cs(struct ipw_priv *priv) 2610 { 2611 eeprom_write_reg(priv, 0); 2612 eeprom_write_reg(priv, EEPROM_BIT_CS); 2613 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK); 2614 eeprom_write_reg(priv, EEPROM_BIT_CS); 2615 } 2616 2617 /* perform a chip select operation */ 2618 static void eeprom_disable_cs(struct ipw_priv *priv) 2619 { 2620 eeprom_write_reg(priv, EEPROM_BIT_CS); 2621 eeprom_write_reg(priv, 0); 2622 eeprom_write_reg(priv, EEPROM_BIT_SK); 2623 } 2624 2625 /* push a single bit down to the eeprom */ 2626 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit) 2627 { 2628 int d = (bit ? EEPROM_BIT_DI : 0); 2629 eeprom_write_reg(p, EEPROM_BIT_CS | d); 2630 eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK); 2631 } 2632 2633 /* push an opcode followed by an address down to the eeprom */ 2634 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr) 2635 { 2636 int i; 2637 2638 eeprom_cs(priv); 2639 eeprom_write_bit(priv, 1); 2640 eeprom_write_bit(priv, op & 2); 2641 eeprom_write_bit(priv, op & 1); 2642 for (i = 7; i >= 0; i--) { 2643 eeprom_write_bit(priv, addr & (1 << i)); 2644 } 2645 } 2646 2647 /* pull 16 bits off the eeprom, one bit at a time */ 2648 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr) 2649 { 2650 int i; 2651 u16 r = 0; 2652 2653 /* Send READ Opcode */ 2654 eeprom_op(priv, EEPROM_CMD_READ, addr); 2655 2656 /* Send dummy bit */ 2657 eeprom_write_reg(priv, EEPROM_BIT_CS); 2658 2659 /* Read the byte off the eeprom one bit at a time */ 2660 for (i = 0; i < 16; i++) { 2661 u32 data = 0; 2662 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK); 2663 eeprom_write_reg(priv, EEPROM_BIT_CS); 2664 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS); 2665 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0); 2666 } 2667 2668 /* Send another dummy bit */ 2669 eeprom_write_reg(priv, 0); 2670 eeprom_disable_cs(priv); 2671 2672 return r; 2673 } 2674 2675 /* helper function for pulling the mac address out of the private */ 2676 /* data's copy of the eeprom data */ 2677 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac) 2678 { 2679 memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], ETH_ALEN); 2680 } 2681 2682 static void ipw_read_eeprom(struct ipw_priv *priv) 2683 { 2684 int i; 2685 __le16 *eeprom = (__le16 *) priv->eeprom; 2686 2687 IPW_DEBUG_TRACE(">>\n"); 2688 2689 /* read entire contents of eeprom into private buffer */ 2690 for (i = 0; i < 128; i++) 2691 eeprom[i] = cpu_to_le16(eeprom_read_u16(priv, (u8) i)); 2692 2693 IPW_DEBUG_TRACE("<<\n"); 2694 } 2695 2696 /* 2697 * Either the device driver (i.e. the host) or the firmware can 2698 * load eeprom data into the designated region in SRAM. If neither 2699 * happens then the FW will shutdown with a fatal error. 2700 * 2701 * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE 2702 * bit needs region of shared SRAM needs to be non-zero. 2703 */ 2704 static void ipw_eeprom_init_sram(struct ipw_priv *priv) 2705 { 2706 int i; 2707 2708 IPW_DEBUG_TRACE(">>\n"); 2709 2710 /* 2711 If the data looks correct, then copy it to our private 2712 copy. Otherwise let the firmware know to perform the operation 2713 on its own. 2714 */ 2715 if (priv->eeprom[EEPROM_VERSION] != 0) { 2716 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n"); 2717 2718 /* write the eeprom data to sram */ 2719 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++) 2720 ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]); 2721 2722 /* Do not load eeprom data on fatal error or suspend */ 2723 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0); 2724 } else { 2725 IPW_DEBUG_INFO("Enabling FW initialization of SRAM\n"); 2726 2727 /* Load eeprom data on fatal error or suspend */ 2728 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1); 2729 } 2730 2731 IPW_DEBUG_TRACE("<<\n"); 2732 } 2733 2734 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count) 2735 { 2736 count >>= 2; 2737 if (!count) 2738 return; 2739 _ipw_write32(priv, IPW_AUTOINC_ADDR, start); 2740 while (count--) 2741 _ipw_write32(priv, IPW_AUTOINC_DATA, 0); 2742 } 2743 2744 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv) 2745 { 2746 ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL, 2747 CB_NUMBER_OF_ELEMENTS_SMALL * 2748 sizeof(struct command_block)); 2749 } 2750 2751 static int ipw_fw_dma_enable(struct ipw_priv *priv) 2752 { /* start dma engine but no transfers yet */ 2753 2754 IPW_DEBUG_FW(">> :\n"); 2755 2756 /* Start the dma */ 2757 ipw_fw_dma_reset_command_blocks(priv); 2758 2759 /* Write CB base address */ 2760 ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL); 2761 2762 IPW_DEBUG_FW("<< :\n"); 2763 return 0; 2764 } 2765 2766 static void ipw_fw_dma_abort(struct ipw_priv *priv) 2767 { 2768 u32 control = 0; 2769 2770 IPW_DEBUG_FW(">> :\n"); 2771 2772 /* set the Stop and Abort bit */ 2773 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT; 2774 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control); 2775 priv->sram_desc.last_cb_index = 0; 2776 2777 IPW_DEBUG_FW("<<\n"); 2778 } 2779 2780 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index, 2781 struct command_block *cb) 2782 { 2783 u32 address = 2784 IPW_SHARED_SRAM_DMA_CONTROL + 2785 (sizeof(struct command_block) * index); 2786 IPW_DEBUG_FW(">> :\n"); 2787 2788 ipw_write_indirect(priv, address, (u8 *) cb, 2789 (int)sizeof(struct command_block)); 2790 2791 IPW_DEBUG_FW("<< :\n"); 2792 return 0; 2793 2794 } 2795 2796 static int ipw_fw_dma_kick(struct ipw_priv *priv) 2797 { 2798 u32 control = 0; 2799 u32 index = 0; 2800 2801 IPW_DEBUG_FW(">> :\n"); 2802 2803 for (index = 0; index < priv->sram_desc.last_cb_index; index++) 2804 ipw_fw_dma_write_command_block(priv, index, 2805 &priv->sram_desc.cb_list[index]); 2806 2807 /* Enable the DMA in the CSR register */ 2808 ipw_clear_bit(priv, IPW_RESET_REG, 2809 IPW_RESET_REG_MASTER_DISABLED | 2810 IPW_RESET_REG_STOP_MASTER); 2811 2812 /* Set the Start bit. */ 2813 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START; 2814 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control); 2815 2816 IPW_DEBUG_FW("<< :\n"); 2817 return 0; 2818 } 2819 2820 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv) 2821 { 2822 u32 address; 2823 u32 register_value = 0; 2824 u32 cb_fields_address = 0; 2825 2826 IPW_DEBUG_FW(">> :\n"); 2827 address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB); 2828 IPW_DEBUG_FW_INFO("Current CB is 0x%x\n", address); 2829 2830 /* Read the DMA Controlor register */ 2831 register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL); 2832 IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x\n", register_value); 2833 2834 /* Print the CB values */ 2835 cb_fields_address = address; 2836 register_value = ipw_read_reg32(priv, cb_fields_address); 2837 IPW_DEBUG_FW_INFO("Current CB Control Field is 0x%x\n", register_value); 2838 2839 cb_fields_address += sizeof(u32); 2840 register_value = ipw_read_reg32(priv, cb_fields_address); 2841 IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x\n", register_value); 2842 2843 cb_fields_address += sizeof(u32); 2844 register_value = ipw_read_reg32(priv, cb_fields_address); 2845 IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x\n", 2846 register_value); 2847 2848 cb_fields_address += sizeof(u32); 2849 register_value = ipw_read_reg32(priv, cb_fields_address); 2850 IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x\n", register_value); 2851 2852 IPW_DEBUG_FW(">> :\n"); 2853 } 2854 2855 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv) 2856 { 2857 u32 current_cb_address = 0; 2858 u32 current_cb_index = 0; 2859 2860 IPW_DEBUG_FW("<< :\n"); 2861 current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB); 2862 2863 current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) / 2864 sizeof(struct command_block); 2865 2866 IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X\n", 2867 current_cb_index, current_cb_address); 2868 2869 IPW_DEBUG_FW(">> :\n"); 2870 return current_cb_index; 2871 2872 } 2873 2874 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv, 2875 u32 src_address, 2876 u32 dest_address, 2877 u32 length, 2878 int interrupt_enabled, int is_last) 2879 { 2880 2881 u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC | 2882 CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG | 2883 CB_DEST_SIZE_LONG; 2884 struct command_block *cb; 2885 u32 last_cb_element = 0; 2886 2887 IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n", 2888 src_address, dest_address, length); 2889 2890 if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL) 2891 return -1; 2892 2893 last_cb_element = priv->sram_desc.last_cb_index; 2894 cb = &priv->sram_desc.cb_list[last_cb_element]; 2895 priv->sram_desc.last_cb_index++; 2896 2897 /* Calculate the new CB control word */ 2898 if (interrupt_enabled) 2899 control |= CB_INT_ENABLED; 2900 2901 if (is_last) 2902 control |= CB_LAST_VALID; 2903 2904 control |= length; 2905 2906 /* Calculate the CB Element's checksum value */ 2907 cb->status = control ^ src_address ^ dest_address; 2908 2909 /* Copy the Source and Destination addresses */ 2910 cb->dest_addr = dest_address; 2911 cb->source_addr = src_address; 2912 2913 /* Copy the Control Word last */ 2914 cb->control = control; 2915 2916 return 0; 2917 } 2918 2919 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv, dma_addr_t *src_address, 2920 int nr, u32 dest_address, u32 len) 2921 { 2922 int ret, i; 2923 u32 size; 2924 2925 IPW_DEBUG_FW(">>\n"); 2926 IPW_DEBUG_FW_INFO("nr=%d dest_address=0x%x len=0x%x\n", 2927 nr, dest_address, len); 2928 2929 for (i = 0; i < nr; i++) { 2930 size = min_t(u32, len - i * CB_MAX_LENGTH, CB_MAX_LENGTH); 2931 ret = ipw_fw_dma_add_command_block(priv, src_address[i], 2932 dest_address + 2933 i * CB_MAX_LENGTH, size, 2934 0, 0); 2935 if (ret) { 2936 IPW_DEBUG_FW_INFO(": Failed\n"); 2937 return -1; 2938 } else 2939 IPW_DEBUG_FW_INFO(": Added new cb\n"); 2940 } 2941 2942 IPW_DEBUG_FW("<<\n"); 2943 return 0; 2944 } 2945 2946 static int ipw_fw_dma_wait(struct ipw_priv *priv) 2947 { 2948 u32 current_index = 0, previous_index; 2949 u32 watchdog = 0; 2950 2951 IPW_DEBUG_FW(">> :\n"); 2952 2953 current_index = ipw_fw_dma_command_block_index(priv); 2954 IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n", 2955 (int)priv->sram_desc.last_cb_index); 2956 2957 while (current_index < priv->sram_desc.last_cb_index) { 2958 udelay(50); 2959 previous_index = current_index; 2960 current_index = ipw_fw_dma_command_block_index(priv); 2961 2962 if (previous_index < current_index) { 2963 watchdog = 0; 2964 continue; 2965 } 2966 if (++watchdog > 400) { 2967 IPW_DEBUG_FW_INFO("Timeout\n"); 2968 ipw_fw_dma_dump_command_block(priv); 2969 ipw_fw_dma_abort(priv); 2970 return -1; 2971 } 2972 } 2973 2974 ipw_fw_dma_abort(priv); 2975 2976 /*Disable the DMA in the CSR register */ 2977 ipw_set_bit(priv, IPW_RESET_REG, 2978 IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER); 2979 2980 IPW_DEBUG_FW("<< dmaWaitSync\n"); 2981 return 0; 2982 } 2983 2984 static void ipw_remove_current_network(struct ipw_priv *priv) 2985 { 2986 struct list_head *element, *safe; 2987 struct libipw_network *network = NULL; 2988 unsigned long flags; 2989 2990 spin_lock_irqsave(&priv->ieee->lock, flags); 2991 list_for_each_safe(element, safe, &priv->ieee->network_list) { 2992 network = list_entry(element, struct libipw_network, list); 2993 if (ether_addr_equal(network->bssid, priv->bssid)) { 2994 list_del(element); 2995 list_add_tail(&network->list, 2996 &priv->ieee->network_free_list); 2997 } 2998 } 2999 spin_unlock_irqrestore(&priv->ieee->lock, flags); 3000 } 3001 3002 /** 3003 * Check that card is still alive. 3004 * Reads debug register from domain0. 3005 * If card is present, pre-defined value should 3006 * be found there. 3007 * 3008 * @param priv 3009 * @return 1 if card is present, 0 otherwise 3010 */ 3011 static inline int ipw_alive(struct ipw_priv *priv) 3012 { 3013 return ipw_read32(priv, 0x90) == 0xd55555d5; 3014 } 3015 3016 /* timeout in msec, attempted in 10-msec quanta */ 3017 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask, 3018 int timeout) 3019 { 3020 int i = 0; 3021 3022 do { 3023 if ((ipw_read32(priv, addr) & mask) == mask) 3024 return i; 3025 mdelay(10); 3026 i += 10; 3027 } while (i < timeout); 3028 3029 return -ETIME; 3030 } 3031 3032 /* These functions load the firmware and micro code for the operation of 3033 * the ipw hardware. It assumes the buffer has all the bits for the 3034 * image and the caller is handling the memory allocation and clean up. 3035 */ 3036 3037 static int ipw_stop_master(struct ipw_priv *priv) 3038 { 3039 int rc; 3040 3041 IPW_DEBUG_TRACE(">>\n"); 3042 /* stop master. typical delay - 0 */ 3043 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER); 3044 3045 /* timeout is in msec, polled in 10-msec quanta */ 3046 rc = ipw_poll_bit(priv, IPW_RESET_REG, 3047 IPW_RESET_REG_MASTER_DISABLED, 100); 3048 if (rc < 0) { 3049 IPW_ERROR("wait for stop master failed after 100ms\n"); 3050 return -1; 3051 } 3052 3053 IPW_DEBUG_INFO("stop master %dms\n", rc); 3054 3055 return rc; 3056 } 3057 3058 static void ipw_arc_release(struct ipw_priv *priv) 3059 { 3060 IPW_DEBUG_TRACE(">>\n"); 3061 mdelay(5); 3062 3063 ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET); 3064 3065 /* no one knows timing, for safety add some delay */ 3066 mdelay(5); 3067 } 3068 3069 struct fw_chunk { 3070 __le32 address; 3071 __le32 length; 3072 }; 3073 3074 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len) 3075 { 3076 int rc = 0, i, addr; 3077 u8 cr = 0; 3078 __le16 *image; 3079 3080 image = (__le16 *) data; 3081 3082 IPW_DEBUG_TRACE(">>\n"); 3083 3084 rc = ipw_stop_master(priv); 3085 3086 if (rc < 0) 3087 return rc; 3088 3089 for (addr = IPW_SHARED_LOWER_BOUND; 3090 addr < IPW_REGISTER_DOMAIN1_END; addr += 4) { 3091 ipw_write32(priv, addr, 0); 3092 } 3093 3094 /* no ucode (yet) */ 3095 memset(&priv->dino_alive, 0, sizeof(priv->dino_alive)); 3096 /* destroy DMA queues */ 3097 /* reset sequence */ 3098 3099 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON); 3100 ipw_arc_release(priv); 3101 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF); 3102 mdelay(1); 3103 3104 /* reset PHY */ 3105 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN); 3106 mdelay(1); 3107 3108 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0); 3109 mdelay(1); 3110 3111 /* enable ucode store */ 3112 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0); 3113 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS); 3114 mdelay(1); 3115 3116 /* write ucode */ 3117 /** 3118 * @bug 3119 * Do NOT set indirect address register once and then 3120 * store data to indirect data register in the loop. 3121 * It seems very reasonable, but in this case DINO do not 3122 * accept ucode. It is essential to set address each time. 3123 */ 3124 /* load new ipw uCode */ 3125 for (i = 0; i < len / 2; i++) 3126 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE, 3127 le16_to_cpu(image[i])); 3128 3129 /* enable DINO */ 3130 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0); 3131 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM); 3132 3133 /* this is where the igx / win driver deveates from the VAP driver. */ 3134 3135 /* wait for alive response */ 3136 for (i = 0; i < 100; i++) { 3137 /* poll for incoming data */ 3138 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS); 3139 if (cr & DINO_RXFIFO_DATA) 3140 break; 3141 mdelay(1); 3142 } 3143 3144 if (cr & DINO_RXFIFO_DATA) { 3145 /* alive_command_responce size is NOT multiple of 4 */ 3146 __le32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4]; 3147 3148 for (i = 0; i < ARRAY_SIZE(response_buffer); i++) 3149 response_buffer[i] = 3150 cpu_to_le32(ipw_read_reg32(priv, 3151 IPW_BASEBAND_RX_FIFO_READ)); 3152 memcpy(&priv->dino_alive, response_buffer, 3153 sizeof(priv->dino_alive)); 3154 if (priv->dino_alive.alive_command == 1 3155 && priv->dino_alive.ucode_valid == 1) { 3156 rc = 0; 3157 IPW_DEBUG_INFO 3158 ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) " 3159 "of %02d/%02d/%02d %02d:%02d\n", 3160 priv->dino_alive.software_revision, 3161 priv->dino_alive.software_revision, 3162 priv->dino_alive.device_identifier, 3163 priv->dino_alive.device_identifier, 3164 priv->dino_alive.time_stamp[0], 3165 priv->dino_alive.time_stamp[1], 3166 priv->dino_alive.time_stamp[2], 3167 priv->dino_alive.time_stamp[3], 3168 priv->dino_alive.time_stamp[4]); 3169 } else { 3170 IPW_DEBUG_INFO("Microcode is not alive\n"); 3171 rc = -EINVAL; 3172 } 3173 } else { 3174 IPW_DEBUG_INFO("No alive response from DINO\n"); 3175 rc = -ETIME; 3176 } 3177 3178 /* disable DINO, otherwise for some reason 3179 firmware have problem getting alive resp. */ 3180 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0); 3181 3182 return rc; 3183 } 3184 3185 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len) 3186 { 3187 int ret = -1; 3188 int offset = 0; 3189 struct fw_chunk *chunk; 3190 int total_nr = 0; 3191 int i; 3192 struct dma_pool *pool; 3193 void **virts; 3194 dma_addr_t *phys; 3195 3196 IPW_DEBUG_TRACE("<< :\n"); 3197 3198 virts = kmalloc_array(CB_NUMBER_OF_ELEMENTS_SMALL, sizeof(void *), 3199 GFP_KERNEL); 3200 if (!virts) 3201 return -ENOMEM; 3202 3203 phys = kmalloc_array(CB_NUMBER_OF_ELEMENTS_SMALL, sizeof(dma_addr_t), 3204 GFP_KERNEL); 3205 if (!phys) { 3206 kfree(virts); 3207 return -ENOMEM; 3208 } 3209 pool = dma_pool_create("ipw2200", &priv->pci_dev->dev, CB_MAX_LENGTH, 0, 3210 0); 3211 if (!pool) { 3212 IPW_ERROR("dma_pool_create failed\n"); 3213 kfree(phys); 3214 kfree(virts); 3215 return -ENOMEM; 3216 } 3217 3218 /* Start the Dma */ 3219 ret = ipw_fw_dma_enable(priv); 3220 3221 /* the DMA is already ready this would be a bug. */ 3222 BUG_ON(priv->sram_desc.last_cb_index > 0); 3223 3224 do { 3225 u32 chunk_len; 3226 u8 *start; 3227 int size; 3228 int nr = 0; 3229 3230 chunk = (struct fw_chunk *)(data + offset); 3231 offset += sizeof(struct fw_chunk); 3232 chunk_len = le32_to_cpu(chunk->length); 3233 start = data + offset; 3234 3235 nr = (chunk_len + CB_MAX_LENGTH - 1) / CB_MAX_LENGTH; 3236 for (i = 0; i < nr; i++) { 3237 virts[total_nr] = dma_pool_alloc(pool, GFP_KERNEL, 3238 &phys[total_nr]); 3239 if (!virts[total_nr]) { 3240 ret = -ENOMEM; 3241 goto out; 3242 } 3243 size = min_t(u32, chunk_len - i * CB_MAX_LENGTH, 3244 CB_MAX_LENGTH); 3245 memcpy(virts[total_nr], start, size); 3246 start += size; 3247 total_nr++; 3248 /* We don't support fw chunk larger than 64*8K */ 3249 BUG_ON(total_nr > CB_NUMBER_OF_ELEMENTS_SMALL); 3250 } 3251 3252 /* build DMA packet and queue up for sending */ 3253 /* dma to chunk->address, the chunk->length bytes from data + 3254 * offeset*/ 3255 /* Dma loading */ 3256 ret = ipw_fw_dma_add_buffer(priv, &phys[total_nr - nr], 3257 nr, le32_to_cpu(chunk->address), 3258 chunk_len); 3259 if (ret) { 3260 IPW_DEBUG_INFO("dmaAddBuffer Failed\n"); 3261 goto out; 3262 } 3263 3264 offset += chunk_len; 3265 } while (offset < len); 3266 3267 /* Run the DMA and wait for the answer */ 3268 ret = ipw_fw_dma_kick(priv); 3269 if (ret) { 3270 IPW_ERROR("dmaKick Failed\n"); 3271 goto out; 3272 } 3273 3274 ret = ipw_fw_dma_wait(priv); 3275 if (ret) { 3276 IPW_ERROR("dmaWaitSync Failed\n"); 3277 goto out; 3278 } 3279 out: 3280 for (i = 0; i < total_nr; i++) 3281 dma_pool_free(pool, virts[i], phys[i]); 3282 3283 dma_pool_destroy(pool); 3284 kfree(phys); 3285 kfree(virts); 3286 3287 return ret; 3288 } 3289 3290 /* stop nic */ 3291 static int ipw_stop_nic(struct ipw_priv *priv) 3292 { 3293 int rc = 0; 3294 3295 /* stop */ 3296 ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER); 3297 3298 rc = ipw_poll_bit(priv, IPW_RESET_REG, 3299 IPW_RESET_REG_MASTER_DISABLED, 500); 3300 if (rc < 0) { 3301 IPW_ERROR("wait for reg master disabled failed after 500ms\n"); 3302 return rc; 3303 } 3304 3305 ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET); 3306 3307 return rc; 3308 } 3309 3310 static void ipw_start_nic(struct ipw_priv *priv) 3311 { 3312 IPW_DEBUG_TRACE(">>\n"); 3313 3314 /* prvHwStartNic release ARC */ 3315 ipw_clear_bit(priv, IPW_RESET_REG, 3316 IPW_RESET_REG_MASTER_DISABLED | 3317 IPW_RESET_REG_STOP_MASTER | 3318 CBD_RESET_REG_PRINCETON_RESET); 3319 3320 /* enable power management */ 3321 ipw_set_bit(priv, IPW_GP_CNTRL_RW, 3322 IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY); 3323 3324 IPW_DEBUG_TRACE("<<\n"); 3325 } 3326 3327 static int ipw_init_nic(struct ipw_priv *priv) 3328 { 3329 int rc; 3330 3331 IPW_DEBUG_TRACE(">>\n"); 3332 /* reset */ 3333 /*prvHwInitNic */ 3334 /* set "initialization complete" bit to move adapter to D0 state */ 3335 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE); 3336 3337 /* low-level PLL activation */ 3338 ipw_write32(priv, IPW_READ_INT_REGISTER, 3339 IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER); 3340 3341 /* wait for clock stabilization */ 3342 rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW, 3343 IPW_GP_CNTRL_BIT_CLOCK_READY, 250); 3344 if (rc < 0) 3345 IPW_DEBUG_INFO("FAILED wait for clock stablization\n"); 3346 3347 /* assert SW reset */ 3348 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET); 3349 3350 udelay(10); 3351 3352 /* set "initialization complete" bit to move adapter to D0 state */ 3353 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE); 3354 3355 IPW_DEBUG_TRACE(">>\n"); 3356 return 0; 3357 } 3358 3359 /* Call this function from process context, it will sleep in request_firmware. 3360 * Probe is an ok place to call this from. 3361 */ 3362 static int ipw_reset_nic(struct ipw_priv *priv) 3363 { 3364 int rc = 0; 3365 unsigned long flags; 3366 3367 IPW_DEBUG_TRACE(">>\n"); 3368 3369 rc = ipw_init_nic(priv); 3370 3371 spin_lock_irqsave(&priv->lock, flags); 3372 /* Clear the 'host command active' bit... */ 3373 priv->status &= ~STATUS_HCMD_ACTIVE; 3374 wake_up_interruptible(&priv->wait_command_queue); 3375 priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING); 3376 wake_up_interruptible(&priv->wait_state); 3377 spin_unlock_irqrestore(&priv->lock, flags); 3378 3379 IPW_DEBUG_TRACE("<<\n"); 3380 return rc; 3381 } 3382 3383 3384 struct ipw_fw { 3385 __le32 ver; 3386 __le32 boot_size; 3387 __le32 ucode_size; 3388 __le32 fw_size; 3389 u8 data[]; 3390 }; 3391 3392 static int ipw_get_fw(struct ipw_priv *priv, 3393 const struct firmware **raw, const char *name) 3394 { 3395 struct ipw_fw *fw; 3396 int rc; 3397 3398 /* ask firmware_class module to get the boot firmware off disk */ 3399 rc = request_firmware(raw, name, &priv->pci_dev->dev); 3400 if (rc < 0) { 3401 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc); 3402 return rc; 3403 } 3404 3405 if ((*raw)->size < sizeof(*fw)) { 3406 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size); 3407 return -EINVAL; 3408 } 3409 3410 fw = (void *)(*raw)->data; 3411 3412 if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) + 3413 le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) { 3414 IPW_ERROR("%s is too small or corrupt (%zd)\n", 3415 name, (*raw)->size); 3416 return -EINVAL; 3417 } 3418 3419 IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n", 3420 name, 3421 le32_to_cpu(fw->ver) >> 16, 3422 le32_to_cpu(fw->ver) & 0xff, 3423 (*raw)->size - sizeof(*fw)); 3424 return 0; 3425 } 3426 3427 #define IPW_RX_BUF_SIZE (3000) 3428 3429 static void ipw_rx_queue_reset(struct ipw_priv *priv, 3430 struct ipw_rx_queue *rxq) 3431 { 3432 unsigned long flags; 3433 int i; 3434 3435 spin_lock_irqsave(&rxq->lock, flags); 3436 3437 INIT_LIST_HEAD(&rxq->rx_free); 3438 INIT_LIST_HEAD(&rxq->rx_used); 3439 3440 /* Fill the rx_used queue with _all_ of the Rx buffers */ 3441 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) { 3442 /* In the reset function, these buffers may have been allocated 3443 * to an SKB, so we need to unmap and free potential storage */ 3444 if (rxq->pool[i].skb != NULL) { 3445 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr, 3446 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE); 3447 dev_kfree_skb(rxq->pool[i].skb); 3448 rxq->pool[i].skb = NULL; 3449 } 3450 list_add_tail(&rxq->pool[i].list, &rxq->rx_used); 3451 } 3452 3453 /* Set us so that we have processed and used all buffers, but have 3454 * not restocked the Rx queue with fresh buffers */ 3455 rxq->read = rxq->write = 0; 3456 rxq->free_count = 0; 3457 spin_unlock_irqrestore(&rxq->lock, flags); 3458 } 3459 3460 #ifdef CONFIG_PM 3461 static int fw_loaded = 0; 3462 static const struct firmware *raw = NULL; 3463 3464 static void free_firmware(void) 3465 { 3466 if (fw_loaded) { 3467 release_firmware(raw); 3468 raw = NULL; 3469 fw_loaded = 0; 3470 } 3471 } 3472 #else 3473 #define free_firmware() do {} while (0) 3474 #endif 3475 3476 static int ipw_load(struct ipw_priv *priv) 3477 { 3478 #ifndef CONFIG_PM 3479 const struct firmware *raw = NULL; 3480 #endif 3481 struct ipw_fw *fw; 3482 u8 *boot_img, *ucode_img, *fw_img; 3483 u8 *name = NULL; 3484 int rc = 0, retries = 3; 3485 3486 switch (priv->ieee->iw_mode) { 3487 case IW_MODE_ADHOC: 3488 name = "ipw2200-ibss.fw"; 3489 break; 3490 #ifdef CONFIG_IPW2200_MONITOR 3491 case IW_MODE_MONITOR: 3492 name = "ipw2200-sniffer.fw"; 3493 break; 3494 #endif 3495 case IW_MODE_INFRA: 3496 name = "ipw2200-bss.fw"; 3497 break; 3498 } 3499 3500 if (!name) { 3501 rc = -EINVAL; 3502 goto error; 3503 } 3504 3505 #ifdef CONFIG_PM 3506 if (!fw_loaded) { 3507 #endif 3508 rc = ipw_get_fw(priv, &raw, name); 3509 if (rc < 0) 3510 goto error; 3511 #ifdef CONFIG_PM 3512 } 3513 #endif 3514 3515 fw = (void *)raw->data; 3516 boot_img = &fw->data[0]; 3517 ucode_img = &fw->data[le32_to_cpu(fw->boot_size)]; 3518 fw_img = &fw->data[le32_to_cpu(fw->boot_size) + 3519 le32_to_cpu(fw->ucode_size)]; 3520 3521 if (!priv->rxq) 3522 priv->rxq = ipw_rx_queue_alloc(priv); 3523 else 3524 ipw_rx_queue_reset(priv, priv->rxq); 3525 if (!priv->rxq) { 3526 IPW_ERROR("Unable to initialize Rx queue\n"); 3527 rc = -ENOMEM; 3528 goto error; 3529 } 3530 3531 retry: 3532 /* Ensure interrupts are disabled */ 3533 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL); 3534 priv->status &= ~STATUS_INT_ENABLED; 3535 3536 /* ack pending interrupts */ 3537 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL); 3538 3539 ipw_stop_nic(priv); 3540 3541 rc = ipw_reset_nic(priv); 3542 if (rc < 0) { 3543 IPW_ERROR("Unable to reset NIC\n"); 3544 goto error; 3545 } 3546 3547 ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND, 3548 IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND); 3549 3550 /* DMA the initial boot firmware into the device */ 3551 rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size)); 3552 if (rc < 0) { 3553 IPW_ERROR("Unable to load boot firmware: %d\n", rc); 3554 goto error; 3555 } 3556 3557 /* kick start the device */ 3558 ipw_start_nic(priv); 3559 3560 /* wait for the device to finish its initial startup sequence */ 3561 rc = ipw_poll_bit(priv, IPW_INTA_RW, 3562 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500); 3563 if (rc < 0) { 3564 IPW_ERROR("device failed to boot initial fw image\n"); 3565 goto error; 3566 } 3567 IPW_DEBUG_INFO("initial device response after %dms\n", rc); 3568 3569 /* ack fw init done interrupt */ 3570 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE); 3571 3572 /* DMA the ucode into the device */ 3573 rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size)); 3574 if (rc < 0) { 3575 IPW_ERROR("Unable to load ucode: %d\n", rc); 3576 goto error; 3577 } 3578 3579 /* stop nic */ 3580 ipw_stop_nic(priv); 3581 3582 /* DMA bss firmware into the device */ 3583 rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size)); 3584 if (rc < 0) { 3585 IPW_ERROR("Unable to load firmware: %d\n", rc); 3586 goto error; 3587 } 3588 #ifdef CONFIG_PM 3589 fw_loaded = 1; 3590 #endif 3591 3592 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0); 3593 3594 rc = ipw_queue_reset(priv); 3595 if (rc < 0) { 3596 IPW_ERROR("Unable to initialize queues\n"); 3597 goto error; 3598 } 3599 3600 /* Ensure interrupts are disabled */ 3601 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL); 3602 /* ack pending interrupts */ 3603 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL); 3604 3605 /* kick start the device */ 3606 ipw_start_nic(priv); 3607 3608 if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) { 3609 if (retries > 0) { 3610 IPW_WARNING("Parity error. Retrying init.\n"); 3611 retries--; 3612 goto retry; 3613 } 3614 3615 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n"); 3616 rc = -EIO; 3617 goto error; 3618 } 3619 3620 /* wait for the device */ 3621 rc = ipw_poll_bit(priv, IPW_INTA_RW, 3622 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500); 3623 if (rc < 0) { 3624 IPW_ERROR("device failed to start within 500ms\n"); 3625 goto error; 3626 } 3627 IPW_DEBUG_INFO("device response after %dms\n", rc); 3628 3629 /* ack fw init done interrupt */ 3630 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE); 3631 3632 /* read eeprom data */ 3633 priv->eeprom_delay = 1; 3634 ipw_read_eeprom(priv); 3635 /* initialize the eeprom region of sram */ 3636 ipw_eeprom_init_sram(priv); 3637 3638 /* enable interrupts */ 3639 ipw_enable_interrupts(priv); 3640 3641 /* Ensure our queue has valid packets */ 3642 ipw_rx_queue_replenish(priv); 3643 3644 ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read); 3645 3646 /* ack pending interrupts */ 3647 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL); 3648 3649 #ifndef CONFIG_PM 3650 release_firmware(raw); 3651 #endif 3652 return 0; 3653 3654 error: 3655 if (priv->rxq) { 3656 ipw_rx_queue_free(priv, priv->rxq); 3657 priv->rxq = NULL; 3658 } 3659 ipw_tx_queue_free(priv); 3660 release_firmware(raw); 3661 #ifdef CONFIG_PM 3662 fw_loaded = 0; 3663 raw = NULL; 3664 #endif 3665 3666 return rc; 3667 } 3668 3669 /** 3670 * DMA services 3671 * 3672 * Theory of operation 3673 * 3674 * A queue is a circular buffers with 'Read' and 'Write' pointers. 3675 * 2 empty entries always kept in the buffer to protect from overflow. 3676 * 3677 * For Tx queue, there are low mark and high mark limits. If, after queuing 3678 * the packet for Tx, free space become < low mark, Tx queue stopped. When 3679 * reclaiming packets (on 'tx done IRQ), if free space become > high mark, 3680 * Tx queue resumed. 3681 * 3682 * The IPW operates with six queues, one receive queue in the device's 3683 * sram, one transmit queue for sending commands to the device firmware, 3684 * and four transmit queues for data. 3685 * 3686 * The four transmit queues allow for performing quality of service (qos) 3687 * transmissions as per the 802.11 protocol. Currently Linux does not 3688 * provide a mechanism to the user for utilizing prioritized queues, so 3689 * we only utilize the first data transmit queue (queue1). 3690 */ 3691 3692 /** 3693 * Driver allocates buffers of this size for Rx 3694 */ 3695 3696 /** 3697 * ipw_rx_queue_space - Return number of free slots available in queue. 3698 */ 3699 static int ipw_rx_queue_space(const struct ipw_rx_queue *q) 3700 { 3701 int s = q->read - q->write; 3702 if (s <= 0) 3703 s += RX_QUEUE_SIZE; 3704 /* keep some buffer to not confuse full and empty queue */ 3705 s -= 2; 3706 if (s < 0) 3707 s = 0; 3708 return s; 3709 } 3710 3711 static inline int ipw_tx_queue_space(const struct clx2_queue *q) 3712 { 3713 int s = q->last_used - q->first_empty; 3714 if (s <= 0) 3715 s += q->n_bd; 3716 s -= 2; /* keep some reserve to not confuse empty and full situations */ 3717 if (s < 0) 3718 s = 0; 3719 return s; 3720 } 3721 3722 static inline int ipw_queue_inc_wrap(int index, int n_bd) 3723 { 3724 return (++index == n_bd) ? 0 : index; 3725 } 3726 3727 /** 3728 * Initialize common DMA queue structure 3729 * 3730 * @param q queue to init 3731 * @param count Number of BD's to allocate. Should be power of 2 3732 * @param read_register Address for 'read' register 3733 * (not offset within BAR, full address) 3734 * @param write_register Address for 'write' register 3735 * (not offset within BAR, full address) 3736 * @param base_register Address for 'base' register 3737 * (not offset within BAR, full address) 3738 * @param size Address for 'size' register 3739 * (not offset within BAR, full address) 3740 */ 3741 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q, 3742 int count, u32 read, u32 write, u32 base, u32 size) 3743 { 3744 q->n_bd = count; 3745 3746 q->low_mark = q->n_bd / 4; 3747 if (q->low_mark < 4) 3748 q->low_mark = 4; 3749 3750 q->high_mark = q->n_bd / 8; 3751 if (q->high_mark < 2) 3752 q->high_mark = 2; 3753 3754 q->first_empty = q->last_used = 0; 3755 q->reg_r = read; 3756 q->reg_w = write; 3757 3758 ipw_write32(priv, base, q->dma_addr); 3759 ipw_write32(priv, size, count); 3760 ipw_write32(priv, read, 0); 3761 ipw_write32(priv, write, 0); 3762 3763 _ipw_read32(priv, 0x90); 3764 } 3765 3766 static int ipw_queue_tx_init(struct ipw_priv *priv, 3767 struct clx2_tx_queue *q, 3768 int count, u32 read, u32 write, u32 base, u32 size) 3769 { 3770 struct pci_dev *dev = priv->pci_dev; 3771 3772 q->txb = kmalloc_array(count, sizeof(q->txb[0]), GFP_KERNEL); 3773 if (!q->txb) 3774 return -ENOMEM; 3775 3776 q->bd = 3777 pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr); 3778 if (!q->bd) { 3779 IPW_ERROR("pci_alloc_consistent(%zd) failed\n", 3780 sizeof(q->bd[0]) * count); 3781 kfree(q->txb); 3782 q->txb = NULL; 3783 return -ENOMEM; 3784 } 3785 3786 ipw_queue_init(priv, &q->q, count, read, write, base, size); 3787 return 0; 3788 } 3789 3790 /** 3791 * Free one TFD, those at index [txq->q.last_used]. 3792 * Do NOT advance any indexes 3793 * 3794 * @param dev 3795 * @param txq 3796 */ 3797 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv, 3798 struct clx2_tx_queue *txq) 3799 { 3800 struct tfd_frame *bd = &txq->bd[txq->q.last_used]; 3801 struct pci_dev *dev = priv->pci_dev; 3802 int i; 3803 3804 /* classify bd */ 3805 if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE) 3806 /* nothing to cleanup after for host commands */ 3807 return; 3808 3809 /* sanity check */ 3810 if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) { 3811 IPW_ERROR("Too many chunks: %i\n", 3812 le32_to_cpu(bd->u.data.num_chunks)); 3813 /** @todo issue fatal error, it is quite serious situation */ 3814 return; 3815 } 3816 3817 /* unmap chunks if any */ 3818 for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) { 3819 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]), 3820 le16_to_cpu(bd->u.data.chunk_len[i]), 3821 PCI_DMA_TODEVICE); 3822 if (txq->txb[txq->q.last_used]) { 3823 libipw_txb_free(txq->txb[txq->q.last_used]); 3824 txq->txb[txq->q.last_used] = NULL; 3825 } 3826 } 3827 } 3828 3829 /** 3830 * Deallocate DMA queue. 3831 * 3832 * Empty queue by removing and destroying all BD's. 3833 * Free all buffers. 3834 * 3835 * @param dev 3836 * @param q 3837 */ 3838 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq) 3839 { 3840 struct clx2_queue *q = &txq->q; 3841 struct pci_dev *dev = priv->pci_dev; 3842 3843 if (q->n_bd == 0) 3844 return; 3845 3846 /* first, empty all BD's */ 3847 for (; q->first_empty != q->last_used; 3848 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) { 3849 ipw_queue_tx_free_tfd(priv, txq); 3850 } 3851 3852 /* free buffers belonging to queue itself */ 3853 pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd, 3854 q->dma_addr); 3855 kfree(txq->txb); 3856 3857 /* 0 fill whole structure */ 3858 memset(txq, 0, sizeof(*txq)); 3859 } 3860 3861 /** 3862 * Destroy all DMA queues and structures 3863 * 3864 * @param priv 3865 */ 3866 static void ipw_tx_queue_free(struct ipw_priv *priv) 3867 { 3868 /* Tx CMD queue */ 3869 ipw_queue_tx_free(priv, &priv->txq_cmd); 3870 3871 /* Tx queues */ 3872 ipw_queue_tx_free(priv, &priv->txq[0]); 3873 ipw_queue_tx_free(priv, &priv->txq[1]); 3874 ipw_queue_tx_free(priv, &priv->txq[2]); 3875 ipw_queue_tx_free(priv, &priv->txq[3]); 3876 } 3877 3878 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid) 3879 { 3880 /* First 3 bytes are manufacturer */ 3881 bssid[0] = priv->mac_addr[0]; 3882 bssid[1] = priv->mac_addr[1]; 3883 bssid[2] = priv->mac_addr[2]; 3884 3885 /* Last bytes are random */ 3886 get_random_bytes(&bssid[3], ETH_ALEN - 3); 3887 3888 bssid[0] &= 0xfe; /* clear multicast bit */ 3889 bssid[0] |= 0x02; /* set local assignment bit (IEEE802) */ 3890 } 3891 3892 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid) 3893 { 3894 struct ipw_station_entry entry; 3895 int i; 3896 3897 for (i = 0; i < priv->num_stations; i++) { 3898 if (ether_addr_equal(priv->stations[i], bssid)) { 3899 /* Another node is active in network */ 3900 priv->missed_adhoc_beacons = 0; 3901 if (!(priv->config & CFG_STATIC_CHANNEL)) 3902 /* when other nodes drop out, we drop out */ 3903 priv->config &= ~CFG_ADHOC_PERSIST; 3904 3905 return i; 3906 } 3907 } 3908 3909 if (i == MAX_STATIONS) 3910 return IPW_INVALID_STATION; 3911 3912 IPW_DEBUG_SCAN("Adding AdHoc station: %pM\n", bssid); 3913 3914 entry.reserved = 0; 3915 entry.support_mode = 0; 3916 memcpy(entry.mac_addr, bssid, ETH_ALEN); 3917 memcpy(priv->stations[i], bssid, ETH_ALEN); 3918 ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry), 3919 &entry, sizeof(entry)); 3920 priv->num_stations++; 3921 3922 return i; 3923 } 3924 3925 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid) 3926 { 3927 int i; 3928 3929 for (i = 0; i < priv->num_stations; i++) 3930 if (ether_addr_equal(priv->stations[i], bssid)) 3931 return i; 3932 3933 return IPW_INVALID_STATION; 3934 } 3935 3936 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet) 3937 { 3938 int err; 3939 3940 if (priv->status & STATUS_ASSOCIATING) { 3941 IPW_DEBUG_ASSOC("Disassociating while associating.\n"); 3942 schedule_work(&priv->disassociate); 3943 return; 3944 } 3945 3946 if (!(priv->status & STATUS_ASSOCIATED)) { 3947 IPW_DEBUG_ASSOC("Disassociating while not associated.\n"); 3948 return; 3949 } 3950 3951 IPW_DEBUG_ASSOC("Disassociation attempt from %pM " 3952 "on channel %d.\n", 3953 priv->assoc_request.bssid, 3954 priv->assoc_request.channel); 3955 3956 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED); 3957 priv->status |= STATUS_DISASSOCIATING; 3958 3959 if (quiet) 3960 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET; 3961 else 3962 priv->assoc_request.assoc_type = HC_DISASSOCIATE; 3963 3964 err = ipw_send_associate(priv, &priv->assoc_request); 3965 if (err) { 3966 IPW_DEBUG_HC("Attempt to send [dis]associate command " 3967 "failed.\n"); 3968 return; 3969 } 3970 3971 } 3972 3973 static int ipw_disassociate(void *data) 3974 { 3975 struct ipw_priv *priv = data; 3976 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) 3977 return 0; 3978 ipw_send_disassociate(data, 0); 3979 netif_carrier_off(priv->net_dev); 3980 return 1; 3981 } 3982 3983 static void ipw_bg_disassociate(struct work_struct *work) 3984 { 3985 struct ipw_priv *priv = 3986 container_of(work, struct ipw_priv, disassociate); 3987 mutex_lock(&priv->mutex); 3988 ipw_disassociate(priv); 3989 mutex_unlock(&priv->mutex); 3990 } 3991 3992 static void ipw_system_config(struct work_struct *work) 3993 { 3994 struct ipw_priv *priv = 3995 container_of(work, struct ipw_priv, system_config); 3996 3997 #ifdef CONFIG_IPW2200_PROMISCUOUS 3998 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) { 3999 priv->sys_config.accept_all_data_frames = 1; 4000 priv->sys_config.accept_non_directed_frames = 1; 4001 priv->sys_config.accept_all_mgmt_bcpr = 1; 4002 priv->sys_config.accept_all_mgmt_frames = 1; 4003 } 4004 #endif 4005 4006 ipw_send_system_config(priv); 4007 } 4008 4009 struct ipw_status_code { 4010 u16 status; 4011 const char *reason; 4012 }; 4013 4014 static const struct ipw_status_code ipw_status_codes[] = { 4015 {0x00, "Successful"}, 4016 {0x01, "Unspecified failure"}, 4017 {0x0A, "Cannot support all requested capabilities in the " 4018 "Capability information field"}, 4019 {0x0B, "Reassociation denied due to inability to confirm that " 4020 "association exists"}, 4021 {0x0C, "Association denied due to reason outside the scope of this " 4022 "standard"}, 4023 {0x0D, 4024 "Responding station does not support the specified authentication " 4025 "algorithm"}, 4026 {0x0E, 4027 "Received an Authentication frame with authentication sequence " 4028 "transaction sequence number out of expected sequence"}, 4029 {0x0F, "Authentication rejected because of challenge failure"}, 4030 {0x10, "Authentication rejected due to timeout waiting for next " 4031 "frame in sequence"}, 4032 {0x11, "Association denied because AP is unable to handle additional " 4033 "associated stations"}, 4034 {0x12, 4035 "Association denied due to requesting station not supporting all " 4036 "of the datarates in the BSSBasicServiceSet Parameter"}, 4037 {0x13, 4038 "Association denied due to requesting station not supporting " 4039 "short preamble operation"}, 4040 {0x14, 4041 "Association denied due to requesting station not supporting " 4042 "PBCC encoding"}, 4043 {0x15, 4044 "Association denied due to requesting station not supporting " 4045 "channel agility"}, 4046 {0x19, 4047 "Association denied due to requesting station not supporting " 4048 "short slot operation"}, 4049 {0x1A, 4050 "Association denied due to requesting station not supporting " 4051 "DSSS-OFDM operation"}, 4052 {0x28, "Invalid Information Element"}, 4053 {0x29, "Group Cipher is not valid"}, 4054 {0x2A, "Pairwise Cipher is not valid"}, 4055 {0x2B, "AKMP is not valid"}, 4056 {0x2C, "Unsupported RSN IE version"}, 4057 {0x2D, "Invalid RSN IE Capabilities"}, 4058 {0x2E, "Cipher suite is rejected per security policy"}, 4059 }; 4060 4061 static const char *ipw_get_status_code(u16 status) 4062 { 4063 int i; 4064 for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++) 4065 if (ipw_status_codes[i].status == (status & 0xff)) 4066 return ipw_status_codes[i].reason; 4067 return "Unknown status value."; 4068 } 4069 4070 static inline void average_init(struct average *avg) 4071 { 4072 memset(avg, 0, sizeof(*avg)); 4073 } 4074 4075 #define DEPTH_RSSI 8 4076 #define DEPTH_NOISE 16 4077 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth) 4078 { 4079 return ((depth-1)*prev_avg + val)/depth; 4080 } 4081 4082 static void average_add(struct average *avg, s16 val) 4083 { 4084 avg->sum -= avg->entries[avg->pos]; 4085 avg->sum += val; 4086 avg->entries[avg->pos++] = val; 4087 if (unlikely(avg->pos == AVG_ENTRIES)) { 4088 avg->init = 1; 4089 avg->pos = 0; 4090 } 4091 } 4092 4093 static s16 average_value(struct average *avg) 4094 { 4095 if (!unlikely(avg->init)) { 4096 if (avg->pos) 4097 return avg->sum / avg->pos; 4098 return 0; 4099 } 4100 4101 return avg->sum / AVG_ENTRIES; 4102 } 4103 4104 static void ipw_reset_stats(struct ipw_priv *priv) 4105 { 4106 u32 len = sizeof(u32); 4107 4108 priv->quality = 0; 4109 4110 average_init(&priv->average_missed_beacons); 4111 priv->exp_avg_rssi = -60; 4112 priv->exp_avg_noise = -85 + 0x100; 4113 4114 priv->last_rate = 0; 4115 priv->last_missed_beacons = 0; 4116 priv->last_rx_packets = 0; 4117 priv->last_tx_packets = 0; 4118 priv->last_tx_failures = 0; 4119 4120 /* Firmware managed, reset only when NIC is restarted, so we have to 4121 * normalize on the current value */ 4122 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, 4123 &priv->last_rx_err, &len); 4124 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, 4125 &priv->last_tx_failures, &len); 4126 4127 /* Driver managed, reset with each association */ 4128 priv->missed_adhoc_beacons = 0; 4129 priv->missed_beacons = 0; 4130 priv->tx_packets = 0; 4131 priv->rx_packets = 0; 4132 4133 } 4134 4135 static u32 ipw_get_max_rate(struct ipw_priv *priv) 4136 { 4137 u32 i = 0x80000000; 4138 u32 mask = priv->rates_mask; 4139 /* If currently associated in B mode, restrict the maximum 4140 * rate match to B rates */ 4141 if (priv->assoc_request.ieee_mode == IPW_B_MODE) 4142 mask &= LIBIPW_CCK_RATES_MASK; 4143 4144 /* TODO: Verify that the rate is supported by the current rates 4145 * list. */ 4146 4147 while (i && !(mask & i)) 4148 i >>= 1; 4149 switch (i) { 4150 case LIBIPW_CCK_RATE_1MB_MASK: 4151 return 1000000; 4152 case LIBIPW_CCK_RATE_2MB_MASK: 4153 return 2000000; 4154 case LIBIPW_CCK_RATE_5MB_MASK: 4155 return 5500000; 4156 case LIBIPW_OFDM_RATE_6MB_MASK: 4157 return 6000000; 4158 case LIBIPW_OFDM_RATE_9MB_MASK: 4159 return 9000000; 4160 case LIBIPW_CCK_RATE_11MB_MASK: 4161 return 11000000; 4162 case LIBIPW_OFDM_RATE_12MB_MASK: 4163 return 12000000; 4164 case LIBIPW_OFDM_RATE_18MB_MASK: 4165 return 18000000; 4166 case LIBIPW_OFDM_RATE_24MB_MASK: 4167 return 24000000; 4168 case LIBIPW_OFDM_RATE_36MB_MASK: 4169 return 36000000; 4170 case LIBIPW_OFDM_RATE_48MB_MASK: 4171 return 48000000; 4172 case LIBIPW_OFDM_RATE_54MB_MASK: 4173 return 54000000; 4174 } 4175 4176 if (priv->ieee->mode == IEEE_B) 4177 return 11000000; 4178 else 4179 return 54000000; 4180 } 4181 4182 static u32 ipw_get_current_rate(struct ipw_priv *priv) 4183 { 4184 u32 rate, len = sizeof(rate); 4185 int err; 4186 4187 if (!(priv->status & STATUS_ASSOCIATED)) 4188 return 0; 4189 4190 if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) { 4191 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate, 4192 &len); 4193 if (err) { 4194 IPW_DEBUG_INFO("failed querying ordinals.\n"); 4195 return 0; 4196 } 4197 } else 4198 return ipw_get_max_rate(priv); 4199 4200 switch (rate) { 4201 case IPW_TX_RATE_1MB: 4202 return 1000000; 4203 case IPW_TX_RATE_2MB: 4204 return 2000000; 4205 case IPW_TX_RATE_5MB: 4206 return 5500000; 4207 case IPW_TX_RATE_6MB: 4208 return 6000000; 4209 case IPW_TX_RATE_9MB: 4210 return 9000000; 4211 case IPW_TX_RATE_11MB: 4212 return 11000000; 4213 case IPW_TX_RATE_12MB: 4214 return 12000000; 4215 case IPW_TX_RATE_18MB: 4216 return 18000000; 4217 case IPW_TX_RATE_24MB: 4218 return 24000000; 4219 case IPW_TX_RATE_36MB: 4220 return 36000000; 4221 case IPW_TX_RATE_48MB: 4222 return 48000000; 4223 case IPW_TX_RATE_54MB: 4224 return 54000000; 4225 } 4226 4227 return 0; 4228 } 4229 4230 #define IPW_STATS_INTERVAL (2 * HZ) 4231 static void ipw_gather_stats(struct ipw_priv *priv) 4232 { 4233 u32 rx_err, rx_err_delta, rx_packets_delta; 4234 u32 tx_failures, tx_failures_delta, tx_packets_delta; 4235 u32 missed_beacons_percent, missed_beacons_delta; 4236 u32 quality = 0; 4237 u32 len = sizeof(u32); 4238 s16 rssi; 4239 u32 beacon_quality, signal_quality, tx_quality, rx_quality, 4240 rate_quality; 4241 u32 max_rate; 4242 4243 if (!(priv->status & STATUS_ASSOCIATED)) { 4244 priv->quality = 0; 4245 return; 4246 } 4247 4248 /* Update the statistics */ 4249 ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS, 4250 &priv->missed_beacons, &len); 4251 missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons; 4252 priv->last_missed_beacons = priv->missed_beacons; 4253 if (priv->assoc_request.beacon_interval) { 4254 missed_beacons_percent = missed_beacons_delta * 4255 (HZ * le16_to_cpu(priv->assoc_request.beacon_interval)) / 4256 (IPW_STATS_INTERVAL * 10); 4257 } else { 4258 missed_beacons_percent = 0; 4259 } 4260 average_add(&priv->average_missed_beacons, missed_beacons_percent); 4261 4262 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len); 4263 rx_err_delta = rx_err - priv->last_rx_err; 4264 priv->last_rx_err = rx_err; 4265 4266 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len); 4267 tx_failures_delta = tx_failures - priv->last_tx_failures; 4268 priv->last_tx_failures = tx_failures; 4269 4270 rx_packets_delta = priv->rx_packets - priv->last_rx_packets; 4271 priv->last_rx_packets = priv->rx_packets; 4272 4273 tx_packets_delta = priv->tx_packets - priv->last_tx_packets; 4274 priv->last_tx_packets = priv->tx_packets; 4275 4276 /* Calculate quality based on the following: 4277 * 4278 * Missed beacon: 100% = 0, 0% = 70% missed 4279 * Rate: 60% = 1Mbs, 100% = Max 4280 * Rx and Tx errors represent a straight % of total Rx/Tx 4281 * RSSI: 100% = > -50, 0% = < -80 4282 * Rx errors: 100% = 0, 0% = 50% missed 4283 * 4284 * The lowest computed quality is used. 4285 * 4286 */ 4287 #define BEACON_THRESHOLD 5 4288 beacon_quality = 100 - missed_beacons_percent; 4289 if (beacon_quality < BEACON_THRESHOLD) 4290 beacon_quality = 0; 4291 else 4292 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 / 4293 (100 - BEACON_THRESHOLD); 4294 IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n", 4295 beacon_quality, missed_beacons_percent); 4296 4297 priv->last_rate = ipw_get_current_rate(priv); 4298 max_rate = ipw_get_max_rate(priv); 4299 rate_quality = priv->last_rate * 40 / max_rate + 60; 4300 IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n", 4301 rate_quality, priv->last_rate / 1000000); 4302 4303 if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta) 4304 rx_quality = 100 - (rx_err_delta * 100) / 4305 (rx_packets_delta + rx_err_delta); 4306 else 4307 rx_quality = 100; 4308 IPW_DEBUG_STATS("Rx quality : %3d%% (%u errors, %u packets)\n", 4309 rx_quality, rx_err_delta, rx_packets_delta); 4310 4311 if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta) 4312 tx_quality = 100 - (tx_failures_delta * 100) / 4313 (tx_packets_delta + tx_failures_delta); 4314 else 4315 tx_quality = 100; 4316 IPW_DEBUG_STATS("Tx quality : %3d%% (%u errors, %u packets)\n", 4317 tx_quality, tx_failures_delta, tx_packets_delta); 4318 4319 rssi = priv->exp_avg_rssi; 4320 signal_quality = 4321 (100 * 4322 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) * 4323 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) - 4324 (priv->ieee->perfect_rssi - rssi) * 4325 (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) + 4326 62 * (priv->ieee->perfect_rssi - rssi))) / 4327 ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) * 4328 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi)); 4329 if (signal_quality > 100) 4330 signal_quality = 100; 4331 else if (signal_quality < 1) 4332 signal_quality = 0; 4333 4334 IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n", 4335 signal_quality, rssi); 4336 4337 quality = min(rx_quality, signal_quality); 4338 quality = min(tx_quality, quality); 4339 quality = min(rate_quality, quality); 4340 quality = min(beacon_quality, quality); 4341 if (quality == beacon_quality) 4342 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n", 4343 quality); 4344 if (quality == rate_quality) 4345 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n", 4346 quality); 4347 if (quality == tx_quality) 4348 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n", 4349 quality); 4350 if (quality == rx_quality) 4351 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n", 4352 quality); 4353 if (quality == signal_quality) 4354 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n", 4355 quality); 4356 4357 priv->quality = quality; 4358 4359 schedule_delayed_work(&priv->gather_stats, IPW_STATS_INTERVAL); 4360 } 4361 4362 static void ipw_bg_gather_stats(struct work_struct *work) 4363 { 4364 struct ipw_priv *priv = 4365 container_of(work, struct ipw_priv, gather_stats.work); 4366 mutex_lock(&priv->mutex); 4367 ipw_gather_stats(priv); 4368 mutex_unlock(&priv->mutex); 4369 } 4370 4371 /* Missed beacon behavior: 4372 * 1st missed -> roaming_threshold, just wait, don't do any scan/roam. 4373 * roaming_threshold -> disassociate_threshold, scan and roam for better signal. 4374 * Above disassociate threshold, give up and stop scanning. 4375 * Roaming is disabled if disassociate_threshold <= roaming_threshold */ 4376 static void ipw_handle_missed_beacon(struct ipw_priv *priv, 4377 int missed_count) 4378 { 4379 priv->notif_missed_beacons = missed_count; 4380 4381 if (missed_count > priv->disassociate_threshold && 4382 priv->status & STATUS_ASSOCIATED) { 4383 /* If associated and we've hit the missed 4384 * beacon threshold, disassociate, turn 4385 * off roaming, and abort any active scans */ 4386 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | 4387 IPW_DL_STATE | IPW_DL_ASSOC, 4388 "Missed beacon: %d - disassociate\n", missed_count); 4389 priv->status &= ~STATUS_ROAMING; 4390 if (priv->status & STATUS_SCANNING) { 4391 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | 4392 IPW_DL_STATE, 4393 "Aborting scan with missed beacon.\n"); 4394 schedule_work(&priv->abort_scan); 4395 } 4396 4397 schedule_work(&priv->disassociate); 4398 return; 4399 } 4400 4401 if (priv->status & STATUS_ROAMING) { 4402 /* If we are currently roaming, then just 4403 * print a debug statement... */ 4404 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE, 4405 "Missed beacon: %d - roam in progress\n", 4406 missed_count); 4407 return; 4408 } 4409 4410 if (roaming && 4411 (missed_count > priv->roaming_threshold && 4412 missed_count <= priv->disassociate_threshold)) { 4413 /* If we are not already roaming, set the ROAM 4414 * bit in the status and kick off a scan. 4415 * This can happen several times before we reach 4416 * disassociate_threshold. */ 4417 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE, 4418 "Missed beacon: %d - initiate " 4419 "roaming\n", missed_count); 4420 if (!(priv->status & STATUS_ROAMING)) { 4421 priv->status |= STATUS_ROAMING; 4422 if (!(priv->status & STATUS_SCANNING)) 4423 schedule_delayed_work(&priv->request_scan, 0); 4424 } 4425 return; 4426 } 4427 4428 if (priv->status & STATUS_SCANNING && 4429 missed_count > IPW_MB_SCAN_CANCEL_THRESHOLD) { 4430 /* Stop scan to keep fw from getting 4431 * stuck (only if we aren't roaming -- 4432 * otherwise we'll never scan more than 2 or 3 4433 * channels..) */ 4434 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE, 4435 "Aborting scan with missed beacon.\n"); 4436 schedule_work(&priv->abort_scan); 4437 } 4438 4439 IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count); 4440 } 4441 4442 static void ipw_scan_event(struct work_struct *work) 4443 { 4444 union iwreq_data wrqu; 4445 4446 struct ipw_priv *priv = 4447 container_of(work, struct ipw_priv, scan_event.work); 4448 4449 wrqu.data.length = 0; 4450 wrqu.data.flags = 0; 4451 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL); 4452 } 4453 4454 static void handle_scan_event(struct ipw_priv *priv) 4455 { 4456 /* Only userspace-requested scan completion events go out immediately */ 4457 if (!priv->user_requested_scan) { 4458 schedule_delayed_work(&priv->scan_event, 4459 round_jiffies_relative(msecs_to_jiffies(4000))); 4460 } else { 4461 priv->user_requested_scan = 0; 4462 mod_delayed_work(system_wq, &priv->scan_event, 0); 4463 } 4464 } 4465 4466 /** 4467 * Handle host notification packet. 4468 * Called from interrupt routine 4469 */ 4470 static void ipw_rx_notification(struct ipw_priv *priv, 4471 struct ipw_rx_notification *notif) 4472 { 4473 u16 size = le16_to_cpu(notif->size); 4474 4475 IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, size); 4476 4477 switch (notif->subtype) { 4478 case HOST_NOTIFICATION_STATUS_ASSOCIATED:{ 4479 struct notif_association *assoc = ¬if->u.assoc; 4480 4481 switch (assoc->state) { 4482 case CMAS_ASSOCIATED:{ 4483 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4484 IPW_DL_ASSOC, 4485 "associated: '%*pE' %pM\n", 4486 priv->essid_len, priv->essid, 4487 priv->bssid); 4488 4489 switch (priv->ieee->iw_mode) { 4490 case IW_MODE_INFRA: 4491 memcpy(priv->ieee->bssid, 4492 priv->bssid, ETH_ALEN); 4493 break; 4494 4495 case IW_MODE_ADHOC: 4496 memcpy(priv->ieee->bssid, 4497 priv->bssid, ETH_ALEN); 4498 4499 /* clear out the station table */ 4500 priv->num_stations = 0; 4501 4502 IPW_DEBUG_ASSOC 4503 ("queueing adhoc check\n"); 4504 schedule_delayed_work( 4505 &priv->adhoc_check, 4506 le16_to_cpu(priv-> 4507 assoc_request. 4508 beacon_interval)); 4509 break; 4510 } 4511 4512 priv->status &= ~STATUS_ASSOCIATING; 4513 priv->status |= STATUS_ASSOCIATED; 4514 schedule_work(&priv->system_config); 4515 4516 #ifdef CONFIG_IPW2200_QOS 4517 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \ 4518 le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_control)) 4519 if ((priv->status & STATUS_AUTH) && 4520 (IPW_GET_PACKET_STYPE(¬if->u.raw) 4521 == IEEE80211_STYPE_ASSOC_RESP)) { 4522 if ((sizeof 4523 (struct 4524 libipw_assoc_response) 4525 <= size) 4526 && (size <= 2314)) { 4527 struct 4528 libipw_rx_stats 4529 stats = { 4530 .len = size - 1, 4531 }; 4532 4533 IPW_DEBUG_QOS 4534 ("QoS Associate " 4535 "size %d\n", size); 4536 libipw_rx_mgt(priv-> 4537 ieee, 4538 (struct 4539 libipw_hdr_4addr 4540 *) 4541 ¬if->u.raw, &stats); 4542 } 4543 } 4544 #endif 4545 4546 schedule_work(&priv->link_up); 4547 4548 break; 4549 } 4550 4551 case CMAS_AUTHENTICATED:{ 4552 if (priv-> 4553 status & (STATUS_ASSOCIATED | 4554 STATUS_AUTH)) { 4555 struct notif_authenticate *auth 4556 = ¬if->u.auth; 4557 IPW_DEBUG(IPW_DL_NOTIF | 4558 IPW_DL_STATE | 4559 IPW_DL_ASSOC, 4560 "deauthenticated: '%*pE' %pM: (0x%04X) - %s\n", 4561 priv->essid_len, 4562 priv->essid, 4563 priv->bssid, 4564 le16_to_cpu(auth->status), 4565 ipw_get_status_code 4566 (le16_to_cpu 4567 (auth->status))); 4568 4569 priv->status &= 4570 ~(STATUS_ASSOCIATING | 4571 STATUS_AUTH | 4572 STATUS_ASSOCIATED); 4573 4574 schedule_work(&priv->link_down); 4575 break; 4576 } 4577 4578 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4579 IPW_DL_ASSOC, 4580 "authenticated: '%*pE' %pM\n", 4581 priv->essid_len, priv->essid, 4582 priv->bssid); 4583 break; 4584 } 4585 4586 case CMAS_INIT:{ 4587 if (priv->status & STATUS_AUTH) { 4588 struct 4589 libipw_assoc_response 4590 *resp; 4591 resp = 4592 (struct 4593 libipw_assoc_response 4594 *)¬if->u.raw; 4595 IPW_DEBUG(IPW_DL_NOTIF | 4596 IPW_DL_STATE | 4597 IPW_DL_ASSOC, 4598 "association failed (0x%04X): %s\n", 4599 le16_to_cpu(resp->status), 4600 ipw_get_status_code 4601 (le16_to_cpu 4602 (resp->status))); 4603 } 4604 4605 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4606 IPW_DL_ASSOC, 4607 "disassociated: '%*pE' %pM\n", 4608 priv->essid_len, priv->essid, 4609 priv->bssid); 4610 4611 priv->status &= 4612 ~(STATUS_DISASSOCIATING | 4613 STATUS_ASSOCIATING | 4614 STATUS_ASSOCIATED | STATUS_AUTH); 4615 if (priv->assoc_network 4616 && (priv->assoc_network-> 4617 capability & 4618 WLAN_CAPABILITY_IBSS)) 4619 ipw_remove_current_network 4620 (priv); 4621 4622 schedule_work(&priv->link_down); 4623 4624 break; 4625 } 4626 4627 case CMAS_RX_ASSOC_RESP: 4628 break; 4629 4630 default: 4631 IPW_ERROR("assoc: unknown (%d)\n", 4632 assoc->state); 4633 break; 4634 } 4635 4636 break; 4637 } 4638 4639 case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{ 4640 struct notif_authenticate *auth = ¬if->u.auth; 4641 switch (auth->state) { 4642 case CMAS_AUTHENTICATED: 4643 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE, 4644 "authenticated: '%*pE' %pM\n", 4645 priv->essid_len, priv->essid, 4646 priv->bssid); 4647 priv->status |= STATUS_AUTH; 4648 break; 4649 4650 case CMAS_INIT: 4651 if (priv->status & STATUS_AUTH) { 4652 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4653 IPW_DL_ASSOC, 4654 "authentication failed (0x%04X): %s\n", 4655 le16_to_cpu(auth->status), 4656 ipw_get_status_code(le16_to_cpu 4657 (auth-> 4658 status))); 4659 } 4660 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4661 IPW_DL_ASSOC, 4662 "deauthenticated: '%*pE' %pM\n", 4663 priv->essid_len, priv->essid, 4664 priv->bssid); 4665 4666 priv->status &= ~(STATUS_ASSOCIATING | 4667 STATUS_AUTH | 4668 STATUS_ASSOCIATED); 4669 4670 schedule_work(&priv->link_down); 4671 break; 4672 4673 case CMAS_TX_AUTH_SEQ_1: 4674 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4675 IPW_DL_ASSOC, "AUTH_SEQ_1\n"); 4676 break; 4677 case CMAS_RX_AUTH_SEQ_2: 4678 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4679 IPW_DL_ASSOC, "AUTH_SEQ_2\n"); 4680 break; 4681 case CMAS_AUTH_SEQ_1_PASS: 4682 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4683 IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n"); 4684 break; 4685 case CMAS_AUTH_SEQ_1_FAIL: 4686 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4687 IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n"); 4688 break; 4689 case CMAS_TX_AUTH_SEQ_3: 4690 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4691 IPW_DL_ASSOC, "AUTH_SEQ_3\n"); 4692 break; 4693 case CMAS_RX_AUTH_SEQ_4: 4694 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4695 IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n"); 4696 break; 4697 case CMAS_AUTH_SEQ_2_PASS: 4698 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4699 IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n"); 4700 break; 4701 case CMAS_AUTH_SEQ_2_FAIL: 4702 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4703 IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n"); 4704 break; 4705 case CMAS_TX_ASSOC: 4706 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4707 IPW_DL_ASSOC, "TX_ASSOC\n"); 4708 break; 4709 case CMAS_RX_ASSOC_RESP: 4710 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4711 IPW_DL_ASSOC, "RX_ASSOC_RESP\n"); 4712 4713 break; 4714 case CMAS_ASSOCIATED: 4715 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4716 IPW_DL_ASSOC, "ASSOCIATED\n"); 4717 break; 4718 default: 4719 IPW_DEBUG_NOTIF("auth: failure - %d\n", 4720 auth->state); 4721 break; 4722 } 4723 break; 4724 } 4725 4726 case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{ 4727 struct notif_channel_result *x = 4728 ¬if->u.channel_result; 4729 4730 if (size == sizeof(*x)) { 4731 IPW_DEBUG_SCAN("Scan result for channel %d\n", 4732 x->channel_num); 4733 } else { 4734 IPW_DEBUG_SCAN("Scan result of wrong size %d " 4735 "(should be %zd)\n", 4736 size, sizeof(*x)); 4737 } 4738 break; 4739 } 4740 4741 case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{ 4742 struct notif_scan_complete *x = ¬if->u.scan_complete; 4743 if (size == sizeof(*x)) { 4744 IPW_DEBUG_SCAN 4745 ("Scan completed: type %d, %d channels, " 4746 "%d status\n", x->scan_type, 4747 x->num_channels, x->status); 4748 } else { 4749 IPW_ERROR("Scan completed of wrong size %d " 4750 "(should be %zd)\n", 4751 size, sizeof(*x)); 4752 } 4753 4754 priv->status &= 4755 ~(STATUS_SCANNING | STATUS_SCAN_ABORTING); 4756 4757 wake_up_interruptible(&priv->wait_state); 4758 cancel_delayed_work(&priv->scan_check); 4759 4760 if (priv->status & STATUS_EXIT_PENDING) 4761 break; 4762 4763 priv->ieee->scans++; 4764 4765 #ifdef CONFIG_IPW2200_MONITOR 4766 if (priv->ieee->iw_mode == IW_MODE_MONITOR) { 4767 priv->status |= STATUS_SCAN_FORCED; 4768 schedule_delayed_work(&priv->request_scan, 0); 4769 break; 4770 } 4771 priv->status &= ~STATUS_SCAN_FORCED; 4772 #endif /* CONFIG_IPW2200_MONITOR */ 4773 4774 /* Do queued direct scans first */ 4775 if (priv->status & STATUS_DIRECT_SCAN_PENDING) 4776 schedule_delayed_work(&priv->request_direct_scan, 0); 4777 4778 if (!(priv->status & (STATUS_ASSOCIATED | 4779 STATUS_ASSOCIATING | 4780 STATUS_ROAMING | 4781 STATUS_DISASSOCIATING))) 4782 schedule_work(&priv->associate); 4783 else if (priv->status & STATUS_ROAMING) { 4784 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE) 4785 /* If a scan completed and we are in roam mode, then 4786 * the scan that completed was the one requested as a 4787 * result of entering roam... so, schedule the 4788 * roam work */ 4789 schedule_work(&priv->roam); 4790 else 4791 /* Don't schedule if we aborted the scan */ 4792 priv->status &= ~STATUS_ROAMING; 4793 } else if (priv->status & STATUS_SCAN_PENDING) 4794 schedule_delayed_work(&priv->request_scan, 0); 4795 else if (priv->config & CFG_BACKGROUND_SCAN 4796 && priv->status & STATUS_ASSOCIATED) 4797 schedule_delayed_work(&priv->request_scan, 4798 round_jiffies_relative(HZ)); 4799 4800 /* Send an empty event to user space. 4801 * We don't send the received data on the event because 4802 * it would require us to do complex transcoding, and 4803 * we want to minimise the work done in the irq handler 4804 * Use a request to extract the data. 4805 * Also, we generate this even for any scan, regardless 4806 * on how the scan was initiated. User space can just 4807 * sync on periodic scan to get fresh data... 4808 * Jean II */ 4809 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE) 4810 handle_scan_event(priv); 4811 break; 4812 } 4813 4814 case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{ 4815 struct notif_frag_length *x = ¬if->u.frag_len; 4816 4817 if (size == sizeof(*x)) 4818 IPW_ERROR("Frag length: %d\n", 4819 le16_to_cpu(x->frag_length)); 4820 else 4821 IPW_ERROR("Frag length of wrong size %d " 4822 "(should be %zd)\n", 4823 size, sizeof(*x)); 4824 break; 4825 } 4826 4827 case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{ 4828 struct notif_link_deterioration *x = 4829 ¬if->u.link_deterioration; 4830 4831 if (size == sizeof(*x)) { 4832 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE, 4833 "link deterioration: type %d, cnt %d\n", 4834 x->silence_notification_type, 4835 x->silence_count); 4836 memcpy(&priv->last_link_deterioration, x, 4837 sizeof(*x)); 4838 } else { 4839 IPW_ERROR("Link Deterioration of wrong size %d " 4840 "(should be %zd)\n", 4841 size, sizeof(*x)); 4842 } 4843 break; 4844 } 4845 4846 case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{ 4847 IPW_ERROR("Dino config\n"); 4848 if (priv->hcmd 4849 && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG) 4850 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n"); 4851 4852 break; 4853 } 4854 4855 case HOST_NOTIFICATION_STATUS_BEACON_STATE:{ 4856 struct notif_beacon_state *x = ¬if->u.beacon_state; 4857 if (size != sizeof(*x)) { 4858 IPW_ERROR 4859 ("Beacon state of wrong size %d (should " 4860 "be %zd)\n", size, sizeof(*x)); 4861 break; 4862 } 4863 4864 if (le32_to_cpu(x->state) == 4865 HOST_NOTIFICATION_STATUS_BEACON_MISSING) 4866 ipw_handle_missed_beacon(priv, 4867 le32_to_cpu(x-> 4868 number)); 4869 4870 break; 4871 } 4872 4873 case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{ 4874 struct notif_tgi_tx_key *x = ¬if->u.tgi_tx_key; 4875 if (size == sizeof(*x)) { 4876 IPW_ERROR("TGi Tx Key: state 0x%02x sec type " 4877 "0x%02x station %d\n", 4878 x->key_state, x->security_type, 4879 x->station_index); 4880 break; 4881 } 4882 4883 IPW_ERROR 4884 ("TGi Tx Key of wrong size %d (should be %zd)\n", 4885 size, sizeof(*x)); 4886 break; 4887 } 4888 4889 case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{ 4890 struct notif_calibration *x = ¬if->u.calibration; 4891 4892 if (size == sizeof(*x)) { 4893 memcpy(&priv->calib, x, sizeof(*x)); 4894 IPW_DEBUG_INFO("TODO: Calibration\n"); 4895 break; 4896 } 4897 4898 IPW_ERROR 4899 ("Calibration of wrong size %d (should be %zd)\n", 4900 size, sizeof(*x)); 4901 break; 4902 } 4903 4904 case HOST_NOTIFICATION_NOISE_STATS:{ 4905 if (size == sizeof(u32)) { 4906 priv->exp_avg_noise = 4907 exponential_average(priv->exp_avg_noise, 4908 (u8) (le32_to_cpu(notif->u.noise.value) & 0xff), 4909 DEPTH_NOISE); 4910 break; 4911 } 4912 4913 IPW_ERROR 4914 ("Noise stat is wrong size %d (should be %zd)\n", 4915 size, sizeof(u32)); 4916 break; 4917 } 4918 4919 default: 4920 IPW_DEBUG_NOTIF("Unknown notification: " 4921 "subtype=%d,flags=0x%2x,size=%d\n", 4922 notif->subtype, notif->flags, size); 4923 } 4924 } 4925 4926 /** 4927 * Destroys all DMA structures and initialise them again 4928 * 4929 * @param priv 4930 * @return error code 4931 */ 4932 static int ipw_queue_reset(struct ipw_priv *priv) 4933 { 4934 int rc = 0; 4935 /** @todo customize queue sizes */ 4936 int nTx = 64, nTxCmd = 8; 4937 ipw_tx_queue_free(priv); 4938 /* Tx CMD queue */ 4939 rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd, 4940 IPW_TX_CMD_QUEUE_READ_INDEX, 4941 IPW_TX_CMD_QUEUE_WRITE_INDEX, 4942 IPW_TX_CMD_QUEUE_BD_BASE, 4943 IPW_TX_CMD_QUEUE_BD_SIZE); 4944 if (rc) { 4945 IPW_ERROR("Tx Cmd queue init failed\n"); 4946 goto error; 4947 } 4948 /* Tx queue(s) */ 4949 rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx, 4950 IPW_TX_QUEUE_0_READ_INDEX, 4951 IPW_TX_QUEUE_0_WRITE_INDEX, 4952 IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE); 4953 if (rc) { 4954 IPW_ERROR("Tx 0 queue init failed\n"); 4955 goto error; 4956 } 4957 rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx, 4958 IPW_TX_QUEUE_1_READ_INDEX, 4959 IPW_TX_QUEUE_1_WRITE_INDEX, 4960 IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE); 4961 if (rc) { 4962 IPW_ERROR("Tx 1 queue init failed\n"); 4963 goto error; 4964 } 4965 rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx, 4966 IPW_TX_QUEUE_2_READ_INDEX, 4967 IPW_TX_QUEUE_2_WRITE_INDEX, 4968 IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE); 4969 if (rc) { 4970 IPW_ERROR("Tx 2 queue init failed\n"); 4971 goto error; 4972 } 4973 rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx, 4974 IPW_TX_QUEUE_3_READ_INDEX, 4975 IPW_TX_QUEUE_3_WRITE_INDEX, 4976 IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE); 4977 if (rc) { 4978 IPW_ERROR("Tx 3 queue init failed\n"); 4979 goto error; 4980 } 4981 /* statistics */ 4982 priv->rx_bufs_min = 0; 4983 priv->rx_pend_max = 0; 4984 return rc; 4985 4986 error: 4987 ipw_tx_queue_free(priv); 4988 return rc; 4989 } 4990 4991 /** 4992 * Reclaim Tx queue entries no more used by NIC. 4993 * 4994 * When FW advances 'R' index, all entries between old and 4995 * new 'R' index need to be reclaimed. As result, some free space 4996 * forms. If there is enough free space (> low mark), wake Tx queue. 4997 * 4998 * @note Need to protect against garbage in 'R' index 4999 * @param priv 5000 * @param txq 5001 * @param qindex 5002 * @return Number of used entries remains in the queue 5003 */ 5004 static int ipw_queue_tx_reclaim(struct ipw_priv *priv, 5005 struct clx2_tx_queue *txq, int qindex) 5006 { 5007 u32 hw_tail; 5008 int used; 5009 struct clx2_queue *q = &txq->q; 5010 5011 hw_tail = ipw_read32(priv, q->reg_r); 5012 if (hw_tail >= q->n_bd) { 5013 IPW_ERROR 5014 ("Read index for DMA queue (%d) is out of range [0-%d)\n", 5015 hw_tail, q->n_bd); 5016 goto done; 5017 } 5018 for (; q->last_used != hw_tail; 5019 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) { 5020 ipw_queue_tx_free_tfd(priv, txq); 5021 priv->tx_packets++; 5022 } 5023 done: 5024 if ((ipw_tx_queue_space(q) > q->low_mark) && 5025 (qindex >= 0)) 5026 netif_wake_queue(priv->net_dev); 5027 used = q->first_empty - q->last_used; 5028 if (used < 0) 5029 used += q->n_bd; 5030 5031 return used; 5032 } 5033 5034 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf, 5035 int len, int sync) 5036 { 5037 struct clx2_tx_queue *txq = &priv->txq_cmd; 5038 struct clx2_queue *q = &txq->q; 5039 struct tfd_frame *tfd; 5040 5041 if (ipw_tx_queue_space(q) < (sync ? 1 : 2)) { 5042 IPW_ERROR("No space for Tx\n"); 5043 return -EBUSY; 5044 } 5045 5046 tfd = &txq->bd[q->first_empty]; 5047 txq->txb[q->first_empty] = NULL; 5048 5049 memset(tfd, 0, sizeof(*tfd)); 5050 tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE; 5051 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK; 5052 priv->hcmd_seq++; 5053 tfd->u.cmd.index = hcmd; 5054 tfd->u.cmd.length = len; 5055 memcpy(tfd->u.cmd.payload, buf, len); 5056 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd); 5057 ipw_write32(priv, q->reg_w, q->first_empty); 5058 _ipw_read32(priv, 0x90); 5059 5060 return 0; 5061 } 5062 5063 /* 5064 * Rx theory of operation 5065 * 5066 * The host allocates 32 DMA target addresses and passes the host address 5067 * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is 5068 * 0 to 31 5069 * 5070 * Rx Queue Indexes 5071 * The host/firmware share two index registers for managing the Rx buffers. 5072 * 5073 * The READ index maps to the first position that the firmware may be writing 5074 * to -- the driver can read up to (but not including) this position and get 5075 * good data. 5076 * The READ index is managed by the firmware once the card is enabled. 5077 * 5078 * The WRITE index maps to the last position the driver has read from -- the 5079 * position preceding WRITE is the last slot the firmware can place a packet. 5080 * 5081 * The queue is empty (no good data) if WRITE = READ - 1, and is full if 5082 * WRITE = READ. 5083 * 5084 * During initialization the host sets up the READ queue position to the first 5085 * INDEX position, and WRITE to the last (READ - 1 wrapped) 5086 * 5087 * When the firmware places a packet in a buffer it will advance the READ index 5088 * and fire the RX interrupt. The driver can then query the READ index and 5089 * process as many packets as possible, moving the WRITE index forward as it 5090 * resets the Rx queue buffers with new memory. 5091 * 5092 * The management in the driver is as follows: 5093 * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free. When 5094 * ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled 5095 * to replensish the ipw->rxq->rx_free. 5096 * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the 5097 * ipw->rxq is replenished and the READ INDEX is updated (updating the 5098 * 'processed' and 'read' driver indexes as well) 5099 * + A received packet is processed and handed to the kernel network stack, 5100 * detached from the ipw->rxq. The driver 'processed' index is updated. 5101 * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free 5102 * list. If there are no allocated buffers in ipw->rxq->rx_free, the READ 5103 * INDEX is not incremented and ipw->status(RX_STALLED) is set. If there 5104 * were enough free buffers and RX_STALLED is set it is cleared. 5105 * 5106 * 5107 * Driver sequence: 5108 * 5109 * ipw_rx_queue_alloc() Allocates rx_free 5110 * ipw_rx_queue_replenish() Replenishes rx_free list from rx_used, and calls 5111 * ipw_rx_queue_restock 5112 * ipw_rx_queue_restock() Moves available buffers from rx_free into Rx 5113 * queue, updates firmware pointers, and updates 5114 * the WRITE index. If insufficient rx_free buffers 5115 * are available, schedules ipw_rx_queue_replenish 5116 * 5117 * -- enable interrupts -- 5118 * ISR - ipw_rx() Detach ipw_rx_mem_buffers from pool up to the 5119 * READ INDEX, detaching the SKB from the pool. 5120 * Moves the packet buffer from queue to rx_used. 5121 * Calls ipw_rx_queue_restock to refill any empty 5122 * slots. 5123 * ... 5124 * 5125 */ 5126 5127 /* 5128 * If there are slots in the RX queue that need to be restocked, 5129 * and we have free pre-allocated buffers, fill the ranks as much 5130 * as we can pulling from rx_free. 5131 * 5132 * This moves the 'write' index forward to catch up with 'processed', and 5133 * also updates the memory address in the firmware to reference the new 5134 * target buffer. 5135 */ 5136 static void ipw_rx_queue_restock(struct ipw_priv *priv) 5137 { 5138 struct ipw_rx_queue *rxq = priv->rxq; 5139 struct list_head *element; 5140 struct ipw_rx_mem_buffer *rxb; 5141 unsigned long flags; 5142 int write; 5143 5144 spin_lock_irqsave(&rxq->lock, flags); 5145 write = rxq->write; 5146 while ((ipw_rx_queue_space(rxq) > 0) && (rxq->free_count)) { 5147 element = rxq->rx_free.next; 5148 rxb = list_entry(element, struct ipw_rx_mem_buffer, list); 5149 list_del(element); 5150 5151 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE, 5152 rxb->dma_addr); 5153 rxq->queue[rxq->write] = rxb; 5154 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE; 5155 rxq->free_count--; 5156 } 5157 spin_unlock_irqrestore(&rxq->lock, flags); 5158 5159 /* If the pre-allocated buffer pool is dropping low, schedule to 5160 * refill it */ 5161 if (rxq->free_count <= RX_LOW_WATERMARK) 5162 schedule_work(&priv->rx_replenish); 5163 5164 /* If we've added more space for the firmware to place data, tell it */ 5165 if (write != rxq->write) 5166 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write); 5167 } 5168 5169 /* 5170 * Move all used packet from rx_used to rx_free, allocating a new SKB for each. 5171 * Also restock the Rx queue via ipw_rx_queue_restock. 5172 * 5173 * This is called as a scheduled work item (except for during initialization) 5174 */ 5175 static void ipw_rx_queue_replenish(void *data) 5176 { 5177 struct ipw_priv *priv = data; 5178 struct ipw_rx_queue *rxq = priv->rxq; 5179 struct list_head *element; 5180 struct ipw_rx_mem_buffer *rxb; 5181 unsigned long flags; 5182 5183 spin_lock_irqsave(&rxq->lock, flags); 5184 while (!list_empty(&rxq->rx_used)) { 5185 element = rxq->rx_used.next; 5186 rxb = list_entry(element, struct ipw_rx_mem_buffer, list); 5187 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC); 5188 if (!rxb->skb) { 5189 printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n", 5190 priv->net_dev->name); 5191 /* We don't reschedule replenish work here -- we will 5192 * call the restock method and if it still needs 5193 * more buffers it will schedule replenish */ 5194 break; 5195 } 5196 list_del(element); 5197 5198 rxb->dma_addr = 5199 pci_map_single(priv->pci_dev, rxb->skb->data, 5200 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE); 5201 5202 list_add_tail(&rxb->list, &rxq->rx_free); 5203 rxq->free_count++; 5204 } 5205 spin_unlock_irqrestore(&rxq->lock, flags); 5206 5207 ipw_rx_queue_restock(priv); 5208 } 5209 5210 static void ipw_bg_rx_queue_replenish(struct work_struct *work) 5211 { 5212 struct ipw_priv *priv = 5213 container_of(work, struct ipw_priv, rx_replenish); 5214 mutex_lock(&priv->mutex); 5215 ipw_rx_queue_replenish(priv); 5216 mutex_unlock(&priv->mutex); 5217 } 5218 5219 /* Assumes that the skb field of the buffers in 'pool' is kept accurate. 5220 * If an SKB has been detached, the POOL needs to have its SKB set to NULL 5221 * This free routine walks the list of POOL entries and if SKB is set to 5222 * non NULL it is unmapped and freed 5223 */ 5224 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq) 5225 { 5226 int i; 5227 5228 if (!rxq) 5229 return; 5230 5231 for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) { 5232 if (rxq->pool[i].skb != NULL) { 5233 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr, 5234 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE); 5235 dev_kfree_skb(rxq->pool[i].skb); 5236 } 5237 } 5238 5239 kfree(rxq); 5240 } 5241 5242 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv) 5243 { 5244 struct ipw_rx_queue *rxq; 5245 int i; 5246 5247 rxq = kzalloc(sizeof(*rxq), GFP_KERNEL); 5248 if (unlikely(!rxq)) { 5249 IPW_ERROR("memory allocation failed\n"); 5250 return NULL; 5251 } 5252 spin_lock_init(&rxq->lock); 5253 INIT_LIST_HEAD(&rxq->rx_free); 5254 INIT_LIST_HEAD(&rxq->rx_used); 5255 5256 /* Fill the rx_used queue with _all_ of the Rx buffers */ 5257 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) 5258 list_add_tail(&rxq->pool[i].list, &rxq->rx_used); 5259 5260 /* Set us so that we have processed and used all buffers, but have 5261 * not restocked the Rx queue with fresh buffers */ 5262 rxq->read = rxq->write = 0; 5263 rxq->free_count = 0; 5264 5265 return rxq; 5266 } 5267 5268 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate) 5269 { 5270 rate &= ~LIBIPW_BASIC_RATE_MASK; 5271 if (ieee_mode == IEEE_A) { 5272 switch (rate) { 5273 case LIBIPW_OFDM_RATE_6MB: 5274 return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ? 5275 1 : 0; 5276 case LIBIPW_OFDM_RATE_9MB: 5277 return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ? 5278 1 : 0; 5279 case LIBIPW_OFDM_RATE_12MB: 5280 return priv-> 5281 rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0; 5282 case LIBIPW_OFDM_RATE_18MB: 5283 return priv-> 5284 rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0; 5285 case LIBIPW_OFDM_RATE_24MB: 5286 return priv-> 5287 rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0; 5288 case LIBIPW_OFDM_RATE_36MB: 5289 return priv-> 5290 rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0; 5291 case LIBIPW_OFDM_RATE_48MB: 5292 return priv-> 5293 rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0; 5294 case LIBIPW_OFDM_RATE_54MB: 5295 return priv-> 5296 rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0; 5297 default: 5298 return 0; 5299 } 5300 } 5301 5302 /* B and G mixed */ 5303 switch (rate) { 5304 case LIBIPW_CCK_RATE_1MB: 5305 return priv->rates_mask & LIBIPW_CCK_RATE_1MB_MASK ? 1 : 0; 5306 case LIBIPW_CCK_RATE_2MB: 5307 return priv->rates_mask & LIBIPW_CCK_RATE_2MB_MASK ? 1 : 0; 5308 case LIBIPW_CCK_RATE_5MB: 5309 return priv->rates_mask & LIBIPW_CCK_RATE_5MB_MASK ? 1 : 0; 5310 case LIBIPW_CCK_RATE_11MB: 5311 return priv->rates_mask & LIBIPW_CCK_RATE_11MB_MASK ? 1 : 0; 5312 } 5313 5314 /* If we are limited to B modulations, bail at this point */ 5315 if (ieee_mode == IEEE_B) 5316 return 0; 5317 5318 /* G */ 5319 switch (rate) { 5320 case LIBIPW_OFDM_RATE_6MB: 5321 return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ? 1 : 0; 5322 case LIBIPW_OFDM_RATE_9MB: 5323 return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ? 1 : 0; 5324 case LIBIPW_OFDM_RATE_12MB: 5325 return priv->rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0; 5326 case LIBIPW_OFDM_RATE_18MB: 5327 return priv->rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0; 5328 case LIBIPW_OFDM_RATE_24MB: 5329 return priv->rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0; 5330 case LIBIPW_OFDM_RATE_36MB: 5331 return priv->rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0; 5332 case LIBIPW_OFDM_RATE_48MB: 5333 return priv->rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0; 5334 case LIBIPW_OFDM_RATE_54MB: 5335 return priv->rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0; 5336 } 5337 5338 return 0; 5339 } 5340 5341 static int ipw_compatible_rates(struct ipw_priv *priv, 5342 const struct libipw_network *network, 5343 struct ipw_supported_rates *rates) 5344 { 5345 int num_rates, i; 5346 5347 memset(rates, 0, sizeof(*rates)); 5348 num_rates = min(network->rates_len, (u8) IPW_MAX_RATES); 5349 rates->num_rates = 0; 5350 for (i = 0; i < num_rates; i++) { 5351 if (!ipw_is_rate_in_mask(priv, network->mode, 5352 network->rates[i])) { 5353 5354 if (network->rates[i] & LIBIPW_BASIC_RATE_MASK) { 5355 IPW_DEBUG_SCAN("Adding masked mandatory " 5356 "rate %02X\n", 5357 network->rates[i]); 5358 rates->supported_rates[rates->num_rates++] = 5359 network->rates[i]; 5360 continue; 5361 } 5362 5363 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n", 5364 network->rates[i], priv->rates_mask); 5365 continue; 5366 } 5367 5368 rates->supported_rates[rates->num_rates++] = network->rates[i]; 5369 } 5370 5371 num_rates = min(network->rates_ex_len, 5372 (u8) (IPW_MAX_RATES - num_rates)); 5373 for (i = 0; i < num_rates; i++) { 5374 if (!ipw_is_rate_in_mask(priv, network->mode, 5375 network->rates_ex[i])) { 5376 if (network->rates_ex[i] & LIBIPW_BASIC_RATE_MASK) { 5377 IPW_DEBUG_SCAN("Adding masked mandatory " 5378 "rate %02X\n", 5379 network->rates_ex[i]); 5380 rates->supported_rates[rates->num_rates++] = 5381 network->rates[i]; 5382 continue; 5383 } 5384 5385 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n", 5386 network->rates_ex[i], priv->rates_mask); 5387 continue; 5388 } 5389 5390 rates->supported_rates[rates->num_rates++] = 5391 network->rates_ex[i]; 5392 } 5393 5394 return 1; 5395 } 5396 5397 static void ipw_copy_rates(struct ipw_supported_rates *dest, 5398 const struct ipw_supported_rates *src) 5399 { 5400 u8 i; 5401 for (i = 0; i < src->num_rates; i++) 5402 dest->supported_rates[i] = src->supported_rates[i]; 5403 dest->num_rates = src->num_rates; 5404 } 5405 5406 /* TODO: Look at sniffed packets in the air to determine if the basic rate 5407 * mask should ever be used -- right now all callers to add the scan rates are 5408 * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */ 5409 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates, 5410 u8 modulation, u32 rate_mask) 5411 { 5412 u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ? 5413 LIBIPW_BASIC_RATE_MASK : 0; 5414 5415 if (rate_mask & LIBIPW_CCK_RATE_1MB_MASK) 5416 rates->supported_rates[rates->num_rates++] = 5417 LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_1MB; 5418 5419 if (rate_mask & LIBIPW_CCK_RATE_2MB_MASK) 5420 rates->supported_rates[rates->num_rates++] = 5421 LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_2MB; 5422 5423 if (rate_mask & LIBIPW_CCK_RATE_5MB_MASK) 5424 rates->supported_rates[rates->num_rates++] = basic_mask | 5425 LIBIPW_CCK_RATE_5MB; 5426 5427 if (rate_mask & LIBIPW_CCK_RATE_11MB_MASK) 5428 rates->supported_rates[rates->num_rates++] = basic_mask | 5429 LIBIPW_CCK_RATE_11MB; 5430 } 5431 5432 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates, 5433 u8 modulation, u32 rate_mask) 5434 { 5435 u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ? 5436 LIBIPW_BASIC_RATE_MASK : 0; 5437 5438 if (rate_mask & LIBIPW_OFDM_RATE_6MB_MASK) 5439 rates->supported_rates[rates->num_rates++] = basic_mask | 5440 LIBIPW_OFDM_RATE_6MB; 5441 5442 if (rate_mask & LIBIPW_OFDM_RATE_9MB_MASK) 5443 rates->supported_rates[rates->num_rates++] = 5444 LIBIPW_OFDM_RATE_9MB; 5445 5446 if (rate_mask & LIBIPW_OFDM_RATE_12MB_MASK) 5447 rates->supported_rates[rates->num_rates++] = basic_mask | 5448 LIBIPW_OFDM_RATE_12MB; 5449 5450 if (rate_mask & LIBIPW_OFDM_RATE_18MB_MASK) 5451 rates->supported_rates[rates->num_rates++] = 5452 LIBIPW_OFDM_RATE_18MB; 5453 5454 if (rate_mask & LIBIPW_OFDM_RATE_24MB_MASK) 5455 rates->supported_rates[rates->num_rates++] = basic_mask | 5456 LIBIPW_OFDM_RATE_24MB; 5457 5458 if (rate_mask & LIBIPW_OFDM_RATE_36MB_MASK) 5459 rates->supported_rates[rates->num_rates++] = 5460 LIBIPW_OFDM_RATE_36MB; 5461 5462 if (rate_mask & LIBIPW_OFDM_RATE_48MB_MASK) 5463 rates->supported_rates[rates->num_rates++] = 5464 LIBIPW_OFDM_RATE_48MB; 5465 5466 if (rate_mask & LIBIPW_OFDM_RATE_54MB_MASK) 5467 rates->supported_rates[rates->num_rates++] = 5468 LIBIPW_OFDM_RATE_54MB; 5469 } 5470 5471 struct ipw_network_match { 5472 struct libipw_network *network; 5473 struct ipw_supported_rates rates; 5474 }; 5475 5476 static int ipw_find_adhoc_network(struct ipw_priv *priv, 5477 struct ipw_network_match *match, 5478 struct libipw_network *network, 5479 int roaming) 5480 { 5481 struct ipw_supported_rates rates; 5482 5483 /* Verify that this network's capability is compatible with the 5484 * current mode (AdHoc or Infrastructure) */ 5485 if ((priv->ieee->iw_mode == IW_MODE_ADHOC && 5486 !(network->capability & WLAN_CAPABILITY_IBSS))) { 5487 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded due to capability mismatch.\n", 5488 network->ssid_len, network->ssid, 5489 network->bssid); 5490 return 0; 5491 } 5492 5493 if (unlikely(roaming)) { 5494 /* If we are roaming, then ensure check if this is a valid 5495 * network to try and roam to */ 5496 if ((network->ssid_len != match->network->ssid_len) || 5497 memcmp(network->ssid, match->network->ssid, 5498 network->ssid_len)) { 5499 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of non-network ESSID.\n", 5500 network->ssid_len, network->ssid, 5501 network->bssid); 5502 return 0; 5503 } 5504 } else { 5505 /* If an ESSID has been configured then compare the broadcast 5506 * ESSID to ours */ 5507 if ((priv->config & CFG_STATIC_ESSID) && 5508 ((network->ssid_len != priv->essid_len) || 5509 memcmp(network->ssid, priv->essid, 5510 min(network->ssid_len, priv->essid_len)))) { 5511 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of ESSID mismatch: '%*pE'.\n", 5512 network->ssid_len, network->ssid, 5513 network->bssid, priv->essid_len, 5514 priv->essid); 5515 return 0; 5516 } 5517 } 5518 5519 /* If the old network rate is better than this one, don't bother 5520 * testing everything else. */ 5521 5522 if (network->time_stamp[0] < match->network->time_stamp[0]) { 5523 IPW_DEBUG_MERGE("Network '%*pE excluded because newer than current network.\n", 5524 match->network->ssid_len, match->network->ssid); 5525 return 0; 5526 } else if (network->time_stamp[1] < match->network->time_stamp[1]) { 5527 IPW_DEBUG_MERGE("Network '%*pE excluded because newer than current network.\n", 5528 match->network->ssid_len, match->network->ssid); 5529 return 0; 5530 } 5531 5532 /* Now go through and see if the requested network is valid... */ 5533 if (priv->ieee->scan_age != 0 && 5534 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) { 5535 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of age: %ums.\n", 5536 network->ssid_len, network->ssid, 5537 network->bssid, 5538 jiffies_to_msecs(jiffies - 5539 network->last_scanned)); 5540 return 0; 5541 } 5542 5543 if ((priv->config & CFG_STATIC_CHANNEL) && 5544 (network->channel != priv->channel)) { 5545 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of channel mismatch: %d != %d.\n", 5546 network->ssid_len, network->ssid, 5547 network->bssid, 5548 network->channel, priv->channel); 5549 return 0; 5550 } 5551 5552 /* Verify privacy compatibility */ 5553 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) != 5554 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) { 5555 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of privacy mismatch: %s != %s.\n", 5556 network->ssid_len, network->ssid, 5557 network->bssid, 5558 priv-> 5559 capability & CAP_PRIVACY_ON ? "on" : "off", 5560 network-> 5561 capability & WLAN_CAPABILITY_PRIVACY ? "on" : 5562 "off"); 5563 return 0; 5564 } 5565 5566 if (ether_addr_equal(network->bssid, priv->bssid)) { 5567 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of the same BSSID match: %pM.\n", 5568 network->ssid_len, network->ssid, 5569 network->bssid, priv->bssid); 5570 return 0; 5571 } 5572 5573 /* Filter out any incompatible freq / mode combinations */ 5574 if (!libipw_is_valid_mode(priv->ieee, network->mode)) { 5575 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of invalid frequency/mode combination.\n", 5576 network->ssid_len, network->ssid, 5577 network->bssid); 5578 return 0; 5579 } 5580 5581 /* Ensure that the rates supported by the driver are compatible with 5582 * this AP, including verification of basic rates (mandatory) */ 5583 if (!ipw_compatible_rates(priv, network, &rates)) { 5584 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because configured rate mask excludes AP mandatory rate.\n", 5585 network->ssid_len, network->ssid, 5586 network->bssid); 5587 return 0; 5588 } 5589 5590 if (rates.num_rates == 0) { 5591 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of no compatible rates.\n", 5592 network->ssid_len, network->ssid, 5593 network->bssid); 5594 return 0; 5595 } 5596 5597 /* TODO: Perform any further minimal comparititive tests. We do not 5598 * want to put too much policy logic here; intelligent scan selection 5599 * should occur within a generic IEEE 802.11 user space tool. */ 5600 5601 /* Set up 'new' AP to this network */ 5602 ipw_copy_rates(&match->rates, &rates); 5603 match->network = network; 5604 IPW_DEBUG_MERGE("Network '%*pE (%pM)' is a viable match.\n", 5605 network->ssid_len, network->ssid, network->bssid); 5606 5607 return 1; 5608 } 5609 5610 static void ipw_merge_adhoc_network(struct work_struct *work) 5611 { 5612 struct ipw_priv *priv = 5613 container_of(work, struct ipw_priv, merge_networks); 5614 struct libipw_network *network = NULL; 5615 struct ipw_network_match match = { 5616 .network = priv->assoc_network 5617 }; 5618 5619 if ((priv->status & STATUS_ASSOCIATED) && 5620 (priv->ieee->iw_mode == IW_MODE_ADHOC)) { 5621 /* First pass through ROAM process -- look for a better 5622 * network */ 5623 unsigned long flags; 5624 5625 spin_lock_irqsave(&priv->ieee->lock, flags); 5626 list_for_each_entry(network, &priv->ieee->network_list, list) { 5627 if (network != priv->assoc_network) 5628 ipw_find_adhoc_network(priv, &match, network, 5629 1); 5630 } 5631 spin_unlock_irqrestore(&priv->ieee->lock, flags); 5632 5633 if (match.network == priv->assoc_network) { 5634 IPW_DEBUG_MERGE("No better ADHOC in this network to " 5635 "merge to.\n"); 5636 return; 5637 } 5638 5639 mutex_lock(&priv->mutex); 5640 if (priv->ieee->iw_mode == IW_MODE_ADHOC) { 5641 IPW_DEBUG_MERGE("remove network %*pE\n", 5642 priv->essid_len, priv->essid); 5643 ipw_remove_current_network(priv); 5644 } 5645 5646 ipw_disassociate(priv); 5647 priv->assoc_network = match.network; 5648 mutex_unlock(&priv->mutex); 5649 return; 5650 } 5651 } 5652 5653 static int ipw_best_network(struct ipw_priv *priv, 5654 struct ipw_network_match *match, 5655 struct libipw_network *network, int roaming) 5656 { 5657 struct ipw_supported_rates rates; 5658 5659 /* Verify that this network's capability is compatible with the 5660 * current mode (AdHoc or Infrastructure) */ 5661 if ((priv->ieee->iw_mode == IW_MODE_INFRA && 5662 !(network->capability & WLAN_CAPABILITY_ESS)) || 5663 (priv->ieee->iw_mode == IW_MODE_ADHOC && 5664 !(network->capability & WLAN_CAPABILITY_IBSS))) { 5665 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded due to capability mismatch.\n", 5666 network->ssid_len, network->ssid, 5667 network->bssid); 5668 return 0; 5669 } 5670 5671 if (unlikely(roaming)) { 5672 /* If we are roaming, then ensure check if this is a valid 5673 * network to try and roam to */ 5674 if ((network->ssid_len != match->network->ssid_len) || 5675 memcmp(network->ssid, match->network->ssid, 5676 network->ssid_len)) { 5677 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of non-network ESSID.\n", 5678 network->ssid_len, network->ssid, 5679 network->bssid); 5680 return 0; 5681 } 5682 } else { 5683 /* If an ESSID has been configured then compare the broadcast 5684 * ESSID to ours */ 5685 if ((priv->config & CFG_STATIC_ESSID) && 5686 ((network->ssid_len != priv->essid_len) || 5687 memcmp(network->ssid, priv->essid, 5688 min(network->ssid_len, priv->essid_len)))) { 5689 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of ESSID mismatch: '%*pE'.\n", 5690 network->ssid_len, network->ssid, 5691 network->bssid, priv->essid_len, 5692 priv->essid); 5693 return 0; 5694 } 5695 } 5696 5697 /* If the old network rate is better than this one, don't bother 5698 * testing everything else. */ 5699 if (match->network && match->network->stats.rssi > network->stats.rssi) { 5700 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because '%*pE (%pM)' has a stronger signal.\n", 5701 network->ssid_len, network->ssid, 5702 network->bssid, match->network->ssid_len, 5703 match->network->ssid, match->network->bssid); 5704 return 0; 5705 } 5706 5707 /* If this network has already had an association attempt within the 5708 * last 3 seconds, do not try and associate again... */ 5709 if (network->last_associate && 5710 time_after(network->last_associate + (HZ * 3UL), jiffies)) { 5711 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of storming (%ums since last assoc attempt).\n", 5712 network->ssid_len, network->ssid, 5713 network->bssid, 5714 jiffies_to_msecs(jiffies - 5715 network->last_associate)); 5716 return 0; 5717 } 5718 5719 /* Now go through and see if the requested network is valid... */ 5720 if (priv->ieee->scan_age != 0 && 5721 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) { 5722 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of age: %ums.\n", 5723 network->ssid_len, network->ssid, 5724 network->bssid, 5725 jiffies_to_msecs(jiffies - 5726 network->last_scanned)); 5727 return 0; 5728 } 5729 5730 if ((priv->config & CFG_STATIC_CHANNEL) && 5731 (network->channel != priv->channel)) { 5732 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of channel mismatch: %d != %d.\n", 5733 network->ssid_len, network->ssid, 5734 network->bssid, 5735 network->channel, priv->channel); 5736 return 0; 5737 } 5738 5739 /* Verify privacy compatibility */ 5740 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) != 5741 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) { 5742 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of privacy mismatch: %s != %s.\n", 5743 network->ssid_len, network->ssid, 5744 network->bssid, 5745 priv->capability & CAP_PRIVACY_ON ? "on" : 5746 "off", 5747 network->capability & 5748 WLAN_CAPABILITY_PRIVACY ? "on" : "off"); 5749 return 0; 5750 } 5751 5752 if ((priv->config & CFG_STATIC_BSSID) && 5753 !ether_addr_equal(network->bssid, priv->bssid)) { 5754 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of BSSID mismatch: %pM.\n", 5755 network->ssid_len, network->ssid, 5756 network->bssid, priv->bssid); 5757 return 0; 5758 } 5759 5760 /* Filter out any incompatible freq / mode combinations */ 5761 if (!libipw_is_valid_mode(priv->ieee, network->mode)) { 5762 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of invalid frequency/mode combination.\n", 5763 network->ssid_len, network->ssid, 5764 network->bssid); 5765 return 0; 5766 } 5767 5768 /* Filter out invalid channel in current GEO */ 5769 if (!libipw_is_valid_channel(priv->ieee, network->channel)) { 5770 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of invalid channel in current GEO\n", 5771 network->ssid_len, network->ssid, 5772 network->bssid); 5773 return 0; 5774 } 5775 5776 /* Ensure that the rates supported by the driver are compatible with 5777 * this AP, including verification of basic rates (mandatory) */ 5778 if (!ipw_compatible_rates(priv, network, &rates)) { 5779 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because configured rate mask excludes AP mandatory rate.\n", 5780 network->ssid_len, network->ssid, 5781 network->bssid); 5782 return 0; 5783 } 5784 5785 if (rates.num_rates == 0) { 5786 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of no compatible rates.\n", 5787 network->ssid_len, network->ssid, 5788 network->bssid); 5789 return 0; 5790 } 5791 5792 /* TODO: Perform any further minimal comparititive tests. We do not 5793 * want to put too much policy logic here; intelligent scan selection 5794 * should occur within a generic IEEE 802.11 user space tool. */ 5795 5796 /* Set up 'new' AP to this network */ 5797 ipw_copy_rates(&match->rates, &rates); 5798 match->network = network; 5799 5800 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' is a viable match.\n", 5801 network->ssid_len, network->ssid, network->bssid); 5802 5803 return 1; 5804 } 5805 5806 static void ipw_adhoc_create(struct ipw_priv *priv, 5807 struct libipw_network *network) 5808 { 5809 const struct libipw_geo *geo = libipw_get_geo(priv->ieee); 5810 int i; 5811 5812 /* 5813 * For the purposes of scanning, we can set our wireless mode 5814 * to trigger scans across combinations of bands, but when it 5815 * comes to creating a new ad-hoc network, we have tell the FW 5816 * exactly which band to use. 5817 * 5818 * We also have the possibility of an invalid channel for the 5819 * chossen band. Attempting to create a new ad-hoc network 5820 * with an invalid channel for wireless mode will trigger a 5821 * FW fatal error. 5822 * 5823 */ 5824 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) { 5825 case LIBIPW_52GHZ_BAND: 5826 network->mode = IEEE_A; 5827 i = libipw_channel_to_index(priv->ieee, priv->channel); 5828 BUG_ON(i == -1); 5829 if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY) { 5830 IPW_WARNING("Overriding invalid channel\n"); 5831 priv->channel = geo->a[0].channel; 5832 } 5833 break; 5834 5835 case LIBIPW_24GHZ_BAND: 5836 if (priv->ieee->mode & IEEE_G) 5837 network->mode = IEEE_G; 5838 else 5839 network->mode = IEEE_B; 5840 i = libipw_channel_to_index(priv->ieee, priv->channel); 5841 BUG_ON(i == -1); 5842 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY) { 5843 IPW_WARNING("Overriding invalid channel\n"); 5844 priv->channel = geo->bg[0].channel; 5845 } 5846 break; 5847 5848 default: 5849 IPW_WARNING("Overriding invalid channel\n"); 5850 if (priv->ieee->mode & IEEE_A) { 5851 network->mode = IEEE_A; 5852 priv->channel = geo->a[0].channel; 5853 } else if (priv->ieee->mode & IEEE_G) { 5854 network->mode = IEEE_G; 5855 priv->channel = geo->bg[0].channel; 5856 } else { 5857 network->mode = IEEE_B; 5858 priv->channel = geo->bg[0].channel; 5859 } 5860 break; 5861 } 5862 5863 network->channel = priv->channel; 5864 priv->config |= CFG_ADHOC_PERSIST; 5865 ipw_create_bssid(priv, network->bssid); 5866 network->ssid_len = priv->essid_len; 5867 memcpy(network->ssid, priv->essid, priv->essid_len); 5868 memset(&network->stats, 0, sizeof(network->stats)); 5869 network->capability = WLAN_CAPABILITY_IBSS; 5870 if (!(priv->config & CFG_PREAMBLE_LONG)) 5871 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE; 5872 if (priv->capability & CAP_PRIVACY_ON) 5873 network->capability |= WLAN_CAPABILITY_PRIVACY; 5874 network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH); 5875 memcpy(network->rates, priv->rates.supported_rates, network->rates_len); 5876 network->rates_ex_len = priv->rates.num_rates - network->rates_len; 5877 memcpy(network->rates_ex, 5878 &priv->rates.supported_rates[network->rates_len], 5879 network->rates_ex_len); 5880 network->last_scanned = 0; 5881 network->flags = 0; 5882 network->last_associate = 0; 5883 network->time_stamp[0] = 0; 5884 network->time_stamp[1] = 0; 5885 network->beacon_interval = 100; /* Default */ 5886 network->listen_interval = 10; /* Default */ 5887 network->atim_window = 0; /* Default */ 5888 network->wpa_ie_len = 0; 5889 network->rsn_ie_len = 0; 5890 } 5891 5892 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index) 5893 { 5894 struct ipw_tgi_tx_key key; 5895 5896 if (!(priv->ieee->sec.flags & (1 << index))) 5897 return; 5898 5899 key.key_id = index; 5900 memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH); 5901 key.security_type = type; 5902 key.station_index = 0; /* always 0 for BSS */ 5903 key.flags = 0; 5904 /* 0 for new key; previous value of counter (after fatal error) */ 5905 key.tx_counter[0] = cpu_to_le32(0); 5906 key.tx_counter[1] = cpu_to_le32(0); 5907 5908 ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key); 5909 } 5910 5911 static void ipw_send_wep_keys(struct ipw_priv *priv, int type) 5912 { 5913 struct ipw_wep_key key; 5914 int i; 5915 5916 key.cmd_id = DINO_CMD_WEP_KEY; 5917 key.seq_num = 0; 5918 5919 /* Note: AES keys cannot be set for multiple times. 5920 * Only set it at the first time. */ 5921 for (i = 0; i < 4; i++) { 5922 key.key_index = i | type; 5923 if (!(priv->ieee->sec.flags & (1 << i))) { 5924 key.key_size = 0; 5925 continue; 5926 } 5927 5928 key.key_size = priv->ieee->sec.key_sizes[i]; 5929 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size); 5930 5931 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key); 5932 } 5933 } 5934 5935 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level) 5936 { 5937 if (priv->ieee->host_encrypt) 5938 return; 5939 5940 switch (level) { 5941 case SEC_LEVEL_3: 5942 priv->sys_config.disable_unicast_decryption = 0; 5943 priv->ieee->host_decrypt = 0; 5944 break; 5945 case SEC_LEVEL_2: 5946 priv->sys_config.disable_unicast_decryption = 1; 5947 priv->ieee->host_decrypt = 1; 5948 break; 5949 case SEC_LEVEL_1: 5950 priv->sys_config.disable_unicast_decryption = 0; 5951 priv->ieee->host_decrypt = 0; 5952 break; 5953 case SEC_LEVEL_0: 5954 priv->sys_config.disable_unicast_decryption = 1; 5955 break; 5956 default: 5957 break; 5958 } 5959 } 5960 5961 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level) 5962 { 5963 if (priv->ieee->host_encrypt) 5964 return; 5965 5966 switch (level) { 5967 case SEC_LEVEL_3: 5968 priv->sys_config.disable_multicast_decryption = 0; 5969 break; 5970 case SEC_LEVEL_2: 5971 priv->sys_config.disable_multicast_decryption = 1; 5972 break; 5973 case SEC_LEVEL_1: 5974 priv->sys_config.disable_multicast_decryption = 0; 5975 break; 5976 case SEC_LEVEL_0: 5977 priv->sys_config.disable_multicast_decryption = 1; 5978 break; 5979 default: 5980 break; 5981 } 5982 } 5983 5984 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv) 5985 { 5986 switch (priv->ieee->sec.level) { 5987 case SEC_LEVEL_3: 5988 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY) 5989 ipw_send_tgi_tx_key(priv, 5990 DCT_FLAG_EXT_SECURITY_CCM, 5991 priv->ieee->sec.active_key); 5992 5993 if (!priv->ieee->host_mc_decrypt) 5994 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM); 5995 break; 5996 case SEC_LEVEL_2: 5997 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY) 5998 ipw_send_tgi_tx_key(priv, 5999 DCT_FLAG_EXT_SECURITY_TKIP, 6000 priv->ieee->sec.active_key); 6001 break; 6002 case SEC_LEVEL_1: 6003 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP); 6004 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level); 6005 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level); 6006 break; 6007 case SEC_LEVEL_0: 6008 default: 6009 break; 6010 } 6011 } 6012 6013 static void ipw_adhoc_check(void *data) 6014 { 6015 struct ipw_priv *priv = data; 6016 6017 if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold && 6018 !(priv->config & CFG_ADHOC_PERSIST)) { 6019 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | 6020 IPW_DL_STATE | IPW_DL_ASSOC, 6021 "Missed beacon: %d - disassociate\n", 6022 priv->missed_adhoc_beacons); 6023 ipw_remove_current_network(priv); 6024 ipw_disassociate(priv); 6025 return; 6026 } 6027 6028 schedule_delayed_work(&priv->adhoc_check, 6029 le16_to_cpu(priv->assoc_request.beacon_interval)); 6030 } 6031 6032 static void ipw_bg_adhoc_check(struct work_struct *work) 6033 { 6034 struct ipw_priv *priv = 6035 container_of(work, struct ipw_priv, adhoc_check.work); 6036 mutex_lock(&priv->mutex); 6037 ipw_adhoc_check(priv); 6038 mutex_unlock(&priv->mutex); 6039 } 6040 6041 static void ipw_debug_config(struct ipw_priv *priv) 6042 { 6043 IPW_DEBUG_INFO("Scan completed, no valid APs matched " 6044 "[CFG 0x%08X]\n", priv->config); 6045 if (priv->config & CFG_STATIC_CHANNEL) 6046 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel); 6047 else 6048 IPW_DEBUG_INFO("Channel unlocked.\n"); 6049 if (priv->config & CFG_STATIC_ESSID) 6050 IPW_DEBUG_INFO("ESSID locked to '%*pE'\n", 6051 priv->essid_len, priv->essid); 6052 else 6053 IPW_DEBUG_INFO("ESSID unlocked.\n"); 6054 if (priv->config & CFG_STATIC_BSSID) 6055 IPW_DEBUG_INFO("BSSID locked to %pM\n", priv->bssid); 6056 else 6057 IPW_DEBUG_INFO("BSSID unlocked.\n"); 6058 if (priv->capability & CAP_PRIVACY_ON) 6059 IPW_DEBUG_INFO("PRIVACY on\n"); 6060 else 6061 IPW_DEBUG_INFO("PRIVACY off\n"); 6062 IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask); 6063 } 6064 6065 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode) 6066 { 6067 /* TODO: Verify that this works... */ 6068 struct ipw_fixed_rate fr; 6069 u32 reg; 6070 u16 mask = 0; 6071 u16 new_tx_rates = priv->rates_mask; 6072 6073 /* Identify 'current FW band' and match it with the fixed 6074 * Tx rates */ 6075 6076 switch (priv->ieee->freq_band) { 6077 case LIBIPW_52GHZ_BAND: /* A only */ 6078 /* IEEE_A */ 6079 if (priv->rates_mask & ~LIBIPW_OFDM_RATES_MASK) { 6080 /* Invalid fixed rate mask */ 6081 IPW_DEBUG_WX 6082 ("invalid fixed rate mask in ipw_set_fixed_rate\n"); 6083 new_tx_rates = 0; 6084 break; 6085 } 6086 6087 new_tx_rates >>= LIBIPW_OFDM_SHIFT_MASK_A; 6088 break; 6089 6090 default: /* 2.4Ghz or Mixed */ 6091 /* IEEE_B */ 6092 if (mode == IEEE_B) { 6093 if (new_tx_rates & ~LIBIPW_CCK_RATES_MASK) { 6094 /* Invalid fixed rate mask */ 6095 IPW_DEBUG_WX 6096 ("invalid fixed rate mask in ipw_set_fixed_rate\n"); 6097 new_tx_rates = 0; 6098 } 6099 break; 6100 } 6101 6102 /* IEEE_G */ 6103 if (new_tx_rates & ~(LIBIPW_CCK_RATES_MASK | 6104 LIBIPW_OFDM_RATES_MASK)) { 6105 /* Invalid fixed rate mask */ 6106 IPW_DEBUG_WX 6107 ("invalid fixed rate mask in ipw_set_fixed_rate\n"); 6108 new_tx_rates = 0; 6109 break; 6110 } 6111 6112 if (LIBIPW_OFDM_RATE_6MB_MASK & new_tx_rates) { 6113 mask |= (LIBIPW_OFDM_RATE_6MB_MASK >> 1); 6114 new_tx_rates &= ~LIBIPW_OFDM_RATE_6MB_MASK; 6115 } 6116 6117 if (LIBIPW_OFDM_RATE_9MB_MASK & new_tx_rates) { 6118 mask |= (LIBIPW_OFDM_RATE_9MB_MASK >> 1); 6119 new_tx_rates &= ~LIBIPW_OFDM_RATE_9MB_MASK; 6120 } 6121 6122 if (LIBIPW_OFDM_RATE_12MB_MASK & new_tx_rates) { 6123 mask |= (LIBIPW_OFDM_RATE_12MB_MASK >> 1); 6124 new_tx_rates &= ~LIBIPW_OFDM_RATE_12MB_MASK; 6125 } 6126 6127 new_tx_rates |= mask; 6128 break; 6129 } 6130 6131 fr.tx_rates = cpu_to_le16(new_tx_rates); 6132 6133 reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE); 6134 ipw_write_reg32(priv, reg, *(u32 *) & fr); 6135 } 6136 6137 static void ipw_abort_scan(struct ipw_priv *priv) 6138 { 6139 int err; 6140 6141 if (priv->status & STATUS_SCAN_ABORTING) { 6142 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n"); 6143 return; 6144 } 6145 priv->status |= STATUS_SCAN_ABORTING; 6146 6147 err = ipw_send_scan_abort(priv); 6148 if (err) 6149 IPW_DEBUG_HC("Request to abort scan failed.\n"); 6150 } 6151 6152 static void ipw_add_scan_channels(struct ipw_priv *priv, 6153 struct ipw_scan_request_ext *scan, 6154 int scan_type) 6155 { 6156 int channel_index = 0; 6157 const struct libipw_geo *geo; 6158 int i; 6159 6160 geo = libipw_get_geo(priv->ieee); 6161 6162 if (priv->ieee->freq_band & LIBIPW_52GHZ_BAND) { 6163 int start = channel_index; 6164 for (i = 0; i < geo->a_channels; i++) { 6165 if ((priv->status & STATUS_ASSOCIATED) && 6166 geo->a[i].channel == priv->channel) 6167 continue; 6168 channel_index++; 6169 scan->channels_list[channel_index] = geo->a[i].channel; 6170 ipw_set_scan_type(scan, channel_index, 6171 geo->a[i]. 6172 flags & LIBIPW_CH_PASSIVE_ONLY ? 6173 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN : 6174 scan_type); 6175 } 6176 6177 if (start != channel_index) { 6178 scan->channels_list[start] = (u8) (IPW_A_MODE << 6) | 6179 (channel_index - start); 6180 channel_index++; 6181 } 6182 } 6183 6184 if (priv->ieee->freq_band & LIBIPW_24GHZ_BAND) { 6185 int start = channel_index; 6186 if (priv->config & CFG_SPEED_SCAN) { 6187 int index; 6188 u8 channels[LIBIPW_24GHZ_CHANNELS] = { 6189 /* nop out the list */ 6190 [0] = 0 6191 }; 6192 6193 u8 channel; 6194 while (channel_index < IPW_SCAN_CHANNELS - 1) { 6195 channel = 6196 priv->speed_scan[priv->speed_scan_pos]; 6197 if (channel == 0) { 6198 priv->speed_scan_pos = 0; 6199 channel = priv->speed_scan[0]; 6200 } 6201 if ((priv->status & STATUS_ASSOCIATED) && 6202 channel == priv->channel) { 6203 priv->speed_scan_pos++; 6204 continue; 6205 } 6206 6207 /* If this channel has already been 6208 * added in scan, break from loop 6209 * and this will be the first channel 6210 * in the next scan. 6211 */ 6212 if (channels[channel - 1] != 0) 6213 break; 6214 6215 channels[channel - 1] = 1; 6216 priv->speed_scan_pos++; 6217 channel_index++; 6218 scan->channels_list[channel_index] = channel; 6219 index = 6220 libipw_channel_to_index(priv->ieee, channel); 6221 ipw_set_scan_type(scan, channel_index, 6222 geo->bg[index]. 6223 flags & 6224 LIBIPW_CH_PASSIVE_ONLY ? 6225 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN 6226 : scan_type); 6227 } 6228 } else { 6229 for (i = 0; i < geo->bg_channels; i++) { 6230 if ((priv->status & STATUS_ASSOCIATED) && 6231 geo->bg[i].channel == priv->channel) 6232 continue; 6233 channel_index++; 6234 scan->channels_list[channel_index] = 6235 geo->bg[i].channel; 6236 ipw_set_scan_type(scan, channel_index, 6237 geo->bg[i]. 6238 flags & 6239 LIBIPW_CH_PASSIVE_ONLY ? 6240 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN 6241 : scan_type); 6242 } 6243 } 6244 6245 if (start != channel_index) { 6246 scan->channels_list[start] = (u8) (IPW_B_MODE << 6) | 6247 (channel_index - start); 6248 } 6249 } 6250 } 6251 6252 static int ipw_passive_dwell_time(struct ipw_priv *priv) 6253 { 6254 /* staying on passive channels longer than the DTIM interval during a 6255 * scan, while associated, causes the firmware to cancel the scan 6256 * without notification. Hence, don't stay on passive channels longer 6257 * than the beacon interval. 6258 */ 6259 if (priv->status & STATUS_ASSOCIATED 6260 && priv->assoc_network->beacon_interval > 10) 6261 return priv->assoc_network->beacon_interval - 10; 6262 else 6263 return 120; 6264 } 6265 6266 static int ipw_request_scan_helper(struct ipw_priv *priv, int type, int direct) 6267 { 6268 struct ipw_scan_request_ext scan; 6269 int err = 0, scan_type; 6270 6271 if (!(priv->status & STATUS_INIT) || 6272 (priv->status & STATUS_EXIT_PENDING)) 6273 return 0; 6274 6275 mutex_lock(&priv->mutex); 6276 6277 if (direct && (priv->direct_scan_ssid_len == 0)) { 6278 IPW_DEBUG_HC("Direct scan requested but no SSID to scan for\n"); 6279 priv->status &= ~STATUS_DIRECT_SCAN_PENDING; 6280 goto done; 6281 } 6282 6283 if (priv->status & STATUS_SCANNING) { 6284 IPW_DEBUG_HC("Concurrent scan requested. Queuing.\n"); 6285 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING : 6286 STATUS_SCAN_PENDING; 6287 goto done; 6288 } 6289 6290 if (!(priv->status & STATUS_SCAN_FORCED) && 6291 priv->status & STATUS_SCAN_ABORTING) { 6292 IPW_DEBUG_HC("Scan request while abort pending. Queuing.\n"); 6293 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING : 6294 STATUS_SCAN_PENDING; 6295 goto done; 6296 } 6297 6298 if (priv->status & STATUS_RF_KILL_MASK) { 6299 IPW_DEBUG_HC("Queuing scan due to RF Kill activation\n"); 6300 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING : 6301 STATUS_SCAN_PENDING; 6302 goto done; 6303 } 6304 6305 memset(&scan, 0, sizeof(scan)); 6306 scan.full_scan_index = cpu_to_le32(libipw_get_scans(priv->ieee)); 6307 6308 if (type == IW_SCAN_TYPE_PASSIVE) { 6309 IPW_DEBUG_WX("use passive scanning\n"); 6310 scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN; 6311 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = 6312 cpu_to_le16(ipw_passive_dwell_time(priv)); 6313 ipw_add_scan_channels(priv, &scan, scan_type); 6314 goto send_request; 6315 } 6316 6317 /* Use active scan by default. */ 6318 if (priv->config & CFG_SPEED_SCAN) 6319 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] = 6320 cpu_to_le16(30); 6321 else 6322 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] = 6323 cpu_to_le16(20); 6324 6325 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] = 6326 cpu_to_le16(20); 6327 6328 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = 6329 cpu_to_le16(ipw_passive_dwell_time(priv)); 6330 scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20); 6331 6332 #ifdef CONFIG_IPW2200_MONITOR 6333 if (priv->ieee->iw_mode == IW_MODE_MONITOR) { 6334 u8 channel; 6335 u8 band = 0; 6336 6337 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) { 6338 case LIBIPW_52GHZ_BAND: 6339 band = (u8) (IPW_A_MODE << 6) | 1; 6340 channel = priv->channel; 6341 break; 6342 6343 case LIBIPW_24GHZ_BAND: 6344 band = (u8) (IPW_B_MODE << 6) | 1; 6345 channel = priv->channel; 6346 break; 6347 6348 default: 6349 band = (u8) (IPW_B_MODE << 6) | 1; 6350 channel = 9; 6351 break; 6352 } 6353 6354 scan.channels_list[0] = band; 6355 scan.channels_list[1] = channel; 6356 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN); 6357 6358 /* NOTE: The card will sit on this channel for this time 6359 * period. Scan aborts are timing sensitive and frequently 6360 * result in firmware restarts. As such, it is best to 6361 * set a small dwell_time here and just keep re-issuing 6362 * scans. Otherwise fast channel hopping will not actually 6363 * hop channels. 6364 * 6365 * TODO: Move SPEED SCAN support to all modes and bands */ 6366 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = 6367 cpu_to_le16(2000); 6368 } else { 6369 #endif /* CONFIG_IPW2200_MONITOR */ 6370 /* Honor direct scans first, otherwise if we are roaming make 6371 * this a direct scan for the current network. Finally, 6372 * ensure that every other scan is a fast channel hop scan */ 6373 if (direct) { 6374 err = ipw_send_ssid(priv, priv->direct_scan_ssid, 6375 priv->direct_scan_ssid_len); 6376 if (err) { 6377 IPW_DEBUG_HC("Attempt to send SSID command " 6378 "failed\n"); 6379 goto done; 6380 } 6381 6382 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN; 6383 } else if ((priv->status & STATUS_ROAMING) 6384 || (!(priv->status & STATUS_ASSOCIATED) 6385 && (priv->config & CFG_STATIC_ESSID) 6386 && (le32_to_cpu(scan.full_scan_index) % 2))) { 6387 err = ipw_send_ssid(priv, priv->essid, priv->essid_len); 6388 if (err) { 6389 IPW_DEBUG_HC("Attempt to send SSID command " 6390 "failed.\n"); 6391 goto done; 6392 } 6393 6394 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN; 6395 } else 6396 scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN; 6397 6398 ipw_add_scan_channels(priv, &scan, scan_type); 6399 #ifdef CONFIG_IPW2200_MONITOR 6400 } 6401 #endif 6402 6403 send_request: 6404 err = ipw_send_scan_request_ext(priv, &scan); 6405 if (err) { 6406 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err); 6407 goto done; 6408 } 6409 6410 priv->status |= STATUS_SCANNING; 6411 if (direct) { 6412 priv->status &= ~STATUS_DIRECT_SCAN_PENDING; 6413 priv->direct_scan_ssid_len = 0; 6414 } else 6415 priv->status &= ~STATUS_SCAN_PENDING; 6416 6417 schedule_delayed_work(&priv->scan_check, IPW_SCAN_CHECK_WATCHDOG); 6418 done: 6419 mutex_unlock(&priv->mutex); 6420 return err; 6421 } 6422 6423 static void ipw_request_passive_scan(struct work_struct *work) 6424 { 6425 struct ipw_priv *priv = 6426 container_of(work, struct ipw_priv, request_passive_scan.work); 6427 ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE, 0); 6428 } 6429 6430 static void ipw_request_scan(struct work_struct *work) 6431 { 6432 struct ipw_priv *priv = 6433 container_of(work, struct ipw_priv, request_scan.work); 6434 ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 0); 6435 } 6436 6437 static void ipw_request_direct_scan(struct work_struct *work) 6438 { 6439 struct ipw_priv *priv = 6440 container_of(work, struct ipw_priv, request_direct_scan.work); 6441 ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 1); 6442 } 6443 6444 static void ipw_bg_abort_scan(struct work_struct *work) 6445 { 6446 struct ipw_priv *priv = 6447 container_of(work, struct ipw_priv, abort_scan); 6448 mutex_lock(&priv->mutex); 6449 ipw_abort_scan(priv); 6450 mutex_unlock(&priv->mutex); 6451 } 6452 6453 static int ipw_wpa_enable(struct ipw_priv *priv, int value) 6454 { 6455 /* This is called when wpa_supplicant loads and closes the driver 6456 * interface. */ 6457 priv->ieee->wpa_enabled = value; 6458 return 0; 6459 } 6460 6461 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value) 6462 { 6463 struct libipw_device *ieee = priv->ieee; 6464 struct libipw_security sec = { 6465 .flags = SEC_AUTH_MODE, 6466 }; 6467 int ret = 0; 6468 6469 if (value & IW_AUTH_ALG_SHARED_KEY) { 6470 sec.auth_mode = WLAN_AUTH_SHARED_KEY; 6471 ieee->open_wep = 0; 6472 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) { 6473 sec.auth_mode = WLAN_AUTH_OPEN; 6474 ieee->open_wep = 1; 6475 } else if (value & IW_AUTH_ALG_LEAP) { 6476 sec.auth_mode = WLAN_AUTH_LEAP; 6477 ieee->open_wep = 1; 6478 } else 6479 return -EINVAL; 6480 6481 if (ieee->set_security) 6482 ieee->set_security(ieee->dev, &sec); 6483 else 6484 ret = -EOPNOTSUPP; 6485 6486 return ret; 6487 } 6488 6489 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie, 6490 int wpa_ie_len) 6491 { 6492 /* make sure WPA is enabled */ 6493 ipw_wpa_enable(priv, 1); 6494 } 6495 6496 static int ipw_set_rsn_capa(struct ipw_priv *priv, 6497 char *capabilities, int length) 6498 { 6499 IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n"); 6500 6501 return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length, 6502 capabilities); 6503 } 6504 6505 /* 6506 * WE-18 support 6507 */ 6508 6509 /* SIOCSIWGENIE */ 6510 static int ipw_wx_set_genie(struct net_device *dev, 6511 struct iw_request_info *info, 6512 union iwreq_data *wrqu, char *extra) 6513 { 6514 struct ipw_priv *priv = libipw_priv(dev); 6515 struct libipw_device *ieee = priv->ieee; 6516 u8 *buf; 6517 int err = 0; 6518 6519 if (wrqu->data.length > MAX_WPA_IE_LEN || 6520 (wrqu->data.length && extra == NULL)) 6521 return -EINVAL; 6522 6523 if (wrqu->data.length) { 6524 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL); 6525 if (buf == NULL) { 6526 err = -ENOMEM; 6527 goto out; 6528 } 6529 6530 kfree(ieee->wpa_ie); 6531 ieee->wpa_ie = buf; 6532 ieee->wpa_ie_len = wrqu->data.length; 6533 } else { 6534 kfree(ieee->wpa_ie); 6535 ieee->wpa_ie = NULL; 6536 ieee->wpa_ie_len = 0; 6537 } 6538 6539 ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len); 6540 out: 6541 return err; 6542 } 6543 6544 /* SIOCGIWGENIE */ 6545 static int ipw_wx_get_genie(struct net_device *dev, 6546 struct iw_request_info *info, 6547 union iwreq_data *wrqu, char *extra) 6548 { 6549 struct ipw_priv *priv = libipw_priv(dev); 6550 struct libipw_device *ieee = priv->ieee; 6551 int err = 0; 6552 6553 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) { 6554 wrqu->data.length = 0; 6555 goto out; 6556 } 6557 6558 if (wrqu->data.length < ieee->wpa_ie_len) { 6559 err = -E2BIG; 6560 goto out; 6561 } 6562 6563 wrqu->data.length = ieee->wpa_ie_len; 6564 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len); 6565 6566 out: 6567 return err; 6568 } 6569 6570 static int wext_cipher2level(int cipher) 6571 { 6572 switch (cipher) { 6573 case IW_AUTH_CIPHER_NONE: 6574 return SEC_LEVEL_0; 6575 case IW_AUTH_CIPHER_WEP40: 6576 case IW_AUTH_CIPHER_WEP104: 6577 return SEC_LEVEL_1; 6578 case IW_AUTH_CIPHER_TKIP: 6579 return SEC_LEVEL_2; 6580 case IW_AUTH_CIPHER_CCMP: 6581 return SEC_LEVEL_3; 6582 default: 6583 return -1; 6584 } 6585 } 6586 6587 /* SIOCSIWAUTH */ 6588 static int ipw_wx_set_auth(struct net_device *dev, 6589 struct iw_request_info *info, 6590 union iwreq_data *wrqu, char *extra) 6591 { 6592 struct ipw_priv *priv = libipw_priv(dev); 6593 struct libipw_device *ieee = priv->ieee; 6594 struct iw_param *param = &wrqu->param; 6595 struct lib80211_crypt_data *crypt; 6596 unsigned long flags; 6597 int ret = 0; 6598 6599 switch (param->flags & IW_AUTH_INDEX) { 6600 case IW_AUTH_WPA_VERSION: 6601 break; 6602 case IW_AUTH_CIPHER_PAIRWISE: 6603 ipw_set_hw_decrypt_unicast(priv, 6604 wext_cipher2level(param->value)); 6605 break; 6606 case IW_AUTH_CIPHER_GROUP: 6607 ipw_set_hw_decrypt_multicast(priv, 6608 wext_cipher2level(param->value)); 6609 break; 6610 case IW_AUTH_KEY_MGMT: 6611 /* 6612 * ipw2200 does not use these parameters 6613 */ 6614 break; 6615 6616 case IW_AUTH_TKIP_COUNTERMEASURES: 6617 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx]; 6618 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags) 6619 break; 6620 6621 flags = crypt->ops->get_flags(crypt->priv); 6622 6623 if (param->value) 6624 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES; 6625 else 6626 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES; 6627 6628 crypt->ops->set_flags(flags, crypt->priv); 6629 6630 break; 6631 6632 case IW_AUTH_DROP_UNENCRYPTED:{ 6633 /* HACK: 6634 * 6635 * wpa_supplicant calls set_wpa_enabled when the driver 6636 * is loaded and unloaded, regardless of if WPA is being 6637 * used. No other calls are made which can be used to 6638 * determine if encryption will be used or not prior to 6639 * association being expected. If encryption is not being 6640 * used, drop_unencrypted is set to false, else true -- we 6641 * can use this to determine if the CAP_PRIVACY_ON bit should 6642 * be set. 6643 */ 6644 struct libipw_security sec = { 6645 .flags = SEC_ENABLED, 6646 .enabled = param->value, 6647 }; 6648 priv->ieee->drop_unencrypted = param->value; 6649 /* We only change SEC_LEVEL for open mode. Others 6650 * are set by ipw_wpa_set_encryption. 6651 */ 6652 if (!param->value) { 6653 sec.flags |= SEC_LEVEL; 6654 sec.level = SEC_LEVEL_0; 6655 } else { 6656 sec.flags |= SEC_LEVEL; 6657 sec.level = SEC_LEVEL_1; 6658 } 6659 if (priv->ieee->set_security) 6660 priv->ieee->set_security(priv->ieee->dev, &sec); 6661 break; 6662 } 6663 6664 case IW_AUTH_80211_AUTH_ALG: 6665 ret = ipw_wpa_set_auth_algs(priv, param->value); 6666 break; 6667 6668 case IW_AUTH_WPA_ENABLED: 6669 ret = ipw_wpa_enable(priv, param->value); 6670 ipw_disassociate(priv); 6671 break; 6672 6673 case IW_AUTH_RX_UNENCRYPTED_EAPOL: 6674 ieee->ieee802_1x = param->value; 6675 break; 6676 6677 case IW_AUTH_PRIVACY_INVOKED: 6678 ieee->privacy_invoked = param->value; 6679 break; 6680 6681 default: 6682 return -EOPNOTSUPP; 6683 } 6684 return ret; 6685 } 6686 6687 /* SIOCGIWAUTH */ 6688 static int ipw_wx_get_auth(struct net_device *dev, 6689 struct iw_request_info *info, 6690 union iwreq_data *wrqu, char *extra) 6691 { 6692 struct ipw_priv *priv = libipw_priv(dev); 6693 struct libipw_device *ieee = priv->ieee; 6694 struct lib80211_crypt_data *crypt; 6695 struct iw_param *param = &wrqu->param; 6696 6697 switch (param->flags & IW_AUTH_INDEX) { 6698 case IW_AUTH_WPA_VERSION: 6699 case IW_AUTH_CIPHER_PAIRWISE: 6700 case IW_AUTH_CIPHER_GROUP: 6701 case IW_AUTH_KEY_MGMT: 6702 /* 6703 * wpa_supplicant will control these internally 6704 */ 6705 return -EOPNOTSUPP; 6706 6707 case IW_AUTH_TKIP_COUNTERMEASURES: 6708 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx]; 6709 if (!crypt || !crypt->ops->get_flags) 6710 break; 6711 6712 param->value = (crypt->ops->get_flags(crypt->priv) & 6713 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0; 6714 6715 break; 6716 6717 case IW_AUTH_DROP_UNENCRYPTED: 6718 param->value = ieee->drop_unencrypted; 6719 break; 6720 6721 case IW_AUTH_80211_AUTH_ALG: 6722 param->value = ieee->sec.auth_mode; 6723 break; 6724 6725 case IW_AUTH_WPA_ENABLED: 6726 param->value = ieee->wpa_enabled; 6727 break; 6728 6729 case IW_AUTH_RX_UNENCRYPTED_EAPOL: 6730 param->value = ieee->ieee802_1x; 6731 break; 6732 6733 case IW_AUTH_ROAMING_CONTROL: 6734 case IW_AUTH_PRIVACY_INVOKED: 6735 param->value = ieee->privacy_invoked; 6736 break; 6737 6738 default: 6739 return -EOPNOTSUPP; 6740 } 6741 return 0; 6742 } 6743 6744 /* SIOCSIWENCODEEXT */ 6745 static int ipw_wx_set_encodeext(struct net_device *dev, 6746 struct iw_request_info *info, 6747 union iwreq_data *wrqu, char *extra) 6748 { 6749 struct ipw_priv *priv = libipw_priv(dev); 6750 struct iw_encode_ext *ext = (struct iw_encode_ext *)extra; 6751 6752 if (hwcrypto) { 6753 if (ext->alg == IW_ENCODE_ALG_TKIP) { 6754 /* IPW HW can't build TKIP MIC, 6755 host decryption still needed */ 6756 if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY) 6757 priv->ieee->host_mc_decrypt = 1; 6758 else { 6759 priv->ieee->host_encrypt = 0; 6760 priv->ieee->host_encrypt_msdu = 1; 6761 priv->ieee->host_decrypt = 1; 6762 } 6763 } else { 6764 priv->ieee->host_encrypt = 0; 6765 priv->ieee->host_encrypt_msdu = 0; 6766 priv->ieee->host_decrypt = 0; 6767 priv->ieee->host_mc_decrypt = 0; 6768 } 6769 } 6770 6771 return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra); 6772 } 6773 6774 /* SIOCGIWENCODEEXT */ 6775 static int ipw_wx_get_encodeext(struct net_device *dev, 6776 struct iw_request_info *info, 6777 union iwreq_data *wrqu, char *extra) 6778 { 6779 struct ipw_priv *priv = libipw_priv(dev); 6780 return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra); 6781 } 6782 6783 /* SIOCSIWMLME */ 6784 static int ipw_wx_set_mlme(struct net_device *dev, 6785 struct iw_request_info *info, 6786 union iwreq_data *wrqu, char *extra) 6787 { 6788 struct ipw_priv *priv = libipw_priv(dev); 6789 struct iw_mlme *mlme = (struct iw_mlme *)extra; 6790 6791 switch (mlme->cmd) { 6792 case IW_MLME_DEAUTH: 6793 /* silently ignore */ 6794 break; 6795 6796 case IW_MLME_DISASSOC: 6797 ipw_disassociate(priv); 6798 break; 6799 6800 default: 6801 return -EOPNOTSUPP; 6802 } 6803 return 0; 6804 } 6805 6806 #ifdef CONFIG_IPW2200_QOS 6807 6808 /* QoS */ 6809 /* 6810 * get the modulation type of the current network or 6811 * the card current mode 6812 */ 6813 static u8 ipw_qos_current_mode(struct ipw_priv * priv) 6814 { 6815 u8 mode = 0; 6816 6817 if (priv->status & STATUS_ASSOCIATED) { 6818 unsigned long flags; 6819 6820 spin_lock_irqsave(&priv->ieee->lock, flags); 6821 mode = priv->assoc_network->mode; 6822 spin_unlock_irqrestore(&priv->ieee->lock, flags); 6823 } else { 6824 mode = priv->ieee->mode; 6825 } 6826 IPW_DEBUG_QOS("QoS network/card mode %d\n", mode); 6827 return mode; 6828 } 6829 6830 /* 6831 * Handle management frame beacon and probe response 6832 */ 6833 static int ipw_qos_handle_probe_response(struct ipw_priv *priv, 6834 int active_network, 6835 struct libipw_network *network) 6836 { 6837 u32 size = sizeof(struct libipw_qos_parameters); 6838 6839 if (network->capability & WLAN_CAPABILITY_IBSS) 6840 network->qos_data.active = network->qos_data.supported; 6841 6842 if (network->flags & NETWORK_HAS_QOS_MASK) { 6843 if (active_network && 6844 (network->flags & NETWORK_HAS_QOS_PARAMETERS)) 6845 network->qos_data.active = network->qos_data.supported; 6846 6847 if ((network->qos_data.active == 1) && (active_network == 1) && 6848 (network->flags & NETWORK_HAS_QOS_PARAMETERS) && 6849 (network->qos_data.old_param_count != 6850 network->qos_data.param_count)) { 6851 network->qos_data.old_param_count = 6852 network->qos_data.param_count; 6853 schedule_work(&priv->qos_activate); 6854 IPW_DEBUG_QOS("QoS parameters change call " 6855 "qos_activate\n"); 6856 } 6857 } else { 6858 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B)) 6859 memcpy(&network->qos_data.parameters, 6860 &def_parameters_CCK, size); 6861 else 6862 memcpy(&network->qos_data.parameters, 6863 &def_parameters_OFDM, size); 6864 6865 if ((network->qos_data.active == 1) && (active_network == 1)) { 6866 IPW_DEBUG_QOS("QoS was disabled call qos_activate\n"); 6867 schedule_work(&priv->qos_activate); 6868 } 6869 6870 network->qos_data.active = 0; 6871 network->qos_data.supported = 0; 6872 } 6873 if ((priv->status & STATUS_ASSOCIATED) && 6874 (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) { 6875 if (!ether_addr_equal(network->bssid, priv->bssid)) 6876 if (network->capability & WLAN_CAPABILITY_IBSS) 6877 if ((network->ssid_len == 6878 priv->assoc_network->ssid_len) && 6879 !memcmp(network->ssid, 6880 priv->assoc_network->ssid, 6881 network->ssid_len)) { 6882 schedule_work(&priv->merge_networks); 6883 } 6884 } 6885 6886 return 0; 6887 } 6888 6889 /* 6890 * This function set up the firmware to support QoS. It sends 6891 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO 6892 */ 6893 static int ipw_qos_activate(struct ipw_priv *priv, 6894 struct libipw_qos_data *qos_network_data) 6895 { 6896 int err; 6897 struct libipw_qos_parameters qos_parameters[QOS_QOS_SETS]; 6898 struct libipw_qos_parameters *active_one = NULL; 6899 u32 size = sizeof(struct libipw_qos_parameters); 6900 u32 burst_duration; 6901 int i; 6902 u8 type; 6903 6904 type = ipw_qos_current_mode(priv); 6905 6906 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]); 6907 memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size); 6908 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]); 6909 memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size); 6910 6911 if (qos_network_data == NULL) { 6912 if (type == IEEE_B) { 6913 IPW_DEBUG_QOS("QoS activate network mode %d\n", type); 6914 active_one = &def_parameters_CCK; 6915 } else 6916 active_one = &def_parameters_OFDM; 6917 6918 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size); 6919 burst_duration = ipw_qos_get_burst_duration(priv); 6920 for (i = 0; i < QOS_QUEUE_NUM; i++) 6921 qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] = 6922 cpu_to_le16(burst_duration); 6923 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) { 6924 if (type == IEEE_B) { 6925 IPW_DEBUG_QOS("QoS activate IBSS network mode %d\n", 6926 type); 6927 if (priv->qos_data.qos_enable == 0) 6928 active_one = &def_parameters_CCK; 6929 else 6930 active_one = priv->qos_data.def_qos_parm_CCK; 6931 } else { 6932 if (priv->qos_data.qos_enable == 0) 6933 active_one = &def_parameters_OFDM; 6934 else 6935 active_one = priv->qos_data.def_qos_parm_OFDM; 6936 } 6937 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size); 6938 } else { 6939 unsigned long flags; 6940 int active; 6941 6942 spin_lock_irqsave(&priv->ieee->lock, flags); 6943 active_one = &(qos_network_data->parameters); 6944 qos_network_data->old_param_count = 6945 qos_network_data->param_count; 6946 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size); 6947 active = qos_network_data->supported; 6948 spin_unlock_irqrestore(&priv->ieee->lock, flags); 6949 6950 if (active == 0) { 6951 burst_duration = ipw_qos_get_burst_duration(priv); 6952 for (i = 0; i < QOS_QUEUE_NUM; i++) 6953 qos_parameters[QOS_PARAM_SET_ACTIVE]. 6954 tx_op_limit[i] = cpu_to_le16(burst_duration); 6955 } 6956 } 6957 6958 IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n"); 6959 err = ipw_send_qos_params_command(priv, &qos_parameters[0]); 6960 if (err) 6961 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n"); 6962 6963 return err; 6964 } 6965 6966 /* 6967 * send IPW_CMD_WME_INFO to the firmware 6968 */ 6969 static int ipw_qos_set_info_element(struct ipw_priv *priv) 6970 { 6971 int ret = 0; 6972 struct libipw_qos_information_element qos_info; 6973 6974 if (priv == NULL) 6975 return -1; 6976 6977 qos_info.elementID = QOS_ELEMENT_ID; 6978 qos_info.length = sizeof(struct libipw_qos_information_element) - 2; 6979 6980 qos_info.version = QOS_VERSION_1; 6981 qos_info.ac_info = 0; 6982 6983 memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN); 6984 qos_info.qui_type = QOS_OUI_TYPE; 6985 qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE; 6986 6987 ret = ipw_send_qos_info_command(priv, &qos_info); 6988 if (ret != 0) { 6989 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n"); 6990 } 6991 return ret; 6992 } 6993 6994 /* 6995 * Set the QoS parameter with the association request structure 6996 */ 6997 static int ipw_qos_association(struct ipw_priv *priv, 6998 struct libipw_network *network) 6999 { 7000 int err = 0; 7001 struct libipw_qos_data *qos_data = NULL; 7002 struct libipw_qos_data ibss_data = { 7003 .supported = 1, 7004 .active = 1, 7005 }; 7006 7007 switch (priv->ieee->iw_mode) { 7008 case IW_MODE_ADHOC: 7009 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS)); 7010 7011 qos_data = &ibss_data; 7012 break; 7013 7014 case IW_MODE_INFRA: 7015 qos_data = &network->qos_data; 7016 break; 7017 7018 default: 7019 BUG(); 7020 break; 7021 } 7022 7023 err = ipw_qos_activate(priv, qos_data); 7024 if (err) { 7025 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC; 7026 return err; 7027 } 7028 7029 if (priv->qos_data.qos_enable && qos_data->supported) { 7030 IPW_DEBUG_QOS("QoS will be enabled for this association\n"); 7031 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC; 7032 return ipw_qos_set_info_element(priv); 7033 } 7034 7035 return 0; 7036 } 7037 7038 /* 7039 * handling the beaconing responses. if we get different QoS setting 7040 * off the network from the associated setting, adjust the QoS 7041 * setting 7042 */ 7043 static void ipw_qos_association_resp(struct ipw_priv *priv, 7044 struct libipw_network *network) 7045 { 7046 unsigned long flags; 7047 u32 size = sizeof(struct libipw_qos_parameters); 7048 int set_qos_param = 0; 7049 7050 if ((priv == NULL) || (network == NULL) || 7051 (priv->assoc_network == NULL)) 7052 return; 7053 7054 if (!(priv->status & STATUS_ASSOCIATED)) 7055 return; 7056 7057 if ((priv->ieee->iw_mode != IW_MODE_INFRA)) 7058 return; 7059 7060 spin_lock_irqsave(&priv->ieee->lock, flags); 7061 if (network->flags & NETWORK_HAS_QOS_PARAMETERS) { 7062 memcpy(&priv->assoc_network->qos_data, &network->qos_data, 7063 sizeof(struct libipw_qos_data)); 7064 priv->assoc_network->qos_data.active = 1; 7065 if ((network->qos_data.old_param_count != 7066 network->qos_data.param_count)) { 7067 set_qos_param = 1; 7068 network->qos_data.old_param_count = 7069 network->qos_data.param_count; 7070 } 7071 7072 } else { 7073 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B)) 7074 memcpy(&priv->assoc_network->qos_data.parameters, 7075 &def_parameters_CCK, size); 7076 else 7077 memcpy(&priv->assoc_network->qos_data.parameters, 7078 &def_parameters_OFDM, size); 7079 priv->assoc_network->qos_data.active = 0; 7080 priv->assoc_network->qos_data.supported = 0; 7081 set_qos_param = 1; 7082 } 7083 7084 spin_unlock_irqrestore(&priv->ieee->lock, flags); 7085 7086 if (set_qos_param == 1) 7087 schedule_work(&priv->qos_activate); 7088 } 7089 7090 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv) 7091 { 7092 u32 ret = 0; 7093 7094 if (!priv) 7095 return 0; 7096 7097 if (!(priv->ieee->modulation & LIBIPW_OFDM_MODULATION)) 7098 ret = priv->qos_data.burst_duration_CCK; 7099 else 7100 ret = priv->qos_data.burst_duration_OFDM; 7101 7102 return ret; 7103 } 7104 7105 /* 7106 * Initialize the setting of QoS global 7107 */ 7108 static void ipw_qos_init(struct ipw_priv *priv, int enable, 7109 int burst_enable, u32 burst_duration_CCK, 7110 u32 burst_duration_OFDM) 7111 { 7112 priv->qos_data.qos_enable = enable; 7113 7114 if (priv->qos_data.qos_enable) { 7115 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK; 7116 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM; 7117 IPW_DEBUG_QOS("QoS is enabled\n"); 7118 } else { 7119 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK; 7120 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM; 7121 IPW_DEBUG_QOS("QoS is not enabled\n"); 7122 } 7123 7124 priv->qos_data.burst_enable = burst_enable; 7125 7126 if (burst_enable) { 7127 priv->qos_data.burst_duration_CCK = burst_duration_CCK; 7128 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM; 7129 } else { 7130 priv->qos_data.burst_duration_CCK = 0; 7131 priv->qos_data.burst_duration_OFDM = 0; 7132 } 7133 } 7134 7135 /* 7136 * map the packet priority to the right TX Queue 7137 */ 7138 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority) 7139 { 7140 if (priority > 7 || !priv->qos_data.qos_enable) 7141 priority = 0; 7142 7143 return from_priority_to_tx_queue[priority] - 1; 7144 } 7145 7146 static int ipw_is_qos_active(struct net_device *dev, 7147 struct sk_buff *skb) 7148 { 7149 struct ipw_priv *priv = libipw_priv(dev); 7150 struct libipw_qos_data *qos_data = NULL; 7151 int active, supported; 7152 u8 *daddr = skb->data + ETH_ALEN; 7153 int unicast = !is_multicast_ether_addr(daddr); 7154 7155 if (!(priv->status & STATUS_ASSOCIATED)) 7156 return 0; 7157 7158 qos_data = &priv->assoc_network->qos_data; 7159 7160 if (priv->ieee->iw_mode == IW_MODE_ADHOC) { 7161 if (unicast == 0) 7162 qos_data->active = 0; 7163 else 7164 qos_data->active = qos_data->supported; 7165 } 7166 active = qos_data->active; 7167 supported = qos_data->supported; 7168 IPW_DEBUG_QOS("QoS %d network is QoS active %d supported %d " 7169 "unicast %d\n", 7170 priv->qos_data.qos_enable, active, supported, unicast); 7171 if (active && priv->qos_data.qos_enable) 7172 return 1; 7173 7174 return 0; 7175 7176 } 7177 /* 7178 * add QoS parameter to the TX command 7179 */ 7180 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv, 7181 u16 priority, 7182 struct tfd_data *tfd) 7183 { 7184 int tx_queue_id = 0; 7185 7186 7187 tx_queue_id = from_priority_to_tx_queue[priority] - 1; 7188 tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED; 7189 7190 if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) { 7191 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD; 7192 tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK); 7193 } 7194 return 0; 7195 } 7196 7197 /* 7198 * background support to run QoS activate functionality 7199 */ 7200 static void ipw_bg_qos_activate(struct work_struct *work) 7201 { 7202 struct ipw_priv *priv = 7203 container_of(work, struct ipw_priv, qos_activate); 7204 7205 mutex_lock(&priv->mutex); 7206 7207 if (priv->status & STATUS_ASSOCIATED) 7208 ipw_qos_activate(priv, &(priv->assoc_network->qos_data)); 7209 7210 mutex_unlock(&priv->mutex); 7211 } 7212 7213 static int ipw_handle_probe_response(struct net_device *dev, 7214 struct libipw_probe_response *resp, 7215 struct libipw_network *network) 7216 { 7217 struct ipw_priv *priv = libipw_priv(dev); 7218 int active_network = ((priv->status & STATUS_ASSOCIATED) && 7219 (network == priv->assoc_network)); 7220 7221 ipw_qos_handle_probe_response(priv, active_network, network); 7222 7223 return 0; 7224 } 7225 7226 static int ipw_handle_beacon(struct net_device *dev, 7227 struct libipw_beacon *resp, 7228 struct libipw_network *network) 7229 { 7230 struct ipw_priv *priv = libipw_priv(dev); 7231 int active_network = ((priv->status & STATUS_ASSOCIATED) && 7232 (network == priv->assoc_network)); 7233 7234 ipw_qos_handle_probe_response(priv, active_network, network); 7235 7236 return 0; 7237 } 7238 7239 static int ipw_handle_assoc_response(struct net_device *dev, 7240 struct libipw_assoc_response *resp, 7241 struct libipw_network *network) 7242 { 7243 struct ipw_priv *priv = libipw_priv(dev); 7244 ipw_qos_association_resp(priv, network); 7245 return 0; 7246 } 7247 7248 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters 7249 *qos_param) 7250 { 7251 return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS, 7252 sizeof(*qos_param) * 3, qos_param); 7253 } 7254 7255 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element 7256 *qos_param) 7257 { 7258 return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param), 7259 qos_param); 7260 } 7261 7262 #endif /* CONFIG_IPW2200_QOS */ 7263 7264 static int ipw_associate_network(struct ipw_priv *priv, 7265 struct libipw_network *network, 7266 struct ipw_supported_rates *rates, int roaming) 7267 { 7268 int err; 7269 7270 if (priv->config & CFG_FIXED_RATE) 7271 ipw_set_fixed_rate(priv, network->mode); 7272 7273 if (!(priv->config & CFG_STATIC_ESSID)) { 7274 priv->essid_len = min(network->ssid_len, 7275 (u8) IW_ESSID_MAX_SIZE); 7276 memcpy(priv->essid, network->ssid, priv->essid_len); 7277 } 7278 7279 network->last_associate = jiffies; 7280 7281 memset(&priv->assoc_request, 0, sizeof(priv->assoc_request)); 7282 priv->assoc_request.channel = network->channel; 7283 priv->assoc_request.auth_key = 0; 7284 7285 if ((priv->capability & CAP_PRIVACY_ON) && 7286 (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) { 7287 priv->assoc_request.auth_type = AUTH_SHARED_KEY; 7288 priv->assoc_request.auth_key = priv->ieee->sec.active_key; 7289 7290 if (priv->ieee->sec.level == SEC_LEVEL_1) 7291 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP); 7292 7293 } else if ((priv->capability & CAP_PRIVACY_ON) && 7294 (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)) 7295 priv->assoc_request.auth_type = AUTH_LEAP; 7296 else 7297 priv->assoc_request.auth_type = AUTH_OPEN; 7298 7299 if (priv->ieee->wpa_ie_len) { 7300 priv->assoc_request.policy_support = cpu_to_le16(0x02); /* RSN active */ 7301 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie, 7302 priv->ieee->wpa_ie_len); 7303 } 7304 7305 /* 7306 * It is valid for our ieee device to support multiple modes, but 7307 * when it comes to associating to a given network we have to choose 7308 * just one mode. 7309 */ 7310 if (network->mode & priv->ieee->mode & IEEE_A) 7311 priv->assoc_request.ieee_mode = IPW_A_MODE; 7312 else if (network->mode & priv->ieee->mode & IEEE_G) 7313 priv->assoc_request.ieee_mode = IPW_G_MODE; 7314 else if (network->mode & priv->ieee->mode & IEEE_B) 7315 priv->assoc_request.ieee_mode = IPW_B_MODE; 7316 7317 priv->assoc_request.capability = cpu_to_le16(network->capability); 7318 if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE) 7319 && !(priv->config & CFG_PREAMBLE_LONG)) { 7320 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE; 7321 } else { 7322 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE; 7323 7324 /* Clear the short preamble if we won't be supporting it */ 7325 priv->assoc_request.capability &= 7326 ~cpu_to_le16(WLAN_CAPABILITY_SHORT_PREAMBLE); 7327 } 7328 7329 /* Clear capability bits that aren't used in Ad Hoc */ 7330 if (priv->ieee->iw_mode == IW_MODE_ADHOC) 7331 priv->assoc_request.capability &= 7332 ~cpu_to_le16(WLAN_CAPABILITY_SHORT_SLOT_TIME); 7333 7334 IPW_DEBUG_ASSOC("%ssociation attempt: '%*pE', channel %d, 802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n", 7335 roaming ? "Rea" : "A", 7336 priv->essid_len, priv->essid, 7337 network->channel, 7338 ipw_modes[priv->assoc_request.ieee_mode], 7339 rates->num_rates, 7340 (priv->assoc_request.preamble_length == 7341 DCT_FLAG_LONG_PREAMBLE) ? "long" : "short", 7342 network->capability & 7343 WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long", 7344 priv->capability & CAP_PRIVACY_ON ? "on " : "off", 7345 priv->capability & CAP_PRIVACY_ON ? 7346 (priv->capability & CAP_SHARED_KEY ? "(shared)" : 7347 "(open)") : "", 7348 priv->capability & CAP_PRIVACY_ON ? " key=" : "", 7349 priv->capability & CAP_PRIVACY_ON ? 7350 '1' + priv->ieee->sec.active_key : '.', 7351 priv->capability & CAP_PRIVACY_ON ? '.' : ' '); 7352 7353 priv->assoc_request.beacon_interval = cpu_to_le16(network->beacon_interval); 7354 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) && 7355 (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) { 7356 priv->assoc_request.assoc_type = HC_IBSS_START; 7357 priv->assoc_request.assoc_tsf_msw = 0; 7358 priv->assoc_request.assoc_tsf_lsw = 0; 7359 } else { 7360 if (unlikely(roaming)) 7361 priv->assoc_request.assoc_type = HC_REASSOCIATE; 7362 else 7363 priv->assoc_request.assoc_type = HC_ASSOCIATE; 7364 priv->assoc_request.assoc_tsf_msw = cpu_to_le32(network->time_stamp[1]); 7365 priv->assoc_request.assoc_tsf_lsw = cpu_to_le32(network->time_stamp[0]); 7366 } 7367 7368 memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN); 7369 7370 if (priv->ieee->iw_mode == IW_MODE_ADHOC) { 7371 eth_broadcast_addr(priv->assoc_request.dest); 7372 priv->assoc_request.atim_window = cpu_to_le16(network->atim_window); 7373 } else { 7374 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN); 7375 priv->assoc_request.atim_window = 0; 7376 } 7377 7378 priv->assoc_request.listen_interval = cpu_to_le16(network->listen_interval); 7379 7380 err = ipw_send_ssid(priv, priv->essid, priv->essid_len); 7381 if (err) { 7382 IPW_DEBUG_HC("Attempt to send SSID command failed.\n"); 7383 return err; 7384 } 7385 7386 rates->ieee_mode = priv->assoc_request.ieee_mode; 7387 rates->purpose = IPW_RATE_CONNECT; 7388 ipw_send_supported_rates(priv, rates); 7389 7390 if (priv->assoc_request.ieee_mode == IPW_G_MODE) 7391 priv->sys_config.dot11g_auto_detection = 1; 7392 else 7393 priv->sys_config.dot11g_auto_detection = 0; 7394 7395 if (priv->ieee->iw_mode == IW_MODE_ADHOC) 7396 priv->sys_config.answer_broadcast_ssid_probe = 1; 7397 else 7398 priv->sys_config.answer_broadcast_ssid_probe = 0; 7399 7400 err = ipw_send_system_config(priv); 7401 if (err) { 7402 IPW_DEBUG_HC("Attempt to send sys config command failed.\n"); 7403 return err; 7404 } 7405 7406 IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi); 7407 err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM); 7408 if (err) { 7409 IPW_DEBUG_HC("Attempt to send associate command failed.\n"); 7410 return err; 7411 } 7412 7413 /* 7414 * If preemption is enabled, it is possible for the association 7415 * to complete before we return from ipw_send_associate. Therefore 7416 * we have to be sure and update our priviate data first. 7417 */ 7418 priv->channel = network->channel; 7419 memcpy(priv->bssid, network->bssid, ETH_ALEN); 7420 priv->status |= STATUS_ASSOCIATING; 7421 priv->status &= ~STATUS_SECURITY_UPDATED; 7422 7423 priv->assoc_network = network; 7424 7425 #ifdef CONFIG_IPW2200_QOS 7426 ipw_qos_association(priv, network); 7427 #endif 7428 7429 err = ipw_send_associate(priv, &priv->assoc_request); 7430 if (err) { 7431 IPW_DEBUG_HC("Attempt to send associate command failed.\n"); 7432 return err; 7433 } 7434 7435 IPW_DEBUG(IPW_DL_STATE, "associating: '%*pE' %pM\n", 7436 priv->essid_len, priv->essid, priv->bssid); 7437 7438 return 0; 7439 } 7440 7441 static void ipw_roam(void *data) 7442 { 7443 struct ipw_priv *priv = data; 7444 struct libipw_network *network = NULL; 7445 struct ipw_network_match match = { 7446 .network = priv->assoc_network 7447 }; 7448 7449 /* The roaming process is as follows: 7450 * 7451 * 1. Missed beacon threshold triggers the roaming process by 7452 * setting the status ROAM bit and requesting a scan. 7453 * 2. When the scan completes, it schedules the ROAM work 7454 * 3. The ROAM work looks at all of the known networks for one that 7455 * is a better network than the currently associated. If none 7456 * found, the ROAM process is over (ROAM bit cleared) 7457 * 4. If a better network is found, a disassociation request is 7458 * sent. 7459 * 5. When the disassociation completes, the roam work is again 7460 * scheduled. The second time through, the driver is no longer 7461 * associated, and the newly selected network is sent an 7462 * association request. 7463 * 6. At this point ,the roaming process is complete and the ROAM 7464 * status bit is cleared. 7465 */ 7466 7467 /* If we are no longer associated, and the roaming bit is no longer 7468 * set, then we are not actively roaming, so just return */ 7469 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING))) 7470 return; 7471 7472 if (priv->status & STATUS_ASSOCIATED) { 7473 /* First pass through ROAM process -- look for a better 7474 * network */ 7475 unsigned long flags; 7476 u8 rssi = priv->assoc_network->stats.rssi; 7477 priv->assoc_network->stats.rssi = -128; 7478 spin_lock_irqsave(&priv->ieee->lock, flags); 7479 list_for_each_entry(network, &priv->ieee->network_list, list) { 7480 if (network != priv->assoc_network) 7481 ipw_best_network(priv, &match, network, 1); 7482 } 7483 spin_unlock_irqrestore(&priv->ieee->lock, flags); 7484 priv->assoc_network->stats.rssi = rssi; 7485 7486 if (match.network == priv->assoc_network) { 7487 IPW_DEBUG_ASSOC("No better APs in this network to " 7488 "roam to.\n"); 7489 priv->status &= ~STATUS_ROAMING; 7490 ipw_debug_config(priv); 7491 return; 7492 } 7493 7494 ipw_send_disassociate(priv, 1); 7495 priv->assoc_network = match.network; 7496 7497 return; 7498 } 7499 7500 /* Second pass through ROAM process -- request association */ 7501 ipw_compatible_rates(priv, priv->assoc_network, &match.rates); 7502 ipw_associate_network(priv, priv->assoc_network, &match.rates, 1); 7503 priv->status &= ~STATUS_ROAMING; 7504 } 7505 7506 static void ipw_bg_roam(struct work_struct *work) 7507 { 7508 struct ipw_priv *priv = 7509 container_of(work, struct ipw_priv, roam); 7510 mutex_lock(&priv->mutex); 7511 ipw_roam(priv); 7512 mutex_unlock(&priv->mutex); 7513 } 7514 7515 static int ipw_associate(void *data) 7516 { 7517 struct ipw_priv *priv = data; 7518 7519 struct libipw_network *network = NULL; 7520 struct ipw_network_match match = { 7521 .network = NULL 7522 }; 7523 struct ipw_supported_rates *rates; 7524 struct list_head *element; 7525 unsigned long flags; 7526 7527 if (priv->ieee->iw_mode == IW_MODE_MONITOR) { 7528 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n"); 7529 return 0; 7530 } 7531 7532 if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) { 7533 IPW_DEBUG_ASSOC("Not attempting association (already in " 7534 "progress)\n"); 7535 return 0; 7536 } 7537 7538 if (priv->status & STATUS_DISASSOCIATING) { 7539 IPW_DEBUG_ASSOC("Not attempting association (in disassociating)\n"); 7540 schedule_work(&priv->associate); 7541 return 0; 7542 } 7543 7544 if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) { 7545 IPW_DEBUG_ASSOC("Not attempting association (scanning or not " 7546 "initialized)\n"); 7547 return 0; 7548 } 7549 7550 if (!(priv->config & CFG_ASSOCIATE) && 7551 !(priv->config & (CFG_STATIC_ESSID | CFG_STATIC_BSSID))) { 7552 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n"); 7553 return 0; 7554 } 7555 7556 /* Protect our use of the network_list */ 7557 spin_lock_irqsave(&priv->ieee->lock, flags); 7558 list_for_each_entry(network, &priv->ieee->network_list, list) 7559 ipw_best_network(priv, &match, network, 0); 7560 7561 network = match.network; 7562 rates = &match.rates; 7563 7564 if (network == NULL && 7565 priv->ieee->iw_mode == IW_MODE_ADHOC && 7566 priv->config & CFG_ADHOC_CREATE && 7567 priv->config & CFG_STATIC_ESSID && 7568 priv->config & CFG_STATIC_CHANNEL) { 7569 /* Use oldest network if the free list is empty */ 7570 if (list_empty(&priv->ieee->network_free_list)) { 7571 struct libipw_network *oldest = NULL; 7572 struct libipw_network *target; 7573 7574 list_for_each_entry(target, &priv->ieee->network_list, list) { 7575 if ((oldest == NULL) || 7576 (target->last_scanned < oldest->last_scanned)) 7577 oldest = target; 7578 } 7579 7580 /* If there are no more slots, expire the oldest */ 7581 list_del(&oldest->list); 7582 target = oldest; 7583 IPW_DEBUG_ASSOC("Expired '%*pE' (%pM) from network list.\n", 7584 target->ssid_len, target->ssid, 7585 target->bssid); 7586 list_add_tail(&target->list, 7587 &priv->ieee->network_free_list); 7588 } 7589 7590 element = priv->ieee->network_free_list.next; 7591 network = list_entry(element, struct libipw_network, list); 7592 ipw_adhoc_create(priv, network); 7593 rates = &priv->rates; 7594 list_del(element); 7595 list_add_tail(&network->list, &priv->ieee->network_list); 7596 } 7597 spin_unlock_irqrestore(&priv->ieee->lock, flags); 7598 7599 /* If we reached the end of the list, then we don't have any valid 7600 * matching APs */ 7601 if (!network) { 7602 ipw_debug_config(priv); 7603 7604 if (!(priv->status & STATUS_SCANNING)) { 7605 if (!(priv->config & CFG_SPEED_SCAN)) 7606 schedule_delayed_work(&priv->request_scan, 7607 SCAN_INTERVAL); 7608 else 7609 schedule_delayed_work(&priv->request_scan, 0); 7610 } 7611 7612 return 0; 7613 } 7614 7615 ipw_associate_network(priv, network, rates, 0); 7616 7617 return 1; 7618 } 7619 7620 static void ipw_bg_associate(struct work_struct *work) 7621 { 7622 struct ipw_priv *priv = 7623 container_of(work, struct ipw_priv, associate); 7624 mutex_lock(&priv->mutex); 7625 ipw_associate(priv); 7626 mutex_unlock(&priv->mutex); 7627 } 7628 7629 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv, 7630 struct sk_buff *skb) 7631 { 7632 struct ieee80211_hdr *hdr; 7633 u16 fc; 7634 7635 hdr = (struct ieee80211_hdr *)skb->data; 7636 fc = le16_to_cpu(hdr->frame_control); 7637 if (!(fc & IEEE80211_FCTL_PROTECTED)) 7638 return; 7639 7640 fc &= ~IEEE80211_FCTL_PROTECTED; 7641 hdr->frame_control = cpu_to_le16(fc); 7642 switch (priv->ieee->sec.level) { 7643 case SEC_LEVEL_3: 7644 /* Remove CCMP HDR */ 7645 memmove(skb->data + LIBIPW_3ADDR_LEN, 7646 skb->data + LIBIPW_3ADDR_LEN + 8, 7647 skb->len - LIBIPW_3ADDR_LEN - 8); 7648 skb_trim(skb, skb->len - 16); /* CCMP_HDR_LEN + CCMP_MIC_LEN */ 7649 break; 7650 case SEC_LEVEL_2: 7651 break; 7652 case SEC_LEVEL_1: 7653 /* Remove IV */ 7654 memmove(skb->data + LIBIPW_3ADDR_LEN, 7655 skb->data + LIBIPW_3ADDR_LEN + 4, 7656 skb->len - LIBIPW_3ADDR_LEN - 4); 7657 skb_trim(skb, skb->len - 8); /* IV + ICV */ 7658 break; 7659 case SEC_LEVEL_0: 7660 break; 7661 default: 7662 printk(KERN_ERR "Unknown security level %d\n", 7663 priv->ieee->sec.level); 7664 break; 7665 } 7666 } 7667 7668 static void ipw_handle_data_packet(struct ipw_priv *priv, 7669 struct ipw_rx_mem_buffer *rxb, 7670 struct libipw_rx_stats *stats) 7671 { 7672 struct net_device *dev = priv->net_dev; 7673 struct libipw_hdr_4addr *hdr; 7674 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data; 7675 7676 /* We received data from the HW, so stop the watchdog */ 7677 netif_trans_update(dev); 7678 7679 /* We only process data packets if the 7680 * interface is open */ 7681 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) > 7682 skb_tailroom(rxb->skb))) { 7683 dev->stats.rx_errors++; 7684 priv->wstats.discard.misc++; 7685 IPW_DEBUG_DROP("Corruption detected! Oh no!\n"); 7686 return; 7687 } else if (unlikely(!netif_running(priv->net_dev))) { 7688 dev->stats.rx_dropped++; 7689 priv->wstats.discard.misc++; 7690 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n"); 7691 return; 7692 } 7693 7694 /* Advance skb->data to the start of the actual payload */ 7695 skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data)); 7696 7697 /* Set the size of the skb to the size of the frame */ 7698 skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length)); 7699 7700 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len); 7701 7702 /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */ 7703 hdr = (struct libipw_hdr_4addr *)rxb->skb->data; 7704 if (priv->ieee->iw_mode != IW_MODE_MONITOR && 7705 (is_multicast_ether_addr(hdr->addr1) ? 7706 !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt)) 7707 ipw_rebuild_decrypted_skb(priv, rxb->skb); 7708 7709 if (!libipw_rx(priv->ieee, rxb->skb, stats)) 7710 dev->stats.rx_errors++; 7711 else { /* libipw_rx succeeded, so it now owns the SKB */ 7712 rxb->skb = NULL; 7713 __ipw_led_activity_on(priv); 7714 } 7715 } 7716 7717 #ifdef CONFIG_IPW2200_RADIOTAP 7718 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv, 7719 struct ipw_rx_mem_buffer *rxb, 7720 struct libipw_rx_stats *stats) 7721 { 7722 struct net_device *dev = priv->net_dev; 7723 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data; 7724 struct ipw_rx_frame *frame = &pkt->u.frame; 7725 7726 /* initial pull of some data */ 7727 u16 received_channel = frame->received_channel; 7728 u8 antennaAndPhy = frame->antennaAndPhy; 7729 s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM; /* call it signed anyhow */ 7730 u16 pktrate = frame->rate; 7731 7732 /* Magic struct that slots into the radiotap header -- no reason 7733 * to build this manually element by element, we can write it much 7734 * more efficiently than we can parse it. ORDER MATTERS HERE */ 7735 struct ipw_rt_hdr *ipw_rt; 7736 7737 unsigned short len = le16_to_cpu(pkt->u.frame.length); 7738 7739 /* We received data from the HW, so stop the watchdog */ 7740 netif_trans_update(dev); 7741 7742 /* We only process data packets if the 7743 * interface is open */ 7744 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) > 7745 skb_tailroom(rxb->skb))) { 7746 dev->stats.rx_errors++; 7747 priv->wstats.discard.misc++; 7748 IPW_DEBUG_DROP("Corruption detected! Oh no!\n"); 7749 return; 7750 } else if (unlikely(!netif_running(priv->net_dev))) { 7751 dev->stats.rx_dropped++; 7752 priv->wstats.discard.misc++; 7753 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n"); 7754 return; 7755 } 7756 7757 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use 7758 * that now */ 7759 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) { 7760 /* FIXME: Should alloc bigger skb instead */ 7761 dev->stats.rx_dropped++; 7762 priv->wstats.discard.misc++; 7763 IPW_DEBUG_DROP("Dropping too large packet in monitor\n"); 7764 return; 7765 } 7766 7767 /* copy the frame itself */ 7768 memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr), 7769 rxb->skb->data + IPW_RX_FRAME_SIZE, len); 7770 7771 ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data; 7772 7773 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION; 7774 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */ 7775 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total header+data */ 7776 7777 /* Big bitfield of all the fields we provide in radiotap */ 7778 ipw_rt->rt_hdr.it_present = cpu_to_le32( 7779 (1 << IEEE80211_RADIOTAP_TSFT) | 7780 (1 << IEEE80211_RADIOTAP_FLAGS) | 7781 (1 << IEEE80211_RADIOTAP_RATE) | 7782 (1 << IEEE80211_RADIOTAP_CHANNEL) | 7783 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) | 7784 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) | 7785 (1 << IEEE80211_RADIOTAP_ANTENNA)); 7786 7787 /* Zero the flags, we'll add to them as we go */ 7788 ipw_rt->rt_flags = 0; 7789 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 | 7790 frame->parent_tsf[2] << 16 | 7791 frame->parent_tsf[1] << 8 | 7792 frame->parent_tsf[0]); 7793 7794 /* Convert signal to DBM */ 7795 ipw_rt->rt_dbmsignal = antsignal; 7796 ipw_rt->rt_dbmnoise = (s8) le16_to_cpu(frame->noise); 7797 7798 /* Convert the channel data and set the flags */ 7799 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel)); 7800 if (received_channel > 14) { /* 802.11a */ 7801 ipw_rt->rt_chbitmask = 7802 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ)); 7803 } else if (antennaAndPhy & 32) { /* 802.11b */ 7804 ipw_rt->rt_chbitmask = 7805 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ)); 7806 } else { /* 802.11g */ 7807 ipw_rt->rt_chbitmask = 7808 cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ); 7809 } 7810 7811 /* set the rate in multiples of 500k/s */ 7812 switch (pktrate) { 7813 case IPW_TX_RATE_1MB: 7814 ipw_rt->rt_rate = 2; 7815 break; 7816 case IPW_TX_RATE_2MB: 7817 ipw_rt->rt_rate = 4; 7818 break; 7819 case IPW_TX_RATE_5MB: 7820 ipw_rt->rt_rate = 10; 7821 break; 7822 case IPW_TX_RATE_6MB: 7823 ipw_rt->rt_rate = 12; 7824 break; 7825 case IPW_TX_RATE_9MB: 7826 ipw_rt->rt_rate = 18; 7827 break; 7828 case IPW_TX_RATE_11MB: 7829 ipw_rt->rt_rate = 22; 7830 break; 7831 case IPW_TX_RATE_12MB: 7832 ipw_rt->rt_rate = 24; 7833 break; 7834 case IPW_TX_RATE_18MB: 7835 ipw_rt->rt_rate = 36; 7836 break; 7837 case IPW_TX_RATE_24MB: 7838 ipw_rt->rt_rate = 48; 7839 break; 7840 case IPW_TX_RATE_36MB: 7841 ipw_rt->rt_rate = 72; 7842 break; 7843 case IPW_TX_RATE_48MB: 7844 ipw_rt->rt_rate = 96; 7845 break; 7846 case IPW_TX_RATE_54MB: 7847 ipw_rt->rt_rate = 108; 7848 break; 7849 default: 7850 ipw_rt->rt_rate = 0; 7851 break; 7852 } 7853 7854 /* antenna number */ 7855 ipw_rt->rt_antenna = (antennaAndPhy & 3); /* Is this right? */ 7856 7857 /* set the preamble flag if we have it */ 7858 if ((antennaAndPhy & 64)) 7859 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 7860 7861 /* Set the size of the skb to the size of the frame */ 7862 skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr)); 7863 7864 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len); 7865 7866 if (!libipw_rx(priv->ieee, rxb->skb, stats)) 7867 dev->stats.rx_errors++; 7868 else { /* libipw_rx succeeded, so it now owns the SKB */ 7869 rxb->skb = NULL; 7870 /* no LED during capture */ 7871 } 7872 } 7873 #endif 7874 7875 #ifdef CONFIG_IPW2200_PROMISCUOUS 7876 #define libipw_is_probe_response(fc) \ 7877 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \ 7878 (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP ) 7879 7880 #define libipw_is_management(fc) \ 7881 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT) 7882 7883 #define libipw_is_control(fc) \ 7884 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL) 7885 7886 #define libipw_is_data(fc) \ 7887 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA) 7888 7889 #define libipw_is_assoc_request(fc) \ 7890 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ) 7891 7892 #define libipw_is_reassoc_request(fc) \ 7893 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ) 7894 7895 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv, 7896 struct ipw_rx_mem_buffer *rxb, 7897 struct libipw_rx_stats *stats) 7898 { 7899 struct net_device *dev = priv->prom_net_dev; 7900 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data; 7901 struct ipw_rx_frame *frame = &pkt->u.frame; 7902 struct ipw_rt_hdr *ipw_rt; 7903 7904 /* First cache any information we need before we overwrite 7905 * the information provided in the skb from the hardware */ 7906 struct ieee80211_hdr *hdr; 7907 u16 channel = frame->received_channel; 7908 u8 phy_flags = frame->antennaAndPhy; 7909 s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM; 7910 s8 noise = (s8) le16_to_cpu(frame->noise); 7911 u8 rate = frame->rate; 7912 unsigned short len = le16_to_cpu(pkt->u.frame.length); 7913 struct sk_buff *skb; 7914 int hdr_only = 0; 7915 u16 filter = priv->prom_priv->filter; 7916 7917 /* If the filter is set to not include Rx frames then return */ 7918 if (filter & IPW_PROM_NO_RX) 7919 return; 7920 7921 /* We received data from the HW, so stop the watchdog */ 7922 netif_trans_update(dev); 7923 7924 if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) { 7925 dev->stats.rx_errors++; 7926 IPW_DEBUG_DROP("Corruption detected! Oh no!\n"); 7927 return; 7928 } 7929 7930 /* We only process data packets if the interface is open */ 7931 if (unlikely(!netif_running(dev))) { 7932 dev->stats.rx_dropped++; 7933 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n"); 7934 return; 7935 } 7936 7937 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use 7938 * that now */ 7939 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) { 7940 /* FIXME: Should alloc bigger skb instead */ 7941 dev->stats.rx_dropped++; 7942 IPW_DEBUG_DROP("Dropping too large packet in monitor\n"); 7943 return; 7944 } 7945 7946 hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE; 7947 if (libipw_is_management(le16_to_cpu(hdr->frame_control))) { 7948 if (filter & IPW_PROM_NO_MGMT) 7949 return; 7950 if (filter & IPW_PROM_MGMT_HEADER_ONLY) 7951 hdr_only = 1; 7952 } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) { 7953 if (filter & IPW_PROM_NO_CTL) 7954 return; 7955 if (filter & IPW_PROM_CTL_HEADER_ONLY) 7956 hdr_only = 1; 7957 } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) { 7958 if (filter & IPW_PROM_NO_DATA) 7959 return; 7960 if (filter & IPW_PROM_DATA_HEADER_ONLY) 7961 hdr_only = 1; 7962 } 7963 7964 /* Copy the SKB since this is for the promiscuous side */ 7965 skb = skb_copy(rxb->skb, GFP_ATOMIC); 7966 if (skb == NULL) { 7967 IPW_ERROR("skb_clone failed for promiscuous copy.\n"); 7968 return; 7969 } 7970 7971 /* copy the frame data to write after where the radiotap header goes */ 7972 ipw_rt = (void *)skb->data; 7973 7974 if (hdr_only) 7975 len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control)); 7976 7977 memcpy(ipw_rt->payload, hdr, len); 7978 7979 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION; 7980 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */ 7981 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(*ipw_rt)); /* total header+data */ 7982 7983 /* Set the size of the skb to the size of the frame */ 7984 skb_put(skb, sizeof(*ipw_rt) + len); 7985 7986 /* Big bitfield of all the fields we provide in radiotap */ 7987 ipw_rt->rt_hdr.it_present = cpu_to_le32( 7988 (1 << IEEE80211_RADIOTAP_TSFT) | 7989 (1 << IEEE80211_RADIOTAP_FLAGS) | 7990 (1 << IEEE80211_RADIOTAP_RATE) | 7991 (1 << IEEE80211_RADIOTAP_CHANNEL) | 7992 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) | 7993 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) | 7994 (1 << IEEE80211_RADIOTAP_ANTENNA)); 7995 7996 /* Zero the flags, we'll add to them as we go */ 7997 ipw_rt->rt_flags = 0; 7998 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 | 7999 frame->parent_tsf[2] << 16 | 8000 frame->parent_tsf[1] << 8 | 8001 frame->parent_tsf[0]); 8002 8003 /* Convert to DBM */ 8004 ipw_rt->rt_dbmsignal = signal; 8005 ipw_rt->rt_dbmnoise = noise; 8006 8007 /* Convert the channel data and set the flags */ 8008 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel)); 8009 if (channel > 14) { /* 802.11a */ 8010 ipw_rt->rt_chbitmask = 8011 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ)); 8012 } else if (phy_flags & (1 << 5)) { /* 802.11b */ 8013 ipw_rt->rt_chbitmask = 8014 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ)); 8015 } else { /* 802.11g */ 8016 ipw_rt->rt_chbitmask = 8017 cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ); 8018 } 8019 8020 /* set the rate in multiples of 500k/s */ 8021 switch (rate) { 8022 case IPW_TX_RATE_1MB: 8023 ipw_rt->rt_rate = 2; 8024 break; 8025 case IPW_TX_RATE_2MB: 8026 ipw_rt->rt_rate = 4; 8027 break; 8028 case IPW_TX_RATE_5MB: 8029 ipw_rt->rt_rate = 10; 8030 break; 8031 case IPW_TX_RATE_6MB: 8032 ipw_rt->rt_rate = 12; 8033 break; 8034 case IPW_TX_RATE_9MB: 8035 ipw_rt->rt_rate = 18; 8036 break; 8037 case IPW_TX_RATE_11MB: 8038 ipw_rt->rt_rate = 22; 8039 break; 8040 case IPW_TX_RATE_12MB: 8041 ipw_rt->rt_rate = 24; 8042 break; 8043 case IPW_TX_RATE_18MB: 8044 ipw_rt->rt_rate = 36; 8045 break; 8046 case IPW_TX_RATE_24MB: 8047 ipw_rt->rt_rate = 48; 8048 break; 8049 case IPW_TX_RATE_36MB: 8050 ipw_rt->rt_rate = 72; 8051 break; 8052 case IPW_TX_RATE_48MB: 8053 ipw_rt->rt_rate = 96; 8054 break; 8055 case IPW_TX_RATE_54MB: 8056 ipw_rt->rt_rate = 108; 8057 break; 8058 default: 8059 ipw_rt->rt_rate = 0; 8060 break; 8061 } 8062 8063 /* antenna number */ 8064 ipw_rt->rt_antenna = (phy_flags & 3); 8065 8066 /* set the preamble flag if we have it */ 8067 if (phy_flags & (1 << 6)) 8068 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 8069 8070 IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len); 8071 8072 if (!libipw_rx(priv->prom_priv->ieee, skb, stats)) { 8073 dev->stats.rx_errors++; 8074 dev_kfree_skb_any(skb); 8075 } 8076 } 8077 #endif 8078 8079 static int is_network_packet(struct ipw_priv *priv, 8080 struct libipw_hdr_4addr *header) 8081 { 8082 /* Filter incoming packets to determine if they are targeted toward 8083 * this network, discarding packets coming from ourselves */ 8084 switch (priv->ieee->iw_mode) { 8085 case IW_MODE_ADHOC: /* Header: Dest. | Source | BSSID */ 8086 /* packets from our adapter are dropped (echo) */ 8087 if (ether_addr_equal(header->addr2, priv->net_dev->dev_addr)) 8088 return 0; 8089 8090 /* {broad,multi}cast packets to our BSSID go through */ 8091 if (is_multicast_ether_addr(header->addr1)) 8092 return ether_addr_equal(header->addr3, priv->bssid); 8093 8094 /* packets to our adapter go through */ 8095 return ether_addr_equal(header->addr1, 8096 priv->net_dev->dev_addr); 8097 8098 case IW_MODE_INFRA: /* Header: Dest. | BSSID | Source */ 8099 /* packets from our adapter are dropped (echo) */ 8100 if (ether_addr_equal(header->addr3, priv->net_dev->dev_addr)) 8101 return 0; 8102 8103 /* {broad,multi}cast packets to our BSS go through */ 8104 if (is_multicast_ether_addr(header->addr1)) 8105 return ether_addr_equal(header->addr2, priv->bssid); 8106 8107 /* packets to our adapter go through */ 8108 return ether_addr_equal(header->addr1, 8109 priv->net_dev->dev_addr); 8110 } 8111 8112 return 1; 8113 } 8114 8115 #define IPW_PACKET_RETRY_TIME HZ 8116 8117 static int is_duplicate_packet(struct ipw_priv *priv, 8118 struct libipw_hdr_4addr *header) 8119 { 8120 u16 sc = le16_to_cpu(header->seq_ctl); 8121 u16 seq = WLAN_GET_SEQ_SEQ(sc); 8122 u16 frag = WLAN_GET_SEQ_FRAG(sc); 8123 u16 *last_seq, *last_frag; 8124 unsigned long *last_time; 8125 8126 switch (priv->ieee->iw_mode) { 8127 case IW_MODE_ADHOC: 8128 { 8129 struct list_head *p; 8130 struct ipw_ibss_seq *entry = NULL; 8131 u8 *mac = header->addr2; 8132 int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE; 8133 8134 list_for_each(p, &priv->ibss_mac_hash[index]) { 8135 entry = 8136 list_entry(p, struct ipw_ibss_seq, list); 8137 if (ether_addr_equal(entry->mac, mac)) 8138 break; 8139 } 8140 if (p == &priv->ibss_mac_hash[index]) { 8141 entry = kmalloc(sizeof(*entry), GFP_ATOMIC); 8142 if (!entry) { 8143 IPW_ERROR 8144 ("Cannot malloc new mac entry\n"); 8145 return 0; 8146 } 8147 memcpy(entry->mac, mac, ETH_ALEN); 8148 entry->seq_num = seq; 8149 entry->frag_num = frag; 8150 entry->packet_time = jiffies; 8151 list_add(&entry->list, 8152 &priv->ibss_mac_hash[index]); 8153 return 0; 8154 } 8155 last_seq = &entry->seq_num; 8156 last_frag = &entry->frag_num; 8157 last_time = &entry->packet_time; 8158 break; 8159 } 8160 case IW_MODE_INFRA: 8161 last_seq = &priv->last_seq_num; 8162 last_frag = &priv->last_frag_num; 8163 last_time = &priv->last_packet_time; 8164 break; 8165 default: 8166 return 0; 8167 } 8168 if ((*last_seq == seq) && 8169 time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) { 8170 if (*last_frag == frag) 8171 goto drop; 8172 if (*last_frag + 1 != frag) 8173 /* out-of-order fragment */ 8174 goto drop; 8175 } else 8176 *last_seq = seq; 8177 8178 *last_frag = frag; 8179 *last_time = jiffies; 8180 return 0; 8181 8182 drop: 8183 /* Comment this line now since we observed the card receives 8184 * duplicate packets but the FCTL_RETRY bit is not set in the 8185 * IBSS mode with fragmentation enabled. 8186 BUG_ON(!(le16_to_cpu(header->frame_control) & IEEE80211_FCTL_RETRY)); */ 8187 return 1; 8188 } 8189 8190 static void ipw_handle_mgmt_packet(struct ipw_priv *priv, 8191 struct ipw_rx_mem_buffer *rxb, 8192 struct libipw_rx_stats *stats) 8193 { 8194 struct sk_buff *skb = rxb->skb; 8195 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data; 8196 struct libipw_hdr_4addr *header = (struct libipw_hdr_4addr *) 8197 (skb->data + IPW_RX_FRAME_SIZE); 8198 8199 libipw_rx_mgt(priv->ieee, header, stats); 8200 8201 if (priv->ieee->iw_mode == IW_MODE_ADHOC && 8202 ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) == 8203 IEEE80211_STYPE_PROBE_RESP) || 8204 (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) == 8205 IEEE80211_STYPE_BEACON))) { 8206 if (ether_addr_equal(header->addr3, priv->bssid)) 8207 ipw_add_station(priv, header->addr2); 8208 } 8209 8210 if (priv->config & CFG_NET_STATS) { 8211 IPW_DEBUG_HC("sending stat packet\n"); 8212 8213 /* Set the size of the skb to the size of the full 8214 * ipw header and 802.11 frame */ 8215 skb_put(skb, le16_to_cpu(pkt->u.frame.length) + 8216 IPW_RX_FRAME_SIZE); 8217 8218 /* Advance past the ipw packet header to the 802.11 frame */ 8219 skb_pull(skb, IPW_RX_FRAME_SIZE); 8220 8221 /* Push the libipw_rx_stats before the 802.11 frame */ 8222 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats)); 8223 8224 skb->dev = priv->ieee->dev; 8225 8226 /* Point raw at the libipw_stats */ 8227 skb_reset_mac_header(skb); 8228 8229 skb->pkt_type = PACKET_OTHERHOST; 8230 skb->protocol = cpu_to_be16(ETH_P_80211_STATS); 8231 memset(skb->cb, 0, sizeof(rxb->skb->cb)); 8232 netif_rx(skb); 8233 rxb->skb = NULL; 8234 } 8235 } 8236 8237 /* 8238 * Main entry function for receiving a packet with 80211 headers. This 8239 * should be called when ever the FW has notified us that there is a new 8240 * skb in the receive queue. 8241 */ 8242 static void ipw_rx(struct ipw_priv *priv) 8243 { 8244 struct ipw_rx_mem_buffer *rxb; 8245 struct ipw_rx_packet *pkt; 8246 struct libipw_hdr_4addr *header; 8247 u32 r, w, i; 8248 u8 network_packet; 8249 u8 fill_rx = 0; 8250 8251 r = ipw_read32(priv, IPW_RX_READ_INDEX); 8252 w = ipw_read32(priv, IPW_RX_WRITE_INDEX); 8253 i = priv->rxq->read; 8254 8255 if (ipw_rx_queue_space (priv->rxq) > (RX_QUEUE_SIZE / 2)) 8256 fill_rx = 1; 8257 8258 while (i != r) { 8259 rxb = priv->rxq->queue[i]; 8260 if (unlikely(rxb == NULL)) { 8261 printk(KERN_CRIT "Queue not allocated!\n"); 8262 break; 8263 } 8264 priv->rxq->queue[i] = NULL; 8265 8266 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr, 8267 IPW_RX_BUF_SIZE, 8268 PCI_DMA_FROMDEVICE); 8269 8270 pkt = (struct ipw_rx_packet *)rxb->skb->data; 8271 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n", 8272 pkt->header.message_type, 8273 pkt->header.rx_seq_num, pkt->header.control_bits); 8274 8275 switch (pkt->header.message_type) { 8276 case RX_FRAME_TYPE: /* 802.11 frame */ { 8277 struct libipw_rx_stats stats = { 8278 .rssi = pkt->u.frame.rssi_dbm - 8279 IPW_RSSI_TO_DBM, 8280 .signal = 8281 pkt->u.frame.rssi_dbm - 8282 IPW_RSSI_TO_DBM + 0x100, 8283 .noise = 8284 le16_to_cpu(pkt->u.frame.noise), 8285 .rate = pkt->u.frame.rate, 8286 .mac_time = jiffies, 8287 .received_channel = 8288 pkt->u.frame.received_channel, 8289 .freq = 8290 (pkt->u.frame. 8291 control & (1 << 0)) ? 8292 LIBIPW_24GHZ_BAND : 8293 LIBIPW_52GHZ_BAND, 8294 .len = le16_to_cpu(pkt->u.frame.length), 8295 }; 8296 8297 if (stats.rssi != 0) 8298 stats.mask |= LIBIPW_STATMASK_RSSI; 8299 if (stats.signal != 0) 8300 stats.mask |= LIBIPW_STATMASK_SIGNAL; 8301 if (stats.noise != 0) 8302 stats.mask |= LIBIPW_STATMASK_NOISE; 8303 if (stats.rate != 0) 8304 stats.mask |= LIBIPW_STATMASK_RATE; 8305 8306 priv->rx_packets++; 8307 8308 #ifdef CONFIG_IPW2200_PROMISCUOUS 8309 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) 8310 ipw_handle_promiscuous_rx(priv, rxb, &stats); 8311 #endif 8312 8313 #ifdef CONFIG_IPW2200_MONITOR 8314 if (priv->ieee->iw_mode == IW_MODE_MONITOR) { 8315 #ifdef CONFIG_IPW2200_RADIOTAP 8316 8317 ipw_handle_data_packet_monitor(priv, 8318 rxb, 8319 &stats); 8320 #else 8321 ipw_handle_data_packet(priv, rxb, 8322 &stats); 8323 #endif 8324 break; 8325 } 8326 #endif 8327 8328 header = 8329 (struct libipw_hdr_4addr *)(rxb->skb-> 8330 data + 8331 IPW_RX_FRAME_SIZE); 8332 /* TODO: Check Ad-Hoc dest/source and make sure 8333 * that we are actually parsing these packets 8334 * correctly -- we should probably use the 8335 * frame control of the packet and disregard 8336 * the current iw_mode */ 8337 8338 network_packet = 8339 is_network_packet(priv, header); 8340 if (network_packet && priv->assoc_network) { 8341 priv->assoc_network->stats.rssi = 8342 stats.rssi; 8343 priv->exp_avg_rssi = 8344 exponential_average(priv->exp_avg_rssi, 8345 stats.rssi, DEPTH_RSSI); 8346 } 8347 8348 IPW_DEBUG_RX("Frame: len=%u\n", 8349 le16_to_cpu(pkt->u.frame.length)); 8350 8351 if (le16_to_cpu(pkt->u.frame.length) < 8352 libipw_get_hdrlen(le16_to_cpu( 8353 header->frame_ctl))) { 8354 IPW_DEBUG_DROP 8355 ("Received packet is too small. " 8356 "Dropping.\n"); 8357 priv->net_dev->stats.rx_errors++; 8358 priv->wstats.discard.misc++; 8359 break; 8360 } 8361 8362 switch (WLAN_FC_GET_TYPE 8363 (le16_to_cpu(header->frame_ctl))) { 8364 8365 case IEEE80211_FTYPE_MGMT: 8366 ipw_handle_mgmt_packet(priv, rxb, 8367 &stats); 8368 break; 8369 8370 case IEEE80211_FTYPE_CTL: 8371 break; 8372 8373 case IEEE80211_FTYPE_DATA: 8374 if (unlikely(!network_packet || 8375 is_duplicate_packet(priv, 8376 header))) 8377 { 8378 IPW_DEBUG_DROP("Dropping: " 8379 "%pM, " 8380 "%pM, " 8381 "%pM\n", 8382 header->addr1, 8383 header->addr2, 8384 header->addr3); 8385 break; 8386 } 8387 8388 ipw_handle_data_packet(priv, rxb, 8389 &stats); 8390 8391 break; 8392 } 8393 break; 8394 } 8395 8396 case RX_HOST_NOTIFICATION_TYPE:{ 8397 IPW_DEBUG_RX 8398 ("Notification: subtype=%02X flags=%02X size=%d\n", 8399 pkt->u.notification.subtype, 8400 pkt->u.notification.flags, 8401 le16_to_cpu(pkt->u.notification.size)); 8402 ipw_rx_notification(priv, &pkt->u.notification); 8403 break; 8404 } 8405 8406 default: 8407 IPW_DEBUG_RX("Bad Rx packet of type %d\n", 8408 pkt->header.message_type); 8409 break; 8410 } 8411 8412 /* For now we just don't re-use anything. We can tweak this 8413 * later to try and re-use notification packets and SKBs that 8414 * fail to Rx correctly */ 8415 if (rxb->skb != NULL) { 8416 dev_kfree_skb_any(rxb->skb); 8417 rxb->skb = NULL; 8418 } 8419 8420 pci_unmap_single(priv->pci_dev, rxb->dma_addr, 8421 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE); 8422 list_add_tail(&rxb->list, &priv->rxq->rx_used); 8423 8424 i = (i + 1) % RX_QUEUE_SIZE; 8425 8426 /* If there are a lot of unsued frames, restock the Rx queue 8427 * so the ucode won't assert */ 8428 if (fill_rx) { 8429 priv->rxq->read = i; 8430 ipw_rx_queue_replenish(priv); 8431 } 8432 } 8433 8434 /* Backtrack one entry */ 8435 priv->rxq->read = i; 8436 ipw_rx_queue_restock(priv); 8437 } 8438 8439 #define DEFAULT_RTS_THRESHOLD 2304U 8440 #define MIN_RTS_THRESHOLD 1U 8441 #define MAX_RTS_THRESHOLD 2304U 8442 #define DEFAULT_BEACON_INTERVAL 100U 8443 #define DEFAULT_SHORT_RETRY_LIMIT 7U 8444 #define DEFAULT_LONG_RETRY_LIMIT 4U 8445 8446 /** 8447 * ipw_sw_reset 8448 * @option: options to control different reset behaviour 8449 * 0 = reset everything except the 'disable' module_param 8450 * 1 = reset everything and print out driver info (for probe only) 8451 * 2 = reset everything 8452 */ 8453 static int ipw_sw_reset(struct ipw_priv *priv, int option) 8454 { 8455 int band, modulation; 8456 int old_mode = priv->ieee->iw_mode; 8457 8458 /* Initialize module parameter values here */ 8459 priv->config = 0; 8460 8461 /* We default to disabling the LED code as right now it causes 8462 * too many systems to lock up... */ 8463 if (!led_support) 8464 priv->config |= CFG_NO_LED; 8465 8466 if (associate) 8467 priv->config |= CFG_ASSOCIATE; 8468 else 8469 IPW_DEBUG_INFO("Auto associate disabled.\n"); 8470 8471 if (auto_create) 8472 priv->config |= CFG_ADHOC_CREATE; 8473 else 8474 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n"); 8475 8476 priv->config &= ~CFG_STATIC_ESSID; 8477 priv->essid_len = 0; 8478 memset(priv->essid, 0, IW_ESSID_MAX_SIZE); 8479 8480 if (disable && option) { 8481 priv->status |= STATUS_RF_KILL_SW; 8482 IPW_DEBUG_INFO("Radio disabled.\n"); 8483 } 8484 8485 if (default_channel != 0) { 8486 priv->config |= CFG_STATIC_CHANNEL; 8487 priv->channel = default_channel; 8488 IPW_DEBUG_INFO("Bind to static channel %d\n", default_channel); 8489 /* TODO: Validate that provided channel is in range */ 8490 } 8491 #ifdef CONFIG_IPW2200_QOS 8492 ipw_qos_init(priv, qos_enable, qos_burst_enable, 8493 burst_duration_CCK, burst_duration_OFDM); 8494 #endif /* CONFIG_IPW2200_QOS */ 8495 8496 switch (network_mode) { 8497 case 1: 8498 priv->ieee->iw_mode = IW_MODE_ADHOC; 8499 priv->net_dev->type = ARPHRD_ETHER; 8500 8501 break; 8502 #ifdef CONFIG_IPW2200_MONITOR 8503 case 2: 8504 priv->ieee->iw_mode = IW_MODE_MONITOR; 8505 #ifdef CONFIG_IPW2200_RADIOTAP 8506 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP; 8507 #else 8508 priv->net_dev->type = ARPHRD_IEEE80211; 8509 #endif 8510 break; 8511 #endif 8512 default: 8513 case 0: 8514 priv->net_dev->type = ARPHRD_ETHER; 8515 priv->ieee->iw_mode = IW_MODE_INFRA; 8516 break; 8517 } 8518 8519 if (hwcrypto) { 8520 priv->ieee->host_encrypt = 0; 8521 priv->ieee->host_encrypt_msdu = 0; 8522 priv->ieee->host_decrypt = 0; 8523 priv->ieee->host_mc_decrypt = 0; 8524 } 8525 IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off"); 8526 8527 /* IPW2200/2915 is abled to do hardware fragmentation. */ 8528 priv->ieee->host_open_frag = 0; 8529 8530 if ((priv->pci_dev->device == 0x4223) || 8531 (priv->pci_dev->device == 0x4224)) { 8532 if (option == 1) 8533 printk(KERN_INFO DRV_NAME 8534 ": Detected Intel PRO/Wireless 2915ABG Network " 8535 "Connection\n"); 8536 priv->ieee->abg_true = 1; 8537 band = LIBIPW_52GHZ_BAND | LIBIPW_24GHZ_BAND; 8538 modulation = LIBIPW_OFDM_MODULATION | 8539 LIBIPW_CCK_MODULATION; 8540 priv->adapter = IPW_2915ABG; 8541 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B; 8542 } else { 8543 if (option == 1) 8544 printk(KERN_INFO DRV_NAME 8545 ": Detected Intel PRO/Wireless 2200BG Network " 8546 "Connection\n"); 8547 8548 priv->ieee->abg_true = 0; 8549 band = LIBIPW_24GHZ_BAND; 8550 modulation = LIBIPW_OFDM_MODULATION | 8551 LIBIPW_CCK_MODULATION; 8552 priv->adapter = IPW_2200BG; 8553 priv->ieee->mode = IEEE_G | IEEE_B; 8554 } 8555 8556 priv->ieee->freq_band = band; 8557 priv->ieee->modulation = modulation; 8558 8559 priv->rates_mask = LIBIPW_DEFAULT_RATES_MASK; 8560 8561 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT; 8562 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT; 8563 8564 priv->rts_threshold = DEFAULT_RTS_THRESHOLD; 8565 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT; 8566 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT; 8567 8568 /* If power management is turned on, default to AC mode */ 8569 priv->power_mode = IPW_POWER_AC; 8570 priv->tx_power = IPW_TX_POWER_DEFAULT; 8571 8572 return old_mode == priv->ieee->iw_mode; 8573 } 8574 8575 /* 8576 * This file defines the Wireless Extension handlers. It does not 8577 * define any methods of hardware manipulation and relies on the 8578 * functions defined in ipw_main to provide the HW interaction. 8579 * 8580 * The exception to this is the use of the ipw_get_ordinal() 8581 * function used to poll the hardware vs. making unnecessary calls. 8582 * 8583 */ 8584 8585 static int ipw_set_channel(struct ipw_priv *priv, u8 channel) 8586 { 8587 if (channel == 0) { 8588 IPW_DEBUG_INFO("Setting channel to ANY (0)\n"); 8589 priv->config &= ~CFG_STATIC_CHANNEL; 8590 IPW_DEBUG_ASSOC("Attempting to associate with new " 8591 "parameters.\n"); 8592 ipw_associate(priv); 8593 return 0; 8594 } 8595 8596 priv->config |= CFG_STATIC_CHANNEL; 8597 8598 if (priv->channel == channel) { 8599 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n", 8600 channel); 8601 return 0; 8602 } 8603 8604 IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel); 8605 priv->channel = channel; 8606 8607 #ifdef CONFIG_IPW2200_MONITOR 8608 if (priv->ieee->iw_mode == IW_MODE_MONITOR) { 8609 int i; 8610 if (priv->status & STATUS_SCANNING) { 8611 IPW_DEBUG_SCAN("Scan abort triggered due to " 8612 "channel change.\n"); 8613 ipw_abort_scan(priv); 8614 } 8615 8616 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--) 8617 udelay(10); 8618 8619 if (priv->status & STATUS_SCANNING) 8620 IPW_DEBUG_SCAN("Still scanning...\n"); 8621 else 8622 IPW_DEBUG_SCAN("Took %dms to abort current scan\n", 8623 1000 - i); 8624 8625 return 0; 8626 } 8627 #endif /* CONFIG_IPW2200_MONITOR */ 8628 8629 /* Network configuration changed -- force [re]association */ 8630 IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n"); 8631 if (!ipw_disassociate(priv)) 8632 ipw_associate(priv); 8633 8634 return 0; 8635 } 8636 8637 static int ipw_wx_set_freq(struct net_device *dev, 8638 struct iw_request_info *info, 8639 union iwreq_data *wrqu, char *extra) 8640 { 8641 struct ipw_priv *priv = libipw_priv(dev); 8642 const struct libipw_geo *geo = libipw_get_geo(priv->ieee); 8643 struct iw_freq *fwrq = &wrqu->freq; 8644 int ret = 0, i; 8645 u8 channel, flags; 8646 int band; 8647 8648 if (fwrq->m == 0) { 8649 IPW_DEBUG_WX("SET Freq/Channel -> any\n"); 8650 mutex_lock(&priv->mutex); 8651 ret = ipw_set_channel(priv, 0); 8652 mutex_unlock(&priv->mutex); 8653 return ret; 8654 } 8655 /* if setting by freq convert to channel */ 8656 if (fwrq->e == 1) { 8657 channel = libipw_freq_to_channel(priv->ieee, fwrq->m); 8658 if (channel == 0) 8659 return -EINVAL; 8660 } else 8661 channel = fwrq->m; 8662 8663 if (!(band = libipw_is_valid_channel(priv->ieee, channel))) 8664 return -EINVAL; 8665 8666 if (priv->ieee->iw_mode == IW_MODE_ADHOC) { 8667 i = libipw_channel_to_index(priv->ieee, channel); 8668 if (i == -1) 8669 return -EINVAL; 8670 8671 flags = (band == LIBIPW_24GHZ_BAND) ? 8672 geo->bg[i].flags : geo->a[i].flags; 8673 if (flags & LIBIPW_CH_PASSIVE_ONLY) { 8674 IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n"); 8675 return -EINVAL; 8676 } 8677 } 8678 8679 IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m); 8680 mutex_lock(&priv->mutex); 8681 ret = ipw_set_channel(priv, channel); 8682 mutex_unlock(&priv->mutex); 8683 return ret; 8684 } 8685 8686 static int ipw_wx_get_freq(struct net_device *dev, 8687 struct iw_request_info *info, 8688 union iwreq_data *wrqu, char *extra) 8689 { 8690 struct ipw_priv *priv = libipw_priv(dev); 8691 8692 wrqu->freq.e = 0; 8693 8694 /* If we are associated, trying to associate, or have a statically 8695 * configured CHANNEL then return that; otherwise return ANY */ 8696 mutex_lock(&priv->mutex); 8697 if (priv->config & CFG_STATIC_CHANNEL || 8698 priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) { 8699 int i; 8700 8701 i = libipw_channel_to_index(priv->ieee, priv->channel); 8702 BUG_ON(i == -1); 8703 wrqu->freq.e = 1; 8704 8705 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) { 8706 case LIBIPW_52GHZ_BAND: 8707 wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000; 8708 break; 8709 8710 case LIBIPW_24GHZ_BAND: 8711 wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000; 8712 break; 8713 8714 default: 8715 BUG(); 8716 } 8717 } else 8718 wrqu->freq.m = 0; 8719 8720 mutex_unlock(&priv->mutex); 8721 IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel); 8722 return 0; 8723 } 8724 8725 static int ipw_wx_set_mode(struct net_device *dev, 8726 struct iw_request_info *info, 8727 union iwreq_data *wrqu, char *extra) 8728 { 8729 struct ipw_priv *priv = libipw_priv(dev); 8730 int err = 0; 8731 8732 IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode); 8733 8734 switch (wrqu->mode) { 8735 #ifdef CONFIG_IPW2200_MONITOR 8736 case IW_MODE_MONITOR: 8737 #endif 8738 case IW_MODE_ADHOC: 8739 case IW_MODE_INFRA: 8740 break; 8741 case IW_MODE_AUTO: 8742 wrqu->mode = IW_MODE_INFRA; 8743 break; 8744 default: 8745 return -EINVAL; 8746 } 8747 if (wrqu->mode == priv->ieee->iw_mode) 8748 return 0; 8749 8750 mutex_lock(&priv->mutex); 8751 8752 ipw_sw_reset(priv, 0); 8753 8754 #ifdef CONFIG_IPW2200_MONITOR 8755 if (priv->ieee->iw_mode == IW_MODE_MONITOR) 8756 priv->net_dev->type = ARPHRD_ETHER; 8757 8758 if (wrqu->mode == IW_MODE_MONITOR) 8759 #ifdef CONFIG_IPW2200_RADIOTAP 8760 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP; 8761 #else 8762 priv->net_dev->type = ARPHRD_IEEE80211; 8763 #endif 8764 #endif /* CONFIG_IPW2200_MONITOR */ 8765 8766 /* Free the existing firmware and reset the fw_loaded 8767 * flag so ipw_load() will bring in the new firmware */ 8768 free_firmware(); 8769 8770 priv->ieee->iw_mode = wrqu->mode; 8771 8772 schedule_work(&priv->adapter_restart); 8773 mutex_unlock(&priv->mutex); 8774 return err; 8775 } 8776 8777 static int ipw_wx_get_mode(struct net_device *dev, 8778 struct iw_request_info *info, 8779 union iwreq_data *wrqu, char *extra) 8780 { 8781 struct ipw_priv *priv = libipw_priv(dev); 8782 mutex_lock(&priv->mutex); 8783 wrqu->mode = priv->ieee->iw_mode; 8784 IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode); 8785 mutex_unlock(&priv->mutex); 8786 return 0; 8787 } 8788 8789 /* Values are in microsecond */ 8790 static const s32 timeout_duration[] = { 8791 350000, 8792 250000, 8793 75000, 8794 37000, 8795 25000, 8796 }; 8797 8798 static const s32 period_duration[] = { 8799 400000, 8800 700000, 8801 1000000, 8802 1000000, 8803 1000000 8804 }; 8805 8806 static int ipw_wx_get_range(struct net_device *dev, 8807 struct iw_request_info *info, 8808 union iwreq_data *wrqu, char *extra) 8809 { 8810 struct ipw_priv *priv = libipw_priv(dev); 8811 struct iw_range *range = (struct iw_range *)extra; 8812 const struct libipw_geo *geo = libipw_get_geo(priv->ieee); 8813 int i = 0, j; 8814 8815 wrqu->data.length = sizeof(*range); 8816 memset(range, 0, sizeof(*range)); 8817 8818 /* 54Mbs == ~27 Mb/s real (802.11g) */ 8819 range->throughput = 27 * 1000 * 1000; 8820 8821 range->max_qual.qual = 100; 8822 /* TODO: Find real max RSSI and stick here */ 8823 range->max_qual.level = 0; 8824 range->max_qual.noise = 0; 8825 range->max_qual.updated = 7; /* Updated all three */ 8826 8827 range->avg_qual.qual = 70; 8828 /* TODO: Find real 'good' to 'bad' threshold value for RSSI */ 8829 range->avg_qual.level = 0; /* FIXME to real average level */ 8830 range->avg_qual.noise = 0; 8831 range->avg_qual.updated = 7; /* Updated all three */ 8832 mutex_lock(&priv->mutex); 8833 range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES); 8834 8835 for (i = 0; i < range->num_bitrates; i++) 8836 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) * 8837 500000; 8838 8839 range->max_rts = DEFAULT_RTS_THRESHOLD; 8840 range->min_frag = MIN_FRAG_THRESHOLD; 8841 range->max_frag = MAX_FRAG_THRESHOLD; 8842 8843 range->encoding_size[0] = 5; 8844 range->encoding_size[1] = 13; 8845 range->num_encoding_sizes = 2; 8846 range->max_encoding_tokens = WEP_KEYS; 8847 8848 /* Set the Wireless Extension versions */ 8849 range->we_version_compiled = WIRELESS_EXT; 8850 range->we_version_source = 18; 8851 8852 i = 0; 8853 if (priv->ieee->mode & (IEEE_B | IEEE_G)) { 8854 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) { 8855 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) && 8856 (geo->bg[j].flags & LIBIPW_CH_PASSIVE_ONLY)) 8857 continue; 8858 8859 range->freq[i].i = geo->bg[j].channel; 8860 range->freq[i].m = geo->bg[j].freq * 100000; 8861 range->freq[i].e = 1; 8862 i++; 8863 } 8864 } 8865 8866 if (priv->ieee->mode & IEEE_A) { 8867 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) { 8868 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) && 8869 (geo->a[j].flags & LIBIPW_CH_PASSIVE_ONLY)) 8870 continue; 8871 8872 range->freq[i].i = geo->a[j].channel; 8873 range->freq[i].m = geo->a[j].freq * 100000; 8874 range->freq[i].e = 1; 8875 i++; 8876 } 8877 } 8878 8879 range->num_channels = i; 8880 range->num_frequency = i; 8881 8882 mutex_unlock(&priv->mutex); 8883 8884 /* Event capability (kernel + driver) */ 8885 range->event_capa[0] = (IW_EVENT_CAPA_K_0 | 8886 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) | 8887 IW_EVENT_CAPA_MASK(SIOCGIWAP) | 8888 IW_EVENT_CAPA_MASK(SIOCGIWSCAN)); 8889 range->event_capa[1] = IW_EVENT_CAPA_K_1; 8890 8891 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 | 8892 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP; 8893 8894 range->scan_capa = IW_SCAN_CAPA_ESSID | IW_SCAN_CAPA_TYPE; 8895 8896 IPW_DEBUG_WX("GET Range\n"); 8897 return 0; 8898 } 8899 8900 static int ipw_wx_set_wap(struct net_device *dev, 8901 struct iw_request_info *info, 8902 union iwreq_data *wrqu, char *extra) 8903 { 8904 struct ipw_priv *priv = libipw_priv(dev); 8905 8906 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER) 8907 return -EINVAL; 8908 mutex_lock(&priv->mutex); 8909 if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) || 8910 is_zero_ether_addr(wrqu->ap_addr.sa_data)) { 8911 /* we disable mandatory BSSID association */ 8912 IPW_DEBUG_WX("Setting AP BSSID to ANY\n"); 8913 priv->config &= ~CFG_STATIC_BSSID; 8914 IPW_DEBUG_ASSOC("Attempting to associate with new " 8915 "parameters.\n"); 8916 ipw_associate(priv); 8917 mutex_unlock(&priv->mutex); 8918 return 0; 8919 } 8920 8921 priv->config |= CFG_STATIC_BSSID; 8922 if (ether_addr_equal(priv->bssid, wrqu->ap_addr.sa_data)) { 8923 IPW_DEBUG_WX("BSSID set to current BSSID.\n"); 8924 mutex_unlock(&priv->mutex); 8925 return 0; 8926 } 8927 8928 IPW_DEBUG_WX("Setting mandatory BSSID to %pM\n", 8929 wrqu->ap_addr.sa_data); 8930 8931 memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN); 8932 8933 /* Network configuration changed -- force [re]association */ 8934 IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n"); 8935 if (!ipw_disassociate(priv)) 8936 ipw_associate(priv); 8937 8938 mutex_unlock(&priv->mutex); 8939 return 0; 8940 } 8941 8942 static int ipw_wx_get_wap(struct net_device *dev, 8943 struct iw_request_info *info, 8944 union iwreq_data *wrqu, char *extra) 8945 { 8946 struct ipw_priv *priv = libipw_priv(dev); 8947 8948 /* If we are associated, trying to associate, or have a statically 8949 * configured BSSID then return that; otherwise return ANY */ 8950 mutex_lock(&priv->mutex); 8951 if (priv->config & CFG_STATIC_BSSID || 8952 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) { 8953 wrqu->ap_addr.sa_family = ARPHRD_ETHER; 8954 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN); 8955 } else 8956 eth_zero_addr(wrqu->ap_addr.sa_data); 8957 8958 IPW_DEBUG_WX("Getting WAP BSSID: %pM\n", 8959 wrqu->ap_addr.sa_data); 8960 mutex_unlock(&priv->mutex); 8961 return 0; 8962 } 8963 8964 static int ipw_wx_set_essid(struct net_device *dev, 8965 struct iw_request_info *info, 8966 union iwreq_data *wrqu, char *extra) 8967 { 8968 struct ipw_priv *priv = libipw_priv(dev); 8969 int length; 8970 8971 mutex_lock(&priv->mutex); 8972 8973 if (!wrqu->essid.flags) 8974 { 8975 IPW_DEBUG_WX("Setting ESSID to ANY\n"); 8976 ipw_disassociate(priv); 8977 priv->config &= ~CFG_STATIC_ESSID; 8978 ipw_associate(priv); 8979 mutex_unlock(&priv->mutex); 8980 return 0; 8981 } 8982 8983 length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE); 8984 8985 priv->config |= CFG_STATIC_ESSID; 8986 8987 if (priv->essid_len == length && !memcmp(priv->essid, extra, length) 8988 && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) { 8989 IPW_DEBUG_WX("ESSID set to current ESSID.\n"); 8990 mutex_unlock(&priv->mutex); 8991 return 0; 8992 } 8993 8994 IPW_DEBUG_WX("Setting ESSID: '%*pE' (%d)\n", length, extra, length); 8995 8996 priv->essid_len = length; 8997 memcpy(priv->essid, extra, priv->essid_len); 8998 8999 /* Network configuration changed -- force [re]association */ 9000 IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n"); 9001 if (!ipw_disassociate(priv)) 9002 ipw_associate(priv); 9003 9004 mutex_unlock(&priv->mutex); 9005 return 0; 9006 } 9007 9008 static int ipw_wx_get_essid(struct net_device *dev, 9009 struct iw_request_info *info, 9010 union iwreq_data *wrqu, char *extra) 9011 { 9012 struct ipw_priv *priv = libipw_priv(dev); 9013 9014 /* If we are associated, trying to associate, or have a statically 9015 * configured ESSID then return that; otherwise return ANY */ 9016 mutex_lock(&priv->mutex); 9017 if (priv->config & CFG_STATIC_ESSID || 9018 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) { 9019 IPW_DEBUG_WX("Getting essid: '%*pE'\n", 9020 priv->essid_len, priv->essid); 9021 memcpy(extra, priv->essid, priv->essid_len); 9022 wrqu->essid.length = priv->essid_len; 9023 wrqu->essid.flags = 1; /* active */ 9024 } else { 9025 IPW_DEBUG_WX("Getting essid: ANY\n"); 9026 wrqu->essid.length = 0; 9027 wrqu->essid.flags = 0; /* active */ 9028 } 9029 mutex_unlock(&priv->mutex); 9030 return 0; 9031 } 9032 9033 static int ipw_wx_set_nick(struct net_device *dev, 9034 struct iw_request_info *info, 9035 union iwreq_data *wrqu, char *extra) 9036 { 9037 struct ipw_priv *priv = libipw_priv(dev); 9038 9039 IPW_DEBUG_WX("Setting nick to '%s'\n", extra); 9040 if (wrqu->data.length > IW_ESSID_MAX_SIZE) 9041 return -E2BIG; 9042 mutex_lock(&priv->mutex); 9043 wrqu->data.length = min_t(size_t, wrqu->data.length, sizeof(priv->nick)); 9044 memset(priv->nick, 0, sizeof(priv->nick)); 9045 memcpy(priv->nick, extra, wrqu->data.length); 9046 IPW_DEBUG_TRACE("<<\n"); 9047 mutex_unlock(&priv->mutex); 9048 return 0; 9049 9050 } 9051 9052 static int ipw_wx_get_nick(struct net_device *dev, 9053 struct iw_request_info *info, 9054 union iwreq_data *wrqu, char *extra) 9055 { 9056 struct ipw_priv *priv = libipw_priv(dev); 9057 IPW_DEBUG_WX("Getting nick\n"); 9058 mutex_lock(&priv->mutex); 9059 wrqu->data.length = strlen(priv->nick); 9060 memcpy(extra, priv->nick, wrqu->data.length); 9061 wrqu->data.flags = 1; /* active */ 9062 mutex_unlock(&priv->mutex); 9063 return 0; 9064 } 9065 9066 static int ipw_wx_set_sens(struct net_device *dev, 9067 struct iw_request_info *info, 9068 union iwreq_data *wrqu, char *extra) 9069 { 9070 struct ipw_priv *priv = libipw_priv(dev); 9071 int err = 0; 9072 9073 IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value); 9074 IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value); 9075 mutex_lock(&priv->mutex); 9076 9077 if (wrqu->sens.fixed == 0) 9078 { 9079 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT; 9080 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT; 9081 goto out; 9082 } 9083 if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) || 9084 (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) { 9085 err = -EINVAL; 9086 goto out; 9087 } 9088 9089 priv->roaming_threshold = wrqu->sens.value; 9090 priv->disassociate_threshold = 3*wrqu->sens.value; 9091 out: 9092 mutex_unlock(&priv->mutex); 9093 return err; 9094 } 9095 9096 static int ipw_wx_get_sens(struct net_device *dev, 9097 struct iw_request_info *info, 9098 union iwreq_data *wrqu, char *extra) 9099 { 9100 struct ipw_priv *priv = libipw_priv(dev); 9101 mutex_lock(&priv->mutex); 9102 wrqu->sens.fixed = 1; 9103 wrqu->sens.value = priv->roaming_threshold; 9104 mutex_unlock(&priv->mutex); 9105 9106 IPW_DEBUG_WX("GET roaming threshold -> %s %d\n", 9107 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value); 9108 9109 return 0; 9110 } 9111 9112 static int ipw_wx_set_rate(struct net_device *dev, 9113 struct iw_request_info *info, 9114 union iwreq_data *wrqu, char *extra) 9115 { 9116 /* TODO: We should use semaphores or locks for access to priv */ 9117 struct ipw_priv *priv = libipw_priv(dev); 9118 u32 target_rate = wrqu->bitrate.value; 9119 u32 fixed, mask; 9120 9121 /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */ 9122 /* value = X, fixed = 1 means only rate X */ 9123 /* value = X, fixed = 0 means all rates lower equal X */ 9124 9125 if (target_rate == -1) { 9126 fixed = 0; 9127 mask = LIBIPW_DEFAULT_RATES_MASK; 9128 /* Now we should reassociate */ 9129 goto apply; 9130 } 9131 9132 mask = 0; 9133 fixed = wrqu->bitrate.fixed; 9134 9135 if (target_rate == 1000000 || !fixed) 9136 mask |= LIBIPW_CCK_RATE_1MB_MASK; 9137 if (target_rate == 1000000) 9138 goto apply; 9139 9140 if (target_rate == 2000000 || !fixed) 9141 mask |= LIBIPW_CCK_RATE_2MB_MASK; 9142 if (target_rate == 2000000) 9143 goto apply; 9144 9145 if (target_rate == 5500000 || !fixed) 9146 mask |= LIBIPW_CCK_RATE_5MB_MASK; 9147 if (target_rate == 5500000) 9148 goto apply; 9149 9150 if (target_rate == 6000000 || !fixed) 9151 mask |= LIBIPW_OFDM_RATE_6MB_MASK; 9152 if (target_rate == 6000000) 9153 goto apply; 9154 9155 if (target_rate == 9000000 || !fixed) 9156 mask |= LIBIPW_OFDM_RATE_9MB_MASK; 9157 if (target_rate == 9000000) 9158 goto apply; 9159 9160 if (target_rate == 11000000 || !fixed) 9161 mask |= LIBIPW_CCK_RATE_11MB_MASK; 9162 if (target_rate == 11000000) 9163 goto apply; 9164 9165 if (target_rate == 12000000 || !fixed) 9166 mask |= LIBIPW_OFDM_RATE_12MB_MASK; 9167 if (target_rate == 12000000) 9168 goto apply; 9169 9170 if (target_rate == 18000000 || !fixed) 9171 mask |= LIBIPW_OFDM_RATE_18MB_MASK; 9172 if (target_rate == 18000000) 9173 goto apply; 9174 9175 if (target_rate == 24000000 || !fixed) 9176 mask |= LIBIPW_OFDM_RATE_24MB_MASK; 9177 if (target_rate == 24000000) 9178 goto apply; 9179 9180 if (target_rate == 36000000 || !fixed) 9181 mask |= LIBIPW_OFDM_RATE_36MB_MASK; 9182 if (target_rate == 36000000) 9183 goto apply; 9184 9185 if (target_rate == 48000000 || !fixed) 9186 mask |= LIBIPW_OFDM_RATE_48MB_MASK; 9187 if (target_rate == 48000000) 9188 goto apply; 9189 9190 if (target_rate == 54000000 || !fixed) 9191 mask |= LIBIPW_OFDM_RATE_54MB_MASK; 9192 if (target_rate == 54000000) 9193 goto apply; 9194 9195 IPW_DEBUG_WX("invalid rate specified, returning error\n"); 9196 return -EINVAL; 9197 9198 apply: 9199 IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n", 9200 mask, fixed ? "fixed" : "sub-rates"); 9201 mutex_lock(&priv->mutex); 9202 if (mask == LIBIPW_DEFAULT_RATES_MASK) { 9203 priv->config &= ~CFG_FIXED_RATE; 9204 ipw_set_fixed_rate(priv, priv->ieee->mode); 9205 } else 9206 priv->config |= CFG_FIXED_RATE; 9207 9208 if (priv->rates_mask == mask) { 9209 IPW_DEBUG_WX("Mask set to current mask.\n"); 9210 mutex_unlock(&priv->mutex); 9211 return 0; 9212 } 9213 9214 priv->rates_mask = mask; 9215 9216 /* Network configuration changed -- force [re]association */ 9217 IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n"); 9218 if (!ipw_disassociate(priv)) 9219 ipw_associate(priv); 9220 9221 mutex_unlock(&priv->mutex); 9222 return 0; 9223 } 9224 9225 static int ipw_wx_get_rate(struct net_device *dev, 9226 struct iw_request_info *info, 9227 union iwreq_data *wrqu, char *extra) 9228 { 9229 struct ipw_priv *priv = libipw_priv(dev); 9230 mutex_lock(&priv->mutex); 9231 wrqu->bitrate.value = priv->last_rate; 9232 wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0; 9233 mutex_unlock(&priv->mutex); 9234 IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value); 9235 return 0; 9236 } 9237 9238 static int ipw_wx_set_rts(struct net_device *dev, 9239 struct iw_request_info *info, 9240 union iwreq_data *wrqu, char *extra) 9241 { 9242 struct ipw_priv *priv = libipw_priv(dev); 9243 mutex_lock(&priv->mutex); 9244 if (wrqu->rts.disabled || !wrqu->rts.fixed) 9245 priv->rts_threshold = DEFAULT_RTS_THRESHOLD; 9246 else { 9247 if (wrqu->rts.value < MIN_RTS_THRESHOLD || 9248 wrqu->rts.value > MAX_RTS_THRESHOLD) { 9249 mutex_unlock(&priv->mutex); 9250 return -EINVAL; 9251 } 9252 priv->rts_threshold = wrqu->rts.value; 9253 } 9254 9255 ipw_send_rts_threshold(priv, priv->rts_threshold); 9256 mutex_unlock(&priv->mutex); 9257 IPW_DEBUG_WX("SET RTS Threshold -> %d\n", priv->rts_threshold); 9258 return 0; 9259 } 9260 9261 static int ipw_wx_get_rts(struct net_device *dev, 9262 struct iw_request_info *info, 9263 union iwreq_data *wrqu, char *extra) 9264 { 9265 struct ipw_priv *priv = libipw_priv(dev); 9266 mutex_lock(&priv->mutex); 9267 wrqu->rts.value = priv->rts_threshold; 9268 wrqu->rts.fixed = 0; /* no auto select */ 9269 wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD); 9270 mutex_unlock(&priv->mutex); 9271 IPW_DEBUG_WX("GET RTS Threshold -> %d\n", wrqu->rts.value); 9272 return 0; 9273 } 9274 9275 static int ipw_wx_set_txpow(struct net_device *dev, 9276 struct iw_request_info *info, 9277 union iwreq_data *wrqu, char *extra) 9278 { 9279 struct ipw_priv *priv = libipw_priv(dev); 9280 int err = 0; 9281 9282 mutex_lock(&priv->mutex); 9283 if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) { 9284 err = -EINPROGRESS; 9285 goto out; 9286 } 9287 9288 if (!wrqu->power.fixed) 9289 wrqu->power.value = IPW_TX_POWER_DEFAULT; 9290 9291 if (wrqu->power.flags != IW_TXPOW_DBM) { 9292 err = -EINVAL; 9293 goto out; 9294 } 9295 9296 if ((wrqu->power.value > IPW_TX_POWER_MAX) || 9297 (wrqu->power.value < IPW_TX_POWER_MIN)) { 9298 err = -EINVAL; 9299 goto out; 9300 } 9301 9302 priv->tx_power = wrqu->power.value; 9303 err = ipw_set_tx_power(priv); 9304 out: 9305 mutex_unlock(&priv->mutex); 9306 return err; 9307 } 9308 9309 static int ipw_wx_get_txpow(struct net_device *dev, 9310 struct iw_request_info *info, 9311 union iwreq_data *wrqu, char *extra) 9312 { 9313 struct ipw_priv *priv = libipw_priv(dev); 9314 mutex_lock(&priv->mutex); 9315 wrqu->power.value = priv->tx_power; 9316 wrqu->power.fixed = 1; 9317 wrqu->power.flags = IW_TXPOW_DBM; 9318 wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0; 9319 mutex_unlock(&priv->mutex); 9320 9321 IPW_DEBUG_WX("GET TX Power -> %s %d\n", 9322 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value); 9323 9324 return 0; 9325 } 9326 9327 static int ipw_wx_set_frag(struct net_device *dev, 9328 struct iw_request_info *info, 9329 union iwreq_data *wrqu, char *extra) 9330 { 9331 struct ipw_priv *priv = libipw_priv(dev); 9332 mutex_lock(&priv->mutex); 9333 if (wrqu->frag.disabled || !wrqu->frag.fixed) 9334 priv->ieee->fts = DEFAULT_FTS; 9335 else { 9336 if (wrqu->frag.value < MIN_FRAG_THRESHOLD || 9337 wrqu->frag.value > MAX_FRAG_THRESHOLD) { 9338 mutex_unlock(&priv->mutex); 9339 return -EINVAL; 9340 } 9341 9342 priv->ieee->fts = wrqu->frag.value & ~0x1; 9343 } 9344 9345 ipw_send_frag_threshold(priv, wrqu->frag.value); 9346 mutex_unlock(&priv->mutex); 9347 IPW_DEBUG_WX("SET Frag Threshold -> %d\n", wrqu->frag.value); 9348 return 0; 9349 } 9350 9351 static int ipw_wx_get_frag(struct net_device *dev, 9352 struct iw_request_info *info, 9353 union iwreq_data *wrqu, char *extra) 9354 { 9355 struct ipw_priv *priv = libipw_priv(dev); 9356 mutex_lock(&priv->mutex); 9357 wrqu->frag.value = priv->ieee->fts; 9358 wrqu->frag.fixed = 0; /* no auto select */ 9359 wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS); 9360 mutex_unlock(&priv->mutex); 9361 IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value); 9362 9363 return 0; 9364 } 9365 9366 static int ipw_wx_set_retry(struct net_device *dev, 9367 struct iw_request_info *info, 9368 union iwreq_data *wrqu, char *extra) 9369 { 9370 struct ipw_priv *priv = libipw_priv(dev); 9371 9372 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled) 9373 return -EINVAL; 9374 9375 if (!(wrqu->retry.flags & IW_RETRY_LIMIT)) 9376 return 0; 9377 9378 if (wrqu->retry.value < 0 || wrqu->retry.value >= 255) 9379 return -EINVAL; 9380 9381 mutex_lock(&priv->mutex); 9382 if (wrqu->retry.flags & IW_RETRY_SHORT) 9383 priv->short_retry_limit = (u8) wrqu->retry.value; 9384 else if (wrqu->retry.flags & IW_RETRY_LONG) 9385 priv->long_retry_limit = (u8) wrqu->retry.value; 9386 else { 9387 priv->short_retry_limit = (u8) wrqu->retry.value; 9388 priv->long_retry_limit = (u8) wrqu->retry.value; 9389 } 9390 9391 ipw_send_retry_limit(priv, priv->short_retry_limit, 9392 priv->long_retry_limit); 9393 mutex_unlock(&priv->mutex); 9394 IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n", 9395 priv->short_retry_limit, priv->long_retry_limit); 9396 return 0; 9397 } 9398 9399 static int ipw_wx_get_retry(struct net_device *dev, 9400 struct iw_request_info *info, 9401 union iwreq_data *wrqu, char *extra) 9402 { 9403 struct ipw_priv *priv = libipw_priv(dev); 9404 9405 mutex_lock(&priv->mutex); 9406 wrqu->retry.disabled = 0; 9407 9408 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) { 9409 mutex_unlock(&priv->mutex); 9410 return -EINVAL; 9411 } 9412 9413 if (wrqu->retry.flags & IW_RETRY_LONG) { 9414 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG; 9415 wrqu->retry.value = priv->long_retry_limit; 9416 } else if (wrqu->retry.flags & IW_RETRY_SHORT) { 9417 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT; 9418 wrqu->retry.value = priv->short_retry_limit; 9419 } else { 9420 wrqu->retry.flags = IW_RETRY_LIMIT; 9421 wrqu->retry.value = priv->short_retry_limit; 9422 } 9423 mutex_unlock(&priv->mutex); 9424 9425 IPW_DEBUG_WX("GET retry -> %d\n", wrqu->retry.value); 9426 9427 return 0; 9428 } 9429 9430 static int ipw_wx_set_scan(struct net_device *dev, 9431 struct iw_request_info *info, 9432 union iwreq_data *wrqu, char *extra) 9433 { 9434 struct ipw_priv *priv = libipw_priv(dev); 9435 struct iw_scan_req *req = (struct iw_scan_req *)extra; 9436 struct delayed_work *work = NULL; 9437 9438 mutex_lock(&priv->mutex); 9439 9440 priv->user_requested_scan = 1; 9441 9442 if (wrqu->data.length == sizeof(struct iw_scan_req)) { 9443 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) { 9444 int len = min((int)req->essid_len, 9445 (int)sizeof(priv->direct_scan_ssid)); 9446 memcpy(priv->direct_scan_ssid, req->essid, len); 9447 priv->direct_scan_ssid_len = len; 9448 work = &priv->request_direct_scan; 9449 } else if (req->scan_type == IW_SCAN_TYPE_PASSIVE) { 9450 work = &priv->request_passive_scan; 9451 } 9452 } else { 9453 /* Normal active broadcast scan */ 9454 work = &priv->request_scan; 9455 } 9456 9457 mutex_unlock(&priv->mutex); 9458 9459 IPW_DEBUG_WX("Start scan\n"); 9460 9461 schedule_delayed_work(work, 0); 9462 9463 return 0; 9464 } 9465 9466 static int ipw_wx_get_scan(struct net_device *dev, 9467 struct iw_request_info *info, 9468 union iwreq_data *wrqu, char *extra) 9469 { 9470 struct ipw_priv *priv = libipw_priv(dev); 9471 return libipw_wx_get_scan(priv->ieee, info, wrqu, extra); 9472 } 9473 9474 static int ipw_wx_set_encode(struct net_device *dev, 9475 struct iw_request_info *info, 9476 union iwreq_data *wrqu, char *key) 9477 { 9478 struct ipw_priv *priv = libipw_priv(dev); 9479 int ret; 9480 u32 cap = priv->capability; 9481 9482 mutex_lock(&priv->mutex); 9483 ret = libipw_wx_set_encode(priv->ieee, info, wrqu, key); 9484 9485 /* In IBSS mode, we need to notify the firmware to update 9486 * the beacon info after we changed the capability. */ 9487 if (cap != priv->capability && 9488 priv->ieee->iw_mode == IW_MODE_ADHOC && 9489 priv->status & STATUS_ASSOCIATED) 9490 ipw_disassociate(priv); 9491 9492 mutex_unlock(&priv->mutex); 9493 return ret; 9494 } 9495 9496 static int ipw_wx_get_encode(struct net_device *dev, 9497 struct iw_request_info *info, 9498 union iwreq_data *wrqu, char *key) 9499 { 9500 struct ipw_priv *priv = libipw_priv(dev); 9501 return libipw_wx_get_encode(priv->ieee, info, wrqu, key); 9502 } 9503 9504 static int ipw_wx_set_power(struct net_device *dev, 9505 struct iw_request_info *info, 9506 union iwreq_data *wrqu, char *extra) 9507 { 9508 struct ipw_priv *priv = libipw_priv(dev); 9509 int err; 9510 mutex_lock(&priv->mutex); 9511 if (wrqu->power.disabled) { 9512 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode); 9513 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM); 9514 if (err) { 9515 IPW_DEBUG_WX("failed setting power mode.\n"); 9516 mutex_unlock(&priv->mutex); 9517 return err; 9518 } 9519 IPW_DEBUG_WX("SET Power Management Mode -> off\n"); 9520 mutex_unlock(&priv->mutex); 9521 return 0; 9522 } 9523 9524 switch (wrqu->power.flags & IW_POWER_MODE) { 9525 case IW_POWER_ON: /* If not specified */ 9526 case IW_POWER_MODE: /* If set all mask */ 9527 case IW_POWER_ALL_R: /* If explicitly state all */ 9528 break; 9529 default: /* Otherwise we don't support it */ 9530 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n", 9531 wrqu->power.flags); 9532 mutex_unlock(&priv->mutex); 9533 return -EOPNOTSUPP; 9534 } 9535 9536 /* If the user hasn't specified a power management mode yet, default 9537 * to BATTERY */ 9538 if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC) 9539 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY; 9540 else 9541 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode; 9542 9543 err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode)); 9544 if (err) { 9545 IPW_DEBUG_WX("failed setting power mode.\n"); 9546 mutex_unlock(&priv->mutex); 9547 return err; 9548 } 9549 9550 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode); 9551 mutex_unlock(&priv->mutex); 9552 return 0; 9553 } 9554 9555 static int ipw_wx_get_power(struct net_device *dev, 9556 struct iw_request_info *info, 9557 union iwreq_data *wrqu, char *extra) 9558 { 9559 struct ipw_priv *priv = libipw_priv(dev); 9560 mutex_lock(&priv->mutex); 9561 if (!(priv->power_mode & IPW_POWER_ENABLED)) 9562 wrqu->power.disabled = 1; 9563 else 9564 wrqu->power.disabled = 0; 9565 9566 mutex_unlock(&priv->mutex); 9567 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode); 9568 9569 return 0; 9570 } 9571 9572 static int ipw_wx_set_powermode(struct net_device *dev, 9573 struct iw_request_info *info, 9574 union iwreq_data *wrqu, char *extra) 9575 { 9576 struct ipw_priv *priv = libipw_priv(dev); 9577 int mode = *(int *)extra; 9578 int err; 9579 9580 mutex_lock(&priv->mutex); 9581 if ((mode < 1) || (mode > IPW_POWER_LIMIT)) 9582 mode = IPW_POWER_AC; 9583 9584 if (IPW_POWER_LEVEL(priv->power_mode) != mode) { 9585 err = ipw_send_power_mode(priv, mode); 9586 if (err) { 9587 IPW_DEBUG_WX("failed setting power mode.\n"); 9588 mutex_unlock(&priv->mutex); 9589 return err; 9590 } 9591 priv->power_mode = IPW_POWER_ENABLED | mode; 9592 } 9593 mutex_unlock(&priv->mutex); 9594 return 0; 9595 } 9596 9597 #define MAX_WX_STRING 80 9598 static int ipw_wx_get_powermode(struct net_device *dev, 9599 struct iw_request_info *info, 9600 union iwreq_data *wrqu, char *extra) 9601 { 9602 struct ipw_priv *priv = libipw_priv(dev); 9603 int level = IPW_POWER_LEVEL(priv->power_mode); 9604 char *p = extra; 9605 9606 p += scnprintf(p, MAX_WX_STRING, "Power save level: %d ", level); 9607 9608 switch (level) { 9609 case IPW_POWER_AC: 9610 p += scnprintf(p, MAX_WX_STRING - (p - extra), "(AC)"); 9611 break; 9612 case IPW_POWER_BATTERY: 9613 p += scnprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)"); 9614 break; 9615 default: 9616 p += scnprintf(p, MAX_WX_STRING - (p - extra), 9617 "(Timeout %dms, Period %dms)", 9618 timeout_duration[level - 1] / 1000, 9619 period_duration[level - 1] / 1000); 9620 } 9621 9622 if (!(priv->power_mode & IPW_POWER_ENABLED)) 9623 p += scnprintf(p, MAX_WX_STRING - (p - extra), " OFF"); 9624 9625 wrqu->data.length = p - extra + 1; 9626 9627 return 0; 9628 } 9629 9630 static int ipw_wx_set_wireless_mode(struct net_device *dev, 9631 struct iw_request_info *info, 9632 union iwreq_data *wrqu, char *extra) 9633 { 9634 struct ipw_priv *priv = libipw_priv(dev); 9635 int mode = *(int *)extra; 9636 u8 band = 0, modulation = 0; 9637 9638 if (mode == 0 || mode & ~IEEE_MODE_MASK) { 9639 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode); 9640 return -EINVAL; 9641 } 9642 mutex_lock(&priv->mutex); 9643 if (priv->adapter == IPW_2915ABG) { 9644 priv->ieee->abg_true = 1; 9645 if (mode & IEEE_A) { 9646 band |= LIBIPW_52GHZ_BAND; 9647 modulation |= LIBIPW_OFDM_MODULATION; 9648 } else 9649 priv->ieee->abg_true = 0; 9650 } else { 9651 if (mode & IEEE_A) { 9652 IPW_WARNING("Attempt to set 2200BG into " 9653 "802.11a mode\n"); 9654 mutex_unlock(&priv->mutex); 9655 return -EINVAL; 9656 } 9657 9658 priv->ieee->abg_true = 0; 9659 } 9660 9661 if (mode & IEEE_B) { 9662 band |= LIBIPW_24GHZ_BAND; 9663 modulation |= LIBIPW_CCK_MODULATION; 9664 } else 9665 priv->ieee->abg_true = 0; 9666 9667 if (mode & IEEE_G) { 9668 band |= LIBIPW_24GHZ_BAND; 9669 modulation |= LIBIPW_OFDM_MODULATION; 9670 } else 9671 priv->ieee->abg_true = 0; 9672 9673 priv->ieee->mode = mode; 9674 priv->ieee->freq_band = band; 9675 priv->ieee->modulation = modulation; 9676 init_supported_rates(priv, &priv->rates); 9677 9678 /* Network configuration changed -- force [re]association */ 9679 IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n"); 9680 if (!ipw_disassociate(priv)) { 9681 ipw_send_supported_rates(priv, &priv->rates); 9682 ipw_associate(priv); 9683 } 9684 9685 /* Update the band LEDs */ 9686 ipw_led_band_on(priv); 9687 9688 IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n", 9689 mode & IEEE_A ? 'a' : '.', 9690 mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.'); 9691 mutex_unlock(&priv->mutex); 9692 return 0; 9693 } 9694 9695 static int ipw_wx_get_wireless_mode(struct net_device *dev, 9696 struct iw_request_info *info, 9697 union iwreq_data *wrqu, char *extra) 9698 { 9699 struct ipw_priv *priv = libipw_priv(dev); 9700 mutex_lock(&priv->mutex); 9701 switch (priv->ieee->mode) { 9702 case IEEE_A: 9703 strncpy(extra, "802.11a (1)", MAX_WX_STRING); 9704 break; 9705 case IEEE_B: 9706 strncpy(extra, "802.11b (2)", MAX_WX_STRING); 9707 break; 9708 case IEEE_A | IEEE_B: 9709 strncpy(extra, "802.11ab (3)", MAX_WX_STRING); 9710 break; 9711 case IEEE_G: 9712 strncpy(extra, "802.11g (4)", MAX_WX_STRING); 9713 break; 9714 case IEEE_A | IEEE_G: 9715 strncpy(extra, "802.11ag (5)", MAX_WX_STRING); 9716 break; 9717 case IEEE_B | IEEE_G: 9718 strncpy(extra, "802.11bg (6)", MAX_WX_STRING); 9719 break; 9720 case IEEE_A | IEEE_B | IEEE_G: 9721 strncpy(extra, "802.11abg (7)", MAX_WX_STRING); 9722 break; 9723 default: 9724 strncpy(extra, "unknown", MAX_WX_STRING); 9725 break; 9726 } 9727 extra[MAX_WX_STRING - 1] = '\0'; 9728 9729 IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra); 9730 9731 wrqu->data.length = strlen(extra) + 1; 9732 mutex_unlock(&priv->mutex); 9733 9734 return 0; 9735 } 9736 9737 static int ipw_wx_set_preamble(struct net_device *dev, 9738 struct iw_request_info *info, 9739 union iwreq_data *wrqu, char *extra) 9740 { 9741 struct ipw_priv *priv = libipw_priv(dev); 9742 int mode = *(int *)extra; 9743 mutex_lock(&priv->mutex); 9744 /* Switching from SHORT -> LONG requires a disassociation */ 9745 if (mode == 1) { 9746 if (!(priv->config & CFG_PREAMBLE_LONG)) { 9747 priv->config |= CFG_PREAMBLE_LONG; 9748 9749 /* Network configuration changed -- force [re]association */ 9750 IPW_DEBUG_ASSOC 9751 ("[re]association triggered due to preamble change.\n"); 9752 if (!ipw_disassociate(priv)) 9753 ipw_associate(priv); 9754 } 9755 goto done; 9756 } 9757 9758 if (mode == 0) { 9759 priv->config &= ~CFG_PREAMBLE_LONG; 9760 goto done; 9761 } 9762 mutex_unlock(&priv->mutex); 9763 return -EINVAL; 9764 9765 done: 9766 mutex_unlock(&priv->mutex); 9767 return 0; 9768 } 9769 9770 static int ipw_wx_get_preamble(struct net_device *dev, 9771 struct iw_request_info *info, 9772 union iwreq_data *wrqu, char *extra) 9773 { 9774 struct ipw_priv *priv = libipw_priv(dev); 9775 mutex_lock(&priv->mutex); 9776 if (priv->config & CFG_PREAMBLE_LONG) 9777 snprintf(wrqu->name, IFNAMSIZ, "long (1)"); 9778 else 9779 snprintf(wrqu->name, IFNAMSIZ, "auto (0)"); 9780 mutex_unlock(&priv->mutex); 9781 return 0; 9782 } 9783 9784 #ifdef CONFIG_IPW2200_MONITOR 9785 static int ipw_wx_set_monitor(struct net_device *dev, 9786 struct iw_request_info *info, 9787 union iwreq_data *wrqu, char *extra) 9788 { 9789 struct ipw_priv *priv = libipw_priv(dev); 9790 int *parms = (int *)extra; 9791 int enable = (parms[0] > 0); 9792 mutex_lock(&priv->mutex); 9793 IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]); 9794 if (enable) { 9795 if (priv->ieee->iw_mode != IW_MODE_MONITOR) { 9796 #ifdef CONFIG_IPW2200_RADIOTAP 9797 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP; 9798 #else 9799 priv->net_dev->type = ARPHRD_IEEE80211; 9800 #endif 9801 schedule_work(&priv->adapter_restart); 9802 } 9803 9804 ipw_set_channel(priv, parms[1]); 9805 } else { 9806 if (priv->ieee->iw_mode != IW_MODE_MONITOR) { 9807 mutex_unlock(&priv->mutex); 9808 return 0; 9809 } 9810 priv->net_dev->type = ARPHRD_ETHER; 9811 schedule_work(&priv->adapter_restart); 9812 } 9813 mutex_unlock(&priv->mutex); 9814 return 0; 9815 } 9816 9817 #endif /* CONFIG_IPW2200_MONITOR */ 9818 9819 static int ipw_wx_reset(struct net_device *dev, 9820 struct iw_request_info *info, 9821 union iwreq_data *wrqu, char *extra) 9822 { 9823 struct ipw_priv *priv = libipw_priv(dev); 9824 IPW_DEBUG_WX("RESET\n"); 9825 schedule_work(&priv->adapter_restart); 9826 return 0; 9827 } 9828 9829 static int ipw_wx_sw_reset(struct net_device *dev, 9830 struct iw_request_info *info, 9831 union iwreq_data *wrqu, char *extra) 9832 { 9833 struct ipw_priv *priv = libipw_priv(dev); 9834 union iwreq_data wrqu_sec = { 9835 .encoding = { 9836 .flags = IW_ENCODE_DISABLED, 9837 }, 9838 }; 9839 int ret; 9840 9841 IPW_DEBUG_WX("SW_RESET\n"); 9842 9843 mutex_lock(&priv->mutex); 9844 9845 ret = ipw_sw_reset(priv, 2); 9846 if (!ret) { 9847 free_firmware(); 9848 ipw_adapter_restart(priv); 9849 } 9850 9851 /* The SW reset bit might have been toggled on by the 'disable' 9852 * module parameter, so take appropriate action */ 9853 ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW); 9854 9855 mutex_unlock(&priv->mutex); 9856 libipw_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL); 9857 mutex_lock(&priv->mutex); 9858 9859 if (!(priv->status & STATUS_RF_KILL_MASK)) { 9860 /* Configuration likely changed -- force [re]association */ 9861 IPW_DEBUG_ASSOC("[re]association triggered due to sw " 9862 "reset.\n"); 9863 if (!ipw_disassociate(priv)) 9864 ipw_associate(priv); 9865 } 9866 9867 mutex_unlock(&priv->mutex); 9868 9869 return 0; 9870 } 9871 9872 /* Rebase the WE IOCTLs to zero for the handler array */ 9873 static iw_handler ipw_wx_handlers[] = { 9874 IW_HANDLER(SIOCGIWNAME, (iw_handler)cfg80211_wext_giwname), 9875 IW_HANDLER(SIOCSIWFREQ, ipw_wx_set_freq), 9876 IW_HANDLER(SIOCGIWFREQ, ipw_wx_get_freq), 9877 IW_HANDLER(SIOCSIWMODE, ipw_wx_set_mode), 9878 IW_HANDLER(SIOCGIWMODE, ipw_wx_get_mode), 9879 IW_HANDLER(SIOCSIWSENS, ipw_wx_set_sens), 9880 IW_HANDLER(SIOCGIWSENS, ipw_wx_get_sens), 9881 IW_HANDLER(SIOCGIWRANGE, ipw_wx_get_range), 9882 IW_HANDLER(SIOCSIWAP, ipw_wx_set_wap), 9883 IW_HANDLER(SIOCGIWAP, ipw_wx_get_wap), 9884 IW_HANDLER(SIOCSIWSCAN, ipw_wx_set_scan), 9885 IW_HANDLER(SIOCGIWSCAN, ipw_wx_get_scan), 9886 IW_HANDLER(SIOCSIWESSID, ipw_wx_set_essid), 9887 IW_HANDLER(SIOCGIWESSID, ipw_wx_get_essid), 9888 IW_HANDLER(SIOCSIWNICKN, ipw_wx_set_nick), 9889 IW_HANDLER(SIOCGIWNICKN, ipw_wx_get_nick), 9890 IW_HANDLER(SIOCSIWRATE, ipw_wx_set_rate), 9891 IW_HANDLER(SIOCGIWRATE, ipw_wx_get_rate), 9892 IW_HANDLER(SIOCSIWRTS, ipw_wx_set_rts), 9893 IW_HANDLER(SIOCGIWRTS, ipw_wx_get_rts), 9894 IW_HANDLER(SIOCSIWFRAG, ipw_wx_set_frag), 9895 IW_HANDLER(SIOCGIWFRAG, ipw_wx_get_frag), 9896 IW_HANDLER(SIOCSIWTXPOW, ipw_wx_set_txpow), 9897 IW_HANDLER(SIOCGIWTXPOW, ipw_wx_get_txpow), 9898 IW_HANDLER(SIOCSIWRETRY, ipw_wx_set_retry), 9899 IW_HANDLER(SIOCGIWRETRY, ipw_wx_get_retry), 9900 IW_HANDLER(SIOCSIWENCODE, ipw_wx_set_encode), 9901 IW_HANDLER(SIOCGIWENCODE, ipw_wx_get_encode), 9902 IW_HANDLER(SIOCSIWPOWER, ipw_wx_set_power), 9903 IW_HANDLER(SIOCGIWPOWER, ipw_wx_get_power), 9904 IW_HANDLER(SIOCSIWSPY, iw_handler_set_spy), 9905 IW_HANDLER(SIOCGIWSPY, iw_handler_get_spy), 9906 IW_HANDLER(SIOCSIWTHRSPY, iw_handler_set_thrspy), 9907 IW_HANDLER(SIOCGIWTHRSPY, iw_handler_get_thrspy), 9908 IW_HANDLER(SIOCSIWGENIE, ipw_wx_set_genie), 9909 IW_HANDLER(SIOCGIWGENIE, ipw_wx_get_genie), 9910 IW_HANDLER(SIOCSIWMLME, ipw_wx_set_mlme), 9911 IW_HANDLER(SIOCSIWAUTH, ipw_wx_set_auth), 9912 IW_HANDLER(SIOCGIWAUTH, ipw_wx_get_auth), 9913 IW_HANDLER(SIOCSIWENCODEEXT, ipw_wx_set_encodeext), 9914 IW_HANDLER(SIOCGIWENCODEEXT, ipw_wx_get_encodeext), 9915 }; 9916 9917 enum { 9918 IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV, 9919 IPW_PRIV_GET_POWER, 9920 IPW_PRIV_SET_MODE, 9921 IPW_PRIV_GET_MODE, 9922 IPW_PRIV_SET_PREAMBLE, 9923 IPW_PRIV_GET_PREAMBLE, 9924 IPW_PRIV_RESET, 9925 IPW_PRIV_SW_RESET, 9926 #ifdef CONFIG_IPW2200_MONITOR 9927 IPW_PRIV_SET_MONITOR, 9928 #endif 9929 }; 9930 9931 static struct iw_priv_args ipw_priv_args[] = { 9932 { 9933 .cmd = IPW_PRIV_SET_POWER, 9934 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 9935 .name = "set_power"}, 9936 { 9937 .cmd = IPW_PRIV_GET_POWER, 9938 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING, 9939 .name = "get_power"}, 9940 { 9941 .cmd = IPW_PRIV_SET_MODE, 9942 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 9943 .name = "set_mode"}, 9944 { 9945 .cmd = IPW_PRIV_GET_MODE, 9946 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING, 9947 .name = "get_mode"}, 9948 { 9949 .cmd = IPW_PRIV_SET_PREAMBLE, 9950 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 9951 .name = "set_preamble"}, 9952 { 9953 .cmd = IPW_PRIV_GET_PREAMBLE, 9954 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, 9955 .name = "get_preamble"}, 9956 { 9957 IPW_PRIV_RESET, 9958 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"}, 9959 { 9960 IPW_PRIV_SW_RESET, 9961 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"}, 9962 #ifdef CONFIG_IPW2200_MONITOR 9963 { 9964 IPW_PRIV_SET_MONITOR, 9965 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"}, 9966 #endif /* CONFIG_IPW2200_MONITOR */ 9967 }; 9968 9969 static iw_handler ipw_priv_handler[] = { 9970 ipw_wx_set_powermode, 9971 ipw_wx_get_powermode, 9972 ipw_wx_set_wireless_mode, 9973 ipw_wx_get_wireless_mode, 9974 ipw_wx_set_preamble, 9975 ipw_wx_get_preamble, 9976 ipw_wx_reset, 9977 ipw_wx_sw_reset, 9978 #ifdef CONFIG_IPW2200_MONITOR 9979 ipw_wx_set_monitor, 9980 #endif 9981 }; 9982 9983 static const struct iw_handler_def ipw_wx_handler_def = { 9984 .standard = ipw_wx_handlers, 9985 .num_standard = ARRAY_SIZE(ipw_wx_handlers), 9986 .num_private = ARRAY_SIZE(ipw_priv_handler), 9987 .num_private_args = ARRAY_SIZE(ipw_priv_args), 9988 .private = ipw_priv_handler, 9989 .private_args = ipw_priv_args, 9990 .get_wireless_stats = ipw_get_wireless_stats, 9991 }; 9992 9993 /* 9994 * Get wireless statistics. 9995 * Called by /proc/net/wireless 9996 * Also called by SIOCGIWSTATS 9997 */ 9998 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev) 9999 { 10000 struct ipw_priv *priv = libipw_priv(dev); 10001 struct iw_statistics *wstats; 10002 10003 wstats = &priv->wstats; 10004 10005 /* if hw is disabled, then ipw_get_ordinal() can't be called. 10006 * netdev->get_wireless_stats seems to be called before fw is 10007 * initialized. STATUS_ASSOCIATED will only be set if the hw is up 10008 * and associated; if not associcated, the values are all meaningless 10009 * anyway, so set them all to NULL and INVALID */ 10010 if (!(priv->status & STATUS_ASSOCIATED)) { 10011 wstats->miss.beacon = 0; 10012 wstats->discard.retries = 0; 10013 wstats->qual.qual = 0; 10014 wstats->qual.level = 0; 10015 wstats->qual.noise = 0; 10016 wstats->qual.updated = 7; 10017 wstats->qual.updated |= IW_QUAL_NOISE_INVALID | 10018 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID; 10019 return wstats; 10020 } 10021 10022 wstats->qual.qual = priv->quality; 10023 wstats->qual.level = priv->exp_avg_rssi; 10024 wstats->qual.noise = priv->exp_avg_noise; 10025 wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED | 10026 IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM; 10027 10028 wstats->miss.beacon = average_value(&priv->average_missed_beacons); 10029 wstats->discard.retries = priv->last_tx_failures; 10030 wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable; 10031 10032 /* if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len)) 10033 goto fail_get_ordinal; 10034 wstats->discard.retries += tx_retry; */ 10035 10036 return wstats; 10037 } 10038 10039 /* net device stuff */ 10040 10041 static void init_sys_config(struct ipw_sys_config *sys_config) 10042 { 10043 memset(sys_config, 0, sizeof(struct ipw_sys_config)); 10044 sys_config->bt_coexistence = 0; 10045 sys_config->answer_broadcast_ssid_probe = 0; 10046 sys_config->accept_all_data_frames = 0; 10047 sys_config->accept_non_directed_frames = 1; 10048 sys_config->exclude_unicast_unencrypted = 0; 10049 sys_config->disable_unicast_decryption = 1; 10050 sys_config->exclude_multicast_unencrypted = 0; 10051 sys_config->disable_multicast_decryption = 1; 10052 if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B) 10053 antenna = CFG_SYS_ANTENNA_BOTH; 10054 sys_config->antenna_diversity = antenna; 10055 sys_config->pass_crc_to_host = 0; /* TODO: See if 1 gives us FCS */ 10056 sys_config->dot11g_auto_detection = 0; 10057 sys_config->enable_cts_to_self = 0; 10058 sys_config->bt_coexist_collision_thr = 0; 10059 sys_config->pass_noise_stats_to_host = 1; /* 1 -- fix for 256 */ 10060 sys_config->silence_threshold = 0x1e; 10061 } 10062 10063 static int ipw_net_open(struct net_device *dev) 10064 { 10065 IPW_DEBUG_INFO("dev->open\n"); 10066 netif_start_queue(dev); 10067 return 0; 10068 } 10069 10070 static int ipw_net_stop(struct net_device *dev) 10071 { 10072 IPW_DEBUG_INFO("dev->close\n"); 10073 netif_stop_queue(dev); 10074 return 0; 10075 } 10076 10077 /* 10078 todo: 10079 10080 modify to send one tfd per fragment instead of using chunking. otherwise 10081 we need to heavily modify the libipw_skb_to_txb. 10082 */ 10083 10084 static int ipw_tx_skb(struct ipw_priv *priv, struct libipw_txb *txb, 10085 int pri) 10086 { 10087 struct libipw_hdr_3addrqos *hdr = (struct libipw_hdr_3addrqos *) 10088 txb->fragments[0]->data; 10089 int i = 0; 10090 struct tfd_frame *tfd; 10091 #ifdef CONFIG_IPW2200_QOS 10092 int tx_id = ipw_get_tx_queue_number(priv, pri); 10093 struct clx2_tx_queue *txq = &priv->txq[tx_id]; 10094 #else 10095 struct clx2_tx_queue *txq = &priv->txq[0]; 10096 #endif 10097 struct clx2_queue *q = &txq->q; 10098 u8 id, hdr_len, unicast; 10099 int fc; 10100 10101 if (!(priv->status & STATUS_ASSOCIATED)) 10102 goto drop; 10103 10104 hdr_len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_ctl)); 10105 switch (priv->ieee->iw_mode) { 10106 case IW_MODE_ADHOC: 10107 unicast = !is_multicast_ether_addr(hdr->addr1); 10108 id = ipw_find_station(priv, hdr->addr1); 10109 if (id == IPW_INVALID_STATION) { 10110 id = ipw_add_station(priv, hdr->addr1); 10111 if (id == IPW_INVALID_STATION) { 10112 IPW_WARNING("Attempt to send data to " 10113 "invalid cell: %pM\n", 10114 hdr->addr1); 10115 goto drop; 10116 } 10117 } 10118 break; 10119 10120 case IW_MODE_INFRA: 10121 default: 10122 unicast = !is_multicast_ether_addr(hdr->addr3); 10123 id = 0; 10124 break; 10125 } 10126 10127 tfd = &txq->bd[q->first_empty]; 10128 txq->txb[q->first_empty] = txb; 10129 memset(tfd, 0, sizeof(*tfd)); 10130 tfd->u.data.station_number = id; 10131 10132 tfd->control_flags.message_type = TX_FRAME_TYPE; 10133 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK; 10134 10135 tfd->u.data.cmd_id = DINO_CMD_TX; 10136 tfd->u.data.len = cpu_to_le16(txb->payload_size); 10137 10138 if (priv->assoc_request.ieee_mode == IPW_B_MODE) 10139 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK; 10140 else 10141 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM; 10142 10143 if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE) 10144 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE; 10145 10146 fc = le16_to_cpu(hdr->frame_ctl); 10147 hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS); 10148 10149 memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len); 10150 10151 if (likely(unicast)) 10152 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD; 10153 10154 if (txb->encrypted && !priv->ieee->host_encrypt) { 10155 switch (priv->ieee->sec.level) { 10156 case SEC_LEVEL_3: 10157 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |= 10158 cpu_to_le16(IEEE80211_FCTL_PROTECTED); 10159 /* XXX: ACK flag must be set for CCMP even if it 10160 * is a multicast/broadcast packet, because CCMP 10161 * group communication encrypted by GTK is 10162 * actually done by the AP. */ 10163 if (!unicast) 10164 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD; 10165 10166 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP; 10167 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM; 10168 tfd->u.data.key_index = 0; 10169 tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE; 10170 break; 10171 case SEC_LEVEL_2: 10172 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |= 10173 cpu_to_le16(IEEE80211_FCTL_PROTECTED); 10174 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP; 10175 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP; 10176 tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE; 10177 break; 10178 case SEC_LEVEL_1: 10179 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |= 10180 cpu_to_le16(IEEE80211_FCTL_PROTECTED); 10181 tfd->u.data.key_index = priv->ieee->crypt_info.tx_keyidx; 10182 if (priv->ieee->sec.key_sizes[priv->ieee->crypt_info.tx_keyidx] <= 10183 40) 10184 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit; 10185 else 10186 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit; 10187 break; 10188 case SEC_LEVEL_0: 10189 break; 10190 default: 10191 printk(KERN_ERR "Unknown security level %d\n", 10192 priv->ieee->sec.level); 10193 break; 10194 } 10195 } else 10196 /* No hardware encryption */ 10197 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP; 10198 10199 #ifdef CONFIG_IPW2200_QOS 10200 if (fc & IEEE80211_STYPE_QOS_DATA) 10201 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data)); 10202 #endif /* CONFIG_IPW2200_QOS */ 10203 10204 /* payload */ 10205 tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2), 10206 txb->nr_frags)); 10207 IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n", 10208 txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks)); 10209 for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) { 10210 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n", 10211 i, le32_to_cpu(tfd->u.data.num_chunks), 10212 txb->fragments[i]->len - hdr_len); 10213 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n", 10214 i, tfd->u.data.num_chunks, 10215 txb->fragments[i]->len - hdr_len); 10216 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len, 10217 txb->fragments[i]->len - hdr_len); 10218 10219 tfd->u.data.chunk_ptr[i] = 10220 cpu_to_le32(pci_map_single 10221 (priv->pci_dev, 10222 txb->fragments[i]->data + hdr_len, 10223 txb->fragments[i]->len - hdr_len, 10224 PCI_DMA_TODEVICE)); 10225 tfd->u.data.chunk_len[i] = 10226 cpu_to_le16(txb->fragments[i]->len - hdr_len); 10227 } 10228 10229 if (i != txb->nr_frags) { 10230 struct sk_buff *skb; 10231 u16 remaining_bytes = 0; 10232 int j; 10233 10234 for (j = i; j < txb->nr_frags; j++) 10235 remaining_bytes += txb->fragments[j]->len - hdr_len; 10236 10237 printk(KERN_INFO "Trying to reallocate for %d bytes\n", 10238 remaining_bytes); 10239 skb = alloc_skb(remaining_bytes, GFP_ATOMIC); 10240 if (skb != NULL) { 10241 tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes); 10242 for (j = i; j < txb->nr_frags; j++) { 10243 int size = txb->fragments[j]->len - hdr_len; 10244 10245 printk(KERN_INFO "Adding frag %d %d...\n", 10246 j, size); 10247 skb_put_data(skb, 10248 txb->fragments[j]->data + hdr_len, 10249 size); 10250 } 10251 dev_kfree_skb_any(txb->fragments[i]); 10252 txb->fragments[i] = skb; 10253 tfd->u.data.chunk_ptr[i] = 10254 cpu_to_le32(pci_map_single 10255 (priv->pci_dev, skb->data, 10256 remaining_bytes, 10257 PCI_DMA_TODEVICE)); 10258 10259 le32_add_cpu(&tfd->u.data.num_chunks, 1); 10260 } 10261 } 10262 10263 /* kick DMA */ 10264 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd); 10265 ipw_write32(priv, q->reg_w, q->first_empty); 10266 10267 if (ipw_tx_queue_space(q) < q->high_mark) 10268 netif_stop_queue(priv->net_dev); 10269 10270 return NETDEV_TX_OK; 10271 10272 drop: 10273 IPW_DEBUG_DROP("Silently dropping Tx packet.\n"); 10274 libipw_txb_free(txb); 10275 return NETDEV_TX_OK; 10276 } 10277 10278 static int ipw_net_is_queue_full(struct net_device *dev, int pri) 10279 { 10280 struct ipw_priv *priv = libipw_priv(dev); 10281 #ifdef CONFIG_IPW2200_QOS 10282 int tx_id = ipw_get_tx_queue_number(priv, pri); 10283 struct clx2_tx_queue *txq = &priv->txq[tx_id]; 10284 #else 10285 struct clx2_tx_queue *txq = &priv->txq[0]; 10286 #endif /* CONFIG_IPW2200_QOS */ 10287 10288 if (ipw_tx_queue_space(&txq->q) < txq->q.high_mark) 10289 return 1; 10290 10291 return 0; 10292 } 10293 10294 #ifdef CONFIG_IPW2200_PROMISCUOUS 10295 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv, 10296 struct libipw_txb *txb) 10297 { 10298 struct libipw_rx_stats dummystats; 10299 struct ieee80211_hdr *hdr; 10300 u8 n; 10301 u16 filter = priv->prom_priv->filter; 10302 int hdr_only = 0; 10303 10304 if (filter & IPW_PROM_NO_TX) 10305 return; 10306 10307 memset(&dummystats, 0, sizeof(dummystats)); 10308 10309 /* Filtering of fragment chains is done against the first fragment */ 10310 hdr = (void *)txb->fragments[0]->data; 10311 if (libipw_is_management(le16_to_cpu(hdr->frame_control))) { 10312 if (filter & IPW_PROM_NO_MGMT) 10313 return; 10314 if (filter & IPW_PROM_MGMT_HEADER_ONLY) 10315 hdr_only = 1; 10316 } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) { 10317 if (filter & IPW_PROM_NO_CTL) 10318 return; 10319 if (filter & IPW_PROM_CTL_HEADER_ONLY) 10320 hdr_only = 1; 10321 } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) { 10322 if (filter & IPW_PROM_NO_DATA) 10323 return; 10324 if (filter & IPW_PROM_DATA_HEADER_ONLY) 10325 hdr_only = 1; 10326 } 10327 10328 for(n=0; n<txb->nr_frags; ++n) { 10329 struct sk_buff *src = txb->fragments[n]; 10330 struct sk_buff *dst; 10331 struct ieee80211_radiotap_header *rt_hdr; 10332 int len; 10333 10334 if (hdr_only) { 10335 hdr = (void *)src->data; 10336 len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control)); 10337 } else 10338 len = src->len; 10339 10340 dst = alloc_skb(len + sizeof(*rt_hdr) + sizeof(u16)*2, GFP_ATOMIC); 10341 if (!dst) 10342 continue; 10343 10344 rt_hdr = skb_put(dst, sizeof(*rt_hdr)); 10345 10346 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION; 10347 rt_hdr->it_pad = 0; 10348 rt_hdr->it_present = 0; /* after all, it's just an idea */ 10349 rt_hdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_CHANNEL); 10350 10351 *(__le16*)skb_put(dst, sizeof(u16)) = cpu_to_le16( 10352 ieee80211chan2mhz(priv->channel)); 10353 if (priv->channel > 14) /* 802.11a */ 10354 *(__le16*)skb_put(dst, sizeof(u16)) = 10355 cpu_to_le16(IEEE80211_CHAN_OFDM | 10356 IEEE80211_CHAN_5GHZ); 10357 else if (priv->ieee->mode == IEEE_B) /* 802.11b */ 10358 *(__le16*)skb_put(dst, sizeof(u16)) = 10359 cpu_to_le16(IEEE80211_CHAN_CCK | 10360 IEEE80211_CHAN_2GHZ); 10361 else /* 802.11g */ 10362 *(__le16*)skb_put(dst, sizeof(u16)) = 10363 cpu_to_le16(IEEE80211_CHAN_OFDM | 10364 IEEE80211_CHAN_2GHZ); 10365 10366 rt_hdr->it_len = cpu_to_le16(dst->len); 10367 10368 skb_copy_from_linear_data(src, skb_put(dst, len), len); 10369 10370 if (!libipw_rx(priv->prom_priv->ieee, dst, &dummystats)) 10371 dev_kfree_skb_any(dst); 10372 } 10373 } 10374 #endif 10375 10376 static netdev_tx_t ipw_net_hard_start_xmit(struct libipw_txb *txb, 10377 struct net_device *dev, int pri) 10378 { 10379 struct ipw_priv *priv = libipw_priv(dev); 10380 unsigned long flags; 10381 netdev_tx_t ret; 10382 10383 IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size); 10384 spin_lock_irqsave(&priv->lock, flags); 10385 10386 #ifdef CONFIG_IPW2200_PROMISCUOUS 10387 if (rtap_iface && netif_running(priv->prom_net_dev)) 10388 ipw_handle_promiscuous_tx(priv, txb); 10389 #endif 10390 10391 ret = ipw_tx_skb(priv, txb, pri); 10392 if (ret == NETDEV_TX_OK) 10393 __ipw_led_activity_on(priv); 10394 spin_unlock_irqrestore(&priv->lock, flags); 10395 10396 return ret; 10397 } 10398 10399 static void ipw_net_set_multicast_list(struct net_device *dev) 10400 { 10401 10402 } 10403 10404 static int ipw_net_set_mac_address(struct net_device *dev, void *p) 10405 { 10406 struct ipw_priv *priv = libipw_priv(dev); 10407 struct sockaddr *addr = p; 10408 10409 if (!is_valid_ether_addr(addr->sa_data)) 10410 return -EADDRNOTAVAIL; 10411 mutex_lock(&priv->mutex); 10412 priv->config |= CFG_CUSTOM_MAC; 10413 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN); 10414 printk(KERN_INFO "%s: Setting MAC to %pM\n", 10415 priv->net_dev->name, priv->mac_addr); 10416 schedule_work(&priv->adapter_restart); 10417 mutex_unlock(&priv->mutex); 10418 return 0; 10419 } 10420 10421 static void ipw_ethtool_get_drvinfo(struct net_device *dev, 10422 struct ethtool_drvinfo *info) 10423 { 10424 struct ipw_priv *p = libipw_priv(dev); 10425 char vers[64]; 10426 char date[32]; 10427 u32 len; 10428 10429 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 10430 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 10431 10432 len = sizeof(vers); 10433 ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len); 10434 len = sizeof(date); 10435 ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len); 10436 10437 snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)", 10438 vers, date); 10439 strlcpy(info->bus_info, pci_name(p->pci_dev), 10440 sizeof(info->bus_info)); 10441 } 10442 10443 static u32 ipw_ethtool_get_link(struct net_device *dev) 10444 { 10445 struct ipw_priv *priv = libipw_priv(dev); 10446 return (priv->status & STATUS_ASSOCIATED) != 0; 10447 } 10448 10449 static int ipw_ethtool_get_eeprom_len(struct net_device *dev) 10450 { 10451 return IPW_EEPROM_IMAGE_SIZE; 10452 } 10453 10454 static int ipw_ethtool_get_eeprom(struct net_device *dev, 10455 struct ethtool_eeprom *eeprom, u8 * bytes) 10456 { 10457 struct ipw_priv *p = libipw_priv(dev); 10458 10459 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE) 10460 return -EINVAL; 10461 mutex_lock(&p->mutex); 10462 memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len); 10463 mutex_unlock(&p->mutex); 10464 return 0; 10465 } 10466 10467 static int ipw_ethtool_set_eeprom(struct net_device *dev, 10468 struct ethtool_eeprom *eeprom, u8 * bytes) 10469 { 10470 struct ipw_priv *p = libipw_priv(dev); 10471 int i; 10472 10473 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE) 10474 return -EINVAL; 10475 mutex_lock(&p->mutex); 10476 memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len); 10477 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++) 10478 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]); 10479 mutex_unlock(&p->mutex); 10480 return 0; 10481 } 10482 10483 static const struct ethtool_ops ipw_ethtool_ops = { 10484 .get_link = ipw_ethtool_get_link, 10485 .get_drvinfo = ipw_ethtool_get_drvinfo, 10486 .get_eeprom_len = ipw_ethtool_get_eeprom_len, 10487 .get_eeprom = ipw_ethtool_get_eeprom, 10488 .set_eeprom = ipw_ethtool_set_eeprom, 10489 }; 10490 10491 static irqreturn_t ipw_isr(int irq, void *data) 10492 { 10493 struct ipw_priv *priv = data; 10494 u32 inta, inta_mask; 10495 10496 if (!priv) 10497 return IRQ_NONE; 10498 10499 spin_lock(&priv->irq_lock); 10500 10501 if (!(priv->status & STATUS_INT_ENABLED)) { 10502 /* IRQ is disabled */ 10503 goto none; 10504 } 10505 10506 inta = ipw_read32(priv, IPW_INTA_RW); 10507 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R); 10508 10509 if (inta == 0xFFFFFFFF) { 10510 /* Hardware disappeared */ 10511 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n"); 10512 goto none; 10513 } 10514 10515 if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) { 10516 /* Shared interrupt */ 10517 goto none; 10518 } 10519 10520 /* tell the device to stop sending interrupts */ 10521 __ipw_disable_interrupts(priv); 10522 10523 /* ack current interrupts */ 10524 inta &= (IPW_INTA_MASK_ALL & inta_mask); 10525 ipw_write32(priv, IPW_INTA_RW, inta); 10526 10527 /* Cache INTA value for our tasklet */ 10528 priv->isr_inta = inta; 10529 10530 tasklet_schedule(&priv->irq_tasklet); 10531 10532 spin_unlock(&priv->irq_lock); 10533 10534 return IRQ_HANDLED; 10535 none: 10536 spin_unlock(&priv->irq_lock); 10537 return IRQ_NONE; 10538 } 10539 10540 static void ipw_rf_kill(void *adapter) 10541 { 10542 struct ipw_priv *priv = adapter; 10543 unsigned long flags; 10544 10545 spin_lock_irqsave(&priv->lock, flags); 10546 10547 if (rf_kill_active(priv)) { 10548 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n"); 10549 schedule_delayed_work(&priv->rf_kill, 2 * HZ); 10550 goto exit_unlock; 10551 } 10552 10553 /* RF Kill is now disabled, so bring the device back up */ 10554 10555 if (!(priv->status & STATUS_RF_KILL_MASK)) { 10556 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting " 10557 "device\n"); 10558 10559 /* we can not do an adapter restart while inside an irq lock */ 10560 schedule_work(&priv->adapter_restart); 10561 } else 10562 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still " 10563 "enabled\n"); 10564 10565 exit_unlock: 10566 spin_unlock_irqrestore(&priv->lock, flags); 10567 } 10568 10569 static void ipw_bg_rf_kill(struct work_struct *work) 10570 { 10571 struct ipw_priv *priv = 10572 container_of(work, struct ipw_priv, rf_kill.work); 10573 mutex_lock(&priv->mutex); 10574 ipw_rf_kill(priv); 10575 mutex_unlock(&priv->mutex); 10576 } 10577 10578 static void ipw_link_up(struct ipw_priv *priv) 10579 { 10580 priv->last_seq_num = -1; 10581 priv->last_frag_num = -1; 10582 priv->last_packet_time = 0; 10583 10584 netif_carrier_on(priv->net_dev); 10585 10586 cancel_delayed_work(&priv->request_scan); 10587 cancel_delayed_work(&priv->request_direct_scan); 10588 cancel_delayed_work(&priv->request_passive_scan); 10589 cancel_delayed_work(&priv->scan_event); 10590 ipw_reset_stats(priv); 10591 /* Ensure the rate is updated immediately */ 10592 priv->last_rate = ipw_get_current_rate(priv); 10593 ipw_gather_stats(priv); 10594 ipw_led_link_up(priv); 10595 notify_wx_assoc_event(priv); 10596 10597 if (priv->config & CFG_BACKGROUND_SCAN) 10598 schedule_delayed_work(&priv->request_scan, HZ); 10599 } 10600 10601 static void ipw_bg_link_up(struct work_struct *work) 10602 { 10603 struct ipw_priv *priv = 10604 container_of(work, struct ipw_priv, link_up); 10605 mutex_lock(&priv->mutex); 10606 ipw_link_up(priv); 10607 mutex_unlock(&priv->mutex); 10608 } 10609 10610 static void ipw_link_down(struct ipw_priv *priv) 10611 { 10612 ipw_led_link_down(priv); 10613 netif_carrier_off(priv->net_dev); 10614 notify_wx_assoc_event(priv); 10615 10616 /* Cancel any queued work ... */ 10617 cancel_delayed_work(&priv->request_scan); 10618 cancel_delayed_work(&priv->request_direct_scan); 10619 cancel_delayed_work(&priv->request_passive_scan); 10620 cancel_delayed_work(&priv->adhoc_check); 10621 cancel_delayed_work(&priv->gather_stats); 10622 10623 ipw_reset_stats(priv); 10624 10625 if (!(priv->status & STATUS_EXIT_PENDING)) { 10626 /* Queue up another scan... */ 10627 schedule_delayed_work(&priv->request_scan, 0); 10628 } else 10629 cancel_delayed_work(&priv->scan_event); 10630 } 10631 10632 static void ipw_bg_link_down(struct work_struct *work) 10633 { 10634 struct ipw_priv *priv = 10635 container_of(work, struct ipw_priv, link_down); 10636 mutex_lock(&priv->mutex); 10637 ipw_link_down(priv); 10638 mutex_unlock(&priv->mutex); 10639 } 10640 10641 static void ipw_setup_deferred_work(struct ipw_priv *priv) 10642 { 10643 init_waitqueue_head(&priv->wait_command_queue); 10644 init_waitqueue_head(&priv->wait_state); 10645 10646 INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check); 10647 INIT_WORK(&priv->associate, ipw_bg_associate); 10648 INIT_WORK(&priv->disassociate, ipw_bg_disassociate); 10649 INIT_WORK(&priv->system_config, ipw_system_config); 10650 INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish); 10651 INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart); 10652 INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill); 10653 INIT_WORK(&priv->up, ipw_bg_up); 10654 INIT_WORK(&priv->down, ipw_bg_down); 10655 INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan); 10656 INIT_DELAYED_WORK(&priv->request_direct_scan, ipw_request_direct_scan); 10657 INIT_DELAYED_WORK(&priv->request_passive_scan, ipw_request_passive_scan); 10658 INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event); 10659 INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats); 10660 INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan); 10661 INIT_WORK(&priv->roam, ipw_bg_roam); 10662 INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check); 10663 INIT_WORK(&priv->link_up, ipw_bg_link_up); 10664 INIT_WORK(&priv->link_down, ipw_bg_link_down); 10665 INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on); 10666 INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off); 10667 INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off); 10668 INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network); 10669 10670 #ifdef CONFIG_IPW2200_QOS 10671 INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate); 10672 #endif /* CONFIG_IPW2200_QOS */ 10673 10674 tasklet_init(&priv->irq_tasklet, 10675 ipw_irq_tasklet, (unsigned long)priv); 10676 } 10677 10678 static void shim__set_security(struct net_device *dev, 10679 struct libipw_security *sec) 10680 { 10681 struct ipw_priv *priv = libipw_priv(dev); 10682 int i; 10683 for (i = 0; i < 4; i++) { 10684 if (sec->flags & (1 << i)) { 10685 priv->ieee->sec.encode_alg[i] = sec->encode_alg[i]; 10686 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i]; 10687 if (sec->key_sizes[i] == 0) 10688 priv->ieee->sec.flags &= ~(1 << i); 10689 else { 10690 memcpy(priv->ieee->sec.keys[i], sec->keys[i], 10691 sec->key_sizes[i]); 10692 priv->ieee->sec.flags |= (1 << i); 10693 } 10694 priv->status |= STATUS_SECURITY_UPDATED; 10695 } else if (sec->level != SEC_LEVEL_1) 10696 priv->ieee->sec.flags &= ~(1 << i); 10697 } 10698 10699 if (sec->flags & SEC_ACTIVE_KEY) { 10700 priv->ieee->sec.active_key = sec->active_key; 10701 priv->ieee->sec.flags |= SEC_ACTIVE_KEY; 10702 priv->status |= STATUS_SECURITY_UPDATED; 10703 } else 10704 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY; 10705 10706 if ((sec->flags & SEC_AUTH_MODE) && 10707 (priv->ieee->sec.auth_mode != sec->auth_mode)) { 10708 priv->ieee->sec.auth_mode = sec->auth_mode; 10709 priv->ieee->sec.flags |= SEC_AUTH_MODE; 10710 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY) 10711 priv->capability |= CAP_SHARED_KEY; 10712 else 10713 priv->capability &= ~CAP_SHARED_KEY; 10714 priv->status |= STATUS_SECURITY_UPDATED; 10715 } 10716 10717 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) { 10718 priv->ieee->sec.flags |= SEC_ENABLED; 10719 priv->ieee->sec.enabled = sec->enabled; 10720 priv->status |= STATUS_SECURITY_UPDATED; 10721 if (sec->enabled) 10722 priv->capability |= CAP_PRIVACY_ON; 10723 else 10724 priv->capability &= ~CAP_PRIVACY_ON; 10725 } 10726 10727 if (sec->flags & SEC_ENCRYPT) 10728 priv->ieee->sec.encrypt = sec->encrypt; 10729 10730 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) { 10731 priv->ieee->sec.level = sec->level; 10732 priv->ieee->sec.flags |= SEC_LEVEL; 10733 priv->status |= STATUS_SECURITY_UPDATED; 10734 } 10735 10736 if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT)) 10737 ipw_set_hwcrypto_keys(priv); 10738 10739 /* To match current functionality of ipw2100 (which works well w/ 10740 * various supplicants, we don't force a disassociate if the 10741 * privacy capability changes ... */ 10742 #if 0 10743 if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) && 10744 (((priv->assoc_request.capability & 10745 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && !sec->enabled) || 10746 (!(priv->assoc_request.capability & 10747 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && sec->enabled))) { 10748 IPW_DEBUG_ASSOC("Disassociating due to capability " 10749 "change.\n"); 10750 ipw_disassociate(priv); 10751 } 10752 #endif 10753 } 10754 10755 static int init_supported_rates(struct ipw_priv *priv, 10756 struct ipw_supported_rates *rates) 10757 { 10758 /* TODO: Mask out rates based on priv->rates_mask */ 10759 10760 memset(rates, 0, sizeof(*rates)); 10761 /* configure supported rates */ 10762 switch (priv->ieee->freq_band) { 10763 case LIBIPW_52GHZ_BAND: 10764 rates->ieee_mode = IPW_A_MODE; 10765 rates->purpose = IPW_RATE_CAPABILITIES; 10766 ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION, 10767 LIBIPW_OFDM_DEFAULT_RATES_MASK); 10768 break; 10769 10770 default: /* Mixed or 2.4Ghz */ 10771 rates->ieee_mode = IPW_G_MODE; 10772 rates->purpose = IPW_RATE_CAPABILITIES; 10773 ipw_add_cck_scan_rates(rates, LIBIPW_CCK_MODULATION, 10774 LIBIPW_CCK_DEFAULT_RATES_MASK); 10775 if (priv->ieee->modulation & LIBIPW_OFDM_MODULATION) { 10776 ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION, 10777 LIBIPW_OFDM_DEFAULT_RATES_MASK); 10778 } 10779 break; 10780 } 10781 10782 return 0; 10783 } 10784 10785 static int ipw_config(struct ipw_priv *priv) 10786 { 10787 /* This is only called from ipw_up, which resets/reloads the firmware 10788 so, we don't need to first disable the card before we configure 10789 it */ 10790 if (ipw_set_tx_power(priv)) 10791 goto error; 10792 10793 /* initialize adapter address */ 10794 if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr)) 10795 goto error; 10796 10797 /* set basic system config settings */ 10798 init_sys_config(&priv->sys_config); 10799 10800 /* Support Bluetooth if we have BT h/w on board, and user wants to. 10801 * Does not support BT priority yet (don't abort or defer our Tx) */ 10802 if (bt_coexist) { 10803 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY]; 10804 10805 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG) 10806 priv->sys_config.bt_coexistence 10807 |= CFG_BT_COEXISTENCE_SIGNAL_CHNL; 10808 if (bt_caps & EEPROM_SKU_CAP_BT_OOB) 10809 priv->sys_config.bt_coexistence 10810 |= CFG_BT_COEXISTENCE_OOB; 10811 } 10812 10813 #ifdef CONFIG_IPW2200_PROMISCUOUS 10814 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) { 10815 priv->sys_config.accept_all_data_frames = 1; 10816 priv->sys_config.accept_non_directed_frames = 1; 10817 priv->sys_config.accept_all_mgmt_bcpr = 1; 10818 priv->sys_config.accept_all_mgmt_frames = 1; 10819 } 10820 #endif 10821 10822 if (priv->ieee->iw_mode == IW_MODE_ADHOC) 10823 priv->sys_config.answer_broadcast_ssid_probe = 1; 10824 else 10825 priv->sys_config.answer_broadcast_ssid_probe = 0; 10826 10827 if (ipw_send_system_config(priv)) 10828 goto error; 10829 10830 init_supported_rates(priv, &priv->rates); 10831 if (ipw_send_supported_rates(priv, &priv->rates)) 10832 goto error; 10833 10834 /* Set request-to-send threshold */ 10835 if (priv->rts_threshold) { 10836 if (ipw_send_rts_threshold(priv, priv->rts_threshold)) 10837 goto error; 10838 } 10839 #ifdef CONFIG_IPW2200_QOS 10840 IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n"); 10841 ipw_qos_activate(priv, NULL); 10842 #endif /* CONFIG_IPW2200_QOS */ 10843 10844 if (ipw_set_random_seed(priv)) 10845 goto error; 10846 10847 /* final state transition to the RUN state */ 10848 if (ipw_send_host_complete(priv)) 10849 goto error; 10850 10851 priv->status |= STATUS_INIT; 10852 10853 ipw_led_init(priv); 10854 ipw_led_radio_on(priv); 10855 priv->notif_missed_beacons = 0; 10856 10857 /* Set hardware WEP key if it is configured. */ 10858 if ((priv->capability & CAP_PRIVACY_ON) && 10859 (priv->ieee->sec.level == SEC_LEVEL_1) && 10860 !(priv->ieee->host_encrypt || priv->ieee->host_decrypt)) 10861 ipw_set_hwcrypto_keys(priv); 10862 10863 return 0; 10864 10865 error: 10866 return -EIO; 10867 } 10868 10869 /* 10870 * NOTE: 10871 * 10872 * These tables have been tested in conjunction with the 10873 * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters. 10874 * 10875 * Altering this values, using it on other hardware, or in geographies 10876 * not intended for resale of the above mentioned Intel adapters has 10877 * not been tested. 10878 * 10879 * Remember to update the table in README.ipw2200 when changing this 10880 * table. 10881 * 10882 */ 10883 static const struct libipw_geo ipw_geos[] = { 10884 { /* Restricted */ 10885 "---", 10886 .bg_channels = 11, 10887 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 10888 {2427, 4}, {2432, 5}, {2437, 6}, 10889 {2442, 7}, {2447, 8}, {2452, 9}, 10890 {2457, 10}, {2462, 11}}, 10891 }, 10892 10893 { /* Custom US/Canada */ 10894 "ZZF", 10895 .bg_channels = 11, 10896 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 10897 {2427, 4}, {2432, 5}, {2437, 6}, 10898 {2442, 7}, {2447, 8}, {2452, 9}, 10899 {2457, 10}, {2462, 11}}, 10900 .a_channels = 8, 10901 .a = {{5180, 36}, 10902 {5200, 40}, 10903 {5220, 44}, 10904 {5240, 48}, 10905 {5260, 52, LIBIPW_CH_PASSIVE_ONLY}, 10906 {5280, 56, LIBIPW_CH_PASSIVE_ONLY}, 10907 {5300, 60, LIBIPW_CH_PASSIVE_ONLY}, 10908 {5320, 64, LIBIPW_CH_PASSIVE_ONLY}}, 10909 }, 10910 10911 { /* Rest of World */ 10912 "ZZD", 10913 .bg_channels = 13, 10914 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 10915 {2427, 4}, {2432, 5}, {2437, 6}, 10916 {2442, 7}, {2447, 8}, {2452, 9}, 10917 {2457, 10}, {2462, 11}, {2467, 12}, 10918 {2472, 13}}, 10919 }, 10920 10921 { /* Custom USA & Europe & High */ 10922 "ZZA", 10923 .bg_channels = 11, 10924 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 10925 {2427, 4}, {2432, 5}, {2437, 6}, 10926 {2442, 7}, {2447, 8}, {2452, 9}, 10927 {2457, 10}, {2462, 11}}, 10928 .a_channels = 13, 10929 .a = {{5180, 36}, 10930 {5200, 40}, 10931 {5220, 44}, 10932 {5240, 48}, 10933 {5260, 52, LIBIPW_CH_PASSIVE_ONLY}, 10934 {5280, 56, LIBIPW_CH_PASSIVE_ONLY}, 10935 {5300, 60, LIBIPW_CH_PASSIVE_ONLY}, 10936 {5320, 64, LIBIPW_CH_PASSIVE_ONLY}, 10937 {5745, 149}, 10938 {5765, 153}, 10939 {5785, 157}, 10940 {5805, 161}, 10941 {5825, 165}}, 10942 }, 10943 10944 { /* Custom NA & Europe */ 10945 "ZZB", 10946 .bg_channels = 11, 10947 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 10948 {2427, 4}, {2432, 5}, {2437, 6}, 10949 {2442, 7}, {2447, 8}, {2452, 9}, 10950 {2457, 10}, {2462, 11}}, 10951 .a_channels = 13, 10952 .a = {{5180, 36}, 10953 {5200, 40}, 10954 {5220, 44}, 10955 {5240, 48}, 10956 {5260, 52, LIBIPW_CH_PASSIVE_ONLY}, 10957 {5280, 56, LIBIPW_CH_PASSIVE_ONLY}, 10958 {5300, 60, LIBIPW_CH_PASSIVE_ONLY}, 10959 {5320, 64, LIBIPW_CH_PASSIVE_ONLY}, 10960 {5745, 149, LIBIPW_CH_PASSIVE_ONLY}, 10961 {5765, 153, LIBIPW_CH_PASSIVE_ONLY}, 10962 {5785, 157, LIBIPW_CH_PASSIVE_ONLY}, 10963 {5805, 161, LIBIPW_CH_PASSIVE_ONLY}, 10964 {5825, 165, LIBIPW_CH_PASSIVE_ONLY}}, 10965 }, 10966 10967 { /* Custom Japan */ 10968 "ZZC", 10969 .bg_channels = 11, 10970 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 10971 {2427, 4}, {2432, 5}, {2437, 6}, 10972 {2442, 7}, {2447, 8}, {2452, 9}, 10973 {2457, 10}, {2462, 11}}, 10974 .a_channels = 4, 10975 .a = {{5170, 34}, {5190, 38}, 10976 {5210, 42}, {5230, 46}}, 10977 }, 10978 10979 { /* Custom */ 10980 "ZZM", 10981 .bg_channels = 11, 10982 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 10983 {2427, 4}, {2432, 5}, {2437, 6}, 10984 {2442, 7}, {2447, 8}, {2452, 9}, 10985 {2457, 10}, {2462, 11}}, 10986 }, 10987 10988 { /* Europe */ 10989 "ZZE", 10990 .bg_channels = 13, 10991 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 10992 {2427, 4}, {2432, 5}, {2437, 6}, 10993 {2442, 7}, {2447, 8}, {2452, 9}, 10994 {2457, 10}, {2462, 11}, {2467, 12}, 10995 {2472, 13}}, 10996 .a_channels = 19, 10997 .a = {{5180, 36}, 10998 {5200, 40}, 10999 {5220, 44}, 11000 {5240, 48}, 11001 {5260, 52, LIBIPW_CH_PASSIVE_ONLY}, 11002 {5280, 56, LIBIPW_CH_PASSIVE_ONLY}, 11003 {5300, 60, LIBIPW_CH_PASSIVE_ONLY}, 11004 {5320, 64, LIBIPW_CH_PASSIVE_ONLY}, 11005 {5500, 100, LIBIPW_CH_PASSIVE_ONLY}, 11006 {5520, 104, LIBIPW_CH_PASSIVE_ONLY}, 11007 {5540, 108, LIBIPW_CH_PASSIVE_ONLY}, 11008 {5560, 112, LIBIPW_CH_PASSIVE_ONLY}, 11009 {5580, 116, LIBIPW_CH_PASSIVE_ONLY}, 11010 {5600, 120, LIBIPW_CH_PASSIVE_ONLY}, 11011 {5620, 124, LIBIPW_CH_PASSIVE_ONLY}, 11012 {5640, 128, LIBIPW_CH_PASSIVE_ONLY}, 11013 {5660, 132, LIBIPW_CH_PASSIVE_ONLY}, 11014 {5680, 136, LIBIPW_CH_PASSIVE_ONLY}, 11015 {5700, 140, LIBIPW_CH_PASSIVE_ONLY}}, 11016 }, 11017 11018 { /* Custom Japan */ 11019 "ZZJ", 11020 .bg_channels = 14, 11021 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 11022 {2427, 4}, {2432, 5}, {2437, 6}, 11023 {2442, 7}, {2447, 8}, {2452, 9}, 11024 {2457, 10}, {2462, 11}, {2467, 12}, 11025 {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY}}, 11026 .a_channels = 4, 11027 .a = {{5170, 34}, {5190, 38}, 11028 {5210, 42}, {5230, 46}}, 11029 }, 11030 11031 { /* Rest of World */ 11032 "ZZR", 11033 .bg_channels = 14, 11034 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 11035 {2427, 4}, {2432, 5}, {2437, 6}, 11036 {2442, 7}, {2447, 8}, {2452, 9}, 11037 {2457, 10}, {2462, 11}, {2467, 12}, 11038 {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY | 11039 LIBIPW_CH_PASSIVE_ONLY}}, 11040 }, 11041 11042 { /* High Band */ 11043 "ZZH", 11044 .bg_channels = 13, 11045 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 11046 {2427, 4}, {2432, 5}, {2437, 6}, 11047 {2442, 7}, {2447, 8}, {2452, 9}, 11048 {2457, 10}, {2462, 11}, 11049 {2467, 12, LIBIPW_CH_PASSIVE_ONLY}, 11050 {2472, 13, LIBIPW_CH_PASSIVE_ONLY}}, 11051 .a_channels = 4, 11052 .a = {{5745, 149}, {5765, 153}, 11053 {5785, 157}, {5805, 161}}, 11054 }, 11055 11056 { /* Custom Europe */ 11057 "ZZG", 11058 .bg_channels = 13, 11059 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 11060 {2427, 4}, {2432, 5}, {2437, 6}, 11061 {2442, 7}, {2447, 8}, {2452, 9}, 11062 {2457, 10}, {2462, 11}, 11063 {2467, 12}, {2472, 13}}, 11064 .a_channels = 4, 11065 .a = {{5180, 36}, {5200, 40}, 11066 {5220, 44}, {5240, 48}}, 11067 }, 11068 11069 { /* Europe */ 11070 "ZZK", 11071 .bg_channels = 13, 11072 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 11073 {2427, 4}, {2432, 5}, {2437, 6}, 11074 {2442, 7}, {2447, 8}, {2452, 9}, 11075 {2457, 10}, {2462, 11}, 11076 {2467, 12, LIBIPW_CH_PASSIVE_ONLY}, 11077 {2472, 13, LIBIPW_CH_PASSIVE_ONLY}}, 11078 .a_channels = 24, 11079 .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY}, 11080 {5200, 40, LIBIPW_CH_PASSIVE_ONLY}, 11081 {5220, 44, LIBIPW_CH_PASSIVE_ONLY}, 11082 {5240, 48, LIBIPW_CH_PASSIVE_ONLY}, 11083 {5260, 52, LIBIPW_CH_PASSIVE_ONLY}, 11084 {5280, 56, LIBIPW_CH_PASSIVE_ONLY}, 11085 {5300, 60, LIBIPW_CH_PASSIVE_ONLY}, 11086 {5320, 64, LIBIPW_CH_PASSIVE_ONLY}, 11087 {5500, 100, LIBIPW_CH_PASSIVE_ONLY}, 11088 {5520, 104, LIBIPW_CH_PASSIVE_ONLY}, 11089 {5540, 108, LIBIPW_CH_PASSIVE_ONLY}, 11090 {5560, 112, LIBIPW_CH_PASSIVE_ONLY}, 11091 {5580, 116, LIBIPW_CH_PASSIVE_ONLY}, 11092 {5600, 120, LIBIPW_CH_PASSIVE_ONLY}, 11093 {5620, 124, LIBIPW_CH_PASSIVE_ONLY}, 11094 {5640, 128, LIBIPW_CH_PASSIVE_ONLY}, 11095 {5660, 132, LIBIPW_CH_PASSIVE_ONLY}, 11096 {5680, 136, LIBIPW_CH_PASSIVE_ONLY}, 11097 {5700, 140, LIBIPW_CH_PASSIVE_ONLY}, 11098 {5745, 149, LIBIPW_CH_PASSIVE_ONLY}, 11099 {5765, 153, LIBIPW_CH_PASSIVE_ONLY}, 11100 {5785, 157, LIBIPW_CH_PASSIVE_ONLY}, 11101 {5805, 161, LIBIPW_CH_PASSIVE_ONLY}, 11102 {5825, 165, LIBIPW_CH_PASSIVE_ONLY}}, 11103 }, 11104 11105 { /* Europe */ 11106 "ZZL", 11107 .bg_channels = 11, 11108 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 11109 {2427, 4}, {2432, 5}, {2437, 6}, 11110 {2442, 7}, {2447, 8}, {2452, 9}, 11111 {2457, 10}, {2462, 11}}, 11112 .a_channels = 13, 11113 .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY}, 11114 {5200, 40, LIBIPW_CH_PASSIVE_ONLY}, 11115 {5220, 44, LIBIPW_CH_PASSIVE_ONLY}, 11116 {5240, 48, LIBIPW_CH_PASSIVE_ONLY}, 11117 {5260, 52, LIBIPW_CH_PASSIVE_ONLY}, 11118 {5280, 56, LIBIPW_CH_PASSIVE_ONLY}, 11119 {5300, 60, LIBIPW_CH_PASSIVE_ONLY}, 11120 {5320, 64, LIBIPW_CH_PASSIVE_ONLY}, 11121 {5745, 149, LIBIPW_CH_PASSIVE_ONLY}, 11122 {5765, 153, LIBIPW_CH_PASSIVE_ONLY}, 11123 {5785, 157, LIBIPW_CH_PASSIVE_ONLY}, 11124 {5805, 161, LIBIPW_CH_PASSIVE_ONLY}, 11125 {5825, 165, LIBIPW_CH_PASSIVE_ONLY}}, 11126 } 11127 }; 11128 11129 static void ipw_set_geo(struct ipw_priv *priv) 11130 { 11131 int j; 11132 11133 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) { 11134 if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE], 11135 ipw_geos[j].name, 3)) 11136 break; 11137 } 11138 11139 if (j == ARRAY_SIZE(ipw_geos)) { 11140 IPW_WARNING("SKU [%c%c%c] not recognized.\n", 11141 priv->eeprom[EEPROM_COUNTRY_CODE + 0], 11142 priv->eeprom[EEPROM_COUNTRY_CODE + 1], 11143 priv->eeprom[EEPROM_COUNTRY_CODE + 2]); 11144 j = 0; 11145 } 11146 11147 libipw_set_geo(priv->ieee, &ipw_geos[j]); 11148 } 11149 11150 #define MAX_HW_RESTARTS 5 11151 static int ipw_up(struct ipw_priv *priv) 11152 { 11153 int rc, i; 11154 11155 /* Age scan list entries found before suspend */ 11156 if (priv->suspend_time) { 11157 libipw_networks_age(priv->ieee, priv->suspend_time); 11158 priv->suspend_time = 0; 11159 } 11160 11161 if (priv->status & STATUS_EXIT_PENDING) 11162 return -EIO; 11163 11164 if (cmdlog && !priv->cmdlog) { 11165 priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog), 11166 GFP_KERNEL); 11167 if (priv->cmdlog == NULL) { 11168 IPW_ERROR("Error allocating %d command log entries.\n", 11169 cmdlog); 11170 return -ENOMEM; 11171 } else { 11172 priv->cmdlog_len = cmdlog; 11173 } 11174 } 11175 11176 for (i = 0; i < MAX_HW_RESTARTS; i++) { 11177 /* Load the microcode, firmware, and eeprom. 11178 * Also start the clocks. */ 11179 rc = ipw_load(priv); 11180 if (rc) { 11181 IPW_ERROR("Unable to load firmware: %d\n", rc); 11182 return rc; 11183 } 11184 11185 ipw_init_ordinals(priv); 11186 if (!(priv->config & CFG_CUSTOM_MAC)) 11187 eeprom_parse_mac(priv, priv->mac_addr); 11188 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN); 11189 11190 ipw_set_geo(priv); 11191 11192 if (priv->status & STATUS_RF_KILL_SW) { 11193 IPW_WARNING("Radio disabled by module parameter.\n"); 11194 return 0; 11195 } else if (rf_kill_active(priv)) { 11196 IPW_WARNING("Radio Frequency Kill Switch is On:\n" 11197 "Kill switch must be turned off for " 11198 "wireless networking to work.\n"); 11199 schedule_delayed_work(&priv->rf_kill, 2 * HZ); 11200 return 0; 11201 } 11202 11203 rc = ipw_config(priv); 11204 if (!rc) { 11205 IPW_DEBUG_INFO("Configured device on count %i\n", i); 11206 11207 /* If configure to try and auto-associate, kick 11208 * off a scan. */ 11209 schedule_delayed_work(&priv->request_scan, 0); 11210 11211 return 0; 11212 } 11213 11214 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc); 11215 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n", 11216 i, MAX_HW_RESTARTS); 11217 11218 /* We had an error bringing up the hardware, so take it 11219 * all the way back down so we can try again */ 11220 ipw_down(priv); 11221 } 11222 11223 /* tried to restart and config the device for as long as our 11224 * patience could withstand */ 11225 IPW_ERROR("Unable to initialize device after %d attempts.\n", i); 11226 11227 return -EIO; 11228 } 11229 11230 static void ipw_bg_up(struct work_struct *work) 11231 { 11232 struct ipw_priv *priv = 11233 container_of(work, struct ipw_priv, up); 11234 mutex_lock(&priv->mutex); 11235 ipw_up(priv); 11236 mutex_unlock(&priv->mutex); 11237 } 11238 11239 static void ipw_deinit(struct ipw_priv *priv) 11240 { 11241 int i; 11242 11243 if (priv->status & STATUS_SCANNING) { 11244 IPW_DEBUG_INFO("Aborting scan during shutdown.\n"); 11245 ipw_abort_scan(priv); 11246 } 11247 11248 if (priv->status & STATUS_ASSOCIATED) { 11249 IPW_DEBUG_INFO("Disassociating during shutdown.\n"); 11250 ipw_disassociate(priv); 11251 } 11252 11253 ipw_led_shutdown(priv); 11254 11255 /* Wait up to 1s for status to change to not scanning and not 11256 * associated (disassociation can take a while for a ful 802.11 11257 * exchange */ 11258 for (i = 1000; i && (priv->status & 11259 (STATUS_DISASSOCIATING | 11260 STATUS_ASSOCIATED | STATUS_SCANNING)); i--) 11261 udelay(10); 11262 11263 if (priv->status & (STATUS_DISASSOCIATING | 11264 STATUS_ASSOCIATED | STATUS_SCANNING)) 11265 IPW_DEBUG_INFO("Still associated or scanning...\n"); 11266 else 11267 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i); 11268 11269 /* Attempt to disable the card */ 11270 ipw_send_card_disable(priv, 0); 11271 11272 priv->status &= ~STATUS_INIT; 11273 } 11274 11275 static void ipw_down(struct ipw_priv *priv) 11276 { 11277 int exit_pending = priv->status & STATUS_EXIT_PENDING; 11278 11279 priv->status |= STATUS_EXIT_PENDING; 11280 11281 if (ipw_is_init(priv)) 11282 ipw_deinit(priv); 11283 11284 /* Wipe out the EXIT_PENDING status bit if we are not actually 11285 * exiting the module */ 11286 if (!exit_pending) 11287 priv->status &= ~STATUS_EXIT_PENDING; 11288 11289 /* tell the device to stop sending interrupts */ 11290 ipw_disable_interrupts(priv); 11291 11292 /* Clear all bits but the RF Kill */ 11293 priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING; 11294 netif_carrier_off(priv->net_dev); 11295 11296 ipw_stop_nic(priv); 11297 11298 ipw_led_radio_off(priv); 11299 } 11300 11301 static void ipw_bg_down(struct work_struct *work) 11302 { 11303 struct ipw_priv *priv = 11304 container_of(work, struct ipw_priv, down); 11305 mutex_lock(&priv->mutex); 11306 ipw_down(priv); 11307 mutex_unlock(&priv->mutex); 11308 } 11309 11310 static int ipw_wdev_init(struct net_device *dev) 11311 { 11312 int i, rc = 0; 11313 struct ipw_priv *priv = libipw_priv(dev); 11314 const struct libipw_geo *geo = libipw_get_geo(priv->ieee); 11315 struct wireless_dev *wdev = &priv->ieee->wdev; 11316 11317 memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN); 11318 11319 /* fill-out priv->ieee->bg_band */ 11320 if (geo->bg_channels) { 11321 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band; 11322 11323 bg_band->band = NL80211_BAND_2GHZ; 11324 bg_band->n_channels = geo->bg_channels; 11325 bg_band->channels = kcalloc(geo->bg_channels, 11326 sizeof(struct ieee80211_channel), 11327 GFP_KERNEL); 11328 if (!bg_band->channels) { 11329 rc = -ENOMEM; 11330 goto out; 11331 } 11332 /* translate geo->bg to bg_band.channels */ 11333 for (i = 0; i < geo->bg_channels; i++) { 11334 bg_band->channels[i].band = NL80211_BAND_2GHZ; 11335 bg_band->channels[i].center_freq = geo->bg[i].freq; 11336 bg_band->channels[i].hw_value = geo->bg[i].channel; 11337 bg_band->channels[i].max_power = geo->bg[i].max_power; 11338 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY) 11339 bg_band->channels[i].flags |= 11340 IEEE80211_CHAN_NO_IR; 11341 if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS) 11342 bg_band->channels[i].flags |= 11343 IEEE80211_CHAN_NO_IR; 11344 if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT) 11345 bg_band->channels[i].flags |= 11346 IEEE80211_CHAN_RADAR; 11347 /* No equivalent for LIBIPW_CH_80211H_RULES, 11348 LIBIPW_CH_UNIFORM_SPREADING, or 11349 LIBIPW_CH_B_ONLY... */ 11350 } 11351 /* point at bitrate info */ 11352 bg_band->bitrates = ipw2200_bg_rates; 11353 bg_band->n_bitrates = ipw2200_num_bg_rates; 11354 11355 wdev->wiphy->bands[NL80211_BAND_2GHZ] = bg_band; 11356 } 11357 11358 /* fill-out priv->ieee->a_band */ 11359 if (geo->a_channels) { 11360 struct ieee80211_supported_band *a_band = &priv->ieee->a_band; 11361 11362 a_band->band = NL80211_BAND_5GHZ; 11363 a_band->n_channels = geo->a_channels; 11364 a_band->channels = kcalloc(geo->a_channels, 11365 sizeof(struct ieee80211_channel), 11366 GFP_KERNEL); 11367 if (!a_band->channels) { 11368 rc = -ENOMEM; 11369 goto out; 11370 } 11371 /* translate geo->a to a_band.channels */ 11372 for (i = 0; i < geo->a_channels; i++) { 11373 a_band->channels[i].band = NL80211_BAND_5GHZ; 11374 a_band->channels[i].center_freq = geo->a[i].freq; 11375 a_band->channels[i].hw_value = geo->a[i].channel; 11376 a_band->channels[i].max_power = geo->a[i].max_power; 11377 if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY) 11378 a_band->channels[i].flags |= 11379 IEEE80211_CHAN_NO_IR; 11380 if (geo->a[i].flags & LIBIPW_CH_NO_IBSS) 11381 a_band->channels[i].flags |= 11382 IEEE80211_CHAN_NO_IR; 11383 if (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT) 11384 a_band->channels[i].flags |= 11385 IEEE80211_CHAN_RADAR; 11386 /* No equivalent for LIBIPW_CH_80211H_RULES, 11387 LIBIPW_CH_UNIFORM_SPREADING, or 11388 LIBIPW_CH_B_ONLY... */ 11389 } 11390 /* point at bitrate info */ 11391 a_band->bitrates = ipw2200_a_rates; 11392 a_band->n_bitrates = ipw2200_num_a_rates; 11393 11394 wdev->wiphy->bands[NL80211_BAND_5GHZ] = a_band; 11395 } 11396 11397 wdev->wiphy->cipher_suites = ipw_cipher_suites; 11398 wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites); 11399 11400 set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev); 11401 11402 /* With that information in place, we can now register the wiphy... */ 11403 if (wiphy_register(wdev->wiphy)) 11404 rc = -EIO; 11405 out: 11406 return rc; 11407 } 11408 11409 /* PCI driver stuff */ 11410 static const struct pci_device_id card_ids[] = { 11411 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0}, 11412 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0}, 11413 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0}, 11414 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0}, 11415 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0}, 11416 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0}, 11417 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0}, 11418 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0}, 11419 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0}, 11420 {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0}, 11421 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0}, 11422 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0}, 11423 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0}, 11424 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0}, 11425 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0}, 11426 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0}, 11427 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0}, 11428 {PCI_VDEVICE(INTEL, 0x104f), 0}, 11429 {PCI_VDEVICE(INTEL, 0x4220), 0}, /* BG */ 11430 {PCI_VDEVICE(INTEL, 0x4221), 0}, /* BG */ 11431 {PCI_VDEVICE(INTEL, 0x4223), 0}, /* ABG */ 11432 {PCI_VDEVICE(INTEL, 0x4224), 0}, /* ABG */ 11433 11434 /* required last entry */ 11435 {0,} 11436 }; 11437 11438 MODULE_DEVICE_TABLE(pci, card_ids); 11439 11440 static struct attribute *ipw_sysfs_entries[] = { 11441 &dev_attr_rf_kill.attr, 11442 &dev_attr_direct_dword.attr, 11443 &dev_attr_indirect_byte.attr, 11444 &dev_attr_indirect_dword.attr, 11445 &dev_attr_mem_gpio_reg.attr, 11446 &dev_attr_command_event_reg.attr, 11447 &dev_attr_nic_type.attr, 11448 &dev_attr_status.attr, 11449 &dev_attr_cfg.attr, 11450 &dev_attr_error.attr, 11451 &dev_attr_event_log.attr, 11452 &dev_attr_cmd_log.attr, 11453 &dev_attr_eeprom_delay.attr, 11454 &dev_attr_ucode_version.attr, 11455 &dev_attr_rtc.attr, 11456 &dev_attr_scan_age.attr, 11457 &dev_attr_led.attr, 11458 &dev_attr_speed_scan.attr, 11459 &dev_attr_net_stats.attr, 11460 &dev_attr_channels.attr, 11461 #ifdef CONFIG_IPW2200_PROMISCUOUS 11462 &dev_attr_rtap_iface.attr, 11463 &dev_attr_rtap_filter.attr, 11464 #endif 11465 NULL 11466 }; 11467 11468 static const struct attribute_group ipw_attribute_group = { 11469 .name = NULL, /* put in device directory */ 11470 .attrs = ipw_sysfs_entries, 11471 }; 11472 11473 #ifdef CONFIG_IPW2200_PROMISCUOUS 11474 static int ipw_prom_open(struct net_device *dev) 11475 { 11476 struct ipw_prom_priv *prom_priv = libipw_priv(dev); 11477 struct ipw_priv *priv = prom_priv->priv; 11478 11479 IPW_DEBUG_INFO("prom dev->open\n"); 11480 netif_carrier_off(dev); 11481 11482 if (priv->ieee->iw_mode != IW_MODE_MONITOR) { 11483 priv->sys_config.accept_all_data_frames = 1; 11484 priv->sys_config.accept_non_directed_frames = 1; 11485 priv->sys_config.accept_all_mgmt_bcpr = 1; 11486 priv->sys_config.accept_all_mgmt_frames = 1; 11487 11488 ipw_send_system_config(priv); 11489 } 11490 11491 return 0; 11492 } 11493 11494 static int ipw_prom_stop(struct net_device *dev) 11495 { 11496 struct ipw_prom_priv *prom_priv = libipw_priv(dev); 11497 struct ipw_priv *priv = prom_priv->priv; 11498 11499 IPW_DEBUG_INFO("prom dev->stop\n"); 11500 11501 if (priv->ieee->iw_mode != IW_MODE_MONITOR) { 11502 priv->sys_config.accept_all_data_frames = 0; 11503 priv->sys_config.accept_non_directed_frames = 0; 11504 priv->sys_config.accept_all_mgmt_bcpr = 0; 11505 priv->sys_config.accept_all_mgmt_frames = 0; 11506 11507 ipw_send_system_config(priv); 11508 } 11509 11510 return 0; 11511 } 11512 11513 static netdev_tx_t ipw_prom_hard_start_xmit(struct sk_buff *skb, 11514 struct net_device *dev) 11515 { 11516 IPW_DEBUG_INFO("prom dev->xmit\n"); 11517 dev_kfree_skb(skb); 11518 return NETDEV_TX_OK; 11519 } 11520 11521 static const struct net_device_ops ipw_prom_netdev_ops = { 11522 .ndo_open = ipw_prom_open, 11523 .ndo_stop = ipw_prom_stop, 11524 .ndo_start_xmit = ipw_prom_hard_start_xmit, 11525 .ndo_set_mac_address = eth_mac_addr, 11526 .ndo_validate_addr = eth_validate_addr, 11527 }; 11528 11529 static int ipw_prom_alloc(struct ipw_priv *priv) 11530 { 11531 int rc = 0; 11532 11533 if (priv->prom_net_dev) 11534 return -EPERM; 11535 11536 priv->prom_net_dev = alloc_libipw(sizeof(struct ipw_prom_priv), 1); 11537 if (priv->prom_net_dev == NULL) 11538 return -ENOMEM; 11539 11540 priv->prom_priv = libipw_priv(priv->prom_net_dev); 11541 priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev); 11542 priv->prom_priv->priv = priv; 11543 11544 strcpy(priv->prom_net_dev->name, "rtap%d"); 11545 memcpy(priv->prom_net_dev->dev_addr, priv->mac_addr, ETH_ALEN); 11546 11547 priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP; 11548 priv->prom_net_dev->netdev_ops = &ipw_prom_netdev_ops; 11549 11550 priv->prom_net_dev->min_mtu = 68; 11551 priv->prom_net_dev->max_mtu = LIBIPW_DATA_LEN; 11552 11553 priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR; 11554 SET_NETDEV_DEV(priv->prom_net_dev, &priv->pci_dev->dev); 11555 11556 rc = register_netdev(priv->prom_net_dev); 11557 if (rc) { 11558 free_libipw(priv->prom_net_dev, 1); 11559 priv->prom_net_dev = NULL; 11560 return rc; 11561 } 11562 11563 return 0; 11564 } 11565 11566 static void ipw_prom_free(struct ipw_priv *priv) 11567 { 11568 if (!priv->prom_net_dev) 11569 return; 11570 11571 unregister_netdev(priv->prom_net_dev); 11572 free_libipw(priv->prom_net_dev, 1); 11573 11574 priv->prom_net_dev = NULL; 11575 } 11576 11577 #endif 11578 11579 static const struct net_device_ops ipw_netdev_ops = { 11580 .ndo_open = ipw_net_open, 11581 .ndo_stop = ipw_net_stop, 11582 .ndo_set_rx_mode = ipw_net_set_multicast_list, 11583 .ndo_set_mac_address = ipw_net_set_mac_address, 11584 .ndo_start_xmit = libipw_xmit, 11585 .ndo_validate_addr = eth_validate_addr, 11586 }; 11587 11588 static int ipw_pci_probe(struct pci_dev *pdev, 11589 const struct pci_device_id *ent) 11590 { 11591 int err = 0; 11592 struct net_device *net_dev; 11593 void __iomem *base; 11594 u32 length, val; 11595 struct ipw_priv *priv; 11596 int i; 11597 11598 net_dev = alloc_libipw(sizeof(struct ipw_priv), 0); 11599 if (net_dev == NULL) { 11600 err = -ENOMEM; 11601 goto out; 11602 } 11603 11604 priv = libipw_priv(net_dev); 11605 priv->ieee = netdev_priv(net_dev); 11606 11607 priv->net_dev = net_dev; 11608 priv->pci_dev = pdev; 11609 ipw_debug_level = debug; 11610 spin_lock_init(&priv->irq_lock); 11611 spin_lock_init(&priv->lock); 11612 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) 11613 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]); 11614 11615 mutex_init(&priv->mutex); 11616 if (pci_enable_device(pdev)) { 11617 err = -ENODEV; 11618 goto out_free_libipw; 11619 } 11620 11621 pci_set_master(pdev); 11622 11623 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 11624 if (!err) 11625 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); 11626 if (err) { 11627 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n"); 11628 goto out_pci_disable_device; 11629 } 11630 11631 pci_set_drvdata(pdev, priv); 11632 11633 err = pci_request_regions(pdev, DRV_NAME); 11634 if (err) 11635 goto out_pci_disable_device; 11636 11637 /* We disable the RETRY_TIMEOUT register (0x41) to keep 11638 * PCI Tx retries from interfering with C3 CPU state */ 11639 pci_read_config_dword(pdev, 0x40, &val); 11640 if ((val & 0x0000ff00) != 0) 11641 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff); 11642 11643 length = pci_resource_len(pdev, 0); 11644 priv->hw_len = length; 11645 11646 base = pci_ioremap_bar(pdev, 0); 11647 if (!base) { 11648 err = -ENODEV; 11649 goto out_pci_release_regions; 11650 } 11651 11652 priv->hw_base = base; 11653 IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length); 11654 IPW_DEBUG_INFO("pci_resource_base = %p\n", base); 11655 11656 ipw_setup_deferred_work(priv); 11657 11658 ipw_sw_reset(priv, 1); 11659 11660 err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv); 11661 if (err) { 11662 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq); 11663 goto out_iounmap; 11664 } 11665 11666 SET_NETDEV_DEV(net_dev, &pdev->dev); 11667 11668 mutex_lock(&priv->mutex); 11669 11670 priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit; 11671 priv->ieee->set_security = shim__set_security; 11672 priv->ieee->is_queue_full = ipw_net_is_queue_full; 11673 11674 #ifdef CONFIG_IPW2200_QOS 11675 priv->ieee->is_qos_active = ipw_is_qos_active; 11676 priv->ieee->handle_probe_response = ipw_handle_beacon; 11677 priv->ieee->handle_beacon = ipw_handle_probe_response; 11678 priv->ieee->handle_assoc_response = ipw_handle_assoc_response; 11679 #endif /* CONFIG_IPW2200_QOS */ 11680 11681 priv->ieee->perfect_rssi = -20; 11682 priv->ieee->worst_rssi = -85; 11683 11684 net_dev->netdev_ops = &ipw_netdev_ops; 11685 priv->wireless_data.spy_data = &priv->ieee->spy_data; 11686 net_dev->wireless_data = &priv->wireless_data; 11687 net_dev->wireless_handlers = &ipw_wx_handler_def; 11688 net_dev->ethtool_ops = &ipw_ethtool_ops; 11689 11690 net_dev->min_mtu = 68; 11691 net_dev->max_mtu = LIBIPW_DATA_LEN; 11692 11693 err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group); 11694 if (err) { 11695 IPW_ERROR("failed to create sysfs device attributes\n"); 11696 mutex_unlock(&priv->mutex); 11697 goto out_release_irq; 11698 } 11699 11700 if (ipw_up(priv)) { 11701 mutex_unlock(&priv->mutex); 11702 err = -EIO; 11703 goto out_remove_sysfs; 11704 } 11705 11706 mutex_unlock(&priv->mutex); 11707 11708 err = ipw_wdev_init(net_dev); 11709 if (err) { 11710 IPW_ERROR("failed to register wireless device\n"); 11711 goto out_remove_sysfs; 11712 } 11713 11714 err = register_netdev(net_dev); 11715 if (err) { 11716 IPW_ERROR("failed to register network device\n"); 11717 goto out_unregister_wiphy; 11718 } 11719 11720 #ifdef CONFIG_IPW2200_PROMISCUOUS 11721 if (rtap_iface) { 11722 err = ipw_prom_alloc(priv); 11723 if (err) { 11724 IPW_ERROR("Failed to register promiscuous network " 11725 "device (error %d).\n", err); 11726 unregister_netdev(priv->net_dev); 11727 goto out_unregister_wiphy; 11728 } 11729 } 11730 #endif 11731 11732 printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg " 11733 "channels, %d 802.11a channels)\n", 11734 priv->ieee->geo.name, priv->ieee->geo.bg_channels, 11735 priv->ieee->geo.a_channels); 11736 11737 return 0; 11738 11739 out_unregister_wiphy: 11740 wiphy_unregister(priv->ieee->wdev.wiphy); 11741 kfree(priv->ieee->a_band.channels); 11742 kfree(priv->ieee->bg_band.channels); 11743 out_remove_sysfs: 11744 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group); 11745 out_release_irq: 11746 free_irq(pdev->irq, priv); 11747 out_iounmap: 11748 iounmap(priv->hw_base); 11749 out_pci_release_regions: 11750 pci_release_regions(pdev); 11751 out_pci_disable_device: 11752 pci_disable_device(pdev); 11753 out_free_libipw: 11754 free_libipw(priv->net_dev, 0); 11755 out: 11756 return err; 11757 } 11758 11759 static void ipw_pci_remove(struct pci_dev *pdev) 11760 { 11761 struct ipw_priv *priv = pci_get_drvdata(pdev); 11762 struct list_head *p, *q; 11763 int i; 11764 11765 if (!priv) 11766 return; 11767 11768 mutex_lock(&priv->mutex); 11769 11770 priv->status |= STATUS_EXIT_PENDING; 11771 ipw_down(priv); 11772 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group); 11773 11774 mutex_unlock(&priv->mutex); 11775 11776 unregister_netdev(priv->net_dev); 11777 11778 if (priv->rxq) { 11779 ipw_rx_queue_free(priv, priv->rxq); 11780 priv->rxq = NULL; 11781 } 11782 ipw_tx_queue_free(priv); 11783 11784 if (priv->cmdlog) { 11785 kfree(priv->cmdlog); 11786 priv->cmdlog = NULL; 11787 } 11788 11789 /* make sure all works are inactive */ 11790 cancel_delayed_work_sync(&priv->adhoc_check); 11791 cancel_work_sync(&priv->associate); 11792 cancel_work_sync(&priv->disassociate); 11793 cancel_work_sync(&priv->system_config); 11794 cancel_work_sync(&priv->rx_replenish); 11795 cancel_work_sync(&priv->adapter_restart); 11796 cancel_delayed_work_sync(&priv->rf_kill); 11797 cancel_work_sync(&priv->up); 11798 cancel_work_sync(&priv->down); 11799 cancel_delayed_work_sync(&priv->request_scan); 11800 cancel_delayed_work_sync(&priv->request_direct_scan); 11801 cancel_delayed_work_sync(&priv->request_passive_scan); 11802 cancel_delayed_work_sync(&priv->scan_event); 11803 cancel_delayed_work_sync(&priv->gather_stats); 11804 cancel_work_sync(&priv->abort_scan); 11805 cancel_work_sync(&priv->roam); 11806 cancel_delayed_work_sync(&priv->scan_check); 11807 cancel_work_sync(&priv->link_up); 11808 cancel_work_sync(&priv->link_down); 11809 cancel_delayed_work_sync(&priv->led_link_on); 11810 cancel_delayed_work_sync(&priv->led_link_off); 11811 cancel_delayed_work_sync(&priv->led_act_off); 11812 cancel_work_sync(&priv->merge_networks); 11813 11814 /* Free MAC hash list for ADHOC */ 11815 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) { 11816 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) { 11817 list_del(p); 11818 kfree(list_entry(p, struct ipw_ibss_seq, list)); 11819 } 11820 } 11821 11822 kfree(priv->error); 11823 priv->error = NULL; 11824 11825 #ifdef CONFIG_IPW2200_PROMISCUOUS 11826 ipw_prom_free(priv); 11827 #endif 11828 11829 free_irq(pdev->irq, priv); 11830 iounmap(priv->hw_base); 11831 pci_release_regions(pdev); 11832 pci_disable_device(pdev); 11833 /* wiphy_unregister needs to be here, before free_libipw */ 11834 wiphy_unregister(priv->ieee->wdev.wiphy); 11835 kfree(priv->ieee->a_band.channels); 11836 kfree(priv->ieee->bg_band.channels); 11837 free_libipw(priv->net_dev, 0); 11838 free_firmware(); 11839 } 11840 11841 #ifdef CONFIG_PM 11842 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state) 11843 { 11844 struct ipw_priv *priv = pci_get_drvdata(pdev); 11845 struct net_device *dev = priv->net_dev; 11846 11847 printk(KERN_INFO "%s: Going into suspend...\n", dev->name); 11848 11849 /* Take down the device; powers it off, etc. */ 11850 ipw_down(priv); 11851 11852 /* Remove the PRESENT state of the device */ 11853 netif_device_detach(dev); 11854 11855 pci_save_state(pdev); 11856 pci_disable_device(pdev); 11857 pci_set_power_state(pdev, pci_choose_state(pdev, state)); 11858 11859 priv->suspend_at = ktime_get_boottime_seconds(); 11860 11861 return 0; 11862 } 11863 11864 static int ipw_pci_resume(struct pci_dev *pdev) 11865 { 11866 struct ipw_priv *priv = pci_get_drvdata(pdev); 11867 struct net_device *dev = priv->net_dev; 11868 int err; 11869 u32 val; 11870 11871 printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name); 11872 11873 pci_set_power_state(pdev, PCI_D0); 11874 err = pci_enable_device(pdev); 11875 if (err) { 11876 printk(KERN_ERR "%s: pci_enable_device failed on resume\n", 11877 dev->name); 11878 return err; 11879 } 11880 pci_restore_state(pdev); 11881 11882 /* 11883 * Suspend/Resume resets the PCI configuration space, so we have to 11884 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries 11885 * from interfering with C3 CPU state. pci_restore_state won't help 11886 * here since it only restores the first 64 bytes pci config header. 11887 */ 11888 pci_read_config_dword(pdev, 0x40, &val); 11889 if ((val & 0x0000ff00) != 0) 11890 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff); 11891 11892 /* Set the device back into the PRESENT state; this will also wake 11893 * the queue of needed */ 11894 netif_device_attach(dev); 11895 11896 priv->suspend_time = ktime_get_boottime_seconds() - priv->suspend_at; 11897 11898 /* Bring the device back up */ 11899 schedule_work(&priv->up); 11900 11901 return 0; 11902 } 11903 #endif 11904 11905 static void ipw_pci_shutdown(struct pci_dev *pdev) 11906 { 11907 struct ipw_priv *priv = pci_get_drvdata(pdev); 11908 11909 /* Take down the device; powers it off, etc. */ 11910 ipw_down(priv); 11911 11912 pci_disable_device(pdev); 11913 } 11914 11915 /* driver initialization stuff */ 11916 static struct pci_driver ipw_driver = { 11917 .name = DRV_NAME, 11918 .id_table = card_ids, 11919 .probe = ipw_pci_probe, 11920 .remove = ipw_pci_remove, 11921 #ifdef CONFIG_PM 11922 .suspend = ipw_pci_suspend, 11923 .resume = ipw_pci_resume, 11924 #endif 11925 .shutdown = ipw_pci_shutdown, 11926 }; 11927 11928 static int __init ipw_init(void) 11929 { 11930 int ret; 11931 11932 printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n"); 11933 printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n"); 11934 11935 ret = pci_register_driver(&ipw_driver); 11936 if (ret) { 11937 IPW_ERROR("Unable to initialize PCI module\n"); 11938 return ret; 11939 } 11940 11941 ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level); 11942 if (ret) { 11943 IPW_ERROR("Unable to create driver sysfs file\n"); 11944 pci_unregister_driver(&ipw_driver); 11945 return ret; 11946 } 11947 11948 return ret; 11949 } 11950 11951 static void __exit ipw_exit(void) 11952 { 11953 driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level); 11954 pci_unregister_driver(&ipw_driver); 11955 } 11956 11957 module_param(disable, int, 0444); 11958 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])"); 11959 11960 module_param(associate, int, 0444); 11961 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)"); 11962 11963 module_param(auto_create, int, 0444); 11964 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)"); 11965 11966 module_param_named(led, led_support, int, 0444); 11967 MODULE_PARM_DESC(led, "enable led control on some systems (default 1 on)"); 11968 11969 module_param(debug, int, 0444); 11970 MODULE_PARM_DESC(debug, "debug output mask"); 11971 11972 module_param_named(channel, default_channel, int, 0444); 11973 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])"); 11974 11975 #ifdef CONFIG_IPW2200_PROMISCUOUS 11976 module_param(rtap_iface, int, 0444); 11977 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)"); 11978 #endif 11979 11980 #ifdef CONFIG_IPW2200_QOS 11981 module_param(qos_enable, int, 0444); 11982 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalities"); 11983 11984 module_param(qos_burst_enable, int, 0444); 11985 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode"); 11986 11987 module_param(qos_no_ack_mask, int, 0444); 11988 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack"); 11989 11990 module_param(burst_duration_CCK, int, 0444); 11991 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value"); 11992 11993 module_param(burst_duration_OFDM, int, 0444); 11994 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value"); 11995 #endif /* CONFIG_IPW2200_QOS */ 11996 11997 #ifdef CONFIG_IPW2200_MONITOR 11998 module_param_named(mode, network_mode, int, 0444); 11999 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)"); 12000 #else 12001 module_param_named(mode, network_mode, int, 0444); 12002 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)"); 12003 #endif 12004 12005 module_param(bt_coexist, int, 0444); 12006 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)"); 12007 12008 module_param(hwcrypto, int, 0444); 12009 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)"); 12010 12011 module_param(cmdlog, int, 0444); 12012 MODULE_PARM_DESC(cmdlog, 12013 "allocate a ring buffer for logging firmware commands"); 12014 12015 module_param(roaming, int, 0444); 12016 MODULE_PARM_DESC(roaming, "enable roaming support (default on)"); 12017 12018 module_param(antenna, int, 0444); 12019 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)"); 12020 12021 module_exit(ipw_exit); 12022 module_init(ipw_init); 12023