1 // SPDX-License-Identifier: GPL-2.0-only 2 /****************************************************************************** 3 4 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved. 5 6 802.11 status code portion of this file from ethereal-0.10.6: 7 Copyright 2000, Axis Communications AB 8 Ethereal - Network traffic analyzer 9 By Gerald Combs <gerald@ethereal.com> 10 Copyright 1998 Gerald Combs 11 12 13 Contact Information: 14 Intel Linux Wireless <ilw@linux.intel.com> 15 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 16 17 ******************************************************************************/ 18 19 #include <linux/sched.h> 20 #include <linux/slab.h> 21 #include <net/cfg80211-wext.h> 22 #include "ipw2200.h" 23 #include "ipw.h" 24 25 26 #ifndef KBUILD_EXTMOD 27 #define VK "k" 28 #else 29 #define VK 30 #endif 31 32 #ifdef CONFIG_IPW2200_DEBUG 33 #define VD "d" 34 #else 35 #define VD 36 #endif 37 38 #ifdef CONFIG_IPW2200_MONITOR 39 #define VM "m" 40 #else 41 #define VM 42 #endif 43 44 #ifdef CONFIG_IPW2200_PROMISCUOUS 45 #define VP "p" 46 #else 47 #define VP 48 #endif 49 50 #ifdef CONFIG_IPW2200_RADIOTAP 51 #define VR "r" 52 #else 53 #define VR 54 #endif 55 56 #ifdef CONFIG_IPW2200_QOS 57 #define VQ "q" 58 #else 59 #define VQ 60 #endif 61 62 #define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ 63 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver" 64 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation" 65 #define DRV_VERSION IPW2200_VERSION 66 67 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1) 68 69 MODULE_DESCRIPTION(DRV_DESCRIPTION); 70 MODULE_VERSION(DRV_VERSION); 71 MODULE_AUTHOR(DRV_COPYRIGHT); 72 MODULE_LICENSE("GPL"); 73 MODULE_FIRMWARE("ipw2200-ibss.fw"); 74 #ifdef CONFIG_IPW2200_MONITOR 75 MODULE_FIRMWARE("ipw2200-sniffer.fw"); 76 #endif 77 MODULE_FIRMWARE("ipw2200-bss.fw"); 78 79 static int cmdlog = 0; 80 static int debug = 0; 81 static int default_channel = 0; 82 static int network_mode = 0; 83 84 static u32 ipw_debug_level; 85 static int associate; 86 static int auto_create = 1; 87 static int led_support = 1; 88 static int disable = 0; 89 static int bt_coexist = 0; 90 static int hwcrypto = 0; 91 static int roaming = 1; 92 static const char ipw_modes[] = { 93 'a', 'b', 'g', '?' 94 }; 95 static int antenna = CFG_SYS_ANTENNA_BOTH; 96 97 #ifdef CONFIG_IPW2200_PROMISCUOUS 98 static int rtap_iface = 0; /* def: 0 -- do not create rtap interface */ 99 #endif 100 101 static struct ieee80211_rate ipw2200_rates[] = { 102 { .bitrate = 10 }, 103 { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 104 { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 105 { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 106 { .bitrate = 60 }, 107 { .bitrate = 90 }, 108 { .bitrate = 120 }, 109 { .bitrate = 180 }, 110 { .bitrate = 240 }, 111 { .bitrate = 360 }, 112 { .bitrate = 480 }, 113 { .bitrate = 540 } 114 }; 115 116 #define ipw2200_a_rates (ipw2200_rates + 4) 117 #define ipw2200_num_a_rates 8 118 #define ipw2200_bg_rates (ipw2200_rates + 0) 119 #define ipw2200_num_bg_rates 12 120 121 /* Ugly macro to convert literal channel numbers into their mhz equivalents 122 * There are certianly some conditions that will break this (like feeding it '30') 123 * but they shouldn't arise since nothing talks on channel 30. */ 124 #define ieee80211chan2mhz(x) \ 125 (((x) <= 14) ? \ 126 (((x) == 14) ? 2484 : ((x) * 5) + 2407) : \ 127 ((x) + 1000) * 5) 128 129 #ifdef CONFIG_IPW2200_QOS 130 static int qos_enable = 0; 131 static int qos_burst_enable = 0; 132 static int qos_no_ack_mask = 0; 133 static int burst_duration_CCK = 0; 134 static int burst_duration_OFDM = 0; 135 136 static struct libipw_qos_parameters def_qos_parameters_OFDM = { 137 {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM, 138 QOS_TX3_CW_MIN_OFDM}, 139 {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM, 140 QOS_TX3_CW_MAX_OFDM}, 141 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS}, 142 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM}, 143 {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM, 144 QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM} 145 }; 146 147 static struct libipw_qos_parameters def_qos_parameters_CCK = { 148 {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK, 149 QOS_TX3_CW_MIN_CCK}, 150 {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK, 151 QOS_TX3_CW_MAX_CCK}, 152 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS}, 153 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM}, 154 {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK, 155 QOS_TX3_TXOP_LIMIT_CCK} 156 }; 157 158 static struct libipw_qos_parameters def_parameters_OFDM = { 159 {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM, 160 DEF_TX3_CW_MIN_OFDM}, 161 {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM, 162 DEF_TX3_CW_MAX_OFDM}, 163 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS}, 164 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM}, 165 {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM, 166 DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM} 167 }; 168 169 static struct libipw_qos_parameters def_parameters_CCK = { 170 {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK, 171 DEF_TX3_CW_MIN_CCK}, 172 {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK, 173 DEF_TX3_CW_MAX_CCK}, 174 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS}, 175 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM}, 176 {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK, 177 DEF_TX3_TXOP_LIMIT_CCK} 178 }; 179 180 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 }; 181 182 static int from_priority_to_tx_queue[] = { 183 IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1, 184 IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4 185 }; 186 187 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv); 188 189 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters 190 *qos_param); 191 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element 192 *qos_param); 193 #endif /* CONFIG_IPW2200_QOS */ 194 195 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev); 196 static void ipw_remove_current_network(struct ipw_priv *priv); 197 static void ipw_rx(struct ipw_priv *priv); 198 static int ipw_queue_tx_reclaim(struct ipw_priv *priv, 199 struct clx2_tx_queue *txq, int qindex); 200 static int ipw_queue_reset(struct ipw_priv *priv); 201 202 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, const void *buf, 203 int len, int sync); 204 205 static void ipw_tx_queue_free(struct ipw_priv *); 206 207 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *); 208 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *); 209 static void ipw_rx_queue_replenish(void *); 210 static int ipw_up(struct ipw_priv *); 211 static void ipw_bg_up(struct work_struct *work); 212 static void ipw_down(struct ipw_priv *); 213 static void ipw_bg_down(struct work_struct *work); 214 static int ipw_config(struct ipw_priv *); 215 static int init_supported_rates(struct ipw_priv *priv, 216 struct ipw_supported_rates *prates); 217 static void ipw_set_hwcrypto_keys(struct ipw_priv *); 218 static void ipw_send_wep_keys(struct ipw_priv *, int); 219 220 static int snprint_line(char *buf, size_t count, 221 const u8 * data, u32 len, u32 ofs) 222 { 223 int out, i, j, l; 224 char c; 225 226 out = scnprintf(buf, count, "%08X", ofs); 227 228 for (l = 0, i = 0; i < 2; i++) { 229 out += scnprintf(buf + out, count - out, " "); 230 for (j = 0; j < 8 && l < len; j++, l++) 231 out += scnprintf(buf + out, count - out, "%02X ", 232 data[(i * 8 + j)]); 233 for (; j < 8; j++) 234 out += scnprintf(buf + out, count - out, " "); 235 } 236 237 out += scnprintf(buf + out, count - out, " "); 238 for (l = 0, i = 0; i < 2; i++) { 239 out += scnprintf(buf + out, count - out, " "); 240 for (j = 0; j < 8 && l < len; j++, l++) { 241 c = data[(i * 8 + j)]; 242 if (!isascii(c) || !isprint(c)) 243 c = '.'; 244 245 out += scnprintf(buf + out, count - out, "%c", c); 246 } 247 248 for (; j < 8; j++) 249 out += scnprintf(buf + out, count - out, " "); 250 } 251 252 return out; 253 } 254 255 static void printk_buf(int level, const u8 * data, u32 len) 256 { 257 char line[81]; 258 u32 ofs = 0; 259 if (!(ipw_debug_level & level)) 260 return; 261 262 while (len) { 263 snprint_line(line, sizeof(line), &data[ofs], 264 min(len, 16U), ofs); 265 printk(KERN_DEBUG "%s\n", line); 266 ofs += 16; 267 len -= min(len, 16U); 268 } 269 } 270 271 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len) 272 { 273 size_t out = size; 274 u32 ofs = 0; 275 int total = 0; 276 277 while (size && len) { 278 out = snprint_line(output, size, &data[ofs], 279 min_t(size_t, len, 16U), ofs); 280 281 ofs += 16; 282 output += out; 283 size -= out; 284 len -= min_t(size_t, len, 16U); 285 total += out; 286 } 287 return total; 288 } 289 290 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */ 291 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg); 292 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b) 293 294 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */ 295 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg); 296 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b) 297 298 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */ 299 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value); 300 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c) 301 { 302 IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__, 303 __LINE__, (u32) (b), (u32) (c)); 304 _ipw_write_reg8(a, b, c); 305 } 306 307 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */ 308 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value); 309 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c) 310 { 311 IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__, 312 __LINE__, (u32) (b), (u32) (c)); 313 _ipw_write_reg16(a, b, c); 314 } 315 316 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */ 317 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value); 318 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c) 319 { 320 IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__, 321 __LINE__, (u32) (b), (u32) (c)); 322 _ipw_write_reg32(a, b, c); 323 } 324 325 /* 8-bit direct write (low 4K) */ 326 static inline void _ipw_write8(struct ipw_priv *ipw, unsigned long ofs, 327 u8 val) 328 { 329 writeb(val, ipw->hw_base + ofs); 330 } 331 332 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */ 333 #define ipw_write8(ipw, ofs, val) do { \ 334 IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, \ 335 __LINE__, (u32)(ofs), (u32)(val)); \ 336 _ipw_write8(ipw, ofs, val); \ 337 } while (0) 338 339 /* 16-bit direct write (low 4K) */ 340 static inline void _ipw_write16(struct ipw_priv *ipw, unsigned long ofs, 341 u16 val) 342 { 343 writew(val, ipw->hw_base + ofs); 344 } 345 346 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */ 347 #define ipw_write16(ipw, ofs, val) do { \ 348 IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, \ 349 __LINE__, (u32)(ofs), (u32)(val)); \ 350 _ipw_write16(ipw, ofs, val); \ 351 } while (0) 352 353 /* 32-bit direct write (low 4K) */ 354 static inline void _ipw_write32(struct ipw_priv *ipw, unsigned long ofs, 355 u32 val) 356 { 357 writel(val, ipw->hw_base + ofs); 358 } 359 360 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */ 361 #define ipw_write32(ipw, ofs, val) do { \ 362 IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, \ 363 __LINE__, (u32)(ofs), (u32)(val)); \ 364 _ipw_write32(ipw, ofs, val); \ 365 } while (0) 366 367 /* 8-bit direct read (low 4K) */ 368 static inline u8 _ipw_read8(struct ipw_priv *ipw, unsigned long ofs) 369 { 370 return readb(ipw->hw_base + ofs); 371 } 372 373 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */ 374 #define ipw_read8(ipw, ofs) ({ \ 375 IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", __FILE__, __LINE__, \ 376 (u32)(ofs)); \ 377 _ipw_read8(ipw, ofs); \ 378 }) 379 380 /* 16-bit direct read (low 4K) */ 381 static inline u16 _ipw_read16(struct ipw_priv *ipw, unsigned long ofs) 382 { 383 return readw(ipw->hw_base + ofs); 384 } 385 386 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */ 387 #define ipw_read16(ipw, ofs) ({ \ 388 IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", __FILE__, __LINE__, \ 389 (u32)(ofs)); \ 390 _ipw_read16(ipw, ofs); \ 391 }) 392 393 /* 32-bit direct read (low 4K) */ 394 static inline u32 _ipw_read32(struct ipw_priv *ipw, unsigned long ofs) 395 { 396 return readl(ipw->hw_base + ofs); 397 } 398 399 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */ 400 #define ipw_read32(ipw, ofs) ({ \ 401 IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", __FILE__, __LINE__, \ 402 (u32)(ofs)); \ 403 _ipw_read32(ipw, ofs); \ 404 }) 405 406 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int); 407 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */ 408 #define ipw_read_indirect(a, b, c, d) ({ \ 409 IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %u bytes\n", __FILE__, \ 410 __LINE__, (u32)(b), (u32)(d)); \ 411 _ipw_read_indirect(a, b, c, d); \ 412 }) 413 414 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */ 415 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data, 416 int num); 417 #define ipw_write_indirect(a, b, c, d) do { \ 418 IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %u bytes\n", __FILE__, \ 419 __LINE__, (u32)(b), (u32)(d)); \ 420 _ipw_write_indirect(a, b, c, d); \ 421 } while (0) 422 423 /* 32-bit indirect write (above 4K) */ 424 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value) 425 { 426 IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value); 427 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg); 428 _ipw_write32(priv, IPW_INDIRECT_DATA, value); 429 } 430 431 /* 8-bit indirect write (above 4K) */ 432 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value) 433 { 434 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */ 435 u32 dif_len = reg - aligned_addr; 436 437 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value); 438 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr); 439 _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value); 440 } 441 442 /* 16-bit indirect write (above 4K) */ 443 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value) 444 { 445 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */ 446 u32 dif_len = (reg - aligned_addr) & (~0x1ul); 447 448 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value); 449 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr); 450 _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value); 451 } 452 453 /* 8-bit indirect read (above 4K) */ 454 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg) 455 { 456 u32 word; 457 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK); 458 IPW_DEBUG_IO(" reg = 0x%8X :\n", reg); 459 word = _ipw_read32(priv, IPW_INDIRECT_DATA); 460 return (word >> ((reg & 0x3) * 8)) & 0xff; 461 } 462 463 /* 32-bit indirect read (above 4K) */ 464 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg) 465 { 466 u32 value; 467 468 IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg); 469 470 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg); 471 value = _ipw_read32(priv, IPW_INDIRECT_DATA); 472 IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x\n", reg, value); 473 return value; 474 } 475 476 /* General purpose, no alignment requirement, iterative (multi-byte) read, */ 477 /* for area above 1st 4K of SRAM/reg space */ 478 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf, 479 int num) 480 { 481 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */ 482 u32 dif_len = addr - aligned_addr; 483 u32 i; 484 485 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num); 486 487 if (num <= 0) { 488 return; 489 } 490 491 /* Read the first dword (or portion) byte by byte */ 492 if (unlikely(dif_len)) { 493 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr); 494 /* Start reading at aligned_addr + dif_len */ 495 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--) 496 *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i); 497 aligned_addr += 4; 498 } 499 500 /* Read all of the middle dwords as dwords, with auto-increment */ 501 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr); 502 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4) 503 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA); 504 505 /* Read the last dword (or portion) byte by byte */ 506 if (unlikely(num)) { 507 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr); 508 for (i = 0; num > 0; i++, num--) 509 *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i); 510 } 511 } 512 513 /* General purpose, no alignment requirement, iterative (multi-byte) write, */ 514 /* for area above 1st 4K of SRAM/reg space */ 515 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf, 516 int num) 517 { 518 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */ 519 u32 dif_len = addr - aligned_addr; 520 u32 i; 521 522 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num); 523 524 if (num <= 0) { 525 return; 526 } 527 528 /* Write the first dword (or portion) byte by byte */ 529 if (unlikely(dif_len)) { 530 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr); 531 /* Start writing at aligned_addr + dif_len */ 532 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++) 533 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf); 534 aligned_addr += 4; 535 } 536 537 /* Write all of the middle dwords as dwords, with auto-increment */ 538 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr); 539 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4) 540 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf); 541 542 /* Write the last dword (or portion) byte by byte */ 543 if (unlikely(num)) { 544 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr); 545 for (i = 0; num > 0; i++, num--, buf++) 546 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf); 547 } 548 } 549 550 /* General purpose, no alignment requirement, iterative (multi-byte) write, */ 551 /* for 1st 4K of SRAM/regs space */ 552 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf, 553 int num) 554 { 555 memcpy_toio((priv->hw_base + addr), buf, num); 556 } 557 558 /* Set bit(s) in low 4K of SRAM/regs */ 559 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask) 560 { 561 ipw_write32(priv, reg, ipw_read32(priv, reg) | mask); 562 } 563 564 /* Clear bit(s) in low 4K of SRAM/regs */ 565 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask) 566 { 567 ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask); 568 } 569 570 static inline void __ipw_enable_interrupts(struct ipw_priv *priv) 571 { 572 if (priv->status & STATUS_INT_ENABLED) 573 return; 574 priv->status |= STATUS_INT_ENABLED; 575 ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL); 576 } 577 578 static inline void __ipw_disable_interrupts(struct ipw_priv *priv) 579 { 580 if (!(priv->status & STATUS_INT_ENABLED)) 581 return; 582 priv->status &= ~STATUS_INT_ENABLED; 583 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL); 584 } 585 586 static inline void ipw_enable_interrupts(struct ipw_priv *priv) 587 { 588 unsigned long flags; 589 590 spin_lock_irqsave(&priv->irq_lock, flags); 591 __ipw_enable_interrupts(priv); 592 spin_unlock_irqrestore(&priv->irq_lock, flags); 593 } 594 595 static inline void ipw_disable_interrupts(struct ipw_priv *priv) 596 { 597 unsigned long flags; 598 599 spin_lock_irqsave(&priv->irq_lock, flags); 600 __ipw_disable_interrupts(priv); 601 spin_unlock_irqrestore(&priv->irq_lock, flags); 602 } 603 604 static char *ipw_error_desc(u32 val) 605 { 606 switch (val) { 607 case IPW_FW_ERROR_OK: 608 return "ERROR_OK"; 609 case IPW_FW_ERROR_FAIL: 610 return "ERROR_FAIL"; 611 case IPW_FW_ERROR_MEMORY_UNDERFLOW: 612 return "MEMORY_UNDERFLOW"; 613 case IPW_FW_ERROR_MEMORY_OVERFLOW: 614 return "MEMORY_OVERFLOW"; 615 case IPW_FW_ERROR_BAD_PARAM: 616 return "BAD_PARAM"; 617 case IPW_FW_ERROR_BAD_CHECKSUM: 618 return "BAD_CHECKSUM"; 619 case IPW_FW_ERROR_NMI_INTERRUPT: 620 return "NMI_INTERRUPT"; 621 case IPW_FW_ERROR_BAD_DATABASE: 622 return "BAD_DATABASE"; 623 case IPW_FW_ERROR_ALLOC_FAIL: 624 return "ALLOC_FAIL"; 625 case IPW_FW_ERROR_DMA_UNDERRUN: 626 return "DMA_UNDERRUN"; 627 case IPW_FW_ERROR_DMA_STATUS: 628 return "DMA_STATUS"; 629 case IPW_FW_ERROR_DINO_ERROR: 630 return "DINO_ERROR"; 631 case IPW_FW_ERROR_EEPROM_ERROR: 632 return "EEPROM_ERROR"; 633 case IPW_FW_ERROR_SYSASSERT: 634 return "SYSASSERT"; 635 case IPW_FW_ERROR_FATAL_ERROR: 636 return "FATAL_ERROR"; 637 default: 638 return "UNKNOWN_ERROR"; 639 } 640 } 641 642 static void ipw_dump_error_log(struct ipw_priv *priv, 643 struct ipw_fw_error *error) 644 { 645 u32 i; 646 647 if (!error) { 648 IPW_ERROR("Error allocating and capturing error log. " 649 "Nothing to dump.\n"); 650 return; 651 } 652 653 IPW_ERROR("Start IPW Error Log Dump:\n"); 654 IPW_ERROR("Status: 0x%08X, Config: %08X\n", 655 error->status, error->config); 656 657 for (i = 0; i < error->elem_len; i++) 658 IPW_ERROR("%s %i 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", 659 ipw_error_desc(error->elem[i].desc), 660 error->elem[i].time, 661 error->elem[i].blink1, 662 error->elem[i].blink2, 663 error->elem[i].link1, 664 error->elem[i].link2, error->elem[i].data); 665 for (i = 0; i < error->log_len; i++) 666 IPW_ERROR("%i\t0x%08x\t%i\n", 667 error->log[i].time, 668 error->log[i].data, error->log[i].event); 669 } 670 671 static inline int ipw_is_init(struct ipw_priv *priv) 672 { 673 return (priv->status & STATUS_INIT) ? 1 : 0; 674 } 675 676 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len) 677 { 678 u32 addr, field_info, field_len, field_count, total_len; 679 680 IPW_DEBUG_ORD("ordinal = %i\n", ord); 681 682 if (!priv || !val || !len) { 683 IPW_DEBUG_ORD("Invalid argument\n"); 684 return -EINVAL; 685 } 686 687 /* verify device ordinal tables have been initialized */ 688 if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) { 689 IPW_DEBUG_ORD("Access ordinals before initialization\n"); 690 return -EINVAL; 691 } 692 693 switch (IPW_ORD_TABLE_ID_MASK & ord) { 694 case IPW_ORD_TABLE_0_MASK: 695 /* 696 * TABLE 0: Direct access to a table of 32 bit values 697 * 698 * This is a very simple table with the data directly 699 * read from the table 700 */ 701 702 /* remove the table id from the ordinal */ 703 ord &= IPW_ORD_TABLE_VALUE_MASK; 704 705 /* boundary check */ 706 if (ord > priv->table0_len) { 707 IPW_DEBUG_ORD("ordinal value (%i) longer then " 708 "max (%i)\n", ord, priv->table0_len); 709 return -EINVAL; 710 } 711 712 /* verify we have enough room to store the value */ 713 if (*len < sizeof(u32)) { 714 IPW_DEBUG_ORD("ordinal buffer length too small, " 715 "need %zd\n", sizeof(u32)); 716 return -EINVAL; 717 } 718 719 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n", 720 ord, priv->table0_addr + (ord << 2)); 721 722 *len = sizeof(u32); 723 ord <<= 2; 724 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord); 725 break; 726 727 case IPW_ORD_TABLE_1_MASK: 728 /* 729 * TABLE 1: Indirect access to a table of 32 bit values 730 * 731 * This is a fairly large table of u32 values each 732 * representing starting addr for the data (which is 733 * also a u32) 734 */ 735 736 /* remove the table id from the ordinal */ 737 ord &= IPW_ORD_TABLE_VALUE_MASK; 738 739 /* boundary check */ 740 if (ord > priv->table1_len) { 741 IPW_DEBUG_ORD("ordinal value too long\n"); 742 return -EINVAL; 743 } 744 745 /* verify we have enough room to store the value */ 746 if (*len < sizeof(u32)) { 747 IPW_DEBUG_ORD("ordinal buffer length too small, " 748 "need %zd\n", sizeof(u32)); 749 return -EINVAL; 750 } 751 752 *((u32 *) val) = 753 ipw_read_reg32(priv, (priv->table1_addr + (ord << 2))); 754 *len = sizeof(u32); 755 break; 756 757 case IPW_ORD_TABLE_2_MASK: 758 /* 759 * TABLE 2: Indirect access to a table of variable sized values 760 * 761 * This table consist of six values, each containing 762 * - dword containing the starting offset of the data 763 * - dword containing the lengh in the first 16bits 764 * and the count in the second 16bits 765 */ 766 767 /* remove the table id from the ordinal */ 768 ord &= IPW_ORD_TABLE_VALUE_MASK; 769 770 /* boundary check */ 771 if (ord > priv->table2_len) { 772 IPW_DEBUG_ORD("ordinal value too long\n"); 773 return -EINVAL; 774 } 775 776 /* get the address of statistic */ 777 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3)); 778 779 /* get the second DW of statistics ; 780 * two 16-bit words - first is length, second is count */ 781 field_info = 782 ipw_read_reg32(priv, 783 priv->table2_addr + (ord << 3) + 784 sizeof(u32)); 785 786 /* get each entry length */ 787 field_len = *((u16 *) & field_info); 788 789 /* get number of entries */ 790 field_count = *(((u16 *) & field_info) + 1); 791 792 /* abort if not enough memory */ 793 total_len = field_len * field_count; 794 if (total_len > *len) { 795 *len = total_len; 796 return -EINVAL; 797 } 798 799 *len = total_len; 800 if (!total_len) 801 return 0; 802 803 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, " 804 "field_info = 0x%08x\n", 805 addr, total_len, field_info); 806 ipw_read_indirect(priv, addr, val, total_len); 807 break; 808 809 default: 810 IPW_DEBUG_ORD("Invalid ordinal!\n"); 811 return -EINVAL; 812 813 } 814 815 return 0; 816 } 817 818 static void ipw_init_ordinals(struct ipw_priv *priv) 819 { 820 priv->table0_addr = IPW_ORDINALS_TABLE_LOWER; 821 priv->table0_len = ipw_read32(priv, priv->table0_addr); 822 823 IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n", 824 priv->table0_addr, priv->table0_len); 825 826 priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1); 827 priv->table1_len = ipw_read_reg32(priv, priv->table1_addr); 828 829 IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n", 830 priv->table1_addr, priv->table1_len); 831 832 priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2); 833 priv->table2_len = ipw_read_reg32(priv, priv->table2_addr); 834 priv->table2_len &= 0x0000ffff; /* use first two bytes */ 835 836 IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n", 837 priv->table2_addr, priv->table2_len); 838 839 } 840 841 static u32 ipw_register_toggle(u32 reg) 842 { 843 reg &= ~IPW_START_STANDBY; 844 if (reg & IPW_GATE_ODMA) 845 reg &= ~IPW_GATE_ODMA; 846 if (reg & IPW_GATE_IDMA) 847 reg &= ~IPW_GATE_IDMA; 848 if (reg & IPW_GATE_ADMA) 849 reg &= ~IPW_GATE_ADMA; 850 return reg; 851 } 852 853 /* 854 * LED behavior: 855 * - On radio ON, turn on any LEDs that require to be on during start 856 * - On initialization, start unassociated blink 857 * - On association, disable unassociated blink 858 * - On disassociation, start unassociated blink 859 * - On radio OFF, turn off any LEDs started during radio on 860 * 861 */ 862 #define LD_TIME_LINK_ON msecs_to_jiffies(300) 863 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700) 864 #define LD_TIME_ACT_ON msecs_to_jiffies(250) 865 866 static void ipw_led_link_on(struct ipw_priv *priv) 867 { 868 unsigned long flags; 869 u32 led; 870 871 /* If configured to not use LEDs, or nic_type is 1, 872 * then we don't toggle a LINK led */ 873 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1) 874 return; 875 876 spin_lock_irqsave(&priv->lock, flags); 877 878 if (!(priv->status & STATUS_RF_KILL_MASK) && 879 !(priv->status & STATUS_LED_LINK_ON)) { 880 IPW_DEBUG_LED("Link LED On\n"); 881 led = ipw_read_reg32(priv, IPW_EVENT_REG); 882 led |= priv->led_association_on; 883 884 led = ipw_register_toggle(led); 885 886 IPW_DEBUG_LED("Reg: 0x%08X\n", led); 887 ipw_write_reg32(priv, IPW_EVENT_REG, led); 888 889 priv->status |= STATUS_LED_LINK_ON; 890 891 /* If we aren't associated, schedule turning the LED off */ 892 if (!(priv->status & STATUS_ASSOCIATED)) 893 schedule_delayed_work(&priv->led_link_off, 894 LD_TIME_LINK_ON); 895 } 896 897 spin_unlock_irqrestore(&priv->lock, flags); 898 } 899 900 static void ipw_bg_led_link_on(struct work_struct *work) 901 { 902 struct ipw_priv *priv = 903 container_of(work, struct ipw_priv, led_link_on.work); 904 mutex_lock(&priv->mutex); 905 ipw_led_link_on(priv); 906 mutex_unlock(&priv->mutex); 907 } 908 909 static void ipw_led_link_off(struct ipw_priv *priv) 910 { 911 unsigned long flags; 912 u32 led; 913 914 /* If configured not to use LEDs, or nic type is 1, 915 * then we don't goggle the LINK led. */ 916 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1) 917 return; 918 919 spin_lock_irqsave(&priv->lock, flags); 920 921 if (priv->status & STATUS_LED_LINK_ON) { 922 led = ipw_read_reg32(priv, IPW_EVENT_REG); 923 led &= priv->led_association_off; 924 led = ipw_register_toggle(led); 925 926 IPW_DEBUG_LED("Reg: 0x%08X\n", led); 927 ipw_write_reg32(priv, IPW_EVENT_REG, led); 928 929 IPW_DEBUG_LED("Link LED Off\n"); 930 931 priv->status &= ~STATUS_LED_LINK_ON; 932 933 /* If we aren't associated and the radio is on, schedule 934 * turning the LED on (blink while unassociated) */ 935 if (!(priv->status & STATUS_RF_KILL_MASK) && 936 !(priv->status & STATUS_ASSOCIATED)) 937 schedule_delayed_work(&priv->led_link_on, 938 LD_TIME_LINK_OFF); 939 940 } 941 942 spin_unlock_irqrestore(&priv->lock, flags); 943 } 944 945 static void ipw_bg_led_link_off(struct work_struct *work) 946 { 947 struct ipw_priv *priv = 948 container_of(work, struct ipw_priv, led_link_off.work); 949 mutex_lock(&priv->mutex); 950 ipw_led_link_off(priv); 951 mutex_unlock(&priv->mutex); 952 } 953 954 static void __ipw_led_activity_on(struct ipw_priv *priv) 955 { 956 u32 led; 957 958 if (priv->config & CFG_NO_LED) 959 return; 960 961 if (priv->status & STATUS_RF_KILL_MASK) 962 return; 963 964 if (!(priv->status & STATUS_LED_ACT_ON)) { 965 led = ipw_read_reg32(priv, IPW_EVENT_REG); 966 led |= priv->led_activity_on; 967 968 led = ipw_register_toggle(led); 969 970 IPW_DEBUG_LED("Reg: 0x%08X\n", led); 971 ipw_write_reg32(priv, IPW_EVENT_REG, led); 972 973 IPW_DEBUG_LED("Activity LED On\n"); 974 975 priv->status |= STATUS_LED_ACT_ON; 976 977 cancel_delayed_work(&priv->led_act_off); 978 schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON); 979 } else { 980 /* Reschedule LED off for full time period */ 981 cancel_delayed_work(&priv->led_act_off); 982 schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON); 983 } 984 } 985 986 #if 0 987 void ipw_led_activity_on(struct ipw_priv *priv) 988 { 989 unsigned long flags; 990 spin_lock_irqsave(&priv->lock, flags); 991 __ipw_led_activity_on(priv); 992 spin_unlock_irqrestore(&priv->lock, flags); 993 } 994 #endif /* 0 */ 995 996 static void ipw_led_activity_off(struct ipw_priv *priv) 997 { 998 unsigned long flags; 999 u32 led; 1000 1001 if (priv->config & CFG_NO_LED) 1002 return; 1003 1004 spin_lock_irqsave(&priv->lock, flags); 1005 1006 if (priv->status & STATUS_LED_ACT_ON) { 1007 led = ipw_read_reg32(priv, IPW_EVENT_REG); 1008 led &= priv->led_activity_off; 1009 1010 led = ipw_register_toggle(led); 1011 1012 IPW_DEBUG_LED("Reg: 0x%08X\n", led); 1013 ipw_write_reg32(priv, IPW_EVENT_REG, led); 1014 1015 IPW_DEBUG_LED("Activity LED Off\n"); 1016 1017 priv->status &= ~STATUS_LED_ACT_ON; 1018 } 1019 1020 spin_unlock_irqrestore(&priv->lock, flags); 1021 } 1022 1023 static void ipw_bg_led_activity_off(struct work_struct *work) 1024 { 1025 struct ipw_priv *priv = 1026 container_of(work, struct ipw_priv, led_act_off.work); 1027 mutex_lock(&priv->mutex); 1028 ipw_led_activity_off(priv); 1029 mutex_unlock(&priv->mutex); 1030 } 1031 1032 static void ipw_led_band_on(struct ipw_priv *priv) 1033 { 1034 unsigned long flags; 1035 u32 led; 1036 1037 /* Only nic type 1 supports mode LEDs */ 1038 if (priv->config & CFG_NO_LED || 1039 priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network) 1040 return; 1041 1042 spin_lock_irqsave(&priv->lock, flags); 1043 1044 led = ipw_read_reg32(priv, IPW_EVENT_REG); 1045 if (priv->assoc_network->mode == IEEE_A) { 1046 led |= priv->led_ofdm_on; 1047 led &= priv->led_association_off; 1048 IPW_DEBUG_LED("Mode LED On: 802.11a\n"); 1049 } else if (priv->assoc_network->mode == IEEE_G) { 1050 led |= priv->led_ofdm_on; 1051 led |= priv->led_association_on; 1052 IPW_DEBUG_LED("Mode LED On: 802.11g\n"); 1053 } else { 1054 led &= priv->led_ofdm_off; 1055 led |= priv->led_association_on; 1056 IPW_DEBUG_LED("Mode LED On: 802.11b\n"); 1057 } 1058 1059 led = ipw_register_toggle(led); 1060 1061 IPW_DEBUG_LED("Reg: 0x%08X\n", led); 1062 ipw_write_reg32(priv, IPW_EVENT_REG, led); 1063 1064 spin_unlock_irqrestore(&priv->lock, flags); 1065 } 1066 1067 static void ipw_led_band_off(struct ipw_priv *priv) 1068 { 1069 unsigned long flags; 1070 u32 led; 1071 1072 /* Only nic type 1 supports mode LEDs */ 1073 if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1) 1074 return; 1075 1076 spin_lock_irqsave(&priv->lock, flags); 1077 1078 led = ipw_read_reg32(priv, IPW_EVENT_REG); 1079 led &= priv->led_ofdm_off; 1080 led &= priv->led_association_off; 1081 1082 led = ipw_register_toggle(led); 1083 1084 IPW_DEBUG_LED("Reg: 0x%08X\n", led); 1085 ipw_write_reg32(priv, IPW_EVENT_REG, led); 1086 1087 spin_unlock_irqrestore(&priv->lock, flags); 1088 } 1089 1090 static void ipw_led_radio_on(struct ipw_priv *priv) 1091 { 1092 ipw_led_link_on(priv); 1093 } 1094 1095 static void ipw_led_radio_off(struct ipw_priv *priv) 1096 { 1097 ipw_led_activity_off(priv); 1098 ipw_led_link_off(priv); 1099 } 1100 1101 static void ipw_led_link_up(struct ipw_priv *priv) 1102 { 1103 /* Set the Link Led on for all nic types */ 1104 ipw_led_link_on(priv); 1105 } 1106 1107 static void ipw_led_link_down(struct ipw_priv *priv) 1108 { 1109 ipw_led_activity_off(priv); 1110 ipw_led_link_off(priv); 1111 1112 if (priv->status & STATUS_RF_KILL_MASK) 1113 ipw_led_radio_off(priv); 1114 } 1115 1116 static void ipw_led_init(struct ipw_priv *priv) 1117 { 1118 priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE]; 1119 1120 /* Set the default PINs for the link and activity leds */ 1121 priv->led_activity_on = IPW_ACTIVITY_LED; 1122 priv->led_activity_off = ~(IPW_ACTIVITY_LED); 1123 1124 priv->led_association_on = IPW_ASSOCIATED_LED; 1125 priv->led_association_off = ~(IPW_ASSOCIATED_LED); 1126 1127 /* Set the default PINs for the OFDM leds */ 1128 priv->led_ofdm_on = IPW_OFDM_LED; 1129 priv->led_ofdm_off = ~(IPW_OFDM_LED); 1130 1131 switch (priv->nic_type) { 1132 case EEPROM_NIC_TYPE_1: 1133 /* In this NIC type, the LEDs are reversed.... */ 1134 priv->led_activity_on = IPW_ASSOCIATED_LED; 1135 priv->led_activity_off = ~(IPW_ASSOCIATED_LED); 1136 priv->led_association_on = IPW_ACTIVITY_LED; 1137 priv->led_association_off = ~(IPW_ACTIVITY_LED); 1138 1139 if (!(priv->config & CFG_NO_LED)) 1140 ipw_led_band_on(priv); 1141 1142 /* And we don't blink link LEDs for this nic, so 1143 * just return here */ 1144 return; 1145 1146 case EEPROM_NIC_TYPE_3: 1147 case EEPROM_NIC_TYPE_2: 1148 case EEPROM_NIC_TYPE_4: 1149 case EEPROM_NIC_TYPE_0: 1150 break; 1151 1152 default: 1153 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n", 1154 priv->nic_type); 1155 priv->nic_type = EEPROM_NIC_TYPE_0; 1156 break; 1157 } 1158 1159 if (!(priv->config & CFG_NO_LED)) { 1160 if (priv->status & STATUS_ASSOCIATED) 1161 ipw_led_link_on(priv); 1162 else 1163 ipw_led_link_off(priv); 1164 } 1165 } 1166 1167 static void ipw_led_shutdown(struct ipw_priv *priv) 1168 { 1169 ipw_led_activity_off(priv); 1170 ipw_led_link_off(priv); 1171 ipw_led_band_off(priv); 1172 cancel_delayed_work(&priv->led_link_on); 1173 cancel_delayed_work(&priv->led_link_off); 1174 cancel_delayed_work(&priv->led_act_off); 1175 } 1176 1177 /* 1178 * The following adds a new attribute to the sysfs representation 1179 * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/) 1180 * used for controlling the debug level. 1181 * 1182 * See the level definitions in ipw for details. 1183 */ 1184 static ssize_t debug_level_show(struct device_driver *d, char *buf) 1185 { 1186 return sprintf(buf, "0x%08X\n", ipw_debug_level); 1187 } 1188 1189 static ssize_t debug_level_store(struct device_driver *d, const char *buf, 1190 size_t count) 1191 { 1192 char *p = (char *)buf; 1193 u32 val; 1194 1195 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') { 1196 p++; 1197 if (p[0] == 'x' || p[0] == 'X') 1198 p++; 1199 val = simple_strtoul(p, &p, 16); 1200 } else 1201 val = simple_strtoul(p, &p, 10); 1202 if (p == buf) 1203 printk(KERN_INFO DRV_NAME 1204 ": %s is not in hex or decimal form.\n", buf); 1205 else 1206 ipw_debug_level = val; 1207 1208 return strnlen(buf, count); 1209 } 1210 static DRIVER_ATTR_RW(debug_level); 1211 1212 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv) 1213 { 1214 /* length = 1st dword in log */ 1215 return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG)); 1216 } 1217 1218 static void ipw_capture_event_log(struct ipw_priv *priv, 1219 u32 log_len, struct ipw_event *log) 1220 { 1221 u32 base; 1222 1223 if (log_len) { 1224 base = ipw_read32(priv, IPW_EVENT_LOG); 1225 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32), 1226 (u8 *) log, sizeof(*log) * log_len); 1227 } 1228 } 1229 1230 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv) 1231 { 1232 struct ipw_fw_error *error; 1233 u32 log_len = ipw_get_event_log_len(priv); 1234 u32 base = ipw_read32(priv, IPW_ERROR_LOG); 1235 u32 elem_len = ipw_read_reg32(priv, base); 1236 1237 error = kmalloc(sizeof(*error) + 1238 sizeof(*error->elem) * elem_len + 1239 sizeof(*error->log) * log_len, GFP_ATOMIC); 1240 if (!error) { 1241 IPW_ERROR("Memory allocation for firmware error log " 1242 "failed.\n"); 1243 return NULL; 1244 } 1245 error->jiffies = jiffies; 1246 error->status = priv->status; 1247 error->config = priv->config; 1248 error->elem_len = elem_len; 1249 error->log_len = log_len; 1250 error->elem = (struct ipw_error_elem *)error->payload; 1251 error->log = (struct ipw_event *)(error->elem + elem_len); 1252 1253 ipw_capture_event_log(priv, log_len, error->log); 1254 1255 if (elem_len) 1256 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem, 1257 sizeof(*error->elem) * elem_len); 1258 1259 return error; 1260 } 1261 1262 static ssize_t show_event_log(struct device *d, 1263 struct device_attribute *attr, char *buf) 1264 { 1265 struct ipw_priv *priv = dev_get_drvdata(d); 1266 u32 log_len = ipw_get_event_log_len(priv); 1267 u32 log_size; 1268 struct ipw_event *log; 1269 u32 len = 0, i; 1270 1271 /* not using min() because of its strict type checking */ 1272 log_size = PAGE_SIZE / sizeof(*log) > log_len ? 1273 sizeof(*log) * log_len : PAGE_SIZE; 1274 log = kzalloc(log_size, GFP_KERNEL); 1275 if (!log) { 1276 IPW_ERROR("Unable to allocate memory for log\n"); 1277 return 0; 1278 } 1279 log_len = log_size / sizeof(*log); 1280 ipw_capture_event_log(priv, log_len, log); 1281 1282 len += scnprintf(buf + len, PAGE_SIZE - len, "%08X", log_len); 1283 for (i = 0; i < log_len; i++) 1284 len += scnprintf(buf + len, PAGE_SIZE - len, 1285 "\n%08X%08X%08X", 1286 log[i].time, log[i].event, log[i].data); 1287 len += scnprintf(buf + len, PAGE_SIZE - len, "\n"); 1288 kfree(log); 1289 return len; 1290 } 1291 1292 static DEVICE_ATTR(event_log, 0444, show_event_log, NULL); 1293 1294 static ssize_t show_error(struct device *d, 1295 struct device_attribute *attr, char *buf) 1296 { 1297 struct ipw_priv *priv = dev_get_drvdata(d); 1298 u32 len = 0, i; 1299 if (!priv->error) 1300 return 0; 1301 len += scnprintf(buf + len, PAGE_SIZE - len, 1302 "%08lX%08X%08X%08X", 1303 priv->error->jiffies, 1304 priv->error->status, 1305 priv->error->config, priv->error->elem_len); 1306 for (i = 0; i < priv->error->elem_len; i++) 1307 len += scnprintf(buf + len, PAGE_SIZE - len, 1308 "\n%08X%08X%08X%08X%08X%08X%08X", 1309 priv->error->elem[i].time, 1310 priv->error->elem[i].desc, 1311 priv->error->elem[i].blink1, 1312 priv->error->elem[i].blink2, 1313 priv->error->elem[i].link1, 1314 priv->error->elem[i].link2, 1315 priv->error->elem[i].data); 1316 1317 len += scnprintf(buf + len, PAGE_SIZE - len, 1318 "\n%08X", priv->error->log_len); 1319 for (i = 0; i < priv->error->log_len; i++) 1320 len += scnprintf(buf + len, PAGE_SIZE - len, 1321 "\n%08X%08X%08X", 1322 priv->error->log[i].time, 1323 priv->error->log[i].event, 1324 priv->error->log[i].data); 1325 len += scnprintf(buf + len, PAGE_SIZE - len, "\n"); 1326 return len; 1327 } 1328 1329 static ssize_t clear_error(struct device *d, 1330 struct device_attribute *attr, 1331 const char *buf, size_t count) 1332 { 1333 struct ipw_priv *priv = dev_get_drvdata(d); 1334 1335 kfree(priv->error); 1336 priv->error = NULL; 1337 return count; 1338 } 1339 1340 static DEVICE_ATTR(error, 0644, show_error, clear_error); 1341 1342 static ssize_t show_cmd_log(struct device *d, 1343 struct device_attribute *attr, char *buf) 1344 { 1345 struct ipw_priv *priv = dev_get_drvdata(d); 1346 u32 len = 0, i; 1347 if (!priv->cmdlog) 1348 return 0; 1349 for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len; 1350 (i != priv->cmdlog_pos) && (len < PAGE_SIZE); 1351 i = (i + 1) % priv->cmdlog_len) { 1352 len += 1353 scnprintf(buf + len, PAGE_SIZE - len, 1354 "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies, 1355 priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd, 1356 priv->cmdlog[i].cmd.len); 1357 len += 1358 snprintk_buf(buf + len, PAGE_SIZE - len, 1359 (u8 *) priv->cmdlog[i].cmd.param, 1360 priv->cmdlog[i].cmd.len); 1361 len += scnprintf(buf + len, PAGE_SIZE - len, "\n"); 1362 } 1363 len += scnprintf(buf + len, PAGE_SIZE - len, "\n"); 1364 return len; 1365 } 1366 1367 static DEVICE_ATTR(cmd_log, 0444, show_cmd_log, NULL); 1368 1369 #ifdef CONFIG_IPW2200_PROMISCUOUS 1370 static void ipw_prom_free(struct ipw_priv *priv); 1371 static int ipw_prom_alloc(struct ipw_priv *priv); 1372 static ssize_t store_rtap_iface(struct device *d, 1373 struct device_attribute *attr, 1374 const char *buf, size_t count) 1375 { 1376 struct ipw_priv *priv = dev_get_drvdata(d); 1377 int rc = 0; 1378 1379 if (count < 1) 1380 return -EINVAL; 1381 1382 switch (buf[0]) { 1383 case '0': 1384 if (!rtap_iface) 1385 return count; 1386 1387 if (netif_running(priv->prom_net_dev)) { 1388 IPW_WARNING("Interface is up. Cannot unregister.\n"); 1389 return count; 1390 } 1391 1392 ipw_prom_free(priv); 1393 rtap_iface = 0; 1394 break; 1395 1396 case '1': 1397 if (rtap_iface) 1398 return count; 1399 1400 rc = ipw_prom_alloc(priv); 1401 if (!rc) 1402 rtap_iface = 1; 1403 break; 1404 1405 default: 1406 return -EINVAL; 1407 } 1408 1409 if (rc) { 1410 IPW_ERROR("Failed to register promiscuous network " 1411 "device (error %d).\n", rc); 1412 } 1413 1414 return count; 1415 } 1416 1417 static ssize_t show_rtap_iface(struct device *d, 1418 struct device_attribute *attr, 1419 char *buf) 1420 { 1421 struct ipw_priv *priv = dev_get_drvdata(d); 1422 if (rtap_iface) 1423 return sprintf(buf, "%s", priv->prom_net_dev->name); 1424 else { 1425 buf[0] = '-'; 1426 buf[1] = '1'; 1427 buf[2] = '\0'; 1428 return 3; 1429 } 1430 } 1431 1432 static DEVICE_ATTR(rtap_iface, 0600, show_rtap_iface, store_rtap_iface); 1433 1434 static ssize_t store_rtap_filter(struct device *d, 1435 struct device_attribute *attr, 1436 const char *buf, size_t count) 1437 { 1438 struct ipw_priv *priv = dev_get_drvdata(d); 1439 1440 if (!priv->prom_priv) { 1441 IPW_ERROR("Attempting to set filter without " 1442 "rtap_iface enabled.\n"); 1443 return -EPERM; 1444 } 1445 1446 priv->prom_priv->filter = simple_strtol(buf, NULL, 0); 1447 1448 IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n", 1449 BIT_ARG16(priv->prom_priv->filter)); 1450 1451 return count; 1452 } 1453 1454 static ssize_t show_rtap_filter(struct device *d, 1455 struct device_attribute *attr, 1456 char *buf) 1457 { 1458 struct ipw_priv *priv = dev_get_drvdata(d); 1459 return sprintf(buf, "0x%04X", 1460 priv->prom_priv ? priv->prom_priv->filter : 0); 1461 } 1462 1463 static DEVICE_ATTR(rtap_filter, 0600, show_rtap_filter, store_rtap_filter); 1464 #endif 1465 1466 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr, 1467 char *buf) 1468 { 1469 struct ipw_priv *priv = dev_get_drvdata(d); 1470 return sprintf(buf, "%d\n", priv->ieee->scan_age); 1471 } 1472 1473 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr, 1474 const char *buf, size_t count) 1475 { 1476 struct ipw_priv *priv = dev_get_drvdata(d); 1477 struct net_device *dev = priv->net_dev; 1478 char buffer[] = "00000000"; 1479 unsigned long len = 1480 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1; 1481 unsigned long val; 1482 char *p = buffer; 1483 1484 IPW_DEBUG_INFO("enter\n"); 1485 1486 strncpy(buffer, buf, len); 1487 buffer[len] = 0; 1488 1489 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') { 1490 p++; 1491 if (p[0] == 'x' || p[0] == 'X') 1492 p++; 1493 val = simple_strtoul(p, &p, 16); 1494 } else 1495 val = simple_strtoul(p, &p, 10); 1496 if (p == buffer) { 1497 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name); 1498 } else { 1499 priv->ieee->scan_age = val; 1500 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age); 1501 } 1502 1503 IPW_DEBUG_INFO("exit\n"); 1504 return len; 1505 } 1506 1507 static DEVICE_ATTR(scan_age, 0644, show_scan_age, store_scan_age); 1508 1509 static ssize_t show_led(struct device *d, struct device_attribute *attr, 1510 char *buf) 1511 { 1512 struct ipw_priv *priv = dev_get_drvdata(d); 1513 return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1); 1514 } 1515 1516 static ssize_t store_led(struct device *d, struct device_attribute *attr, 1517 const char *buf, size_t count) 1518 { 1519 struct ipw_priv *priv = dev_get_drvdata(d); 1520 1521 IPW_DEBUG_INFO("enter\n"); 1522 1523 if (count == 0) 1524 return 0; 1525 1526 if (*buf == 0) { 1527 IPW_DEBUG_LED("Disabling LED control.\n"); 1528 priv->config |= CFG_NO_LED; 1529 ipw_led_shutdown(priv); 1530 } else { 1531 IPW_DEBUG_LED("Enabling LED control.\n"); 1532 priv->config &= ~CFG_NO_LED; 1533 ipw_led_init(priv); 1534 } 1535 1536 IPW_DEBUG_INFO("exit\n"); 1537 return count; 1538 } 1539 1540 static DEVICE_ATTR(led, 0644, show_led, store_led); 1541 1542 static ssize_t show_status(struct device *d, 1543 struct device_attribute *attr, char *buf) 1544 { 1545 struct ipw_priv *p = dev_get_drvdata(d); 1546 return sprintf(buf, "0x%08x\n", (int)p->status); 1547 } 1548 1549 static DEVICE_ATTR(status, 0444, show_status, NULL); 1550 1551 static ssize_t show_cfg(struct device *d, struct device_attribute *attr, 1552 char *buf) 1553 { 1554 struct ipw_priv *p = dev_get_drvdata(d); 1555 return sprintf(buf, "0x%08x\n", (int)p->config); 1556 } 1557 1558 static DEVICE_ATTR(cfg, 0444, show_cfg, NULL); 1559 1560 static ssize_t show_nic_type(struct device *d, 1561 struct device_attribute *attr, char *buf) 1562 { 1563 struct ipw_priv *priv = dev_get_drvdata(d); 1564 return sprintf(buf, "TYPE: %d\n", priv->nic_type); 1565 } 1566 1567 static DEVICE_ATTR(nic_type, 0444, show_nic_type, NULL); 1568 1569 static ssize_t show_ucode_version(struct device *d, 1570 struct device_attribute *attr, char *buf) 1571 { 1572 u32 len = sizeof(u32), tmp = 0; 1573 struct ipw_priv *p = dev_get_drvdata(d); 1574 1575 if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len)) 1576 return 0; 1577 1578 return sprintf(buf, "0x%08x\n", tmp); 1579 } 1580 1581 static DEVICE_ATTR(ucode_version, 0644, show_ucode_version, NULL); 1582 1583 static ssize_t show_rtc(struct device *d, struct device_attribute *attr, 1584 char *buf) 1585 { 1586 u32 len = sizeof(u32), tmp = 0; 1587 struct ipw_priv *p = dev_get_drvdata(d); 1588 1589 if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len)) 1590 return 0; 1591 1592 return sprintf(buf, "0x%08x\n", tmp); 1593 } 1594 1595 static DEVICE_ATTR(rtc, 0644, show_rtc, NULL); 1596 1597 /* 1598 * Add a device attribute to view/control the delay between eeprom 1599 * operations. 1600 */ 1601 static ssize_t show_eeprom_delay(struct device *d, 1602 struct device_attribute *attr, char *buf) 1603 { 1604 struct ipw_priv *p = dev_get_drvdata(d); 1605 int n = p->eeprom_delay; 1606 return sprintf(buf, "%i\n", n); 1607 } 1608 static ssize_t store_eeprom_delay(struct device *d, 1609 struct device_attribute *attr, 1610 const char *buf, size_t count) 1611 { 1612 struct ipw_priv *p = dev_get_drvdata(d); 1613 sscanf(buf, "%i", &p->eeprom_delay); 1614 return strnlen(buf, count); 1615 } 1616 1617 static DEVICE_ATTR(eeprom_delay, 0644, show_eeprom_delay, store_eeprom_delay); 1618 1619 static ssize_t show_command_event_reg(struct device *d, 1620 struct device_attribute *attr, char *buf) 1621 { 1622 u32 reg = 0; 1623 struct ipw_priv *p = dev_get_drvdata(d); 1624 1625 reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT); 1626 return sprintf(buf, "0x%08x\n", reg); 1627 } 1628 static ssize_t store_command_event_reg(struct device *d, 1629 struct device_attribute *attr, 1630 const char *buf, size_t count) 1631 { 1632 u32 reg; 1633 struct ipw_priv *p = dev_get_drvdata(d); 1634 1635 sscanf(buf, "%x", ®); 1636 ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg); 1637 return strnlen(buf, count); 1638 } 1639 1640 static DEVICE_ATTR(command_event_reg, 0644, 1641 show_command_event_reg, store_command_event_reg); 1642 1643 static ssize_t show_mem_gpio_reg(struct device *d, 1644 struct device_attribute *attr, char *buf) 1645 { 1646 u32 reg = 0; 1647 struct ipw_priv *p = dev_get_drvdata(d); 1648 1649 reg = ipw_read_reg32(p, 0x301100); 1650 return sprintf(buf, "0x%08x\n", reg); 1651 } 1652 static ssize_t store_mem_gpio_reg(struct device *d, 1653 struct device_attribute *attr, 1654 const char *buf, size_t count) 1655 { 1656 u32 reg; 1657 struct ipw_priv *p = dev_get_drvdata(d); 1658 1659 sscanf(buf, "%x", ®); 1660 ipw_write_reg32(p, 0x301100, reg); 1661 return strnlen(buf, count); 1662 } 1663 1664 static DEVICE_ATTR(mem_gpio_reg, 0644, show_mem_gpio_reg, store_mem_gpio_reg); 1665 1666 static ssize_t show_indirect_dword(struct device *d, 1667 struct device_attribute *attr, char *buf) 1668 { 1669 u32 reg = 0; 1670 struct ipw_priv *priv = dev_get_drvdata(d); 1671 1672 if (priv->status & STATUS_INDIRECT_DWORD) 1673 reg = ipw_read_reg32(priv, priv->indirect_dword); 1674 else 1675 reg = 0; 1676 1677 return sprintf(buf, "0x%08x\n", reg); 1678 } 1679 static ssize_t store_indirect_dword(struct device *d, 1680 struct device_attribute *attr, 1681 const char *buf, size_t count) 1682 { 1683 struct ipw_priv *priv = dev_get_drvdata(d); 1684 1685 sscanf(buf, "%x", &priv->indirect_dword); 1686 priv->status |= STATUS_INDIRECT_DWORD; 1687 return strnlen(buf, count); 1688 } 1689 1690 static DEVICE_ATTR(indirect_dword, 0644, 1691 show_indirect_dword, store_indirect_dword); 1692 1693 static ssize_t show_indirect_byte(struct device *d, 1694 struct device_attribute *attr, char *buf) 1695 { 1696 u8 reg = 0; 1697 struct ipw_priv *priv = dev_get_drvdata(d); 1698 1699 if (priv->status & STATUS_INDIRECT_BYTE) 1700 reg = ipw_read_reg8(priv, priv->indirect_byte); 1701 else 1702 reg = 0; 1703 1704 return sprintf(buf, "0x%02x\n", reg); 1705 } 1706 static ssize_t store_indirect_byte(struct device *d, 1707 struct device_attribute *attr, 1708 const char *buf, size_t count) 1709 { 1710 struct ipw_priv *priv = dev_get_drvdata(d); 1711 1712 sscanf(buf, "%x", &priv->indirect_byte); 1713 priv->status |= STATUS_INDIRECT_BYTE; 1714 return strnlen(buf, count); 1715 } 1716 1717 static DEVICE_ATTR(indirect_byte, 0644, 1718 show_indirect_byte, store_indirect_byte); 1719 1720 static ssize_t show_direct_dword(struct device *d, 1721 struct device_attribute *attr, char *buf) 1722 { 1723 u32 reg = 0; 1724 struct ipw_priv *priv = dev_get_drvdata(d); 1725 1726 if (priv->status & STATUS_DIRECT_DWORD) 1727 reg = ipw_read32(priv, priv->direct_dword); 1728 else 1729 reg = 0; 1730 1731 return sprintf(buf, "0x%08x\n", reg); 1732 } 1733 static ssize_t store_direct_dword(struct device *d, 1734 struct device_attribute *attr, 1735 const char *buf, size_t count) 1736 { 1737 struct ipw_priv *priv = dev_get_drvdata(d); 1738 1739 sscanf(buf, "%x", &priv->direct_dword); 1740 priv->status |= STATUS_DIRECT_DWORD; 1741 return strnlen(buf, count); 1742 } 1743 1744 static DEVICE_ATTR(direct_dword, 0644, show_direct_dword, store_direct_dword); 1745 1746 static int rf_kill_active(struct ipw_priv *priv) 1747 { 1748 if (0 == (ipw_read32(priv, 0x30) & 0x10000)) { 1749 priv->status |= STATUS_RF_KILL_HW; 1750 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true); 1751 } else { 1752 priv->status &= ~STATUS_RF_KILL_HW; 1753 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false); 1754 } 1755 1756 return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0; 1757 } 1758 1759 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr, 1760 char *buf) 1761 { 1762 /* 0 - RF kill not enabled 1763 1 - SW based RF kill active (sysfs) 1764 2 - HW based RF kill active 1765 3 - Both HW and SW baed RF kill active */ 1766 struct ipw_priv *priv = dev_get_drvdata(d); 1767 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) | 1768 (rf_kill_active(priv) ? 0x2 : 0x0); 1769 return sprintf(buf, "%i\n", val); 1770 } 1771 1772 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio) 1773 { 1774 if ((disable_radio ? 1 : 0) == 1775 ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0)) 1776 return 0; 1777 1778 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n", 1779 disable_radio ? "OFF" : "ON"); 1780 1781 if (disable_radio) { 1782 priv->status |= STATUS_RF_KILL_SW; 1783 1784 cancel_delayed_work(&priv->request_scan); 1785 cancel_delayed_work(&priv->request_direct_scan); 1786 cancel_delayed_work(&priv->request_passive_scan); 1787 cancel_delayed_work(&priv->scan_event); 1788 schedule_work(&priv->down); 1789 } else { 1790 priv->status &= ~STATUS_RF_KILL_SW; 1791 if (rf_kill_active(priv)) { 1792 IPW_DEBUG_RF_KILL("Can not turn radio back on - " 1793 "disabled by HW switch\n"); 1794 /* Make sure the RF_KILL check timer is running */ 1795 cancel_delayed_work(&priv->rf_kill); 1796 schedule_delayed_work(&priv->rf_kill, 1797 round_jiffies_relative(2 * HZ)); 1798 } else 1799 schedule_work(&priv->up); 1800 } 1801 1802 return 1; 1803 } 1804 1805 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr, 1806 const char *buf, size_t count) 1807 { 1808 struct ipw_priv *priv = dev_get_drvdata(d); 1809 1810 ipw_radio_kill_sw(priv, buf[0] == '1'); 1811 1812 return count; 1813 } 1814 1815 static DEVICE_ATTR(rf_kill, 0644, show_rf_kill, store_rf_kill); 1816 1817 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr, 1818 char *buf) 1819 { 1820 struct ipw_priv *priv = dev_get_drvdata(d); 1821 int pos = 0, len = 0; 1822 if (priv->config & CFG_SPEED_SCAN) { 1823 while (priv->speed_scan[pos] != 0) 1824 len += sprintf(&buf[len], "%d ", 1825 priv->speed_scan[pos++]); 1826 return len + sprintf(&buf[len], "\n"); 1827 } 1828 1829 return sprintf(buf, "0\n"); 1830 } 1831 1832 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr, 1833 const char *buf, size_t count) 1834 { 1835 struct ipw_priv *priv = dev_get_drvdata(d); 1836 int channel, pos = 0; 1837 const char *p = buf; 1838 1839 /* list of space separated channels to scan, optionally ending with 0 */ 1840 while ((channel = simple_strtol(p, NULL, 0))) { 1841 if (pos == MAX_SPEED_SCAN - 1) { 1842 priv->speed_scan[pos] = 0; 1843 break; 1844 } 1845 1846 if (libipw_is_valid_channel(priv->ieee, channel)) 1847 priv->speed_scan[pos++] = channel; 1848 else 1849 IPW_WARNING("Skipping invalid channel request: %d\n", 1850 channel); 1851 p = strchr(p, ' '); 1852 if (!p) 1853 break; 1854 while (*p == ' ' || *p == '\t') 1855 p++; 1856 } 1857 1858 if (pos == 0) 1859 priv->config &= ~CFG_SPEED_SCAN; 1860 else { 1861 priv->speed_scan_pos = 0; 1862 priv->config |= CFG_SPEED_SCAN; 1863 } 1864 1865 return count; 1866 } 1867 1868 static DEVICE_ATTR(speed_scan, 0644, show_speed_scan, store_speed_scan); 1869 1870 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr, 1871 char *buf) 1872 { 1873 struct ipw_priv *priv = dev_get_drvdata(d); 1874 return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0'); 1875 } 1876 1877 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr, 1878 const char *buf, size_t count) 1879 { 1880 struct ipw_priv *priv = dev_get_drvdata(d); 1881 if (buf[0] == '1') 1882 priv->config |= CFG_NET_STATS; 1883 else 1884 priv->config &= ~CFG_NET_STATS; 1885 1886 return count; 1887 } 1888 1889 static DEVICE_ATTR(net_stats, 0644, show_net_stats, store_net_stats); 1890 1891 static ssize_t show_channels(struct device *d, 1892 struct device_attribute *attr, 1893 char *buf) 1894 { 1895 struct ipw_priv *priv = dev_get_drvdata(d); 1896 const struct libipw_geo *geo = libipw_get_geo(priv->ieee); 1897 int len = 0, i; 1898 1899 len = sprintf(&buf[len], 1900 "Displaying %d channels in 2.4Ghz band " 1901 "(802.11bg):\n", geo->bg_channels); 1902 1903 for (i = 0; i < geo->bg_channels; i++) { 1904 len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n", 1905 geo->bg[i].channel, 1906 geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT ? 1907 " (radar spectrum)" : "", 1908 ((geo->bg[i].flags & LIBIPW_CH_NO_IBSS) || 1909 (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)) 1910 ? "" : ", IBSS", 1911 geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY ? 1912 "passive only" : "active/passive", 1913 geo->bg[i].flags & LIBIPW_CH_B_ONLY ? 1914 "B" : "B/G"); 1915 } 1916 1917 len += sprintf(&buf[len], 1918 "Displaying %d channels in 5.2Ghz band " 1919 "(802.11a):\n", geo->a_channels); 1920 for (i = 0; i < geo->a_channels; i++) { 1921 len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n", 1922 geo->a[i].channel, 1923 geo->a[i].flags & LIBIPW_CH_RADAR_DETECT ? 1924 " (radar spectrum)" : "", 1925 ((geo->a[i].flags & LIBIPW_CH_NO_IBSS) || 1926 (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT)) 1927 ? "" : ", IBSS", 1928 geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY ? 1929 "passive only" : "active/passive"); 1930 } 1931 1932 return len; 1933 } 1934 1935 static DEVICE_ATTR(channels, 0400, show_channels, NULL); 1936 1937 static void notify_wx_assoc_event(struct ipw_priv *priv) 1938 { 1939 union iwreq_data wrqu; 1940 wrqu.ap_addr.sa_family = ARPHRD_ETHER; 1941 if (priv->status & STATUS_ASSOCIATED) 1942 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN); 1943 else 1944 eth_zero_addr(wrqu.ap_addr.sa_data); 1945 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL); 1946 } 1947 1948 static void ipw_irq_tasklet(struct tasklet_struct *t) 1949 { 1950 struct ipw_priv *priv = from_tasklet(priv, t, irq_tasklet); 1951 u32 inta, inta_mask, handled = 0; 1952 unsigned long flags; 1953 1954 spin_lock_irqsave(&priv->irq_lock, flags); 1955 1956 inta = ipw_read32(priv, IPW_INTA_RW); 1957 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R); 1958 1959 if (inta == 0xFFFFFFFF) { 1960 /* Hardware disappeared */ 1961 IPW_WARNING("TASKLET INTA == 0xFFFFFFFF\n"); 1962 /* Only handle the cached INTA values */ 1963 inta = 0; 1964 } 1965 inta &= (IPW_INTA_MASK_ALL & inta_mask); 1966 1967 /* Add any cached INTA values that need to be handled */ 1968 inta |= priv->isr_inta; 1969 1970 spin_unlock_irqrestore(&priv->irq_lock, flags); 1971 1972 spin_lock_irqsave(&priv->lock, flags); 1973 1974 /* handle all the justifications for the interrupt */ 1975 if (inta & IPW_INTA_BIT_RX_TRANSFER) { 1976 ipw_rx(priv); 1977 handled |= IPW_INTA_BIT_RX_TRANSFER; 1978 } 1979 1980 if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) { 1981 IPW_DEBUG_HC("Command completed.\n"); 1982 ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1); 1983 priv->status &= ~STATUS_HCMD_ACTIVE; 1984 wake_up_interruptible(&priv->wait_command_queue); 1985 handled |= IPW_INTA_BIT_TX_CMD_QUEUE; 1986 } 1987 1988 if (inta & IPW_INTA_BIT_TX_QUEUE_1) { 1989 IPW_DEBUG_TX("TX_QUEUE_1\n"); 1990 ipw_queue_tx_reclaim(priv, &priv->txq[0], 0); 1991 handled |= IPW_INTA_BIT_TX_QUEUE_1; 1992 } 1993 1994 if (inta & IPW_INTA_BIT_TX_QUEUE_2) { 1995 IPW_DEBUG_TX("TX_QUEUE_2\n"); 1996 ipw_queue_tx_reclaim(priv, &priv->txq[1], 1); 1997 handled |= IPW_INTA_BIT_TX_QUEUE_2; 1998 } 1999 2000 if (inta & IPW_INTA_BIT_TX_QUEUE_3) { 2001 IPW_DEBUG_TX("TX_QUEUE_3\n"); 2002 ipw_queue_tx_reclaim(priv, &priv->txq[2], 2); 2003 handled |= IPW_INTA_BIT_TX_QUEUE_3; 2004 } 2005 2006 if (inta & IPW_INTA_BIT_TX_QUEUE_4) { 2007 IPW_DEBUG_TX("TX_QUEUE_4\n"); 2008 ipw_queue_tx_reclaim(priv, &priv->txq[3], 3); 2009 handled |= IPW_INTA_BIT_TX_QUEUE_4; 2010 } 2011 2012 if (inta & IPW_INTA_BIT_STATUS_CHANGE) { 2013 IPW_WARNING("STATUS_CHANGE\n"); 2014 handled |= IPW_INTA_BIT_STATUS_CHANGE; 2015 } 2016 2017 if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) { 2018 IPW_WARNING("TX_PERIOD_EXPIRED\n"); 2019 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED; 2020 } 2021 2022 if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) { 2023 IPW_WARNING("HOST_CMD_DONE\n"); 2024 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE; 2025 } 2026 2027 if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) { 2028 IPW_WARNING("FW_INITIALIZATION_DONE\n"); 2029 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE; 2030 } 2031 2032 if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) { 2033 IPW_WARNING("PHY_OFF_DONE\n"); 2034 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE; 2035 } 2036 2037 if (inta & IPW_INTA_BIT_RF_KILL_DONE) { 2038 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n"); 2039 priv->status |= STATUS_RF_KILL_HW; 2040 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true); 2041 wake_up_interruptible(&priv->wait_command_queue); 2042 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING); 2043 cancel_delayed_work(&priv->request_scan); 2044 cancel_delayed_work(&priv->request_direct_scan); 2045 cancel_delayed_work(&priv->request_passive_scan); 2046 cancel_delayed_work(&priv->scan_event); 2047 schedule_work(&priv->link_down); 2048 schedule_delayed_work(&priv->rf_kill, 2 * HZ); 2049 handled |= IPW_INTA_BIT_RF_KILL_DONE; 2050 } 2051 2052 if (inta & IPW_INTA_BIT_FATAL_ERROR) { 2053 IPW_WARNING("Firmware error detected. Restarting.\n"); 2054 if (priv->error) { 2055 IPW_DEBUG_FW("Sysfs 'error' log already exists.\n"); 2056 if (ipw_debug_level & IPW_DL_FW_ERRORS) { 2057 struct ipw_fw_error *error = 2058 ipw_alloc_error_log(priv); 2059 ipw_dump_error_log(priv, error); 2060 kfree(error); 2061 } 2062 } else { 2063 priv->error = ipw_alloc_error_log(priv); 2064 if (priv->error) 2065 IPW_DEBUG_FW("Sysfs 'error' log captured.\n"); 2066 else 2067 IPW_DEBUG_FW("Error allocating sysfs 'error' " 2068 "log.\n"); 2069 if (ipw_debug_level & IPW_DL_FW_ERRORS) 2070 ipw_dump_error_log(priv, priv->error); 2071 } 2072 2073 /* XXX: If hardware encryption is for WPA/WPA2, 2074 * we have to notify the supplicant. */ 2075 if (priv->ieee->sec.encrypt) { 2076 priv->status &= ~STATUS_ASSOCIATED; 2077 notify_wx_assoc_event(priv); 2078 } 2079 2080 /* Keep the restart process from trying to send host 2081 * commands by clearing the INIT status bit */ 2082 priv->status &= ~STATUS_INIT; 2083 2084 /* Cancel currently queued command. */ 2085 priv->status &= ~STATUS_HCMD_ACTIVE; 2086 wake_up_interruptible(&priv->wait_command_queue); 2087 2088 schedule_work(&priv->adapter_restart); 2089 handled |= IPW_INTA_BIT_FATAL_ERROR; 2090 } 2091 2092 if (inta & IPW_INTA_BIT_PARITY_ERROR) { 2093 IPW_ERROR("Parity error\n"); 2094 handled |= IPW_INTA_BIT_PARITY_ERROR; 2095 } 2096 2097 if (handled != inta) { 2098 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled); 2099 } 2100 2101 spin_unlock_irqrestore(&priv->lock, flags); 2102 2103 /* enable all interrupts */ 2104 ipw_enable_interrupts(priv); 2105 } 2106 2107 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x 2108 static char *get_cmd_string(u8 cmd) 2109 { 2110 switch (cmd) { 2111 IPW_CMD(HOST_COMPLETE); 2112 IPW_CMD(POWER_DOWN); 2113 IPW_CMD(SYSTEM_CONFIG); 2114 IPW_CMD(MULTICAST_ADDRESS); 2115 IPW_CMD(SSID); 2116 IPW_CMD(ADAPTER_ADDRESS); 2117 IPW_CMD(PORT_TYPE); 2118 IPW_CMD(RTS_THRESHOLD); 2119 IPW_CMD(FRAG_THRESHOLD); 2120 IPW_CMD(POWER_MODE); 2121 IPW_CMD(WEP_KEY); 2122 IPW_CMD(TGI_TX_KEY); 2123 IPW_CMD(SCAN_REQUEST); 2124 IPW_CMD(SCAN_REQUEST_EXT); 2125 IPW_CMD(ASSOCIATE); 2126 IPW_CMD(SUPPORTED_RATES); 2127 IPW_CMD(SCAN_ABORT); 2128 IPW_CMD(TX_FLUSH); 2129 IPW_CMD(QOS_PARAMETERS); 2130 IPW_CMD(DINO_CONFIG); 2131 IPW_CMD(RSN_CAPABILITIES); 2132 IPW_CMD(RX_KEY); 2133 IPW_CMD(CARD_DISABLE); 2134 IPW_CMD(SEED_NUMBER); 2135 IPW_CMD(TX_POWER); 2136 IPW_CMD(COUNTRY_INFO); 2137 IPW_CMD(AIRONET_INFO); 2138 IPW_CMD(AP_TX_POWER); 2139 IPW_CMD(CCKM_INFO); 2140 IPW_CMD(CCX_VER_INFO); 2141 IPW_CMD(SET_CALIBRATION); 2142 IPW_CMD(SENSITIVITY_CALIB); 2143 IPW_CMD(RETRY_LIMIT); 2144 IPW_CMD(IPW_PRE_POWER_DOWN); 2145 IPW_CMD(VAP_BEACON_TEMPLATE); 2146 IPW_CMD(VAP_DTIM_PERIOD); 2147 IPW_CMD(EXT_SUPPORTED_RATES); 2148 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT); 2149 IPW_CMD(VAP_QUIET_INTERVALS); 2150 IPW_CMD(VAP_CHANNEL_SWITCH); 2151 IPW_CMD(VAP_MANDATORY_CHANNELS); 2152 IPW_CMD(VAP_CELL_PWR_LIMIT); 2153 IPW_CMD(VAP_CF_PARAM_SET); 2154 IPW_CMD(VAP_SET_BEACONING_STATE); 2155 IPW_CMD(MEASUREMENT); 2156 IPW_CMD(POWER_CAPABILITY); 2157 IPW_CMD(SUPPORTED_CHANNELS); 2158 IPW_CMD(TPC_REPORT); 2159 IPW_CMD(WME_INFO); 2160 IPW_CMD(PRODUCTION_COMMAND); 2161 default: 2162 return "UNKNOWN"; 2163 } 2164 } 2165 2166 #define HOST_COMPLETE_TIMEOUT HZ 2167 2168 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd) 2169 { 2170 int rc = 0; 2171 unsigned long flags; 2172 unsigned long now, end; 2173 2174 spin_lock_irqsave(&priv->lock, flags); 2175 if (priv->status & STATUS_HCMD_ACTIVE) { 2176 IPW_ERROR("Failed to send %s: Already sending a command.\n", 2177 get_cmd_string(cmd->cmd)); 2178 spin_unlock_irqrestore(&priv->lock, flags); 2179 return -EAGAIN; 2180 } 2181 2182 priv->status |= STATUS_HCMD_ACTIVE; 2183 2184 if (priv->cmdlog) { 2185 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies; 2186 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd; 2187 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len; 2188 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param, 2189 cmd->len); 2190 priv->cmdlog[priv->cmdlog_pos].retcode = -1; 2191 } 2192 2193 IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n", 2194 get_cmd_string(cmd->cmd), cmd->cmd, cmd->len, 2195 priv->status); 2196 2197 #ifndef DEBUG_CMD_WEP_KEY 2198 if (cmd->cmd == IPW_CMD_WEP_KEY) 2199 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n"); 2200 else 2201 #endif 2202 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len); 2203 2204 rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0); 2205 if (rc) { 2206 priv->status &= ~STATUS_HCMD_ACTIVE; 2207 IPW_ERROR("Failed to send %s: Reason %d\n", 2208 get_cmd_string(cmd->cmd), rc); 2209 spin_unlock_irqrestore(&priv->lock, flags); 2210 goto exit; 2211 } 2212 spin_unlock_irqrestore(&priv->lock, flags); 2213 2214 now = jiffies; 2215 end = now + HOST_COMPLETE_TIMEOUT; 2216 again: 2217 rc = wait_event_interruptible_timeout(priv->wait_command_queue, 2218 !(priv-> 2219 status & STATUS_HCMD_ACTIVE), 2220 end - now); 2221 if (rc < 0) { 2222 now = jiffies; 2223 if (time_before(now, end)) 2224 goto again; 2225 rc = 0; 2226 } 2227 2228 if (rc == 0) { 2229 spin_lock_irqsave(&priv->lock, flags); 2230 if (priv->status & STATUS_HCMD_ACTIVE) { 2231 IPW_ERROR("Failed to send %s: Command timed out.\n", 2232 get_cmd_string(cmd->cmd)); 2233 priv->status &= ~STATUS_HCMD_ACTIVE; 2234 spin_unlock_irqrestore(&priv->lock, flags); 2235 rc = -EIO; 2236 goto exit; 2237 } 2238 spin_unlock_irqrestore(&priv->lock, flags); 2239 } else 2240 rc = 0; 2241 2242 if (priv->status & STATUS_RF_KILL_HW) { 2243 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n", 2244 get_cmd_string(cmd->cmd)); 2245 rc = -EIO; 2246 goto exit; 2247 } 2248 2249 exit: 2250 if (priv->cmdlog) { 2251 priv->cmdlog[priv->cmdlog_pos++].retcode = rc; 2252 priv->cmdlog_pos %= priv->cmdlog_len; 2253 } 2254 return rc; 2255 } 2256 2257 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command) 2258 { 2259 struct host_cmd cmd = { 2260 .cmd = command, 2261 }; 2262 2263 return __ipw_send_cmd(priv, &cmd); 2264 } 2265 2266 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len, 2267 const void *data) 2268 { 2269 struct host_cmd cmd = { 2270 .cmd = command, 2271 .len = len, 2272 .param = data, 2273 }; 2274 2275 return __ipw_send_cmd(priv, &cmd); 2276 } 2277 2278 static int ipw_send_host_complete(struct ipw_priv *priv) 2279 { 2280 if (!priv) { 2281 IPW_ERROR("Invalid args\n"); 2282 return -1; 2283 } 2284 2285 return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE); 2286 } 2287 2288 static int ipw_send_system_config(struct ipw_priv *priv) 2289 { 2290 return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG, 2291 sizeof(priv->sys_config), 2292 &priv->sys_config); 2293 } 2294 2295 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len) 2296 { 2297 if (!priv || !ssid) { 2298 IPW_ERROR("Invalid args\n"); 2299 return -1; 2300 } 2301 2302 return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE), 2303 ssid); 2304 } 2305 2306 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac) 2307 { 2308 if (!priv || !mac) { 2309 IPW_ERROR("Invalid args\n"); 2310 return -1; 2311 } 2312 2313 IPW_DEBUG_INFO("%s: Setting MAC to %pM\n", 2314 priv->net_dev->name, mac); 2315 2316 return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac); 2317 } 2318 2319 static void ipw_adapter_restart(void *adapter) 2320 { 2321 struct ipw_priv *priv = adapter; 2322 2323 if (priv->status & STATUS_RF_KILL_MASK) 2324 return; 2325 2326 ipw_down(priv); 2327 2328 if (priv->assoc_network && 2329 (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS)) 2330 ipw_remove_current_network(priv); 2331 2332 if (ipw_up(priv)) { 2333 IPW_ERROR("Failed to up device\n"); 2334 return; 2335 } 2336 } 2337 2338 static void ipw_bg_adapter_restart(struct work_struct *work) 2339 { 2340 struct ipw_priv *priv = 2341 container_of(work, struct ipw_priv, adapter_restart); 2342 mutex_lock(&priv->mutex); 2343 ipw_adapter_restart(priv); 2344 mutex_unlock(&priv->mutex); 2345 } 2346 2347 static void ipw_abort_scan(struct ipw_priv *priv); 2348 2349 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ) 2350 2351 static void ipw_scan_check(void *data) 2352 { 2353 struct ipw_priv *priv = data; 2354 2355 if (priv->status & STATUS_SCAN_ABORTING) { 2356 IPW_DEBUG_SCAN("Scan completion watchdog resetting " 2357 "adapter after (%dms).\n", 2358 jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG)); 2359 schedule_work(&priv->adapter_restart); 2360 } else if (priv->status & STATUS_SCANNING) { 2361 IPW_DEBUG_SCAN("Scan completion watchdog aborting scan " 2362 "after (%dms).\n", 2363 jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG)); 2364 ipw_abort_scan(priv); 2365 schedule_delayed_work(&priv->scan_check, HZ); 2366 } 2367 } 2368 2369 static void ipw_bg_scan_check(struct work_struct *work) 2370 { 2371 struct ipw_priv *priv = 2372 container_of(work, struct ipw_priv, scan_check.work); 2373 mutex_lock(&priv->mutex); 2374 ipw_scan_check(priv); 2375 mutex_unlock(&priv->mutex); 2376 } 2377 2378 static int ipw_send_scan_request_ext(struct ipw_priv *priv, 2379 struct ipw_scan_request_ext *request) 2380 { 2381 return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT, 2382 sizeof(*request), request); 2383 } 2384 2385 static int ipw_send_scan_abort(struct ipw_priv *priv) 2386 { 2387 if (!priv) { 2388 IPW_ERROR("Invalid args\n"); 2389 return -1; 2390 } 2391 2392 return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT); 2393 } 2394 2395 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens) 2396 { 2397 struct ipw_sensitivity_calib calib = { 2398 .beacon_rssi_raw = cpu_to_le16(sens), 2399 }; 2400 2401 return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib), 2402 &calib); 2403 } 2404 2405 static int ipw_send_associate(struct ipw_priv *priv, 2406 struct ipw_associate *associate) 2407 { 2408 if (!priv || !associate) { 2409 IPW_ERROR("Invalid args\n"); 2410 return -1; 2411 } 2412 2413 return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(*associate), 2414 associate); 2415 } 2416 2417 static int ipw_send_supported_rates(struct ipw_priv *priv, 2418 struct ipw_supported_rates *rates) 2419 { 2420 if (!priv || !rates) { 2421 IPW_ERROR("Invalid args\n"); 2422 return -1; 2423 } 2424 2425 return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates), 2426 rates); 2427 } 2428 2429 static int ipw_set_random_seed(struct ipw_priv *priv) 2430 { 2431 u32 val; 2432 2433 if (!priv) { 2434 IPW_ERROR("Invalid args\n"); 2435 return -1; 2436 } 2437 2438 get_random_bytes(&val, sizeof(val)); 2439 2440 return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val); 2441 } 2442 2443 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off) 2444 { 2445 __le32 v = cpu_to_le32(phy_off); 2446 if (!priv) { 2447 IPW_ERROR("Invalid args\n"); 2448 return -1; 2449 } 2450 2451 return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(v), &v); 2452 } 2453 2454 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power) 2455 { 2456 if (!priv || !power) { 2457 IPW_ERROR("Invalid args\n"); 2458 return -1; 2459 } 2460 2461 return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power); 2462 } 2463 2464 static int ipw_set_tx_power(struct ipw_priv *priv) 2465 { 2466 const struct libipw_geo *geo = libipw_get_geo(priv->ieee); 2467 struct ipw_tx_power tx_power; 2468 s8 max_power; 2469 int i; 2470 2471 memset(&tx_power, 0, sizeof(tx_power)); 2472 2473 /* configure device for 'G' band */ 2474 tx_power.ieee_mode = IPW_G_MODE; 2475 tx_power.num_channels = geo->bg_channels; 2476 for (i = 0; i < geo->bg_channels; i++) { 2477 max_power = geo->bg[i].max_power; 2478 tx_power.channels_tx_power[i].channel_number = 2479 geo->bg[i].channel; 2480 tx_power.channels_tx_power[i].tx_power = max_power ? 2481 min(max_power, priv->tx_power) : priv->tx_power; 2482 } 2483 if (ipw_send_tx_power(priv, &tx_power)) 2484 return -EIO; 2485 2486 /* configure device to also handle 'B' band */ 2487 tx_power.ieee_mode = IPW_B_MODE; 2488 if (ipw_send_tx_power(priv, &tx_power)) 2489 return -EIO; 2490 2491 /* configure device to also handle 'A' band */ 2492 if (priv->ieee->abg_true) { 2493 tx_power.ieee_mode = IPW_A_MODE; 2494 tx_power.num_channels = geo->a_channels; 2495 for (i = 0; i < tx_power.num_channels; i++) { 2496 max_power = geo->a[i].max_power; 2497 tx_power.channels_tx_power[i].channel_number = 2498 geo->a[i].channel; 2499 tx_power.channels_tx_power[i].tx_power = max_power ? 2500 min(max_power, priv->tx_power) : priv->tx_power; 2501 } 2502 if (ipw_send_tx_power(priv, &tx_power)) 2503 return -EIO; 2504 } 2505 return 0; 2506 } 2507 2508 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts) 2509 { 2510 struct ipw_rts_threshold rts_threshold = { 2511 .rts_threshold = cpu_to_le16(rts), 2512 }; 2513 2514 if (!priv) { 2515 IPW_ERROR("Invalid args\n"); 2516 return -1; 2517 } 2518 2519 return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD, 2520 sizeof(rts_threshold), &rts_threshold); 2521 } 2522 2523 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag) 2524 { 2525 struct ipw_frag_threshold frag_threshold = { 2526 .frag_threshold = cpu_to_le16(frag), 2527 }; 2528 2529 if (!priv) { 2530 IPW_ERROR("Invalid args\n"); 2531 return -1; 2532 } 2533 2534 return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD, 2535 sizeof(frag_threshold), &frag_threshold); 2536 } 2537 2538 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode) 2539 { 2540 __le32 param; 2541 2542 if (!priv) { 2543 IPW_ERROR("Invalid args\n"); 2544 return -1; 2545 } 2546 2547 /* If on battery, set to 3, if AC set to CAM, else user 2548 * level */ 2549 switch (mode) { 2550 case IPW_POWER_BATTERY: 2551 param = cpu_to_le32(IPW_POWER_INDEX_3); 2552 break; 2553 case IPW_POWER_AC: 2554 param = cpu_to_le32(IPW_POWER_MODE_CAM); 2555 break; 2556 default: 2557 param = cpu_to_le32(mode); 2558 break; 2559 } 2560 2561 return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param), 2562 ¶m); 2563 } 2564 2565 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit) 2566 { 2567 struct ipw_retry_limit retry_limit = { 2568 .short_retry_limit = slimit, 2569 .long_retry_limit = llimit 2570 }; 2571 2572 if (!priv) { 2573 IPW_ERROR("Invalid args\n"); 2574 return -1; 2575 } 2576 2577 return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit), 2578 &retry_limit); 2579 } 2580 2581 /* 2582 * The IPW device contains a Microwire compatible EEPROM that stores 2583 * various data like the MAC address. Usually the firmware has exclusive 2584 * access to the eeprom, but during device initialization (before the 2585 * device driver has sent the HostComplete command to the firmware) the 2586 * device driver has read access to the EEPROM by way of indirect addressing 2587 * through a couple of memory mapped registers. 2588 * 2589 * The following is a simplified implementation for pulling data out of the 2590 * the eeprom, along with some helper functions to find information in 2591 * the per device private data's copy of the eeprom. 2592 * 2593 * NOTE: To better understand how these functions work (i.e what is a chip 2594 * select and why do have to keep driving the eeprom clock?), read 2595 * just about any data sheet for a Microwire compatible EEPROM. 2596 */ 2597 2598 /* write a 32 bit value into the indirect accessor register */ 2599 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data) 2600 { 2601 ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data); 2602 2603 /* the eeprom requires some time to complete the operation */ 2604 udelay(p->eeprom_delay); 2605 } 2606 2607 /* perform a chip select operation */ 2608 static void eeprom_cs(struct ipw_priv *priv) 2609 { 2610 eeprom_write_reg(priv, 0); 2611 eeprom_write_reg(priv, EEPROM_BIT_CS); 2612 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK); 2613 eeprom_write_reg(priv, EEPROM_BIT_CS); 2614 } 2615 2616 /* perform a chip select operation */ 2617 static void eeprom_disable_cs(struct ipw_priv *priv) 2618 { 2619 eeprom_write_reg(priv, EEPROM_BIT_CS); 2620 eeprom_write_reg(priv, 0); 2621 eeprom_write_reg(priv, EEPROM_BIT_SK); 2622 } 2623 2624 /* push a single bit down to the eeprom */ 2625 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit) 2626 { 2627 int d = (bit ? EEPROM_BIT_DI : 0); 2628 eeprom_write_reg(p, EEPROM_BIT_CS | d); 2629 eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK); 2630 } 2631 2632 /* push an opcode followed by an address down to the eeprom */ 2633 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr) 2634 { 2635 int i; 2636 2637 eeprom_cs(priv); 2638 eeprom_write_bit(priv, 1); 2639 eeprom_write_bit(priv, op & 2); 2640 eeprom_write_bit(priv, op & 1); 2641 for (i = 7; i >= 0; i--) { 2642 eeprom_write_bit(priv, addr & (1 << i)); 2643 } 2644 } 2645 2646 /* pull 16 bits off the eeprom, one bit at a time */ 2647 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr) 2648 { 2649 int i; 2650 u16 r = 0; 2651 2652 /* Send READ Opcode */ 2653 eeprom_op(priv, EEPROM_CMD_READ, addr); 2654 2655 /* Send dummy bit */ 2656 eeprom_write_reg(priv, EEPROM_BIT_CS); 2657 2658 /* Read the byte off the eeprom one bit at a time */ 2659 for (i = 0; i < 16; i++) { 2660 u32 data = 0; 2661 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK); 2662 eeprom_write_reg(priv, EEPROM_BIT_CS); 2663 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS); 2664 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0); 2665 } 2666 2667 /* Send another dummy bit */ 2668 eeprom_write_reg(priv, 0); 2669 eeprom_disable_cs(priv); 2670 2671 return r; 2672 } 2673 2674 /* helper function for pulling the mac address out of the private */ 2675 /* data's copy of the eeprom data */ 2676 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac) 2677 { 2678 memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], ETH_ALEN); 2679 } 2680 2681 static void ipw_read_eeprom(struct ipw_priv *priv) 2682 { 2683 int i; 2684 __le16 *eeprom = (__le16 *) priv->eeprom; 2685 2686 IPW_DEBUG_TRACE(">>\n"); 2687 2688 /* read entire contents of eeprom into private buffer */ 2689 for (i = 0; i < 128; i++) 2690 eeprom[i] = cpu_to_le16(eeprom_read_u16(priv, (u8) i)); 2691 2692 IPW_DEBUG_TRACE("<<\n"); 2693 } 2694 2695 /* 2696 * Either the device driver (i.e. the host) or the firmware can 2697 * load eeprom data into the designated region in SRAM. If neither 2698 * happens then the FW will shutdown with a fatal error. 2699 * 2700 * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE 2701 * bit needs region of shared SRAM needs to be non-zero. 2702 */ 2703 static void ipw_eeprom_init_sram(struct ipw_priv *priv) 2704 { 2705 int i; 2706 2707 IPW_DEBUG_TRACE(">>\n"); 2708 2709 /* 2710 If the data looks correct, then copy it to our private 2711 copy. Otherwise let the firmware know to perform the operation 2712 on its own. 2713 */ 2714 if (priv->eeprom[EEPROM_VERSION] != 0) { 2715 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n"); 2716 2717 /* write the eeprom data to sram */ 2718 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++) 2719 ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]); 2720 2721 /* Do not load eeprom data on fatal error or suspend */ 2722 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0); 2723 } else { 2724 IPW_DEBUG_INFO("Enabling FW initialization of SRAM\n"); 2725 2726 /* Load eeprom data on fatal error or suspend */ 2727 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1); 2728 } 2729 2730 IPW_DEBUG_TRACE("<<\n"); 2731 } 2732 2733 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count) 2734 { 2735 count >>= 2; 2736 if (!count) 2737 return; 2738 _ipw_write32(priv, IPW_AUTOINC_ADDR, start); 2739 while (count--) 2740 _ipw_write32(priv, IPW_AUTOINC_DATA, 0); 2741 } 2742 2743 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv) 2744 { 2745 ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL, 2746 CB_NUMBER_OF_ELEMENTS_SMALL * 2747 sizeof(struct command_block)); 2748 } 2749 2750 static int ipw_fw_dma_enable(struct ipw_priv *priv) 2751 { /* start dma engine but no transfers yet */ 2752 2753 IPW_DEBUG_FW(">> :\n"); 2754 2755 /* Start the dma */ 2756 ipw_fw_dma_reset_command_blocks(priv); 2757 2758 /* Write CB base address */ 2759 ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL); 2760 2761 IPW_DEBUG_FW("<< :\n"); 2762 return 0; 2763 } 2764 2765 static void ipw_fw_dma_abort(struct ipw_priv *priv) 2766 { 2767 u32 control = 0; 2768 2769 IPW_DEBUG_FW(">> :\n"); 2770 2771 /* set the Stop and Abort bit */ 2772 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT; 2773 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control); 2774 priv->sram_desc.last_cb_index = 0; 2775 2776 IPW_DEBUG_FW("<<\n"); 2777 } 2778 2779 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index, 2780 struct command_block *cb) 2781 { 2782 u32 address = 2783 IPW_SHARED_SRAM_DMA_CONTROL + 2784 (sizeof(struct command_block) * index); 2785 IPW_DEBUG_FW(">> :\n"); 2786 2787 ipw_write_indirect(priv, address, (u8 *) cb, 2788 (int)sizeof(struct command_block)); 2789 2790 IPW_DEBUG_FW("<< :\n"); 2791 return 0; 2792 2793 } 2794 2795 static int ipw_fw_dma_kick(struct ipw_priv *priv) 2796 { 2797 u32 control = 0; 2798 u32 index = 0; 2799 2800 IPW_DEBUG_FW(">> :\n"); 2801 2802 for (index = 0; index < priv->sram_desc.last_cb_index; index++) 2803 ipw_fw_dma_write_command_block(priv, index, 2804 &priv->sram_desc.cb_list[index]); 2805 2806 /* Enable the DMA in the CSR register */ 2807 ipw_clear_bit(priv, IPW_RESET_REG, 2808 IPW_RESET_REG_MASTER_DISABLED | 2809 IPW_RESET_REG_STOP_MASTER); 2810 2811 /* Set the Start bit. */ 2812 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START; 2813 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control); 2814 2815 IPW_DEBUG_FW("<< :\n"); 2816 return 0; 2817 } 2818 2819 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv) 2820 { 2821 u32 address; 2822 u32 register_value = 0; 2823 u32 cb_fields_address = 0; 2824 2825 IPW_DEBUG_FW(">> :\n"); 2826 address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB); 2827 IPW_DEBUG_FW_INFO("Current CB is 0x%x\n", address); 2828 2829 /* Read the DMA Controlor register */ 2830 register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL); 2831 IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x\n", register_value); 2832 2833 /* Print the CB values */ 2834 cb_fields_address = address; 2835 register_value = ipw_read_reg32(priv, cb_fields_address); 2836 IPW_DEBUG_FW_INFO("Current CB Control Field is 0x%x\n", register_value); 2837 2838 cb_fields_address += sizeof(u32); 2839 register_value = ipw_read_reg32(priv, cb_fields_address); 2840 IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x\n", register_value); 2841 2842 cb_fields_address += sizeof(u32); 2843 register_value = ipw_read_reg32(priv, cb_fields_address); 2844 IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x\n", 2845 register_value); 2846 2847 cb_fields_address += sizeof(u32); 2848 register_value = ipw_read_reg32(priv, cb_fields_address); 2849 IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x\n", register_value); 2850 2851 IPW_DEBUG_FW(">> :\n"); 2852 } 2853 2854 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv) 2855 { 2856 u32 current_cb_address = 0; 2857 u32 current_cb_index = 0; 2858 2859 IPW_DEBUG_FW("<< :\n"); 2860 current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB); 2861 2862 current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) / 2863 sizeof(struct command_block); 2864 2865 IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X\n", 2866 current_cb_index, current_cb_address); 2867 2868 IPW_DEBUG_FW(">> :\n"); 2869 return current_cb_index; 2870 2871 } 2872 2873 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv, 2874 u32 src_address, 2875 u32 dest_address, 2876 u32 length, 2877 int interrupt_enabled, int is_last) 2878 { 2879 2880 u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC | 2881 CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG | 2882 CB_DEST_SIZE_LONG; 2883 struct command_block *cb; 2884 u32 last_cb_element = 0; 2885 2886 IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n", 2887 src_address, dest_address, length); 2888 2889 if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL) 2890 return -1; 2891 2892 last_cb_element = priv->sram_desc.last_cb_index; 2893 cb = &priv->sram_desc.cb_list[last_cb_element]; 2894 priv->sram_desc.last_cb_index++; 2895 2896 /* Calculate the new CB control word */ 2897 if (interrupt_enabled) 2898 control |= CB_INT_ENABLED; 2899 2900 if (is_last) 2901 control |= CB_LAST_VALID; 2902 2903 control |= length; 2904 2905 /* Calculate the CB Element's checksum value */ 2906 cb->status = control ^ src_address ^ dest_address; 2907 2908 /* Copy the Source and Destination addresses */ 2909 cb->dest_addr = dest_address; 2910 cb->source_addr = src_address; 2911 2912 /* Copy the Control Word last */ 2913 cb->control = control; 2914 2915 return 0; 2916 } 2917 2918 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv, dma_addr_t *src_address, 2919 int nr, u32 dest_address, u32 len) 2920 { 2921 int ret, i; 2922 u32 size; 2923 2924 IPW_DEBUG_FW(">>\n"); 2925 IPW_DEBUG_FW_INFO("nr=%d dest_address=0x%x len=0x%x\n", 2926 nr, dest_address, len); 2927 2928 for (i = 0; i < nr; i++) { 2929 size = min_t(u32, len - i * CB_MAX_LENGTH, CB_MAX_LENGTH); 2930 ret = ipw_fw_dma_add_command_block(priv, src_address[i], 2931 dest_address + 2932 i * CB_MAX_LENGTH, size, 2933 0, 0); 2934 if (ret) { 2935 IPW_DEBUG_FW_INFO(": Failed\n"); 2936 return -1; 2937 } else 2938 IPW_DEBUG_FW_INFO(": Added new cb\n"); 2939 } 2940 2941 IPW_DEBUG_FW("<<\n"); 2942 return 0; 2943 } 2944 2945 static int ipw_fw_dma_wait(struct ipw_priv *priv) 2946 { 2947 u32 current_index = 0, previous_index; 2948 u32 watchdog = 0; 2949 2950 IPW_DEBUG_FW(">> :\n"); 2951 2952 current_index = ipw_fw_dma_command_block_index(priv); 2953 IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n", 2954 (int)priv->sram_desc.last_cb_index); 2955 2956 while (current_index < priv->sram_desc.last_cb_index) { 2957 udelay(50); 2958 previous_index = current_index; 2959 current_index = ipw_fw_dma_command_block_index(priv); 2960 2961 if (previous_index < current_index) { 2962 watchdog = 0; 2963 continue; 2964 } 2965 if (++watchdog > 400) { 2966 IPW_DEBUG_FW_INFO("Timeout\n"); 2967 ipw_fw_dma_dump_command_block(priv); 2968 ipw_fw_dma_abort(priv); 2969 return -1; 2970 } 2971 } 2972 2973 ipw_fw_dma_abort(priv); 2974 2975 /*Disable the DMA in the CSR register */ 2976 ipw_set_bit(priv, IPW_RESET_REG, 2977 IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER); 2978 2979 IPW_DEBUG_FW("<< dmaWaitSync\n"); 2980 return 0; 2981 } 2982 2983 static void ipw_remove_current_network(struct ipw_priv *priv) 2984 { 2985 struct list_head *element, *safe; 2986 struct libipw_network *network = NULL; 2987 unsigned long flags; 2988 2989 spin_lock_irqsave(&priv->ieee->lock, flags); 2990 list_for_each_safe(element, safe, &priv->ieee->network_list) { 2991 network = list_entry(element, struct libipw_network, list); 2992 if (ether_addr_equal(network->bssid, priv->bssid)) { 2993 list_del(element); 2994 list_add_tail(&network->list, 2995 &priv->ieee->network_free_list); 2996 } 2997 } 2998 spin_unlock_irqrestore(&priv->ieee->lock, flags); 2999 } 3000 3001 /* 3002 * Check that card is still alive. 3003 * Reads debug register from domain0. 3004 * If card is present, pre-defined value should 3005 * be found there. 3006 * 3007 * @param priv 3008 * @return 1 if card is present, 0 otherwise 3009 */ 3010 static inline int ipw_alive(struct ipw_priv *priv) 3011 { 3012 return ipw_read32(priv, 0x90) == 0xd55555d5; 3013 } 3014 3015 /* timeout in msec, attempted in 10-msec quanta */ 3016 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask, 3017 int timeout) 3018 { 3019 int i = 0; 3020 3021 do { 3022 if ((ipw_read32(priv, addr) & mask) == mask) 3023 return i; 3024 mdelay(10); 3025 i += 10; 3026 } while (i < timeout); 3027 3028 return -ETIME; 3029 } 3030 3031 /* These functions load the firmware and micro code for the operation of 3032 * the ipw hardware. It assumes the buffer has all the bits for the 3033 * image and the caller is handling the memory allocation and clean up. 3034 */ 3035 3036 static int ipw_stop_master(struct ipw_priv *priv) 3037 { 3038 int rc; 3039 3040 IPW_DEBUG_TRACE(">>\n"); 3041 /* stop master. typical delay - 0 */ 3042 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER); 3043 3044 /* timeout is in msec, polled in 10-msec quanta */ 3045 rc = ipw_poll_bit(priv, IPW_RESET_REG, 3046 IPW_RESET_REG_MASTER_DISABLED, 100); 3047 if (rc < 0) { 3048 IPW_ERROR("wait for stop master failed after 100ms\n"); 3049 return -1; 3050 } 3051 3052 IPW_DEBUG_INFO("stop master %dms\n", rc); 3053 3054 return rc; 3055 } 3056 3057 static void ipw_arc_release(struct ipw_priv *priv) 3058 { 3059 IPW_DEBUG_TRACE(">>\n"); 3060 mdelay(5); 3061 3062 ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET); 3063 3064 /* no one knows timing, for safety add some delay */ 3065 mdelay(5); 3066 } 3067 3068 struct fw_chunk { 3069 __le32 address; 3070 __le32 length; 3071 }; 3072 3073 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len) 3074 { 3075 int rc = 0, i, addr; 3076 u8 cr = 0; 3077 __le16 *image; 3078 3079 image = (__le16 *) data; 3080 3081 IPW_DEBUG_TRACE(">>\n"); 3082 3083 rc = ipw_stop_master(priv); 3084 3085 if (rc < 0) 3086 return rc; 3087 3088 for (addr = IPW_SHARED_LOWER_BOUND; 3089 addr < IPW_REGISTER_DOMAIN1_END; addr += 4) { 3090 ipw_write32(priv, addr, 0); 3091 } 3092 3093 /* no ucode (yet) */ 3094 memset(&priv->dino_alive, 0, sizeof(priv->dino_alive)); 3095 /* destroy DMA queues */ 3096 /* reset sequence */ 3097 3098 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON); 3099 ipw_arc_release(priv); 3100 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF); 3101 mdelay(1); 3102 3103 /* reset PHY */ 3104 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN); 3105 mdelay(1); 3106 3107 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0); 3108 mdelay(1); 3109 3110 /* enable ucode store */ 3111 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0); 3112 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS); 3113 mdelay(1); 3114 3115 /* write ucode */ 3116 /* 3117 * @bug 3118 * Do NOT set indirect address register once and then 3119 * store data to indirect data register in the loop. 3120 * It seems very reasonable, but in this case DINO do not 3121 * accept ucode. It is essential to set address each time. 3122 */ 3123 /* load new ipw uCode */ 3124 for (i = 0; i < len / 2; i++) 3125 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE, 3126 le16_to_cpu(image[i])); 3127 3128 /* enable DINO */ 3129 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0); 3130 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM); 3131 3132 /* this is where the igx / win driver deveates from the VAP driver. */ 3133 3134 /* wait for alive response */ 3135 for (i = 0; i < 100; i++) { 3136 /* poll for incoming data */ 3137 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS); 3138 if (cr & DINO_RXFIFO_DATA) 3139 break; 3140 mdelay(1); 3141 } 3142 3143 if (cr & DINO_RXFIFO_DATA) { 3144 /* alive_command_responce size is NOT multiple of 4 */ 3145 __le32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4]; 3146 3147 for (i = 0; i < ARRAY_SIZE(response_buffer); i++) 3148 response_buffer[i] = 3149 cpu_to_le32(ipw_read_reg32(priv, 3150 IPW_BASEBAND_RX_FIFO_READ)); 3151 memcpy(&priv->dino_alive, response_buffer, 3152 sizeof(priv->dino_alive)); 3153 if (priv->dino_alive.alive_command == 1 3154 && priv->dino_alive.ucode_valid == 1) { 3155 rc = 0; 3156 IPW_DEBUG_INFO 3157 ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) " 3158 "of %02d/%02d/%02d %02d:%02d\n", 3159 priv->dino_alive.software_revision, 3160 priv->dino_alive.software_revision, 3161 priv->dino_alive.device_identifier, 3162 priv->dino_alive.device_identifier, 3163 priv->dino_alive.time_stamp[0], 3164 priv->dino_alive.time_stamp[1], 3165 priv->dino_alive.time_stamp[2], 3166 priv->dino_alive.time_stamp[3], 3167 priv->dino_alive.time_stamp[4]); 3168 } else { 3169 IPW_DEBUG_INFO("Microcode is not alive\n"); 3170 rc = -EINVAL; 3171 } 3172 } else { 3173 IPW_DEBUG_INFO("No alive response from DINO\n"); 3174 rc = -ETIME; 3175 } 3176 3177 /* disable DINO, otherwise for some reason 3178 firmware have problem getting alive resp. */ 3179 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0); 3180 3181 return rc; 3182 } 3183 3184 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len) 3185 { 3186 int ret = -1; 3187 int offset = 0; 3188 struct fw_chunk *chunk; 3189 int total_nr = 0; 3190 int i; 3191 struct dma_pool *pool; 3192 void **virts; 3193 dma_addr_t *phys; 3194 3195 IPW_DEBUG_TRACE("<< :\n"); 3196 3197 virts = kmalloc_array(CB_NUMBER_OF_ELEMENTS_SMALL, sizeof(void *), 3198 GFP_KERNEL); 3199 if (!virts) 3200 return -ENOMEM; 3201 3202 phys = kmalloc_array(CB_NUMBER_OF_ELEMENTS_SMALL, sizeof(dma_addr_t), 3203 GFP_KERNEL); 3204 if (!phys) { 3205 kfree(virts); 3206 return -ENOMEM; 3207 } 3208 pool = dma_pool_create("ipw2200", &priv->pci_dev->dev, CB_MAX_LENGTH, 0, 3209 0); 3210 if (!pool) { 3211 IPW_ERROR("dma_pool_create failed\n"); 3212 kfree(phys); 3213 kfree(virts); 3214 return -ENOMEM; 3215 } 3216 3217 /* Start the Dma */ 3218 ret = ipw_fw_dma_enable(priv); 3219 3220 /* the DMA is already ready this would be a bug. */ 3221 BUG_ON(priv->sram_desc.last_cb_index > 0); 3222 3223 do { 3224 u32 chunk_len; 3225 u8 *start; 3226 int size; 3227 int nr = 0; 3228 3229 chunk = (struct fw_chunk *)(data + offset); 3230 offset += sizeof(struct fw_chunk); 3231 chunk_len = le32_to_cpu(chunk->length); 3232 start = data + offset; 3233 3234 nr = (chunk_len + CB_MAX_LENGTH - 1) / CB_MAX_LENGTH; 3235 for (i = 0; i < nr; i++) { 3236 virts[total_nr] = dma_pool_alloc(pool, GFP_KERNEL, 3237 &phys[total_nr]); 3238 if (!virts[total_nr]) { 3239 ret = -ENOMEM; 3240 goto out; 3241 } 3242 size = min_t(u32, chunk_len - i * CB_MAX_LENGTH, 3243 CB_MAX_LENGTH); 3244 memcpy(virts[total_nr], start, size); 3245 start += size; 3246 total_nr++; 3247 /* We don't support fw chunk larger than 64*8K */ 3248 BUG_ON(total_nr > CB_NUMBER_OF_ELEMENTS_SMALL); 3249 } 3250 3251 /* build DMA packet and queue up for sending */ 3252 /* dma to chunk->address, the chunk->length bytes from data + 3253 * offeset*/ 3254 /* Dma loading */ 3255 ret = ipw_fw_dma_add_buffer(priv, &phys[total_nr - nr], 3256 nr, le32_to_cpu(chunk->address), 3257 chunk_len); 3258 if (ret) { 3259 IPW_DEBUG_INFO("dmaAddBuffer Failed\n"); 3260 goto out; 3261 } 3262 3263 offset += chunk_len; 3264 } while (offset < len); 3265 3266 /* Run the DMA and wait for the answer */ 3267 ret = ipw_fw_dma_kick(priv); 3268 if (ret) { 3269 IPW_ERROR("dmaKick Failed\n"); 3270 goto out; 3271 } 3272 3273 ret = ipw_fw_dma_wait(priv); 3274 if (ret) { 3275 IPW_ERROR("dmaWaitSync Failed\n"); 3276 goto out; 3277 } 3278 out: 3279 for (i = 0; i < total_nr; i++) 3280 dma_pool_free(pool, virts[i], phys[i]); 3281 3282 dma_pool_destroy(pool); 3283 kfree(phys); 3284 kfree(virts); 3285 3286 return ret; 3287 } 3288 3289 /* stop nic */ 3290 static int ipw_stop_nic(struct ipw_priv *priv) 3291 { 3292 int rc = 0; 3293 3294 /* stop */ 3295 ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER); 3296 3297 rc = ipw_poll_bit(priv, IPW_RESET_REG, 3298 IPW_RESET_REG_MASTER_DISABLED, 500); 3299 if (rc < 0) { 3300 IPW_ERROR("wait for reg master disabled failed after 500ms\n"); 3301 return rc; 3302 } 3303 3304 ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET); 3305 3306 return rc; 3307 } 3308 3309 static void ipw_start_nic(struct ipw_priv *priv) 3310 { 3311 IPW_DEBUG_TRACE(">>\n"); 3312 3313 /* prvHwStartNic release ARC */ 3314 ipw_clear_bit(priv, IPW_RESET_REG, 3315 IPW_RESET_REG_MASTER_DISABLED | 3316 IPW_RESET_REG_STOP_MASTER | 3317 CBD_RESET_REG_PRINCETON_RESET); 3318 3319 /* enable power management */ 3320 ipw_set_bit(priv, IPW_GP_CNTRL_RW, 3321 IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY); 3322 3323 IPW_DEBUG_TRACE("<<\n"); 3324 } 3325 3326 static int ipw_init_nic(struct ipw_priv *priv) 3327 { 3328 int rc; 3329 3330 IPW_DEBUG_TRACE(">>\n"); 3331 /* reset */ 3332 /*prvHwInitNic */ 3333 /* set "initialization complete" bit to move adapter to D0 state */ 3334 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE); 3335 3336 /* low-level PLL activation */ 3337 ipw_write32(priv, IPW_READ_INT_REGISTER, 3338 IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER); 3339 3340 /* wait for clock stabilization */ 3341 rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW, 3342 IPW_GP_CNTRL_BIT_CLOCK_READY, 250); 3343 if (rc < 0) 3344 IPW_DEBUG_INFO("FAILED wait for clock stablization\n"); 3345 3346 /* assert SW reset */ 3347 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET); 3348 3349 udelay(10); 3350 3351 /* set "initialization complete" bit to move adapter to D0 state */ 3352 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE); 3353 3354 IPW_DEBUG_TRACE(">>\n"); 3355 return 0; 3356 } 3357 3358 /* Call this function from process context, it will sleep in request_firmware. 3359 * Probe is an ok place to call this from. 3360 */ 3361 static int ipw_reset_nic(struct ipw_priv *priv) 3362 { 3363 int rc = 0; 3364 unsigned long flags; 3365 3366 IPW_DEBUG_TRACE(">>\n"); 3367 3368 rc = ipw_init_nic(priv); 3369 3370 spin_lock_irqsave(&priv->lock, flags); 3371 /* Clear the 'host command active' bit... */ 3372 priv->status &= ~STATUS_HCMD_ACTIVE; 3373 wake_up_interruptible(&priv->wait_command_queue); 3374 priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING); 3375 wake_up_interruptible(&priv->wait_state); 3376 spin_unlock_irqrestore(&priv->lock, flags); 3377 3378 IPW_DEBUG_TRACE("<<\n"); 3379 return rc; 3380 } 3381 3382 3383 struct ipw_fw { 3384 __le32 ver; 3385 __le32 boot_size; 3386 __le32 ucode_size; 3387 __le32 fw_size; 3388 u8 data[]; 3389 }; 3390 3391 static int ipw_get_fw(struct ipw_priv *priv, 3392 const struct firmware **raw, const char *name) 3393 { 3394 struct ipw_fw *fw; 3395 int rc; 3396 3397 /* ask firmware_class module to get the boot firmware off disk */ 3398 rc = request_firmware(raw, name, &priv->pci_dev->dev); 3399 if (rc < 0) { 3400 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc); 3401 return rc; 3402 } 3403 3404 if ((*raw)->size < sizeof(*fw)) { 3405 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size); 3406 return -EINVAL; 3407 } 3408 3409 fw = (void *)(*raw)->data; 3410 3411 if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) + 3412 le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) { 3413 IPW_ERROR("%s is too small or corrupt (%zd)\n", 3414 name, (*raw)->size); 3415 return -EINVAL; 3416 } 3417 3418 IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n", 3419 name, 3420 le32_to_cpu(fw->ver) >> 16, 3421 le32_to_cpu(fw->ver) & 0xff, 3422 (*raw)->size - sizeof(*fw)); 3423 return 0; 3424 } 3425 3426 #define IPW_RX_BUF_SIZE (3000) 3427 3428 static void ipw_rx_queue_reset(struct ipw_priv *priv, 3429 struct ipw_rx_queue *rxq) 3430 { 3431 unsigned long flags; 3432 int i; 3433 3434 spin_lock_irqsave(&rxq->lock, flags); 3435 3436 INIT_LIST_HEAD(&rxq->rx_free); 3437 INIT_LIST_HEAD(&rxq->rx_used); 3438 3439 /* Fill the rx_used queue with _all_ of the Rx buffers */ 3440 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) { 3441 /* In the reset function, these buffers may have been allocated 3442 * to an SKB, so we need to unmap and free potential storage */ 3443 if (rxq->pool[i].skb != NULL) { 3444 dma_unmap_single(&priv->pci_dev->dev, 3445 rxq->pool[i].dma_addr, 3446 IPW_RX_BUF_SIZE, DMA_FROM_DEVICE); 3447 dev_kfree_skb(rxq->pool[i].skb); 3448 rxq->pool[i].skb = NULL; 3449 } 3450 list_add_tail(&rxq->pool[i].list, &rxq->rx_used); 3451 } 3452 3453 /* Set us so that we have processed and used all buffers, but have 3454 * not restocked the Rx queue with fresh buffers */ 3455 rxq->read = rxq->write = 0; 3456 rxq->free_count = 0; 3457 spin_unlock_irqrestore(&rxq->lock, flags); 3458 } 3459 3460 #ifdef CONFIG_PM 3461 static int fw_loaded = 0; 3462 static const struct firmware *raw = NULL; 3463 3464 static void free_firmware(void) 3465 { 3466 if (fw_loaded) { 3467 release_firmware(raw); 3468 raw = NULL; 3469 fw_loaded = 0; 3470 } 3471 } 3472 #else 3473 #define free_firmware() do {} while (0) 3474 #endif 3475 3476 static int ipw_load(struct ipw_priv *priv) 3477 { 3478 #ifndef CONFIG_PM 3479 const struct firmware *raw = NULL; 3480 #endif 3481 struct ipw_fw *fw; 3482 u8 *boot_img, *ucode_img, *fw_img; 3483 u8 *name = NULL; 3484 int rc = 0, retries = 3; 3485 3486 switch (priv->ieee->iw_mode) { 3487 case IW_MODE_ADHOC: 3488 name = "ipw2200-ibss.fw"; 3489 break; 3490 #ifdef CONFIG_IPW2200_MONITOR 3491 case IW_MODE_MONITOR: 3492 name = "ipw2200-sniffer.fw"; 3493 break; 3494 #endif 3495 case IW_MODE_INFRA: 3496 name = "ipw2200-bss.fw"; 3497 break; 3498 } 3499 3500 if (!name) { 3501 rc = -EINVAL; 3502 goto error; 3503 } 3504 3505 #ifdef CONFIG_PM 3506 if (!fw_loaded) { 3507 #endif 3508 rc = ipw_get_fw(priv, &raw, name); 3509 if (rc < 0) 3510 goto error; 3511 #ifdef CONFIG_PM 3512 } 3513 #endif 3514 3515 fw = (void *)raw->data; 3516 boot_img = &fw->data[0]; 3517 ucode_img = &fw->data[le32_to_cpu(fw->boot_size)]; 3518 fw_img = &fw->data[le32_to_cpu(fw->boot_size) + 3519 le32_to_cpu(fw->ucode_size)]; 3520 3521 if (!priv->rxq) 3522 priv->rxq = ipw_rx_queue_alloc(priv); 3523 else 3524 ipw_rx_queue_reset(priv, priv->rxq); 3525 if (!priv->rxq) { 3526 IPW_ERROR("Unable to initialize Rx queue\n"); 3527 rc = -ENOMEM; 3528 goto error; 3529 } 3530 3531 retry: 3532 /* Ensure interrupts are disabled */ 3533 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL); 3534 priv->status &= ~STATUS_INT_ENABLED; 3535 3536 /* ack pending interrupts */ 3537 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL); 3538 3539 ipw_stop_nic(priv); 3540 3541 rc = ipw_reset_nic(priv); 3542 if (rc < 0) { 3543 IPW_ERROR("Unable to reset NIC\n"); 3544 goto error; 3545 } 3546 3547 ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND, 3548 IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND); 3549 3550 /* DMA the initial boot firmware into the device */ 3551 rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size)); 3552 if (rc < 0) { 3553 IPW_ERROR("Unable to load boot firmware: %d\n", rc); 3554 goto error; 3555 } 3556 3557 /* kick start the device */ 3558 ipw_start_nic(priv); 3559 3560 /* wait for the device to finish its initial startup sequence */ 3561 rc = ipw_poll_bit(priv, IPW_INTA_RW, 3562 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500); 3563 if (rc < 0) { 3564 IPW_ERROR("device failed to boot initial fw image\n"); 3565 goto error; 3566 } 3567 IPW_DEBUG_INFO("initial device response after %dms\n", rc); 3568 3569 /* ack fw init done interrupt */ 3570 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE); 3571 3572 /* DMA the ucode into the device */ 3573 rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size)); 3574 if (rc < 0) { 3575 IPW_ERROR("Unable to load ucode: %d\n", rc); 3576 goto error; 3577 } 3578 3579 /* stop nic */ 3580 ipw_stop_nic(priv); 3581 3582 /* DMA bss firmware into the device */ 3583 rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size)); 3584 if (rc < 0) { 3585 IPW_ERROR("Unable to load firmware: %d\n", rc); 3586 goto error; 3587 } 3588 #ifdef CONFIG_PM 3589 fw_loaded = 1; 3590 #endif 3591 3592 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0); 3593 3594 rc = ipw_queue_reset(priv); 3595 if (rc < 0) { 3596 IPW_ERROR("Unable to initialize queues\n"); 3597 goto error; 3598 } 3599 3600 /* Ensure interrupts are disabled */ 3601 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL); 3602 /* ack pending interrupts */ 3603 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL); 3604 3605 /* kick start the device */ 3606 ipw_start_nic(priv); 3607 3608 if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) { 3609 if (retries > 0) { 3610 IPW_WARNING("Parity error. Retrying init.\n"); 3611 retries--; 3612 goto retry; 3613 } 3614 3615 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n"); 3616 rc = -EIO; 3617 goto error; 3618 } 3619 3620 /* wait for the device */ 3621 rc = ipw_poll_bit(priv, IPW_INTA_RW, 3622 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500); 3623 if (rc < 0) { 3624 IPW_ERROR("device failed to start within 500ms\n"); 3625 goto error; 3626 } 3627 IPW_DEBUG_INFO("device response after %dms\n", rc); 3628 3629 /* ack fw init done interrupt */ 3630 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE); 3631 3632 /* read eeprom data */ 3633 priv->eeprom_delay = 1; 3634 ipw_read_eeprom(priv); 3635 /* initialize the eeprom region of sram */ 3636 ipw_eeprom_init_sram(priv); 3637 3638 /* enable interrupts */ 3639 ipw_enable_interrupts(priv); 3640 3641 /* Ensure our queue has valid packets */ 3642 ipw_rx_queue_replenish(priv); 3643 3644 ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read); 3645 3646 /* ack pending interrupts */ 3647 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL); 3648 3649 #ifndef CONFIG_PM 3650 release_firmware(raw); 3651 #endif 3652 return 0; 3653 3654 error: 3655 if (priv->rxq) { 3656 ipw_rx_queue_free(priv, priv->rxq); 3657 priv->rxq = NULL; 3658 } 3659 ipw_tx_queue_free(priv); 3660 release_firmware(raw); 3661 #ifdef CONFIG_PM 3662 fw_loaded = 0; 3663 raw = NULL; 3664 #endif 3665 3666 return rc; 3667 } 3668 3669 /* 3670 * DMA services 3671 * 3672 * Theory of operation 3673 * 3674 * A queue is a circular buffers with 'Read' and 'Write' pointers. 3675 * 2 empty entries always kept in the buffer to protect from overflow. 3676 * 3677 * For Tx queue, there are low mark and high mark limits. If, after queuing 3678 * the packet for Tx, free space become < low mark, Tx queue stopped. When 3679 * reclaiming packets (on 'tx done IRQ), if free space become > high mark, 3680 * Tx queue resumed. 3681 * 3682 * The IPW operates with six queues, one receive queue in the device's 3683 * sram, one transmit queue for sending commands to the device firmware, 3684 * and four transmit queues for data. 3685 * 3686 * The four transmit queues allow for performing quality of service (qos) 3687 * transmissions as per the 802.11 protocol. Currently Linux does not 3688 * provide a mechanism to the user for utilizing prioritized queues, so 3689 * we only utilize the first data transmit queue (queue1). 3690 */ 3691 3692 /* 3693 * Driver allocates buffers of this size for Rx 3694 */ 3695 3696 /* 3697 * ipw_rx_queue_space - Return number of free slots available in queue. 3698 */ 3699 static int ipw_rx_queue_space(const struct ipw_rx_queue *q) 3700 { 3701 int s = q->read - q->write; 3702 if (s <= 0) 3703 s += RX_QUEUE_SIZE; 3704 /* keep some buffer to not confuse full and empty queue */ 3705 s -= 2; 3706 if (s < 0) 3707 s = 0; 3708 return s; 3709 } 3710 3711 static inline int ipw_tx_queue_space(const struct clx2_queue *q) 3712 { 3713 int s = q->last_used - q->first_empty; 3714 if (s <= 0) 3715 s += q->n_bd; 3716 s -= 2; /* keep some reserve to not confuse empty and full situations */ 3717 if (s < 0) 3718 s = 0; 3719 return s; 3720 } 3721 3722 static inline int ipw_queue_inc_wrap(int index, int n_bd) 3723 { 3724 return (++index == n_bd) ? 0 : index; 3725 } 3726 3727 /* 3728 * Initialize common DMA queue structure 3729 * 3730 * @param q queue to init 3731 * @param count Number of BD's to allocate. Should be power of 2 3732 * @param read_register Address for 'read' register 3733 * (not offset within BAR, full address) 3734 * @param write_register Address for 'write' register 3735 * (not offset within BAR, full address) 3736 * @param base_register Address for 'base' register 3737 * (not offset within BAR, full address) 3738 * @param size Address for 'size' register 3739 * (not offset within BAR, full address) 3740 */ 3741 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q, 3742 int count, u32 read, u32 write, u32 base, u32 size) 3743 { 3744 q->n_bd = count; 3745 3746 q->low_mark = q->n_bd / 4; 3747 if (q->low_mark < 4) 3748 q->low_mark = 4; 3749 3750 q->high_mark = q->n_bd / 8; 3751 if (q->high_mark < 2) 3752 q->high_mark = 2; 3753 3754 q->first_empty = q->last_used = 0; 3755 q->reg_r = read; 3756 q->reg_w = write; 3757 3758 ipw_write32(priv, base, q->dma_addr); 3759 ipw_write32(priv, size, count); 3760 ipw_write32(priv, read, 0); 3761 ipw_write32(priv, write, 0); 3762 3763 _ipw_read32(priv, 0x90); 3764 } 3765 3766 static int ipw_queue_tx_init(struct ipw_priv *priv, 3767 struct clx2_tx_queue *q, 3768 int count, u32 read, u32 write, u32 base, u32 size) 3769 { 3770 struct pci_dev *dev = priv->pci_dev; 3771 3772 q->txb = kmalloc_array(count, sizeof(q->txb[0]), GFP_KERNEL); 3773 if (!q->txb) 3774 return -ENOMEM; 3775 3776 q->bd = 3777 dma_alloc_coherent(&dev->dev, sizeof(q->bd[0]) * count, 3778 &q->q.dma_addr, GFP_KERNEL); 3779 if (!q->bd) { 3780 IPW_ERROR("dma_alloc_coherent(%zd) failed\n", 3781 sizeof(q->bd[0]) * count); 3782 kfree(q->txb); 3783 q->txb = NULL; 3784 return -ENOMEM; 3785 } 3786 3787 ipw_queue_init(priv, &q->q, count, read, write, base, size); 3788 return 0; 3789 } 3790 3791 /* 3792 * Free one TFD, those at index [txq->q.last_used]. 3793 * Do NOT advance any indexes 3794 * 3795 * @param dev 3796 * @param txq 3797 */ 3798 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv, 3799 struct clx2_tx_queue *txq) 3800 { 3801 struct tfd_frame *bd = &txq->bd[txq->q.last_used]; 3802 struct pci_dev *dev = priv->pci_dev; 3803 int i; 3804 3805 /* classify bd */ 3806 if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE) 3807 /* nothing to cleanup after for host commands */ 3808 return; 3809 3810 /* sanity check */ 3811 if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) { 3812 IPW_ERROR("Too many chunks: %i\n", 3813 le32_to_cpu(bd->u.data.num_chunks)); 3814 /* @todo issue fatal error, it is quite serious situation */ 3815 return; 3816 } 3817 3818 /* unmap chunks if any */ 3819 for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) { 3820 dma_unmap_single(&dev->dev, 3821 le32_to_cpu(bd->u.data.chunk_ptr[i]), 3822 le16_to_cpu(bd->u.data.chunk_len[i]), 3823 DMA_TO_DEVICE); 3824 if (txq->txb[txq->q.last_used]) { 3825 libipw_txb_free(txq->txb[txq->q.last_used]); 3826 txq->txb[txq->q.last_used] = NULL; 3827 } 3828 } 3829 } 3830 3831 /* 3832 * Deallocate DMA queue. 3833 * 3834 * Empty queue by removing and destroying all BD's. 3835 * Free all buffers. 3836 * 3837 * @param dev 3838 * @param q 3839 */ 3840 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq) 3841 { 3842 struct clx2_queue *q = &txq->q; 3843 struct pci_dev *dev = priv->pci_dev; 3844 3845 if (q->n_bd == 0) 3846 return; 3847 3848 /* first, empty all BD's */ 3849 for (; q->first_empty != q->last_used; 3850 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) { 3851 ipw_queue_tx_free_tfd(priv, txq); 3852 } 3853 3854 /* free buffers belonging to queue itself */ 3855 dma_free_coherent(&dev->dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd, 3856 q->dma_addr); 3857 kfree(txq->txb); 3858 3859 /* 0 fill whole structure */ 3860 memset(txq, 0, sizeof(*txq)); 3861 } 3862 3863 /* 3864 * Destroy all DMA queues and structures 3865 * 3866 * @param priv 3867 */ 3868 static void ipw_tx_queue_free(struct ipw_priv *priv) 3869 { 3870 /* Tx CMD queue */ 3871 ipw_queue_tx_free(priv, &priv->txq_cmd); 3872 3873 /* Tx queues */ 3874 ipw_queue_tx_free(priv, &priv->txq[0]); 3875 ipw_queue_tx_free(priv, &priv->txq[1]); 3876 ipw_queue_tx_free(priv, &priv->txq[2]); 3877 ipw_queue_tx_free(priv, &priv->txq[3]); 3878 } 3879 3880 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid) 3881 { 3882 /* First 3 bytes are manufacturer */ 3883 bssid[0] = priv->mac_addr[0]; 3884 bssid[1] = priv->mac_addr[1]; 3885 bssid[2] = priv->mac_addr[2]; 3886 3887 /* Last bytes are random */ 3888 get_random_bytes(&bssid[3], ETH_ALEN - 3); 3889 3890 bssid[0] &= 0xfe; /* clear multicast bit */ 3891 bssid[0] |= 0x02; /* set local assignment bit (IEEE802) */ 3892 } 3893 3894 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid) 3895 { 3896 struct ipw_station_entry entry; 3897 int i; 3898 3899 for (i = 0; i < priv->num_stations; i++) { 3900 if (ether_addr_equal(priv->stations[i], bssid)) { 3901 /* Another node is active in network */ 3902 priv->missed_adhoc_beacons = 0; 3903 if (!(priv->config & CFG_STATIC_CHANNEL)) 3904 /* when other nodes drop out, we drop out */ 3905 priv->config &= ~CFG_ADHOC_PERSIST; 3906 3907 return i; 3908 } 3909 } 3910 3911 if (i == MAX_STATIONS) 3912 return IPW_INVALID_STATION; 3913 3914 IPW_DEBUG_SCAN("Adding AdHoc station: %pM\n", bssid); 3915 3916 entry.reserved = 0; 3917 entry.support_mode = 0; 3918 memcpy(entry.mac_addr, bssid, ETH_ALEN); 3919 memcpy(priv->stations[i], bssid, ETH_ALEN); 3920 ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry), 3921 &entry, sizeof(entry)); 3922 priv->num_stations++; 3923 3924 return i; 3925 } 3926 3927 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid) 3928 { 3929 int i; 3930 3931 for (i = 0; i < priv->num_stations; i++) 3932 if (ether_addr_equal(priv->stations[i], bssid)) 3933 return i; 3934 3935 return IPW_INVALID_STATION; 3936 } 3937 3938 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet) 3939 { 3940 int err; 3941 3942 if (priv->status & STATUS_ASSOCIATING) { 3943 IPW_DEBUG_ASSOC("Disassociating while associating.\n"); 3944 schedule_work(&priv->disassociate); 3945 return; 3946 } 3947 3948 if (!(priv->status & STATUS_ASSOCIATED)) { 3949 IPW_DEBUG_ASSOC("Disassociating while not associated.\n"); 3950 return; 3951 } 3952 3953 IPW_DEBUG_ASSOC("Disassociation attempt from %pM " 3954 "on channel %d.\n", 3955 priv->assoc_request.bssid, 3956 priv->assoc_request.channel); 3957 3958 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED); 3959 priv->status |= STATUS_DISASSOCIATING; 3960 3961 if (quiet) 3962 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET; 3963 else 3964 priv->assoc_request.assoc_type = HC_DISASSOCIATE; 3965 3966 err = ipw_send_associate(priv, &priv->assoc_request); 3967 if (err) { 3968 IPW_DEBUG_HC("Attempt to send [dis]associate command " 3969 "failed.\n"); 3970 return; 3971 } 3972 3973 } 3974 3975 static int ipw_disassociate(void *data) 3976 { 3977 struct ipw_priv *priv = data; 3978 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) 3979 return 0; 3980 ipw_send_disassociate(data, 0); 3981 netif_carrier_off(priv->net_dev); 3982 return 1; 3983 } 3984 3985 static void ipw_bg_disassociate(struct work_struct *work) 3986 { 3987 struct ipw_priv *priv = 3988 container_of(work, struct ipw_priv, disassociate); 3989 mutex_lock(&priv->mutex); 3990 ipw_disassociate(priv); 3991 mutex_unlock(&priv->mutex); 3992 } 3993 3994 static void ipw_system_config(struct work_struct *work) 3995 { 3996 struct ipw_priv *priv = 3997 container_of(work, struct ipw_priv, system_config); 3998 3999 #ifdef CONFIG_IPW2200_PROMISCUOUS 4000 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) { 4001 priv->sys_config.accept_all_data_frames = 1; 4002 priv->sys_config.accept_non_directed_frames = 1; 4003 priv->sys_config.accept_all_mgmt_bcpr = 1; 4004 priv->sys_config.accept_all_mgmt_frames = 1; 4005 } 4006 #endif 4007 4008 ipw_send_system_config(priv); 4009 } 4010 4011 struct ipw_status_code { 4012 u16 status; 4013 const char *reason; 4014 }; 4015 4016 static const struct ipw_status_code ipw_status_codes[] = { 4017 {0x00, "Successful"}, 4018 {0x01, "Unspecified failure"}, 4019 {0x0A, "Cannot support all requested capabilities in the " 4020 "Capability information field"}, 4021 {0x0B, "Reassociation denied due to inability to confirm that " 4022 "association exists"}, 4023 {0x0C, "Association denied due to reason outside the scope of this " 4024 "standard"}, 4025 {0x0D, 4026 "Responding station does not support the specified authentication " 4027 "algorithm"}, 4028 {0x0E, 4029 "Received an Authentication frame with authentication sequence " 4030 "transaction sequence number out of expected sequence"}, 4031 {0x0F, "Authentication rejected because of challenge failure"}, 4032 {0x10, "Authentication rejected due to timeout waiting for next " 4033 "frame in sequence"}, 4034 {0x11, "Association denied because AP is unable to handle additional " 4035 "associated stations"}, 4036 {0x12, 4037 "Association denied due to requesting station not supporting all " 4038 "of the datarates in the BSSBasicServiceSet Parameter"}, 4039 {0x13, 4040 "Association denied due to requesting station not supporting " 4041 "short preamble operation"}, 4042 {0x14, 4043 "Association denied due to requesting station not supporting " 4044 "PBCC encoding"}, 4045 {0x15, 4046 "Association denied due to requesting station not supporting " 4047 "channel agility"}, 4048 {0x19, 4049 "Association denied due to requesting station not supporting " 4050 "short slot operation"}, 4051 {0x1A, 4052 "Association denied due to requesting station not supporting " 4053 "DSSS-OFDM operation"}, 4054 {0x28, "Invalid Information Element"}, 4055 {0x29, "Group Cipher is not valid"}, 4056 {0x2A, "Pairwise Cipher is not valid"}, 4057 {0x2B, "AKMP is not valid"}, 4058 {0x2C, "Unsupported RSN IE version"}, 4059 {0x2D, "Invalid RSN IE Capabilities"}, 4060 {0x2E, "Cipher suite is rejected per security policy"}, 4061 }; 4062 4063 static const char *ipw_get_status_code(u16 status) 4064 { 4065 int i; 4066 for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++) 4067 if (ipw_status_codes[i].status == (status & 0xff)) 4068 return ipw_status_codes[i].reason; 4069 return "Unknown status value."; 4070 } 4071 4072 static inline void average_init(struct average *avg) 4073 { 4074 memset(avg, 0, sizeof(*avg)); 4075 } 4076 4077 #define DEPTH_RSSI 8 4078 #define DEPTH_NOISE 16 4079 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth) 4080 { 4081 return ((depth-1)*prev_avg + val)/depth; 4082 } 4083 4084 static void average_add(struct average *avg, s16 val) 4085 { 4086 avg->sum -= avg->entries[avg->pos]; 4087 avg->sum += val; 4088 avg->entries[avg->pos++] = val; 4089 if (unlikely(avg->pos == AVG_ENTRIES)) { 4090 avg->init = 1; 4091 avg->pos = 0; 4092 } 4093 } 4094 4095 static s16 average_value(struct average *avg) 4096 { 4097 if (!unlikely(avg->init)) { 4098 if (avg->pos) 4099 return avg->sum / avg->pos; 4100 return 0; 4101 } 4102 4103 return avg->sum / AVG_ENTRIES; 4104 } 4105 4106 static void ipw_reset_stats(struct ipw_priv *priv) 4107 { 4108 u32 len = sizeof(u32); 4109 4110 priv->quality = 0; 4111 4112 average_init(&priv->average_missed_beacons); 4113 priv->exp_avg_rssi = -60; 4114 priv->exp_avg_noise = -85 + 0x100; 4115 4116 priv->last_rate = 0; 4117 priv->last_missed_beacons = 0; 4118 priv->last_rx_packets = 0; 4119 priv->last_tx_packets = 0; 4120 priv->last_tx_failures = 0; 4121 4122 /* Firmware managed, reset only when NIC is restarted, so we have to 4123 * normalize on the current value */ 4124 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, 4125 &priv->last_rx_err, &len); 4126 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, 4127 &priv->last_tx_failures, &len); 4128 4129 /* Driver managed, reset with each association */ 4130 priv->missed_adhoc_beacons = 0; 4131 priv->missed_beacons = 0; 4132 priv->tx_packets = 0; 4133 priv->rx_packets = 0; 4134 4135 } 4136 4137 static u32 ipw_get_max_rate(struct ipw_priv *priv) 4138 { 4139 u32 i = 0x80000000; 4140 u32 mask = priv->rates_mask; 4141 /* If currently associated in B mode, restrict the maximum 4142 * rate match to B rates */ 4143 if (priv->assoc_request.ieee_mode == IPW_B_MODE) 4144 mask &= LIBIPW_CCK_RATES_MASK; 4145 4146 /* TODO: Verify that the rate is supported by the current rates 4147 * list. */ 4148 4149 while (i && !(mask & i)) 4150 i >>= 1; 4151 switch (i) { 4152 case LIBIPW_CCK_RATE_1MB_MASK: 4153 return 1000000; 4154 case LIBIPW_CCK_RATE_2MB_MASK: 4155 return 2000000; 4156 case LIBIPW_CCK_RATE_5MB_MASK: 4157 return 5500000; 4158 case LIBIPW_OFDM_RATE_6MB_MASK: 4159 return 6000000; 4160 case LIBIPW_OFDM_RATE_9MB_MASK: 4161 return 9000000; 4162 case LIBIPW_CCK_RATE_11MB_MASK: 4163 return 11000000; 4164 case LIBIPW_OFDM_RATE_12MB_MASK: 4165 return 12000000; 4166 case LIBIPW_OFDM_RATE_18MB_MASK: 4167 return 18000000; 4168 case LIBIPW_OFDM_RATE_24MB_MASK: 4169 return 24000000; 4170 case LIBIPW_OFDM_RATE_36MB_MASK: 4171 return 36000000; 4172 case LIBIPW_OFDM_RATE_48MB_MASK: 4173 return 48000000; 4174 case LIBIPW_OFDM_RATE_54MB_MASK: 4175 return 54000000; 4176 } 4177 4178 if (priv->ieee->mode == IEEE_B) 4179 return 11000000; 4180 else 4181 return 54000000; 4182 } 4183 4184 static u32 ipw_get_current_rate(struct ipw_priv *priv) 4185 { 4186 u32 rate, len = sizeof(rate); 4187 int err; 4188 4189 if (!(priv->status & STATUS_ASSOCIATED)) 4190 return 0; 4191 4192 if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) { 4193 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate, 4194 &len); 4195 if (err) { 4196 IPW_DEBUG_INFO("failed querying ordinals.\n"); 4197 return 0; 4198 } 4199 } else 4200 return ipw_get_max_rate(priv); 4201 4202 switch (rate) { 4203 case IPW_TX_RATE_1MB: 4204 return 1000000; 4205 case IPW_TX_RATE_2MB: 4206 return 2000000; 4207 case IPW_TX_RATE_5MB: 4208 return 5500000; 4209 case IPW_TX_RATE_6MB: 4210 return 6000000; 4211 case IPW_TX_RATE_9MB: 4212 return 9000000; 4213 case IPW_TX_RATE_11MB: 4214 return 11000000; 4215 case IPW_TX_RATE_12MB: 4216 return 12000000; 4217 case IPW_TX_RATE_18MB: 4218 return 18000000; 4219 case IPW_TX_RATE_24MB: 4220 return 24000000; 4221 case IPW_TX_RATE_36MB: 4222 return 36000000; 4223 case IPW_TX_RATE_48MB: 4224 return 48000000; 4225 case IPW_TX_RATE_54MB: 4226 return 54000000; 4227 } 4228 4229 return 0; 4230 } 4231 4232 #define IPW_STATS_INTERVAL (2 * HZ) 4233 static void ipw_gather_stats(struct ipw_priv *priv) 4234 { 4235 u32 rx_err, rx_err_delta, rx_packets_delta; 4236 u32 tx_failures, tx_failures_delta, tx_packets_delta; 4237 u32 missed_beacons_percent, missed_beacons_delta; 4238 u32 quality = 0; 4239 u32 len = sizeof(u32); 4240 s16 rssi; 4241 u32 beacon_quality, signal_quality, tx_quality, rx_quality, 4242 rate_quality; 4243 u32 max_rate; 4244 4245 if (!(priv->status & STATUS_ASSOCIATED)) { 4246 priv->quality = 0; 4247 return; 4248 } 4249 4250 /* Update the statistics */ 4251 ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS, 4252 &priv->missed_beacons, &len); 4253 missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons; 4254 priv->last_missed_beacons = priv->missed_beacons; 4255 if (priv->assoc_request.beacon_interval) { 4256 missed_beacons_percent = missed_beacons_delta * 4257 (HZ * le16_to_cpu(priv->assoc_request.beacon_interval)) / 4258 (IPW_STATS_INTERVAL * 10); 4259 } else { 4260 missed_beacons_percent = 0; 4261 } 4262 average_add(&priv->average_missed_beacons, missed_beacons_percent); 4263 4264 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len); 4265 rx_err_delta = rx_err - priv->last_rx_err; 4266 priv->last_rx_err = rx_err; 4267 4268 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len); 4269 tx_failures_delta = tx_failures - priv->last_tx_failures; 4270 priv->last_tx_failures = tx_failures; 4271 4272 rx_packets_delta = priv->rx_packets - priv->last_rx_packets; 4273 priv->last_rx_packets = priv->rx_packets; 4274 4275 tx_packets_delta = priv->tx_packets - priv->last_tx_packets; 4276 priv->last_tx_packets = priv->tx_packets; 4277 4278 /* Calculate quality based on the following: 4279 * 4280 * Missed beacon: 100% = 0, 0% = 70% missed 4281 * Rate: 60% = 1Mbs, 100% = Max 4282 * Rx and Tx errors represent a straight % of total Rx/Tx 4283 * RSSI: 100% = > -50, 0% = < -80 4284 * Rx errors: 100% = 0, 0% = 50% missed 4285 * 4286 * The lowest computed quality is used. 4287 * 4288 */ 4289 #define BEACON_THRESHOLD 5 4290 beacon_quality = 100 - missed_beacons_percent; 4291 if (beacon_quality < BEACON_THRESHOLD) 4292 beacon_quality = 0; 4293 else 4294 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 / 4295 (100 - BEACON_THRESHOLD); 4296 IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n", 4297 beacon_quality, missed_beacons_percent); 4298 4299 priv->last_rate = ipw_get_current_rate(priv); 4300 max_rate = ipw_get_max_rate(priv); 4301 rate_quality = priv->last_rate * 40 / max_rate + 60; 4302 IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n", 4303 rate_quality, priv->last_rate / 1000000); 4304 4305 if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta) 4306 rx_quality = 100 - (rx_err_delta * 100) / 4307 (rx_packets_delta + rx_err_delta); 4308 else 4309 rx_quality = 100; 4310 IPW_DEBUG_STATS("Rx quality : %3d%% (%u errors, %u packets)\n", 4311 rx_quality, rx_err_delta, rx_packets_delta); 4312 4313 if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta) 4314 tx_quality = 100 - (tx_failures_delta * 100) / 4315 (tx_packets_delta + tx_failures_delta); 4316 else 4317 tx_quality = 100; 4318 IPW_DEBUG_STATS("Tx quality : %3d%% (%u errors, %u packets)\n", 4319 tx_quality, tx_failures_delta, tx_packets_delta); 4320 4321 rssi = priv->exp_avg_rssi; 4322 signal_quality = 4323 (100 * 4324 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) * 4325 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) - 4326 (priv->ieee->perfect_rssi - rssi) * 4327 (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) + 4328 62 * (priv->ieee->perfect_rssi - rssi))) / 4329 ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) * 4330 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi)); 4331 if (signal_quality > 100) 4332 signal_quality = 100; 4333 else if (signal_quality < 1) 4334 signal_quality = 0; 4335 4336 IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n", 4337 signal_quality, rssi); 4338 4339 quality = min(rx_quality, signal_quality); 4340 quality = min(tx_quality, quality); 4341 quality = min(rate_quality, quality); 4342 quality = min(beacon_quality, quality); 4343 if (quality == beacon_quality) 4344 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n", 4345 quality); 4346 if (quality == rate_quality) 4347 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n", 4348 quality); 4349 if (quality == tx_quality) 4350 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n", 4351 quality); 4352 if (quality == rx_quality) 4353 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n", 4354 quality); 4355 if (quality == signal_quality) 4356 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n", 4357 quality); 4358 4359 priv->quality = quality; 4360 4361 schedule_delayed_work(&priv->gather_stats, IPW_STATS_INTERVAL); 4362 } 4363 4364 static void ipw_bg_gather_stats(struct work_struct *work) 4365 { 4366 struct ipw_priv *priv = 4367 container_of(work, struct ipw_priv, gather_stats.work); 4368 mutex_lock(&priv->mutex); 4369 ipw_gather_stats(priv); 4370 mutex_unlock(&priv->mutex); 4371 } 4372 4373 /* Missed beacon behavior: 4374 * 1st missed -> roaming_threshold, just wait, don't do any scan/roam. 4375 * roaming_threshold -> disassociate_threshold, scan and roam for better signal. 4376 * Above disassociate threshold, give up and stop scanning. 4377 * Roaming is disabled if disassociate_threshold <= roaming_threshold */ 4378 static void ipw_handle_missed_beacon(struct ipw_priv *priv, 4379 int missed_count) 4380 { 4381 priv->notif_missed_beacons = missed_count; 4382 4383 if (missed_count > priv->disassociate_threshold && 4384 priv->status & STATUS_ASSOCIATED) { 4385 /* If associated and we've hit the missed 4386 * beacon threshold, disassociate, turn 4387 * off roaming, and abort any active scans */ 4388 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | 4389 IPW_DL_STATE | IPW_DL_ASSOC, 4390 "Missed beacon: %d - disassociate\n", missed_count); 4391 priv->status &= ~STATUS_ROAMING; 4392 if (priv->status & STATUS_SCANNING) { 4393 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | 4394 IPW_DL_STATE, 4395 "Aborting scan with missed beacon.\n"); 4396 schedule_work(&priv->abort_scan); 4397 } 4398 4399 schedule_work(&priv->disassociate); 4400 return; 4401 } 4402 4403 if (priv->status & STATUS_ROAMING) { 4404 /* If we are currently roaming, then just 4405 * print a debug statement... */ 4406 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE, 4407 "Missed beacon: %d - roam in progress\n", 4408 missed_count); 4409 return; 4410 } 4411 4412 if (roaming && 4413 (missed_count > priv->roaming_threshold && 4414 missed_count <= priv->disassociate_threshold)) { 4415 /* If we are not already roaming, set the ROAM 4416 * bit in the status and kick off a scan. 4417 * This can happen several times before we reach 4418 * disassociate_threshold. */ 4419 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE, 4420 "Missed beacon: %d - initiate " 4421 "roaming\n", missed_count); 4422 if (!(priv->status & STATUS_ROAMING)) { 4423 priv->status |= STATUS_ROAMING; 4424 if (!(priv->status & STATUS_SCANNING)) 4425 schedule_delayed_work(&priv->request_scan, 0); 4426 } 4427 return; 4428 } 4429 4430 if (priv->status & STATUS_SCANNING && 4431 missed_count > IPW_MB_SCAN_CANCEL_THRESHOLD) { 4432 /* Stop scan to keep fw from getting 4433 * stuck (only if we aren't roaming -- 4434 * otherwise we'll never scan more than 2 or 3 4435 * channels..) */ 4436 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE, 4437 "Aborting scan with missed beacon.\n"); 4438 schedule_work(&priv->abort_scan); 4439 } 4440 4441 IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count); 4442 } 4443 4444 static void ipw_scan_event(struct work_struct *work) 4445 { 4446 union iwreq_data wrqu; 4447 4448 struct ipw_priv *priv = 4449 container_of(work, struct ipw_priv, scan_event.work); 4450 4451 wrqu.data.length = 0; 4452 wrqu.data.flags = 0; 4453 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL); 4454 } 4455 4456 static void handle_scan_event(struct ipw_priv *priv) 4457 { 4458 /* Only userspace-requested scan completion events go out immediately */ 4459 if (!priv->user_requested_scan) { 4460 schedule_delayed_work(&priv->scan_event, 4461 round_jiffies_relative(msecs_to_jiffies(4000))); 4462 } else { 4463 priv->user_requested_scan = 0; 4464 mod_delayed_work(system_wq, &priv->scan_event, 0); 4465 } 4466 } 4467 4468 /* 4469 * Handle host notification packet. 4470 * Called from interrupt routine 4471 */ 4472 static void ipw_rx_notification(struct ipw_priv *priv, 4473 struct ipw_rx_notification *notif) 4474 { 4475 u16 size = le16_to_cpu(notif->size); 4476 4477 IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, size); 4478 4479 switch (notif->subtype) { 4480 case HOST_NOTIFICATION_STATUS_ASSOCIATED:{ 4481 struct notif_association *assoc = ¬if->u.assoc; 4482 4483 switch (assoc->state) { 4484 case CMAS_ASSOCIATED:{ 4485 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4486 IPW_DL_ASSOC, 4487 "associated: '%*pE' %pM\n", 4488 priv->essid_len, priv->essid, 4489 priv->bssid); 4490 4491 switch (priv->ieee->iw_mode) { 4492 case IW_MODE_INFRA: 4493 memcpy(priv->ieee->bssid, 4494 priv->bssid, ETH_ALEN); 4495 break; 4496 4497 case IW_MODE_ADHOC: 4498 memcpy(priv->ieee->bssid, 4499 priv->bssid, ETH_ALEN); 4500 4501 /* clear out the station table */ 4502 priv->num_stations = 0; 4503 4504 IPW_DEBUG_ASSOC 4505 ("queueing adhoc check\n"); 4506 schedule_delayed_work( 4507 &priv->adhoc_check, 4508 le16_to_cpu(priv-> 4509 assoc_request. 4510 beacon_interval)); 4511 break; 4512 } 4513 4514 priv->status &= ~STATUS_ASSOCIATING; 4515 priv->status |= STATUS_ASSOCIATED; 4516 schedule_work(&priv->system_config); 4517 4518 #ifdef CONFIG_IPW2200_QOS 4519 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \ 4520 le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_control)) 4521 if ((priv->status & STATUS_AUTH) && 4522 (IPW_GET_PACKET_STYPE(¬if->u.raw) 4523 == IEEE80211_STYPE_ASSOC_RESP)) { 4524 if ((sizeof 4525 (struct 4526 libipw_assoc_response) 4527 <= size) 4528 && (size <= 2314)) { 4529 struct 4530 libipw_rx_stats 4531 stats = { 4532 .len = size - 1, 4533 }; 4534 4535 IPW_DEBUG_QOS 4536 ("QoS Associate " 4537 "size %d\n", size); 4538 libipw_rx_mgt(priv-> 4539 ieee, 4540 (struct 4541 libipw_hdr_4addr 4542 *) 4543 ¬if->u.raw, &stats); 4544 } 4545 } 4546 #endif 4547 4548 schedule_work(&priv->link_up); 4549 4550 break; 4551 } 4552 4553 case CMAS_AUTHENTICATED:{ 4554 if (priv-> 4555 status & (STATUS_ASSOCIATED | 4556 STATUS_AUTH)) { 4557 struct notif_authenticate *auth 4558 = ¬if->u.auth; 4559 IPW_DEBUG(IPW_DL_NOTIF | 4560 IPW_DL_STATE | 4561 IPW_DL_ASSOC, 4562 "deauthenticated: '%*pE' %pM: (0x%04X) - %s\n", 4563 priv->essid_len, 4564 priv->essid, 4565 priv->bssid, 4566 le16_to_cpu(auth->status), 4567 ipw_get_status_code 4568 (le16_to_cpu 4569 (auth->status))); 4570 4571 priv->status &= 4572 ~(STATUS_ASSOCIATING | 4573 STATUS_AUTH | 4574 STATUS_ASSOCIATED); 4575 4576 schedule_work(&priv->link_down); 4577 break; 4578 } 4579 4580 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4581 IPW_DL_ASSOC, 4582 "authenticated: '%*pE' %pM\n", 4583 priv->essid_len, priv->essid, 4584 priv->bssid); 4585 break; 4586 } 4587 4588 case CMAS_INIT:{ 4589 if (priv->status & STATUS_AUTH) { 4590 struct 4591 libipw_assoc_response 4592 *resp; 4593 resp = 4594 (struct 4595 libipw_assoc_response 4596 *)¬if->u.raw; 4597 IPW_DEBUG(IPW_DL_NOTIF | 4598 IPW_DL_STATE | 4599 IPW_DL_ASSOC, 4600 "association failed (0x%04X): %s\n", 4601 le16_to_cpu(resp->status), 4602 ipw_get_status_code 4603 (le16_to_cpu 4604 (resp->status))); 4605 } 4606 4607 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4608 IPW_DL_ASSOC, 4609 "disassociated: '%*pE' %pM\n", 4610 priv->essid_len, priv->essid, 4611 priv->bssid); 4612 4613 priv->status &= 4614 ~(STATUS_DISASSOCIATING | 4615 STATUS_ASSOCIATING | 4616 STATUS_ASSOCIATED | STATUS_AUTH); 4617 if (priv->assoc_network 4618 && (priv->assoc_network-> 4619 capability & 4620 WLAN_CAPABILITY_IBSS)) 4621 ipw_remove_current_network 4622 (priv); 4623 4624 schedule_work(&priv->link_down); 4625 4626 break; 4627 } 4628 4629 case CMAS_RX_ASSOC_RESP: 4630 break; 4631 4632 default: 4633 IPW_ERROR("assoc: unknown (%d)\n", 4634 assoc->state); 4635 break; 4636 } 4637 4638 break; 4639 } 4640 4641 case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{ 4642 struct notif_authenticate *auth = ¬if->u.auth; 4643 switch (auth->state) { 4644 case CMAS_AUTHENTICATED: 4645 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE, 4646 "authenticated: '%*pE' %pM\n", 4647 priv->essid_len, priv->essid, 4648 priv->bssid); 4649 priv->status |= STATUS_AUTH; 4650 break; 4651 4652 case CMAS_INIT: 4653 if (priv->status & STATUS_AUTH) { 4654 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4655 IPW_DL_ASSOC, 4656 "authentication failed (0x%04X): %s\n", 4657 le16_to_cpu(auth->status), 4658 ipw_get_status_code(le16_to_cpu 4659 (auth-> 4660 status))); 4661 } 4662 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4663 IPW_DL_ASSOC, 4664 "deauthenticated: '%*pE' %pM\n", 4665 priv->essid_len, priv->essid, 4666 priv->bssid); 4667 4668 priv->status &= ~(STATUS_ASSOCIATING | 4669 STATUS_AUTH | 4670 STATUS_ASSOCIATED); 4671 4672 schedule_work(&priv->link_down); 4673 break; 4674 4675 case CMAS_TX_AUTH_SEQ_1: 4676 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4677 IPW_DL_ASSOC, "AUTH_SEQ_1\n"); 4678 break; 4679 case CMAS_RX_AUTH_SEQ_2: 4680 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4681 IPW_DL_ASSOC, "AUTH_SEQ_2\n"); 4682 break; 4683 case CMAS_AUTH_SEQ_1_PASS: 4684 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4685 IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n"); 4686 break; 4687 case CMAS_AUTH_SEQ_1_FAIL: 4688 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4689 IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n"); 4690 break; 4691 case CMAS_TX_AUTH_SEQ_3: 4692 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4693 IPW_DL_ASSOC, "AUTH_SEQ_3\n"); 4694 break; 4695 case CMAS_RX_AUTH_SEQ_4: 4696 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4697 IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n"); 4698 break; 4699 case CMAS_AUTH_SEQ_2_PASS: 4700 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4701 IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n"); 4702 break; 4703 case CMAS_AUTH_SEQ_2_FAIL: 4704 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4705 IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n"); 4706 break; 4707 case CMAS_TX_ASSOC: 4708 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4709 IPW_DL_ASSOC, "TX_ASSOC\n"); 4710 break; 4711 case CMAS_RX_ASSOC_RESP: 4712 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4713 IPW_DL_ASSOC, "RX_ASSOC_RESP\n"); 4714 4715 break; 4716 case CMAS_ASSOCIATED: 4717 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4718 IPW_DL_ASSOC, "ASSOCIATED\n"); 4719 break; 4720 default: 4721 IPW_DEBUG_NOTIF("auth: failure - %d\n", 4722 auth->state); 4723 break; 4724 } 4725 break; 4726 } 4727 4728 case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{ 4729 struct notif_channel_result *x = 4730 ¬if->u.channel_result; 4731 4732 if (size == sizeof(*x)) { 4733 IPW_DEBUG_SCAN("Scan result for channel %d\n", 4734 x->channel_num); 4735 } else { 4736 IPW_DEBUG_SCAN("Scan result of wrong size %d " 4737 "(should be %zd)\n", 4738 size, sizeof(*x)); 4739 } 4740 break; 4741 } 4742 4743 case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{ 4744 struct notif_scan_complete *x = ¬if->u.scan_complete; 4745 if (size == sizeof(*x)) { 4746 IPW_DEBUG_SCAN 4747 ("Scan completed: type %d, %d channels, " 4748 "%d status\n", x->scan_type, 4749 x->num_channels, x->status); 4750 } else { 4751 IPW_ERROR("Scan completed of wrong size %d " 4752 "(should be %zd)\n", 4753 size, sizeof(*x)); 4754 } 4755 4756 priv->status &= 4757 ~(STATUS_SCANNING | STATUS_SCAN_ABORTING); 4758 4759 wake_up_interruptible(&priv->wait_state); 4760 cancel_delayed_work(&priv->scan_check); 4761 4762 if (priv->status & STATUS_EXIT_PENDING) 4763 break; 4764 4765 priv->ieee->scans++; 4766 4767 #ifdef CONFIG_IPW2200_MONITOR 4768 if (priv->ieee->iw_mode == IW_MODE_MONITOR) { 4769 priv->status |= STATUS_SCAN_FORCED; 4770 schedule_delayed_work(&priv->request_scan, 0); 4771 break; 4772 } 4773 priv->status &= ~STATUS_SCAN_FORCED; 4774 #endif /* CONFIG_IPW2200_MONITOR */ 4775 4776 /* Do queued direct scans first */ 4777 if (priv->status & STATUS_DIRECT_SCAN_PENDING) 4778 schedule_delayed_work(&priv->request_direct_scan, 0); 4779 4780 if (!(priv->status & (STATUS_ASSOCIATED | 4781 STATUS_ASSOCIATING | 4782 STATUS_ROAMING | 4783 STATUS_DISASSOCIATING))) 4784 schedule_work(&priv->associate); 4785 else if (priv->status & STATUS_ROAMING) { 4786 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE) 4787 /* If a scan completed and we are in roam mode, then 4788 * the scan that completed was the one requested as a 4789 * result of entering roam... so, schedule the 4790 * roam work */ 4791 schedule_work(&priv->roam); 4792 else 4793 /* Don't schedule if we aborted the scan */ 4794 priv->status &= ~STATUS_ROAMING; 4795 } else if (priv->status & STATUS_SCAN_PENDING) 4796 schedule_delayed_work(&priv->request_scan, 0); 4797 else if (priv->config & CFG_BACKGROUND_SCAN 4798 && priv->status & STATUS_ASSOCIATED) 4799 schedule_delayed_work(&priv->request_scan, 4800 round_jiffies_relative(HZ)); 4801 4802 /* Send an empty event to user space. 4803 * We don't send the received data on the event because 4804 * it would require us to do complex transcoding, and 4805 * we want to minimise the work done in the irq handler 4806 * Use a request to extract the data. 4807 * Also, we generate this even for any scan, regardless 4808 * on how the scan was initiated. User space can just 4809 * sync on periodic scan to get fresh data... 4810 * Jean II */ 4811 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE) 4812 handle_scan_event(priv); 4813 break; 4814 } 4815 4816 case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{ 4817 struct notif_frag_length *x = ¬if->u.frag_len; 4818 4819 if (size == sizeof(*x)) 4820 IPW_ERROR("Frag length: %d\n", 4821 le16_to_cpu(x->frag_length)); 4822 else 4823 IPW_ERROR("Frag length of wrong size %d " 4824 "(should be %zd)\n", 4825 size, sizeof(*x)); 4826 break; 4827 } 4828 4829 case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{ 4830 struct notif_link_deterioration *x = 4831 ¬if->u.link_deterioration; 4832 4833 if (size == sizeof(*x)) { 4834 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE, 4835 "link deterioration: type %d, cnt %d\n", 4836 x->silence_notification_type, 4837 x->silence_count); 4838 memcpy(&priv->last_link_deterioration, x, 4839 sizeof(*x)); 4840 } else { 4841 IPW_ERROR("Link Deterioration of wrong size %d " 4842 "(should be %zd)\n", 4843 size, sizeof(*x)); 4844 } 4845 break; 4846 } 4847 4848 case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{ 4849 IPW_ERROR("Dino config\n"); 4850 if (priv->hcmd 4851 && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG) 4852 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n"); 4853 4854 break; 4855 } 4856 4857 case HOST_NOTIFICATION_STATUS_BEACON_STATE:{ 4858 struct notif_beacon_state *x = ¬if->u.beacon_state; 4859 if (size != sizeof(*x)) { 4860 IPW_ERROR 4861 ("Beacon state of wrong size %d (should " 4862 "be %zd)\n", size, sizeof(*x)); 4863 break; 4864 } 4865 4866 if (le32_to_cpu(x->state) == 4867 HOST_NOTIFICATION_STATUS_BEACON_MISSING) 4868 ipw_handle_missed_beacon(priv, 4869 le32_to_cpu(x-> 4870 number)); 4871 4872 break; 4873 } 4874 4875 case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{ 4876 struct notif_tgi_tx_key *x = ¬if->u.tgi_tx_key; 4877 if (size == sizeof(*x)) { 4878 IPW_ERROR("TGi Tx Key: state 0x%02x sec type " 4879 "0x%02x station %d\n", 4880 x->key_state, x->security_type, 4881 x->station_index); 4882 break; 4883 } 4884 4885 IPW_ERROR 4886 ("TGi Tx Key of wrong size %d (should be %zd)\n", 4887 size, sizeof(*x)); 4888 break; 4889 } 4890 4891 case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{ 4892 struct notif_calibration *x = ¬if->u.calibration; 4893 4894 if (size == sizeof(*x)) { 4895 memcpy(&priv->calib, x, sizeof(*x)); 4896 IPW_DEBUG_INFO("TODO: Calibration\n"); 4897 break; 4898 } 4899 4900 IPW_ERROR 4901 ("Calibration of wrong size %d (should be %zd)\n", 4902 size, sizeof(*x)); 4903 break; 4904 } 4905 4906 case HOST_NOTIFICATION_NOISE_STATS:{ 4907 if (size == sizeof(u32)) { 4908 priv->exp_avg_noise = 4909 exponential_average(priv->exp_avg_noise, 4910 (u8) (le32_to_cpu(notif->u.noise.value) & 0xff), 4911 DEPTH_NOISE); 4912 break; 4913 } 4914 4915 IPW_ERROR 4916 ("Noise stat is wrong size %d (should be %zd)\n", 4917 size, sizeof(u32)); 4918 break; 4919 } 4920 4921 default: 4922 IPW_DEBUG_NOTIF("Unknown notification: " 4923 "subtype=%d,flags=0x%2x,size=%d\n", 4924 notif->subtype, notif->flags, size); 4925 } 4926 } 4927 4928 /* 4929 * Destroys all DMA structures and initialise them again 4930 * 4931 * @param priv 4932 * @return error code 4933 */ 4934 static int ipw_queue_reset(struct ipw_priv *priv) 4935 { 4936 int rc = 0; 4937 /* @todo customize queue sizes */ 4938 int nTx = 64, nTxCmd = 8; 4939 ipw_tx_queue_free(priv); 4940 /* Tx CMD queue */ 4941 rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd, 4942 IPW_TX_CMD_QUEUE_READ_INDEX, 4943 IPW_TX_CMD_QUEUE_WRITE_INDEX, 4944 IPW_TX_CMD_QUEUE_BD_BASE, 4945 IPW_TX_CMD_QUEUE_BD_SIZE); 4946 if (rc) { 4947 IPW_ERROR("Tx Cmd queue init failed\n"); 4948 goto error; 4949 } 4950 /* Tx queue(s) */ 4951 rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx, 4952 IPW_TX_QUEUE_0_READ_INDEX, 4953 IPW_TX_QUEUE_0_WRITE_INDEX, 4954 IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE); 4955 if (rc) { 4956 IPW_ERROR("Tx 0 queue init failed\n"); 4957 goto error; 4958 } 4959 rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx, 4960 IPW_TX_QUEUE_1_READ_INDEX, 4961 IPW_TX_QUEUE_1_WRITE_INDEX, 4962 IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE); 4963 if (rc) { 4964 IPW_ERROR("Tx 1 queue init failed\n"); 4965 goto error; 4966 } 4967 rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx, 4968 IPW_TX_QUEUE_2_READ_INDEX, 4969 IPW_TX_QUEUE_2_WRITE_INDEX, 4970 IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE); 4971 if (rc) { 4972 IPW_ERROR("Tx 2 queue init failed\n"); 4973 goto error; 4974 } 4975 rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx, 4976 IPW_TX_QUEUE_3_READ_INDEX, 4977 IPW_TX_QUEUE_3_WRITE_INDEX, 4978 IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE); 4979 if (rc) { 4980 IPW_ERROR("Tx 3 queue init failed\n"); 4981 goto error; 4982 } 4983 /* statistics */ 4984 priv->rx_bufs_min = 0; 4985 priv->rx_pend_max = 0; 4986 return rc; 4987 4988 error: 4989 ipw_tx_queue_free(priv); 4990 return rc; 4991 } 4992 4993 /* 4994 * Reclaim Tx queue entries no more used by NIC. 4995 * 4996 * When FW advances 'R' index, all entries between old and 4997 * new 'R' index need to be reclaimed. As result, some free space 4998 * forms. If there is enough free space (> low mark), wake Tx queue. 4999 * 5000 * @note Need to protect against garbage in 'R' index 5001 * @param priv 5002 * @param txq 5003 * @param qindex 5004 * @return Number of used entries remains in the queue 5005 */ 5006 static int ipw_queue_tx_reclaim(struct ipw_priv *priv, 5007 struct clx2_tx_queue *txq, int qindex) 5008 { 5009 u32 hw_tail; 5010 int used; 5011 struct clx2_queue *q = &txq->q; 5012 5013 hw_tail = ipw_read32(priv, q->reg_r); 5014 if (hw_tail >= q->n_bd) { 5015 IPW_ERROR 5016 ("Read index for DMA queue (%d) is out of range [0-%d)\n", 5017 hw_tail, q->n_bd); 5018 goto done; 5019 } 5020 for (; q->last_used != hw_tail; 5021 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) { 5022 ipw_queue_tx_free_tfd(priv, txq); 5023 priv->tx_packets++; 5024 } 5025 done: 5026 if ((ipw_tx_queue_space(q) > q->low_mark) && 5027 (qindex >= 0)) 5028 netif_wake_queue(priv->net_dev); 5029 used = q->first_empty - q->last_used; 5030 if (used < 0) 5031 used += q->n_bd; 5032 5033 return used; 5034 } 5035 5036 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, const void *buf, 5037 int len, int sync) 5038 { 5039 struct clx2_tx_queue *txq = &priv->txq_cmd; 5040 struct clx2_queue *q = &txq->q; 5041 struct tfd_frame *tfd; 5042 5043 if (ipw_tx_queue_space(q) < (sync ? 1 : 2)) { 5044 IPW_ERROR("No space for Tx\n"); 5045 return -EBUSY; 5046 } 5047 5048 tfd = &txq->bd[q->first_empty]; 5049 txq->txb[q->first_empty] = NULL; 5050 5051 memset(tfd, 0, sizeof(*tfd)); 5052 tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE; 5053 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK; 5054 priv->hcmd_seq++; 5055 tfd->u.cmd.index = hcmd; 5056 tfd->u.cmd.length = len; 5057 memcpy(tfd->u.cmd.payload, buf, len); 5058 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd); 5059 ipw_write32(priv, q->reg_w, q->first_empty); 5060 _ipw_read32(priv, 0x90); 5061 5062 return 0; 5063 } 5064 5065 /* 5066 * Rx theory of operation 5067 * 5068 * The host allocates 32 DMA target addresses and passes the host address 5069 * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is 5070 * 0 to 31 5071 * 5072 * Rx Queue Indexes 5073 * The host/firmware share two index registers for managing the Rx buffers. 5074 * 5075 * The READ index maps to the first position that the firmware may be writing 5076 * to -- the driver can read up to (but not including) this position and get 5077 * good data. 5078 * The READ index is managed by the firmware once the card is enabled. 5079 * 5080 * The WRITE index maps to the last position the driver has read from -- the 5081 * position preceding WRITE is the last slot the firmware can place a packet. 5082 * 5083 * The queue is empty (no good data) if WRITE = READ - 1, and is full if 5084 * WRITE = READ. 5085 * 5086 * During initialization the host sets up the READ queue position to the first 5087 * INDEX position, and WRITE to the last (READ - 1 wrapped) 5088 * 5089 * When the firmware places a packet in a buffer it will advance the READ index 5090 * and fire the RX interrupt. The driver can then query the READ index and 5091 * process as many packets as possible, moving the WRITE index forward as it 5092 * resets the Rx queue buffers with new memory. 5093 * 5094 * The management in the driver is as follows: 5095 * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free. When 5096 * ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled 5097 * to replensish the ipw->rxq->rx_free. 5098 * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the 5099 * ipw->rxq is replenished and the READ INDEX is updated (updating the 5100 * 'processed' and 'read' driver indexes as well) 5101 * + A received packet is processed and handed to the kernel network stack, 5102 * detached from the ipw->rxq. The driver 'processed' index is updated. 5103 * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free 5104 * list. If there are no allocated buffers in ipw->rxq->rx_free, the READ 5105 * INDEX is not incremented and ipw->status(RX_STALLED) is set. If there 5106 * were enough free buffers and RX_STALLED is set it is cleared. 5107 * 5108 * 5109 * Driver sequence: 5110 * 5111 * ipw_rx_queue_alloc() Allocates rx_free 5112 * ipw_rx_queue_replenish() Replenishes rx_free list from rx_used, and calls 5113 * ipw_rx_queue_restock 5114 * ipw_rx_queue_restock() Moves available buffers from rx_free into Rx 5115 * queue, updates firmware pointers, and updates 5116 * the WRITE index. If insufficient rx_free buffers 5117 * are available, schedules ipw_rx_queue_replenish 5118 * 5119 * -- enable interrupts -- 5120 * ISR - ipw_rx() Detach ipw_rx_mem_buffers from pool up to the 5121 * READ INDEX, detaching the SKB from the pool. 5122 * Moves the packet buffer from queue to rx_used. 5123 * Calls ipw_rx_queue_restock to refill any empty 5124 * slots. 5125 * ... 5126 * 5127 */ 5128 5129 /* 5130 * If there are slots in the RX queue that need to be restocked, 5131 * and we have free pre-allocated buffers, fill the ranks as much 5132 * as we can pulling from rx_free. 5133 * 5134 * This moves the 'write' index forward to catch up with 'processed', and 5135 * also updates the memory address in the firmware to reference the new 5136 * target buffer. 5137 */ 5138 static void ipw_rx_queue_restock(struct ipw_priv *priv) 5139 { 5140 struct ipw_rx_queue *rxq = priv->rxq; 5141 struct list_head *element; 5142 struct ipw_rx_mem_buffer *rxb; 5143 unsigned long flags; 5144 int write; 5145 5146 spin_lock_irqsave(&rxq->lock, flags); 5147 write = rxq->write; 5148 while ((ipw_rx_queue_space(rxq) > 0) && (rxq->free_count)) { 5149 element = rxq->rx_free.next; 5150 rxb = list_entry(element, struct ipw_rx_mem_buffer, list); 5151 list_del(element); 5152 5153 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE, 5154 rxb->dma_addr); 5155 rxq->queue[rxq->write] = rxb; 5156 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE; 5157 rxq->free_count--; 5158 } 5159 spin_unlock_irqrestore(&rxq->lock, flags); 5160 5161 /* If the pre-allocated buffer pool is dropping low, schedule to 5162 * refill it */ 5163 if (rxq->free_count <= RX_LOW_WATERMARK) 5164 schedule_work(&priv->rx_replenish); 5165 5166 /* If we've added more space for the firmware to place data, tell it */ 5167 if (write != rxq->write) 5168 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write); 5169 } 5170 5171 /* 5172 * Move all used packet from rx_used to rx_free, allocating a new SKB for each. 5173 * Also restock the Rx queue via ipw_rx_queue_restock. 5174 * 5175 * This is called as a scheduled work item (except for during initialization) 5176 */ 5177 static void ipw_rx_queue_replenish(void *data) 5178 { 5179 struct ipw_priv *priv = data; 5180 struct ipw_rx_queue *rxq = priv->rxq; 5181 struct list_head *element; 5182 struct ipw_rx_mem_buffer *rxb; 5183 unsigned long flags; 5184 5185 spin_lock_irqsave(&rxq->lock, flags); 5186 while (!list_empty(&rxq->rx_used)) { 5187 element = rxq->rx_used.next; 5188 rxb = list_entry(element, struct ipw_rx_mem_buffer, list); 5189 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC); 5190 if (!rxb->skb) { 5191 printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n", 5192 priv->net_dev->name); 5193 /* We don't reschedule replenish work here -- we will 5194 * call the restock method and if it still needs 5195 * more buffers it will schedule replenish */ 5196 break; 5197 } 5198 list_del(element); 5199 5200 rxb->dma_addr = 5201 dma_map_single(&priv->pci_dev->dev, rxb->skb->data, 5202 IPW_RX_BUF_SIZE, DMA_FROM_DEVICE); 5203 5204 list_add_tail(&rxb->list, &rxq->rx_free); 5205 rxq->free_count++; 5206 } 5207 spin_unlock_irqrestore(&rxq->lock, flags); 5208 5209 ipw_rx_queue_restock(priv); 5210 } 5211 5212 static void ipw_bg_rx_queue_replenish(struct work_struct *work) 5213 { 5214 struct ipw_priv *priv = 5215 container_of(work, struct ipw_priv, rx_replenish); 5216 mutex_lock(&priv->mutex); 5217 ipw_rx_queue_replenish(priv); 5218 mutex_unlock(&priv->mutex); 5219 } 5220 5221 /* Assumes that the skb field of the buffers in 'pool' is kept accurate. 5222 * If an SKB has been detached, the POOL needs to have its SKB set to NULL 5223 * This free routine walks the list of POOL entries and if SKB is set to 5224 * non NULL it is unmapped and freed 5225 */ 5226 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq) 5227 { 5228 int i; 5229 5230 if (!rxq) 5231 return; 5232 5233 for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) { 5234 if (rxq->pool[i].skb != NULL) { 5235 dma_unmap_single(&priv->pci_dev->dev, 5236 rxq->pool[i].dma_addr, 5237 IPW_RX_BUF_SIZE, DMA_FROM_DEVICE); 5238 dev_kfree_skb(rxq->pool[i].skb); 5239 } 5240 } 5241 5242 kfree(rxq); 5243 } 5244 5245 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv) 5246 { 5247 struct ipw_rx_queue *rxq; 5248 int i; 5249 5250 rxq = kzalloc(sizeof(*rxq), GFP_KERNEL); 5251 if (unlikely(!rxq)) { 5252 IPW_ERROR("memory allocation failed\n"); 5253 return NULL; 5254 } 5255 spin_lock_init(&rxq->lock); 5256 INIT_LIST_HEAD(&rxq->rx_free); 5257 INIT_LIST_HEAD(&rxq->rx_used); 5258 5259 /* Fill the rx_used queue with _all_ of the Rx buffers */ 5260 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) 5261 list_add_tail(&rxq->pool[i].list, &rxq->rx_used); 5262 5263 /* Set us so that we have processed and used all buffers, but have 5264 * not restocked the Rx queue with fresh buffers */ 5265 rxq->read = rxq->write = 0; 5266 rxq->free_count = 0; 5267 5268 return rxq; 5269 } 5270 5271 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate) 5272 { 5273 rate &= ~LIBIPW_BASIC_RATE_MASK; 5274 if (ieee_mode == IEEE_A) { 5275 switch (rate) { 5276 case LIBIPW_OFDM_RATE_6MB: 5277 return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ? 5278 1 : 0; 5279 case LIBIPW_OFDM_RATE_9MB: 5280 return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ? 5281 1 : 0; 5282 case LIBIPW_OFDM_RATE_12MB: 5283 return priv-> 5284 rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0; 5285 case LIBIPW_OFDM_RATE_18MB: 5286 return priv-> 5287 rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0; 5288 case LIBIPW_OFDM_RATE_24MB: 5289 return priv-> 5290 rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0; 5291 case LIBIPW_OFDM_RATE_36MB: 5292 return priv-> 5293 rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0; 5294 case LIBIPW_OFDM_RATE_48MB: 5295 return priv-> 5296 rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0; 5297 case LIBIPW_OFDM_RATE_54MB: 5298 return priv-> 5299 rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0; 5300 default: 5301 return 0; 5302 } 5303 } 5304 5305 /* B and G mixed */ 5306 switch (rate) { 5307 case LIBIPW_CCK_RATE_1MB: 5308 return priv->rates_mask & LIBIPW_CCK_RATE_1MB_MASK ? 1 : 0; 5309 case LIBIPW_CCK_RATE_2MB: 5310 return priv->rates_mask & LIBIPW_CCK_RATE_2MB_MASK ? 1 : 0; 5311 case LIBIPW_CCK_RATE_5MB: 5312 return priv->rates_mask & LIBIPW_CCK_RATE_5MB_MASK ? 1 : 0; 5313 case LIBIPW_CCK_RATE_11MB: 5314 return priv->rates_mask & LIBIPW_CCK_RATE_11MB_MASK ? 1 : 0; 5315 } 5316 5317 /* If we are limited to B modulations, bail at this point */ 5318 if (ieee_mode == IEEE_B) 5319 return 0; 5320 5321 /* G */ 5322 switch (rate) { 5323 case LIBIPW_OFDM_RATE_6MB: 5324 return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ? 1 : 0; 5325 case LIBIPW_OFDM_RATE_9MB: 5326 return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ? 1 : 0; 5327 case LIBIPW_OFDM_RATE_12MB: 5328 return priv->rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0; 5329 case LIBIPW_OFDM_RATE_18MB: 5330 return priv->rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0; 5331 case LIBIPW_OFDM_RATE_24MB: 5332 return priv->rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0; 5333 case LIBIPW_OFDM_RATE_36MB: 5334 return priv->rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0; 5335 case LIBIPW_OFDM_RATE_48MB: 5336 return priv->rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0; 5337 case LIBIPW_OFDM_RATE_54MB: 5338 return priv->rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0; 5339 } 5340 5341 return 0; 5342 } 5343 5344 static int ipw_compatible_rates(struct ipw_priv *priv, 5345 const struct libipw_network *network, 5346 struct ipw_supported_rates *rates) 5347 { 5348 int num_rates, i; 5349 5350 memset(rates, 0, sizeof(*rates)); 5351 num_rates = min(network->rates_len, (u8) IPW_MAX_RATES); 5352 rates->num_rates = 0; 5353 for (i = 0; i < num_rates; i++) { 5354 if (!ipw_is_rate_in_mask(priv, network->mode, 5355 network->rates[i])) { 5356 5357 if (network->rates[i] & LIBIPW_BASIC_RATE_MASK) { 5358 IPW_DEBUG_SCAN("Adding masked mandatory " 5359 "rate %02X\n", 5360 network->rates[i]); 5361 rates->supported_rates[rates->num_rates++] = 5362 network->rates[i]; 5363 continue; 5364 } 5365 5366 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n", 5367 network->rates[i], priv->rates_mask); 5368 continue; 5369 } 5370 5371 rates->supported_rates[rates->num_rates++] = network->rates[i]; 5372 } 5373 5374 num_rates = min(network->rates_ex_len, 5375 (u8) (IPW_MAX_RATES - num_rates)); 5376 for (i = 0; i < num_rates; i++) { 5377 if (!ipw_is_rate_in_mask(priv, network->mode, 5378 network->rates_ex[i])) { 5379 if (network->rates_ex[i] & LIBIPW_BASIC_RATE_MASK) { 5380 IPW_DEBUG_SCAN("Adding masked mandatory " 5381 "rate %02X\n", 5382 network->rates_ex[i]); 5383 rates->supported_rates[rates->num_rates++] = 5384 network->rates[i]; 5385 continue; 5386 } 5387 5388 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n", 5389 network->rates_ex[i], priv->rates_mask); 5390 continue; 5391 } 5392 5393 rates->supported_rates[rates->num_rates++] = 5394 network->rates_ex[i]; 5395 } 5396 5397 return 1; 5398 } 5399 5400 static void ipw_copy_rates(struct ipw_supported_rates *dest, 5401 const struct ipw_supported_rates *src) 5402 { 5403 u8 i; 5404 for (i = 0; i < src->num_rates; i++) 5405 dest->supported_rates[i] = src->supported_rates[i]; 5406 dest->num_rates = src->num_rates; 5407 } 5408 5409 /* TODO: Look at sniffed packets in the air to determine if the basic rate 5410 * mask should ever be used -- right now all callers to add the scan rates are 5411 * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */ 5412 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates, 5413 u8 modulation, u32 rate_mask) 5414 { 5415 u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ? 5416 LIBIPW_BASIC_RATE_MASK : 0; 5417 5418 if (rate_mask & LIBIPW_CCK_RATE_1MB_MASK) 5419 rates->supported_rates[rates->num_rates++] = 5420 LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_1MB; 5421 5422 if (rate_mask & LIBIPW_CCK_RATE_2MB_MASK) 5423 rates->supported_rates[rates->num_rates++] = 5424 LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_2MB; 5425 5426 if (rate_mask & LIBIPW_CCK_RATE_5MB_MASK) 5427 rates->supported_rates[rates->num_rates++] = basic_mask | 5428 LIBIPW_CCK_RATE_5MB; 5429 5430 if (rate_mask & LIBIPW_CCK_RATE_11MB_MASK) 5431 rates->supported_rates[rates->num_rates++] = basic_mask | 5432 LIBIPW_CCK_RATE_11MB; 5433 } 5434 5435 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates, 5436 u8 modulation, u32 rate_mask) 5437 { 5438 u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ? 5439 LIBIPW_BASIC_RATE_MASK : 0; 5440 5441 if (rate_mask & LIBIPW_OFDM_RATE_6MB_MASK) 5442 rates->supported_rates[rates->num_rates++] = basic_mask | 5443 LIBIPW_OFDM_RATE_6MB; 5444 5445 if (rate_mask & LIBIPW_OFDM_RATE_9MB_MASK) 5446 rates->supported_rates[rates->num_rates++] = 5447 LIBIPW_OFDM_RATE_9MB; 5448 5449 if (rate_mask & LIBIPW_OFDM_RATE_12MB_MASK) 5450 rates->supported_rates[rates->num_rates++] = basic_mask | 5451 LIBIPW_OFDM_RATE_12MB; 5452 5453 if (rate_mask & LIBIPW_OFDM_RATE_18MB_MASK) 5454 rates->supported_rates[rates->num_rates++] = 5455 LIBIPW_OFDM_RATE_18MB; 5456 5457 if (rate_mask & LIBIPW_OFDM_RATE_24MB_MASK) 5458 rates->supported_rates[rates->num_rates++] = basic_mask | 5459 LIBIPW_OFDM_RATE_24MB; 5460 5461 if (rate_mask & LIBIPW_OFDM_RATE_36MB_MASK) 5462 rates->supported_rates[rates->num_rates++] = 5463 LIBIPW_OFDM_RATE_36MB; 5464 5465 if (rate_mask & LIBIPW_OFDM_RATE_48MB_MASK) 5466 rates->supported_rates[rates->num_rates++] = 5467 LIBIPW_OFDM_RATE_48MB; 5468 5469 if (rate_mask & LIBIPW_OFDM_RATE_54MB_MASK) 5470 rates->supported_rates[rates->num_rates++] = 5471 LIBIPW_OFDM_RATE_54MB; 5472 } 5473 5474 struct ipw_network_match { 5475 struct libipw_network *network; 5476 struct ipw_supported_rates rates; 5477 }; 5478 5479 static int ipw_find_adhoc_network(struct ipw_priv *priv, 5480 struct ipw_network_match *match, 5481 struct libipw_network *network, 5482 int roaming) 5483 { 5484 struct ipw_supported_rates rates; 5485 5486 /* Verify that this network's capability is compatible with the 5487 * current mode (AdHoc or Infrastructure) */ 5488 if ((priv->ieee->iw_mode == IW_MODE_ADHOC && 5489 !(network->capability & WLAN_CAPABILITY_IBSS))) { 5490 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded due to capability mismatch.\n", 5491 network->ssid_len, network->ssid, 5492 network->bssid); 5493 return 0; 5494 } 5495 5496 if (unlikely(roaming)) { 5497 /* If we are roaming, then ensure check if this is a valid 5498 * network to try and roam to */ 5499 if ((network->ssid_len != match->network->ssid_len) || 5500 memcmp(network->ssid, match->network->ssid, 5501 network->ssid_len)) { 5502 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of non-network ESSID.\n", 5503 network->ssid_len, network->ssid, 5504 network->bssid); 5505 return 0; 5506 } 5507 } else { 5508 /* If an ESSID has been configured then compare the broadcast 5509 * ESSID to ours */ 5510 if ((priv->config & CFG_STATIC_ESSID) && 5511 ((network->ssid_len != priv->essid_len) || 5512 memcmp(network->ssid, priv->essid, 5513 min(network->ssid_len, priv->essid_len)))) { 5514 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of ESSID mismatch: '%*pE'.\n", 5515 network->ssid_len, network->ssid, 5516 network->bssid, priv->essid_len, 5517 priv->essid); 5518 return 0; 5519 } 5520 } 5521 5522 /* If the old network rate is better than this one, don't bother 5523 * testing everything else. */ 5524 5525 if (network->time_stamp[0] < match->network->time_stamp[0]) { 5526 IPW_DEBUG_MERGE("Network '%*pE excluded because newer than current network.\n", 5527 match->network->ssid_len, match->network->ssid); 5528 return 0; 5529 } else if (network->time_stamp[1] < match->network->time_stamp[1]) { 5530 IPW_DEBUG_MERGE("Network '%*pE excluded because newer than current network.\n", 5531 match->network->ssid_len, match->network->ssid); 5532 return 0; 5533 } 5534 5535 /* Now go through and see if the requested network is valid... */ 5536 if (priv->ieee->scan_age != 0 && 5537 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) { 5538 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of age: %ums.\n", 5539 network->ssid_len, network->ssid, 5540 network->bssid, 5541 jiffies_to_msecs(jiffies - 5542 network->last_scanned)); 5543 return 0; 5544 } 5545 5546 if ((priv->config & CFG_STATIC_CHANNEL) && 5547 (network->channel != priv->channel)) { 5548 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of channel mismatch: %d != %d.\n", 5549 network->ssid_len, network->ssid, 5550 network->bssid, 5551 network->channel, priv->channel); 5552 return 0; 5553 } 5554 5555 /* Verify privacy compatibility */ 5556 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) != 5557 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) { 5558 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of privacy mismatch: %s != %s.\n", 5559 network->ssid_len, network->ssid, 5560 network->bssid, 5561 priv-> 5562 capability & CAP_PRIVACY_ON ? "on" : "off", 5563 network-> 5564 capability & WLAN_CAPABILITY_PRIVACY ? "on" : 5565 "off"); 5566 return 0; 5567 } 5568 5569 if (ether_addr_equal(network->bssid, priv->bssid)) { 5570 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of the same BSSID match: %pM.\n", 5571 network->ssid_len, network->ssid, 5572 network->bssid, priv->bssid); 5573 return 0; 5574 } 5575 5576 /* Filter out any incompatible freq / mode combinations */ 5577 if (!libipw_is_valid_mode(priv->ieee, network->mode)) { 5578 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of invalid frequency/mode combination.\n", 5579 network->ssid_len, network->ssid, 5580 network->bssid); 5581 return 0; 5582 } 5583 5584 /* Ensure that the rates supported by the driver are compatible with 5585 * this AP, including verification of basic rates (mandatory) */ 5586 if (!ipw_compatible_rates(priv, network, &rates)) { 5587 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because configured rate mask excludes AP mandatory rate.\n", 5588 network->ssid_len, network->ssid, 5589 network->bssid); 5590 return 0; 5591 } 5592 5593 if (rates.num_rates == 0) { 5594 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of no compatible rates.\n", 5595 network->ssid_len, network->ssid, 5596 network->bssid); 5597 return 0; 5598 } 5599 5600 /* TODO: Perform any further minimal comparititive tests. We do not 5601 * want to put too much policy logic here; intelligent scan selection 5602 * should occur within a generic IEEE 802.11 user space tool. */ 5603 5604 /* Set up 'new' AP to this network */ 5605 ipw_copy_rates(&match->rates, &rates); 5606 match->network = network; 5607 IPW_DEBUG_MERGE("Network '%*pE (%pM)' is a viable match.\n", 5608 network->ssid_len, network->ssid, network->bssid); 5609 5610 return 1; 5611 } 5612 5613 static void ipw_merge_adhoc_network(struct work_struct *work) 5614 { 5615 struct ipw_priv *priv = 5616 container_of(work, struct ipw_priv, merge_networks); 5617 struct libipw_network *network = NULL; 5618 struct ipw_network_match match = { 5619 .network = priv->assoc_network 5620 }; 5621 5622 if ((priv->status & STATUS_ASSOCIATED) && 5623 (priv->ieee->iw_mode == IW_MODE_ADHOC)) { 5624 /* First pass through ROAM process -- look for a better 5625 * network */ 5626 unsigned long flags; 5627 5628 spin_lock_irqsave(&priv->ieee->lock, flags); 5629 list_for_each_entry(network, &priv->ieee->network_list, list) { 5630 if (network != priv->assoc_network) 5631 ipw_find_adhoc_network(priv, &match, network, 5632 1); 5633 } 5634 spin_unlock_irqrestore(&priv->ieee->lock, flags); 5635 5636 if (match.network == priv->assoc_network) { 5637 IPW_DEBUG_MERGE("No better ADHOC in this network to " 5638 "merge to.\n"); 5639 return; 5640 } 5641 5642 mutex_lock(&priv->mutex); 5643 if (priv->ieee->iw_mode == IW_MODE_ADHOC) { 5644 IPW_DEBUG_MERGE("remove network %*pE\n", 5645 priv->essid_len, priv->essid); 5646 ipw_remove_current_network(priv); 5647 } 5648 5649 ipw_disassociate(priv); 5650 priv->assoc_network = match.network; 5651 mutex_unlock(&priv->mutex); 5652 return; 5653 } 5654 } 5655 5656 static int ipw_best_network(struct ipw_priv *priv, 5657 struct ipw_network_match *match, 5658 struct libipw_network *network, int roaming) 5659 { 5660 struct ipw_supported_rates rates; 5661 5662 /* Verify that this network's capability is compatible with the 5663 * current mode (AdHoc or Infrastructure) */ 5664 if ((priv->ieee->iw_mode == IW_MODE_INFRA && 5665 !(network->capability & WLAN_CAPABILITY_ESS)) || 5666 (priv->ieee->iw_mode == IW_MODE_ADHOC && 5667 !(network->capability & WLAN_CAPABILITY_IBSS))) { 5668 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded due to capability mismatch.\n", 5669 network->ssid_len, network->ssid, 5670 network->bssid); 5671 return 0; 5672 } 5673 5674 if (unlikely(roaming)) { 5675 /* If we are roaming, then ensure check if this is a valid 5676 * network to try and roam to */ 5677 if ((network->ssid_len != match->network->ssid_len) || 5678 memcmp(network->ssid, match->network->ssid, 5679 network->ssid_len)) { 5680 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of non-network ESSID.\n", 5681 network->ssid_len, network->ssid, 5682 network->bssid); 5683 return 0; 5684 } 5685 } else { 5686 /* If an ESSID has been configured then compare the broadcast 5687 * ESSID to ours */ 5688 if ((priv->config & CFG_STATIC_ESSID) && 5689 ((network->ssid_len != priv->essid_len) || 5690 memcmp(network->ssid, priv->essid, 5691 min(network->ssid_len, priv->essid_len)))) { 5692 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of ESSID mismatch: '%*pE'.\n", 5693 network->ssid_len, network->ssid, 5694 network->bssid, priv->essid_len, 5695 priv->essid); 5696 return 0; 5697 } 5698 } 5699 5700 /* If the old network rate is better than this one, don't bother 5701 * testing everything else. */ 5702 if (match->network && match->network->stats.rssi > network->stats.rssi) { 5703 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because '%*pE (%pM)' has a stronger signal.\n", 5704 network->ssid_len, network->ssid, 5705 network->bssid, match->network->ssid_len, 5706 match->network->ssid, match->network->bssid); 5707 return 0; 5708 } 5709 5710 /* If this network has already had an association attempt within the 5711 * last 3 seconds, do not try and associate again... */ 5712 if (network->last_associate && 5713 time_after(network->last_associate + (HZ * 3UL), jiffies)) { 5714 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of storming (%ums since last assoc attempt).\n", 5715 network->ssid_len, network->ssid, 5716 network->bssid, 5717 jiffies_to_msecs(jiffies - 5718 network->last_associate)); 5719 return 0; 5720 } 5721 5722 /* Now go through and see if the requested network is valid... */ 5723 if (priv->ieee->scan_age != 0 && 5724 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) { 5725 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of age: %ums.\n", 5726 network->ssid_len, network->ssid, 5727 network->bssid, 5728 jiffies_to_msecs(jiffies - 5729 network->last_scanned)); 5730 return 0; 5731 } 5732 5733 if ((priv->config & CFG_STATIC_CHANNEL) && 5734 (network->channel != priv->channel)) { 5735 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of channel mismatch: %d != %d.\n", 5736 network->ssid_len, network->ssid, 5737 network->bssid, 5738 network->channel, priv->channel); 5739 return 0; 5740 } 5741 5742 /* Verify privacy compatibility */ 5743 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) != 5744 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) { 5745 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of privacy mismatch: %s != %s.\n", 5746 network->ssid_len, network->ssid, 5747 network->bssid, 5748 priv->capability & CAP_PRIVACY_ON ? "on" : 5749 "off", 5750 network->capability & 5751 WLAN_CAPABILITY_PRIVACY ? "on" : "off"); 5752 return 0; 5753 } 5754 5755 if ((priv->config & CFG_STATIC_BSSID) && 5756 !ether_addr_equal(network->bssid, priv->bssid)) { 5757 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of BSSID mismatch: %pM.\n", 5758 network->ssid_len, network->ssid, 5759 network->bssid, priv->bssid); 5760 return 0; 5761 } 5762 5763 /* Filter out any incompatible freq / mode combinations */ 5764 if (!libipw_is_valid_mode(priv->ieee, network->mode)) { 5765 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of invalid frequency/mode combination.\n", 5766 network->ssid_len, network->ssid, 5767 network->bssid); 5768 return 0; 5769 } 5770 5771 /* Filter out invalid channel in current GEO */ 5772 if (!libipw_is_valid_channel(priv->ieee, network->channel)) { 5773 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of invalid channel in current GEO\n", 5774 network->ssid_len, network->ssid, 5775 network->bssid); 5776 return 0; 5777 } 5778 5779 /* Ensure that the rates supported by the driver are compatible with 5780 * this AP, including verification of basic rates (mandatory) */ 5781 if (!ipw_compatible_rates(priv, network, &rates)) { 5782 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because configured rate mask excludes AP mandatory rate.\n", 5783 network->ssid_len, network->ssid, 5784 network->bssid); 5785 return 0; 5786 } 5787 5788 if (rates.num_rates == 0) { 5789 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of no compatible rates.\n", 5790 network->ssid_len, network->ssid, 5791 network->bssid); 5792 return 0; 5793 } 5794 5795 /* TODO: Perform any further minimal comparititive tests. We do not 5796 * want to put too much policy logic here; intelligent scan selection 5797 * should occur within a generic IEEE 802.11 user space tool. */ 5798 5799 /* Set up 'new' AP to this network */ 5800 ipw_copy_rates(&match->rates, &rates); 5801 match->network = network; 5802 5803 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' is a viable match.\n", 5804 network->ssid_len, network->ssid, network->bssid); 5805 5806 return 1; 5807 } 5808 5809 static void ipw_adhoc_create(struct ipw_priv *priv, 5810 struct libipw_network *network) 5811 { 5812 const struct libipw_geo *geo = libipw_get_geo(priv->ieee); 5813 int i; 5814 5815 /* 5816 * For the purposes of scanning, we can set our wireless mode 5817 * to trigger scans across combinations of bands, but when it 5818 * comes to creating a new ad-hoc network, we have tell the FW 5819 * exactly which band to use. 5820 * 5821 * We also have the possibility of an invalid channel for the 5822 * chossen band. Attempting to create a new ad-hoc network 5823 * with an invalid channel for wireless mode will trigger a 5824 * FW fatal error. 5825 * 5826 */ 5827 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) { 5828 case LIBIPW_52GHZ_BAND: 5829 network->mode = IEEE_A; 5830 i = libipw_channel_to_index(priv->ieee, priv->channel); 5831 BUG_ON(i == -1); 5832 if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY) { 5833 IPW_WARNING("Overriding invalid channel\n"); 5834 priv->channel = geo->a[0].channel; 5835 } 5836 break; 5837 5838 case LIBIPW_24GHZ_BAND: 5839 if (priv->ieee->mode & IEEE_G) 5840 network->mode = IEEE_G; 5841 else 5842 network->mode = IEEE_B; 5843 i = libipw_channel_to_index(priv->ieee, priv->channel); 5844 BUG_ON(i == -1); 5845 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY) { 5846 IPW_WARNING("Overriding invalid channel\n"); 5847 priv->channel = geo->bg[0].channel; 5848 } 5849 break; 5850 5851 default: 5852 IPW_WARNING("Overriding invalid channel\n"); 5853 if (priv->ieee->mode & IEEE_A) { 5854 network->mode = IEEE_A; 5855 priv->channel = geo->a[0].channel; 5856 } else if (priv->ieee->mode & IEEE_G) { 5857 network->mode = IEEE_G; 5858 priv->channel = geo->bg[0].channel; 5859 } else { 5860 network->mode = IEEE_B; 5861 priv->channel = geo->bg[0].channel; 5862 } 5863 break; 5864 } 5865 5866 network->channel = priv->channel; 5867 priv->config |= CFG_ADHOC_PERSIST; 5868 ipw_create_bssid(priv, network->bssid); 5869 network->ssid_len = priv->essid_len; 5870 memcpy(network->ssid, priv->essid, priv->essid_len); 5871 memset(&network->stats, 0, sizeof(network->stats)); 5872 network->capability = WLAN_CAPABILITY_IBSS; 5873 if (!(priv->config & CFG_PREAMBLE_LONG)) 5874 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE; 5875 if (priv->capability & CAP_PRIVACY_ON) 5876 network->capability |= WLAN_CAPABILITY_PRIVACY; 5877 network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH); 5878 memcpy(network->rates, priv->rates.supported_rates, network->rates_len); 5879 network->rates_ex_len = priv->rates.num_rates - network->rates_len; 5880 memcpy(network->rates_ex, 5881 &priv->rates.supported_rates[network->rates_len], 5882 network->rates_ex_len); 5883 network->last_scanned = 0; 5884 network->flags = 0; 5885 network->last_associate = 0; 5886 network->time_stamp[0] = 0; 5887 network->time_stamp[1] = 0; 5888 network->beacon_interval = 100; /* Default */ 5889 network->listen_interval = 10; /* Default */ 5890 network->atim_window = 0; /* Default */ 5891 network->wpa_ie_len = 0; 5892 network->rsn_ie_len = 0; 5893 } 5894 5895 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index) 5896 { 5897 struct ipw_tgi_tx_key key; 5898 5899 if (!(priv->ieee->sec.flags & (1 << index))) 5900 return; 5901 5902 key.key_id = index; 5903 memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH); 5904 key.security_type = type; 5905 key.station_index = 0; /* always 0 for BSS */ 5906 key.flags = 0; 5907 /* 0 for new key; previous value of counter (after fatal error) */ 5908 key.tx_counter[0] = cpu_to_le32(0); 5909 key.tx_counter[1] = cpu_to_le32(0); 5910 5911 ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key); 5912 } 5913 5914 static void ipw_send_wep_keys(struct ipw_priv *priv, int type) 5915 { 5916 struct ipw_wep_key key; 5917 int i; 5918 5919 key.cmd_id = DINO_CMD_WEP_KEY; 5920 key.seq_num = 0; 5921 5922 /* Note: AES keys cannot be set for multiple times. 5923 * Only set it at the first time. */ 5924 for (i = 0; i < 4; i++) { 5925 key.key_index = i | type; 5926 if (!(priv->ieee->sec.flags & (1 << i))) { 5927 key.key_size = 0; 5928 continue; 5929 } 5930 5931 key.key_size = priv->ieee->sec.key_sizes[i]; 5932 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size); 5933 5934 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key); 5935 } 5936 } 5937 5938 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level) 5939 { 5940 if (priv->ieee->host_encrypt) 5941 return; 5942 5943 switch (level) { 5944 case SEC_LEVEL_3: 5945 priv->sys_config.disable_unicast_decryption = 0; 5946 priv->ieee->host_decrypt = 0; 5947 break; 5948 case SEC_LEVEL_2: 5949 priv->sys_config.disable_unicast_decryption = 1; 5950 priv->ieee->host_decrypt = 1; 5951 break; 5952 case SEC_LEVEL_1: 5953 priv->sys_config.disable_unicast_decryption = 0; 5954 priv->ieee->host_decrypt = 0; 5955 break; 5956 case SEC_LEVEL_0: 5957 priv->sys_config.disable_unicast_decryption = 1; 5958 break; 5959 default: 5960 break; 5961 } 5962 } 5963 5964 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level) 5965 { 5966 if (priv->ieee->host_encrypt) 5967 return; 5968 5969 switch (level) { 5970 case SEC_LEVEL_3: 5971 priv->sys_config.disable_multicast_decryption = 0; 5972 break; 5973 case SEC_LEVEL_2: 5974 priv->sys_config.disable_multicast_decryption = 1; 5975 break; 5976 case SEC_LEVEL_1: 5977 priv->sys_config.disable_multicast_decryption = 0; 5978 break; 5979 case SEC_LEVEL_0: 5980 priv->sys_config.disable_multicast_decryption = 1; 5981 break; 5982 default: 5983 break; 5984 } 5985 } 5986 5987 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv) 5988 { 5989 switch (priv->ieee->sec.level) { 5990 case SEC_LEVEL_3: 5991 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY) 5992 ipw_send_tgi_tx_key(priv, 5993 DCT_FLAG_EXT_SECURITY_CCM, 5994 priv->ieee->sec.active_key); 5995 5996 if (!priv->ieee->host_mc_decrypt) 5997 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM); 5998 break; 5999 case SEC_LEVEL_2: 6000 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY) 6001 ipw_send_tgi_tx_key(priv, 6002 DCT_FLAG_EXT_SECURITY_TKIP, 6003 priv->ieee->sec.active_key); 6004 break; 6005 case SEC_LEVEL_1: 6006 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP); 6007 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level); 6008 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level); 6009 break; 6010 case SEC_LEVEL_0: 6011 default: 6012 break; 6013 } 6014 } 6015 6016 static void ipw_adhoc_check(void *data) 6017 { 6018 struct ipw_priv *priv = data; 6019 6020 if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold && 6021 !(priv->config & CFG_ADHOC_PERSIST)) { 6022 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | 6023 IPW_DL_STATE | IPW_DL_ASSOC, 6024 "Missed beacon: %d - disassociate\n", 6025 priv->missed_adhoc_beacons); 6026 ipw_remove_current_network(priv); 6027 ipw_disassociate(priv); 6028 return; 6029 } 6030 6031 schedule_delayed_work(&priv->adhoc_check, 6032 le16_to_cpu(priv->assoc_request.beacon_interval)); 6033 } 6034 6035 static void ipw_bg_adhoc_check(struct work_struct *work) 6036 { 6037 struct ipw_priv *priv = 6038 container_of(work, struct ipw_priv, adhoc_check.work); 6039 mutex_lock(&priv->mutex); 6040 ipw_adhoc_check(priv); 6041 mutex_unlock(&priv->mutex); 6042 } 6043 6044 static void ipw_debug_config(struct ipw_priv *priv) 6045 { 6046 IPW_DEBUG_INFO("Scan completed, no valid APs matched " 6047 "[CFG 0x%08X]\n", priv->config); 6048 if (priv->config & CFG_STATIC_CHANNEL) 6049 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel); 6050 else 6051 IPW_DEBUG_INFO("Channel unlocked.\n"); 6052 if (priv->config & CFG_STATIC_ESSID) 6053 IPW_DEBUG_INFO("ESSID locked to '%*pE'\n", 6054 priv->essid_len, priv->essid); 6055 else 6056 IPW_DEBUG_INFO("ESSID unlocked.\n"); 6057 if (priv->config & CFG_STATIC_BSSID) 6058 IPW_DEBUG_INFO("BSSID locked to %pM\n", priv->bssid); 6059 else 6060 IPW_DEBUG_INFO("BSSID unlocked.\n"); 6061 if (priv->capability & CAP_PRIVACY_ON) 6062 IPW_DEBUG_INFO("PRIVACY on\n"); 6063 else 6064 IPW_DEBUG_INFO("PRIVACY off\n"); 6065 IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask); 6066 } 6067 6068 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode) 6069 { 6070 /* TODO: Verify that this works... */ 6071 struct ipw_fixed_rate fr; 6072 u32 reg; 6073 u16 mask = 0; 6074 u16 new_tx_rates = priv->rates_mask; 6075 6076 /* Identify 'current FW band' and match it with the fixed 6077 * Tx rates */ 6078 6079 switch (priv->ieee->freq_band) { 6080 case LIBIPW_52GHZ_BAND: /* A only */ 6081 /* IEEE_A */ 6082 if (priv->rates_mask & ~LIBIPW_OFDM_RATES_MASK) { 6083 /* Invalid fixed rate mask */ 6084 IPW_DEBUG_WX 6085 ("invalid fixed rate mask in ipw_set_fixed_rate\n"); 6086 new_tx_rates = 0; 6087 break; 6088 } 6089 6090 new_tx_rates >>= LIBIPW_OFDM_SHIFT_MASK_A; 6091 break; 6092 6093 default: /* 2.4Ghz or Mixed */ 6094 /* IEEE_B */ 6095 if (mode == IEEE_B) { 6096 if (new_tx_rates & ~LIBIPW_CCK_RATES_MASK) { 6097 /* Invalid fixed rate mask */ 6098 IPW_DEBUG_WX 6099 ("invalid fixed rate mask in ipw_set_fixed_rate\n"); 6100 new_tx_rates = 0; 6101 } 6102 break; 6103 } 6104 6105 /* IEEE_G */ 6106 if (new_tx_rates & ~(LIBIPW_CCK_RATES_MASK | 6107 LIBIPW_OFDM_RATES_MASK)) { 6108 /* Invalid fixed rate mask */ 6109 IPW_DEBUG_WX 6110 ("invalid fixed rate mask in ipw_set_fixed_rate\n"); 6111 new_tx_rates = 0; 6112 break; 6113 } 6114 6115 if (LIBIPW_OFDM_RATE_6MB_MASK & new_tx_rates) { 6116 mask |= (LIBIPW_OFDM_RATE_6MB_MASK >> 1); 6117 new_tx_rates &= ~LIBIPW_OFDM_RATE_6MB_MASK; 6118 } 6119 6120 if (LIBIPW_OFDM_RATE_9MB_MASK & new_tx_rates) { 6121 mask |= (LIBIPW_OFDM_RATE_9MB_MASK >> 1); 6122 new_tx_rates &= ~LIBIPW_OFDM_RATE_9MB_MASK; 6123 } 6124 6125 if (LIBIPW_OFDM_RATE_12MB_MASK & new_tx_rates) { 6126 mask |= (LIBIPW_OFDM_RATE_12MB_MASK >> 1); 6127 new_tx_rates &= ~LIBIPW_OFDM_RATE_12MB_MASK; 6128 } 6129 6130 new_tx_rates |= mask; 6131 break; 6132 } 6133 6134 fr.tx_rates = cpu_to_le16(new_tx_rates); 6135 6136 reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE); 6137 ipw_write_reg32(priv, reg, *(u32 *) & fr); 6138 } 6139 6140 static void ipw_abort_scan(struct ipw_priv *priv) 6141 { 6142 int err; 6143 6144 if (priv->status & STATUS_SCAN_ABORTING) { 6145 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n"); 6146 return; 6147 } 6148 priv->status |= STATUS_SCAN_ABORTING; 6149 6150 err = ipw_send_scan_abort(priv); 6151 if (err) 6152 IPW_DEBUG_HC("Request to abort scan failed.\n"); 6153 } 6154 6155 static void ipw_add_scan_channels(struct ipw_priv *priv, 6156 struct ipw_scan_request_ext *scan, 6157 int scan_type) 6158 { 6159 int channel_index = 0; 6160 const struct libipw_geo *geo; 6161 int i; 6162 6163 geo = libipw_get_geo(priv->ieee); 6164 6165 if (priv->ieee->freq_band & LIBIPW_52GHZ_BAND) { 6166 int start = channel_index; 6167 for (i = 0; i < geo->a_channels; i++) { 6168 if ((priv->status & STATUS_ASSOCIATED) && 6169 geo->a[i].channel == priv->channel) 6170 continue; 6171 channel_index++; 6172 scan->channels_list[channel_index] = geo->a[i].channel; 6173 ipw_set_scan_type(scan, channel_index, 6174 geo->a[i]. 6175 flags & LIBIPW_CH_PASSIVE_ONLY ? 6176 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN : 6177 scan_type); 6178 } 6179 6180 if (start != channel_index) { 6181 scan->channels_list[start] = (u8) (IPW_A_MODE << 6) | 6182 (channel_index - start); 6183 channel_index++; 6184 } 6185 } 6186 6187 if (priv->ieee->freq_band & LIBIPW_24GHZ_BAND) { 6188 int start = channel_index; 6189 if (priv->config & CFG_SPEED_SCAN) { 6190 int index; 6191 u8 channels[LIBIPW_24GHZ_CHANNELS] = { 6192 /* nop out the list */ 6193 [0] = 0 6194 }; 6195 6196 u8 channel; 6197 while (channel_index < IPW_SCAN_CHANNELS - 1) { 6198 channel = 6199 priv->speed_scan[priv->speed_scan_pos]; 6200 if (channel == 0) { 6201 priv->speed_scan_pos = 0; 6202 channel = priv->speed_scan[0]; 6203 } 6204 if ((priv->status & STATUS_ASSOCIATED) && 6205 channel == priv->channel) { 6206 priv->speed_scan_pos++; 6207 continue; 6208 } 6209 6210 /* If this channel has already been 6211 * added in scan, break from loop 6212 * and this will be the first channel 6213 * in the next scan. 6214 */ 6215 if (channels[channel - 1] != 0) 6216 break; 6217 6218 channels[channel - 1] = 1; 6219 priv->speed_scan_pos++; 6220 channel_index++; 6221 scan->channels_list[channel_index] = channel; 6222 index = 6223 libipw_channel_to_index(priv->ieee, channel); 6224 ipw_set_scan_type(scan, channel_index, 6225 geo->bg[index]. 6226 flags & 6227 LIBIPW_CH_PASSIVE_ONLY ? 6228 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN 6229 : scan_type); 6230 } 6231 } else { 6232 for (i = 0; i < geo->bg_channels; i++) { 6233 if ((priv->status & STATUS_ASSOCIATED) && 6234 geo->bg[i].channel == priv->channel) 6235 continue; 6236 channel_index++; 6237 scan->channels_list[channel_index] = 6238 geo->bg[i].channel; 6239 ipw_set_scan_type(scan, channel_index, 6240 geo->bg[i]. 6241 flags & 6242 LIBIPW_CH_PASSIVE_ONLY ? 6243 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN 6244 : scan_type); 6245 } 6246 } 6247 6248 if (start != channel_index) { 6249 scan->channels_list[start] = (u8) (IPW_B_MODE << 6) | 6250 (channel_index - start); 6251 } 6252 } 6253 } 6254 6255 static int ipw_passive_dwell_time(struct ipw_priv *priv) 6256 { 6257 /* staying on passive channels longer than the DTIM interval during a 6258 * scan, while associated, causes the firmware to cancel the scan 6259 * without notification. Hence, don't stay on passive channels longer 6260 * than the beacon interval. 6261 */ 6262 if (priv->status & STATUS_ASSOCIATED 6263 && priv->assoc_network->beacon_interval > 10) 6264 return priv->assoc_network->beacon_interval - 10; 6265 else 6266 return 120; 6267 } 6268 6269 static int ipw_request_scan_helper(struct ipw_priv *priv, int type, int direct) 6270 { 6271 struct ipw_scan_request_ext scan; 6272 int err = 0, scan_type; 6273 6274 if (!(priv->status & STATUS_INIT) || 6275 (priv->status & STATUS_EXIT_PENDING)) 6276 return 0; 6277 6278 mutex_lock(&priv->mutex); 6279 6280 if (direct && (priv->direct_scan_ssid_len == 0)) { 6281 IPW_DEBUG_HC("Direct scan requested but no SSID to scan for\n"); 6282 priv->status &= ~STATUS_DIRECT_SCAN_PENDING; 6283 goto done; 6284 } 6285 6286 if (priv->status & STATUS_SCANNING) { 6287 IPW_DEBUG_HC("Concurrent scan requested. Queuing.\n"); 6288 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING : 6289 STATUS_SCAN_PENDING; 6290 goto done; 6291 } 6292 6293 if (!(priv->status & STATUS_SCAN_FORCED) && 6294 priv->status & STATUS_SCAN_ABORTING) { 6295 IPW_DEBUG_HC("Scan request while abort pending. Queuing.\n"); 6296 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING : 6297 STATUS_SCAN_PENDING; 6298 goto done; 6299 } 6300 6301 if (priv->status & STATUS_RF_KILL_MASK) { 6302 IPW_DEBUG_HC("Queuing scan due to RF Kill activation\n"); 6303 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING : 6304 STATUS_SCAN_PENDING; 6305 goto done; 6306 } 6307 6308 memset(&scan, 0, sizeof(scan)); 6309 scan.full_scan_index = cpu_to_le32(libipw_get_scans(priv->ieee)); 6310 6311 if (type == IW_SCAN_TYPE_PASSIVE) { 6312 IPW_DEBUG_WX("use passive scanning\n"); 6313 scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN; 6314 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = 6315 cpu_to_le16(ipw_passive_dwell_time(priv)); 6316 ipw_add_scan_channels(priv, &scan, scan_type); 6317 goto send_request; 6318 } 6319 6320 /* Use active scan by default. */ 6321 if (priv->config & CFG_SPEED_SCAN) 6322 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] = 6323 cpu_to_le16(30); 6324 else 6325 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] = 6326 cpu_to_le16(20); 6327 6328 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] = 6329 cpu_to_le16(20); 6330 6331 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = 6332 cpu_to_le16(ipw_passive_dwell_time(priv)); 6333 scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20); 6334 6335 #ifdef CONFIG_IPW2200_MONITOR 6336 if (priv->ieee->iw_mode == IW_MODE_MONITOR) { 6337 u8 channel; 6338 u8 band = 0; 6339 6340 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) { 6341 case LIBIPW_52GHZ_BAND: 6342 band = (u8) (IPW_A_MODE << 6) | 1; 6343 channel = priv->channel; 6344 break; 6345 6346 case LIBIPW_24GHZ_BAND: 6347 band = (u8) (IPW_B_MODE << 6) | 1; 6348 channel = priv->channel; 6349 break; 6350 6351 default: 6352 band = (u8) (IPW_B_MODE << 6) | 1; 6353 channel = 9; 6354 break; 6355 } 6356 6357 scan.channels_list[0] = band; 6358 scan.channels_list[1] = channel; 6359 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN); 6360 6361 /* NOTE: The card will sit on this channel for this time 6362 * period. Scan aborts are timing sensitive and frequently 6363 * result in firmware restarts. As such, it is best to 6364 * set a small dwell_time here and just keep re-issuing 6365 * scans. Otherwise fast channel hopping will not actually 6366 * hop channels. 6367 * 6368 * TODO: Move SPEED SCAN support to all modes and bands */ 6369 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = 6370 cpu_to_le16(2000); 6371 } else { 6372 #endif /* CONFIG_IPW2200_MONITOR */ 6373 /* Honor direct scans first, otherwise if we are roaming make 6374 * this a direct scan for the current network. Finally, 6375 * ensure that every other scan is a fast channel hop scan */ 6376 if (direct) { 6377 err = ipw_send_ssid(priv, priv->direct_scan_ssid, 6378 priv->direct_scan_ssid_len); 6379 if (err) { 6380 IPW_DEBUG_HC("Attempt to send SSID command " 6381 "failed\n"); 6382 goto done; 6383 } 6384 6385 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN; 6386 } else if ((priv->status & STATUS_ROAMING) 6387 || (!(priv->status & STATUS_ASSOCIATED) 6388 && (priv->config & CFG_STATIC_ESSID) 6389 && (le32_to_cpu(scan.full_scan_index) % 2))) { 6390 err = ipw_send_ssid(priv, priv->essid, priv->essid_len); 6391 if (err) { 6392 IPW_DEBUG_HC("Attempt to send SSID command " 6393 "failed.\n"); 6394 goto done; 6395 } 6396 6397 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN; 6398 } else 6399 scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN; 6400 6401 ipw_add_scan_channels(priv, &scan, scan_type); 6402 #ifdef CONFIG_IPW2200_MONITOR 6403 } 6404 #endif 6405 6406 send_request: 6407 err = ipw_send_scan_request_ext(priv, &scan); 6408 if (err) { 6409 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err); 6410 goto done; 6411 } 6412 6413 priv->status |= STATUS_SCANNING; 6414 if (direct) { 6415 priv->status &= ~STATUS_DIRECT_SCAN_PENDING; 6416 priv->direct_scan_ssid_len = 0; 6417 } else 6418 priv->status &= ~STATUS_SCAN_PENDING; 6419 6420 schedule_delayed_work(&priv->scan_check, IPW_SCAN_CHECK_WATCHDOG); 6421 done: 6422 mutex_unlock(&priv->mutex); 6423 return err; 6424 } 6425 6426 static void ipw_request_passive_scan(struct work_struct *work) 6427 { 6428 struct ipw_priv *priv = 6429 container_of(work, struct ipw_priv, request_passive_scan.work); 6430 ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE, 0); 6431 } 6432 6433 static void ipw_request_scan(struct work_struct *work) 6434 { 6435 struct ipw_priv *priv = 6436 container_of(work, struct ipw_priv, request_scan.work); 6437 ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 0); 6438 } 6439 6440 static void ipw_request_direct_scan(struct work_struct *work) 6441 { 6442 struct ipw_priv *priv = 6443 container_of(work, struct ipw_priv, request_direct_scan.work); 6444 ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 1); 6445 } 6446 6447 static void ipw_bg_abort_scan(struct work_struct *work) 6448 { 6449 struct ipw_priv *priv = 6450 container_of(work, struct ipw_priv, abort_scan); 6451 mutex_lock(&priv->mutex); 6452 ipw_abort_scan(priv); 6453 mutex_unlock(&priv->mutex); 6454 } 6455 6456 static int ipw_wpa_enable(struct ipw_priv *priv, int value) 6457 { 6458 /* This is called when wpa_supplicant loads and closes the driver 6459 * interface. */ 6460 priv->ieee->wpa_enabled = value; 6461 return 0; 6462 } 6463 6464 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value) 6465 { 6466 struct libipw_device *ieee = priv->ieee; 6467 struct libipw_security sec = { 6468 .flags = SEC_AUTH_MODE, 6469 }; 6470 int ret = 0; 6471 6472 if (value & IW_AUTH_ALG_SHARED_KEY) { 6473 sec.auth_mode = WLAN_AUTH_SHARED_KEY; 6474 ieee->open_wep = 0; 6475 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) { 6476 sec.auth_mode = WLAN_AUTH_OPEN; 6477 ieee->open_wep = 1; 6478 } else if (value & IW_AUTH_ALG_LEAP) { 6479 sec.auth_mode = WLAN_AUTH_LEAP; 6480 ieee->open_wep = 1; 6481 } else 6482 return -EINVAL; 6483 6484 if (ieee->set_security) 6485 ieee->set_security(ieee->dev, &sec); 6486 else 6487 ret = -EOPNOTSUPP; 6488 6489 return ret; 6490 } 6491 6492 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie, 6493 int wpa_ie_len) 6494 { 6495 /* make sure WPA is enabled */ 6496 ipw_wpa_enable(priv, 1); 6497 } 6498 6499 static int ipw_set_rsn_capa(struct ipw_priv *priv, 6500 char *capabilities, int length) 6501 { 6502 IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n"); 6503 6504 return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length, 6505 capabilities); 6506 } 6507 6508 /* 6509 * WE-18 support 6510 */ 6511 6512 /* SIOCSIWGENIE */ 6513 static int ipw_wx_set_genie(struct net_device *dev, 6514 struct iw_request_info *info, 6515 union iwreq_data *wrqu, char *extra) 6516 { 6517 struct ipw_priv *priv = libipw_priv(dev); 6518 struct libipw_device *ieee = priv->ieee; 6519 u8 *buf; 6520 int err = 0; 6521 6522 if (wrqu->data.length > MAX_WPA_IE_LEN || 6523 (wrqu->data.length && extra == NULL)) 6524 return -EINVAL; 6525 6526 if (wrqu->data.length) { 6527 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL); 6528 if (buf == NULL) { 6529 err = -ENOMEM; 6530 goto out; 6531 } 6532 6533 kfree(ieee->wpa_ie); 6534 ieee->wpa_ie = buf; 6535 ieee->wpa_ie_len = wrqu->data.length; 6536 } else { 6537 kfree(ieee->wpa_ie); 6538 ieee->wpa_ie = NULL; 6539 ieee->wpa_ie_len = 0; 6540 } 6541 6542 ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len); 6543 out: 6544 return err; 6545 } 6546 6547 /* SIOCGIWGENIE */ 6548 static int ipw_wx_get_genie(struct net_device *dev, 6549 struct iw_request_info *info, 6550 union iwreq_data *wrqu, char *extra) 6551 { 6552 struct ipw_priv *priv = libipw_priv(dev); 6553 struct libipw_device *ieee = priv->ieee; 6554 int err = 0; 6555 6556 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) { 6557 wrqu->data.length = 0; 6558 goto out; 6559 } 6560 6561 if (wrqu->data.length < ieee->wpa_ie_len) { 6562 err = -E2BIG; 6563 goto out; 6564 } 6565 6566 wrqu->data.length = ieee->wpa_ie_len; 6567 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len); 6568 6569 out: 6570 return err; 6571 } 6572 6573 static int wext_cipher2level(int cipher) 6574 { 6575 switch (cipher) { 6576 case IW_AUTH_CIPHER_NONE: 6577 return SEC_LEVEL_0; 6578 case IW_AUTH_CIPHER_WEP40: 6579 case IW_AUTH_CIPHER_WEP104: 6580 return SEC_LEVEL_1; 6581 case IW_AUTH_CIPHER_TKIP: 6582 return SEC_LEVEL_2; 6583 case IW_AUTH_CIPHER_CCMP: 6584 return SEC_LEVEL_3; 6585 default: 6586 return -1; 6587 } 6588 } 6589 6590 /* SIOCSIWAUTH */ 6591 static int ipw_wx_set_auth(struct net_device *dev, 6592 struct iw_request_info *info, 6593 union iwreq_data *wrqu, char *extra) 6594 { 6595 struct ipw_priv *priv = libipw_priv(dev); 6596 struct libipw_device *ieee = priv->ieee; 6597 struct iw_param *param = &wrqu->param; 6598 struct lib80211_crypt_data *crypt; 6599 unsigned long flags; 6600 int ret = 0; 6601 6602 switch (param->flags & IW_AUTH_INDEX) { 6603 case IW_AUTH_WPA_VERSION: 6604 break; 6605 case IW_AUTH_CIPHER_PAIRWISE: 6606 ipw_set_hw_decrypt_unicast(priv, 6607 wext_cipher2level(param->value)); 6608 break; 6609 case IW_AUTH_CIPHER_GROUP: 6610 ipw_set_hw_decrypt_multicast(priv, 6611 wext_cipher2level(param->value)); 6612 break; 6613 case IW_AUTH_KEY_MGMT: 6614 /* 6615 * ipw2200 does not use these parameters 6616 */ 6617 break; 6618 6619 case IW_AUTH_TKIP_COUNTERMEASURES: 6620 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx]; 6621 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags) 6622 break; 6623 6624 flags = crypt->ops->get_flags(crypt->priv); 6625 6626 if (param->value) 6627 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES; 6628 else 6629 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES; 6630 6631 crypt->ops->set_flags(flags, crypt->priv); 6632 6633 break; 6634 6635 case IW_AUTH_DROP_UNENCRYPTED:{ 6636 /* HACK: 6637 * 6638 * wpa_supplicant calls set_wpa_enabled when the driver 6639 * is loaded and unloaded, regardless of if WPA is being 6640 * used. No other calls are made which can be used to 6641 * determine if encryption will be used or not prior to 6642 * association being expected. If encryption is not being 6643 * used, drop_unencrypted is set to false, else true -- we 6644 * can use this to determine if the CAP_PRIVACY_ON bit should 6645 * be set. 6646 */ 6647 struct libipw_security sec = { 6648 .flags = SEC_ENABLED, 6649 .enabled = param->value, 6650 }; 6651 priv->ieee->drop_unencrypted = param->value; 6652 /* We only change SEC_LEVEL for open mode. Others 6653 * are set by ipw_wpa_set_encryption. 6654 */ 6655 if (!param->value) { 6656 sec.flags |= SEC_LEVEL; 6657 sec.level = SEC_LEVEL_0; 6658 } else { 6659 sec.flags |= SEC_LEVEL; 6660 sec.level = SEC_LEVEL_1; 6661 } 6662 if (priv->ieee->set_security) 6663 priv->ieee->set_security(priv->ieee->dev, &sec); 6664 break; 6665 } 6666 6667 case IW_AUTH_80211_AUTH_ALG: 6668 ret = ipw_wpa_set_auth_algs(priv, param->value); 6669 break; 6670 6671 case IW_AUTH_WPA_ENABLED: 6672 ret = ipw_wpa_enable(priv, param->value); 6673 ipw_disassociate(priv); 6674 break; 6675 6676 case IW_AUTH_RX_UNENCRYPTED_EAPOL: 6677 ieee->ieee802_1x = param->value; 6678 break; 6679 6680 case IW_AUTH_PRIVACY_INVOKED: 6681 ieee->privacy_invoked = param->value; 6682 break; 6683 6684 default: 6685 return -EOPNOTSUPP; 6686 } 6687 return ret; 6688 } 6689 6690 /* SIOCGIWAUTH */ 6691 static int ipw_wx_get_auth(struct net_device *dev, 6692 struct iw_request_info *info, 6693 union iwreq_data *wrqu, char *extra) 6694 { 6695 struct ipw_priv *priv = libipw_priv(dev); 6696 struct libipw_device *ieee = priv->ieee; 6697 struct lib80211_crypt_data *crypt; 6698 struct iw_param *param = &wrqu->param; 6699 6700 switch (param->flags & IW_AUTH_INDEX) { 6701 case IW_AUTH_WPA_VERSION: 6702 case IW_AUTH_CIPHER_PAIRWISE: 6703 case IW_AUTH_CIPHER_GROUP: 6704 case IW_AUTH_KEY_MGMT: 6705 /* 6706 * wpa_supplicant will control these internally 6707 */ 6708 return -EOPNOTSUPP; 6709 6710 case IW_AUTH_TKIP_COUNTERMEASURES: 6711 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx]; 6712 if (!crypt || !crypt->ops->get_flags) 6713 break; 6714 6715 param->value = (crypt->ops->get_flags(crypt->priv) & 6716 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0; 6717 6718 break; 6719 6720 case IW_AUTH_DROP_UNENCRYPTED: 6721 param->value = ieee->drop_unencrypted; 6722 break; 6723 6724 case IW_AUTH_80211_AUTH_ALG: 6725 param->value = ieee->sec.auth_mode; 6726 break; 6727 6728 case IW_AUTH_WPA_ENABLED: 6729 param->value = ieee->wpa_enabled; 6730 break; 6731 6732 case IW_AUTH_RX_UNENCRYPTED_EAPOL: 6733 param->value = ieee->ieee802_1x; 6734 break; 6735 6736 case IW_AUTH_ROAMING_CONTROL: 6737 case IW_AUTH_PRIVACY_INVOKED: 6738 param->value = ieee->privacy_invoked; 6739 break; 6740 6741 default: 6742 return -EOPNOTSUPP; 6743 } 6744 return 0; 6745 } 6746 6747 /* SIOCSIWENCODEEXT */ 6748 static int ipw_wx_set_encodeext(struct net_device *dev, 6749 struct iw_request_info *info, 6750 union iwreq_data *wrqu, char *extra) 6751 { 6752 struct ipw_priv *priv = libipw_priv(dev); 6753 struct iw_encode_ext *ext = (struct iw_encode_ext *)extra; 6754 6755 if (hwcrypto) { 6756 if (ext->alg == IW_ENCODE_ALG_TKIP) { 6757 /* IPW HW can't build TKIP MIC, 6758 host decryption still needed */ 6759 if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY) 6760 priv->ieee->host_mc_decrypt = 1; 6761 else { 6762 priv->ieee->host_encrypt = 0; 6763 priv->ieee->host_encrypt_msdu = 1; 6764 priv->ieee->host_decrypt = 1; 6765 } 6766 } else { 6767 priv->ieee->host_encrypt = 0; 6768 priv->ieee->host_encrypt_msdu = 0; 6769 priv->ieee->host_decrypt = 0; 6770 priv->ieee->host_mc_decrypt = 0; 6771 } 6772 } 6773 6774 return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra); 6775 } 6776 6777 /* SIOCGIWENCODEEXT */ 6778 static int ipw_wx_get_encodeext(struct net_device *dev, 6779 struct iw_request_info *info, 6780 union iwreq_data *wrqu, char *extra) 6781 { 6782 struct ipw_priv *priv = libipw_priv(dev); 6783 return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra); 6784 } 6785 6786 /* SIOCSIWMLME */ 6787 static int ipw_wx_set_mlme(struct net_device *dev, 6788 struct iw_request_info *info, 6789 union iwreq_data *wrqu, char *extra) 6790 { 6791 struct ipw_priv *priv = libipw_priv(dev); 6792 struct iw_mlme *mlme = (struct iw_mlme *)extra; 6793 6794 switch (mlme->cmd) { 6795 case IW_MLME_DEAUTH: 6796 /* silently ignore */ 6797 break; 6798 6799 case IW_MLME_DISASSOC: 6800 ipw_disassociate(priv); 6801 break; 6802 6803 default: 6804 return -EOPNOTSUPP; 6805 } 6806 return 0; 6807 } 6808 6809 #ifdef CONFIG_IPW2200_QOS 6810 6811 /* QoS */ 6812 /* 6813 * get the modulation type of the current network or 6814 * the card current mode 6815 */ 6816 static u8 ipw_qos_current_mode(struct ipw_priv * priv) 6817 { 6818 u8 mode = 0; 6819 6820 if (priv->status & STATUS_ASSOCIATED) { 6821 unsigned long flags; 6822 6823 spin_lock_irqsave(&priv->ieee->lock, flags); 6824 mode = priv->assoc_network->mode; 6825 spin_unlock_irqrestore(&priv->ieee->lock, flags); 6826 } else { 6827 mode = priv->ieee->mode; 6828 } 6829 IPW_DEBUG_QOS("QoS network/card mode %d\n", mode); 6830 return mode; 6831 } 6832 6833 /* 6834 * Handle management frame beacon and probe response 6835 */ 6836 static int ipw_qos_handle_probe_response(struct ipw_priv *priv, 6837 int active_network, 6838 struct libipw_network *network) 6839 { 6840 u32 size = sizeof(struct libipw_qos_parameters); 6841 6842 if (network->capability & WLAN_CAPABILITY_IBSS) 6843 network->qos_data.active = network->qos_data.supported; 6844 6845 if (network->flags & NETWORK_HAS_QOS_MASK) { 6846 if (active_network && 6847 (network->flags & NETWORK_HAS_QOS_PARAMETERS)) 6848 network->qos_data.active = network->qos_data.supported; 6849 6850 if ((network->qos_data.active == 1) && (active_network == 1) && 6851 (network->flags & NETWORK_HAS_QOS_PARAMETERS) && 6852 (network->qos_data.old_param_count != 6853 network->qos_data.param_count)) { 6854 network->qos_data.old_param_count = 6855 network->qos_data.param_count; 6856 schedule_work(&priv->qos_activate); 6857 IPW_DEBUG_QOS("QoS parameters change call " 6858 "qos_activate\n"); 6859 } 6860 } else { 6861 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B)) 6862 memcpy(&network->qos_data.parameters, 6863 &def_parameters_CCK, size); 6864 else 6865 memcpy(&network->qos_data.parameters, 6866 &def_parameters_OFDM, size); 6867 6868 if ((network->qos_data.active == 1) && (active_network == 1)) { 6869 IPW_DEBUG_QOS("QoS was disabled call qos_activate\n"); 6870 schedule_work(&priv->qos_activate); 6871 } 6872 6873 network->qos_data.active = 0; 6874 network->qos_data.supported = 0; 6875 } 6876 if ((priv->status & STATUS_ASSOCIATED) && 6877 (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) { 6878 if (!ether_addr_equal(network->bssid, priv->bssid)) 6879 if (network->capability & WLAN_CAPABILITY_IBSS) 6880 if ((network->ssid_len == 6881 priv->assoc_network->ssid_len) && 6882 !memcmp(network->ssid, 6883 priv->assoc_network->ssid, 6884 network->ssid_len)) { 6885 schedule_work(&priv->merge_networks); 6886 } 6887 } 6888 6889 return 0; 6890 } 6891 6892 /* 6893 * This function set up the firmware to support QoS. It sends 6894 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO 6895 */ 6896 static int ipw_qos_activate(struct ipw_priv *priv, 6897 struct libipw_qos_data *qos_network_data) 6898 { 6899 int err; 6900 struct libipw_qos_parameters qos_parameters[QOS_QOS_SETS]; 6901 struct libipw_qos_parameters *active_one = NULL; 6902 u32 size = sizeof(struct libipw_qos_parameters); 6903 u32 burst_duration; 6904 int i; 6905 u8 type; 6906 6907 type = ipw_qos_current_mode(priv); 6908 6909 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]); 6910 memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size); 6911 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]); 6912 memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size); 6913 6914 if (qos_network_data == NULL) { 6915 if (type == IEEE_B) { 6916 IPW_DEBUG_QOS("QoS activate network mode %d\n", type); 6917 active_one = &def_parameters_CCK; 6918 } else 6919 active_one = &def_parameters_OFDM; 6920 6921 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size); 6922 burst_duration = ipw_qos_get_burst_duration(priv); 6923 for (i = 0; i < QOS_QUEUE_NUM; i++) 6924 qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] = 6925 cpu_to_le16(burst_duration); 6926 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) { 6927 if (type == IEEE_B) { 6928 IPW_DEBUG_QOS("QoS activate IBSS network mode %d\n", 6929 type); 6930 if (priv->qos_data.qos_enable == 0) 6931 active_one = &def_parameters_CCK; 6932 else 6933 active_one = priv->qos_data.def_qos_parm_CCK; 6934 } else { 6935 if (priv->qos_data.qos_enable == 0) 6936 active_one = &def_parameters_OFDM; 6937 else 6938 active_one = priv->qos_data.def_qos_parm_OFDM; 6939 } 6940 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size); 6941 } else { 6942 unsigned long flags; 6943 int active; 6944 6945 spin_lock_irqsave(&priv->ieee->lock, flags); 6946 active_one = &(qos_network_data->parameters); 6947 qos_network_data->old_param_count = 6948 qos_network_data->param_count; 6949 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size); 6950 active = qos_network_data->supported; 6951 spin_unlock_irqrestore(&priv->ieee->lock, flags); 6952 6953 if (active == 0) { 6954 burst_duration = ipw_qos_get_burst_duration(priv); 6955 for (i = 0; i < QOS_QUEUE_NUM; i++) 6956 qos_parameters[QOS_PARAM_SET_ACTIVE]. 6957 tx_op_limit[i] = cpu_to_le16(burst_duration); 6958 } 6959 } 6960 6961 IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n"); 6962 err = ipw_send_qos_params_command(priv, &qos_parameters[0]); 6963 if (err) 6964 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n"); 6965 6966 return err; 6967 } 6968 6969 /* 6970 * send IPW_CMD_WME_INFO to the firmware 6971 */ 6972 static int ipw_qos_set_info_element(struct ipw_priv *priv) 6973 { 6974 int ret = 0; 6975 struct libipw_qos_information_element qos_info; 6976 6977 if (priv == NULL) 6978 return -1; 6979 6980 qos_info.elementID = QOS_ELEMENT_ID; 6981 qos_info.length = sizeof(struct libipw_qos_information_element) - 2; 6982 6983 qos_info.version = QOS_VERSION_1; 6984 qos_info.ac_info = 0; 6985 6986 memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN); 6987 qos_info.qui_type = QOS_OUI_TYPE; 6988 qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE; 6989 6990 ret = ipw_send_qos_info_command(priv, &qos_info); 6991 if (ret != 0) { 6992 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n"); 6993 } 6994 return ret; 6995 } 6996 6997 /* 6998 * Set the QoS parameter with the association request structure 6999 */ 7000 static int ipw_qos_association(struct ipw_priv *priv, 7001 struct libipw_network *network) 7002 { 7003 int err = 0; 7004 struct libipw_qos_data *qos_data = NULL; 7005 struct libipw_qos_data ibss_data = { 7006 .supported = 1, 7007 .active = 1, 7008 }; 7009 7010 switch (priv->ieee->iw_mode) { 7011 case IW_MODE_ADHOC: 7012 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS)); 7013 7014 qos_data = &ibss_data; 7015 break; 7016 7017 case IW_MODE_INFRA: 7018 qos_data = &network->qos_data; 7019 break; 7020 7021 default: 7022 BUG(); 7023 break; 7024 } 7025 7026 err = ipw_qos_activate(priv, qos_data); 7027 if (err) { 7028 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC; 7029 return err; 7030 } 7031 7032 if (priv->qos_data.qos_enable && qos_data->supported) { 7033 IPW_DEBUG_QOS("QoS will be enabled for this association\n"); 7034 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC; 7035 return ipw_qos_set_info_element(priv); 7036 } 7037 7038 return 0; 7039 } 7040 7041 /* 7042 * handling the beaconing responses. if we get different QoS setting 7043 * off the network from the associated setting, adjust the QoS 7044 * setting 7045 */ 7046 static void ipw_qos_association_resp(struct ipw_priv *priv, 7047 struct libipw_network *network) 7048 { 7049 unsigned long flags; 7050 u32 size = sizeof(struct libipw_qos_parameters); 7051 int set_qos_param = 0; 7052 7053 if ((priv == NULL) || (network == NULL) || 7054 (priv->assoc_network == NULL)) 7055 return; 7056 7057 if (!(priv->status & STATUS_ASSOCIATED)) 7058 return; 7059 7060 if ((priv->ieee->iw_mode != IW_MODE_INFRA)) 7061 return; 7062 7063 spin_lock_irqsave(&priv->ieee->lock, flags); 7064 if (network->flags & NETWORK_HAS_QOS_PARAMETERS) { 7065 memcpy(&priv->assoc_network->qos_data, &network->qos_data, 7066 sizeof(struct libipw_qos_data)); 7067 priv->assoc_network->qos_data.active = 1; 7068 if ((network->qos_data.old_param_count != 7069 network->qos_data.param_count)) { 7070 set_qos_param = 1; 7071 network->qos_data.old_param_count = 7072 network->qos_data.param_count; 7073 } 7074 7075 } else { 7076 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B)) 7077 memcpy(&priv->assoc_network->qos_data.parameters, 7078 &def_parameters_CCK, size); 7079 else 7080 memcpy(&priv->assoc_network->qos_data.parameters, 7081 &def_parameters_OFDM, size); 7082 priv->assoc_network->qos_data.active = 0; 7083 priv->assoc_network->qos_data.supported = 0; 7084 set_qos_param = 1; 7085 } 7086 7087 spin_unlock_irqrestore(&priv->ieee->lock, flags); 7088 7089 if (set_qos_param == 1) 7090 schedule_work(&priv->qos_activate); 7091 } 7092 7093 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv) 7094 { 7095 u32 ret = 0; 7096 7097 if (!priv) 7098 return 0; 7099 7100 if (!(priv->ieee->modulation & LIBIPW_OFDM_MODULATION)) 7101 ret = priv->qos_data.burst_duration_CCK; 7102 else 7103 ret = priv->qos_data.burst_duration_OFDM; 7104 7105 return ret; 7106 } 7107 7108 /* 7109 * Initialize the setting of QoS global 7110 */ 7111 static void ipw_qos_init(struct ipw_priv *priv, int enable, 7112 int burst_enable, u32 burst_duration_CCK, 7113 u32 burst_duration_OFDM) 7114 { 7115 priv->qos_data.qos_enable = enable; 7116 7117 if (priv->qos_data.qos_enable) { 7118 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK; 7119 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM; 7120 IPW_DEBUG_QOS("QoS is enabled\n"); 7121 } else { 7122 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK; 7123 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM; 7124 IPW_DEBUG_QOS("QoS is not enabled\n"); 7125 } 7126 7127 priv->qos_data.burst_enable = burst_enable; 7128 7129 if (burst_enable) { 7130 priv->qos_data.burst_duration_CCK = burst_duration_CCK; 7131 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM; 7132 } else { 7133 priv->qos_data.burst_duration_CCK = 0; 7134 priv->qos_data.burst_duration_OFDM = 0; 7135 } 7136 } 7137 7138 /* 7139 * map the packet priority to the right TX Queue 7140 */ 7141 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority) 7142 { 7143 if (priority > 7 || !priv->qos_data.qos_enable) 7144 priority = 0; 7145 7146 return from_priority_to_tx_queue[priority] - 1; 7147 } 7148 7149 static int ipw_is_qos_active(struct net_device *dev, 7150 struct sk_buff *skb) 7151 { 7152 struct ipw_priv *priv = libipw_priv(dev); 7153 struct libipw_qos_data *qos_data = NULL; 7154 int active, supported; 7155 u8 *daddr = skb->data + ETH_ALEN; 7156 int unicast = !is_multicast_ether_addr(daddr); 7157 7158 if (!(priv->status & STATUS_ASSOCIATED)) 7159 return 0; 7160 7161 qos_data = &priv->assoc_network->qos_data; 7162 7163 if (priv->ieee->iw_mode == IW_MODE_ADHOC) { 7164 if (unicast == 0) 7165 qos_data->active = 0; 7166 else 7167 qos_data->active = qos_data->supported; 7168 } 7169 active = qos_data->active; 7170 supported = qos_data->supported; 7171 IPW_DEBUG_QOS("QoS %d network is QoS active %d supported %d " 7172 "unicast %d\n", 7173 priv->qos_data.qos_enable, active, supported, unicast); 7174 if (active && priv->qos_data.qos_enable) 7175 return 1; 7176 7177 return 0; 7178 7179 } 7180 /* 7181 * add QoS parameter to the TX command 7182 */ 7183 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv, 7184 u16 priority, 7185 struct tfd_data *tfd) 7186 { 7187 int tx_queue_id = 0; 7188 7189 7190 tx_queue_id = from_priority_to_tx_queue[priority] - 1; 7191 tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED; 7192 7193 if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) { 7194 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD; 7195 tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK); 7196 } 7197 return 0; 7198 } 7199 7200 /* 7201 * background support to run QoS activate functionality 7202 */ 7203 static void ipw_bg_qos_activate(struct work_struct *work) 7204 { 7205 struct ipw_priv *priv = 7206 container_of(work, struct ipw_priv, qos_activate); 7207 7208 mutex_lock(&priv->mutex); 7209 7210 if (priv->status & STATUS_ASSOCIATED) 7211 ipw_qos_activate(priv, &(priv->assoc_network->qos_data)); 7212 7213 mutex_unlock(&priv->mutex); 7214 } 7215 7216 static int ipw_handle_probe_response(struct net_device *dev, 7217 struct libipw_probe_response *resp, 7218 struct libipw_network *network) 7219 { 7220 struct ipw_priv *priv = libipw_priv(dev); 7221 int active_network = ((priv->status & STATUS_ASSOCIATED) && 7222 (network == priv->assoc_network)); 7223 7224 ipw_qos_handle_probe_response(priv, active_network, network); 7225 7226 return 0; 7227 } 7228 7229 static int ipw_handle_beacon(struct net_device *dev, 7230 struct libipw_beacon *resp, 7231 struct libipw_network *network) 7232 { 7233 struct ipw_priv *priv = libipw_priv(dev); 7234 int active_network = ((priv->status & STATUS_ASSOCIATED) && 7235 (network == priv->assoc_network)); 7236 7237 ipw_qos_handle_probe_response(priv, active_network, network); 7238 7239 return 0; 7240 } 7241 7242 static int ipw_handle_assoc_response(struct net_device *dev, 7243 struct libipw_assoc_response *resp, 7244 struct libipw_network *network) 7245 { 7246 struct ipw_priv *priv = libipw_priv(dev); 7247 ipw_qos_association_resp(priv, network); 7248 return 0; 7249 } 7250 7251 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters 7252 *qos_param) 7253 { 7254 return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS, 7255 sizeof(*qos_param) * 3, qos_param); 7256 } 7257 7258 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element 7259 *qos_param) 7260 { 7261 return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param), 7262 qos_param); 7263 } 7264 7265 #endif /* CONFIG_IPW2200_QOS */ 7266 7267 static int ipw_associate_network(struct ipw_priv *priv, 7268 struct libipw_network *network, 7269 struct ipw_supported_rates *rates, int roaming) 7270 { 7271 int err; 7272 7273 if (priv->config & CFG_FIXED_RATE) 7274 ipw_set_fixed_rate(priv, network->mode); 7275 7276 if (!(priv->config & CFG_STATIC_ESSID)) { 7277 priv->essid_len = min(network->ssid_len, 7278 (u8) IW_ESSID_MAX_SIZE); 7279 memcpy(priv->essid, network->ssid, priv->essid_len); 7280 } 7281 7282 network->last_associate = jiffies; 7283 7284 memset(&priv->assoc_request, 0, sizeof(priv->assoc_request)); 7285 priv->assoc_request.channel = network->channel; 7286 priv->assoc_request.auth_key = 0; 7287 7288 if ((priv->capability & CAP_PRIVACY_ON) && 7289 (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) { 7290 priv->assoc_request.auth_type = AUTH_SHARED_KEY; 7291 priv->assoc_request.auth_key = priv->ieee->sec.active_key; 7292 7293 if (priv->ieee->sec.level == SEC_LEVEL_1) 7294 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP); 7295 7296 } else if ((priv->capability & CAP_PRIVACY_ON) && 7297 (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)) 7298 priv->assoc_request.auth_type = AUTH_LEAP; 7299 else 7300 priv->assoc_request.auth_type = AUTH_OPEN; 7301 7302 if (priv->ieee->wpa_ie_len) { 7303 priv->assoc_request.policy_support = cpu_to_le16(0x02); /* RSN active */ 7304 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie, 7305 priv->ieee->wpa_ie_len); 7306 } 7307 7308 /* 7309 * It is valid for our ieee device to support multiple modes, but 7310 * when it comes to associating to a given network we have to choose 7311 * just one mode. 7312 */ 7313 if (network->mode & priv->ieee->mode & IEEE_A) 7314 priv->assoc_request.ieee_mode = IPW_A_MODE; 7315 else if (network->mode & priv->ieee->mode & IEEE_G) 7316 priv->assoc_request.ieee_mode = IPW_G_MODE; 7317 else if (network->mode & priv->ieee->mode & IEEE_B) 7318 priv->assoc_request.ieee_mode = IPW_B_MODE; 7319 7320 priv->assoc_request.capability = cpu_to_le16(network->capability); 7321 if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE) 7322 && !(priv->config & CFG_PREAMBLE_LONG)) { 7323 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE; 7324 } else { 7325 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE; 7326 7327 /* Clear the short preamble if we won't be supporting it */ 7328 priv->assoc_request.capability &= 7329 ~cpu_to_le16(WLAN_CAPABILITY_SHORT_PREAMBLE); 7330 } 7331 7332 /* Clear capability bits that aren't used in Ad Hoc */ 7333 if (priv->ieee->iw_mode == IW_MODE_ADHOC) 7334 priv->assoc_request.capability &= 7335 ~cpu_to_le16(WLAN_CAPABILITY_SHORT_SLOT_TIME); 7336 7337 IPW_DEBUG_ASSOC("%ssociation attempt: '%*pE', channel %d, 802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n", 7338 roaming ? "Rea" : "A", 7339 priv->essid_len, priv->essid, 7340 network->channel, 7341 ipw_modes[priv->assoc_request.ieee_mode], 7342 rates->num_rates, 7343 (priv->assoc_request.preamble_length == 7344 DCT_FLAG_LONG_PREAMBLE) ? "long" : "short", 7345 network->capability & 7346 WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long", 7347 priv->capability & CAP_PRIVACY_ON ? "on " : "off", 7348 priv->capability & CAP_PRIVACY_ON ? 7349 (priv->capability & CAP_SHARED_KEY ? "(shared)" : 7350 "(open)") : "", 7351 priv->capability & CAP_PRIVACY_ON ? " key=" : "", 7352 priv->capability & CAP_PRIVACY_ON ? 7353 '1' + priv->ieee->sec.active_key : '.', 7354 priv->capability & CAP_PRIVACY_ON ? '.' : ' '); 7355 7356 priv->assoc_request.beacon_interval = cpu_to_le16(network->beacon_interval); 7357 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) && 7358 (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) { 7359 priv->assoc_request.assoc_type = HC_IBSS_START; 7360 priv->assoc_request.assoc_tsf_msw = 0; 7361 priv->assoc_request.assoc_tsf_lsw = 0; 7362 } else { 7363 if (unlikely(roaming)) 7364 priv->assoc_request.assoc_type = HC_REASSOCIATE; 7365 else 7366 priv->assoc_request.assoc_type = HC_ASSOCIATE; 7367 priv->assoc_request.assoc_tsf_msw = cpu_to_le32(network->time_stamp[1]); 7368 priv->assoc_request.assoc_tsf_lsw = cpu_to_le32(network->time_stamp[0]); 7369 } 7370 7371 memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN); 7372 7373 if (priv->ieee->iw_mode == IW_MODE_ADHOC) { 7374 eth_broadcast_addr(priv->assoc_request.dest); 7375 priv->assoc_request.atim_window = cpu_to_le16(network->atim_window); 7376 } else { 7377 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN); 7378 priv->assoc_request.atim_window = 0; 7379 } 7380 7381 priv->assoc_request.listen_interval = cpu_to_le16(network->listen_interval); 7382 7383 err = ipw_send_ssid(priv, priv->essid, priv->essid_len); 7384 if (err) { 7385 IPW_DEBUG_HC("Attempt to send SSID command failed.\n"); 7386 return err; 7387 } 7388 7389 rates->ieee_mode = priv->assoc_request.ieee_mode; 7390 rates->purpose = IPW_RATE_CONNECT; 7391 ipw_send_supported_rates(priv, rates); 7392 7393 if (priv->assoc_request.ieee_mode == IPW_G_MODE) 7394 priv->sys_config.dot11g_auto_detection = 1; 7395 else 7396 priv->sys_config.dot11g_auto_detection = 0; 7397 7398 if (priv->ieee->iw_mode == IW_MODE_ADHOC) 7399 priv->sys_config.answer_broadcast_ssid_probe = 1; 7400 else 7401 priv->sys_config.answer_broadcast_ssid_probe = 0; 7402 7403 err = ipw_send_system_config(priv); 7404 if (err) { 7405 IPW_DEBUG_HC("Attempt to send sys config command failed.\n"); 7406 return err; 7407 } 7408 7409 IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi); 7410 err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM); 7411 if (err) { 7412 IPW_DEBUG_HC("Attempt to send associate command failed.\n"); 7413 return err; 7414 } 7415 7416 /* 7417 * If preemption is enabled, it is possible for the association 7418 * to complete before we return from ipw_send_associate. Therefore 7419 * we have to be sure and update our priviate data first. 7420 */ 7421 priv->channel = network->channel; 7422 memcpy(priv->bssid, network->bssid, ETH_ALEN); 7423 priv->status |= STATUS_ASSOCIATING; 7424 priv->status &= ~STATUS_SECURITY_UPDATED; 7425 7426 priv->assoc_network = network; 7427 7428 #ifdef CONFIG_IPW2200_QOS 7429 ipw_qos_association(priv, network); 7430 #endif 7431 7432 err = ipw_send_associate(priv, &priv->assoc_request); 7433 if (err) { 7434 IPW_DEBUG_HC("Attempt to send associate command failed.\n"); 7435 return err; 7436 } 7437 7438 IPW_DEBUG(IPW_DL_STATE, "associating: '%*pE' %pM\n", 7439 priv->essid_len, priv->essid, priv->bssid); 7440 7441 return 0; 7442 } 7443 7444 static void ipw_roam(void *data) 7445 { 7446 struct ipw_priv *priv = data; 7447 struct libipw_network *network = NULL; 7448 struct ipw_network_match match = { 7449 .network = priv->assoc_network 7450 }; 7451 7452 /* The roaming process is as follows: 7453 * 7454 * 1. Missed beacon threshold triggers the roaming process by 7455 * setting the status ROAM bit and requesting a scan. 7456 * 2. When the scan completes, it schedules the ROAM work 7457 * 3. The ROAM work looks at all of the known networks for one that 7458 * is a better network than the currently associated. If none 7459 * found, the ROAM process is over (ROAM bit cleared) 7460 * 4. If a better network is found, a disassociation request is 7461 * sent. 7462 * 5. When the disassociation completes, the roam work is again 7463 * scheduled. The second time through, the driver is no longer 7464 * associated, and the newly selected network is sent an 7465 * association request. 7466 * 6. At this point ,the roaming process is complete and the ROAM 7467 * status bit is cleared. 7468 */ 7469 7470 /* If we are no longer associated, and the roaming bit is no longer 7471 * set, then we are not actively roaming, so just return */ 7472 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING))) 7473 return; 7474 7475 if (priv->status & STATUS_ASSOCIATED) { 7476 /* First pass through ROAM process -- look for a better 7477 * network */ 7478 unsigned long flags; 7479 u8 rssi = priv->assoc_network->stats.rssi; 7480 priv->assoc_network->stats.rssi = -128; 7481 spin_lock_irqsave(&priv->ieee->lock, flags); 7482 list_for_each_entry(network, &priv->ieee->network_list, list) { 7483 if (network != priv->assoc_network) 7484 ipw_best_network(priv, &match, network, 1); 7485 } 7486 spin_unlock_irqrestore(&priv->ieee->lock, flags); 7487 priv->assoc_network->stats.rssi = rssi; 7488 7489 if (match.network == priv->assoc_network) { 7490 IPW_DEBUG_ASSOC("No better APs in this network to " 7491 "roam to.\n"); 7492 priv->status &= ~STATUS_ROAMING; 7493 ipw_debug_config(priv); 7494 return; 7495 } 7496 7497 ipw_send_disassociate(priv, 1); 7498 priv->assoc_network = match.network; 7499 7500 return; 7501 } 7502 7503 /* Second pass through ROAM process -- request association */ 7504 ipw_compatible_rates(priv, priv->assoc_network, &match.rates); 7505 ipw_associate_network(priv, priv->assoc_network, &match.rates, 1); 7506 priv->status &= ~STATUS_ROAMING; 7507 } 7508 7509 static void ipw_bg_roam(struct work_struct *work) 7510 { 7511 struct ipw_priv *priv = 7512 container_of(work, struct ipw_priv, roam); 7513 mutex_lock(&priv->mutex); 7514 ipw_roam(priv); 7515 mutex_unlock(&priv->mutex); 7516 } 7517 7518 static int ipw_associate(void *data) 7519 { 7520 struct ipw_priv *priv = data; 7521 7522 struct libipw_network *network = NULL; 7523 struct ipw_network_match match = { 7524 .network = NULL 7525 }; 7526 struct ipw_supported_rates *rates; 7527 struct list_head *element; 7528 unsigned long flags; 7529 7530 if (priv->ieee->iw_mode == IW_MODE_MONITOR) { 7531 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n"); 7532 return 0; 7533 } 7534 7535 if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) { 7536 IPW_DEBUG_ASSOC("Not attempting association (already in " 7537 "progress)\n"); 7538 return 0; 7539 } 7540 7541 if (priv->status & STATUS_DISASSOCIATING) { 7542 IPW_DEBUG_ASSOC("Not attempting association (in disassociating)\n"); 7543 schedule_work(&priv->associate); 7544 return 0; 7545 } 7546 7547 if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) { 7548 IPW_DEBUG_ASSOC("Not attempting association (scanning or not " 7549 "initialized)\n"); 7550 return 0; 7551 } 7552 7553 if (!(priv->config & CFG_ASSOCIATE) && 7554 !(priv->config & (CFG_STATIC_ESSID | CFG_STATIC_BSSID))) { 7555 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n"); 7556 return 0; 7557 } 7558 7559 /* Protect our use of the network_list */ 7560 spin_lock_irqsave(&priv->ieee->lock, flags); 7561 list_for_each_entry(network, &priv->ieee->network_list, list) 7562 ipw_best_network(priv, &match, network, 0); 7563 7564 network = match.network; 7565 rates = &match.rates; 7566 7567 if (network == NULL && 7568 priv->ieee->iw_mode == IW_MODE_ADHOC && 7569 priv->config & CFG_ADHOC_CREATE && 7570 priv->config & CFG_STATIC_ESSID && 7571 priv->config & CFG_STATIC_CHANNEL) { 7572 /* Use oldest network if the free list is empty */ 7573 if (list_empty(&priv->ieee->network_free_list)) { 7574 struct libipw_network *oldest = NULL; 7575 struct libipw_network *target; 7576 7577 list_for_each_entry(target, &priv->ieee->network_list, list) { 7578 if ((oldest == NULL) || 7579 (target->last_scanned < oldest->last_scanned)) 7580 oldest = target; 7581 } 7582 7583 /* If there are no more slots, expire the oldest */ 7584 list_del(&oldest->list); 7585 target = oldest; 7586 IPW_DEBUG_ASSOC("Expired '%*pE' (%pM) from network list.\n", 7587 target->ssid_len, target->ssid, 7588 target->bssid); 7589 list_add_tail(&target->list, 7590 &priv->ieee->network_free_list); 7591 } 7592 7593 element = priv->ieee->network_free_list.next; 7594 network = list_entry(element, struct libipw_network, list); 7595 ipw_adhoc_create(priv, network); 7596 rates = &priv->rates; 7597 list_del(element); 7598 list_add_tail(&network->list, &priv->ieee->network_list); 7599 } 7600 spin_unlock_irqrestore(&priv->ieee->lock, flags); 7601 7602 /* If we reached the end of the list, then we don't have any valid 7603 * matching APs */ 7604 if (!network) { 7605 ipw_debug_config(priv); 7606 7607 if (!(priv->status & STATUS_SCANNING)) { 7608 if (!(priv->config & CFG_SPEED_SCAN)) 7609 schedule_delayed_work(&priv->request_scan, 7610 SCAN_INTERVAL); 7611 else 7612 schedule_delayed_work(&priv->request_scan, 0); 7613 } 7614 7615 return 0; 7616 } 7617 7618 ipw_associate_network(priv, network, rates, 0); 7619 7620 return 1; 7621 } 7622 7623 static void ipw_bg_associate(struct work_struct *work) 7624 { 7625 struct ipw_priv *priv = 7626 container_of(work, struct ipw_priv, associate); 7627 mutex_lock(&priv->mutex); 7628 ipw_associate(priv); 7629 mutex_unlock(&priv->mutex); 7630 } 7631 7632 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv, 7633 struct sk_buff *skb) 7634 { 7635 struct ieee80211_hdr *hdr; 7636 u16 fc; 7637 7638 hdr = (struct ieee80211_hdr *)skb->data; 7639 fc = le16_to_cpu(hdr->frame_control); 7640 if (!(fc & IEEE80211_FCTL_PROTECTED)) 7641 return; 7642 7643 fc &= ~IEEE80211_FCTL_PROTECTED; 7644 hdr->frame_control = cpu_to_le16(fc); 7645 switch (priv->ieee->sec.level) { 7646 case SEC_LEVEL_3: 7647 /* Remove CCMP HDR */ 7648 memmove(skb->data + LIBIPW_3ADDR_LEN, 7649 skb->data + LIBIPW_3ADDR_LEN + 8, 7650 skb->len - LIBIPW_3ADDR_LEN - 8); 7651 skb_trim(skb, skb->len - 16); /* CCMP_HDR_LEN + CCMP_MIC_LEN */ 7652 break; 7653 case SEC_LEVEL_2: 7654 break; 7655 case SEC_LEVEL_1: 7656 /* Remove IV */ 7657 memmove(skb->data + LIBIPW_3ADDR_LEN, 7658 skb->data + LIBIPW_3ADDR_LEN + 4, 7659 skb->len - LIBIPW_3ADDR_LEN - 4); 7660 skb_trim(skb, skb->len - 8); /* IV + ICV */ 7661 break; 7662 case SEC_LEVEL_0: 7663 break; 7664 default: 7665 printk(KERN_ERR "Unknown security level %d\n", 7666 priv->ieee->sec.level); 7667 break; 7668 } 7669 } 7670 7671 static void ipw_handle_data_packet(struct ipw_priv *priv, 7672 struct ipw_rx_mem_buffer *rxb, 7673 struct libipw_rx_stats *stats) 7674 { 7675 struct net_device *dev = priv->net_dev; 7676 struct libipw_hdr_4addr *hdr; 7677 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data; 7678 7679 /* We received data from the HW, so stop the watchdog */ 7680 netif_trans_update(dev); 7681 7682 /* We only process data packets if the 7683 * interface is open */ 7684 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) > 7685 skb_tailroom(rxb->skb))) { 7686 dev->stats.rx_errors++; 7687 priv->wstats.discard.misc++; 7688 IPW_DEBUG_DROP("Corruption detected! Oh no!\n"); 7689 return; 7690 } else if (unlikely(!netif_running(priv->net_dev))) { 7691 dev->stats.rx_dropped++; 7692 priv->wstats.discard.misc++; 7693 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n"); 7694 return; 7695 } 7696 7697 /* Advance skb->data to the start of the actual payload */ 7698 skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data)); 7699 7700 /* Set the size of the skb to the size of the frame */ 7701 skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length)); 7702 7703 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len); 7704 7705 /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */ 7706 hdr = (struct libipw_hdr_4addr *)rxb->skb->data; 7707 if (priv->ieee->iw_mode != IW_MODE_MONITOR && 7708 (is_multicast_ether_addr(hdr->addr1) ? 7709 !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt)) 7710 ipw_rebuild_decrypted_skb(priv, rxb->skb); 7711 7712 if (!libipw_rx(priv->ieee, rxb->skb, stats)) 7713 dev->stats.rx_errors++; 7714 else { /* libipw_rx succeeded, so it now owns the SKB */ 7715 rxb->skb = NULL; 7716 __ipw_led_activity_on(priv); 7717 } 7718 } 7719 7720 #ifdef CONFIG_IPW2200_RADIOTAP 7721 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv, 7722 struct ipw_rx_mem_buffer *rxb, 7723 struct libipw_rx_stats *stats) 7724 { 7725 struct net_device *dev = priv->net_dev; 7726 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data; 7727 struct ipw_rx_frame *frame = &pkt->u.frame; 7728 7729 /* initial pull of some data */ 7730 u16 received_channel = frame->received_channel; 7731 u8 antennaAndPhy = frame->antennaAndPhy; 7732 s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM; /* call it signed anyhow */ 7733 u16 pktrate = frame->rate; 7734 7735 /* Magic struct that slots into the radiotap header -- no reason 7736 * to build this manually element by element, we can write it much 7737 * more efficiently than we can parse it. ORDER MATTERS HERE */ 7738 struct ipw_rt_hdr *ipw_rt; 7739 7740 unsigned short len = le16_to_cpu(pkt->u.frame.length); 7741 7742 /* We received data from the HW, so stop the watchdog */ 7743 netif_trans_update(dev); 7744 7745 /* We only process data packets if the 7746 * interface is open */ 7747 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) > 7748 skb_tailroom(rxb->skb))) { 7749 dev->stats.rx_errors++; 7750 priv->wstats.discard.misc++; 7751 IPW_DEBUG_DROP("Corruption detected! Oh no!\n"); 7752 return; 7753 } else if (unlikely(!netif_running(priv->net_dev))) { 7754 dev->stats.rx_dropped++; 7755 priv->wstats.discard.misc++; 7756 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n"); 7757 return; 7758 } 7759 7760 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use 7761 * that now */ 7762 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) { 7763 /* FIXME: Should alloc bigger skb instead */ 7764 dev->stats.rx_dropped++; 7765 priv->wstats.discard.misc++; 7766 IPW_DEBUG_DROP("Dropping too large packet in monitor\n"); 7767 return; 7768 } 7769 7770 /* copy the frame itself */ 7771 memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr), 7772 rxb->skb->data + IPW_RX_FRAME_SIZE, len); 7773 7774 ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data; 7775 7776 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION; 7777 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */ 7778 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total header+data */ 7779 7780 /* Big bitfield of all the fields we provide in radiotap */ 7781 ipw_rt->rt_hdr.it_present = cpu_to_le32( 7782 (1 << IEEE80211_RADIOTAP_TSFT) | 7783 (1 << IEEE80211_RADIOTAP_FLAGS) | 7784 (1 << IEEE80211_RADIOTAP_RATE) | 7785 (1 << IEEE80211_RADIOTAP_CHANNEL) | 7786 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) | 7787 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) | 7788 (1 << IEEE80211_RADIOTAP_ANTENNA)); 7789 7790 /* Zero the flags, we'll add to them as we go */ 7791 ipw_rt->rt_flags = 0; 7792 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 | 7793 frame->parent_tsf[2] << 16 | 7794 frame->parent_tsf[1] << 8 | 7795 frame->parent_tsf[0]); 7796 7797 /* Convert signal to DBM */ 7798 ipw_rt->rt_dbmsignal = antsignal; 7799 ipw_rt->rt_dbmnoise = (s8) le16_to_cpu(frame->noise); 7800 7801 /* Convert the channel data and set the flags */ 7802 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel)); 7803 if (received_channel > 14) { /* 802.11a */ 7804 ipw_rt->rt_chbitmask = 7805 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ)); 7806 } else if (antennaAndPhy & 32) { /* 802.11b */ 7807 ipw_rt->rt_chbitmask = 7808 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ)); 7809 } else { /* 802.11g */ 7810 ipw_rt->rt_chbitmask = 7811 cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ); 7812 } 7813 7814 /* set the rate in multiples of 500k/s */ 7815 switch (pktrate) { 7816 case IPW_TX_RATE_1MB: 7817 ipw_rt->rt_rate = 2; 7818 break; 7819 case IPW_TX_RATE_2MB: 7820 ipw_rt->rt_rate = 4; 7821 break; 7822 case IPW_TX_RATE_5MB: 7823 ipw_rt->rt_rate = 10; 7824 break; 7825 case IPW_TX_RATE_6MB: 7826 ipw_rt->rt_rate = 12; 7827 break; 7828 case IPW_TX_RATE_9MB: 7829 ipw_rt->rt_rate = 18; 7830 break; 7831 case IPW_TX_RATE_11MB: 7832 ipw_rt->rt_rate = 22; 7833 break; 7834 case IPW_TX_RATE_12MB: 7835 ipw_rt->rt_rate = 24; 7836 break; 7837 case IPW_TX_RATE_18MB: 7838 ipw_rt->rt_rate = 36; 7839 break; 7840 case IPW_TX_RATE_24MB: 7841 ipw_rt->rt_rate = 48; 7842 break; 7843 case IPW_TX_RATE_36MB: 7844 ipw_rt->rt_rate = 72; 7845 break; 7846 case IPW_TX_RATE_48MB: 7847 ipw_rt->rt_rate = 96; 7848 break; 7849 case IPW_TX_RATE_54MB: 7850 ipw_rt->rt_rate = 108; 7851 break; 7852 default: 7853 ipw_rt->rt_rate = 0; 7854 break; 7855 } 7856 7857 /* antenna number */ 7858 ipw_rt->rt_antenna = (antennaAndPhy & 3); /* Is this right? */ 7859 7860 /* set the preamble flag if we have it */ 7861 if ((antennaAndPhy & 64)) 7862 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 7863 7864 /* Set the size of the skb to the size of the frame */ 7865 skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr)); 7866 7867 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len); 7868 7869 if (!libipw_rx(priv->ieee, rxb->skb, stats)) 7870 dev->stats.rx_errors++; 7871 else { /* libipw_rx succeeded, so it now owns the SKB */ 7872 rxb->skb = NULL; 7873 /* no LED during capture */ 7874 } 7875 } 7876 #endif 7877 7878 #ifdef CONFIG_IPW2200_PROMISCUOUS 7879 #define libipw_is_probe_response(fc) \ 7880 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \ 7881 (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP ) 7882 7883 #define libipw_is_management(fc) \ 7884 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT) 7885 7886 #define libipw_is_control(fc) \ 7887 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL) 7888 7889 #define libipw_is_data(fc) \ 7890 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA) 7891 7892 #define libipw_is_assoc_request(fc) \ 7893 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ) 7894 7895 #define libipw_is_reassoc_request(fc) \ 7896 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ) 7897 7898 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv, 7899 struct ipw_rx_mem_buffer *rxb, 7900 struct libipw_rx_stats *stats) 7901 { 7902 struct net_device *dev = priv->prom_net_dev; 7903 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data; 7904 struct ipw_rx_frame *frame = &pkt->u.frame; 7905 struct ipw_rt_hdr *ipw_rt; 7906 7907 /* First cache any information we need before we overwrite 7908 * the information provided in the skb from the hardware */ 7909 struct ieee80211_hdr *hdr; 7910 u16 channel = frame->received_channel; 7911 u8 phy_flags = frame->antennaAndPhy; 7912 s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM; 7913 s8 noise = (s8) le16_to_cpu(frame->noise); 7914 u8 rate = frame->rate; 7915 unsigned short len = le16_to_cpu(pkt->u.frame.length); 7916 struct sk_buff *skb; 7917 int hdr_only = 0; 7918 u16 filter = priv->prom_priv->filter; 7919 7920 /* If the filter is set to not include Rx frames then return */ 7921 if (filter & IPW_PROM_NO_RX) 7922 return; 7923 7924 /* We received data from the HW, so stop the watchdog */ 7925 netif_trans_update(dev); 7926 7927 if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) { 7928 dev->stats.rx_errors++; 7929 IPW_DEBUG_DROP("Corruption detected! Oh no!\n"); 7930 return; 7931 } 7932 7933 /* We only process data packets if the interface is open */ 7934 if (unlikely(!netif_running(dev))) { 7935 dev->stats.rx_dropped++; 7936 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n"); 7937 return; 7938 } 7939 7940 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use 7941 * that now */ 7942 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) { 7943 /* FIXME: Should alloc bigger skb instead */ 7944 dev->stats.rx_dropped++; 7945 IPW_DEBUG_DROP("Dropping too large packet in monitor\n"); 7946 return; 7947 } 7948 7949 hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE; 7950 if (libipw_is_management(le16_to_cpu(hdr->frame_control))) { 7951 if (filter & IPW_PROM_NO_MGMT) 7952 return; 7953 if (filter & IPW_PROM_MGMT_HEADER_ONLY) 7954 hdr_only = 1; 7955 } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) { 7956 if (filter & IPW_PROM_NO_CTL) 7957 return; 7958 if (filter & IPW_PROM_CTL_HEADER_ONLY) 7959 hdr_only = 1; 7960 } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) { 7961 if (filter & IPW_PROM_NO_DATA) 7962 return; 7963 if (filter & IPW_PROM_DATA_HEADER_ONLY) 7964 hdr_only = 1; 7965 } 7966 7967 /* Copy the SKB since this is for the promiscuous side */ 7968 skb = skb_copy(rxb->skb, GFP_ATOMIC); 7969 if (skb == NULL) { 7970 IPW_ERROR("skb_clone failed for promiscuous copy.\n"); 7971 return; 7972 } 7973 7974 /* copy the frame data to write after where the radiotap header goes */ 7975 ipw_rt = (void *)skb->data; 7976 7977 if (hdr_only) 7978 len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control)); 7979 7980 memcpy(ipw_rt->payload, hdr, len); 7981 7982 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION; 7983 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */ 7984 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(*ipw_rt)); /* total header+data */ 7985 7986 /* Set the size of the skb to the size of the frame */ 7987 skb_put(skb, sizeof(*ipw_rt) + len); 7988 7989 /* Big bitfield of all the fields we provide in radiotap */ 7990 ipw_rt->rt_hdr.it_present = cpu_to_le32( 7991 (1 << IEEE80211_RADIOTAP_TSFT) | 7992 (1 << IEEE80211_RADIOTAP_FLAGS) | 7993 (1 << IEEE80211_RADIOTAP_RATE) | 7994 (1 << IEEE80211_RADIOTAP_CHANNEL) | 7995 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) | 7996 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) | 7997 (1 << IEEE80211_RADIOTAP_ANTENNA)); 7998 7999 /* Zero the flags, we'll add to them as we go */ 8000 ipw_rt->rt_flags = 0; 8001 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 | 8002 frame->parent_tsf[2] << 16 | 8003 frame->parent_tsf[1] << 8 | 8004 frame->parent_tsf[0]); 8005 8006 /* Convert to DBM */ 8007 ipw_rt->rt_dbmsignal = signal; 8008 ipw_rt->rt_dbmnoise = noise; 8009 8010 /* Convert the channel data and set the flags */ 8011 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel)); 8012 if (channel > 14) { /* 802.11a */ 8013 ipw_rt->rt_chbitmask = 8014 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ)); 8015 } else if (phy_flags & (1 << 5)) { /* 802.11b */ 8016 ipw_rt->rt_chbitmask = 8017 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ)); 8018 } else { /* 802.11g */ 8019 ipw_rt->rt_chbitmask = 8020 cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ); 8021 } 8022 8023 /* set the rate in multiples of 500k/s */ 8024 switch (rate) { 8025 case IPW_TX_RATE_1MB: 8026 ipw_rt->rt_rate = 2; 8027 break; 8028 case IPW_TX_RATE_2MB: 8029 ipw_rt->rt_rate = 4; 8030 break; 8031 case IPW_TX_RATE_5MB: 8032 ipw_rt->rt_rate = 10; 8033 break; 8034 case IPW_TX_RATE_6MB: 8035 ipw_rt->rt_rate = 12; 8036 break; 8037 case IPW_TX_RATE_9MB: 8038 ipw_rt->rt_rate = 18; 8039 break; 8040 case IPW_TX_RATE_11MB: 8041 ipw_rt->rt_rate = 22; 8042 break; 8043 case IPW_TX_RATE_12MB: 8044 ipw_rt->rt_rate = 24; 8045 break; 8046 case IPW_TX_RATE_18MB: 8047 ipw_rt->rt_rate = 36; 8048 break; 8049 case IPW_TX_RATE_24MB: 8050 ipw_rt->rt_rate = 48; 8051 break; 8052 case IPW_TX_RATE_36MB: 8053 ipw_rt->rt_rate = 72; 8054 break; 8055 case IPW_TX_RATE_48MB: 8056 ipw_rt->rt_rate = 96; 8057 break; 8058 case IPW_TX_RATE_54MB: 8059 ipw_rt->rt_rate = 108; 8060 break; 8061 default: 8062 ipw_rt->rt_rate = 0; 8063 break; 8064 } 8065 8066 /* antenna number */ 8067 ipw_rt->rt_antenna = (phy_flags & 3); 8068 8069 /* set the preamble flag if we have it */ 8070 if (phy_flags & (1 << 6)) 8071 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 8072 8073 IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len); 8074 8075 if (!libipw_rx(priv->prom_priv->ieee, skb, stats)) { 8076 dev->stats.rx_errors++; 8077 dev_kfree_skb_any(skb); 8078 } 8079 } 8080 #endif 8081 8082 static int is_network_packet(struct ipw_priv *priv, 8083 struct libipw_hdr_4addr *header) 8084 { 8085 /* Filter incoming packets to determine if they are targeted toward 8086 * this network, discarding packets coming from ourselves */ 8087 switch (priv->ieee->iw_mode) { 8088 case IW_MODE_ADHOC: /* Header: Dest. | Source | BSSID */ 8089 /* packets from our adapter are dropped (echo) */ 8090 if (ether_addr_equal(header->addr2, priv->net_dev->dev_addr)) 8091 return 0; 8092 8093 /* {broad,multi}cast packets to our BSSID go through */ 8094 if (is_multicast_ether_addr(header->addr1)) 8095 return ether_addr_equal(header->addr3, priv->bssid); 8096 8097 /* packets to our adapter go through */ 8098 return ether_addr_equal(header->addr1, 8099 priv->net_dev->dev_addr); 8100 8101 case IW_MODE_INFRA: /* Header: Dest. | BSSID | Source */ 8102 /* packets from our adapter are dropped (echo) */ 8103 if (ether_addr_equal(header->addr3, priv->net_dev->dev_addr)) 8104 return 0; 8105 8106 /* {broad,multi}cast packets to our BSS go through */ 8107 if (is_multicast_ether_addr(header->addr1)) 8108 return ether_addr_equal(header->addr2, priv->bssid); 8109 8110 /* packets to our adapter go through */ 8111 return ether_addr_equal(header->addr1, 8112 priv->net_dev->dev_addr); 8113 } 8114 8115 return 1; 8116 } 8117 8118 #define IPW_PACKET_RETRY_TIME HZ 8119 8120 static int is_duplicate_packet(struct ipw_priv *priv, 8121 struct libipw_hdr_4addr *header) 8122 { 8123 u16 sc = le16_to_cpu(header->seq_ctl); 8124 u16 seq = WLAN_GET_SEQ_SEQ(sc); 8125 u16 frag = WLAN_GET_SEQ_FRAG(sc); 8126 u16 *last_seq, *last_frag; 8127 unsigned long *last_time; 8128 8129 switch (priv->ieee->iw_mode) { 8130 case IW_MODE_ADHOC: 8131 { 8132 struct list_head *p; 8133 struct ipw_ibss_seq *entry = NULL; 8134 u8 *mac = header->addr2; 8135 int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE; 8136 8137 list_for_each(p, &priv->ibss_mac_hash[index]) { 8138 entry = 8139 list_entry(p, struct ipw_ibss_seq, list); 8140 if (ether_addr_equal(entry->mac, mac)) 8141 break; 8142 } 8143 if (p == &priv->ibss_mac_hash[index]) { 8144 entry = kmalloc(sizeof(*entry), GFP_ATOMIC); 8145 if (!entry) { 8146 IPW_ERROR 8147 ("Cannot malloc new mac entry\n"); 8148 return 0; 8149 } 8150 memcpy(entry->mac, mac, ETH_ALEN); 8151 entry->seq_num = seq; 8152 entry->frag_num = frag; 8153 entry->packet_time = jiffies; 8154 list_add(&entry->list, 8155 &priv->ibss_mac_hash[index]); 8156 return 0; 8157 } 8158 last_seq = &entry->seq_num; 8159 last_frag = &entry->frag_num; 8160 last_time = &entry->packet_time; 8161 break; 8162 } 8163 case IW_MODE_INFRA: 8164 last_seq = &priv->last_seq_num; 8165 last_frag = &priv->last_frag_num; 8166 last_time = &priv->last_packet_time; 8167 break; 8168 default: 8169 return 0; 8170 } 8171 if ((*last_seq == seq) && 8172 time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) { 8173 if (*last_frag == frag) 8174 goto drop; 8175 if (*last_frag + 1 != frag) 8176 /* out-of-order fragment */ 8177 goto drop; 8178 } else 8179 *last_seq = seq; 8180 8181 *last_frag = frag; 8182 *last_time = jiffies; 8183 return 0; 8184 8185 drop: 8186 /* Comment this line now since we observed the card receives 8187 * duplicate packets but the FCTL_RETRY bit is not set in the 8188 * IBSS mode with fragmentation enabled. 8189 BUG_ON(!(le16_to_cpu(header->frame_control) & IEEE80211_FCTL_RETRY)); */ 8190 return 1; 8191 } 8192 8193 static void ipw_handle_mgmt_packet(struct ipw_priv *priv, 8194 struct ipw_rx_mem_buffer *rxb, 8195 struct libipw_rx_stats *stats) 8196 { 8197 struct sk_buff *skb = rxb->skb; 8198 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data; 8199 struct libipw_hdr_4addr *header = (struct libipw_hdr_4addr *) 8200 (skb->data + IPW_RX_FRAME_SIZE); 8201 8202 libipw_rx_mgt(priv->ieee, header, stats); 8203 8204 if (priv->ieee->iw_mode == IW_MODE_ADHOC && 8205 ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) == 8206 IEEE80211_STYPE_PROBE_RESP) || 8207 (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) == 8208 IEEE80211_STYPE_BEACON))) { 8209 if (ether_addr_equal(header->addr3, priv->bssid)) 8210 ipw_add_station(priv, header->addr2); 8211 } 8212 8213 if (priv->config & CFG_NET_STATS) { 8214 IPW_DEBUG_HC("sending stat packet\n"); 8215 8216 /* Set the size of the skb to the size of the full 8217 * ipw header and 802.11 frame */ 8218 skb_put(skb, le16_to_cpu(pkt->u.frame.length) + 8219 IPW_RX_FRAME_SIZE); 8220 8221 /* Advance past the ipw packet header to the 802.11 frame */ 8222 skb_pull(skb, IPW_RX_FRAME_SIZE); 8223 8224 /* Push the libipw_rx_stats before the 802.11 frame */ 8225 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats)); 8226 8227 skb->dev = priv->ieee->dev; 8228 8229 /* Point raw at the libipw_stats */ 8230 skb_reset_mac_header(skb); 8231 8232 skb->pkt_type = PACKET_OTHERHOST; 8233 skb->protocol = cpu_to_be16(ETH_P_80211_STATS); 8234 memset(skb->cb, 0, sizeof(rxb->skb->cb)); 8235 netif_rx(skb); 8236 rxb->skb = NULL; 8237 } 8238 } 8239 8240 /* 8241 * Main entry function for receiving a packet with 80211 headers. This 8242 * should be called when ever the FW has notified us that there is a new 8243 * skb in the receive queue. 8244 */ 8245 static void ipw_rx(struct ipw_priv *priv) 8246 { 8247 struct ipw_rx_mem_buffer *rxb; 8248 struct ipw_rx_packet *pkt; 8249 struct libipw_hdr_4addr *header; 8250 u32 r, i; 8251 u8 network_packet; 8252 u8 fill_rx = 0; 8253 8254 r = ipw_read32(priv, IPW_RX_READ_INDEX); 8255 ipw_read32(priv, IPW_RX_WRITE_INDEX); 8256 i = priv->rxq->read; 8257 8258 if (ipw_rx_queue_space (priv->rxq) > (RX_QUEUE_SIZE / 2)) 8259 fill_rx = 1; 8260 8261 while (i != r) { 8262 rxb = priv->rxq->queue[i]; 8263 if (unlikely(rxb == NULL)) { 8264 printk(KERN_CRIT "Queue not allocated!\n"); 8265 break; 8266 } 8267 priv->rxq->queue[i] = NULL; 8268 8269 dma_sync_single_for_cpu(&priv->pci_dev->dev, rxb->dma_addr, 8270 IPW_RX_BUF_SIZE, DMA_FROM_DEVICE); 8271 8272 pkt = (struct ipw_rx_packet *)rxb->skb->data; 8273 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n", 8274 pkt->header.message_type, 8275 pkt->header.rx_seq_num, pkt->header.control_bits); 8276 8277 switch (pkt->header.message_type) { 8278 case RX_FRAME_TYPE: /* 802.11 frame */ { 8279 struct libipw_rx_stats stats = { 8280 .rssi = pkt->u.frame.rssi_dbm - 8281 IPW_RSSI_TO_DBM, 8282 .signal = 8283 pkt->u.frame.rssi_dbm - 8284 IPW_RSSI_TO_DBM + 0x100, 8285 .noise = 8286 le16_to_cpu(pkt->u.frame.noise), 8287 .rate = pkt->u.frame.rate, 8288 .mac_time = jiffies, 8289 .received_channel = 8290 pkt->u.frame.received_channel, 8291 .freq = 8292 (pkt->u.frame. 8293 control & (1 << 0)) ? 8294 LIBIPW_24GHZ_BAND : 8295 LIBIPW_52GHZ_BAND, 8296 .len = le16_to_cpu(pkt->u.frame.length), 8297 }; 8298 8299 if (stats.rssi != 0) 8300 stats.mask |= LIBIPW_STATMASK_RSSI; 8301 if (stats.signal != 0) 8302 stats.mask |= LIBIPW_STATMASK_SIGNAL; 8303 if (stats.noise != 0) 8304 stats.mask |= LIBIPW_STATMASK_NOISE; 8305 if (stats.rate != 0) 8306 stats.mask |= LIBIPW_STATMASK_RATE; 8307 8308 priv->rx_packets++; 8309 8310 #ifdef CONFIG_IPW2200_PROMISCUOUS 8311 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) 8312 ipw_handle_promiscuous_rx(priv, rxb, &stats); 8313 #endif 8314 8315 #ifdef CONFIG_IPW2200_MONITOR 8316 if (priv->ieee->iw_mode == IW_MODE_MONITOR) { 8317 #ifdef CONFIG_IPW2200_RADIOTAP 8318 8319 ipw_handle_data_packet_monitor(priv, 8320 rxb, 8321 &stats); 8322 #else 8323 ipw_handle_data_packet(priv, rxb, 8324 &stats); 8325 #endif 8326 break; 8327 } 8328 #endif 8329 8330 header = 8331 (struct libipw_hdr_4addr *)(rxb->skb-> 8332 data + 8333 IPW_RX_FRAME_SIZE); 8334 /* TODO: Check Ad-Hoc dest/source and make sure 8335 * that we are actually parsing these packets 8336 * correctly -- we should probably use the 8337 * frame control of the packet and disregard 8338 * the current iw_mode */ 8339 8340 network_packet = 8341 is_network_packet(priv, header); 8342 if (network_packet && priv->assoc_network) { 8343 priv->assoc_network->stats.rssi = 8344 stats.rssi; 8345 priv->exp_avg_rssi = 8346 exponential_average(priv->exp_avg_rssi, 8347 stats.rssi, DEPTH_RSSI); 8348 } 8349 8350 IPW_DEBUG_RX("Frame: len=%u\n", 8351 le16_to_cpu(pkt->u.frame.length)); 8352 8353 if (le16_to_cpu(pkt->u.frame.length) < 8354 libipw_get_hdrlen(le16_to_cpu( 8355 header->frame_ctl))) { 8356 IPW_DEBUG_DROP 8357 ("Received packet is too small. " 8358 "Dropping.\n"); 8359 priv->net_dev->stats.rx_errors++; 8360 priv->wstats.discard.misc++; 8361 break; 8362 } 8363 8364 switch (WLAN_FC_GET_TYPE 8365 (le16_to_cpu(header->frame_ctl))) { 8366 8367 case IEEE80211_FTYPE_MGMT: 8368 ipw_handle_mgmt_packet(priv, rxb, 8369 &stats); 8370 break; 8371 8372 case IEEE80211_FTYPE_CTL: 8373 break; 8374 8375 case IEEE80211_FTYPE_DATA: 8376 if (unlikely(!network_packet || 8377 is_duplicate_packet(priv, 8378 header))) 8379 { 8380 IPW_DEBUG_DROP("Dropping: " 8381 "%pM, " 8382 "%pM, " 8383 "%pM\n", 8384 header->addr1, 8385 header->addr2, 8386 header->addr3); 8387 break; 8388 } 8389 8390 ipw_handle_data_packet(priv, rxb, 8391 &stats); 8392 8393 break; 8394 } 8395 break; 8396 } 8397 8398 case RX_HOST_NOTIFICATION_TYPE:{ 8399 IPW_DEBUG_RX 8400 ("Notification: subtype=%02X flags=%02X size=%d\n", 8401 pkt->u.notification.subtype, 8402 pkt->u.notification.flags, 8403 le16_to_cpu(pkt->u.notification.size)); 8404 ipw_rx_notification(priv, &pkt->u.notification); 8405 break; 8406 } 8407 8408 default: 8409 IPW_DEBUG_RX("Bad Rx packet of type %d\n", 8410 pkt->header.message_type); 8411 break; 8412 } 8413 8414 /* For now we just don't re-use anything. We can tweak this 8415 * later to try and re-use notification packets and SKBs that 8416 * fail to Rx correctly */ 8417 if (rxb->skb != NULL) { 8418 dev_kfree_skb_any(rxb->skb); 8419 rxb->skb = NULL; 8420 } 8421 8422 dma_unmap_single(&priv->pci_dev->dev, rxb->dma_addr, 8423 IPW_RX_BUF_SIZE, DMA_FROM_DEVICE); 8424 list_add_tail(&rxb->list, &priv->rxq->rx_used); 8425 8426 i = (i + 1) % RX_QUEUE_SIZE; 8427 8428 /* If there are a lot of unsued frames, restock the Rx queue 8429 * so the ucode won't assert */ 8430 if (fill_rx) { 8431 priv->rxq->read = i; 8432 ipw_rx_queue_replenish(priv); 8433 } 8434 } 8435 8436 /* Backtrack one entry */ 8437 priv->rxq->read = i; 8438 ipw_rx_queue_restock(priv); 8439 } 8440 8441 #define DEFAULT_RTS_THRESHOLD 2304U 8442 #define MIN_RTS_THRESHOLD 1U 8443 #define MAX_RTS_THRESHOLD 2304U 8444 #define DEFAULT_BEACON_INTERVAL 100U 8445 #define DEFAULT_SHORT_RETRY_LIMIT 7U 8446 #define DEFAULT_LONG_RETRY_LIMIT 4U 8447 8448 /* 8449 * ipw_sw_reset 8450 * @option: options to control different reset behaviour 8451 * 0 = reset everything except the 'disable' module_param 8452 * 1 = reset everything and print out driver info (for probe only) 8453 * 2 = reset everything 8454 */ 8455 static int ipw_sw_reset(struct ipw_priv *priv, int option) 8456 { 8457 int band, modulation; 8458 int old_mode = priv->ieee->iw_mode; 8459 8460 /* Initialize module parameter values here */ 8461 priv->config = 0; 8462 8463 /* We default to disabling the LED code as right now it causes 8464 * too many systems to lock up... */ 8465 if (!led_support) 8466 priv->config |= CFG_NO_LED; 8467 8468 if (associate) 8469 priv->config |= CFG_ASSOCIATE; 8470 else 8471 IPW_DEBUG_INFO("Auto associate disabled.\n"); 8472 8473 if (auto_create) 8474 priv->config |= CFG_ADHOC_CREATE; 8475 else 8476 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n"); 8477 8478 priv->config &= ~CFG_STATIC_ESSID; 8479 priv->essid_len = 0; 8480 memset(priv->essid, 0, IW_ESSID_MAX_SIZE); 8481 8482 if (disable && option) { 8483 priv->status |= STATUS_RF_KILL_SW; 8484 IPW_DEBUG_INFO("Radio disabled.\n"); 8485 } 8486 8487 if (default_channel != 0) { 8488 priv->config |= CFG_STATIC_CHANNEL; 8489 priv->channel = default_channel; 8490 IPW_DEBUG_INFO("Bind to static channel %d\n", default_channel); 8491 /* TODO: Validate that provided channel is in range */ 8492 } 8493 #ifdef CONFIG_IPW2200_QOS 8494 ipw_qos_init(priv, qos_enable, qos_burst_enable, 8495 burst_duration_CCK, burst_duration_OFDM); 8496 #endif /* CONFIG_IPW2200_QOS */ 8497 8498 switch (network_mode) { 8499 case 1: 8500 priv->ieee->iw_mode = IW_MODE_ADHOC; 8501 priv->net_dev->type = ARPHRD_ETHER; 8502 8503 break; 8504 #ifdef CONFIG_IPW2200_MONITOR 8505 case 2: 8506 priv->ieee->iw_mode = IW_MODE_MONITOR; 8507 #ifdef CONFIG_IPW2200_RADIOTAP 8508 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP; 8509 #else 8510 priv->net_dev->type = ARPHRD_IEEE80211; 8511 #endif 8512 break; 8513 #endif 8514 default: 8515 case 0: 8516 priv->net_dev->type = ARPHRD_ETHER; 8517 priv->ieee->iw_mode = IW_MODE_INFRA; 8518 break; 8519 } 8520 8521 if (hwcrypto) { 8522 priv->ieee->host_encrypt = 0; 8523 priv->ieee->host_encrypt_msdu = 0; 8524 priv->ieee->host_decrypt = 0; 8525 priv->ieee->host_mc_decrypt = 0; 8526 } 8527 IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off"); 8528 8529 /* IPW2200/2915 is abled to do hardware fragmentation. */ 8530 priv->ieee->host_open_frag = 0; 8531 8532 if ((priv->pci_dev->device == 0x4223) || 8533 (priv->pci_dev->device == 0x4224)) { 8534 if (option == 1) 8535 printk(KERN_INFO DRV_NAME 8536 ": Detected Intel PRO/Wireless 2915ABG Network " 8537 "Connection\n"); 8538 priv->ieee->abg_true = 1; 8539 band = LIBIPW_52GHZ_BAND | LIBIPW_24GHZ_BAND; 8540 modulation = LIBIPW_OFDM_MODULATION | 8541 LIBIPW_CCK_MODULATION; 8542 priv->adapter = IPW_2915ABG; 8543 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B; 8544 } else { 8545 if (option == 1) 8546 printk(KERN_INFO DRV_NAME 8547 ": Detected Intel PRO/Wireless 2200BG Network " 8548 "Connection\n"); 8549 8550 priv->ieee->abg_true = 0; 8551 band = LIBIPW_24GHZ_BAND; 8552 modulation = LIBIPW_OFDM_MODULATION | 8553 LIBIPW_CCK_MODULATION; 8554 priv->adapter = IPW_2200BG; 8555 priv->ieee->mode = IEEE_G | IEEE_B; 8556 } 8557 8558 priv->ieee->freq_band = band; 8559 priv->ieee->modulation = modulation; 8560 8561 priv->rates_mask = LIBIPW_DEFAULT_RATES_MASK; 8562 8563 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT; 8564 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT; 8565 8566 priv->rts_threshold = DEFAULT_RTS_THRESHOLD; 8567 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT; 8568 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT; 8569 8570 /* If power management is turned on, default to AC mode */ 8571 priv->power_mode = IPW_POWER_AC; 8572 priv->tx_power = IPW_TX_POWER_DEFAULT; 8573 8574 return old_mode == priv->ieee->iw_mode; 8575 } 8576 8577 /* 8578 * This file defines the Wireless Extension handlers. It does not 8579 * define any methods of hardware manipulation and relies on the 8580 * functions defined in ipw_main to provide the HW interaction. 8581 * 8582 * The exception to this is the use of the ipw_get_ordinal() 8583 * function used to poll the hardware vs. making unnecessary calls. 8584 * 8585 */ 8586 8587 static int ipw_set_channel(struct ipw_priv *priv, u8 channel) 8588 { 8589 if (channel == 0) { 8590 IPW_DEBUG_INFO("Setting channel to ANY (0)\n"); 8591 priv->config &= ~CFG_STATIC_CHANNEL; 8592 IPW_DEBUG_ASSOC("Attempting to associate with new " 8593 "parameters.\n"); 8594 ipw_associate(priv); 8595 return 0; 8596 } 8597 8598 priv->config |= CFG_STATIC_CHANNEL; 8599 8600 if (priv->channel == channel) { 8601 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n", 8602 channel); 8603 return 0; 8604 } 8605 8606 IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel); 8607 priv->channel = channel; 8608 8609 #ifdef CONFIG_IPW2200_MONITOR 8610 if (priv->ieee->iw_mode == IW_MODE_MONITOR) { 8611 int i; 8612 if (priv->status & STATUS_SCANNING) { 8613 IPW_DEBUG_SCAN("Scan abort triggered due to " 8614 "channel change.\n"); 8615 ipw_abort_scan(priv); 8616 } 8617 8618 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--) 8619 udelay(10); 8620 8621 if (priv->status & STATUS_SCANNING) 8622 IPW_DEBUG_SCAN("Still scanning...\n"); 8623 else 8624 IPW_DEBUG_SCAN("Took %dms to abort current scan\n", 8625 1000 - i); 8626 8627 return 0; 8628 } 8629 #endif /* CONFIG_IPW2200_MONITOR */ 8630 8631 /* Network configuration changed -- force [re]association */ 8632 IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n"); 8633 if (!ipw_disassociate(priv)) 8634 ipw_associate(priv); 8635 8636 return 0; 8637 } 8638 8639 static int ipw_wx_set_freq(struct net_device *dev, 8640 struct iw_request_info *info, 8641 union iwreq_data *wrqu, char *extra) 8642 { 8643 struct ipw_priv *priv = libipw_priv(dev); 8644 const struct libipw_geo *geo = libipw_get_geo(priv->ieee); 8645 struct iw_freq *fwrq = &wrqu->freq; 8646 int ret = 0, i; 8647 u8 channel, flags; 8648 int band; 8649 8650 if (fwrq->m == 0) { 8651 IPW_DEBUG_WX("SET Freq/Channel -> any\n"); 8652 mutex_lock(&priv->mutex); 8653 ret = ipw_set_channel(priv, 0); 8654 mutex_unlock(&priv->mutex); 8655 return ret; 8656 } 8657 /* if setting by freq convert to channel */ 8658 if (fwrq->e == 1) { 8659 channel = libipw_freq_to_channel(priv->ieee, fwrq->m); 8660 if (channel == 0) 8661 return -EINVAL; 8662 } else 8663 channel = fwrq->m; 8664 8665 if (!(band = libipw_is_valid_channel(priv->ieee, channel))) 8666 return -EINVAL; 8667 8668 if (priv->ieee->iw_mode == IW_MODE_ADHOC) { 8669 i = libipw_channel_to_index(priv->ieee, channel); 8670 if (i == -1) 8671 return -EINVAL; 8672 8673 flags = (band == LIBIPW_24GHZ_BAND) ? 8674 geo->bg[i].flags : geo->a[i].flags; 8675 if (flags & LIBIPW_CH_PASSIVE_ONLY) { 8676 IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n"); 8677 return -EINVAL; 8678 } 8679 } 8680 8681 IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m); 8682 mutex_lock(&priv->mutex); 8683 ret = ipw_set_channel(priv, channel); 8684 mutex_unlock(&priv->mutex); 8685 return ret; 8686 } 8687 8688 static int ipw_wx_get_freq(struct net_device *dev, 8689 struct iw_request_info *info, 8690 union iwreq_data *wrqu, char *extra) 8691 { 8692 struct ipw_priv *priv = libipw_priv(dev); 8693 8694 wrqu->freq.e = 0; 8695 8696 /* If we are associated, trying to associate, or have a statically 8697 * configured CHANNEL then return that; otherwise return ANY */ 8698 mutex_lock(&priv->mutex); 8699 if (priv->config & CFG_STATIC_CHANNEL || 8700 priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) { 8701 int i; 8702 8703 i = libipw_channel_to_index(priv->ieee, priv->channel); 8704 BUG_ON(i == -1); 8705 wrqu->freq.e = 1; 8706 8707 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) { 8708 case LIBIPW_52GHZ_BAND: 8709 wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000; 8710 break; 8711 8712 case LIBIPW_24GHZ_BAND: 8713 wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000; 8714 break; 8715 8716 default: 8717 BUG(); 8718 } 8719 } else 8720 wrqu->freq.m = 0; 8721 8722 mutex_unlock(&priv->mutex); 8723 IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel); 8724 return 0; 8725 } 8726 8727 static int ipw_wx_set_mode(struct net_device *dev, 8728 struct iw_request_info *info, 8729 union iwreq_data *wrqu, char *extra) 8730 { 8731 struct ipw_priv *priv = libipw_priv(dev); 8732 int err = 0; 8733 8734 IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode); 8735 8736 switch (wrqu->mode) { 8737 #ifdef CONFIG_IPW2200_MONITOR 8738 case IW_MODE_MONITOR: 8739 #endif 8740 case IW_MODE_ADHOC: 8741 case IW_MODE_INFRA: 8742 break; 8743 case IW_MODE_AUTO: 8744 wrqu->mode = IW_MODE_INFRA; 8745 break; 8746 default: 8747 return -EINVAL; 8748 } 8749 if (wrqu->mode == priv->ieee->iw_mode) 8750 return 0; 8751 8752 mutex_lock(&priv->mutex); 8753 8754 ipw_sw_reset(priv, 0); 8755 8756 #ifdef CONFIG_IPW2200_MONITOR 8757 if (priv->ieee->iw_mode == IW_MODE_MONITOR) 8758 priv->net_dev->type = ARPHRD_ETHER; 8759 8760 if (wrqu->mode == IW_MODE_MONITOR) 8761 #ifdef CONFIG_IPW2200_RADIOTAP 8762 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP; 8763 #else 8764 priv->net_dev->type = ARPHRD_IEEE80211; 8765 #endif 8766 #endif /* CONFIG_IPW2200_MONITOR */ 8767 8768 /* Free the existing firmware and reset the fw_loaded 8769 * flag so ipw_load() will bring in the new firmware */ 8770 free_firmware(); 8771 8772 priv->ieee->iw_mode = wrqu->mode; 8773 8774 schedule_work(&priv->adapter_restart); 8775 mutex_unlock(&priv->mutex); 8776 return err; 8777 } 8778 8779 static int ipw_wx_get_mode(struct net_device *dev, 8780 struct iw_request_info *info, 8781 union iwreq_data *wrqu, char *extra) 8782 { 8783 struct ipw_priv *priv = libipw_priv(dev); 8784 mutex_lock(&priv->mutex); 8785 wrqu->mode = priv->ieee->iw_mode; 8786 IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode); 8787 mutex_unlock(&priv->mutex); 8788 return 0; 8789 } 8790 8791 /* Values are in microsecond */ 8792 static const s32 timeout_duration[] = { 8793 350000, 8794 250000, 8795 75000, 8796 37000, 8797 25000, 8798 }; 8799 8800 static const s32 period_duration[] = { 8801 400000, 8802 700000, 8803 1000000, 8804 1000000, 8805 1000000 8806 }; 8807 8808 static int ipw_wx_get_range(struct net_device *dev, 8809 struct iw_request_info *info, 8810 union iwreq_data *wrqu, char *extra) 8811 { 8812 struct ipw_priv *priv = libipw_priv(dev); 8813 struct iw_range *range = (struct iw_range *)extra; 8814 const struct libipw_geo *geo = libipw_get_geo(priv->ieee); 8815 int i = 0, j; 8816 8817 wrqu->data.length = sizeof(*range); 8818 memset(range, 0, sizeof(*range)); 8819 8820 /* 54Mbs == ~27 Mb/s real (802.11g) */ 8821 range->throughput = 27 * 1000 * 1000; 8822 8823 range->max_qual.qual = 100; 8824 /* TODO: Find real max RSSI and stick here */ 8825 range->max_qual.level = 0; 8826 range->max_qual.noise = 0; 8827 range->max_qual.updated = 7; /* Updated all three */ 8828 8829 range->avg_qual.qual = 70; 8830 /* TODO: Find real 'good' to 'bad' threshold value for RSSI */ 8831 range->avg_qual.level = 0; /* FIXME to real average level */ 8832 range->avg_qual.noise = 0; 8833 range->avg_qual.updated = 7; /* Updated all three */ 8834 mutex_lock(&priv->mutex); 8835 range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES); 8836 8837 for (i = 0; i < range->num_bitrates; i++) 8838 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) * 8839 500000; 8840 8841 range->max_rts = DEFAULT_RTS_THRESHOLD; 8842 range->min_frag = MIN_FRAG_THRESHOLD; 8843 range->max_frag = MAX_FRAG_THRESHOLD; 8844 8845 range->encoding_size[0] = 5; 8846 range->encoding_size[1] = 13; 8847 range->num_encoding_sizes = 2; 8848 range->max_encoding_tokens = WEP_KEYS; 8849 8850 /* Set the Wireless Extension versions */ 8851 range->we_version_compiled = WIRELESS_EXT; 8852 range->we_version_source = 18; 8853 8854 i = 0; 8855 if (priv->ieee->mode & (IEEE_B | IEEE_G)) { 8856 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) { 8857 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) && 8858 (geo->bg[j].flags & LIBIPW_CH_PASSIVE_ONLY)) 8859 continue; 8860 8861 range->freq[i].i = geo->bg[j].channel; 8862 range->freq[i].m = geo->bg[j].freq * 100000; 8863 range->freq[i].e = 1; 8864 i++; 8865 } 8866 } 8867 8868 if (priv->ieee->mode & IEEE_A) { 8869 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) { 8870 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) && 8871 (geo->a[j].flags & LIBIPW_CH_PASSIVE_ONLY)) 8872 continue; 8873 8874 range->freq[i].i = geo->a[j].channel; 8875 range->freq[i].m = geo->a[j].freq * 100000; 8876 range->freq[i].e = 1; 8877 i++; 8878 } 8879 } 8880 8881 range->num_channels = i; 8882 range->num_frequency = i; 8883 8884 mutex_unlock(&priv->mutex); 8885 8886 /* Event capability (kernel + driver) */ 8887 range->event_capa[0] = (IW_EVENT_CAPA_K_0 | 8888 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) | 8889 IW_EVENT_CAPA_MASK(SIOCGIWAP) | 8890 IW_EVENT_CAPA_MASK(SIOCGIWSCAN)); 8891 range->event_capa[1] = IW_EVENT_CAPA_K_1; 8892 8893 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 | 8894 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP; 8895 8896 range->scan_capa = IW_SCAN_CAPA_ESSID | IW_SCAN_CAPA_TYPE; 8897 8898 IPW_DEBUG_WX("GET Range\n"); 8899 return 0; 8900 } 8901 8902 static int ipw_wx_set_wap(struct net_device *dev, 8903 struct iw_request_info *info, 8904 union iwreq_data *wrqu, char *extra) 8905 { 8906 struct ipw_priv *priv = libipw_priv(dev); 8907 8908 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER) 8909 return -EINVAL; 8910 mutex_lock(&priv->mutex); 8911 if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) || 8912 is_zero_ether_addr(wrqu->ap_addr.sa_data)) { 8913 /* we disable mandatory BSSID association */ 8914 IPW_DEBUG_WX("Setting AP BSSID to ANY\n"); 8915 priv->config &= ~CFG_STATIC_BSSID; 8916 IPW_DEBUG_ASSOC("Attempting to associate with new " 8917 "parameters.\n"); 8918 ipw_associate(priv); 8919 mutex_unlock(&priv->mutex); 8920 return 0; 8921 } 8922 8923 priv->config |= CFG_STATIC_BSSID; 8924 if (ether_addr_equal(priv->bssid, wrqu->ap_addr.sa_data)) { 8925 IPW_DEBUG_WX("BSSID set to current BSSID.\n"); 8926 mutex_unlock(&priv->mutex); 8927 return 0; 8928 } 8929 8930 IPW_DEBUG_WX("Setting mandatory BSSID to %pM\n", 8931 wrqu->ap_addr.sa_data); 8932 8933 memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN); 8934 8935 /* Network configuration changed -- force [re]association */ 8936 IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n"); 8937 if (!ipw_disassociate(priv)) 8938 ipw_associate(priv); 8939 8940 mutex_unlock(&priv->mutex); 8941 return 0; 8942 } 8943 8944 static int ipw_wx_get_wap(struct net_device *dev, 8945 struct iw_request_info *info, 8946 union iwreq_data *wrqu, char *extra) 8947 { 8948 struct ipw_priv *priv = libipw_priv(dev); 8949 8950 /* If we are associated, trying to associate, or have a statically 8951 * configured BSSID then return that; otherwise return ANY */ 8952 mutex_lock(&priv->mutex); 8953 if (priv->config & CFG_STATIC_BSSID || 8954 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) { 8955 wrqu->ap_addr.sa_family = ARPHRD_ETHER; 8956 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN); 8957 } else 8958 eth_zero_addr(wrqu->ap_addr.sa_data); 8959 8960 IPW_DEBUG_WX("Getting WAP BSSID: %pM\n", 8961 wrqu->ap_addr.sa_data); 8962 mutex_unlock(&priv->mutex); 8963 return 0; 8964 } 8965 8966 static int ipw_wx_set_essid(struct net_device *dev, 8967 struct iw_request_info *info, 8968 union iwreq_data *wrqu, char *extra) 8969 { 8970 struct ipw_priv *priv = libipw_priv(dev); 8971 int length; 8972 8973 mutex_lock(&priv->mutex); 8974 8975 if (!wrqu->essid.flags) 8976 { 8977 IPW_DEBUG_WX("Setting ESSID to ANY\n"); 8978 ipw_disassociate(priv); 8979 priv->config &= ~CFG_STATIC_ESSID; 8980 ipw_associate(priv); 8981 mutex_unlock(&priv->mutex); 8982 return 0; 8983 } 8984 8985 length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE); 8986 8987 priv->config |= CFG_STATIC_ESSID; 8988 8989 if (priv->essid_len == length && !memcmp(priv->essid, extra, length) 8990 && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) { 8991 IPW_DEBUG_WX("ESSID set to current ESSID.\n"); 8992 mutex_unlock(&priv->mutex); 8993 return 0; 8994 } 8995 8996 IPW_DEBUG_WX("Setting ESSID: '%*pE' (%d)\n", length, extra, length); 8997 8998 priv->essid_len = length; 8999 memcpy(priv->essid, extra, priv->essid_len); 9000 9001 /* Network configuration changed -- force [re]association */ 9002 IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n"); 9003 if (!ipw_disassociate(priv)) 9004 ipw_associate(priv); 9005 9006 mutex_unlock(&priv->mutex); 9007 return 0; 9008 } 9009 9010 static int ipw_wx_get_essid(struct net_device *dev, 9011 struct iw_request_info *info, 9012 union iwreq_data *wrqu, char *extra) 9013 { 9014 struct ipw_priv *priv = libipw_priv(dev); 9015 9016 /* If we are associated, trying to associate, or have a statically 9017 * configured ESSID then return that; otherwise return ANY */ 9018 mutex_lock(&priv->mutex); 9019 if (priv->config & CFG_STATIC_ESSID || 9020 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) { 9021 IPW_DEBUG_WX("Getting essid: '%*pE'\n", 9022 priv->essid_len, priv->essid); 9023 memcpy(extra, priv->essid, priv->essid_len); 9024 wrqu->essid.length = priv->essid_len; 9025 wrqu->essid.flags = 1; /* active */ 9026 } else { 9027 IPW_DEBUG_WX("Getting essid: ANY\n"); 9028 wrqu->essid.length = 0; 9029 wrqu->essid.flags = 0; /* active */ 9030 } 9031 mutex_unlock(&priv->mutex); 9032 return 0; 9033 } 9034 9035 static int ipw_wx_set_nick(struct net_device *dev, 9036 struct iw_request_info *info, 9037 union iwreq_data *wrqu, char *extra) 9038 { 9039 struct ipw_priv *priv = libipw_priv(dev); 9040 9041 IPW_DEBUG_WX("Setting nick to '%s'\n", extra); 9042 if (wrqu->data.length > IW_ESSID_MAX_SIZE) 9043 return -E2BIG; 9044 mutex_lock(&priv->mutex); 9045 wrqu->data.length = min_t(size_t, wrqu->data.length, sizeof(priv->nick)); 9046 memset(priv->nick, 0, sizeof(priv->nick)); 9047 memcpy(priv->nick, extra, wrqu->data.length); 9048 IPW_DEBUG_TRACE("<<\n"); 9049 mutex_unlock(&priv->mutex); 9050 return 0; 9051 9052 } 9053 9054 static int ipw_wx_get_nick(struct net_device *dev, 9055 struct iw_request_info *info, 9056 union iwreq_data *wrqu, char *extra) 9057 { 9058 struct ipw_priv *priv = libipw_priv(dev); 9059 IPW_DEBUG_WX("Getting nick\n"); 9060 mutex_lock(&priv->mutex); 9061 wrqu->data.length = strlen(priv->nick); 9062 memcpy(extra, priv->nick, wrqu->data.length); 9063 wrqu->data.flags = 1; /* active */ 9064 mutex_unlock(&priv->mutex); 9065 return 0; 9066 } 9067 9068 static int ipw_wx_set_sens(struct net_device *dev, 9069 struct iw_request_info *info, 9070 union iwreq_data *wrqu, char *extra) 9071 { 9072 struct ipw_priv *priv = libipw_priv(dev); 9073 int err = 0; 9074 9075 IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value); 9076 IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value); 9077 mutex_lock(&priv->mutex); 9078 9079 if (wrqu->sens.fixed == 0) 9080 { 9081 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT; 9082 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT; 9083 goto out; 9084 } 9085 if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) || 9086 (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) { 9087 err = -EINVAL; 9088 goto out; 9089 } 9090 9091 priv->roaming_threshold = wrqu->sens.value; 9092 priv->disassociate_threshold = 3*wrqu->sens.value; 9093 out: 9094 mutex_unlock(&priv->mutex); 9095 return err; 9096 } 9097 9098 static int ipw_wx_get_sens(struct net_device *dev, 9099 struct iw_request_info *info, 9100 union iwreq_data *wrqu, char *extra) 9101 { 9102 struct ipw_priv *priv = libipw_priv(dev); 9103 mutex_lock(&priv->mutex); 9104 wrqu->sens.fixed = 1; 9105 wrqu->sens.value = priv->roaming_threshold; 9106 mutex_unlock(&priv->mutex); 9107 9108 IPW_DEBUG_WX("GET roaming threshold -> %s %d\n", 9109 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value); 9110 9111 return 0; 9112 } 9113 9114 static int ipw_wx_set_rate(struct net_device *dev, 9115 struct iw_request_info *info, 9116 union iwreq_data *wrqu, char *extra) 9117 { 9118 /* TODO: We should use semaphores or locks for access to priv */ 9119 struct ipw_priv *priv = libipw_priv(dev); 9120 u32 target_rate = wrqu->bitrate.value; 9121 u32 fixed, mask; 9122 9123 /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */ 9124 /* value = X, fixed = 1 means only rate X */ 9125 /* value = X, fixed = 0 means all rates lower equal X */ 9126 9127 if (target_rate == -1) { 9128 fixed = 0; 9129 mask = LIBIPW_DEFAULT_RATES_MASK; 9130 /* Now we should reassociate */ 9131 goto apply; 9132 } 9133 9134 mask = 0; 9135 fixed = wrqu->bitrate.fixed; 9136 9137 if (target_rate == 1000000 || !fixed) 9138 mask |= LIBIPW_CCK_RATE_1MB_MASK; 9139 if (target_rate == 1000000) 9140 goto apply; 9141 9142 if (target_rate == 2000000 || !fixed) 9143 mask |= LIBIPW_CCK_RATE_2MB_MASK; 9144 if (target_rate == 2000000) 9145 goto apply; 9146 9147 if (target_rate == 5500000 || !fixed) 9148 mask |= LIBIPW_CCK_RATE_5MB_MASK; 9149 if (target_rate == 5500000) 9150 goto apply; 9151 9152 if (target_rate == 6000000 || !fixed) 9153 mask |= LIBIPW_OFDM_RATE_6MB_MASK; 9154 if (target_rate == 6000000) 9155 goto apply; 9156 9157 if (target_rate == 9000000 || !fixed) 9158 mask |= LIBIPW_OFDM_RATE_9MB_MASK; 9159 if (target_rate == 9000000) 9160 goto apply; 9161 9162 if (target_rate == 11000000 || !fixed) 9163 mask |= LIBIPW_CCK_RATE_11MB_MASK; 9164 if (target_rate == 11000000) 9165 goto apply; 9166 9167 if (target_rate == 12000000 || !fixed) 9168 mask |= LIBIPW_OFDM_RATE_12MB_MASK; 9169 if (target_rate == 12000000) 9170 goto apply; 9171 9172 if (target_rate == 18000000 || !fixed) 9173 mask |= LIBIPW_OFDM_RATE_18MB_MASK; 9174 if (target_rate == 18000000) 9175 goto apply; 9176 9177 if (target_rate == 24000000 || !fixed) 9178 mask |= LIBIPW_OFDM_RATE_24MB_MASK; 9179 if (target_rate == 24000000) 9180 goto apply; 9181 9182 if (target_rate == 36000000 || !fixed) 9183 mask |= LIBIPW_OFDM_RATE_36MB_MASK; 9184 if (target_rate == 36000000) 9185 goto apply; 9186 9187 if (target_rate == 48000000 || !fixed) 9188 mask |= LIBIPW_OFDM_RATE_48MB_MASK; 9189 if (target_rate == 48000000) 9190 goto apply; 9191 9192 if (target_rate == 54000000 || !fixed) 9193 mask |= LIBIPW_OFDM_RATE_54MB_MASK; 9194 if (target_rate == 54000000) 9195 goto apply; 9196 9197 IPW_DEBUG_WX("invalid rate specified, returning error\n"); 9198 return -EINVAL; 9199 9200 apply: 9201 IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n", 9202 mask, fixed ? "fixed" : "sub-rates"); 9203 mutex_lock(&priv->mutex); 9204 if (mask == LIBIPW_DEFAULT_RATES_MASK) { 9205 priv->config &= ~CFG_FIXED_RATE; 9206 ipw_set_fixed_rate(priv, priv->ieee->mode); 9207 } else 9208 priv->config |= CFG_FIXED_RATE; 9209 9210 if (priv->rates_mask == mask) { 9211 IPW_DEBUG_WX("Mask set to current mask.\n"); 9212 mutex_unlock(&priv->mutex); 9213 return 0; 9214 } 9215 9216 priv->rates_mask = mask; 9217 9218 /* Network configuration changed -- force [re]association */ 9219 IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n"); 9220 if (!ipw_disassociate(priv)) 9221 ipw_associate(priv); 9222 9223 mutex_unlock(&priv->mutex); 9224 return 0; 9225 } 9226 9227 static int ipw_wx_get_rate(struct net_device *dev, 9228 struct iw_request_info *info, 9229 union iwreq_data *wrqu, char *extra) 9230 { 9231 struct ipw_priv *priv = libipw_priv(dev); 9232 mutex_lock(&priv->mutex); 9233 wrqu->bitrate.value = priv->last_rate; 9234 wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0; 9235 mutex_unlock(&priv->mutex); 9236 IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value); 9237 return 0; 9238 } 9239 9240 static int ipw_wx_set_rts(struct net_device *dev, 9241 struct iw_request_info *info, 9242 union iwreq_data *wrqu, char *extra) 9243 { 9244 struct ipw_priv *priv = libipw_priv(dev); 9245 mutex_lock(&priv->mutex); 9246 if (wrqu->rts.disabled || !wrqu->rts.fixed) 9247 priv->rts_threshold = DEFAULT_RTS_THRESHOLD; 9248 else { 9249 if (wrqu->rts.value < MIN_RTS_THRESHOLD || 9250 wrqu->rts.value > MAX_RTS_THRESHOLD) { 9251 mutex_unlock(&priv->mutex); 9252 return -EINVAL; 9253 } 9254 priv->rts_threshold = wrqu->rts.value; 9255 } 9256 9257 ipw_send_rts_threshold(priv, priv->rts_threshold); 9258 mutex_unlock(&priv->mutex); 9259 IPW_DEBUG_WX("SET RTS Threshold -> %d\n", priv->rts_threshold); 9260 return 0; 9261 } 9262 9263 static int ipw_wx_get_rts(struct net_device *dev, 9264 struct iw_request_info *info, 9265 union iwreq_data *wrqu, char *extra) 9266 { 9267 struct ipw_priv *priv = libipw_priv(dev); 9268 mutex_lock(&priv->mutex); 9269 wrqu->rts.value = priv->rts_threshold; 9270 wrqu->rts.fixed = 0; /* no auto select */ 9271 wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD); 9272 mutex_unlock(&priv->mutex); 9273 IPW_DEBUG_WX("GET RTS Threshold -> %d\n", wrqu->rts.value); 9274 return 0; 9275 } 9276 9277 static int ipw_wx_set_txpow(struct net_device *dev, 9278 struct iw_request_info *info, 9279 union iwreq_data *wrqu, char *extra) 9280 { 9281 struct ipw_priv *priv = libipw_priv(dev); 9282 int err = 0; 9283 9284 mutex_lock(&priv->mutex); 9285 if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) { 9286 err = -EINPROGRESS; 9287 goto out; 9288 } 9289 9290 if (!wrqu->power.fixed) 9291 wrqu->power.value = IPW_TX_POWER_DEFAULT; 9292 9293 if (wrqu->power.flags != IW_TXPOW_DBM) { 9294 err = -EINVAL; 9295 goto out; 9296 } 9297 9298 if ((wrqu->power.value > IPW_TX_POWER_MAX) || 9299 (wrqu->power.value < IPW_TX_POWER_MIN)) { 9300 err = -EINVAL; 9301 goto out; 9302 } 9303 9304 priv->tx_power = wrqu->power.value; 9305 err = ipw_set_tx_power(priv); 9306 out: 9307 mutex_unlock(&priv->mutex); 9308 return err; 9309 } 9310 9311 static int ipw_wx_get_txpow(struct net_device *dev, 9312 struct iw_request_info *info, 9313 union iwreq_data *wrqu, char *extra) 9314 { 9315 struct ipw_priv *priv = libipw_priv(dev); 9316 mutex_lock(&priv->mutex); 9317 wrqu->power.value = priv->tx_power; 9318 wrqu->power.fixed = 1; 9319 wrqu->power.flags = IW_TXPOW_DBM; 9320 wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0; 9321 mutex_unlock(&priv->mutex); 9322 9323 IPW_DEBUG_WX("GET TX Power -> %s %d\n", 9324 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value); 9325 9326 return 0; 9327 } 9328 9329 static int ipw_wx_set_frag(struct net_device *dev, 9330 struct iw_request_info *info, 9331 union iwreq_data *wrqu, char *extra) 9332 { 9333 struct ipw_priv *priv = libipw_priv(dev); 9334 mutex_lock(&priv->mutex); 9335 if (wrqu->frag.disabled || !wrqu->frag.fixed) 9336 priv->ieee->fts = DEFAULT_FTS; 9337 else { 9338 if (wrqu->frag.value < MIN_FRAG_THRESHOLD || 9339 wrqu->frag.value > MAX_FRAG_THRESHOLD) { 9340 mutex_unlock(&priv->mutex); 9341 return -EINVAL; 9342 } 9343 9344 priv->ieee->fts = wrqu->frag.value & ~0x1; 9345 } 9346 9347 ipw_send_frag_threshold(priv, wrqu->frag.value); 9348 mutex_unlock(&priv->mutex); 9349 IPW_DEBUG_WX("SET Frag Threshold -> %d\n", wrqu->frag.value); 9350 return 0; 9351 } 9352 9353 static int ipw_wx_get_frag(struct net_device *dev, 9354 struct iw_request_info *info, 9355 union iwreq_data *wrqu, char *extra) 9356 { 9357 struct ipw_priv *priv = libipw_priv(dev); 9358 mutex_lock(&priv->mutex); 9359 wrqu->frag.value = priv->ieee->fts; 9360 wrqu->frag.fixed = 0; /* no auto select */ 9361 wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS); 9362 mutex_unlock(&priv->mutex); 9363 IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value); 9364 9365 return 0; 9366 } 9367 9368 static int ipw_wx_set_retry(struct net_device *dev, 9369 struct iw_request_info *info, 9370 union iwreq_data *wrqu, char *extra) 9371 { 9372 struct ipw_priv *priv = libipw_priv(dev); 9373 9374 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled) 9375 return -EINVAL; 9376 9377 if (!(wrqu->retry.flags & IW_RETRY_LIMIT)) 9378 return 0; 9379 9380 if (wrqu->retry.value < 0 || wrqu->retry.value >= 255) 9381 return -EINVAL; 9382 9383 mutex_lock(&priv->mutex); 9384 if (wrqu->retry.flags & IW_RETRY_SHORT) 9385 priv->short_retry_limit = (u8) wrqu->retry.value; 9386 else if (wrqu->retry.flags & IW_RETRY_LONG) 9387 priv->long_retry_limit = (u8) wrqu->retry.value; 9388 else { 9389 priv->short_retry_limit = (u8) wrqu->retry.value; 9390 priv->long_retry_limit = (u8) wrqu->retry.value; 9391 } 9392 9393 ipw_send_retry_limit(priv, priv->short_retry_limit, 9394 priv->long_retry_limit); 9395 mutex_unlock(&priv->mutex); 9396 IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n", 9397 priv->short_retry_limit, priv->long_retry_limit); 9398 return 0; 9399 } 9400 9401 static int ipw_wx_get_retry(struct net_device *dev, 9402 struct iw_request_info *info, 9403 union iwreq_data *wrqu, char *extra) 9404 { 9405 struct ipw_priv *priv = libipw_priv(dev); 9406 9407 mutex_lock(&priv->mutex); 9408 wrqu->retry.disabled = 0; 9409 9410 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) { 9411 mutex_unlock(&priv->mutex); 9412 return -EINVAL; 9413 } 9414 9415 if (wrqu->retry.flags & IW_RETRY_LONG) { 9416 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG; 9417 wrqu->retry.value = priv->long_retry_limit; 9418 } else if (wrqu->retry.flags & IW_RETRY_SHORT) { 9419 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT; 9420 wrqu->retry.value = priv->short_retry_limit; 9421 } else { 9422 wrqu->retry.flags = IW_RETRY_LIMIT; 9423 wrqu->retry.value = priv->short_retry_limit; 9424 } 9425 mutex_unlock(&priv->mutex); 9426 9427 IPW_DEBUG_WX("GET retry -> %d\n", wrqu->retry.value); 9428 9429 return 0; 9430 } 9431 9432 static int ipw_wx_set_scan(struct net_device *dev, 9433 struct iw_request_info *info, 9434 union iwreq_data *wrqu, char *extra) 9435 { 9436 struct ipw_priv *priv = libipw_priv(dev); 9437 struct iw_scan_req *req = (struct iw_scan_req *)extra; 9438 struct delayed_work *work = NULL; 9439 9440 mutex_lock(&priv->mutex); 9441 9442 priv->user_requested_scan = 1; 9443 9444 if (wrqu->data.length == sizeof(struct iw_scan_req)) { 9445 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) { 9446 int len = min((int)req->essid_len, 9447 (int)sizeof(priv->direct_scan_ssid)); 9448 memcpy(priv->direct_scan_ssid, req->essid, len); 9449 priv->direct_scan_ssid_len = len; 9450 work = &priv->request_direct_scan; 9451 } else if (req->scan_type == IW_SCAN_TYPE_PASSIVE) { 9452 work = &priv->request_passive_scan; 9453 } 9454 } else { 9455 /* Normal active broadcast scan */ 9456 work = &priv->request_scan; 9457 } 9458 9459 mutex_unlock(&priv->mutex); 9460 9461 IPW_DEBUG_WX("Start scan\n"); 9462 9463 schedule_delayed_work(work, 0); 9464 9465 return 0; 9466 } 9467 9468 static int ipw_wx_get_scan(struct net_device *dev, 9469 struct iw_request_info *info, 9470 union iwreq_data *wrqu, char *extra) 9471 { 9472 struct ipw_priv *priv = libipw_priv(dev); 9473 return libipw_wx_get_scan(priv->ieee, info, wrqu, extra); 9474 } 9475 9476 static int ipw_wx_set_encode(struct net_device *dev, 9477 struct iw_request_info *info, 9478 union iwreq_data *wrqu, char *key) 9479 { 9480 struct ipw_priv *priv = libipw_priv(dev); 9481 int ret; 9482 u32 cap = priv->capability; 9483 9484 mutex_lock(&priv->mutex); 9485 ret = libipw_wx_set_encode(priv->ieee, info, wrqu, key); 9486 9487 /* In IBSS mode, we need to notify the firmware to update 9488 * the beacon info after we changed the capability. */ 9489 if (cap != priv->capability && 9490 priv->ieee->iw_mode == IW_MODE_ADHOC && 9491 priv->status & STATUS_ASSOCIATED) 9492 ipw_disassociate(priv); 9493 9494 mutex_unlock(&priv->mutex); 9495 return ret; 9496 } 9497 9498 static int ipw_wx_get_encode(struct net_device *dev, 9499 struct iw_request_info *info, 9500 union iwreq_data *wrqu, char *key) 9501 { 9502 struct ipw_priv *priv = libipw_priv(dev); 9503 return libipw_wx_get_encode(priv->ieee, info, wrqu, key); 9504 } 9505 9506 static int ipw_wx_set_power(struct net_device *dev, 9507 struct iw_request_info *info, 9508 union iwreq_data *wrqu, char *extra) 9509 { 9510 struct ipw_priv *priv = libipw_priv(dev); 9511 int err; 9512 mutex_lock(&priv->mutex); 9513 if (wrqu->power.disabled) { 9514 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode); 9515 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM); 9516 if (err) { 9517 IPW_DEBUG_WX("failed setting power mode.\n"); 9518 mutex_unlock(&priv->mutex); 9519 return err; 9520 } 9521 IPW_DEBUG_WX("SET Power Management Mode -> off\n"); 9522 mutex_unlock(&priv->mutex); 9523 return 0; 9524 } 9525 9526 switch (wrqu->power.flags & IW_POWER_MODE) { 9527 case IW_POWER_ON: /* If not specified */ 9528 case IW_POWER_MODE: /* If set all mask */ 9529 case IW_POWER_ALL_R: /* If explicitly state all */ 9530 break; 9531 default: /* Otherwise we don't support it */ 9532 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n", 9533 wrqu->power.flags); 9534 mutex_unlock(&priv->mutex); 9535 return -EOPNOTSUPP; 9536 } 9537 9538 /* If the user hasn't specified a power management mode yet, default 9539 * to BATTERY */ 9540 if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC) 9541 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY; 9542 else 9543 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode; 9544 9545 err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode)); 9546 if (err) { 9547 IPW_DEBUG_WX("failed setting power mode.\n"); 9548 mutex_unlock(&priv->mutex); 9549 return err; 9550 } 9551 9552 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode); 9553 mutex_unlock(&priv->mutex); 9554 return 0; 9555 } 9556 9557 static int ipw_wx_get_power(struct net_device *dev, 9558 struct iw_request_info *info, 9559 union iwreq_data *wrqu, char *extra) 9560 { 9561 struct ipw_priv *priv = libipw_priv(dev); 9562 mutex_lock(&priv->mutex); 9563 if (!(priv->power_mode & IPW_POWER_ENABLED)) 9564 wrqu->power.disabled = 1; 9565 else 9566 wrqu->power.disabled = 0; 9567 9568 mutex_unlock(&priv->mutex); 9569 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode); 9570 9571 return 0; 9572 } 9573 9574 static int ipw_wx_set_powermode(struct net_device *dev, 9575 struct iw_request_info *info, 9576 union iwreq_data *wrqu, char *extra) 9577 { 9578 struct ipw_priv *priv = libipw_priv(dev); 9579 int mode = *(int *)extra; 9580 int err; 9581 9582 mutex_lock(&priv->mutex); 9583 if ((mode < 1) || (mode > IPW_POWER_LIMIT)) 9584 mode = IPW_POWER_AC; 9585 9586 if (IPW_POWER_LEVEL(priv->power_mode) != mode) { 9587 err = ipw_send_power_mode(priv, mode); 9588 if (err) { 9589 IPW_DEBUG_WX("failed setting power mode.\n"); 9590 mutex_unlock(&priv->mutex); 9591 return err; 9592 } 9593 priv->power_mode = IPW_POWER_ENABLED | mode; 9594 } 9595 mutex_unlock(&priv->mutex); 9596 return 0; 9597 } 9598 9599 #define MAX_WX_STRING 80 9600 static int ipw_wx_get_powermode(struct net_device *dev, 9601 struct iw_request_info *info, 9602 union iwreq_data *wrqu, char *extra) 9603 { 9604 struct ipw_priv *priv = libipw_priv(dev); 9605 int level = IPW_POWER_LEVEL(priv->power_mode); 9606 char *p = extra; 9607 9608 p += scnprintf(p, MAX_WX_STRING, "Power save level: %d ", level); 9609 9610 switch (level) { 9611 case IPW_POWER_AC: 9612 p += scnprintf(p, MAX_WX_STRING - (p - extra), "(AC)"); 9613 break; 9614 case IPW_POWER_BATTERY: 9615 p += scnprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)"); 9616 break; 9617 default: 9618 p += scnprintf(p, MAX_WX_STRING - (p - extra), 9619 "(Timeout %dms, Period %dms)", 9620 timeout_duration[level - 1] / 1000, 9621 period_duration[level - 1] / 1000); 9622 } 9623 9624 if (!(priv->power_mode & IPW_POWER_ENABLED)) 9625 p += scnprintf(p, MAX_WX_STRING - (p - extra), " OFF"); 9626 9627 wrqu->data.length = p - extra + 1; 9628 9629 return 0; 9630 } 9631 9632 static int ipw_wx_set_wireless_mode(struct net_device *dev, 9633 struct iw_request_info *info, 9634 union iwreq_data *wrqu, char *extra) 9635 { 9636 struct ipw_priv *priv = libipw_priv(dev); 9637 int mode = *(int *)extra; 9638 u8 band = 0, modulation = 0; 9639 9640 if (mode == 0 || mode & ~IEEE_MODE_MASK) { 9641 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode); 9642 return -EINVAL; 9643 } 9644 mutex_lock(&priv->mutex); 9645 if (priv->adapter == IPW_2915ABG) { 9646 priv->ieee->abg_true = 1; 9647 if (mode & IEEE_A) { 9648 band |= LIBIPW_52GHZ_BAND; 9649 modulation |= LIBIPW_OFDM_MODULATION; 9650 } else 9651 priv->ieee->abg_true = 0; 9652 } else { 9653 if (mode & IEEE_A) { 9654 IPW_WARNING("Attempt to set 2200BG into " 9655 "802.11a mode\n"); 9656 mutex_unlock(&priv->mutex); 9657 return -EINVAL; 9658 } 9659 9660 priv->ieee->abg_true = 0; 9661 } 9662 9663 if (mode & IEEE_B) { 9664 band |= LIBIPW_24GHZ_BAND; 9665 modulation |= LIBIPW_CCK_MODULATION; 9666 } else 9667 priv->ieee->abg_true = 0; 9668 9669 if (mode & IEEE_G) { 9670 band |= LIBIPW_24GHZ_BAND; 9671 modulation |= LIBIPW_OFDM_MODULATION; 9672 } else 9673 priv->ieee->abg_true = 0; 9674 9675 priv->ieee->mode = mode; 9676 priv->ieee->freq_band = band; 9677 priv->ieee->modulation = modulation; 9678 init_supported_rates(priv, &priv->rates); 9679 9680 /* Network configuration changed -- force [re]association */ 9681 IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n"); 9682 if (!ipw_disassociate(priv)) { 9683 ipw_send_supported_rates(priv, &priv->rates); 9684 ipw_associate(priv); 9685 } 9686 9687 /* Update the band LEDs */ 9688 ipw_led_band_on(priv); 9689 9690 IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n", 9691 mode & IEEE_A ? 'a' : '.', 9692 mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.'); 9693 mutex_unlock(&priv->mutex); 9694 return 0; 9695 } 9696 9697 static int ipw_wx_get_wireless_mode(struct net_device *dev, 9698 struct iw_request_info *info, 9699 union iwreq_data *wrqu, char *extra) 9700 { 9701 struct ipw_priv *priv = libipw_priv(dev); 9702 mutex_lock(&priv->mutex); 9703 switch (priv->ieee->mode) { 9704 case IEEE_A: 9705 strncpy(extra, "802.11a (1)", MAX_WX_STRING); 9706 break; 9707 case IEEE_B: 9708 strncpy(extra, "802.11b (2)", MAX_WX_STRING); 9709 break; 9710 case IEEE_A | IEEE_B: 9711 strncpy(extra, "802.11ab (3)", MAX_WX_STRING); 9712 break; 9713 case IEEE_G: 9714 strncpy(extra, "802.11g (4)", MAX_WX_STRING); 9715 break; 9716 case IEEE_A | IEEE_G: 9717 strncpy(extra, "802.11ag (5)", MAX_WX_STRING); 9718 break; 9719 case IEEE_B | IEEE_G: 9720 strncpy(extra, "802.11bg (6)", MAX_WX_STRING); 9721 break; 9722 case IEEE_A | IEEE_B | IEEE_G: 9723 strncpy(extra, "802.11abg (7)", MAX_WX_STRING); 9724 break; 9725 default: 9726 strncpy(extra, "unknown", MAX_WX_STRING); 9727 break; 9728 } 9729 extra[MAX_WX_STRING - 1] = '\0'; 9730 9731 IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra); 9732 9733 wrqu->data.length = strlen(extra) + 1; 9734 mutex_unlock(&priv->mutex); 9735 9736 return 0; 9737 } 9738 9739 static int ipw_wx_set_preamble(struct net_device *dev, 9740 struct iw_request_info *info, 9741 union iwreq_data *wrqu, char *extra) 9742 { 9743 struct ipw_priv *priv = libipw_priv(dev); 9744 int mode = *(int *)extra; 9745 mutex_lock(&priv->mutex); 9746 /* Switching from SHORT -> LONG requires a disassociation */ 9747 if (mode == 1) { 9748 if (!(priv->config & CFG_PREAMBLE_LONG)) { 9749 priv->config |= CFG_PREAMBLE_LONG; 9750 9751 /* Network configuration changed -- force [re]association */ 9752 IPW_DEBUG_ASSOC 9753 ("[re]association triggered due to preamble change.\n"); 9754 if (!ipw_disassociate(priv)) 9755 ipw_associate(priv); 9756 } 9757 goto done; 9758 } 9759 9760 if (mode == 0) { 9761 priv->config &= ~CFG_PREAMBLE_LONG; 9762 goto done; 9763 } 9764 mutex_unlock(&priv->mutex); 9765 return -EINVAL; 9766 9767 done: 9768 mutex_unlock(&priv->mutex); 9769 return 0; 9770 } 9771 9772 static int ipw_wx_get_preamble(struct net_device *dev, 9773 struct iw_request_info *info, 9774 union iwreq_data *wrqu, char *extra) 9775 { 9776 struct ipw_priv *priv = libipw_priv(dev); 9777 mutex_lock(&priv->mutex); 9778 if (priv->config & CFG_PREAMBLE_LONG) 9779 snprintf(wrqu->name, IFNAMSIZ, "long (1)"); 9780 else 9781 snprintf(wrqu->name, IFNAMSIZ, "auto (0)"); 9782 mutex_unlock(&priv->mutex); 9783 return 0; 9784 } 9785 9786 #ifdef CONFIG_IPW2200_MONITOR 9787 static int ipw_wx_set_monitor(struct net_device *dev, 9788 struct iw_request_info *info, 9789 union iwreq_data *wrqu, char *extra) 9790 { 9791 struct ipw_priv *priv = libipw_priv(dev); 9792 int *parms = (int *)extra; 9793 int enable = (parms[0] > 0); 9794 mutex_lock(&priv->mutex); 9795 IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]); 9796 if (enable) { 9797 if (priv->ieee->iw_mode != IW_MODE_MONITOR) { 9798 #ifdef CONFIG_IPW2200_RADIOTAP 9799 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP; 9800 #else 9801 priv->net_dev->type = ARPHRD_IEEE80211; 9802 #endif 9803 schedule_work(&priv->adapter_restart); 9804 } 9805 9806 ipw_set_channel(priv, parms[1]); 9807 } else { 9808 if (priv->ieee->iw_mode != IW_MODE_MONITOR) { 9809 mutex_unlock(&priv->mutex); 9810 return 0; 9811 } 9812 priv->net_dev->type = ARPHRD_ETHER; 9813 schedule_work(&priv->adapter_restart); 9814 } 9815 mutex_unlock(&priv->mutex); 9816 return 0; 9817 } 9818 9819 #endif /* CONFIG_IPW2200_MONITOR */ 9820 9821 static int ipw_wx_reset(struct net_device *dev, 9822 struct iw_request_info *info, 9823 union iwreq_data *wrqu, char *extra) 9824 { 9825 struct ipw_priv *priv = libipw_priv(dev); 9826 IPW_DEBUG_WX("RESET\n"); 9827 schedule_work(&priv->adapter_restart); 9828 return 0; 9829 } 9830 9831 static int ipw_wx_sw_reset(struct net_device *dev, 9832 struct iw_request_info *info, 9833 union iwreq_data *wrqu, char *extra) 9834 { 9835 struct ipw_priv *priv = libipw_priv(dev); 9836 union iwreq_data wrqu_sec = { 9837 .encoding = { 9838 .flags = IW_ENCODE_DISABLED, 9839 }, 9840 }; 9841 int ret; 9842 9843 IPW_DEBUG_WX("SW_RESET\n"); 9844 9845 mutex_lock(&priv->mutex); 9846 9847 ret = ipw_sw_reset(priv, 2); 9848 if (!ret) { 9849 free_firmware(); 9850 ipw_adapter_restart(priv); 9851 } 9852 9853 /* The SW reset bit might have been toggled on by the 'disable' 9854 * module parameter, so take appropriate action */ 9855 ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW); 9856 9857 mutex_unlock(&priv->mutex); 9858 libipw_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL); 9859 mutex_lock(&priv->mutex); 9860 9861 if (!(priv->status & STATUS_RF_KILL_MASK)) { 9862 /* Configuration likely changed -- force [re]association */ 9863 IPW_DEBUG_ASSOC("[re]association triggered due to sw " 9864 "reset.\n"); 9865 if (!ipw_disassociate(priv)) 9866 ipw_associate(priv); 9867 } 9868 9869 mutex_unlock(&priv->mutex); 9870 9871 return 0; 9872 } 9873 9874 /* Rebase the WE IOCTLs to zero for the handler array */ 9875 static iw_handler ipw_wx_handlers[] = { 9876 IW_HANDLER(SIOCGIWNAME, (iw_handler)cfg80211_wext_giwname), 9877 IW_HANDLER(SIOCSIWFREQ, ipw_wx_set_freq), 9878 IW_HANDLER(SIOCGIWFREQ, ipw_wx_get_freq), 9879 IW_HANDLER(SIOCSIWMODE, ipw_wx_set_mode), 9880 IW_HANDLER(SIOCGIWMODE, ipw_wx_get_mode), 9881 IW_HANDLER(SIOCSIWSENS, ipw_wx_set_sens), 9882 IW_HANDLER(SIOCGIWSENS, ipw_wx_get_sens), 9883 IW_HANDLER(SIOCGIWRANGE, ipw_wx_get_range), 9884 IW_HANDLER(SIOCSIWAP, ipw_wx_set_wap), 9885 IW_HANDLER(SIOCGIWAP, ipw_wx_get_wap), 9886 IW_HANDLER(SIOCSIWSCAN, ipw_wx_set_scan), 9887 IW_HANDLER(SIOCGIWSCAN, ipw_wx_get_scan), 9888 IW_HANDLER(SIOCSIWESSID, ipw_wx_set_essid), 9889 IW_HANDLER(SIOCGIWESSID, ipw_wx_get_essid), 9890 IW_HANDLER(SIOCSIWNICKN, ipw_wx_set_nick), 9891 IW_HANDLER(SIOCGIWNICKN, ipw_wx_get_nick), 9892 IW_HANDLER(SIOCSIWRATE, ipw_wx_set_rate), 9893 IW_HANDLER(SIOCGIWRATE, ipw_wx_get_rate), 9894 IW_HANDLER(SIOCSIWRTS, ipw_wx_set_rts), 9895 IW_HANDLER(SIOCGIWRTS, ipw_wx_get_rts), 9896 IW_HANDLER(SIOCSIWFRAG, ipw_wx_set_frag), 9897 IW_HANDLER(SIOCGIWFRAG, ipw_wx_get_frag), 9898 IW_HANDLER(SIOCSIWTXPOW, ipw_wx_set_txpow), 9899 IW_HANDLER(SIOCGIWTXPOW, ipw_wx_get_txpow), 9900 IW_HANDLER(SIOCSIWRETRY, ipw_wx_set_retry), 9901 IW_HANDLER(SIOCGIWRETRY, ipw_wx_get_retry), 9902 IW_HANDLER(SIOCSIWENCODE, ipw_wx_set_encode), 9903 IW_HANDLER(SIOCGIWENCODE, ipw_wx_get_encode), 9904 IW_HANDLER(SIOCSIWPOWER, ipw_wx_set_power), 9905 IW_HANDLER(SIOCGIWPOWER, ipw_wx_get_power), 9906 IW_HANDLER(SIOCSIWSPY, iw_handler_set_spy), 9907 IW_HANDLER(SIOCGIWSPY, iw_handler_get_spy), 9908 IW_HANDLER(SIOCSIWTHRSPY, iw_handler_set_thrspy), 9909 IW_HANDLER(SIOCGIWTHRSPY, iw_handler_get_thrspy), 9910 IW_HANDLER(SIOCSIWGENIE, ipw_wx_set_genie), 9911 IW_HANDLER(SIOCGIWGENIE, ipw_wx_get_genie), 9912 IW_HANDLER(SIOCSIWMLME, ipw_wx_set_mlme), 9913 IW_HANDLER(SIOCSIWAUTH, ipw_wx_set_auth), 9914 IW_HANDLER(SIOCGIWAUTH, ipw_wx_get_auth), 9915 IW_HANDLER(SIOCSIWENCODEEXT, ipw_wx_set_encodeext), 9916 IW_HANDLER(SIOCGIWENCODEEXT, ipw_wx_get_encodeext), 9917 }; 9918 9919 enum { 9920 IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV, 9921 IPW_PRIV_GET_POWER, 9922 IPW_PRIV_SET_MODE, 9923 IPW_PRIV_GET_MODE, 9924 IPW_PRIV_SET_PREAMBLE, 9925 IPW_PRIV_GET_PREAMBLE, 9926 IPW_PRIV_RESET, 9927 IPW_PRIV_SW_RESET, 9928 #ifdef CONFIG_IPW2200_MONITOR 9929 IPW_PRIV_SET_MONITOR, 9930 #endif 9931 }; 9932 9933 static struct iw_priv_args ipw_priv_args[] = { 9934 { 9935 .cmd = IPW_PRIV_SET_POWER, 9936 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 9937 .name = "set_power"}, 9938 { 9939 .cmd = IPW_PRIV_GET_POWER, 9940 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING, 9941 .name = "get_power"}, 9942 { 9943 .cmd = IPW_PRIV_SET_MODE, 9944 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 9945 .name = "set_mode"}, 9946 { 9947 .cmd = IPW_PRIV_GET_MODE, 9948 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING, 9949 .name = "get_mode"}, 9950 { 9951 .cmd = IPW_PRIV_SET_PREAMBLE, 9952 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 9953 .name = "set_preamble"}, 9954 { 9955 .cmd = IPW_PRIV_GET_PREAMBLE, 9956 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, 9957 .name = "get_preamble"}, 9958 { 9959 IPW_PRIV_RESET, 9960 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"}, 9961 { 9962 IPW_PRIV_SW_RESET, 9963 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"}, 9964 #ifdef CONFIG_IPW2200_MONITOR 9965 { 9966 IPW_PRIV_SET_MONITOR, 9967 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"}, 9968 #endif /* CONFIG_IPW2200_MONITOR */ 9969 }; 9970 9971 static iw_handler ipw_priv_handler[] = { 9972 ipw_wx_set_powermode, 9973 ipw_wx_get_powermode, 9974 ipw_wx_set_wireless_mode, 9975 ipw_wx_get_wireless_mode, 9976 ipw_wx_set_preamble, 9977 ipw_wx_get_preamble, 9978 ipw_wx_reset, 9979 ipw_wx_sw_reset, 9980 #ifdef CONFIG_IPW2200_MONITOR 9981 ipw_wx_set_monitor, 9982 #endif 9983 }; 9984 9985 static const struct iw_handler_def ipw_wx_handler_def = { 9986 .standard = ipw_wx_handlers, 9987 .num_standard = ARRAY_SIZE(ipw_wx_handlers), 9988 .num_private = ARRAY_SIZE(ipw_priv_handler), 9989 .num_private_args = ARRAY_SIZE(ipw_priv_args), 9990 .private = ipw_priv_handler, 9991 .private_args = ipw_priv_args, 9992 .get_wireless_stats = ipw_get_wireless_stats, 9993 }; 9994 9995 /* 9996 * Get wireless statistics. 9997 * Called by /proc/net/wireless 9998 * Also called by SIOCGIWSTATS 9999 */ 10000 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev) 10001 { 10002 struct ipw_priv *priv = libipw_priv(dev); 10003 struct iw_statistics *wstats; 10004 10005 wstats = &priv->wstats; 10006 10007 /* if hw is disabled, then ipw_get_ordinal() can't be called. 10008 * netdev->get_wireless_stats seems to be called before fw is 10009 * initialized. STATUS_ASSOCIATED will only be set if the hw is up 10010 * and associated; if not associcated, the values are all meaningless 10011 * anyway, so set them all to NULL and INVALID */ 10012 if (!(priv->status & STATUS_ASSOCIATED)) { 10013 wstats->miss.beacon = 0; 10014 wstats->discard.retries = 0; 10015 wstats->qual.qual = 0; 10016 wstats->qual.level = 0; 10017 wstats->qual.noise = 0; 10018 wstats->qual.updated = 7; 10019 wstats->qual.updated |= IW_QUAL_NOISE_INVALID | 10020 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID; 10021 return wstats; 10022 } 10023 10024 wstats->qual.qual = priv->quality; 10025 wstats->qual.level = priv->exp_avg_rssi; 10026 wstats->qual.noise = priv->exp_avg_noise; 10027 wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED | 10028 IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM; 10029 10030 wstats->miss.beacon = average_value(&priv->average_missed_beacons); 10031 wstats->discard.retries = priv->last_tx_failures; 10032 wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable; 10033 10034 /* if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len)) 10035 goto fail_get_ordinal; 10036 wstats->discard.retries += tx_retry; */ 10037 10038 return wstats; 10039 } 10040 10041 /* net device stuff */ 10042 10043 static void init_sys_config(struct ipw_sys_config *sys_config) 10044 { 10045 memset(sys_config, 0, sizeof(struct ipw_sys_config)); 10046 sys_config->bt_coexistence = 0; 10047 sys_config->answer_broadcast_ssid_probe = 0; 10048 sys_config->accept_all_data_frames = 0; 10049 sys_config->accept_non_directed_frames = 1; 10050 sys_config->exclude_unicast_unencrypted = 0; 10051 sys_config->disable_unicast_decryption = 1; 10052 sys_config->exclude_multicast_unencrypted = 0; 10053 sys_config->disable_multicast_decryption = 1; 10054 if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B) 10055 antenna = CFG_SYS_ANTENNA_BOTH; 10056 sys_config->antenna_diversity = antenna; 10057 sys_config->pass_crc_to_host = 0; /* TODO: See if 1 gives us FCS */ 10058 sys_config->dot11g_auto_detection = 0; 10059 sys_config->enable_cts_to_self = 0; 10060 sys_config->bt_coexist_collision_thr = 0; 10061 sys_config->pass_noise_stats_to_host = 1; /* 1 -- fix for 256 */ 10062 sys_config->silence_threshold = 0x1e; 10063 } 10064 10065 static int ipw_net_open(struct net_device *dev) 10066 { 10067 IPW_DEBUG_INFO("dev->open\n"); 10068 netif_start_queue(dev); 10069 return 0; 10070 } 10071 10072 static int ipw_net_stop(struct net_device *dev) 10073 { 10074 IPW_DEBUG_INFO("dev->close\n"); 10075 netif_stop_queue(dev); 10076 return 0; 10077 } 10078 10079 /* 10080 todo: 10081 10082 modify to send one tfd per fragment instead of using chunking. otherwise 10083 we need to heavily modify the libipw_skb_to_txb. 10084 */ 10085 10086 static int ipw_tx_skb(struct ipw_priv *priv, struct libipw_txb *txb, 10087 int pri) 10088 { 10089 struct libipw_hdr_3addrqos *hdr = (struct libipw_hdr_3addrqos *) 10090 txb->fragments[0]->data; 10091 int i = 0; 10092 struct tfd_frame *tfd; 10093 #ifdef CONFIG_IPW2200_QOS 10094 int tx_id = ipw_get_tx_queue_number(priv, pri); 10095 struct clx2_tx_queue *txq = &priv->txq[tx_id]; 10096 #else 10097 struct clx2_tx_queue *txq = &priv->txq[0]; 10098 #endif 10099 struct clx2_queue *q = &txq->q; 10100 u8 id, hdr_len, unicast; 10101 int fc; 10102 10103 if (!(priv->status & STATUS_ASSOCIATED)) 10104 goto drop; 10105 10106 hdr_len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_ctl)); 10107 switch (priv->ieee->iw_mode) { 10108 case IW_MODE_ADHOC: 10109 unicast = !is_multicast_ether_addr(hdr->addr1); 10110 id = ipw_find_station(priv, hdr->addr1); 10111 if (id == IPW_INVALID_STATION) { 10112 id = ipw_add_station(priv, hdr->addr1); 10113 if (id == IPW_INVALID_STATION) { 10114 IPW_WARNING("Attempt to send data to " 10115 "invalid cell: %pM\n", 10116 hdr->addr1); 10117 goto drop; 10118 } 10119 } 10120 break; 10121 10122 case IW_MODE_INFRA: 10123 default: 10124 unicast = !is_multicast_ether_addr(hdr->addr3); 10125 id = 0; 10126 break; 10127 } 10128 10129 tfd = &txq->bd[q->first_empty]; 10130 txq->txb[q->first_empty] = txb; 10131 memset(tfd, 0, sizeof(*tfd)); 10132 tfd->u.data.station_number = id; 10133 10134 tfd->control_flags.message_type = TX_FRAME_TYPE; 10135 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK; 10136 10137 tfd->u.data.cmd_id = DINO_CMD_TX; 10138 tfd->u.data.len = cpu_to_le16(txb->payload_size); 10139 10140 if (priv->assoc_request.ieee_mode == IPW_B_MODE) 10141 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK; 10142 else 10143 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM; 10144 10145 if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE) 10146 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE; 10147 10148 fc = le16_to_cpu(hdr->frame_ctl); 10149 hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS); 10150 10151 memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len); 10152 10153 if (likely(unicast)) 10154 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD; 10155 10156 if (txb->encrypted && !priv->ieee->host_encrypt) { 10157 switch (priv->ieee->sec.level) { 10158 case SEC_LEVEL_3: 10159 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |= 10160 cpu_to_le16(IEEE80211_FCTL_PROTECTED); 10161 /* XXX: ACK flag must be set for CCMP even if it 10162 * is a multicast/broadcast packet, because CCMP 10163 * group communication encrypted by GTK is 10164 * actually done by the AP. */ 10165 if (!unicast) 10166 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD; 10167 10168 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP; 10169 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM; 10170 tfd->u.data.key_index = 0; 10171 tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE; 10172 break; 10173 case SEC_LEVEL_2: 10174 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |= 10175 cpu_to_le16(IEEE80211_FCTL_PROTECTED); 10176 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP; 10177 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP; 10178 tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE; 10179 break; 10180 case SEC_LEVEL_1: 10181 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |= 10182 cpu_to_le16(IEEE80211_FCTL_PROTECTED); 10183 tfd->u.data.key_index = priv->ieee->crypt_info.tx_keyidx; 10184 if (priv->ieee->sec.key_sizes[priv->ieee->crypt_info.tx_keyidx] <= 10185 40) 10186 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit; 10187 else 10188 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit; 10189 break; 10190 case SEC_LEVEL_0: 10191 break; 10192 default: 10193 printk(KERN_ERR "Unknown security level %d\n", 10194 priv->ieee->sec.level); 10195 break; 10196 } 10197 } else 10198 /* No hardware encryption */ 10199 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP; 10200 10201 #ifdef CONFIG_IPW2200_QOS 10202 if (fc & IEEE80211_STYPE_QOS_DATA) 10203 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data)); 10204 #endif /* CONFIG_IPW2200_QOS */ 10205 10206 /* payload */ 10207 tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2), 10208 txb->nr_frags)); 10209 IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n", 10210 txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks)); 10211 for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) { 10212 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n", 10213 i, le32_to_cpu(tfd->u.data.num_chunks), 10214 txb->fragments[i]->len - hdr_len); 10215 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n", 10216 i, tfd->u.data.num_chunks, 10217 txb->fragments[i]->len - hdr_len); 10218 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len, 10219 txb->fragments[i]->len - hdr_len); 10220 10221 tfd->u.data.chunk_ptr[i] = 10222 cpu_to_le32(dma_map_single(&priv->pci_dev->dev, 10223 txb->fragments[i]->data + hdr_len, 10224 txb->fragments[i]->len - hdr_len, 10225 DMA_TO_DEVICE)); 10226 tfd->u.data.chunk_len[i] = 10227 cpu_to_le16(txb->fragments[i]->len - hdr_len); 10228 } 10229 10230 if (i != txb->nr_frags) { 10231 struct sk_buff *skb; 10232 u16 remaining_bytes = 0; 10233 int j; 10234 10235 for (j = i; j < txb->nr_frags; j++) 10236 remaining_bytes += txb->fragments[j]->len - hdr_len; 10237 10238 printk(KERN_INFO "Trying to reallocate for %d bytes\n", 10239 remaining_bytes); 10240 skb = alloc_skb(remaining_bytes, GFP_ATOMIC); 10241 if (skb != NULL) { 10242 tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes); 10243 for (j = i; j < txb->nr_frags; j++) { 10244 int size = txb->fragments[j]->len - hdr_len; 10245 10246 printk(KERN_INFO "Adding frag %d %d...\n", 10247 j, size); 10248 skb_put_data(skb, 10249 txb->fragments[j]->data + hdr_len, 10250 size); 10251 } 10252 dev_kfree_skb_any(txb->fragments[i]); 10253 txb->fragments[i] = skb; 10254 tfd->u.data.chunk_ptr[i] = 10255 cpu_to_le32(dma_map_single(&priv->pci_dev->dev, 10256 skb->data, 10257 remaining_bytes, 10258 DMA_TO_DEVICE)); 10259 10260 le32_add_cpu(&tfd->u.data.num_chunks, 1); 10261 } 10262 } 10263 10264 /* kick DMA */ 10265 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd); 10266 ipw_write32(priv, q->reg_w, q->first_empty); 10267 10268 if (ipw_tx_queue_space(q) < q->high_mark) 10269 netif_stop_queue(priv->net_dev); 10270 10271 return NETDEV_TX_OK; 10272 10273 drop: 10274 IPW_DEBUG_DROP("Silently dropping Tx packet.\n"); 10275 libipw_txb_free(txb); 10276 return NETDEV_TX_OK; 10277 } 10278 10279 static int ipw_net_is_queue_full(struct net_device *dev, int pri) 10280 { 10281 struct ipw_priv *priv = libipw_priv(dev); 10282 #ifdef CONFIG_IPW2200_QOS 10283 int tx_id = ipw_get_tx_queue_number(priv, pri); 10284 struct clx2_tx_queue *txq = &priv->txq[tx_id]; 10285 #else 10286 struct clx2_tx_queue *txq = &priv->txq[0]; 10287 #endif /* CONFIG_IPW2200_QOS */ 10288 10289 if (ipw_tx_queue_space(&txq->q) < txq->q.high_mark) 10290 return 1; 10291 10292 return 0; 10293 } 10294 10295 #ifdef CONFIG_IPW2200_PROMISCUOUS 10296 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv, 10297 struct libipw_txb *txb) 10298 { 10299 struct libipw_rx_stats dummystats; 10300 struct ieee80211_hdr *hdr; 10301 u8 n; 10302 u16 filter = priv->prom_priv->filter; 10303 int hdr_only = 0; 10304 10305 if (filter & IPW_PROM_NO_TX) 10306 return; 10307 10308 memset(&dummystats, 0, sizeof(dummystats)); 10309 10310 /* Filtering of fragment chains is done against the first fragment */ 10311 hdr = (void *)txb->fragments[0]->data; 10312 if (libipw_is_management(le16_to_cpu(hdr->frame_control))) { 10313 if (filter & IPW_PROM_NO_MGMT) 10314 return; 10315 if (filter & IPW_PROM_MGMT_HEADER_ONLY) 10316 hdr_only = 1; 10317 } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) { 10318 if (filter & IPW_PROM_NO_CTL) 10319 return; 10320 if (filter & IPW_PROM_CTL_HEADER_ONLY) 10321 hdr_only = 1; 10322 } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) { 10323 if (filter & IPW_PROM_NO_DATA) 10324 return; 10325 if (filter & IPW_PROM_DATA_HEADER_ONLY) 10326 hdr_only = 1; 10327 } 10328 10329 for(n=0; n<txb->nr_frags; ++n) { 10330 struct sk_buff *src = txb->fragments[n]; 10331 struct sk_buff *dst; 10332 struct ieee80211_radiotap_header *rt_hdr; 10333 int len; 10334 10335 if (hdr_only) { 10336 hdr = (void *)src->data; 10337 len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control)); 10338 } else 10339 len = src->len; 10340 10341 dst = alloc_skb(len + sizeof(*rt_hdr) + sizeof(u16)*2, GFP_ATOMIC); 10342 if (!dst) 10343 continue; 10344 10345 rt_hdr = skb_put(dst, sizeof(*rt_hdr)); 10346 10347 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION; 10348 rt_hdr->it_pad = 0; 10349 rt_hdr->it_present = 0; /* after all, it's just an idea */ 10350 rt_hdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_CHANNEL); 10351 10352 *(__le16*)skb_put(dst, sizeof(u16)) = cpu_to_le16( 10353 ieee80211chan2mhz(priv->channel)); 10354 if (priv->channel > 14) /* 802.11a */ 10355 *(__le16*)skb_put(dst, sizeof(u16)) = 10356 cpu_to_le16(IEEE80211_CHAN_OFDM | 10357 IEEE80211_CHAN_5GHZ); 10358 else if (priv->ieee->mode == IEEE_B) /* 802.11b */ 10359 *(__le16*)skb_put(dst, sizeof(u16)) = 10360 cpu_to_le16(IEEE80211_CHAN_CCK | 10361 IEEE80211_CHAN_2GHZ); 10362 else /* 802.11g */ 10363 *(__le16*)skb_put(dst, sizeof(u16)) = 10364 cpu_to_le16(IEEE80211_CHAN_OFDM | 10365 IEEE80211_CHAN_2GHZ); 10366 10367 rt_hdr->it_len = cpu_to_le16(dst->len); 10368 10369 skb_copy_from_linear_data(src, skb_put(dst, len), len); 10370 10371 if (!libipw_rx(priv->prom_priv->ieee, dst, &dummystats)) 10372 dev_kfree_skb_any(dst); 10373 } 10374 } 10375 #endif 10376 10377 static netdev_tx_t ipw_net_hard_start_xmit(struct libipw_txb *txb, 10378 struct net_device *dev, int pri) 10379 { 10380 struct ipw_priv *priv = libipw_priv(dev); 10381 unsigned long flags; 10382 netdev_tx_t ret; 10383 10384 IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size); 10385 spin_lock_irqsave(&priv->lock, flags); 10386 10387 #ifdef CONFIG_IPW2200_PROMISCUOUS 10388 if (rtap_iface && netif_running(priv->prom_net_dev)) 10389 ipw_handle_promiscuous_tx(priv, txb); 10390 #endif 10391 10392 ret = ipw_tx_skb(priv, txb, pri); 10393 if (ret == NETDEV_TX_OK) 10394 __ipw_led_activity_on(priv); 10395 spin_unlock_irqrestore(&priv->lock, flags); 10396 10397 return ret; 10398 } 10399 10400 static void ipw_net_set_multicast_list(struct net_device *dev) 10401 { 10402 10403 } 10404 10405 static int ipw_net_set_mac_address(struct net_device *dev, void *p) 10406 { 10407 struct ipw_priv *priv = libipw_priv(dev); 10408 struct sockaddr *addr = p; 10409 10410 if (!is_valid_ether_addr(addr->sa_data)) 10411 return -EADDRNOTAVAIL; 10412 mutex_lock(&priv->mutex); 10413 priv->config |= CFG_CUSTOM_MAC; 10414 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN); 10415 printk(KERN_INFO "%s: Setting MAC to %pM\n", 10416 priv->net_dev->name, priv->mac_addr); 10417 schedule_work(&priv->adapter_restart); 10418 mutex_unlock(&priv->mutex); 10419 return 0; 10420 } 10421 10422 static void ipw_ethtool_get_drvinfo(struct net_device *dev, 10423 struct ethtool_drvinfo *info) 10424 { 10425 struct ipw_priv *p = libipw_priv(dev); 10426 char vers[64]; 10427 char date[32]; 10428 u32 len; 10429 10430 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 10431 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 10432 10433 len = sizeof(vers); 10434 ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len); 10435 len = sizeof(date); 10436 ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len); 10437 10438 snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)", 10439 vers, date); 10440 strlcpy(info->bus_info, pci_name(p->pci_dev), 10441 sizeof(info->bus_info)); 10442 } 10443 10444 static u32 ipw_ethtool_get_link(struct net_device *dev) 10445 { 10446 struct ipw_priv *priv = libipw_priv(dev); 10447 return (priv->status & STATUS_ASSOCIATED) != 0; 10448 } 10449 10450 static int ipw_ethtool_get_eeprom_len(struct net_device *dev) 10451 { 10452 return IPW_EEPROM_IMAGE_SIZE; 10453 } 10454 10455 static int ipw_ethtool_get_eeprom(struct net_device *dev, 10456 struct ethtool_eeprom *eeprom, u8 * bytes) 10457 { 10458 struct ipw_priv *p = libipw_priv(dev); 10459 10460 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE) 10461 return -EINVAL; 10462 mutex_lock(&p->mutex); 10463 memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len); 10464 mutex_unlock(&p->mutex); 10465 return 0; 10466 } 10467 10468 static int ipw_ethtool_set_eeprom(struct net_device *dev, 10469 struct ethtool_eeprom *eeprom, u8 * bytes) 10470 { 10471 struct ipw_priv *p = libipw_priv(dev); 10472 int i; 10473 10474 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE) 10475 return -EINVAL; 10476 mutex_lock(&p->mutex); 10477 memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len); 10478 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++) 10479 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]); 10480 mutex_unlock(&p->mutex); 10481 return 0; 10482 } 10483 10484 static const struct ethtool_ops ipw_ethtool_ops = { 10485 .get_link = ipw_ethtool_get_link, 10486 .get_drvinfo = ipw_ethtool_get_drvinfo, 10487 .get_eeprom_len = ipw_ethtool_get_eeprom_len, 10488 .get_eeprom = ipw_ethtool_get_eeprom, 10489 .set_eeprom = ipw_ethtool_set_eeprom, 10490 }; 10491 10492 static irqreturn_t ipw_isr(int irq, void *data) 10493 { 10494 struct ipw_priv *priv = data; 10495 u32 inta, inta_mask; 10496 10497 if (!priv) 10498 return IRQ_NONE; 10499 10500 spin_lock(&priv->irq_lock); 10501 10502 if (!(priv->status & STATUS_INT_ENABLED)) { 10503 /* IRQ is disabled */ 10504 goto none; 10505 } 10506 10507 inta = ipw_read32(priv, IPW_INTA_RW); 10508 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R); 10509 10510 if (inta == 0xFFFFFFFF) { 10511 /* Hardware disappeared */ 10512 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n"); 10513 goto none; 10514 } 10515 10516 if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) { 10517 /* Shared interrupt */ 10518 goto none; 10519 } 10520 10521 /* tell the device to stop sending interrupts */ 10522 __ipw_disable_interrupts(priv); 10523 10524 /* ack current interrupts */ 10525 inta &= (IPW_INTA_MASK_ALL & inta_mask); 10526 ipw_write32(priv, IPW_INTA_RW, inta); 10527 10528 /* Cache INTA value for our tasklet */ 10529 priv->isr_inta = inta; 10530 10531 tasklet_schedule(&priv->irq_tasklet); 10532 10533 spin_unlock(&priv->irq_lock); 10534 10535 return IRQ_HANDLED; 10536 none: 10537 spin_unlock(&priv->irq_lock); 10538 return IRQ_NONE; 10539 } 10540 10541 static void ipw_rf_kill(void *adapter) 10542 { 10543 struct ipw_priv *priv = adapter; 10544 unsigned long flags; 10545 10546 spin_lock_irqsave(&priv->lock, flags); 10547 10548 if (rf_kill_active(priv)) { 10549 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n"); 10550 schedule_delayed_work(&priv->rf_kill, 2 * HZ); 10551 goto exit_unlock; 10552 } 10553 10554 /* RF Kill is now disabled, so bring the device back up */ 10555 10556 if (!(priv->status & STATUS_RF_KILL_MASK)) { 10557 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting " 10558 "device\n"); 10559 10560 /* we can not do an adapter restart while inside an irq lock */ 10561 schedule_work(&priv->adapter_restart); 10562 } else 10563 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still " 10564 "enabled\n"); 10565 10566 exit_unlock: 10567 spin_unlock_irqrestore(&priv->lock, flags); 10568 } 10569 10570 static void ipw_bg_rf_kill(struct work_struct *work) 10571 { 10572 struct ipw_priv *priv = 10573 container_of(work, struct ipw_priv, rf_kill.work); 10574 mutex_lock(&priv->mutex); 10575 ipw_rf_kill(priv); 10576 mutex_unlock(&priv->mutex); 10577 } 10578 10579 static void ipw_link_up(struct ipw_priv *priv) 10580 { 10581 priv->last_seq_num = -1; 10582 priv->last_frag_num = -1; 10583 priv->last_packet_time = 0; 10584 10585 netif_carrier_on(priv->net_dev); 10586 10587 cancel_delayed_work(&priv->request_scan); 10588 cancel_delayed_work(&priv->request_direct_scan); 10589 cancel_delayed_work(&priv->request_passive_scan); 10590 cancel_delayed_work(&priv->scan_event); 10591 ipw_reset_stats(priv); 10592 /* Ensure the rate is updated immediately */ 10593 priv->last_rate = ipw_get_current_rate(priv); 10594 ipw_gather_stats(priv); 10595 ipw_led_link_up(priv); 10596 notify_wx_assoc_event(priv); 10597 10598 if (priv->config & CFG_BACKGROUND_SCAN) 10599 schedule_delayed_work(&priv->request_scan, HZ); 10600 } 10601 10602 static void ipw_bg_link_up(struct work_struct *work) 10603 { 10604 struct ipw_priv *priv = 10605 container_of(work, struct ipw_priv, link_up); 10606 mutex_lock(&priv->mutex); 10607 ipw_link_up(priv); 10608 mutex_unlock(&priv->mutex); 10609 } 10610 10611 static void ipw_link_down(struct ipw_priv *priv) 10612 { 10613 ipw_led_link_down(priv); 10614 netif_carrier_off(priv->net_dev); 10615 notify_wx_assoc_event(priv); 10616 10617 /* Cancel any queued work ... */ 10618 cancel_delayed_work(&priv->request_scan); 10619 cancel_delayed_work(&priv->request_direct_scan); 10620 cancel_delayed_work(&priv->request_passive_scan); 10621 cancel_delayed_work(&priv->adhoc_check); 10622 cancel_delayed_work(&priv->gather_stats); 10623 10624 ipw_reset_stats(priv); 10625 10626 if (!(priv->status & STATUS_EXIT_PENDING)) { 10627 /* Queue up another scan... */ 10628 schedule_delayed_work(&priv->request_scan, 0); 10629 } else 10630 cancel_delayed_work(&priv->scan_event); 10631 } 10632 10633 static void ipw_bg_link_down(struct work_struct *work) 10634 { 10635 struct ipw_priv *priv = 10636 container_of(work, struct ipw_priv, link_down); 10637 mutex_lock(&priv->mutex); 10638 ipw_link_down(priv); 10639 mutex_unlock(&priv->mutex); 10640 } 10641 10642 static void ipw_setup_deferred_work(struct ipw_priv *priv) 10643 { 10644 init_waitqueue_head(&priv->wait_command_queue); 10645 init_waitqueue_head(&priv->wait_state); 10646 10647 INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check); 10648 INIT_WORK(&priv->associate, ipw_bg_associate); 10649 INIT_WORK(&priv->disassociate, ipw_bg_disassociate); 10650 INIT_WORK(&priv->system_config, ipw_system_config); 10651 INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish); 10652 INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart); 10653 INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill); 10654 INIT_WORK(&priv->up, ipw_bg_up); 10655 INIT_WORK(&priv->down, ipw_bg_down); 10656 INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan); 10657 INIT_DELAYED_WORK(&priv->request_direct_scan, ipw_request_direct_scan); 10658 INIT_DELAYED_WORK(&priv->request_passive_scan, ipw_request_passive_scan); 10659 INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event); 10660 INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats); 10661 INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan); 10662 INIT_WORK(&priv->roam, ipw_bg_roam); 10663 INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check); 10664 INIT_WORK(&priv->link_up, ipw_bg_link_up); 10665 INIT_WORK(&priv->link_down, ipw_bg_link_down); 10666 INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on); 10667 INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off); 10668 INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off); 10669 INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network); 10670 10671 #ifdef CONFIG_IPW2200_QOS 10672 INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate); 10673 #endif /* CONFIG_IPW2200_QOS */ 10674 10675 tasklet_setup(&priv->irq_tasklet, ipw_irq_tasklet); 10676 } 10677 10678 static void shim__set_security(struct net_device *dev, 10679 struct libipw_security *sec) 10680 { 10681 struct ipw_priv *priv = libipw_priv(dev); 10682 int i; 10683 for (i = 0; i < 4; i++) { 10684 if (sec->flags & (1 << i)) { 10685 priv->ieee->sec.encode_alg[i] = sec->encode_alg[i]; 10686 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i]; 10687 if (sec->key_sizes[i] == 0) 10688 priv->ieee->sec.flags &= ~(1 << i); 10689 else { 10690 memcpy(priv->ieee->sec.keys[i], sec->keys[i], 10691 sec->key_sizes[i]); 10692 priv->ieee->sec.flags |= (1 << i); 10693 } 10694 priv->status |= STATUS_SECURITY_UPDATED; 10695 } else if (sec->level != SEC_LEVEL_1) 10696 priv->ieee->sec.flags &= ~(1 << i); 10697 } 10698 10699 if (sec->flags & SEC_ACTIVE_KEY) { 10700 priv->ieee->sec.active_key = sec->active_key; 10701 priv->ieee->sec.flags |= SEC_ACTIVE_KEY; 10702 priv->status |= STATUS_SECURITY_UPDATED; 10703 } else 10704 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY; 10705 10706 if ((sec->flags & SEC_AUTH_MODE) && 10707 (priv->ieee->sec.auth_mode != sec->auth_mode)) { 10708 priv->ieee->sec.auth_mode = sec->auth_mode; 10709 priv->ieee->sec.flags |= SEC_AUTH_MODE; 10710 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY) 10711 priv->capability |= CAP_SHARED_KEY; 10712 else 10713 priv->capability &= ~CAP_SHARED_KEY; 10714 priv->status |= STATUS_SECURITY_UPDATED; 10715 } 10716 10717 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) { 10718 priv->ieee->sec.flags |= SEC_ENABLED; 10719 priv->ieee->sec.enabled = sec->enabled; 10720 priv->status |= STATUS_SECURITY_UPDATED; 10721 if (sec->enabled) 10722 priv->capability |= CAP_PRIVACY_ON; 10723 else 10724 priv->capability &= ~CAP_PRIVACY_ON; 10725 } 10726 10727 if (sec->flags & SEC_ENCRYPT) 10728 priv->ieee->sec.encrypt = sec->encrypt; 10729 10730 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) { 10731 priv->ieee->sec.level = sec->level; 10732 priv->ieee->sec.flags |= SEC_LEVEL; 10733 priv->status |= STATUS_SECURITY_UPDATED; 10734 } 10735 10736 if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT)) 10737 ipw_set_hwcrypto_keys(priv); 10738 10739 /* To match current functionality of ipw2100 (which works well w/ 10740 * various supplicants, we don't force a disassociate if the 10741 * privacy capability changes ... */ 10742 #if 0 10743 if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) && 10744 (((priv->assoc_request.capability & 10745 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && !sec->enabled) || 10746 (!(priv->assoc_request.capability & 10747 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && sec->enabled))) { 10748 IPW_DEBUG_ASSOC("Disassociating due to capability " 10749 "change.\n"); 10750 ipw_disassociate(priv); 10751 } 10752 #endif 10753 } 10754 10755 static int init_supported_rates(struct ipw_priv *priv, 10756 struct ipw_supported_rates *rates) 10757 { 10758 /* TODO: Mask out rates based on priv->rates_mask */ 10759 10760 memset(rates, 0, sizeof(*rates)); 10761 /* configure supported rates */ 10762 switch (priv->ieee->freq_band) { 10763 case LIBIPW_52GHZ_BAND: 10764 rates->ieee_mode = IPW_A_MODE; 10765 rates->purpose = IPW_RATE_CAPABILITIES; 10766 ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION, 10767 LIBIPW_OFDM_DEFAULT_RATES_MASK); 10768 break; 10769 10770 default: /* Mixed or 2.4Ghz */ 10771 rates->ieee_mode = IPW_G_MODE; 10772 rates->purpose = IPW_RATE_CAPABILITIES; 10773 ipw_add_cck_scan_rates(rates, LIBIPW_CCK_MODULATION, 10774 LIBIPW_CCK_DEFAULT_RATES_MASK); 10775 if (priv->ieee->modulation & LIBIPW_OFDM_MODULATION) { 10776 ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION, 10777 LIBIPW_OFDM_DEFAULT_RATES_MASK); 10778 } 10779 break; 10780 } 10781 10782 return 0; 10783 } 10784 10785 static int ipw_config(struct ipw_priv *priv) 10786 { 10787 /* This is only called from ipw_up, which resets/reloads the firmware 10788 so, we don't need to first disable the card before we configure 10789 it */ 10790 if (ipw_set_tx_power(priv)) 10791 goto error; 10792 10793 /* initialize adapter address */ 10794 if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr)) 10795 goto error; 10796 10797 /* set basic system config settings */ 10798 init_sys_config(&priv->sys_config); 10799 10800 /* Support Bluetooth if we have BT h/w on board, and user wants to. 10801 * Does not support BT priority yet (don't abort or defer our Tx) */ 10802 if (bt_coexist) { 10803 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY]; 10804 10805 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG) 10806 priv->sys_config.bt_coexistence 10807 |= CFG_BT_COEXISTENCE_SIGNAL_CHNL; 10808 if (bt_caps & EEPROM_SKU_CAP_BT_OOB) 10809 priv->sys_config.bt_coexistence 10810 |= CFG_BT_COEXISTENCE_OOB; 10811 } 10812 10813 #ifdef CONFIG_IPW2200_PROMISCUOUS 10814 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) { 10815 priv->sys_config.accept_all_data_frames = 1; 10816 priv->sys_config.accept_non_directed_frames = 1; 10817 priv->sys_config.accept_all_mgmt_bcpr = 1; 10818 priv->sys_config.accept_all_mgmt_frames = 1; 10819 } 10820 #endif 10821 10822 if (priv->ieee->iw_mode == IW_MODE_ADHOC) 10823 priv->sys_config.answer_broadcast_ssid_probe = 1; 10824 else 10825 priv->sys_config.answer_broadcast_ssid_probe = 0; 10826 10827 if (ipw_send_system_config(priv)) 10828 goto error; 10829 10830 init_supported_rates(priv, &priv->rates); 10831 if (ipw_send_supported_rates(priv, &priv->rates)) 10832 goto error; 10833 10834 /* Set request-to-send threshold */ 10835 if (priv->rts_threshold) { 10836 if (ipw_send_rts_threshold(priv, priv->rts_threshold)) 10837 goto error; 10838 } 10839 #ifdef CONFIG_IPW2200_QOS 10840 IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n"); 10841 ipw_qos_activate(priv, NULL); 10842 #endif /* CONFIG_IPW2200_QOS */ 10843 10844 if (ipw_set_random_seed(priv)) 10845 goto error; 10846 10847 /* final state transition to the RUN state */ 10848 if (ipw_send_host_complete(priv)) 10849 goto error; 10850 10851 priv->status |= STATUS_INIT; 10852 10853 ipw_led_init(priv); 10854 ipw_led_radio_on(priv); 10855 priv->notif_missed_beacons = 0; 10856 10857 /* Set hardware WEP key if it is configured. */ 10858 if ((priv->capability & CAP_PRIVACY_ON) && 10859 (priv->ieee->sec.level == SEC_LEVEL_1) && 10860 !(priv->ieee->host_encrypt || priv->ieee->host_decrypt)) 10861 ipw_set_hwcrypto_keys(priv); 10862 10863 return 0; 10864 10865 error: 10866 return -EIO; 10867 } 10868 10869 /* 10870 * NOTE: 10871 * 10872 * These tables have been tested in conjunction with the 10873 * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters. 10874 * 10875 * Altering this values, using it on other hardware, or in geographies 10876 * not intended for resale of the above mentioned Intel adapters has 10877 * not been tested. 10878 * 10879 * Remember to update the table in README.ipw2200 when changing this 10880 * table. 10881 * 10882 */ 10883 static const struct libipw_geo ipw_geos[] = { 10884 { /* Restricted */ 10885 "---", 10886 .bg_channels = 11, 10887 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 10888 {2427, 4}, {2432, 5}, {2437, 6}, 10889 {2442, 7}, {2447, 8}, {2452, 9}, 10890 {2457, 10}, {2462, 11}}, 10891 }, 10892 10893 { /* Custom US/Canada */ 10894 "ZZF", 10895 .bg_channels = 11, 10896 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 10897 {2427, 4}, {2432, 5}, {2437, 6}, 10898 {2442, 7}, {2447, 8}, {2452, 9}, 10899 {2457, 10}, {2462, 11}}, 10900 .a_channels = 8, 10901 .a = {{5180, 36}, 10902 {5200, 40}, 10903 {5220, 44}, 10904 {5240, 48}, 10905 {5260, 52, LIBIPW_CH_PASSIVE_ONLY}, 10906 {5280, 56, LIBIPW_CH_PASSIVE_ONLY}, 10907 {5300, 60, LIBIPW_CH_PASSIVE_ONLY}, 10908 {5320, 64, LIBIPW_CH_PASSIVE_ONLY}}, 10909 }, 10910 10911 { /* Rest of World */ 10912 "ZZD", 10913 .bg_channels = 13, 10914 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 10915 {2427, 4}, {2432, 5}, {2437, 6}, 10916 {2442, 7}, {2447, 8}, {2452, 9}, 10917 {2457, 10}, {2462, 11}, {2467, 12}, 10918 {2472, 13}}, 10919 }, 10920 10921 { /* Custom USA & Europe & High */ 10922 "ZZA", 10923 .bg_channels = 11, 10924 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 10925 {2427, 4}, {2432, 5}, {2437, 6}, 10926 {2442, 7}, {2447, 8}, {2452, 9}, 10927 {2457, 10}, {2462, 11}}, 10928 .a_channels = 13, 10929 .a = {{5180, 36}, 10930 {5200, 40}, 10931 {5220, 44}, 10932 {5240, 48}, 10933 {5260, 52, LIBIPW_CH_PASSIVE_ONLY}, 10934 {5280, 56, LIBIPW_CH_PASSIVE_ONLY}, 10935 {5300, 60, LIBIPW_CH_PASSIVE_ONLY}, 10936 {5320, 64, LIBIPW_CH_PASSIVE_ONLY}, 10937 {5745, 149}, 10938 {5765, 153}, 10939 {5785, 157}, 10940 {5805, 161}, 10941 {5825, 165}}, 10942 }, 10943 10944 { /* Custom NA & Europe */ 10945 "ZZB", 10946 .bg_channels = 11, 10947 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 10948 {2427, 4}, {2432, 5}, {2437, 6}, 10949 {2442, 7}, {2447, 8}, {2452, 9}, 10950 {2457, 10}, {2462, 11}}, 10951 .a_channels = 13, 10952 .a = {{5180, 36}, 10953 {5200, 40}, 10954 {5220, 44}, 10955 {5240, 48}, 10956 {5260, 52, LIBIPW_CH_PASSIVE_ONLY}, 10957 {5280, 56, LIBIPW_CH_PASSIVE_ONLY}, 10958 {5300, 60, LIBIPW_CH_PASSIVE_ONLY}, 10959 {5320, 64, LIBIPW_CH_PASSIVE_ONLY}, 10960 {5745, 149, LIBIPW_CH_PASSIVE_ONLY}, 10961 {5765, 153, LIBIPW_CH_PASSIVE_ONLY}, 10962 {5785, 157, LIBIPW_CH_PASSIVE_ONLY}, 10963 {5805, 161, LIBIPW_CH_PASSIVE_ONLY}, 10964 {5825, 165, LIBIPW_CH_PASSIVE_ONLY}}, 10965 }, 10966 10967 { /* Custom Japan */ 10968 "ZZC", 10969 .bg_channels = 11, 10970 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 10971 {2427, 4}, {2432, 5}, {2437, 6}, 10972 {2442, 7}, {2447, 8}, {2452, 9}, 10973 {2457, 10}, {2462, 11}}, 10974 .a_channels = 4, 10975 .a = {{5170, 34}, {5190, 38}, 10976 {5210, 42}, {5230, 46}}, 10977 }, 10978 10979 { /* Custom */ 10980 "ZZM", 10981 .bg_channels = 11, 10982 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 10983 {2427, 4}, {2432, 5}, {2437, 6}, 10984 {2442, 7}, {2447, 8}, {2452, 9}, 10985 {2457, 10}, {2462, 11}}, 10986 }, 10987 10988 { /* Europe */ 10989 "ZZE", 10990 .bg_channels = 13, 10991 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 10992 {2427, 4}, {2432, 5}, {2437, 6}, 10993 {2442, 7}, {2447, 8}, {2452, 9}, 10994 {2457, 10}, {2462, 11}, {2467, 12}, 10995 {2472, 13}}, 10996 .a_channels = 19, 10997 .a = {{5180, 36}, 10998 {5200, 40}, 10999 {5220, 44}, 11000 {5240, 48}, 11001 {5260, 52, LIBIPW_CH_PASSIVE_ONLY}, 11002 {5280, 56, LIBIPW_CH_PASSIVE_ONLY}, 11003 {5300, 60, LIBIPW_CH_PASSIVE_ONLY}, 11004 {5320, 64, LIBIPW_CH_PASSIVE_ONLY}, 11005 {5500, 100, LIBIPW_CH_PASSIVE_ONLY}, 11006 {5520, 104, LIBIPW_CH_PASSIVE_ONLY}, 11007 {5540, 108, LIBIPW_CH_PASSIVE_ONLY}, 11008 {5560, 112, LIBIPW_CH_PASSIVE_ONLY}, 11009 {5580, 116, LIBIPW_CH_PASSIVE_ONLY}, 11010 {5600, 120, LIBIPW_CH_PASSIVE_ONLY}, 11011 {5620, 124, LIBIPW_CH_PASSIVE_ONLY}, 11012 {5640, 128, LIBIPW_CH_PASSIVE_ONLY}, 11013 {5660, 132, LIBIPW_CH_PASSIVE_ONLY}, 11014 {5680, 136, LIBIPW_CH_PASSIVE_ONLY}, 11015 {5700, 140, LIBIPW_CH_PASSIVE_ONLY}}, 11016 }, 11017 11018 { /* Custom Japan */ 11019 "ZZJ", 11020 .bg_channels = 14, 11021 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 11022 {2427, 4}, {2432, 5}, {2437, 6}, 11023 {2442, 7}, {2447, 8}, {2452, 9}, 11024 {2457, 10}, {2462, 11}, {2467, 12}, 11025 {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY}}, 11026 .a_channels = 4, 11027 .a = {{5170, 34}, {5190, 38}, 11028 {5210, 42}, {5230, 46}}, 11029 }, 11030 11031 { /* Rest of World */ 11032 "ZZR", 11033 .bg_channels = 14, 11034 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 11035 {2427, 4}, {2432, 5}, {2437, 6}, 11036 {2442, 7}, {2447, 8}, {2452, 9}, 11037 {2457, 10}, {2462, 11}, {2467, 12}, 11038 {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY | 11039 LIBIPW_CH_PASSIVE_ONLY}}, 11040 }, 11041 11042 { /* High Band */ 11043 "ZZH", 11044 .bg_channels = 13, 11045 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 11046 {2427, 4}, {2432, 5}, {2437, 6}, 11047 {2442, 7}, {2447, 8}, {2452, 9}, 11048 {2457, 10}, {2462, 11}, 11049 {2467, 12, LIBIPW_CH_PASSIVE_ONLY}, 11050 {2472, 13, LIBIPW_CH_PASSIVE_ONLY}}, 11051 .a_channels = 4, 11052 .a = {{5745, 149}, {5765, 153}, 11053 {5785, 157}, {5805, 161}}, 11054 }, 11055 11056 { /* Custom Europe */ 11057 "ZZG", 11058 .bg_channels = 13, 11059 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 11060 {2427, 4}, {2432, 5}, {2437, 6}, 11061 {2442, 7}, {2447, 8}, {2452, 9}, 11062 {2457, 10}, {2462, 11}, 11063 {2467, 12}, {2472, 13}}, 11064 .a_channels = 4, 11065 .a = {{5180, 36}, {5200, 40}, 11066 {5220, 44}, {5240, 48}}, 11067 }, 11068 11069 { /* Europe */ 11070 "ZZK", 11071 .bg_channels = 13, 11072 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 11073 {2427, 4}, {2432, 5}, {2437, 6}, 11074 {2442, 7}, {2447, 8}, {2452, 9}, 11075 {2457, 10}, {2462, 11}, 11076 {2467, 12, LIBIPW_CH_PASSIVE_ONLY}, 11077 {2472, 13, LIBIPW_CH_PASSIVE_ONLY}}, 11078 .a_channels = 24, 11079 .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY}, 11080 {5200, 40, LIBIPW_CH_PASSIVE_ONLY}, 11081 {5220, 44, LIBIPW_CH_PASSIVE_ONLY}, 11082 {5240, 48, LIBIPW_CH_PASSIVE_ONLY}, 11083 {5260, 52, LIBIPW_CH_PASSIVE_ONLY}, 11084 {5280, 56, LIBIPW_CH_PASSIVE_ONLY}, 11085 {5300, 60, LIBIPW_CH_PASSIVE_ONLY}, 11086 {5320, 64, LIBIPW_CH_PASSIVE_ONLY}, 11087 {5500, 100, LIBIPW_CH_PASSIVE_ONLY}, 11088 {5520, 104, LIBIPW_CH_PASSIVE_ONLY}, 11089 {5540, 108, LIBIPW_CH_PASSIVE_ONLY}, 11090 {5560, 112, LIBIPW_CH_PASSIVE_ONLY}, 11091 {5580, 116, LIBIPW_CH_PASSIVE_ONLY}, 11092 {5600, 120, LIBIPW_CH_PASSIVE_ONLY}, 11093 {5620, 124, LIBIPW_CH_PASSIVE_ONLY}, 11094 {5640, 128, LIBIPW_CH_PASSIVE_ONLY}, 11095 {5660, 132, LIBIPW_CH_PASSIVE_ONLY}, 11096 {5680, 136, LIBIPW_CH_PASSIVE_ONLY}, 11097 {5700, 140, LIBIPW_CH_PASSIVE_ONLY}, 11098 {5745, 149, LIBIPW_CH_PASSIVE_ONLY}, 11099 {5765, 153, LIBIPW_CH_PASSIVE_ONLY}, 11100 {5785, 157, LIBIPW_CH_PASSIVE_ONLY}, 11101 {5805, 161, LIBIPW_CH_PASSIVE_ONLY}, 11102 {5825, 165, LIBIPW_CH_PASSIVE_ONLY}}, 11103 }, 11104 11105 { /* Europe */ 11106 "ZZL", 11107 .bg_channels = 11, 11108 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 11109 {2427, 4}, {2432, 5}, {2437, 6}, 11110 {2442, 7}, {2447, 8}, {2452, 9}, 11111 {2457, 10}, {2462, 11}}, 11112 .a_channels = 13, 11113 .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY}, 11114 {5200, 40, LIBIPW_CH_PASSIVE_ONLY}, 11115 {5220, 44, LIBIPW_CH_PASSIVE_ONLY}, 11116 {5240, 48, LIBIPW_CH_PASSIVE_ONLY}, 11117 {5260, 52, LIBIPW_CH_PASSIVE_ONLY}, 11118 {5280, 56, LIBIPW_CH_PASSIVE_ONLY}, 11119 {5300, 60, LIBIPW_CH_PASSIVE_ONLY}, 11120 {5320, 64, LIBIPW_CH_PASSIVE_ONLY}, 11121 {5745, 149, LIBIPW_CH_PASSIVE_ONLY}, 11122 {5765, 153, LIBIPW_CH_PASSIVE_ONLY}, 11123 {5785, 157, LIBIPW_CH_PASSIVE_ONLY}, 11124 {5805, 161, LIBIPW_CH_PASSIVE_ONLY}, 11125 {5825, 165, LIBIPW_CH_PASSIVE_ONLY}}, 11126 } 11127 }; 11128 11129 static void ipw_set_geo(struct ipw_priv *priv) 11130 { 11131 int j; 11132 11133 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) { 11134 if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE], 11135 ipw_geos[j].name, 3)) 11136 break; 11137 } 11138 11139 if (j == ARRAY_SIZE(ipw_geos)) { 11140 IPW_WARNING("SKU [%c%c%c] not recognized.\n", 11141 priv->eeprom[EEPROM_COUNTRY_CODE + 0], 11142 priv->eeprom[EEPROM_COUNTRY_CODE + 1], 11143 priv->eeprom[EEPROM_COUNTRY_CODE + 2]); 11144 j = 0; 11145 } 11146 11147 libipw_set_geo(priv->ieee, &ipw_geos[j]); 11148 } 11149 11150 #define MAX_HW_RESTARTS 5 11151 static int ipw_up(struct ipw_priv *priv) 11152 { 11153 int rc, i; 11154 11155 /* Age scan list entries found before suspend */ 11156 if (priv->suspend_time) { 11157 libipw_networks_age(priv->ieee, priv->suspend_time); 11158 priv->suspend_time = 0; 11159 } 11160 11161 if (priv->status & STATUS_EXIT_PENDING) 11162 return -EIO; 11163 11164 if (cmdlog && !priv->cmdlog) { 11165 priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog), 11166 GFP_KERNEL); 11167 if (priv->cmdlog == NULL) { 11168 IPW_ERROR("Error allocating %d command log entries.\n", 11169 cmdlog); 11170 return -ENOMEM; 11171 } else { 11172 priv->cmdlog_len = cmdlog; 11173 } 11174 } 11175 11176 for (i = 0; i < MAX_HW_RESTARTS; i++) { 11177 /* Load the microcode, firmware, and eeprom. 11178 * Also start the clocks. */ 11179 rc = ipw_load(priv); 11180 if (rc) { 11181 IPW_ERROR("Unable to load firmware: %d\n", rc); 11182 return rc; 11183 } 11184 11185 ipw_init_ordinals(priv); 11186 if (!(priv->config & CFG_CUSTOM_MAC)) 11187 eeprom_parse_mac(priv, priv->mac_addr); 11188 eth_hw_addr_set(priv->net_dev, priv->mac_addr); 11189 11190 ipw_set_geo(priv); 11191 11192 if (priv->status & STATUS_RF_KILL_SW) { 11193 IPW_WARNING("Radio disabled by module parameter.\n"); 11194 return 0; 11195 } else if (rf_kill_active(priv)) { 11196 IPW_WARNING("Radio Frequency Kill Switch is On:\n" 11197 "Kill switch must be turned off for " 11198 "wireless networking to work.\n"); 11199 schedule_delayed_work(&priv->rf_kill, 2 * HZ); 11200 return 0; 11201 } 11202 11203 rc = ipw_config(priv); 11204 if (!rc) { 11205 IPW_DEBUG_INFO("Configured device on count %i\n", i); 11206 11207 /* If configure to try and auto-associate, kick 11208 * off a scan. */ 11209 schedule_delayed_work(&priv->request_scan, 0); 11210 11211 return 0; 11212 } 11213 11214 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc); 11215 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n", 11216 i, MAX_HW_RESTARTS); 11217 11218 /* We had an error bringing up the hardware, so take it 11219 * all the way back down so we can try again */ 11220 ipw_down(priv); 11221 } 11222 11223 /* tried to restart and config the device for as long as our 11224 * patience could withstand */ 11225 IPW_ERROR("Unable to initialize device after %d attempts.\n", i); 11226 11227 return -EIO; 11228 } 11229 11230 static void ipw_bg_up(struct work_struct *work) 11231 { 11232 struct ipw_priv *priv = 11233 container_of(work, struct ipw_priv, up); 11234 mutex_lock(&priv->mutex); 11235 ipw_up(priv); 11236 mutex_unlock(&priv->mutex); 11237 } 11238 11239 static void ipw_deinit(struct ipw_priv *priv) 11240 { 11241 int i; 11242 11243 if (priv->status & STATUS_SCANNING) { 11244 IPW_DEBUG_INFO("Aborting scan during shutdown.\n"); 11245 ipw_abort_scan(priv); 11246 } 11247 11248 if (priv->status & STATUS_ASSOCIATED) { 11249 IPW_DEBUG_INFO("Disassociating during shutdown.\n"); 11250 ipw_disassociate(priv); 11251 } 11252 11253 ipw_led_shutdown(priv); 11254 11255 /* Wait up to 1s for status to change to not scanning and not 11256 * associated (disassociation can take a while for a ful 802.11 11257 * exchange */ 11258 for (i = 1000; i && (priv->status & 11259 (STATUS_DISASSOCIATING | 11260 STATUS_ASSOCIATED | STATUS_SCANNING)); i--) 11261 udelay(10); 11262 11263 if (priv->status & (STATUS_DISASSOCIATING | 11264 STATUS_ASSOCIATED | STATUS_SCANNING)) 11265 IPW_DEBUG_INFO("Still associated or scanning...\n"); 11266 else 11267 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i); 11268 11269 /* Attempt to disable the card */ 11270 ipw_send_card_disable(priv, 0); 11271 11272 priv->status &= ~STATUS_INIT; 11273 } 11274 11275 static void ipw_down(struct ipw_priv *priv) 11276 { 11277 int exit_pending = priv->status & STATUS_EXIT_PENDING; 11278 11279 priv->status |= STATUS_EXIT_PENDING; 11280 11281 if (ipw_is_init(priv)) 11282 ipw_deinit(priv); 11283 11284 /* Wipe out the EXIT_PENDING status bit if we are not actually 11285 * exiting the module */ 11286 if (!exit_pending) 11287 priv->status &= ~STATUS_EXIT_PENDING; 11288 11289 /* tell the device to stop sending interrupts */ 11290 ipw_disable_interrupts(priv); 11291 11292 /* Clear all bits but the RF Kill */ 11293 priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING; 11294 netif_carrier_off(priv->net_dev); 11295 11296 ipw_stop_nic(priv); 11297 11298 ipw_led_radio_off(priv); 11299 } 11300 11301 static void ipw_bg_down(struct work_struct *work) 11302 { 11303 struct ipw_priv *priv = 11304 container_of(work, struct ipw_priv, down); 11305 mutex_lock(&priv->mutex); 11306 ipw_down(priv); 11307 mutex_unlock(&priv->mutex); 11308 } 11309 11310 static int ipw_wdev_init(struct net_device *dev) 11311 { 11312 int i, rc = 0; 11313 struct ipw_priv *priv = libipw_priv(dev); 11314 const struct libipw_geo *geo = libipw_get_geo(priv->ieee); 11315 struct wireless_dev *wdev = &priv->ieee->wdev; 11316 11317 memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN); 11318 11319 /* fill-out priv->ieee->bg_band */ 11320 if (geo->bg_channels) { 11321 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band; 11322 11323 bg_band->band = NL80211_BAND_2GHZ; 11324 bg_band->n_channels = geo->bg_channels; 11325 bg_band->channels = kcalloc(geo->bg_channels, 11326 sizeof(struct ieee80211_channel), 11327 GFP_KERNEL); 11328 if (!bg_band->channels) { 11329 rc = -ENOMEM; 11330 goto out; 11331 } 11332 /* translate geo->bg to bg_band.channels */ 11333 for (i = 0; i < geo->bg_channels; i++) { 11334 bg_band->channels[i].band = NL80211_BAND_2GHZ; 11335 bg_band->channels[i].center_freq = geo->bg[i].freq; 11336 bg_band->channels[i].hw_value = geo->bg[i].channel; 11337 bg_band->channels[i].max_power = geo->bg[i].max_power; 11338 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY) 11339 bg_band->channels[i].flags |= 11340 IEEE80211_CHAN_NO_IR; 11341 if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS) 11342 bg_band->channels[i].flags |= 11343 IEEE80211_CHAN_NO_IR; 11344 if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT) 11345 bg_band->channels[i].flags |= 11346 IEEE80211_CHAN_RADAR; 11347 /* No equivalent for LIBIPW_CH_80211H_RULES, 11348 LIBIPW_CH_UNIFORM_SPREADING, or 11349 LIBIPW_CH_B_ONLY... */ 11350 } 11351 /* point at bitrate info */ 11352 bg_band->bitrates = ipw2200_bg_rates; 11353 bg_band->n_bitrates = ipw2200_num_bg_rates; 11354 11355 wdev->wiphy->bands[NL80211_BAND_2GHZ] = bg_band; 11356 } 11357 11358 /* fill-out priv->ieee->a_band */ 11359 if (geo->a_channels) { 11360 struct ieee80211_supported_band *a_band = &priv->ieee->a_band; 11361 11362 a_band->band = NL80211_BAND_5GHZ; 11363 a_band->n_channels = geo->a_channels; 11364 a_band->channels = kcalloc(geo->a_channels, 11365 sizeof(struct ieee80211_channel), 11366 GFP_KERNEL); 11367 if (!a_band->channels) { 11368 rc = -ENOMEM; 11369 goto out; 11370 } 11371 /* translate geo->a to a_band.channels */ 11372 for (i = 0; i < geo->a_channels; i++) { 11373 a_band->channels[i].band = NL80211_BAND_5GHZ; 11374 a_band->channels[i].center_freq = geo->a[i].freq; 11375 a_band->channels[i].hw_value = geo->a[i].channel; 11376 a_band->channels[i].max_power = geo->a[i].max_power; 11377 if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY) 11378 a_band->channels[i].flags |= 11379 IEEE80211_CHAN_NO_IR; 11380 if (geo->a[i].flags & LIBIPW_CH_NO_IBSS) 11381 a_band->channels[i].flags |= 11382 IEEE80211_CHAN_NO_IR; 11383 if (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT) 11384 a_band->channels[i].flags |= 11385 IEEE80211_CHAN_RADAR; 11386 /* No equivalent for LIBIPW_CH_80211H_RULES, 11387 LIBIPW_CH_UNIFORM_SPREADING, or 11388 LIBIPW_CH_B_ONLY... */ 11389 } 11390 /* point at bitrate info */ 11391 a_band->bitrates = ipw2200_a_rates; 11392 a_band->n_bitrates = ipw2200_num_a_rates; 11393 11394 wdev->wiphy->bands[NL80211_BAND_5GHZ] = a_band; 11395 } 11396 11397 wdev->wiphy->cipher_suites = ipw_cipher_suites; 11398 wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites); 11399 11400 set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev); 11401 11402 /* With that information in place, we can now register the wiphy... */ 11403 if (wiphy_register(wdev->wiphy)) 11404 rc = -EIO; 11405 out: 11406 return rc; 11407 } 11408 11409 /* PCI driver stuff */ 11410 static const struct pci_device_id card_ids[] = { 11411 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0}, 11412 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0}, 11413 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0}, 11414 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0}, 11415 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0}, 11416 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0}, 11417 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0}, 11418 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0}, 11419 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0}, 11420 {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0}, 11421 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0}, 11422 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0}, 11423 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0}, 11424 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0}, 11425 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0}, 11426 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0}, 11427 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0}, 11428 {PCI_VDEVICE(INTEL, 0x104f), 0}, 11429 {PCI_VDEVICE(INTEL, 0x4220), 0}, /* BG */ 11430 {PCI_VDEVICE(INTEL, 0x4221), 0}, /* BG */ 11431 {PCI_VDEVICE(INTEL, 0x4223), 0}, /* ABG */ 11432 {PCI_VDEVICE(INTEL, 0x4224), 0}, /* ABG */ 11433 11434 /* required last entry */ 11435 {0,} 11436 }; 11437 11438 MODULE_DEVICE_TABLE(pci, card_ids); 11439 11440 static struct attribute *ipw_sysfs_entries[] = { 11441 &dev_attr_rf_kill.attr, 11442 &dev_attr_direct_dword.attr, 11443 &dev_attr_indirect_byte.attr, 11444 &dev_attr_indirect_dword.attr, 11445 &dev_attr_mem_gpio_reg.attr, 11446 &dev_attr_command_event_reg.attr, 11447 &dev_attr_nic_type.attr, 11448 &dev_attr_status.attr, 11449 &dev_attr_cfg.attr, 11450 &dev_attr_error.attr, 11451 &dev_attr_event_log.attr, 11452 &dev_attr_cmd_log.attr, 11453 &dev_attr_eeprom_delay.attr, 11454 &dev_attr_ucode_version.attr, 11455 &dev_attr_rtc.attr, 11456 &dev_attr_scan_age.attr, 11457 &dev_attr_led.attr, 11458 &dev_attr_speed_scan.attr, 11459 &dev_attr_net_stats.attr, 11460 &dev_attr_channels.attr, 11461 #ifdef CONFIG_IPW2200_PROMISCUOUS 11462 &dev_attr_rtap_iface.attr, 11463 &dev_attr_rtap_filter.attr, 11464 #endif 11465 NULL 11466 }; 11467 11468 static const struct attribute_group ipw_attribute_group = { 11469 .name = NULL, /* put in device directory */ 11470 .attrs = ipw_sysfs_entries, 11471 }; 11472 11473 #ifdef CONFIG_IPW2200_PROMISCUOUS 11474 static int ipw_prom_open(struct net_device *dev) 11475 { 11476 struct ipw_prom_priv *prom_priv = libipw_priv(dev); 11477 struct ipw_priv *priv = prom_priv->priv; 11478 11479 IPW_DEBUG_INFO("prom dev->open\n"); 11480 netif_carrier_off(dev); 11481 11482 if (priv->ieee->iw_mode != IW_MODE_MONITOR) { 11483 priv->sys_config.accept_all_data_frames = 1; 11484 priv->sys_config.accept_non_directed_frames = 1; 11485 priv->sys_config.accept_all_mgmt_bcpr = 1; 11486 priv->sys_config.accept_all_mgmt_frames = 1; 11487 11488 ipw_send_system_config(priv); 11489 } 11490 11491 return 0; 11492 } 11493 11494 static int ipw_prom_stop(struct net_device *dev) 11495 { 11496 struct ipw_prom_priv *prom_priv = libipw_priv(dev); 11497 struct ipw_priv *priv = prom_priv->priv; 11498 11499 IPW_DEBUG_INFO("prom dev->stop\n"); 11500 11501 if (priv->ieee->iw_mode != IW_MODE_MONITOR) { 11502 priv->sys_config.accept_all_data_frames = 0; 11503 priv->sys_config.accept_non_directed_frames = 0; 11504 priv->sys_config.accept_all_mgmt_bcpr = 0; 11505 priv->sys_config.accept_all_mgmt_frames = 0; 11506 11507 ipw_send_system_config(priv); 11508 } 11509 11510 return 0; 11511 } 11512 11513 static netdev_tx_t ipw_prom_hard_start_xmit(struct sk_buff *skb, 11514 struct net_device *dev) 11515 { 11516 IPW_DEBUG_INFO("prom dev->xmit\n"); 11517 dev_kfree_skb(skb); 11518 return NETDEV_TX_OK; 11519 } 11520 11521 static const struct net_device_ops ipw_prom_netdev_ops = { 11522 .ndo_open = ipw_prom_open, 11523 .ndo_stop = ipw_prom_stop, 11524 .ndo_start_xmit = ipw_prom_hard_start_xmit, 11525 .ndo_set_mac_address = eth_mac_addr, 11526 .ndo_validate_addr = eth_validate_addr, 11527 }; 11528 11529 static int ipw_prom_alloc(struct ipw_priv *priv) 11530 { 11531 int rc = 0; 11532 11533 if (priv->prom_net_dev) 11534 return -EPERM; 11535 11536 priv->prom_net_dev = alloc_libipw(sizeof(struct ipw_prom_priv), 1); 11537 if (priv->prom_net_dev == NULL) 11538 return -ENOMEM; 11539 11540 priv->prom_priv = libipw_priv(priv->prom_net_dev); 11541 priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev); 11542 priv->prom_priv->priv = priv; 11543 11544 strcpy(priv->prom_net_dev->name, "rtap%d"); 11545 eth_hw_addr_set(priv->prom_net_dev, priv->mac_addr); 11546 11547 priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP; 11548 priv->prom_net_dev->netdev_ops = &ipw_prom_netdev_ops; 11549 11550 priv->prom_net_dev->min_mtu = 68; 11551 priv->prom_net_dev->max_mtu = LIBIPW_DATA_LEN; 11552 11553 priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR; 11554 SET_NETDEV_DEV(priv->prom_net_dev, &priv->pci_dev->dev); 11555 11556 rc = register_netdev(priv->prom_net_dev); 11557 if (rc) { 11558 free_libipw(priv->prom_net_dev, 1); 11559 priv->prom_net_dev = NULL; 11560 return rc; 11561 } 11562 11563 return 0; 11564 } 11565 11566 static void ipw_prom_free(struct ipw_priv *priv) 11567 { 11568 if (!priv->prom_net_dev) 11569 return; 11570 11571 unregister_netdev(priv->prom_net_dev); 11572 free_libipw(priv->prom_net_dev, 1); 11573 11574 priv->prom_net_dev = NULL; 11575 } 11576 11577 #endif 11578 11579 static const struct net_device_ops ipw_netdev_ops = { 11580 .ndo_open = ipw_net_open, 11581 .ndo_stop = ipw_net_stop, 11582 .ndo_set_rx_mode = ipw_net_set_multicast_list, 11583 .ndo_set_mac_address = ipw_net_set_mac_address, 11584 .ndo_start_xmit = libipw_xmit, 11585 .ndo_validate_addr = eth_validate_addr, 11586 }; 11587 11588 static int ipw_pci_probe(struct pci_dev *pdev, 11589 const struct pci_device_id *ent) 11590 { 11591 int err = 0; 11592 struct net_device *net_dev; 11593 void __iomem *base; 11594 u32 length, val; 11595 struct ipw_priv *priv; 11596 int i; 11597 11598 net_dev = alloc_libipw(sizeof(struct ipw_priv), 0); 11599 if (net_dev == NULL) { 11600 err = -ENOMEM; 11601 goto out; 11602 } 11603 11604 priv = libipw_priv(net_dev); 11605 priv->ieee = netdev_priv(net_dev); 11606 11607 priv->net_dev = net_dev; 11608 priv->pci_dev = pdev; 11609 ipw_debug_level = debug; 11610 spin_lock_init(&priv->irq_lock); 11611 spin_lock_init(&priv->lock); 11612 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) 11613 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]); 11614 11615 mutex_init(&priv->mutex); 11616 if (pci_enable_device(pdev)) { 11617 err = -ENODEV; 11618 goto out_free_libipw; 11619 } 11620 11621 pci_set_master(pdev); 11622 11623 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); 11624 if (!err) 11625 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32)); 11626 if (err) { 11627 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n"); 11628 goto out_pci_disable_device; 11629 } 11630 11631 pci_set_drvdata(pdev, priv); 11632 11633 err = pci_request_regions(pdev, DRV_NAME); 11634 if (err) 11635 goto out_pci_disable_device; 11636 11637 /* We disable the RETRY_TIMEOUT register (0x41) to keep 11638 * PCI Tx retries from interfering with C3 CPU state */ 11639 pci_read_config_dword(pdev, 0x40, &val); 11640 if ((val & 0x0000ff00) != 0) 11641 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff); 11642 11643 length = pci_resource_len(pdev, 0); 11644 priv->hw_len = length; 11645 11646 base = pci_ioremap_bar(pdev, 0); 11647 if (!base) { 11648 err = -ENODEV; 11649 goto out_pci_release_regions; 11650 } 11651 11652 priv->hw_base = base; 11653 IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length); 11654 IPW_DEBUG_INFO("pci_resource_base = %p\n", base); 11655 11656 ipw_setup_deferred_work(priv); 11657 11658 ipw_sw_reset(priv, 1); 11659 11660 err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv); 11661 if (err) { 11662 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq); 11663 goto out_iounmap; 11664 } 11665 11666 SET_NETDEV_DEV(net_dev, &pdev->dev); 11667 11668 mutex_lock(&priv->mutex); 11669 11670 priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit; 11671 priv->ieee->set_security = shim__set_security; 11672 priv->ieee->is_queue_full = ipw_net_is_queue_full; 11673 11674 #ifdef CONFIG_IPW2200_QOS 11675 priv->ieee->is_qos_active = ipw_is_qos_active; 11676 priv->ieee->handle_probe_response = ipw_handle_beacon; 11677 priv->ieee->handle_beacon = ipw_handle_probe_response; 11678 priv->ieee->handle_assoc_response = ipw_handle_assoc_response; 11679 #endif /* CONFIG_IPW2200_QOS */ 11680 11681 priv->ieee->perfect_rssi = -20; 11682 priv->ieee->worst_rssi = -85; 11683 11684 net_dev->netdev_ops = &ipw_netdev_ops; 11685 priv->wireless_data.spy_data = &priv->ieee->spy_data; 11686 net_dev->wireless_data = &priv->wireless_data; 11687 net_dev->wireless_handlers = &ipw_wx_handler_def; 11688 net_dev->ethtool_ops = &ipw_ethtool_ops; 11689 11690 net_dev->min_mtu = 68; 11691 net_dev->max_mtu = LIBIPW_DATA_LEN; 11692 11693 err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group); 11694 if (err) { 11695 IPW_ERROR("failed to create sysfs device attributes\n"); 11696 mutex_unlock(&priv->mutex); 11697 goto out_release_irq; 11698 } 11699 11700 if (ipw_up(priv)) { 11701 mutex_unlock(&priv->mutex); 11702 err = -EIO; 11703 goto out_remove_sysfs; 11704 } 11705 11706 mutex_unlock(&priv->mutex); 11707 11708 err = ipw_wdev_init(net_dev); 11709 if (err) { 11710 IPW_ERROR("failed to register wireless device\n"); 11711 goto out_remove_sysfs; 11712 } 11713 11714 err = register_netdev(net_dev); 11715 if (err) { 11716 IPW_ERROR("failed to register network device\n"); 11717 goto out_unregister_wiphy; 11718 } 11719 11720 #ifdef CONFIG_IPW2200_PROMISCUOUS 11721 if (rtap_iface) { 11722 err = ipw_prom_alloc(priv); 11723 if (err) { 11724 IPW_ERROR("Failed to register promiscuous network " 11725 "device (error %d).\n", err); 11726 unregister_netdev(priv->net_dev); 11727 goto out_unregister_wiphy; 11728 } 11729 } 11730 #endif 11731 11732 printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg " 11733 "channels, %d 802.11a channels)\n", 11734 priv->ieee->geo.name, priv->ieee->geo.bg_channels, 11735 priv->ieee->geo.a_channels); 11736 11737 return 0; 11738 11739 out_unregister_wiphy: 11740 wiphy_unregister(priv->ieee->wdev.wiphy); 11741 kfree(priv->ieee->a_band.channels); 11742 kfree(priv->ieee->bg_band.channels); 11743 out_remove_sysfs: 11744 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group); 11745 out_release_irq: 11746 free_irq(pdev->irq, priv); 11747 out_iounmap: 11748 iounmap(priv->hw_base); 11749 out_pci_release_regions: 11750 pci_release_regions(pdev); 11751 out_pci_disable_device: 11752 pci_disable_device(pdev); 11753 out_free_libipw: 11754 free_libipw(priv->net_dev, 0); 11755 out: 11756 return err; 11757 } 11758 11759 static void ipw_pci_remove(struct pci_dev *pdev) 11760 { 11761 struct ipw_priv *priv = pci_get_drvdata(pdev); 11762 struct list_head *p, *q; 11763 int i; 11764 11765 if (!priv) 11766 return; 11767 11768 mutex_lock(&priv->mutex); 11769 11770 priv->status |= STATUS_EXIT_PENDING; 11771 ipw_down(priv); 11772 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group); 11773 11774 mutex_unlock(&priv->mutex); 11775 11776 unregister_netdev(priv->net_dev); 11777 11778 if (priv->rxq) { 11779 ipw_rx_queue_free(priv, priv->rxq); 11780 priv->rxq = NULL; 11781 } 11782 ipw_tx_queue_free(priv); 11783 11784 if (priv->cmdlog) { 11785 kfree(priv->cmdlog); 11786 priv->cmdlog = NULL; 11787 } 11788 11789 /* make sure all works are inactive */ 11790 cancel_delayed_work_sync(&priv->adhoc_check); 11791 cancel_work_sync(&priv->associate); 11792 cancel_work_sync(&priv->disassociate); 11793 cancel_work_sync(&priv->system_config); 11794 cancel_work_sync(&priv->rx_replenish); 11795 cancel_work_sync(&priv->adapter_restart); 11796 cancel_delayed_work_sync(&priv->rf_kill); 11797 cancel_work_sync(&priv->up); 11798 cancel_work_sync(&priv->down); 11799 cancel_delayed_work_sync(&priv->request_scan); 11800 cancel_delayed_work_sync(&priv->request_direct_scan); 11801 cancel_delayed_work_sync(&priv->request_passive_scan); 11802 cancel_delayed_work_sync(&priv->scan_event); 11803 cancel_delayed_work_sync(&priv->gather_stats); 11804 cancel_work_sync(&priv->abort_scan); 11805 cancel_work_sync(&priv->roam); 11806 cancel_delayed_work_sync(&priv->scan_check); 11807 cancel_work_sync(&priv->link_up); 11808 cancel_work_sync(&priv->link_down); 11809 cancel_delayed_work_sync(&priv->led_link_on); 11810 cancel_delayed_work_sync(&priv->led_link_off); 11811 cancel_delayed_work_sync(&priv->led_act_off); 11812 cancel_work_sync(&priv->merge_networks); 11813 11814 /* Free MAC hash list for ADHOC */ 11815 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) { 11816 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) { 11817 list_del(p); 11818 kfree(list_entry(p, struct ipw_ibss_seq, list)); 11819 } 11820 } 11821 11822 kfree(priv->error); 11823 priv->error = NULL; 11824 11825 #ifdef CONFIG_IPW2200_PROMISCUOUS 11826 ipw_prom_free(priv); 11827 #endif 11828 11829 free_irq(pdev->irq, priv); 11830 iounmap(priv->hw_base); 11831 pci_release_regions(pdev); 11832 pci_disable_device(pdev); 11833 /* wiphy_unregister needs to be here, before free_libipw */ 11834 wiphy_unregister(priv->ieee->wdev.wiphy); 11835 kfree(priv->ieee->a_band.channels); 11836 kfree(priv->ieee->bg_band.channels); 11837 free_libipw(priv->net_dev, 0); 11838 free_firmware(); 11839 } 11840 11841 static int __maybe_unused ipw_pci_suspend(struct device *dev_d) 11842 { 11843 struct ipw_priv *priv = dev_get_drvdata(dev_d); 11844 struct net_device *dev = priv->net_dev; 11845 11846 printk(KERN_INFO "%s: Going into suspend...\n", dev->name); 11847 11848 /* Take down the device; powers it off, etc. */ 11849 ipw_down(priv); 11850 11851 /* Remove the PRESENT state of the device */ 11852 netif_device_detach(dev); 11853 11854 priv->suspend_at = ktime_get_boottime_seconds(); 11855 11856 return 0; 11857 } 11858 11859 static int __maybe_unused ipw_pci_resume(struct device *dev_d) 11860 { 11861 struct pci_dev *pdev = to_pci_dev(dev_d); 11862 struct ipw_priv *priv = pci_get_drvdata(pdev); 11863 struct net_device *dev = priv->net_dev; 11864 u32 val; 11865 11866 printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name); 11867 11868 /* 11869 * Suspend/Resume resets the PCI configuration space, so we have to 11870 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries 11871 * from interfering with C3 CPU state. pci_restore_state won't help 11872 * here since it only restores the first 64 bytes pci config header. 11873 */ 11874 pci_read_config_dword(pdev, 0x40, &val); 11875 if ((val & 0x0000ff00) != 0) 11876 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff); 11877 11878 /* Set the device back into the PRESENT state; this will also wake 11879 * the queue of needed */ 11880 netif_device_attach(dev); 11881 11882 priv->suspend_time = ktime_get_boottime_seconds() - priv->suspend_at; 11883 11884 /* Bring the device back up */ 11885 schedule_work(&priv->up); 11886 11887 return 0; 11888 } 11889 11890 static void ipw_pci_shutdown(struct pci_dev *pdev) 11891 { 11892 struct ipw_priv *priv = pci_get_drvdata(pdev); 11893 11894 /* Take down the device; powers it off, etc. */ 11895 ipw_down(priv); 11896 11897 pci_disable_device(pdev); 11898 } 11899 11900 static SIMPLE_DEV_PM_OPS(ipw_pci_pm_ops, ipw_pci_suspend, ipw_pci_resume); 11901 11902 /* driver initialization stuff */ 11903 static struct pci_driver ipw_driver = { 11904 .name = DRV_NAME, 11905 .id_table = card_ids, 11906 .probe = ipw_pci_probe, 11907 .remove = ipw_pci_remove, 11908 .driver.pm = &ipw_pci_pm_ops, 11909 .shutdown = ipw_pci_shutdown, 11910 }; 11911 11912 static int __init ipw_init(void) 11913 { 11914 int ret; 11915 11916 printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n"); 11917 printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n"); 11918 11919 ret = pci_register_driver(&ipw_driver); 11920 if (ret) { 11921 IPW_ERROR("Unable to initialize PCI module\n"); 11922 return ret; 11923 } 11924 11925 ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level); 11926 if (ret) { 11927 IPW_ERROR("Unable to create driver sysfs file\n"); 11928 pci_unregister_driver(&ipw_driver); 11929 return ret; 11930 } 11931 11932 return ret; 11933 } 11934 11935 static void __exit ipw_exit(void) 11936 { 11937 driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level); 11938 pci_unregister_driver(&ipw_driver); 11939 } 11940 11941 module_param(disable, int, 0444); 11942 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])"); 11943 11944 module_param(associate, int, 0444); 11945 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)"); 11946 11947 module_param(auto_create, int, 0444); 11948 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)"); 11949 11950 module_param_named(led, led_support, int, 0444); 11951 MODULE_PARM_DESC(led, "enable led control on some systems (default 1 on)"); 11952 11953 module_param(debug, int, 0444); 11954 MODULE_PARM_DESC(debug, "debug output mask"); 11955 11956 module_param_named(channel, default_channel, int, 0444); 11957 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])"); 11958 11959 #ifdef CONFIG_IPW2200_PROMISCUOUS 11960 module_param(rtap_iface, int, 0444); 11961 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)"); 11962 #endif 11963 11964 #ifdef CONFIG_IPW2200_QOS 11965 module_param(qos_enable, int, 0444); 11966 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalities"); 11967 11968 module_param(qos_burst_enable, int, 0444); 11969 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode"); 11970 11971 module_param(qos_no_ack_mask, int, 0444); 11972 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack"); 11973 11974 module_param(burst_duration_CCK, int, 0444); 11975 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value"); 11976 11977 module_param(burst_duration_OFDM, int, 0444); 11978 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value"); 11979 #endif /* CONFIG_IPW2200_QOS */ 11980 11981 #ifdef CONFIG_IPW2200_MONITOR 11982 module_param_named(mode, network_mode, int, 0444); 11983 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)"); 11984 #else 11985 module_param_named(mode, network_mode, int, 0444); 11986 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)"); 11987 #endif 11988 11989 module_param(bt_coexist, int, 0444); 11990 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)"); 11991 11992 module_param(hwcrypto, int, 0444); 11993 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)"); 11994 11995 module_param(cmdlog, int, 0444); 11996 MODULE_PARM_DESC(cmdlog, 11997 "allocate a ring buffer for logging firmware commands"); 11998 11999 module_param(roaming, int, 0444); 12000 MODULE_PARM_DESC(roaming, "enable roaming support (default on)"); 12001 12002 module_param(antenna, int, 0444); 12003 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)"); 12004 12005 module_exit(ipw_exit); 12006 module_init(ipw_init); 12007