1 // SPDX-License-Identifier: GPL-2.0-only
2 /******************************************************************************
3 
4   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
5 
6   802.11 status code portion of this file from ethereal-0.10.6:
7     Copyright 2000, Axis Communications AB
8     Ethereal - Network traffic analyzer
9     By Gerald Combs <gerald@ethereal.com>
10     Copyright 1998 Gerald Combs
11 
12 
13   Contact Information:
14   Intel Linux Wireless <ilw@linux.intel.com>
15   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
16 
17 ******************************************************************************/
18 
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <net/cfg80211-wext.h>
22 #include "ipw2200.h"
23 #include "ipw.h"
24 
25 
26 #ifndef KBUILD_EXTMOD
27 #define VK "k"
28 #else
29 #define VK
30 #endif
31 
32 #ifdef CONFIG_IPW2200_DEBUG
33 #define VD "d"
34 #else
35 #define VD
36 #endif
37 
38 #ifdef CONFIG_IPW2200_MONITOR
39 #define VM "m"
40 #else
41 #define VM
42 #endif
43 
44 #ifdef CONFIG_IPW2200_PROMISCUOUS
45 #define VP "p"
46 #else
47 #define VP
48 #endif
49 
50 #ifdef CONFIG_IPW2200_RADIOTAP
51 #define VR "r"
52 #else
53 #define VR
54 #endif
55 
56 #ifdef CONFIG_IPW2200_QOS
57 #define VQ "q"
58 #else
59 #define VQ
60 #endif
61 
62 #define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
63 #define DRV_DESCRIPTION	"Intel(R) PRO/Wireless 2200/2915 Network Driver"
64 #define DRV_COPYRIGHT	"Copyright(c) 2003-2006 Intel Corporation"
65 #define DRV_VERSION     IPW2200_VERSION
66 
67 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
68 
69 MODULE_DESCRIPTION(DRV_DESCRIPTION);
70 MODULE_VERSION(DRV_VERSION);
71 MODULE_AUTHOR(DRV_COPYRIGHT);
72 MODULE_LICENSE("GPL");
73 MODULE_FIRMWARE("ipw2200-ibss.fw");
74 #ifdef CONFIG_IPW2200_MONITOR
75 MODULE_FIRMWARE("ipw2200-sniffer.fw");
76 #endif
77 MODULE_FIRMWARE("ipw2200-bss.fw");
78 
79 static int cmdlog = 0;
80 static int debug = 0;
81 static int default_channel = 0;
82 static int network_mode = 0;
83 
84 static u32 ipw_debug_level;
85 static int associate;
86 static int auto_create = 1;
87 static int led_support = 1;
88 static int disable = 0;
89 static int bt_coexist = 0;
90 static int hwcrypto = 0;
91 static int roaming = 1;
92 static const char ipw_modes[] = {
93 	'a', 'b', 'g', '?'
94 };
95 static int antenna = CFG_SYS_ANTENNA_BOTH;
96 
97 #ifdef CONFIG_IPW2200_PROMISCUOUS
98 static int rtap_iface = 0;     /* def: 0 -- do not create rtap interface */
99 #endif
100 
101 static struct ieee80211_rate ipw2200_rates[] = {
102 	{ .bitrate = 10 },
103 	{ .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
104 	{ .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
105 	{ .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
106 	{ .bitrate = 60 },
107 	{ .bitrate = 90 },
108 	{ .bitrate = 120 },
109 	{ .bitrate = 180 },
110 	{ .bitrate = 240 },
111 	{ .bitrate = 360 },
112 	{ .bitrate = 480 },
113 	{ .bitrate = 540 }
114 };
115 
116 #define ipw2200_a_rates		(ipw2200_rates + 4)
117 #define ipw2200_num_a_rates	8
118 #define ipw2200_bg_rates	(ipw2200_rates + 0)
119 #define ipw2200_num_bg_rates	12
120 
121 /* Ugly macro to convert literal channel numbers into their mhz equivalents
122  * There are certianly some conditions that will break this (like feeding it '30')
123  * but they shouldn't arise since nothing talks on channel 30. */
124 #define ieee80211chan2mhz(x) \
125 	(((x) <= 14) ? \
126 	(((x) == 14) ? 2484 : ((x) * 5) + 2407) : \
127 	((x) + 1000) * 5)
128 
129 #ifdef CONFIG_IPW2200_QOS
130 static int qos_enable = 0;
131 static int qos_burst_enable = 0;
132 static int qos_no_ack_mask = 0;
133 static int burst_duration_CCK = 0;
134 static int burst_duration_OFDM = 0;
135 
136 static struct libipw_qos_parameters def_qos_parameters_OFDM = {
137 	{QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
138 	 QOS_TX3_CW_MIN_OFDM},
139 	{QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
140 	 QOS_TX3_CW_MAX_OFDM},
141 	{QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
142 	{QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
143 	{QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
144 	 QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
145 };
146 
147 static struct libipw_qos_parameters def_qos_parameters_CCK = {
148 	{QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
149 	 QOS_TX3_CW_MIN_CCK},
150 	{QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
151 	 QOS_TX3_CW_MAX_CCK},
152 	{QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
153 	{QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
154 	{QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
155 	 QOS_TX3_TXOP_LIMIT_CCK}
156 };
157 
158 static struct libipw_qos_parameters def_parameters_OFDM = {
159 	{DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
160 	 DEF_TX3_CW_MIN_OFDM},
161 	{DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
162 	 DEF_TX3_CW_MAX_OFDM},
163 	{DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
164 	{DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
165 	{DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
166 	 DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
167 };
168 
169 static struct libipw_qos_parameters def_parameters_CCK = {
170 	{DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
171 	 DEF_TX3_CW_MIN_CCK},
172 	{DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
173 	 DEF_TX3_CW_MAX_CCK},
174 	{DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
175 	{DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
176 	{DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
177 	 DEF_TX3_TXOP_LIMIT_CCK}
178 };
179 
180 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
181 
182 static int from_priority_to_tx_queue[] = {
183 	IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
184 	IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
185 };
186 
187 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
188 
189 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
190 				       *qos_param);
191 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
192 				     *qos_param);
193 #endif				/* CONFIG_IPW2200_QOS */
194 
195 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
196 static void ipw_remove_current_network(struct ipw_priv *priv);
197 static void ipw_rx(struct ipw_priv *priv);
198 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
199 				struct clx2_tx_queue *txq, int qindex);
200 static int ipw_queue_reset(struct ipw_priv *priv);
201 
202 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
203 			     int len, int sync);
204 
205 static void ipw_tx_queue_free(struct ipw_priv *);
206 
207 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
208 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
209 static void ipw_rx_queue_replenish(void *);
210 static int ipw_up(struct ipw_priv *);
211 static void ipw_bg_up(struct work_struct *work);
212 static void ipw_down(struct ipw_priv *);
213 static void ipw_bg_down(struct work_struct *work);
214 static int ipw_config(struct ipw_priv *);
215 static int init_supported_rates(struct ipw_priv *priv,
216 				struct ipw_supported_rates *prates);
217 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
218 static void ipw_send_wep_keys(struct ipw_priv *, int);
219 
220 static int snprint_line(char *buf, size_t count,
221 			const u8 * data, u32 len, u32 ofs)
222 {
223 	int out, i, j, l;
224 	char c;
225 
226 	out = snprintf(buf, count, "%08X", ofs);
227 
228 	for (l = 0, i = 0; i < 2; i++) {
229 		out += snprintf(buf + out, count - out, " ");
230 		for (j = 0; j < 8 && l < len; j++, l++)
231 			out += snprintf(buf + out, count - out, "%02X ",
232 					data[(i * 8 + j)]);
233 		for (; j < 8; j++)
234 			out += snprintf(buf + out, count - out, "   ");
235 	}
236 
237 	out += snprintf(buf + out, count - out, " ");
238 	for (l = 0, i = 0; i < 2; i++) {
239 		out += snprintf(buf + out, count - out, " ");
240 		for (j = 0; j < 8 && l < len; j++, l++) {
241 			c = data[(i * 8 + j)];
242 			if (!isascii(c) || !isprint(c))
243 				c = '.';
244 
245 			out += snprintf(buf + out, count - out, "%c", c);
246 		}
247 
248 		for (; j < 8; j++)
249 			out += snprintf(buf + out, count - out, " ");
250 	}
251 
252 	return out;
253 }
254 
255 static void printk_buf(int level, const u8 * data, u32 len)
256 {
257 	char line[81];
258 	u32 ofs = 0;
259 	if (!(ipw_debug_level & level))
260 		return;
261 
262 	while (len) {
263 		snprint_line(line, sizeof(line), &data[ofs],
264 			     min(len, 16U), ofs);
265 		printk(KERN_DEBUG "%s\n", line);
266 		ofs += 16;
267 		len -= min(len, 16U);
268 	}
269 }
270 
271 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
272 {
273 	size_t out = size;
274 	u32 ofs = 0;
275 	int total = 0;
276 
277 	while (size && len) {
278 		out = snprint_line(output, size, &data[ofs],
279 				   min_t(size_t, len, 16U), ofs);
280 
281 		ofs += 16;
282 		output += out;
283 		size -= out;
284 		len -= min_t(size_t, len, 16U);
285 		total += out;
286 	}
287 	return total;
288 }
289 
290 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
291 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
292 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
293 
294 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
295 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
296 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
297 
298 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
299 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
300 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
301 {
302 	IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
303 		     __LINE__, (u32) (b), (u32) (c));
304 	_ipw_write_reg8(a, b, c);
305 }
306 
307 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
308 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
309 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
310 {
311 	IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
312 		     __LINE__, (u32) (b), (u32) (c));
313 	_ipw_write_reg16(a, b, c);
314 }
315 
316 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
317 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
318 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
319 {
320 	IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
321 		     __LINE__, (u32) (b), (u32) (c));
322 	_ipw_write_reg32(a, b, c);
323 }
324 
325 /* 8-bit direct write (low 4K) */
326 static inline void _ipw_write8(struct ipw_priv *ipw, unsigned long ofs,
327 		u8 val)
328 {
329 	writeb(val, ipw->hw_base + ofs);
330 }
331 
332 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
333 #define ipw_write8(ipw, ofs, val) do { \
334 	IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, \
335 			__LINE__, (u32)(ofs), (u32)(val)); \
336 	_ipw_write8(ipw, ofs, val); \
337 } while (0)
338 
339 /* 16-bit direct write (low 4K) */
340 static inline void _ipw_write16(struct ipw_priv *ipw, unsigned long ofs,
341 		u16 val)
342 {
343 	writew(val, ipw->hw_base + ofs);
344 }
345 
346 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
347 #define ipw_write16(ipw, ofs, val) do { \
348 	IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, \
349 			__LINE__, (u32)(ofs), (u32)(val)); \
350 	_ipw_write16(ipw, ofs, val); \
351 } while (0)
352 
353 /* 32-bit direct write (low 4K) */
354 static inline void _ipw_write32(struct ipw_priv *ipw, unsigned long ofs,
355 		u32 val)
356 {
357 	writel(val, ipw->hw_base + ofs);
358 }
359 
360 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
361 #define ipw_write32(ipw, ofs, val) do { \
362 	IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, \
363 			__LINE__, (u32)(ofs), (u32)(val)); \
364 	_ipw_write32(ipw, ofs, val); \
365 } while (0)
366 
367 /* 8-bit direct read (low 4K) */
368 static inline u8 _ipw_read8(struct ipw_priv *ipw, unsigned long ofs)
369 {
370 	return readb(ipw->hw_base + ofs);
371 }
372 
373 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
374 #define ipw_read8(ipw, ofs) ({ \
375 	IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", __FILE__, __LINE__, \
376 			(u32)(ofs)); \
377 	_ipw_read8(ipw, ofs); \
378 })
379 
380 /* 16-bit direct read (low 4K) */
381 static inline u16 _ipw_read16(struct ipw_priv *ipw, unsigned long ofs)
382 {
383 	return readw(ipw->hw_base + ofs);
384 }
385 
386 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
387 #define ipw_read16(ipw, ofs) ({ \
388 	IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", __FILE__, __LINE__, \
389 			(u32)(ofs)); \
390 	_ipw_read16(ipw, ofs); \
391 })
392 
393 /* 32-bit direct read (low 4K) */
394 static inline u32 _ipw_read32(struct ipw_priv *ipw, unsigned long ofs)
395 {
396 	return readl(ipw->hw_base + ofs);
397 }
398 
399 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
400 #define ipw_read32(ipw, ofs) ({ \
401 	IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", __FILE__, __LINE__, \
402 			(u32)(ofs)); \
403 	_ipw_read32(ipw, ofs); \
404 })
405 
406 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
407 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
408 #define ipw_read_indirect(a, b, c, d) ({ \
409 	IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %u bytes\n", __FILE__, \
410 			__LINE__, (u32)(b), (u32)(d)); \
411 	_ipw_read_indirect(a, b, c, d); \
412 })
413 
414 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
415 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
416 				int num);
417 #define ipw_write_indirect(a, b, c, d) do { \
418 	IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %u bytes\n", __FILE__, \
419 			__LINE__, (u32)(b), (u32)(d)); \
420 	_ipw_write_indirect(a, b, c, d); \
421 } while (0)
422 
423 /* 32-bit indirect write (above 4K) */
424 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
425 {
426 	IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
427 	_ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
428 	_ipw_write32(priv, IPW_INDIRECT_DATA, value);
429 }
430 
431 /* 8-bit indirect write (above 4K) */
432 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
433 {
434 	u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;	/* dword align */
435 	u32 dif_len = reg - aligned_addr;
436 
437 	IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
438 	_ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
439 	_ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
440 }
441 
442 /* 16-bit indirect write (above 4K) */
443 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
444 {
445 	u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;	/* dword align */
446 	u32 dif_len = (reg - aligned_addr) & (~0x1ul);
447 
448 	IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
449 	_ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
450 	_ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
451 }
452 
453 /* 8-bit indirect read (above 4K) */
454 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
455 {
456 	u32 word;
457 	_ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
458 	IPW_DEBUG_IO(" reg = 0x%8X :\n", reg);
459 	word = _ipw_read32(priv, IPW_INDIRECT_DATA);
460 	return (word >> ((reg & 0x3) * 8)) & 0xff;
461 }
462 
463 /* 32-bit indirect read (above 4K) */
464 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
465 {
466 	u32 value;
467 
468 	IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
469 
470 	_ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
471 	value = _ipw_read32(priv, IPW_INDIRECT_DATA);
472 	IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x\n", reg, value);
473 	return value;
474 }
475 
476 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
477 /*    for area above 1st 4K of SRAM/reg space */
478 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
479 			       int num)
480 {
481 	u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;	/* dword align */
482 	u32 dif_len = addr - aligned_addr;
483 	u32 i;
484 
485 	IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
486 
487 	if (num <= 0) {
488 		return;
489 	}
490 
491 	/* Read the first dword (or portion) byte by byte */
492 	if (unlikely(dif_len)) {
493 		_ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
494 		/* Start reading at aligned_addr + dif_len */
495 		for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
496 			*buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
497 		aligned_addr += 4;
498 	}
499 
500 	/* Read all of the middle dwords as dwords, with auto-increment */
501 	_ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
502 	for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
503 		*(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
504 
505 	/* Read the last dword (or portion) byte by byte */
506 	if (unlikely(num)) {
507 		_ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
508 		for (i = 0; num > 0; i++, num--)
509 			*buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
510 	}
511 }
512 
513 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
514 /*    for area above 1st 4K of SRAM/reg space */
515 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
516 				int num)
517 {
518 	u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;	/* dword align */
519 	u32 dif_len = addr - aligned_addr;
520 	u32 i;
521 
522 	IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
523 
524 	if (num <= 0) {
525 		return;
526 	}
527 
528 	/* Write the first dword (or portion) byte by byte */
529 	if (unlikely(dif_len)) {
530 		_ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
531 		/* Start writing at aligned_addr + dif_len */
532 		for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
533 			_ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
534 		aligned_addr += 4;
535 	}
536 
537 	/* Write all of the middle dwords as dwords, with auto-increment */
538 	_ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
539 	for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
540 		_ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
541 
542 	/* Write the last dword (or portion) byte by byte */
543 	if (unlikely(num)) {
544 		_ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
545 		for (i = 0; num > 0; i++, num--, buf++)
546 			_ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
547 	}
548 }
549 
550 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
551 /*    for 1st 4K of SRAM/regs space */
552 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
553 			     int num)
554 {
555 	memcpy_toio((priv->hw_base + addr), buf, num);
556 }
557 
558 /* Set bit(s) in low 4K of SRAM/regs */
559 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
560 {
561 	ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
562 }
563 
564 /* Clear bit(s) in low 4K of SRAM/regs */
565 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
566 {
567 	ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
568 }
569 
570 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
571 {
572 	if (priv->status & STATUS_INT_ENABLED)
573 		return;
574 	priv->status |= STATUS_INT_ENABLED;
575 	ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
576 }
577 
578 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
579 {
580 	if (!(priv->status & STATUS_INT_ENABLED))
581 		return;
582 	priv->status &= ~STATUS_INT_ENABLED;
583 	ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
584 }
585 
586 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
587 {
588 	unsigned long flags;
589 
590 	spin_lock_irqsave(&priv->irq_lock, flags);
591 	__ipw_enable_interrupts(priv);
592 	spin_unlock_irqrestore(&priv->irq_lock, flags);
593 }
594 
595 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
596 {
597 	unsigned long flags;
598 
599 	spin_lock_irqsave(&priv->irq_lock, flags);
600 	__ipw_disable_interrupts(priv);
601 	spin_unlock_irqrestore(&priv->irq_lock, flags);
602 }
603 
604 static char *ipw_error_desc(u32 val)
605 {
606 	switch (val) {
607 	case IPW_FW_ERROR_OK:
608 		return "ERROR_OK";
609 	case IPW_FW_ERROR_FAIL:
610 		return "ERROR_FAIL";
611 	case IPW_FW_ERROR_MEMORY_UNDERFLOW:
612 		return "MEMORY_UNDERFLOW";
613 	case IPW_FW_ERROR_MEMORY_OVERFLOW:
614 		return "MEMORY_OVERFLOW";
615 	case IPW_FW_ERROR_BAD_PARAM:
616 		return "BAD_PARAM";
617 	case IPW_FW_ERROR_BAD_CHECKSUM:
618 		return "BAD_CHECKSUM";
619 	case IPW_FW_ERROR_NMI_INTERRUPT:
620 		return "NMI_INTERRUPT";
621 	case IPW_FW_ERROR_BAD_DATABASE:
622 		return "BAD_DATABASE";
623 	case IPW_FW_ERROR_ALLOC_FAIL:
624 		return "ALLOC_FAIL";
625 	case IPW_FW_ERROR_DMA_UNDERRUN:
626 		return "DMA_UNDERRUN";
627 	case IPW_FW_ERROR_DMA_STATUS:
628 		return "DMA_STATUS";
629 	case IPW_FW_ERROR_DINO_ERROR:
630 		return "DINO_ERROR";
631 	case IPW_FW_ERROR_EEPROM_ERROR:
632 		return "EEPROM_ERROR";
633 	case IPW_FW_ERROR_SYSASSERT:
634 		return "SYSASSERT";
635 	case IPW_FW_ERROR_FATAL_ERROR:
636 		return "FATAL_ERROR";
637 	default:
638 		return "UNKNOWN_ERROR";
639 	}
640 }
641 
642 static void ipw_dump_error_log(struct ipw_priv *priv,
643 			       struct ipw_fw_error *error)
644 {
645 	u32 i;
646 
647 	if (!error) {
648 		IPW_ERROR("Error allocating and capturing error log.  "
649 			  "Nothing to dump.\n");
650 		return;
651 	}
652 
653 	IPW_ERROR("Start IPW Error Log Dump:\n");
654 	IPW_ERROR("Status: 0x%08X, Config: %08X\n",
655 		  error->status, error->config);
656 
657 	for (i = 0; i < error->elem_len; i++)
658 		IPW_ERROR("%s %i 0x%08x  0x%08x  0x%08x  0x%08x  0x%08x\n",
659 			  ipw_error_desc(error->elem[i].desc),
660 			  error->elem[i].time,
661 			  error->elem[i].blink1,
662 			  error->elem[i].blink2,
663 			  error->elem[i].link1,
664 			  error->elem[i].link2, error->elem[i].data);
665 	for (i = 0; i < error->log_len; i++)
666 		IPW_ERROR("%i\t0x%08x\t%i\n",
667 			  error->log[i].time,
668 			  error->log[i].data, error->log[i].event);
669 }
670 
671 static inline int ipw_is_init(struct ipw_priv *priv)
672 {
673 	return (priv->status & STATUS_INIT) ? 1 : 0;
674 }
675 
676 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
677 {
678 	u32 addr, field_info, field_len, field_count, total_len;
679 
680 	IPW_DEBUG_ORD("ordinal = %i\n", ord);
681 
682 	if (!priv || !val || !len) {
683 		IPW_DEBUG_ORD("Invalid argument\n");
684 		return -EINVAL;
685 	}
686 
687 	/* verify device ordinal tables have been initialized */
688 	if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
689 		IPW_DEBUG_ORD("Access ordinals before initialization\n");
690 		return -EINVAL;
691 	}
692 
693 	switch (IPW_ORD_TABLE_ID_MASK & ord) {
694 	case IPW_ORD_TABLE_0_MASK:
695 		/*
696 		 * TABLE 0: Direct access to a table of 32 bit values
697 		 *
698 		 * This is a very simple table with the data directly
699 		 * read from the table
700 		 */
701 
702 		/* remove the table id from the ordinal */
703 		ord &= IPW_ORD_TABLE_VALUE_MASK;
704 
705 		/* boundary check */
706 		if (ord > priv->table0_len) {
707 			IPW_DEBUG_ORD("ordinal value (%i) longer then "
708 				      "max (%i)\n", ord, priv->table0_len);
709 			return -EINVAL;
710 		}
711 
712 		/* verify we have enough room to store the value */
713 		if (*len < sizeof(u32)) {
714 			IPW_DEBUG_ORD("ordinal buffer length too small, "
715 				      "need %zd\n", sizeof(u32));
716 			return -EINVAL;
717 		}
718 
719 		IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
720 			      ord, priv->table0_addr + (ord << 2));
721 
722 		*len = sizeof(u32);
723 		ord <<= 2;
724 		*((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
725 		break;
726 
727 	case IPW_ORD_TABLE_1_MASK:
728 		/*
729 		 * TABLE 1: Indirect access to a table of 32 bit values
730 		 *
731 		 * This is a fairly large table of u32 values each
732 		 * representing starting addr for the data (which is
733 		 * also a u32)
734 		 */
735 
736 		/* remove the table id from the ordinal */
737 		ord &= IPW_ORD_TABLE_VALUE_MASK;
738 
739 		/* boundary check */
740 		if (ord > priv->table1_len) {
741 			IPW_DEBUG_ORD("ordinal value too long\n");
742 			return -EINVAL;
743 		}
744 
745 		/* verify we have enough room to store the value */
746 		if (*len < sizeof(u32)) {
747 			IPW_DEBUG_ORD("ordinal buffer length too small, "
748 				      "need %zd\n", sizeof(u32));
749 			return -EINVAL;
750 		}
751 
752 		*((u32 *) val) =
753 		    ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
754 		*len = sizeof(u32);
755 		break;
756 
757 	case IPW_ORD_TABLE_2_MASK:
758 		/*
759 		 * TABLE 2: Indirect access to a table of variable sized values
760 		 *
761 		 * This table consist of six values, each containing
762 		 *     - dword containing the starting offset of the data
763 		 *     - dword containing the lengh in the first 16bits
764 		 *       and the count in the second 16bits
765 		 */
766 
767 		/* remove the table id from the ordinal */
768 		ord &= IPW_ORD_TABLE_VALUE_MASK;
769 
770 		/* boundary check */
771 		if (ord > priv->table2_len) {
772 			IPW_DEBUG_ORD("ordinal value too long\n");
773 			return -EINVAL;
774 		}
775 
776 		/* get the address of statistic */
777 		addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
778 
779 		/* get the second DW of statistics ;
780 		 * two 16-bit words - first is length, second is count */
781 		field_info =
782 		    ipw_read_reg32(priv,
783 				   priv->table2_addr + (ord << 3) +
784 				   sizeof(u32));
785 
786 		/* get each entry length */
787 		field_len = *((u16 *) & field_info);
788 
789 		/* get number of entries */
790 		field_count = *(((u16 *) & field_info) + 1);
791 
792 		/* abort if not enough memory */
793 		total_len = field_len * field_count;
794 		if (total_len > *len) {
795 			*len = total_len;
796 			return -EINVAL;
797 		}
798 
799 		*len = total_len;
800 		if (!total_len)
801 			return 0;
802 
803 		IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
804 			      "field_info = 0x%08x\n",
805 			      addr, total_len, field_info);
806 		ipw_read_indirect(priv, addr, val, total_len);
807 		break;
808 
809 	default:
810 		IPW_DEBUG_ORD("Invalid ordinal!\n");
811 		return -EINVAL;
812 
813 	}
814 
815 	return 0;
816 }
817 
818 static void ipw_init_ordinals(struct ipw_priv *priv)
819 {
820 	priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
821 	priv->table0_len = ipw_read32(priv, priv->table0_addr);
822 
823 	IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
824 		      priv->table0_addr, priv->table0_len);
825 
826 	priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
827 	priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
828 
829 	IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
830 		      priv->table1_addr, priv->table1_len);
831 
832 	priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
833 	priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
834 	priv->table2_len &= 0x0000ffff;	/* use first two bytes */
835 
836 	IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
837 		      priv->table2_addr, priv->table2_len);
838 
839 }
840 
841 static u32 ipw_register_toggle(u32 reg)
842 {
843 	reg &= ~IPW_START_STANDBY;
844 	if (reg & IPW_GATE_ODMA)
845 		reg &= ~IPW_GATE_ODMA;
846 	if (reg & IPW_GATE_IDMA)
847 		reg &= ~IPW_GATE_IDMA;
848 	if (reg & IPW_GATE_ADMA)
849 		reg &= ~IPW_GATE_ADMA;
850 	return reg;
851 }
852 
853 /*
854  * LED behavior:
855  * - On radio ON, turn on any LEDs that require to be on during start
856  * - On initialization, start unassociated blink
857  * - On association, disable unassociated blink
858  * - On disassociation, start unassociated blink
859  * - On radio OFF, turn off any LEDs started during radio on
860  *
861  */
862 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
863 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
864 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
865 
866 static void ipw_led_link_on(struct ipw_priv *priv)
867 {
868 	unsigned long flags;
869 	u32 led;
870 
871 	/* If configured to not use LEDs, or nic_type is 1,
872 	 * then we don't toggle a LINK led */
873 	if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
874 		return;
875 
876 	spin_lock_irqsave(&priv->lock, flags);
877 
878 	if (!(priv->status & STATUS_RF_KILL_MASK) &&
879 	    !(priv->status & STATUS_LED_LINK_ON)) {
880 		IPW_DEBUG_LED("Link LED On\n");
881 		led = ipw_read_reg32(priv, IPW_EVENT_REG);
882 		led |= priv->led_association_on;
883 
884 		led = ipw_register_toggle(led);
885 
886 		IPW_DEBUG_LED("Reg: 0x%08X\n", led);
887 		ipw_write_reg32(priv, IPW_EVENT_REG, led);
888 
889 		priv->status |= STATUS_LED_LINK_ON;
890 
891 		/* If we aren't associated, schedule turning the LED off */
892 		if (!(priv->status & STATUS_ASSOCIATED))
893 			schedule_delayed_work(&priv->led_link_off,
894 					      LD_TIME_LINK_ON);
895 	}
896 
897 	spin_unlock_irqrestore(&priv->lock, flags);
898 }
899 
900 static void ipw_bg_led_link_on(struct work_struct *work)
901 {
902 	struct ipw_priv *priv =
903 		container_of(work, struct ipw_priv, led_link_on.work);
904 	mutex_lock(&priv->mutex);
905 	ipw_led_link_on(priv);
906 	mutex_unlock(&priv->mutex);
907 }
908 
909 static void ipw_led_link_off(struct ipw_priv *priv)
910 {
911 	unsigned long flags;
912 	u32 led;
913 
914 	/* If configured not to use LEDs, or nic type is 1,
915 	 * then we don't goggle the LINK led. */
916 	if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
917 		return;
918 
919 	spin_lock_irqsave(&priv->lock, flags);
920 
921 	if (priv->status & STATUS_LED_LINK_ON) {
922 		led = ipw_read_reg32(priv, IPW_EVENT_REG);
923 		led &= priv->led_association_off;
924 		led = ipw_register_toggle(led);
925 
926 		IPW_DEBUG_LED("Reg: 0x%08X\n", led);
927 		ipw_write_reg32(priv, IPW_EVENT_REG, led);
928 
929 		IPW_DEBUG_LED("Link LED Off\n");
930 
931 		priv->status &= ~STATUS_LED_LINK_ON;
932 
933 		/* If we aren't associated and the radio is on, schedule
934 		 * turning the LED on (blink while unassociated) */
935 		if (!(priv->status & STATUS_RF_KILL_MASK) &&
936 		    !(priv->status & STATUS_ASSOCIATED))
937 			schedule_delayed_work(&priv->led_link_on,
938 					      LD_TIME_LINK_OFF);
939 
940 	}
941 
942 	spin_unlock_irqrestore(&priv->lock, flags);
943 }
944 
945 static void ipw_bg_led_link_off(struct work_struct *work)
946 {
947 	struct ipw_priv *priv =
948 		container_of(work, struct ipw_priv, led_link_off.work);
949 	mutex_lock(&priv->mutex);
950 	ipw_led_link_off(priv);
951 	mutex_unlock(&priv->mutex);
952 }
953 
954 static void __ipw_led_activity_on(struct ipw_priv *priv)
955 {
956 	u32 led;
957 
958 	if (priv->config & CFG_NO_LED)
959 		return;
960 
961 	if (priv->status & STATUS_RF_KILL_MASK)
962 		return;
963 
964 	if (!(priv->status & STATUS_LED_ACT_ON)) {
965 		led = ipw_read_reg32(priv, IPW_EVENT_REG);
966 		led |= priv->led_activity_on;
967 
968 		led = ipw_register_toggle(led);
969 
970 		IPW_DEBUG_LED("Reg: 0x%08X\n", led);
971 		ipw_write_reg32(priv, IPW_EVENT_REG, led);
972 
973 		IPW_DEBUG_LED("Activity LED On\n");
974 
975 		priv->status |= STATUS_LED_ACT_ON;
976 
977 		cancel_delayed_work(&priv->led_act_off);
978 		schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON);
979 	} else {
980 		/* Reschedule LED off for full time period */
981 		cancel_delayed_work(&priv->led_act_off);
982 		schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON);
983 	}
984 }
985 
986 #if 0
987 void ipw_led_activity_on(struct ipw_priv *priv)
988 {
989 	unsigned long flags;
990 	spin_lock_irqsave(&priv->lock, flags);
991 	__ipw_led_activity_on(priv);
992 	spin_unlock_irqrestore(&priv->lock, flags);
993 }
994 #endif  /*  0  */
995 
996 static void ipw_led_activity_off(struct ipw_priv *priv)
997 {
998 	unsigned long flags;
999 	u32 led;
1000 
1001 	if (priv->config & CFG_NO_LED)
1002 		return;
1003 
1004 	spin_lock_irqsave(&priv->lock, flags);
1005 
1006 	if (priv->status & STATUS_LED_ACT_ON) {
1007 		led = ipw_read_reg32(priv, IPW_EVENT_REG);
1008 		led &= priv->led_activity_off;
1009 
1010 		led = ipw_register_toggle(led);
1011 
1012 		IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1013 		ipw_write_reg32(priv, IPW_EVENT_REG, led);
1014 
1015 		IPW_DEBUG_LED("Activity LED Off\n");
1016 
1017 		priv->status &= ~STATUS_LED_ACT_ON;
1018 	}
1019 
1020 	spin_unlock_irqrestore(&priv->lock, flags);
1021 }
1022 
1023 static void ipw_bg_led_activity_off(struct work_struct *work)
1024 {
1025 	struct ipw_priv *priv =
1026 		container_of(work, struct ipw_priv, led_act_off.work);
1027 	mutex_lock(&priv->mutex);
1028 	ipw_led_activity_off(priv);
1029 	mutex_unlock(&priv->mutex);
1030 }
1031 
1032 static void ipw_led_band_on(struct ipw_priv *priv)
1033 {
1034 	unsigned long flags;
1035 	u32 led;
1036 
1037 	/* Only nic type 1 supports mode LEDs */
1038 	if (priv->config & CFG_NO_LED ||
1039 	    priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1040 		return;
1041 
1042 	spin_lock_irqsave(&priv->lock, flags);
1043 
1044 	led = ipw_read_reg32(priv, IPW_EVENT_REG);
1045 	if (priv->assoc_network->mode == IEEE_A) {
1046 		led |= priv->led_ofdm_on;
1047 		led &= priv->led_association_off;
1048 		IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1049 	} else if (priv->assoc_network->mode == IEEE_G) {
1050 		led |= priv->led_ofdm_on;
1051 		led |= priv->led_association_on;
1052 		IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1053 	} else {
1054 		led &= priv->led_ofdm_off;
1055 		led |= priv->led_association_on;
1056 		IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1057 	}
1058 
1059 	led = ipw_register_toggle(led);
1060 
1061 	IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1062 	ipw_write_reg32(priv, IPW_EVENT_REG, led);
1063 
1064 	spin_unlock_irqrestore(&priv->lock, flags);
1065 }
1066 
1067 static void ipw_led_band_off(struct ipw_priv *priv)
1068 {
1069 	unsigned long flags;
1070 	u32 led;
1071 
1072 	/* Only nic type 1 supports mode LEDs */
1073 	if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1074 		return;
1075 
1076 	spin_lock_irqsave(&priv->lock, flags);
1077 
1078 	led = ipw_read_reg32(priv, IPW_EVENT_REG);
1079 	led &= priv->led_ofdm_off;
1080 	led &= priv->led_association_off;
1081 
1082 	led = ipw_register_toggle(led);
1083 
1084 	IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1085 	ipw_write_reg32(priv, IPW_EVENT_REG, led);
1086 
1087 	spin_unlock_irqrestore(&priv->lock, flags);
1088 }
1089 
1090 static void ipw_led_radio_on(struct ipw_priv *priv)
1091 {
1092 	ipw_led_link_on(priv);
1093 }
1094 
1095 static void ipw_led_radio_off(struct ipw_priv *priv)
1096 {
1097 	ipw_led_activity_off(priv);
1098 	ipw_led_link_off(priv);
1099 }
1100 
1101 static void ipw_led_link_up(struct ipw_priv *priv)
1102 {
1103 	/* Set the Link Led on for all nic types */
1104 	ipw_led_link_on(priv);
1105 }
1106 
1107 static void ipw_led_link_down(struct ipw_priv *priv)
1108 {
1109 	ipw_led_activity_off(priv);
1110 	ipw_led_link_off(priv);
1111 
1112 	if (priv->status & STATUS_RF_KILL_MASK)
1113 		ipw_led_radio_off(priv);
1114 }
1115 
1116 static void ipw_led_init(struct ipw_priv *priv)
1117 {
1118 	priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1119 
1120 	/* Set the default PINs for the link and activity leds */
1121 	priv->led_activity_on = IPW_ACTIVITY_LED;
1122 	priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1123 
1124 	priv->led_association_on = IPW_ASSOCIATED_LED;
1125 	priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1126 
1127 	/* Set the default PINs for the OFDM leds */
1128 	priv->led_ofdm_on = IPW_OFDM_LED;
1129 	priv->led_ofdm_off = ~(IPW_OFDM_LED);
1130 
1131 	switch (priv->nic_type) {
1132 	case EEPROM_NIC_TYPE_1:
1133 		/* In this NIC type, the LEDs are reversed.... */
1134 		priv->led_activity_on = IPW_ASSOCIATED_LED;
1135 		priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1136 		priv->led_association_on = IPW_ACTIVITY_LED;
1137 		priv->led_association_off = ~(IPW_ACTIVITY_LED);
1138 
1139 		if (!(priv->config & CFG_NO_LED))
1140 			ipw_led_band_on(priv);
1141 
1142 		/* And we don't blink link LEDs for this nic, so
1143 		 * just return here */
1144 		return;
1145 
1146 	case EEPROM_NIC_TYPE_3:
1147 	case EEPROM_NIC_TYPE_2:
1148 	case EEPROM_NIC_TYPE_4:
1149 	case EEPROM_NIC_TYPE_0:
1150 		break;
1151 
1152 	default:
1153 		IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1154 			       priv->nic_type);
1155 		priv->nic_type = EEPROM_NIC_TYPE_0;
1156 		break;
1157 	}
1158 
1159 	if (!(priv->config & CFG_NO_LED)) {
1160 		if (priv->status & STATUS_ASSOCIATED)
1161 			ipw_led_link_on(priv);
1162 		else
1163 			ipw_led_link_off(priv);
1164 	}
1165 }
1166 
1167 static void ipw_led_shutdown(struct ipw_priv *priv)
1168 {
1169 	ipw_led_activity_off(priv);
1170 	ipw_led_link_off(priv);
1171 	ipw_led_band_off(priv);
1172 	cancel_delayed_work(&priv->led_link_on);
1173 	cancel_delayed_work(&priv->led_link_off);
1174 	cancel_delayed_work(&priv->led_act_off);
1175 }
1176 
1177 /*
1178  * The following adds a new attribute to the sysfs representation
1179  * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1180  * used for controlling the debug level.
1181  *
1182  * See the level definitions in ipw for details.
1183  */
1184 static ssize_t debug_level_show(struct device_driver *d, char *buf)
1185 {
1186 	return sprintf(buf, "0x%08X\n", ipw_debug_level);
1187 }
1188 
1189 static ssize_t debug_level_store(struct device_driver *d, const char *buf,
1190 				 size_t count)
1191 {
1192 	char *p = (char *)buf;
1193 	u32 val;
1194 
1195 	if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1196 		p++;
1197 		if (p[0] == 'x' || p[0] == 'X')
1198 			p++;
1199 		val = simple_strtoul(p, &p, 16);
1200 	} else
1201 		val = simple_strtoul(p, &p, 10);
1202 	if (p == buf)
1203 		printk(KERN_INFO DRV_NAME
1204 		       ": %s is not in hex or decimal form.\n", buf);
1205 	else
1206 		ipw_debug_level = val;
1207 
1208 	return strnlen(buf, count);
1209 }
1210 static DRIVER_ATTR_RW(debug_level);
1211 
1212 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1213 {
1214 	/* length = 1st dword in log */
1215 	return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1216 }
1217 
1218 static void ipw_capture_event_log(struct ipw_priv *priv,
1219 				  u32 log_len, struct ipw_event *log)
1220 {
1221 	u32 base;
1222 
1223 	if (log_len) {
1224 		base = ipw_read32(priv, IPW_EVENT_LOG);
1225 		ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1226 				  (u8 *) log, sizeof(*log) * log_len);
1227 	}
1228 }
1229 
1230 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1231 {
1232 	struct ipw_fw_error *error;
1233 	u32 log_len = ipw_get_event_log_len(priv);
1234 	u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1235 	u32 elem_len = ipw_read_reg32(priv, base);
1236 
1237 	error = kmalloc(sizeof(*error) +
1238 			sizeof(*error->elem) * elem_len +
1239 			sizeof(*error->log) * log_len, GFP_ATOMIC);
1240 	if (!error) {
1241 		IPW_ERROR("Memory allocation for firmware error log "
1242 			  "failed.\n");
1243 		return NULL;
1244 	}
1245 	error->jiffies = jiffies;
1246 	error->status = priv->status;
1247 	error->config = priv->config;
1248 	error->elem_len = elem_len;
1249 	error->log_len = log_len;
1250 	error->elem = (struct ipw_error_elem *)error->payload;
1251 	error->log = (struct ipw_event *)(error->elem + elem_len);
1252 
1253 	ipw_capture_event_log(priv, log_len, error->log);
1254 
1255 	if (elem_len)
1256 		ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1257 				  sizeof(*error->elem) * elem_len);
1258 
1259 	return error;
1260 }
1261 
1262 static ssize_t show_event_log(struct device *d,
1263 			      struct device_attribute *attr, char *buf)
1264 {
1265 	struct ipw_priv *priv = dev_get_drvdata(d);
1266 	u32 log_len = ipw_get_event_log_len(priv);
1267 	u32 log_size;
1268 	struct ipw_event *log;
1269 	u32 len = 0, i;
1270 
1271 	/* not using min() because of its strict type checking */
1272 	log_size = PAGE_SIZE / sizeof(*log) > log_len ?
1273 			sizeof(*log) * log_len : PAGE_SIZE;
1274 	log = kzalloc(log_size, GFP_KERNEL);
1275 	if (!log) {
1276 		IPW_ERROR("Unable to allocate memory for log\n");
1277 		return 0;
1278 	}
1279 	log_len = log_size / sizeof(*log);
1280 	ipw_capture_event_log(priv, log_len, log);
1281 
1282 	len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1283 	for (i = 0; i < log_len; i++)
1284 		len += snprintf(buf + len, PAGE_SIZE - len,
1285 				"\n%08X%08X%08X",
1286 				log[i].time, log[i].event, log[i].data);
1287 	len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1288 	kfree(log);
1289 	return len;
1290 }
1291 
1292 static DEVICE_ATTR(event_log, 0444, show_event_log, NULL);
1293 
1294 static ssize_t show_error(struct device *d,
1295 			  struct device_attribute *attr, char *buf)
1296 {
1297 	struct ipw_priv *priv = dev_get_drvdata(d);
1298 	u32 len = 0, i;
1299 	if (!priv->error)
1300 		return 0;
1301 	len += snprintf(buf + len, PAGE_SIZE - len,
1302 			"%08lX%08X%08X%08X",
1303 			priv->error->jiffies,
1304 			priv->error->status,
1305 			priv->error->config, priv->error->elem_len);
1306 	for (i = 0; i < priv->error->elem_len; i++)
1307 		len += snprintf(buf + len, PAGE_SIZE - len,
1308 				"\n%08X%08X%08X%08X%08X%08X%08X",
1309 				priv->error->elem[i].time,
1310 				priv->error->elem[i].desc,
1311 				priv->error->elem[i].blink1,
1312 				priv->error->elem[i].blink2,
1313 				priv->error->elem[i].link1,
1314 				priv->error->elem[i].link2,
1315 				priv->error->elem[i].data);
1316 
1317 	len += snprintf(buf + len, PAGE_SIZE - len,
1318 			"\n%08X", priv->error->log_len);
1319 	for (i = 0; i < priv->error->log_len; i++)
1320 		len += snprintf(buf + len, PAGE_SIZE - len,
1321 				"\n%08X%08X%08X",
1322 				priv->error->log[i].time,
1323 				priv->error->log[i].event,
1324 				priv->error->log[i].data);
1325 	len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1326 	return len;
1327 }
1328 
1329 static ssize_t clear_error(struct device *d,
1330 			   struct device_attribute *attr,
1331 			   const char *buf, size_t count)
1332 {
1333 	struct ipw_priv *priv = dev_get_drvdata(d);
1334 
1335 	kfree(priv->error);
1336 	priv->error = NULL;
1337 	return count;
1338 }
1339 
1340 static DEVICE_ATTR(error, 0644, show_error, clear_error);
1341 
1342 static ssize_t show_cmd_log(struct device *d,
1343 			    struct device_attribute *attr, char *buf)
1344 {
1345 	struct ipw_priv *priv = dev_get_drvdata(d);
1346 	u32 len = 0, i;
1347 	if (!priv->cmdlog)
1348 		return 0;
1349 	for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1350 	     (i != priv->cmdlog_pos) && (len < PAGE_SIZE);
1351 	     i = (i + 1) % priv->cmdlog_len) {
1352 		len +=
1353 		    snprintf(buf + len, PAGE_SIZE - len,
1354 			     "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1355 			     priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1356 			     priv->cmdlog[i].cmd.len);
1357 		len +=
1358 		    snprintk_buf(buf + len, PAGE_SIZE - len,
1359 				 (u8 *) priv->cmdlog[i].cmd.param,
1360 				 priv->cmdlog[i].cmd.len);
1361 		len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1362 	}
1363 	len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1364 	return len;
1365 }
1366 
1367 static DEVICE_ATTR(cmd_log, 0444, show_cmd_log, NULL);
1368 
1369 #ifdef CONFIG_IPW2200_PROMISCUOUS
1370 static void ipw_prom_free(struct ipw_priv *priv);
1371 static int ipw_prom_alloc(struct ipw_priv *priv);
1372 static ssize_t store_rtap_iface(struct device *d,
1373 			 struct device_attribute *attr,
1374 			 const char *buf, size_t count)
1375 {
1376 	struct ipw_priv *priv = dev_get_drvdata(d);
1377 	int rc = 0;
1378 
1379 	if (count < 1)
1380 		return -EINVAL;
1381 
1382 	switch (buf[0]) {
1383 	case '0':
1384 		if (!rtap_iface)
1385 			return count;
1386 
1387 		if (netif_running(priv->prom_net_dev)) {
1388 			IPW_WARNING("Interface is up.  Cannot unregister.\n");
1389 			return count;
1390 		}
1391 
1392 		ipw_prom_free(priv);
1393 		rtap_iface = 0;
1394 		break;
1395 
1396 	case '1':
1397 		if (rtap_iface)
1398 			return count;
1399 
1400 		rc = ipw_prom_alloc(priv);
1401 		if (!rc)
1402 			rtap_iface = 1;
1403 		break;
1404 
1405 	default:
1406 		return -EINVAL;
1407 	}
1408 
1409 	if (rc) {
1410 		IPW_ERROR("Failed to register promiscuous network "
1411 			  "device (error %d).\n", rc);
1412 	}
1413 
1414 	return count;
1415 }
1416 
1417 static ssize_t show_rtap_iface(struct device *d,
1418 			struct device_attribute *attr,
1419 			char *buf)
1420 {
1421 	struct ipw_priv *priv = dev_get_drvdata(d);
1422 	if (rtap_iface)
1423 		return sprintf(buf, "%s", priv->prom_net_dev->name);
1424 	else {
1425 		buf[0] = '-';
1426 		buf[1] = '1';
1427 		buf[2] = '\0';
1428 		return 3;
1429 	}
1430 }
1431 
1432 static DEVICE_ATTR(rtap_iface, 0600, show_rtap_iface, store_rtap_iface);
1433 
1434 static ssize_t store_rtap_filter(struct device *d,
1435 			 struct device_attribute *attr,
1436 			 const char *buf, size_t count)
1437 {
1438 	struct ipw_priv *priv = dev_get_drvdata(d);
1439 
1440 	if (!priv->prom_priv) {
1441 		IPW_ERROR("Attempting to set filter without "
1442 			  "rtap_iface enabled.\n");
1443 		return -EPERM;
1444 	}
1445 
1446 	priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1447 
1448 	IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1449 		       BIT_ARG16(priv->prom_priv->filter));
1450 
1451 	return count;
1452 }
1453 
1454 static ssize_t show_rtap_filter(struct device *d,
1455 			struct device_attribute *attr,
1456 			char *buf)
1457 {
1458 	struct ipw_priv *priv = dev_get_drvdata(d);
1459 	return sprintf(buf, "0x%04X",
1460 		       priv->prom_priv ? priv->prom_priv->filter : 0);
1461 }
1462 
1463 static DEVICE_ATTR(rtap_filter, 0600, show_rtap_filter, store_rtap_filter);
1464 #endif
1465 
1466 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1467 			     char *buf)
1468 {
1469 	struct ipw_priv *priv = dev_get_drvdata(d);
1470 	return sprintf(buf, "%d\n", priv->ieee->scan_age);
1471 }
1472 
1473 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1474 			      const char *buf, size_t count)
1475 {
1476 	struct ipw_priv *priv = dev_get_drvdata(d);
1477 	struct net_device *dev = priv->net_dev;
1478 	char buffer[] = "00000000";
1479 	unsigned long len =
1480 	    (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1481 	unsigned long val;
1482 	char *p = buffer;
1483 
1484 	IPW_DEBUG_INFO("enter\n");
1485 
1486 	strncpy(buffer, buf, len);
1487 	buffer[len] = 0;
1488 
1489 	if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1490 		p++;
1491 		if (p[0] == 'x' || p[0] == 'X')
1492 			p++;
1493 		val = simple_strtoul(p, &p, 16);
1494 	} else
1495 		val = simple_strtoul(p, &p, 10);
1496 	if (p == buffer) {
1497 		IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1498 	} else {
1499 		priv->ieee->scan_age = val;
1500 		IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1501 	}
1502 
1503 	IPW_DEBUG_INFO("exit\n");
1504 	return len;
1505 }
1506 
1507 static DEVICE_ATTR(scan_age, 0644, show_scan_age, store_scan_age);
1508 
1509 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1510 			char *buf)
1511 {
1512 	struct ipw_priv *priv = dev_get_drvdata(d);
1513 	return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1514 }
1515 
1516 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1517 			 const char *buf, size_t count)
1518 {
1519 	struct ipw_priv *priv = dev_get_drvdata(d);
1520 
1521 	IPW_DEBUG_INFO("enter\n");
1522 
1523 	if (count == 0)
1524 		return 0;
1525 
1526 	if (*buf == 0) {
1527 		IPW_DEBUG_LED("Disabling LED control.\n");
1528 		priv->config |= CFG_NO_LED;
1529 		ipw_led_shutdown(priv);
1530 	} else {
1531 		IPW_DEBUG_LED("Enabling LED control.\n");
1532 		priv->config &= ~CFG_NO_LED;
1533 		ipw_led_init(priv);
1534 	}
1535 
1536 	IPW_DEBUG_INFO("exit\n");
1537 	return count;
1538 }
1539 
1540 static DEVICE_ATTR(led, 0644, show_led, store_led);
1541 
1542 static ssize_t show_status(struct device *d,
1543 			   struct device_attribute *attr, char *buf)
1544 {
1545 	struct ipw_priv *p = dev_get_drvdata(d);
1546 	return sprintf(buf, "0x%08x\n", (int)p->status);
1547 }
1548 
1549 static DEVICE_ATTR(status, 0444, show_status, NULL);
1550 
1551 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1552 			char *buf)
1553 {
1554 	struct ipw_priv *p = dev_get_drvdata(d);
1555 	return sprintf(buf, "0x%08x\n", (int)p->config);
1556 }
1557 
1558 static DEVICE_ATTR(cfg, 0444, show_cfg, NULL);
1559 
1560 static ssize_t show_nic_type(struct device *d,
1561 			     struct device_attribute *attr, char *buf)
1562 {
1563 	struct ipw_priv *priv = dev_get_drvdata(d);
1564 	return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1565 }
1566 
1567 static DEVICE_ATTR(nic_type, 0444, show_nic_type, NULL);
1568 
1569 static ssize_t show_ucode_version(struct device *d,
1570 				  struct device_attribute *attr, char *buf)
1571 {
1572 	u32 len = sizeof(u32), tmp = 0;
1573 	struct ipw_priv *p = dev_get_drvdata(d);
1574 
1575 	if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1576 		return 0;
1577 
1578 	return sprintf(buf, "0x%08x\n", tmp);
1579 }
1580 
1581 static DEVICE_ATTR(ucode_version, 0644, show_ucode_version, NULL);
1582 
1583 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1584 			char *buf)
1585 {
1586 	u32 len = sizeof(u32), tmp = 0;
1587 	struct ipw_priv *p = dev_get_drvdata(d);
1588 
1589 	if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1590 		return 0;
1591 
1592 	return sprintf(buf, "0x%08x\n", tmp);
1593 }
1594 
1595 static DEVICE_ATTR(rtc, 0644, show_rtc, NULL);
1596 
1597 /*
1598  * Add a device attribute to view/control the delay between eeprom
1599  * operations.
1600  */
1601 static ssize_t show_eeprom_delay(struct device *d,
1602 				 struct device_attribute *attr, char *buf)
1603 {
1604 	struct ipw_priv *p = dev_get_drvdata(d);
1605 	int n = p->eeprom_delay;
1606 	return sprintf(buf, "%i\n", n);
1607 }
1608 static ssize_t store_eeprom_delay(struct device *d,
1609 				  struct device_attribute *attr,
1610 				  const char *buf, size_t count)
1611 {
1612 	struct ipw_priv *p = dev_get_drvdata(d);
1613 	sscanf(buf, "%i", &p->eeprom_delay);
1614 	return strnlen(buf, count);
1615 }
1616 
1617 static DEVICE_ATTR(eeprom_delay, 0644, show_eeprom_delay, store_eeprom_delay);
1618 
1619 static ssize_t show_command_event_reg(struct device *d,
1620 				      struct device_attribute *attr, char *buf)
1621 {
1622 	u32 reg = 0;
1623 	struct ipw_priv *p = dev_get_drvdata(d);
1624 
1625 	reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1626 	return sprintf(buf, "0x%08x\n", reg);
1627 }
1628 static ssize_t store_command_event_reg(struct device *d,
1629 				       struct device_attribute *attr,
1630 				       const char *buf, size_t count)
1631 {
1632 	u32 reg;
1633 	struct ipw_priv *p = dev_get_drvdata(d);
1634 
1635 	sscanf(buf, "%x", &reg);
1636 	ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1637 	return strnlen(buf, count);
1638 }
1639 
1640 static DEVICE_ATTR(command_event_reg, 0644,
1641 		   show_command_event_reg, store_command_event_reg);
1642 
1643 static ssize_t show_mem_gpio_reg(struct device *d,
1644 				 struct device_attribute *attr, char *buf)
1645 {
1646 	u32 reg = 0;
1647 	struct ipw_priv *p = dev_get_drvdata(d);
1648 
1649 	reg = ipw_read_reg32(p, 0x301100);
1650 	return sprintf(buf, "0x%08x\n", reg);
1651 }
1652 static ssize_t store_mem_gpio_reg(struct device *d,
1653 				  struct device_attribute *attr,
1654 				  const char *buf, size_t count)
1655 {
1656 	u32 reg;
1657 	struct ipw_priv *p = dev_get_drvdata(d);
1658 
1659 	sscanf(buf, "%x", &reg);
1660 	ipw_write_reg32(p, 0x301100, reg);
1661 	return strnlen(buf, count);
1662 }
1663 
1664 static DEVICE_ATTR(mem_gpio_reg, 0644, show_mem_gpio_reg, store_mem_gpio_reg);
1665 
1666 static ssize_t show_indirect_dword(struct device *d,
1667 				   struct device_attribute *attr, char *buf)
1668 {
1669 	u32 reg = 0;
1670 	struct ipw_priv *priv = dev_get_drvdata(d);
1671 
1672 	if (priv->status & STATUS_INDIRECT_DWORD)
1673 		reg = ipw_read_reg32(priv, priv->indirect_dword);
1674 	else
1675 		reg = 0;
1676 
1677 	return sprintf(buf, "0x%08x\n", reg);
1678 }
1679 static ssize_t store_indirect_dword(struct device *d,
1680 				    struct device_attribute *attr,
1681 				    const char *buf, size_t count)
1682 {
1683 	struct ipw_priv *priv = dev_get_drvdata(d);
1684 
1685 	sscanf(buf, "%x", &priv->indirect_dword);
1686 	priv->status |= STATUS_INDIRECT_DWORD;
1687 	return strnlen(buf, count);
1688 }
1689 
1690 static DEVICE_ATTR(indirect_dword, 0644,
1691 		   show_indirect_dword, store_indirect_dword);
1692 
1693 static ssize_t show_indirect_byte(struct device *d,
1694 				  struct device_attribute *attr, char *buf)
1695 {
1696 	u8 reg = 0;
1697 	struct ipw_priv *priv = dev_get_drvdata(d);
1698 
1699 	if (priv->status & STATUS_INDIRECT_BYTE)
1700 		reg = ipw_read_reg8(priv, priv->indirect_byte);
1701 	else
1702 		reg = 0;
1703 
1704 	return sprintf(buf, "0x%02x\n", reg);
1705 }
1706 static ssize_t store_indirect_byte(struct device *d,
1707 				   struct device_attribute *attr,
1708 				   const char *buf, size_t count)
1709 {
1710 	struct ipw_priv *priv = dev_get_drvdata(d);
1711 
1712 	sscanf(buf, "%x", &priv->indirect_byte);
1713 	priv->status |= STATUS_INDIRECT_BYTE;
1714 	return strnlen(buf, count);
1715 }
1716 
1717 static DEVICE_ATTR(indirect_byte, 0644,
1718 		   show_indirect_byte, store_indirect_byte);
1719 
1720 static ssize_t show_direct_dword(struct device *d,
1721 				 struct device_attribute *attr, char *buf)
1722 {
1723 	u32 reg = 0;
1724 	struct ipw_priv *priv = dev_get_drvdata(d);
1725 
1726 	if (priv->status & STATUS_DIRECT_DWORD)
1727 		reg = ipw_read32(priv, priv->direct_dword);
1728 	else
1729 		reg = 0;
1730 
1731 	return sprintf(buf, "0x%08x\n", reg);
1732 }
1733 static ssize_t store_direct_dword(struct device *d,
1734 				  struct device_attribute *attr,
1735 				  const char *buf, size_t count)
1736 {
1737 	struct ipw_priv *priv = dev_get_drvdata(d);
1738 
1739 	sscanf(buf, "%x", &priv->direct_dword);
1740 	priv->status |= STATUS_DIRECT_DWORD;
1741 	return strnlen(buf, count);
1742 }
1743 
1744 static DEVICE_ATTR(direct_dword, 0644, show_direct_dword, store_direct_dword);
1745 
1746 static int rf_kill_active(struct ipw_priv *priv)
1747 {
1748 	if (0 == (ipw_read32(priv, 0x30) & 0x10000)) {
1749 		priv->status |= STATUS_RF_KILL_HW;
1750 		wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1751 	} else {
1752 		priv->status &= ~STATUS_RF_KILL_HW;
1753 		wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1754 	}
1755 
1756 	return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1757 }
1758 
1759 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1760 			    char *buf)
1761 {
1762 	/* 0 - RF kill not enabled
1763 	   1 - SW based RF kill active (sysfs)
1764 	   2 - HW based RF kill active
1765 	   3 - Both HW and SW baed RF kill active */
1766 	struct ipw_priv *priv = dev_get_drvdata(d);
1767 	int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1768 	    (rf_kill_active(priv) ? 0x2 : 0x0);
1769 	return sprintf(buf, "%i\n", val);
1770 }
1771 
1772 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1773 {
1774 	if ((disable_radio ? 1 : 0) ==
1775 	    ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1776 		return 0;
1777 
1778 	IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
1779 			  disable_radio ? "OFF" : "ON");
1780 
1781 	if (disable_radio) {
1782 		priv->status |= STATUS_RF_KILL_SW;
1783 
1784 		cancel_delayed_work(&priv->request_scan);
1785 		cancel_delayed_work(&priv->request_direct_scan);
1786 		cancel_delayed_work(&priv->request_passive_scan);
1787 		cancel_delayed_work(&priv->scan_event);
1788 		schedule_work(&priv->down);
1789 	} else {
1790 		priv->status &= ~STATUS_RF_KILL_SW;
1791 		if (rf_kill_active(priv)) {
1792 			IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1793 					  "disabled by HW switch\n");
1794 			/* Make sure the RF_KILL check timer is running */
1795 			cancel_delayed_work(&priv->rf_kill);
1796 			schedule_delayed_work(&priv->rf_kill,
1797 					      round_jiffies_relative(2 * HZ));
1798 		} else
1799 			schedule_work(&priv->up);
1800 	}
1801 
1802 	return 1;
1803 }
1804 
1805 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1806 			     const char *buf, size_t count)
1807 {
1808 	struct ipw_priv *priv = dev_get_drvdata(d);
1809 
1810 	ipw_radio_kill_sw(priv, buf[0] == '1');
1811 
1812 	return count;
1813 }
1814 
1815 static DEVICE_ATTR(rf_kill, 0644, show_rf_kill, store_rf_kill);
1816 
1817 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1818 			       char *buf)
1819 {
1820 	struct ipw_priv *priv = dev_get_drvdata(d);
1821 	int pos = 0, len = 0;
1822 	if (priv->config & CFG_SPEED_SCAN) {
1823 		while (priv->speed_scan[pos] != 0)
1824 			len += sprintf(&buf[len], "%d ",
1825 				       priv->speed_scan[pos++]);
1826 		return len + sprintf(&buf[len], "\n");
1827 	}
1828 
1829 	return sprintf(buf, "0\n");
1830 }
1831 
1832 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1833 				const char *buf, size_t count)
1834 {
1835 	struct ipw_priv *priv = dev_get_drvdata(d);
1836 	int channel, pos = 0;
1837 	const char *p = buf;
1838 
1839 	/* list of space separated channels to scan, optionally ending with 0 */
1840 	while ((channel = simple_strtol(p, NULL, 0))) {
1841 		if (pos == MAX_SPEED_SCAN - 1) {
1842 			priv->speed_scan[pos] = 0;
1843 			break;
1844 		}
1845 
1846 		if (libipw_is_valid_channel(priv->ieee, channel))
1847 			priv->speed_scan[pos++] = channel;
1848 		else
1849 			IPW_WARNING("Skipping invalid channel request: %d\n",
1850 				    channel);
1851 		p = strchr(p, ' ');
1852 		if (!p)
1853 			break;
1854 		while (*p == ' ' || *p == '\t')
1855 			p++;
1856 	}
1857 
1858 	if (pos == 0)
1859 		priv->config &= ~CFG_SPEED_SCAN;
1860 	else {
1861 		priv->speed_scan_pos = 0;
1862 		priv->config |= CFG_SPEED_SCAN;
1863 	}
1864 
1865 	return count;
1866 }
1867 
1868 static DEVICE_ATTR(speed_scan, 0644, show_speed_scan, store_speed_scan);
1869 
1870 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1871 			      char *buf)
1872 {
1873 	struct ipw_priv *priv = dev_get_drvdata(d);
1874 	return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1875 }
1876 
1877 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1878 			       const char *buf, size_t count)
1879 {
1880 	struct ipw_priv *priv = dev_get_drvdata(d);
1881 	if (buf[0] == '1')
1882 		priv->config |= CFG_NET_STATS;
1883 	else
1884 		priv->config &= ~CFG_NET_STATS;
1885 
1886 	return count;
1887 }
1888 
1889 static DEVICE_ATTR(net_stats, 0644, show_net_stats, store_net_stats);
1890 
1891 static ssize_t show_channels(struct device *d,
1892 			     struct device_attribute *attr,
1893 			     char *buf)
1894 {
1895 	struct ipw_priv *priv = dev_get_drvdata(d);
1896 	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1897 	int len = 0, i;
1898 
1899 	len = sprintf(&buf[len],
1900 		      "Displaying %d channels in 2.4Ghz band "
1901 		      "(802.11bg):\n", geo->bg_channels);
1902 
1903 	for (i = 0; i < geo->bg_channels; i++) {
1904 		len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
1905 			       geo->bg[i].channel,
1906 			       geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT ?
1907 			       " (radar spectrum)" : "",
1908 			       ((geo->bg[i].flags & LIBIPW_CH_NO_IBSS) ||
1909 				(geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT))
1910 			       ? "" : ", IBSS",
1911 			       geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1912 			       "passive only" : "active/passive",
1913 			       geo->bg[i].flags & LIBIPW_CH_B_ONLY ?
1914 			       "B" : "B/G");
1915 	}
1916 
1917 	len += sprintf(&buf[len],
1918 		       "Displaying %d channels in 5.2Ghz band "
1919 		       "(802.11a):\n", geo->a_channels);
1920 	for (i = 0; i < geo->a_channels; i++) {
1921 		len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
1922 			       geo->a[i].channel,
1923 			       geo->a[i].flags & LIBIPW_CH_RADAR_DETECT ?
1924 			       " (radar spectrum)" : "",
1925 			       ((geo->a[i].flags & LIBIPW_CH_NO_IBSS) ||
1926 				(geo->a[i].flags & LIBIPW_CH_RADAR_DETECT))
1927 			       ? "" : ", IBSS",
1928 			       geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1929 			       "passive only" : "active/passive");
1930 	}
1931 
1932 	return len;
1933 }
1934 
1935 static DEVICE_ATTR(channels, 0400, show_channels, NULL);
1936 
1937 static void notify_wx_assoc_event(struct ipw_priv *priv)
1938 {
1939 	union iwreq_data wrqu;
1940 	wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1941 	if (priv->status & STATUS_ASSOCIATED)
1942 		memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1943 	else
1944 		eth_zero_addr(wrqu.ap_addr.sa_data);
1945 	wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1946 }
1947 
1948 static void ipw_irq_tasklet(struct ipw_priv *priv)
1949 {
1950 	u32 inta, inta_mask, handled = 0;
1951 	unsigned long flags;
1952 	int rc = 0;
1953 
1954 	spin_lock_irqsave(&priv->irq_lock, flags);
1955 
1956 	inta = ipw_read32(priv, IPW_INTA_RW);
1957 	inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1958 
1959 	if (inta == 0xFFFFFFFF) {
1960 		/* Hardware disappeared */
1961 		IPW_WARNING("TASKLET INTA == 0xFFFFFFFF\n");
1962 		/* Only handle the cached INTA values */
1963 		inta = 0;
1964 	}
1965 	inta &= (IPW_INTA_MASK_ALL & inta_mask);
1966 
1967 	/* Add any cached INTA values that need to be handled */
1968 	inta |= priv->isr_inta;
1969 
1970 	spin_unlock_irqrestore(&priv->irq_lock, flags);
1971 
1972 	spin_lock_irqsave(&priv->lock, flags);
1973 
1974 	/* handle all the justifications for the interrupt */
1975 	if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1976 		ipw_rx(priv);
1977 		handled |= IPW_INTA_BIT_RX_TRANSFER;
1978 	}
1979 
1980 	if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1981 		IPW_DEBUG_HC("Command completed.\n");
1982 		rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1983 		priv->status &= ~STATUS_HCMD_ACTIVE;
1984 		wake_up_interruptible(&priv->wait_command_queue);
1985 		handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1986 	}
1987 
1988 	if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
1989 		IPW_DEBUG_TX("TX_QUEUE_1\n");
1990 		rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
1991 		handled |= IPW_INTA_BIT_TX_QUEUE_1;
1992 	}
1993 
1994 	if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
1995 		IPW_DEBUG_TX("TX_QUEUE_2\n");
1996 		rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
1997 		handled |= IPW_INTA_BIT_TX_QUEUE_2;
1998 	}
1999 
2000 	if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
2001 		IPW_DEBUG_TX("TX_QUEUE_3\n");
2002 		rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
2003 		handled |= IPW_INTA_BIT_TX_QUEUE_3;
2004 	}
2005 
2006 	if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
2007 		IPW_DEBUG_TX("TX_QUEUE_4\n");
2008 		rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
2009 		handled |= IPW_INTA_BIT_TX_QUEUE_4;
2010 	}
2011 
2012 	if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
2013 		IPW_WARNING("STATUS_CHANGE\n");
2014 		handled |= IPW_INTA_BIT_STATUS_CHANGE;
2015 	}
2016 
2017 	if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
2018 		IPW_WARNING("TX_PERIOD_EXPIRED\n");
2019 		handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
2020 	}
2021 
2022 	if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
2023 		IPW_WARNING("HOST_CMD_DONE\n");
2024 		handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
2025 	}
2026 
2027 	if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
2028 		IPW_WARNING("FW_INITIALIZATION_DONE\n");
2029 		handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
2030 	}
2031 
2032 	if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
2033 		IPW_WARNING("PHY_OFF_DONE\n");
2034 		handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
2035 	}
2036 
2037 	if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
2038 		IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
2039 		priv->status |= STATUS_RF_KILL_HW;
2040 		wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2041 		wake_up_interruptible(&priv->wait_command_queue);
2042 		priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2043 		cancel_delayed_work(&priv->request_scan);
2044 		cancel_delayed_work(&priv->request_direct_scan);
2045 		cancel_delayed_work(&priv->request_passive_scan);
2046 		cancel_delayed_work(&priv->scan_event);
2047 		schedule_work(&priv->link_down);
2048 		schedule_delayed_work(&priv->rf_kill, 2 * HZ);
2049 		handled |= IPW_INTA_BIT_RF_KILL_DONE;
2050 	}
2051 
2052 	if (inta & IPW_INTA_BIT_FATAL_ERROR) {
2053 		IPW_WARNING("Firmware error detected.  Restarting.\n");
2054 		if (priv->error) {
2055 			IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2056 			if (ipw_debug_level & IPW_DL_FW_ERRORS) {
2057 				struct ipw_fw_error *error =
2058 				    ipw_alloc_error_log(priv);
2059 				ipw_dump_error_log(priv, error);
2060 				kfree(error);
2061 			}
2062 		} else {
2063 			priv->error = ipw_alloc_error_log(priv);
2064 			if (priv->error)
2065 				IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2066 			else
2067 				IPW_DEBUG_FW("Error allocating sysfs 'error' "
2068 					     "log.\n");
2069 			if (ipw_debug_level & IPW_DL_FW_ERRORS)
2070 				ipw_dump_error_log(priv, priv->error);
2071 		}
2072 
2073 		/* XXX: If hardware encryption is for WPA/WPA2,
2074 		 * we have to notify the supplicant. */
2075 		if (priv->ieee->sec.encrypt) {
2076 			priv->status &= ~STATUS_ASSOCIATED;
2077 			notify_wx_assoc_event(priv);
2078 		}
2079 
2080 		/* Keep the restart process from trying to send host
2081 		 * commands by clearing the INIT status bit */
2082 		priv->status &= ~STATUS_INIT;
2083 
2084 		/* Cancel currently queued command. */
2085 		priv->status &= ~STATUS_HCMD_ACTIVE;
2086 		wake_up_interruptible(&priv->wait_command_queue);
2087 
2088 		schedule_work(&priv->adapter_restart);
2089 		handled |= IPW_INTA_BIT_FATAL_ERROR;
2090 	}
2091 
2092 	if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2093 		IPW_ERROR("Parity error\n");
2094 		handled |= IPW_INTA_BIT_PARITY_ERROR;
2095 	}
2096 
2097 	if (handled != inta) {
2098 		IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2099 	}
2100 
2101 	spin_unlock_irqrestore(&priv->lock, flags);
2102 
2103 	/* enable all interrupts */
2104 	ipw_enable_interrupts(priv);
2105 }
2106 
2107 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2108 static char *get_cmd_string(u8 cmd)
2109 {
2110 	switch (cmd) {
2111 		IPW_CMD(HOST_COMPLETE);
2112 		IPW_CMD(POWER_DOWN);
2113 		IPW_CMD(SYSTEM_CONFIG);
2114 		IPW_CMD(MULTICAST_ADDRESS);
2115 		IPW_CMD(SSID);
2116 		IPW_CMD(ADAPTER_ADDRESS);
2117 		IPW_CMD(PORT_TYPE);
2118 		IPW_CMD(RTS_THRESHOLD);
2119 		IPW_CMD(FRAG_THRESHOLD);
2120 		IPW_CMD(POWER_MODE);
2121 		IPW_CMD(WEP_KEY);
2122 		IPW_CMD(TGI_TX_KEY);
2123 		IPW_CMD(SCAN_REQUEST);
2124 		IPW_CMD(SCAN_REQUEST_EXT);
2125 		IPW_CMD(ASSOCIATE);
2126 		IPW_CMD(SUPPORTED_RATES);
2127 		IPW_CMD(SCAN_ABORT);
2128 		IPW_CMD(TX_FLUSH);
2129 		IPW_CMD(QOS_PARAMETERS);
2130 		IPW_CMD(DINO_CONFIG);
2131 		IPW_CMD(RSN_CAPABILITIES);
2132 		IPW_CMD(RX_KEY);
2133 		IPW_CMD(CARD_DISABLE);
2134 		IPW_CMD(SEED_NUMBER);
2135 		IPW_CMD(TX_POWER);
2136 		IPW_CMD(COUNTRY_INFO);
2137 		IPW_CMD(AIRONET_INFO);
2138 		IPW_CMD(AP_TX_POWER);
2139 		IPW_CMD(CCKM_INFO);
2140 		IPW_CMD(CCX_VER_INFO);
2141 		IPW_CMD(SET_CALIBRATION);
2142 		IPW_CMD(SENSITIVITY_CALIB);
2143 		IPW_CMD(RETRY_LIMIT);
2144 		IPW_CMD(IPW_PRE_POWER_DOWN);
2145 		IPW_CMD(VAP_BEACON_TEMPLATE);
2146 		IPW_CMD(VAP_DTIM_PERIOD);
2147 		IPW_CMD(EXT_SUPPORTED_RATES);
2148 		IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2149 		IPW_CMD(VAP_QUIET_INTERVALS);
2150 		IPW_CMD(VAP_CHANNEL_SWITCH);
2151 		IPW_CMD(VAP_MANDATORY_CHANNELS);
2152 		IPW_CMD(VAP_CELL_PWR_LIMIT);
2153 		IPW_CMD(VAP_CF_PARAM_SET);
2154 		IPW_CMD(VAP_SET_BEACONING_STATE);
2155 		IPW_CMD(MEASUREMENT);
2156 		IPW_CMD(POWER_CAPABILITY);
2157 		IPW_CMD(SUPPORTED_CHANNELS);
2158 		IPW_CMD(TPC_REPORT);
2159 		IPW_CMD(WME_INFO);
2160 		IPW_CMD(PRODUCTION_COMMAND);
2161 	default:
2162 		return "UNKNOWN";
2163 	}
2164 }
2165 
2166 #define HOST_COMPLETE_TIMEOUT HZ
2167 
2168 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2169 {
2170 	int rc = 0;
2171 	unsigned long flags;
2172 	unsigned long now, end;
2173 
2174 	spin_lock_irqsave(&priv->lock, flags);
2175 	if (priv->status & STATUS_HCMD_ACTIVE) {
2176 		IPW_ERROR("Failed to send %s: Already sending a command.\n",
2177 			  get_cmd_string(cmd->cmd));
2178 		spin_unlock_irqrestore(&priv->lock, flags);
2179 		return -EAGAIN;
2180 	}
2181 
2182 	priv->status |= STATUS_HCMD_ACTIVE;
2183 
2184 	if (priv->cmdlog) {
2185 		priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2186 		priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2187 		priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2188 		memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2189 		       cmd->len);
2190 		priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2191 	}
2192 
2193 	IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2194 		     get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2195 		     priv->status);
2196 
2197 #ifndef DEBUG_CMD_WEP_KEY
2198 	if (cmd->cmd == IPW_CMD_WEP_KEY)
2199 		IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2200 	else
2201 #endif
2202 		printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2203 
2204 	rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2205 	if (rc) {
2206 		priv->status &= ~STATUS_HCMD_ACTIVE;
2207 		IPW_ERROR("Failed to send %s: Reason %d\n",
2208 			  get_cmd_string(cmd->cmd), rc);
2209 		spin_unlock_irqrestore(&priv->lock, flags);
2210 		goto exit;
2211 	}
2212 	spin_unlock_irqrestore(&priv->lock, flags);
2213 
2214 	now = jiffies;
2215 	end = now + HOST_COMPLETE_TIMEOUT;
2216 again:
2217 	rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2218 					      !(priv->
2219 						status & STATUS_HCMD_ACTIVE),
2220 					      end - now);
2221 	if (rc < 0) {
2222 		now = jiffies;
2223 		if (time_before(now, end))
2224 			goto again;
2225 		rc = 0;
2226 	}
2227 
2228 	if (rc == 0) {
2229 		spin_lock_irqsave(&priv->lock, flags);
2230 		if (priv->status & STATUS_HCMD_ACTIVE) {
2231 			IPW_ERROR("Failed to send %s: Command timed out.\n",
2232 				  get_cmd_string(cmd->cmd));
2233 			priv->status &= ~STATUS_HCMD_ACTIVE;
2234 			spin_unlock_irqrestore(&priv->lock, flags);
2235 			rc = -EIO;
2236 			goto exit;
2237 		}
2238 		spin_unlock_irqrestore(&priv->lock, flags);
2239 	} else
2240 		rc = 0;
2241 
2242 	if (priv->status & STATUS_RF_KILL_HW) {
2243 		IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2244 			  get_cmd_string(cmd->cmd));
2245 		rc = -EIO;
2246 		goto exit;
2247 	}
2248 
2249       exit:
2250 	if (priv->cmdlog) {
2251 		priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2252 		priv->cmdlog_pos %= priv->cmdlog_len;
2253 	}
2254 	return rc;
2255 }
2256 
2257 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2258 {
2259 	struct host_cmd cmd = {
2260 		.cmd = command,
2261 	};
2262 
2263 	return __ipw_send_cmd(priv, &cmd);
2264 }
2265 
2266 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2267 			    void *data)
2268 {
2269 	struct host_cmd cmd = {
2270 		.cmd = command,
2271 		.len = len,
2272 		.param = data,
2273 	};
2274 
2275 	return __ipw_send_cmd(priv, &cmd);
2276 }
2277 
2278 static int ipw_send_host_complete(struct ipw_priv *priv)
2279 {
2280 	if (!priv) {
2281 		IPW_ERROR("Invalid args\n");
2282 		return -1;
2283 	}
2284 
2285 	return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2286 }
2287 
2288 static int ipw_send_system_config(struct ipw_priv *priv)
2289 {
2290 	return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2291 				sizeof(priv->sys_config),
2292 				&priv->sys_config);
2293 }
2294 
2295 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2296 {
2297 	if (!priv || !ssid) {
2298 		IPW_ERROR("Invalid args\n");
2299 		return -1;
2300 	}
2301 
2302 	return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2303 				ssid);
2304 }
2305 
2306 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2307 {
2308 	if (!priv || !mac) {
2309 		IPW_ERROR("Invalid args\n");
2310 		return -1;
2311 	}
2312 
2313 	IPW_DEBUG_INFO("%s: Setting MAC to %pM\n",
2314 		       priv->net_dev->name, mac);
2315 
2316 	return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2317 }
2318 
2319 static void ipw_adapter_restart(void *adapter)
2320 {
2321 	struct ipw_priv *priv = adapter;
2322 
2323 	if (priv->status & STATUS_RF_KILL_MASK)
2324 		return;
2325 
2326 	ipw_down(priv);
2327 
2328 	if (priv->assoc_network &&
2329 	    (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2330 		ipw_remove_current_network(priv);
2331 
2332 	if (ipw_up(priv)) {
2333 		IPW_ERROR("Failed to up device\n");
2334 		return;
2335 	}
2336 }
2337 
2338 static void ipw_bg_adapter_restart(struct work_struct *work)
2339 {
2340 	struct ipw_priv *priv =
2341 		container_of(work, struct ipw_priv, adapter_restart);
2342 	mutex_lock(&priv->mutex);
2343 	ipw_adapter_restart(priv);
2344 	mutex_unlock(&priv->mutex);
2345 }
2346 
2347 static void ipw_abort_scan(struct ipw_priv *priv);
2348 
2349 #define IPW_SCAN_CHECK_WATCHDOG	(5 * HZ)
2350 
2351 static void ipw_scan_check(void *data)
2352 {
2353 	struct ipw_priv *priv = data;
2354 
2355 	if (priv->status & STATUS_SCAN_ABORTING) {
2356 		IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2357 			       "adapter after (%dms).\n",
2358 			       jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2359 		schedule_work(&priv->adapter_restart);
2360 	} else if (priv->status & STATUS_SCANNING) {
2361 		IPW_DEBUG_SCAN("Scan completion watchdog aborting scan "
2362 			       "after (%dms).\n",
2363 			       jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2364 		ipw_abort_scan(priv);
2365 		schedule_delayed_work(&priv->scan_check, HZ);
2366 	}
2367 }
2368 
2369 static void ipw_bg_scan_check(struct work_struct *work)
2370 {
2371 	struct ipw_priv *priv =
2372 		container_of(work, struct ipw_priv, scan_check.work);
2373 	mutex_lock(&priv->mutex);
2374 	ipw_scan_check(priv);
2375 	mutex_unlock(&priv->mutex);
2376 }
2377 
2378 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2379 				     struct ipw_scan_request_ext *request)
2380 {
2381 	return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2382 				sizeof(*request), request);
2383 }
2384 
2385 static int ipw_send_scan_abort(struct ipw_priv *priv)
2386 {
2387 	if (!priv) {
2388 		IPW_ERROR("Invalid args\n");
2389 		return -1;
2390 	}
2391 
2392 	return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2393 }
2394 
2395 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2396 {
2397 	struct ipw_sensitivity_calib calib = {
2398 		.beacon_rssi_raw = cpu_to_le16(sens),
2399 	};
2400 
2401 	return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2402 				&calib);
2403 }
2404 
2405 static int ipw_send_associate(struct ipw_priv *priv,
2406 			      struct ipw_associate *associate)
2407 {
2408 	if (!priv || !associate) {
2409 		IPW_ERROR("Invalid args\n");
2410 		return -1;
2411 	}
2412 
2413 	return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(*associate),
2414 				associate);
2415 }
2416 
2417 static int ipw_send_supported_rates(struct ipw_priv *priv,
2418 				    struct ipw_supported_rates *rates)
2419 {
2420 	if (!priv || !rates) {
2421 		IPW_ERROR("Invalid args\n");
2422 		return -1;
2423 	}
2424 
2425 	return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2426 				rates);
2427 }
2428 
2429 static int ipw_set_random_seed(struct ipw_priv *priv)
2430 {
2431 	u32 val;
2432 
2433 	if (!priv) {
2434 		IPW_ERROR("Invalid args\n");
2435 		return -1;
2436 	}
2437 
2438 	get_random_bytes(&val, sizeof(val));
2439 
2440 	return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2441 }
2442 
2443 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2444 {
2445 	__le32 v = cpu_to_le32(phy_off);
2446 	if (!priv) {
2447 		IPW_ERROR("Invalid args\n");
2448 		return -1;
2449 	}
2450 
2451 	return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(v), &v);
2452 }
2453 
2454 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2455 {
2456 	if (!priv || !power) {
2457 		IPW_ERROR("Invalid args\n");
2458 		return -1;
2459 	}
2460 
2461 	return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2462 }
2463 
2464 static int ipw_set_tx_power(struct ipw_priv *priv)
2465 {
2466 	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
2467 	struct ipw_tx_power tx_power;
2468 	s8 max_power;
2469 	int i;
2470 
2471 	memset(&tx_power, 0, sizeof(tx_power));
2472 
2473 	/* configure device for 'G' band */
2474 	tx_power.ieee_mode = IPW_G_MODE;
2475 	tx_power.num_channels = geo->bg_channels;
2476 	for (i = 0; i < geo->bg_channels; i++) {
2477 		max_power = geo->bg[i].max_power;
2478 		tx_power.channels_tx_power[i].channel_number =
2479 		    geo->bg[i].channel;
2480 		tx_power.channels_tx_power[i].tx_power = max_power ?
2481 		    min(max_power, priv->tx_power) : priv->tx_power;
2482 	}
2483 	if (ipw_send_tx_power(priv, &tx_power))
2484 		return -EIO;
2485 
2486 	/* configure device to also handle 'B' band */
2487 	tx_power.ieee_mode = IPW_B_MODE;
2488 	if (ipw_send_tx_power(priv, &tx_power))
2489 		return -EIO;
2490 
2491 	/* configure device to also handle 'A' band */
2492 	if (priv->ieee->abg_true) {
2493 		tx_power.ieee_mode = IPW_A_MODE;
2494 		tx_power.num_channels = geo->a_channels;
2495 		for (i = 0; i < tx_power.num_channels; i++) {
2496 			max_power = geo->a[i].max_power;
2497 			tx_power.channels_tx_power[i].channel_number =
2498 			    geo->a[i].channel;
2499 			tx_power.channels_tx_power[i].tx_power = max_power ?
2500 			    min(max_power, priv->tx_power) : priv->tx_power;
2501 		}
2502 		if (ipw_send_tx_power(priv, &tx_power))
2503 			return -EIO;
2504 	}
2505 	return 0;
2506 }
2507 
2508 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2509 {
2510 	struct ipw_rts_threshold rts_threshold = {
2511 		.rts_threshold = cpu_to_le16(rts),
2512 	};
2513 
2514 	if (!priv) {
2515 		IPW_ERROR("Invalid args\n");
2516 		return -1;
2517 	}
2518 
2519 	return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2520 				sizeof(rts_threshold), &rts_threshold);
2521 }
2522 
2523 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2524 {
2525 	struct ipw_frag_threshold frag_threshold = {
2526 		.frag_threshold = cpu_to_le16(frag),
2527 	};
2528 
2529 	if (!priv) {
2530 		IPW_ERROR("Invalid args\n");
2531 		return -1;
2532 	}
2533 
2534 	return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2535 				sizeof(frag_threshold), &frag_threshold);
2536 }
2537 
2538 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2539 {
2540 	__le32 param;
2541 
2542 	if (!priv) {
2543 		IPW_ERROR("Invalid args\n");
2544 		return -1;
2545 	}
2546 
2547 	/* If on battery, set to 3, if AC set to CAM, else user
2548 	 * level */
2549 	switch (mode) {
2550 	case IPW_POWER_BATTERY:
2551 		param = cpu_to_le32(IPW_POWER_INDEX_3);
2552 		break;
2553 	case IPW_POWER_AC:
2554 		param = cpu_to_le32(IPW_POWER_MODE_CAM);
2555 		break;
2556 	default:
2557 		param = cpu_to_le32(mode);
2558 		break;
2559 	}
2560 
2561 	return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2562 				&param);
2563 }
2564 
2565 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2566 {
2567 	struct ipw_retry_limit retry_limit = {
2568 		.short_retry_limit = slimit,
2569 		.long_retry_limit = llimit
2570 	};
2571 
2572 	if (!priv) {
2573 		IPW_ERROR("Invalid args\n");
2574 		return -1;
2575 	}
2576 
2577 	return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2578 				&retry_limit);
2579 }
2580 
2581 /*
2582  * The IPW device contains a Microwire compatible EEPROM that stores
2583  * various data like the MAC address.  Usually the firmware has exclusive
2584  * access to the eeprom, but during device initialization (before the
2585  * device driver has sent the HostComplete command to the firmware) the
2586  * device driver has read access to the EEPROM by way of indirect addressing
2587  * through a couple of memory mapped registers.
2588  *
2589  * The following is a simplified implementation for pulling data out of the
2590  * the eeprom, along with some helper functions to find information in
2591  * the per device private data's copy of the eeprom.
2592  *
2593  * NOTE: To better understand how these functions work (i.e what is a chip
2594  *       select and why do have to keep driving the eeprom clock?), read
2595  *       just about any data sheet for a Microwire compatible EEPROM.
2596  */
2597 
2598 /* write a 32 bit value into the indirect accessor register */
2599 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2600 {
2601 	ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2602 
2603 	/* the eeprom requires some time to complete the operation */
2604 	udelay(p->eeprom_delay);
2605 }
2606 
2607 /* perform a chip select operation */
2608 static void eeprom_cs(struct ipw_priv *priv)
2609 {
2610 	eeprom_write_reg(priv, 0);
2611 	eeprom_write_reg(priv, EEPROM_BIT_CS);
2612 	eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2613 	eeprom_write_reg(priv, EEPROM_BIT_CS);
2614 }
2615 
2616 /* perform a chip select operation */
2617 static void eeprom_disable_cs(struct ipw_priv *priv)
2618 {
2619 	eeprom_write_reg(priv, EEPROM_BIT_CS);
2620 	eeprom_write_reg(priv, 0);
2621 	eeprom_write_reg(priv, EEPROM_BIT_SK);
2622 }
2623 
2624 /* push a single bit down to the eeprom */
2625 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2626 {
2627 	int d = (bit ? EEPROM_BIT_DI : 0);
2628 	eeprom_write_reg(p, EEPROM_BIT_CS | d);
2629 	eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2630 }
2631 
2632 /* push an opcode followed by an address down to the eeprom */
2633 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2634 {
2635 	int i;
2636 
2637 	eeprom_cs(priv);
2638 	eeprom_write_bit(priv, 1);
2639 	eeprom_write_bit(priv, op & 2);
2640 	eeprom_write_bit(priv, op & 1);
2641 	for (i = 7; i >= 0; i--) {
2642 		eeprom_write_bit(priv, addr & (1 << i));
2643 	}
2644 }
2645 
2646 /* pull 16 bits off the eeprom, one bit at a time */
2647 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2648 {
2649 	int i;
2650 	u16 r = 0;
2651 
2652 	/* Send READ Opcode */
2653 	eeprom_op(priv, EEPROM_CMD_READ, addr);
2654 
2655 	/* Send dummy bit */
2656 	eeprom_write_reg(priv, EEPROM_BIT_CS);
2657 
2658 	/* Read the byte off the eeprom one bit at a time */
2659 	for (i = 0; i < 16; i++) {
2660 		u32 data = 0;
2661 		eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2662 		eeprom_write_reg(priv, EEPROM_BIT_CS);
2663 		data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2664 		r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2665 	}
2666 
2667 	/* Send another dummy bit */
2668 	eeprom_write_reg(priv, 0);
2669 	eeprom_disable_cs(priv);
2670 
2671 	return r;
2672 }
2673 
2674 /* helper function for pulling the mac address out of the private */
2675 /* data's copy of the eeprom data                                 */
2676 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2677 {
2678 	memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], ETH_ALEN);
2679 }
2680 
2681 static void ipw_read_eeprom(struct ipw_priv *priv)
2682 {
2683 	int i;
2684 	__le16 *eeprom = (__le16 *) priv->eeprom;
2685 
2686 	IPW_DEBUG_TRACE(">>\n");
2687 
2688 	/* read entire contents of eeprom into private buffer */
2689 	for (i = 0; i < 128; i++)
2690 		eeprom[i] = cpu_to_le16(eeprom_read_u16(priv, (u8) i));
2691 
2692 	IPW_DEBUG_TRACE("<<\n");
2693 }
2694 
2695 /*
2696  * Either the device driver (i.e. the host) or the firmware can
2697  * load eeprom data into the designated region in SRAM.  If neither
2698  * happens then the FW will shutdown with a fatal error.
2699  *
2700  * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2701  * bit needs region of shared SRAM needs to be non-zero.
2702  */
2703 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2704 {
2705 	int i;
2706 
2707 	IPW_DEBUG_TRACE(">>\n");
2708 
2709 	/*
2710 	   If the data looks correct, then copy it to our private
2711 	   copy.  Otherwise let the firmware know to perform the operation
2712 	   on its own.
2713 	 */
2714 	if (priv->eeprom[EEPROM_VERSION] != 0) {
2715 		IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2716 
2717 		/* write the eeprom data to sram */
2718 		for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2719 			ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2720 
2721 		/* Do not load eeprom data on fatal error or suspend */
2722 		ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2723 	} else {
2724 		IPW_DEBUG_INFO("Enabling FW initialization of SRAM\n");
2725 
2726 		/* Load eeprom data on fatal error or suspend */
2727 		ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2728 	}
2729 
2730 	IPW_DEBUG_TRACE("<<\n");
2731 }
2732 
2733 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2734 {
2735 	count >>= 2;
2736 	if (!count)
2737 		return;
2738 	_ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2739 	while (count--)
2740 		_ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2741 }
2742 
2743 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2744 {
2745 	ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2746 			CB_NUMBER_OF_ELEMENTS_SMALL *
2747 			sizeof(struct command_block));
2748 }
2749 
2750 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2751 {				/* start dma engine but no transfers yet */
2752 
2753 	IPW_DEBUG_FW(">> :\n");
2754 
2755 	/* Start the dma */
2756 	ipw_fw_dma_reset_command_blocks(priv);
2757 
2758 	/* Write CB base address */
2759 	ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2760 
2761 	IPW_DEBUG_FW("<< :\n");
2762 	return 0;
2763 }
2764 
2765 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2766 {
2767 	u32 control = 0;
2768 
2769 	IPW_DEBUG_FW(">> :\n");
2770 
2771 	/* set the Stop and Abort bit */
2772 	control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2773 	ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2774 	priv->sram_desc.last_cb_index = 0;
2775 
2776 	IPW_DEBUG_FW("<<\n");
2777 }
2778 
2779 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2780 					  struct command_block *cb)
2781 {
2782 	u32 address =
2783 	    IPW_SHARED_SRAM_DMA_CONTROL +
2784 	    (sizeof(struct command_block) * index);
2785 	IPW_DEBUG_FW(">> :\n");
2786 
2787 	ipw_write_indirect(priv, address, (u8 *) cb,
2788 			   (int)sizeof(struct command_block));
2789 
2790 	IPW_DEBUG_FW("<< :\n");
2791 	return 0;
2792 
2793 }
2794 
2795 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2796 {
2797 	u32 control = 0;
2798 	u32 index = 0;
2799 
2800 	IPW_DEBUG_FW(">> :\n");
2801 
2802 	for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2803 		ipw_fw_dma_write_command_block(priv, index,
2804 					       &priv->sram_desc.cb_list[index]);
2805 
2806 	/* Enable the DMA in the CSR register */
2807 	ipw_clear_bit(priv, IPW_RESET_REG,
2808 		      IPW_RESET_REG_MASTER_DISABLED |
2809 		      IPW_RESET_REG_STOP_MASTER);
2810 
2811 	/* Set the Start bit. */
2812 	control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2813 	ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2814 
2815 	IPW_DEBUG_FW("<< :\n");
2816 	return 0;
2817 }
2818 
2819 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2820 {
2821 	u32 address;
2822 	u32 register_value = 0;
2823 	u32 cb_fields_address = 0;
2824 
2825 	IPW_DEBUG_FW(">> :\n");
2826 	address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2827 	IPW_DEBUG_FW_INFO("Current CB is 0x%x\n", address);
2828 
2829 	/* Read the DMA Controlor register */
2830 	register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2831 	IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x\n", register_value);
2832 
2833 	/* Print the CB values */
2834 	cb_fields_address = address;
2835 	register_value = ipw_read_reg32(priv, cb_fields_address);
2836 	IPW_DEBUG_FW_INFO("Current CB Control Field is 0x%x\n", register_value);
2837 
2838 	cb_fields_address += sizeof(u32);
2839 	register_value = ipw_read_reg32(priv, cb_fields_address);
2840 	IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x\n", register_value);
2841 
2842 	cb_fields_address += sizeof(u32);
2843 	register_value = ipw_read_reg32(priv, cb_fields_address);
2844 	IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x\n",
2845 			  register_value);
2846 
2847 	cb_fields_address += sizeof(u32);
2848 	register_value = ipw_read_reg32(priv, cb_fields_address);
2849 	IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x\n", register_value);
2850 
2851 	IPW_DEBUG_FW(">> :\n");
2852 }
2853 
2854 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2855 {
2856 	u32 current_cb_address = 0;
2857 	u32 current_cb_index = 0;
2858 
2859 	IPW_DEBUG_FW("<< :\n");
2860 	current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2861 
2862 	current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2863 	    sizeof(struct command_block);
2864 
2865 	IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X\n",
2866 			  current_cb_index, current_cb_address);
2867 
2868 	IPW_DEBUG_FW(">> :\n");
2869 	return current_cb_index;
2870 
2871 }
2872 
2873 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2874 					u32 src_address,
2875 					u32 dest_address,
2876 					u32 length,
2877 					int interrupt_enabled, int is_last)
2878 {
2879 
2880 	u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2881 	    CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2882 	    CB_DEST_SIZE_LONG;
2883 	struct command_block *cb;
2884 	u32 last_cb_element = 0;
2885 
2886 	IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2887 			  src_address, dest_address, length);
2888 
2889 	if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2890 		return -1;
2891 
2892 	last_cb_element = priv->sram_desc.last_cb_index;
2893 	cb = &priv->sram_desc.cb_list[last_cb_element];
2894 	priv->sram_desc.last_cb_index++;
2895 
2896 	/* Calculate the new CB control word */
2897 	if (interrupt_enabled)
2898 		control |= CB_INT_ENABLED;
2899 
2900 	if (is_last)
2901 		control |= CB_LAST_VALID;
2902 
2903 	control |= length;
2904 
2905 	/* Calculate the CB Element's checksum value */
2906 	cb->status = control ^ src_address ^ dest_address;
2907 
2908 	/* Copy the Source and Destination addresses */
2909 	cb->dest_addr = dest_address;
2910 	cb->source_addr = src_address;
2911 
2912 	/* Copy the Control Word last */
2913 	cb->control = control;
2914 
2915 	return 0;
2916 }
2917 
2918 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv, dma_addr_t *src_address,
2919 				 int nr, u32 dest_address, u32 len)
2920 {
2921 	int ret, i;
2922 	u32 size;
2923 
2924 	IPW_DEBUG_FW(">>\n");
2925 	IPW_DEBUG_FW_INFO("nr=%d dest_address=0x%x len=0x%x\n",
2926 			  nr, dest_address, len);
2927 
2928 	for (i = 0; i < nr; i++) {
2929 		size = min_t(u32, len - i * CB_MAX_LENGTH, CB_MAX_LENGTH);
2930 		ret = ipw_fw_dma_add_command_block(priv, src_address[i],
2931 						   dest_address +
2932 						   i * CB_MAX_LENGTH, size,
2933 						   0, 0);
2934 		if (ret) {
2935 			IPW_DEBUG_FW_INFO(": Failed\n");
2936 			return -1;
2937 		} else
2938 			IPW_DEBUG_FW_INFO(": Added new cb\n");
2939 	}
2940 
2941 	IPW_DEBUG_FW("<<\n");
2942 	return 0;
2943 }
2944 
2945 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2946 {
2947 	u32 current_index = 0, previous_index;
2948 	u32 watchdog = 0;
2949 
2950 	IPW_DEBUG_FW(">> :\n");
2951 
2952 	current_index = ipw_fw_dma_command_block_index(priv);
2953 	IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2954 			  (int)priv->sram_desc.last_cb_index);
2955 
2956 	while (current_index < priv->sram_desc.last_cb_index) {
2957 		udelay(50);
2958 		previous_index = current_index;
2959 		current_index = ipw_fw_dma_command_block_index(priv);
2960 
2961 		if (previous_index < current_index) {
2962 			watchdog = 0;
2963 			continue;
2964 		}
2965 		if (++watchdog > 400) {
2966 			IPW_DEBUG_FW_INFO("Timeout\n");
2967 			ipw_fw_dma_dump_command_block(priv);
2968 			ipw_fw_dma_abort(priv);
2969 			return -1;
2970 		}
2971 	}
2972 
2973 	ipw_fw_dma_abort(priv);
2974 
2975 	/*Disable the DMA in the CSR register */
2976 	ipw_set_bit(priv, IPW_RESET_REG,
2977 		    IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2978 
2979 	IPW_DEBUG_FW("<< dmaWaitSync\n");
2980 	return 0;
2981 }
2982 
2983 static void ipw_remove_current_network(struct ipw_priv *priv)
2984 {
2985 	struct list_head *element, *safe;
2986 	struct libipw_network *network = NULL;
2987 	unsigned long flags;
2988 
2989 	spin_lock_irqsave(&priv->ieee->lock, flags);
2990 	list_for_each_safe(element, safe, &priv->ieee->network_list) {
2991 		network = list_entry(element, struct libipw_network, list);
2992 		if (ether_addr_equal(network->bssid, priv->bssid)) {
2993 			list_del(element);
2994 			list_add_tail(&network->list,
2995 				      &priv->ieee->network_free_list);
2996 		}
2997 	}
2998 	spin_unlock_irqrestore(&priv->ieee->lock, flags);
2999 }
3000 
3001 /**
3002  * Check that card is still alive.
3003  * Reads debug register from domain0.
3004  * If card is present, pre-defined value should
3005  * be found there.
3006  *
3007  * @param priv
3008  * @return 1 if card is present, 0 otherwise
3009  */
3010 static inline int ipw_alive(struct ipw_priv *priv)
3011 {
3012 	return ipw_read32(priv, 0x90) == 0xd55555d5;
3013 }
3014 
3015 /* timeout in msec, attempted in 10-msec quanta */
3016 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
3017 			       int timeout)
3018 {
3019 	int i = 0;
3020 
3021 	do {
3022 		if ((ipw_read32(priv, addr) & mask) == mask)
3023 			return i;
3024 		mdelay(10);
3025 		i += 10;
3026 	} while (i < timeout);
3027 
3028 	return -ETIME;
3029 }
3030 
3031 /* These functions load the firmware and micro code for the operation of
3032  * the ipw hardware.  It assumes the buffer has all the bits for the
3033  * image and the caller is handling the memory allocation and clean up.
3034  */
3035 
3036 static int ipw_stop_master(struct ipw_priv *priv)
3037 {
3038 	int rc;
3039 
3040 	IPW_DEBUG_TRACE(">>\n");
3041 	/* stop master. typical delay - 0 */
3042 	ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3043 
3044 	/* timeout is in msec, polled in 10-msec quanta */
3045 	rc = ipw_poll_bit(priv, IPW_RESET_REG,
3046 			  IPW_RESET_REG_MASTER_DISABLED, 100);
3047 	if (rc < 0) {
3048 		IPW_ERROR("wait for stop master failed after 100ms\n");
3049 		return -1;
3050 	}
3051 
3052 	IPW_DEBUG_INFO("stop master %dms\n", rc);
3053 
3054 	return rc;
3055 }
3056 
3057 static void ipw_arc_release(struct ipw_priv *priv)
3058 {
3059 	IPW_DEBUG_TRACE(">>\n");
3060 	mdelay(5);
3061 
3062 	ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3063 
3064 	/* no one knows timing, for safety add some delay */
3065 	mdelay(5);
3066 }
3067 
3068 struct fw_chunk {
3069 	__le32 address;
3070 	__le32 length;
3071 };
3072 
3073 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
3074 {
3075 	int rc = 0, i, addr;
3076 	u8 cr = 0;
3077 	__le16 *image;
3078 
3079 	image = (__le16 *) data;
3080 
3081 	IPW_DEBUG_TRACE(">>\n");
3082 
3083 	rc = ipw_stop_master(priv);
3084 
3085 	if (rc < 0)
3086 		return rc;
3087 
3088 	for (addr = IPW_SHARED_LOWER_BOUND;
3089 	     addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3090 		ipw_write32(priv, addr, 0);
3091 	}
3092 
3093 	/* no ucode (yet) */
3094 	memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3095 	/* destroy DMA queues */
3096 	/* reset sequence */
3097 
3098 	ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3099 	ipw_arc_release(priv);
3100 	ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3101 	mdelay(1);
3102 
3103 	/* reset PHY */
3104 	ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3105 	mdelay(1);
3106 
3107 	ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3108 	mdelay(1);
3109 
3110 	/* enable ucode store */
3111 	ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3112 	ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3113 	mdelay(1);
3114 
3115 	/* write ucode */
3116 	/**
3117 	 * @bug
3118 	 * Do NOT set indirect address register once and then
3119 	 * store data to indirect data register in the loop.
3120 	 * It seems very reasonable, but in this case DINO do not
3121 	 * accept ucode. It is essential to set address each time.
3122 	 */
3123 	/* load new ipw uCode */
3124 	for (i = 0; i < len / 2; i++)
3125 		ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3126 				le16_to_cpu(image[i]));
3127 
3128 	/* enable DINO */
3129 	ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3130 	ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3131 
3132 	/* this is where the igx / win driver deveates from the VAP driver. */
3133 
3134 	/* wait for alive response */
3135 	for (i = 0; i < 100; i++) {
3136 		/* poll for incoming data */
3137 		cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3138 		if (cr & DINO_RXFIFO_DATA)
3139 			break;
3140 		mdelay(1);
3141 	}
3142 
3143 	if (cr & DINO_RXFIFO_DATA) {
3144 		/* alive_command_responce size is NOT multiple of 4 */
3145 		__le32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3146 
3147 		for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3148 			response_buffer[i] =
3149 			    cpu_to_le32(ipw_read_reg32(priv,
3150 						       IPW_BASEBAND_RX_FIFO_READ));
3151 		memcpy(&priv->dino_alive, response_buffer,
3152 		       sizeof(priv->dino_alive));
3153 		if (priv->dino_alive.alive_command == 1
3154 		    && priv->dino_alive.ucode_valid == 1) {
3155 			rc = 0;
3156 			IPW_DEBUG_INFO
3157 			    ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3158 			     "of %02d/%02d/%02d %02d:%02d\n",
3159 			     priv->dino_alive.software_revision,
3160 			     priv->dino_alive.software_revision,
3161 			     priv->dino_alive.device_identifier,
3162 			     priv->dino_alive.device_identifier,
3163 			     priv->dino_alive.time_stamp[0],
3164 			     priv->dino_alive.time_stamp[1],
3165 			     priv->dino_alive.time_stamp[2],
3166 			     priv->dino_alive.time_stamp[3],
3167 			     priv->dino_alive.time_stamp[4]);
3168 		} else {
3169 			IPW_DEBUG_INFO("Microcode is not alive\n");
3170 			rc = -EINVAL;
3171 		}
3172 	} else {
3173 		IPW_DEBUG_INFO("No alive response from DINO\n");
3174 		rc = -ETIME;
3175 	}
3176 
3177 	/* disable DINO, otherwise for some reason
3178 	   firmware have problem getting alive resp. */
3179 	ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3180 
3181 	return rc;
3182 }
3183 
3184 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3185 {
3186 	int ret = -1;
3187 	int offset = 0;
3188 	struct fw_chunk *chunk;
3189 	int total_nr = 0;
3190 	int i;
3191 	struct dma_pool *pool;
3192 	void **virts;
3193 	dma_addr_t *phys;
3194 
3195 	IPW_DEBUG_TRACE("<< :\n");
3196 
3197 	virts = kmalloc_array(CB_NUMBER_OF_ELEMENTS_SMALL, sizeof(void *),
3198 			      GFP_KERNEL);
3199 	if (!virts)
3200 		return -ENOMEM;
3201 
3202 	phys = kmalloc_array(CB_NUMBER_OF_ELEMENTS_SMALL, sizeof(dma_addr_t),
3203 			     GFP_KERNEL);
3204 	if (!phys) {
3205 		kfree(virts);
3206 		return -ENOMEM;
3207 	}
3208 	pool = dma_pool_create("ipw2200", &priv->pci_dev->dev, CB_MAX_LENGTH, 0,
3209 			       0);
3210 	if (!pool) {
3211 		IPW_ERROR("dma_pool_create failed\n");
3212 		kfree(phys);
3213 		kfree(virts);
3214 		return -ENOMEM;
3215 	}
3216 
3217 	/* Start the Dma */
3218 	ret = ipw_fw_dma_enable(priv);
3219 
3220 	/* the DMA is already ready this would be a bug. */
3221 	BUG_ON(priv->sram_desc.last_cb_index > 0);
3222 
3223 	do {
3224 		u32 chunk_len;
3225 		u8 *start;
3226 		int size;
3227 		int nr = 0;
3228 
3229 		chunk = (struct fw_chunk *)(data + offset);
3230 		offset += sizeof(struct fw_chunk);
3231 		chunk_len = le32_to_cpu(chunk->length);
3232 		start = data + offset;
3233 
3234 		nr = (chunk_len + CB_MAX_LENGTH - 1) / CB_MAX_LENGTH;
3235 		for (i = 0; i < nr; i++) {
3236 			virts[total_nr] = dma_pool_alloc(pool, GFP_KERNEL,
3237 							 &phys[total_nr]);
3238 			if (!virts[total_nr]) {
3239 				ret = -ENOMEM;
3240 				goto out;
3241 			}
3242 			size = min_t(u32, chunk_len - i * CB_MAX_LENGTH,
3243 				     CB_MAX_LENGTH);
3244 			memcpy(virts[total_nr], start, size);
3245 			start += size;
3246 			total_nr++;
3247 			/* We don't support fw chunk larger than 64*8K */
3248 			BUG_ON(total_nr > CB_NUMBER_OF_ELEMENTS_SMALL);
3249 		}
3250 
3251 		/* build DMA packet and queue up for sending */
3252 		/* dma to chunk->address, the chunk->length bytes from data +
3253 		 * offeset*/
3254 		/* Dma loading */
3255 		ret = ipw_fw_dma_add_buffer(priv, &phys[total_nr - nr],
3256 					    nr, le32_to_cpu(chunk->address),
3257 					    chunk_len);
3258 		if (ret) {
3259 			IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3260 			goto out;
3261 		}
3262 
3263 		offset += chunk_len;
3264 	} while (offset < len);
3265 
3266 	/* Run the DMA and wait for the answer */
3267 	ret = ipw_fw_dma_kick(priv);
3268 	if (ret) {
3269 		IPW_ERROR("dmaKick Failed\n");
3270 		goto out;
3271 	}
3272 
3273 	ret = ipw_fw_dma_wait(priv);
3274 	if (ret) {
3275 		IPW_ERROR("dmaWaitSync Failed\n");
3276 		goto out;
3277 	}
3278  out:
3279 	for (i = 0; i < total_nr; i++)
3280 		dma_pool_free(pool, virts[i], phys[i]);
3281 
3282 	dma_pool_destroy(pool);
3283 	kfree(phys);
3284 	kfree(virts);
3285 
3286 	return ret;
3287 }
3288 
3289 /* stop nic */
3290 static int ipw_stop_nic(struct ipw_priv *priv)
3291 {
3292 	int rc = 0;
3293 
3294 	/* stop */
3295 	ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3296 
3297 	rc = ipw_poll_bit(priv, IPW_RESET_REG,
3298 			  IPW_RESET_REG_MASTER_DISABLED, 500);
3299 	if (rc < 0) {
3300 		IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3301 		return rc;
3302 	}
3303 
3304 	ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3305 
3306 	return rc;
3307 }
3308 
3309 static void ipw_start_nic(struct ipw_priv *priv)
3310 {
3311 	IPW_DEBUG_TRACE(">>\n");
3312 
3313 	/* prvHwStartNic  release ARC */
3314 	ipw_clear_bit(priv, IPW_RESET_REG,
3315 		      IPW_RESET_REG_MASTER_DISABLED |
3316 		      IPW_RESET_REG_STOP_MASTER |
3317 		      CBD_RESET_REG_PRINCETON_RESET);
3318 
3319 	/* enable power management */
3320 	ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3321 		    IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3322 
3323 	IPW_DEBUG_TRACE("<<\n");
3324 }
3325 
3326 static int ipw_init_nic(struct ipw_priv *priv)
3327 {
3328 	int rc;
3329 
3330 	IPW_DEBUG_TRACE(">>\n");
3331 	/* reset */
3332 	/*prvHwInitNic */
3333 	/* set "initialization complete" bit to move adapter to D0 state */
3334 	ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3335 
3336 	/* low-level PLL activation */
3337 	ipw_write32(priv, IPW_READ_INT_REGISTER,
3338 		    IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3339 
3340 	/* wait for clock stabilization */
3341 	rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3342 			  IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3343 	if (rc < 0)
3344 		IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3345 
3346 	/* assert SW reset */
3347 	ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3348 
3349 	udelay(10);
3350 
3351 	/* set "initialization complete" bit to move adapter to D0 state */
3352 	ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3353 
3354 	IPW_DEBUG_TRACE(">>\n");
3355 	return 0;
3356 }
3357 
3358 /* Call this function from process context, it will sleep in request_firmware.
3359  * Probe is an ok place to call this from.
3360  */
3361 static int ipw_reset_nic(struct ipw_priv *priv)
3362 {
3363 	int rc = 0;
3364 	unsigned long flags;
3365 
3366 	IPW_DEBUG_TRACE(">>\n");
3367 
3368 	rc = ipw_init_nic(priv);
3369 
3370 	spin_lock_irqsave(&priv->lock, flags);
3371 	/* Clear the 'host command active' bit... */
3372 	priv->status &= ~STATUS_HCMD_ACTIVE;
3373 	wake_up_interruptible(&priv->wait_command_queue);
3374 	priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3375 	wake_up_interruptible(&priv->wait_state);
3376 	spin_unlock_irqrestore(&priv->lock, flags);
3377 
3378 	IPW_DEBUG_TRACE("<<\n");
3379 	return rc;
3380 }
3381 
3382 
3383 struct ipw_fw {
3384 	__le32 ver;
3385 	__le32 boot_size;
3386 	__le32 ucode_size;
3387 	__le32 fw_size;
3388 	u8 data[0];
3389 };
3390 
3391 static int ipw_get_fw(struct ipw_priv *priv,
3392 		      const struct firmware **raw, const char *name)
3393 {
3394 	struct ipw_fw *fw;
3395 	int rc;
3396 
3397 	/* ask firmware_class module to get the boot firmware off disk */
3398 	rc = request_firmware(raw, name, &priv->pci_dev->dev);
3399 	if (rc < 0) {
3400 		IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3401 		return rc;
3402 	}
3403 
3404 	if ((*raw)->size < sizeof(*fw)) {
3405 		IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3406 		return -EINVAL;
3407 	}
3408 
3409 	fw = (void *)(*raw)->data;
3410 
3411 	if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3412 	    le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3413 		IPW_ERROR("%s is too small or corrupt (%zd)\n",
3414 			  name, (*raw)->size);
3415 		return -EINVAL;
3416 	}
3417 
3418 	IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3419 		       name,
3420 		       le32_to_cpu(fw->ver) >> 16,
3421 		       le32_to_cpu(fw->ver) & 0xff,
3422 		       (*raw)->size - sizeof(*fw));
3423 	return 0;
3424 }
3425 
3426 #define IPW_RX_BUF_SIZE (3000)
3427 
3428 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3429 				      struct ipw_rx_queue *rxq)
3430 {
3431 	unsigned long flags;
3432 	int i;
3433 
3434 	spin_lock_irqsave(&rxq->lock, flags);
3435 
3436 	INIT_LIST_HEAD(&rxq->rx_free);
3437 	INIT_LIST_HEAD(&rxq->rx_used);
3438 
3439 	/* Fill the rx_used queue with _all_ of the Rx buffers */
3440 	for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3441 		/* In the reset function, these buffers may have been allocated
3442 		 * to an SKB, so we need to unmap and free potential storage */
3443 		if (rxq->pool[i].skb != NULL) {
3444 			pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3445 					 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3446 			dev_kfree_skb(rxq->pool[i].skb);
3447 			rxq->pool[i].skb = NULL;
3448 		}
3449 		list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3450 	}
3451 
3452 	/* Set us so that we have processed and used all buffers, but have
3453 	 * not restocked the Rx queue with fresh buffers */
3454 	rxq->read = rxq->write = 0;
3455 	rxq->free_count = 0;
3456 	spin_unlock_irqrestore(&rxq->lock, flags);
3457 }
3458 
3459 #ifdef CONFIG_PM
3460 static int fw_loaded = 0;
3461 static const struct firmware *raw = NULL;
3462 
3463 static void free_firmware(void)
3464 {
3465 	if (fw_loaded) {
3466 		release_firmware(raw);
3467 		raw = NULL;
3468 		fw_loaded = 0;
3469 	}
3470 }
3471 #else
3472 #define free_firmware() do {} while (0)
3473 #endif
3474 
3475 static int ipw_load(struct ipw_priv *priv)
3476 {
3477 #ifndef CONFIG_PM
3478 	const struct firmware *raw = NULL;
3479 #endif
3480 	struct ipw_fw *fw;
3481 	u8 *boot_img, *ucode_img, *fw_img;
3482 	u8 *name = NULL;
3483 	int rc = 0, retries = 3;
3484 
3485 	switch (priv->ieee->iw_mode) {
3486 	case IW_MODE_ADHOC:
3487 		name = "ipw2200-ibss.fw";
3488 		break;
3489 #ifdef CONFIG_IPW2200_MONITOR
3490 	case IW_MODE_MONITOR:
3491 		name = "ipw2200-sniffer.fw";
3492 		break;
3493 #endif
3494 	case IW_MODE_INFRA:
3495 		name = "ipw2200-bss.fw";
3496 		break;
3497 	}
3498 
3499 	if (!name) {
3500 		rc = -EINVAL;
3501 		goto error;
3502 	}
3503 
3504 #ifdef CONFIG_PM
3505 	if (!fw_loaded) {
3506 #endif
3507 		rc = ipw_get_fw(priv, &raw, name);
3508 		if (rc < 0)
3509 			goto error;
3510 #ifdef CONFIG_PM
3511 	}
3512 #endif
3513 
3514 	fw = (void *)raw->data;
3515 	boot_img = &fw->data[0];
3516 	ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3517 	fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3518 			   le32_to_cpu(fw->ucode_size)];
3519 
3520 	if (!priv->rxq)
3521 		priv->rxq = ipw_rx_queue_alloc(priv);
3522 	else
3523 		ipw_rx_queue_reset(priv, priv->rxq);
3524 	if (!priv->rxq) {
3525 		IPW_ERROR("Unable to initialize Rx queue\n");
3526 		rc = -ENOMEM;
3527 		goto error;
3528 	}
3529 
3530       retry:
3531 	/* Ensure interrupts are disabled */
3532 	ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3533 	priv->status &= ~STATUS_INT_ENABLED;
3534 
3535 	/* ack pending interrupts */
3536 	ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3537 
3538 	ipw_stop_nic(priv);
3539 
3540 	rc = ipw_reset_nic(priv);
3541 	if (rc < 0) {
3542 		IPW_ERROR("Unable to reset NIC\n");
3543 		goto error;
3544 	}
3545 
3546 	ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3547 			IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3548 
3549 	/* DMA the initial boot firmware into the device */
3550 	rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3551 	if (rc < 0) {
3552 		IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3553 		goto error;
3554 	}
3555 
3556 	/* kick start the device */
3557 	ipw_start_nic(priv);
3558 
3559 	/* wait for the device to finish its initial startup sequence */
3560 	rc = ipw_poll_bit(priv, IPW_INTA_RW,
3561 			  IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3562 	if (rc < 0) {
3563 		IPW_ERROR("device failed to boot initial fw image\n");
3564 		goto error;
3565 	}
3566 	IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3567 
3568 	/* ack fw init done interrupt */
3569 	ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3570 
3571 	/* DMA the ucode into the device */
3572 	rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3573 	if (rc < 0) {
3574 		IPW_ERROR("Unable to load ucode: %d\n", rc);
3575 		goto error;
3576 	}
3577 
3578 	/* stop nic */
3579 	ipw_stop_nic(priv);
3580 
3581 	/* DMA bss firmware into the device */
3582 	rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3583 	if (rc < 0) {
3584 		IPW_ERROR("Unable to load firmware: %d\n", rc);
3585 		goto error;
3586 	}
3587 #ifdef CONFIG_PM
3588 	fw_loaded = 1;
3589 #endif
3590 
3591 	ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3592 
3593 	rc = ipw_queue_reset(priv);
3594 	if (rc < 0) {
3595 		IPW_ERROR("Unable to initialize queues\n");
3596 		goto error;
3597 	}
3598 
3599 	/* Ensure interrupts are disabled */
3600 	ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3601 	/* ack pending interrupts */
3602 	ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3603 
3604 	/* kick start the device */
3605 	ipw_start_nic(priv);
3606 
3607 	if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3608 		if (retries > 0) {
3609 			IPW_WARNING("Parity error.  Retrying init.\n");
3610 			retries--;
3611 			goto retry;
3612 		}
3613 
3614 		IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3615 		rc = -EIO;
3616 		goto error;
3617 	}
3618 
3619 	/* wait for the device */
3620 	rc = ipw_poll_bit(priv, IPW_INTA_RW,
3621 			  IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3622 	if (rc < 0) {
3623 		IPW_ERROR("device failed to start within 500ms\n");
3624 		goto error;
3625 	}
3626 	IPW_DEBUG_INFO("device response after %dms\n", rc);
3627 
3628 	/* ack fw init done interrupt */
3629 	ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3630 
3631 	/* read eeprom data */
3632 	priv->eeprom_delay = 1;
3633 	ipw_read_eeprom(priv);
3634 	/* initialize the eeprom region of sram */
3635 	ipw_eeprom_init_sram(priv);
3636 
3637 	/* enable interrupts */
3638 	ipw_enable_interrupts(priv);
3639 
3640 	/* Ensure our queue has valid packets */
3641 	ipw_rx_queue_replenish(priv);
3642 
3643 	ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3644 
3645 	/* ack pending interrupts */
3646 	ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3647 
3648 #ifndef CONFIG_PM
3649 	release_firmware(raw);
3650 #endif
3651 	return 0;
3652 
3653       error:
3654 	if (priv->rxq) {
3655 		ipw_rx_queue_free(priv, priv->rxq);
3656 		priv->rxq = NULL;
3657 	}
3658 	ipw_tx_queue_free(priv);
3659 	release_firmware(raw);
3660 #ifdef CONFIG_PM
3661 	fw_loaded = 0;
3662 	raw = NULL;
3663 #endif
3664 
3665 	return rc;
3666 }
3667 
3668 /**
3669  * DMA services
3670  *
3671  * Theory of operation
3672  *
3673  * A queue is a circular buffers with 'Read' and 'Write' pointers.
3674  * 2 empty entries always kept in the buffer to protect from overflow.
3675  *
3676  * For Tx queue, there are low mark and high mark limits. If, after queuing
3677  * the packet for Tx, free space become < low mark, Tx queue stopped. When
3678  * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3679  * Tx queue resumed.
3680  *
3681  * The IPW operates with six queues, one receive queue in the device's
3682  * sram, one transmit queue for sending commands to the device firmware,
3683  * and four transmit queues for data.
3684  *
3685  * The four transmit queues allow for performing quality of service (qos)
3686  * transmissions as per the 802.11 protocol.  Currently Linux does not
3687  * provide a mechanism to the user for utilizing prioritized queues, so
3688  * we only utilize the first data transmit queue (queue1).
3689  */
3690 
3691 /**
3692  * Driver allocates buffers of this size for Rx
3693  */
3694 
3695 /**
3696  * ipw_rx_queue_space - Return number of free slots available in queue.
3697  */
3698 static int ipw_rx_queue_space(const struct ipw_rx_queue *q)
3699 {
3700 	int s = q->read - q->write;
3701 	if (s <= 0)
3702 		s += RX_QUEUE_SIZE;
3703 	/* keep some buffer to not confuse full and empty queue */
3704 	s -= 2;
3705 	if (s < 0)
3706 		s = 0;
3707 	return s;
3708 }
3709 
3710 static inline int ipw_tx_queue_space(const struct clx2_queue *q)
3711 {
3712 	int s = q->last_used - q->first_empty;
3713 	if (s <= 0)
3714 		s += q->n_bd;
3715 	s -= 2;			/* keep some reserve to not confuse empty and full situations */
3716 	if (s < 0)
3717 		s = 0;
3718 	return s;
3719 }
3720 
3721 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3722 {
3723 	return (++index == n_bd) ? 0 : index;
3724 }
3725 
3726 /**
3727  * Initialize common DMA queue structure
3728  *
3729  * @param q                queue to init
3730  * @param count            Number of BD's to allocate. Should be power of 2
3731  * @param read_register    Address for 'read' register
3732  *                         (not offset within BAR, full address)
3733  * @param write_register   Address for 'write' register
3734  *                         (not offset within BAR, full address)
3735  * @param base_register    Address for 'base' register
3736  *                         (not offset within BAR, full address)
3737  * @param size             Address for 'size' register
3738  *                         (not offset within BAR, full address)
3739  */
3740 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3741 			   int count, u32 read, u32 write, u32 base, u32 size)
3742 {
3743 	q->n_bd = count;
3744 
3745 	q->low_mark = q->n_bd / 4;
3746 	if (q->low_mark < 4)
3747 		q->low_mark = 4;
3748 
3749 	q->high_mark = q->n_bd / 8;
3750 	if (q->high_mark < 2)
3751 		q->high_mark = 2;
3752 
3753 	q->first_empty = q->last_used = 0;
3754 	q->reg_r = read;
3755 	q->reg_w = write;
3756 
3757 	ipw_write32(priv, base, q->dma_addr);
3758 	ipw_write32(priv, size, count);
3759 	ipw_write32(priv, read, 0);
3760 	ipw_write32(priv, write, 0);
3761 
3762 	_ipw_read32(priv, 0x90);
3763 }
3764 
3765 static int ipw_queue_tx_init(struct ipw_priv *priv,
3766 			     struct clx2_tx_queue *q,
3767 			     int count, u32 read, u32 write, u32 base, u32 size)
3768 {
3769 	struct pci_dev *dev = priv->pci_dev;
3770 
3771 	q->txb = kmalloc_array(count, sizeof(q->txb[0]), GFP_KERNEL);
3772 	if (!q->txb) {
3773 		IPW_ERROR("vmalloc for auxiliary BD structures failed\n");
3774 		return -ENOMEM;
3775 	}
3776 
3777 	q->bd =
3778 	    pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3779 	if (!q->bd) {
3780 		IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3781 			  sizeof(q->bd[0]) * count);
3782 		kfree(q->txb);
3783 		q->txb = NULL;
3784 		return -ENOMEM;
3785 	}
3786 
3787 	ipw_queue_init(priv, &q->q, count, read, write, base, size);
3788 	return 0;
3789 }
3790 
3791 /**
3792  * Free one TFD, those at index [txq->q.last_used].
3793  * Do NOT advance any indexes
3794  *
3795  * @param dev
3796  * @param txq
3797  */
3798 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3799 				  struct clx2_tx_queue *txq)
3800 {
3801 	struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3802 	struct pci_dev *dev = priv->pci_dev;
3803 	int i;
3804 
3805 	/* classify bd */
3806 	if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3807 		/* nothing to cleanup after for host commands */
3808 		return;
3809 
3810 	/* sanity check */
3811 	if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3812 		IPW_ERROR("Too many chunks: %i\n",
3813 			  le32_to_cpu(bd->u.data.num_chunks));
3814 		/** @todo issue fatal error, it is quite serious situation */
3815 		return;
3816 	}
3817 
3818 	/* unmap chunks if any */
3819 	for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3820 		pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3821 				 le16_to_cpu(bd->u.data.chunk_len[i]),
3822 				 PCI_DMA_TODEVICE);
3823 		if (txq->txb[txq->q.last_used]) {
3824 			libipw_txb_free(txq->txb[txq->q.last_used]);
3825 			txq->txb[txq->q.last_used] = NULL;
3826 		}
3827 	}
3828 }
3829 
3830 /**
3831  * Deallocate DMA queue.
3832  *
3833  * Empty queue by removing and destroying all BD's.
3834  * Free all buffers.
3835  *
3836  * @param dev
3837  * @param q
3838  */
3839 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3840 {
3841 	struct clx2_queue *q = &txq->q;
3842 	struct pci_dev *dev = priv->pci_dev;
3843 
3844 	if (q->n_bd == 0)
3845 		return;
3846 
3847 	/* first, empty all BD's */
3848 	for (; q->first_empty != q->last_used;
3849 	     q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3850 		ipw_queue_tx_free_tfd(priv, txq);
3851 	}
3852 
3853 	/* free buffers belonging to queue itself */
3854 	pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3855 			    q->dma_addr);
3856 	kfree(txq->txb);
3857 
3858 	/* 0 fill whole structure */
3859 	memset(txq, 0, sizeof(*txq));
3860 }
3861 
3862 /**
3863  * Destroy all DMA queues and structures
3864  *
3865  * @param priv
3866  */
3867 static void ipw_tx_queue_free(struct ipw_priv *priv)
3868 {
3869 	/* Tx CMD queue */
3870 	ipw_queue_tx_free(priv, &priv->txq_cmd);
3871 
3872 	/* Tx queues */
3873 	ipw_queue_tx_free(priv, &priv->txq[0]);
3874 	ipw_queue_tx_free(priv, &priv->txq[1]);
3875 	ipw_queue_tx_free(priv, &priv->txq[2]);
3876 	ipw_queue_tx_free(priv, &priv->txq[3]);
3877 }
3878 
3879 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3880 {
3881 	/* First 3 bytes are manufacturer */
3882 	bssid[0] = priv->mac_addr[0];
3883 	bssid[1] = priv->mac_addr[1];
3884 	bssid[2] = priv->mac_addr[2];
3885 
3886 	/* Last bytes are random */
3887 	get_random_bytes(&bssid[3], ETH_ALEN - 3);
3888 
3889 	bssid[0] &= 0xfe;	/* clear multicast bit */
3890 	bssid[0] |= 0x02;	/* set local assignment bit (IEEE802) */
3891 }
3892 
3893 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3894 {
3895 	struct ipw_station_entry entry;
3896 	int i;
3897 
3898 	for (i = 0; i < priv->num_stations; i++) {
3899 		if (ether_addr_equal(priv->stations[i], bssid)) {
3900 			/* Another node is active in network */
3901 			priv->missed_adhoc_beacons = 0;
3902 			if (!(priv->config & CFG_STATIC_CHANNEL))
3903 				/* when other nodes drop out, we drop out */
3904 				priv->config &= ~CFG_ADHOC_PERSIST;
3905 
3906 			return i;
3907 		}
3908 	}
3909 
3910 	if (i == MAX_STATIONS)
3911 		return IPW_INVALID_STATION;
3912 
3913 	IPW_DEBUG_SCAN("Adding AdHoc station: %pM\n", bssid);
3914 
3915 	entry.reserved = 0;
3916 	entry.support_mode = 0;
3917 	memcpy(entry.mac_addr, bssid, ETH_ALEN);
3918 	memcpy(priv->stations[i], bssid, ETH_ALEN);
3919 	ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3920 			 &entry, sizeof(entry));
3921 	priv->num_stations++;
3922 
3923 	return i;
3924 }
3925 
3926 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3927 {
3928 	int i;
3929 
3930 	for (i = 0; i < priv->num_stations; i++)
3931 		if (ether_addr_equal(priv->stations[i], bssid))
3932 			return i;
3933 
3934 	return IPW_INVALID_STATION;
3935 }
3936 
3937 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3938 {
3939 	int err;
3940 
3941 	if (priv->status & STATUS_ASSOCIATING) {
3942 		IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3943 		schedule_work(&priv->disassociate);
3944 		return;
3945 	}
3946 
3947 	if (!(priv->status & STATUS_ASSOCIATED)) {
3948 		IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3949 		return;
3950 	}
3951 
3952 	IPW_DEBUG_ASSOC("Disassociation attempt from %pM "
3953 			"on channel %d.\n",
3954 			priv->assoc_request.bssid,
3955 			priv->assoc_request.channel);
3956 
3957 	priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3958 	priv->status |= STATUS_DISASSOCIATING;
3959 
3960 	if (quiet)
3961 		priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3962 	else
3963 		priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3964 
3965 	err = ipw_send_associate(priv, &priv->assoc_request);
3966 	if (err) {
3967 		IPW_DEBUG_HC("Attempt to send [dis]associate command "
3968 			     "failed.\n");
3969 		return;
3970 	}
3971 
3972 }
3973 
3974 static int ipw_disassociate(void *data)
3975 {
3976 	struct ipw_priv *priv = data;
3977 	if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3978 		return 0;
3979 	ipw_send_disassociate(data, 0);
3980 	netif_carrier_off(priv->net_dev);
3981 	return 1;
3982 }
3983 
3984 static void ipw_bg_disassociate(struct work_struct *work)
3985 {
3986 	struct ipw_priv *priv =
3987 		container_of(work, struct ipw_priv, disassociate);
3988 	mutex_lock(&priv->mutex);
3989 	ipw_disassociate(priv);
3990 	mutex_unlock(&priv->mutex);
3991 }
3992 
3993 static void ipw_system_config(struct work_struct *work)
3994 {
3995 	struct ipw_priv *priv =
3996 		container_of(work, struct ipw_priv, system_config);
3997 
3998 #ifdef CONFIG_IPW2200_PROMISCUOUS
3999 	if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
4000 		priv->sys_config.accept_all_data_frames = 1;
4001 		priv->sys_config.accept_non_directed_frames = 1;
4002 		priv->sys_config.accept_all_mgmt_bcpr = 1;
4003 		priv->sys_config.accept_all_mgmt_frames = 1;
4004 	}
4005 #endif
4006 
4007 	ipw_send_system_config(priv);
4008 }
4009 
4010 struct ipw_status_code {
4011 	u16 status;
4012 	const char *reason;
4013 };
4014 
4015 static const struct ipw_status_code ipw_status_codes[] = {
4016 	{0x00, "Successful"},
4017 	{0x01, "Unspecified failure"},
4018 	{0x0A, "Cannot support all requested capabilities in the "
4019 	 "Capability information field"},
4020 	{0x0B, "Reassociation denied due to inability to confirm that "
4021 	 "association exists"},
4022 	{0x0C, "Association denied due to reason outside the scope of this "
4023 	 "standard"},
4024 	{0x0D,
4025 	 "Responding station does not support the specified authentication "
4026 	 "algorithm"},
4027 	{0x0E,
4028 	 "Received an Authentication frame with authentication sequence "
4029 	 "transaction sequence number out of expected sequence"},
4030 	{0x0F, "Authentication rejected because of challenge failure"},
4031 	{0x10, "Authentication rejected due to timeout waiting for next "
4032 	 "frame in sequence"},
4033 	{0x11, "Association denied because AP is unable to handle additional "
4034 	 "associated stations"},
4035 	{0x12,
4036 	 "Association denied due to requesting station not supporting all "
4037 	 "of the datarates in the BSSBasicServiceSet Parameter"},
4038 	{0x13,
4039 	 "Association denied due to requesting station not supporting "
4040 	 "short preamble operation"},
4041 	{0x14,
4042 	 "Association denied due to requesting station not supporting "
4043 	 "PBCC encoding"},
4044 	{0x15,
4045 	 "Association denied due to requesting station not supporting "
4046 	 "channel agility"},
4047 	{0x19,
4048 	 "Association denied due to requesting station not supporting "
4049 	 "short slot operation"},
4050 	{0x1A,
4051 	 "Association denied due to requesting station not supporting "
4052 	 "DSSS-OFDM operation"},
4053 	{0x28, "Invalid Information Element"},
4054 	{0x29, "Group Cipher is not valid"},
4055 	{0x2A, "Pairwise Cipher is not valid"},
4056 	{0x2B, "AKMP is not valid"},
4057 	{0x2C, "Unsupported RSN IE version"},
4058 	{0x2D, "Invalid RSN IE Capabilities"},
4059 	{0x2E, "Cipher suite is rejected per security policy"},
4060 };
4061 
4062 static const char *ipw_get_status_code(u16 status)
4063 {
4064 	int i;
4065 	for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
4066 		if (ipw_status_codes[i].status == (status & 0xff))
4067 			return ipw_status_codes[i].reason;
4068 	return "Unknown status value.";
4069 }
4070 
4071 static inline void average_init(struct average *avg)
4072 {
4073 	memset(avg, 0, sizeof(*avg));
4074 }
4075 
4076 #define DEPTH_RSSI 8
4077 #define DEPTH_NOISE 16
4078 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
4079 {
4080 	return ((depth-1)*prev_avg +  val)/depth;
4081 }
4082 
4083 static void average_add(struct average *avg, s16 val)
4084 {
4085 	avg->sum -= avg->entries[avg->pos];
4086 	avg->sum += val;
4087 	avg->entries[avg->pos++] = val;
4088 	if (unlikely(avg->pos == AVG_ENTRIES)) {
4089 		avg->init = 1;
4090 		avg->pos = 0;
4091 	}
4092 }
4093 
4094 static s16 average_value(struct average *avg)
4095 {
4096 	if (!unlikely(avg->init)) {
4097 		if (avg->pos)
4098 			return avg->sum / avg->pos;
4099 		return 0;
4100 	}
4101 
4102 	return avg->sum / AVG_ENTRIES;
4103 }
4104 
4105 static void ipw_reset_stats(struct ipw_priv *priv)
4106 {
4107 	u32 len = sizeof(u32);
4108 
4109 	priv->quality = 0;
4110 
4111 	average_init(&priv->average_missed_beacons);
4112 	priv->exp_avg_rssi = -60;
4113 	priv->exp_avg_noise = -85 + 0x100;
4114 
4115 	priv->last_rate = 0;
4116 	priv->last_missed_beacons = 0;
4117 	priv->last_rx_packets = 0;
4118 	priv->last_tx_packets = 0;
4119 	priv->last_tx_failures = 0;
4120 
4121 	/* Firmware managed, reset only when NIC is restarted, so we have to
4122 	 * normalize on the current value */
4123 	ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
4124 			&priv->last_rx_err, &len);
4125 	ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
4126 			&priv->last_tx_failures, &len);
4127 
4128 	/* Driver managed, reset with each association */
4129 	priv->missed_adhoc_beacons = 0;
4130 	priv->missed_beacons = 0;
4131 	priv->tx_packets = 0;
4132 	priv->rx_packets = 0;
4133 
4134 }
4135 
4136 static u32 ipw_get_max_rate(struct ipw_priv *priv)
4137 {
4138 	u32 i = 0x80000000;
4139 	u32 mask = priv->rates_mask;
4140 	/* If currently associated in B mode, restrict the maximum
4141 	 * rate match to B rates */
4142 	if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4143 		mask &= LIBIPW_CCK_RATES_MASK;
4144 
4145 	/* TODO: Verify that the rate is supported by the current rates
4146 	 * list. */
4147 
4148 	while (i && !(mask & i))
4149 		i >>= 1;
4150 	switch (i) {
4151 	case LIBIPW_CCK_RATE_1MB_MASK:
4152 		return 1000000;
4153 	case LIBIPW_CCK_RATE_2MB_MASK:
4154 		return 2000000;
4155 	case LIBIPW_CCK_RATE_5MB_MASK:
4156 		return 5500000;
4157 	case LIBIPW_OFDM_RATE_6MB_MASK:
4158 		return 6000000;
4159 	case LIBIPW_OFDM_RATE_9MB_MASK:
4160 		return 9000000;
4161 	case LIBIPW_CCK_RATE_11MB_MASK:
4162 		return 11000000;
4163 	case LIBIPW_OFDM_RATE_12MB_MASK:
4164 		return 12000000;
4165 	case LIBIPW_OFDM_RATE_18MB_MASK:
4166 		return 18000000;
4167 	case LIBIPW_OFDM_RATE_24MB_MASK:
4168 		return 24000000;
4169 	case LIBIPW_OFDM_RATE_36MB_MASK:
4170 		return 36000000;
4171 	case LIBIPW_OFDM_RATE_48MB_MASK:
4172 		return 48000000;
4173 	case LIBIPW_OFDM_RATE_54MB_MASK:
4174 		return 54000000;
4175 	}
4176 
4177 	if (priv->ieee->mode == IEEE_B)
4178 		return 11000000;
4179 	else
4180 		return 54000000;
4181 }
4182 
4183 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4184 {
4185 	u32 rate, len = sizeof(rate);
4186 	int err;
4187 
4188 	if (!(priv->status & STATUS_ASSOCIATED))
4189 		return 0;
4190 
4191 	if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4192 		err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4193 				      &len);
4194 		if (err) {
4195 			IPW_DEBUG_INFO("failed querying ordinals.\n");
4196 			return 0;
4197 		}
4198 	} else
4199 		return ipw_get_max_rate(priv);
4200 
4201 	switch (rate) {
4202 	case IPW_TX_RATE_1MB:
4203 		return 1000000;
4204 	case IPW_TX_RATE_2MB:
4205 		return 2000000;
4206 	case IPW_TX_RATE_5MB:
4207 		return 5500000;
4208 	case IPW_TX_RATE_6MB:
4209 		return 6000000;
4210 	case IPW_TX_RATE_9MB:
4211 		return 9000000;
4212 	case IPW_TX_RATE_11MB:
4213 		return 11000000;
4214 	case IPW_TX_RATE_12MB:
4215 		return 12000000;
4216 	case IPW_TX_RATE_18MB:
4217 		return 18000000;
4218 	case IPW_TX_RATE_24MB:
4219 		return 24000000;
4220 	case IPW_TX_RATE_36MB:
4221 		return 36000000;
4222 	case IPW_TX_RATE_48MB:
4223 		return 48000000;
4224 	case IPW_TX_RATE_54MB:
4225 		return 54000000;
4226 	}
4227 
4228 	return 0;
4229 }
4230 
4231 #define IPW_STATS_INTERVAL (2 * HZ)
4232 static void ipw_gather_stats(struct ipw_priv *priv)
4233 {
4234 	u32 rx_err, rx_err_delta, rx_packets_delta;
4235 	u32 tx_failures, tx_failures_delta, tx_packets_delta;
4236 	u32 missed_beacons_percent, missed_beacons_delta;
4237 	u32 quality = 0;
4238 	u32 len = sizeof(u32);
4239 	s16 rssi;
4240 	u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4241 	    rate_quality;
4242 	u32 max_rate;
4243 
4244 	if (!(priv->status & STATUS_ASSOCIATED)) {
4245 		priv->quality = 0;
4246 		return;
4247 	}
4248 
4249 	/* Update the statistics */
4250 	ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4251 			&priv->missed_beacons, &len);
4252 	missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4253 	priv->last_missed_beacons = priv->missed_beacons;
4254 	if (priv->assoc_request.beacon_interval) {
4255 		missed_beacons_percent = missed_beacons_delta *
4256 		    (HZ * le16_to_cpu(priv->assoc_request.beacon_interval)) /
4257 		    (IPW_STATS_INTERVAL * 10);
4258 	} else {
4259 		missed_beacons_percent = 0;
4260 	}
4261 	average_add(&priv->average_missed_beacons, missed_beacons_percent);
4262 
4263 	ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4264 	rx_err_delta = rx_err - priv->last_rx_err;
4265 	priv->last_rx_err = rx_err;
4266 
4267 	ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4268 	tx_failures_delta = tx_failures - priv->last_tx_failures;
4269 	priv->last_tx_failures = tx_failures;
4270 
4271 	rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4272 	priv->last_rx_packets = priv->rx_packets;
4273 
4274 	tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4275 	priv->last_tx_packets = priv->tx_packets;
4276 
4277 	/* Calculate quality based on the following:
4278 	 *
4279 	 * Missed beacon: 100% = 0, 0% = 70% missed
4280 	 * Rate: 60% = 1Mbs, 100% = Max
4281 	 * Rx and Tx errors represent a straight % of total Rx/Tx
4282 	 * RSSI: 100% = > -50,  0% = < -80
4283 	 * Rx errors: 100% = 0, 0% = 50% missed
4284 	 *
4285 	 * The lowest computed quality is used.
4286 	 *
4287 	 */
4288 #define BEACON_THRESHOLD 5
4289 	beacon_quality = 100 - missed_beacons_percent;
4290 	if (beacon_quality < BEACON_THRESHOLD)
4291 		beacon_quality = 0;
4292 	else
4293 		beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4294 		    (100 - BEACON_THRESHOLD);
4295 	IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4296 			beacon_quality, missed_beacons_percent);
4297 
4298 	priv->last_rate = ipw_get_current_rate(priv);
4299 	max_rate = ipw_get_max_rate(priv);
4300 	rate_quality = priv->last_rate * 40 / max_rate + 60;
4301 	IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4302 			rate_quality, priv->last_rate / 1000000);
4303 
4304 	if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4305 		rx_quality = 100 - (rx_err_delta * 100) /
4306 		    (rx_packets_delta + rx_err_delta);
4307 	else
4308 		rx_quality = 100;
4309 	IPW_DEBUG_STATS("Rx quality   : %3d%% (%u errors, %u packets)\n",
4310 			rx_quality, rx_err_delta, rx_packets_delta);
4311 
4312 	if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4313 		tx_quality = 100 - (tx_failures_delta * 100) /
4314 		    (tx_packets_delta + tx_failures_delta);
4315 	else
4316 		tx_quality = 100;
4317 	IPW_DEBUG_STATS("Tx quality   : %3d%% (%u errors, %u packets)\n",
4318 			tx_quality, tx_failures_delta, tx_packets_delta);
4319 
4320 	rssi = priv->exp_avg_rssi;
4321 	signal_quality =
4322 	    (100 *
4323 	     (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4324 	     (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4325 	     (priv->ieee->perfect_rssi - rssi) *
4326 	     (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4327 	      62 * (priv->ieee->perfect_rssi - rssi))) /
4328 	    ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4329 	     (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4330 	if (signal_quality > 100)
4331 		signal_quality = 100;
4332 	else if (signal_quality < 1)
4333 		signal_quality = 0;
4334 
4335 	IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4336 			signal_quality, rssi);
4337 
4338 	quality = min(rx_quality, signal_quality);
4339 	quality = min(tx_quality, quality);
4340 	quality = min(rate_quality, quality);
4341 	quality = min(beacon_quality, quality);
4342 	if (quality == beacon_quality)
4343 		IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4344 				quality);
4345 	if (quality == rate_quality)
4346 		IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4347 				quality);
4348 	if (quality == tx_quality)
4349 		IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4350 				quality);
4351 	if (quality == rx_quality)
4352 		IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4353 				quality);
4354 	if (quality == signal_quality)
4355 		IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4356 				quality);
4357 
4358 	priv->quality = quality;
4359 
4360 	schedule_delayed_work(&priv->gather_stats, IPW_STATS_INTERVAL);
4361 }
4362 
4363 static void ipw_bg_gather_stats(struct work_struct *work)
4364 {
4365 	struct ipw_priv *priv =
4366 		container_of(work, struct ipw_priv, gather_stats.work);
4367 	mutex_lock(&priv->mutex);
4368 	ipw_gather_stats(priv);
4369 	mutex_unlock(&priv->mutex);
4370 }
4371 
4372 /* Missed beacon behavior:
4373  * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4374  * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4375  * Above disassociate threshold, give up and stop scanning.
4376  * Roaming is disabled if disassociate_threshold <= roaming_threshold  */
4377 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4378 					    int missed_count)
4379 {
4380 	priv->notif_missed_beacons = missed_count;
4381 
4382 	if (missed_count > priv->disassociate_threshold &&
4383 	    priv->status & STATUS_ASSOCIATED) {
4384 		/* If associated and we've hit the missed
4385 		 * beacon threshold, disassociate, turn
4386 		 * off roaming, and abort any active scans */
4387 		IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4388 			  IPW_DL_STATE | IPW_DL_ASSOC,
4389 			  "Missed beacon: %d - disassociate\n", missed_count);
4390 		priv->status &= ~STATUS_ROAMING;
4391 		if (priv->status & STATUS_SCANNING) {
4392 			IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4393 				  IPW_DL_STATE,
4394 				  "Aborting scan with missed beacon.\n");
4395 			schedule_work(&priv->abort_scan);
4396 		}
4397 
4398 		schedule_work(&priv->disassociate);
4399 		return;
4400 	}
4401 
4402 	if (priv->status & STATUS_ROAMING) {
4403 		/* If we are currently roaming, then just
4404 		 * print a debug statement... */
4405 		IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4406 			  "Missed beacon: %d - roam in progress\n",
4407 			  missed_count);
4408 		return;
4409 	}
4410 
4411 	if (roaming &&
4412 	    (missed_count > priv->roaming_threshold &&
4413 	     missed_count <= priv->disassociate_threshold)) {
4414 		/* If we are not already roaming, set the ROAM
4415 		 * bit in the status and kick off a scan.
4416 		 * This can happen several times before we reach
4417 		 * disassociate_threshold. */
4418 		IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4419 			  "Missed beacon: %d - initiate "
4420 			  "roaming\n", missed_count);
4421 		if (!(priv->status & STATUS_ROAMING)) {
4422 			priv->status |= STATUS_ROAMING;
4423 			if (!(priv->status & STATUS_SCANNING))
4424 				schedule_delayed_work(&priv->request_scan, 0);
4425 		}
4426 		return;
4427 	}
4428 
4429 	if (priv->status & STATUS_SCANNING &&
4430 	    missed_count > IPW_MB_SCAN_CANCEL_THRESHOLD) {
4431 		/* Stop scan to keep fw from getting
4432 		 * stuck (only if we aren't roaming --
4433 		 * otherwise we'll never scan more than 2 or 3
4434 		 * channels..) */
4435 		IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4436 			  "Aborting scan with missed beacon.\n");
4437 		schedule_work(&priv->abort_scan);
4438 	}
4439 
4440 	IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4441 }
4442 
4443 static void ipw_scan_event(struct work_struct *work)
4444 {
4445 	union iwreq_data wrqu;
4446 
4447 	struct ipw_priv *priv =
4448 		container_of(work, struct ipw_priv, scan_event.work);
4449 
4450 	wrqu.data.length = 0;
4451 	wrqu.data.flags = 0;
4452 	wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4453 }
4454 
4455 static void handle_scan_event(struct ipw_priv *priv)
4456 {
4457 	/* Only userspace-requested scan completion events go out immediately */
4458 	if (!priv->user_requested_scan) {
4459 		schedule_delayed_work(&priv->scan_event,
4460 				      round_jiffies_relative(msecs_to_jiffies(4000)));
4461 	} else {
4462 		priv->user_requested_scan = 0;
4463 		mod_delayed_work(system_wq, &priv->scan_event, 0);
4464 	}
4465 }
4466 
4467 /**
4468  * Handle host notification packet.
4469  * Called from interrupt routine
4470  */
4471 static void ipw_rx_notification(struct ipw_priv *priv,
4472 				       struct ipw_rx_notification *notif)
4473 {
4474 	u16 size = le16_to_cpu(notif->size);
4475 
4476 	IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, size);
4477 
4478 	switch (notif->subtype) {
4479 	case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4480 			struct notif_association *assoc = &notif->u.assoc;
4481 
4482 			switch (assoc->state) {
4483 			case CMAS_ASSOCIATED:{
4484 					IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4485 						  IPW_DL_ASSOC,
4486 						  "associated: '%*pE' %pM\n",
4487 						  priv->essid_len, priv->essid,
4488 						  priv->bssid);
4489 
4490 					switch (priv->ieee->iw_mode) {
4491 					case IW_MODE_INFRA:
4492 						memcpy(priv->ieee->bssid,
4493 						       priv->bssid, ETH_ALEN);
4494 						break;
4495 
4496 					case IW_MODE_ADHOC:
4497 						memcpy(priv->ieee->bssid,
4498 						       priv->bssid, ETH_ALEN);
4499 
4500 						/* clear out the station table */
4501 						priv->num_stations = 0;
4502 
4503 						IPW_DEBUG_ASSOC
4504 						    ("queueing adhoc check\n");
4505 						schedule_delayed_work(
4506 							&priv->adhoc_check,
4507 							le16_to_cpu(priv->
4508 							assoc_request.
4509 							beacon_interval));
4510 						break;
4511 					}
4512 
4513 					priv->status &= ~STATUS_ASSOCIATING;
4514 					priv->status |= STATUS_ASSOCIATED;
4515 					schedule_work(&priv->system_config);
4516 
4517 #ifdef CONFIG_IPW2200_QOS
4518 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4519 			 le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_control))
4520 					if ((priv->status & STATUS_AUTH) &&
4521 					    (IPW_GET_PACKET_STYPE(&notif->u.raw)
4522 					     == IEEE80211_STYPE_ASSOC_RESP)) {
4523 						if ((sizeof
4524 						     (struct
4525 						      libipw_assoc_response)
4526 						     <= size)
4527 						    && (size <= 2314)) {
4528 							struct
4529 							libipw_rx_stats
4530 							    stats = {
4531 								.len = size - 1,
4532 							};
4533 
4534 							IPW_DEBUG_QOS
4535 							    ("QoS Associate "
4536 							     "size %d\n", size);
4537 							libipw_rx_mgt(priv->
4538 									 ieee,
4539 									 (struct
4540 									  libipw_hdr_4addr
4541 									  *)
4542 									 &notif->u.raw, &stats);
4543 						}
4544 					}
4545 #endif
4546 
4547 					schedule_work(&priv->link_up);
4548 
4549 					break;
4550 				}
4551 
4552 			case CMAS_AUTHENTICATED:{
4553 					if (priv->
4554 					    status & (STATUS_ASSOCIATED |
4555 						      STATUS_AUTH)) {
4556 						struct notif_authenticate *auth
4557 						    = &notif->u.auth;
4558 						IPW_DEBUG(IPW_DL_NOTIF |
4559 							  IPW_DL_STATE |
4560 							  IPW_DL_ASSOC,
4561 							  "deauthenticated: '%*pE' %pM: (0x%04X) - %s\n",
4562 							  priv->essid_len,
4563 							  priv->essid,
4564 							  priv->bssid,
4565 							  le16_to_cpu(auth->status),
4566 							  ipw_get_status_code
4567 							  (le16_to_cpu
4568 							   (auth->status)));
4569 
4570 						priv->status &=
4571 						    ~(STATUS_ASSOCIATING |
4572 						      STATUS_AUTH |
4573 						      STATUS_ASSOCIATED);
4574 
4575 						schedule_work(&priv->link_down);
4576 						break;
4577 					}
4578 
4579 					IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4580 						  IPW_DL_ASSOC,
4581 						  "authenticated: '%*pE' %pM\n",
4582 						  priv->essid_len, priv->essid,
4583 						  priv->bssid);
4584 					break;
4585 				}
4586 
4587 			case CMAS_INIT:{
4588 					if (priv->status & STATUS_AUTH) {
4589 						struct
4590 						    libipw_assoc_response
4591 						*resp;
4592 						resp =
4593 						    (struct
4594 						     libipw_assoc_response
4595 						     *)&notif->u.raw;
4596 						IPW_DEBUG(IPW_DL_NOTIF |
4597 							  IPW_DL_STATE |
4598 							  IPW_DL_ASSOC,
4599 							  "association failed (0x%04X): %s\n",
4600 							  le16_to_cpu(resp->status),
4601 							  ipw_get_status_code
4602 							  (le16_to_cpu
4603 							   (resp->status)));
4604 					}
4605 
4606 					IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4607 						  IPW_DL_ASSOC,
4608 						  "disassociated: '%*pE' %pM\n",
4609 						  priv->essid_len, priv->essid,
4610 						  priv->bssid);
4611 
4612 					priv->status &=
4613 					    ~(STATUS_DISASSOCIATING |
4614 					      STATUS_ASSOCIATING |
4615 					      STATUS_ASSOCIATED | STATUS_AUTH);
4616 					if (priv->assoc_network
4617 					    && (priv->assoc_network->
4618 						capability &
4619 						WLAN_CAPABILITY_IBSS))
4620 						ipw_remove_current_network
4621 						    (priv);
4622 
4623 					schedule_work(&priv->link_down);
4624 
4625 					break;
4626 				}
4627 
4628 			case CMAS_RX_ASSOC_RESP:
4629 				break;
4630 
4631 			default:
4632 				IPW_ERROR("assoc: unknown (%d)\n",
4633 					  assoc->state);
4634 				break;
4635 			}
4636 
4637 			break;
4638 		}
4639 
4640 	case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4641 			struct notif_authenticate *auth = &notif->u.auth;
4642 			switch (auth->state) {
4643 			case CMAS_AUTHENTICATED:
4644 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4645 					  "authenticated: '%*pE' %pM\n",
4646 					  priv->essid_len, priv->essid,
4647 					  priv->bssid);
4648 				priv->status |= STATUS_AUTH;
4649 				break;
4650 
4651 			case CMAS_INIT:
4652 				if (priv->status & STATUS_AUTH) {
4653 					IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4654 						  IPW_DL_ASSOC,
4655 						  "authentication failed (0x%04X): %s\n",
4656 						  le16_to_cpu(auth->status),
4657 						  ipw_get_status_code(le16_to_cpu
4658 								      (auth->
4659 								       status)));
4660 				}
4661 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4662 					  IPW_DL_ASSOC,
4663 					  "deauthenticated: '%*pE' %pM\n",
4664 					  priv->essid_len, priv->essid,
4665 					  priv->bssid);
4666 
4667 				priv->status &= ~(STATUS_ASSOCIATING |
4668 						  STATUS_AUTH |
4669 						  STATUS_ASSOCIATED);
4670 
4671 				schedule_work(&priv->link_down);
4672 				break;
4673 
4674 			case CMAS_TX_AUTH_SEQ_1:
4675 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4676 					  IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4677 				break;
4678 			case CMAS_RX_AUTH_SEQ_2:
4679 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4680 					  IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4681 				break;
4682 			case CMAS_AUTH_SEQ_1_PASS:
4683 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4684 					  IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4685 				break;
4686 			case CMAS_AUTH_SEQ_1_FAIL:
4687 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4688 					  IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4689 				break;
4690 			case CMAS_TX_AUTH_SEQ_3:
4691 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4692 					  IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4693 				break;
4694 			case CMAS_RX_AUTH_SEQ_4:
4695 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4696 					  IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4697 				break;
4698 			case CMAS_AUTH_SEQ_2_PASS:
4699 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4700 					  IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4701 				break;
4702 			case CMAS_AUTH_SEQ_2_FAIL:
4703 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4704 					  IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4705 				break;
4706 			case CMAS_TX_ASSOC:
4707 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4708 					  IPW_DL_ASSOC, "TX_ASSOC\n");
4709 				break;
4710 			case CMAS_RX_ASSOC_RESP:
4711 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4712 					  IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4713 
4714 				break;
4715 			case CMAS_ASSOCIATED:
4716 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4717 					  IPW_DL_ASSOC, "ASSOCIATED\n");
4718 				break;
4719 			default:
4720 				IPW_DEBUG_NOTIF("auth: failure - %d\n",
4721 						auth->state);
4722 				break;
4723 			}
4724 			break;
4725 		}
4726 
4727 	case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4728 			struct notif_channel_result *x =
4729 			    &notif->u.channel_result;
4730 
4731 			if (size == sizeof(*x)) {
4732 				IPW_DEBUG_SCAN("Scan result for channel %d\n",
4733 					       x->channel_num);
4734 			} else {
4735 				IPW_DEBUG_SCAN("Scan result of wrong size %d "
4736 					       "(should be %zd)\n",
4737 					       size, sizeof(*x));
4738 			}
4739 			break;
4740 		}
4741 
4742 	case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4743 			struct notif_scan_complete *x = &notif->u.scan_complete;
4744 			if (size == sizeof(*x)) {
4745 				IPW_DEBUG_SCAN
4746 				    ("Scan completed: type %d, %d channels, "
4747 				     "%d status\n", x->scan_type,
4748 				     x->num_channels, x->status);
4749 			} else {
4750 				IPW_ERROR("Scan completed of wrong size %d "
4751 					  "(should be %zd)\n",
4752 					  size, sizeof(*x));
4753 			}
4754 
4755 			priv->status &=
4756 			    ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4757 
4758 			wake_up_interruptible(&priv->wait_state);
4759 			cancel_delayed_work(&priv->scan_check);
4760 
4761 			if (priv->status & STATUS_EXIT_PENDING)
4762 				break;
4763 
4764 			priv->ieee->scans++;
4765 
4766 #ifdef CONFIG_IPW2200_MONITOR
4767 			if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4768 				priv->status |= STATUS_SCAN_FORCED;
4769 				schedule_delayed_work(&priv->request_scan, 0);
4770 				break;
4771 			}
4772 			priv->status &= ~STATUS_SCAN_FORCED;
4773 #endif				/* CONFIG_IPW2200_MONITOR */
4774 
4775 			/* Do queued direct scans first */
4776 			if (priv->status & STATUS_DIRECT_SCAN_PENDING)
4777 				schedule_delayed_work(&priv->request_direct_scan, 0);
4778 
4779 			if (!(priv->status & (STATUS_ASSOCIATED |
4780 					      STATUS_ASSOCIATING |
4781 					      STATUS_ROAMING |
4782 					      STATUS_DISASSOCIATING)))
4783 				schedule_work(&priv->associate);
4784 			else if (priv->status & STATUS_ROAMING) {
4785 				if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4786 					/* If a scan completed and we are in roam mode, then
4787 					 * the scan that completed was the one requested as a
4788 					 * result of entering roam... so, schedule the
4789 					 * roam work */
4790 					schedule_work(&priv->roam);
4791 				else
4792 					/* Don't schedule if we aborted the scan */
4793 					priv->status &= ~STATUS_ROAMING;
4794 			} else if (priv->status & STATUS_SCAN_PENDING)
4795 				schedule_delayed_work(&priv->request_scan, 0);
4796 			else if (priv->config & CFG_BACKGROUND_SCAN
4797 				 && priv->status & STATUS_ASSOCIATED)
4798 				schedule_delayed_work(&priv->request_scan,
4799 						      round_jiffies_relative(HZ));
4800 
4801 			/* Send an empty event to user space.
4802 			 * We don't send the received data on the event because
4803 			 * it would require us to do complex transcoding, and
4804 			 * we want to minimise the work done in the irq handler
4805 			 * Use a request to extract the data.
4806 			 * Also, we generate this even for any scan, regardless
4807 			 * on how the scan was initiated. User space can just
4808 			 * sync on periodic scan to get fresh data...
4809 			 * Jean II */
4810 			if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4811 				handle_scan_event(priv);
4812 			break;
4813 		}
4814 
4815 	case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4816 			struct notif_frag_length *x = &notif->u.frag_len;
4817 
4818 			if (size == sizeof(*x))
4819 				IPW_ERROR("Frag length: %d\n",
4820 					  le16_to_cpu(x->frag_length));
4821 			else
4822 				IPW_ERROR("Frag length of wrong size %d "
4823 					  "(should be %zd)\n",
4824 					  size, sizeof(*x));
4825 			break;
4826 		}
4827 
4828 	case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4829 			struct notif_link_deterioration *x =
4830 			    &notif->u.link_deterioration;
4831 
4832 			if (size == sizeof(*x)) {
4833 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4834 					"link deterioration: type %d, cnt %d\n",
4835 					x->silence_notification_type,
4836 					x->silence_count);
4837 				memcpy(&priv->last_link_deterioration, x,
4838 				       sizeof(*x));
4839 			} else {
4840 				IPW_ERROR("Link Deterioration of wrong size %d "
4841 					  "(should be %zd)\n",
4842 					  size, sizeof(*x));
4843 			}
4844 			break;
4845 		}
4846 
4847 	case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4848 			IPW_ERROR("Dino config\n");
4849 			if (priv->hcmd
4850 			    && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4851 				IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4852 
4853 			break;
4854 		}
4855 
4856 	case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4857 			struct notif_beacon_state *x = &notif->u.beacon_state;
4858 			if (size != sizeof(*x)) {
4859 				IPW_ERROR
4860 				    ("Beacon state of wrong size %d (should "
4861 				     "be %zd)\n", size, sizeof(*x));
4862 				break;
4863 			}
4864 
4865 			if (le32_to_cpu(x->state) ==
4866 			    HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4867 				ipw_handle_missed_beacon(priv,
4868 							 le32_to_cpu(x->
4869 								     number));
4870 
4871 			break;
4872 		}
4873 
4874 	case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4875 			struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4876 			if (size == sizeof(*x)) {
4877 				IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4878 					  "0x%02x station %d\n",
4879 					  x->key_state, x->security_type,
4880 					  x->station_index);
4881 				break;
4882 			}
4883 
4884 			IPW_ERROR
4885 			    ("TGi Tx Key of wrong size %d (should be %zd)\n",
4886 			     size, sizeof(*x));
4887 			break;
4888 		}
4889 
4890 	case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4891 			struct notif_calibration *x = &notif->u.calibration;
4892 
4893 			if (size == sizeof(*x)) {
4894 				memcpy(&priv->calib, x, sizeof(*x));
4895 				IPW_DEBUG_INFO("TODO: Calibration\n");
4896 				break;
4897 			}
4898 
4899 			IPW_ERROR
4900 			    ("Calibration of wrong size %d (should be %zd)\n",
4901 			     size, sizeof(*x));
4902 			break;
4903 		}
4904 
4905 	case HOST_NOTIFICATION_NOISE_STATS:{
4906 			if (size == sizeof(u32)) {
4907 				priv->exp_avg_noise =
4908 				    exponential_average(priv->exp_avg_noise,
4909 				    (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4910 				    DEPTH_NOISE);
4911 				break;
4912 			}
4913 
4914 			IPW_ERROR
4915 			    ("Noise stat is wrong size %d (should be %zd)\n",
4916 			     size, sizeof(u32));
4917 			break;
4918 		}
4919 
4920 	default:
4921 		IPW_DEBUG_NOTIF("Unknown notification: "
4922 				"subtype=%d,flags=0x%2x,size=%d\n",
4923 				notif->subtype, notif->flags, size);
4924 	}
4925 }
4926 
4927 /**
4928  * Destroys all DMA structures and initialise them again
4929  *
4930  * @param priv
4931  * @return error code
4932  */
4933 static int ipw_queue_reset(struct ipw_priv *priv)
4934 {
4935 	int rc = 0;
4936 	/** @todo customize queue sizes */
4937 	int nTx = 64, nTxCmd = 8;
4938 	ipw_tx_queue_free(priv);
4939 	/* Tx CMD queue */
4940 	rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4941 			       IPW_TX_CMD_QUEUE_READ_INDEX,
4942 			       IPW_TX_CMD_QUEUE_WRITE_INDEX,
4943 			       IPW_TX_CMD_QUEUE_BD_BASE,
4944 			       IPW_TX_CMD_QUEUE_BD_SIZE);
4945 	if (rc) {
4946 		IPW_ERROR("Tx Cmd queue init failed\n");
4947 		goto error;
4948 	}
4949 	/* Tx queue(s) */
4950 	rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4951 			       IPW_TX_QUEUE_0_READ_INDEX,
4952 			       IPW_TX_QUEUE_0_WRITE_INDEX,
4953 			       IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4954 	if (rc) {
4955 		IPW_ERROR("Tx 0 queue init failed\n");
4956 		goto error;
4957 	}
4958 	rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4959 			       IPW_TX_QUEUE_1_READ_INDEX,
4960 			       IPW_TX_QUEUE_1_WRITE_INDEX,
4961 			       IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4962 	if (rc) {
4963 		IPW_ERROR("Tx 1 queue init failed\n");
4964 		goto error;
4965 	}
4966 	rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4967 			       IPW_TX_QUEUE_2_READ_INDEX,
4968 			       IPW_TX_QUEUE_2_WRITE_INDEX,
4969 			       IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4970 	if (rc) {
4971 		IPW_ERROR("Tx 2 queue init failed\n");
4972 		goto error;
4973 	}
4974 	rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4975 			       IPW_TX_QUEUE_3_READ_INDEX,
4976 			       IPW_TX_QUEUE_3_WRITE_INDEX,
4977 			       IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4978 	if (rc) {
4979 		IPW_ERROR("Tx 3 queue init failed\n");
4980 		goto error;
4981 	}
4982 	/* statistics */
4983 	priv->rx_bufs_min = 0;
4984 	priv->rx_pend_max = 0;
4985 	return rc;
4986 
4987       error:
4988 	ipw_tx_queue_free(priv);
4989 	return rc;
4990 }
4991 
4992 /**
4993  * Reclaim Tx queue entries no more used by NIC.
4994  *
4995  * When FW advances 'R' index, all entries between old and
4996  * new 'R' index need to be reclaimed. As result, some free space
4997  * forms. If there is enough free space (> low mark), wake Tx queue.
4998  *
4999  * @note Need to protect against garbage in 'R' index
5000  * @param priv
5001  * @param txq
5002  * @param qindex
5003  * @return Number of used entries remains in the queue
5004  */
5005 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
5006 				struct clx2_tx_queue *txq, int qindex)
5007 {
5008 	u32 hw_tail;
5009 	int used;
5010 	struct clx2_queue *q = &txq->q;
5011 
5012 	hw_tail = ipw_read32(priv, q->reg_r);
5013 	if (hw_tail >= q->n_bd) {
5014 		IPW_ERROR
5015 		    ("Read index for DMA queue (%d) is out of range [0-%d)\n",
5016 		     hw_tail, q->n_bd);
5017 		goto done;
5018 	}
5019 	for (; q->last_used != hw_tail;
5020 	     q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
5021 		ipw_queue_tx_free_tfd(priv, txq);
5022 		priv->tx_packets++;
5023 	}
5024       done:
5025 	if ((ipw_tx_queue_space(q) > q->low_mark) &&
5026 	    (qindex >= 0))
5027 		netif_wake_queue(priv->net_dev);
5028 	used = q->first_empty - q->last_used;
5029 	if (used < 0)
5030 		used += q->n_bd;
5031 
5032 	return used;
5033 }
5034 
5035 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
5036 			     int len, int sync)
5037 {
5038 	struct clx2_tx_queue *txq = &priv->txq_cmd;
5039 	struct clx2_queue *q = &txq->q;
5040 	struct tfd_frame *tfd;
5041 
5042 	if (ipw_tx_queue_space(q) < (sync ? 1 : 2)) {
5043 		IPW_ERROR("No space for Tx\n");
5044 		return -EBUSY;
5045 	}
5046 
5047 	tfd = &txq->bd[q->first_empty];
5048 	txq->txb[q->first_empty] = NULL;
5049 
5050 	memset(tfd, 0, sizeof(*tfd));
5051 	tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
5052 	tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
5053 	priv->hcmd_seq++;
5054 	tfd->u.cmd.index = hcmd;
5055 	tfd->u.cmd.length = len;
5056 	memcpy(tfd->u.cmd.payload, buf, len);
5057 	q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
5058 	ipw_write32(priv, q->reg_w, q->first_empty);
5059 	_ipw_read32(priv, 0x90);
5060 
5061 	return 0;
5062 }
5063 
5064 /*
5065  * Rx theory of operation
5066  *
5067  * The host allocates 32 DMA target addresses and passes the host address
5068  * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
5069  * 0 to 31
5070  *
5071  * Rx Queue Indexes
5072  * The host/firmware share two index registers for managing the Rx buffers.
5073  *
5074  * The READ index maps to the first position that the firmware may be writing
5075  * to -- the driver can read up to (but not including) this position and get
5076  * good data.
5077  * The READ index is managed by the firmware once the card is enabled.
5078  *
5079  * The WRITE index maps to the last position the driver has read from -- the
5080  * position preceding WRITE is the last slot the firmware can place a packet.
5081  *
5082  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
5083  * WRITE = READ.
5084  *
5085  * During initialization the host sets up the READ queue position to the first
5086  * INDEX position, and WRITE to the last (READ - 1 wrapped)
5087  *
5088  * When the firmware places a packet in a buffer it will advance the READ index
5089  * and fire the RX interrupt.  The driver can then query the READ index and
5090  * process as many packets as possible, moving the WRITE index forward as it
5091  * resets the Rx queue buffers with new memory.
5092  *
5093  * The management in the driver is as follows:
5094  * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free.  When
5095  *   ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
5096  *   to replensish the ipw->rxq->rx_free.
5097  * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
5098  *   ipw->rxq is replenished and the READ INDEX is updated (updating the
5099  *   'processed' and 'read' driver indexes as well)
5100  * + A received packet is processed and handed to the kernel network stack,
5101  *   detached from the ipw->rxq.  The driver 'processed' index is updated.
5102  * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5103  *   list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5104  *   INDEX is not incremented and ipw->status(RX_STALLED) is set.  If there
5105  *   were enough free buffers and RX_STALLED is set it is cleared.
5106  *
5107  *
5108  * Driver sequence:
5109  *
5110  * ipw_rx_queue_alloc()       Allocates rx_free
5111  * ipw_rx_queue_replenish()   Replenishes rx_free list from rx_used, and calls
5112  *                            ipw_rx_queue_restock
5113  * ipw_rx_queue_restock()     Moves available buffers from rx_free into Rx
5114  *                            queue, updates firmware pointers, and updates
5115  *                            the WRITE index.  If insufficient rx_free buffers
5116  *                            are available, schedules ipw_rx_queue_replenish
5117  *
5118  * -- enable interrupts --
5119  * ISR - ipw_rx()             Detach ipw_rx_mem_buffers from pool up to the
5120  *                            READ INDEX, detaching the SKB from the pool.
5121  *                            Moves the packet buffer from queue to rx_used.
5122  *                            Calls ipw_rx_queue_restock to refill any empty
5123  *                            slots.
5124  * ...
5125  *
5126  */
5127 
5128 /*
5129  * If there are slots in the RX queue that  need to be restocked,
5130  * and we have free pre-allocated buffers, fill the ranks as much
5131  * as we can pulling from rx_free.
5132  *
5133  * This moves the 'write' index forward to catch up with 'processed', and
5134  * also updates the memory address in the firmware to reference the new
5135  * target buffer.
5136  */
5137 static void ipw_rx_queue_restock(struct ipw_priv *priv)
5138 {
5139 	struct ipw_rx_queue *rxq = priv->rxq;
5140 	struct list_head *element;
5141 	struct ipw_rx_mem_buffer *rxb;
5142 	unsigned long flags;
5143 	int write;
5144 
5145 	spin_lock_irqsave(&rxq->lock, flags);
5146 	write = rxq->write;
5147 	while ((ipw_rx_queue_space(rxq) > 0) && (rxq->free_count)) {
5148 		element = rxq->rx_free.next;
5149 		rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5150 		list_del(element);
5151 
5152 		ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5153 			    rxb->dma_addr);
5154 		rxq->queue[rxq->write] = rxb;
5155 		rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5156 		rxq->free_count--;
5157 	}
5158 	spin_unlock_irqrestore(&rxq->lock, flags);
5159 
5160 	/* If the pre-allocated buffer pool is dropping low, schedule to
5161 	 * refill it */
5162 	if (rxq->free_count <= RX_LOW_WATERMARK)
5163 		schedule_work(&priv->rx_replenish);
5164 
5165 	/* If we've added more space for the firmware to place data, tell it */
5166 	if (write != rxq->write)
5167 		ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5168 }
5169 
5170 /*
5171  * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5172  * Also restock the Rx queue via ipw_rx_queue_restock.
5173  *
5174  * This is called as a scheduled work item (except for during initialization)
5175  */
5176 static void ipw_rx_queue_replenish(void *data)
5177 {
5178 	struct ipw_priv *priv = data;
5179 	struct ipw_rx_queue *rxq = priv->rxq;
5180 	struct list_head *element;
5181 	struct ipw_rx_mem_buffer *rxb;
5182 	unsigned long flags;
5183 
5184 	spin_lock_irqsave(&rxq->lock, flags);
5185 	while (!list_empty(&rxq->rx_used)) {
5186 		element = rxq->rx_used.next;
5187 		rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5188 		rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5189 		if (!rxb->skb) {
5190 			printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5191 			       priv->net_dev->name);
5192 			/* We don't reschedule replenish work here -- we will
5193 			 * call the restock method and if it still needs
5194 			 * more buffers it will schedule replenish */
5195 			break;
5196 		}
5197 		list_del(element);
5198 
5199 		rxb->dma_addr =
5200 		    pci_map_single(priv->pci_dev, rxb->skb->data,
5201 				   IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5202 
5203 		list_add_tail(&rxb->list, &rxq->rx_free);
5204 		rxq->free_count++;
5205 	}
5206 	spin_unlock_irqrestore(&rxq->lock, flags);
5207 
5208 	ipw_rx_queue_restock(priv);
5209 }
5210 
5211 static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5212 {
5213 	struct ipw_priv *priv =
5214 		container_of(work, struct ipw_priv, rx_replenish);
5215 	mutex_lock(&priv->mutex);
5216 	ipw_rx_queue_replenish(priv);
5217 	mutex_unlock(&priv->mutex);
5218 }
5219 
5220 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5221  * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5222  * This free routine walks the list of POOL entries and if SKB is set to
5223  * non NULL it is unmapped and freed
5224  */
5225 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5226 {
5227 	int i;
5228 
5229 	if (!rxq)
5230 		return;
5231 
5232 	for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5233 		if (rxq->pool[i].skb != NULL) {
5234 			pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
5235 					 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5236 			dev_kfree_skb(rxq->pool[i].skb);
5237 		}
5238 	}
5239 
5240 	kfree(rxq);
5241 }
5242 
5243 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5244 {
5245 	struct ipw_rx_queue *rxq;
5246 	int i;
5247 
5248 	rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5249 	if (unlikely(!rxq)) {
5250 		IPW_ERROR("memory allocation failed\n");
5251 		return NULL;
5252 	}
5253 	spin_lock_init(&rxq->lock);
5254 	INIT_LIST_HEAD(&rxq->rx_free);
5255 	INIT_LIST_HEAD(&rxq->rx_used);
5256 
5257 	/* Fill the rx_used queue with _all_ of the Rx buffers */
5258 	for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5259 		list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5260 
5261 	/* Set us so that we have processed and used all buffers, but have
5262 	 * not restocked the Rx queue with fresh buffers */
5263 	rxq->read = rxq->write = 0;
5264 	rxq->free_count = 0;
5265 
5266 	return rxq;
5267 }
5268 
5269 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5270 {
5271 	rate &= ~LIBIPW_BASIC_RATE_MASK;
5272 	if (ieee_mode == IEEE_A) {
5273 		switch (rate) {
5274 		case LIBIPW_OFDM_RATE_6MB:
5275 			return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ?
5276 			    1 : 0;
5277 		case LIBIPW_OFDM_RATE_9MB:
5278 			return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ?
5279 			    1 : 0;
5280 		case LIBIPW_OFDM_RATE_12MB:
5281 			return priv->
5282 			    rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5283 		case LIBIPW_OFDM_RATE_18MB:
5284 			return priv->
5285 			    rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5286 		case LIBIPW_OFDM_RATE_24MB:
5287 			return priv->
5288 			    rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5289 		case LIBIPW_OFDM_RATE_36MB:
5290 			return priv->
5291 			    rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5292 		case LIBIPW_OFDM_RATE_48MB:
5293 			return priv->
5294 			    rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5295 		case LIBIPW_OFDM_RATE_54MB:
5296 			return priv->
5297 			    rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5298 		default:
5299 			return 0;
5300 		}
5301 	}
5302 
5303 	/* B and G mixed */
5304 	switch (rate) {
5305 	case LIBIPW_CCK_RATE_1MB:
5306 		return priv->rates_mask & LIBIPW_CCK_RATE_1MB_MASK ? 1 : 0;
5307 	case LIBIPW_CCK_RATE_2MB:
5308 		return priv->rates_mask & LIBIPW_CCK_RATE_2MB_MASK ? 1 : 0;
5309 	case LIBIPW_CCK_RATE_5MB:
5310 		return priv->rates_mask & LIBIPW_CCK_RATE_5MB_MASK ? 1 : 0;
5311 	case LIBIPW_CCK_RATE_11MB:
5312 		return priv->rates_mask & LIBIPW_CCK_RATE_11MB_MASK ? 1 : 0;
5313 	}
5314 
5315 	/* If we are limited to B modulations, bail at this point */
5316 	if (ieee_mode == IEEE_B)
5317 		return 0;
5318 
5319 	/* G */
5320 	switch (rate) {
5321 	case LIBIPW_OFDM_RATE_6MB:
5322 		return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ? 1 : 0;
5323 	case LIBIPW_OFDM_RATE_9MB:
5324 		return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ? 1 : 0;
5325 	case LIBIPW_OFDM_RATE_12MB:
5326 		return priv->rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5327 	case LIBIPW_OFDM_RATE_18MB:
5328 		return priv->rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5329 	case LIBIPW_OFDM_RATE_24MB:
5330 		return priv->rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5331 	case LIBIPW_OFDM_RATE_36MB:
5332 		return priv->rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5333 	case LIBIPW_OFDM_RATE_48MB:
5334 		return priv->rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5335 	case LIBIPW_OFDM_RATE_54MB:
5336 		return priv->rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5337 	}
5338 
5339 	return 0;
5340 }
5341 
5342 static int ipw_compatible_rates(struct ipw_priv *priv,
5343 				const struct libipw_network *network,
5344 				struct ipw_supported_rates *rates)
5345 {
5346 	int num_rates, i;
5347 
5348 	memset(rates, 0, sizeof(*rates));
5349 	num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5350 	rates->num_rates = 0;
5351 	for (i = 0; i < num_rates; i++) {
5352 		if (!ipw_is_rate_in_mask(priv, network->mode,
5353 					 network->rates[i])) {
5354 
5355 			if (network->rates[i] & LIBIPW_BASIC_RATE_MASK) {
5356 				IPW_DEBUG_SCAN("Adding masked mandatory "
5357 					       "rate %02X\n",
5358 					       network->rates[i]);
5359 				rates->supported_rates[rates->num_rates++] =
5360 				    network->rates[i];
5361 				continue;
5362 			}
5363 
5364 			IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5365 				       network->rates[i], priv->rates_mask);
5366 			continue;
5367 		}
5368 
5369 		rates->supported_rates[rates->num_rates++] = network->rates[i];
5370 	}
5371 
5372 	num_rates = min(network->rates_ex_len,
5373 			(u8) (IPW_MAX_RATES - num_rates));
5374 	for (i = 0; i < num_rates; i++) {
5375 		if (!ipw_is_rate_in_mask(priv, network->mode,
5376 					 network->rates_ex[i])) {
5377 			if (network->rates_ex[i] & LIBIPW_BASIC_RATE_MASK) {
5378 				IPW_DEBUG_SCAN("Adding masked mandatory "
5379 					       "rate %02X\n",
5380 					       network->rates_ex[i]);
5381 				rates->supported_rates[rates->num_rates++] =
5382 				    network->rates[i];
5383 				continue;
5384 			}
5385 
5386 			IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5387 				       network->rates_ex[i], priv->rates_mask);
5388 			continue;
5389 		}
5390 
5391 		rates->supported_rates[rates->num_rates++] =
5392 		    network->rates_ex[i];
5393 	}
5394 
5395 	return 1;
5396 }
5397 
5398 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5399 				  const struct ipw_supported_rates *src)
5400 {
5401 	u8 i;
5402 	for (i = 0; i < src->num_rates; i++)
5403 		dest->supported_rates[i] = src->supported_rates[i];
5404 	dest->num_rates = src->num_rates;
5405 }
5406 
5407 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5408  * mask should ever be used -- right now all callers to add the scan rates are
5409  * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5410 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5411 				   u8 modulation, u32 rate_mask)
5412 {
5413 	u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5414 	    LIBIPW_BASIC_RATE_MASK : 0;
5415 
5416 	if (rate_mask & LIBIPW_CCK_RATE_1MB_MASK)
5417 		rates->supported_rates[rates->num_rates++] =
5418 		    LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_1MB;
5419 
5420 	if (rate_mask & LIBIPW_CCK_RATE_2MB_MASK)
5421 		rates->supported_rates[rates->num_rates++] =
5422 		    LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_2MB;
5423 
5424 	if (rate_mask & LIBIPW_CCK_RATE_5MB_MASK)
5425 		rates->supported_rates[rates->num_rates++] = basic_mask |
5426 		    LIBIPW_CCK_RATE_5MB;
5427 
5428 	if (rate_mask & LIBIPW_CCK_RATE_11MB_MASK)
5429 		rates->supported_rates[rates->num_rates++] = basic_mask |
5430 		    LIBIPW_CCK_RATE_11MB;
5431 }
5432 
5433 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5434 				    u8 modulation, u32 rate_mask)
5435 {
5436 	u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5437 	    LIBIPW_BASIC_RATE_MASK : 0;
5438 
5439 	if (rate_mask & LIBIPW_OFDM_RATE_6MB_MASK)
5440 		rates->supported_rates[rates->num_rates++] = basic_mask |
5441 		    LIBIPW_OFDM_RATE_6MB;
5442 
5443 	if (rate_mask & LIBIPW_OFDM_RATE_9MB_MASK)
5444 		rates->supported_rates[rates->num_rates++] =
5445 		    LIBIPW_OFDM_RATE_9MB;
5446 
5447 	if (rate_mask & LIBIPW_OFDM_RATE_12MB_MASK)
5448 		rates->supported_rates[rates->num_rates++] = basic_mask |
5449 		    LIBIPW_OFDM_RATE_12MB;
5450 
5451 	if (rate_mask & LIBIPW_OFDM_RATE_18MB_MASK)
5452 		rates->supported_rates[rates->num_rates++] =
5453 		    LIBIPW_OFDM_RATE_18MB;
5454 
5455 	if (rate_mask & LIBIPW_OFDM_RATE_24MB_MASK)
5456 		rates->supported_rates[rates->num_rates++] = basic_mask |
5457 		    LIBIPW_OFDM_RATE_24MB;
5458 
5459 	if (rate_mask & LIBIPW_OFDM_RATE_36MB_MASK)
5460 		rates->supported_rates[rates->num_rates++] =
5461 		    LIBIPW_OFDM_RATE_36MB;
5462 
5463 	if (rate_mask & LIBIPW_OFDM_RATE_48MB_MASK)
5464 		rates->supported_rates[rates->num_rates++] =
5465 		    LIBIPW_OFDM_RATE_48MB;
5466 
5467 	if (rate_mask & LIBIPW_OFDM_RATE_54MB_MASK)
5468 		rates->supported_rates[rates->num_rates++] =
5469 		    LIBIPW_OFDM_RATE_54MB;
5470 }
5471 
5472 struct ipw_network_match {
5473 	struct libipw_network *network;
5474 	struct ipw_supported_rates rates;
5475 };
5476 
5477 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5478 				  struct ipw_network_match *match,
5479 				  struct libipw_network *network,
5480 				  int roaming)
5481 {
5482 	struct ipw_supported_rates rates;
5483 
5484 	/* Verify that this network's capability is compatible with the
5485 	 * current mode (AdHoc or Infrastructure) */
5486 	if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5487 	     !(network->capability & WLAN_CAPABILITY_IBSS))) {
5488 		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded due to capability mismatch.\n",
5489 				network->ssid_len, network->ssid,
5490 				network->bssid);
5491 		return 0;
5492 	}
5493 
5494 	if (unlikely(roaming)) {
5495 		/* If we are roaming, then ensure check if this is a valid
5496 		 * network to try and roam to */
5497 		if ((network->ssid_len != match->network->ssid_len) ||
5498 		    memcmp(network->ssid, match->network->ssid,
5499 			   network->ssid_len)) {
5500 			IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of non-network ESSID.\n",
5501 					network->ssid_len, network->ssid,
5502 					network->bssid);
5503 			return 0;
5504 		}
5505 	} else {
5506 		/* If an ESSID has been configured then compare the broadcast
5507 		 * ESSID to ours */
5508 		if ((priv->config & CFG_STATIC_ESSID) &&
5509 		    ((network->ssid_len != priv->essid_len) ||
5510 		     memcmp(network->ssid, priv->essid,
5511 			    min(network->ssid_len, priv->essid_len)))) {
5512 			IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of ESSID mismatch: '%*pE'.\n",
5513 					network->ssid_len, network->ssid,
5514 					network->bssid, priv->essid_len,
5515 					priv->essid);
5516 			return 0;
5517 		}
5518 	}
5519 
5520 	/* If the old network rate is better than this one, don't bother
5521 	 * testing everything else. */
5522 
5523 	if (network->time_stamp[0] < match->network->time_stamp[0]) {
5524 		IPW_DEBUG_MERGE("Network '%*pE excluded because newer than current network.\n",
5525 				match->network->ssid_len, match->network->ssid);
5526 		return 0;
5527 	} else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5528 		IPW_DEBUG_MERGE("Network '%*pE excluded because newer than current network.\n",
5529 				match->network->ssid_len, match->network->ssid);
5530 		return 0;
5531 	}
5532 
5533 	/* Now go through and see if the requested network is valid... */
5534 	if (priv->ieee->scan_age != 0 &&
5535 	    time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5536 		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of age: %ums.\n",
5537 				network->ssid_len, network->ssid,
5538 				network->bssid,
5539 				jiffies_to_msecs(jiffies -
5540 						 network->last_scanned));
5541 		return 0;
5542 	}
5543 
5544 	if ((priv->config & CFG_STATIC_CHANNEL) &&
5545 	    (network->channel != priv->channel)) {
5546 		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of channel mismatch: %d != %d.\n",
5547 				network->ssid_len, network->ssid,
5548 				network->bssid,
5549 				network->channel, priv->channel);
5550 		return 0;
5551 	}
5552 
5553 	/* Verify privacy compatibility */
5554 	if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5555 	    ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5556 		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of privacy mismatch: %s != %s.\n",
5557 				network->ssid_len, network->ssid,
5558 				network->bssid,
5559 				priv->
5560 				capability & CAP_PRIVACY_ON ? "on" : "off",
5561 				network->
5562 				capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5563 				"off");
5564 		return 0;
5565 	}
5566 
5567 	if (ether_addr_equal(network->bssid, priv->bssid)) {
5568 		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of the same BSSID match: %pM.\n",
5569 				network->ssid_len, network->ssid,
5570 				network->bssid, priv->bssid);
5571 		return 0;
5572 	}
5573 
5574 	/* Filter out any incompatible freq / mode combinations */
5575 	if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5576 		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of invalid frequency/mode combination.\n",
5577 				network->ssid_len, network->ssid,
5578 				network->bssid);
5579 		return 0;
5580 	}
5581 
5582 	/* Ensure that the rates supported by the driver are compatible with
5583 	 * this AP, including verification of basic rates (mandatory) */
5584 	if (!ipw_compatible_rates(priv, network, &rates)) {
5585 		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because configured rate mask excludes AP mandatory rate.\n",
5586 				network->ssid_len, network->ssid,
5587 				network->bssid);
5588 		return 0;
5589 	}
5590 
5591 	if (rates.num_rates == 0) {
5592 		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of no compatible rates.\n",
5593 				network->ssid_len, network->ssid,
5594 				network->bssid);
5595 		return 0;
5596 	}
5597 
5598 	/* TODO: Perform any further minimal comparititive tests.  We do not
5599 	 * want to put too much policy logic here; intelligent scan selection
5600 	 * should occur within a generic IEEE 802.11 user space tool.  */
5601 
5602 	/* Set up 'new' AP to this network */
5603 	ipw_copy_rates(&match->rates, &rates);
5604 	match->network = network;
5605 	IPW_DEBUG_MERGE("Network '%*pE (%pM)' is a viable match.\n",
5606 			network->ssid_len, network->ssid, network->bssid);
5607 
5608 	return 1;
5609 }
5610 
5611 static void ipw_merge_adhoc_network(struct work_struct *work)
5612 {
5613 	struct ipw_priv *priv =
5614 		container_of(work, struct ipw_priv, merge_networks);
5615 	struct libipw_network *network = NULL;
5616 	struct ipw_network_match match = {
5617 		.network = priv->assoc_network
5618 	};
5619 
5620 	if ((priv->status & STATUS_ASSOCIATED) &&
5621 	    (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5622 		/* First pass through ROAM process -- look for a better
5623 		 * network */
5624 		unsigned long flags;
5625 
5626 		spin_lock_irqsave(&priv->ieee->lock, flags);
5627 		list_for_each_entry(network, &priv->ieee->network_list, list) {
5628 			if (network != priv->assoc_network)
5629 				ipw_find_adhoc_network(priv, &match, network,
5630 						       1);
5631 		}
5632 		spin_unlock_irqrestore(&priv->ieee->lock, flags);
5633 
5634 		if (match.network == priv->assoc_network) {
5635 			IPW_DEBUG_MERGE("No better ADHOC in this network to "
5636 					"merge to.\n");
5637 			return;
5638 		}
5639 
5640 		mutex_lock(&priv->mutex);
5641 		if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5642 			IPW_DEBUG_MERGE("remove network %*pE\n",
5643 					priv->essid_len, priv->essid);
5644 			ipw_remove_current_network(priv);
5645 		}
5646 
5647 		ipw_disassociate(priv);
5648 		priv->assoc_network = match.network;
5649 		mutex_unlock(&priv->mutex);
5650 		return;
5651 	}
5652 }
5653 
5654 static int ipw_best_network(struct ipw_priv *priv,
5655 			    struct ipw_network_match *match,
5656 			    struct libipw_network *network, int roaming)
5657 {
5658 	struct ipw_supported_rates rates;
5659 
5660 	/* Verify that this network's capability is compatible with the
5661 	 * current mode (AdHoc or Infrastructure) */
5662 	if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5663 	     !(network->capability & WLAN_CAPABILITY_ESS)) ||
5664 	    (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5665 	     !(network->capability & WLAN_CAPABILITY_IBSS))) {
5666 		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded due to capability mismatch.\n",
5667 				network->ssid_len, network->ssid,
5668 				network->bssid);
5669 		return 0;
5670 	}
5671 
5672 	if (unlikely(roaming)) {
5673 		/* If we are roaming, then ensure check if this is a valid
5674 		 * network to try and roam to */
5675 		if ((network->ssid_len != match->network->ssid_len) ||
5676 		    memcmp(network->ssid, match->network->ssid,
5677 			   network->ssid_len)) {
5678 			IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of non-network ESSID.\n",
5679 					network->ssid_len, network->ssid,
5680 					network->bssid);
5681 			return 0;
5682 		}
5683 	} else {
5684 		/* If an ESSID has been configured then compare the broadcast
5685 		 * ESSID to ours */
5686 		if ((priv->config & CFG_STATIC_ESSID) &&
5687 		    ((network->ssid_len != priv->essid_len) ||
5688 		     memcmp(network->ssid, priv->essid,
5689 			    min(network->ssid_len, priv->essid_len)))) {
5690 			IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of ESSID mismatch: '%*pE'.\n",
5691 					network->ssid_len, network->ssid,
5692 					network->bssid, priv->essid_len,
5693 					priv->essid);
5694 			return 0;
5695 		}
5696 	}
5697 
5698 	/* If the old network rate is better than this one, don't bother
5699 	 * testing everything else. */
5700 	if (match->network && match->network->stats.rssi > network->stats.rssi) {
5701 		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because '%*pE (%pM)' has a stronger signal.\n",
5702 				network->ssid_len, network->ssid,
5703 				network->bssid, match->network->ssid_len,
5704 				match->network->ssid, match->network->bssid);
5705 		return 0;
5706 	}
5707 
5708 	/* If this network has already had an association attempt within the
5709 	 * last 3 seconds, do not try and associate again... */
5710 	if (network->last_associate &&
5711 	    time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5712 		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of storming (%ums since last assoc attempt).\n",
5713 				network->ssid_len, network->ssid,
5714 				network->bssid,
5715 				jiffies_to_msecs(jiffies -
5716 						 network->last_associate));
5717 		return 0;
5718 	}
5719 
5720 	/* Now go through and see if the requested network is valid... */
5721 	if (priv->ieee->scan_age != 0 &&
5722 	    time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5723 		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of age: %ums.\n",
5724 				network->ssid_len, network->ssid,
5725 				network->bssid,
5726 				jiffies_to_msecs(jiffies -
5727 						 network->last_scanned));
5728 		return 0;
5729 	}
5730 
5731 	if ((priv->config & CFG_STATIC_CHANNEL) &&
5732 	    (network->channel != priv->channel)) {
5733 		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of channel mismatch: %d != %d.\n",
5734 				network->ssid_len, network->ssid,
5735 				network->bssid,
5736 				network->channel, priv->channel);
5737 		return 0;
5738 	}
5739 
5740 	/* Verify privacy compatibility */
5741 	if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5742 	    ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5743 		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of privacy mismatch: %s != %s.\n",
5744 				network->ssid_len, network->ssid,
5745 				network->bssid,
5746 				priv->capability & CAP_PRIVACY_ON ? "on" :
5747 				"off",
5748 				network->capability &
5749 				WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5750 		return 0;
5751 	}
5752 
5753 	if ((priv->config & CFG_STATIC_BSSID) &&
5754 	    !ether_addr_equal(network->bssid, priv->bssid)) {
5755 		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of BSSID mismatch: %pM.\n",
5756 				network->ssid_len, network->ssid,
5757 				network->bssid, priv->bssid);
5758 		return 0;
5759 	}
5760 
5761 	/* Filter out any incompatible freq / mode combinations */
5762 	if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5763 		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of invalid frequency/mode combination.\n",
5764 				network->ssid_len, network->ssid,
5765 				network->bssid);
5766 		return 0;
5767 	}
5768 
5769 	/* Filter out invalid channel in current GEO */
5770 	if (!libipw_is_valid_channel(priv->ieee, network->channel)) {
5771 		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of invalid channel in current GEO\n",
5772 				network->ssid_len, network->ssid,
5773 				network->bssid);
5774 		return 0;
5775 	}
5776 
5777 	/* Ensure that the rates supported by the driver are compatible with
5778 	 * this AP, including verification of basic rates (mandatory) */
5779 	if (!ipw_compatible_rates(priv, network, &rates)) {
5780 		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because configured rate mask excludes AP mandatory rate.\n",
5781 				network->ssid_len, network->ssid,
5782 				network->bssid);
5783 		return 0;
5784 	}
5785 
5786 	if (rates.num_rates == 0) {
5787 		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of no compatible rates.\n",
5788 				network->ssid_len, network->ssid,
5789 				network->bssid);
5790 		return 0;
5791 	}
5792 
5793 	/* TODO: Perform any further minimal comparititive tests.  We do not
5794 	 * want to put too much policy logic here; intelligent scan selection
5795 	 * should occur within a generic IEEE 802.11 user space tool.  */
5796 
5797 	/* Set up 'new' AP to this network */
5798 	ipw_copy_rates(&match->rates, &rates);
5799 	match->network = network;
5800 
5801 	IPW_DEBUG_ASSOC("Network '%*pE (%pM)' is a viable match.\n",
5802 			network->ssid_len, network->ssid, network->bssid);
5803 
5804 	return 1;
5805 }
5806 
5807 static void ipw_adhoc_create(struct ipw_priv *priv,
5808 			     struct libipw_network *network)
5809 {
5810 	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
5811 	int i;
5812 
5813 	/*
5814 	 * For the purposes of scanning, we can set our wireless mode
5815 	 * to trigger scans across combinations of bands, but when it
5816 	 * comes to creating a new ad-hoc network, we have tell the FW
5817 	 * exactly which band to use.
5818 	 *
5819 	 * We also have the possibility of an invalid channel for the
5820 	 * chossen band.  Attempting to create a new ad-hoc network
5821 	 * with an invalid channel for wireless mode will trigger a
5822 	 * FW fatal error.
5823 	 *
5824 	 */
5825 	switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
5826 	case LIBIPW_52GHZ_BAND:
5827 		network->mode = IEEE_A;
5828 		i = libipw_channel_to_index(priv->ieee, priv->channel);
5829 		BUG_ON(i == -1);
5830 		if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5831 			IPW_WARNING("Overriding invalid channel\n");
5832 			priv->channel = geo->a[0].channel;
5833 		}
5834 		break;
5835 
5836 	case LIBIPW_24GHZ_BAND:
5837 		if (priv->ieee->mode & IEEE_G)
5838 			network->mode = IEEE_G;
5839 		else
5840 			network->mode = IEEE_B;
5841 		i = libipw_channel_to_index(priv->ieee, priv->channel);
5842 		BUG_ON(i == -1);
5843 		if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5844 			IPW_WARNING("Overriding invalid channel\n");
5845 			priv->channel = geo->bg[0].channel;
5846 		}
5847 		break;
5848 
5849 	default:
5850 		IPW_WARNING("Overriding invalid channel\n");
5851 		if (priv->ieee->mode & IEEE_A) {
5852 			network->mode = IEEE_A;
5853 			priv->channel = geo->a[0].channel;
5854 		} else if (priv->ieee->mode & IEEE_G) {
5855 			network->mode = IEEE_G;
5856 			priv->channel = geo->bg[0].channel;
5857 		} else {
5858 			network->mode = IEEE_B;
5859 			priv->channel = geo->bg[0].channel;
5860 		}
5861 		break;
5862 	}
5863 
5864 	network->channel = priv->channel;
5865 	priv->config |= CFG_ADHOC_PERSIST;
5866 	ipw_create_bssid(priv, network->bssid);
5867 	network->ssid_len = priv->essid_len;
5868 	memcpy(network->ssid, priv->essid, priv->essid_len);
5869 	memset(&network->stats, 0, sizeof(network->stats));
5870 	network->capability = WLAN_CAPABILITY_IBSS;
5871 	if (!(priv->config & CFG_PREAMBLE_LONG))
5872 		network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5873 	if (priv->capability & CAP_PRIVACY_ON)
5874 		network->capability |= WLAN_CAPABILITY_PRIVACY;
5875 	network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5876 	memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5877 	network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5878 	memcpy(network->rates_ex,
5879 	       &priv->rates.supported_rates[network->rates_len],
5880 	       network->rates_ex_len);
5881 	network->last_scanned = 0;
5882 	network->flags = 0;
5883 	network->last_associate = 0;
5884 	network->time_stamp[0] = 0;
5885 	network->time_stamp[1] = 0;
5886 	network->beacon_interval = 100;	/* Default */
5887 	network->listen_interval = 10;	/* Default */
5888 	network->atim_window = 0;	/* Default */
5889 	network->wpa_ie_len = 0;
5890 	network->rsn_ie_len = 0;
5891 }
5892 
5893 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5894 {
5895 	struct ipw_tgi_tx_key key;
5896 
5897 	if (!(priv->ieee->sec.flags & (1 << index)))
5898 		return;
5899 
5900 	key.key_id = index;
5901 	memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5902 	key.security_type = type;
5903 	key.station_index = 0;	/* always 0 for BSS */
5904 	key.flags = 0;
5905 	/* 0 for new key; previous value of counter (after fatal error) */
5906 	key.tx_counter[0] = cpu_to_le32(0);
5907 	key.tx_counter[1] = cpu_to_le32(0);
5908 
5909 	ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
5910 }
5911 
5912 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5913 {
5914 	struct ipw_wep_key key;
5915 	int i;
5916 
5917 	key.cmd_id = DINO_CMD_WEP_KEY;
5918 	key.seq_num = 0;
5919 
5920 	/* Note: AES keys cannot be set for multiple times.
5921 	 * Only set it at the first time. */
5922 	for (i = 0; i < 4; i++) {
5923 		key.key_index = i | type;
5924 		if (!(priv->ieee->sec.flags & (1 << i))) {
5925 			key.key_size = 0;
5926 			continue;
5927 		}
5928 
5929 		key.key_size = priv->ieee->sec.key_sizes[i];
5930 		memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
5931 
5932 		ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
5933 	}
5934 }
5935 
5936 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5937 {
5938 	if (priv->ieee->host_encrypt)
5939 		return;
5940 
5941 	switch (level) {
5942 	case SEC_LEVEL_3:
5943 		priv->sys_config.disable_unicast_decryption = 0;
5944 		priv->ieee->host_decrypt = 0;
5945 		break;
5946 	case SEC_LEVEL_2:
5947 		priv->sys_config.disable_unicast_decryption = 1;
5948 		priv->ieee->host_decrypt = 1;
5949 		break;
5950 	case SEC_LEVEL_1:
5951 		priv->sys_config.disable_unicast_decryption = 0;
5952 		priv->ieee->host_decrypt = 0;
5953 		break;
5954 	case SEC_LEVEL_0:
5955 		priv->sys_config.disable_unicast_decryption = 1;
5956 		break;
5957 	default:
5958 		break;
5959 	}
5960 }
5961 
5962 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5963 {
5964 	if (priv->ieee->host_encrypt)
5965 		return;
5966 
5967 	switch (level) {
5968 	case SEC_LEVEL_3:
5969 		priv->sys_config.disable_multicast_decryption = 0;
5970 		break;
5971 	case SEC_LEVEL_2:
5972 		priv->sys_config.disable_multicast_decryption = 1;
5973 		break;
5974 	case SEC_LEVEL_1:
5975 		priv->sys_config.disable_multicast_decryption = 0;
5976 		break;
5977 	case SEC_LEVEL_0:
5978 		priv->sys_config.disable_multicast_decryption = 1;
5979 		break;
5980 	default:
5981 		break;
5982 	}
5983 }
5984 
5985 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
5986 {
5987 	switch (priv->ieee->sec.level) {
5988 	case SEC_LEVEL_3:
5989 		if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
5990 			ipw_send_tgi_tx_key(priv,
5991 					    DCT_FLAG_EXT_SECURITY_CCM,
5992 					    priv->ieee->sec.active_key);
5993 
5994 		if (!priv->ieee->host_mc_decrypt)
5995 			ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
5996 		break;
5997 	case SEC_LEVEL_2:
5998 		if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
5999 			ipw_send_tgi_tx_key(priv,
6000 					    DCT_FLAG_EXT_SECURITY_TKIP,
6001 					    priv->ieee->sec.active_key);
6002 		break;
6003 	case SEC_LEVEL_1:
6004 		ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
6005 		ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
6006 		ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
6007 		break;
6008 	case SEC_LEVEL_0:
6009 	default:
6010 		break;
6011 	}
6012 }
6013 
6014 static void ipw_adhoc_check(void *data)
6015 {
6016 	struct ipw_priv *priv = data;
6017 
6018 	if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
6019 	    !(priv->config & CFG_ADHOC_PERSIST)) {
6020 		IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
6021 			  IPW_DL_STATE | IPW_DL_ASSOC,
6022 			  "Missed beacon: %d - disassociate\n",
6023 			  priv->missed_adhoc_beacons);
6024 		ipw_remove_current_network(priv);
6025 		ipw_disassociate(priv);
6026 		return;
6027 	}
6028 
6029 	schedule_delayed_work(&priv->adhoc_check,
6030 			      le16_to_cpu(priv->assoc_request.beacon_interval));
6031 }
6032 
6033 static void ipw_bg_adhoc_check(struct work_struct *work)
6034 {
6035 	struct ipw_priv *priv =
6036 		container_of(work, struct ipw_priv, adhoc_check.work);
6037 	mutex_lock(&priv->mutex);
6038 	ipw_adhoc_check(priv);
6039 	mutex_unlock(&priv->mutex);
6040 }
6041 
6042 static void ipw_debug_config(struct ipw_priv *priv)
6043 {
6044 	IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6045 		       "[CFG 0x%08X]\n", priv->config);
6046 	if (priv->config & CFG_STATIC_CHANNEL)
6047 		IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
6048 	else
6049 		IPW_DEBUG_INFO("Channel unlocked.\n");
6050 	if (priv->config & CFG_STATIC_ESSID)
6051 		IPW_DEBUG_INFO("ESSID locked to '%*pE'\n",
6052 			       priv->essid_len, priv->essid);
6053 	else
6054 		IPW_DEBUG_INFO("ESSID unlocked.\n");
6055 	if (priv->config & CFG_STATIC_BSSID)
6056 		IPW_DEBUG_INFO("BSSID locked to %pM\n", priv->bssid);
6057 	else
6058 		IPW_DEBUG_INFO("BSSID unlocked.\n");
6059 	if (priv->capability & CAP_PRIVACY_ON)
6060 		IPW_DEBUG_INFO("PRIVACY on\n");
6061 	else
6062 		IPW_DEBUG_INFO("PRIVACY off\n");
6063 	IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
6064 }
6065 
6066 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6067 {
6068 	/* TODO: Verify that this works... */
6069 	struct ipw_fixed_rate fr;
6070 	u32 reg;
6071 	u16 mask = 0;
6072 	u16 new_tx_rates = priv->rates_mask;
6073 
6074 	/* Identify 'current FW band' and match it with the fixed
6075 	 * Tx rates */
6076 
6077 	switch (priv->ieee->freq_band) {
6078 	case LIBIPW_52GHZ_BAND:	/* A only */
6079 		/* IEEE_A */
6080 		if (priv->rates_mask & ~LIBIPW_OFDM_RATES_MASK) {
6081 			/* Invalid fixed rate mask */
6082 			IPW_DEBUG_WX
6083 			    ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6084 			new_tx_rates = 0;
6085 			break;
6086 		}
6087 
6088 		new_tx_rates >>= LIBIPW_OFDM_SHIFT_MASK_A;
6089 		break;
6090 
6091 	default:		/* 2.4Ghz or Mixed */
6092 		/* IEEE_B */
6093 		if (mode == IEEE_B) {
6094 			if (new_tx_rates & ~LIBIPW_CCK_RATES_MASK) {
6095 				/* Invalid fixed rate mask */
6096 				IPW_DEBUG_WX
6097 				    ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6098 				new_tx_rates = 0;
6099 			}
6100 			break;
6101 		}
6102 
6103 		/* IEEE_G */
6104 		if (new_tx_rates & ~(LIBIPW_CCK_RATES_MASK |
6105 				    LIBIPW_OFDM_RATES_MASK)) {
6106 			/* Invalid fixed rate mask */
6107 			IPW_DEBUG_WX
6108 			    ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6109 			new_tx_rates = 0;
6110 			break;
6111 		}
6112 
6113 		if (LIBIPW_OFDM_RATE_6MB_MASK & new_tx_rates) {
6114 			mask |= (LIBIPW_OFDM_RATE_6MB_MASK >> 1);
6115 			new_tx_rates &= ~LIBIPW_OFDM_RATE_6MB_MASK;
6116 		}
6117 
6118 		if (LIBIPW_OFDM_RATE_9MB_MASK & new_tx_rates) {
6119 			mask |= (LIBIPW_OFDM_RATE_9MB_MASK >> 1);
6120 			new_tx_rates &= ~LIBIPW_OFDM_RATE_9MB_MASK;
6121 		}
6122 
6123 		if (LIBIPW_OFDM_RATE_12MB_MASK & new_tx_rates) {
6124 			mask |= (LIBIPW_OFDM_RATE_12MB_MASK >> 1);
6125 			new_tx_rates &= ~LIBIPW_OFDM_RATE_12MB_MASK;
6126 		}
6127 
6128 		new_tx_rates |= mask;
6129 		break;
6130 	}
6131 
6132 	fr.tx_rates = cpu_to_le16(new_tx_rates);
6133 
6134 	reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6135 	ipw_write_reg32(priv, reg, *(u32 *) & fr);
6136 }
6137 
6138 static void ipw_abort_scan(struct ipw_priv *priv)
6139 {
6140 	int err;
6141 
6142 	if (priv->status & STATUS_SCAN_ABORTING) {
6143 		IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6144 		return;
6145 	}
6146 	priv->status |= STATUS_SCAN_ABORTING;
6147 
6148 	err = ipw_send_scan_abort(priv);
6149 	if (err)
6150 		IPW_DEBUG_HC("Request to abort scan failed.\n");
6151 }
6152 
6153 static void ipw_add_scan_channels(struct ipw_priv *priv,
6154 				  struct ipw_scan_request_ext *scan,
6155 				  int scan_type)
6156 {
6157 	int channel_index = 0;
6158 	const struct libipw_geo *geo;
6159 	int i;
6160 
6161 	geo = libipw_get_geo(priv->ieee);
6162 
6163 	if (priv->ieee->freq_band & LIBIPW_52GHZ_BAND) {
6164 		int start = channel_index;
6165 		for (i = 0; i < geo->a_channels; i++) {
6166 			if ((priv->status & STATUS_ASSOCIATED) &&
6167 			    geo->a[i].channel == priv->channel)
6168 				continue;
6169 			channel_index++;
6170 			scan->channels_list[channel_index] = geo->a[i].channel;
6171 			ipw_set_scan_type(scan, channel_index,
6172 					  geo->a[i].
6173 					  flags & LIBIPW_CH_PASSIVE_ONLY ?
6174 					  IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6175 					  scan_type);
6176 		}
6177 
6178 		if (start != channel_index) {
6179 			scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6180 			    (channel_index - start);
6181 			channel_index++;
6182 		}
6183 	}
6184 
6185 	if (priv->ieee->freq_band & LIBIPW_24GHZ_BAND) {
6186 		int start = channel_index;
6187 		if (priv->config & CFG_SPEED_SCAN) {
6188 			int index;
6189 			u8 channels[LIBIPW_24GHZ_CHANNELS] = {
6190 				/* nop out the list */
6191 				[0] = 0
6192 			};
6193 
6194 			u8 channel;
6195 			while (channel_index < IPW_SCAN_CHANNELS - 1) {
6196 				channel =
6197 				    priv->speed_scan[priv->speed_scan_pos];
6198 				if (channel == 0) {
6199 					priv->speed_scan_pos = 0;
6200 					channel = priv->speed_scan[0];
6201 				}
6202 				if ((priv->status & STATUS_ASSOCIATED) &&
6203 				    channel == priv->channel) {
6204 					priv->speed_scan_pos++;
6205 					continue;
6206 				}
6207 
6208 				/* If this channel has already been
6209 				 * added in scan, break from loop
6210 				 * and this will be the first channel
6211 				 * in the next scan.
6212 				 */
6213 				if (channels[channel - 1] != 0)
6214 					break;
6215 
6216 				channels[channel - 1] = 1;
6217 				priv->speed_scan_pos++;
6218 				channel_index++;
6219 				scan->channels_list[channel_index] = channel;
6220 				index =
6221 				    libipw_channel_to_index(priv->ieee, channel);
6222 				ipw_set_scan_type(scan, channel_index,
6223 						  geo->bg[index].
6224 						  flags &
6225 						  LIBIPW_CH_PASSIVE_ONLY ?
6226 						  IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6227 						  : scan_type);
6228 			}
6229 		} else {
6230 			for (i = 0; i < geo->bg_channels; i++) {
6231 				if ((priv->status & STATUS_ASSOCIATED) &&
6232 				    geo->bg[i].channel == priv->channel)
6233 					continue;
6234 				channel_index++;
6235 				scan->channels_list[channel_index] =
6236 				    geo->bg[i].channel;
6237 				ipw_set_scan_type(scan, channel_index,
6238 						  geo->bg[i].
6239 						  flags &
6240 						  LIBIPW_CH_PASSIVE_ONLY ?
6241 						  IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6242 						  : scan_type);
6243 			}
6244 		}
6245 
6246 		if (start != channel_index) {
6247 			scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6248 			    (channel_index - start);
6249 		}
6250 	}
6251 }
6252 
6253 static int ipw_passive_dwell_time(struct ipw_priv *priv)
6254 {
6255 	/* staying on passive channels longer than the DTIM interval during a
6256 	 * scan, while associated, causes the firmware to cancel the scan
6257 	 * without notification. Hence, don't stay on passive channels longer
6258 	 * than the beacon interval.
6259 	 */
6260 	if (priv->status & STATUS_ASSOCIATED
6261 	    && priv->assoc_network->beacon_interval > 10)
6262 		return priv->assoc_network->beacon_interval - 10;
6263 	else
6264 		return 120;
6265 }
6266 
6267 static int ipw_request_scan_helper(struct ipw_priv *priv, int type, int direct)
6268 {
6269 	struct ipw_scan_request_ext scan;
6270 	int err = 0, scan_type;
6271 
6272 	if (!(priv->status & STATUS_INIT) ||
6273 	    (priv->status & STATUS_EXIT_PENDING))
6274 		return 0;
6275 
6276 	mutex_lock(&priv->mutex);
6277 
6278 	if (direct && (priv->direct_scan_ssid_len == 0)) {
6279 		IPW_DEBUG_HC("Direct scan requested but no SSID to scan for\n");
6280 		priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6281 		goto done;
6282 	}
6283 
6284 	if (priv->status & STATUS_SCANNING) {
6285 		IPW_DEBUG_HC("Concurrent scan requested.  Queuing.\n");
6286 		priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6287 					STATUS_SCAN_PENDING;
6288 		goto done;
6289 	}
6290 
6291 	if (!(priv->status & STATUS_SCAN_FORCED) &&
6292 	    priv->status & STATUS_SCAN_ABORTING) {
6293 		IPW_DEBUG_HC("Scan request while abort pending.  Queuing.\n");
6294 		priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6295 					STATUS_SCAN_PENDING;
6296 		goto done;
6297 	}
6298 
6299 	if (priv->status & STATUS_RF_KILL_MASK) {
6300 		IPW_DEBUG_HC("Queuing scan due to RF Kill activation\n");
6301 		priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6302 					STATUS_SCAN_PENDING;
6303 		goto done;
6304 	}
6305 
6306 	memset(&scan, 0, sizeof(scan));
6307 	scan.full_scan_index = cpu_to_le32(libipw_get_scans(priv->ieee));
6308 
6309 	if (type == IW_SCAN_TYPE_PASSIVE) {
6310 		IPW_DEBUG_WX("use passive scanning\n");
6311 		scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6312 		scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6313 			cpu_to_le16(ipw_passive_dwell_time(priv));
6314 		ipw_add_scan_channels(priv, &scan, scan_type);
6315 		goto send_request;
6316 	}
6317 
6318 	/* Use active scan by default. */
6319 	if (priv->config & CFG_SPEED_SCAN)
6320 		scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6321 			cpu_to_le16(30);
6322 	else
6323 		scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6324 			cpu_to_le16(20);
6325 
6326 	scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6327 		cpu_to_le16(20);
6328 
6329 	scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6330 		cpu_to_le16(ipw_passive_dwell_time(priv));
6331 	scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
6332 
6333 #ifdef CONFIG_IPW2200_MONITOR
6334 	if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6335 		u8 channel;
6336 		u8 band = 0;
6337 
6338 		switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
6339 		case LIBIPW_52GHZ_BAND:
6340 			band = (u8) (IPW_A_MODE << 6) | 1;
6341 			channel = priv->channel;
6342 			break;
6343 
6344 		case LIBIPW_24GHZ_BAND:
6345 			band = (u8) (IPW_B_MODE << 6) | 1;
6346 			channel = priv->channel;
6347 			break;
6348 
6349 		default:
6350 			band = (u8) (IPW_B_MODE << 6) | 1;
6351 			channel = 9;
6352 			break;
6353 		}
6354 
6355 		scan.channels_list[0] = band;
6356 		scan.channels_list[1] = channel;
6357 		ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6358 
6359 		/* NOTE:  The card will sit on this channel for this time
6360 		 * period.  Scan aborts are timing sensitive and frequently
6361 		 * result in firmware restarts.  As such, it is best to
6362 		 * set a small dwell_time here and just keep re-issuing
6363 		 * scans.  Otherwise fast channel hopping will not actually
6364 		 * hop channels.
6365 		 *
6366 		 * TODO: Move SPEED SCAN support to all modes and bands */
6367 		scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6368 			cpu_to_le16(2000);
6369 	} else {
6370 #endif				/* CONFIG_IPW2200_MONITOR */
6371 		/* Honor direct scans first, otherwise if we are roaming make
6372 		 * this a direct scan for the current network.  Finally,
6373 		 * ensure that every other scan is a fast channel hop scan */
6374 		if (direct) {
6375 			err = ipw_send_ssid(priv, priv->direct_scan_ssid,
6376 			                    priv->direct_scan_ssid_len);
6377 			if (err) {
6378 				IPW_DEBUG_HC("Attempt to send SSID command  "
6379 					     "failed\n");
6380 				goto done;
6381 			}
6382 
6383 			scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6384 		} else if ((priv->status & STATUS_ROAMING)
6385 			   || (!(priv->status & STATUS_ASSOCIATED)
6386 			       && (priv->config & CFG_STATIC_ESSID)
6387 			       && (le32_to_cpu(scan.full_scan_index) % 2))) {
6388 			err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6389 			if (err) {
6390 				IPW_DEBUG_HC("Attempt to send SSID command "
6391 					     "failed.\n");
6392 				goto done;
6393 			}
6394 
6395 			scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6396 		} else
6397 			scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6398 
6399 		ipw_add_scan_channels(priv, &scan, scan_type);
6400 #ifdef CONFIG_IPW2200_MONITOR
6401 	}
6402 #endif
6403 
6404 send_request:
6405 	err = ipw_send_scan_request_ext(priv, &scan);
6406 	if (err) {
6407 		IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6408 		goto done;
6409 	}
6410 
6411 	priv->status |= STATUS_SCANNING;
6412 	if (direct) {
6413 		priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6414 		priv->direct_scan_ssid_len = 0;
6415 	} else
6416 		priv->status &= ~STATUS_SCAN_PENDING;
6417 
6418 	schedule_delayed_work(&priv->scan_check, IPW_SCAN_CHECK_WATCHDOG);
6419 done:
6420 	mutex_unlock(&priv->mutex);
6421 	return err;
6422 }
6423 
6424 static void ipw_request_passive_scan(struct work_struct *work)
6425 {
6426 	struct ipw_priv *priv =
6427 		container_of(work, struct ipw_priv, request_passive_scan.work);
6428 	ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE, 0);
6429 }
6430 
6431 static void ipw_request_scan(struct work_struct *work)
6432 {
6433 	struct ipw_priv *priv =
6434 		container_of(work, struct ipw_priv, request_scan.work);
6435 	ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 0);
6436 }
6437 
6438 static void ipw_request_direct_scan(struct work_struct *work)
6439 {
6440 	struct ipw_priv *priv =
6441 		container_of(work, struct ipw_priv, request_direct_scan.work);
6442 	ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 1);
6443 }
6444 
6445 static void ipw_bg_abort_scan(struct work_struct *work)
6446 {
6447 	struct ipw_priv *priv =
6448 		container_of(work, struct ipw_priv, abort_scan);
6449 	mutex_lock(&priv->mutex);
6450 	ipw_abort_scan(priv);
6451 	mutex_unlock(&priv->mutex);
6452 }
6453 
6454 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6455 {
6456 	/* This is called when wpa_supplicant loads and closes the driver
6457 	 * interface. */
6458 	priv->ieee->wpa_enabled = value;
6459 	return 0;
6460 }
6461 
6462 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6463 {
6464 	struct libipw_device *ieee = priv->ieee;
6465 	struct libipw_security sec = {
6466 		.flags = SEC_AUTH_MODE,
6467 	};
6468 	int ret = 0;
6469 
6470 	if (value & IW_AUTH_ALG_SHARED_KEY) {
6471 		sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6472 		ieee->open_wep = 0;
6473 	} else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6474 		sec.auth_mode = WLAN_AUTH_OPEN;
6475 		ieee->open_wep = 1;
6476 	} else if (value & IW_AUTH_ALG_LEAP) {
6477 		sec.auth_mode = WLAN_AUTH_LEAP;
6478 		ieee->open_wep = 1;
6479 	} else
6480 		return -EINVAL;
6481 
6482 	if (ieee->set_security)
6483 		ieee->set_security(ieee->dev, &sec);
6484 	else
6485 		ret = -EOPNOTSUPP;
6486 
6487 	return ret;
6488 }
6489 
6490 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6491 				int wpa_ie_len)
6492 {
6493 	/* make sure WPA is enabled */
6494 	ipw_wpa_enable(priv, 1);
6495 }
6496 
6497 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6498 			    char *capabilities, int length)
6499 {
6500 	IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6501 
6502 	return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6503 				capabilities);
6504 }
6505 
6506 /*
6507  * WE-18 support
6508  */
6509 
6510 /* SIOCSIWGENIE */
6511 static int ipw_wx_set_genie(struct net_device *dev,
6512 			    struct iw_request_info *info,
6513 			    union iwreq_data *wrqu, char *extra)
6514 {
6515 	struct ipw_priv *priv = libipw_priv(dev);
6516 	struct libipw_device *ieee = priv->ieee;
6517 	u8 *buf;
6518 	int err = 0;
6519 
6520 	if (wrqu->data.length > MAX_WPA_IE_LEN ||
6521 	    (wrqu->data.length && extra == NULL))
6522 		return -EINVAL;
6523 
6524 	if (wrqu->data.length) {
6525 		buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
6526 		if (buf == NULL) {
6527 			err = -ENOMEM;
6528 			goto out;
6529 		}
6530 
6531 		kfree(ieee->wpa_ie);
6532 		ieee->wpa_ie = buf;
6533 		ieee->wpa_ie_len = wrqu->data.length;
6534 	} else {
6535 		kfree(ieee->wpa_ie);
6536 		ieee->wpa_ie = NULL;
6537 		ieee->wpa_ie_len = 0;
6538 	}
6539 
6540 	ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6541       out:
6542 	return err;
6543 }
6544 
6545 /* SIOCGIWGENIE */
6546 static int ipw_wx_get_genie(struct net_device *dev,
6547 			    struct iw_request_info *info,
6548 			    union iwreq_data *wrqu, char *extra)
6549 {
6550 	struct ipw_priv *priv = libipw_priv(dev);
6551 	struct libipw_device *ieee = priv->ieee;
6552 	int err = 0;
6553 
6554 	if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6555 		wrqu->data.length = 0;
6556 		goto out;
6557 	}
6558 
6559 	if (wrqu->data.length < ieee->wpa_ie_len) {
6560 		err = -E2BIG;
6561 		goto out;
6562 	}
6563 
6564 	wrqu->data.length = ieee->wpa_ie_len;
6565 	memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6566 
6567       out:
6568 	return err;
6569 }
6570 
6571 static int wext_cipher2level(int cipher)
6572 {
6573 	switch (cipher) {
6574 	case IW_AUTH_CIPHER_NONE:
6575 		return SEC_LEVEL_0;
6576 	case IW_AUTH_CIPHER_WEP40:
6577 	case IW_AUTH_CIPHER_WEP104:
6578 		return SEC_LEVEL_1;
6579 	case IW_AUTH_CIPHER_TKIP:
6580 		return SEC_LEVEL_2;
6581 	case IW_AUTH_CIPHER_CCMP:
6582 		return SEC_LEVEL_3;
6583 	default:
6584 		return -1;
6585 	}
6586 }
6587 
6588 /* SIOCSIWAUTH */
6589 static int ipw_wx_set_auth(struct net_device *dev,
6590 			   struct iw_request_info *info,
6591 			   union iwreq_data *wrqu, char *extra)
6592 {
6593 	struct ipw_priv *priv = libipw_priv(dev);
6594 	struct libipw_device *ieee = priv->ieee;
6595 	struct iw_param *param = &wrqu->param;
6596 	struct lib80211_crypt_data *crypt;
6597 	unsigned long flags;
6598 	int ret = 0;
6599 
6600 	switch (param->flags & IW_AUTH_INDEX) {
6601 	case IW_AUTH_WPA_VERSION:
6602 		break;
6603 	case IW_AUTH_CIPHER_PAIRWISE:
6604 		ipw_set_hw_decrypt_unicast(priv,
6605 					   wext_cipher2level(param->value));
6606 		break;
6607 	case IW_AUTH_CIPHER_GROUP:
6608 		ipw_set_hw_decrypt_multicast(priv,
6609 					     wext_cipher2level(param->value));
6610 		break;
6611 	case IW_AUTH_KEY_MGMT:
6612 		/*
6613 		 * ipw2200 does not use these parameters
6614 		 */
6615 		break;
6616 
6617 	case IW_AUTH_TKIP_COUNTERMEASURES:
6618 		crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6619 		if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6620 			break;
6621 
6622 		flags = crypt->ops->get_flags(crypt->priv);
6623 
6624 		if (param->value)
6625 			flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6626 		else
6627 			flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6628 
6629 		crypt->ops->set_flags(flags, crypt->priv);
6630 
6631 		break;
6632 
6633 	case IW_AUTH_DROP_UNENCRYPTED:{
6634 			/* HACK:
6635 			 *
6636 			 * wpa_supplicant calls set_wpa_enabled when the driver
6637 			 * is loaded and unloaded, regardless of if WPA is being
6638 			 * used.  No other calls are made which can be used to
6639 			 * determine if encryption will be used or not prior to
6640 			 * association being expected.  If encryption is not being
6641 			 * used, drop_unencrypted is set to false, else true -- we
6642 			 * can use this to determine if the CAP_PRIVACY_ON bit should
6643 			 * be set.
6644 			 */
6645 			struct libipw_security sec = {
6646 				.flags = SEC_ENABLED,
6647 				.enabled = param->value,
6648 			};
6649 			priv->ieee->drop_unencrypted = param->value;
6650 			/* We only change SEC_LEVEL for open mode. Others
6651 			 * are set by ipw_wpa_set_encryption.
6652 			 */
6653 			if (!param->value) {
6654 				sec.flags |= SEC_LEVEL;
6655 				sec.level = SEC_LEVEL_0;
6656 			} else {
6657 				sec.flags |= SEC_LEVEL;
6658 				sec.level = SEC_LEVEL_1;
6659 			}
6660 			if (priv->ieee->set_security)
6661 				priv->ieee->set_security(priv->ieee->dev, &sec);
6662 			break;
6663 		}
6664 
6665 	case IW_AUTH_80211_AUTH_ALG:
6666 		ret = ipw_wpa_set_auth_algs(priv, param->value);
6667 		break;
6668 
6669 	case IW_AUTH_WPA_ENABLED:
6670 		ret = ipw_wpa_enable(priv, param->value);
6671 		ipw_disassociate(priv);
6672 		break;
6673 
6674 	case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6675 		ieee->ieee802_1x = param->value;
6676 		break;
6677 
6678 	case IW_AUTH_PRIVACY_INVOKED:
6679 		ieee->privacy_invoked = param->value;
6680 		break;
6681 
6682 	default:
6683 		return -EOPNOTSUPP;
6684 	}
6685 	return ret;
6686 }
6687 
6688 /* SIOCGIWAUTH */
6689 static int ipw_wx_get_auth(struct net_device *dev,
6690 			   struct iw_request_info *info,
6691 			   union iwreq_data *wrqu, char *extra)
6692 {
6693 	struct ipw_priv *priv = libipw_priv(dev);
6694 	struct libipw_device *ieee = priv->ieee;
6695 	struct lib80211_crypt_data *crypt;
6696 	struct iw_param *param = &wrqu->param;
6697 
6698 	switch (param->flags & IW_AUTH_INDEX) {
6699 	case IW_AUTH_WPA_VERSION:
6700 	case IW_AUTH_CIPHER_PAIRWISE:
6701 	case IW_AUTH_CIPHER_GROUP:
6702 	case IW_AUTH_KEY_MGMT:
6703 		/*
6704 		 * wpa_supplicant will control these internally
6705 		 */
6706 		return -EOPNOTSUPP;
6707 
6708 	case IW_AUTH_TKIP_COUNTERMEASURES:
6709 		crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6710 		if (!crypt || !crypt->ops->get_flags)
6711 			break;
6712 
6713 		param->value = (crypt->ops->get_flags(crypt->priv) &
6714 				IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6715 
6716 		break;
6717 
6718 	case IW_AUTH_DROP_UNENCRYPTED:
6719 		param->value = ieee->drop_unencrypted;
6720 		break;
6721 
6722 	case IW_AUTH_80211_AUTH_ALG:
6723 		param->value = ieee->sec.auth_mode;
6724 		break;
6725 
6726 	case IW_AUTH_WPA_ENABLED:
6727 		param->value = ieee->wpa_enabled;
6728 		break;
6729 
6730 	case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6731 		param->value = ieee->ieee802_1x;
6732 		break;
6733 
6734 	case IW_AUTH_ROAMING_CONTROL:
6735 	case IW_AUTH_PRIVACY_INVOKED:
6736 		param->value = ieee->privacy_invoked;
6737 		break;
6738 
6739 	default:
6740 		return -EOPNOTSUPP;
6741 	}
6742 	return 0;
6743 }
6744 
6745 /* SIOCSIWENCODEEXT */
6746 static int ipw_wx_set_encodeext(struct net_device *dev,
6747 				struct iw_request_info *info,
6748 				union iwreq_data *wrqu, char *extra)
6749 {
6750 	struct ipw_priv *priv = libipw_priv(dev);
6751 	struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6752 
6753 	if (hwcrypto) {
6754 		if (ext->alg == IW_ENCODE_ALG_TKIP) {
6755 			/* IPW HW can't build TKIP MIC,
6756 			   host decryption still needed */
6757 			if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6758 				priv->ieee->host_mc_decrypt = 1;
6759 			else {
6760 				priv->ieee->host_encrypt = 0;
6761 				priv->ieee->host_encrypt_msdu = 1;
6762 				priv->ieee->host_decrypt = 1;
6763 			}
6764 		} else {
6765 			priv->ieee->host_encrypt = 0;
6766 			priv->ieee->host_encrypt_msdu = 0;
6767 			priv->ieee->host_decrypt = 0;
6768 			priv->ieee->host_mc_decrypt = 0;
6769 		}
6770 	}
6771 
6772 	return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6773 }
6774 
6775 /* SIOCGIWENCODEEXT */
6776 static int ipw_wx_get_encodeext(struct net_device *dev,
6777 				struct iw_request_info *info,
6778 				union iwreq_data *wrqu, char *extra)
6779 {
6780 	struct ipw_priv *priv = libipw_priv(dev);
6781 	return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6782 }
6783 
6784 /* SIOCSIWMLME */
6785 static int ipw_wx_set_mlme(struct net_device *dev,
6786 			   struct iw_request_info *info,
6787 			   union iwreq_data *wrqu, char *extra)
6788 {
6789 	struct ipw_priv *priv = libipw_priv(dev);
6790 	struct iw_mlme *mlme = (struct iw_mlme *)extra;
6791 
6792 	switch (mlme->cmd) {
6793 	case IW_MLME_DEAUTH:
6794 		/* silently ignore */
6795 		break;
6796 
6797 	case IW_MLME_DISASSOC:
6798 		ipw_disassociate(priv);
6799 		break;
6800 
6801 	default:
6802 		return -EOPNOTSUPP;
6803 	}
6804 	return 0;
6805 }
6806 
6807 #ifdef CONFIG_IPW2200_QOS
6808 
6809 /* QoS */
6810 /*
6811 * get the modulation type of the current network or
6812 * the card current mode
6813 */
6814 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6815 {
6816 	u8 mode = 0;
6817 
6818 	if (priv->status & STATUS_ASSOCIATED) {
6819 		unsigned long flags;
6820 
6821 		spin_lock_irqsave(&priv->ieee->lock, flags);
6822 		mode = priv->assoc_network->mode;
6823 		spin_unlock_irqrestore(&priv->ieee->lock, flags);
6824 	} else {
6825 		mode = priv->ieee->mode;
6826 	}
6827 	IPW_DEBUG_QOS("QoS network/card mode %d\n", mode);
6828 	return mode;
6829 }
6830 
6831 /*
6832 * Handle management frame beacon and probe response
6833 */
6834 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6835 					 int active_network,
6836 					 struct libipw_network *network)
6837 {
6838 	u32 size = sizeof(struct libipw_qos_parameters);
6839 
6840 	if (network->capability & WLAN_CAPABILITY_IBSS)
6841 		network->qos_data.active = network->qos_data.supported;
6842 
6843 	if (network->flags & NETWORK_HAS_QOS_MASK) {
6844 		if (active_network &&
6845 		    (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6846 			network->qos_data.active = network->qos_data.supported;
6847 
6848 		if ((network->qos_data.active == 1) && (active_network == 1) &&
6849 		    (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6850 		    (network->qos_data.old_param_count !=
6851 		     network->qos_data.param_count)) {
6852 			network->qos_data.old_param_count =
6853 			    network->qos_data.param_count;
6854 			schedule_work(&priv->qos_activate);
6855 			IPW_DEBUG_QOS("QoS parameters change call "
6856 				      "qos_activate\n");
6857 		}
6858 	} else {
6859 		if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6860 			memcpy(&network->qos_data.parameters,
6861 			       &def_parameters_CCK, size);
6862 		else
6863 			memcpy(&network->qos_data.parameters,
6864 			       &def_parameters_OFDM, size);
6865 
6866 		if ((network->qos_data.active == 1) && (active_network == 1)) {
6867 			IPW_DEBUG_QOS("QoS was disabled call qos_activate\n");
6868 			schedule_work(&priv->qos_activate);
6869 		}
6870 
6871 		network->qos_data.active = 0;
6872 		network->qos_data.supported = 0;
6873 	}
6874 	if ((priv->status & STATUS_ASSOCIATED) &&
6875 	    (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6876 		if (!ether_addr_equal(network->bssid, priv->bssid))
6877 			if (network->capability & WLAN_CAPABILITY_IBSS)
6878 				if ((network->ssid_len ==
6879 				     priv->assoc_network->ssid_len) &&
6880 				    !memcmp(network->ssid,
6881 					    priv->assoc_network->ssid,
6882 					    network->ssid_len)) {
6883 					schedule_work(&priv->merge_networks);
6884 				}
6885 	}
6886 
6887 	return 0;
6888 }
6889 
6890 /*
6891 * This function set up the firmware to support QoS. It sends
6892 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6893 */
6894 static int ipw_qos_activate(struct ipw_priv *priv,
6895 			    struct libipw_qos_data *qos_network_data)
6896 {
6897 	int err;
6898 	struct libipw_qos_parameters qos_parameters[QOS_QOS_SETS];
6899 	struct libipw_qos_parameters *active_one = NULL;
6900 	u32 size = sizeof(struct libipw_qos_parameters);
6901 	u32 burst_duration;
6902 	int i;
6903 	u8 type;
6904 
6905 	type = ipw_qos_current_mode(priv);
6906 
6907 	active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6908 	memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6909 	active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6910 	memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6911 
6912 	if (qos_network_data == NULL) {
6913 		if (type == IEEE_B) {
6914 			IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6915 			active_one = &def_parameters_CCK;
6916 		} else
6917 			active_one = &def_parameters_OFDM;
6918 
6919 		memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6920 		burst_duration = ipw_qos_get_burst_duration(priv);
6921 		for (i = 0; i < QOS_QUEUE_NUM; i++)
6922 			qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6923 			    cpu_to_le16(burst_duration);
6924 	} else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6925 		if (type == IEEE_B) {
6926 			IPW_DEBUG_QOS("QoS activate IBSS network mode %d\n",
6927 				      type);
6928 			if (priv->qos_data.qos_enable == 0)
6929 				active_one = &def_parameters_CCK;
6930 			else
6931 				active_one = priv->qos_data.def_qos_parm_CCK;
6932 		} else {
6933 			if (priv->qos_data.qos_enable == 0)
6934 				active_one = &def_parameters_OFDM;
6935 			else
6936 				active_one = priv->qos_data.def_qos_parm_OFDM;
6937 		}
6938 		memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6939 	} else {
6940 		unsigned long flags;
6941 		int active;
6942 
6943 		spin_lock_irqsave(&priv->ieee->lock, flags);
6944 		active_one = &(qos_network_data->parameters);
6945 		qos_network_data->old_param_count =
6946 		    qos_network_data->param_count;
6947 		memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6948 		active = qos_network_data->supported;
6949 		spin_unlock_irqrestore(&priv->ieee->lock, flags);
6950 
6951 		if (active == 0) {
6952 			burst_duration = ipw_qos_get_burst_duration(priv);
6953 			for (i = 0; i < QOS_QUEUE_NUM; i++)
6954 				qos_parameters[QOS_PARAM_SET_ACTIVE].
6955 				    tx_op_limit[i] = cpu_to_le16(burst_duration);
6956 		}
6957 	}
6958 
6959 	IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
6960 	err = ipw_send_qos_params_command(priv, &qos_parameters[0]);
6961 	if (err)
6962 		IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
6963 
6964 	return err;
6965 }
6966 
6967 /*
6968 * send IPW_CMD_WME_INFO to the firmware
6969 */
6970 static int ipw_qos_set_info_element(struct ipw_priv *priv)
6971 {
6972 	int ret = 0;
6973 	struct libipw_qos_information_element qos_info;
6974 
6975 	if (priv == NULL)
6976 		return -1;
6977 
6978 	qos_info.elementID = QOS_ELEMENT_ID;
6979 	qos_info.length = sizeof(struct libipw_qos_information_element) - 2;
6980 
6981 	qos_info.version = QOS_VERSION_1;
6982 	qos_info.ac_info = 0;
6983 
6984 	memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
6985 	qos_info.qui_type = QOS_OUI_TYPE;
6986 	qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
6987 
6988 	ret = ipw_send_qos_info_command(priv, &qos_info);
6989 	if (ret != 0) {
6990 		IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
6991 	}
6992 	return ret;
6993 }
6994 
6995 /*
6996 * Set the QoS parameter with the association request structure
6997 */
6998 static int ipw_qos_association(struct ipw_priv *priv,
6999 			       struct libipw_network *network)
7000 {
7001 	int err = 0;
7002 	struct libipw_qos_data *qos_data = NULL;
7003 	struct libipw_qos_data ibss_data = {
7004 		.supported = 1,
7005 		.active = 1,
7006 	};
7007 
7008 	switch (priv->ieee->iw_mode) {
7009 	case IW_MODE_ADHOC:
7010 		BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
7011 
7012 		qos_data = &ibss_data;
7013 		break;
7014 
7015 	case IW_MODE_INFRA:
7016 		qos_data = &network->qos_data;
7017 		break;
7018 
7019 	default:
7020 		BUG();
7021 		break;
7022 	}
7023 
7024 	err = ipw_qos_activate(priv, qos_data);
7025 	if (err) {
7026 		priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
7027 		return err;
7028 	}
7029 
7030 	if (priv->qos_data.qos_enable && qos_data->supported) {
7031 		IPW_DEBUG_QOS("QoS will be enabled for this association\n");
7032 		priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
7033 		return ipw_qos_set_info_element(priv);
7034 	}
7035 
7036 	return 0;
7037 }
7038 
7039 /*
7040 * handling the beaconing responses. if we get different QoS setting
7041 * off the network from the associated setting, adjust the QoS
7042 * setting
7043 */
7044 static int ipw_qos_association_resp(struct ipw_priv *priv,
7045 				    struct libipw_network *network)
7046 {
7047 	int ret = 0;
7048 	unsigned long flags;
7049 	u32 size = sizeof(struct libipw_qos_parameters);
7050 	int set_qos_param = 0;
7051 
7052 	if ((priv == NULL) || (network == NULL) ||
7053 	    (priv->assoc_network == NULL))
7054 		return ret;
7055 
7056 	if (!(priv->status & STATUS_ASSOCIATED))
7057 		return ret;
7058 
7059 	if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7060 		return ret;
7061 
7062 	spin_lock_irqsave(&priv->ieee->lock, flags);
7063 	if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7064 		memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7065 		       sizeof(struct libipw_qos_data));
7066 		priv->assoc_network->qos_data.active = 1;
7067 		if ((network->qos_data.old_param_count !=
7068 		     network->qos_data.param_count)) {
7069 			set_qos_param = 1;
7070 			network->qos_data.old_param_count =
7071 			    network->qos_data.param_count;
7072 		}
7073 
7074 	} else {
7075 		if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7076 			memcpy(&priv->assoc_network->qos_data.parameters,
7077 			       &def_parameters_CCK, size);
7078 		else
7079 			memcpy(&priv->assoc_network->qos_data.parameters,
7080 			       &def_parameters_OFDM, size);
7081 		priv->assoc_network->qos_data.active = 0;
7082 		priv->assoc_network->qos_data.supported = 0;
7083 		set_qos_param = 1;
7084 	}
7085 
7086 	spin_unlock_irqrestore(&priv->ieee->lock, flags);
7087 
7088 	if (set_qos_param == 1)
7089 		schedule_work(&priv->qos_activate);
7090 
7091 	return ret;
7092 }
7093 
7094 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7095 {
7096 	u32 ret = 0;
7097 
7098 	if (!priv)
7099 		return 0;
7100 
7101 	if (!(priv->ieee->modulation & LIBIPW_OFDM_MODULATION))
7102 		ret = priv->qos_data.burst_duration_CCK;
7103 	else
7104 		ret = priv->qos_data.burst_duration_OFDM;
7105 
7106 	return ret;
7107 }
7108 
7109 /*
7110 * Initialize the setting of QoS global
7111 */
7112 static void ipw_qos_init(struct ipw_priv *priv, int enable,
7113 			 int burst_enable, u32 burst_duration_CCK,
7114 			 u32 burst_duration_OFDM)
7115 {
7116 	priv->qos_data.qos_enable = enable;
7117 
7118 	if (priv->qos_data.qos_enable) {
7119 		priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7120 		priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7121 		IPW_DEBUG_QOS("QoS is enabled\n");
7122 	} else {
7123 		priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7124 		priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7125 		IPW_DEBUG_QOS("QoS is not enabled\n");
7126 	}
7127 
7128 	priv->qos_data.burst_enable = burst_enable;
7129 
7130 	if (burst_enable) {
7131 		priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7132 		priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7133 	} else {
7134 		priv->qos_data.burst_duration_CCK = 0;
7135 		priv->qos_data.burst_duration_OFDM = 0;
7136 	}
7137 }
7138 
7139 /*
7140 * map the packet priority to the right TX Queue
7141 */
7142 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7143 {
7144 	if (priority > 7 || !priv->qos_data.qos_enable)
7145 		priority = 0;
7146 
7147 	return from_priority_to_tx_queue[priority] - 1;
7148 }
7149 
7150 static int ipw_is_qos_active(struct net_device *dev,
7151 			     struct sk_buff *skb)
7152 {
7153 	struct ipw_priv *priv = libipw_priv(dev);
7154 	struct libipw_qos_data *qos_data = NULL;
7155 	int active, supported;
7156 	u8 *daddr = skb->data + ETH_ALEN;
7157 	int unicast = !is_multicast_ether_addr(daddr);
7158 
7159 	if (!(priv->status & STATUS_ASSOCIATED))
7160 		return 0;
7161 
7162 	qos_data = &priv->assoc_network->qos_data;
7163 
7164 	if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7165 		if (unicast == 0)
7166 			qos_data->active = 0;
7167 		else
7168 			qos_data->active = qos_data->supported;
7169 	}
7170 	active = qos_data->active;
7171 	supported = qos_data->supported;
7172 	IPW_DEBUG_QOS("QoS  %d network is QoS active %d  supported %d  "
7173 		      "unicast %d\n",
7174 		      priv->qos_data.qos_enable, active, supported, unicast);
7175 	if (active && priv->qos_data.qos_enable)
7176 		return 1;
7177 
7178 	return 0;
7179 
7180 }
7181 /*
7182 * add QoS parameter to the TX command
7183 */
7184 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7185 					u16 priority,
7186 					struct tfd_data *tfd)
7187 {
7188 	int tx_queue_id = 0;
7189 
7190 
7191 	tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7192 	tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7193 
7194 	if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7195 		tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7196 		tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7197 	}
7198 	return 0;
7199 }
7200 
7201 /*
7202 * background support to run QoS activate functionality
7203 */
7204 static void ipw_bg_qos_activate(struct work_struct *work)
7205 {
7206 	struct ipw_priv *priv =
7207 		container_of(work, struct ipw_priv, qos_activate);
7208 
7209 	mutex_lock(&priv->mutex);
7210 
7211 	if (priv->status & STATUS_ASSOCIATED)
7212 		ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7213 
7214 	mutex_unlock(&priv->mutex);
7215 }
7216 
7217 static int ipw_handle_probe_response(struct net_device *dev,
7218 				     struct libipw_probe_response *resp,
7219 				     struct libipw_network *network)
7220 {
7221 	struct ipw_priv *priv = libipw_priv(dev);
7222 	int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7223 			      (network == priv->assoc_network));
7224 
7225 	ipw_qos_handle_probe_response(priv, active_network, network);
7226 
7227 	return 0;
7228 }
7229 
7230 static int ipw_handle_beacon(struct net_device *dev,
7231 			     struct libipw_beacon *resp,
7232 			     struct libipw_network *network)
7233 {
7234 	struct ipw_priv *priv = libipw_priv(dev);
7235 	int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7236 			      (network == priv->assoc_network));
7237 
7238 	ipw_qos_handle_probe_response(priv, active_network, network);
7239 
7240 	return 0;
7241 }
7242 
7243 static int ipw_handle_assoc_response(struct net_device *dev,
7244 				     struct libipw_assoc_response *resp,
7245 				     struct libipw_network *network)
7246 {
7247 	struct ipw_priv *priv = libipw_priv(dev);
7248 	ipw_qos_association_resp(priv, network);
7249 	return 0;
7250 }
7251 
7252 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
7253 				       *qos_param)
7254 {
7255 	return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7256 				sizeof(*qos_param) * 3, qos_param);
7257 }
7258 
7259 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
7260 				     *qos_param)
7261 {
7262 	return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7263 				qos_param);
7264 }
7265 
7266 #endif				/* CONFIG_IPW2200_QOS */
7267 
7268 static int ipw_associate_network(struct ipw_priv *priv,
7269 				 struct libipw_network *network,
7270 				 struct ipw_supported_rates *rates, int roaming)
7271 {
7272 	int err;
7273 
7274 	if (priv->config & CFG_FIXED_RATE)
7275 		ipw_set_fixed_rate(priv, network->mode);
7276 
7277 	if (!(priv->config & CFG_STATIC_ESSID)) {
7278 		priv->essid_len = min(network->ssid_len,
7279 				      (u8) IW_ESSID_MAX_SIZE);
7280 		memcpy(priv->essid, network->ssid, priv->essid_len);
7281 	}
7282 
7283 	network->last_associate = jiffies;
7284 
7285 	memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7286 	priv->assoc_request.channel = network->channel;
7287 	priv->assoc_request.auth_key = 0;
7288 
7289 	if ((priv->capability & CAP_PRIVACY_ON) &&
7290 	    (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7291 		priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7292 		priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7293 
7294 		if (priv->ieee->sec.level == SEC_LEVEL_1)
7295 			ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7296 
7297 	} else if ((priv->capability & CAP_PRIVACY_ON) &&
7298 		   (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7299 		priv->assoc_request.auth_type = AUTH_LEAP;
7300 	else
7301 		priv->assoc_request.auth_type = AUTH_OPEN;
7302 
7303 	if (priv->ieee->wpa_ie_len) {
7304 		priv->assoc_request.policy_support = cpu_to_le16(0x02);	/* RSN active */
7305 		ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7306 				 priv->ieee->wpa_ie_len);
7307 	}
7308 
7309 	/*
7310 	 * It is valid for our ieee device to support multiple modes, but
7311 	 * when it comes to associating to a given network we have to choose
7312 	 * just one mode.
7313 	 */
7314 	if (network->mode & priv->ieee->mode & IEEE_A)
7315 		priv->assoc_request.ieee_mode = IPW_A_MODE;
7316 	else if (network->mode & priv->ieee->mode & IEEE_G)
7317 		priv->assoc_request.ieee_mode = IPW_G_MODE;
7318 	else if (network->mode & priv->ieee->mode & IEEE_B)
7319 		priv->assoc_request.ieee_mode = IPW_B_MODE;
7320 
7321 	priv->assoc_request.capability = cpu_to_le16(network->capability);
7322 	if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7323 	    && !(priv->config & CFG_PREAMBLE_LONG)) {
7324 		priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7325 	} else {
7326 		priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7327 
7328 		/* Clear the short preamble if we won't be supporting it */
7329 		priv->assoc_request.capability &=
7330 		    ~cpu_to_le16(WLAN_CAPABILITY_SHORT_PREAMBLE);
7331 	}
7332 
7333 	/* Clear capability bits that aren't used in Ad Hoc */
7334 	if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7335 		priv->assoc_request.capability &=
7336 		    ~cpu_to_le16(WLAN_CAPABILITY_SHORT_SLOT_TIME);
7337 
7338 	IPW_DEBUG_ASSOC("%ssociation attempt: '%*pE', channel %d, 802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7339 			roaming ? "Rea" : "A",
7340 			priv->essid_len, priv->essid,
7341 			network->channel,
7342 			ipw_modes[priv->assoc_request.ieee_mode],
7343 			rates->num_rates,
7344 			(priv->assoc_request.preamble_length ==
7345 			 DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7346 			network->capability &
7347 			WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7348 			priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7349 			priv->capability & CAP_PRIVACY_ON ?
7350 			(priv->capability & CAP_SHARED_KEY ? "(shared)" :
7351 			 "(open)") : "",
7352 			priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7353 			priv->capability & CAP_PRIVACY_ON ?
7354 			'1' + priv->ieee->sec.active_key : '.',
7355 			priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7356 
7357 	priv->assoc_request.beacon_interval = cpu_to_le16(network->beacon_interval);
7358 	if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7359 	    (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7360 		priv->assoc_request.assoc_type = HC_IBSS_START;
7361 		priv->assoc_request.assoc_tsf_msw = 0;
7362 		priv->assoc_request.assoc_tsf_lsw = 0;
7363 	} else {
7364 		if (unlikely(roaming))
7365 			priv->assoc_request.assoc_type = HC_REASSOCIATE;
7366 		else
7367 			priv->assoc_request.assoc_type = HC_ASSOCIATE;
7368 		priv->assoc_request.assoc_tsf_msw = cpu_to_le32(network->time_stamp[1]);
7369 		priv->assoc_request.assoc_tsf_lsw = cpu_to_le32(network->time_stamp[0]);
7370 	}
7371 
7372 	memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7373 
7374 	if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7375 		eth_broadcast_addr(priv->assoc_request.dest);
7376 		priv->assoc_request.atim_window = cpu_to_le16(network->atim_window);
7377 	} else {
7378 		memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7379 		priv->assoc_request.atim_window = 0;
7380 	}
7381 
7382 	priv->assoc_request.listen_interval = cpu_to_le16(network->listen_interval);
7383 
7384 	err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7385 	if (err) {
7386 		IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7387 		return err;
7388 	}
7389 
7390 	rates->ieee_mode = priv->assoc_request.ieee_mode;
7391 	rates->purpose = IPW_RATE_CONNECT;
7392 	ipw_send_supported_rates(priv, rates);
7393 
7394 	if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7395 		priv->sys_config.dot11g_auto_detection = 1;
7396 	else
7397 		priv->sys_config.dot11g_auto_detection = 0;
7398 
7399 	if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7400 		priv->sys_config.answer_broadcast_ssid_probe = 1;
7401 	else
7402 		priv->sys_config.answer_broadcast_ssid_probe = 0;
7403 
7404 	err = ipw_send_system_config(priv);
7405 	if (err) {
7406 		IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7407 		return err;
7408 	}
7409 
7410 	IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7411 	err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7412 	if (err) {
7413 		IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7414 		return err;
7415 	}
7416 
7417 	/*
7418 	 * If preemption is enabled, it is possible for the association
7419 	 * to complete before we return from ipw_send_associate.  Therefore
7420 	 * we have to be sure and update our priviate data first.
7421 	 */
7422 	priv->channel = network->channel;
7423 	memcpy(priv->bssid, network->bssid, ETH_ALEN);
7424 	priv->status |= STATUS_ASSOCIATING;
7425 	priv->status &= ~STATUS_SECURITY_UPDATED;
7426 
7427 	priv->assoc_network = network;
7428 
7429 #ifdef CONFIG_IPW2200_QOS
7430 	ipw_qos_association(priv, network);
7431 #endif
7432 
7433 	err = ipw_send_associate(priv, &priv->assoc_request);
7434 	if (err) {
7435 		IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7436 		return err;
7437 	}
7438 
7439 	IPW_DEBUG(IPW_DL_STATE, "associating: '%*pE' %pM\n",
7440 		  priv->essid_len, priv->essid, priv->bssid);
7441 
7442 	return 0;
7443 }
7444 
7445 static void ipw_roam(void *data)
7446 {
7447 	struct ipw_priv *priv = data;
7448 	struct libipw_network *network = NULL;
7449 	struct ipw_network_match match = {
7450 		.network = priv->assoc_network
7451 	};
7452 
7453 	/* The roaming process is as follows:
7454 	 *
7455 	 * 1.  Missed beacon threshold triggers the roaming process by
7456 	 *     setting the status ROAM bit and requesting a scan.
7457 	 * 2.  When the scan completes, it schedules the ROAM work
7458 	 * 3.  The ROAM work looks at all of the known networks for one that
7459 	 *     is a better network than the currently associated.  If none
7460 	 *     found, the ROAM process is over (ROAM bit cleared)
7461 	 * 4.  If a better network is found, a disassociation request is
7462 	 *     sent.
7463 	 * 5.  When the disassociation completes, the roam work is again
7464 	 *     scheduled.  The second time through, the driver is no longer
7465 	 *     associated, and the newly selected network is sent an
7466 	 *     association request.
7467 	 * 6.  At this point ,the roaming process is complete and the ROAM
7468 	 *     status bit is cleared.
7469 	 */
7470 
7471 	/* If we are no longer associated, and the roaming bit is no longer
7472 	 * set, then we are not actively roaming, so just return */
7473 	if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7474 		return;
7475 
7476 	if (priv->status & STATUS_ASSOCIATED) {
7477 		/* First pass through ROAM process -- look for a better
7478 		 * network */
7479 		unsigned long flags;
7480 		u8 rssi = priv->assoc_network->stats.rssi;
7481 		priv->assoc_network->stats.rssi = -128;
7482 		spin_lock_irqsave(&priv->ieee->lock, flags);
7483 		list_for_each_entry(network, &priv->ieee->network_list, list) {
7484 			if (network != priv->assoc_network)
7485 				ipw_best_network(priv, &match, network, 1);
7486 		}
7487 		spin_unlock_irqrestore(&priv->ieee->lock, flags);
7488 		priv->assoc_network->stats.rssi = rssi;
7489 
7490 		if (match.network == priv->assoc_network) {
7491 			IPW_DEBUG_ASSOC("No better APs in this network to "
7492 					"roam to.\n");
7493 			priv->status &= ~STATUS_ROAMING;
7494 			ipw_debug_config(priv);
7495 			return;
7496 		}
7497 
7498 		ipw_send_disassociate(priv, 1);
7499 		priv->assoc_network = match.network;
7500 
7501 		return;
7502 	}
7503 
7504 	/* Second pass through ROAM process -- request association */
7505 	ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7506 	ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7507 	priv->status &= ~STATUS_ROAMING;
7508 }
7509 
7510 static void ipw_bg_roam(struct work_struct *work)
7511 {
7512 	struct ipw_priv *priv =
7513 		container_of(work, struct ipw_priv, roam);
7514 	mutex_lock(&priv->mutex);
7515 	ipw_roam(priv);
7516 	mutex_unlock(&priv->mutex);
7517 }
7518 
7519 static int ipw_associate(void *data)
7520 {
7521 	struct ipw_priv *priv = data;
7522 
7523 	struct libipw_network *network = NULL;
7524 	struct ipw_network_match match = {
7525 		.network = NULL
7526 	};
7527 	struct ipw_supported_rates *rates;
7528 	struct list_head *element;
7529 	unsigned long flags;
7530 
7531 	if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7532 		IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7533 		return 0;
7534 	}
7535 
7536 	if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7537 		IPW_DEBUG_ASSOC("Not attempting association (already in "
7538 				"progress)\n");
7539 		return 0;
7540 	}
7541 
7542 	if (priv->status & STATUS_DISASSOCIATING) {
7543 		IPW_DEBUG_ASSOC("Not attempting association (in disassociating)\n");
7544 		schedule_work(&priv->associate);
7545 		return 0;
7546 	}
7547 
7548 	if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7549 		IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7550 				"initialized)\n");
7551 		return 0;
7552 	}
7553 
7554 	if (!(priv->config & CFG_ASSOCIATE) &&
7555 	    !(priv->config & (CFG_STATIC_ESSID | CFG_STATIC_BSSID))) {
7556 		IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7557 		return 0;
7558 	}
7559 
7560 	/* Protect our use of the network_list */
7561 	spin_lock_irqsave(&priv->ieee->lock, flags);
7562 	list_for_each_entry(network, &priv->ieee->network_list, list)
7563 	    ipw_best_network(priv, &match, network, 0);
7564 
7565 	network = match.network;
7566 	rates = &match.rates;
7567 
7568 	if (network == NULL &&
7569 	    priv->ieee->iw_mode == IW_MODE_ADHOC &&
7570 	    priv->config & CFG_ADHOC_CREATE &&
7571 	    priv->config & CFG_STATIC_ESSID &&
7572 	    priv->config & CFG_STATIC_CHANNEL) {
7573 		/* Use oldest network if the free list is empty */
7574 		if (list_empty(&priv->ieee->network_free_list)) {
7575 			struct libipw_network *oldest = NULL;
7576 			struct libipw_network *target;
7577 
7578 			list_for_each_entry(target, &priv->ieee->network_list, list) {
7579 				if ((oldest == NULL) ||
7580 				    (target->last_scanned < oldest->last_scanned))
7581 					oldest = target;
7582 			}
7583 
7584 			/* If there are no more slots, expire the oldest */
7585 			list_del(&oldest->list);
7586 			target = oldest;
7587 			IPW_DEBUG_ASSOC("Expired '%*pE' (%pM) from network list.\n",
7588 					target->ssid_len, target->ssid,
7589 					target->bssid);
7590 			list_add_tail(&target->list,
7591 				      &priv->ieee->network_free_list);
7592 		}
7593 
7594 		element = priv->ieee->network_free_list.next;
7595 		network = list_entry(element, struct libipw_network, list);
7596 		ipw_adhoc_create(priv, network);
7597 		rates = &priv->rates;
7598 		list_del(element);
7599 		list_add_tail(&network->list, &priv->ieee->network_list);
7600 	}
7601 	spin_unlock_irqrestore(&priv->ieee->lock, flags);
7602 
7603 	/* If we reached the end of the list, then we don't have any valid
7604 	 * matching APs */
7605 	if (!network) {
7606 		ipw_debug_config(priv);
7607 
7608 		if (!(priv->status & STATUS_SCANNING)) {
7609 			if (!(priv->config & CFG_SPEED_SCAN))
7610 				schedule_delayed_work(&priv->request_scan,
7611 						      SCAN_INTERVAL);
7612 			else
7613 				schedule_delayed_work(&priv->request_scan, 0);
7614 		}
7615 
7616 		return 0;
7617 	}
7618 
7619 	ipw_associate_network(priv, network, rates, 0);
7620 
7621 	return 1;
7622 }
7623 
7624 static void ipw_bg_associate(struct work_struct *work)
7625 {
7626 	struct ipw_priv *priv =
7627 		container_of(work, struct ipw_priv, associate);
7628 	mutex_lock(&priv->mutex);
7629 	ipw_associate(priv);
7630 	mutex_unlock(&priv->mutex);
7631 }
7632 
7633 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7634 				      struct sk_buff *skb)
7635 {
7636 	struct ieee80211_hdr *hdr;
7637 	u16 fc;
7638 
7639 	hdr = (struct ieee80211_hdr *)skb->data;
7640 	fc = le16_to_cpu(hdr->frame_control);
7641 	if (!(fc & IEEE80211_FCTL_PROTECTED))
7642 		return;
7643 
7644 	fc &= ~IEEE80211_FCTL_PROTECTED;
7645 	hdr->frame_control = cpu_to_le16(fc);
7646 	switch (priv->ieee->sec.level) {
7647 	case SEC_LEVEL_3:
7648 		/* Remove CCMP HDR */
7649 		memmove(skb->data + LIBIPW_3ADDR_LEN,
7650 			skb->data + LIBIPW_3ADDR_LEN + 8,
7651 			skb->len - LIBIPW_3ADDR_LEN - 8);
7652 		skb_trim(skb, skb->len - 16);	/* CCMP_HDR_LEN + CCMP_MIC_LEN */
7653 		break;
7654 	case SEC_LEVEL_2:
7655 		break;
7656 	case SEC_LEVEL_1:
7657 		/* Remove IV */
7658 		memmove(skb->data + LIBIPW_3ADDR_LEN,
7659 			skb->data + LIBIPW_3ADDR_LEN + 4,
7660 			skb->len - LIBIPW_3ADDR_LEN - 4);
7661 		skb_trim(skb, skb->len - 8);	/* IV + ICV */
7662 		break;
7663 	case SEC_LEVEL_0:
7664 		break;
7665 	default:
7666 		printk(KERN_ERR "Unknown security level %d\n",
7667 		       priv->ieee->sec.level);
7668 		break;
7669 	}
7670 }
7671 
7672 static void ipw_handle_data_packet(struct ipw_priv *priv,
7673 				   struct ipw_rx_mem_buffer *rxb,
7674 				   struct libipw_rx_stats *stats)
7675 {
7676 	struct net_device *dev = priv->net_dev;
7677 	struct libipw_hdr_4addr *hdr;
7678 	struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7679 
7680 	/* We received data from the HW, so stop the watchdog */
7681 	netif_trans_update(dev);
7682 
7683 	/* We only process data packets if the
7684 	 * interface is open */
7685 	if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7686 		     skb_tailroom(rxb->skb))) {
7687 		dev->stats.rx_errors++;
7688 		priv->wstats.discard.misc++;
7689 		IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7690 		return;
7691 	} else if (unlikely(!netif_running(priv->net_dev))) {
7692 		dev->stats.rx_dropped++;
7693 		priv->wstats.discard.misc++;
7694 		IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7695 		return;
7696 	}
7697 
7698 	/* Advance skb->data to the start of the actual payload */
7699 	skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7700 
7701 	/* Set the size of the skb to the size of the frame */
7702 	skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7703 
7704 	IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7705 
7706 	/* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7707 	hdr = (struct libipw_hdr_4addr *)rxb->skb->data;
7708 	if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7709 	    (is_multicast_ether_addr(hdr->addr1) ?
7710 	     !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7711 		ipw_rebuild_decrypted_skb(priv, rxb->skb);
7712 
7713 	if (!libipw_rx(priv->ieee, rxb->skb, stats))
7714 		dev->stats.rx_errors++;
7715 	else {			/* libipw_rx succeeded, so it now owns the SKB */
7716 		rxb->skb = NULL;
7717 		__ipw_led_activity_on(priv);
7718 	}
7719 }
7720 
7721 #ifdef CONFIG_IPW2200_RADIOTAP
7722 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7723 					   struct ipw_rx_mem_buffer *rxb,
7724 					   struct libipw_rx_stats *stats)
7725 {
7726 	struct net_device *dev = priv->net_dev;
7727 	struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7728 	struct ipw_rx_frame *frame = &pkt->u.frame;
7729 
7730 	/* initial pull of some data */
7731 	u16 received_channel = frame->received_channel;
7732 	u8 antennaAndPhy = frame->antennaAndPhy;
7733 	s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM;	/* call it signed anyhow */
7734 	u16 pktrate = frame->rate;
7735 
7736 	/* Magic struct that slots into the radiotap header -- no reason
7737 	 * to build this manually element by element, we can write it much
7738 	 * more efficiently than we can parse it. ORDER MATTERS HERE */
7739 	struct ipw_rt_hdr *ipw_rt;
7740 
7741 	unsigned short len = le16_to_cpu(pkt->u.frame.length);
7742 
7743 	/* We received data from the HW, so stop the watchdog */
7744 	netif_trans_update(dev);
7745 
7746 	/* We only process data packets if the
7747 	 * interface is open */
7748 	if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7749 		     skb_tailroom(rxb->skb))) {
7750 		dev->stats.rx_errors++;
7751 		priv->wstats.discard.misc++;
7752 		IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7753 		return;
7754 	} else if (unlikely(!netif_running(priv->net_dev))) {
7755 		dev->stats.rx_dropped++;
7756 		priv->wstats.discard.misc++;
7757 		IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7758 		return;
7759 	}
7760 
7761 	/* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7762 	 * that now */
7763 	if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7764 		/* FIXME: Should alloc bigger skb instead */
7765 		dev->stats.rx_dropped++;
7766 		priv->wstats.discard.misc++;
7767 		IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7768 		return;
7769 	}
7770 
7771 	/* copy the frame itself */
7772 	memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7773 		rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7774 
7775 	ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7776 
7777 	ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7778 	ipw_rt->rt_hdr.it_pad = 0;	/* always good to zero */
7779 	ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr));	/* total header+data */
7780 
7781 	/* Big bitfield of all the fields we provide in radiotap */
7782 	ipw_rt->rt_hdr.it_present = cpu_to_le32(
7783 	     (1 << IEEE80211_RADIOTAP_TSFT) |
7784 	     (1 << IEEE80211_RADIOTAP_FLAGS) |
7785 	     (1 << IEEE80211_RADIOTAP_RATE) |
7786 	     (1 << IEEE80211_RADIOTAP_CHANNEL) |
7787 	     (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7788 	     (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7789 	     (1 << IEEE80211_RADIOTAP_ANTENNA));
7790 
7791 	/* Zero the flags, we'll add to them as we go */
7792 	ipw_rt->rt_flags = 0;
7793 	ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7794 			       frame->parent_tsf[2] << 16 |
7795 			       frame->parent_tsf[1] << 8  |
7796 			       frame->parent_tsf[0]);
7797 
7798 	/* Convert signal to DBM */
7799 	ipw_rt->rt_dbmsignal = antsignal;
7800 	ipw_rt->rt_dbmnoise = (s8) le16_to_cpu(frame->noise);
7801 
7802 	/* Convert the channel data and set the flags */
7803 	ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7804 	if (received_channel > 14) {	/* 802.11a */
7805 		ipw_rt->rt_chbitmask =
7806 		    cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7807 	} else if (antennaAndPhy & 32) {	/* 802.11b */
7808 		ipw_rt->rt_chbitmask =
7809 		    cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7810 	} else {		/* 802.11g */
7811 		ipw_rt->rt_chbitmask =
7812 		    cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7813 	}
7814 
7815 	/* set the rate in multiples of 500k/s */
7816 	switch (pktrate) {
7817 	case IPW_TX_RATE_1MB:
7818 		ipw_rt->rt_rate = 2;
7819 		break;
7820 	case IPW_TX_RATE_2MB:
7821 		ipw_rt->rt_rate = 4;
7822 		break;
7823 	case IPW_TX_RATE_5MB:
7824 		ipw_rt->rt_rate = 10;
7825 		break;
7826 	case IPW_TX_RATE_6MB:
7827 		ipw_rt->rt_rate = 12;
7828 		break;
7829 	case IPW_TX_RATE_9MB:
7830 		ipw_rt->rt_rate = 18;
7831 		break;
7832 	case IPW_TX_RATE_11MB:
7833 		ipw_rt->rt_rate = 22;
7834 		break;
7835 	case IPW_TX_RATE_12MB:
7836 		ipw_rt->rt_rate = 24;
7837 		break;
7838 	case IPW_TX_RATE_18MB:
7839 		ipw_rt->rt_rate = 36;
7840 		break;
7841 	case IPW_TX_RATE_24MB:
7842 		ipw_rt->rt_rate = 48;
7843 		break;
7844 	case IPW_TX_RATE_36MB:
7845 		ipw_rt->rt_rate = 72;
7846 		break;
7847 	case IPW_TX_RATE_48MB:
7848 		ipw_rt->rt_rate = 96;
7849 		break;
7850 	case IPW_TX_RATE_54MB:
7851 		ipw_rt->rt_rate = 108;
7852 		break;
7853 	default:
7854 		ipw_rt->rt_rate = 0;
7855 		break;
7856 	}
7857 
7858 	/* antenna number */
7859 	ipw_rt->rt_antenna = (antennaAndPhy & 3);	/* Is this right? */
7860 
7861 	/* set the preamble flag if we have it */
7862 	if ((antennaAndPhy & 64))
7863 		ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7864 
7865 	/* Set the size of the skb to the size of the frame */
7866 	skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7867 
7868 	IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7869 
7870 	if (!libipw_rx(priv->ieee, rxb->skb, stats))
7871 		dev->stats.rx_errors++;
7872 	else {			/* libipw_rx succeeded, so it now owns the SKB */
7873 		rxb->skb = NULL;
7874 		/* no LED during capture */
7875 	}
7876 }
7877 #endif
7878 
7879 #ifdef CONFIG_IPW2200_PROMISCUOUS
7880 #define libipw_is_probe_response(fc) \
7881    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7882     (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7883 
7884 #define libipw_is_management(fc) \
7885    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7886 
7887 #define libipw_is_control(fc) \
7888    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
7889 
7890 #define libipw_is_data(fc) \
7891    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
7892 
7893 #define libipw_is_assoc_request(fc) \
7894    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
7895 
7896 #define libipw_is_reassoc_request(fc) \
7897    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
7898 
7899 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
7900 				      struct ipw_rx_mem_buffer *rxb,
7901 				      struct libipw_rx_stats *stats)
7902 {
7903 	struct net_device *dev = priv->prom_net_dev;
7904 	struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7905 	struct ipw_rx_frame *frame = &pkt->u.frame;
7906 	struct ipw_rt_hdr *ipw_rt;
7907 
7908 	/* First cache any information we need before we overwrite
7909 	 * the information provided in the skb from the hardware */
7910 	struct ieee80211_hdr *hdr;
7911 	u16 channel = frame->received_channel;
7912 	u8 phy_flags = frame->antennaAndPhy;
7913 	s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
7914 	s8 noise = (s8) le16_to_cpu(frame->noise);
7915 	u8 rate = frame->rate;
7916 	unsigned short len = le16_to_cpu(pkt->u.frame.length);
7917 	struct sk_buff *skb;
7918 	int hdr_only = 0;
7919 	u16 filter = priv->prom_priv->filter;
7920 
7921 	/* If the filter is set to not include Rx frames then return */
7922 	if (filter & IPW_PROM_NO_RX)
7923 		return;
7924 
7925 	/* We received data from the HW, so stop the watchdog */
7926 	netif_trans_update(dev);
7927 
7928 	if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
7929 		dev->stats.rx_errors++;
7930 		IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7931 		return;
7932 	}
7933 
7934 	/* We only process data packets if the interface is open */
7935 	if (unlikely(!netif_running(dev))) {
7936 		dev->stats.rx_dropped++;
7937 		IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7938 		return;
7939 	}
7940 
7941 	/* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7942 	 * that now */
7943 	if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7944 		/* FIXME: Should alloc bigger skb instead */
7945 		dev->stats.rx_dropped++;
7946 		IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7947 		return;
7948 	}
7949 
7950 	hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
7951 	if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
7952 		if (filter & IPW_PROM_NO_MGMT)
7953 			return;
7954 		if (filter & IPW_PROM_MGMT_HEADER_ONLY)
7955 			hdr_only = 1;
7956 	} else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
7957 		if (filter & IPW_PROM_NO_CTL)
7958 			return;
7959 		if (filter & IPW_PROM_CTL_HEADER_ONLY)
7960 			hdr_only = 1;
7961 	} else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
7962 		if (filter & IPW_PROM_NO_DATA)
7963 			return;
7964 		if (filter & IPW_PROM_DATA_HEADER_ONLY)
7965 			hdr_only = 1;
7966 	}
7967 
7968 	/* Copy the SKB since this is for the promiscuous side */
7969 	skb = skb_copy(rxb->skb, GFP_ATOMIC);
7970 	if (skb == NULL) {
7971 		IPW_ERROR("skb_clone failed for promiscuous copy.\n");
7972 		return;
7973 	}
7974 
7975 	/* copy the frame data to write after where the radiotap header goes */
7976 	ipw_rt = (void *)skb->data;
7977 
7978 	if (hdr_only)
7979 		len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
7980 
7981 	memcpy(ipw_rt->payload, hdr, len);
7982 
7983 	ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7984 	ipw_rt->rt_hdr.it_pad = 0;	/* always good to zero */
7985 	ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(*ipw_rt));	/* total header+data */
7986 
7987 	/* Set the size of the skb to the size of the frame */
7988 	skb_put(skb, sizeof(*ipw_rt) + len);
7989 
7990 	/* Big bitfield of all the fields we provide in radiotap */
7991 	ipw_rt->rt_hdr.it_present = cpu_to_le32(
7992 	     (1 << IEEE80211_RADIOTAP_TSFT) |
7993 	     (1 << IEEE80211_RADIOTAP_FLAGS) |
7994 	     (1 << IEEE80211_RADIOTAP_RATE) |
7995 	     (1 << IEEE80211_RADIOTAP_CHANNEL) |
7996 	     (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7997 	     (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7998 	     (1 << IEEE80211_RADIOTAP_ANTENNA));
7999 
8000 	/* Zero the flags, we'll add to them as we go */
8001 	ipw_rt->rt_flags = 0;
8002 	ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
8003 			       frame->parent_tsf[2] << 16 |
8004 			       frame->parent_tsf[1] << 8  |
8005 			       frame->parent_tsf[0]);
8006 
8007 	/* Convert to DBM */
8008 	ipw_rt->rt_dbmsignal = signal;
8009 	ipw_rt->rt_dbmnoise = noise;
8010 
8011 	/* Convert the channel data and set the flags */
8012 	ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
8013 	if (channel > 14) {	/* 802.11a */
8014 		ipw_rt->rt_chbitmask =
8015 		    cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
8016 	} else if (phy_flags & (1 << 5)) {	/* 802.11b */
8017 		ipw_rt->rt_chbitmask =
8018 		    cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
8019 	} else {		/* 802.11g */
8020 		ipw_rt->rt_chbitmask =
8021 		    cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
8022 	}
8023 
8024 	/* set the rate in multiples of 500k/s */
8025 	switch (rate) {
8026 	case IPW_TX_RATE_1MB:
8027 		ipw_rt->rt_rate = 2;
8028 		break;
8029 	case IPW_TX_RATE_2MB:
8030 		ipw_rt->rt_rate = 4;
8031 		break;
8032 	case IPW_TX_RATE_5MB:
8033 		ipw_rt->rt_rate = 10;
8034 		break;
8035 	case IPW_TX_RATE_6MB:
8036 		ipw_rt->rt_rate = 12;
8037 		break;
8038 	case IPW_TX_RATE_9MB:
8039 		ipw_rt->rt_rate = 18;
8040 		break;
8041 	case IPW_TX_RATE_11MB:
8042 		ipw_rt->rt_rate = 22;
8043 		break;
8044 	case IPW_TX_RATE_12MB:
8045 		ipw_rt->rt_rate = 24;
8046 		break;
8047 	case IPW_TX_RATE_18MB:
8048 		ipw_rt->rt_rate = 36;
8049 		break;
8050 	case IPW_TX_RATE_24MB:
8051 		ipw_rt->rt_rate = 48;
8052 		break;
8053 	case IPW_TX_RATE_36MB:
8054 		ipw_rt->rt_rate = 72;
8055 		break;
8056 	case IPW_TX_RATE_48MB:
8057 		ipw_rt->rt_rate = 96;
8058 		break;
8059 	case IPW_TX_RATE_54MB:
8060 		ipw_rt->rt_rate = 108;
8061 		break;
8062 	default:
8063 		ipw_rt->rt_rate = 0;
8064 		break;
8065 	}
8066 
8067 	/* antenna number */
8068 	ipw_rt->rt_antenna = (phy_flags & 3);
8069 
8070 	/* set the preamble flag if we have it */
8071 	if (phy_flags & (1 << 6))
8072 		ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8073 
8074 	IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
8075 
8076 	if (!libipw_rx(priv->prom_priv->ieee, skb, stats)) {
8077 		dev->stats.rx_errors++;
8078 		dev_kfree_skb_any(skb);
8079 	}
8080 }
8081 #endif
8082 
8083 static int is_network_packet(struct ipw_priv *priv,
8084 				    struct libipw_hdr_4addr *header)
8085 {
8086 	/* Filter incoming packets to determine if they are targeted toward
8087 	 * this network, discarding packets coming from ourselves */
8088 	switch (priv->ieee->iw_mode) {
8089 	case IW_MODE_ADHOC:	/* Header: Dest. | Source    | BSSID */
8090 		/* packets from our adapter are dropped (echo) */
8091 		if (ether_addr_equal(header->addr2, priv->net_dev->dev_addr))
8092 			return 0;
8093 
8094 		/* {broad,multi}cast packets to our BSSID go through */
8095 		if (is_multicast_ether_addr(header->addr1))
8096 			return ether_addr_equal(header->addr3, priv->bssid);
8097 
8098 		/* packets to our adapter go through */
8099 		return ether_addr_equal(header->addr1,
8100 					priv->net_dev->dev_addr);
8101 
8102 	case IW_MODE_INFRA:	/* Header: Dest. | BSSID | Source */
8103 		/* packets from our adapter are dropped (echo) */
8104 		if (ether_addr_equal(header->addr3, priv->net_dev->dev_addr))
8105 			return 0;
8106 
8107 		/* {broad,multi}cast packets to our BSS go through */
8108 		if (is_multicast_ether_addr(header->addr1))
8109 			return ether_addr_equal(header->addr2, priv->bssid);
8110 
8111 		/* packets to our adapter go through */
8112 		return ether_addr_equal(header->addr1,
8113 					priv->net_dev->dev_addr);
8114 	}
8115 
8116 	return 1;
8117 }
8118 
8119 #define IPW_PACKET_RETRY_TIME HZ
8120 
8121 static  int is_duplicate_packet(struct ipw_priv *priv,
8122 				      struct libipw_hdr_4addr *header)
8123 {
8124 	u16 sc = le16_to_cpu(header->seq_ctl);
8125 	u16 seq = WLAN_GET_SEQ_SEQ(sc);
8126 	u16 frag = WLAN_GET_SEQ_FRAG(sc);
8127 	u16 *last_seq, *last_frag;
8128 	unsigned long *last_time;
8129 
8130 	switch (priv->ieee->iw_mode) {
8131 	case IW_MODE_ADHOC:
8132 		{
8133 			struct list_head *p;
8134 			struct ipw_ibss_seq *entry = NULL;
8135 			u8 *mac = header->addr2;
8136 			int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8137 
8138 			list_for_each(p, &priv->ibss_mac_hash[index]) {
8139 				entry =
8140 				    list_entry(p, struct ipw_ibss_seq, list);
8141 				if (ether_addr_equal(entry->mac, mac))
8142 					break;
8143 			}
8144 			if (p == &priv->ibss_mac_hash[index]) {
8145 				entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8146 				if (!entry) {
8147 					IPW_ERROR
8148 					    ("Cannot malloc new mac entry\n");
8149 					return 0;
8150 				}
8151 				memcpy(entry->mac, mac, ETH_ALEN);
8152 				entry->seq_num = seq;
8153 				entry->frag_num = frag;
8154 				entry->packet_time = jiffies;
8155 				list_add(&entry->list,
8156 					 &priv->ibss_mac_hash[index]);
8157 				return 0;
8158 			}
8159 			last_seq = &entry->seq_num;
8160 			last_frag = &entry->frag_num;
8161 			last_time = &entry->packet_time;
8162 			break;
8163 		}
8164 	case IW_MODE_INFRA:
8165 		last_seq = &priv->last_seq_num;
8166 		last_frag = &priv->last_frag_num;
8167 		last_time = &priv->last_packet_time;
8168 		break;
8169 	default:
8170 		return 0;
8171 	}
8172 	if ((*last_seq == seq) &&
8173 	    time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8174 		if (*last_frag == frag)
8175 			goto drop;
8176 		if (*last_frag + 1 != frag)
8177 			/* out-of-order fragment */
8178 			goto drop;
8179 	} else
8180 		*last_seq = seq;
8181 
8182 	*last_frag = frag;
8183 	*last_time = jiffies;
8184 	return 0;
8185 
8186       drop:
8187 	/* Comment this line now since we observed the card receives
8188 	 * duplicate packets but the FCTL_RETRY bit is not set in the
8189 	 * IBSS mode with fragmentation enabled.
8190 	 BUG_ON(!(le16_to_cpu(header->frame_control) & IEEE80211_FCTL_RETRY)); */
8191 	return 1;
8192 }
8193 
8194 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8195 				   struct ipw_rx_mem_buffer *rxb,
8196 				   struct libipw_rx_stats *stats)
8197 {
8198 	struct sk_buff *skb = rxb->skb;
8199 	struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8200 	struct libipw_hdr_4addr *header = (struct libipw_hdr_4addr *)
8201 	    (skb->data + IPW_RX_FRAME_SIZE);
8202 
8203 	libipw_rx_mgt(priv->ieee, header, stats);
8204 
8205 	if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8206 	    ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8207 	      IEEE80211_STYPE_PROBE_RESP) ||
8208 	     (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8209 	      IEEE80211_STYPE_BEACON))) {
8210 		if (ether_addr_equal(header->addr3, priv->bssid))
8211 			ipw_add_station(priv, header->addr2);
8212 	}
8213 
8214 	if (priv->config & CFG_NET_STATS) {
8215 		IPW_DEBUG_HC("sending stat packet\n");
8216 
8217 		/* Set the size of the skb to the size of the full
8218 		 * ipw header and 802.11 frame */
8219 		skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8220 			IPW_RX_FRAME_SIZE);
8221 
8222 		/* Advance past the ipw packet header to the 802.11 frame */
8223 		skb_pull(skb, IPW_RX_FRAME_SIZE);
8224 
8225 		/* Push the libipw_rx_stats before the 802.11 frame */
8226 		memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8227 
8228 		skb->dev = priv->ieee->dev;
8229 
8230 		/* Point raw at the libipw_stats */
8231 		skb_reset_mac_header(skb);
8232 
8233 		skb->pkt_type = PACKET_OTHERHOST;
8234 		skb->protocol = cpu_to_be16(ETH_P_80211_STATS);
8235 		memset(skb->cb, 0, sizeof(rxb->skb->cb));
8236 		netif_rx(skb);
8237 		rxb->skb = NULL;
8238 	}
8239 }
8240 
8241 /*
8242  * Main entry function for receiving a packet with 80211 headers.  This
8243  * should be called when ever the FW has notified us that there is a new
8244  * skb in the receive queue.
8245  */
8246 static void ipw_rx(struct ipw_priv *priv)
8247 {
8248 	struct ipw_rx_mem_buffer *rxb;
8249 	struct ipw_rx_packet *pkt;
8250 	struct libipw_hdr_4addr *header;
8251 	u32 r, w, i;
8252 	u8 network_packet;
8253 	u8 fill_rx = 0;
8254 
8255 	r = ipw_read32(priv, IPW_RX_READ_INDEX);
8256 	w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8257 	i = priv->rxq->read;
8258 
8259 	if (ipw_rx_queue_space (priv->rxq) > (RX_QUEUE_SIZE / 2))
8260 		fill_rx = 1;
8261 
8262 	while (i != r) {
8263 		rxb = priv->rxq->queue[i];
8264 		if (unlikely(rxb == NULL)) {
8265 			printk(KERN_CRIT "Queue not allocated!\n");
8266 			break;
8267 		}
8268 		priv->rxq->queue[i] = NULL;
8269 
8270 		pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8271 					    IPW_RX_BUF_SIZE,
8272 					    PCI_DMA_FROMDEVICE);
8273 
8274 		pkt = (struct ipw_rx_packet *)rxb->skb->data;
8275 		IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8276 			     pkt->header.message_type,
8277 			     pkt->header.rx_seq_num, pkt->header.control_bits);
8278 
8279 		switch (pkt->header.message_type) {
8280 		case RX_FRAME_TYPE:	/* 802.11 frame */  {
8281 				struct libipw_rx_stats stats = {
8282 					.rssi = pkt->u.frame.rssi_dbm -
8283 					    IPW_RSSI_TO_DBM,
8284 					.signal =
8285 					    pkt->u.frame.rssi_dbm -
8286 					    IPW_RSSI_TO_DBM + 0x100,
8287 					.noise =
8288 					    le16_to_cpu(pkt->u.frame.noise),
8289 					.rate = pkt->u.frame.rate,
8290 					.mac_time = jiffies,
8291 					.received_channel =
8292 					    pkt->u.frame.received_channel,
8293 					.freq =
8294 					    (pkt->u.frame.
8295 					     control & (1 << 0)) ?
8296 					    LIBIPW_24GHZ_BAND :
8297 					    LIBIPW_52GHZ_BAND,
8298 					.len = le16_to_cpu(pkt->u.frame.length),
8299 				};
8300 
8301 				if (stats.rssi != 0)
8302 					stats.mask |= LIBIPW_STATMASK_RSSI;
8303 				if (stats.signal != 0)
8304 					stats.mask |= LIBIPW_STATMASK_SIGNAL;
8305 				if (stats.noise != 0)
8306 					stats.mask |= LIBIPW_STATMASK_NOISE;
8307 				if (stats.rate != 0)
8308 					stats.mask |= LIBIPW_STATMASK_RATE;
8309 
8310 				priv->rx_packets++;
8311 
8312 #ifdef CONFIG_IPW2200_PROMISCUOUS
8313 	if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8314 		ipw_handle_promiscuous_rx(priv, rxb, &stats);
8315 #endif
8316 
8317 #ifdef CONFIG_IPW2200_MONITOR
8318 				if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8319 #ifdef CONFIG_IPW2200_RADIOTAP
8320 
8321                 ipw_handle_data_packet_monitor(priv,
8322 					       rxb,
8323 					       &stats);
8324 #else
8325 		ipw_handle_data_packet(priv, rxb,
8326 				       &stats);
8327 #endif
8328 					break;
8329 				}
8330 #endif
8331 
8332 				header =
8333 				    (struct libipw_hdr_4addr *)(rxb->skb->
8334 								   data +
8335 								   IPW_RX_FRAME_SIZE);
8336 				/* TODO: Check Ad-Hoc dest/source and make sure
8337 				 * that we are actually parsing these packets
8338 				 * correctly -- we should probably use the
8339 				 * frame control of the packet and disregard
8340 				 * the current iw_mode */
8341 
8342 				network_packet =
8343 				    is_network_packet(priv, header);
8344 				if (network_packet && priv->assoc_network) {
8345 					priv->assoc_network->stats.rssi =
8346 					    stats.rssi;
8347 					priv->exp_avg_rssi =
8348 					    exponential_average(priv->exp_avg_rssi,
8349 					    stats.rssi, DEPTH_RSSI);
8350 				}
8351 
8352 				IPW_DEBUG_RX("Frame: len=%u\n",
8353 					     le16_to_cpu(pkt->u.frame.length));
8354 
8355 				if (le16_to_cpu(pkt->u.frame.length) <
8356 				    libipw_get_hdrlen(le16_to_cpu(
8357 						    header->frame_ctl))) {
8358 					IPW_DEBUG_DROP
8359 					    ("Received packet is too small. "
8360 					     "Dropping.\n");
8361 					priv->net_dev->stats.rx_errors++;
8362 					priv->wstats.discard.misc++;
8363 					break;
8364 				}
8365 
8366 				switch (WLAN_FC_GET_TYPE
8367 					(le16_to_cpu(header->frame_ctl))) {
8368 
8369 				case IEEE80211_FTYPE_MGMT:
8370 					ipw_handle_mgmt_packet(priv, rxb,
8371 							       &stats);
8372 					break;
8373 
8374 				case IEEE80211_FTYPE_CTL:
8375 					break;
8376 
8377 				case IEEE80211_FTYPE_DATA:
8378 					if (unlikely(!network_packet ||
8379 						     is_duplicate_packet(priv,
8380 									 header)))
8381 					{
8382 						IPW_DEBUG_DROP("Dropping: "
8383 							       "%pM, "
8384 							       "%pM, "
8385 							       "%pM\n",
8386 							       header->addr1,
8387 							       header->addr2,
8388 							       header->addr3);
8389 						break;
8390 					}
8391 
8392 					ipw_handle_data_packet(priv, rxb,
8393 							       &stats);
8394 
8395 					break;
8396 				}
8397 				break;
8398 			}
8399 
8400 		case RX_HOST_NOTIFICATION_TYPE:{
8401 				IPW_DEBUG_RX
8402 				    ("Notification: subtype=%02X flags=%02X size=%d\n",
8403 				     pkt->u.notification.subtype,
8404 				     pkt->u.notification.flags,
8405 				     le16_to_cpu(pkt->u.notification.size));
8406 				ipw_rx_notification(priv, &pkt->u.notification);
8407 				break;
8408 			}
8409 
8410 		default:
8411 			IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8412 				     pkt->header.message_type);
8413 			break;
8414 		}
8415 
8416 		/* For now we just don't re-use anything.  We can tweak this
8417 		 * later to try and re-use notification packets and SKBs that
8418 		 * fail to Rx correctly */
8419 		if (rxb->skb != NULL) {
8420 			dev_kfree_skb_any(rxb->skb);
8421 			rxb->skb = NULL;
8422 		}
8423 
8424 		pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8425 				 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8426 		list_add_tail(&rxb->list, &priv->rxq->rx_used);
8427 
8428 		i = (i + 1) % RX_QUEUE_SIZE;
8429 
8430 		/* If there are a lot of unsued frames, restock the Rx queue
8431 		 * so the ucode won't assert */
8432 		if (fill_rx) {
8433 			priv->rxq->read = i;
8434 			ipw_rx_queue_replenish(priv);
8435 		}
8436 	}
8437 
8438 	/* Backtrack one entry */
8439 	priv->rxq->read = i;
8440 	ipw_rx_queue_restock(priv);
8441 }
8442 
8443 #define DEFAULT_RTS_THRESHOLD     2304U
8444 #define MIN_RTS_THRESHOLD         1U
8445 #define MAX_RTS_THRESHOLD         2304U
8446 #define DEFAULT_BEACON_INTERVAL   100U
8447 #define	DEFAULT_SHORT_RETRY_LIMIT 7U
8448 #define	DEFAULT_LONG_RETRY_LIMIT  4U
8449 
8450 /**
8451  * ipw_sw_reset
8452  * @option: options to control different reset behaviour
8453  * 	    0 = reset everything except the 'disable' module_param
8454  * 	    1 = reset everything and print out driver info (for probe only)
8455  * 	    2 = reset everything
8456  */
8457 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8458 {
8459 	int band, modulation;
8460 	int old_mode = priv->ieee->iw_mode;
8461 
8462 	/* Initialize module parameter values here */
8463 	priv->config = 0;
8464 
8465 	/* We default to disabling the LED code as right now it causes
8466 	 * too many systems to lock up... */
8467 	if (!led_support)
8468 		priv->config |= CFG_NO_LED;
8469 
8470 	if (associate)
8471 		priv->config |= CFG_ASSOCIATE;
8472 	else
8473 		IPW_DEBUG_INFO("Auto associate disabled.\n");
8474 
8475 	if (auto_create)
8476 		priv->config |= CFG_ADHOC_CREATE;
8477 	else
8478 		IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8479 
8480 	priv->config &= ~CFG_STATIC_ESSID;
8481 	priv->essid_len = 0;
8482 	memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8483 
8484 	if (disable && option) {
8485 		priv->status |= STATUS_RF_KILL_SW;
8486 		IPW_DEBUG_INFO("Radio disabled.\n");
8487 	}
8488 
8489 	if (default_channel != 0) {
8490 		priv->config |= CFG_STATIC_CHANNEL;
8491 		priv->channel = default_channel;
8492 		IPW_DEBUG_INFO("Bind to static channel %d\n", default_channel);
8493 		/* TODO: Validate that provided channel is in range */
8494 	}
8495 #ifdef CONFIG_IPW2200_QOS
8496 	ipw_qos_init(priv, qos_enable, qos_burst_enable,
8497 		     burst_duration_CCK, burst_duration_OFDM);
8498 #endif				/* CONFIG_IPW2200_QOS */
8499 
8500 	switch (network_mode) {
8501 	case 1:
8502 		priv->ieee->iw_mode = IW_MODE_ADHOC;
8503 		priv->net_dev->type = ARPHRD_ETHER;
8504 
8505 		break;
8506 #ifdef CONFIG_IPW2200_MONITOR
8507 	case 2:
8508 		priv->ieee->iw_mode = IW_MODE_MONITOR;
8509 #ifdef CONFIG_IPW2200_RADIOTAP
8510 		priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8511 #else
8512 		priv->net_dev->type = ARPHRD_IEEE80211;
8513 #endif
8514 		break;
8515 #endif
8516 	default:
8517 	case 0:
8518 		priv->net_dev->type = ARPHRD_ETHER;
8519 		priv->ieee->iw_mode = IW_MODE_INFRA;
8520 		break;
8521 	}
8522 
8523 	if (hwcrypto) {
8524 		priv->ieee->host_encrypt = 0;
8525 		priv->ieee->host_encrypt_msdu = 0;
8526 		priv->ieee->host_decrypt = 0;
8527 		priv->ieee->host_mc_decrypt = 0;
8528 	}
8529 	IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8530 
8531 	/* IPW2200/2915 is abled to do hardware fragmentation. */
8532 	priv->ieee->host_open_frag = 0;
8533 
8534 	if ((priv->pci_dev->device == 0x4223) ||
8535 	    (priv->pci_dev->device == 0x4224)) {
8536 		if (option == 1)
8537 			printk(KERN_INFO DRV_NAME
8538 			       ": Detected Intel PRO/Wireless 2915ABG Network "
8539 			       "Connection\n");
8540 		priv->ieee->abg_true = 1;
8541 		band = LIBIPW_52GHZ_BAND | LIBIPW_24GHZ_BAND;
8542 		modulation = LIBIPW_OFDM_MODULATION |
8543 		    LIBIPW_CCK_MODULATION;
8544 		priv->adapter = IPW_2915ABG;
8545 		priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8546 	} else {
8547 		if (option == 1)
8548 			printk(KERN_INFO DRV_NAME
8549 			       ": Detected Intel PRO/Wireless 2200BG Network "
8550 			       "Connection\n");
8551 
8552 		priv->ieee->abg_true = 0;
8553 		band = LIBIPW_24GHZ_BAND;
8554 		modulation = LIBIPW_OFDM_MODULATION |
8555 		    LIBIPW_CCK_MODULATION;
8556 		priv->adapter = IPW_2200BG;
8557 		priv->ieee->mode = IEEE_G | IEEE_B;
8558 	}
8559 
8560 	priv->ieee->freq_band = band;
8561 	priv->ieee->modulation = modulation;
8562 
8563 	priv->rates_mask = LIBIPW_DEFAULT_RATES_MASK;
8564 
8565 	priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8566 	priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8567 
8568 	priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8569 	priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8570 	priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8571 
8572 	/* If power management is turned on, default to AC mode */
8573 	priv->power_mode = IPW_POWER_AC;
8574 	priv->tx_power = IPW_TX_POWER_DEFAULT;
8575 
8576 	return old_mode == priv->ieee->iw_mode;
8577 }
8578 
8579 /*
8580  * This file defines the Wireless Extension handlers.  It does not
8581  * define any methods of hardware manipulation and relies on the
8582  * functions defined in ipw_main to provide the HW interaction.
8583  *
8584  * The exception to this is the use of the ipw_get_ordinal()
8585  * function used to poll the hardware vs. making unnecessary calls.
8586  *
8587  */
8588 
8589 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8590 {
8591 	if (channel == 0) {
8592 		IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8593 		priv->config &= ~CFG_STATIC_CHANNEL;
8594 		IPW_DEBUG_ASSOC("Attempting to associate with new "
8595 				"parameters.\n");
8596 		ipw_associate(priv);
8597 		return 0;
8598 	}
8599 
8600 	priv->config |= CFG_STATIC_CHANNEL;
8601 
8602 	if (priv->channel == channel) {
8603 		IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8604 			       channel);
8605 		return 0;
8606 	}
8607 
8608 	IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8609 	priv->channel = channel;
8610 
8611 #ifdef CONFIG_IPW2200_MONITOR
8612 	if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8613 		int i;
8614 		if (priv->status & STATUS_SCANNING) {
8615 			IPW_DEBUG_SCAN("Scan abort triggered due to "
8616 				       "channel change.\n");
8617 			ipw_abort_scan(priv);
8618 		}
8619 
8620 		for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8621 			udelay(10);
8622 
8623 		if (priv->status & STATUS_SCANNING)
8624 			IPW_DEBUG_SCAN("Still scanning...\n");
8625 		else
8626 			IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8627 				       1000 - i);
8628 
8629 		return 0;
8630 	}
8631 #endif				/* CONFIG_IPW2200_MONITOR */
8632 
8633 	/* Network configuration changed -- force [re]association */
8634 	IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8635 	if (!ipw_disassociate(priv))
8636 		ipw_associate(priv);
8637 
8638 	return 0;
8639 }
8640 
8641 static int ipw_wx_set_freq(struct net_device *dev,
8642 			   struct iw_request_info *info,
8643 			   union iwreq_data *wrqu, char *extra)
8644 {
8645 	struct ipw_priv *priv = libipw_priv(dev);
8646 	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8647 	struct iw_freq *fwrq = &wrqu->freq;
8648 	int ret = 0, i;
8649 	u8 channel, flags;
8650 	int band;
8651 
8652 	if (fwrq->m == 0) {
8653 		IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8654 		mutex_lock(&priv->mutex);
8655 		ret = ipw_set_channel(priv, 0);
8656 		mutex_unlock(&priv->mutex);
8657 		return ret;
8658 	}
8659 	/* if setting by freq convert to channel */
8660 	if (fwrq->e == 1) {
8661 		channel = libipw_freq_to_channel(priv->ieee, fwrq->m);
8662 		if (channel == 0)
8663 			return -EINVAL;
8664 	} else
8665 		channel = fwrq->m;
8666 
8667 	if (!(band = libipw_is_valid_channel(priv->ieee, channel)))
8668 		return -EINVAL;
8669 
8670 	if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8671 		i = libipw_channel_to_index(priv->ieee, channel);
8672 		if (i == -1)
8673 			return -EINVAL;
8674 
8675 		flags = (band == LIBIPW_24GHZ_BAND) ?
8676 		    geo->bg[i].flags : geo->a[i].flags;
8677 		if (flags & LIBIPW_CH_PASSIVE_ONLY) {
8678 			IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8679 			return -EINVAL;
8680 		}
8681 	}
8682 
8683 	IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
8684 	mutex_lock(&priv->mutex);
8685 	ret = ipw_set_channel(priv, channel);
8686 	mutex_unlock(&priv->mutex);
8687 	return ret;
8688 }
8689 
8690 static int ipw_wx_get_freq(struct net_device *dev,
8691 			   struct iw_request_info *info,
8692 			   union iwreq_data *wrqu, char *extra)
8693 {
8694 	struct ipw_priv *priv = libipw_priv(dev);
8695 
8696 	wrqu->freq.e = 0;
8697 
8698 	/* If we are associated, trying to associate, or have a statically
8699 	 * configured CHANNEL then return that; otherwise return ANY */
8700 	mutex_lock(&priv->mutex);
8701 	if (priv->config & CFG_STATIC_CHANNEL ||
8702 	    priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8703 		int i;
8704 
8705 		i = libipw_channel_to_index(priv->ieee, priv->channel);
8706 		BUG_ON(i == -1);
8707 		wrqu->freq.e = 1;
8708 
8709 		switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
8710 		case LIBIPW_52GHZ_BAND:
8711 			wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8712 			break;
8713 
8714 		case LIBIPW_24GHZ_BAND:
8715 			wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8716 			break;
8717 
8718 		default:
8719 			BUG();
8720 		}
8721 	} else
8722 		wrqu->freq.m = 0;
8723 
8724 	mutex_unlock(&priv->mutex);
8725 	IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
8726 	return 0;
8727 }
8728 
8729 static int ipw_wx_set_mode(struct net_device *dev,
8730 			   struct iw_request_info *info,
8731 			   union iwreq_data *wrqu, char *extra)
8732 {
8733 	struct ipw_priv *priv = libipw_priv(dev);
8734 	int err = 0;
8735 
8736 	IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8737 
8738 	switch (wrqu->mode) {
8739 #ifdef CONFIG_IPW2200_MONITOR
8740 	case IW_MODE_MONITOR:
8741 #endif
8742 	case IW_MODE_ADHOC:
8743 	case IW_MODE_INFRA:
8744 		break;
8745 	case IW_MODE_AUTO:
8746 		wrqu->mode = IW_MODE_INFRA;
8747 		break;
8748 	default:
8749 		return -EINVAL;
8750 	}
8751 	if (wrqu->mode == priv->ieee->iw_mode)
8752 		return 0;
8753 
8754 	mutex_lock(&priv->mutex);
8755 
8756 	ipw_sw_reset(priv, 0);
8757 
8758 #ifdef CONFIG_IPW2200_MONITOR
8759 	if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8760 		priv->net_dev->type = ARPHRD_ETHER;
8761 
8762 	if (wrqu->mode == IW_MODE_MONITOR)
8763 #ifdef CONFIG_IPW2200_RADIOTAP
8764 		priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8765 #else
8766 		priv->net_dev->type = ARPHRD_IEEE80211;
8767 #endif
8768 #endif				/* CONFIG_IPW2200_MONITOR */
8769 
8770 	/* Free the existing firmware and reset the fw_loaded
8771 	 * flag so ipw_load() will bring in the new firmware */
8772 	free_firmware();
8773 
8774 	priv->ieee->iw_mode = wrqu->mode;
8775 
8776 	schedule_work(&priv->adapter_restart);
8777 	mutex_unlock(&priv->mutex);
8778 	return err;
8779 }
8780 
8781 static int ipw_wx_get_mode(struct net_device *dev,
8782 			   struct iw_request_info *info,
8783 			   union iwreq_data *wrqu, char *extra)
8784 {
8785 	struct ipw_priv *priv = libipw_priv(dev);
8786 	mutex_lock(&priv->mutex);
8787 	wrqu->mode = priv->ieee->iw_mode;
8788 	IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8789 	mutex_unlock(&priv->mutex);
8790 	return 0;
8791 }
8792 
8793 /* Values are in microsecond */
8794 static const s32 timeout_duration[] = {
8795 	350000,
8796 	250000,
8797 	75000,
8798 	37000,
8799 	25000,
8800 };
8801 
8802 static const s32 period_duration[] = {
8803 	400000,
8804 	700000,
8805 	1000000,
8806 	1000000,
8807 	1000000
8808 };
8809 
8810 static int ipw_wx_get_range(struct net_device *dev,
8811 			    struct iw_request_info *info,
8812 			    union iwreq_data *wrqu, char *extra)
8813 {
8814 	struct ipw_priv *priv = libipw_priv(dev);
8815 	struct iw_range *range = (struct iw_range *)extra;
8816 	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8817 	int i = 0, j;
8818 
8819 	wrqu->data.length = sizeof(*range);
8820 	memset(range, 0, sizeof(*range));
8821 
8822 	/* 54Mbs == ~27 Mb/s real (802.11g) */
8823 	range->throughput = 27 * 1000 * 1000;
8824 
8825 	range->max_qual.qual = 100;
8826 	/* TODO: Find real max RSSI and stick here */
8827 	range->max_qual.level = 0;
8828 	range->max_qual.noise = 0;
8829 	range->max_qual.updated = 7;	/* Updated all three */
8830 
8831 	range->avg_qual.qual = 70;
8832 	/* TODO: Find real 'good' to 'bad' threshold value for RSSI */
8833 	range->avg_qual.level = 0;	/* FIXME to real average level */
8834 	range->avg_qual.noise = 0;
8835 	range->avg_qual.updated = 7;	/* Updated all three */
8836 	mutex_lock(&priv->mutex);
8837 	range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8838 
8839 	for (i = 0; i < range->num_bitrates; i++)
8840 		range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8841 		    500000;
8842 
8843 	range->max_rts = DEFAULT_RTS_THRESHOLD;
8844 	range->min_frag = MIN_FRAG_THRESHOLD;
8845 	range->max_frag = MAX_FRAG_THRESHOLD;
8846 
8847 	range->encoding_size[0] = 5;
8848 	range->encoding_size[1] = 13;
8849 	range->num_encoding_sizes = 2;
8850 	range->max_encoding_tokens = WEP_KEYS;
8851 
8852 	/* Set the Wireless Extension versions */
8853 	range->we_version_compiled = WIRELESS_EXT;
8854 	range->we_version_source = 18;
8855 
8856 	i = 0;
8857 	if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8858 		for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8859 			if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8860 			    (geo->bg[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8861 				continue;
8862 
8863 			range->freq[i].i = geo->bg[j].channel;
8864 			range->freq[i].m = geo->bg[j].freq * 100000;
8865 			range->freq[i].e = 1;
8866 			i++;
8867 		}
8868 	}
8869 
8870 	if (priv->ieee->mode & IEEE_A) {
8871 		for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8872 			if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8873 			    (geo->a[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8874 				continue;
8875 
8876 			range->freq[i].i = geo->a[j].channel;
8877 			range->freq[i].m = geo->a[j].freq * 100000;
8878 			range->freq[i].e = 1;
8879 			i++;
8880 		}
8881 	}
8882 
8883 	range->num_channels = i;
8884 	range->num_frequency = i;
8885 
8886 	mutex_unlock(&priv->mutex);
8887 
8888 	/* Event capability (kernel + driver) */
8889 	range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8890 				IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8891 				IW_EVENT_CAPA_MASK(SIOCGIWAP) |
8892 				IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
8893 	range->event_capa[1] = IW_EVENT_CAPA_K_1;
8894 
8895 	range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
8896 		IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
8897 
8898 	range->scan_capa = IW_SCAN_CAPA_ESSID | IW_SCAN_CAPA_TYPE;
8899 
8900 	IPW_DEBUG_WX("GET Range\n");
8901 	return 0;
8902 }
8903 
8904 static int ipw_wx_set_wap(struct net_device *dev,
8905 			  struct iw_request_info *info,
8906 			  union iwreq_data *wrqu, char *extra)
8907 {
8908 	struct ipw_priv *priv = libipw_priv(dev);
8909 
8910 	if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8911 		return -EINVAL;
8912 	mutex_lock(&priv->mutex);
8913 	if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) ||
8914 	    is_zero_ether_addr(wrqu->ap_addr.sa_data)) {
8915 		/* we disable mandatory BSSID association */
8916 		IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
8917 		priv->config &= ~CFG_STATIC_BSSID;
8918 		IPW_DEBUG_ASSOC("Attempting to associate with new "
8919 				"parameters.\n");
8920 		ipw_associate(priv);
8921 		mutex_unlock(&priv->mutex);
8922 		return 0;
8923 	}
8924 
8925 	priv->config |= CFG_STATIC_BSSID;
8926 	if (ether_addr_equal(priv->bssid, wrqu->ap_addr.sa_data)) {
8927 		IPW_DEBUG_WX("BSSID set to current BSSID.\n");
8928 		mutex_unlock(&priv->mutex);
8929 		return 0;
8930 	}
8931 
8932 	IPW_DEBUG_WX("Setting mandatory BSSID to %pM\n",
8933 		     wrqu->ap_addr.sa_data);
8934 
8935 	memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
8936 
8937 	/* Network configuration changed -- force [re]association */
8938 	IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
8939 	if (!ipw_disassociate(priv))
8940 		ipw_associate(priv);
8941 
8942 	mutex_unlock(&priv->mutex);
8943 	return 0;
8944 }
8945 
8946 static int ipw_wx_get_wap(struct net_device *dev,
8947 			  struct iw_request_info *info,
8948 			  union iwreq_data *wrqu, char *extra)
8949 {
8950 	struct ipw_priv *priv = libipw_priv(dev);
8951 
8952 	/* If we are associated, trying to associate, or have a statically
8953 	 * configured BSSID then return that; otherwise return ANY */
8954 	mutex_lock(&priv->mutex);
8955 	if (priv->config & CFG_STATIC_BSSID ||
8956 	    priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8957 		wrqu->ap_addr.sa_family = ARPHRD_ETHER;
8958 		memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
8959 	} else
8960 		eth_zero_addr(wrqu->ap_addr.sa_data);
8961 
8962 	IPW_DEBUG_WX("Getting WAP BSSID: %pM\n",
8963 		     wrqu->ap_addr.sa_data);
8964 	mutex_unlock(&priv->mutex);
8965 	return 0;
8966 }
8967 
8968 static int ipw_wx_set_essid(struct net_device *dev,
8969 			    struct iw_request_info *info,
8970 			    union iwreq_data *wrqu, char *extra)
8971 {
8972 	struct ipw_priv *priv = libipw_priv(dev);
8973         int length;
8974 
8975         mutex_lock(&priv->mutex);
8976 
8977         if (!wrqu->essid.flags)
8978         {
8979                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
8980                 ipw_disassociate(priv);
8981                 priv->config &= ~CFG_STATIC_ESSID;
8982                 ipw_associate(priv);
8983                 mutex_unlock(&priv->mutex);
8984                 return 0;
8985         }
8986 
8987 	length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
8988 
8989 	priv->config |= CFG_STATIC_ESSID;
8990 
8991 	if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
8992 	    && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
8993 		IPW_DEBUG_WX("ESSID set to current ESSID.\n");
8994 		mutex_unlock(&priv->mutex);
8995 		return 0;
8996 	}
8997 
8998 	IPW_DEBUG_WX("Setting ESSID: '%*pE' (%d)\n", length, extra, length);
8999 
9000 	priv->essid_len = length;
9001 	memcpy(priv->essid, extra, priv->essid_len);
9002 
9003 	/* Network configuration changed -- force [re]association */
9004 	IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
9005 	if (!ipw_disassociate(priv))
9006 		ipw_associate(priv);
9007 
9008 	mutex_unlock(&priv->mutex);
9009 	return 0;
9010 }
9011 
9012 static int ipw_wx_get_essid(struct net_device *dev,
9013 			    struct iw_request_info *info,
9014 			    union iwreq_data *wrqu, char *extra)
9015 {
9016 	struct ipw_priv *priv = libipw_priv(dev);
9017 
9018 	/* If we are associated, trying to associate, or have a statically
9019 	 * configured ESSID then return that; otherwise return ANY */
9020 	mutex_lock(&priv->mutex);
9021 	if (priv->config & CFG_STATIC_ESSID ||
9022 	    priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9023 		IPW_DEBUG_WX("Getting essid: '%*pE'\n",
9024 			     priv->essid_len, priv->essid);
9025 		memcpy(extra, priv->essid, priv->essid_len);
9026 		wrqu->essid.length = priv->essid_len;
9027 		wrqu->essid.flags = 1;	/* active */
9028 	} else {
9029 		IPW_DEBUG_WX("Getting essid: ANY\n");
9030 		wrqu->essid.length = 0;
9031 		wrqu->essid.flags = 0;	/* active */
9032 	}
9033 	mutex_unlock(&priv->mutex);
9034 	return 0;
9035 }
9036 
9037 static int ipw_wx_set_nick(struct net_device *dev,
9038 			   struct iw_request_info *info,
9039 			   union iwreq_data *wrqu, char *extra)
9040 {
9041 	struct ipw_priv *priv = libipw_priv(dev);
9042 
9043 	IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
9044 	if (wrqu->data.length > IW_ESSID_MAX_SIZE)
9045 		return -E2BIG;
9046 	mutex_lock(&priv->mutex);
9047 	wrqu->data.length = min_t(size_t, wrqu->data.length, sizeof(priv->nick));
9048 	memset(priv->nick, 0, sizeof(priv->nick));
9049 	memcpy(priv->nick, extra, wrqu->data.length);
9050 	IPW_DEBUG_TRACE("<<\n");
9051 	mutex_unlock(&priv->mutex);
9052 	return 0;
9053 
9054 }
9055 
9056 static int ipw_wx_get_nick(struct net_device *dev,
9057 			   struct iw_request_info *info,
9058 			   union iwreq_data *wrqu, char *extra)
9059 {
9060 	struct ipw_priv *priv = libipw_priv(dev);
9061 	IPW_DEBUG_WX("Getting nick\n");
9062 	mutex_lock(&priv->mutex);
9063 	wrqu->data.length = strlen(priv->nick);
9064 	memcpy(extra, priv->nick, wrqu->data.length);
9065 	wrqu->data.flags = 1;	/* active */
9066 	mutex_unlock(&priv->mutex);
9067 	return 0;
9068 }
9069 
9070 static int ipw_wx_set_sens(struct net_device *dev,
9071 			    struct iw_request_info *info,
9072 			    union iwreq_data *wrqu, char *extra)
9073 {
9074 	struct ipw_priv *priv = libipw_priv(dev);
9075 	int err = 0;
9076 
9077 	IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
9078 	IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
9079 	mutex_lock(&priv->mutex);
9080 
9081 	if (wrqu->sens.fixed == 0)
9082 	{
9083 		priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
9084 		priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
9085 		goto out;
9086 	}
9087 	if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9088 	    (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9089 		err = -EINVAL;
9090 		goto out;
9091 	}
9092 
9093 	priv->roaming_threshold = wrqu->sens.value;
9094 	priv->disassociate_threshold = 3*wrqu->sens.value;
9095       out:
9096 	mutex_unlock(&priv->mutex);
9097 	return err;
9098 }
9099 
9100 static int ipw_wx_get_sens(struct net_device *dev,
9101 			    struct iw_request_info *info,
9102 			    union iwreq_data *wrqu, char *extra)
9103 {
9104 	struct ipw_priv *priv = libipw_priv(dev);
9105 	mutex_lock(&priv->mutex);
9106 	wrqu->sens.fixed = 1;
9107 	wrqu->sens.value = priv->roaming_threshold;
9108 	mutex_unlock(&priv->mutex);
9109 
9110 	IPW_DEBUG_WX("GET roaming threshold -> %s %d\n",
9111 		     wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9112 
9113 	return 0;
9114 }
9115 
9116 static int ipw_wx_set_rate(struct net_device *dev,
9117 			   struct iw_request_info *info,
9118 			   union iwreq_data *wrqu, char *extra)
9119 {
9120 	/* TODO: We should use semaphores or locks for access to priv */
9121 	struct ipw_priv *priv = libipw_priv(dev);
9122 	u32 target_rate = wrqu->bitrate.value;
9123 	u32 fixed, mask;
9124 
9125 	/* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9126 	/* value = X, fixed = 1 means only rate X */
9127 	/* value = X, fixed = 0 means all rates lower equal X */
9128 
9129 	if (target_rate == -1) {
9130 		fixed = 0;
9131 		mask = LIBIPW_DEFAULT_RATES_MASK;
9132 		/* Now we should reassociate */
9133 		goto apply;
9134 	}
9135 
9136 	mask = 0;
9137 	fixed = wrqu->bitrate.fixed;
9138 
9139 	if (target_rate == 1000000 || !fixed)
9140 		mask |= LIBIPW_CCK_RATE_1MB_MASK;
9141 	if (target_rate == 1000000)
9142 		goto apply;
9143 
9144 	if (target_rate == 2000000 || !fixed)
9145 		mask |= LIBIPW_CCK_RATE_2MB_MASK;
9146 	if (target_rate == 2000000)
9147 		goto apply;
9148 
9149 	if (target_rate == 5500000 || !fixed)
9150 		mask |= LIBIPW_CCK_RATE_5MB_MASK;
9151 	if (target_rate == 5500000)
9152 		goto apply;
9153 
9154 	if (target_rate == 6000000 || !fixed)
9155 		mask |= LIBIPW_OFDM_RATE_6MB_MASK;
9156 	if (target_rate == 6000000)
9157 		goto apply;
9158 
9159 	if (target_rate == 9000000 || !fixed)
9160 		mask |= LIBIPW_OFDM_RATE_9MB_MASK;
9161 	if (target_rate == 9000000)
9162 		goto apply;
9163 
9164 	if (target_rate == 11000000 || !fixed)
9165 		mask |= LIBIPW_CCK_RATE_11MB_MASK;
9166 	if (target_rate == 11000000)
9167 		goto apply;
9168 
9169 	if (target_rate == 12000000 || !fixed)
9170 		mask |= LIBIPW_OFDM_RATE_12MB_MASK;
9171 	if (target_rate == 12000000)
9172 		goto apply;
9173 
9174 	if (target_rate == 18000000 || !fixed)
9175 		mask |= LIBIPW_OFDM_RATE_18MB_MASK;
9176 	if (target_rate == 18000000)
9177 		goto apply;
9178 
9179 	if (target_rate == 24000000 || !fixed)
9180 		mask |= LIBIPW_OFDM_RATE_24MB_MASK;
9181 	if (target_rate == 24000000)
9182 		goto apply;
9183 
9184 	if (target_rate == 36000000 || !fixed)
9185 		mask |= LIBIPW_OFDM_RATE_36MB_MASK;
9186 	if (target_rate == 36000000)
9187 		goto apply;
9188 
9189 	if (target_rate == 48000000 || !fixed)
9190 		mask |= LIBIPW_OFDM_RATE_48MB_MASK;
9191 	if (target_rate == 48000000)
9192 		goto apply;
9193 
9194 	if (target_rate == 54000000 || !fixed)
9195 		mask |= LIBIPW_OFDM_RATE_54MB_MASK;
9196 	if (target_rate == 54000000)
9197 		goto apply;
9198 
9199 	IPW_DEBUG_WX("invalid rate specified, returning error\n");
9200 	return -EINVAL;
9201 
9202       apply:
9203 	IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9204 		     mask, fixed ? "fixed" : "sub-rates");
9205 	mutex_lock(&priv->mutex);
9206 	if (mask == LIBIPW_DEFAULT_RATES_MASK) {
9207 		priv->config &= ~CFG_FIXED_RATE;
9208 		ipw_set_fixed_rate(priv, priv->ieee->mode);
9209 	} else
9210 		priv->config |= CFG_FIXED_RATE;
9211 
9212 	if (priv->rates_mask == mask) {
9213 		IPW_DEBUG_WX("Mask set to current mask.\n");
9214 		mutex_unlock(&priv->mutex);
9215 		return 0;
9216 	}
9217 
9218 	priv->rates_mask = mask;
9219 
9220 	/* Network configuration changed -- force [re]association */
9221 	IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9222 	if (!ipw_disassociate(priv))
9223 		ipw_associate(priv);
9224 
9225 	mutex_unlock(&priv->mutex);
9226 	return 0;
9227 }
9228 
9229 static int ipw_wx_get_rate(struct net_device *dev,
9230 			   struct iw_request_info *info,
9231 			   union iwreq_data *wrqu, char *extra)
9232 {
9233 	struct ipw_priv *priv = libipw_priv(dev);
9234 	mutex_lock(&priv->mutex);
9235 	wrqu->bitrate.value = priv->last_rate;
9236 	wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9237 	mutex_unlock(&priv->mutex);
9238 	IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
9239 	return 0;
9240 }
9241 
9242 static int ipw_wx_set_rts(struct net_device *dev,
9243 			  struct iw_request_info *info,
9244 			  union iwreq_data *wrqu, char *extra)
9245 {
9246 	struct ipw_priv *priv = libipw_priv(dev);
9247 	mutex_lock(&priv->mutex);
9248 	if (wrqu->rts.disabled || !wrqu->rts.fixed)
9249 		priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9250 	else {
9251 		if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9252 		    wrqu->rts.value > MAX_RTS_THRESHOLD) {
9253 			mutex_unlock(&priv->mutex);
9254 			return -EINVAL;
9255 		}
9256 		priv->rts_threshold = wrqu->rts.value;
9257 	}
9258 
9259 	ipw_send_rts_threshold(priv, priv->rts_threshold);
9260 	mutex_unlock(&priv->mutex);
9261 	IPW_DEBUG_WX("SET RTS Threshold -> %d\n", priv->rts_threshold);
9262 	return 0;
9263 }
9264 
9265 static int ipw_wx_get_rts(struct net_device *dev,
9266 			  struct iw_request_info *info,
9267 			  union iwreq_data *wrqu, char *extra)
9268 {
9269 	struct ipw_priv *priv = libipw_priv(dev);
9270 	mutex_lock(&priv->mutex);
9271 	wrqu->rts.value = priv->rts_threshold;
9272 	wrqu->rts.fixed = 0;	/* no auto select */
9273 	wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9274 	mutex_unlock(&priv->mutex);
9275 	IPW_DEBUG_WX("GET RTS Threshold -> %d\n", wrqu->rts.value);
9276 	return 0;
9277 }
9278 
9279 static int ipw_wx_set_txpow(struct net_device *dev,
9280 			    struct iw_request_info *info,
9281 			    union iwreq_data *wrqu, char *extra)
9282 {
9283 	struct ipw_priv *priv = libipw_priv(dev);
9284 	int err = 0;
9285 
9286 	mutex_lock(&priv->mutex);
9287 	if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9288 		err = -EINPROGRESS;
9289 		goto out;
9290 	}
9291 
9292 	if (!wrqu->power.fixed)
9293 		wrqu->power.value = IPW_TX_POWER_DEFAULT;
9294 
9295 	if (wrqu->power.flags != IW_TXPOW_DBM) {
9296 		err = -EINVAL;
9297 		goto out;
9298 	}
9299 
9300 	if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9301 	    (wrqu->power.value < IPW_TX_POWER_MIN)) {
9302 		err = -EINVAL;
9303 		goto out;
9304 	}
9305 
9306 	priv->tx_power = wrqu->power.value;
9307 	err = ipw_set_tx_power(priv);
9308       out:
9309 	mutex_unlock(&priv->mutex);
9310 	return err;
9311 }
9312 
9313 static int ipw_wx_get_txpow(struct net_device *dev,
9314 			    struct iw_request_info *info,
9315 			    union iwreq_data *wrqu, char *extra)
9316 {
9317 	struct ipw_priv *priv = libipw_priv(dev);
9318 	mutex_lock(&priv->mutex);
9319 	wrqu->power.value = priv->tx_power;
9320 	wrqu->power.fixed = 1;
9321 	wrqu->power.flags = IW_TXPOW_DBM;
9322 	wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9323 	mutex_unlock(&priv->mutex);
9324 
9325 	IPW_DEBUG_WX("GET TX Power -> %s %d\n",
9326 		     wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9327 
9328 	return 0;
9329 }
9330 
9331 static int ipw_wx_set_frag(struct net_device *dev,
9332 			   struct iw_request_info *info,
9333 			   union iwreq_data *wrqu, char *extra)
9334 {
9335 	struct ipw_priv *priv = libipw_priv(dev);
9336 	mutex_lock(&priv->mutex);
9337 	if (wrqu->frag.disabled || !wrqu->frag.fixed)
9338 		priv->ieee->fts = DEFAULT_FTS;
9339 	else {
9340 		if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9341 		    wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9342 			mutex_unlock(&priv->mutex);
9343 			return -EINVAL;
9344 		}
9345 
9346 		priv->ieee->fts = wrqu->frag.value & ~0x1;
9347 	}
9348 
9349 	ipw_send_frag_threshold(priv, wrqu->frag.value);
9350 	mutex_unlock(&priv->mutex);
9351 	IPW_DEBUG_WX("SET Frag Threshold -> %d\n", wrqu->frag.value);
9352 	return 0;
9353 }
9354 
9355 static int ipw_wx_get_frag(struct net_device *dev,
9356 			   struct iw_request_info *info,
9357 			   union iwreq_data *wrqu, char *extra)
9358 {
9359 	struct ipw_priv *priv = libipw_priv(dev);
9360 	mutex_lock(&priv->mutex);
9361 	wrqu->frag.value = priv->ieee->fts;
9362 	wrqu->frag.fixed = 0;	/* no auto select */
9363 	wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9364 	mutex_unlock(&priv->mutex);
9365 	IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
9366 
9367 	return 0;
9368 }
9369 
9370 static int ipw_wx_set_retry(struct net_device *dev,
9371 			    struct iw_request_info *info,
9372 			    union iwreq_data *wrqu, char *extra)
9373 {
9374 	struct ipw_priv *priv = libipw_priv(dev);
9375 
9376 	if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9377 		return -EINVAL;
9378 
9379 	if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9380 		return 0;
9381 
9382 	if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9383 		return -EINVAL;
9384 
9385 	mutex_lock(&priv->mutex);
9386 	if (wrqu->retry.flags & IW_RETRY_SHORT)
9387 		priv->short_retry_limit = (u8) wrqu->retry.value;
9388 	else if (wrqu->retry.flags & IW_RETRY_LONG)
9389 		priv->long_retry_limit = (u8) wrqu->retry.value;
9390 	else {
9391 		priv->short_retry_limit = (u8) wrqu->retry.value;
9392 		priv->long_retry_limit = (u8) wrqu->retry.value;
9393 	}
9394 
9395 	ipw_send_retry_limit(priv, priv->short_retry_limit,
9396 			     priv->long_retry_limit);
9397 	mutex_unlock(&priv->mutex);
9398 	IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9399 		     priv->short_retry_limit, priv->long_retry_limit);
9400 	return 0;
9401 }
9402 
9403 static int ipw_wx_get_retry(struct net_device *dev,
9404 			    struct iw_request_info *info,
9405 			    union iwreq_data *wrqu, char *extra)
9406 {
9407 	struct ipw_priv *priv = libipw_priv(dev);
9408 
9409 	mutex_lock(&priv->mutex);
9410 	wrqu->retry.disabled = 0;
9411 
9412 	if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9413 		mutex_unlock(&priv->mutex);
9414 		return -EINVAL;
9415 	}
9416 
9417 	if (wrqu->retry.flags & IW_RETRY_LONG) {
9418 		wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9419 		wrqu->retry.value = priv->long_retry_limit;
9420 	} else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9421 		wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9422 		wrqu->retry.value = priv->short_retry_limit;
9423 	} else {
9424 		wrqu->retry.flags = IW_RETRY_LIMIT;
9425 		wrqu->retry.value = priv->short_retry_limit;
9426 	}
9427 	mutex_unlock(&priv->mutex);
9428 
9429 	IPW_DEBUG_WX("GET retry -> %d\n", wrqu->retry.value);
9430 
9431 	return 0;
9432 }
9433 
9434 static int ipw_wx_set_scan(struct net_device *dev,
9435 			   struct iw_request_info *info,
9436 			   union iwreq_data *wrqu, char *extra)
9437 {
9438 	struct ipw_priv *priv = libipw_priv(dev);
9439 	struct iw_scan_req *req = (struct iw_scan_req *)extra;
9440 	struct delayed_work *work = NULL;
9441 
9442 	mutex_lock(&priv->mutex);
9443 
9444 	priv->user_requested_scan = 1;
9445 
9446 	if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9447 		if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9448 			int len = min((int)req->essid_len,
9449 			              (int)sizeof(priv->direct_scan_ssid));
9450 			memcpy(priv->direct_scan_ssid, req->essid, len);
9451 			priv->direct_scan_ssid_len = len;
9452 			work = &priv->request_direct_scan;
9453 		} else if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9454 			work = &priv->request_passive_scan;
9455 		}
9456 	} else {
9457 		/* Normal active broadcast scan */
9458 		work = &priv->request_scan;
9459 	}
9460 
9461 	mutex_unlock(&priv->mutex);
9462 
9463 	IPW_DEBUG_WX("Start scan\n");
9464 
9465 	schedule_delayed_work(work, 0);
9466 
9467 	return 0;
9468 }
9469 
9470 static int ipw_wx_get_scan(struct net_device *dev,
9471 			   struct iw_request_info *info,
9472 			   union iwreq_data *wrqu, char *extra)
9473 {
9474 	struct ipw_priv *priv = libipw_priv(dev);
9475 	return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
9476 }
9477 
9478 static int ipw_wx_set_encode(struct net_device *dev,
9479 			     struct iw_request_info *info,
9480 			     union iwreq_data *wrqu, char *key)
9481 {
9482 	struct ipw_priv *priv = libipw_priv(dev);
9483 	int ret;
9484 	u32 cap = priv->capability;
9485 
9486 	mutex_lock(&priv->mutex);
9487 	ret = libipw_wx_set_encode(priv->ieee, info, wrqu, key);
9488 
9489 	/* In IBSS mode, we need to notify the firmware to update
9490 	 * the beacon info after we changed the capability. */
9491 	if (cap != priv->capability &&
9492 	    priv->ieee->iw_mode == IW_MODE_ADHOC &&
9493 	    priv->status & STATUS_ASSOCIATED)
9494 		ipw_disassociate(priv);
9495 
9496 	mutex_unlock(&priv->mutex);
9497 	return ret;
9498 }
9499 
9500 static int ipw_wx_get_encode(struct net_device *dev,
9501 			     struct iw_request_info *info,
9502 			     union iwreq_data *wrqu, char *key)
9503 {
9504 	struct ipw_priv *priv = libipw_priv(dev);
9505 	return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
9506 }
9507 
9508 static int ipw_wx_set_power(struct net_device *dev,
9509 			    struct iw_request_info *info,
9510 			    union iwreq_data *wrqu, char *extra)
9511 {
9512 	struct ipw_priv *priv = libipw_priv(dev);
9513 	int err;
9514 	mutex_lock(&priv->mutex);
9515 	if (wrqu->power.disabled) {
9516 		priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9517 		err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9518 		if (err) {
9519 			IPW_DEBUG_WX("failed setting power mode.\n");
9520 			mutex_unlock(&priv->mutex);
9521 			return err;
9522 		}
9523 		IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9524 		mutex_unlock(&priv->mutex);
9525 		return 0;
9526 	}
9527 
9528 	switch (wrqu->power.flags & IW_POWER_MODE) {
9529 	case IW_POWER_ON:	/* If not specified */
9530 	case IW_POWER_MODE:	/* If set all mask */
9531 	case IW_POWER_ALL_R:	/* If explicitly state all */
9532 		break;
9533 	default:		/* Otherwise we don't support it */
9534 		IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9535 			     wrqu->power.flags);
9536 		mutex_unlock(&priv->mutex);
9537 		return -EOPNOTSUPP;
9538 	}
9539 
9540 	/* If the user hasn't specified a power management mode yet, default
9541 	 * to BATTERY */
9542 	if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9543 		priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9544 	else
9545 		priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9546 
9547 	err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9548 	if (err) {
9549 		IPW_DEBUG_WX("failed setting power mode.\n");
9550 		mutex_unlock(&priv->mutex);
9551 		return err;
9552 	}
9553 
9554 	IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9555 	mutex_unlock(&priv->mutex);
9556 	return 0;
9557 }
9558 
9559 static int ipw_wx_get_power(struct net_device *dev,
9560 			    struct iw_request_info *info,
9561 			    union iwreq_data *wrqu, char *extra)
9562 {
9563 	struct ipw_priv *priv = libipw_priv(dev);
9564 	mutex_lock(&priv->mutex);
9565 	if (!(priv->power_mode & IPW_POWER_ENABLED))
9566 		wrqu->power.disabled = 1;
9567 	else
9568 		wrqu->power.disabled = 0;
9569 
9570 	mutex_unlock(&priv->mutex);
9571 	IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9572 
9573 	return 0;
9574 }
9575 
9576 static int ipw_wx_set_powermode(struct net_device *dev,
9577 				struct iw_request_info *info,
9578 				union iwreq_data *wrqu, char *extra)
9579 {
9580 	struct ipw_priv *priv = libipw_priv(dev);
9581 	int mode = *(int *)extra;
9582 	int err;
9583 
9584 	mutex_lock(&priv->mutex);
9585 	if ((mode < 1) || (mode > IPW_POWER_LIMIT))
9586 		mode = IPW_POWER_AC;
9587 
9588 	if (IPW_POWER_LEVEL(priv->power_mode) != mode) {
9589 		err = ipw_send_power_mode(priv, mode);
9590 		if (err) {
9591 			IPW_DEBUG_WX("failed setting power mode.\n");
9592 			mutex_unlock(&priv->mutex);
9593 			return err;
9594 		}
9595 		priv->power_mode = IPW_POWER_ENABLED | mode;
9596 	}
9597 	mutex_unlock(&priv->mutex);
9598 	return 0;
9599 }
9600 
9601 #define MAX_WX_STRING 80
9602 static int ipw_wx_get_powermode(struct net_device *dev,
9603 				struct iw_request_info *info,
9604 				union iwreq_data *wrqu, char *extra)
9605 {
9606 	struct ipw_priv *priv = libipw_priv(dev);
9607 	int level = IPW_POWER_LEVEL(priv->power_mode);
9608 	char *p = extra;
9609 
9610 	p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9611 
9612 	switch (level) {
9613 	case IPW_POWER_AC:
9614 		p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9615 		break;
9616 	case IPW_POWER_BATTERY:
9617 		p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9618 		break;
9619 	default:
9620 		p += snprintf(p, MAX_WX_STRING - (p - extra),
9621 			      "(Timeout %dms, Period %dms)",
9622 			      timeout_duration[level - 1] / 1000,
9623 			      period_duration[level - 1] / 1000);
9624 	}
9625 
9626 	if (!(priv->power_mode & IPW_POWER_ENABLED))
9627 		p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9628 
9629 	wrqu->data.length = p - extra + 1;
9630 
9631 	return 0;
9632 }
9633 
9634 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9635 				    struct iw_request_info *info,
9636 				    union iwreq_data *wrqu, char *extra)
9637 {
9638 	struct ipw_priv *priv = libipw_priv(dev);
9639 	int mode = *(int *)extra;
9640 	u8 band = 0, modulation = 0;
9641 
9642 	if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9643 		IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9644 		return -EINVAL;
9645 	}
9646 	mutex_lock(&priv->mutex);
9647 	if (priv->adapter == IPW_2915ABG) {
9648 		priv->ieee->abg_true = 1;
9649 		if (mode & IEEE_A) {
9650 			band |= LIBIPW_52GHZ_BAND;
9651 			modulation |= LIBIPW_OFDM_MODULATION;
9652 		} else
9653 			priv->ieee->abg_true = 0;
9654 	} else {
9655 		if (mode & IEEE_A) {
9656 			IPW_WARNING("Attempt to set 2200BG into "
9657 				    "802.11a mode\n");
9658 			mutex_unlock(&priv->mutex);
9659 			return -EINVAL;
9660 		}
9661 
9662 		priv->ieee->abg_true = 0;
9663 	}
9664 
9665 	if (mode & IEEE_B) {
9666 		band |= LIBIPW_24GHZ_BAND;
9667 		modulation |= LIBIPW_CCK_MODULATION;
9668 	} else
9669 		priv->ieee->abg_true = 0;
9670 
9671 	if (mode & IEEE_G) {
9672 		band |= LIBIPW_24GHZ_BAND;
9673 		modulation |= LIBIPW_OFDM_MODULATION;
9674 	} else
9675 		priv->ieee->abg_true = 0;
9676 
9677 	priv->ieee->mode = mode;
9678 	priv->ieee->freq_band = band;
9679 	priv->ieee->modulation = modulation;
9680 	init_supported_rates(priv, &priv->rates);
9681 
9682 	/* Network configuration changed -- force [re]association */
9683 	IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9684 	if (!ipw_disassociate(priv)) {
9685 		ipw_send_supported_rates(priv, &priv->rates);
9686 		ipw_associate(priv);
9687 	}
9688 
9689 	/* Update the band LEDs */
9690 	ipw_led_band_on(priv);
9691 
9692 	IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9693 		     mode & IEEE_A ? 'a' : '.',
9694 		     mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9695 	mutex_unlock(&priv->mutex);
9696 	return 0;
9697 }
9698 
9699 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9700 				    struct iw_request_info *info,
9701 				    union iwreq_data *wrqu, char *extra)
9702 {
9703 	struct ipw_priv *priv = libipw_priv(dev);
9704 	mutex_lock(&priv->mutex);
9705 	switch (priv->ieee->mode) {
9706 	case IEEE_A:
9707 		strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9708 		break;
9709 	case IEEE_B:
9710 		strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9711 		break;
9712 	case IEEE_A | IEEE_B:
9713 		strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9714 		break;
9715 	case IEEE_G:
9716 		strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9717 		break;
9718 	case IEEE_A | IEEE_G:
9719 		strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9720 		break;
9721 	case IEEE_B | IEEE_G:
9722 		strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9723 		break;
9724 	case IEEE_A | IEEE_B | IEEE_G:
9725 		strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9726 		break;
9727 	default:
9728 		strncpy(extra, "unknown", MAX_WX_STRING);
9729 		break;
9730 	}
9731 	extra[MAX_WX_STRING - 1] = '\0';
9732 
9733 	IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9734 
9735 	wrqu->data.length = strlen(extra) + 1;
9736 	mutex_unlock(&priv->mutex);
9737 
9738 	return 0;
9739 }
9740 
9741 static int ipw_wx_set_preamble(struct net_device *dev,
9742 			       struct iw_request_info *info,
9743 			       union iwreq_data *wrqu, char *extra)
9744 {
9745 	struct ipw_priv *priv = libipw_priv(dev);
9746 	int mode = *(int *)extra;
9747 	mutex_lock(&priv->mutex);
9748 	/* Switching from SHORT -> LONG requires a disassociation */
9749 	if (mode == 1) {
9750 		if (!(priv->config & CFG_PREAMBLE_LONG)) {
9751 			priv->config |= CFG_PREAMBLE_LONG;
9752 
9753 			/* Network configuration changed -- force [re]association */
9754 			IPW_DEBUG_ASSOC
9755 			    ("[re]association triggered due to preamble change.\n");
9756 			if (!ipw_disassociate(priv))
9757 				ipw_associate(priv);
9758 		}
9759 		goto done;
9760 	}
9761 
9762 	if (mode == 0) {
9763 		priv->config &= ~CFG_PREAMBLE_LONG;
9764 		goto done;
9765 	}
9766 	mutex_unlock(&priv->mutex);
9767 	return -EINVAL;
9768 
9769       done:
9770 	mutex_unlock(&priv->mutex);
9771 	return 0;
9772 }
9773 
9774 static int ipw_wx_get_preamble(struct net_device *dev,
9775 			       struct iw_request_info *info,
9776 			       union iwreq_data *wrqu, char *extra)
9777 {
9778 	struct ipw_priv *priv = libipw_priv(dev);
9779 	mutex_lock(&priv->mutex);
9780 	if (priv->config & CFG_PREAMBLE_LONG)
9781 		snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9782 	else
9783 		snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9784 	mutex_unlock(&priv->mutex);
9785 	return 0;
9786 }
9787 
9788 #ifdef CONFIG_IPW2200_MONITOR
9789 static int ipw_wx_set_monitor(struct net_device *dev,
9790 			      struct iw_request_info *info,
9791 			      union iwreq_data *wrqu, char *extra)
9792 {
9793 	struct ipw_priv *priv = libipw_priv(dev);
9794 	int *parms = (int *)extra;
9795 	int enable = (parms[0] > 0);
9796 	mutex_lock(&priv->mutex);
9797 	IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9798 	if (enable) {
9799 		if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9800 #ifdef CONFIG_IPW2200_RADIOTAP
9801 			priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9802 #else
9803 			priv->net_dev->type = ARPHRD_IEEE80211;
9804 #endif
9805 			schedule_work(&priv->adapter_restart);
9806 		}
9807 
9808 		ipw_set_channel(priv, parms[1]);
9809 	} else {
9810 		if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9811 			mutex_unlock(&priv->mutex);
9812 			return 0;
9813 		}
9814 		priv->net_dev->type = ARPHRD_ETHER;
9815 		schedule_work(&priv->adapter_restart);
9816 	}
9817 	mutex_unlock(&priv->mutex);
9818 	return 0;
9819 }
9820 
9821 #endif				/* CONFIG_IPW2200_MONITOR */
9822 
9823 static int ipw_wx_reset(struct net_device *dev,
9824 			struct iw_request_info *info,
9825 			union iwreq_data *wrqu, char *extra)
9826 {
9827 	struct ipw_priv *priv = libipw_priv(dev);
9828 	IPW_DEBUG_WX("RESET\n");
9829 	schedule_work(&priv->adapter_restart);
9830 	return 0;
9831 }
9832 
9833 static int ipw_wx_sw_reset(struct net_device *dev,
9834 			   struct iw_request_info *info,
9835 			   union iwreq_data *wrqu, char *extra)
9836 {
9837 	struct ipw_priv *priv = libipw_priv(dev);
9838 	union iwreq_data wrqu_sec = {
9839 		.encoding = {
9840 			     .flags = IW_ENCODE_DISABLED,
9841 			     },
9842 	};
9843 	int ret;
9844 
9845 	IPW_DEBUG_WX("SW_RESET\n");
9846 
9847 	mutex_lock(&priv->mutex);
9848 
9849 	ret = ipw_sw_reset(priv, 2);
9850 	if (!ret) {
9851 		free_firmware();
9852 		ipw_adapter_restart(priv);
9853 	}
9854 
9855 	/* The SW reset bit might have been toggled on by the 'disable'
9856 	 * module parameter, so take appropriate action */
9857 	ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9858 
9859 	mutex_unlock(&priv->mutex);
9860 	libipw_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9861 	mutex_lock(&priv->mutex);
9862 
9863 	if (!(priv->status & STATUS_RF_KILL_MASK)) {
9864 		/* Configuration likely changed -- force [re]association */
9865 		IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9866 				"reset.\n");
9867 		if (!ipw_disassociate(priv))
9868 			ipw_associate(priv);
9869 	}
9870 
9871 	mutex_unlock(&priv->mutex);
9872 
9873 	return 0;
9874 }
9875 
9876 /* Rebase the WE IOCTLs to zero for the handler array */
9877 static iw_handler ipw_wx_handlers[] = {
9878 	IW_HANDLER(SIOCGIWNAME, (iw_handler)cfg80211_wext_giwname),
9879 	IW_HANDLER(SIOCSIWFREQ, ipw_wx_set_freq),
9880 	IW_HANDLER(SIOCGIWFREQ, ipw_wx_get_freq),
9881 	IW_HANDLER(SIOCSIWMODE, ipw_wx_set_mode),
9882 	IW_HANDLER(SIOCGIWMODE, ipw_wx_get_mode),
9883 	IW_HANDLER(SIOCSIWSENS, ipw_wx_set_sens),
9884 	IW_HANDLER(SIOCGIWSENS, ipw_wx_get_sens),
9885 	IW_HANDLER(SIOCGIWRANGE, ipw_wx_get_range),
9886 	IW_HANDLER(SIOCSIWAP, ipw_wx_set_wap),
9887 	IW_HANDLER(SIOCGIWAP, ipw_wx_get_wap),
9888 	IW_HANDLER(SIOCSIWSCAN, ipw_wx_set_scan),
9889 	IW_HANDLER(SIOCGIWSCAN, ipw_wx_get_scan),
9890 	IW_HANDLER(SIOCSIWESSID, ipw_wx_set_essid),
9891 	IW_HANDLER(SIOCGIWESSID, ipw_wx_get_essid),
9892 	IW_HANDLER(SIOCSIWNICKN, ipw_wx_set_nick),
9893 	IW_HANDLER(SIOCGIWNICKN, ipw_wx_get_nick),
9894 	IW_HANDLER(SIOCSIWRATE, ipw_wx_set_rate),
9895 	IW_HANDLER(SIOCGIWRATE, ipw_wx_get_rate),
9896 	IW_HANDLER(SIOCSIWRTS, ipw_wx_set_rts),
9897 	IW_HANDLER(SIOCGIWRTS, ipw_wx_get_rts),
9898 	IW_HANDLER(SIOCSIWFRAG, ipw_wx_set_frag),
9899 	IW_HANDLER(SIOCGIWFRAG, ipw_wx_get_frag),
9900 	IW_HANDLER(SIOCSIWTXPOW, ipw_wx_set_txpow),
9901 	IW_HANDLER(SIOCGIWTXPOW, ipw_wx_get_txpow),
9902 	IW_HANDLER(SIOCSIWRETRY, ipw_wx_set_retry),
9903 	IW_HANDLER(SIOCGIWRETRY, ipw_wx_get_retry),
9904 	IW_HANDLER(SIOCSIWENCODE, ipw_wx_set_encode),
9905 	IW_HANDLER(SIOCGIWENCODE, ipw_wx_get_encode),
9906 	IW_HANDLER(SIOCSIWPOWER, ipw_wx_set_power),
9907 	IW_HANDLER(SIOCGIWPOWER, ipw_wx_get_power),
9908 	IW_HANDLER(SIOCSIWSPY, iw_handler_set_spy),
9909 	IW_HANDLER(SIOCGIWSPY, iw_handler_get_spy),
9910 	IW_HANDLER(SIOCSIWTHRSPY, iw_handler_set_thrspy),
9911 	IW_HANDLER(SIOCGIWTHRSPY, iw_handler_get_thrspy),
9912 	IW_HANDLER(SIOCSIWGENIE, ipw_wx_set_genie),
9913 	IW_HANDLER(SIOCGIWGENIE, ipw_wx_get_genie),
9914 	IW_HANDLER(SIOCSIWMLME, ipw_wx_set_mlme),
9915 	IW_HANDLER(SIOCSIWAUTH, ipw_wx_set_auth),
9916 	IW_HANDLER(SIOCGIWAUTH, ipw_wx_get_auth),
9917 	IW_HANDLER(SIOCSIWENCODEEXT, ipw_wx_set_encodeext),
9918 	IW_HANDLER(SIOCGIWENCODEEXT, ipw_wx_get_encodeext),
9919 };
9920 
9921 enum {
9922 	IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
9923 	IPW_PRIV_GET_POWER,
9924 	IPW_PRIV_SET_MODE,
9925 	IPW_PRIV_GET_MODE,
9926 	IPW_PRIV_SET_PREAMBLE,
9927 	IPW_PRIV_GET_PREAMBLE,
9928 	IPW_PRIV_RESET,
9929 	IPW_PRIV_SW_RESET,
9930 #ifdef CONFIG_IPW2200_MONITOR
9931 	IPW_PRIV_SET_MONITOR,
9932 #endif
9933 };
9934 
9935 static struct iw_priv_args ipw_priv_args[] = {
9936 	{
9937 	 .cmd = IPW_PRIV_SET_POWER,
9938 	 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9939 	 .name = "set_power"},
9940 	{
9941 	 .cmd = IPW_PRIV_GET_POWER,
9942 	 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9943 	 .name = "get_power"},
9944 	{
9945 	 .cmd = IPW_PRIV_SET_MODE,
9946 	 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9947 	 .name = "set_mode"},
9948 	{
9949 	 .cmd = IPW_PRIV_GET_MODE,
9950 	 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9951 	 .name = "get_mode"},
9952 	{
9953 	 .cmd = IPW_PRIV_SET_PREAMBLE,
9954 	 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9955 	 .name = "set_preamble"},
9956 	{
9957 	 .cmd = IPW_PRIV_GET_PREAMBLE,
9958 	 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
9959 	 .name = "get_preamble"},
9960 	{
9961 	 IPW_PRIV_RESET,
9962 	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
9963 	{
9964 	 IPW_PRIV_SW_RESET,
9965 	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
9966 #ifdef CONFIG_IPW2200_MONITOR
9967 	{
9968 	 IPW_PRIV_SET_MONITOR,
9969 	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
9970 #endif				/* CONFIG_IPW2200_MONITOR */
9971 };
9972 
9973 static iw_handler ipw_priv_handler[] = {
9974 	ipw_wx_set_powermode,
9975 	ipw_wx_get_powermode,
9976 	ipw_wx_set_wireless_mode,
9977 	ipw_wx_get_wireless_mode,
9978 	ipw_wx_set_preamble,
9979 	ipw_wx_get_preamble,
9980 	ipw_wx_reset,
9981 	ipw_wx_sw_reset,
9982 #ifdef CONFIG_IPW2200_MONITOR
9983 	ipw_wx_set_monitor,
9984 #endif
9985 };
9986 
9987 static const struct iw_handler_def ipw_wx_handler_def = {
9988 	.standard = ipw_wx_handlers,
9989 	.num_standard = ARRAY_SIZE(ipw_wx_handlers),
9990 	.num_private = ARRAY_SIZE(ipw_priv_handler),
9991 	.num_private_args = ARRAY_SIZE(ipw_priv_args),
9992 	.private = ipw_priv_handler,
9993 	.private_args = ipw_priv_args,
9994 	.get_wireless_stats = ipw_get_wireless_stats,
9995 };
9996 
9997 /*
9998  * Get wireless statistics.
9999  * Called by /proc/net/wireless
10000  * Also called by SIOCGIWSTATS
10001  */
10002 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
10003 {
10004 	struct ipw_priv *priv = libipw_priv(dev);
10005 	struct iw_statistics *wstats;
10006 
10007 	wstats = &priv->wstats;
10008 
10009 	/* if hw is disabled, then ipw_get_ordinal() can't be called.
10010 	 * netdev->get_wireless_stats seems to be called before fw is
10011 	 * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
10012 	 * and associated; if not associcated, the values are all meaningless
10013 	 * anyway, so set them all to NULL and INVALID */
10014 	if (!(priv->status & STATUS_ASSOCIATED)) {
10015 		wstats->miss.beacon = 0;
10016 		wstats->discard.retries = 0;
10017 		wstats->qual.qual = 0;
10018 		wstats->qual.level = 0;
10019 		wstats->qual.noise = 0;
10020 		wstats->qual.updated = 7;
10021 		wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
10022 		    IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
10023 		return wstats;
10024 	}
10025 
10026 	wstats->qual.qual = priv->quality;
10027 	wstats->qual.level = priv->exp_avg_rssi;
10028 	wstats->qual.noise = priv->exp_avg_noise;
10029 	wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
10030 	    IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
10031 
10032 	wstats->miss.beacon = average_value(&priv->average_missed_beacons);
10033 	wstats->discard.retries = priv->last_tx_failures;
10034 	wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
10035 
10036 /*	if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10037 	goto fail_get_ordinal;
10038 	wstats->discard.retries += tx_retry; */
10039 
10040 	return wstats;
10041 }
10042 
10043 /* net device stuff */
10044 
10045 static  void init_sys_config(struct ipw_sys_config *sys_config)
10046 {
10047 	memset(sys_config, 0, sizeof(struct ipw_sys_config));
10048 	sys_config->bt_coexistence = 0;
10049 	sys_config->answer_broadcast_ssid_probe = 0;
10050 	sys_config->accept_all_data_frames = 0;
10051 	sys_config->accept_non_directed_frames = 1;
10052 	sys_config->exclude_unicast_unencrypted = 0;
10053 	sys_config->disable_unicast_decryption = 1;
10054 	sys_config->exclude_multicast_unencrypted = 0;
10055 	sys_config->disable_multicast_decryption = 1;
10056 	if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10057 		antenna = CFG_SYS_ANTENNA_BOTH;
10058 	sys_config->antenna_diversity = antenna;
10059 	sys_config->pass_crc_to_host = 0;	/* TODO: See if 1 gives us FCS */
10060 	sys_config->dot11g_auto_detection = 0;
10061 	sys_config->enable_cts_to_self = 0;
10062 	sys_config->bt_coexist_collision_thr = 0;
10063 	sys_config->pass_noise_stats_to_host = 1;	/* 1 -- fix for 256 */
10064 	sys_config->silence_threshold = 0x1e;
10065 }
10066 
10067 static int ipw_net_open(struct net_device *dev)
10068 {
10069 	IPW_DEBUG_INFO("dev->open\n");
10070 	netif_start_queue(dev);
10071 	return 0;
10072 }
10073 
10074 static int ipw_net_stop(struct net_device *dev)
10075 {
10076 	IPW_DEBUG_INFO("dev->close\n");
10077 	netif_stop_queue(dev);
10078 	return 0;
10079 }
10080 
10081 /*
10082 todo:
10083 
10084 modify to send one tfd per fragment instead of using chunking.  otherwise
10085 we need to heavily modify the libipw_skb_to_txb.
10086 */
10087 
10088 static int ipw_tx_skb(struct ipw_priv *priv, struct libipw_txb *txb,
10089 			     int pri)
10090 {
10091 	struct libipw_hdr_3addrqos *hdr = (struct libipw_hdr_3addrqos *)
10092 	    txb->fragments[0]->data;
10093 	int i = 0;
10094 	struct tfd_frame *tfd;
10095 #ifdef CONFIG_IPW2200_QOS
10096 	int tx_id = ipw_get_tx_queue_number(priv, pri);
10097 	struct clx2_tx_queue *txq = &priv->txq[tx_id];
10098 #else
10099 	struct clx2_tx_queue *txq = &priv->txq[0];
10100 #endif
10101 	struct clx2_queue *q = &txq->q;
10102 	u8 id, hdr_len, unicast;
10103 	int fc;
10104 
10105 	if (!(priv->status & STATUS_ASSOCIATED))
10106 		goto drop;
10107 
10108 	hdr_len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10109 	switch (priv->ieee->iw_mode) {
10110 	case IW_MODE_ADHOC:
10111 		unicast = !is_multicast_ether_addr(hdr->addr1);
10112 		id = ipw_find_station(priv, hdr->addr1);
10113 		if (id == IPW_INVALID_STATION) {
10114 			id = ipw_add_station(priv, hdr->addr1);
10115 			if (id == IPW_INVALID_STATION) {
10116 				IPW_WARNING("Attempt to send data to "
10117 					    "invalid cell: %pM\n",
10118 					    hdr->addr1);
10119 				goto drop;
10120 			}
10121 		}
10122 		break;
10123 
10124 	case IW_MODE_INFRA:
10125 	default:
10126 		unicast = !is_multicast_ether_addr(hdr->addr3);
10127 		id = 0;
10128 		break;
10129 	}
10130 
10131 	tfd = &txq->bd[q->first_empty];
10132 	txq->txb[q->first_empty] = txb;
10133 	memset(tfd, 0, sizeof(*tfd));
10134 	tfd->u.data.station_number = id;
10135 
10136 	tfd->control_flags.message_type = TX_FRAME_TYPE;
10137 	tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10138 
10139 	tfd->u.data.cmd_id = DINO_CMD_TX;
10140 	tfd->u.data.len = cpu_to_le16(txb->payload_size);
10141 
10142 	if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10143 		tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10144 	else
10145 		tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10146 
10147 	if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10148 		tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10149 
10150 	fc = le16_to_cpu(hdr->frame_ctl);
10151 	hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10152 
10153 	memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10154 
10155 	if (likely(unicast))
10156 		tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10157 
10158 	if (txb->encrypted && !priv->ieee->host_encrypt) {
10159 		switch (priv->ieee->sec.level) {
10160 		case SEC_LEVEL_3:
10161 			tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10162 			    cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10163 			/* XXX: ACK flag must be set for CCMP even if it
10164 			 * is a multicast/broadcast packet, because CCMP
10165 			 * group communication encrypted by GTK is
10166 			 * actually done by the AP. */
10167 			if (!unicast)
10168 				tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10169 
10170 			tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10171 			tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10172 			tfd->u.data.key_index = 0;
10173 			tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10174 			break;
10175 		case SEC_LEVEL_2:
10176 			tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10177 			    cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10178 			tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10179 			tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10180 			tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10181 			break;
10182 		case SEC_LEVEL_1:
10183 			tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10184 			    cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10185 			tfd->u.data.key_index = priv->ieee->crypt_info.tx_keyidx;
10186 			if (priv->ieee->sec.key_sizes[priv->ieee->crypt_info.tx_keyidx] <=
10187 			    40)
10188 				tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10189 			else
10190 				tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10191 			break;
10192 		case SEC_LEVEL_0:
10193 			break;
10194 		default:
10195 			printk(KERN_ERR "Unknown security level %d\n",
10196 			       priv->ieee->sec.level);
10197 			break;
10198 		}
10199 	} else
10200 		/* No hardware encryption */
10201 		tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10202 
10203 #ifdef CONFIG_IPW2200_QOS
10204 	if (fc & IEEE80211_STYPE_QOS_DATA)
10205 		ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10206 #endif				/* CONFIG_IPW2200_QOS */
10207 
10208 	/* payload */
10209 	tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10210 						 txb->nr_frags));
10211 	IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10212 		       txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10213 	for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10214 		IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10215 			       i, le32_to_cpu(tfd->u.data.num_chunks),
10216 			       txb->fragments[i]->len - hdr_len);
10217 		IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10218 			     i, tfd->u.data.num_chunks,
10219 			     txb->fragments[i]->len - hdr_len);
10220 		printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10221 			   txb->fragments[i]->len - hdr_len);
10222 
10223 		tfd->u.data.chunk_ptr[i] =
10224 		    cpu_to_le32(pci_map_single
10225 				(priv->pci_dev,
10226 				 txb->fragments[i]->data + hdr_len,
10227 				 txb->fragments[i]->len - hdr_len,
10228 				 PCI_DMA_TODEVICE));
10229 		tfd->u.data.chunk_len[i] =
10230 		    cpu_to_le16(txb->fragments[i]->len - hdr_len);
10231 	}
10232 
10233 	if (i != txb->nr_frags) {
10234 		struct sk_buff *skb;
10235 		u16 remaining_bytes = 0;
10236 		int j;
10237 
10238 		for (j = i; j < txb->nr_frags; j++)
10239 			remaining_bytes += txb->fragments[j]->len - hdr_len;
10240 
10241 		printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10242 		       remaining_bytes);
10243 		skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10244 		if (skb != NULL) {
10245 			tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10246 			for (j = i; j < txb->nr_frags; j++) {
10247 				int size = txb->fragments[j]->len - hdr_len;
10248 
10249 				printk(KERN_INFO "Adding frag %d %d...\n",
10250 				       j, size);
10251 				skb_put_data(skb,
10252 					     txb->fragments[j]->data + hdr_len,
10253 					     size);
10254 			}
10255 			dev_kfree_skb_any(txb->fragments[i]);
10256 			txb->fragments[i] = skb;
10257 			tfd->u.data.chunk_ptr[i] =
10258 			    cpu_to_le32(pci_map_single
10259 					(priv->pci_dev, skb->data,
10260 					 remaining_bytes,
10261 					 PCI_DMA_TODEVICE));
10262 
10263 			le32_add_cpu(&tfd->u.data.num_chunks, 1);
10264 		}
10265 	}
10266 
10267 	/* kick DMA */
10268 	q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10269 	ipw_write32(priv, q->reg_w, q->first_empty);
10270 
10271 	if (ipw_tx_queue_space(q) < q->high_mark)
10272 		netif_stop_queue(priv->net_dev);
10273 
10274 	return NETDEV_TX_OK;
10275 
10276       drop:
10277 	IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10278 	libipw_txb_free(txb);
10279 	return NETDEV_TX_OK;
10280 }
10281 
10282 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10283 {
10284 	struct ipw_priv *priv = libipw_priv(dev);
10285 #ifdef CONFIG_IPW2200_QOS
10286 	int tx_id = ipw_get_tx_queue_number(priv, pri);
10287 	struct clx2_tx_queue *txq = &priv->txq[tx_id];
10288 #else
10289 	struct clx2_tx_queue *txq = &priv->txq[0];
10290 #endif				/* CONFIG_IPW2200_QOS */
10291 
10292 	if (ipw_tx_queue_space(&txq->q) < txq->q.high_mark)
10293 		return 1;
10294 
10295 	return 0;
10296 }
10297 
10298 #ifdef CONFIG_IPW2200_PROMISCUOUS
10299 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10300 				      struct libipw_txb *txb)
10301 {
10302 	struct libipw_rx_stats dummystats;
10303 	struct ieee80211_hdr *hdr;
10304 	u8 n;
10305 	u16 filter = priv->prom_priv->filter;
10306 	int hdr_only = 0;
10307 
10308 	if (filter & IPW_PROM_NO_TX)
10309 		return;
10310 
10311 	memset(&dummystats, 0, sizeof(dummystats));
10312 
10313 	/* Filtering of fragment chains is done against the first fragment */
10314 	hdr = (void *)txb->fragments[0]->data;
10315 	if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
10316 		if (filter & IPW_PROM_NO_MGMT)
10317 			return;
10318 		if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10319 			hdr_only = 1;
10320 	} else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
10321 		if (filter & IPW_PROM_NO_CTL)
10322 			return;
10323 		if (filter & IPW_PROM_CTL_HEADER_ONLY)
10324 			hdr_only = 1;
10325 	} else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
10326 		if (filter & IPW_PROM_NO_DATA)
10327 			return;
10328 		if (filter & IPW_PROM_DATA_HEADER_ONLY)
10329 			hdr_only = 1;
10330 	}
10331 
10332 	for(n=0; n<txb->nr_frags; ++n) {
10333 		struct sk_buff *src = txb->fragments[n];
10334 		struct sk_buff *dst;
10335 		struct ieee80211_radiotap_header *rt_hdr;
10336 		int len;
10337 
10338 		if (hdr_only) {
10339 			hdr = (void *)src->data;
10340 			len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
10341 		} else
10342 			len = src->len;
10343 
10344 		dst = alloc_skb(len + sizeof(*rt_hdr) + sizeof(u16)*2, GFP_ATOMIC);
10345 		if (!dst)
10346 			continue;
10347 
10348 		rt_hdr = skb_put(dst, sizeof(*rt_hdr));
10349 
10350 		rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10351 		rt_hdr->it_pad = 0;
10352 		rt_hdr->it_present = 0; /* after all, it's just an idea */
10353 		rt_hdr->it_present |=  cpu_to_le32(1 << IEEE80211_RADIOTAP_CHANNEL);
10354 
10355 		*(__le16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10356 			ieee80211chan2mhz(priv->channel));
10357 		if (priv->channel > 14) 	/* 802.11a */
10358 			*(__le16*)skb_put(dst, sizeof(u16)) =
10359 				cpu_to_le16(IEEE80211_CHAN_OFDM |
10360 					     IEEE80211_CHAN_5GHZ);
10361 		else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10362 			*(__le16*)skb_put(dst, sizeof(u16)) =
10363 				cpu_to_le16(IEEE80211_CHAN_CCK |
10364 					     IEEE80211_CHAN_2GHZ);
10365 		else 		/* 802.11g */
10366 			*(__le16*)skb_put(dst, sizeof(u16)) =
10367 				cpu_to_le16(IEEE80211_CHAN_OFDM |
10368 				 IEEE80211_CHAN_2GHZ);
10369 
10370 		rt_hdr->it_len = cpu_to_le16(dst->len);
10371 
10372 		skb_copy_from_linear_data(src, skb_put(dst, len), len);
10373 
10374 		if (!libipw_rx(priv->prom_priv->ieee, dst, &dummystats))
10375 			dev_kfree_skb_any(dst);
10376 	}
10377 }
10378 #endif
10379 
10380 static netdev_tx_t ipw_net_hard_start_xmit(struct libipw_txb *txb,
10381 					   struct net_device *dev, int pri)
10382 {
10383 	struct ipw_priv *priv = libipw_priv(dev);
10384 	unsigned long flags;
10385 	netdev_tx_t ret;
10386 
10387 	IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10388 	spin_lock_irqsave(&priv->lock, flags);
10389 
10390 #ifdef CONFIG_IPW2200_PROMISCUOUS
10391 	if (rtap_iface && netif_running(priv->prom_net_dev))
10392 		ipw_handle_promiscuous_tx(priv, txb);
10393 #endif
10394 
10395 	ret = ipw_tx_skb(priv, txb, pri);
10396 	if (ret == NETDEV_TX_OK)
10397 		__ipw_led_activity_on(priv);
10398 	spin_unlock_irqrestore(&priv->lock, flags);
10399 
10400 	return ret;
10401 }
10402 
10403 static void ipw_net_set_multicast_list(struct net_device *dev)
10404 {
10405 
10406 }
10407 
10408 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10409 {
10410 	struct ipw_priv *priv = libipw_priv(dev);
10411 	struct sockaddr *addr = p;
10412 
10413 	if (!is_valid_ether_addr(addr->sa_data))
10414 		return -EADDRNOTAVAIL;
10415 	mutex_lock(&priv->mutex);
10416 	priv->config |= CFG_CUSTOM_MAC;
10417 	memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10418 	printk(KERN_INFO "%s: Setting MAC to %pM\n",
10419 	       priv->net_dev->name, priv->mac_addr);
10420 	schedule_work(&priv->adapter_restart);
10421 	mutex_unlock(&priv->mutex);
10422 	return 0;
10423 }
10424 
10425 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10426 				    struct ethtool_drvinfo *info)
10427 {
10428 	struct ipw_priv *p = libipw_priv(dev);
10429 	char vers[64];
10430 	char date[32];
10431 	u32 len;
10432 
10433 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
10434 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
10435 
10436 	len = sizeof(vers);
10437 	ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10438 	len = sizeof(date);
10439 	ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10440 
10441 	snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10442 		 vers, date);
10443 	strlcpy(info->bus_info, pci_name(p->pci_dev),
10444 		sizeof(info->bus_info));
10445 }
10446 
10447 static u32 ipw_ethtool_get_link(struct net_device *dev)
10448 {
10449 	struct ipw_priv *priv = libipw_priv(dev);
10450 	return (priv->status & STATUS_ASSOCIATED) != 0;
10451 }
10452 
10453 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10454 {
10455 	return IPW_EEPROM_IMAGE_SIZE;
10456 }
10457 
10458 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10459 				  struct ethtool_eeprom *eeprom, u8 * bytes)
10460 {
10461 	struct ipw_priv *p = libipw_priv(dev);
10462 
10463 	if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10464 		return -EINVAL;
10465 	mutex_lock(&p->mutex);
10466 	memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10467 	mutex_unlock(&p->mutex);
10468 	return 0;
10469 }
10470 
10471 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10472 				  struct ethtool_eeprom *eeprom, u8 * bytes)
10473 {
10474 	struct ipw_priv *p = libipw_priv(dev);
10475 	int i;
10476 
10477 	if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10478 		return -EINVAL;
10479 	mutex_lock(&p->mutex);
10480 	memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10481 	for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10482 		ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10483 	mutex_unlock(&p->mutex);
10484 	return 0;
10485 }
10486 
10487 static const struct ethtool_ops ipw_ethtool_ops = {
10488 	.get_link = ipw_ethtool_get_link,
10489 	.get_drvinfo = ipw_ethtool_get_drvinfo,
10490 	.get_eeprom_len = ipw_ethtool_get_eeprom_len,
10491 	.get_eeprom = ipw_ethtool_get_eeprom,
10492 	.set_eeprom = ipw_ethtool_set_eeprom,
10493 };
10494 
10495 static irqreturn_t ipw_isr(int irq, void *data)
10496 {
10497 	struct ipw_priv *priv = data;
10498 	u32 inta, inta_mask;
10499 
10500 	if (!priv)
10501 		return IRQ_NONE;
10502 
10503 	spin_lock(&priv->irq_lock);
10504 
10505 	if (!(priv->status & STATUS_INT_ENABLED)) {
10506 		/* IRQ is disabled */
10507 		goto none;
10508 	}
10509 
10510 	inta = ipw_read32(priv, IPW_INTA_RW);
10511 	inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10512 
10513 	if (inta == 0xFFFFFFFF) {
10514 		/* Hardware disappeared */
10515 		IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10516 		goto none;
10517 	}
10518 
10519 	if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10520 		/* Shared interrupt */
10521 		goto none;
10522 	}
10523 
10524 	/* tell the device to stop sending interrupts */
10525 	__ipw_disable_interrupts(priv);
10526 
10527 	/* ack current interrupts */
10528 	inta &= (IPW_INTA_MASK_ALL & inta_mask);
10529 	ipw_write32(priv, IPW_INTA_RW, inta);
10530 
10531 	/* Cache INTA value for our tasklet */
10532 	priv->isr_inta = inta;
10533 
10534 	tasklet_schedule(&priv->irq_tasklet);
10535 
10536 	spin_unlock(&priv->irq_lock);
10537 
10538 	return IRQ_HANDLED;
10539       none:
10540 	spin_unlock(&priv->irq_lock);
10541 	return IRQ_NONE;
10542 }
10543 
10544 static void ipw_rf_kill(void *adapter)
10545 {
10546 	struct ipw_priv *priv = adapter;
10547 	unsigned long flags;
10548 
10549 	spin_lock_irqsave(&priv->lock, flags);
10550 
10551 	if (rf_kill_active(priv)) {
10552 		IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10553 		schedule_delayed_work(&priv->rf_kill, 2 * HZ);
10554 		goto exit_unlock;
10555 	}
10556 
10557 	/* RF Kill is now disabled, so bring the device back up */
10558 
10559 	if (!(priv->status & STATUS_RF_KILL_MASK)) {
10560 		IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10561 				  "device\n");
10562 
10563 		/* we can not do an adapter restart while inside an irq lock */
10564 		schedule_work(&priv->adapter_restart);
10565 	} else
10566 		IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
10567 				  "enabled\n");
10568 
10569       exit_unlock:
10570 	spin_unlock_irqrestore(&priv->lock, flags);
10571 }
10572 
10573 static void ipw_bg_rf_kill(struct work_struct *work)
10574 {
10575 	struct ipw_priv *priv =
10576 		container_of(work, struct ipw_priv, rf_kill.work);
10577 	mutex_lock(&priv->mutex);
10578 	ipw_rf_kill(priv);
10579 	mutex_unlock(&priv->mutex);
10580 }
10581 
10582 static void ipw_link_up(struct ipw_priv *priv)
10583 {
10584 	priv->last_seq_num = -1;
10585 	priv->last_frag_num = -1;
10586 	priv->last_packet_time = 0;
10587 
10588 	netif_carrier_on(priv->net_dev);
10589 
10590 	cancel_delayed_work(&priv->request_scan);
10591 	cancel_delayed_work(&priv->request_direct_scan);
10592 	cancel_delayed_work(&priv->request_passive_scan);
10593 	cancel_delayed_work(&priv->scan_event);
10594 	ipw_reset_stats(priv);
10595 	/* Ensure the rate is updated immediately */
10596 	priv->last_rate = ipw_get_current_rate(priv);
10597 	ipw_gather_stats(priv);
10598 	ipw_led_link_up(priv);
10599 	notify_wx_assoc_event(priv);
10600 
10601 	if (priv->config & CFG_BACKGROUND_SCAN)
10602 		schedule_delayed_work(&priv->request_scan, HZ);
10603 }
10604 
10605 static void ipw_bg_link_up(struct work_struct *work)
10606 {
10607 	struct ipw_priv *priv =
10608 		container_of(work, struct ipw_priv, link_up);
10609 	mutex_lock(&priv->mutex);
10610 	ipw_link_up(priv);
10611 	mutex_unlock(&priv->mutex);
10612 }
10613 
10614 static void ipw_link_down(struct ipw_priv *priv)
10615 {
10616 	ipw_led_link_down(priv);
10617 	netif_carrier_off(priv->net_dev);
10618 	notify_wx_assoc_event(priv);
10619 
10620 	/* Cancel any queued work ... */
10621 	cancel_delayed_work(&priv->request_scan);
10622 	cancel_delayed_work(&priv->request_direct_scan);
10623 	cancel_delayed_work(&priv->request_passive_scan);
10624 	cancel_delayed_work(&priv->adhoc_check);
10625 	cancel_delayed_work(&priv->gather_stats);
10626 
10627 	ipw_reset_stats(priv);
10628 
10629 	if (!(priv->status & STATUS_EXIT_PENDING)) {
10630 		/* Queue up another scan... */
10631 		schedule_delayed_work(&priv->request_scan, 0);
10632 	} else
10633 		cancel_delayed_work(&priv->scan_event);
10634 }
10635 
10636 static void ipw_bg_link_down(struct work_struct *work)
10637 {
10638 	struct ipw_priv *priv =
10639 		container_of(work, struct ipw_priv, link_down);
10640 	mutex_lock(&priv->mutex);
10641 	ipw_link_down(priv);
10642 	mutex_unlock(&priv->mutex);
10643 }
10644 
10645 static int ipw_setup_deferred_work(struct ipw_priv *priv)
10646 {
10647 	int ret = 0;
10648 
10649 	init_waitqueue_head(&priv->wait_command_queue);
10650 	init_waitqueue_head(&priv->wait_state);
10651 
10652 	INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10653 	INIT_WORK(&priv->associate, ipw_bg_associate);
10654 	INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10655 	INIT_WORK(&priv->system_config, ipw_system_config);
10656 	INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10657 	INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10658 	INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10659 	INIT_WORK(&priv->up, ipw_bg_up);
10660 	INIT_WORK(&priv->down, ipw_bg_down);
10661 	INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10662 	INIT_DELAYED_WORK(&priv->request_direct_scan, ipw_request_direct_scan);
10663 	INIT_DELAYED_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10664 	INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event);
10665 	INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10666 	INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10667 	INIT_WORK(&priv->roam, ipw_bg_roam);
10668 	INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10669 	INIT_WORK(&priv->link_up, ipw_bg_link_up);
10670 	INIT_WORK(&priv->link_down, ipw_bg_link_down);
10671 	INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10672 	INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10673 	INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10674 	INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10675 
10676 #ifdef CONFIG_IPW2200_QOS
10677 	INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10678 #endif				/* CONFIG_IPW2200_QOS */
10679 
10680 	tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10681 		     ipw_irq_tasklet, (unsigned long)priv);
10682 
10683 	return ret;
10684 }
10685 
10686 static void shim__set_security(struct net_device *dev,
10687 			       struct libipw_security *sec)
10688 {
10689 	struct ipw_priv *priv = libipw_priv(dev);
10690 	int i;
10691 	for (i = 0; i < 4; i++) {
10692 		if (sec->flags & (1 << i)) {
10693 			priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10694 			priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10695 			if (sec->key_sizes[i] == 0)
10696 				priv->ieee->sec.flags &= ~(1 << i);
10697 			else {
10698 				memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10699 				       sec->key_sizes[i]);
10700 				priv->ieee->sec.flags |= (1 << i);
10701 			}
10702 			priv->status |= STATUS_SECURITY_UPDATED;
10703 		} else if (sec->level != SEC_LEVEL_1)
10704 			priv->ieee->sec.flags &= ~(1 << i);
10705 	}
10706 
10707 	if (sec->flags & SEC_ACTIVE_KEY) {
10708 		priv->ieee->sec.active_key = sec->active_key;
10709 		priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10710 		priv->status |= STATUS_SECURITY_UPDATED;
10711 	} else
10712 		priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10713 
10714 	if ((sec->flags & SEC_AUTH_MODE) &&
10715 	    (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10716 		priv->ieee->sec.auth_mode = sec->auth_mode;
10717 		priv->ieee->sec.flags |= SEC_AUTH_MODE;
10718 		if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10719 			priv->capability |= CAP_SHARED_KEY;
10720 		else
10721 			priv->capability &= ~CAP_SHARED_KEY;
10722 		priv->status |= STATUS_SECURITY_UPDATED;
10723 	}
10724 
10725 	if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10726 		priv->ieee->sec.flags |= SEC_ENABLED;
10727 		priv->ieee->sec.enabled = sec->enabled;
10728 		priv->status |= STATUS_SECURITY_UPDATED;
10729 		if (sec->enabled)
10730 			priv->capability |= CAP_PRIVACY_ON;
10731 		else
10732 			priv->capability &= ~CAP_PRIVACY_ON;
10733 	}
10734 
10735 	if (sec->flags & SEC_ENCRYPT)
10736 		priv->ieee->sec.encrypt = sec->encrypt;
10737 
10738 	if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10739 		priv->ieee->sec.level = sec->level;
10740 		priv->ieee->sec.flags |= SEC_LEVEL;
10741 		priv->status |= STATUS_SECURITY_UPDATED;
10742 	}
10743 
10744 	if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10745 		ipw_set_hwcrypto_keys(priv);
10746 
10747 	/* To match current functionality of ipw2100 (which works well w/
10748 	 * various supplicants, we don't force a disassociate if the
10749 	 * privacy capability changes ... */
10750 #if 0
10751 	if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10752 	    (((priv->assoc_request.capability &
10753 	       cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && !sec->enabled) ||
10754 	     (!(priv->assoc_request.capability &
10755 		cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && sec->enabled))) {
10756 		IPW_DEBUG_ASSOC("Disassociating due to capability "
10757 				"change.\n");
10758 		ipw_disassociate(priv);
10759 	}
10760 #endif
10761 }
10762 
10763 static int init_supported_rates(struct ipw_priv *priv,
10764 				struct ipw_supported_rates *rates)
10765 {
10766 	/* TODO: Mask out rates based on priv->rates_mask */
10767 
10768 	memset(rates, 0, sizeof(*rates));
10769 	/* configure supported rates */
10770 	switch (priv->ieee->freq_band) {
10771 	case LIBIPW_52GHZ_BAND:
10772 		rates->ieee_mode = IPW_A_MODE;
10773 		rates->purpose = IPW_RATE_CAPABILITIES;
10774 		ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10775 					LIBIPW_OFDM_DEFAULT_RATES_MASK);
10776 		break;
10777 
10778 	default:		/* Mixed or 2.4Ghz */
10779 		rates->ieee_mode = IPW_G_MODE;
10780 		rates->purpose = IPW_RATE_CAPABILITIES;
10781 		ipw_add_cck_scan_rates(rates, LIBIPW_CCK_MODULATION,
10782 				       LIBIPW_CCK_DEFAULT_RATES_MASK);
10783 		if (priv->ieee->modulation & LIBIPW_OFDM_MODULATION) {
10784 			ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10785 						LIBIPW_OFDM_DEFAULT_RATES_MASK);
10786 		}
10787 		break;
10788 	}
10789 
10790 	return 0;
10791 }
10792 
10793 static int ipw_config(struct ipw_priv *priv)
10794 {
10795 	/* This is only called from ipw_up, which resets/reloads the firmware
10796 	   so, we don't need to first disable the card before we configure
10797 	   it */
10798 	if (ipw_set_tx_power(priv))
10799 		goto error;
10800 
10801 	/* initialize adapter address */
10802 	if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10803 		goto error;
10804 
10805 	/* set basic system config settings */
10806 	init_sys_config(&priv->sys_config);
10807 
10808 	/* Support Bluetooth if we have BT h/w on board, and user wants to.
10809 	 * Does not support BT priority yet (don't abort or defer our Tx) */
10810 	if (bt_coexist) {
10811 		unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10812 
10813 		if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10814 			priv->sys_config.bt_coexistence
10815 			    |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10816 		if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10817 			priv->sys_config.bt_coexistence
10818 			    |= CFG_BT_COEXISTENCE_OOB;
10819 	}
10820 
10821 #ifdef CONFIG_IPW2200_PROMISCUOUS
10822 	if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10823 		priv->sys_config.accept_all_data_frames = 1;
10824 		priv->sys_config.accept_non_directed_frames = 1;
10825 		priv->sys_config.accept_all_mgmt_bcpr = 1;
10826 		priv->sys_config.accept_all_mgmt_frames = 1;
10827 	}
10828 #endif
10829 
10830 	if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10831 		priv->sys_config.answer_broadcast_ssid_probe = 1;
10832 	else
10833 		priv->sys_config.answer_broadcast_ssid_probe = 0;
10834 
10835 	if (ipw_send_system_config(priv))
10836 		goto error;
10837 
10838 	init_supported_rates(priv, &priv->rates);
10839 	if (ipw_send_supported_rates(priv, &priv->rates))
10840 		goto error;
10841 
10842 	/* Set request-to-send threshold */
10843 	if (priv->rts_threshold) {
10844 		if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10845 			goto error;
10846 	}
10847 #ifdef CONFIG_IPW2200_QOS
10848 	IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10849 	ipw_qos_activate(priv, NULL);
10850 #endif				/* CONFIG_IPW2200_QOS */
10851 
10852 	if (ipw_set_random_seed(priv))
10853 		goto error;
10854 
10855 	/* final state transition to the RUN state */
10856 	if (ipw_send_host_complete(priv))
10857 		goto error;
10858 
10859 	priv->status |= STATUS_INIT;
10860 
10861 	ipw_led_init(priv);
10862 	ipw_led_radio_on(priv);
10863 	priv->notif_missed_beacons = 0;
10864 
10865 	/* Set hardware WEP key if it is configured. */
10866 	if ((priv->capability & CAP_PRIVACY_ON) &&
10867 	    (priv->ieee->sec.level == SEC_LEVEL_1) &&
10868 	    !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10869 		ipw_set_hwcrypto_keys(priv);
10870 
10871 	return 0;
10872 
10873       error:
10874 	return -EIO;
10875 }
10876 
10877 /*
10878  * NOTE:
10879  *
10880  * These tables have been tested in conjunction with the
10881  * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10882  *
10883  * Altering this values, using it on other hardware, or in geographies
10884  * not intended for resale of the above mentioned Intel adapters has
10885  * not been tested.
10886  *
10887  * Remember to update the table in README.ipw2200 when changing this
10888  * table.
10889  *
10890  */
10891 static const struct libipw_geo ipw_geos[] = {
10892 	{			/* Restricted */
10893 	 "---",
10894 	 .bg_channels = 11,
10895 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10896 		{2427, 4}, {2432, 5}, {2437, 6},
10897 		{2442, 7}, {2447, 8}, {2452, 9},
10898 		{2457, 10}, {2462, 11}},
10899 	 },
10900 
10901 	{			/* Custom US/Canada */
10902 	 "ZZF",
10903 	 .bg_channels = 11,
10904 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10905 		{2427, 4}, {2432, 5}, {2437, 6},
10906 		{2442, 7}, {2447, 8}, {2452, 9},
10907 		{2457, 10}, {2462, 11}},
10908 	 .a_channels = 8,
10909 	 .a = {{5180, 36},
10910 	       {5200, 40},
10911 	       {5220, 44},
10912 	       {5240, 48},
10913 	       {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10914 	       {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10915 	       {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10916 	       {5320, 64, LIBIPW_CH_PASSIVE_ONLY}},
10917 	 },
10918 
10919 	{			/* Rest of World */
10920 	 "ZZD",
10921 	 .bg_channels = 13,
10922 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10923 		{2427, 4}, {2432, 5}, {2437, 6},
10924 		{2442, 7}, {2447, 8}, {2452, 9},
10925 		{2457, 10}, {2462, 11}, {2467, 12},
10926 		{2472, 13}},
10927 	 },
10928 
10929 	{			/* Custom USA & Europe & High */
10930 	 "ZZA",
10931 	 .bg_channels = 11,
10932 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10933 		{2427, 4}, {2432, 5}, {2437, 6},
10934 		{2442, 7}, {2447, 8}, {2452, 9},
10935 		{2457, 10}, {2462, 11}},
10936 	 .a_channels = 13,
10937 	 .a = {{5180, 36},
10938 	       {5200, 40},
10939 	       {5220, 44},
10940 	       {5240, 48},
10941 	       {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10942 	       {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10943 	       {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10944 	       {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
10945 	       {5745, 149},
10946 	       {5765, 153},
10947 	       {5785, 157},
10948 	       {5805, 161},
10949 	       {5825, 165}},
10950 	 },
10951 
10952 	{			/* Custom NA & Europe */
10953 	 "ZZB",
10954 	 .bg_channels = 11,
10955 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10956 		{2427, 4}, {2432, 5}, {2437, 6},
10957 		{2442, 7}, {2447, 8}, {2452, 9},
10958 		{2457, 10}, {2462, 11}},
10959 	 .a_channels = 13,
10960 	 .a = {{5180, 36},
10961 	       {5200, 40},
10962 	       {5220, 44},
10963 	       {5240, 48},
10964 	       {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10965 	       {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10966 	       {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10967 	       {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
10968 	       {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
10969 	       {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
10970 	       {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
10971 	       {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
10972 	       {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
10973 	 },
10974 
10975 	{			/* Custom Japan */
10976 	 "ZZC",
10977 	 .bg_channels = 11,
10978 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10979 		{2427, 4}, {2432, 5}, {2437, 6},
10980 		{2442, 7}, {2447, 8}, {2452, 9},
10981 		{2457, 10}, {2462, 11}},
10982 	 .a_channels = 4,
10983 	 .a = {{5170, 34}, {5190, 38},
10984 	       {5210, 42}, {5230, 46}},
10985 	 },
10986 
10987 	{			/* Custom */
10988 	 "ZZM",
10989 	 .bg_channels = 11,
10990 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10991 		{2427, 4}, {2432, 5}, {2437, 6},
10992 		{2442, 7}, {2447, 8}, {2452, 9},
10993 		{2457, 10}, {2462, 11}},
10994 	 },
10995 
10996 	{			/* Europe */
10997 	 "ZZE",
10998 	 .bg_channels = 13,
10999 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11000 		{2427, 4}, {2432, 5}, {2437, 6},
11001 		{2442, 7}, {2447, 8}, {2452, 9},
11002 		{2457, 10}, {2462, 11}, {2467, 12},
11003 		{2472, 13}},
11004 	 .a_channels = 19,
11005 	 .a = {{5180, 36},
11006 	       {5200, 40},
11007 	       {5220, 44},
11008 	       {5240, 48},
11009 	       {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11010 	       {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11011 	       {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11012 	       {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11013 	       {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11014 	       {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11015 	       {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11016 	       {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11017 	       {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11018 	       {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11019 	       {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11020 	       {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11021 	       {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11022 	       {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11023 	       {5700, 140, LIBIPW_CH_PASSIVE_ONLY}},
11024 	 },
11025 
11026 	{			/* Custom Japan */
11027 	 "ZZJ",
11028 	 .bg_channels = 14,
11029 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11030 		{2427, 4}, {2432, 5}, {2437, 6},
11031 		{2442, 7}, {2447, 8}, {2452, 9},
11032 		{2457, 10}, {2462, 11}, {2467, 12},
11033 		{2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY}},
11034 	 .a_channels = 4,
11035 	 .a = {{5170, 34}, {5190, 38},
11036 	       {5210, 42}, {5230, 46}},
11037 	 },
11038 
11039 	{			/* Rest of World */
11040 	 "ZZR",
11041 	 .bg_channels = 14,
11042 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11043 		{2427, 4}, {2432, 5}, {2437, 6},
11044 		{2442, 7}, {2447, 8}, {2452, 9},
11045 		{2457, 10}, {2462, 11}, {2467, 12},
11046 		{2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY |
11047 			     LIBIPW_CH_PASSIVE_ONLY}},
11048 	 },
11049 
11050 	{			/* High Band */
11051 	 "ZZH",
11052 	 .bg_channels = 13,
11053 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11054 		{2427, 4}, {2432, 5}, {2437, 6},
11055 		{2442, 7}, {2447, 8}, {2452, 9},
11056 		{2457, 10}, {2462, 11},
11057 		{2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11058 		{2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11059 	 .a_channels = 4,
11060 	 .a = {{5745, 149}, {5765, 153},
11061 	       {5785, 157}, {5805, 161}},
11062 	 },
11063 
11064 	{			/* Custom Europe */
11065 	 "ZZG",
11066 	 .bg_channels = 13,
11067 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11068 		{2427, 4}, {2432, 5}, {2437, 6},
11069 		{2442, 7}, {2447, 8}, {2452, 9},
11070 		{2457, 10}, {2462, 11},
11071 		{2467, 12}, {2472, 13}},
11072 	 .a_channels = 4,
11073 	 .a = {{5180, 36}, {5200, 40},
11074 	       {5220, 44}, {5240, 48}},
11075 	 },
11076 
11077 	{			/* Europe */
11078 	 "ZZK",
11079 	 .bg_channels = 13,
11080 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11081 		{2427, 4}, {2432, 5}, {2437, 6},
11082 		{2442, 7}, {2447, 8}, {2452, 9},
11083 		{2457, 10}, {2462, 11},
11084 		{2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11085 		{2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11086 	 .a_channels = 24,
11087 	 .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11088 	       {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11089 	       {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11090 	       {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11091 	       {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11092 	       {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11093 	       {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11094 	       {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11095 	       {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11096 	       {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11097 	       {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11098 	       {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11099 	       {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11100 	       {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11101 	       {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11102 	       {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11103 	       {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11104 	       {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11105 	       {5700, 140, LIBIPW_CH_PASSIVE_ONLY},
11106 	       {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11107 	       {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11108 	       {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11109 	       {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11110 	       {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11111 	 },
11112 
11113 	{			/* Europe */
11114 	 "ZZL",
11115 	 .bg_channels = 11,
11116 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11117 		{2427, 4}, {2432, 5}, {2437, 6},
11118 		{2442, 7}, {2447, 8}, {2452, 9},
11119 		{2457, 10}, {2462, 11}},
11120 	 .a_channels = 13,
11121 	 .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11122 	       {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11123 	       {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11124 	       {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11125 	       {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11126 	       {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11127 	       {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11128 	       {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11129 	       {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11130 	       {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11131 	       {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11132 	       {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11133 	       {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11134 	 }
11135 };
11136 
11137 static void ipw_set_geo(struct ipw_priv *priv)
11138 {
11139 	int j;
11140 
11141 	for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11142 		if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11143 			    ipw_geos[j].name, 3))
11144 			break;
11145 	}
11146 
11147 	if (j == ARRAY_SIZE(ipw_geos)) {
11148 		IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11149 			    priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11150 			    priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11151 			    priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11152 		j = 0;
11153 	}
11154 
11155 	libipw_set_geo(priv->ieee, &ipw_geos[j]);
11156 }
11157 
11158 #define MAX_HW_RESTARTS 5
11159 static int ipw_up(struct ipw_priv *priv)
11160 {
11161 	int rc, i;
11162 
11163 	/* Age scan list entries found before suspend */
11164 	if (priv->suspend_time) {
11165 		libipw_networks_age(priv->ieee, priv->suspend_time);
11166 		priv->suspend_time = 0;
11167 	}
11168 
11169 	if (priv->status & STATUS_EXIT_PENDING)
11170 		return -EIO;
11171 
11172 	if (cmdlog && !priv->cmdlog) {
11173 		priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
11174 				       GFP_KERNEL);
11175 		if (priv->cmdlog == NULL) {
11176 			IPW_ERROR("Error allocating %d command log entries.\n",
11177 				  cmdlog);
11178 			return -ENOMEM;
11179 		} else {
11180 			priv->cmdlog_len = cmdlog;
11181 		}
11182 	}
11183 
11184 	for (i = 0; i < MAX_HW_RESTARTS; i++) {
11185 		/* Load the microcode, firmware, and eeprom.
11186 		 * Also start the clocks. */
11187 		rc = ipw_load(priv);
11188 		if (rc) {
11189 			IPW_ERROR("Unable to load firmware: %d\n", rc);
11190 			return rc;
11191 		}
11192 
11193 		ipw_init_ordinals(priv);
11194 		if (!(priv->config & CFG_CUSTOM_MAC))
11195 			eeprom_parse_mac(priv, priv->mac_addr);
11196 		memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11197 
11198 		ipw_set_geo(priv);
11199 
11200 		if (priv->status & STATUS_RF_KILL_SW) {
11201 			IPW_WARNING("Radio disabled by module parameter.\n");
11202 			return 0;
11203 		} else if (rf_kill_active(priv)) {
11204 			IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11205 				    "Kill switch must be turned off for "
11206 				    "wireless networking to work.\n");
11207 			schedule_delayed_work(&priv->rf_kill, 2 * HZ);
11208 			return 0;
11209 		}
11210 
11211 		rc = ipw_config(priv);
11212 		if (!rc) {
11213 			IPW_DEBUG_INFO("Configured device on count %i\n", i);
11214 
11215 			/* If configure to try and auto-associate, kick
11216 			 * off a scan. */
11217 			schedule_delayed_work(&priv->request_scan, 0);
11218 
11219 			return 0;
11220 		}
11221 
11222 		IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11223 		IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11224 			       i, MAX_HW_RESTARTS);
11225 
11226 		/* We had an error bringing up the hardware, so take it
11227 		 * all the way back down so we can try again */
11228 		ipw_down(priv);
11229 	}
11230 
11231 	/* tried to restart and config the device for as long as our
11232 	 * patience could withstand */
11233 	IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11234 
11235 	return -EIO;
11236 }
11237 
11238 static void ipw_bg_up(struct work_struct *work)
11239 {
11240 	struct ipw_priv *priv =
11241 		container_of(work, struct ipw_priv, up);
11242 	mutex_lock(&priv->mutex);
11243 	ipw_up(priv);
11244 	mutex_unlock(&priv->mutex);
11245 }
11246 
11247 static void ipw_deinit(struct ipw_priv *priv)
11248 {
11249 	int i;
11250 
11251 	if (priv->status & STATUS_SCANNING) {
11252 		IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11253 		ipw_abort_scan(priv);
11254 	}
11255 
11256 	if (priv->status & STATUS_ASSOCIATED) {
11257 		IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11258 		ipw_disassociate(priv);
11259 	}
11260 
11261 	ipw_led_shutdown(priv);
11262 
11263 	/* Wait up to 1s for status to change to not scanning and not
11264 	 * associated (disassociation can take a while for a ful 802.11
11265 	 * exchange */
11266 	for (i = 1000; i && (priv->status &
11267 			     (STATUS_DISASSOCIATING |
11268 			      STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11269 		udelay(10);
11270 
11271 	if (priv->status & (STATUS_DISASSOCIATING |
11272 			    STATUS_ASSOCIATED | STATUS_SCANNING))
11273 		IPW_DEBUG_INFO("Still associated or scanning...\n");
11274 	else
11275 		IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11276 
11277 	/* Attempt to disable the card */
11278 	ipw_send_card_disable(priv, 0);
11279 
11280 	priv->status &= ~STATUS_INIT;
11281 }
11282 
11283 static void ipw_down(struct ipw_priv *priv)
11284 {
11285 	int exit_pending = priv->status & STATUS_EXIT_PENDING;
11286 
11287 	priv->status |= STATUS_EXIT_PENDING;
11288 
11289 	if (ipw_is_init(priv))
11290 		ipw_deinit(priv);
11291 
11292 	/* Wipe out the EXIT_PENDING status bit if we are not actually
11293 	 * exiting the module */
11294 	if (!exit_pending)
11295 		priv->status &= ~STATUS_EXIT_PENDING;
11296 
11297 	/* tell the device to stop sending interrupts */
11298 	ipw_disable_interrupts(priv);
11299 
11300 	/* Clear all bits but the RF Kill */
11301 	priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11302 	netif_carrier_off(priv->net_dev);
11303 
11304 	ipw_stop_nic(priv);
11305 
11306 	ipw_led_radio_off(priv);
11307 }
11308 
11309 static void ipw_bg_down(struct work_struct *work)
11310 {
11311 	struct ipw_priv *priv =
11312 		container_of(work, struct ipw_priv, down);
11313 	mutex_lock(&priv->mutex);
11314 	ipw_down(priv);
11315 	mutex_unlock(&priv->mutex);
11316 }
11317 
11318 static int ipw_wdev_init(struct net_device *dev)
11319 {
11320 	int i, rc = 0;
11321 	struct ipw_priv *priv = libipw_priv(dev);
11322 	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
11323 	struct wireless_dev *wdev = &priv->ieee->wdev;
11324 
11325 	memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
11326 
11327 	/* fill-out priv->ieee->bg_band */
11328 	if (geo->bg_channels) {
11329 		struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
11330 
11331 		bg_band->band = NL80211_BAND_2GHZ;
11332 		bg_band->n_channels = geo->bg_channels;
11333 		bg_band->channels = kcalloc(geo->bg_channels,
11334 					    sizeof(struct ieee80211_channel),
11335 					    GFP_KERNEL);
11336 		if (!bg_band->channels) {
11337 			rc = -ENOMEM;
11338 			goto out;
11339 		}
11340 		/* translate geo->bg to bg_band.channels */
11341 		for (i = 0; i < geo->bg_channels; i++) {
11342 			bg_band->channels[i].band = NL80211_BAND_2GHZ;
11343 			bg_band->channels[i].center_freq = geo->bg[i].freq;
11344 			bg_band->channels[i].hw_value = geo->bg[i].channel;
11345 			bg_band->channels[i].max_power = geo->bg[i].max_power;
11346 			if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11347 				bg_band->channels[i].flags |=
11348 					IEEE80211_CHAN_NO_IR;
11349 			if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
11350 				bg_band->channels[i].flags |=
11351 					IEEE80211_CHAN_NO_IR;
11352 			if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
11353 				bg_band->channels[i].flags |=
11354 					IEEE80211_CHAN_RADAR;
11355 			/* No equivalent for LIBIPW_CH_80211H_RULES,
11356 			   LIBIPW_CH_UNIFORM_SPREADING, or
11357 			   LIBIPW_CH_B_ONLY... */
11358 		}
11359 		/* point at bitrate info */
11360 		bg_band->bitrates = ipw2200_bg_rates;
11361 		bg_band->n_bitrates = ipw2200_num_bg_rates;
11362 
11363 		wdev->wiphy->bands[NL80211_BAND_2GHZ] = bg_band;
11364 	}
11365 
11366 	/* fill-out priv->ieee->a_band */
11367 	if (geo->a_channels) {
11368 		struct ieee80211_supported_band *a_band = &priv->ieee->a_band;
11369 
11370 		a_band->band = NL80211_BAND_5GHZ;
11371 		a_band->n_channels = geo->a_channels;
11372 		a_band->channels = kcalloc(geo->a_channels,
11373 					   sizeof(struct ieee80211_channel),
11374 					   GFP_KERNEL);
11375 		if (!a_band->channels) {
11376 			rc = -ENOMEM;
11377 			goto out;
11378 		}
11379 		/* translate geo->a to a_band.channels */
11380 		for (i = 0; i < geo->a_channels; i++) {
11381 			a_band->channels[i].band = NL80211_BAND_5GHZ;
11382 			a_band->channels[i].center_freq = geo->a[i].freq;
11383 			a_band->channels[i].hw_value = geo->a[i].channel;
11384 			a_band->channels[i].max_power = geo->a[i].max_power;
11385 			if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11386 				a_band->channels[i].flags |=
11387 					IEEE80211_CHAN_NO_IR;
11388 			if (geo->a[i].flags & LIBIPW_CH_NO_IBSS)
11389 				a_band->channels[i].flags |=
11390 					IEEE80211_CHAN_NO_IR;
11391 			if (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT)
11392 				a_band->channels[i].flags |=
11393 					IEEE80211_CHAN_RADAR;
11394 			/* No equivalent for LIBIPW_CH_80211H_RULES,
11395 			   LIBIPW_CH_UNIFORM_SPREADING, or
11396 			   LIBIPW_CH_B_ONLY... */
11397 		}
11398 		/* point at bitrate info */
11399 		a_band->bitrates = ipw2200_a_rates;
11400 		a_band->n_bitrates = ipw2200_num_a_rates;
11401 
11402 		wdev->wiphy->bands[NL80211_BAND_5GHZ] = a_band;
11403 	}
11404 
11405 	wdev->wiphy->cipher_suites = ipw_cipher_suites;
11406 	wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
11407 
11408 	set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
11409 
11410 	/* With that information in place, we can now register the wiphy... */
11411 	if (wiphy_register(wdev->wiphy))
11412 		rc = -EIO;
11413 out:
11414 	return rc;
11415 }
11416 
11417 /* PCI driver stuff */
11418 static const struct pci_device_id card_ids[] = {
11419 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11420 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11421 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11422 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11423 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11424 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11425 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11426 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11427 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11428 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11429 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11430 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11431 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11432 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11433 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11434 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11435 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11436 	{PCI_VDEVICE(INTEL, 0x104f), 0},
11437 	{PCI_VDEVICE(INTEL, 0x4220), 0},	/* BG */
11438 	{PCI_VDEVICE(INTEL, 0x4221), 0},	/* BG */
11439 	{PCI_VDEVICE(INTEL, 0x4223), 0},	/* ABG */
11440 	{PCI_VDEVICE(INTEL, 0x4224), 0},	/* ABG */
11441 
11442 	/* required last entry */
11443 	{0,}
11444 };
11445 
11446 MODULE_DEVICE_TABLE(pci, card_ids);
11447 
11448 static struct attribute *ipw_sysfs_entries[] = {
11449 	&dev_attr_rf_kill.attr,
11450 	&dev_attr_direct_dword.attr,
11451 	&dev_attr_indirect_byte.attr,
11452 	&dev_attr_indirect_dword.attr,
11453 	&dev_attr_mem_gpio_reg.attr,
11454 	&dev_attr_command_event_reg.attr,
11455 	&dev_attr_nic_type.attr,
11456 	&dev_attr_status.attr,
11457 	&dev_attr_cfg.attr,
11458 	&dev_attr_error.attr,
11459 	&dev_attr_event_log.attr,
11460 	&dev_attr_cmd_log.attr,
11461 	&dev_attr_eeprom_delay.attr,
11462 	&dev_attr_ucode_version.attr,
11463 	&dev_attr_rtc.attr,
11464 	&dev_attr_scan_age.attr,
11465 	&dev_attr_led.attr,
11466 	&dev_attr_speed_scan.attr,
11467 	&dev_attr_net_stats.attr,
11468 	&dev_attr_channels.attr,
11469 #ifdef CONFIG_IPW2200_PROMISCUOUS
11470 	&dev_attr_rtap_iface.attr,
11471 	&dev_attr_rtap_filter.attr,
11472 #endif
11473 	NULL
11474 };
11475 
11476 static const struct attribute_group ipw_attribute_group = {
11477 	.name = NULL,		/* put in device directory */
11478 	.attrs = ipw_sysfs_entries,
11479 };
11480 
11481 #ifdef CONFIG_IPW2200_PROMISCUOUS
11482 static int ipw_prom_open(struct net_device *dev)
11483 {
11484 	struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11485 	struct ipw_priv *priv = prom_priv->priv;
11486 
11487 	IPW_DEBUG_INFO("prom dev->open\n");
11488 	netif_carrier_off(dev);
11489 
11490 	if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11491 		priv->sys_config.accept_all_data_frames = 1;
11492 		priv->sys_config.accept_non_directed_frames = 1;
11493 		priv->sys_config.accept_all_mgmt_bcpr = 1;
11494 		priv->sys_config.accept_all_mgmt_frames = 1;
11495 
11496 		ipw_send_system_config(priv);
11497 	}
11498 
11499 	return 0;
11500 }
11501 
11502 static int ipw_prom_stop(struct net_device *dev)
11503 {
11504 	struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11505 	struct ipw_priv *priv = prom_priv->priv;
11506 
11507 	IPW_DEBUG_INFO("prom dev->stop\n");
11508 
11509 	if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11510 		priv->sys_config.accept_all_data_frames = 0;
11511 		priv->sys_config.accept_non_directed_frames = 0;
11512 		priv->sys_config.accept_all_mgmt_bcpr = 0;
11513 		priv->sys_config.accept_all_mgmt_frames = 0;
11514 
11515 		ipw_send_system_config(priv);
11516 	}
11517 
11518 	return 0;
11519 }
11520 
11521 static netdev_tx_t ipw_prom_hard_start_xmit(struct sk_buff *skb,
11522 					    struct net_device *dev)
11523 {
11524 	IPW_DEBUG_INFO("prom dev->xmit\n");
11525 	dev_kfree_skb(skb);
11526 	return NETDEV_TX_OK;
11527 }
11528 
11529 static const struct net_device_ops ipw_prom_netdev_ops = {
11530 	.ndo_open 		= ipw_prom_open,
11531 	.ndo_stop		= ipw_prom_stop,
11532 	.ndo_start_xmit		= ipw_prom_hard_start_xmit,
11533 	.ndo_set_mac_address 	= eth_mac_addr,
11534 	.ndo_validate_addr	= eth_validate_addr,
11535 };
11536 
11537 static int ipw_prom_alloc(struct ipw_priv *priv)
11538 {
11539 	int rc = 0;
11540 
11541 	if (priv->prom_net_dev)
11542 		return -EPERM;
11543 
11544 	priv->prom_net_dev = alloc_libipw(sizeof(struct ipw_prom_priv), 1);
11545 	if (priv->prom_net_dev == NULL)
11546 		return -ENOMEM;
11547 
11548 	priv->prom_priv = libipw_priv(priv->prom_net_dev);
11549 	priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11550 	priv->prom_priv->priv = priv;
11551 
11552 	strcpy(priv->prom_net_dev->name, "rtap%d");
11553 	memcpy(priv->prom_net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11554 
11555 	priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11556 	priv->prom_net_dev->netdev_ops = &ipw_prom_netdev_ops;
11557 
11558 	priv->prom_net_dev->min_mtu = 68;
11559 	priv->prom_net_dev->max_mtu = LIBIPW_DATA_LEN;
11560 
11561 	priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11562 	SET_NETDEV_DEV(priv->prom_net_dev, &priv->pci_dev->dev);
11563 
11564 	rc = register_netdev(priv->prom_net_dev);
11565 	if (rc) {
11566 		free_libipw(priv->prom_net_dev, 1);
11567 		priv->prom_net_dev = NULL;
11568 		return rc;
11569 	}
11570 
11571 	return 0;
11572 }
11573 
11574 static void ipw_prom_free(struct ipw_priv *priv)
11575 {
11576 	if (!priv->prom_net_dev)
11577 		return;
11578 
11579 	unregister_netdev(priv->prom_net_dev);
11580 	free_libipw(priv->prom_net_dev, 1);
11581 
11582 	priv->prom_net_dev = NULL;
11583 }
11584 
11585 #endif
11586 
11587 static const struct net_device_ops ipw_netdev_ops = {
11588 	.ndo_open		= ipw_net_open,
11589 	.ndo_stop		= ipw_net_stop,
11590 	.ndo_set_rx_mode	= ipw_net_set_multicast_list,
11591 	.ndo_set_mac_address	= ipw_net_set_mac_address,
11592 	.ndo_start_xmit		= libipw_xmit,
11593 	.ndo_validate_addr	= eth_validate_addr,
11594 };
11595 
11596 static int ipw_pci_probe(struct pci_dev *pdev,
11597 				   const struct pci_device_id *ent)
11598 {
11599 	int err = 0;
11600 	struct net_device *net_dev;
11601 	void __iomem *base;
11602 	u32 length, val;
11603 	struct ipw_priv *priv;
11604 	int i;
11605 
11606 	net_dev = alloc_libipw(sizeof(struct ipw_priv), 0);
11607 	if (net_dev == NULL) {
11608 		err = -ENOMEM;
11609 		goto out;
11610 	}
11611 
11612 	priv = libipw_priv(net_dev);
11613 	priv->ieee = netdev_priv(net_dev);
11614 
11615 	priv->net_dev = net_dev;
11616 	priv->pci_dev = pdev;
11617 	ipw_debug_level = debug;
11618 	spin_lock_init(&priv->irq_lock);
11619 	spin_lock_init(&priv->lock);
11620 	for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11621 		INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11622 
11623 	mutex_init(&priv->mutex);
11624 	if (pci_enable_device(pdev)) {
11625 		err = -ENODEV;
11626 		goto out_free_libipw;
11627 	}
11628 
11629 	pci_set_master(pdev);
11630 
11631 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
11632 	if (!err)
11633 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
11634 	if (err) {
11635 		printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11636 		goto out_pci_disable_device;
11637 	}
11638 
11639 	pci_set_drvdata(pdev, priv);
11640 
11641 	err = pci_request_regions(pdev, DRV_NAME);
11642 	if (err)
11643 		goto out_pci_disable_device;
11644 
11645 	/* We disable the RETRY_TIMEOUT register (0x41) to keep
11646 	 * PCI Tx retries from interfering with C3 CPU state */
11647 	pci_read_config_dword(pdev, 0x40, &val);
11648 	if ((val & 0x0000ff00) != 0)
11649 		pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11650 
11651 	length = pci_resource_len(pdev, 0);
11652 	priv->hw_len = length;
11653 
11654 	base = pci_ioremap_bar(pdev, 0);
11655 	if (!base) {
11656 		err = -ENODEV;
11657 		goto out_pci_release_regions;
11658 	}
11659 
11660 	priv->hw_base = base;
11661 	IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11662 	IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11663 
11664 	err = ipw_setup_deferred_work(priv);
11665 	if (err) {
11666 		IPW_ERROR("Unable to setup deferred work\n");
11667 		goto out_iounmap;
11668 	}
11669 
11670 	ipw_sw_reset(priv, 1);
11671 
11672 	err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11673 	if (err) {
11674 		IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11675 		goto out_iounmap;
11676 	}
11677 
11678 	SET_NETDEV_DEV(net_dev, &pdev->dev);
11679 
11680 	mutex_lock(&priv->mutex);
11681 
11682 	priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11683 	priv->ieee->set_security = shim__set_security;
11684 	priv->ieee->is_queue_full = ipw_net_is_queue_full;
11685 
11686 #ifdef CONFIG_IPW2200_QOS
11687 	priv->ieee->is_qos_active = ipw_is_qos_active;
11688 	priv->ieee->handle_probe_response = ipw_handle_beacon;
11689 	priv->ieee->handle_beacon = ipw_handle_probe_response;
11690 	priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11691 #endif				/* CONFIG_IPW2200_QOS */
11692 
11693 	priv->ieee->perfect_rssi = -20;
11694 	priv->ieee->worst_rssi = -85;
11695 
11696 	net_dev->netdev_ops = &ipw_netdev_ops;
11697 	priv->wireless_data.spy_data = &priv->ieee->spy_data;
11698 	net_dev->wireless_data = &priv->wireless_data;
11699 	net_dev->wireless_handlers = &ipw_wx_handler_def;
11700 	net_dev->ethtool_ops = &ipw_ethtool_ops;
11701 
11702 	net_dev->min_mtu = 68;
11703 	net_dev->max_mtu = LIBIPW_DATA_LEN;
11704 
11705 	err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11706 	if (err) {
11707 		IPW_ERROR("failed to create sysfs device attributes\n");
11708 		mutex_unlock(&priv->mutex);
11709 		goto out_release_irq;
11710 	}
11711 
11712 	if (ipw_up(priv)) {
11713 		mutex_unlock(&priv->mutex);
11714 		err = -EIO;
11715 		goto out_remove_sysfs;
11716 	}
11717 
11718 	mutex_unlock(&priv->mutex);
11719 
11720 	err = ipw_wdev_init(net_dev);
11721 	if (err) {
11722 		IPW_ERROR("failed to register wireless device\n");
11723 		goto out_remove_sysfs;
11724 	}
11725 
11726 	err = register_netdev(net_dev);
11727 	if (err) {
11728 		IPW_ERROR("failed to register network device\n");
11729 		goto out_unregister_wiphy;
11730 	}
11731 
11732 #ifdef CONFIG_IPW2200_PROMISCUOUS
11733 	if (rtap_iface) {
11734 	        err = ipw_prom_alloc(priv);
11735 		if (err) {
11736 			IPW_ERROR("Failed to register promiscuous network "
11737 				  "device (error %d).\n", err);
11738 			unregister_netdev(priv->net_dev);
11739 			goto out_unregister_wiphy;
11740 		}
11741 	}
11742 #endif
11743 
11744 	printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11745 	       "channels, %d 802.11a channels)\n",
11746 	       priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11747 	       priv->ieee->geo.a_channels);
11748 
11749 	return 0;
11750 
11751       out_unregister_wiphy:
11752 	wiphy_unregister(priv->ieee->wdev.wiphy);
11753 	kfree(priv->ieee->a_band.channels);
11754 	kfree(priv->ieee->bg_band.channels);
11755       out_remove_sysfs:
11756 	sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11757       out_release_irq:
11758 	free_irq(pdev->irq, priv);
11759       out_iounmap:
11760 	iounmap(priv->hw_base);
11761       out_pci_release_regions:
11762 	pci_release_regions(pdev);
11763       out_pci_disable_device:
11764 	pci_disable_device(pdev);
11765       out_free_libipw:
11766 	free_libipw(priv->net_dev, 0);
11767       out:
11768 	return err;
11769 }
11770 
11771 static void ipw_pci_remove(struct pci_dev *pdev)
11772 {
11773 	struct ipw_priv *priv = pci_get_drvdata(pdev);
11774 	struct list_head *p, *q;
11775 	int i;
11776 
11777 	if (!priv)
11778 		return;
11779 
11780 	mutex_lock(&priv->mutex);
11781 
11782 	priv->status |= STATUS_EXIT_PENDING;
11783 	ipw_down(priv);
11784 	sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11785 
11786 	mutex_unlock(&priv->mutex);
11787 
11788 	unregister_netdev(priv->net_dev);
11789 
11790 	if (priv->rxq) {
11791 		ipw_rx_queue_free(priv, priv->rxq);
11792 		priv->rxq = NULL;
11793 	}
11794 	ipw_tx_queue_free(priv);
11795 
11796 	if (priv->cmdlog) {
11797 		kfree(priv->cmdlog);
11798 		priv->cmdlog = NULL;
11799 	}
11800 
11801 	/* make sure all works are inactive */
11802 	cancel_delayed_work_sync(&priv->adhoc_check);
11803 	cancel_work_sync(&priv->associate);
11804 	cancel_work_sync(&priv->disassociate);
11805 	cancel_work_sync(&priv->system_config);
11806 	cancel_work_sync(&priv->rx_replenish);
11807 	cancel_work_sync(&priv->adapter_restart);
11808 	cancel_delayed_work_sync(&priv->rf_kill);
11809 	cancel_work_sync(&priv->up);
11810 	cancel_work_sync(&priv->down);
11811 	cancel_delayed_work_sync(&priv->request_scan);
11812 	cancel_delayed_work_sync(&priv->request_direct_scan);
11813 	cancel_delayed_work_sync(&priv->request_passive_scan);
11814 	cancel_delayed_work_sync(&priv->scan_event);
11815 	cancel_delayed_work_sync(&priv->gather_stats);
11816 	cancel_work_sync(&priv->abort_scan);
11817 	cancel_work_sync(&priv->roam);
11818 	cancel_delayed_work_sync(&priv->scan_check);
11819 	cancel_work_sync(&priv->link_up);
11820 	cancel_work_sync(&priv->link_down);
11821 	cancel_delayed_work_sync(&priv->led_link_on);
11822 	cancel_delayed_work_sync(&priv->led_link_off);
11823 	cancel_delayed_work_sync(&priv->led_act_off);
11824 	cancel_work_sync(&priv->merge_networks);
11825 
11826 	/* Free MAC hash list for ADHOC */
11827 	for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11828 		list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11829 			list_del(p);
11830 			kfree(list_entry(p, struct ipw_ibss_seq, list));
11831 		}
11832 	}
11833 
11834 	kfree(priv->error);
11835 	priv->error = NULL;
11836 
11837 #ifdef CONFIG_IPW2200_PROMISCUOUS
11838 	ipw_prom_free(priv);
11839 #endif
11840 
11841 	free_irq(pdev->irq, priv);
11842 	iounmap(priv->hw_base);
11843 	pci_release_regions(pdev);
11844 	pci_disable_device(pdev);
11845 	/* wiphy_unregister needs to be here, before free_libipw */
11846 	wiphy_unregister(priv->ieee->wdev.wiphy);
11847 	kfree(priv->ieee->a_band.channels);
11848 	kfree(priv->ieee->bg_band.channels);
11849 	free_libipw(priv->net_dev, 0);
11850 	free_firmware();
11851 }
11852 
11853 #ifdef CONFIG_PM
11854 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11855 {
11856 	struct ipw_priv *priv = pci_get_drvdata(pdev);
11857 	struct net_device *dev = priv->net_dev;
11858 
11859 	printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11860 
11861 	/* Take down the device; powers it off, etc. */
11862 	ipw_down(priv);
11863 
11864 	/* Remove the PRESENT state of the device */
11865 	netif_device_detach(dev);
11866 
11867 	pci_save_state(pdev);
11868 	pci_disable_device(pdev);
11869 	pci_set_power_state(pdev, pci_choose_state(pdev, state));
11870 
11871 	priv->suspend_at = ktime_get_boottime_seconds();
11872 
11873 	return 0;
11874 }
11875 
11876 static int ipw_pci_resume(struct pci_dev *pdev)
11877 {
11878 	struct ipw_priv *priv = pci_get_drvdata(pdev);
11879 	struct net_device *dev = priv->net_dev;
11880 	int err;
11881 	u32 val;
11882 
11883 	printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11884 
11885 	pci_set_power_state(pdev, PCI_D0);
11886 	err = pci_enable_device(pdev);
11887 	if (err) {
11888 		printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
11889 		       dev->name);
11890 		return err;
11891 	}
11892 	pci_restore_state(pdev);
11893 
11894 	/*
11895 	 * Suspend/Resume resets the PCI configuration space, so we have to
11896 	 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11897 	 * from interfering with C3 CPU state. pci_restore_state won't help
11898 	 * here since it only restores the first 64 bytes pci config header.
11899 	 */
11900 	pci_read_config_dword(pdev, 0x40, &val);
11901 	if ((val & 0x0000ff00) != 0)
11902 		pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11903 
11904 	/* Set the device back into the PRESENT state; this will also wake
11905 	 * the queue of needed */
11906 	netif_device_attach(dev);
11907 
11908 	priv->suspend_time = ktime_get_boottime_seconds() - priv->suspend_at;
11909 
11910 	/* Bring the device back up */
11911 	schedule_work(&priv->up);
11912 
11913 	return 0;
11914 }
11915 #endif
11916 
11917 static void ipw_pci_shutdown(struct pci_dev *pdev)
11918 {
11919 	struct ipw_priv *priv = pci_get_drvdata(pdev);
11920 
11921 	/* Take down the device; powers it off, etc. */
11922 	ipw_down(priv);
11923 
11924 	pci_disable_device(pdev);
11925 }
11926 
11927 /* driver initialization stuff */
11928 static struct pci_driver ipw_driver = {
11929 	.name = DRV_NAME,
11930 	.id_table = card_ids,
11931 	.probe = ipw_pci_probe,
11932 	.remove = ipw_pci_remove,
11933 #ifdef CONFIG_PM
11934 	.suspend = ipw_pci_suspend,
11935 	.resume = ipw_pci_resume,
11936 #endif
11937 	.shutdown = ipw_pci_shutdown,
11938 };
11939 
11940 static int __init ipw_init(void)
11941 {
11942 	int ret;
11943 
11944 	printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11945 	printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11946 
11947 	ret = pci_register_driver(&ipw_driver);
11948 	if (ret) {
11949 		IPW_ERROR("Unable to initialize PCI module\n");
11950 		return ret;
11951 	}
11952 
11953 	ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11954 	if (ret) {
11955 		IPW_ERROR("Unable to create driver sysfs file\n");
11956 		pci_unregister_driver(&ipw_driver);
11957 		return ret;
11958 	}
11959 
11960 	return ret;
11961 }
11962 
11963 static void __exit ipw_exit(void)
11964 {
11965 	driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11966 	pci_unregister_driver(&ipw_driver);
11967 }
11968 
11969 module_param(disable, int, 0444);
11970 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11971 
11972 module_param(associate, int, 0444);
11973 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
11974 
11975 module_param(auto_create, int, 0444);
11976 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
11977 
11978 module_param_named(led, led_support, int, 0444);
11979 MODULE_PARM_DESC(led, "enable led control on some systems (default 1 on)");
11980 
11981 module_param(debug, int, 0444);
11982 MODULE_PARM_DESC(debug, "debug output mask");
11983 
11984 module_param_named(channel, default_channel, int, 0444);
11985 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
11986 
11987 #ifdef CONFIG_IPW2200_PROMISCUOUS
11988 module_param(rtap_iface, int, 0444);
11989 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
11990 #endif
11991 
11992 #ifdef CONFIG_IPW2200_QOS
11993 module_param(qos_enable, int, 0444);
11994 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalities");
11995 
11996 module_param(qos_burst_enable, int, 0444);
11997 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
11998 
11999 module_param(qos_no_ack_mask, int, 0444);
12000 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
12001 
12002 module_param(burst_duration_CCK, int, 0444);
12003 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
12004 
12005 module_param(burst_duration_OFDM, int, 0444);
12006 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
12007 #endif				/* CONFIG_IPW2200_QOS */
12008 
12009 #ifdef CONFIG_IPW2200_MONITOR
12010 module_param_named(mode, network_mode, int, 0444);
12011 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
12012 #else
12013 module_param_named(mode, network_mode, int, 0444);
12014 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
12015 #endif
12016 
12017 module_param(bt_coexist, int, 0444);
12018 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
12019 
12020 module_param(hwcrypto, int, 0444);
12021 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
12022 
12023 module_param(cmdlog, int, 0444);
12024 MODULE_PARM_DESC(cmdlog,
12025 		 "allocate a ring buffer for logging firmware commands");
12026 
12027 module_param(roaming, int, 0444);
12028 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
12029 
12030 module_param(antenna, int, 0444);
12031 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
12032 
12033 module_exit(ipw_exit);
12034 module_init(ipw_init);
12035