1 /******************************************************************************
2 
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4 
5   802.11 status code portion of this file from ethereal-0.10.6:
6     Copyright 2000, Axis Communications AB
7     Ethereal - Network traffic analyzer
8     By Gerald Combs <gerald@ethereal.com>
9     Copyright 1998 Gerald Combs
10 
11   This program is free software; you can redistribute it and/or modify it
12   under the terms of version 2 of the GNU General Public License as
13   published by the Free Software Foundation.
14 
15   This program is distributed in the hope that it will be useful, but WITHOUT
16   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
18   more details.
19 
20   You should have received a copy of the GNU General Public License along with
21   this program; if not, write to the Free Software Foundation, Inc., 59
22   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
23 
24   The full GNU General Public License is included in this distribution in the
25   file called LICENSE.
26 
27   Contact Information:
28   Intel Linux Wireless <ilw@linux.intel.com>
29   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30 
31 ******************************************************************************/
32 
33 #include <linux/sched.h>
34 #include <linux/slab.h>
35 #include <net/cfg80211-wext.h>
36 #include "ipw2200.h"
37 #include "ipw.h"
38 
39 
40 #ifndef KBUILD_EXTMOD
41 #define VK "k"
42 #else
43 #define VK
44 #endif
45 
46 #ifdef CONFIG_IPW2200_DEBUG
47 #define VD "d"
48 #else
49 #define VD
50 #endif
51 
52 #ifdef CONFIG_IPW2200_MONITOR
53 #define VM "m"
54 #else
55 #define VM
56 #endif
57 
58 #ifdef CONFIG_IPW2200_PROMISCUOUS
59 #define VP "p"
60 #else
61 #define VP
62 #endif
63 
64 #ifdef CONFIG_IPW2200_RADIOTAP
65 #define VR "r"
66 #else
67 #define VR
68 #endif
69 
70 #ifdef CONFIG_IPW2200_QOS
71 #define VQ "q"
72 #else
73 #define VQ
74 #endif
75 
76 #define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
77 #define DRV_DESCRIPTION	"Intel(R) PRO/Wireless 2200/2915 Network Driver"
78 #define DRV_COPYRIGHT	"Copyright(c) 2003-2006 Intel Corporation"
79 #define DRV_VERSION     IPW2200_VERSION
80 
81 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
82 
83 MODULE_DESCRIPTION(DRV_DESCRIPTION);
84 MODULE_VERSION(DRV_VERSION);
85 MODULE_AUTHOR(DRV_COPYRIGHT);
86 MODULE_LICENSE("GPL");
87 MODULE_FIRMWARE("ipw2200-ibss.fw");
88 #ifdef CONFIG_IPW2200_MONITOR
89 MODULE_FIRMWARE("ipw2200-sniffer.fw");
90 #endif
91 MODULE_FIRMWARE("ipw2200-bss.fw");
92 
93 static int cmdlog = 0;
94 static int debug = 0;
95 static int default_channel = 0;
96 static int network_mode = 0;
97 
98 static u32 ipw_debug_level;
99 static int associate;
100 static int auto_create = 1;
101 static int led_support = 1;
102 static int disable = 0;
103 static int bt_coexist = 0;
104 static int hwcrypto = 0;
105 static int roaming = 1;
106 static const char ipw_modes[] = {
107 	'a', 'b', 'g', '?'
108 };
109 static int antenna = CFG_SYS_ANTENNA_BOTH;
110 
111 #ifdef CONFIG_IPW2200_PROMISCUOUS
112 static int rtap_iface = 0;     /* def: 0 -- do not create rtap interface */
113 #endif
114 
115 static struct ieee80211_rate ipw2200_rates[] = {
116 	{ .bitrate = 10 },
117 	{ .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
118 	{ .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
119 	{ .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
120 	{ .bitrate = 60 },
121 	{ .bitrate = 90 },
122 	{ .bitrate = 120 },
123 	{ .bitrate = 180 },
124 	{ .bitrate = 240 },
125 	{ .bitrate = 360 },
126 	{ .bitrate = 480 },
127 	{ .bitrate = 540 }
128 };
129 
130 #define ipw2200_a_rates		(ipw2200_rates + 4)
131 #define ipw2200_num_a_rates	8
132 #define ipw2200_bg_rates	(ipw2200_rates + 0)
133 #define ipw2200_num_bg_rates	12
134 
135 /* Ugly macro to convert literal channel numbers into their mhz equivalents
136  * There are certianly some conditions that will break this (like feeding it '30')
137  * but they shouldn't arise since nothing talks on channel 30. */
138 #define ieee80211chan2mhz(x) \
139 	(((x) <= 14) ? \
140 	(((x) == 14) ? 2484 : ((x) * 5) + 2407) : \
141 	((x) + 1000) * 5)
142 
143 #ifdef CONFIG_IPW2200_QOS
144 static int qos_enable = 0;
145 static int qos_burst_enable = 0;
146 static int qos_no_ack_mask = 0;
147 static int burst_duration_CCK = 0;
148 static int burst_duration_OFDM = 0;
149 
150 static struct libipw_qos_parameters def_qos_parameters_OFDM = {
151 	{QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
152 	 QOS_TX3_CW_MIN_OFDM},
153 	{QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
154 	 QOS_TX3_CW_MAX_OFDM},
155 	{QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
156 	{QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
157 	{QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
158 	 QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
159 };
160 
161 static struct libipw_qos_parameters def_qos_parameters_CCK = {
162 	{QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
163 	 QOS_TX3_CW_MIN_CCK},
164 	{QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
165 	 QOS_TX3_CW_MAX_CCK},
166 	{QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
167 	{QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
168 	{QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
169 	 QOS_TX3_TXOP_LIMIT_CCK}
170 };
171 
172 static struct libipw_qos_parameters def_parameters_OFDM = {
173 	{DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
174 	 DEF_TX3_CW_MIN_OFDM},
175 	{DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
176 	 DEF_TX3_CW_MAX_OFDM},
177 	{DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
178 	{DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
179 	{DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
180 	 DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
181 };
182 
183 static struct libipw_qos_parameters def_parameters_CCK = {
184 	{DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
185 	 DEF_TX3_CW_MIN_CCK},
186 	{DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
187 	 DEF_TX3_CW_MAX_CCK},
188 	{DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
189 	{DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
190 	{DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
191 	 DEF_TX3_TXOP_LIMIT_CCK}
192 };
193 
194 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
195 
196 static int from_priority_to_tx_queue[] = {
197 	IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
198 	IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
199 };
200 
201 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
202 
203 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
204 				       *qos_param);
205 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
206 				     *qos_param);
207 #endif				/* CONFIG_IPW2200_QOS */
208 
209 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
210 static void ipw_remove_current_network(struct ipw_priv *priv);
211 static void ipw_rx(struct ipw_priv *priv);
212 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
213 				struct clx2_tx_queue *txq, int qindex);
214 static int ipw_queue_reset(struct ipw_priv *priv);
215 
216 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
217 			     int len, int sync);
218 
219 static void ipw_tx_queue_free(struct ipw_priv *);
220 
221 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
222 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
223 static void ipw_rx_queue_replenish(void *);
224 static int ipw_up(struct ipw_priv *);
225 static void ipw_bg_up(struct work_struct *work);
226 static void ipw_down(struct ipw_priv *);
227 static void ipw_bg_down(struct work_struct *work);
228 static int ipw_config(struct ipw_priv *);
229 static int init_supported_rates(struct ipw_priv *priv,
230 				struct ipw_supported_rates *prates);
231 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
232 static void ipw_send_wep_keys(struct ipw_priv *, int);
233 
234 static int snprint_line(char *buf, size_t count,
235 			const u8 * data, u32 len, u32 ofs)
236 {
237 	int out, i, j, l;
238 	char c;
239 
240 	out = snprintf(buf, count, "%08X", ofs);
241 
242 	for (l = 0, i = 0; i < 2; i++) {
243 		out += snprintf(buf + out, count - out, " ");
244 		for (j = 0; j < 8 && l < len; j++, l++)
245 			out += snprintf(buf + out, count - out, "%02X ",
246 					data[(i * 8 + j)]);
247 		for (; j < 8; j++)
248 			out += snprintf(buf + out, count - out, "   ");
249 	}
250 
251 	out += snprintf(buf + out, count - out, " ");
252 	for (l = 0, i = 0; i < 2; i++) {
253 		out += snprintf(buf + out, count - out, " ");
254 		for (j = 0; j < 8 && l < len; j++, l++) {
255 			c = data[(i * 8 + j)];
256 			if (!isascii(c) || !isprint(c))
257 				c = '.';
258 
259 			out += snprintf(buf + out, count - out, "%c", c);
260 		}
261 
262 		for (; j < 8; j++)
263 			out += snprintf(buf + out, count - out, " ");
264 	}
265 
266 	return out;
267 }
268 
269 static void printk_buf(int level, const u8 * data, u32 len)
270 {
271 	char line[81];
272 	u32 ofs = 0;
273 	if (!(ipw_debug_level & level))
274 		return;
275 
276 	while (len) {
277 		snprint_line(line, sizeof(line), &data[ofs],
278 			     min(len, 16U), ofs);
279 		printk(KERN_DEBUG "%s\n", line);
280 		ofs += 16;
281 		len -= min(len, 16U);
282 	}
283 }
284 
285 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
286 {
287 	size_t out = size;
288 	u32 ofs = 0;
289 	int total = 0;
290 
291 	while (size && len) {
292 		out = snprint_line(output, size, &data[ofs],
293 				   min_t(size_t, len, 16U), ofs);
294 
295 		ofs += 16;
296 		output += out;
297 		size -= out;
298 		len -= min_t(size_t, len, 16U);
299 		total += out;
300 	}
301 	return total;
302 }
303 
304 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
305 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
306 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
307 
308 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
309 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
310 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
311 
312 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
313 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
314 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
315 {
316 	IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
317 		     __LINE__, (u32) (b), (u32) (c));
318 	_ipw_write_reg8(a, b, c);
319 }
320 
321 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
322 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
323 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
324 {
325 	IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
326 		     __LINE__, (u32) (b), (u32) (c));
327 	_ipw_write_reg16(a, b, c);
328 }
329 
330 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
331 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
332 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
333 {
334 	IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
335 		     __LINE__, (u32) (b), (u32) (c));
336 	_ipw_write_reg32(a, b, c);
337 }
338 
339 /* 8-bit direct write (low 4K) */
340 static inline void _ipw_write8(struct ipw_priv *ipw, unsigned long ofs,
341 		u8 val)
342 {
343 	writeb(val, ipw->hw_base + ofs);
344 }
345 
346 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
347 #define ipw_write8(ipw, ofs, val) do { \
348 	IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, \
349 			__LINE__, (u32)(ofs), (u32)(val)); \
350 	_ipw_write8(ipw, ofs, val); \
351 } while (0)
352 
353 /* 16-bit direct write (low 4K) */
354 static inline void _ipw_write16(struct ipw_priv *ipw, unsigned long ofs,
355 		u16 val)
356 {
357 	writew(val, ipw->hw_base + ofs);
358 }
359 
360 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
361 #define ipw_write16(ipw, ofs, val) do { \
362 	IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, \
363 			__LINE__, (u32)(ofs), (u32)(val)); \
364 	_ipw_write16(ipw, ofs, val); \
365 } while (0)
366 
367 /* 32-bit direct write (low 4K) */
368 static inline void _ipw_write32(struct ipw_priv *ipw, unsigned long ofs,
369 		u32 val)
370 {
371 	writel(val, ipw->hw_base + ofs);
372 }
373 
374 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
375 #define ipw_write32(ipw, ofs, val) do { \
376 	IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, \
377 			__LINE__, (u32)(ofs), (u32)(val)); \
378 	_ipw_write32(ipw, ofs, val); \
379 } while (0)
380 
381 /* 8-bit direct read (low 4K) */
382 static inline u8 _ipw_read8(struct ipw_priv *ipw, unsigned long ofs)
383 {
384 	return readb(ipw->hw_base + ofs);
385 }
386 
387 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
388 #define ipw_read8(ipw, ofs) ({ \
389 	IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", __FILE__, __LINE__, \
390 			(u32)(ofs)); \
391 	_ipw_read8(ipw, ofs); \
392 })
393 
394 /* 16-bit direct read (low 4K) */
395 static inline u16 _ipw_read16(struct ipw_priv *ipw, unsigned long ofs)
396 {
397 	return readw(ipw->hw_base + ofs);
398 }
399 
400 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
401 #define ipw_read16(ipw, ofs) ({ \
402 	IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", __FILE__, __LINE__, \
403 			(u32)(ofs)); \
404 	_ipw_read16(ipw, ofs); \
405 })
406 
407 /* 32-bit direct read (low 4K) */
408 static inline u32 _ipw_read32(struct ipw_priv *ipw, unsigned long ofs)
409 {
410 	return readl(ipw->hw_base + ofs);
411 }
412 
413 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
414 #define ipw_read32(ipw, ofs) ({ \
415 	IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", __FILE__, __LINE__, \
416 			(u32)(ofs)); \
417 	_ipw_read32(ipw, ofs); \
418 })
419 
420 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
421 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
422 #define ipw_read_indirect(a, b, c, d) ({ \
423 	IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %u bytes\n", __FILE__, \
424 			__LINE__, (u32)(b), (u32)(d)); \
425 	_ipw_read_indirect(a, b, c, d); \
426 })
427 
428 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
429 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
430 				int num);
431 #define ipw_write_indirect(a, b, c, d) do { \
432 	IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %u bytes\n", __FILE__, \
433 			__LINE__, (u32)(b), (u32)(d)); \
434 	_ipw_write_indirect(a, b, c, d); \
435 } while (0)
436 
437 /* 32-bit indirect write (above 4K) */
438 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
439 {
440 	IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
441 	_ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
442 	_ipw_write32(priv, IPW_INDIRECT_DATA, value);
443 }
444 
445 /* 8-bit indirect write (above 4K) */
446 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
447 {
448 	u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;	/* dword align */
449 	u32 dif_len = reg - aligned_addr;
450 
451 	IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
452 	_ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
453 	_ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
454 }
455 
456 /* 16-bit indirect write (above 4K) */
457 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
458 {
459 	u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;	/* dword align */
460 	u32 dif_len = (reg - aligned_addr) & (~0x1ul);
461 
462 	IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
463 	_ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
464 	_ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
465 }
466 
467 /* 8-bit indirect read (above 4K) */
468 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
469 {
470 	u32 word;
471 	_ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
472 	IPW_DEBUG_IO(" reg = 0x%8X :\n", reg);
473 	word = _ipw_read32(priv, IPW_INDIRECT_DATA);
474 	return (word >> ((reg & 0x3) * 8)) & 0xff;
475 }
476 
477 /* 32-bit indirect read (above 4K) */
478 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
479 {
480 	u32 value;
481 
482 	IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
483 
484 	_ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
485 	value = _ipw_read32(priv, IPW_INDIRECT_DATA);
486 	IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x\n", reg, value);
487 	return value;
488 }
489 
490 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
491 /*    for area above 1st 4K of SRAM/reg space */
492 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
493 			       int num)
494 {
495 	u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;	/* dword align */
496 	u32 dif_len = addr - aligned_addr;
497 	u32 i;
498 
499 	IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
500 
501 	if (num <= 0) {
502 		return;
503 	}
504 
505 	/* Read the first dword (or portion) byte by byte */
506 	if (unlikely(dif_len)) {
507 		_ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
508 		/* Start reading at aligned_addr + dif_len */
509 		for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
510 			*buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
511 		aligned_addr += 4;
512 	}
513 
514 	/* Read all of the middle dwords as dwords, with auto-increment */
515 	_ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
516 	for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
517 		*(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
518 
519 	/* Read the last dword (or portion) byte by byte */
520 	if (unlikely(num)) {
521 		_ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
522 		for (i = 0; num > 0; i++, num--)
523 			*buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
524 	}
525 }
526 
527 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
528 /*    for area above 1st 4K of SRAM/reg space */
529 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
530 				int num)
531 {
532 	u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;	/* dword align */
533 	u32 dif_len = addr - aligned_addr;
534 	u32 i;
535 
536 	IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
537 
538 	if (num <= 0) {
539 		return;
540 	}
541 
542 	/* Write the first dword (or portion) byte by byte */
543 	if (unlikely(dif_len)) {
544 		_ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
545 		/* Start writing at aligned_addr + dif_len */
546 		for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
547 			_ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
548 		aligned_addr += 4;
549 	}
550 
551 	/* Write all of the middle dwords as dwords, with auto-increment */
552 	_ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
553 	for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
554 		_ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
555 
556 	/* Write the last dword (or portion) byte by byte */
557 	if (unlikely(num)) {
558 		_ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
559 		for (i = 0; num > 0; i++, num--, buf++)
560 			_ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
561 	}
562 }
563 
564 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
565 /*    for 1st 4K of SRAM/regs space */
566 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
567 			     int num)
568 {
569 	memcpy_toio((priv->hw_base + addr), buf, num);
570 }
571 
572 /* Set bit(s) in low 4K of SRAM/regs */
573 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
574 {
575 	ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
576 }
577 
578 /* Clear bit(s) in low 4K of SRAM/regs */
579 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
580 {
581 	ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
582 }
583 
584 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
585 {
586 	if (priv->status & STATUS_INT_ENABLED)
587 		return;
588 	priv->status |= STATUS_INT_ENABLED;
589 	ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
590 }
591 
592 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
593 {
594 	if (!(priv->status & STATUS_INT_ENABLED))
595 		return;
596 	priv->status &= ~STATUS_INT_ENABLED;
597 	ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
598 }
599 
600 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
601 {
602 	unsigned long flags;
603 
604 	spin_lock_irqsave(&priv->irq_lock, flags);
605 	__ipw_enable_interrupts(priv);
606 	spin_unlock_irqrestore(&priv->irq_lock, flags);
607 }
608 
609 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
610 {
611 	unsigned long flags;
612 
613 	spin_lock_irqsave(&priv->irq_lock, flags);
614 	__ipw_disable_interrupts(priv);
615 	spin_unlock_irqrestore(&priv->irq_lock, flags);
616 }
617 
618 static char *ipw_error_desc(u32 val)
619 {
620 	switch (val) {
621 	case IPW_FW_ERROR_OK:
622 		return "ERROR_OK";
623 	case IPW_FW_ERROR_FAIL:
624 		return "ERROR_FAIL";
625 	case IPW_FW_ERROR_MEMORY_UNDERFLOW:
626 		return "MEMORY_UNDERFLOW";
627 	case IPW_FW_ERROR_MEMORY_OVERFLOW:
628 		return "MEMORY_OVERFLOW";
629 	case IPW_FW_ERROR_BAD_PARAM:
630 		return "BAD_PARAM";
631 	case IPW_FW_ERROR_BAD_CHECKSUM:
632 		return "BAD_CHECKSUM";
633 	case IPW_FW_ERROR_NMI_INTERRUPT:
634 		return "NMI_INTERRUPT";
635 	case IPW_FW_ERROR_BAD_DATABASE:
636 		return "BAD_DATABASE";
637 	case IPW_FW_ERROR_ALLOC_FAIL:
638 		return "ALLOC_FAIL";
639 	case IPW_FW_ERROR_DMA_UNDERRUN:
640 		return "DMA_UNDERRUN";
641 	case IPW_FW_ERROR_DMA_STATUS:
642 		return "DMA_STATUS";
643 	case IPW_FW_ERROR_DINO_ERROR:
644 		return "DINO_ERROR";
645 	case IPW_FW_ERROR_EEPROM_ERROR:
646 		return "EEPROM_ERROR";
647 	case IPW_FW_ERROR_SYSASSERT:
648 		return "SYSASSERT";
649 	case IPW_FW_ERROR_FATAL_ERROR:
650 		return "FATAL_ERROR";
651 	default:
652 		return "UNKNOWN_ERROR";
653 	}
654 }
655 
656 static void ipw_dump_error_log(struct ipw_priv *priv,
657 			       struct ipw_fw_error *error)
658 {
659 	u32 i;
660 
661 	if (!error) {
662 		IPW_ERROR("Error allocating and capturing error log.  "
663 			  "Nothing to dump.\n");
664 		return;
665 	}
666 
667 	IPW_ERROR("Start IPW Error Log Dump:\n");
668 	IPW_ERROR("Status: 0x%08X, Config: %08X\n",
669 		  error->status, error->config);
670 
671 	for (i = 0; i < error->elem_len; i++)
672 		IPW_ERROR("%s %i 0x%08x  0x%08x  0x%08x  0x%08x  0x%08x\n",
673 			  ipw_error_desc(error->elem[i].desc),
674 			  error->elem[i].time,
675 			  error->elem[i].blink1,
676 			  error->elem[i].blink2,
677 			  error->elem[i].link1,
678 			  error->elem[i].link2, error->elem[i].data);
679 	for (i = 0; i < error->log_len; i++)
680 		IPW_ERROR("%i\t0x%08x\t%i\n",
681 			  error->log[i].time,
682 			  error->log[i].data, error->log[i].event);
683 }
684 
685 static inline int ipw_is_init(struct ipw_priv *priv)
686 {
687 	return (priv->status & STATUS_INIT) ? 1 : 0;
688 }
689 
690 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
691 {
692 	u32 addr, field_info, field_len, field_count, total_len;
693 
694 	IPW_DEBUG_ORD("ordinal = %i\n", ord);
695 
696 	if (!priv || !val || !len) {
697 		IPW_DEBUG_ORD("Invalid argument\n");
698 		return -EINVAL;
699 	}
700 
701 	/* verify device ordinal tables have been initialized */
702 	if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
703 		IPW_DEBUG_ORD("Access ordinals before initialization\n");
704 		return -EINVAL;
705 	}
706 
707 	switch (IPW_ORD_TABLE_ID_MASK & ord) {
708 	case IPW_ORD_TABLE_0_MASK:
709 		/*
710 		 * TABLE 0: Direct access to a table of 32 bit values
711 		 *
712 		 * This is a very simple table with the data directly
713 		 * read from the table
714 		 */
715 
716 		/* remove the table id from the ordinal */
717 		ord &= IPW_ORD_TABLE_VALUE_MASK;
718 
719 		/* boundary check */
720 		if (ord > priv->table0_len) {
721 			IPW_DEBUG_ORD("ordinal value (%i) longer then "
722 				      "max (%i)\n", ord, priv->table0_len);
723 			return -EINVAL;
724 		}
725 
726 		/* verify we have enough room to store the value */
727 		if (*len < sizeof(u32)) {
728 			IPW_DEBUG_ORD("ordinal buffer length too small, "
729 				      "need %zd\n", sizeof(u32));
730 			return -EINVAL;
731 		}
732 
733 		IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
734 			      ord, priv->table0_addr + (ord << 2));
735 
736 		*len = sizeof(u32);
737 		ord <<= 2;
738 		*((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
739 		break;
740 
741 	case IPW_ORD_TABLE_1_MASK:
742 		/*
743 		 * TABLE 1: Indirect access to a table of 32 bit values
744 		 *
745 		 * This is a fairly large table of u32 values each
746 		 * representing starting addr for the data (which is
747 		 * also a u32)
748 		 */
749 
750 		/* remove the table id from the ordinal */
751 		ord &= IPW_ORD_TABLE_VALUE_MASK;
752 
753 		/* boundary check */
754 		if (ord > priv->table1_len) {
755 			IPW_DEBUG_ORD("ordinal value too long\n");
756 			return -EINVAL;
757 		}
758 
759 		/* verify we have enough room to store the value */
760 		if (*len < sizeof(u32)) {
761 			IPW_DEBUG_ORD("ordinal buffer length too small, "
762 				      "need %zd\n", sizeof(u32));
763 			return -EINVAL;
764 		}
765 
766 		*((u32 *) val) =
767 		    ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
768 		*len = sizeof(u32);
769 		break;
770 
771 	case IPW_ORD_TABLE_2_MASK:
772 		/*
773 		 * TABLE 2: Indirect access to a table of variable sized values
774 		 *
775 		 * This table consist of six values, each containing
776 		 *     - dword containing the starting offset of the data
777 		 *     - dword containing the lengh in the first 16bits
778 		 *       and the count in the second 16bits
779 		 */
780 
781 		/* remove the table id from the ordinal */
782 		ord &= IPW_ORD_TABLE_VALUE_MASK;
783 
784 		/* boundary check */
785 		if (ord > priv->table2_len) {
786 			IPW_DEBUG_ORD("ordinal value too long\n");
787 			return -EINVAL;
788 		}
789 
790 		/* get the address of statistic */
791 		addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
792 
793 		/* get the second DW of statistics ;
794 		 * two 16-bit words - first is length, second is count */
795 		field_info =
796 		    ipw_read_reg32(priv,
797 				   priv->table2_addr + (ord << 3) +
798 				   sizeof(u32));
799 
800 		/* get each entry length */
801 		field_len = *((u16 *) & field_info);
802 
803 		/* get number of entries */
804 		field_count = *(((u16 *) & field_info) + 1);
805 
806 		/* abort if not enough memory */
807 		total_len = field_len * field_count;
808 		if (total_len > *len) {
809 			*len = total_len;
810 			return -EINVAL;
811 		}
812 
813 		*len = total_len;
814 		if (!total_len)
815 			return 0;
816 
817 		IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
818 			      "field_info = 0x%08x\n",
819 			      addr, total_len, field_info);
820 		ipw_read_indirect(priv, addr, val, total_len);
821 		break;
822 
823 	default:
824 		IPW_DEBUG_ORD("Invalid ordinal!\n");
825 		return -EINVAL;
826 
827 	}
828 
829 	return 0;
830 }
831 
832 static void ipw_init_ordinals(struct ipw_priv *priv)
833 {
834 	priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
835 	priv->table0_len = ipw_read32(priv, priv->table0_addr);
836 
837 	IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
838 		      priv->table0_addr, priv->table0_len);
839 
840 	priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
841 	priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
842 
843 	IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
844 		      priv->table1_addr, priv->table1_len);
845 
846 	priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
847 	priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
848 	priv->table2_len &= 0x0000ffff;	/* use first two bytes */
849 
850 	IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
851 		      priv->table2_addr, priv->table2_len);
852 
853 }
854 
855 static u32 ipw_register_toggle(u32 reg)
856 {
857 	reg &= ~IPW_START_STANDBY;
858 	if (reg & IPW_GATE_ODMA)
859 		reg &= ~IPW_GATE_ODMA;
860 	if (reg & IPW_GATE_IDMA)
861 		reg &= ~IPW_GATE_IDMA;
862 	if (reg & IPW_GATE_ADMA)
863 		reg &= ~IPW_GATE_ADMA;
864 	return reg;
865 }
866 
867 /*
868  * LED behavior:
869  * - On radio ON, turn on any LEDs that require to be on during start
870  * - On initialization, start unassociated blink
871  * - On association, disable unassociated blink
872  * - On disassociation, start unassociated blink
873  * - On radio OFF, turn off any LEDs started during radio on
874  *
875  */
876 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
877 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
878 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
879 
880 static void ipw_led_link_on(struct ipw_priv *priv)
881 {
882 	unsigned long flags;
883 	u32 led;
884 
885 	/* If configured to not use LEDs, or nic_type is 1,
886 	 * then we don't toggle a LINK led */
887 	if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
888 		return;
889 
890 	spin_lock_irqsave(&priv->lock, flags);
891 
892 	if (!(priv->status & STATUS_RF_KILL_MASK) &&
893 	    !(priv->status & STATUS_LED_LINK_ON)) {
894 		IPW_DEBUG_LED("Link LED On\n");
895 		led = ipw_read_reg32(priv, IPW_EVENT_REG);
896 		led |= priv->led_association_on;
897 
898 		led = ipw_register_toggle(led);
899 
900 		IPW_DEBUG_LED("Reg: 0x%08X\n", led);
901 		ipw_write_reg32(priv, IPW_EVENT_REG, led);
902 
903 		priv->status |= STATUS_LED_LINK_ON;
904 
905 		/* If we aren't associated, schedule turning the LED off */
906 		if (!(priv->status & STATUS_ASSOCIATED))
907 			schedule_delayed_work(&priv->led_link_off,
908 					      LD_TIME_LINK_ON);
909 	}
910 
911 	spin_unlock_irqrestore(&priv->lock, flags);
912 }
913 
914 static void ipw_bg_led_link_on(struct work_struct *work)
915 {
916 	struct ipw_priv *priv =
917 		container_of(work, struct ipw_priv, led_link_on.work);
918 	mutex_lock(&priv->mutex);
919 	ipw_led_link_on(priv);
920 	mutex_unlock(&priv->mutex);
921 }
922 
923 static void ipw_led_link_off(struct ipw_priv *priv)
924 {
925 	unsigned long flags;
926 	u32 led;
927 
928 	/* If configured not to use LEDs, or nic type is 1,
929 	 * then we don't goggle the LINK led. */
930 	if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
931 		return;
932 
933 	spin_lock_irqsave(&priv->lock, flags);
934 
935 	if (priv->status & STATUS_LED_LINK_ON) {
936 		led = ipw_read_reg32(priv, IPW_EVENT_REG);
937 		led &= priv->led_association_off;
938 		led = ipw_register_toggle(led);
939 
940 		IPW_DEBUG_LED("Reg: 0x%08X\n", led);
941 		ipw_write_reg32(priv, IPW_EVENT_REG, led);
942 
943 		IPW_DEBUG_LED("Link LED Off\n");
944 
945 		priv->status &= ~STATUS_LED_LINK_ON;
946 
947 		/* If we aren't associated and the radio is on, schedule
948 		 * turning the LED on (blink while unassociated) */
949 		if (!(priv->status & STATUS_RF_KILL_MASK) &&
950 		    !(priv->status & STATUS_ASSOCIATED))
951 			schedule_delayed_work(&priv->led_link_on,
952 					      LD_TIME_LINK_OFF);
953 
954 	}
955 
956 	spin_unlock_irqrestore(&priv->lock, flags);
957 }
958 
959 static void ipw_bg_led_link_off(struct work_struct *work)
960 {
961 	struct ipw_priv *priv =
962 		container_of(work, struct ipw_priv, led_link_off.work);
963 	mutex_lock(&priv->mutex);
964 	ipw_led_link_off(priv);
965 	mutex_unlock(&priv->mutex);
966 }
967 
968 static void __ipw_led_activity_on(struct ipw_priv *priv)
969 {
970 	u32 led;
971 
972 	if (priv->config & CFG_NO_LED)
973 		return;
974 
975 	if (priv->status & STATUS_RF_KILL_MASK)
976 		return;
977 
978 	if (!(priv->status & STATUS_LED_ACT_ON)) {
979 		led = ipw_read_reg32(priv, IPW_EVENT_REG);
980 		led |= priv->led_activity_on;
981 
982 		led = ipw_register_toggle(led);
983 
984 		IPW_DEBUG_LED("Reg: 0x%08X\n", led);
985 		ipw_write_reg32(priv, IPW_EVENT_REG, led);
986 
987 		IPW_DEBUG_LED("Activity LED On\n");
988 
989 		priv->status |= STATUS_LED_ACT_ON;
990 
991 		cancel_delayed_work(&priv->led_act_off);
992 		schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON);
993 	} else {
994 		/* Reschedule LED off for full time period */
995 		cancel_delayed_work(&priv->led_act_off);
996 		schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON);
997 	}
998 }
999 
1000 #if 0
1001 void ipw_led_activity_on(struct ipw_priv *priv)
1002 {
1003 	unsigned long flags;
1004 	spin_lock_irqsave(&priv->lock, flags);
1005 	__ipw_led_activity_on(priv);
1006 	spin_unlock_irqrestore(&priv->lock, flags);
1007 }
1008 #endif  /*  0  */
1009 
1010 static void ipw_led_activity_off(struct ipw_priv *priv)
1011 {
1012 	unsigned long flags;
1013 	u32 led;
1014 
1015 	if (priv->config & CFG_NO_LED)
1016 		return;
1017 
1018 	spin_lock_irqsave(&priv->lock, flags);
1019 
1020 	if (priv->status & STATUS_LED_ACT_ON) {
1021 		led = ipw_read_reg32(priv, IPW_EVENT_REG);
1022 		led &= priv->led_activity_off;
1023 
1024 		led = ipw_register_toggle(led);
1025 
1026 		IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1027 		ipw_write_reg32(priv, IPW_EVENT_REG, led);
1028 
1029 		IPW_DEBUG_LED("Activity LED Off\n");
1030 
1031 		priv->status &= ~STATUS_LED_ACT_ON;
1032 	}
1033 
1034 	spin_unlock_irqrestore(&priv->lock, flags);
1035 }
1036 
1037 static void ipw_bg_led_activity_off(struct work_struct *work)
1038 {
1039 	struct ipw_priv *priv =
1040 		container_of(work, struct ipw_priv, led_act_off.work);
1041 	mutex_lock(&priv->mutex);
1042 	ipw_led_activity_off(priv);
1043 	mutex_unlock(&priv->mutex);
1044 }
1045 
1046 static void ipw_led_band_on(struct ipw_priv *priv)
1047 {
1048 	unsigned long flags;
1049 	u32 led;
1050 
1051 	/* Only nic type 1 supports mode LEDs */
1052 	if (priv->config & CFG_NO_LED ||
1053 	    priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1054 		return;
1055 
1056 	spin_lock_irqsave(&priv->lock, flags);
1057 
1058 	led = ipw_read_reg32(priv, IPW_EVENT_REG);
1059 	if (priv->assoc_network->mode == IEEE_A) {
1060 		led |= priv->led_ofdm_on;
1061 		led &= priv->led_association_off;
1062 		IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1063 	} else if (priv->assoc_network->mode == IEEE_G) {
1064 		led |= priv->led_ofdm_on;
1065 		led |= priv->led_association_on;
1066 		IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1067 	} else {
1068 		led &= priv->led_ofdm_off;
1069 		led |= priv->led_association_on;
1070 		IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1071 	}
1072 
1073 	led = ipw_register_toggle(led);
1074 
1075 	IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1076 	ipw_write_reg32(priv, IPW_EVENT_REG, led);
1077 
1078 	spin_unlock_irqrestore(&priv->lock, flags);
1079 }
1080 
1081 static void ipw_led_band_off(struct ipw_priv *priv)
1082 {
1083 	unsigned long flags;
1084 	u32 led;
1085 
1086 	/* Only nic type 1 supports mode LEDs */
1087 	if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1088 		return;
1089 
1090 	spin_lock_irqsave(&priv->lock, flags);
1091 
1092 	led = ipw_read_reg32(priv, IPW_EVENT_REG);
1093 	led &= priv->led_ofdm_off;
1094 	led &= priv->led_association_off;
1095 
1096 	led = ipw_register_toggle(led);
1097 
1098 	IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1099 	ipw_write_reg32(priv, IPW_EVENT_REG, led);
1100 
1101 	spin_unlock_irqrestore(&priv->lock, flags);
1102 }
1103 
1104 static void ipw_led_radio_on(struct ipw_priv *priv)
1105 {
1106 	ipw_led_link_on(priv);
1107 }
1108 
1109 static void ipw_led_radio_off(struct ipw_priv *priv)
1110 {
1111 	ipw_led_activity_off(priv);
1112 	ipw_led_link_off(priv);
1113 }
1114 
1115 static void ipw_led_link_up(struct ipw_priv *priv)
1116 {
1117 	/* Set the Link Led on for all nic types */
1118 	ipw_led_link_on(priv);
1119 }
1120 
1121 static void ipw_led_link_down(struct ipw_priv *priv)
1122 {
1123 	ipw_led_activity_off(priv);
1124 	ipw_led_link_off(priv);
1125 
1126 	if (priv->status & STATUS_RF_KILL_MASK)
1127 		ipw_led_radio_off(priv);
1128 }
1129 
1130 static void ipw_led_init(struct ipw_priv *priv)
1131 {
1132 	priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1133 
1134 	/* Set the default PINs for the link and activity leds */
1135 	priv->led_activity_on = IPW_ACTIVITY_LED;
1136 	priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1137 
1138 	priv->led_association_on = IPW_ASSOCIATED_LED;
1139 	priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1140 
1141 	/* Set the default PINs for the OFDM leds */
1142 	priv->led_ofdm_on = IPW_OFDM_LED;
1143 	priv->led_ofdm_off = ~(IPW_OFDM_LED);
1144 
1145 	switch (priv->nic_type) {
1146 	case EEPROM_NIC_TYPE_1:
1147 		/* In this NIC type, the LEDs are reversed.... */
1148 		priv->led_activity_on = IPW_ASSOCIATED_LED;
1149 		priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1150 		priv->led_association_on = IPW_ACTIVITY_LED;
1151 		priv->led_association_off = ~(IPW_ACTIVITY_LED);
1152 
1153 		if (!(priv->config & CFG_NO_LED))
1154 			ipw_led_band_on(priv);
1155 
1156 		/* And we don't blink link LEDs for this nic, so
1157 		 * just return here */
1158 		return;
1159 
1160 	case EEPROM_NIC_TYPE_3:
1161 	case EEPROM_NIC_TYPE_2:
1162 	case EEPROM_NIC_TYPE_4:
1163 	case EEPROM_NIC_TYPE_0:
1164 		break;
1165 
1166 	default:
1167 		IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1168 			       priv->nic_type);
1169 		priv->nic_type = EEPROM_NIC_TYPE_0;
1170 		break;
1171 	}
1172 
1173 	if (!(priv->config & CFG_NO_LED)) {
1174 		if (priv->status & STATUS_ASSOCIATED)
1175 			ipw_led_link_on(priv);
1176 		else
1177 			ipw_led_link_off(priv);
1178 	}
1179 }
1180 
1181 static void ipw_led_shutdown(struct ipw_priv *priv)
1182 {
1183 	ipw_led_activity_off(priv);
1184 	ipw_led_link_off(priv);
1185 	ipw_led_band_off(priv);
1186 	cancel_delayed_work(&priv->led_link_on);
1187 	cancel_delayed_work(&priv->led_link_off);
1188 	cancel_delayed_work(&priv->led_act_off);
1189 }
1190 
1191 /*
1192  * The following adds a new attribute to the sysfs representation
1193  * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1194  * used for controlling the debug level.
1195  *
1196  * See the level definitions in ipw for details.
1197  */
1198 static ssize_t debug_level_show(struct device_driver *d, char *buf)
1199 {
1200 	return sprintf(buf, "0x%08X\n", ipw_debug_level);
1201 }
1202 
1203 static ssize_t debug_level_store(struct device_driver *d, const char *buf,
1204 				 size_t count)
1205 {
1206 	char *p = (char *)buf;
1207 	u32 val;
1208 
1209 	if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1210 		p++;
1211 		if (p[0] == 'x' || p[0] == 'X')
1212 			p++;
1213 		val = simple_strtoul(p, &p, 16);
1214 	} else
1215 		val = simple_strtoul(p, &p, 10);
1216 	if (p == buf)
1217 		printk(KERN_INFO DRV_NAME
1218 		       ": %s is not in hex or decimal form.\n", buf);
1219 	else
1220 		ipw_debug_level = val;
1221 
1222 	return strnlen(buf, count);
1223 }
1224 static DRIVER_ATTR_RW(debug_level);
1225 
1226 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1227 {
1228 	/* length = 1st dword in log */
1229 	return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1230 }
1231 
1232 static void ipw_capture_event_log(struct ipw_priv *priv,
1233 				  u32 log_len, struct ipw_event *log)
1234 {
1235 	u32 base;
1236 
1237 	if (log_len) {
1238 		base = ipw_read32(priv, IPW_EVENT_LOG);
1239 		ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1240 				  (u8 *) log, sizeof(*log) * log_len);
1241 	}
1242 }
1243 
1244 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1245 {
1246 	struct ipw_fw_error *error;
1247 	u32 log_len = ipw_get_event_log_len(priv);
1248 	u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1249 	u32 elem_len = ipw_read_reg32(priv, base);
1250 
1251 	error = kmalloc(sizeof(*error) +
1252 			sizeof(*error->elem) * elem_len +
1253 			sizeof(*error->log) * log_len, GFP_ATOMIC);
1254 	if (!error) {
1255 		IPW_ERROR("Memory allocation for firmware error log "
1256 			  "failed.\n");
1257 		return NULL;
1258 	}
1259 	error->jiffies = jiffies;
1260 	error->status = priv->status;
1261 	error->config = priv->config;
1262 	error->elem_len = elem_len;
1263 	error->log_len = log_len;
1264 	error->elem = (struct ipw_error_elem *)error->payload;
1265 	error->log = (struct ipw_event *)(error->elem + elem_len);
1266 
1267 	ipw_capture_event_log(priv, log_len, error->log);
1268 
1269 	if (elem_len)
1270 		ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1271 				  sizeof(*error->elem) * elem_len);
1272 
1273 	return error;
1274 }
1275 
1276 static ssize_t show_event_log(struct device *d,
1277 			      struct device_attribute *attr, char *buf)
1278 {
1279 	struct ipw_priv *priv = dev_get_drvdata(d);
1280 	u32 log_len = ipw_get_event_log_len(priv);
1281 	u32 log_size;
1282 	struct ipw_event *log;
1283 	u32 len = 0, i;
1284 
1285 	/* not using min() because of its strict type checking */
1286 	log_size = PAGE_SIZE / sizeof(*log) > log_len ?
1287 			sizeof(*log) * log_len : PAGE_SIZE;
1288 	log = kzalloc(log_size, GFP_KERNEL);
1289 	if (!log) {
1290 		IPW_ERROR("Unable to allocate memory for log\n");
1291 		return 0;
1292 	}
1293 	log_len = log_size / sizeof(*log);
1294 	ipw_capture_event_log(priv, log_len, log);
1295 
1296 	len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1297 	for (i = 0; i < log_len; i++)
1298 		len += snprintf(buf + len, PAGE_SIZE - len,
1299 				"\n%08X%08X%08X",
1300 				log[i].time, log[i].event, log[i].data);
1301 	len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1302 	kfree(log);
1303 	return len;
1304 }
1305 
1306 static DEVICE_ATTR(event_log, 0444, show_event_log, NULL);
1307 
1308 static ssize_t show_error(struct device *d,
1309 			  struct device_attribute *attr, char *buf)
1310 {
1311 	struct ipw_priv *priv = dev_get_drvdata(d);
1312 	u32 len = 0, i;
1313 	if (!priv->error)
1314 		return 0;
1315 	len += snprintf(buf + len, PAGE_SIZE - len,
1316 			"%08lX%08X%08X%08X",
1317 			priv->error->jiffies,
1318 			priv->error->status,
1319 			priv->error->config, priv->error->elem_len);
1320 	for (i = 0; i < priv->error->elem_len; i++)
1321 		len += snprintf(buf + len, PAGE_SIZE - len,
1322 				"\n%08X%08X%08X%08X%08X%08X%08X",
1323 				priv->error->elem[i].time,
1324 				priv->error->elem[i].desc,
1325 				priv->error->elem[i].blink1,
1326 				priv->error->elem[i].blink2,
1327 				priv->error->elem[i].link1,
1328 				priv->error->elem[i].link2,
1329 				priv->error->elem[i].data);
1330 
1331 	len += snprintf(buf + len, PAGE_SIZE - len,
1332 			"\n%08X", priv->error->log_len);
1333 	for (i = 0; i < priv->error->log_len; i++)
1334 		len += snprintf(buf + len, PAGE_SIZE - len,
1335 				"\n%08X%08X%08X",
1336 				priv->error->log[i].time,
1337 				priv->error->log[i].event,
1338 				priv->error->log[i].data);
1339 	len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1340 	return len;
1341 }
1342 
1343 static ssize_t clear_error(struct device *d,
1344 			   struct device_attribute *attr,
1345 			   const char *buf, size_t count)
1346 {
1347 	struct ipw_priv *priv = dev_get_drvdata(d);
1348 
1349 	kfree(priv->error);
1350 	priv->error = NULL;
1351 	return count;
1352 }
1353 
1354 static DEVICE_ATTR(error, 0644, show_error, clear_error);
1355 
1356 static ssize_t show_cmd_log(struct device *d,
1357 			    struct device_attribute *attr, char *buf)
1358 {
1359 	struct ipw_priv *priv = dev_get_drvdata(d);
1360 	u32 len = 0, i;
1361 	if (!priv->cmdlog)
1362 		return 0;
1363 	for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1364 	     (i != priv->cmdlog_pos) && (len < PAGE_SIZE);
1365 	     i = (i + 1) % priv->cmdlog_len) {
1366 		len +=
1367 		    snprintf(buf + len, PAGE_SIZE - len,
1368 			     "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1369 			     priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1370 			     priv->cmdlog[i].cmd.len);
1371 		len +=
1372 		    snprintk_buf(buf + len, PAGE_SIZE - len,
1373 				 (u8 *) priv->cmdlog[i].cmd.param,
1374 				 priv->cmdlog[i].cmd.len);
1375 		len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1376 	}
1377 	len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1378 	return len;
1379 }
1380 
1381 static DEVICE_ATTR(cmd_log, 0444, show_cmd_log, NULL);
1382 
1383 #ifdef CONFIG_IPW2200_PROMISCUOUS
1384 static void ipw_prom_free(struct ipw_priv *priv);
1385 static int ipw_prom_alloc(struct ipw_priv *priv);
1386 static ssize_t store_rtap_iface(struct device *d,
1387 			 struct device_attribute *attr,
1388 			 const char *buf, size_t count)
1389 {
1390 	struct ipw_priv *priv = dev_get_drvdata(d);
1391 	int rc = 0;
1392 
1393 	if (count < 1)
1394 		return -EINVAL;
1395 
1396 	switch (buf[0]) {
1397 	case '0':
1398 		if (!rtap_iface)
1399 			return count;
1400 
1401 		if (netif_running(priv->prom_net_dev)) {
1402 			IPW_WARNING("Interface is up.  Cannot unregister.\n");
1403 			return count;
1404 		}
1405 
1406 		ipw_prom_free(priv);
1407 		rtap_iface = 0;
1408 		break;
1409 
1410 	case '1':
1411 		if (rtap_iface)
1412 			return count;
1413 
1414 		rc = ipw_prom_alloc(priv);
1415 		if (!rc)
1416 			rtap_iface = 1;
1417 		break;
1418 
1419 	default:
1420 		return -EINVAL;
1421 	}
1422 
1423 	if (rc) {
1424 		IPW_ERROR("Failed to register promiscuous network "
1425 			  "device (error %d).\n", rc);
1426 	}
1427 
1428 	return count;
1429 }
1430 
1431 static ssize_t show_rtap_iface(struct device *d,
1432 			struct device_attribute *attr,
1433 			char *buf)
1434 {
1435 	struct ipw_priv *priv = dev_get_drvdata(d);
1436 	if (rtap_iface)
1437 		return sprintf(buf, "%s", priv->prom_net_dev->name);
1438 	else {
1439 		buf[0] = '-';
1440 		buf[1] = '1';
1441 		buf[2] = '\0';
1442 		return 3;
1443 	}
1444 }
1445 
1446 static DEVICE_ATTR(rtap_iface, 0600, show_rtap_iface, store_rtap_iface);
1447 
1448 static ssize_t store_rtap_filter(struct device *d,
1449 			 struct device_attribute *attr,
1450 			 const char *buf, size_t count)
1451 {
1452 	struct ipw_priv *priv = dev_get_drvdata(d);
1453 
1454 	if (!priv->prom_priv) {
1455 		IPW_ERROR("Attempting to set filter without "
1456 			  "rtap_iface enabled.\n");
1457 		return -EPERM;
1458 	}
1459 
1460 	priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1461 
1462 	IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1463 		       BIT_ARG16(priv->prom_priv->filter));
1464 
1465 	return count;
1466 }
1467 
1468 static ssize_t show_rtap_filter(struct device *d,
1469 			struct device_attribute *attr,
1470 			char *buf)
1471 {
1472 	struct ipw_priv *priv = dev_get_drvdata(d);
1473 	return sprintf(buf, "0x%04X",
1474 		       priv->prom_priv ? priv->prom_priv->filter : 0);
1475 }
1476 
1477 static DEVICE_ATTR(rtap_filter, 0600, show_rtap_filter, store_rtap_filter);
1478 #endif
1479 
1480 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1481 			     char *buf)
1482 {
1483 	struct ipw_priv *priv = dev_get_drvdata(d);
1484 	return sprintf(buf, "%d\n", priv->ieee->scan_age);
1485 }
1486 
1487 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1488 			      const char *buf, size_t count)
1489 {
1490 	struct ipw_priv *priv = dev_get_drvdata(d);
1491 	struct net_device *dev = priv->net_dev;
1492 	char buffer[] = "00000000";
1493 	unsigned long len =
1494 	    (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1495 	unsigned long val;
1496 	char *p = buffer;
1497 
1498 	IPW_DEBUG_INFO("enter\n");
1499 
1500 	strncpy(buffer, buf, len);
1501 	buffer[len] = 0;
1502 
1503 	if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1504 		p++;
1505 		if (p[0] == 'x' || p[0] == 'X')
1506 			p++;
1507 		val = simple_strtoul(p, &p, 16);
1508 	} else
1509 		val = simple_strtoul(p, &p, 10);
1510 	if (p == buffer) {
1511 		IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1512 	} else {
1513 		priv->ieee->scan_age = val;
1514 		IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1515 	}
1516 
1517 	IPW_DEBUG_INFO("exit\n");
1518 	return len;
1519 }
1520 
1521 static DEVICE_ATTR(scan_age, 0644, show_scan_age, store_scan_age);
1522 
1523 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1524 			char *buf)
1525 {
1526 	struct ipw_priv *priv = dev_get_drvdata(d);
1527 	return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1528 }
1529 
1530 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1531 			 const char *buf, size_t count)
1532 {
1533 	struct ipw_priv *priv = dev_get_drvdata(d);
1534 
1535 	IPW_DEBUG_INFO("enter\n");
1536 
1537 	if (count == 0)
1538 		return 0;
1539 
1540 	if (*buf == 0) {
1541 		IPW_DEBUG_LED("Disabling LED control.\n");
1542 		priv->config |= CFG_NO_LED;
1543 		ipw_led_shutdown(priv);
1544 	} else {
1545 		IPW_DEBUG_LED("Enabling LED control.\n");
1546 		priv->config &= ~CFG_NO_LED;
1547 		ipw_led_init(priv);
1548 	}
1549 
1550 	IPW_DEBUG_INFO("exit\n");
1551 	return count;
1552 }
1553 
1554 static DEVICE_ATTR(led, 0644, show_led, store_led);
1555 
1556 static ssize_t show_status(struct device *d,
1557 			   struct device_attribute *attr, char *buf)
1558 {
1559 	struct ipw_priv *p = dev_get_drvdata(d);
1560 	return sprintf(buf, "0x%08x\n", (int)p->status);
1561 }
1562 
1563 static DEVICE_ATTR(status, 0444, show_status, NULL);
1564 
1565 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1566 			char *buf)
1567 {
1568 	struct ipw_priv *p = dev_get_drvdata(d);
1569 	return sprintf(buf, "0x%08x\n", (int)p->config);
1570 }
1571 
1572 static DEVICE_ATTR(cfg, 0444, show_cfg, NULL);
1573 
1574 static ssize_t show_nic_type(struct device *d,
1575 			     struct device_attribute *attr, char *buf)
1576 {
1577 	struct ipw_priv *priv = dev_get_drvdata(d);
1578 	return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1579 }
1580 
1581 static DEVICE_ATTR(nic_type, 0444, show_nic_type, NULL);
1582 
1583 static ssize_t show_ucode_version(struct device *d,
1584 				  struct device_attribute *attr, char *buf)
1585 {
1586 	u32 len = sizeof(u32), tmp = 0;
1587 	struct ipw_priv *p = dev_get_drvdata(d);
1588 
1589 	if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1590 		return 0;
1591 
1592 	return sprintf(buf, "0x%08x\n", tmp);
1593 }
1594 
1595 static DEVICE_ATTR(ucode_version, 0644, show_ucode_version, NULL);
1596 
1597 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1598 			char *buf)
1599 {
1600 	u32 len = sizeof(u32), tmp = 0;
1601 	struct ipw_priv *p = dev_get_drvdata(d);
1602 
1603 	if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1604 		return 0;
1605 
1606 	return sprintf(buf, "0x%08x\n", tmp);
1607 }
1608 
1609 static DEVICE_ATTR(rtc, 0644, show_rtc, NULL);
1610 
1611 /*
1612  * Add a device attribute to view/control the delay between eeprom
1613  * operations.
1614  */
1615 static ssize_t show_eeprom_delay(struct device *d,
1616 				 struct device_attribute *attr, char *buf)
1617 {
1618 	struct ipw_priv *p = dev_get_drvdata(d);
1619 	int n = p->eeprom_delay;
1620 	return sprintf(buf, "%i\n", n);
1621 }
1622 static ssize_t store_eeprom_delay(struct device *d,
1623 				  struct device_attribute *attr,
1624 				  const char *buf, size_t count)
1625 {
1626 	struct ipw_priv *p = dev_get_drvdata(d);
1627 	sscanf(buf, "%i", &p->eeprom_delay);
1628 	return strnlen(buf, count);
1629 }
1630 
1631 static DEVICE_ATTR(eeprom_delay, 0644, show_eeprom_delay, store_eeprom_delay);
1632 
1633 static ssize_t show_command_event_reg(struct device *d,
1634 				      struct device_attribute *attr, char *buf)
1635 {
1636 	u32 reg = 0;
1637 	struct ipw_priv *p = dev_get_drvdata(d);
1638 
1639 	reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1640 	return sprintf(buf, "0x%08x\n", reg);
1641 }
1642 static ssize_t store_command_event_reg(struct device *d,
1643 				       struct device_attribute *attr,
1644 				       const char *buf, size_t count)
1645 {
1646 	u32 reg;
1647 	struct ipw_priv *p = dev_get_drvdata(d);
1648 
1649 	sscanf(buf, "%x", &reg);
1650 	ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1651 	return strnlen(buf, count);
1652 }
1653 
1654 static DEVICE_ATTR(command_event_reg, 0644,
1655 		   show_command_event_reg, store_command_event_reg);
1656 
1657 static ssize_t show_mem_gpio_reg(struct device *d,
1658 				 struct device_attribute *attr, char *buf)
1659 {
1660 	u32 reg = 0;
1661 	struct ipw_priv *p = dev_get_drvdata(d);
1662 
1663 	reg = ipw_read_reg32(p, 0x301100);
1664 	return sprintf(buf, "0x%08x\n", reg);
1665 }
1666 static ssize_t store_mem_gpio_reg(struct device *d,
1667 				  struct device_attribute *attr,
1668 				  const char *buf, size_t count)
1669 {
1670 	u32 reg;
1671 	struct ipw_priv *p = dev_get_drvdata(d);
1672 
1673 	sscanf(buf, "%x", &reg);
1674 	ipw_write_reg32(p, 0x301100, reg);
1675 	return strnlen(buf, count);
1676 }
1677 
1678 static DEVICE_ATTR(mem_gpio_reg, 0644, show_mem_gpio_reg, store_mem_gpio_reg);
1679 
1680 static ssize_t show_indirect_dword(struct device *d,
1681 				   struct device_attribute *attr, char *buf)
1682 {
1683 	u32 reg = 0;
1684 	struct ipw_priv *priv = dev_get_drvdata(d);
1685 
1686 	if (priv->status & STATUS_INDIRECT_DWORD)
1687 		reg = ipw_read_reg32(priv, priv->indirect_dword);
1688 	else
1689 		reg = 0;
1690 
1691 	return sprintf(buf, "0x%08x\n", reg);
1692 }
1693 static ssize_t store_indirect_dword(struct device *d,
1694 				    struct device_attribute *attr,
1695 				    const char *buf, size_t count)
1696 {
1697 	struct ipw_priv *priv = dev_get_drvdata(d);
1698 
1699 	sscanf(buf, "%x", &priv->indirect_dword);
1700 	priv->status |= STATUS_INDIRECT_DWORD;
1701 	return strnlen(buf, count);
1702 }
1703 
1704 static DEVICE_ATTR(indirect_dword, 0644,
1705 		   show_indirect_dword, store_indirect_dword);
1706 
1707 static ssize_t show_indirect_byte(struct device *d,
1708 				  struct device_attribute *attr, char *buf)
1709 {
1710 	u8 reg = 0;
1711 	struct ipw_priv *priv = dev_get_drvdata(d);
1712 
1713 	if (priv->status & STATUS_INDIRECT_BYTE)
1714 		reg = ipw_read_reg8(priv, priv->indirect_byte);
1715 	else
1716 		reg = 0;
1717 
1718 	return sprintf(buf, "0x%02x\n", reg);
1719 }
1720 static ssize_t store_indirect_byte(struct device *d,
1721 				   struct device_attribute *attr,
1722 				   const char *buf, size_t count)
1723 {
1724 	struct ipw_priv *priv = dev_get_drvdata(d);
1725 
1726 	sscanf(buf, "%x", &priv->indirect_byte);
1727 	priv->status |= STATUS_INDIRECT_BYTE;
1728 	return strnlen(buf, count);
1729 }
1730 
1731 static DEVICE_ATTR(indirect_byte, 0644,
1732 		   show_indirect_byte, store_indirect_byte);
1733 
1734 static ssize_t show_direct_dword(struct device *d,
1735 				 struct device_attribute *attr, char *buf)
1736 {
1737 	u32 reg = 0;
1738 	struct ipw_priv *priv = dev_get_drvdata(d);
1739 
1740 	if (priv->status & STATUS_DIRECT_DWORD)
1741 		reg = ipw_read32(priv, priv->direct_dword);
1742 	else
1743 		reg = 0;
1744 
1745 	return sprintf(buf, "0x%08x\n", reg);
1746 }
1747 static ssize_t store_direct_dword(struct device *d,
1748 				  struct device_attribute *attr,
1749 				  const char *buf, size_t count)
1750 {
1751 	struct ipw_priv *priv = dev_get_drvdata(d);
1752 
1753 	sscanf(buf, "%x", &priv->direct_dword);
1754 	priv->status |= STATUS_DIRECT_DWORD;
1755 	return strnlen(buf, count);
1756 }
1757 
1758 static DEVICE_ATTR(direct_dword, 0644, show_direct_dword, store_direct_dword);
1759 
1760 static int rf_kill_active(struct ipw_priv *priv)
1761 {
1762 	if (0 == (ipw_read32(priv, 0x30) & 0x10000)) {
1763 		priv->status |= STATUS_RF_KILL_HW;
1764 		wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1765 	} else {
1766 		priv->status &= ~STATUS_RF_KILL_HW;
1767 		wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1768 	}
1769 
1770 	return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1771 }
1772 
1773 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1774 			    char *buf)
1775 {
1776 	/* 0 - RF kill not enabled
1777 	   1 - SW based RF kill active (sysfs)
1778 	   2 - HW based RF kill active
1779 	   3 - Both HW and SW baed RF kill active */
1780 	struct ipw_priv *priv = dev_get_drvdata(d);
1781 	int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1782 	    (rf_kill_active(priv) ? 0x2 : 0x0);
1783 	return sprintf(buf, "%i\n", val);
1784 }
1785 
1786 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1787 {
1788 	if ((disable_radio ? 1 : 0) ==
1789 	    ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1790 		return 0;
1791 
1792 	IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
1793 			  disable_radio ? "OFF" : "ON");
1794 
1795 	if (disable_radio) {
1796 		priv->status |= STATUS_RF_KILL_SW;
1797 
1798 		cancel_delayed_work(&priv->request_scan);
1799 		cancel_delayed_work(&priv->request_direct_scan);
1800 		cancel_delayed_work(&priv->request_passive_scan);
1801 		cancel_delayed_work(&priv->scan_event);
1802 		schedule_work(&priv->down);
1803 	} else {
1804 		priv->status &= ~STATUS_RF_KILL_SW;
1805 		if (rf_kill_active(priv)) {
1806 			IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1807 					  "disabled by HW switch\n");
1808 			/* Make sure the RF_KILL check timer is running */
1809 			cancel_delayed_work(&priv->rf_kill);
1810 			schedule_delayed_work(&priv->rf_kill,
1811 					      round_jiffies_relative(2 * HZ));
1812 		} else
1813 			schedule_work(&priv->up);
1814 	}
1815 
1816 	return 1;
1817 }
1818 
1819 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1820 			     const char *buf, size_t count)
1821 {
1822 	struct ipw_priv *priv = dev_get_drvdata(d);
1823 
1824 	ipw_radio_kill_sw(priv, buf[0] == '1');
1825 
1826 	return count;
1827 }
1828 
1829 static DEVICE_ATTR(rf_kill, 0644, show_rf_kill, store_rf_kill);
1830 
1831 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1832 			       char *buf)
1833 {
1834 	struct ipw_priv *priv = dev_get_drvdata(d);
1835 	int pos = 0, len = 0;
1836 	if (priv->config & CFG_SPEED_SCAN) {
1837 		while (priv->speed_scan[pos] != 0)
1838 			len += sprintf(&buf[len], "%d ",
1839 				       priv->speed_scan[pos++]);
1840 		return len + sprintf(&buf[len], "\n");
1841 	}
1842 
1843 	return sprintf(buf, "0\n");
1844 }
1845 
1846 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1847 				const char *buf, size_t count)
1848 {
1849 	struct ipw_priv *priv = dev_get_drvdata(d);
1850 	int channel, pos = 0;
1851 	const char *p = buf;
1852 
1853 	/* list of space separated channels to scan, optionally ending with 0 */
1854 	while ((channel = simple_strtol(p, NULL, 0))) {
1855 		if (pos == MAX_SPEED_SCAN - 1) {
1856 			priv->speed_scan[pos] = 0;
1857 			break;
1858 		}
1859 
1860 		if (libipw_is_valid_channel(priv->ieee, channel))
1861 			priv->speed_scan[pos++] = channel;
1862 		else
1863 			IPW_WARNING("Skipping invalid channel request: %d\n",
1864 				    channel);
1865 		p = strchr(p, ' ');
1866 		if (!p)
1867 			break;
1868 		while (*p == ' ' || *p == '\t')
1869 			p++;
1870 	}
1871 
1872 	if (pos == 0)
1873 		priv->config &= ~CFG_SPEED_SCAN;
1874 	else {
1875 		priv->speed_scan_pos = 0;
1876 		priv->config |= CFG_SPEED_SCAN;
1877 	}
1878 
1879 	return count;
1880 }
1881 
1882 static DEVICE_ATTR(speed_scan, 0644, show_speed_scan, store_speed_scan);
1883 
1884 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1885 			      char *buf)
1886 {
1887 	struct ipw_priv *priv = dev_get_drvdata(d);
1888 	return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1889 }
1890 
1891 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1892 			       const char *buf, size_t count)
1893 {
1894 	struct ipw_priv *priv = dev_get_drvdata(d);
1895 	if (buf[0] == '1')
1896 		priv->config |= CFG_NET_STATS;
1897 	else
1898 		priv->config &= ~CFG_NET_STATS;
1899 
1900 	return count;
1901 }
1902 
1903 static DEVICE_ATTR(net_stats, 0644, show_net_stats, store_net_stats);
1904 
1905 static ssize_t show_channels(struct device *d,
1906 			     struct device_attribute *attr,
1907 			     char *buf)
1908 {
1909 	struct ipw_priv *priv = dev_get_drvdata(d);
1910 	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1911 	int len = 0, i;
1912 
1913 	len = sprintf(&buf[len],
1914 		      "Displaying %d channels in 2.4Ghz band "
1915 		      "(802.11bg):\n", geo->bg_channels);
1916 
1917 	for (i = 0; i < geo->bg_channels; i++) {
1918 		len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
1919 			       geo->bg[i].channel,
1920 			       geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT ?
1921 			       " (radar spectrum)" : "",
1922 			       ((geo->bg[i].flags & LIBIPW_CH_NO_IBSS) ||
1923 				(geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT))
1924 			       ? "" : ", IBSS",
1925 			       geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1926 			       "passive only" : "active/passive",
1927 			       geo->bg[i].flags & LIBIPW_CH_B_ONLY ?
1928 			       "B" : "B/G");
1929 	}
1930 
1931 	len += sprintf(&buf[len],
1932 		       "Displaying %d channels in 5.2Ghz band "
1933 		       "(802.11a):\n", geo->a_channels);
1934 	for (i = 0; i < geo->a_channels; i++) {
1935 		len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
1936 			       geo->a[i].channel,
1937 			       geo->a[i].flags & LIBIPW_CH_RADAR_DETECT ?
1938 			       " (radar spectrum)" : "",
1939 			       ((geo->a[i].flags & LIBIPW_CH_NO_IBSS) ||
1940 				(geo->a[i].flags & LIBIPW_CH_RADAR_DETECT))
1941 			       ? "" : ", IBSS",
1942 			       geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1943 			       "passive only" : "active/passive");
1944 	}
1945 
1946 	return len;
1947 }
1948 
1949 static DEVICE_ATTR(channels, 0400, show_channels, NULL);
1950 
1951 static void notify_wx_assoc_event(struct ipw_priv *priv)
1952 {
1953 	union iwreq_data wrqu;
1954 	wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1955 	if (priv->status & STATUS_ASSOCIATED)
1956 		memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1957 	else
1958 		eth_zero_addr(wrqu.ap_addr.sa_data);
1959 	wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1960 }
1961 
1962 static void ipw_irq_tasklet(struct ipw_priv *priv)
1963 {
1964 	u32 inta, inta_mask, handled = 0;
1965 	unsigned long flags;
1966 	int rc = 0;
1967 
1968 	spin_lock_irqsave(&priv->irq_lock, flags);
1969 
1970 	inta = ipw_read32(priv, IPW_INTA_RW);
1971 	inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1972 
1973 	if (inta == 0xFFFFFFFF) {
1974 		/* Hardware disappeared */
1975 		IPW_WARNING("TASKLET INTA == 0xFFFFFFFF\n");
1976 		/* Only handle the cached INTA values */
1977 		inta = 0;
1978 	}
1979 	inta &= (IPW_INTA_MASK_ALL & inta_mask);
1980 
1981 	/* Add any cached INTA values that need to be handled */
1982 	inta |= priv->isr_inta;
1983 
1984 	spin_unlock_irqrestore(&priv->irq_lock, flags);
1985 
1986 	spin_lock_irqsave(&priv->lock, flags);
1987 
1988 	/* handle all the justifications for the interrupt */
1989 	if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1990 		ipw_rx(priv);
1991 		handled |= IPW_INTA_BIT_RX_TRANSFER;
1992 	}
1993 
1994 	if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1995 		IPW_DEBUG_HC("Command completed.\n");
1996 		rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1997 		priv->status &= ~STATUS_HCMD_ACTIVE;
1998 		wake_up_interruptible(&priv->wait_command_queue);
1999 		handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
2000 	}
2001 
2002 	if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
2003 		IPW_DEBUG_TX("TX_QUEUE_1\n");
2004 		rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
2005 		handled |= IPW_INTA_BIT_TX_QUEUE_1;
2006 	}
2007 
2008 	if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
2009 		IPW_DEBUG_TX("TX_QUEUE_2\n");
2010 		rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
2011 		handled |= IPW_INTA_BIT_TX_QUEUE_2;
2012 	}
2013 
2014 	if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
2015 		IPW_DEBUG_TX("TX_QUEUE_3\n");
2016 		rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
2017 		handled |= IPW_INTA_BIT_TX_QUEUE_3;
2018 	}
2019 
2020 	if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
2021 		IPW_DEBUG_TX("TX_QUEUE_4\n");
2022 		rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
2023 		handled |= IPW_INTA_BIT_TX_QUEUE_4;
2024 	}
2025 
2026 	if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
2027 		IPW_WARNING("STATUS_CHANGE\n");
2028 		handled |= IPW_INTA_BIT_STATUS_CHANGE;
2029 	}
2030 
2031 	if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
2032 		IPW_WARNING("TX_PERIOD_EXPIRED\n");
2033 		handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
2034 	}
2035 
2036 	if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
2037 		IPW_WARNING("HOST_CMD_DONE\n");
2038 		handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
2039 	}
2040 
2041 	if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
2042 		IPW_WARNING("FW_INITIALIZATION_DONE\n");
2043 		handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
2044 	}
2045 
2046 	if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
2047 		IPW_WARNING("PHY_OFF_DONE\n");
2048 		handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
2049 	}
2050 
2051 	if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
2052 		IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
2053 		priv->status |= STATUS_RF_KILL_HW;
2054 		wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2055 		wake_up_interruptible(&priv->wait_command_queue);
2056 		priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2057 		cancel_delayed_work(&priv->request_scan);
2058 		cancel_delayed_work(&priv->request_direct_scan);
2059 		cancel_delayed_work(&priv->request_passive_scan);
2060 		cancel_delayed_work(&priv->scan_event);
2061 		schedule_work(&priv->link_down);
2062 		schedule_delayed_work(&priv->rf_kill, 2 * HZ);
2063 		handled |= IPW_INTA_BIT_RF_KILL_DONE;
2064 	}
2065 
2066 	if (inta & IPW_INTA_BIT_FATAL_ERROR) {
2067 		IPW_WARNING("Firmware error detected.  Restarting.\n");
2068 		if (priv->error) {
2069 			IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2070 			if (ipw_debug_level & IPW_DL_FW_ERRORS) {
2071 				struct ipw_fw_error *error =
2072 				    ipw_alloc_error_log(priv);
2073 				ipw_dump_error_log(priv, error);
2074 				kfree(error);
2075 			}
2076 		} else {
2077 			priv->error = ipw_alloc_error_log(priv);
2078 			if (priv->error)
2079 				IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2080 			else
2081 				IPW_DEBUG_FW("Error allocating sysfs 'error' "
2082 					     "log.\n");
2083 			if (ipw_debug_level & IPW_DL_FW_ERRORS)
2084 				ipw_dump_error_log(priv, priv->error);
2085 		}
2086 
2087 		/* XXX: If hardware encryption is for WPA/WPA2,
2088 		 * we have to notify the supplicant. */
2089 		if (priv->ieee->sec.encrypt) {
2090 			priv->status &= ~STATUS_ASSOCIATED;
2091 			notify_wx_assoc_event(priv);
2092 		}
2093 
2094 		/* Keep the restart process from trying to send host
2095 		 * commands by clearing the INIT status bit */
2096 		priv->status &= ~STATUS_INIT;
2097 
2098 		/* Cancel currently queued command. */
2099 		priv->status &= ~STATUS_HCMD_ACTIVE;
2100 		wake_up_interruptible(&priv->wait_command_queue);
2101 
2102 		schedule_work(&priv->adapter_restart);
2103 		handled |= IPW_INTA_BIT_FATAL_ERROR;
2104 	}
2105 
2106 	if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2107 		IPW_ERROR("Parity error\n");
2108 		handled |= IPW_INTA_BIT_PARITY_ERROR;
2109 	}
2110 
2111 	if (handled != inta) {
2112 		IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2113 	}
2114 
2115 	spin_unlock_irqrestore(&priv->lock, flags);
2116 
2117 	/* enable all interrupts */
2118 	ipw_enable_interrupts(priv);
2119 }
2120 
2121 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2122 static char *get_cmd_string(u8 cmd)
2123 {
2124 	switch (cmd) {
2125 		IPW_CMD(HOST_COMPLETE);
2126 		IPW_CMD(POWER_DOWN);
2127 		IPW_CMD(SYSTEM_CONFIG);
2128 		IPW_CMD(MULTICAST_ADDRESS);
2129 		IPW_CMD(SSID);
2130 		IPW_CMD(ADAPTER_ADDRESS);
2131 		IPW_CMD(PORT_TYPE);
2132 		IPW_CMD(RTS_THRESHOLD);
2133 		IPW_CMD(FRAG_THRESHOLD);
2134 		IPW_CMD(POWER_MODE);
2135 		IPW_CMD(WEP_KEY);
2136 		IPW_CMD(TGI_TX_KEY);
2137 		IPW_CMD(SCAN_REQUEST);
2138 		IPW_CMD(SCAN_REQUEST_EXT);
2139 		IPW_CMD(ASSOCIATE);
2140 		IPW_CMD(SUPPORTED_RATES);
2141 		IPW_CMD(SCAN_ABORT);
2142 		IPW_CMD(TX_FLUSH);
2143 		IPW_CMD(QOS_PARAMETERS);
2144 		IPW_CMD(DINO_CONFIG);
2145 		IPW_CMD(RSN_CAPABILITIES);
2146 		IPW_CMD(RX_KEY);
2147 		IPW_CMD(CARD_DISABLE);
2148 		IPW_CMD(SEED_NUMBER);
2149 		IPW_CMD(TX_POWER);
2150 		IPW_CMD(COUNTRY_INFO);
2151 		IPW_CMD(AIRONET_INFO);
2152 		IPW_CMD(AP_TX_POWER);
2153 		IPW_CMD(CCKM_INFO);
2154 		IPW_CMD(CCX_VER_INFO);
2155 		IPW_CMD(SET_CALIBRATION);
2156 		IPW_CMD(SENSITIVITY_CALIB);
2157 		IPW_CMD(RETRY_LIMIT);
2158 		IPW_CMD(IPW_PRE_POWER_DOWN);
2159 		IPW_CMD(VAP_BEACON_TEMPLATE);
2160 		IPW_CMD(VAP_DTIM_PERIOD);
2161 		IPW_CMD(EXT_SUPPORTED_RATES);
2162 		IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2163 		IPW_CMD(VAP_QUIET_INTERVALS);
2164 		IPW_CMD(VAP_CHANNEL_SWITCH);
2165 		IPW_CMD(VAP_MANDATORY_CHANNELS);
2166 		IPW_CMD(VAP_CELL_PWR_LIMIT);
2167 		IPW_CMD(VAP_CF_PARAM_SET);
2168 		IPW_CMD(VAP_SET_BEACONING_STATE);
2169 		IPW_CMD(MEASUREMENT);
2170 		IPW_CMD(POWER_CAPABILITY);
2171 		IPW_CMD(SUPPORTED_CHANNELS);
2172 		IPW_CMD(TPC_REPORT);
2173 		IPW_CMD(WME_INFO);
2174 		IPW_CMD(PRODUCTION_COMMAND);
2175 	default:
2176 		return "UNKNOWN";
2177 	}
2178 }
2179 
2180 #define HOST_COMPLETE_TIMEOUT HZ
2181 
2182 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2183 {
2184 	int rc = 0;
2185 	unsigned long flags;
2186 	unsigned long now, end;
2187 
2188 	spin_lock_irqsave(&priv->lock, flags);
2189 	if (priv->status & STATUS_HCMD_ACTIVE) {
2190 		IPW_ERROR("Failed to send %s: Already sending a command.\n",
2191 			  get_cmd_string(cmd->cmd));
2192 		spin_unlock_irqrestore(&priv->lock, flags);
2193 		return -EAGAIN;
2194 	}
2195 
2196 	priv->status |= STATUS_HCMD_ACTIVE;
2197 
2198 	if (priv->cmdlog) {
2199 		priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2200 		priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2201 		priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2202 		memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2203 		       cmd->len);
2204 		priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2205 	}
2206 
2207 	IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2208 		     get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2209 		     priv->status);
2210 
2211 #ifndef DEBUG_CMD_WEP_KEY
2212 	if (cmd->cmd == IPW_CMD_WEP_KEY)
2213 		IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2214 	else
2215 #endif
2216 		printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2217 
2218 	rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2219 	if (rc) {
2220 		priv->status &= ~STATUS_HCMD_ACTIVE;
2221 		IPW_ERROR("Failed to send %s: Reason %d\n",
2222 			  get_cmd_string(cmd->cmd), rc);
2223 		spin_unlock_irqrestore(&priv->lock, flags);
2224 		goto exit;
2225 	}
2226 	spin_unlock_irqrestore(&priv->lock, flags);
2227 
2228 	now = jiffies;
2229 	end = now + HOST_COMPLETE_TIMEOUT;
2230 again:
2231 	rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2232 					      !(priv->
2233 						status & STATUS_HCMD_ACTIVE),
2234 					      end - now);
2235 	if (rc < 0) {
2236 		now = jiffies;
2237 		if (time_before(now, end))
2238 			goto again;
2239 		rc = 0;
2240 	}
2241 
2242 	if (rc == 0) {
2243 		spin_lock_irqsave(&priv->lock, flags);
2244 		if (priv->status & STATUS_HCMD_ACTIVE) {
2245 			IPW_ERROR("Failed to send %s: Command timed out.\n",
2246 				  get_cmd_string(cmd->cmd));
2247 			priv->status &= ~STATUS_HCMD_ACTIVE;
2248 			spin_unlock_irqrestore(&priv->lock, flags);
2249 			rc = -EIO;
2250 			goto exit;
2251 		}
2252 		spin_unlock_irqrestore(&priv->lock, flags);
2253 	} else
2254 		rc = 0;
2255 
2256 	if (priv->status & STATUS_RF_KILL_HW) {
2257 		IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2258 			  get_cmd_string(cmd->cmd));
2259 		rc = -EIO;
2260 		goto exit;
2261 	}
2262 
2263       exit:
2264 	if (priv->cmdlog) {
2265 		priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2266 		priv->cmdlog_pos %= priv->cmdlog_len;
2267 	}
2268 	return rc;
2269 }
2270 
2271 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2272 {
2273 	struct host_cmd cmd = {
2274 		.cmd = command,
2275 	};
2276 
2277 	return __ipw_send_cmd(priv, &cmd);
2278 }
2279 
2280 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2281 			    void *data)
2282 {
2283 	struct host_cmd cmd = {
2284 		.cmd = command,
2285 		.len = len,
2286 		.param = data,
2287 	};
2288 
2289 	return __ipw_send_cmd(priv, &cmd);
2290 }
2291 
2292 static int ipw_send_host_complete(struct ipw_priv *priv)
2293 {
2294 	if (!priv) {
2295 		IPW_ERROR("Invalid args\n");
2296 		return -1;
2297 	}
2298 
2299 	return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2300 }
2301 
2302 static int ipw_send_system_config(struct ipw_priv *priv)
2303 {
2304 	return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2305 				sizeof(priv->sys_config),
2306 				&priv->sys_config);
2307 }
2308 
2309 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2310 {
2311 	if (!priv || !ssid) {
2312 		IPW_ERROR("Invalid args\n");
2313 		return -1;
2314 	}
2315 
2316 	return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2317 				ssid);
2318 }
2319 
2320 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2321 {
2322 	if (!priv || !mac) {
2323 		IPW_ERROR("Invalid args\n");
2324 		return -1;
2325 	}
2326 
2327 	IPW_DEBUG_INFO("%s: Setting MAC to %pM\n",
2328 		       priv->net_dev->name, mac);
2329 
2330 	return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2331 }
2332 
2333 static void ipw_adapter_restart(void *adapter)
2334 {
2335 	struct ipw_priv *priv = adapter;
2336 
2337 	if (priv->status & STATUS_RF_KILL_MASK)
2338 		return;
2339 
2340 	ipw_down(priv);
2341 
2342 	if (priv->assoc_network &&
2343 	    (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2344 		ipw_remove_current_network(priv);
2345 
2346 	if (ipw_up(priv)) {
2347 		IPW_ERROR("Failed to up device\n");
2348 		return;
2349 	}
2350 }
2351 
2352 static void ipw_bg_adapter_restart(struct work_struct *work)
2353 {
2354 	struct ipw_priv *priv =
2355 		container_of(work, struct ipw_priv, adapter_restart);
2356 	mutex_lock(&priv->mutex);
2357 	ipw_adapter_restart(priv);
2358 	mutex_unlock(&priv->mutex);
2359 }
2360 
2361 static void ipw_abort_scan(struct ipw_priv *priv);
2362 
2363 #define IPW_SCAN_CHECK_WATCHDOG	(5 * HZ)
2364 
2365 static void ipw_scan_check(void *data)
2366 {
2367 	struct ipw_priv *priv = data;
2368 
2369 	if (priv->status & STATUS_SCAN_ABORTING) {
2370 		IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2371 			       "adapter after (%dms).\n",
2372 			       jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2373 		schedule_work(&priv->adapter_restart);
2374 	} else if (priv->status & STATUS_SCANNING) {
2375 		IPW_DEBUG_SCAN("Scan completion watchdog aborting scan "
2376 			       "after (%dms).\n",
2377 			       jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2378 		ipw_abort_scan(priv);
2379 		schedule_delayed_work(&priv->scan_check, HZ);
2380 	}
2381 }
2382 
2383 static void ipw_bg_scan_check(struct work_struct *work)
2384 {
2385 	struct ipw_priv *priv =
2386 		container_of(work, struct ipw_priv, scan_check.work);
2387 	mutex_lock(&priv->mutex);
2388 	ipw_scan_check(priv);
2389 	mutex_unlock(&priv->mutex);
2390 }
2391 
2392 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2393 				     struct ipw_scan_request_ext *request)
2394 {
2395 	return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2396 				sizeof(*request), request);
2397 }
2398 
2399 static int ipw_send_scan_abort(struct ipw_priv *priv)
2400 {
2401 	if (!priv) {
2402 		IPW_ERROR("Invalid args\n");
2403 		return -1;
2404 	}
2405 
2406 	return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2407 }
2408 
2409 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2410 {
2411 	struct ipw_sensitivity_calib calib = {
2412 		.beacon_rssi_raw = cpu_to_le16(sens),
2413 	};
2414 
2415 	return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2416 				&calib);
2417 }
2418 
2419 static int ipw_send_associate(struct ipw_priv *priv,
2420 			      struct ipw_associate *associate)
2421 {
2422 	if (!priv || !associate) {
2423 		IPW_ERROR("Invalid args\n");
2424 		return -1;
2425 	}
2426 
2427 	return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(*associate),
2428 				associate);
2429 }
2430 
2431 static int ipw_send_supported_rates(struct ipw_priv *priv,
2432 				    struct ipw_supported_rates *rates)
2433 {
2434 	if (!priv || !rates) {
2435 		IPW_ERROR("Invalid args\n");
2436 		return -1;
2437 	}
2438 
2439 	return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2440 				rates);
2441 }
2442 
2443 static int ipw_set_random_seed(struct ipw_priv *priv)
2444 {
2445 	u32 val;
2446 
2447 	if (!priv) {
2448 		IPW_ERROR("Invalid args\n");
2449 		return -1;
2450 	}
2451 
2452 	get_random_bytes(&val, sizeof(val));
2453 
2454 	return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2455 }
2456 
2457 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2458 {
2459 	__le32 v = cpu_to_le32(phy_off);
2460 	if (!priv) {
2461 		IPW_ERROR("Invalid args\n");
2462 		return -1;
2463 	}
2464 
2465 	return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(v), &v);
2466 }
2467 
2468 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2469 {
2470 	if (!priv || !power) {
2471 		IPW_ERROR("Invalid args\n");
2472 		return -1;
2473 	}
2474 
2475 	return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2476 }
2477 
2478 static int ipw_set_tx_power(struct ipw_priv *priv)
2479 {
2480 	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
2481 	struct ipw_tx_power tx_power;
2482 	s8 max_power;
2483 	int i;
2484 
2485 	memset(&tx_power, 0, sizeof(tx_power));
2486 
2487 	/* configure device for 'G' band */
2488 	tx_power.ieee_mode = IPW_G_MODE;
2489 	tx_power.num_channels = geo->bg_channels;
2490 	for (i = 0; i < geo->bg_channels; i++) {
2491 		max_power = geo->bg[i].max_power;
2492 		tx_power.channels_tx_power[i].channel_number =
2493 		    geo->bg[i].channel;
2494 		tx_power.channels_tx_power[i].tx_power = max_power ?
2495 		    min(max_power, priv->tx_power) : priv->tx_power;
2496 	}
2497 	if (ipw_send_tx_power(priv, &tx_power))
2498 		return -EIO;
2499 
2500 	/* configure device to also handle 'B' band */
2501 	tx_power.ieee_mode = IPW_B_MODE;
2502 	if (ipw_send_tx_power(priv, &tx_power))
2503 		return -EIO;
2504 
2505 	/* configure device to also handle 'A' band */
2506 	if (priv->ieee->abg_true) {
2507 		tx_power.ieee_mode = IPW_A_MODE;
2508 		tx_power.num_channels = geo->a_channels;
2509 		for (i = 0; i < tx_power.num_channels; i++) {
2510 			max_power = geo->a[i].max_power;
2511 			tx_power.channels_tx_power[i].channel_number =
2512 			    geo->a[i].channel;
2513 			tx_power.channels_tx_power[i].tx_power = max_power ?
2514 			    min(max_power, priv->tx_power) : priv->tx_power;
2515 		}
2516 		if (ipw_send_tx_power(priv, &tx_power))
2517 			return -EIO;
2518 	}
2519 	return 0;
2520 }
2521 
2522 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2523 {
2524 	struct ipw_rts_threshold rts_threshold = {
2525 		.rts_threshold = cpu_to_le16(rts),
2526 	};
2527 
2528 	if (!priv) {
2529 		IPW_ERROR("Invalid args\n");
2530 		return -1;
2531 	}
2532 
2533 	return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2534 				sizeof(rts_threshold), &rts_threshold);
2535 }
2536 
2537 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2538 {
2539 	struct ipw_frag_threshold frag_threshold = {
2540 		.frag_threshold = cpu_to_le16(frag),
2541 	};
2542 
2543 	if (!priv) {
2544 		IPW_ERROR("Invalid args\n");
2545 		return -1;
2546 	}
2547 
2548 	return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2549 				sizeof(frag_threshold), &frag_threshold);
2550 }
2551 
2552 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2553 {
2554 	__le32 param;
2555 
2556 	if (!priv) {
2557 		IPW_ERROR("Invalid args\n");
2558 		return -1;
2559 	}
2560 
2561 	/* If on battery, set to 3, if AC set to CAM, else user
2562 	 * level */
2563 	switch (mode) {
2564 	case IPW_POWER_BATTERY:
2565 		param = cpu_to_le32(IPW_POWER_INDEX_3);
2566 		break;
2567 	case IPW_POWER_AC:
2568 		param = cpu_to_le32(IPW_POWER_MODE_CAM);
2569 		break;
2570 	default:
2571 		param = cpu_to_le32(mode);
2572 		break;
2573 	}
2574 
2575 	return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2576 				&param);
2577 }
2578 
2579 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2580 {
2581 	struct ipw_retry_limit retry_limit = {
2582 		.short_retry_limit = slimit,
2583 		.long_retry_limit = llimit
2584 	};
2585 
2586 	if (!priv) {
2587 		IPW_ERROR("Invalid args\n");
2588 		return -1;
2589 	}
2590 
2591 	return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2592 				&retry_limit);
2593 }
2594 
2595 /*
2596  * The IPW device contains a Microwire compatible EEPROM that stores
2597  * various data like the MAC address.  Usually the firmware has exclusive
2598  * access to the eeprom, but during device initialization (before the
2599  * device driver has sent the HostComplete command to the firmware) the
2600  * device driver has read access to the EEPROM by way of indirect addressing
2601  * through a couple of memory mapped registers.
2602  *
2603  * The following is a simplified implementation for pulling data out of the
2604  * the eeprom, along with some helper functions to find information in
2605  * the per device private data's copy of the eeprom.
2606  *
2607  * NOTE: To better understand how these functions work (i.e what is a chip
2608  *       select and why do have to keep driving the eeprom clock?), read
2609  *       just about any data sheet for a Microwire compatible EEPROM.
2610  */
2611 
2612 /* write a 32 bit value into the indirect accessor register */
2613 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2614 {
2615 	ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2616 
2617 	/* the eeprom requires some time to complete the operation */
2618 	udelay(p->eeprom_delay);
2619 }
2620 
2621 /* perform a chip select operation */
2622 static void eeprom_cs(struct ipw_priv *priv)
2623 {
2624 	eeprom_write_reg(priv, 0);
2625 	eeprom_write_reg(priv, EEPROM_BIT_CS);
2626 	eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2627 	eeprom_write_reg(priv, EEPROM_BIT_CS);
2628 }
2629 
2630 /* perform a chip select operation */
2631 static void eeprom_disable_cs(struct ipw_priv *priv)
2632 {
2633 	eeprom_write_reg(priv, EEPROM_BIT_CS);
2634 	eeprom_write_reg(priv, 0);
2635 	eeprom_write_reg(priv, EEPROM_BIT_SK);
2636 }
2637 
2638 /* push a single bit down to the eeprom */
2639 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2640 {
2641 	int d = (bit ? EEPROM_BIT_DI : 0);
2642 	eeprom_write_reg(p, EEPROM_BIT_CS | d);
2643 	eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2644 }
2645 
2646 /* push an opcode followed by an address down to the eeprom */
2647 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2648 {
2649 	int i;
2650 
2651 	eeprom_cs(priv);
2652 	eeprom_write_bit(priv, 1);
2653 	eeprom_write_bit(priv, op & 2);
2654 	eeprom_write_bit(priv, op & 1);
2655 	for (i = 7; i >= 0; i--) {
2656 		eeprom_write_bit(priv, addr & (1 << i));
2657 	}
2658 }
2659 
2660 /* pull 16 bits off the eeprom, one bit at a time */
2661 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2662 {
2663 	int i;
2664 	u16 r = 0;
2665 
2666 	/* Send READ Opcode */
2667 	eeprom_op(priv, EEPROM_CMD_READ, addr);
2668 
2669 	/* Send dummy bit */
2670 	eeprom_write_reg(priv, EEPROM_BIT_CS);
2671 
2672 	/* Read the byte off the eeprom one bit at a time */
2673 	for (i = 0; i < 16; i++) {
2674 		u32 data = 0;
2675 		eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2676 		eeprom_write_reg(priv, EEPROM_BIT_CS);
2677 		data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2678 		r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2679 	}
2680 
2681 	/* Send another dummy bit */
2682 	eeprom_write_reg(priv, 0);
2683 	eeprom_disable_cs(priv);
2684 
2685 	return r;
2686 }
2687 
2688 /* helper function for pulling the mac address out of the private */
2689 /* data's copy of the eeprom data                                 */
2690 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2691 {
2692 	memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], ETH_ALEN);
2693 }
2694 
2695 static void ipw_read_eeprom(struct ipw_priv *priv)
2696 {
2697 	int i;
2698 	__le16 *eeprom = (__le16 *) priv->eeprom;
2699 
2700 	IPW_DEBUG_TRACE(">>\n");
2701 
2702 	/* read entire contents of eeprom into private buffer */
2703 	for (i = 0; i < 128; i++)
2704 		eeprom[i] = cpu_to_le16(eeprom_read_u16(priv, (u8) i));
2705 
2706 	IPW_DEBUG_TRACE("<<\n");
2707 }
2708 
2709 /*
2710  * Either the device driver (i.e. the host) or the firmware can
2711  * load eeprom data into the designated region in SRAM.  If neither
2712  * happens then the FW will shutdown with a fatal error.
2713  *
2714  * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2715  * bit needs region of shared SRAM needs to be non-zero.
2716  */
2717 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2718 {
2719 	int i;
2720 
2721 	IPW_DEBUG_TRACE(">>\n");
2722 
2723 	/*
2724 	   If the data looks correct, then copy it to our private
2725 	   copy.  Otherwise let the firmware know to perform the operation
2726 	   on its own.
2727 	 */
2728 	if (priv->eeprom[EEPROM_VERSION] != 0) {
2729 		IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2730 
2731 		/* write the eeprom data to sram */
2732 		for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2733 			ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2734 
2735 		/* Do not load eeprom data on fatal error or suspend */
2736 		ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2737 	} else {
2738 		IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2739 
2740 		/* Load eeprom data on fatal error or suspend */
2741 		ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2742 	}
2743 
2744 	IPW_DEBUG_TRACE("<<\n");
2745 }
2746 
2747 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2748 {
2749 	count >>= 2;
2750 	if (!count)
2751 		return;
2752 	_ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2753 	while (count--)
2754 		_ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2755 }
2756 
2757 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2758 {
2759 	ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2760 			CB_NUMBER_OF_ELEMENTS_SMALL *
2761 			sizeof(struct command_block));
2762 }
2763 
2764 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2765 {				/* start dma engine but no transfers yet */
2766 
2767 	IPW_DEBUG_FW(">> :\n");
2768 
2769 	/* Start the dma */
2770 	ipw_fw_dma_reset_command_blocks(priv);
2771 
2772 	/* Write CB base address */
2773 	ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2774 
2775 	IPW_DEBUG_FW("<< :\n");
2776 	return 0;
2777 }
2778 
2779 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2780 {
2781 	u32 control = 0;
2782 
2783 	IPW_DEBUG_FW(">> :\n");
2784 
2785 	/* set the Stop and Abort bit */
2786 	control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2787 	ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2788 	priv->sram_desc.last_cb_index = 0;
2789 
2790 	IPW_DEBUG_FW("<<\n");
2791 }
2792 
2793 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2794 					  struct command_block *cb)
2795 {
2796 	u32 address =
2797 	    IPW_SHARED_SRAM_DMA_CONTROL +
2798 	    (sizeof(struct command_block) * index);
2799 	IPW_DEBUG_FW(">> :\n");
2800 
2801 	ipw_write_indirect(priv, address, (u8 *) cb,
2802 			   (int)sizeof(struct command_block));
2803 
2804 	IPW_DEBUG_FW("<< :\n");
2805 	return 0;
2806 
2807 }
2808 
2809 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2810 {
2811 	u32 control = 0;
2812 	u32 index = 0;
2813 
2814 	IPW_DEBUG_FW(">> :\n");
2815 
2816 	for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2817 		ipw_fw_dma_write_command_block(priv, index,
2818 					       &priv->sram_desc.cb_list[index]);
2819 
2820 	/* Enable the DMA in the CSR register */
2821 	ipw_clear_bit(priv, IPW_RESET_REG,
2822 		      IPW_RESET_REG_MASTER_DISABLED |
2823 		      IPW_RESET_REG_STOP_MASTER);
2824 
2825 	/* Set the Start bit. */
2826 	control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2827 	ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2828 
2829 	IPW_DEBUG_FW("<< :\n");
2830 	return 0;
2831 }
2832 
2833 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2834 {
2835 	u32 address;
2836 	u32 register_value = 0;
2837 	u32 cb_fields_address = 0;
2838 
2839 	IPW_DEBUG_FW(">> :\n");
2840 	address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2841 	IPW_DEBUG_FW_INFO("Current CB is 0x%x\n", address);
2842 
2843 	/* Read the DMA Controlor register */
2844 	register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2845 	IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x\n", register_value);
2846 
2847 	/* Print the CB values */
2848 	cb_fields_address = address;
2849 	register_value = ipw_read_reg32(priv, cb_fields_address);
2850 	IPW_DEBUG_FW_INFO("Current CB Control Field is 0x%x\n", register_value);
2851 
2852 	cb_fields_address += sizeof(u32);
2853 	register_value = ipw_read_reg32(priv, cb_fields_address);
2854 	IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x\n", register_value);
2855 
2856 	cb_fields_address += sizeof(u32);
2857 	register_value = ipw_read_reg32(priv, cb_fields_address);
2858 	IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x\n",
2859 			  register_value);
2860 
2861 	cb_fields_address += sizeof(u32);
2862 	register_value = ipw_read_reg32(priv, cb_fields_address);
2863 	IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x\n", register_value);
2864 
2865 	IPW_DEBUG_FW(">> :\n");
2866 }
2867 
2868 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2869 {
2870 	u32 current_cb_address = 0;
2871 	u32 current_cb_index = 0;
2872 
2873 	IPW_DEBUG_FW("<< :\n");
2874 	current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2875 
2876 	current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2877 	    sizeof(struct command_block);
2878 
2879 	IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X\n",
2880 			  current_cb_index, current_cb_address);
2881 
2882 	IPW_DEBUG_FW(">> :\n");
2883 	return current_cb_index;
2884 
2885 }
2886 
2887 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2888 					u32 src_address,
2889 					u32 dest_address,
2890 					u32 length,
2891 					int interrupt_enabled, int is_last)
2892 {
2893 
2894 	u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2895 	    CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2896 	    CB_DEST_SIZE_LONG;
2897 	struct command_block *cb;
2898 	u32 last_cb_element = 0;
2899 
2900 	IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2901 			  src_address, dest_address, length);
2902 
2903 	if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2904 		return -1;
2905 
2906 	last_cb_element = priv->sram_desc.last_cb_index;
2907 	cb = &priv->sram_desc.cb_list[last_cb_element];
2908 	priv->sram_desc.last_cb_index++;
2909 
2910 	/* Calculate the new CB control word */
2911 	if (interrupt_enabled)
2912 		control |= CB_INT_ENABLED;
2913 
2914 	if (is_last)
2915 		control |= CB_LAST_VALID;
2916 
2917 	control |= length;
2918 
2919 	/* Calculate the CB Element's checksum value */
2920 	cb->status = control ^ src_address ^ dest_address;
2921 
2922 	/* Copy the Source and Destination addresses */
2923 	cb->dest_addr = dest_address;
2924 	cb->source_addr = src_address;
2925 
2926 	/* Copy the Control Word last */
2927 	cb->control = control;
2928 
2929 	return 0;
2930 }
2931 
2932 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv, dma_addr_t *src_address,
2933 				 int nr, u32 dest_address, u32 len)
2934 {
2935 	int ret, i;
2936 	u32 size;
2937 
2938 	IPW_DEBUG_FW(">>\n");
2939 	IPW_DEBUG_FW_INFO("nr=%d dest_address=0x%x len=0x%x\n",
2940 			  nr, dest_address, len);
2941 
2942 	for (i = 0; i < nr; i++) {
2943 		size = min_t(u32, len - i * CB_MAX_LENGTH, CB_MAX_LENGTH);
2944 		ret = ipw_fw_dma_add_command_block(priv, src_address[i],
2945 						   dest_address +
2946 						   i * CB_MAX_LENGTH, size,
2947 						   0, 0);
2948 		if (ret) {
2949 			IPW_DEBUG_FW_INFO(": Failed\n");
2950 			return -1;
2951 		} else
2952 			IPW_DEBUG_FW_INFO(": Added new cb\n");
2953 	}
2954 
2955 	IPW_DEBUG_FW("<<\n");
2956 	return 0;
2957 }
2958 
2959 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2960 {
2961 	u32 current_index = 0, previous_index;
2962 	u32 watchdog = 0;
2963 
2964 	IPW_DEBUG_FW(">> :\n");
2965 
2966 	current_index = ipw_fw_dma_command_block_index(priv);
2967 	IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2968 			  (int)priv->sram_desc.last_cb_index);
2969 
2970 	while (current_index < priv->sram_desc.last_cb_index) {
2971 		udelay(50);
2972 		previous_index = current_index;
2973 		current_index = ipw_fw_dma_command_block_index(priv);
2974 
2975 		if (previous_index < current_index) {
2976 			watchdog = 0;
2977 			continue;
2978 		}
2979 		if (++watchdog > 400) {
2980 			IPW_DEBUG_FW_INFO("Timeout\n");
2981 			ipw_fw_dma_dump_command_block(priv);
2982 			ipw_fw_dma_abort(priv);
2983 			return -1;
2984 		}
2985 	}
2986 
2987 	ipw_fw_dma_abort(priv);
2988 
2989 	/*Disable the DMA in the CSR register */
2990 	ipw_set_bit(priv, IPW_RESET_REG,
2991 		    IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2992 
2993 	IPW_DEBUG_FW("<< dmaWaitSync\n");
2994 	return 0;
2995 }
2996 
2997 static void ipw_remove_current_network(struct ipw_priv *priv)
2998 {
2999 	struct list_head *element, *safe;
3000 	struct libipw_network *network = NULL;
3001 	unsigned long flags;
3002 
3003 	spin_lock_irqsave(&priv->ieee->lock, flags);
3004 	list_for_each_safe(element, safe, &priv->ieee->network_list) {
3005 		network = list_entry(element, struct libipw_network, list);
3006 		if (ether_addr_equal(network->bssid, priv->bssid)) {
3007 			list_del(element);
3008 			list_add_tail(&network->list,
3009 				      &priv->ieee->network_free_list);
3010 		}
3011 	}
3012 	spin_unlock_irqrestore(&priv->ieee->lock, flags);
3013 }
3014 
3015 /**
3016  * Check that card is still alive.
3017  * Reads debug register from domain0.
3018  * If card is present, pre-defined value should
3019  * be found there.
3020  *
3021  * @param priv
3022  * @return 1 if card is present, 0 otherwise
3023  */
3024 static inline int ipw_alive(struct ipw_priv *priv)
3025 {
3026 	return ipw_read32(priv, 0x90) == 0xd55555d5;
3027 }
3028 
3029 /* timeout in msec, attempted in 10-msec quanta */
3030 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
3031 			       int timeout)
3032 {
3033 	int i = 0;
3034 
3035 	do {
3036 		if ((ipw_read32(priv, addr) & mask) == mask)
3037 			return i;
3038 		mdelay(10);
3039 		i += 10;
3040 	} while (i < timeout);
3041 
3042 	return -ETIME;
3043 }
3044 
3045 /* These functions load the firmware and micro code for the operation of
3046  * the ipw hardware.  It assumes the buffer has all the bits for the
3047  * image and the caller is handling the memory allocation and clean up.
3048  */
3049 
3050 static int ipw_stop_master(struct ipw_priv *priv)
3051 {
3052 	int rc;
3053 
3054 	IPW_DEBUG_TRACE(">>\n");
3055 	/* stop master. typical delay - 0 */
3056 	ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3057 
3058 	/* timeout is in msec, polled in 10-msec quanta */
3059 	rc = ipw_poll_bit(priv, IPW_RESET_REG,
3060 			  IPW_RESET_REG_MASTER_DISABLED, 100);
3061 	if (rc < 0) {
3062 		IPW_ERROR("wait for stop master failed after 100ms\n");
3063 		return -1;
3064 	}
3065 
3066 	IPW_DEBUG_INFO("stop master %dms\n", rc);
3067 
3068 	return rc;
3069 }
3070 
3071 static void ipw_arc_release(struct ipw_priv *priv)
3072 {
3073 	IPW_DEBUG_TRACE(">>\n");
3074 	mdelay(5);
3075 
3076 	ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3077 
3078 	/* no one knows timing, for safety add some delay */
3079 	mdelay(5);
3080 }
3081 
3082 struct fw_chunk {
3083 	__le32 address;
3084 	__le32 length;
3085 };
3086 
3087 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
3088 {
3089 	int rc = 0, i, addr;
3090 	u8 cr = 0;
3091 	__le16 *image;
3092 
3093 	image = (__le16 *) data;
3094 
3095 	IPW_DEBUG_TRACE(">>\n");
3096 
3097 	rc = ipw_stop_master(priv);
3098 
3099 	if (rc < 0)
3100 		return rc;
3101 
3102 	for (addr = IPW_SHARED_LOWER_BOUND;
3103 	     addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3104 		ipw_write32(priv, addr, 0);
3105 	}
3106 
3107 	/* no ucode (yet) */
3108 	memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3109 	/* destroy DMA queues */
3110 	/* reset sequence */
3111 
3112 	ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3113 	ipw_arc_release(priv);
3114 	ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3115 	mdelay(1);
3116 
3117 	/* reset PHY */
3118 	ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3119 	mdelay(1);
3120 
3121 	ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3122 	mdelay(1);
3123 
3124 	/* enable ucode store */
3125 	ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3126 	ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3127 	mdelay(1);
3128 
3129 	/* write ucode */
3130 	/**
3131 	 * @bug
3132 	 * Do NOT set indirect address register once and then
3133 	 * store data to indirect data register in the loop.
3134 	 * It seems very reasonable, but in this case DINO do not
3135 	 * accept ucode. It is essential to set address each time.
3136 	 */
3137 	/* load new ipw uCode */
3138 	for (i = 0; i < len / 2; i++)
3139 		ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3140 				le16_to_cpu(image[i]));
3141 
3142 	/* enable DINO */
3143 	ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3144 	ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3145 
3146 	/* this is where the igx / win driver deveates from the VAP driver. */
3147 
3148 	/* wait for alive response */
3149 	for (i = 0; i < 100; i++) {
3150 		/* poll for incoming data */
3151 		cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3152 		if (cr & DINO_RXFIFO_DATA)
3153 			break;
3154 		mdelay(1);
3155 	}
3156 
3157 	if (cr & DINO_RXFIFO_DATA) {
3158 		/* alive_command_responce size is NOT multiple of 4 */
3159 		__le32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3160 
3161 		for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3162 			response_buffer[i] =
3163 			    cpu_to_le32(ipw_read_reg32(priv,
3164 						       IPW_BASEBAND_RX_FIFO_READ));
3165 		memcpy(&priv->dino_alive, response_buffer,
3166 		       sizeof(priv->dino_alive));
3167 		if (priv->dino_alive.alive_command == 1
3168 		    && priv->dino_alive.ucode_valid == 1) {
3169 			rc = 0;
3170 			IPW_DEBUG_INFO
3171 			    ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3172 			     "of %02d/%02d/%02d %02d:%02d\n",
3173 			     priv->dino_alive.software_revision,
3174 			     priv->dino_alive.software_revision,
3175 			     priv->dino_alive.device_identifier,
3176 			     priv->dino_alive.device_identifier,
3177 			     priv->dino_alive.time_stamp[0],
3178 			     priv->dino_alive.time_stamp[1],
3179 			     priv->dino_alive.time_stamp[2],
3180 			     priv->dino_alive.time_stamp[3],
3181 			     priv->dino_alive.time_stamp[4]);
3182 		} else {
3183 			IPW_DEBUG_INFO("Microcode is not alive\n");
3184 			rc = -EINVAL;
3185 		}
3186 	} else {
3187 		IPW_DEBUG_INFO("No alive response from DINO\n");
3188 		rc = -ETIME;
3189 	}
3190 
3191 	/* disable DINO, otherwise for some reason
3192 	   firmware have problem getting alive resp. */
3193 	ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3194 
3195 	return rc;
3196 }
3197 
3198 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3199 {
3200 	int ret = -1;
3201 	int offset = 0;
3202 	struct fw_chunk *chunk;
3203 	int total_nr = 0;
3204 	int i;
3205 	struct dma_pool *pool;
3206 	void **virts;
3207 	dma_addr_t *phys;
3208 
3209 	IPW_DEBUG_TRACE("<< :\n");
3210 
3211 	virts = kmalloc(sizeof(void *) * CB_NUMBER_OF_ELEMENTS_SMALL,
3212 			GFP_KERNEL);
3213 	if (!virts)
3214 		return -ENOMEM;
3215 
3216 	phys = kmalloc(sizeof(dma_addr_t) * CB_NUMBER_OF_ELEMENTS_SMALL,
3217 			GFP_KERNEL);
3218 	if (!phys) {
3219 		kfree(virts);
3220 		return -ENOMEM;
3221 	}
3222 	pool = dma_pool_create("ipw2200", &priv->pci_dev->dev, CB_MAX_LENGTH, 0,
3223 			       0);
3224 	if (!pool) {
3225 		IPW_ERROR("dma_pool_create failed\n");
3226 		kfree(phys);
3227 		kfree(virts);
3228 		return -ENOMEM;
3229 	}
3230 
3231 	/* Start the Dma */
3232 	ret = ipw_fw_dma_enable(priv);
3233 
3234 	/* the DMA is already ready this would be a bug. */
3235 	BUG_ON(priv->sram_desc.last_cb_index > 0);
3236 
3237 	do {
3238 		u32 chunk_len;
3239 		u8 *start;
3240 		int size;
3241 		int nr = 0;
3242 
3243 		chunk = (struct fw_chunk *)(data + offset);
3244 		offset += sizeof(struct fw_chunk);
3245 		chunk_len = le32_to_cpu(chunk->length);
3246 		start = data + offset;
3247 
3248 		nr = (chunk_len + CB_MAX_LENGTH - 1) / CB_MAX_LENGTH;
3249 		for (i = 0; i < nr; i++) {
3250 			virts[total_nr] = dma_pool_alloc(pool, GFP_KERNEL,
3251 							 &phys[total_nr]);
3252 			if (!virts[total_nr]) {
3253 				ret = -ENOMEM;
3254 				goto out;
3255 			}
3256 			size = min_t(u32, chunk_len - i * CB_MAX_LENGTH,
3257 				     CB_MAX_LENGTH);
3258 			memcpy(virts[total_nr], start, size);
3259 			start += size;
3260 			total_nr++;
3261 			/* We don't support fw chunk larger than 64*8K */
3262 			BUG_ON(total_nr > CB_NUMBER_OF_ELEMENTS_SMALL);
3263 		}
3264 
3265 		/* build DMA packet and queue up for sending */
3266 		/* dma to chunk->address, the chunk->length bytes from data +
3267 		 * offeset*/
3268 		/* Dma loading */
3269 		ret = ipw_fw_dma_add_buffer(priv, &phys[total_nr - nr],
3270 					    nr, le32_to_cpu(chunk->address),
3271 					    chunk_len);
3272 		if (ret) {
3273 			IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3274 			goto out;
3275 		}
3276 
3277 		offset += chunk_len;
3278 	} while (offset < len);
3279 
3280 	/* Run the DMA and wait for the answer */
3281 	ret = ipw_fw_dma_kick(priv);
3282 	if (ret) {
3283 		IPW_ERROR("dmaKick Failed\n");
3284 		goto out;
3285 	}
3286 
3287 	ret = ipw_fw_dma_wait(priv);
3288 	if (ret) {
3289 		IPW_ERROR("dmaWaitSync Failed\n");
3290 		goto out;
3291 	}
3292  out:
3293 	for (i = 0; i < total_nr; i++)
3294 		dma_pool_free(pool, virts[i], phys[i]);
3295 
3296 	dma_pool_destroy(pool);
3297 	kfree(phys);
3298 	kfree(virts);
3299 
3300 	return ret;
3301 }
3302 
3303 /* stop nic */
3304 static int ipw_stop_nic(struct ipw_priv *priv)
3305 {
3306 	int rc = 0;
3307 
3308 	/* stop */
3309 	ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3310 
3311 	rc = ipw_poll_bit(priv, IPW_RESET_REG,
3312 			  IPW_RESET_REG_MASTER_DISABLED, 500);
3313 	if (rc < 0) {
3314 		IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3315 		return rc;
3316 	}
3317 
3318 	ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3319 
3320 	return rc;
3321 }
3322 
3323 static void ipw_start_nic(struct ipw_priv *priv)
3324 {
3325 	IPW_DEBUG_TRACE(">>\n");
3326 
3327 	/* prvHwStartNic  release ARC */
3328 	ipw_clear_bit(priv, IPW_RESET_REG,
3329 		      IPW_RESET_REG_MASTER_DISABLED |
3330 		      IPW_RESET_REG_STOP_MASTER |
3331 		      CBD_RESET_REG_PRINCETON_RESET);
3332 
3333 	/* enable power management */
3334 	ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3335 		    IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3336 
3337 	IPW_DEBUG_TRACE("<<\n");
3338 }
3339 
3340 static int ipw_init_nic(struct ipw_priv *priv)
3341 {
3342 	int rc;
3343 
3344 	IPW_DEBUG_TRACE(">>\n");
3345 	/* reset */
3346 	/*prvHwInitNic */
3347 	/* set "initialization complete" bit to move adapter to D0 state */
3348 	ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3349 
3350 	/* low-level PLL activation */
3351 	ipw_write32(priv, IPW_READ_INT_REGISTER,
3352 		    IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3353 
3354 	/* wait for clock stabilization */
3355 	rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3356 			  IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3357 	if (rc < 0)
3358 		IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3359 
3360 	/* assert SW reset */
3361 	ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3362 
3363 	udelay(10);
3364 
3365 	/* set "initialization complete" bit to move adapter to D0 state */
3366 	ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3367 
3368 	IPW_DEBUG_TRACE(">>\n");
3369 	return 0;
3370 }
3371 
3372 /* Call this function from process context, it will sleep in request_firmware.
3373  * Probe is an ok place to call this from.
3374  */
3375 static int ipw_reset_nic(struct ipw_priv *priv)
3376 {
3377 	int rc = 0;
3378 	unsigned long flags;
3379 
3380 	IPW_DEBUG_TRACE(">>\n");
3381 
3382 	rc = ipw_init_nic(priv);
3383 
3384 	spin_lock_irqsave(&priv->lock, flags);
3385 	/* Clear the 'host command active' bit... */
3386 	priv->status &= ~STATUS_HCMD_ACTIVE;
3387 	wake_up_interruptible(&priv->wait_command_queue);
3388 	priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3389 	wake_up_interruptible(&priv->wait_state);
3390 	spin_unlock_irqrestore(&priv->lock, flags);
3391 
3392 	IPW_DEBUG_TRACE("<<\n");
3393 	return rc;
3394 }
3395 
3396 
3397 struct ipw_fw {
3398 	__le32 ver;
3399 	__le32 boot_size;
3400 	__le32 ucode_size;
3401 	__le32 fw_size;
3402 	u8 data[0];
3403 };
3404 
3405 static int ipw_get_fw(struct ipw_priv *priv,
3406 		      const struct firmware **raw, const char *name)
3407 {
3408 	struct ipw_fw *fw;
3409 	int rc;
3410 
3411 	/* ask firmware_class module to get the boot firmware off disk */
3412 	rc = request_firmware(raw, name, &priv->pci_dev->dev);
3413 	if (rc < 0) {
3414 		IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3415 		return rc;
3416 	}
3417 
3418 	if ((*raw)->size < sizeof(*fw)) {
3419 		IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3420 		return -EINVAL;
3421 	}
3422 
3423 	fw = (void *)(*raw)->data;
3424 
3425 	if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3426 	    le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3427 		IPW_ERROR("%s is too small or corrupt (%zd)\n",
3428 			  name, (*raw)->size);
3429 		return -EINVAL;
3430 	}
3431 
3432 	IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3433 		       name,
3434 		       le32_to_cpu(fw->ver) >> 16,
3435 		       le32_to_cpu(fw->ver) & 0xff,
3436 		       (*raw)->size - sizeof(*fw));
3437 	return 0;
3438 }
3439 
3440 #define IPW_RX_BUF_SIZE (3000)
3441 
3442 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3443 				      struct ipw_rx_queue *rxq)
3444 {
3445 	unsigned long flags;
3446 	int i;
3447 
3448 	spin_lock_irqsave(&rxq->lock, flags);
3449 
3450 	INIT_LIST_HEAD(&rxq->rx_free);
3451 	INIT_LIST_HEAD(&rxq->rx_used);
3452 
3453 	/* Fill the rx_used queue with _all_ of the Rx buffers */
3454 	for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3455 		/* In the reset function, these buffers may have been allocated
3456 		 * to an SKB, so we need to unmap and free potential storage */
3457 		if (rxq->pool[i].skb != NULL) {
3458 			pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3459 					 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3460 			dev_kfree_skb(rxq->pool[i].skb);
3461 			rxq->pool[i].skb = NULL;
3462 		}
3463 		list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3464 	}
3465 
3466 	/* Set us so that we have processed and used all buffers, but have
3467 	 * not restocked the Rx queue with fresh buffers */
3468 	rxq->read = rxq->write = 0;
3469 	rxq->free_count = 0;
3470 	spin_unlock_irqrestore(&rxq->lock, flags);
3471 }
3472 
3473 #ifdef CONFIG_PM
3474 static int fw_loaded = 0;
3475 static const struct firmware *raw = NULL;
3476 
3477 static void free_firmware(void)
3478 {
3479 	if (fw_loaded) {
3480 		release_firmware(raw);
3481 		raw = NULL;
3482 		fw_loaded = 0;
3483 	}
3484 }
3485 #else
3486 #define free_firmware() do {} while (0)
3487 #endif
3488 
3489 static int ipw_load(struct ipw_priv *priv)
3490 {
3491 #ifndef CONFIG_PM
3492 	const struct firmware *raw = NULL;
3493 #endif
3494 	struct ipw_fw *fw;
3495 	u8 *boot_img, *ucode_img, *fw_img;
3496 	u8 *name = NULL;
3497 	int rc = 0, retries = 3;
3498 
3499 	switch (priv->ieee->iw_mode) {
3500 	case IW_MODE_ADHOC:
3501 		name = "ipw2200-ibss.fw";
3502 		break;
3503 #ifdef CONFIG_IPW2200_MONITOR
3504 	case IW_MODE_MONITOR:
3505 		name = "ipw2200-sniffer.fw";
3506 		break;
3507 #endif
3508 	case IW_MODE_INFRA:
3509 		name = "ipw2200-bss.fw";
3510 		break;
3511 	}
3512 
3513 	if (!name) {
3514 		rc = -EINVAL;
3515 		goto error;
3516 	}
3517 
3518 #ifdef CONFIG_PM
3519 	if (!fw_loaded) {
3520 #endif
3521 		rc = ipw_get_fw(priv, &raw, name);
3522 		if (rc < 0)
3523 			goto error;
3524 #ifdef CONFIG_PM
3525 	}
3526 #endif
3527 
3528 	fw = (void *)raw->data;
3529 	boot_img = &fw->data[0];
3530 	ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3531 	fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3532 			   le32_to_cpu(fw->ucode_size)];
3533 
3534 	if (!priv->rxq)
3535 		priv->rxq = ipw_rx_queue_alloc(priv);
3536 	else
3537 		ipw_rx_queue_reset(priv, priv->rxq);
3538 	if (!priv->rxq) {
3539 		IPW_ERROR("Unable to initialize Rx queue\n");
3540 		rc = -ENOMEM;
3541 		goto error;
3542 	}
3543 
3544       retry:
3545 	/* Ensure interrupts are disabled */
3546 	ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3547 	priv->status &= ~STATUS_INT_ENABLED;
3548 
3549 	/* ack pending interrupts */
3550 	ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3551 
3552 	ipw_stop_nic(priv);
3553 
3554 	rc = ipw_reset_nic(priv);
3555 	if (rc < 0) {
3556 		IPW_ERROR("Unable to reset NIC\n");
3557 		goto error;
3558 	}
3559 
3560 	ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3561 			IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3562 
3563 	/* DMA the initial boot firmware into the device */
3564 	rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3565 	if (rc < 0) {
3566 		IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3567 		goto error;
3568 	}
3569 
3570 	/* kick start the device */
3571 	ipw_start_nic(priv);
3572 
3573 	/* wait for the device to finish its initial startup sequence */
3574 	rc = ipw_poll_bit(priv, IPW_INTA_RW,
3575 			  IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3576 	if (rc < 0) {
3577 		IPW_ERROR("device failed to boot initial fw image\n");
3578 		goto error;
3579 	}
3580 	IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3581 
3582 	/* ack fw init done interrupt */
3583 	ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3584 
3585 	/* DMA the ucode into the device */
3586 	rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3587 	if (rc < 0) {
3588 		IPW_ERROR("Unable to load ucode: %d\n", rc);
3589 		goto error;
3590 	}
3591 
3592 	/* stop nic */
3593 	ipw_stop_nic(priv);
3594 
3595 	/* DMA bss firmware into the device */
3596 	rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3597 	if (rc < 0) {
3598 		IPW_ERROR("Unable to load firmware: %d\n", rc);
3599 		goto error;
3600 	}
3601 #ifdef CONFIG_PM
3602 	fw_loaded = 1;
3603 #endif
3604 
3605 	ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3606 
3607 	rc = ipw_queue_reset(priv);
3608 	if (rc < 0) {
3609 		IPW_ERROR("Unable to initialize queues\n");
3610 		goto error;
3611 	}
3612 
3613 	/* Ensure interrupts are disabled */
3614 	ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3615 	/* ack pending interrupts */
3616 	ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3617 
3618 	/* kick start the device */
3619 	ipw_start_nic(priv);
3620 
3621 	if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3622 		if (retries > 0) {
3623 			IPW_WARNING("Parity error.  Retrying init.\n");
3624 			retries--;
3625 			goto retry;
3626 		}
3627 
3628 		IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3629 		rc = -EIO;
3630 		goto error;
3631 	}
3632 
3633 	/* wait for the device */
3634 	rc = ipw_poll_bit(priv, IPW_INTA_RW,
3635 			  IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3636 	if (rc < 0) {
3637 		IPW_ERROR("device failed to start within 500ms\n");
3638 		goto error;
3639 	}
3640 	IPW_DEBUG_INFO("device response after %dms\n", rc);
3641 
3642 	/* ack fw init done interrupt */
3643 	ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3644 
3645 	/* read eeprom data */
3646 	priv->eeprom_delay = 1;
3647 	ipw_read_eeprom(priv);
3648 	/* initialize the eeprom region of sram */
3649 	ipw_eeprom_init_sram(priv);
3650 
3651 	/* enable interrupts */
3652 	ipw_enable_interrupts(priv);
3653 
3654 	/* Ensure our queue has valid packets */
3655 	ipw_rx_queue_replenish(priv);
3656 
3657 	ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3658 
3659 	/* ack pending interrupts */
3660 	ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3661 
3662 #ifndef CONFIG_PM
3663 	release_firmware(raw);
3664 #endif
3665 	return 0;
3666 
3667       error:
3668 	if (priv->rxq) {
3669 		ipw_rx_queue_free(priv, priv->rxq);
3670 		priv->rxq = NULL;
3671 	}
3672 	ipw_tx_queue_free(priv);
3673 	release_firmware(raw);
3674 #ifdef CONFIG_PM
3675 	fw_loaded = 0;
3676 	raw = NULL;
3677 #endif
3678 
3679 	return rc;
3680 }
3681 
3682 /**
3683  * DMA services
3684  *
3685  * Theory of operation
3686  *
3687  * A queue is a circular buffers with 'Read' and 'Write' pointers.
3688  * 2 empty entries always kept in the buffer to protect from overflow.
3689  *
3690  * For Tx queue, there are low mark and high mark limits. If, after queuing
3691  * the packet for Tx, free space become < low mark, Tx queue stopped. When
3692  * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3693  * Tx queue resumed.
3694  *
3695  * The IPW operates with six queues, one receive queue in the device's
3696  * sram, one transmit queue for sending commands to the device firmware,
3697  * and four transmit queues for data.
3698  *
3699  * The four transmit queues allow for performing quality of service (qos)
3700  * transmissions as per the 802.11 protocol.  Currently Linux does not
3701  * provide a mechanism to the user for utilizing prioritized queues, so
3702  * we only utilize the first data transmit queue (queue1).
3703  */
3704 
3705 /**
3706  * Driver allocates buffers of this size for Rx
3707  */
3708 
3709 /**
3710  * ipw_rx_queue_space - Return number of free slots available in queue.
3711  */
3712 static int ipw_rx_queue_space(const struct ipw_rx_queue *q)
3713 {
3714 	int s = q->read - q->write;
3715 	if (s <= 0)
3716 		s += RX_QUEUE_SIZE;
3717 	/* keep some buffer to not confuse full and empty queue */
3718 	s -= 2;
3719 	if (s < 0)
3720 		s = 0;
3721 	return s;
3722 }
3723 
3724 static inline int ipw_tx_queue_space(const struct clx2_queue *q)
3725 {
3726 	int s = q->last_used - q->first_empty;
3727 	if (s <= 0)
3728 		s += q->n_bd;
3729 	s -= 2;			/* keep some reserve to not confuse empty and full situations */
3730 	if (s < 0)
3731 		s = 0;
3732 	return s;
3733 }
3734 
3735 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3736 {
3737 	return (++index == n_bd) ? 0 : index;
3738 }
3739 
3740 /**
3741  * Initialize common DMA queue structure
3742  *
3743  * @param q                queue to init
3744  * @param count            Number of BD's to allocate. Should be power of 2
3745  * @param read_register    Address for 'read' register
3746  *                         (not offset within BAR, full address)
3747  * @param write_register   Address for 'write' register
3748  *                         (not offset within BAR, full address)
3749  * @param base_register    Address for 'base' register
3750  *                         (not offset within BAR, full address)
3751  * @param size             Address for 'size' register
3752  *                         (not offset within BAR, full address)
3753  */
3754 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3755 			   int count, u32 read, u32 write, u32 base, u32 size)
3756 {
3757 	q->n_bd = count;
3758 
3759 	q->low_mark = q->n_bd / 4;
3760 	if (q->low_mark < 4)
3761 		q->low_mark = 4;
3762 
3763 	q->high_mark = q->n_bd / 8;
3764 	if (q->high_mark < 2)
3765 		q->high_mark = 2;
3766 
3767 	q->first_empty = q->last_used = 0;
3768 	q->reg_r = read;
3769 	q->reg_w = write;
3770 
3771 	ipw_write32(priv, base, q->dma_addr);
3772 	ipw_write32(priv, size, count);
3773 	ipw_write32(priv, read, 0);
3774 	ipw_write32(priv, write, 0);
3775 
3776 	_ipw_read32(priv, 0x90);
3777 }
3778 
3779 static int ipw_queue_tx_init(struct ipw_priv *priv,
3780 			     struct clx2_tx_queue *q,
3781 			     int count, u32 read, u32 write, u32 base, u32 size)
3782 {
3783 	struct pci_dev *dev = priv->pci_dev;
3784 
3785 	q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3786 	if (!q->txb) {
3787 		IPW_ERROR("vmalloc for auxiliary BD structures failed\n");
3788 		return -ENOMEM;
3789 	}
3790 
3791 	q->bd =
3792 	    pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3793 	if (!q->bd) {
3794 		IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3795 			  sizeof(q->bd[0]) * count);
3796 		kfree(q->txb);
3797 		q->txb = NULL;
3798 		return -ENOMEM;
3799 	}
3800 
3801 	ipw_queue_init(priv, &q->q, count, read, write, base, size);
3802 	return 0;
3803 }
3804 
3805 /**
3806  * Free one TFD, those at index [txq->q.last_used].
3807  * Do NOT advance any indexes
3808  *
3809  * @param dev
3810  * @param txq
3811  */
3812 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3813 				  struct clx2_tx_queue *txq)
3814 {
3815 	struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3816 	struct pci_dev *dev = priv->pci_dev;
3817 	int i;
3818 
3819 	/* classify bd */
3820 	if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3821 		/* nothing to cleanup after for host commands */
3822 		return;
3823 
3824 	/* sanity check */
3825 	if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3826 		IPW_ERROR("Too many chunks: %i\n",
3827 			  le32_to_cpu(bd->u.data.num_chunks));
3828 		/** @todo issue fatal error, it is quite serious situation */
3829 		return;
3830 	}
3831 
3832 	/* unmap chunks if any */
3833 	for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3834 		pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3835 				 le16_to_cpu(bd->u.data.chunk_len[i]),
3836 				 PCI_DMA_TODEVICE);
3837 		if (txq->txb[txq->q.last_used]) {
3838 			libipw_txb_free(txq->txb[txq->q.last_used]);
3839 			txq->txb[txq->q.last_used] = NULL;
3840 		}
3841 	}
3842 }
3843 
3844 /**
3845  * Deallocate DMA queue.
3846  *
3847  * Empty queue by removing and destroying all BD's.
3848  * Free all buffers.
3849  *
3850  * @param dev
3851  * @param q
3852  */
3853 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3854 {
3855 	struct clx2_queue *q = &txq->q;
3856 	struct pci_dev *dev = priv->pci_dev;
3857 
3858 	if (q->n_bd == 0)
3859 		return;
3860 
3861 	/* first, empty all BD's */
3862 	for (; q->first_empty != q->last_used;
3863 	     q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3864 		ipw_queue_tx_free_tfd(priv, txq);
3865 	}
3866 
3867 	/* free buffers belonging to queue itself */
3868 	pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3869 			    q->dma_addr);
3870 	kfree(txq->txb);
3871 
3872 	/* 0 fill whole structure */
3873 	memset(txq, 0, sizeof(*txq));
3874 }
3875 
3876 /**
3877  * Destroy all DMA queues and structures
3878  *
3879  * @param priv
3880  */
3881 static void ipw_tx_queue_free(struct ipw_priv *priv)
3882 {
3883 	/* Tx CMD queue */
3884 	ipw_queue_tx_free(priv, &priv->txq_cmd);
3885 
3886 	/* Tx queues */
3887 	ipw_queue_tx_free(priv, &priv->txq[0]);
3888 	ipw_queue_tx_free(priv, &priv->txq[1]);
3889 	ipw_queue_tx_free(priv, &priv->txq[2]);
3890 	ipw_queue_tx_free(priv, &priv->txq[3]);
3891 }
3892 
3893 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3894 {
3895 	/* First 3 bytes are manufacturer */
3896 	bssid[0] = priv->mac_addr[0];
3897 	bssid[1] = priv->mac_addr[1];
3898 	bssid[2] = priv->mac_addr[2];
3899 
3900 	/* Last bytes are random */
3901 	get_random_bytes(&bssid[3], ETH_ALEN - 3);
3902 
3903 	bssid[0] &= 0xfe;	/* clear multicast bit */
3904 	bssid[0] |= 0x02;	/* set local assignment bit (IEEE802) */
3905 }
3906 
3907 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3908 {
3909 	struct ipw_station_entry entry;
3910 	int i;
3911 
3912 	for (i = 0; i < priv->num_stations; i++) {
3913 		if (ether_addr_equal(priv->stations[i], bssid)) {
3914 			/* Another node is active in network */
3915 			priv->missed_adhoc_beacons = 0;
3916 			if (!(priv->config & CFG_STATIC_CHANNEL))
3917 				/* when other nodes drop out, we drop out */
3918 				priv->config &= ~CFG_ADHOC_PERSIST;
3919 
3920 			return i;
3921 		}
3922 	}
3923 
3924 	if (i == MAX_STATIONS)
3925 		return IPW_INVALID_STATION;
3926 
3927 	IPW_DEBUG_SCAN("Adding AdHoc station: %pM\n", bssid);
3928 
3929 	entry.reserved = 0;
3930 	entry.support_mode = 0;
3931 	memcpy(entry.mac_addr, bssid, ETH_ALEN);
3932 	memcpy(priv->stations[i], bssid, ETH_ALEN);
3933 	ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3934 			 &entry, sizeof(entry));
3935 	priv->num_stations++;
3936 
3937 	return i;
3938 }
3939 
3940 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3941 {
3942 	int i;
3943 
3944 	for (i = 0; i < priv->num_stations; i++)
3945 		if (ether_addr_equal(priv->stations[i], bssid))
3946 			return i;
3947 
3948 	return IPW_INVALID_STATION;
3949 }
3950 
3951 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3952 {
3953 	int err;
3954 
3955 	if (priv->status & STATUS_ASSOCIATING) {
3956 		IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3957 		schedule_work(&priv->disassociate);
3958 		return;
3959 	}
3960 
3961 	if (!(priv->status & STATUS_ASSOCIATED)) {
3962 		IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3963 		return;
3964 	}
3965 
3966 	IPW_DEBUG_ASSOC("Disassociation attempt from %pM "
3967 			"on channel %d.\n",
3968 			priv->assoc_request.bssid,
3969 			priv->assoc_request.channel);
3970 
3971 	priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3972 	priv->status |= STATUS_DISASSOCIATING;
3973 
3974 	if (quiet)
3975 		priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3976 	else
3977 		priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3978 
3979 	err = ipw_send_associate(priv, &priv->assoc_request);
3980 	if (err) {
3981 		IPW_DEBUG_HC("Attempt to send [dis]associate command "
3982 			     "failed.\n");
3983 		return;
3984 	}
3985 
3986 }
3987 
3988 static int ipw_disassociate(void *data)
3989 {
3990 	struct ipw_priv *priv = data;
3991 	if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3992 		return 0;
3993 	ipw_send_disassociate(data, 0);
3994 	netif_carrier_off(priv->net_dev);
3995 	return 1;
3996 }
3997 
3998 static void ipw_bg_disassociate(struct work_struct *work)
3999 {
4000 	struct ipw_priv *priv =
4001 		container_of(work, struct ipw_priv, disassociate);
4002 	mutex_lock(&priv->mutex);
4003 	ipw_disassociate(priv);
4004 	mutex_unlock(&priv->mutex);
4005 }
4006 
4007 static void ipw_system_config(struct work_struct *work)
4008 {
4009 	struct ipw_priv *priv =
4010 		container_of(work, struct ipw_priv, system_config);
4011 
4012 #ifdef CONFIG_IPW2200_PROMISCUOUS
4013 	if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
4014 		priv->sys_config.accept_all_data_frames = 1;
4015 		priv->sys_config.accept_non_directed_frames = 1;
4016 		priv->sys_config.accept_all_mgmt_bcpr = 1;
4017 		priv->sys_config.accept_all_mgmt_frames = 1;
4018 	}
4019 #endif
4020 
4021 	ipw_send_system_config(priv);
4022 }
4023 
4024 struct ipw_status_code {
4025 	u16 status;
4026 	const char *reason;
4027 };
4028 
4029 static const struct ipw_status_code ipw_status_codes[] = {
4030 	{0x00, "Successful"},
4031 	{0x01, "Unspecified failure"},
4032 	{0x0A, "Cannot support all requested capabilities in the "
4033 	 "Capability information field"},
4034 	{0x0B, "Reassociation denied due to inability to confirm that "
4035 	 "association exists"},
4036 	{0x0C, "Association denied due to reason outside the scope of this "
4037 	 "standard"},
4038 	{0x0D,
4039 	 "Responding station does not support the specified authentication "
4040 	 "algorithm"},
4041 	{0x0E,
4042 	 "Received an Authentication frame with authentication sequence "
4043 	 "transaction sequence number out of expected sequence"},
4044 	{0x0F, "Authentication rejected because of challenge failure"},
4045 	{0x10, "Authentication rejected due to timeout waiting for next "
4046 	 "frame in sequence"},
4047 	{0x11, "Association denied because AP is unable to handle additional "
4048 	 "associated stations"},
4049 	{0x12,
4050 	 "Association denied due to requesting station not supporting all "
4051 	 "of the datarates in the BSSBasicServiceSet Parameter"},
4052 	{0x13,
4053 	 "Association denied due to requesting station not supporting "
4054 	 "short preamble operation"},
4055 	{0x14,
4056 	 "Association denied due to requesting station not supporting "
4057 	 "PBCC encoding"},
4058 	{0x15,
4059 	 "Association denied due to requesting station not supporting "
4060 	 "channel agility"},
4061 	{0x19,
4062 	 "Association denied due to requesting station not supporting "
4063 	 "short slot operation"},
4064 	{0x1A,
4065 	 "Association denied due to requesting station not supporting "
4066 	 "DSSS-OFDM operation"},
4067 	{0x28, "Invalid Information Element"},
4068 	{0x29, "Group Cipher is not valid"},
4069 	{0x2A, "Pairwise Cipher is not valid"},
4070 	{0x2B, "AKMP is not valid"},
4071 	{0x2C, "Unsupported RSN IE version"},
4072 	{0x2D, "Invalid RSN IE Capabilities"},
4073 	{0x2E, "Cipher suite is rejected per security policy"},
4074 };
4075 
4076 static const char *ipw_get_status_code(u16 status)
4077 {
4078 	int i;
4079 	for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
4080 		if (ipw_status_codes[i].status == (status & 0xff))
4081 			return ipw_status_codes[i].reason;
4082 	return "Unknown status value.";
4083 }
4084 
4085 static inline void average_init(struct average *avg)
4086 {
4087 	memset(avg, 0, sizeof(*avg));
4088 }
4089 
4090 #define DEPTH_RSSI 8
4091 #define DEPTH_NOISE 16
4092 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
4093 {
4094 	return ((depth-1)*prev_avg +  val)/depth;
4095 }
4096 
4097 static void average_add(struct average *avg, s16 val)
4098 {
4099 	avg->sum -= avg->entries[avg->pos];
4100 	avg->sum += val;
4101 	avg->entries[avg->pos++] = val;
4102 	if (unlikely(avg->pos == AVG_ENTRIES)) {
4103 		avg->init = 1;
4104 		avg->pos = 0;
4105 	}
4106 }
4107 
4108 static s16 average_value(struct average *avg)
4109 {
4110 	if (!unlikely(avg->init)) {
4111 		if (avg->pos)
4112 			return avg->sum / avg->pos;
4113 		return 0;
4114 	}
4115 
4116 	return avg->sum / AVG_ENTRIES;
4117 }
4118 
4119 static void ipw_reset_stats(struct ipw_priv *priv)
4120 {
4121 	u32 len = sizeof(u32);
4122 
4123 	priv->quality = 0;
4124 
4125 	average_init(&priv->average_missed_beacons);
4126 	priv->exp_avg_rssi = -60;
4127 	priv->exp_avg_noise = -85 + 0x100;
4128 
4129 	priv->last_rate = 0;
4130 	priv->last_missed_beacons = 0;
4131 	priv->last_rx_packets = 0;
4132 	priv->last_tx_packets = 0;
4133 	priv->last_tx_failures = 0;
4134 
4135 	/* Firmware managed, reset only when NIC is restarted, so we have to
4136 	 * normalize on the current value */
4137 	ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
4138 			&priv->last_rx_err, &len);
4139 	ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
4140 			&priv->last_tx_failures, &len);
4141 
4142 	/* Driver managed, reset with each association */
4143 	priv->missed_adhoc_beacons = 0;
4144 	priv->missed_beacons = 0;
4145 	priv->tx_packets = 0;
4146 	priv->rx_packets = 0;
4147 
4148 }
4149 
4150 static u32 ipw_get_max_rate(struct ipw_priv *priv)
4151 {
4152 	u32 i = 0x80000000;
4153 	u32 mask = priv->rates_mask;
4154 	/* If currently associated in B mode, restrict the maximum
4155 	 * rate match to B rates */
4156 	if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4157 		mask &= LIBIPW_CCK_RATES_MASK;
4158 
4159 	/* TODO: Verify that the rate is supported by the current rates
4160 	 * list. */
4161 
4162 	while (i && !(mask & i))
4163 		i >>= 1;
4164 	switch (i) {
4165 	case LIBIPW_CCK_RATE_1MB_MASK:
4166 		return 1000000;
4167 	case LIBIPW_CCK_RATE_2MB_MASK:
4168 		return 2000000;
4169 	case LIBIPW_CCK_RATE_5MB_MASK:
4170 		return 5500000;
4171 	case LIBIPW_OFDM_RATE_6MB_MASK:
4172 		return 6000000;
4173 	case LIBIPW_OFDM_RATE_9MB_MASK:
4174 		return 9000000;
4175 	case LIBIPW_CCK_RATE_11MB_MASK:
4176 		return 11000000;
4177 	case LIBIPW_OFDM_RATE_12MB_MASK:
4178 		return 12000000;
4179 	case LIBIPW_OFDM_RATE_18MB_MASK:
4180 		return 18000000;
4181 	case LIBIPW_OFDM_RATE_24MB_MASK:
4182 		return 24000000;
4183 	case LIBIPW_OFDM_RATE_36MB_MASK:
4184 		return 36000000;
4185 	case LIBIPW_OFDM_RATE_48MB_MASK:
4186 		return 48000000;
4187 	case LIBIPW_OFDM_RATE_54MB_MASK:
4188 		return 54000000;
4189 	}
4190 
4191 	if (priv->ieee->mode == IEEE_B)
4192 		return 11000000;
4193 	else
4194 		return 54000000;
4195 }
4196 
4197 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4198 {
4199 	u32 rate, len = sizeof(rate);
4200 	int err;
4201 
4202 	if (!(priv->status & STATUS_ASSOCIATED))
4203 		return 0;
4204 
4205 	if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4206 		err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4207 				      &len);
4208 		if (err) {
4209 			IPW_DEBUG_INFO("failed querying ordinals.\n");
4210 			return 0;
4211 		}
4212 	} else
4213 		return ipw_get_max_rate(priv);
4214 
4215 	switch (rate) {
4216 	case IPW_TX_RATE_1MB:
4217 		return 1000000;
4218 	case IPW_TX_RATE_2MB:
4219 		return 2000000;
4220 	case IPW_TX_RATE_5MB:
4221 		return 5500000;
4222 	case IPW_TX_RATE_6MB:
4223 		return 6000000;
4224 	case IPW_TX_RATE_9MB:
4225 		return 9000000;
4226 	case IPW_TX_RATE_11MB:
4227 		return 11000000;
4228 	case IPW_TX_RATE_12MB:
4229 		return 12000000;
4230 	case IPW_TX_RATE_18MB:
4231 		return 18000000;
4232 	case IPW_TX_RATE_24MB:
4233 		return 24000000;
4234 	case IPW_TX_RATE_36MB:
4235 		return 36000000;
4236 	case IPW_TX_RATE_48MB:
4237 		return 48000000;
4238 	case IPW_TX_RATE_54MB:
4239 		return 54000000;
4240 	}
4241 
4242 	return 0;
4243 }
4244 
4245 #define IPW_STATS_INTERVAL (2 * HZ)
4246 static void ipw_gather_stats(struct ipw_priv *priv)
4247 {
4248 	u32 rx_err, rx_err_delta, rx_packets_delta;
4249 	u32 tx_failures, tx_failures_delta, tx_packets_delta;
4250 	u32 missed_beacons_percent, missed_beacons_delta;
4251 	u32 quality = 0;
4252 	u32 len = sizeof(u32);
4253 	s16 rssi;
4254 	u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4255 	    rate_quality;
4256 	u32 max_rate;
4257 
4258 	if (!(priv->status & STATUS_ASSOCIATED)) {
4259 		priv->quality = 0;
4260 		return;
4261 	}
4262 
4263 	/* Update the statistics */
4264 	ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4265 			&priv->missed_beacons, &len);
4266 	missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4267 	priv->last_missed_beacons = priv->missed_beacons;
4268 	if (priv->assoc_request.beacon_interval) {
4269 		missed_beacons_percent = missed_beacons_delta *
4270 		    (HZ * le16_to_cpu(priv->assoc_request.beacon_interval)) /
4271 		    (IPW_STATS_INTERVAL * 10);
4272 	} else {
4273 		missed_beacons_percent = 0;
4274 	}
4275 	average_add(&priv->average_missed_beacons, missed_beacons_percent);
4276 
4277 	ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4278 	rx_err_delta = rx_err - priv->last_rx_err;
4279 	priv->last_rx_err = rx_err;
4280 
4281 	ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4282 	tx_failures_delta = tx_failures - priv->last_tx_failures;
4283 	priv->last_tx_failures = tx_failures;
4284 
4285 	rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4286 	priv->last_rx_packets = priv->rx_packets;
4287 
4288 	tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4289 	priv->last_tx_packets = priv->tx_packets;
4290 
4291 	/* Calculate quality based on the following:
4292 	 *
4293 	 * Missed beacon: 100% = 0, 0% = 70% missed
4294 	 * Rate: 60% = 1Mbs, 100% = Max
4295 	 * Rx and Tx errors represent a straight % of total Rx/Tx
4296 	 * RSSI: 100% = > -50,  0% = < -80
4297 	 * Rx errors: 100% = 0, 0% = 50% missed
4298 	 *
4299 	 * The lowest computed quality is used.
4300 	 *
4301 	 */
4302 #define BEACON_THRESHOLD 5
4303 	beacon_quality = 100 - missed_beacons_percent;
4304 	if (beacon_quality < BEACON_THRESHOLD)
4305 		beacon_quality = 0;
4306 	else
4307 		beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4308 		    (100 - BEACON_THRESHOLD);
4309 	IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4310 			beacon_quality, missed_beacons_percent);
4311 
4312 	priv->last_rate = ipw_get_current_rate(priv);
4313 	max_rate = ipw_get_max_rate(priv);
4314 	rate_quality = priv->last_rate * 40 / max_rate + 60;
4315 	IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4316 			rate_quality, priv->last_rate / 1000000);
4317 
4318 	if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4319 		rx_quality = 100 - (rx_err_delta * 100) /
4320 		    (rx_packets_delta + rx_err_delta);
4321 	else
4322 		rx_quality = 100;
4323 	IPW_DEBUG_STATS("Rx quality   : %3d%% (%u errors, %u packets)\n",
4324 			rx_quality, rx_err_delta, rx_packets_delta);
4325 
4326 	if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4327 		tx_quality = 100 - (tx_failures_delta * 100) /
4328 		    (tx_packets_delta + tx_failures_delta);
4329 	else
4330 		tx_quality = 100;
4331 	IPW_DEBUG_STATS("Tx quality   : %3d%% (%u errors, %u packets)\n",
4332 			tx_quality, tx_failures_delta, tx_packets_delta);
4333 
4334 	rssi = priv->exp_avg_rssi;
4335 	signal_quality =
4336 	    (100 *
4337 	     (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4338 	     (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4339 	     (priv->ieee->perfect_rssi - rssi) *
4340 	     (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4341 	      62 * (priv->ieee->perfect_rssi - rssi))) /
4342 	    ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4343 	     (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4344 	if (signal_quality > 100)
4345 		signal_quality = 100;
4346 	else if (signal_quality < 1)
4347 		signal_quality = 0;
4348 
4349 	IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4350 			signal_quality, rssi);
4351 
4352 	quality = min(rx_quality, signal_quality);
4353 	quality = min(tx_quality, quality);
4354 	quality = min(rate_quality, quality);
4355 	quality = min(beacon_quality, quality);
4356 	if (quality == beacon_quality)
4357 		IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4358 				quality);
4359 	if (quality == rate_quality)
4360 		IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4361 				quality);
4362 	if (quality == tx_quality)
4363 		IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4364 				quality);
4365 	if (quality == rx_quality)
4366 		IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4367 				quality);
4368 	if (quality == signal_quality)
4369 		IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4370 				quality);
4371 
4372 	priv->quality = quality;
4373 
4374 	schedule_delayed_work(&priv->gather_stats, IPW_STATS_INTERVAL);
4375 }
4376 
4377 static void ipw_bg_gather_stats(struct work_struct *work)
4378 {
4379 	struct ipw_priv *priv =
4380 		container_of(work, struct ipw_priv, gather_stats.work);
4381 	mutex_lock(&priv->mutex);
4382 	ipw_gather_stats(priv);
4383 	mutex_unlock(&priv->mutex);
4384 }
4385 
4386 /* Missed beacon behavior:
4387  * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4388  * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4389  * Above disassociate threshold, give up and stop scanning.
4390  * Roaming is disabled if disassociate_threshold <= roaming_threshold  */
4391 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4392 					    int missed_count)
4393 {
4394 	priv->notif_missed_beacons = missed_count;
4395 
4396 	if (missed_count > priv->disassociate_threshold &&
4397 	    priv->status & STATUS_ASSOCIATED) {
4398 		/* If associated and we've hit the missed
4399 		 * beacon threshold, disassociate, turn
4400 		 * off roaming, and abort any active scans */
4401 		IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4402 			  IPW_DL_STATE | IPW_DL_ASSOC,
4403 			  "Missed beacon: %d - disassociate\n", missed_count);
4404 		priv->status &= ~STATUS_ROAMING;
4405 		if (priv->status & STATUS_SCANNING) {
4406 			IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4407 				  IPW_DL_STATE,
4408 				  "Aborting scan with missed beacon.\n");
4409 			schedule_work(&priv->abort_scan);
4410 		}
4411 
4412 		schedule_work(&priv->disassociate);
4413 		return;
4414 	}
4415 
4416 	if (priv->status & STATUS_ROAMING) {
4417 		/* If we are currently roaming, then just
4418 		 * print a debug statement... */
4419 		IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4420 			  "Missed beacon: %d - roam in progress\n",
4421 			  missed_count);
4422 		return;
4423 	}
4424 
4425 	if (roaming &&
4426 	    (missed_count > priv->roaming_threshold &&
4427 	     missed_count <= priv->disassociate_threshold)) {
4428 		/* If we are not already roaming, set the ROAM
4429 		 * bit in the status and kick off a scan.
4430 		 * This can happen several times before we reach
4431 		 * disassociate_threshold. */
4432 		IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4433 			  "Missed beacon: %d - initiate "
4434 			  "roaming\n", missed_count);
4435 		if (!(priv->status & STATUS_ROAMING)) {
4436 			priv->status |= STATUS_ROAMING;
4437 			if (!(priv->status & STATUS_SCANNING))
4438 				schedule_delayed_work(&priv->request_scan, 0);
4439 		}
4440 		return;
4441 	}
4442 
4443 	if (priv->status & STATUS_SCANNING &&
4444 	    missed_count > IPW_MB_SCAN_CANCEL_THRESHOLD) {
4445 		/* Stop scan to keep fw from getting
4446 		 * stuck (only if we aren't roaming --
4447 		 * otherwise we'll never scan more than 2 or 3
4448 		 * channels..) */
4449 		IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4450 			  "Aborting scan with missed beacon.\n");
4451 		schedule_work(&priv->abort_scan);
4452 	}
4453 
4454 	IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4455 }
4456 
4457 static void ipw_scan_event(struct work_struct *work)
4458 {
4459 	union iwreq_data wrqu;
4460 
4461 	struct ipw_priv *priv =
4462 		container_of(work, struct ipw_priv, scan_event.work);
4463 
4464 	wrqu.data.length = 0;
4465 	wrqu.data.flags = 0;
4466 	wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4467 }
4468 
4469 static void handle_scan_event(struct ipw_priv *priv)
4470 {
4471 	/* Only userspace-requested scan completion events go out immediately */
4472 	if (!priv->user_requested_scan) {
4473 		schedule_delayed_work(&priv->scan_event,
4474 				      round_jiffies_relative(msecs_to_jiffies(4000)));
4475 	} else {
4476 		priv->user_requested_scan = 0;
4477 		mod_delayed_work(system_wq, &priv->scan_event, 0);
4478 	}
4479 }
4480 
4481 /**
4482  * Handle host notification packet.
4483  * Called from interrupt routine
4484  */
4485 static void ipw_rx_notification(struct ipw_priv *priv,
4486 				       struct ipw_rx_notification *notif)
4487 {
4488 	u16 size = le16_to_cpu(notif->size);
4489 
4490 	IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, size);
4491 
4492 	switch (notif->subtype) {
4493 	case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4494 			struct notif_association *assoc = &notif->u.assoc;
4495 
4496 			switch (assoc->state) {
4497 			case CMAS_ASSOCIATED:{
4498 					IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4499 						  IPW_DL_ASSOC,
4500 						  "associated: '%*pE' %pM\n",
4501 						  priv->essid_len, priv->essid,
4502 						  priv->bssid);
4503 
4504 					switch (priv->ieee->iw_mode) {
4505 					case IW_MODE_INFRA:
4506 						memcpy(priv->ieee->bssid,
4507 						       priv->bssid, ETH_ALEN);
4508 						break;
4509 
4510 					case IW_MODE_ADHOC:
4511 						memcpy(priv->ieee->bssid,
4512 						       priv->bssid, ETH_ALEN);
4513 
4514 						/* clear out the station table */
4515 						priv->num_stations = 0;
4516 
4517 						IPW_DEBUG_ASSOC
4518 						    ("queueing adhoc check\n");
4519 						schedule_delayed_work(
4520 							&priv->adhoc_check,
4521 							le16_to_cpu(priv->
4522 							assoc_request.
4523 							beacon_interval));
4524 						break;
4525 					}
4526 
4527 					priv->status &= ~STATUS_ASSOCIATING;
4528 					priv->status |= STATUS_ASSOCIATED;
4529 					schedule_work(&priv->system_config);
4530 
4531 #ifdef CONFIG_IPW2200_QOS
4532 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4533 			 le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_control))
4534 					if ((priv->status & STATUS_AUTH) &&
4535 					    (IPW_GET_PACKET_STYPE(&notif->u.raw)
4536 					     == IEEE80211_STYPE_ASSOC_RESP)) {
4537 						if ((sizeof
4538 						     (struct
4539 						      libipw_assoc_response)
4540 						     <= size)
4541 						    && (size <= 2314)) {
4542 							struct
4543 							libipw_rx_stats
4544 							    stats = {
4545 								.len = size - 1,
4546 							};
4547 
4548 							IPW_DEBUG_QOS
4549 							    ("QoS Associate "
4550 							     "size %d\n", size);
4551 							libipw_rx_mgt(priv->
4552 									 ieee,
4553 									 (struct
4554 									  libipw_hdr_4addr
4555 									  *)
4556 									 &notif->u.raw, &stats);
4557 						}
4558 					}
4559 #endif
4560 
4561 					schedule_work(&priv->link_up);
4562 
4563 					break;
4564 				}
4565 
4566 			case CMAS_AUTHENTICATED:{
4567 					if (priv->
4568 					    status & (STATUS_ASSOCIATED |
4569 						      STATUS_AUTH)) {
4570 						struct notif_authenticate *auth
4571 						    = &notif->u.auth;
4572 						IPW_DEBUG(IPW_DL_NOTIF |
4573 							  IPW_DL_STATE |
4574 							  IPW_DL_ASSOC,
4575 							  "deauthenticated: '%*pE' %pM: (0x%04X) - %s\n",
4576 							  priv->essid_len,
4577 							  priv->essid,
4578 							  priv->bssid,
4579 							  le16_to_cpu(auth->status),
4580 							  ipw_get_status_code
4581 							  (le16_to_cpu
4582 							   (auth->status)));
4583 
4584 						priv->status &=
4585 						    ~(STATUS_ASSOCIATING |
4586 						      STATUS_AUTH |
4587 						      STATUS_ASSOCIATED);
4588 
4589 						schedule_work(&priv->link_down);
4590 						break;
4591 					}
4592 
4593 					IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4594 						  IPW_DL_ASSOC,
4595 						  "authenticated: '%*pE' %pM\n",
4596 						  priv->essid_len, priv->essid,
4597 						  priv->bssid);
4598 					break;
4599 				}
4600 
4601 			case CMAS_INIT:{
4602 					if (priv->status & STATUS_AUTH) {
4603 						struct
4604 						    libipw_assoc_response
4605 						*resp;
4606 						resp =
4607 						    (struct
4608 						     libipw_assoc_response
4609 						     *)&notif->u.raw;
4610 						IPW_DEBUG(IPW_DL_NOTIF |
4611 							  IPW_DL_STATE |
4612 							  IPW_DL_ASSOC,
4613 							  "association failed (0x%04X): %s\n",
4614 							  le16_to_cpu(resp->status),
4615 							  ipw_get_status_code
4616 							  (le16_to_cpu
4617 							   (resp->status)));
4618 					}
4619 
4620 					IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4621 						  IPW_DL_ASSOC,
4622 						  "disassociated: '%*pE' %pM\n",
4623 						  priv->essid_len, priv->essid,
4624 						  priv->bssid);
4625 
4626 					priv->status &=
4627 					    ~(STATUS_DISASSOCIATING |
4628 					      STATUS_ASSOCIATING |
4629 					      STATUS_ASSOCIATED | STATUS_AUTH);
4630 					if (priv->assoc_network
4631 					    && (priv->assoc_network->
4632 						capability &
4633 						WLAN_CAPABILITY_IBSS))
4634 						ipw_remove_current_network
4635 						    (priv);
4636 
4637 					schedule_work(&priv->link_down);
4638 
4639 					break;
4640 				}
4641 
4642 			case CMAS_RX_ASSOC_RESP:
4643 				break;
4644 
4645 			default:
4646 				IPW_ERROR("assoc: unknown (%d)\n",
4647 					  assoc->state);
4648 				break;
4649 			}
4650 
4651 			break;
4652 		}
4653 
4654 	case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4655 			struct notif_authenticate *auth = &notif->u.auth;
4656 			switch (auth->state) {
4657 			case CMAS_AUTHENTICATED:
4658 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4659 					  "authenticated: '%*pE' %pM\n",
4660 					  priv->essid_len, priv->essid,
4661 					  priv->bssid);
4662 				priv->status |= STATUS_AUTH;
4663 				break;
4664 
4665 			case CMAS_INIT:
4666 				if (priv->status & STATUS_AUTH) {
4667 					IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4668 						  IPW_DL_ASSOC,
4669 						  "authentication failed (0x%04X): %s\n",
4670 						  le16_to_cpu(auth->status),
4671 						  ipw_get_status_code(le16_to_cpu
4672 								      (auth->
4673 								       status)));
4674 				}
4675 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4676 					  IPW_DL_ASSOC,
4677 					  "deauthenticated: '%*pE' %pM\n",
4678 					  priv->essid_len, priv->essid,
4679 					  priv->bssid);
4680 
4681 				priv->status &= ~(STATUS_ASSOCIATING |
4682 						  STATUS_AUTH |
4683 						  STATUS_ASSOCIATED);
4684 
4685 				schedule_work(&priv->link_down);
4686 				break;
4687 
4688 			case CMAS_TX_AUTH_SEQ_1:
4689 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4690 					  IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4691 				break;
4692 			case CMAS_RX_AUTH_SEQ_2:
4693 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4694 					  IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4695 				break;
4696 			case CMAS_AUTH_SEQ_1_PASS:
4697 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4698 					  IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4699 				break;
4700 			case CMAS_AUTH_SEQ_1_FAIL:
4701 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4702 					  IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4703 				break;
4704 			case CMAS_TX_AUTH_SEQ_3:
4705 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4706 					  IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4707 				break;
4708 			case CMAS_RX_AUTH_SEQ_4:
4709 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4710 					  IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4711 				break;
4712 			case CMAS_AUTH_SEQ_2_PASS:
4713 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4714 					  IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4715 				break;
4716 			case CMAS_AUTH_SEQ_2_FAIL:
4717 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4718 					  IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4719 				break;
4720 			case CMAS_TX_ASSOC:
4721 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4722 					  IPW_DL_ASSOC, "TX_ASSOC\n");
4723 				break;
4724 			case CMAS_RX_ASSOC_RESP:
4725 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4726 					  IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4727 
4728 				break;
4729 			case CMAS_ASSOCIATED:
4730 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4731 					  IPW_DL_ASSOC, "ASSOCIATED\n");
4732 				break;
4733 			default:
4734 				IPW_DEBUG_NOTIF("auth: failure - %d\n",
4735 						auth->state);
4736 				break;
4737 			}
4738 			break;
4739 		}
4740 
4741 	case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4742 			struct notif_channel_result *x =
4743 			    &notif->u.channel_result;
4744 
4745 			if (size == sizeof(*x)) {
4746 				IPW_DEBUG_SCAN("Scan result for channel %d\n",
4747 					       x->channel_num);
4748 			} else {
4749 				IPW_DEBUG_SCAN("Scan result of wrong size %d "
4750 					       "(should be %zd)\n",
4751 					       size, sizeof(*x));
4752 			}
4753 			break;
4754 		}
4755 
4756 	case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4757 			struct notif_scan_complete *x = &notif->u.scan_complete;
4758 			if (size == sizeof(*x)) {
4759 				IPW_DEBUG_SCAN
4760 				    ("Scan completed: type %d, %d channels, "
4761 				     "%d status\n", x->scan_type,
4762 				     x->num_channels, x->status);
4763 			} else {
4764 				IPW_ERROR("Scan completed of wrong size %d "
4765 					  "(should be %zd)\n",
4766 					  size, sizeof(*x));
4767 			}
4768 
4769 			priv->status &=
4770 			    ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4771 
4772 			wake_up_interruptible(&priv->wait_state);
4773 			cancel_delayed_work(&priv->scan_check);
4774 
4775 			if (priv->status & STATUS_EXIT_PENDING)
4776 				break;
4777 
4778 			priv->ieee->scans++;
4779 
4780 #ifdef CONFIG_IPW2200_MONITOR
4781 			if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4782 				priv->status |= STATUS_SCAN_FORCED;
4783 				schedule_delayed_work(&priv->request_scan, 0);
4784 				break;
4785 			}
4786 			priv->status &= ~STATUS_SCAN_FORCED;
4787 #endif				/* CONFIG_IPW2200_MONITOR */
4788 
4789 			/* Do queued direct scans first */
4790 			if (priv->status & STATUS_DIRECT_SCAN_PENDING)
4791 				schedule_delayed_work(&priv->request_direct_scan, 0);
4792 
4793 			if (!(priv->status & (STATUS_ASSOCIATED |
4794 					      STATUS_ASSOCIATING |
4795 					      STATUS_ROAMING |
4796 					      STATUS_DISASSOCIATING)))
4797 				schedule_work(&priv->associate);
4798 			else if (priv->status & STATUS_ROAMING) {
4799 				if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4800 					/* If a scan completed and we are in roam mode, then
4801 					 * the scan that completed was the one requested as a
4802 					 * result of entering roam... so, schedule the
4803 					 * roam work */
4804 					schedule_work(&priv->roam);
4805 				else
4806 					/* Don't schedule if we aborted the scan */
4807 					priv->status &= ~STATUS_ROAMING;
4808 			} else if (priv->status & STATUS_SCAN_PENDING)
4809 				schedule_delayed_work(&priv->request_scan, 0);
4810 			else if (priv->config & CFG_BACKGROUND_SCAN
4811 				 && priv->status & STATUS_ASSOCIATED)
4812 				schedule_delayed_work(&priv->request_scan,
4813 						      round_jiffies_relative(HZ));
4814 
4815 			/* Send an empty event to user space.
4816 			 * We don't send the received data on the event because
4817 			 * it would require us to do complex transcoding, and
4818 			 * we want to minimise the work done in the irq handler
4819 			 * Use a request to extract the data.
4820 			 * Also, we generate this even for any scan, regardless
4821 			 * on how the scan was initiated. User space can just
4822 			 * sync on periodic scan to get fresh data...
4823 			 * Jean II */
4824 			if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4825 				handle_scan_event(priv);
4826 			break;
4827 		}
4828 
4829 	case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4830 			struct notif_frag_length *x = &notif->u.frag_len;
4831 
4832 			if (size == sizeof(*x))
4833 				IPW_ERROR("Frag length: %d\n",
4834 					  le16_to_cpu(x->frag_length));
4835 			else
4836 				IPW_ERROR("Frag length of wrong size %d "
4837 					  "(should be %zd)\n",
4838 					  size, sizeof(*x));
4839 			break;
4840 		}
4841 
4842 	case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4843 			struct notif_link_deterioration *x =
4844 			    &notif->u.link_deterioration;
4845 
4846 			if (size == sizeof(*x)) {
4847 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4848 					"link deterioration: type %d, cnt %d\n",
4849 					x->silence_notification_type,
4850 					x->silence_count);
4851 				memcpy(&priv->last_link_deterioration, x,
4852 				       sizeof(*x));
4853 			} else {
4854 				IPW_ERROR("Link Deterioration of wrong size %d "
4855 					  "(should be %zd)\n",
4856 					  size, sizeof(*x));
4857 			}
4858 			break;
4859 		}
4860 
4861 	case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4862 			IPW_ERROR("Dino config\n");
4863 			if (priv->hcmd
4864 			    && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4865 				IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4866 
4867 			break;
4868 		}
4869 
4870 	case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4871 			struct notif_beacon_state *x = &notif->u.beacon_state;
4872 			if (size != sizeof(*x)) {
4873 				IPW_ERROR
4874 				    ("Beacon state of wrong size %d (should "
4875 				     "be %zd)\n", size, sizeof(*x));
4876 				break;
4877 			}
4878 
4879 			if (le32_to_cpu(x->state) ==
4880 			    HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4881 				ipw_handle_missed_beacon(priv,
4882 							 le32_to_cpu(x->
4883 								     number));
4884 
4885 			break;
4886 		}
4887 
4888 	case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4889 			struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4890 			if (size == sizeof(*x)) {
4891 				IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4892 					  "0x%02x station %d\n",
4893 					  x->key_state, x->security_type,
4894 					  x->station_index);
4895 				break;
4896 			}
4897 
4898 			IPW_ERROR
4899 			    ("TGi Tx Key of wrong size %d (should be %zd)\n",
4900 			     size, sizeof(*x));
4901 			break;
4902 		}
4903 
4904 	case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4905 			struct notif_calibration *x = &notif->u.calibration;
4906 
4907 			if (size == sizeof(*x)) {
4908 				memcpy(&priv->calib, x, sizeof(*x));
4909 				IPW_DEBUG_INFO("TODO: Calibration\n");
4910 				break;
4911 			}
4912 
4913 			IPW_ERROR
4914 			    ("Calibration of wrong size %d (should be %zd)\n",
4915 			     size, sizeof(*x));
4916 			break;
4917 		}
4918 
4919 	case HOST_NOTIFICATION_NOISE_STATS:{
4920 			if (size == sizeof(u32)) {
4921 				priv->exp_avg_noise =
4922 				    exponential_average(priv->exp_avg_noise,
4923 				    (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4924 				    DEPTH_NOISE);
4925 				break;
4926 			}
4927 
4928 			IPW_ERROR
4929 			    ("Noise stat is wrong size %d (should be %zd)\n",
4930 			     size, sizeof(u32));
4931 			break;
4932 		}
4933 
4934 	default:
4935 		IPW_DEBUG_NOTIF("Unknown notification: "
4936 				"subtype=%d,flags=0x%2x,size=%d\n",
4937 				notif->subtype, notif->flags, size);
4938 	}
4939 }
4940 
4941 /**
4942  * Destroys all DMA structures and initialise them again
4943  *
4944  * @param priv
4945  * @return error code
4946  */
4947 static int ipw_queue_reset(struct ipw_priv *priv)
4948 {
4949 	int rc = 0;
4950 	/** @todo customize queue sizes */
4951 	int nTx = 64, nTxCmd = 8;
4952 	ipw_tx_queue_free(priv);
4953 	/* Tx CMD queue */
4954 	rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4955 			       IPW_TX_CMD_QUEUE_READ_INDEX,
4956 			       IPW_TX_CMD_QUEUE_WRITE_INDEX,
4957 			       IPW_TX_CMD_QUEUE_BD_BASE,
4958 			       IPW_TX_CMD_QUEUE_BD_SIZE);
4959 	if (rc) {
4960 		IPW_ERROR("Tx Cmd queue init failed\n");
4961 		goto error;
4962 	}
4963 	/* Tx queue(s) */
4964 	rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4965 			       IPW_TX_QUEUE_0_READ_INDEX,
4966 			       IPW_TX_QUEUE_0_WRITE_INDEX,
4967 			       IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4968 	if (rc) {
4969 		IPW_ERROR("Tx 0 queue init failed\n");
4970 		goto error;
4971 	}
4972 	rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4973 			       IPW_TX_QUEUE_1_READ_INDEX,
4974 			       IPW_TX_QUEUE_1_WRITE_INDEX,
4975 			       IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4976 	if (rc) {
4977 		IPW_ERROR("Tx 1 queue init failed\n");
4978 		goto error;
4979 	}
4980 	rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4981 			       IPW_TX_QUEUE_2_READ_INDEX,
4982 			       IPW_TX_QUEUE_2_WRITE_INDEX,
4983 			       IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4984 	if (rc) {
4985 		IPW_ERROR("Tx 2 queue init failed\n");
4986 		goto error;
4987 	}
4988 	rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4989 			       IPW_TX_QUEUE_3_READ_INDEX,
4990 			       IPW_TX_QUEUE_3_WRITE_INDEX,
4991 			       IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4992 	if (rc) {
4993 		IPW_ERROR("Tx 3 queue init failed\n");
4994 		goto error;
4995 	}
4996 	/* statistics */
4997 	priv->rx_bufs_min = 0;
4998 	priv->rx_pend_max = 0;
4999 	return rc;
5000 
5001       error:
5002 	ipw_tx_queue_free(priv);
5003 	return rc;
5004 }
5005 
5006 /**
5007  * Reclaim Tx queue entries no more used by NIC.
5008  *
5009  * When FW advances 'R' index, all entries between old and
5010  * new 'R' index need to be reclaimed. As result, some free space
5011  * forms. If there is enough free space (> low mark), wake Tx queue.
5012  *
5013  * @note Need to protect against garbage in 'R' index
5014  * @param priv
5015  * @param txq
5016  * @param qindex
5017  * @return Number of used entries remains in the queue
5018  */
5019 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
5020 				struct clx2_tx_queue *txq, int qindex)
5021 {
5022 	u32 hw_tail;
5023 	int used;
5024 	struct clx2_queue *q = &txq->q;
5025 
5026 	hw_tail = ipw_read32(priv, q->reg_r);
5027 	if (hw_tail >= q->n_bd) {
5028 		IPW_ERROR
5029 		    ("Read index for DMA queue (%d) is out of range [0-%d)\n",
5030 		     hw_tail, q->n_bd);
5031 		goto done;
5032 	}
5033 	for (; q->last_used != hw_tail;
5034 	     q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
5035 		ipw_queue_tx_free_tfd(priv, txq);
5036 		priv->tx_packets++;
5037 	}
5038       done:
5039 	if ((ipw_tx_queue_space(q) > q->low_mark) &&
5040 	    (qindex >= 0))
5041 		netif_wake_queue(priv->net_dev);
5042 	used = q->first_empty - q->last_used;
5043 	if (used < 0)
5044 		used += q->n_bd;
5045 
5046 	return used;
5047 }
5048 
5049 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
5050 			     int len, int sync)
5051 {
5052 	struct clx2_tx_queue *txq = &priv->txq_cmd;
5053 	struct clx2_queue *q = &txq->q;
5054 	struct tfd_frame *tfd;
5055 
5056 	if (ipw_tx_queue_space(q) < (sync ? 1 : 2)) {
5057 		IPW_ERROR("No space for Tx\n");
5058 		return -EBUSY;
5059 	}
5060 
5061 	tfd = &txq->bd[q->first_empty];
5062 	txq->txb[q->first_empty] = NULL;
5063 
5064 	memset(tfd, 0, sizeof(*tfd));
5065 	tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
5066 	tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
5067 	priv->hcmd_seq++;
5068 	tfd->u.cmd.index = hcmd;
5069 	tfd->u.cmd.length = len;
5070 	memcpy(tfd->u.cmd.payload, buf, len);
5071 	q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
5072 	ipw_write32(priv, q->reg_w, q->first_empty);
5073 	_ipw_read32(priv, 0x90);
5074 
5075 	return 0;
5076 }
5077 
5078 /*
5079  * Rx theory of operation
5080  *
5081  * The host allocates 32 DMA target addresses and passes the host address
5082  * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
5083  * 0 to 31
5084  *
5085  * Rx Queue Indexes
5086  * The host/firmware share two index registers for managing the Rx buffers.
5087  *
5088  * The READ index maps to the first position that the firmware may be writing
5089  * to -- the driver can read up to (but not including) this position and get
5090  * good data.
5091  * The READ index is managed by the firmware once the card is enabled.
5092  *
5093  * The WRITE index maps to the last position the driver has read from -- the
5094  * position preceding WRITE is the last slot the firmware can place a packet.
5095  *
5096  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
5097  * WRITE = READ.
5098  *
5099  * During initialization the host sets up the READ queue position to the first
5100  * INDEX position, and WRITE to the last (READ - 1 wrapped)
5101  *
5102  * When the firmware places a packet in a buffer it will advance the READ index
5103  * and fire the RX interrupt.  The driver can then query the READ index and
5104  * process as many packets as possible, moving the WRITE index forward as it
5105  * resets the Rx queue buffers with new memory.
5106  *
5107  * The management in the driver is as follows:
5108  * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free.  When
5109  *   ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
5110  *   to replensish the ipw->rxq->rx_free.
5111  * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
5112  *   ipw->rxq is replenished and the READ INDEX is updated (updating the
5113  *   'processed' and 'read' driver indexes as well)
5114  * + A received packet is processed and handed to the kernel network stack,
5115  *   detached from the ipw->rxq.  The driver 'processed' index is updated.
5116  * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5117  *   list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5118  *   INDEX is not incremented and ipw->status(RX_STALLED) is set.  If there
5119  *   were enough free buffers and RX_STALLED is set it is cleared.
5120  *
5121  *
5122  * Driver sequence:
5123  *
5124  * ipw_rx_queue_alloc()       Allocates rx_free
5125  * ipw_rx_queue_replenish()   Replenishes rx_free list from rx_used, and calls
5126  *                            ipw_rx_queue_restock
5127  * ipw_rx_queue_restock()     Moves available buffers from rx_free into Rx
5128  *                            queue, updates firmware pointers, and updates
5129  *                            the WRITE index.  If insufficient rx_free buffers
5130  *                            are available, schedules ipw_rx_queue_replenish
5131  *
5132  * -- enable interrupts --
5133  * ISR - ipw_rx()             Detach ipw_rx_mem_buffers from pool up to the
5134  *                            READ INDEX, detaching the SKB from the pool.
5135  *                            Moves the packet buffer from queue to rx_used.
5136  *                            Calls ipw_rx_queue_restock to refill any empty
5137  *                            slots.
5138  * ...
5139  *
5140  */
5141 
5142 /*
5143  * If there are slots in the RX queue that  need to be restocked,
5144  * and we have free pre-allocated buffers, fill the ranks as much
5145  * as we can pulling from rx_free.
5146  *
5147  * This moves the 'write' index forward to catch up with 'processed', and
5148  * also updates the memory address in the firmware to reference the new
5149  * target buffer.
5150  */
5151 static void ipw_rx_queue_restock(struct ipw_priv *priv)
5152 {
5153 	struct ipw_rx_queue *rxq = priv->rxq;
5154 	struct list_head *element;
5155 	struct ipw_rx_mem_buffer *rxb;
5156 	unsigned long flags;
5157 	int write;
5158 
5159 	spin_lock_irqsave(&rxq->lock, flags);
5160 	write = rxq->write;
5161 	while ((ipw_rx_queue_space(rxq) > 0) && (rxq->free_count)) {
5162 		element = rxq->rx_free.next;
5163 		rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5164 		list_del(element);
5165 
5166 		ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5167 			    rxb->dma_addr);
5168 		rxq->queue[rxq->write] = rxb;
5169 		rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5170 		rxq->free_count--;
5171 	}
5172 	spin_unlock_irqrestore(&rxq->lock, flags);
5173 
5174 	/* If the pre-allocated buffer pool is dropping low, schedule to
5175 	 * refill it */
5176 	if (rxq->free_count <= RX_LOW_WATERMARK)
5177 		schedule_work(&priv->rx_replenish);
5178 
5179 	/* If we've added more space for the firmware to place data, tell it */
5180 	if (write != rxq->write)
5181 		ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5182 }
5183 
5184 /*
5185  * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5186  * Also restock the Rx queue via ipw_rx_queue_restock.
5187  *
5188  * This is called as a scheduled work item (except for during initialization)
5189  */
5190 static void ipw_rx_queue_replenish(void *data)
5191 {
5192 	struct ipw_priv *priv = data;
5193 	struct ipw_rx_queue *rxq = priv->rxq;
5194 	struct list_head *element;
5195 	struct ipw_rx_mem_buffer *rxb;
5196 	unsigned long flags;
5197 
5198 	spin_lock_irqsave(&rxq->lock, flags);
5199 	while (!list_empty(&rxq->rx_used)) {
5200 		element = rxq->rx_used.next;
5201 		rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5202 		rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5203 		if (!rxb->skb) {
5204 			printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5205 			       priv->net_dev->name);
5206 			/* We don't reschedule replenish work here -- we will
5207 			 * call the restock method and if it still needs
5208 			 * more buffers it will schedule replenish */
5209 			break;
5210 		}
5211 		list_del(element);
5212 
5213 		rxb->dma_addr =
5214 		    pci_map_single(priv->pci_dev, rxb->skb->data,
5215 				   IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5216 
5217 		list_add_tail(&rxb->list, &rxq->rx_free);
5218 		rxq->free_count++;
5219 	}
5220 	spin_unlock_irqrestore(&rxq->lock, flags);
5221 
5222 	ipw_rx_queue_restock(priv);
5223 }
5224 
5225 static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5226 {
5227 	struct ipw_priv *priv =
5228 		container_of(work, struct ipw_priv, rx_replenish);
5229 	mutex_lock(&priv->mutex);
5230 	ipw_rx_queue_replenish(priv);
5231 	mutex_unlock(&priv->mutex);
5232 }
5233 
5234 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5235  * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5236  * This free routine walks the list of POOL entries and if SKB is set to
5237  * non NULL it is unmapped and freed
5238  */
5239 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5240 {
5241 	int i;
5242 
5243 	if (!rxq)
5244 		return;
5245 
5246 	for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5247 		if (rxq->pool[i].skb != NULL) {
5248 			pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
5249 					 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5250 			dev_kfree_skb(rxq->pool[i].skb);
5251 		}
5252 	}
5253 
5254 	kfree(rxq);
5255 }
5256 
5257 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5258 {
5259 	struct ipw_rx_queue *rxq;
5260 	int i;
5261 
5262 	rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5263 	if (unlikely(!rxq)) {
5264 		IPW_ERROR("memory allocation failed\n");
5265 		return NULL;
5266 	}
5267 	spin_lock_init(&rxq->lock);
5268 	INIT_LIST_HEAD(&rxq->rx_free);
5269 	INIT_LIST_HEAD(&rxq->rx_used);
5270 
5271 	/* Fill the rx_used queue with _all_ of the Rx buffers */
5272 	for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5273 		list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5274 
5275 	/* Set us so that we have processed and used all buffers, but have
5276 	 * not restocked the Rx queue with fresh buffers */
5277 	rxq->read = rxq->write = 0;
5278 	rxq->free_count = 0;
5279 
5280 	return rxq;
5281 }
5282 
5283 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5284 {
5285 	rate &= ~LIBIPW_BASIC_RATE_MASK;
5286 	if (ieee_mode == IEEE_A) {
5287 		switch (rate) {
5288 		case LIBIPW_OFDM_RATE_6MB:
5289 			return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ?
5290 			    1 : 0;
5291 		case LIBIPW_OFDM_RATE_9MB:
5292 			return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ?
5293 			    1 : 0;
5294 		case LIBIPW_OFDM_RATE_12MB:
5295 			return priv->
5296 			    rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5297 		case LIBIPW_OFDM_RATE_18MB:
5298 			return priv->
5299 			    rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5300 		case LIBIPW_OFDM_RATE_24MB:
5301 			return priv->
5302 			    rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5303 		case LIBIPW_OFDM_RATE_36MB:
5304 			return priv->
5305 			    rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5306 		case LIBIPW_OFDM_RATE_48MB:
5307 			return priv->
5308 			    rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5309 		case LIBIPW_OFDM_RATE_54MB:
5310 			return priv->
5311 			    rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5312 		default:
5313 			return 0;
5314 		}
5315 	}
5316 
5317 	/* B and G mixed */
5318 	switch (rate) {
5319 	case LIBIPW_CCK_RATE_1MB:
5320 		return priv->rates_mask & LIBIPW_CCK_RATE_1MB_MASK ? 1 : 0;
5321 	case LIBIPW_CCK_RATE_2MB:
5322 		return priv->rates_mask & LIBIPW_CCK_RATE_2MB_MASK ? 1 : 0;
5323 	case LIBIPW_CCK_RATE_5MB:
5324 		return priv->rates_mask & LIBIPW_CCK_RATE_5MB_MASK ? 1 : 0;
5325 	case LIBIPW_CCK_RATE_11MB:
5326 		return priv->rates_mask & LIBIPW_CCK_RATE_11MB_MASK ? 1 : 0;
5327 	}
5328 
5329 	/* If we are limited to B modulations, bail at this point */
5330 	if (ieee_mode == IEEE_B)
5331 		return 0;
5332 
5333 	/* G */
5334 	switch (rate) {
5335 	case LIBIPW_OFDM_RATE_6MB:
5336 		return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ? 1 : 0;
5337 	case LIBIPW_OFDM_RATE_9MB:
5338 		return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ? 1 : 0;
5339 	case LIBIPW_OFDM_RATE_12MB:
5340 		return priv->rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5341 	case LIBIPW_OFDM_RATE_18MB:
5342 		return priv->rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5343 	case LIBIPW_OFDM_RATE_24MB:
5344 		return priv->rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5345 	case LIBIPW_OFDM_RATE_36MB:
5346 		return priv->rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5347 	case LIBIPW_OFDM_RATE_48MB:
5348 		return priv->rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5349 	case LIBIPW_OFDM_RATE_54MB:
5350 		return priv->rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5351 	}
5352 
5353 	return 0;
5354 }
5355 
5356 static int ipw_compatible_rates(struct ipw_priv *priv,
5357 				const struct libipw_network *network,
5358 				struct ipw_supported_rates *rates)
5359 {
5360 	int num_rates, i;
5361 
5362 	memset(rates, 0, sizeof(*rates));
5363 	num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5364 	rates->num_rates = 0;
5365 	for (i = 0; i < num_rates; i++) {
5366 		if (!ipw_is_rate_in_mask(priv, network->mode,
5367 					 network->rates[i])) {
5368 
5369 			if (network->rates[i] & LIBIPW_BASIC_RATE_MASK) {
5370 				IPW_DEBUG_SCAN("Adding masked mandatory "
5371 					       "rate %02X\n",
5372 					       network->rates[i]);
5373 				rates->supported_rates[rates->num_rates++] =
5374 				    network->rates[i];
5375 				continue;
5376 			}
5377 
5378 			IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5379 				       network->rates[i], priv->rates_mask);
5380 			continue;
5381 		}
5382 
5383 		rates->supported_rates[rates->num_rates++] = network->rates[i];
5384 	}
5385 
5386 	num_rates = min(network->rates_ex_len,
5387 			(u8) (IPW_MAX_RATES - num_rates));
5388 	for (i = 0; i < num_rates; i++) {
5389 		if (!ipw_is_rate_in_mask(priv, network->mode,
5390 					 network->rates_ex[i])) {
5391 			if (network->rates_ex[i] & LIBIPW_BASIC_RATE_MASK) {
5392 				IPW_DEBUG_SCAN("Adding masked mandatory "
5393 					       "rate %02X\n",
5394 					       network->rates_ex[i]);
5395 				rates->supported_rates[rates->num_rates++] =
5396 				    network->rates[i];
5397 				continue;
5398 			}
5399 
5400 			IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5401 				       network->rates_ex[i], priv->rates_mask);
5402 			continue;
5403 		}
5404 
5405 		rates->supported_rates[rates->num_rates++] =
5406 		    network->rates_ex[i];
5407 	}
5408 
5409 	return 1;
5410 }
5411 
5412 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5413 				  const struct ipw_supported_rates *src)
5414 {
5415 	u8 i;
5416 	for (i = 0; i < src->num_rates; i++)
5417 		dest->supported_rates[i] = src->supported_rates[i];
5418 	dest->num_rates = src->num_rates;
5419 }
5420 
5421 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5422  * mask should ever be used -- right now all callers to add the scan rates are
5423  * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5424 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5425 				   u8 modulation, u32 rate_mask)
5426 {
5427 	u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5428 	    LIBIPW_BASIC_RATE_MASK : 0;
5429 
5430 	if (rate_mask & LIBIPW_CCK_RATE_1MB_MASK)
5431 		rates->supported_rates[rates->num_rates++] =
5432 		    LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_1MB;
5433 
5434 	if (rate_mask & LIBIPW_CCK_RATE_2MB_MASK)
5435 		rates->supported_rates[rates->num_rates++] =
5436 		    LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_2MB;
5437 
5438 	if (rate_mask & LIBIPW_CCK_RATE_5MB_MASK)
5439 		rates->supported_rates[rates->num_rates++] = basic_mask |
5440 		    LIBIPW_CCK_RATE_5MB;
5441 
5442 	if (rate_mask & LIBIPW_CCK_RATE_11MB_MASK)
5443 		rates->supported_rates[rates->num_rates++] = basic_mask |
5444 		    LIBIPW_CCK_RATE_11MB;
5445 }
5446 
5447 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5448 				    u8 modulation, u32 rate_mask)
5449 {
5450 	u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5451 	    LIBIPW_BASIC_RATE_MASK : 0;
5452 
5453 	if (rate_mask & LIBIPW_OFDM_RATE_6MB_MASK)
5454 		rates->supported_rates[rates->num_rates++] = basic_mask |
5455 		    LIBIPW_OFDM_RATE_6MB;
5456 
5457 	if (rate_mask & LIBIPW_OFDM_RATE_9MB_MASK)
5458 		rates->supported_rates[rates->num_rates++] =
5459 		    LIBIPW_OFDM_RATE_9MB;
5460 
5461 	if (rate_mask & LIBIPW_OFDM_RATE_12MB_MASK)
5462 		rates->supported_rates[rates->num_rates++] = basic_mask |
5463 		    LIBIPW_OFDM_RATE_12MB;
5464 
5465 	if (rate_mask & LIBIPW_OFDM_RATE_18MB_MASK)
5466 		rates->supported_rates[rates->num_rates++] =
5467 		    LIBIPW_OFDM_RATE_18MB;
5468 
5469 	if (rate_mask & LIBIPW_OFDM_RATE_24MB_MASK)
5470 		rates->supported_rates[rates->num_rates++] = basic_mask |
5471 		    LIBIPW_OFDM_RATE_24MB;
5472 
5473 	if (rate_mask & LIBIPW_OFDM_RATE_36MB_MASK)
5474 		rates->supported_rates[rates->num_rates++] =
5475 		    LIBIPW_OFDM_RATE_36MB;
5476 
5477 	if (rate_mask & LIBIPW_OFDM_RATE_48MB_MASK)
5478 		rates->supported_rates[rates->num_rates++] =
5479 		    LIBIPW_OFDM_RATE_48MB;
5480 
5481 	if (rate_mask & LIBIPW_OFDM_RATE_54MB_MASK)
5482 		rates->supported_rates[rates->num_rates++] =
5483 		    LIBIPW_OFDM_RATE_54MB;
5484 }
5485 
5486 struct ipw_network_match {
5487 	struct libipw_network *network;
5488 	struct ipw_supported_rates rates;
5489 };
5490 
5491 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5492 				  struct ipw_network_match *match,
5493 				  struct libipw_network *network,
5494 				  int roaming)
5495 {
5496 	struct ipw_supported_rates rates;
5497 
5498 	/* Verify that this network's capability is compatible with the
5499 	 * current mode (AdHoc or Infrastructure) */
5500 	if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5501 	     !(network->capability & WLAN_CAPABILITY_IBSS))) {
5502 		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded due to capability mismatch.\n",
5503 				network->ssid_len, network->ssid,
5504 				network->bssid);
5505 		return 0;
5506 	}
5507 
5508 	if (unlikely(roaming)) {
5509 		/* If we are roaming, then ensure check if this is a valid
5510 		 * network to try and roam to */
5511 		if ((network->ssid_len != match->network->ssid_len) ||
5512 		    memcmp(network->ssid, match->network->ssid,
5513 			   network->ssid_len)) {
5514 			IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of non-network ESSID.\n",
5515 					network->ssid_len, network->ssid,
5516 					network->bssid);
5517 			return 0;
5518 		}
5519 	} else {
5520 		/* If an ESSID has been configured then compare the broadcast
5521 		 * ESSID to ours */
5522 		if ((priv->config & CFG_STATIC_ESSID) &&
5523 		    ((network->ssid_len != priv->essid_len) ||
5524 		     memcmp(network->ssid, priv->essid,
5525 			    min(network->ssid_len, priv->essid_len)))) {
5526 			IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of ESSID mismatch: '%*pE'.\n",
5527 					network->ssid_len, network->ssid,
5528 					network->bssid, priv->essid_len,
5529 					priv->essid);
5530 			return 0;
5531 		}
5532 	}
5533 
5534 	/* If the old network rate is better than this one, don't bother
5535 	 * testing everything else. */
5536 
5537 	if (network->time_stamp[0] < match->network->time_stamp[0]) {
5538 		IPW_DEBUG_MERGE("Network '%*pE excluded because newer than current network.\n",
5539 				match->network->ssid_len, match->network->ssid);
5540 		return 0;
5541 	} else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5542 		IPW_DEBUG_MERGE("Network '%*pE excluded because newer than current network.\n",
5543 				match->network->ssid_len, match->network->ssid);
5544 		return 0;
5545 	}
5546 
5547 	/* Now go through and see if the requested network is valid... */
5548 	if (priv->ieee->scan_age != 0 &&
5549 	    time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5550 		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of age: %ums.\n",
5551 				network->ssid_len, network->ssid,
5552 				network->bssid,
5553 				jiffies_to_msecs(jiffies -
5554 						 network->last_scanned));
5555 		return 0;
5556 	}
5557 
5558 	if ((priv->config & CFG_STATIC_CHANNEL) &&
5559 	    (network->channel != priv->channel)) {
5560 		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of channel mismatch: %d != %d.\n",
5561 				network->ssid_len, network->ssid,
5562 				network->bssid,
5563 				network->channel, priv->channel);
5564 		return 0;
5565 	}
5566 
5567 	/* Verify privacy compatibility */
5568 	if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5569 	    ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5570 		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of privacy mismatch: %s != %s.\n",
5571 				network->ssid_len, network->ssid,
5572 				network->bssid,
5573 				priv->
5574 				capability & CAP_PRIVACY_ON ? "on" : "off",
5575 				network->
5576 				capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5577 				"off");
5578 		return 0;
5579 	}
5580 
5581 	if (ether_addr_equal(network->bssid, priv->bssid)) {
5582 		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of the same BSSID match: %pM.\n",
5583 				network->ssid_len, network->ssid,
5584 				network->bssid, priv->bssid);
5585 		return 0;
5586 	}
5587 
5588 	/* Filter out any incompatible freq / mode combinations */
5589 	if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5590 		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of invalid frequency/mode combination.\n",
5591 				network->ssid_len, network->ssid,
5592 				network->bssid);
5593 		return 0;
5594 	}
5595 
5596 	/* Ensure that the rates supported by the driver are compatible with
5597 	 * this AP, including verification of basic rates (mandatory) */
5598 	if (!ipw_compatible_rates(priv, network, &rates)) {
5599 		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because configured rate mask excludes AP mandatory rate.\n",
5600 				network->ssid_len, network->ssid,
5601 				network->bssid);
5602 		return 0;
5603 	}
5604 
5605 	if (rates.num_rates == 0) {
5606 		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of no compatible rates.\n",
5607 				network->ssid_len, network->ssid,
5608 				network->bssid);
5609 		return 0;
5610 	}
5611 
5612 	/* TODO: Perform any further minimal comparititive tests.  We do not
5613 	 * want to put too much policy logic here; intelligent scan selection
5614 	 * should occur within a generic IEEE 802.11 user space tool.  */
5615 
5616 	/* Set up 'new' AP to this network */
5617 	ipw_copy_rates(&match->rates, &rates);
5618 	match->network = network;
5619 	IPW_DEBUG_MERGE("Network '%*pE (%pM)' is a viable match.\n",
5620 			network->ssid_len, network->ssid, network->bssid);
5621 
5622 	return 1;
5623 }
5624 
5625 static void ipw_merge_adhoc_network(struct work_struct *work)
5626 {
5627 	struct ipw_priv *priv =
5628 		container_of(work, struct ipw_priv, merge_networks);
5629 	struct libipw_network *network = NULL;
5630 	struct ipw_network_match match = {
5631 		.network = priv->assoc_network
5632 	};
5633 
5634 	if ((priv->status & STATUS_ASSOCIATED) &&
5635 	    (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5636 		/* First pass through ROAM process -- look for a better
5637 		 * network */
5638 		unsigned long flags;
5639 
5640 		spin_lock_irqsave(&priv->ieee->lock, flags);
5641 		list_for_each_entry(network, &priv->ieee->network_list, list) {
5642 			if (network != priv->assoc_network)
5643 				ipw_find_adhoc_network(priv, &match, network,
5644 						       1);
5645 		}
5646 		spin_unlock_irqrestore(&priv->ieee->lock, flags);
5647 
5648 		if (match.network == priv->assoc_network) {
5649 			IPW_DEBUG_MERGE("No better ADHOC in this network to "
5650 					"merge to.\n");
5651 			return;
5652 		}
5653 
5654 		mutex_lock(&priv->mutex);
5655 		if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5656 			IPW_DEBUG_MERGE("remove network %*pE\n",
5657 					priv->essid_len, priv->essid);
5658 			ipw_remove_current_network(priv);
5659 		}
5660 
5661 		ipw_disassociate(priv);
5662 		priv->assoc_network = match.network;
5663 		mutex_unlock(&priv->mutex);
5664 		return;
5665 	}
5666 }
5667 
5668 static int ipw_best_network(struct ipw_priv *priv,
5669 			    struct ipw_network_match *match,
5670 			    struct libipw_network *network, int roaming)
5671 {
5672 	struct ipw_supported_rates rates;
5673 
5674 	/* Verify that this network's capability is compatible with the
5675 	 * current mode (AdHoc or Infrastructure) */
5676 	if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5677 	     !(network->capability & WLAN_CAPABILITY_ESS)) ||
5678 	    (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5679 	     !(network->capability & WLAN_CAPABILITY_IBSS))) {
5680 		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded due to capability mismatch.\n",
5681 				network->ssid_len, network->ssid,
5682 				network->bssid);
5683 		return 0;
5684 	}
5685 
5686 	if (unlikely(roaming)) {
5687 		/* If we are roaming, then ensure check if this is a valid
5688 		 * network to try and roam to */
5689 		if ((network->ssid_len != match->network->ssid_len) ||
5690 		    memcmp(network->ssid, match->network->ssid,
5691 			   network->ssid_len)) {
5692 			IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of non-network ESSID.\n",
5693 					network->ssid_len, network->ssid,
5694 					network->bssid);
5695 			return 0;
5696 		}
5697 	} else {
5698 		/* If an ESSID has been configured then compare the broadcast
5699 		 * ESSID to ours */
5700 		if ((priv->config & CFG_STATIC_ESSID) &&
5701 		    ((network->ssid_len != priv->essid_len) ||
5702 		     memcmp(network->ssid, priv->essid,
5703 			    min(network->ssid_len, priv->essid_len)))) {
5704 			IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of ESSID mismatch: '%*pE'.\n",
5705 					network->ssid_len, network->ssid,
5706 					network->bssid, priv->essid_len,
5707 					priv->essid);
5708 			return 0;
5709 		}
5710 	}
5711 
5712 	/* If the old network rate is better than this one, don't bother
5713 	 * testing everything else. */
5714 	if (match->network && match->network->stats.rssi > network->stats.rssi) {
5715 		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because '%*pE (%pM)' has a stronger signal.\n",
5716 				network->ssid_len, network->ssid,
5717 				network->bssid, match->network->ssid_len,
5718 				match->network->ssid, match->network->bssid);
5719 		return 0;
5720 	}
5721 
5722 	/* If this network has already had an association attempt within the
5723 	 * last 3 seconds, do not try and associate again... */
5724 	if (network->last_associate &&
5725 	    time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5726 		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of storming (%ums since last assoc attempt).\n",
5727 				network->ssid_len, network->ssid,
5728 				network->bssid,
5729 				jiffies_to_msecs(jiffies -
5730 						 network->last_associate));
5731 		return 0;
5732 	}
5733 
5734 	/* Now go through and see if the requested network is valid... */
5735 	if (priv->ieee->scan_age != 0 &&
5736 	    time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5737 		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of age: %ums.\n",
5738 				network->ssid_len, network->ssid,
5739 				network->bssid,
5740 				jiffies_to_msecs(jiffies -
5741 						 network->last_scanned));
5742 		return 0;
5743 	}
5744 
5745 	if ((priv->config & CFG_STATIC_CHANNEL) &&
5746 	    (network->channel != priv->channel)) {
5747 		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of channel mismatch: %d != %d.\n",
5748 				network->ssid_len, network->ssid,
5749 				network->bssid,
5750 				network->channel, priv->channel);
5751 		return 0;
5752 	}
5753 
5754 	/* Verify privacy compatibility */
5755 	if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5756 	    ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5757 		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of privacy mismatch: %s != %s.\n",
5758 				network->ssid_len, network->ssid,
5759 				network->bssid,
5760 				priv->capability & CAP_PRIVACY_ON ? "on" :
5761 				"off",
5762 				network->capability &
5763 				WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5764 		return 0;
5765 	}
5766 
5767 	if ((priv->config & CFG_STATIC_BSSID) &&
5768 	    !ether_addr_equal(network->bssid, priv->bssid)) {
5769 		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of BSSID mismatch: %pM.\n",
5770 				network->ssid_len, network->ssid,
5771 				network->bssid, priv->bssid);
5772 		return 0;
5773 	}
5774 
5775 	/* Filter out any incompatible freq / mode combinations */
5776 	if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5777 		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of invalid frequency/mode combination.\n",
5778 				network->ssid_len, network->ssid,
5779 				network->bssid);
5780 		return 0;
5781 	}
5782 
5783 	/* Filter out invalid channel in current GEO */
5784 	if (!libipw_is_valid_channel(priv->ieee, network->channel)) {
5785 		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of invalid channel in current GEO\n",
5786 				network->ssid_len, network->ssid,
5787 				network->bssid);
5788 		return 0;
5789 	}
5790 
5791 	/* Ensure that the rates supported by the driver are compatible with
5792 	 * this AP, including verification of basic rates (mandatory) */
5793 	if (!ipw_compatible_rates(priv, network, &rates)) {
5794 		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because configured rate mask excludes AP mandatory rate.\n",
5795 				network->ssid_len, network->ssid,
5796 				network->bssid);
5797 		return 0;
5798 	}
5799 
5800 	if (rates.num_rates == 0) {
5801 		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of no compatible rates.\n",
5802 				network->ssid_len, network->ssid,
5803 				network->bssid);
5804 		return 0;
5805 	}
5806 
5807 	/* TODO: Perform any further minimal comparititive tests.  We do not
5808 	 * want to put too much policy logic here; intelligent scan selection
5809 	 * should occur within a generic IEEE 802.11 user space tool.  */
5810 
5811 	/* Set up 'new' AP to this network */
5812 	ipw_copy_rates(&match->rates, &rates);
5813 	match->network = network;
5814 
5815 	IPW_DEBUG_ASSOC("Network '%*pE (%pM)' is a viable match.\n",
5816 			network->ssid_len, network->ssid, network->bssid);
5817 
5818 	return 1;
5819 }
5820 
5821 static void ipw_adhoc_create(struct ipw_priv *priv,
5822 			     struct libipw_network *network)
5823 {
5824 	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
5825 	int i;
5826 
5827 	/*
5828 	 * For the purposes of scanning, we can set our wireless mode
5829 	 * to trigger scans across combinations of bands, but when it
5830 	 * comes to creating a new ad-hoc network, we have tell the FW
5831 	 * exactly which band to use.
5832 	 *
5833 	 * We also have the possibility of an invalid channel for the
5834 	 * chossen band.  Attempting to create a new ad-hoc network
5835 	 * with an invalid channel for wireless mode will trigger a
5836 	 * FW fatal error.
5837 	 *
5838 	 */
5839 	switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
5840 	case LIBIPW_52GHZ_BAND:
5841 		network->mode = IEEE_A;
5842 		i = libipw_channel_to_index(priv->ieee, priv->channel);
5843 		BUG_ON(i == -1);
5844 		if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5845 			IPW_WARNING("Overriding invalid channel\n");
5846 			priv->channel = geo->a[0].channel;
5847 		}
5848 		break;
5849 
5850 	case LIBIPW_24GHZ_BAND:
5851 		if (priv->ieee->mode & IEEE_G)
5852 			network->mode = IEEE_G;
5853 		else
5854 			network->mode = IEEE_B;
5855 		i = libipw_channel_to_index(priv->ieee, priv->channel);
5856 		BUG_ON(i == -1);
5857 		if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5858 			IPW_WARNING("Overriding invalid channel\n");
5859 			priv->channel = geo->bg[0].channel;
5860 		}
5861 		break;
5862 
5863 	default:
5864 		IPW_WARNING("Overriding invalid channel\n");
5865 		if (priv->ieee->mode & IEEE_A) {
5866 			network->mode = IEEE_A;
5867 			priv->channel = geo->a[0].channel;
5868 		} else if (priv->ieee->mode & IEEE_G) {
5869 			network->mode = IEEE_G;
5870 			priv->channel = geo->bg[0].channel;
5871 		} else {
5872 			network->mode = IEEE_B;
5873 			priv->channel = geo->bg[0].channel;
5874 		}
5875 		break;
5876 	}
5877 
5878 	network->channel = priv->channel;
5879 	priv->config |= CFG_ADHOC_PERSIST;
5880 	ipw_create_bssid(priv, network->bssid);
5881 	network->ssid_len = priv->essid_len;
5882 	memcpy(network->ssid, priv->essid, priv->essid_len);
5883 	memset(&network->stats, 0, sizeof(network->stats));
5884 	network->capability = WLAN_CAPABILITY_IBSS;
5885 	if (!(priv->config & CFG_PREAMBLE_LONG))
5886 		network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5887 	if (priv->capability & CAP_PRIVACY_ON)
5888 		network->capability |= WLAN_CAPABILITY_PRIVACY;
5889 	network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5890 	memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5891 	network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5892 	memcpy(network->rates_ex,
5893 	       &priv->rates.supported_rates[network->rates_len],
5894 	       network->rates_ex_len);
5895 	network->last_scanned = 0;
5896 	network->flags = 0;
5897 	network->last_associate = 0;
5898 	network->time_stamp[0] = 0;
5899 	network->time_stamp[1] = 0;
5900 	network->beacon_interval = 100;	/* Default */
5901 	network->listen_interval = 10;	/* Default */
5902 	network->atim_window = 0;	/* Default */
5903 	network->wpa_ie_len = 0;
5904 	network->rsn_ie_len = 0;
5905 }
5906 
5907 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5908 {
5909 	struct ipw_tgi_tx_key key;
5910 
5911 	if (!(priv->ieee->sec.flags & (1 << index)))
5912 		return;
5913 
5914 	key.key_id = index;
5915 	memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5916 	key.security_type = type;
5917 	key.station_index = 0;	/* always 0 for BSS */
5918 	key.flags = 0;
5919 	/* 0 for new key; previous value of counter (after fatal error) */
5920 	key.tx_counter[0] = cpu_to_le32(0);
5921 	key.tx_counter[1] = cpu_to_le32(0);
5922 
5923 	ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
5924 }
5925 
5926 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5927 {
5928 	struct ipw_wep_key key;
5929 	int i;
5930 
5931 	key.cmd_id = DINO_CMD_WEP_KEY;
5932 	key.seq_num = 0;
5933 
5934 	/* Note: AES keys cannot be set for multiple times.
5935 	 * Only set it at the first time. */
5936 	for (i = 0; i < 4; i++) {
5937 		key.key_index = i | type;
5938 		if (!(priv->ieee->sec.flags & (1 << i))) {
5939 			key.key_size = 0;
5940 			continue;
5941 		}
5942 
5943 		key.key_size = priv->ieee->sec.key_sizes[i];
5944 		memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
5945 
5946 		ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
5947 	}
5948 }
5949 
5950 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5951 {
5952 	if (priv->ieee->host_encrypt)
5953 		return;
5954 
5955 	switch (level) {
5956 	case SEC_LEVEL_3:
5957 		priv->sys_config.disable_unicast_decryption = 0;
5958 		priv->ieee->host_decrypt = 0;
5959 		break;
5960 	case SEC_LEVEL_2:
5961 		priv->sys_config.disable_unicast_decryption = 1;
5962 		priv->ieee->host_decrypt = 1;
5963 		break;
5964 	case SEC_LEVEL_1:
5965 		priv->sys_config.disable_unicast_decryption = 0;
5966 		priv->ieee->host_decrypt = 0;
5967 		break;
5968 	case SEC_LEVEL_0:
5969 		priv->sys_config.disable_unicast_decryption = 1;
5970 		break;
5971 	default:
5972 		break;
5973 	}
5974 }
5975 
5976 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5977 {
5978 	if (priv->ieee->host_encrypt)
5979 		return;
5980 
5981 	switch (level) {
5982 	case SEC_LEVEL_3:
5983 		priv->sys_config.disable_multicast_decryption = 0;
5984 		break;
5985 	case SEC_LEVEL_2:
5986 		priv->sys_config.disable_multicast_decryption = 1;
5987 		break;
5988 	case SEC_LEVEL_1:
5989 		priv->sys_config.disable_multicast_decryption = 0;
5990 		break;
5991 	case SEC_LEVEL_0:
5992 		priv->sys_config.disable_multicast_decryption = 1;
5993 		break;
5994 	default:
5995 		break;
5996 	}
5997 }
5998 
5999 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
6000 {
6001 	switch (priv->ieee->sec.level) {
6002 	case SEC_LEVEL_3:
6003 		if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6004 			ipw_send_tgi_tx_key(priv,
6005 					    DCT_FLAG_EXT_SECURITY_CCM,
6006 					    priv->ieee->sec.active_key);
6007 
6008 		if (!priv->ieee->host_mc_decrypt)
6009 			ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
6010 		break;
6011 	case SEC_LEVEL_2:
6012 		if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6013 			ipw_send_tgi_tx_key(priv,
6014 					    DCT_FLAG_EXT_SECURITY_TKIP,
6015 					    priv->ieee->sec.active_key);
6016 		break;
6017 	case SEC_LEVEL_1:
6018 		ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
6019 		ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
6020 		ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
6021 		break;
6022 	case SEC_LEVEL_0:
6023 	default:
6024 		break;
6025 	}
6026 }
6027 
6028 static void ipw_adhoc_check(void *data)
6029 {
6030 	struct ipw_priv *priv = data;
6031 
6032 	if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
6033 	    !(priv->config & CFG_ADHOC_PERSIST)) {
6034 		IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
6035 			  IPW_DL_STATE | IPW_DL_ASSOC,
6036 			  "Missed beacon: %d - disassociate\n",
6037 			  priv->missed_adhoc_beacons);
6038 		ipw_remove_current_network(priv);
6039 		ipw_disassociate(priv);
6040 		return;
6041 	}
6042 
6043 	schedule_delayed_work(&priv->adhoc_check,
6044 			      le16_to_cpu(priv->assoc_request.beacon_interval));
6045 }
6046 
6047 static void ipw_bg_adhoc_check(struct work_struct *work)
6048 {
6049 	struct ipw_priv *priv =
6050 		container_of(work, struct ipw_priv, adhoc_check.work);
6051 	mutex_lock(&priv->mutex);
6052 	ipw_adhoc_check(priv);
6053 	mutex_unlock(&priv->mutex);
6054 }
6055 
6056 static void ipw_debug_config(struct ipw_priv *priv)
6057 {
6058 	IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6059 		       "[CFG 0x%08X]\n", priv->config);
6060 	if (priv->config & CFG_STATIC_CHANNEL)
6061 		IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
6062 	else
6063 		IPW_DEBUG_INFO("Channel unlocked.\n");
6064 	if (priv->config & CFG_STATIC_ESSID)
6065 		IPW_DEBUG_INFO("ESSID locked to '%*pE'\n",
6066 			       priv->essid_len, priv->essid);
6067 	else
6068 		IPW_DEBUG_INFO("ESSID unlocked.\n");
6069 	if (priv->config & CFG_STATIC_BSSID)
6070 		IPW_DEBUG_INFO("BSSID locked to %pM\n", priv->bssid);
6071 	else
6072 		IPW_DEBUG_INFO("BSSID unlocked.\n");
6073 	if (priv->capability & CAP_PRIVACY_ON)
6074 		IPW_DEBUG_INFO("PRIVACY on\n");
6075 	else
6076 		IPW_DEBUG_INFO("PRIVACY off\n");
6077 	IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
6078 }
6079 
6080 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6081 {
6082 	/* TODO: Verify that this works... */
6083 	struct ipw_fixed_rate fr;
6084 	u32 reg;
6085 	u16 mask = 0;
6086 	u16 new_tx_rates = priv->rates_mask;
6087 
6088 	/* Identify 'current FW band' and match it with the fixed
6089 	 * Tx rates */
6090 
6091 	switch (priv->ieee->freq_band) {
6092 	case LIBIPW_52GHZ_BAND:	/* A only */
6093 		/* IEEE_A */
6094 		if (priv->rates_mask & ~LIBIPW_OFDM_RATES_MASK) {
6095 			/* Invalid fixed rate mask */
6096 			IPW_DEBUG_WX
6097 			    ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6098 			new_tx_rates = 0;
6099 			break;
6100 		}
6101 
6102 		new_tx_rates >>= LIBIPW_OFDM_SHIFT_MASK_A;
6103 		break;
6104 
6105 	default:		/* 2.4Ghz or Mixed */
6106 		/* IEEE_B */
6107 		if (mode == IEEE_B) {
6108 			if (new_tx_rates & ~LIBIPW_CCK_RATES_MASK) {
6109 				/* Invalid fixed rate mask */
6110 				IPW_DEBUG_WX
6111 				    ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6112 				new_tx_rates = 0;
6113 			}
6114 			break;
6115 		}
6116 
6117 		/* IEEE_G */
6118 		if (new_tx_rates & ~(LIBIPW_CCK_RATES_MASK |
6119 				    LIBIPW_OFDM_RATES_MASK)) {
6120 			/* Invalid fixed rate mask */
6121 			IPW_DEBUG_WX
6122 			    ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6123 			new_tx_rates = 0;
6124 			break;
6125 		}
6126 
6127 		if (LIBIPW_OFDM_RATE_6MB_MASK & new_tx_rates) {
6128 			mask |= (LIBIPW_OFDM_RATE_6MB_MASK >> 1);
6129 			new_tx_rates &= ~LIBIPW_OFDM_RATE_6MB_MASK;
6130 		}
6131 
6132 		if (LIBIPW_OFDM_RATE_9MB_MASK & new_tx_rates) {
6133 			mask |= (LIBIPW_OFDM_RATE_9MB_MASK >> 1);
6134 			new_tx_rates &= ~LIBIPW_OFDM_RATE_9MB_MASK;
6135 		}
6136 
6137 		if (LIBIPW_OFDM_RATE_12MB_MASK & new_tx_rates) {
6138 			mask |= (LIBIPW_OFDM_RATE_12MB_MASK >> 1);
6139 			new_tx_rates &= ~LIBIPW_OFDM_RATE_12MB_MASK;
6140 		}
6141 
6142 		new_tx_rates |= mask;
6143 		break;
6144 	}
6145 
6146 	fr.tx_rates = cpu_to_le16(new_tx_rates);
6147 
6148 	reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6149 	ipw_write_reg32(priv, reg, *(u32 *) & fr);
6150 }
6151 
6152 static void ipw_abort_scan(struct ipw_priv *priv)
6153 {
6154 	int err;
6155 
6156 	if (priv->status & STATUS_SCAN_ABORTING) {
6157 		IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6158 		return;
6159 	}
6160 	priv->status |= STATUS_SCAN_ABORTING;
6161 
6162 	err = ipw_send_scan_abort(priv);
6163 	if (err)
6164 		IPW_DEBUG_HC("Request to abort scan failed.\n");
6165 }
6166 
6167 static void ipw_add_scan_channels(struct ipw_priv *priv,
6168 				  struct ipw_scan_request_ext *scan,
6169 				  int scan_type)
6170 {
6171 	int channel_index = 0;
6172 	const struct libipw_geo *geo;
6173 	int i;
6174 
6175 	geo = libipw_get_geo(priv->ieee);
6176 
6177 	if (priv->ieee->freq_band & LIBIPW_52GHZ_BAND) {
6178 		int start = channel_index;
6179 		for (i = 0; i < geo->a_channels; i++) {
6180 			if ((priv->status & STATUS_ASSOCIATED) &&
6181 			    geo->a[i].channel == priv->channel)
6182 				continue;
6183 			channel_index++;
6184 			scan->channels_list[channel_index] = geo->a[i].channel;
6185 			ipw_set_scan_type(scan, channel_index,
6186 					  geo->a[i].
6187 					  flags & LIBIPW_CH_PASSIVE_ONLY ?
6188 					  IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6189 					  scan_type);
6190 		}
6191 
6192 		if (start != channel_index) {
6193 			scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6194 			    (channel_index - start);
6195 			channel_index++;
6196 		}
6197 	}
6198 
6199 	if (priv->ieee->freq_band & LIBIPW_24GHZ_BAND) {
6200 		int start = channel_index;
6201 		if (priv->config & CFG_SPEED_SCAN) {
6202 			int index;
6203 			u8 channels[LIBIPW_24GHZ_CHANNELS] = {
6204 				/* nop out the list */
6205 				[0] = 0
6206 			};
6207 
6208 			u8 channel;
6209 			while (channel_index < IPW_SCAN_CHANNELS - 1) {
6210 				channel =
6211 				    priv->speed_scan[priv->speed_scan_pos];
6212 				if (channel == 0) {
6213 					priv->speed_scan_pos = 0;
6214 					channel = priv->speed_scan[0];
6215 				}
6216 				if ((priv->status & STATUS_ASSOCIATED) &&
6217 				    channel == priv->channel) {
6218 					priv->speed_scan_pos++;
6219 					continue;
6220 				}
6221 
6222 				/* If this channel has already been
6223 				 * added in scan, break from loop
6224 				 * and this will be the first channel
6225 				 * in the next scan.
6226 				 */
6227 				if (channels[channel - 1] != 0)
6228 					break;
6229 
6230 				channels[channel - 1] = 1;
6231 				priv->speed_scan_pos++;
6232 				channel_index++;
6233 				scan->channels_list[channel_index] = channel;
6234 				index =
6235 				    libipw_channel_to_index(priv->ieee, channel);
6236 				ipw_set_scan_type(scan, channel_index,
6237 						  geo->bg[index].
6238 						  flags &
6239 						  LIBIPW_CH_PASSIVE_ONLY ?
6240 						  IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6241 						  : scan_type);
6242 			}
6243 		} else {
6244 			for (i = 0; i < geo->bg_channels; i++) {
6245 				if ((priv->status & STATUS_ASSOCIATED) &&
6246 				    geo->bg[i].channel == priv->channel)
6247 					continue;
6248 				channel_index++;
6249 				scan->channels_list[channel_index] =
6250 				    geo->bg[i].channel;
6251 				ipw_set_scan_type(scan, channel_index,
6252 						  geo->bg[i].
6253 						  flags &
6254 						  LIBIPW_CH_PASSIVE_ONLY ?
6255 						  IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6256 						  : scan_type);
6257 			}
6258 		}
6259 
6260 		if (start != channel_index) {
6261 			scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6262 			    (channel_index - start);
6263 		}
6264 	}
6265 }
6266 
6267 static int ipw_passive_dwell_time(struct ipw_priv *priv)
6268 {
6269 	/* staying on passive channels longer than the DTIM interval during a
6270 	 * scan, while associated, causes the firmware to cancel the scan
6271 	 * without notification. Hence, don't stay on passive channels longer
6272 	 * than the beacon interval.
6273 	 */
6274 	if (priv->status & STATUS_ASSOCIATED
6275 	    && priv->assoc_network->beacon_interval > 10)
6276 		return priv->assoc_network->beacon_interval - 10;
6277 	else
6278 		return 120;
6279 }
6280 
6281 static int ipw_request_scan_helper(struct ipw_priv *priv, int type, int direct)
6282 {
6283 	struct ipw_scan_request_ext scan;
6284 	int err = 0, scan_type;
6285 
6286 	if (!(priv->status & STATUS_INIT) ||
6287 	    (priv->status & STATUS_EXIT_PENDING))
6288 		return 0;
6289 
6290 	mutex_lock(&priv->mutex);
6291 
6292 	if (direct && (priv->direct_scan_ssid_len == 0)) {
6293 		IPW_DEBUG_HC("Direct scan requested but no SSID to scan for\n");
6294 		priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6295 		goto done;
6296 	}
6297 
6298 	if (priv->status & STATUS_SCANNING) {
6299 		IPW_DEBUG_HC("Concurrent scan requested.  Queuing.\n");
6300 		priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6301 					STATUS_SCAN_PENDING;
6302 		goto done;
6303 	}
6304 
6305 	if (!(priv->status & STATUS_SCAN_FORCED) &&
6306 	    priv->status & STATUS_SCAN_ABORTING) {
6307 		IPW_DEBUG_HC("Scan request while abort pending.  Queuing.\n");
6308 		priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6309 					STATUS_SCAN_PENDING;
6310 		goto done;
6311 	}
6312 
6313 	if (priv->status & STATUS_RF_KILL_MASK) {
6314 		IPW_DEBUG_HC("Queuing scan due to RF Kill activation\n");
6315 		priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6316 					STATUS_SCAN_PENDING;
6317 		goto done;
6318 	}
6319 
6320 	memset(&scan, 0, sizeof(scan));
6321 	scan.full_scan_index = cpu_to_le32(libipw_get_scans(priv->ieee));
6322 
6323 	if (type == IW_SCAN_TYPE_PASSIVE) {
6324 		IPW_DEBUG_WX("use passive scanning\n");
6325 		scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6326 		scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6327 			cpu_to_le16(ipw_passive_dwell_time(priv));
6328 		ipw_add_scan_channels(priv, &scan, scan_type);
6329 		goto send_request;
6330 	}
6331 
6332 	/* Use active scan by default. */
6333 	if (priv->config & CFG_SPEED_SCAN)
6334 		scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6335 			cpu_to_le16(30);
6336 	else
6337 		scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6338 			cpu_to_le16(20);
6339 
6340 	scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6341 		cpu_to_le16(20);
6342 
6343 	scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6344 		cpu_to_le16(ipw_passive_dwell_time(priv));
6345 	scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
6346 
6347 #ifdef CONFIG_IPW2200_MONITOR
6348 	if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6349 		u8 channel;
6350 		u8 band = 0;
6351 
6352 		switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
6353 		case LIBIPW_52GHZ_BAND:
6354 			band = (u8) (IPW_A_MODE << 6) | 1;
6355 			channel = priv->channel;
6356 			break;
6357 
6358 		case LIBIPW_24GHZ_BAND:
6359 			band = (u8) (IPW_B_MODE << 6) | 1;
6360 			channel = priv->channel;
6361 			break;
6362 
6363 		default:
6364 			band = (u8) (IPW_B_MODE << 6) | 1;
6365 			channel = 9;
6366 			break;
6367 		}
6368 
6369 		scan.channels_list[0] = band;
6370 		scan.channels_list[1] = channel;
6371 		ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6372 
6373 		/* NOTE:  The card will sit on this channel for this time
6374 		 * period.  Scan aborts are timing sensitive and frequently
6375 		 * result in firmware restarts.  As such, it is best to
6376 		 * set a small dwell_time here and just keep re-issuing
6377 		 * scans.  Otherwise fast channel hopping will not actually
6378 		 * hop channels.
6379 		 *
6380 		 * TODO: Move SPEED SCAN support to all modes and bands */
6381 		scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6382 			cpu_to_le16(2000);
6383 	} else {
6384 #endif				/* CONFIG_IPW2200_MONITOR */
6385 		/* Honor direct scans first, otherwise if we are roaming make
6386 		 * this a direct scan for the current network.  Finally,
6387 		 * ensure that every other scan is a fast channel hop scan */
6388 		if (direct) {
6389 			err = ipw_send_ssid(priv, priv->direct_scan_ssid,
6390 			                    priv->direct_scan_ssid_len);
6391 			if (err) {
6392 				IPW_DEBUG_HC("Attempt to send SSID command  "
6393 					     "failed\n");
6394 				goto done;
6395 			}
6396 
6397 			scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6398 		} else if ((priv->status & STATUS_ROAMING)
6399 			   || (!(priv->status & STATUS_ASSOCIATED)
6400 			       && (priv->config & CFG_STATIC_ESSID)
6401 			       && (le32_to_cpu(scan.full_scan_index) % 2))) {
6402 			err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6403 			if (err) {
6404 				IPW_DEBUG_HC("Attempt to send SSID command "
6405 					     "failed.\n");
6406 				goto done;
6407 			}
6408 
6409 			scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6410 		} else
6411 			scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6412 
6413 		ipw_add_scan_channels(priv, &scan, scan_type);
6414 #ifdef CONFIG_IPW2200_MONITOR
6415 	}
6416 #endif
6417 
6418 send_request:
6419 	err = ipw_send_scan_request_ext(priv, &scan);
6420 	if (err) {
6421 		IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6422 		goto done;
6423 	}
6424 
6425 	priv->status |= STATUS_SCANNING;
6426 	if (direct) {
6427 		priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6428 		priv->direct_scan_ssid_len = 0;
6429 	} else
6430 		priv->status &= ~STATUS_SCAN_PENDING;
6431 
6432 	schedule_delayed_work(&priv->scan_check, IPW_SCAN_CHECK_WATCHDOG);
6433 done:
6434 	mutex_unlock(&priv->mutex);
6435 	return err;
6436 }
6437 
6438 static void ipw_request_passive_scan(struct work_struct *work)
6439 {
6440 	struct ipw_priv *priv =
6441 		container_of(work, struct ipw_priv, request_passive_scan.work);
6442 	ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE, 0);
6443 }
6444 
6445 static void ipw_request_scan(struct work_struct *work)
6446 {
6447 	struct ipw_priv *priv =
6448 		container_of(work, struct ipw_priv, request_scan.work);
6449 	ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 0);
6450 }
6451 
6452 static void ipw_request_direct_scan(struct work_struct *work)
6453 {
6454 	struct ipw_priv *priv =
6455 		container_of(work, struct ipw_priv, request_direct_scan.work);
6456 	ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 1);
6457 }
6458 
6459 static void ipw_bg_abort_scan(struct work_struct *work)
6460 {
6461 	struct ipw_priv *priv =
6462 		container_of(work, struct ipw_priv, abort_scan);
6463 	mutex_lock(&priv->mutex);
6464 	ipw_abort_scan(priv);
6465 	mutex_unlock(&priv->mutex);
6466 }
6467 
6468 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6469 {
6470 	/* This is called when wpa_supplicant loads and closes the driver
6471 	 * interface. */
6472 	priv->ieee->wpa_enabled = value;
6473 	return 0;
6474 }
6475 
6476 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6477 {
6478 	struct libipw_device *ieee = priv->ieee;
6479 	struct libipw_security sec = {
6480 		.flags = SEC_AUTH_MODE,
6481 	};
6482 	int ret = 0;
6483 
6484 	if (value & IW_AUTH_ALG_SHARED_KEY) {
6485 		sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6486 		ieee->open_wep = 0;
6487 	} else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6488 		sec.auth_mode = WLAN_AUTH_OPEN;
6489 		ieee->open_wep = 1;
6490 	} else if (value & IW_AUTH_ALG_LEAP) {
6491 		sec.auth_mode = WLAN_AUTH_LEAP;
6492 		ieee->open_wep = 1;
6493 	} else
6494 		return -EINVAL;
6495 
6496 	if (ieee->set_security)
6497 		ieee->set_security(ieee->dev, &sec);
6498 	else
6499 		ret = -EOPNOTSUPP;
6500 
6501 	return ret;
6502 }
6503 
6504 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6505 				int wpa_ie_len)
6506 {
6507 	/* make sure WPA is enabled */
6508 	ipw_wpa_enable(priv, 1);
6509 }
6510 
6511 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6512 			    char *capabilities, int length)
6513 {
6514 	IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6515 
6516 	return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6517 				capabilities);
6518 }
6519 
6520 /*
6521  * WE-18 support
6522  */
6523 
6524 /* SIOCSIWGENIE */
6525 static int ipw_wx_set_genie(struct net_device *dev,
6526 			    struct iw_request_info *info,
6527 			    union iwreq_data *wrqu, char *extra)
6528 {
6529 	struct ipw_priv *priv = libipw_priv(dev);
6530 	struct libipw_device *ieee = priv->ieee;
6531 	u8 *buf;
6532 	int err = 0;
6533 
6534 	if (wrqu->data.length > MAX_WPA_IE_LEN ||
6535 	    (wrqu->data.length && extra == NULL))
6536 		return -EINVAL;
6537 
6538 	if (wrqu->data.length) {
6539 		buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
6540 		if (buf == NULL) {
6541 			err = -ENOMEM;
6542 			goto out;
6543 		}
6544 
6545 		kfree(ieee->wpa_ie);
6546 		ieee->wpa_ie = buf;
6547 		ieee->wpa_ie_len = wrqu->data.length;
6548 	} else {
6549 		kfree(ieee->wpa_ie);
6550 		ieee->wpa_ie = NULL;
6551 		ieee->wpa_ie_len = 0;
6552 	}
6553 
6554 	ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6555       out:
6556 	return err;
6557 }
6558 
6559 /* SIOCGIWGENIE */
6560 static int ipw_wx_get_genie(struct net_device *dev,
6561 			    struct iw_request_info *info,
6562 			    union iwreq_data *wrqu, char *extra)
6563 {
6564 	struct ipw_priv *priv = libipw_priv(dev);
6565 	struct libipw_device *ieee = priv->ieee;
6566 	int err = 0;
6567 
6568 	if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6569 		wrqu->data.length = 0;
6570 		goto out;
6571 	}
6572 
6573 	if (wrqu->data.length < ieee->wpa_ie_len) {
6574 		err = -E2BIG;
6575 		goto out;
6576 	}
6577 
6578 	wrqu->data.length = ieee->wpa_ie_len;
6579 	memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6580 
6581       out:
6582 	return err;
6583 }
6584 
6585 static int wext_cipher2level(int cipher)
6586 {
6587 	switch (cipher) {
6588 	case IW_AUTH_CIPHER_NONE:
6589 		return SEC_LEVEL_0;
6590 	case IW_AUTH_CIPHER_WEP40:
6591 	case IW_AUTH_CIPHER_WEP104:
6592 		return SEC_LEVEL_1;
6593 	case IW_AUTH_CIPHER_TKIP:
6594 		return SEC_LEVEL_2;
6595 	case IW_AUTH_CIPHER_CCMP:
6596 		return SEC_LEVEL_3;
6597 	default:
6598 		return -1;
6599 	}
6600 }
6601 
6602 /* SIOCSIWAUTH */
6603 static int ipw_wx_set_auth(struct net_device *dev,
6604 			   struct iw_request_info *info,
6605 			   union iwreq_data *wrqu, char *extra)
6606 {
6607 	struct ipw_priv *priv = libipw_priv(dev);
6608 	struct libipw_device *ieee = priv->ieee;
6609 	struct iw_param *param = &wrqu->param;
6610 	struct lib80211_crypt_data *crypt;
6611 	unsigned long flags;
6612 	int ret = 0;
6613 
6614 	switch (param->flags & IW_AUTH_INDEX) {
6615 	case IW_AUTH_WPA_VERSION:
6616 		break;
6617 	case IW_AUTH_CIPHER_PAIRWISE:
6618 		ipw_set_hw_decrypt_unicast(priv,
6619 					   wext_cipher2level(param->value));
6620 		break;
6621 	case IW_AUTH_CIPHER_GROUP:
6622 		ipw_set_hw_decrypt_multicast(priv,
6623 					     wext_cipher2level(param->value));
6624 		break;
6625 	case IW_AUTH_KEY_MGMT:
6626 		/*
6627 		 * ipw2200 does not use these parameters
6628 		 */
6629 		break;
6630 
6631 	case IW_AUTH_TKIP_COUNTERMEASURES:
6632 		crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6633 		if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6634 			break;
6635 
6636 		flags = crypt->ops->get_flags(crypt->priv);
6637 
6638 		if (param->value)
6639 			flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6640 		else
6641 			flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6642 
6643 		crypt->ops->set_flags(flags, crypt->priv);
6644 
6645 		break;
6646 
6647 	case IW_AUTH_DROP_UNENCRYPTED:{
6648 			/* HACK:
6649 			 *
6650 			 * wpa_supplicant calls set_wpa_enabled when the driver
6651 			 * is loaded and unloaded, regardless of if WPA is being
6652 			 * used.  No other calls are made which can be used to
6653 			 * determine if encryption will be used or not prior to
6654 			 * association being expected.  If encryption is not being
6655 			 * used, drop_unencrypted is set to false, else true -- we
6656 			 * can use this to determine if the CAP_PRIVACY_ON bit should
6657 			 * be set.
6658 			 */
6659 			struct libipw_security sec = {
6660 				.flags = SEC_ENABLED,
6661 				.enabled = param->value,
6662 			};
6663 			priv->ieee->drop_unencrypted = param->value;
6664 			/* We only change SEC_LEVEL for open mode. Others
6665 			 * are set by ipw_wpa_set_encryption.
6666 			 */
6667 			if (!param->value) {
6668 				sec.flags |= SEC_LEVEL;
6669 				sec.level = SEC_LEVEL_0;
6670 			} else {
6671 				sec.flags |= SEC_LEVEL;
6672 				sec.level = SEC_LEVEL_1;
6673 			}
6674 			if (priv->ieee->set_security)
6675 				priv->ieee->set_security(priv->ieee->dev, &sec);
6676 			break;
6677 		}
6678 
6679 	case IW_AUTH_80211_AUTH_ALG:
6680 		ret = ipw_wpa_set_auth_algs(priv, param->value);
6681 		break;
6682 
6683 	case IW_AUTH_WPA_ENABLED:
6684 		ret = ipw_wpa_enable(priv, param->value);
6685 		ipw_disassociate(priv);
6686 		break;
6687 
6688 	case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6689 		ieee->ieee802_1x = param->value;
6690 		break;
6691 
6692 	case IW_AUTH_PRIVACY_INVOKED:
6693 		ieee->privacy_invoked = param->value;
6694 		break;
6695 
6696 	default:
6697 		return -EOPNOTSUPP;
6698 	}
6699 	return ret;
6700 }
6701 
6702 /* SIOCGIWAUTH */
6703 static int ipw_wx_get_auth(struct net_device *dev,
6704 			   struct iw_request_info *info,
6705 			   union iwreq_data *wrqu, char *extra)
6706 {
6707 	struct ipw_priv *priv = libipw_priv(dev);
6708 	struct libipw_device *ieee = priv->ieee;
6709 	struct lib80211_crypt_data *crypt;
6710 	struct iw_param *param = &wrqu->param;
6711 
6712 	switch (param->flags & IW_AUTH_INDEX) {
6713 	case IW_AUTH_WPA_VERSION:
6714 	case IW_AUTH_CIPHER_PAIRWISE:
6715 	case IW_AUTH_CIPHER_GROUP:
6716 	case IW_AUTH_KEY_MGMT:
6717 		/*
6718 		 * wpa_supplicant will control these internally
6719 		 */
6720 		return -EOPNOTSUPP;
6721 
6722 	case IW_AUTH_TKIP_COUNTERMEASURES:
6723 		crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6724 		if (!crypt || !crypt->ops->get_flags)
6725 			break;
6726 
6727 		param->value = (crypt->ops->get_flags(crypt->priv) &
6728 				IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6729 
6730 		break;
6731 
6732 	case IW_AUTH_DROP_UNENCRYPTED:
6733 		param->value = ieee->drop_unencrypted;
6734 		break;
6735 
6736 	case IW_AUTH_80211_AUTH_ALG:
6737 		param->value = ieee->sec.auth_mode;
6738 		break;
6739 
6740 	case IW_AUTH_WPA_ENABLED:
6741 		param->value = ieee->wpa_enabled;
6742 		break;
6743 
6744 	case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6745 		param->value = ieee->ieee802_1x;
6746 		break;
6747 
6748 	case IW_AUTH_ROAMING_CONTROL:
6749 	case IW_AUTH_PRIVACY_INVOKED:
6750 		param->value = ieee->privacy_invoked;
6751 		break;
6752 
6753 	default:
6754 		return -EOPNOTSUPP;
6755 	}
6756 	return 0;
6757 }
6758 
6759 /* SIOCSIWENCODEEXT */
6760 static int ipw_wx_set_encodeext(struct net_device *dev,
6761 				struct iw_request_info *info,
6762 				union iwreq_data *wrqu, char *extra)
6763 {
6764 	struct ipw_priv *priv = libipw_priv(dev);
6765 	struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6766 
6767 	if (hwcrypto) {
6768 		if (ext->alg == IW_ENCODE_ALG_TKIP) {
6769 			/* IPW HW can't build TKIP MIC,
6770 			   host decryption still needed */
6771 			if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6772 				priv->ieee->host_mc_decrypt = 1;
6773 			else {
6774 				priv->ieee->host_encrypt = 0;
6775 				priv->ieee->host_encrypt_msdu = 1;
6776 				priv->ieee->host_decrypt = 1;
6777 			}
6778 		} else {
6779 			priv->ieee->host_encrypt = 0;
6780 			priv->ieee->host_encrypt_msdu = 0;
6781 			priv->ieee->host_decrypt = 0;
6782 			priv->ieee->host_mc_decrypt = 0;
6783 		}
6784 	}
6785 
6786 	return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6787 }
6788 
6789 /* SIOCGIWENCODEEXT */
6790 static int ipw_wx_get_encodeext(struct net_device *dev,
6791 				struct iw_request_info *info,
6792 				union iwreq_data *wrqu, char *extra)
6793 {
6794 	struct ipw_priv *priv = libipw_priv(dev);
6795 	return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6796 }
6797 
6798 /* SIOCSIWMLME */
6799 static int ipw_wx_set_mlme(struct net_device *dev,
6800 			   struct iw_request_info *info,
6801 			   union iwreq_data *wrqu, char *extra)
6802 {
6803 	struct ipw_priv *priv = libipw_priv(dev);
6804 	struct iw_mlme *mlme = (struct iw_mlme *)extra;
6805 	__le16 reason;
6806 
6807 	reason = cpu_to_le16(mlme->reason_code);
6808 
6809 	switch (mlme->cmd) {
6810 	case IW_MLME_DEAUTH:
6811 		/* silently ignore */
6812 		break;
6813 
6814 	case IW_MLME_DISASSOC:
6815 		ipw_disassociate(priv);
6816 		break;
6817 
6818 	default:
6819 		return -EOPNOTSUPP;
6820 	}
6821 	return 0;
6822 }
6823 
6824 #ifdef CONFIG_IPW2200_QOS
6825 
6826 /* QoS */
6827 /*
6828 * get the modulation type of the current network or
6829 * the card current mode
6830 */
6831 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6832 {
6833 	u8 mode = 0;
6834 
6835 	if (priv->status & STATUS_ASSOCIATED) {
6836 		unsigned long flags;
6837 
6838 		spin_lock_irqsave(&priv->ieee->lock, flags);
6839 		mode = priv->assoc_network->mode;
6840 		spin_unlock_irqrestore(&priv->ieee->lock, flags);
6841 	} else {
6842 		mode = priv->ieee->mode;
6843 	}
6844 	IPW_DEBUG_QOS("QoS network/card mode %d\n", mode);
6845 	return mode;
6846 }
6847 
6848 /*
6849 * Handle management frame beacon and probe response
6850 */
6851 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6852 					 int active_network,
6853 					 struct libipw_network *network)
6854 {
6855 	u32 size = sizeof(struct libipw_qos_parameters);
6856 
6857 	if (network->capability & WLAN_CAPABILITY_IBSS)
6858 		network->qos_data.active = network->qos_data.supported;
6859 
6860 	if (network->flags & NETWORK_HAS_QOS_MASK) {
6861 		if (active_network &&
6862 		    (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6863 			network->qos_data.active = network->qos_data.supported;
6864 
6865 		if ((network->qos_data.active == 1) && (active_network == 1) &&
6866 		    (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6867 		    (network->qos_data.old_param_count !=
6868 		     network->qos_data.param_count)) {
6869 			network->qos_data.old_param_count =
6870 			    network->qos_data.param_count;
6871 			schedule_work(&priv->qos_activate);
6872 			IPW_DEBUG_QOS("QoS parameters change call "
6873 				      "qos_activate\n");
6874 		}
6875 	} else {
6876 		if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6877 			memcpy(&network->qos_data.parameters,
6878 			       &def_parameters_CCK, size);
6879 		else
6880 			memcpy(&network->qos_data.parameters,
6881 			       &def_parameters_OFDM, size);
6882 
6883 		if ((network->qos_data.active == 1) && (active_network == 1)) {
6884 			IPW_DEBUG_QOS("QoS was disabled call qos_activate\n");
6885 			schedule_work(&priv->qos_activate);
6886 		}
6887 
6888 		network->qos_data.active = 0;
6889 		network->qos_data.supported = 0;
6890 	}
6891 	if ((priv->status & STATUS_ASSOCIATED) &&
6892 	    (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6893 		if (!ether_addr_equal(network->bssid, priv->bssid))
6894 			if (network->capability & WLAN_CAPABILITY_IBSS)
6895 				if ((network->ssid_len ==
6896 				     priv->assoc_network->ssid_len) &&
6897 				    !memcmp(network->ssid,
6898 					    priv->assoc_network->ssid,
6899 					    network->ssid_len)) {
6900 					schedule_work(&priv->merge_networks);
6901 				}
6902 	}
6903 
6904 	return 0;
6905 }
6906 
6907 /*
6908 * This function set up the firmware to support QoS. It sends
6909 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6910 */
6911 static int ipw_qos_activate(struct ipw_priv *priv,
6912 			    struct libipw_qos_data *qos_network_data)
6913 {
6914 	int err;
6915 	struct libipw_qos_parameters qos_parameters[QOS_QOS_SETS];
6916 	struct libipw_qos_parameters *active_one = NULL;
6917 	u32 size = sizeof(struct libipw_qos_parameters);
6918 	u32 burst_duration;
6919 	int i;
6920 	u8 type;
6921 
6922 	type = ipw_qos_current_mode(priv);
6923 
6924 	active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6925 	memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6926 	active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6927 	memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6928 
6929 	if (qos_network_data == NULL) {
6930 		if (type == IEEE_B) {
6931 			IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6932 			active_one = &def_parameters_CCK;
6933 		} else
6934 			active_one = &def_parameters_OFDM;
6935 
6936 		memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6937 		burst_duration = ipw_qos_get_burst_duration(priv);
6938 		for (i = 0; i < QOS_QUEUE_NUM; i++)
6939 			qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6940 			    cpu_to_le16(burst_duration);
6941 	} else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6942 		if (type == IEEE_B) {
6943 			IPW_DEBUG_QOS("QoS activate IBSS network mode %d\n",
6944 				      type);
6945 			if (priv->qos_data.qos_enable == 0)
6946 				active_one = &def_parameters_CCK;
6947 			else
6948 				active_one = priv->qos_data.def_qos_parm_CCK;
6949 		} else {
6950 			if (priv->qos_data.qos_enable == 0)
6951 				active_one = &def_parameters_OFDM;
6952 			else
6953 				active_one = priv->qos_data.def_qos_parm_OFDM;
6954 		}
6955 		memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6956 	} else {
6957 		unsigned long flags;
6958 		int active;
6959 
6960 		spin_lock_irqsave(&priv->ieee->lock, flags);
6961 		active_one = &(qos_network_data->parameters);
6962 		qos_network_data->old_param_count =
6963 		    qos_network_data->param_count;
6964 		memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6965 		active = qos_network_data->supported;
6966 		spin_unlock_irqrestore(&priv->ieee->lock, flags);
6967 
6968 		if (active == 0) {
6969 			burst_duration = ipw_qos_get_burst_duration(priv);
6970 			for (i = 0; i < QOS_QUEUE_NUM; i++)
6971 				qos_parameters[QOS_PARAM_SET_ACTIVE].
6972 				    tx_op_limit[i] = cpu_to_le16(burst_duration);
6973 		}
6974 	}
6975 
6976 	IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
6977 	err = ipw_send_qos_params_command(priv, &qos_parameters[0]);
6978 	if (err)
6979 		IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
6980 
6981 	return err;
6982 }
6983 
6984 /*
6985 * send IPW_CMD_WME_INFO to the firmware
6986 */
6987 static int ipw_qos_set_info_element(struct ipw_priv *priv)
6988 {
6989 	int ret = 0;
6990 	struct libipw_qos_information_element qos_info;
6991 
6992 	if (priv == NULL)
6993 		return -1;
6994 
6995 	qos_info.elementID = QOS_ELEMENT_ID;
6996 	qos_info.length = sizeof(struct libipw_qos_information_element) - 2;
6997 
6998 	qos_info.version = QOS_VERSION_1;
6999 	qos_info.ac_info = 0;
7000 
7001 	memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
7002 	qos_info.qui_type = QOS_OUI_TYPE;
7003 	qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
7004 
7005 	ret = ipw_send_qos_info_command(priv, &qos_info);
7006 	if (ret != 0) {
7007 		IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
7008 	}
7009 	return ret;
7010 }
7011 
7012 /*
7013 * Set the QoS parameter with the association request structure
7014 */
7015 static int ipw_qos_association(struct ipw_priv *priv,
7016 			       struct libipw_network *network)
7017 {
7018 	int err = 0;
7019 	struct libipw_qos_data *qos_data = NULL;
7020 	struct libipw_qos_data ibss_data = {
7021 		.supported = 1,
7022 		.active = 1,
7023 	};
7024 
7025 	switch (priv->ieee->iw_mode) {
7026 	case IW_MODE_ADHOC:
7027 		BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
7028 
7029 		qos_data = &ibss_data;
7030 		break;
7031 
7032 	case IW_MODE_INFRA:
7033 		qos_data = &network->qos_data;
7034 		break;
7035 
7036 	default:
7037 		BUG();
7038 		break;
7039 	}
7040 
7041 	err = ipw_qos_activate(priv, qos_data);
7042 	if (err) {
7043 		priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
7044 		return err;
7045 	}
7046 
7047 	if (priv->qos_data.qos_enable && qos_data->supported) {
7048 		IPW_DEBUG_QOS("QoS will be enabled for this association\n");
7049 		priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
7050 		return ipw_qos_set_info_element(priv);
7051 	}
7052 
7053 	return 0;
7054 }
7055 
7056 /*
7057 * handling the beaconing responses. if we get different QoS setting
7058 * off the network from the associated setting, adjust the QoS
7059 * setting
7060 */
7061 static int ipw_qos_association_resp(struct ipw_priv *priv,
7062 				    struct libipw_network *network)
7063 {
7064 	int ret = 0;
7065 	unsigned long flags;
7066 	u32 size = sizeof(struct libipw_qos_parameters);
7067 	int set_qos_param = 0;
7068 
7069 	if ((priv == NULL) || (network == NULL) ||
7070 	    (priv->assoc_network == NULL))
7071 		return ret;
7072 
7073 	if (!(priv->status & STATUS_ASSOCIATED))
7074 		return ret;
7075 
7076 	if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7077 		return ret;
7078 
7079 	spin_lock_irqsave(&priv->ieee->lock, flags);
7080 	if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7081 		memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7082 		       sizeof(struct libipw_qos_data));
7083 		priv->assoc_network->qos_data.active = 1;
7084 		if ((network->qos_data.old_param_count !=
7085 		     network->qos_data.param_count)) {
7086 			set_qos_param = 1;
7087 			network->qos_data.old_param_count =
7088 			    network->qos_data.param_count;
7089 		}
7090 
7091 	} else {
7092 		if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7093 			memcpy(&priv->assoc_network->qos_data.parameters,
7094 			       &def_parameters_CCK, size);
7095 		else
7096 			memcpy(&priv->assoc_network->qos_data.parameters,
7097 			       &def_parameters_OFDM, size);
7098 		priv->assoc_network->qos_data.active = 0;
7099 		priv->assoc_network->qos_data.supported = 0;
7100 		set_qos_param = 1;
7101 	}
7102 
7103 	spin_unlock_irqrestore(&priv->ieee->lock, flags);
7104 
7105 	if (set_qos_param == 1)
7106 		schedule_work(&priv->qos_activate);
7107 
7108 	return ret;
7109 }
7110 
7111 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7112 {
7113 	u32 ret = 0;
7114 
7115 	if ((priv == NULL))
7116 		return 0;
7117 
7118 	if (!(priv->ieee->modulation & LIBIPW_OFDM_MODULATION))
7119 		ret = priv->qos_data.burst_duration_CCK;
7120 	else
7121 		ret = priv->qos_data.burst_duration_OFDM;
7122 
7123 	return ret;
7124 }
7125 
7126 /*
7127 * Initialize the setting of QoS global
7128 */
7129 static void ipw_qos_init(struct ipw_priv *priv, int enable,
7130 			 int burst_enable, u32 burst_duration_CCK,
7131 			 u32 burst_duration_OFDM)
7132 {
7133 	priv->qos_data.qos_enable = enable;
7134 
7135 	if (priv->qos_data.qos_enable) {
7136 		priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7137 		priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7138 		IPW_DEBUG_QOS("QoS is enabled\n");
7139 	} else {
7140 		priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7141 		priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7142 		IPW_DEBUG_QOS("QoS is not enabled\n");
7143 	}
7144 
7145 	priv->qos_data.burst_enable = burst_enable;
7146 
7147 	if (burst_enable) {
7148 		priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7149 		priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7150 	} else {
7151 		priv->qos_data.burst_duration_CCK = 0;
7152 		priv->qos_data.burst_duration_OFDM = 0;
7153 	}
7154 }
7155 
7156 /*
7157 * map the packet priority to the right TX Queue
7158 */
7159 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7160 {
7161 	if (priority > 7 || !priv->qos_data.qos_enable)
7162 		priority = 0;
7163 
7164 	return from_priority_to_tx_queue[priority] - 1;
7165 }
7166 
7167 static int ipw_is_qos_active(struct net_device *dev,
7168 			     struct sk_buff *skb)
7169 {
7170 	struct ipw_priv *priv = libipw_priv(dev);
7171 	struct libipw_qos_data *qos_data = NULL;
7172 	int active, supported;
7173 	u8 *daddr = skb->data + ETH_ALEN;
7174 	int unicast = !is_multicast_ether_addr(daddr);
7175 
7176 	if (!(priv->status & STATUS_ASSOCIATED))
7177 		return 0;
7178 
7179 	qos_data = &priv->assoc_network->qos_data;
7180 
7181 	if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7182 		if (unicast == 0)
7183 			qos_data->active = 0;
7184 		else
7185 			qos_data->active = qos_data->supported;
7186 	}
7187 	active = qos_data->active;
7188 	supported = qos_data->supported;
7189 	IPW_DEBUG_QOS("QoS  %d network is QoS active %d  supported %d  "
7190 		      "unicast %d\n",
7191 		      priv->qos_data.qos_enable, active, supported, unicast);
7192 	if (active && priv->qos_data.qos_enable)
7193 		return 1;
7194 
7195 	return 0;
7196 
7197 }
7198 /*
7199 * add QoS parameter to the TX command
7200 */
7201 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7202 					u16 priority,
7203 					struct tfd_data *tfd)
7204 {
7205 	int tx_queue_id = 0;
7206 
7207 
7208 	tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7209 	tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7210 
7211 	if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7212 		tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7213 		tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7214 	}
7215 	return 0;
7216 }
7217 
7218 /*
7219 * background support to run QoS activate functionality
7220 */
7221 static void ipw_bg_qos_activate(struct work_struct *work)
7222 {
7223 	struct ipw_priv *priv =
7224 		container_of(work, struct ipw_priv, qos_activate);
7225 
7226 	mutex_lock(&priv->mutex);
7227 
7228 	if (priv->status & STATUS_ASSOCIATED)
7229 		ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7230 
7231 	mutex_unlock(&priv->mutex);
7232 }
7233 
7234 static int ipw_handle_probe_response(struct net_device *dev,
7235 				     struct libipw_probe_response *resp,
7236 				     struct libipw_network *network)
7237 {
7238 	struct ipw_priv *priv = libipw_priv(dev);
7239 	int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7240 			      (network == priv->assoc_network));
7241 
7242 	ipw_qos_handle_probe_response(priv, active_network, network);
7243 
7244 	return 0;
7245 }
7246 
7247 static int ipw_handle_beacon(struct net_device *dev,
7248 			     struct libipw_beacon *resp,
7249 			     struct libipw_network *network)
7250 {
7251 	struct ipw_priv *priv = libipw_priv(dev);
7252 	int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7253 			      (network == priv->assoc_network));
7254 
7255 	ipw_qos_handle_probe_response(priv, active_network, network);
7256 
7257 	return 0;
7258 }
7259 
7260 static int ipw_handle_assoc_response(struct net_device *dev,
7261 				     struct libipw_assoc_response *resp,
7262 				     struct libipw_network *network)
7263 {
7264 	struct ipw_priv *priv = libipw_priv(dev);
7265 	ipw_qos_association_resp(priv, network);
7266 	return 0;
7267 }
7268 
7269 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
7270 				       *qos_param)
7271 {
7272 	return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7273 				sizeof(*qos_param) * 3, qos_param);
7274 }
7275 
7276 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
7277 				     *qos_param)
7278 {
7279 	return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7280 				qos_param);
7281 }
7282 
7283 #endif				/* CONFIG_IPW2200_QOS */
7284 
7285 static int ipw_associate_network(struct ipw_priv *priv,
7286 				 struct libipw_network *network,
7287 				 struct ipw_supported_rates *rates, int roaming)
7288 {
7289 	int err;
7290 
7291 	if (priv->config & CFG_FIXED_RATE)
7292 		ipw_set_fixed_rate(priv, network->mode);
7293 
7294 	if (!(priv->config & CFG_STATIC_ESSID)) {
7295 		priv->essid_len = min(network->ssid_len,
7296 				      (u8) IW_ESSID_MAX_SIZE);
7297 		memcpy(priv->essid, network->ssid, priv->essid_len);
7298 	}
7299 
7300 	network->last_associate = jiffies;
7301 
7302 	memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7303 	priv->assoc_request.channel = network->channel;
7304 	priv->assoc_request.auth_key = 0;
7305 
7306 	if ((priv->capability & CAP_PRIVACY_ON) &&
7307 	    (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7308 		priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7309 		priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7310 
7311 		if (priv->ieee->sec.level == SEC_LEVEL_1)
7312 			ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7313 
7314 	} else if ((priv->capability & CAP_PRIVACY_ON) &&
7315 		   (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7316 		priv->assoc_request.auth_type = AUTH_LEAP;
7317 	else
7318 		priv->assoc_request.auth_type = AUTH_OPEN;
7319 
7320 	if (priv->ieee->wpa_ie_len) {
7321 		priv->assoc_request.policy_support = cpu_to_le16(0x02);	/* RSN active */
7322 		ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7323 				 priv->ieee->wpa_ie_len);
7324 	}
7325 
7326 	/*
7327 	 * It is valid for our ieee device to support multiple modes, but
7328 	 * when it comes to associating to a given network we have to choose
7329 	 * just one mode.
7330 	 */
7331 	if (network->mode & priv->ieee->mode & IEEE_A)
7332 		priv->assoc_request.ieee_mode = IPW_A_MODE;
7333 	else if (network->mode & priv->ieee->mode & IEEE_G)
7334 		priv->assoc_request.ieee_mode = IPW_G_MODE;
7335 	else if (network->mode & priv->ieee->mode & IEEE_B)
7336 		priv->assoc_request.ieee_mode = IPW_B_MODE;
7337 
7338 	priv->assoc_request.capability = cpu_to_le16(network->capability);
7339 	if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7340 	    && !(priv->config & CFG_PREAMBLE_LONG)) {
7341 		priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7342 	} else {
7343 		priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7344 
7345 		/* Clear the short preamble if we won't be supporting it */
7346 		priv->assoc_request.capability &=
7347 		    ~cpu_to_le16(WLAN_CAPABILITY_SHORT_PREAMBLE);
7348 	}
7349 
7350 	/* Clear capability bits that aren't used in Ad Hoc */
7351 	if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7352 		priv->assoc_request.capability &=
7353 		    ~cpu_to_le16(WLAN_CAPABILITY_SHORT_SLOT_TIME);
7354 
7355 	IPW_DEBUG_ASSOC("%ssociation attempt: '%*pE', channel %d, 802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7356 			roaming ? "Rea" : "A",
7357 			priv->essid_len, priv->essid,
7358 			network->channel,
7359 			ipw_modes[priv->assoc_request.ieee_mode],
7360 			rates->num_rates,
7361 			(priv->assoc_request.preamble_length ==
7362 			 DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7363 			network->capability &
7364 			WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7365 			priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7366 			priv->capability & CAP_PRIVACY_ON ?
7367 			(priv->capability & CAP_SHARED_KEY ? "(shared)" :
7368 			 "(open)") : "",
7369 			priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7370 			priv->capability & CAP_PRIVACY_ON ?
7371 			'1' + priv->ieee->sec.active_key : '.',
7372 			priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7373 
7374 	priv->assoc_request.beacon_interval = cpu_to_le16(network->beacon_interval);
7375 	if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7376 	    (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7377 		priv->assoc_request.assoc_type = HC_IBSS_START;
7378 		priv->assoc_request.assoc_tsf_msw = 0;
7379 		priv->assoc_request.assoc_tsf_lsw = 0;
7380 	} else {
7381 		if (unlikely(roaming))
7382 			priv->assoc_request.assoc_type = HC_REASSOCIATE;
7383 		else
7384 			priv->assoc_request.assoc_type = HC_ASSOCIATE;
7385 		priv->assoc_request.assoc_tsf_msw = cpu_to_le32(network->time_stamp[1]);
7386 		priv->assoc_request.assoc_tsf_lsw = cpu_to_le32(network->time_stamp[0]);
7387 	}
7388 
7389 	memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7390 
7391 	if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7392 		eth_broadcast_addr(priv->assoc_request.dest);
7393 		priv->assoc_request.atim_window = cpu_to_le16(network->atim_window);
7394 	} else {
7395 		memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7396 		priv->assoc_request.atim_window = 0;
7397 	}
7398 
7399 	priv->assoc_request.listen_interval = cpu_to_le16(network->listen_interval);
7400 
7401 	err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7402 	if (err) {
7403 		IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7404 		return err;
7405 	}
7406 
7407 	rates->ieee_mode = priv->assoc_request.ieee_mode;
7408 	rates->purpose = IPW_RATE_CONNECT;
7409 	ipw_send_supported_rates(priv, rates);
7410 
7411 	if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7412 		priv->sys_config.dot11g_auto_detection = 1;
7413 	else
7414 		priv->sys_config.dot11g_auto_detection = 0;
7415 
7416 	if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7417 		priv->sys_config.answer_broadcast_ssid_probe = 1;
7418 	else
7419 		priv->sys_config.answer_broadcast_ssid_probe = 0;
7420 
7421 	err = ipw_send_system_config(priv);
7422 	if (err) {
7423 		IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7424 		return err;
7425 	}
7426 
7427 	IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7428 	err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7429 	if (err) {
7430 		IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7431 		return err;
7432 	}
7433 
7434 	/*
7435 	 * If preemption is enabled, it is possible for the association
7436 	 * to complete before we return from ipw_send_associate.  Therefore
7437 	 * we have to be sure and update our priviate data first.
7438 	 */
7439 	priv->channel = network->channel;
7440 	memcpy(priv->bssid, network->bssid, ETH_ALEN);
7441 	priv->status |= STATUS_ASSOCIATING;
7442 	priv->status &= ~STATUS_SECURITY_UPDATED;
7443 
7444 	priv->assoc_network = network;
7445 
7446 #ifdef CONFIG_IPW2200_QOS
7447 	ipw_qos_association(priv, network);
7448 #endif
7449 
7450 	err = ipw_send_associate(priv, &priv->assoc_request);
7451 	if (err) {
7452 		IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7453 		return err;
7454 	}
7455 
7456 	IPW_DEBUG(IPW_DL_STATE, "associating: '%*pE' %pM\n",
7457 		  priv->essid_len, priv->essid, priv->bssid);
7458 
7459 	return 0;
7460 }
7461 
7462 static void ipw_roam(void *data)
7463 {
7464 	struct ipw_priv *priv = data;
7465 	struct libipw_network *network = NULL;
7466 	struct ipw_network_match match = {
7467 		.network = priv->assoc_network
7468 	};
7469 
7470 	/* The roaming process is as follows:
7471 	 *
7472 	 * 1.  Missed beacon threshold triggers the roaming process by
7473 	 *     setting the status ROAM bit and requesting a scan.
7474 	 * 2.  When the scan completes, it schedules the ROAM work
7475 	 * 3.  The ROAM work looks at all of the known networks for one that
7476 	 *     is a better network than the currently associated.  If none
7477 	 *     found, the ROAM process is over (ROAM bit cleared)
7478 	 * 4.  If a better network is found, a disassociation request is
7479 	 *     sent.
7480 	 * 5.  When the disassociation completes, the roam work is again
7481 	 *     scheduled.  The second time through, the driver is no longer
7482 	 *     associated, and the newly selected network is sent an
7483 	 *     association request.
7484 	 * 6.  At this point ,the roaming process is complete and the ROAM
7485 	 *     status bit is cleared.
7486 	 */
7487 
7488 	/* If we are no longer associated, and the roaming bit is no longer
7489 	 * set, then we are not actively roaming, so just return */
7490 	if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7491 		return;
7492 
7493 	if (priv->status & STATUS_ASSOCIATED) {
7494 		/* First pass through ROAM process -- look for a better
7495 		 * network */
7496 		unsigned long flags;
7497 		u8 rssi = priv->assoc_network->stats.rssi;
7498 		priv->assoc_network->stats.rssi = -128;
7499 		spin_lock_irqsave(&priv->ieee->lock, flags);
7500 		list_for_each_entry(network, &priv->ieee->network_list, list) {
7501 			if (network != priv->assoc_network)
7502 				ipw_best_network(priv, &match, network, 1);
7503 		}
7504 		spin_unlock_irqrestore(&priv->ieee->lock, flags);
7505 		priv->assoc_network->stats.rssi = rssi;
7506 
7507 		if (match.network == priv->assoc_network) {
7508 			IPW_DEBUG_ASSOC("No better APs in this network to "
7509 					"roam to.\n");
7510 			priv->status &= ~STATUS_ROAMING;
7511 			ipw_debug_config(priv);
7512 			return;
7513 		}
7514 
7515 		ipw_send_disassociate(priv, 1);
7516 		priv->assoc_network = match.network;
7517 
7518 		return;
7519 	}
7520 
7521 	/* Second pass through ROAM process -- request association */
7522 	ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7523 	ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7524 	priv->status &= ~STATUS_ROAMING;
7525 }
7526 
7527 static void ipw_bg_roam(struct work_struct *work)
7528 {
7529 	struct ipw_priv *priv =
7530 		container_of(work, struct ipw_priv, roam);
7531 	mutex_lock(&priv->mutex);
7532 	ipw_roam(priv);
7533 	mutex_unlock(&priv->mutex);
7534 }
7535 
7536 static int ipw_associate(void *data)
7537 {
7538 	struct ipw_priv *priv = data;
7539 
7540 	struct libipw_network *network = NULL;
7541 	struct ipw_network_match match = {
7542 		.network = NULL
7543 	};
7544 	struct ipw_supported_rates *rates;
7545 	struct list_head *element;
7546 	unsigned long flags;
7547 
7548 	if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7549 		IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7550 		return 0;
7551 	}
7552 
7553 	if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7554 		IPW_DEBUG_ASSOC("Not attempting association (already in "
7555 				"progress)\n");
7556 		return 0;
7557 	}
7558 
7559 	if (priv->status & STATUS_DISASSOCIATING) {
7560 		IPW_DEBUG_ASSOC("Not attempting association (in "
7561 				"disassociating)\n ");
7562 		schedule_work(&priv->associate);
7563 		return 0;
7564 	}
7565 
7566 	if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7567 		IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7568 				"initialized)\n");
7569 		return 0;
7570 	}
7571 
7572 	if (!(priv->config & CFG_ASSOCIATE) &&
7573 	    !(priv->config & (CFG_STATIC_ESSID | CFG_STATIC_BSSID))) {
7574 		IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7575 		return 0;
7576 	}
7577 
7578 	/* Protect our use of the network_list */
7579 	spin_lock_irqsave(&priv->ieee->lock, flags);
7580 	list_for_each_entry(network, &priv->ieee->network_list, list)
7581 	    ipw_best_network(priv, &match, network, 0);
7582 
7583 	network = match.network;
7584 	rates = &match.rates;
7585 
7586 	if (network == NULL &&
7587 	    priv->ieee->iw_mode == IW_MODE_ADHOC &&
7588 	    priv->config & CFG_ADHOC_CREATE &&
7589 	    priv->config & CFG_STATIC_ESSID &&
7590 	    priv->config & CFG_STATIC_CHANNEL) {
7591 		/* Use oldest network if the free list is empty */
7592 		if (list_empty(&priv->ieee->network_free_list)) {
7593 			struct libipw_network *oldest = NULL;
7594 			struct libipw_network *target;
7595 
7596 			list_for_each_entry(target, &priv->ieee->network_list, list) {
7597 				if ((oldest == NULL) ||
7598 				    (target->last_scanned < oldest->last_scanned))
7599 					oldest = target;
7600 			}
7601 
7602 			/* If there are no more slots, expire the oldest */
7603 			list_del(&oldest->list);
7604 			target = oldest;
7605 			IPW_DEBUG_ASSOC("Expired '%*pE' (%pM) from network list.\n",
7606 					target->ssid_len, target->ssid,
7607 					target->bssid);
7608 			list_add_tail(&target->list,
7609 				      &priv->ieee->network_free_list);
7610 		}
7611 
7612 		element = priv->ieee->network_free_list.next;
7613 		network = list_entry(element, struct libipw_network, list);
7614 		ipw_adhoc_create(priv, network);
7615 		rates = &priv->rates;
7616 		list_del(element);
7617 		list_add_tail(&network->list, &priv->ieee->network_list);
7618 	}
7619 	spin_unlock_irqrestore(&priv->ieee->lock, flags);
7620 
7621 	/* If we reached the end of the list, then we don't have any valid
7622 	 * matching APs */
7623 	if (!network) {
7624 		ipw_debug_config(priv);
7625 
7626 		if (!(priv->status & STATUS_SCANNING)) {
7627 			if (!(priv->config & CFG_SPEED_SCAN))
7628 				schedule_delayed_work(&priv->request_scan,
7629 						      SCAN_INTERVAL);
7630 			else
7631 				schedule_delayed_work(&priv->request_scan, 0);
7632 		}
7633 
7634 		return 0;
7635 	}
7636 
7637 	ipw_associate_network(priv, network, rates, 0);
7638 
7639 	return 1;
7640 }
7641 
7642 static void ipw_bg_associate(struct work_struct *work)
7643 {
7644 	struct ipw_priv *priv =
7645 		container_of(work, struct ipw_priv, associate);
7646 	mutex_lock(&priv->mutex);
7647 	ipw_associate(priv);
7648 	mutex_unlock(&priv->mutex);
7649 }
7650 
7651 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7652 				      struct sk_buff *skb)
7653 {
7654 	struct ieee80211_hdr *hdr;
7655 	u16 fc;
7656 
7657 	hdr = (struct ieee80211_hdr *)skb->data;
7658 	fc = le16_to_cpu(hdr->frame_control);
7659 	if (!(fc & IEEE80211_FCTL_PROTECTED))
7660 		return;
7661 
7662 	fc &= ~IEEE80211_FCTL_PROTECTED;
7663 	hdr->frame_control = cpu_to_le16(fc);
7664 	switch (priv->ieee->sec.level) {
7665 	case SEC_LEVEL_3:
7666 		/* Remove CCMP HDR */
7667 		memmove(skb->data + LIBIPW_3ADDR_LEN,
7668 			skb->data + LIBIPW_3ADDR_LEN + 8,
7669 			skb->len - LIBIPW_3ADDR_LEN - 8);
7670 		skb_trim(skb, skb->len - 16);	/* CCMP_HDR_LEN + CCMP_MIC_LEN */
7671 		break;
7672 	case SEC_LEVEL_2:
7673 		break;
7674 	case SEC_LEVEL_1:
7675 		/* Remove IV */
7676 		memmove(skb->data + LIBIPW_3ADDR_LEN,
7677 			skb->data + LIBIPW_3ADDR_LEN + 4,
7678 			skb->len - LIBIPW_3ADDR_LEN - 4);
7679 		skb_trim(skb, skb->len - 8);	/* IV + ICV */
7680 		break;
7681 	case SEC_LEVEL_0:
7682 		break;
7683 	default:
7684 		printk(KERN_ERR "Unknown security level %d\n",
7685 		       priv->ieee->sec.level);
7686 		break;
7687 	}
7688 }
7689 
7690 static void ipw_handle_data_packet(struct ipw_priv *priv,
7691 				   struct ipw_rx_mem_buffer *rxb,
7692 				   struct libipw_rx_stats *stats)
7693 {
7694 	struct net_device *dev = priv->net_dev;
7695 	struct libipw_hdr_4addr *hdr;
7696 	struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7697 
7698 	/* We received data from the HW, so stop the watchdog */
7699 	netif_trans_update(dev);
7700 
7701 	/* We only process data packets if the
7702 	 * interface is open */
7703 	if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7704 		     skb_tailroom(rxb->skb))) {
7705 		dev->stats.rx_errors++;
7706 		priv->wstats.discard.misc++;
7707 		IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7708 		return;
7709 	} else if (unlikely(!netif_running(priv->net_dev))) {
7710 		dev->stats.rx_dropped++;
7711 		priv->wstats.discard.misc++;
7712 		IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7713 		return;
7714 	}
7715 
7716 	/* Advance skb->data to the start of the actual payload */
7717 	skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7718 
7719 	/* Set the size of the skb to the size of the frame */
7720 	skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7721 
7722 	IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7723 
7724 	/* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7725 	hdr = (struct libipw_hdr_4addr *)rxb->skb->data;
7726 	if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7727 	    (is_multicast_ether_addr(hdr->addr1) ?
7728 	     !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7729 		ipw_rebuild_decrypted_skb(priv, rxb->skb);
7730 
7731 	if (!libipw_rx(priv->ieee, rxb->skb, stats))
7732 		dev->stats.rx_errors++;
7733 	else {			/* libipw_rx succeeded, so it now owns the SKB */
7734 		rxb->skb = NULL;
7735 		__ipw_led_activity_on(priv);
7736 	}
7737 }
7738 
7739 #ifdef CONFIG_IPW2200_RADIOTAP
7740 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7741 					   struct ipw_rx_mem_buffer *rxb,
7742 					   struct libipw_rx_stats *stats)
7743 {
7744 	struct net_device *dev = priv->net_dev;
7745 	struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7746 	struct ipw_rx_frame *frame = &pkt->u.frame;
7747 
7748 	/* initial pull of some data */
7749 	u16 received_channel = frame->received_channel;
7750 	u8 antennaAndPhy = frame->antennaAndPhy;
7751 	s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM;	/* call it signed anyhow */
7752 	u16 pktrate = frame->rate;
7753 
7754 	/* Magic struct that slots into the radiotap header -- no reason
7755 	 * to build this manually element by element, we can write it much
7756 	 * more efficiently than we can parse it. ORDER MATTERS HERE */
7757 	struct ipw_rt_hdr *ipw_rt;
7758 
7759 	unsigned short len = le16_to_cpu(pkt->u.frame.length);
7760 
7761 	/* We received data from the HW, so stop the watchdog */
7762 	netif_trans_update(dev);
7763 
7764 	/* We only process data packets if the
7765 	 * interface is open */
7766 	if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7767 		     skb_tailroom(rxb->skb))) {
7768 		dev->stats.rx_errors++;
7769 		priv->wstats.discard.misc++;
7770 		IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7771 		return;
7772 	} else if (unlikely(!netif_running(priv->net_dev))) {
7773 		dev->stats.rx_dropped++;
7774 		priv->wstats.discard.misc++;
7775 		IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7776 		return;
7777 	}
7778 
7779 	/* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7780 	 * that now */
7781 	if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7782 		/* FIXME: Should alloc bigger skb instead */
7783 		dev->stats.rx_dropped++;
7784 		priv->wstats.discard.misc++;
7785 		IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7786 		return;
7787 	}
7788 
7789 	/* copy the frame itself */
7790 	memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7791 		rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7792 
7793 	ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7794 
7795 	ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7796 	ipw_rt->rt_hdr.it_pad = 0;	/* always good to zero */
7797 	ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr));	/* total header+data */
7798 
7799 	/* Big bitfield of all the fields we provide in radiotap */
7800 	ipw_rt->rt_hdr.it_present = cpu_to_le32(
7801 	     (1 << IEEE80211_RADIOTAP_TSFT) |
7802 	     (1 << IEEE80211_RADIOTAP_FLAGS) |
7803 	     (1 << IEEE80211_RADIOTAP_RATE) |
7804 	     (1 << IEEE80211_RADIOTAP_CHANNEL) |
7805 	     (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7806 	     (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7807 	     (1 << IEEE80211_RADIOTAP_ANTENNA));
7808 
7809 	/* Zero the flags, we'll add to them as we go */
7810 	ipw_rt->rt_flags = 0;
7811 	ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7812 			       frame->parent_tsf[2] << 16 |
7813 			       frame->parent_tsf[1] << 8  |
7814 			       frame->parent_tsf[0]);
7815 
7816 	/* Convert signal to DBM */
7817 	ipw_rt->rt_dbmsignal = antsignal;
7818 	ipw_rt->rt_dbmnoise = (s8) le16_to_cpu(frame->noise);
7819 
7820 	/* Convert the channel data and set the flags */
7821 	ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7822 	if (received_channel > 14) {	/* 802.11a */
7823 		ipw_rt->rt_chbitmask =
7824 		    cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7825 	} else if (antennaAndPhy & 32) {	/* 802.11b */
7826 		ipw_rt->rt_chbitmask =
7827 		    cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7828 	} else {		/* 802.11g */
7829 		ipw_rt->rt_chbitmask =
7830 		    cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7831 	}
7832 
7833 	/* set the rate in multiples of 500k/s */
7834 	switch (pktrate) {
7835 	case IPW_TX_RATE_1MB:
7836 		ipw_rt->rt_rate = 2;
7837 		break;
7838 	case IPW_TX_RATE_2MB:
7839 		ipw_rt->rt_rate = 4;
7840 		break;
7841 	case IPW_TX_RATE_5MB:
7842 		ipw_rt->rt_rate = 10;
7843 		break;
7844 	case IPW_TX_RATE_6MB:
7845 		ipw_rt->rt_rate = 12;
7846 		break;
7847 	case IPW_TX_RATE_9MB:
7848 		ipw_rt->rt_rate = 18;
7849 		break;
7850 	case IPW_TX_RATE_11MB:
7851 		ipw_rt->rt_rate = 22;
7852 		break;
7853 	case IPW_TX_RATE_12MB:
7854 		ipw_rt->rt_rate = 24;
7855 		break;
7856 	case IPW_TX_RATE_18MB:
7857 		ipw_rt->rt_rate = 36;
7858 		break;
7859 	case IPW_TX_RATE_24MB:
7860 		ipw_rt->rt_rate = 48;
7861 		break;
7862 	case IPW_TX_RATE_36MB:
7863 		ipw_rt->rt_rate = 72;
7864 		break;
7865 	case IPW_TX_RATE_48MB:
7866 		ipw_rt->rt_rate = 96;
7867 		break;
7868 	case IPW_TX_RATE_54MB:
7869 		ipw_rt->rt_rate = 108;
7870 		break;
7871 	default:
7872 		ipw_rt->rt_rate = 0;
7873 		break;
7874 	}
7875 
7876 	/* antenna number */
7877 	ipw_rt->rt_antenna = (antennaAndPhy & 3);	/* Is this right? */
7878 
7879 	/* set the preamble flag if we have it */
7880 	if ((antennaAndPhy & 64))
7881 		ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7882 
7883 	/* Set the size of the skb to the size of the frame */
7884 	skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7885 
7886 	IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7887 
7888 	if (!libipw_rx(priv->ieee, rxb->skb, stats))
7889 		dev->stats.rx_errors++;
7890 	else {			/* libipw_rx succeeded, so it now owns the SKB */
7891 		rxb->skb = NULL;
7892 		/* no LED during capture */
7893 	}
7894 }
7895 #endif
7896 
7897 #ifdef CONFIG_IPW2200_PROMISCUOUS
7898 #define libipw_is_probe_response(fc) \
7899    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7900     (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7901 
7902 #define libipw_is_management(fc) \
7903    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7904 
7905 #define libipw_is_control(fc) \
7906    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
7907 
7908 #define libipw_is_data(fc) \
7909    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
7910 
7911 #define libipw_is_assoc_request(fc) \
7912    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
7913 
7914 #define libipw_is_reassoc_request(fc) \
7915    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
7916 
7917 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
7918 				      struct ipw_rx_mem_buffer *rxb,
7919 				      struct libipw_rx_stats *stats)
7920 {
7921 	struct net_device *dev = priv->prom_net_dev;
7922 	struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7923 	struct ipw_rx_frame *frame = &pkt->u.frame;
7924 	struct ipw_rt_hdr *ipw_rt;
7925 
7926 	/* First cache any information we need before we overwrite
7927 	 * the information provided in the skb from the hardware */
7928 	struct ieee80211_hdr *hdr;
7929 	u16 channel = frame->received_channel;
7930 	u8 phy_flags = frame->antennaAndPhy;
7931 	s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
7932 	s8 noise = (s8) le16_to_cpu(frame->noise);
7933 	u8 rate = frame->rate;
7934 	unsigned short len = le16_to_cpu(pkt->u.frame.length);
7935 	struct sk_buff *skb;
7936 	int hdr_only = 0;
7937 	u16 filter = priv->prom_priv->filter;
7938 
7939 	/* If the filter is set to not include Rx frames then return */
7940 	if (filter & IPW_PROM_NO_RX)
7941 		return;
7942 
7943 	/* We received data from the HW, so stop the watchdog */
7944 	netif_trans_update(dev);
7945 
7946 	if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
7947 		dev->stats.rx_errors++;
7948 		IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7949 		return;
7950 	}
7951 
7952 	/* We only process data packets if the interface is open */
7953 	if (unlikely(!netif_running(dev))) {
7954 		dev->stats.rx_dropped++;
7955 		IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7956 		return;
7957 	}
7958 
7959 	/* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7960 	 * that now */
7961 	if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7962 		/* FIXME: Should alloc bigger skb instead */
7963 		dev->stats.rx_dropped++;
7964 		IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7965 		return;
7966 	}
7967 
7968 	hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
7969 	if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
7970 		if (filter & IPW_PROM_NO_MGMT)
7971 			return;
7972 		if (filter & IPW_PROM_MGMT_HEADER_ONLY)
7973 			hdr_only = 1;
7974 	} else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
7975 		if (filter & IPW_PROM_NO_CTL)
7976 			return;
7977 		if (filter & IPW_PROM_CTL_HEADER_ONLY)
7978 			hdr_only = 1;
7979 	} else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
7980 		if (filter & IPW_PROM_NO_DATA)
7981 			return;
7982 		if (filter & IPW_PROM_DATA_HEADER_ONLY)
7983 			hdr_only = 1;
7984 	}
7985 
7986 	/* Copy the SKB since this is for the promiscuous side */
7987 	skb = skb_copy(rxb->skb, GFP_ATOMIC);
7988 	if (skb == NULL) {
7989 		IPW_ERROR("skb_clone failed for promiscuous copy.\n");
7990 		return;
7991 	}
7992 
7993 	/* copy the frame data to write after where the radiotap header goes */
7994 	ipw_rt = (void *)skb->data;
7995 
7996 	if (hdr_only)
7997 		len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
7998 
7999 	memcpy(ipw_rt->payload, hdr, len);
8000 
8001 	ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
8002 	ipw_rt->rt_hdr.it_pad = 0;	/* always good to zero */
8003 	ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(*ipw_rt));	/* total header+data */
8004 
8005 	/* Set the size of the skb to the size of the frame */
8006 	skb_put(skb, sizeof(*ipw_rt) + len);
8007 
8008 	/* Big bitfield of all the fields we provide in radiotap */
8009 	ipw_rt->rt_hdr.it_present = cpu_to_le32(
8010 	     (1 << IEEE80211_RADIOTAP_TSFT) |
8011 	     (1 << IEEE80211_RADIOTAP_FLAGS) |
8012 	     (1 << IEEE80211_RADIOTAP_RATE) |
8013 	     (1 << IEEE80211_RADIOTAP_CHANNEL) |
8014 	     (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
8015 	     (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
8016 	     (1 << IEEE80211_RADIOTAP_ANTENNA));
8017 
8018 	/* Zero the flags, we'll add to them as we go */
8019 	ipw_rt->rt_flags = 0;
8020 	ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
8021 			       frame->parent_tsf[2] << 16 |
8022 			       frame->parent_tsf[1] << 8  |
8023 			       frame->parent_tsf[0]);
8024 
8025 	/* Convert to DBM */
8026 	ipw_rt->rt_dbmsignal = signal;
8027 	ipw_rt->rt_dbmnoise = noise;
8028 
8029 	/* Convert the channel data and set the flags */
8030 	ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
8031 	if (channel > 14) {	/* 802.11a */
8032 		ipw_rt->rt_chbitmask =
8033 		    cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
8034 	} else if (phy_flags & (1 << 5)) {	/* 802.11b */
8035 		ipw_rt->rt_chbitmask =
8036 		    cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
8037 	} else {		/* 802.11g */
8038 		ipw_rt->rt_chbitmask =
8039 		    cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
8040 	}
8041 
8042 	/* set the rate in multiples of 500k/s */
8043 	switch (rate) {
8044 	case IPW_TX_RATE_1MB:
8045 		ipw_rt->rt_rate = 2;
8046 		break;
8047 	case IPW_TX_RATE_2MB:
8048 		ipw_rt->rt_rate = 4;
8049 		break;
8050 	case IPW_TX_RATE_5MB:
8051 		ipw_rt->rt_rate = 10;
8052 		break;
8053 	case IPW_TX_RATE_6MB:
8054 		ipw_rt->rt_rate = 12;
8055 		break;
8056 	case IPW_TX_RATE_9MB:
8057 		ipw_rt->rt_rate = 18;
8058 		break;
8059 	case IPW_TX_RATE_11MB:
8060 		ipw_rt->rt_rate = 22;
8061 		break;
8062 	case IPW_TX_RATE_12MB:
8063 		ipw_rt->rt_rate = 24;
8064 		break;
8065 	case IPW_TX_RATE_18MB:
8066 		ipw_rt->rt_rate = 36;
8067 		break;
8068 	case IPW_TX_RATE_24MB:
8069 		ipw_rt->rt_rate = 48;
8070 		break;
8071 	case IPW_TX_RATE_36MB:
8072 		ipw_rt->rt_rate = 72;
8073 		break;
8074 	case IPW_TX_RATE_48MB:
8075 		ipw_rt->rt_rate = 96;
8076 		break;
8077 	case IPW_TX_RATE_54MB:
8078 		ipw_rt->rt_rate = 108;
8079 		break;
8080 	default:
8081 		ipw_rt->rt_rate = 0;
8082 		break;
8083 	}
8084 
8085 	/* antenna number */
8086 	ipw_rt->rt_antenna = (phy_flags & 3);
8087 
8088 	/* set the preamble flag if we have it */
8089 	if (phy_flags & (1 << 6))
8090 		ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8091 
8092 	IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
8093 
8094 	if (!libipw_rx(priv->prom_priv->ieee, skb, stats)) {
8095 		dev->stats.rx_errors++;
8096 		dev_kfree_skb_any(skb);
8097 	}
8098 }
8099 #endif
8100 
8101 static int is_network_packet(struct ipw_priv *priv,
8102 				    struct libipw_hdr_4addr *header)
8103 {
8104 	/* Filter incoming packets to determine if they are targeted toward
8105 	 * this network, discarding packets coming from ourselves */
8106 	switch (priv->ieee->iw_mode) {
8107 	case IW_MODE_ADHOC:	/* Header: Dest. | Source    | BSSID */
8108 		/* packets from our adapter are dropped (echo) */
8109 		if (ether_addr_equal(header->addr2, priv->net_dev->dev_addr))
8110 			return 0;
8111 
8112 		/* {broad,multi}cast packets to our BSSID go through */
8113 		if (is_multicast_ether_addr(header->addr1))
8114 			return ether_addr_equal(header->addr3, priv->bssid);
8115 
8116 		/* packets to our adapter go through */
8117 		return ether_addr_equal(header->addr1,
8118 					priv->net_dev->dev_addr);
8119 
8120 	case IW_MODE_INFRA:	/* Header: Dest. | BSSID | Source */
8121 		/* packets from our adapter are dropped (echo) */
8122 		if (ether_addr_equal(header->addr3, priv->net_dev->dev_addr))
8123 			return 0;
8124 
8125 		/* {broad,multi}cast packets to our BSS go through */
8126 		if (is_multicast_ether_addr(header->addr1))
8127 			return ether_addr_equal(header->addr2, priv->bssid);
8128 
8129 		/* packets to our adapter go through */
8130 		return ether_addr_equal(header->addr1,
8131 					priv->net_dev->dev_addr);
8132 	}
8133 
8134 	return 1;
8135 }
8136 
8137 #define IPW_PACKET_RETRY_TIME HZ
8138 
8139 static  int is_duplicate_packet(struct ipw_priv *priv,
8140 				      struct libipw_hdr_4addr *header)
8141 {
8142 	u16 sc = le16_to_cpu(header->seq_ctl);
8143 	u16 seq = WLAN_GET_SEQ_SEQ(sc);
8144 	u16 frag = WLAN_GET_SEQ_FRAG(sc);
8145 	u16 *last_seq, *last_frag;
8146 	unsigned long *last_time;
8147 
8148 	switch (priv->ieee->iw_mode) {
8149 	case IW_MODE_ADHOC:
8150 		{
8151 			struct list_head *p;
8152 			struct ipw_ibss_seq *entry = NULL;
8153 			u8 *mac = header->addr2;
8154 			int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8155 
8156 			list_for_each(p, &priv->ibss_mac_hash[index]) {
8157 				entry =
8158 				    list_entry(p, struct ipw_ibss_seq, list);
8159 				if (ether_addr_equal(entry->mac, mac))
8160 					break;
8161 			}
8162 			if (p == &priv->ibss_mac_hash[index]) {
8163 				entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8164 				if (!entry) {
8165 					IPW_ERROR
8166 					    ("Cannot malloc new mac entry\n");
8167 					return 0;
8168 				}
8169 				memcpy(entry->mac, mac, ETH_ALEN);
8170 				entry->seq_num = seq;
8171 				entry->frag_num = frag;
8172 				entry->packet_time = jiffies;
8173 				list_add(&entry->list,
8174 					 &priv->ibss_mac_hash[index]);
8175 				return 0;
8176 			}
8177 			last_seq = &entry->seq_num;
8178 			last_frag = &entry->frag_num;
8179 			last_time = &entry->packet_time;
8180 			break;
8181 		}
8182 	case IW_MODE_INFRA:
8183 		last_seq = &priv->last_seq_num;
8184 		last_frag = &priv->last_frag_num;
8185 		last_time = &priv->last_packet_time;
8186 		break;
8187 	default:
8188 		return 0;
8189 	}
8190 	if ((*last_seq == seq) &&
8191 	    time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8192 		if (*last_frag == frag)
8193 			goto drop;
8194 		if (*last_frag + 1 != frag)
8195 			/* out-of-order fragment */
8196 			goto drop;
8197 	} else
8198 		*last_seq = seq;
8199 
8200 	*last_frag = frag;
8201 	*last_time = jiffies;
8202 	return 0;
8203 
8204       drop:
8205 	/* Comment this line now since we observed the card receives
8206 	 * duplicate packets but the FCTL_RETRY bit is not set in the
8207 	 * IBSS mode with fragmentation enabled.
8208 	 BUG_ON(!(le16_to_cpu(header->frame_control) & IEEE80211_FCTL_RETRY)); */
8209 	return 1;
8210 }
8211 
8212 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8213 				   struct ipw_rx_mem_buffer *rxb,
8214 				   struct libipw_rx_stats *stats)
8215 {
8216 	struct sk_buff *skb = rxb->skb;
8217 	struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8218 	struct libipw_hdr_4addr *header = (struct libipw_hdr_4addr *)
8219 	    (skb->data + IPW_RX_FRAME_SIZE);
8220 
8221 	libipw_rx_mgt(priv->ieee, header, stats);
8222 
8223 	if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8224 	    ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8225 	      IEEE80211_STYPE_PROBE_RESP) ||
8226 	     (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8227 	      IEEE80211_STYPE_BEACON))) {
8228 		if (ether_addr_equal(header->addr3, priv->bssid))
8229 			ipw_add_station(priv, header->addr2);
8230 	}
8231 
8232 	if (priv->config & CFG_NET_STATS) {
8233 		IPW_DEBUG_HC("sending stat packet\n");
8234 
8235 		/* Set the size of the skb to the size of the full
8236 		 * ipw header and 802.11 frame */
8237 		skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8238 			IPW_RX_FRAME_SIZE);
8239 
8240 		/* Advance past the ipw packet header to the 802.11 frame */
8241 		skb_pull(skb, IPW_RX_FRAME_SIZE);
8242 
8243 		/* Push the libipw_rx_stats before the 802.11 frame */
8244 		memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8245 
8246 		skb->dev = priv->ieee->dev;
8247 
8248 		/* Point raw at the libipw_stats */
8249 		skb_reset_mac_header(skb);
8250 
8251 		skb->pkt_type = PACKET_OTHERHOST;
8252 		skb->protocol = cpu_to_be16(ETH_P_80211_STATS);
8253 		memset(skb->cb, 0, sizeof(rxb->skb->cb));
8254 		netif_rx(skb);
8255 		rxb->skb = NULL;
8256 	}
8257 }
8258 
8259 /*
8260  * Main entry function for receiving a packet with 80211 headers.  This
8261  * should be called when ever the FW has notified us that there is a new
8262  * skb in the receive queue.
8263  */
8264 static void ipw_rx(struct ipw_priv *priv)
8265 {
8266 	struct ipw_rx_mem_buffer *rxb;
8267 	struct ipw_rx_packet *pkt;
8268 	struct libipw_hdr_4addr *header;
8269 	u32 r, w, i;
8270 	u8 network_packet;
8271 	u8 fill_rx = 0;
8272 
8273 	r = ipw_read32(priv, IPW_RX_READ_INDEX);
8274 	w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8275 	i = priv->rxq->read;
8276 
8277 	if (ipw_rx_queue_space (priv->rxq) > (RX_QUEUE_SIZE / 2))
8278 		fill_rx = 1;
8279 
8280 	while (i != r) {
8281 		rxb = priv->rxq->queue[i];
8282 		if (unlikely(rxb == NULL)) {
8283 			printk(KERN_CRIT "Queue not allocated!\n");
8284 			break;
8285 		}
8286 		priv->rxq->queue[i] = NULL;
8287 
8288 		pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8289 					    IPW_RX_BUF_SIZE,
8290 					    PCI_DMA_FROMDEVICE);
8291 
8292 		pkt = (struct ipw_rx_packet *)rxb->skb->data;
8293 		IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8294 			     pkt->header.message_type,
8295 			     pkt->header.rx_seq_num, pkt->header.control_bits);
8296 
8297 		switch (pkt->header.message_type) {
8298 		case RX_FRAME_TYPE:	/* 802.11 frame */  {
8299 				struct libipw_rx_stats stats = {
8300 					.rssi = pkt->u.frame.rssi_dbm -
8301 					    IPW_RSSI_TO_DBM,
8302 					.signal =
8303 					    pkt->u.frame.rssi_dbm -
8304 					    IPW_RSSI_TO_DBM + 0x100,
8305 					.noise =
8306 					    le16_to_cpu(pkt->u.frame.noise),
8307 					.rate = pkt->u.frame.rate,
8308 					.mac_time = jiffies,
8309 					.received_channel =
8310 					    pkt->u.frame.received_channel,
8311 					.freq =
8312 					    (pkt->u.frame.
8313 					     control & (1 << 0)) ?
8314 					    LIBIPW_24GHZ_BAND :
8315 					    LIBIPW_52GHZ_BAND,
8316 					.len = le16_to_cpu(pkt->u.frame.length),
8317 				};
8318 
8319 				if (stats.rssi != 0)
8320 					stats.mask |= LIBIPW_STATMASK_RSSI;
8321 				if (stats.signal != 0)
8322 					stats.mask |= LIBIPW_STATMASK_SIGNAL;
8323 				if (stats.noise != 0)
8324 					stats.mask |= LIBIPW_STATMASK_NOISE;
8325 				if (stats.rate != 0)
8326 					stats.mask |= LIBIPW_STATMASK_RATE;
8327 
8328 				priv->rx_packets++;
8329 
8330 #ifdef CONFIG_IPW2200_PROMISCUOUS
8331 	if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8332 		ipw_handle_promiscuous_rx(priv, rxb, &stats);
8333 #endif
8334 
8335 #ifdef CONFIG_IPW2200_MONITOR
8336 				if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8337 #ifdef CONFIG_IPW2200_RADIOTAP
8338 
8339                 ipw_handle_data_packet_monitor(priv,
8340 					       rxb,
8341 					       &stats);
8342 #else
8343 		ipw_handle_data_packet(priv, rxb,
8344 				       &stats);
8345 #endif
8346 					break;
8347 				}
8348 #endif
8349 
8350 				header =
8351 				    (struct libipw_hdr_4addr *)(rxb->skb->
8352 								   data +
8353 								   IPW_RX_FRAME_SIZE);
8354 				/* TODO: Check Ad-Hoc dest/source and make sure
8355 				 * that we are actually parsing these packets
8356 				 * correctly -- we should probably use the
8357 				 * frame control of the packet and disregard
8358 				 * the current iw_mode */
8359 
8360 				network_packet =
8361 				    is_network_packet(priv, header);
8362 				if (network_packet && priv->assoc_network) {
8363 					priv->assoc_network->stats.rssi =
8364 					    stats.rssi;
8365 					priv->exp_avg_rssi =
8366 					    exponential_average(priv->exp_avg_rssi,
8367 					    stats.rssi, DEPTH_RSSI);
8368 				}
8369 
8370 				IPW_DEBUG_RX("Frame: len=%u\n",
8371 					     le16_to_cpu(pkt->u.frame.length));
8372 
8373 				if (le16_to_cpu(pkt->u.frame.length) <
8374 				    libipw_get_hdrlen(le16_to_cpu(
8375 						    header->frame_ctl))) {
8376 					IPW_DEBUG_DROP
8377 					    ("Received packet is too small. "
8378 					     "Dropping.\n");
8379 					priv->net_dev->stats.rx_errors++;
8380 					priv->wstats.discard.misc++;
8381 					break;
8382 				}
8383 
8384 				switch (WLAN_FC_GET_TYPE
8385 					(le16_to_cpu(header->frame_ctl))) {
8386 
8387 				case IEEE80211_FTYPE_MGMT:
8388 					ipw_handle_mgmt_packet(priv, rxb,
8389 							       &stats);
8390 					break;
8391 
8392 				case IEEE80211_FTYPE_CTL:
8393 					break;
8394 
8395 				case IEEE80211_FTYPE_DATA:
8396 					if (unlikely(!network_packet ||
8397 						     is_duplicate_packet(priv,
8398 									 header)))
8399 					{
8400 						IPW_DEBUG_DROP("Dropping: "
8401 							       "%pM, "
8402 							       "%pM, "
8403 							       "%pM\n",
8404 							       header->addr1,
8405 							       header->addr2,
8406 							       header->addr3);
8407 						break;
8408 					}
8409 
8410 					ipw_handle_data_packet(priv, rxb,
8411 							       &stats);
8412 
8413 					break;
8414 				}
8415 				break;
8416 			}
8417 
8418 		case RX_HOST_NOTIFICATION_TYPE:{
8419 				IPW_DEBUG_RX
8420 				    ("Notification: subtype=%02X flags=%02X size=%d\n",
8421 				     pkt->u.notification.subtype,
8422 				     pkt->u.notification.flags,
8423 				     le16_to_cpu(pkt->u.notification.size));
8424 				ipw_rx_notification(priv, &pkt->u.notification);
8425 				break;
8426 			}
8427 
8428 		default:
8429 			IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8430 				     pkt->header.message_type);
8431 			break;
8432 		}
8433 
8434 		/* For now we just don't re-use anything.  We can tweak this
8435 		 * later to try and re-use notification packets and SKBs that
8436 		 * fail to Rx correctly */
8437 		if (rxb->skb != NULL) {
8438 			dev_kfree_skb_any(rxb->skb);
8439 			rxb->skb = NULL;
8440 		}
8441 
8442 		pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8443 				 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8444 		list_add_tail(&rxb->list, &priv->rxq->rx_used);
8445 
8446 		i = (i + 1) % RX_QUEUE_SIZE;
8447 
8448 		/* If there are a lot of unsued frames, restock the Rx queue
8449 		 * so the ucode won't assert */
8450 		if (fill_rx) {
8451 			priv->rxq->read = i;
8452 			ipw_rx_queue_replenish(priv);
8453 		}
8454 	}
8455 
8456 	/* Backtrack one entry */
8457 	priv->rxq->read = i;
8458 	ipw_rx_queue_restock(priv);
8459 }
8460 
8461 #define DEFAULT_RTS_THRESHOLD     2304U
8462 #define MIN_RTS_THRESHOLD         1U
8463 #define MAX_RTS_THRESHOLD         2304U
8464 #define DEFAULT_BEACON_INTERVAL   100U
8465 #define	DEFAULT_SHORT_RETRY_LIMIT 7U
8466 #define	DEFAULT_LONG_RETRY_LIMIT  4U
8467 
8468 /**
8469  * ipw_sw_reset
8470  * @option: options to control different reset behaviour
8471  * 	    0 = reset everything except the 'disable' module_param
8472  * 	    1 = reset everything and print out driver info (for probe only)
8473  * 	    2 = reset everything
8474  */
8475 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8476 {
8477 	int band, modulation;
8478 	int old_mode = priv->ieee->iw_mode;
8479 
8480 	/* Initialize module parameter values here */
8481 	priv->config = 0;
8482 
8483 	/* We default to disabling the LED code as right now it causes
8484 	 * too many systems to lock up... */
8485 	if (!led_support)
8486 		priv->config |= CFG_NO_LED;
8487 
8488 	if (associate)
8489 		priv->config |= CFG_ASSOCIATE;
8490 	else
8491 		IPW_DEBUG_INFO("Auto associate disabled.\n");
8492 
8493 	if (auto_create)
8494 		priv->config |= CFG_ADHOC_CREATE;
8495 	else
8496 		IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8497 
8498 	priv->config &= ~CFG_STATIC_ESSID;
8499 	priv->essid_len = 0;
8500 	memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8501 
8502 	if (disable && option) {
8503 		priv->status |= STATUS_RF_KILL_SW;
8504 		IPW_DEBUG_INFO("Radio disabled.\n");
8505 	}
8506 
8507 	if (default_channel != 0) {
8508 		priv->config |= CFG_STATIC_CHANNEL;
8509 		priv->channel = default_channel;
8510 		IPW_DEBUG_INFO("Bind to static channel %d\n", default_channel);
8511 		/* TODO: Validate that provided channel is in range */
8512 	}
8513 #ifdef CONFIG_IPW2200_QOS
8514 	ipw_qos_init(priv, qos_enable, qos_burst_enable,
8515 		     burst_duration_CCK, burst_duration_OFDM);
8516 #endif				/* CONFIG_IPW2200_QOS */
8517 
8518 	switch (network_mode) {
8519 	case 1:
8520 		priv->ieee->iw_mode = IW_MODE_ADHOC;
8521 		priv->net_dev->type = ARPHRD_ETHER;
8522 
8523 		break;
8524 #ifdef CONFIG_IPW2200_MONITOR
8525 	case 2:
8526 		priv->ieee->iw_mode = IW_MODE_MONITOR;
8527 #ifdef CONFIG_IPW2200_RADIOTAP
8528 		priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8529 #else
8530 		priv->net_dev->type = ARPHRD_IEEE80211;
8531 #endif
8532 		break;
8533 #endif
8534 	default:
8535 	case 0:
8536 		priv->net_dev->type = ARPHRD_ETHER;
8537 		priv->ieee->iw_mode = IW_MODE_INFRA;
8538 		break;
8539 	}
8540 
8541 	if (hwcrypto) {
8542 		priv->ieee->host_encrypt = 0;
8543 		priv->ieee->host_encrypt_msdu = 0;
8544 		priv->ieee->host_decrypt = 0;
8545 		priv->ieee->host_mc_decrypt = 0;
8546 	}
8547 	IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8548 
8549 	/* IPW2200/2915 is abled to do hardware fragmentation. */
8550 	priv->ieee->host_open_frag = 0;
8551 
8552 	if ((priv->pci_dev->device == 0x4223) ||
8553 	    (priv->pci_dev->device == 0x4224)) {
8554 		if (option == 1)
8555 			printk(KERN_INFO DRV_NAME
8556 			       ": Detected Intel PRO/Wireless 2915ABG Network "
8557 			       "Connection\n");
8558 		priv->ieee->abg_true = 1;
8559 		band = LIBIPW_52GHZ_BAND | LIBIPW_24GHZ_BAND;
8560 		modulation = LIBIPW_OFDM_MODULATION |
8561 		    LIBIPW_CCK_MODULATION;
8562 		priv->adapter = IPW_2915ABG;
8563 		priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8564 	} else {
8565 		if (option == 1)
8566 			printk(KERN_INFO DRV_NAME
8567 			       ": Detected Intel PRO/Wireless 2200BG Network "
8568 			       "Connection\n");
8569 
8570 		priv->ieee->abg_true = 0;
8571 		band = LIBIPW_24GHZ_BAND;
8572 		modulation = LIBIPW_OFDM_MODULATION |
8573 		    LIBIPW_CCK_MODULATION;
8574 		priv->adapter = IPW_2200BG;
8575 		priv->ieee->mode = IEEE_G | IEEE_B;
8576 	}
8577 
8578 	priv->ieee->freq_band = band;
8579 	priv->ieee->modulation = modulation;
8580 
8581 	priv->rates_mask = LIBIPW_DEFAULT_RATES_MASK;
8582 
8583 	priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8584 	priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8585 
8586 	priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8587 	priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8588 	priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8589 
8590 	/* If power management is turned on, default to AC mode */
8591 	priv->power_mode = IPW_POWER_AC;
8592 	priv->tx_power = IPW_TX_POWER_DEFAULT;
8593 
8594 	return old_mode == priv->ieee->iw_mode;
8595 }
8596 
8597 /*
8598  * This file defines the Wireless Extension handlers.  It does not
8599  * define any methods of hardware manipulation and relies on the
8600  * functions defined in ipw_main to provide the HW interaction.
8601  *
8602  * The exception to this is the use of the ipw_get_ordinal()
8603  * function used to poll the hardware vs. making unnecessary calls.
8604  *
8605  */
8606 
8607 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8608 {
8609 	if (channel == 0) {
8610 		IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8611 		priv->config &= ~CFG_STATIC_CHANNEL;
8612 		IPW_DEBUG_ASSOC("Attempting to associate with new "
8613 				"parameters.\n");
8614 		ipw_associate(priv);
8615 		return 0;
8616 	}
8617 
8618 	priv->config |= CFG_STATIC_CHANNEL;
8619 
8620 	if (priv->channel == channel) {
8621 		IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8622 			       channel);
8623 		return 0;
8624 	}
8625 
8626 	IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8627 	priv->channel = channel;
8628 
8629 #ifdef CONFIG_IPW2200_MONITOR
8630 	if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8631 		int i;
8632 		if (priv->status & STATUS_SCANNING) {
8633 			IPW_DEBUG_SCAN("Scan abort triggered due to "
8634 				       "channel change.\n");
8635 			ipw_abort_scan(priv);
8636 		}
8637 
8638 		for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8639 			udelay(10);
8640 
8641 		if (priv->status & STATUS_SCANNING)
8642 			IPW_DEBUG_SCAN("Still scanning...\n");
8643 		else
8644 			IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8645 				       1000 - i);
8646 
8647 		return 0;
8648 	}
8649 #endif				/* CONFIG_IPW2200_MONITOR */
8650 
8651 	/* Network configuration changed -- force [re]association */
8652 	IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8653 	if (!ipw_disassociate(priv))
8654 		ipw_associate(priv);
8655 
8656 	return 0;
8657 }
8658 
8659 static int ipw_wx_set_freq(struct net_device *dev,
8660 			   struct iw_request_info *info,
8661 			   union iwreq_data *wrqu, char *extra)
8662 {
8663 	struct ipw_priv *priv = libipw_priv(dev);
8664 	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8665 	struct iw_freq *fwrq = &wrqu->freq;
8666 	int ret = 0, i;
8667 	u8 channel, flags;
8668 	int band;
8669 
8670 	if (fwrq->m == 0) {
8671 		IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8672 		mutex_lock(&priv->mutex);
8673 		ret = ipw_set_channel(priv, 0);
8674 		mutex_unlock(&priv->mutex);
8675 		return ret;
8676 	}
8677 	/* if setting by freq convert to channel */
8678 	if (fwrq->e == 1) {
8679 		channel = libipw_freq_to_channel(priv->ieee, fwrq->m);
8680 		if (channel == 0)
8681 			return -EINVAL;
8682 	} else
8683 		channel = fwrq->m;
8684 
8685 	if (!(band = libipw_is_valid_channel(priv->ieee, channel)))
8686 		return -EINVAL;
8687 
8688 	if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8689 		i = libipw_channel_to_index(priv->ieee, channel);
8690 		if (i == -1)
8691 			return -EINVAL;
8692 
8693 		flags = (band == LIBIPW_24GHZ_BAND) ?
8694 		    geo->bg[i].flags : geo->a[i].flags;
8695 		if (flags & LIBIPW_CH_PASSIVE_ONLY) {
8696 			IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8697 			return -EINVAL;
8698 		}
8699 	}
8700 
8701 	IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
8702 	mutex_lock(&priv->mutex);
8703 	ret = ipw_set_channel(priv, channel);
8704 	mutex_unlock(&priv->mutex);
8705 	return ret;
8706 }
8707 
8708 static int ipw_wx_get_freq(struct net_device *dev,
8709 			   struct iw_request_info *info,
8710 			   union iwreq_data *wrqu, char *extra)
8711 {
8712 	struct ipw_priv *priv = libipw_priv(dev);
8713 
8714 	wrqu->freq.e = 0;
8715 
8716 	/* If we are associated, trying to associate, or have a statically
8717 	 * configured CHANNEL then return that; otherwise return ANY */
8718 	mutex_lock(&priv->mutex);
8719 	if (priv->config & CFG_STATIC_CHANNEL ||
8720 	    priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8721 		int i;
8722 
8723 		i = libipw_channel_to_index(priv->ieee, priv->channel);
8724 		BUG_ON(i == -1);
8725 		wrqu->freq.e = 1;
8726 
8727 		switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
8728 		case LIBIPW_52GHZ_BAND:
8729 			wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8730 			break;
8731 
8732 		case LIBIPW_24GHZ_BAND:
8733 			wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8734 			break;
8735 
8736 		default:
8737 			BUG();
8738 		}
8739 	} else
8740 		wrqu->freq.m = 0;
8741 
8742 	mutex_unlock(&priv->mutex);
8743 	IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
8744 	return 0;
8745 }
8746 
8747 static int ipw_wx_set_mode(struct net_device *dev,
8748 			   struct iw_request_info *info,
8749 			   union iwreq_data *wrqu, char *extra)
8750 {
8751 	struct ipw_priv *priv = libipw_priv(dev);
8752 	int err = 0;
8753 
8754 	IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8755 
8756 	switch (wrqu->mode) {
8757 #ifdef CONFIG_IPW2200_MONITOR
8758 	case IW_MODE_MONITOR:
8759 #endif
8760 	case IW_MODE_ADHOC:
8761 	case IW_MODE_INFRA:
8762 		break;
8763 	case IW_MODE_AUTO:
8764 		wrqu->mode = IW_MODE_INFRA;
8765 		break;
8766 	default:
8767 		return -EINVAL;
8768 	}
8769 	if (wrqu->mode == priv->ieee->iw_mode)
8770 		return 0;
8771 
8772 	mutex_lock(&priv->mutex);
8773 
8774 	ipw_sw_reset(priv, 0);
8775 
8776 #ifdef CONFIG_IPW2200_MONITOR
8777 	if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8778 		priv->net_dev->type = ARPHRD_ETHER;
8779 
8780 	if (wrqu->mode == IW_MODE_MONITOR)
8781 #ifdef CONFIG_IPW2200_RADIOTAP
8782 		priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8783 #else
8784 		priv->net_dev->type = ARPHRD_IEEE80211;
8785 #endif
8786 #endif				/* CONFIG_IPW2200_MONITOR */
8787 
8788 	/* Free the existing firmware and reset the fw_loaded
8789 	 * flag so ipw_load() will bring in the new firmware */
8790 	free_firmware();
8791 
8792 	priv->ieee->iw_mode = wrqu->mode;
8793 
8794 	schedule_work(&priv->adapter_restart);
8795 	mutex_unlock(&priv->mutex);
8796 	return err;
8797 }
8798 
8799 static int ipw_wx_get_mode(struct net_device *dev,
8800 			   struct iw_request_info *info,
8801 			   union iwreq_data *wrqu, char *extra)
8802 {
8803 	struct ipw_priv *priv = libipw_priv(dev);
8804 	mutex_lock(&priv->mutex);
8805 	wrqu->mode = priv->ieee->iw_mode;
8806 	IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8807 	mutex_unlock(&priv->mutex);
8808 	return 0;
8809 }
8810 
8811 /* Values are in microsecond */
8812 static const s32 timeout_duration[] = {
8813 	350000,
8814 	250000,
8815 	75000,
8816 	37000,
8817 	25000,
8818 };
8819 
8820 static const s32 period_duration[] = {
8821 	400000,
8822 	700000,
8823 	1000000,
8824 	1000000,
8825 	1000000
8826 };
8827 
8828 static int ipw_wx_get_range(struct net_device *dev,
8829 			    struct iw_request_info *info,
8830 			    union iwreq_data *wrqu, char *extra)
8831 {
8832 	struct ipw_priv *priv = libipw_priv(dev);
8833 	struct iw_range *range = (struct iw_range *)extra;
8834 	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8835 	int i = 0, j;
8836 
8837 	wrqu->data.length = sizeof(*range);
8838 	memset(range, 0, sizeof(*range));
8839 
8840 	/* 54Mbs == ~27 Mb/s real (802.11g) */
8841 	range->throughput = 27 * 1000 * 1000;
8842 
8843 	range->max_qual.qual = 100;
8844 	/* TODO: Find real max RSSI and stick here */
8845 	range->max_qual.level = 0;
8846 	range->max_qual.noise = 0;
8847 	range->max_qual.updated = 7;	/* Updated all three */
8848 
8849 	range->avg_qual.qual = 70;
8850 	/* TODO: Find real 'good' to 'bad' threshold value for RSSI */
8851 	range->avg_qual.level = 0;	/* FIXME to real average level */
8852 	range->avg_qual.noise = 0;
8853 	range->avg_qual.updated = 7;	/* Updated all three */
8854 	mutex_lock(&priv->mutex);
8855 	range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8856 
8857 	for (i = 0; i < range->num_bitrates; i++)
8858 		range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8859 		    500000;
8860 
8861 	range->max_rts = DEFAULT_RTS_THRESHOLD;
8862 	range->min_frag = MIN_FRAG_THRESHOLD;
8863 	range->max_frag = MAX_FRAG_THRESHOLD;
8864 
8865 	range->encoding_size[0] = 5;
8866 	range->encoding_size[1] = 13;
8867 	range->num_encoding_sizes = 2;
8868 	range->max_encoding_tokens = WEP_KEYS;
8869 
8870 	/* Set the Wireless Extension versions */
8871 	range->we_version_compiled = WIRELESS_EXT;
8872 	range->we_version_source = 18;
8873 
8874 	i = 0;
8875 	if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8876 		for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8877 			if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8878 			    (geo->bg[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8879 				continue;
8880 
8881 			range->freq[i].i = geo->bg[j].channel;
8882 			range->freq[i].m = geo->bg[j].freq * 100000;
8883 			range->freq[i].e = 1;
8884 			i++;
8885 		}
8886 	}
8887 
8888 	if (priv->ieee->mode & IEEE_A) {
8889 		for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8890 			if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8891 			    (geo->a[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8892 				continue;
8893 
8894 			range->freq[i].i = geo->a[j].channel;
8895 			range->freq[i].m = geo->a[j].freq * 100000;
8896 			range->freq[i].e = 1;
8897 			i++;
8898 		}
8899 	}
8900 
8901 	range->num_channels = i;
8902 	range->num_frequency = i;
8903 
8904 	mutex_unlock(&priv->mutex);
8905 
8906 	/* Event capability (kernel + driver) */
8907 	range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8908 				IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8909 				IW_EVENT_CAPA_MASK(SIOCGIWAP) |
8910 				IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
8911 	range->event_capa[1] = IW_EVENT_CAPA_K_1;
8912 
8913 	range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
8914 		IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
8915 
8916 	range->scan_capa = IW_SCAN_CAPA_ESSID | IW_SCAN_CAPA_TYPE;
8917 
8918 	IPW_DEBUG_WX("GET Range\n");
8919 	return 0;
8920 }
8921 
8922 static int ipw_wx_set_wap(struct net_device *dev,
8923 			  struct iw_request_info *info,
8924 			  union iwreq_data *wrqu, char *extra)
8925 {
8926 	struct ipw_priv *priv = libipw_priv(dev);
8927 
8928 	if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8929 		return -EINVAL;
8930 	mutex_lock(&priv->mutex);
8931 	if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) ||
8932 	    is_zero_ether_addr(wrqu->ap_addr.sa_data)) {
8933 		/* we disable mandatory BSSID association */
8934 		IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
8935 		priv->config &= ~CFG_STATIC_BSSID;
8936 		IPW_DEBUG_ASSOC("Attempting to associate with new "
8937 				"parameters.\n");
8938 		ipw_associate(priv);
8939 		mutex_unlock(&priv->mutex);
8940 		return 0;
8941 	}
8942 
8943 	priv->config |= CFG_STATIC_BSSID;
8944 	if (ether_addr_equal(priv->bssid, wrqu->ap_addr.sa_data)) {
8945 		IPW_DEBUG_WX("BSSID set to current BSSID.\n");
8946 		mutex_unlock(&priv->mutex);
8947 		return 0;
8948 	}
8949 
8950 	IPW_DEBUG_WX("Setting mandatory BSSID to %pM\n",
8951 		     wrqu->ap_addr.sa_data);
8952 
8953 	memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
8954 
8955 	/* Network configuration changed -- force [re]association */
8956 	IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
8957 	if (!ipw_disassociate(priv))
8958 		ipw_associate(priv);
8959 
8960 	mutex_unlock(&priv->mutex);
8961 	return 0;
8962 }
8963 
8964 static int ipw_wx_get_wap(struct net_device *dev,
8965 			  struct iw_request_info *info,
8966 			  union iwreq_data *wrqu, char *extra)
8967 {
8968 	struct ipw_priv *priv = libipw_priv(dev);
8969 
8970 	/* If we are associated, trying to associate, or have a statically
8971 	 * configured BSSID then return that; otherwise return ANY */
8972 	mutex_lock(&priv->mutex);
8973 	if (priv->config & CFG_STATIC_BSSID ||
8974 	    priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8975 		wrqu->ap_addr.sa_family = ARPHRD_ETHER;
8976 		memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
8977 	} else
8978 		eth_zero_addr(wrqu->ap_addr.sa_data);
8979 
8980 	IPW_DEBUG_WX("Getting WAP BSSID: %pM\n",
8981 		     wrqu->ap_addr.sa_data);
8982 	mutex_unlock(&priv->mutex);
8983 	return 0;
8984 }
8985 
8986 static int ipw_wx_set_essid(struct net_device *dev,
8987 			    struct iw_request_info *info,
8988 			    union iwreq_data *wrqu, char *extra)
8989 {
8990 	struct ipw_priv *priv = libipw_priv(dev);
8991         int length;
8992 
8993         mutex_lock(&priv->mutex);
8994 
8995         if (!wrqu->essid.flags)
8996         {
8997                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
8998                 ipw_disassociate(priv);
8999                 priv->config &= ~CFG_STATIC_ESSID;
9000                 ipw_associate(priv);
9001                 mutex_unlock(&priv->mutex);
9002                 return 0;
9003         }
9004 
9005 	length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
9006 
9007 	priv->config |= CFG_STATIC_ESSID;
9008 
9009 	if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
9010 	    && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
9011 		IPW_DEBUG_WX("ESSID set to current ESSID.\n");
9012 		mutex_unlock(&priv->mutex);
9013 		return 0;
9014 	}
9015 
9016 	IPW_DEBUG_WX("Setting ESSID: '%*pE' (%d)\n", length, extra, length);
9017 
9018 	priv->essid_len = length;
9019 	memcpy(priv->essid, extra, priv->essid_len);
9020 
9021 	/* Network configuration changed -- force [re]association */
9022 	IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
9023 	if (!ipw_disassociate(priv))
9024 		ipw_associate(priv);
9025 
9026 	mutex_unlock(&priv->mutex);
9027 	return 0;
9028 }
9029 
9030 static int ipw_wx_get_essid(struct net_device *dev,
9031 			    struct iw_request_info *info,
9032 			    union iwreq_data *wrqu, char *extra)
9033 {
9034 	struct ipw_priv *priv = libipw_priv(dev);
9035 
9036 	/* If we are associated, trying to associate, or have a statically
9037 	 * configured ESSID then return that; otherwise return ANY */
9038 	mutex_lock(&priv->mutex);
9039 	if (priv->config & CFG_STATIC_ESSID ||
9040 	    priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9041 		IPW_DEBUG_WX("Getting essid: '%*pE'\n",
9042 			     priv->essid_len, priv->essid);
9043 		memcpy(extra, priv->essid, priv->essid_len);
9044 		wrqu->essid.length = priv->essid_len;
9045 		wrqu->essid.flags = 1;	/* active */
9046 	} else {
9047 		IPW_DEBUG_WX("Getting essid: ANY\n");
9048 		wrqu->essid.length = 0;
9049 		wrqu->essid.flags = 0;	/* active */
9050 	}
9051 	mutex_unlock(&priv->mutex);
9052 	return 0;
9053 }
9054 
9055 static int ipw_wx_set_nick(struct net_device *dev,
9056 			   struct iw_request_info *info,
9057 			   union iwreq_data *wrqu, char *extra)
9058 {
9059 	struct ipw_priv *priv = libipw_priv(dev);
9060 
9061 	IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
9062 	if (wrqu->data.length > IW_ESSID_MAX_SIZE)
9063 		return -E2BIG;
9064 	mutex_lock(&priv->mutex);
9065 	wrqu->data.length = min_t(size_t, wrqu->data.length, sizeof(priv->nick));
9066 	memset(priv->nick, 0, sizeof(priv->nick));
9067 	memcpy(priv->nick, extra, wrqu->data.length);
9068 	IPW_DEBUG_TRACE("<<\n");
9069 	mutex_unlock(&priv->mutex);
9070 	return 0;
9071 
9072 }
9073 
9074 static int ipw_wx_get_nick(struct net_device *dev,
9075 			   struct iw_request_info *info,
9076 			   union iwreq_data *wrqu, char *extra)
9077 {
9078 	struct ipw_priv *priv = libipw_priv(dev);
9079 	IPW_DEBUG_WX("Getting nick\n");
9080 	mutex_lock(&priv->mutex);
9081 	wrqu->data.length = strlen(priv->nick);
9082 	memcpy(extra, priv->nick, wrqu->data.length);
9083 	wrqu->data.flags = 1;	/* active */
9084 	mutex_unlock(&priv->mutex);
9085 	return 0;
9086 }
9087 
9088 static int ipw_wx_set_sens(struct net_device *dev,
9089 			    struct iw_request_info *info,
9090 			    union iwreq_data *wrqu, char *extra)
9091 {
9092 	struct ipw_priv *priv = libipw_priv(dev);
9093 	int err = 0;
9094 
9095 	IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
9096 	IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
9097 	mutex_lock(&priv->mutex);
9098 
9099 	if (wrqu->sens.fixed == 0)
9100 	{
9101 		priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
9102 		priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
9103 		goto out;
9104 	}
9105 	if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9106 	    (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9107 		err = -EINVAL;
9108 		goto out;
9109 	}
9110 
9111 	priv->roaming_threshold = wrqu->sens.value;
9112 	priv->disassociate_threshold = 3*wrqu->sens.value;
9113       out:
9114 	mutex_unlock(&priv->mutex);
9115 	return err;
9116 }
9117 
9118 static int ipw_wx_get_sens(struct net_device *dev,
9119 			    struct iw_request_info *info,
9120 			    union iwreq_data *wrqu, char *extra)
9121 {
9122 	struct ipw_priv *priv = libipw_priv(dev);
9123 	mutex_lock(&priv->mutex);
9124 	wrqu->sens.fixed = 1;
9125 	wrqu->sens.value = priv->roaming_threshold;
9126 	mutex_unlock(&priv->mutex);
9127 
9128 	IPW_DEBUG_WX("GET roaming threshold -> %s %d\n",
9129 		     wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9130 
9131 	return 0;
9132 }
9133 
9134 static int ipw_wx_set_rate(struct net_device *dev,
9135 			   struct iw_request_info *info,
9136 			   union iwreq_data *wrqu, char *extra)
9137 {
9138 	/* TODO: We should use semaphores or locks for access to priv */
9139 	struct ipw_priv *priv = libipw_priv(dev);
9140 	u32 target_rate = wrqu->bitrate.value;
9141 	u32 fixed, mask;
9142 
9143 	/* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9144 	/* value = X, fixed = 1 means only rate X */
9145 	/* value = X, fixed = 0 means all rates lower equal X */
9146 
9147 	if (target_rate == -1) {
9148 		fixed = 0;
9149 		mask = LIBIPW_DEFAULT_RATES_MASK;
9150 		/* Now we should reassociate */
9151 		goto apply;
9152 	}
9153 
9154 	mask = 0;
9155 	fixed = wrqu->bitrate.fixed;
9156 
9157 	if (target_rate == 1000000 || !fixed)
9158 		mask |= LIBIPW_CCK_RATE_1MB_MASK;
9159 	if (target_rate == 1000000)
9160 		goto apply;
9161 
9162 	if (target_rate == 2000000 || !fixed)
9163 		mask |= LIBIPW_CCK_RATE_2MB_MASK;
9164 	if (target_rate == 2000000)
9165 		goto apply;
9166 
9167 	if (target_rate == 5500000 || !fixed)
9168 		mask |= LIBIPW_CCK_RATE_5MB_MASK;
9169 	if (target_rate == 5500000)
9170 		goto apply;
9171 
9172 	if (target_rate == 6000000 || !fixed)
9173 		mask |= LIBIPW_OFDM_RATE_6MB_MASK;
9174 	if (target_rate == 6000000)
9175 		goto apply;
9176 
9177 	if (target_rate == 9000000 || !fixed)
9178 		mask |= LIBIPW_OFDM_RATE_9MB_MASK;
9179 	if (target_rate == 9000000)
9180 		goto apply;
9181 
9182 	if (target_rate == 11000000 || !fixed)
9183 		mask |= LIBIPW_CCK_RATE_11MB_MASK;
9184 	if (target_rate == 11000000)
9185 		goto apply;
9186 
9187 	if (target_rate == 12000000 || !fixed)
9188 		mask |= LIBIPW_OFDM_RATE_12MB_MASK;
9189 	if (target_rate == 12000000)
9190 		goto apply;
9191 
9192 	if (target_rate == 18000000 || !fixed)
9193 		mask |= LIBIPW_OFDM_RATE_18MB_MASK;
9194 	if (target_rate == 18000000)
9195 		goto apply;
9196 
9197 	if (target_rate == 24000000 || !fixed)
9198 		mask |= LIBIPW_OFDM_RATE_24MB_MASK;
9199 	if (target_rate == 24000000)
9200 		goto apply;
9201 
9202 	if (target_rate == 36000000 || !fixed)
9203 		mask |= LIBIPW_OFDM_RATE_36MB_MASK;
9204 	if (target_rate == 36000000)
9205 		goto apply;
9206 
9207 	if (target_rate == 48000000 || !fixed)
9208 		mask |= LIBIPW_OFDM_RATE_48MB_MASK;
9209 	if (target_rate == 48000000)
9210 		goto apply;
9211 
9212 	if (target_rate == 54000000 || !fixed)
9213 		mask |= LIBIPW_OFDM_RATE_54MB_MASK;
9214 	if (target_rate == 54000000)
9215 		goto apply;
9216 
9217 	IPW_DEBUG_WX("invalid rate specified, returning error\n");
9218 	return -EINVAL;
9219 
9220       apply:
9221 	IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9222 		     mask, fixed ? "fixed" : "sub-rates");
9223 	mutex_lock(&priv->mutex);
9224 	if (mask == LIBIPW_DEFAULT_RATES_MASK) {
9225 		priv->config &= ~CFG_FIXED_RATE;
9226 		ipw_set_fixed_rate(priv, priv->ieee->mode);
9227 	} else
9228 		priv->config |= CFG_FIXED_RATE;
9229 
9230 	if (priv->rates_mask == mask) {
9231 		IPW_DEBUG_WX("Mask set to current mask.\n");
9232 		mutex_unlock(&priv->mutex);
9233 		return 0;
9234 	}
9235 
9236 	priv->rates_mask = mask;
9237 
9238 	/* Network configuration changed -- force [re]association */
9239 	IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9240 	if (!ipw_disassociate(priv))
9241 		ipw_associate(priv);
9242 
9243 	mutex_unlock(&priv->mutex);
9244 	return 0;
9245 }
9246 
9247 static int ipw_wx_get_rate(struct net_device *dev,
9248 			   struct iw_request_info *info,
9249 			   union iwreq_data *wrqu, char *extra)
9250 {
9251 	struct ipw_priv *priv = libipw_priv(dev);
9252 	mutex_lock(&priv->mutex);
9253 	wrqu->bitrate.value = priv->last_rate;
9254 	wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9255 	mutex_unlock(&priv->mutex);
9256 	IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
9257 	return 0;
9258 }
9259 
9260 static int ipw_wx_set_rts(struct net_device *dev,
9261 			  struct iw_request_info *info,
9262 			  union iwreq_data *wrqu, char *extra)
9263 {
9264 	struct ipw_priv *priv = libipw_priv(dev);
9265 	mutex_lock(&priv->mutex);
9266 	if (wrqu->rts.disabled || !wrqu->rts.fixed)
9267 		priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9268 	else {
9269 		if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9270 		    wrqu->rts.value > MAX_RTS_THRESHOLD) {
9271 			mutex_unlock(&priv->mutex);
9272 			return -EINVAL;
9273 		}
9274 		priv->rts_threshold = wrqu->rts.value;
9275 	}
9276 
9277 	ipw_send_rts_threshold(priv, priv->rts_threshold);
9278 	mutex_unlock(&priv->mutex);
9279 	IPW_DEBUG_WX("SET RTS Threshold -> %d\n", priv->rts_threshold);
9280 	return 0;
9281 }
9282 
9283 static int ipw_wx_get_rts(struct net_device *dev,
9284 			  struct iw_request_info *info,
9285 			  union iwreq_data *wrqu, char *extra)
9286 {
9287 	struct ipw_priv *priv = libipw_priv(dev);
9288 	mutex_lock(&priv->mutex);
9289 	wrqu->rts.value = priv->rts_threshold;
9290 	wrqu->rts.fixed = 0;	/* no auto select */
9291 	wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9292 	mutex_unlock(&priv->mutex);
9293 	IPW_DEBUG_WX("GET RTS Threshold -> %d\n", wrqu->rts.value);
9294 	return 0;
9295 }
9296 
9297 static int ipw_wx_set_txpow(struct net_device *dev,
9298 			    struct iw_request_info *info,
9299 			    union iwreq_data *wrqu, char *extra)
9300 {
9301 	struct ipw_priv *priv = libipw_priv(dev);
9302 	int err = 0;
9303 
9304 	mutex_lock(&priv->mutex);
9305 	if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9306 		err = -EINPROGRESS;
9307 		goto out;
9308 	}
9309 
9310 	if (!wrqu->power.fixed)
9311 		wrqu->power.value = IPW_TX_POWER_DEFAULT;
9312 
9313 	if (wrqu->power.flags != IW_TXPOW_DBM) {
9314 		err = -EINVAL;
9315 		goto out;
9316 	}
9317 
9318 	if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9319 	    (wrqu->power.value < IPW_TX_POWER_MIN)) {
9320 		err = -EINVAL;
9321 		goto out;
9322 	}
9323 
9324 	priv->tx_power = wrqu->power.value;
9325 	err = ipw_set_tx_power(priv);
9326       out:
9327 	mutex_unlock(&priv->mutex);
9328 	return err;
9329 }
9330 
9331 static int ipw_wx_get_txpow(struct net_device *dev,
9332 			    struct iw_request_info *info,
9333 			    union iwreq_data *wrqu, char *extra)
9334 {
9335 	struct ipw_priv *priv = libipw_priv(dev);
9336 	mutex_lock(&priv->mutex);
9337 	wrqu->power.value = priv->tx_power;
9338 	wrqu->power.fixed = 1;
9339 	wrqu->power.flags = IW_TXPOW_DBM;
9340 	wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9341 	mutex_unlock(&priv->mutex);
9342 
9343 	IPW_DEBUG_WX("GET TX Power -> %s %d\n",
9344 		     wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9345 
9346 	return 0;
9347 }
9348 
9349 static int ipw_wx_set_frag(struct net_device *dev,
9350 			   struct iw_request_info *info,
9351 			   union iwreq_data *wrqu, char *extra)
9352 {
9353 	struct ipw_priv *priv = libipw_priv(dev);
9354 	mutex_lock(&priv->mutex);
9355 	if (wrqu->frag.disabled || !wrqu->frag.fixed)
9356 		priv->ieee->fts = DEFAULT_FTS;
9357 	else {
9358 		if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9359 		    wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9360 			mutex_unlock(&priv->mutex);
9361 			return -EINVAL;
9362 		}
9363 
9364 		priv->ieee->fts = wrqu->frag.value & ~0x1;
9365 	}
9366 
9367 	ipw_send_frag_threshold(priv, wrqu->frag.value);
9368 	mutex_unlock(&priv->mutex);
9369 	IPW_DEBUG_WX("SET Frag Threshold -> %d\n", wrqu->frag.value);
9370 	return 0;
9371 }
9372 
9373 static int ipw_wx_get_frag(struct net_device *dev,
9374 			   struct iw_request_info *info,
9375 			   union iwreq_data *wrqu, char *extra)
9376 {
9377 	struct ipw_priv *priv = libipw_priv(dev);
9378 	mutex_lock(&priv->mutex);
9379 	wrqu->frag.value = priv->ieee->fts;
9380 	wrqu->frag.fixed = 0;	/* no auto select */
9381 	wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9382 	mutex_unlock(&priv->mutex);
9383 	IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
9384 
9385 	return 0;
9386 }
9387 
9388 static int ipw_wx_set_retry(struct net_device *dev,
9389 			    struct iw_request_info *info,
9390 			    union iwreq_data *wrqu, char *extra)
9391 {
9392 	struct ipw_priv *priv = libipw_priv(dev);
9393 
9394 	if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9395 		return -EINVAL;
9396 
9397 	if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9398 		return 0;
9399 
9400 	if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9401 		return -EINVAL;
9402 
9403 	mutex_lock(&priv->mutex);
9404 	if (wrqu->retry.flags & IW_RETRY_SHORT)
9405 		priv->short_retry_limit = (u8) wrqu->retry.value;
9406 	else if (wrqu->retry.flags & IW_RETRY_LONG)
9407 		priv->long_retry_limit = (u8) wrqu->retry.value;
9408 	else {
9409 		priv->short_retry_limit = (u8) wrqu->retry.value;
9410 		priv->long_retry_limit = (u8) wrqu->retry.value;
9411 	}
9412 
9413 	ipw_send_retry_limit(priv, priv->short_retry_limit,
9414 			     priv->long_retry_limit);
9415 	mutex_unlock(&priv->mutex);
9416 	IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9417 		     priv->short_retry_limit, priv->long_retry_limit);
9418 	return 0;
9419 }
9420 
9421 static int ipw_wx_get_retry(struct net_device *dev,
9422 			    struct iw_request_info *info,
9423 			    union iwreq_data *wrqu, char *extra)
9424 {
9425 	struct ipw_priv *priv = libipw_priv(dev);
9426 
9427 	mutex_lock(&priv->mutex);
9428 	wrqu->retry.disabled = 0;
9429 
9430 	if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9431 		mutex_unlock(&priv->mutex);
9432 		return -EINVAL;
9433 	}
9434 
9435 	if (wrqu->retry.flags & IW_RETRY_LONG) {
9436 		wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9437 		wrqu->retry.value = priv->long_retry_limit;
9438 	} else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9439 		wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9440 		wrqu->retry.value = priv->short_retry_limit;
9441 	} else {
9442 		wrqu->retry.flags = IW_RETRY_LIMIT;
9443 		wrqu->retry.value = priv->short_retry_limit;
9444 	}
9445 	mutex_unlock(&priv->mutex);
9446 
9447 	IPW_DEBUG_WX("GET retry -> %d\n", wrqu->retry.value);
9448 
9449 	return 0;
9450 }
9451 
9452 static int ipw_wx_set_scan(struct net_device *dev,
9453 			   struct iw_request_info *info,
9454 			   union iwreq_data *wrqu, char *extra)
9455 {
9456 	struct ipw_priv *priv = libipw_priv(dev);
9457 	struct iw_scan_req *req = (struct iw_scan_req *)extra;
9458 	struct delayed_work *work = NULL;
9459 
9460 	mutex_lock(&priv->mutex);
9461 
9462 	priv->user_requested_scan = 1;
9463 
9464 	if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9465 		if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9466 			int len = min((int)req->essid_len,
9467 			              (int)sizeof(priv->direct_scan_ssid));
9468 			memcpy(priv->direct_scan_ssid, req->essid, len);
9469 			priv->direct_scan_ssid_len = len;
9470 			work = &priv->request_direct_scan;
9471 		} else if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9472 			work = &priv->request_passive_scan;
9473 		}
9474 	} else {
9475 		/* Normal active broadcast scan */
9476 		work = &priv->request_scan;
9477 	}
9478 
9479 	mutex_unlock(&priv->mutex);
9480 
9481 	IPW_DEBUG_WX("Start scan\n");
9482 
9483 	schedule_delayed_work(work, 0);
9484 
9485 	return 0;
9486 }
9487 
9488 static int ipw_wx_get_scan(struct net_device *dev,
9489 			   struct iw_request_info *info,
9490 			   union iwreq_data *wrqu, char *extra)
9491 {
9492 	struct ipw_priv *priv = libipw_priv(dev);
9493 	return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
9494 }
9495 
9496 static int ipw_wx_set_encode(struct net_device *dev,
9497 			     struct iw_request_info *info,
9498 			     union iwreq_data *wrqu, char *key)
9499 {
9500 	struct ipw_priv *priv = libipw_priv(dev);
9501 	int ret;
9502 	u32 cap = priv->capability;
9503 
9504 	mutex_lock(&priv->mutex);
9505 	ret = libipw_wx_set_encode(priv->ieee, info, wrqu, key);
9506 
9507 	/* In IBSS mode, we need to notify the firmware to update
9508 	 * the beacon info after we changed the capability. */
9509 	if (cap != priv->capability &&
9510 	    priv->ieee->iw_mode == IW_MODE_ADHOC &&
9511 	    priv->status & STATUS_ASSOCIATED)
9512 		ipw_disassociate(priv);
9513 
9514 	mutex_unlock(&priv->mutex);
9515 	return ret;
9516 }
9517 
9518 static int ipw_wx_get_encode(struct net_device *dev,
9519 			     struct iw_request_info *info,
9520 			     union iwreq_data *wrqu, char *key)
9521 {
9522 	struct ipw_priv *priv = libipw_priv(dev);
9523 	return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
9524 }
9525 
9526 static int ipw_wx_set_power(struct net_device *dev,
9527 			    struct iw_request_info *info,
9528 			    union iwreq_data *wrqu, char *extra)
9529 {
9530 	struct ipw_priv *priv = libipw_priv(dev);
9531 	int err;
9532 	mutex_lock(&priv->mutex);
9533 	if (wrqu->power.disabled) {
9534 		priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9535 		err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9536 		if (err) {
9537 			IPW_DEBUG_WX("failed setting power mode.\n");
9538 			mutex_unlock(&priv->mutex);
9539 			return err;
9540 		}
9541 		IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9542 		mutex_unlock(&priv->mutex);
9543 		return 0;
9544 	}
9545 
9546 	switch (wrqu->power.flags & IW_POWER_MODE) {
9547 	case IW_POWER_ON:	/* If not specified */
9548 	case IW_POWER_MODE:	/* If set all mask */
9549 	case IW_POWER_ALL_R:	/* If explicitly state all */
9550 		break;
9551 	default:		/* Otherwise we don't support it */
9552 		IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9553 			     wrqu->power.flags);
9554 		mutex_unlock(&priv->mutex);
9555 		return -EOPNOTSUPP;
9556 	}
9557 
9558 	/* If the user hasn't specified a power management mode yet, default
9559 	 * to BATTERY */
9560 	if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9561 		priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9562 	else
9563 		priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9564 
9565 	err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9566 	if (err) {
9567 		IPW_DEBUG_WX("failed setting power mode.\n");
9568 		mutex_unlock(&priv->mutex);
9569 		return err;
9570 	}
9571 
9572 	IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9573 	mutex_unlock(&priv->mutex);
9574 	return 0;
9575 }
9576 
9577 static int ipw_wx_get_power(struct net_device *dev,
9578 			    struct iw_request_info *info,
9579 			    union iwreq_data *wrqu, char *extra)
9580 {
9581 	struct ipw_priv *priv = libipw_priv(dev);
9582 	mutex_lock(&priv->mutex);
9583 	if (!(priv->power_mode & IPW_POWER_ENABLED))
9584 		wrqu->power.disabled = 1;
9585 	else
9586 		wrqu->power.disabled = 0;
9587 
9588 	mutex_unlock(&priv->mutex);
9589 	IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9590 
9591 	return 0;
9592 }
9593 
9594 static int ipw_wx_set_powermode(struct net_device *dev,
9595 				struct iw_request_info *info,
9596 				union iwreq_data *wrqu, char *extra)
9597 {
9598 	struct ipw_priv *priv = libipw_priv(dev);
9599 	int mode = *(int *)extra;
9600 	int err;
9601 
9602 	mutex_lock(&priv->mutex);
9603 	if ((mode < 1) || (mode > IPW_POWER_LIMIT))
9604 		mode = IPW_POWER_AC;
9605 
9606 	if (IPW_POWER_LEVEL(priv->power_mode) != mode) {
9607 		err = ipw_send_power_mode(priv, mode);
9608 		if (err) {
9609 			IPW_DEBUG_WX("failed setting power mode.\n");
9610 			mutex_unlock(&priv->mutex);
9611 			return err;
9612 		}
9613 		priv->power_mode = IPW_POWER_ENABLED | mode;
9614 	}
9615 	mutex_unlock(&priv->mutex);
9616 	return 0;
9617 }
9618 
9619 #define MAX_WX_STRING 80
9620 static int ipw_wx_get_powermode(struct net_device *dev,
9621 				struct iw_request_info *info,
9622 				union iwreq_data *wrqu, char *extra)
9623 {
9624 	struct ipw_priv *priv = libipw_priv(dev);
9625 	int level = IPW_POWER_LEVEL(priv->power_mode);
9626 	char *p = extra;
9627 
9628 	p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9629 
9630 	switch (level) {
9631 	case IPW_POWER_AC:
9632 		p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9633 		break;
9634 	case IPW_POWER_BATTERY:
9635 		p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9636 		break;
9637 	default:
9638 		p += snprintf(p, MAX_WX_STRING - (p - extra),
9639 			      "(Timeout %dms, Period %dms)",
9640 			      timeout_duration[level - 1] / 1000,
9641 			      period_duration[level - 1] / 1000);
9642 	}
9643 
9644 	if (!(priv->power_mode & IPW_POWER_ENABLED))
9645 		p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9646 
9647 	wrqu->data.length = p - extra + 1;
9648 
9649 	return 0;
9650 }
9651 
9652 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9653 				    struct iw_request_info *info,
9654 				    union iwreq_data *wrqu, char *extra)
9655 {
9656 	struct ipw_priv *priv = libipw_priv(dev);
9657 	int mode = *(int *)extra;
9658 	u8 band = 0, modulation = 0;
9659 
9660 	if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9661 		IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9662 		return -EINVAL;
9663 	}
9664 	mutex_lock(&priv->mutex);
9665 	if (priv->adapter == IPW_2915ABG) {
9666 		priv->ieee->abg_true = 1;
9667 		if (mode & IEEE_A) {
9668 			band |= LIBIPW_52GHZ_BAND;
9669 			modulation |= LIBIPW_OFDM_MODULATION;
9670 		} else
9671 			priv->ieee->abg_true = 0;
9672 	} else {
9673 		if (mode & IEEE_A) {
9674 			IPW_WARNING("Attempt to set 2200BG into "
9675 				    "802.11a mode\n");
9676 			mutex_unlock(&priv->mutex);
9677 			return -EINVAL;
9678 		}
9679 
9680 		priv->ieee->abg_true = 0;
9681 	}
9682 
9683 	if (mode & IEEE_B) {
9684 		band |= LIBIPW_24GHZ_BAND;
9685 		modulation |= LIBIPW_CCK_MODULATION;
9686 	} else
9687 		priv->ieee->abg_true = 0;
9688 
9689 	if (mode & IEEE_G) {
9690 		band |= LIBIPW_24GHZ_BAND;
9691 		modulation |= LIBIPW_OFDM_MODULATION;
9692 	} else
9693 		priv->ieee->abg_true = 0;
9694 
9695 	priv->ieee->mode = mode;
9696 	priv->ieee->freq_band = band;
9697 	priv->ieee->modulation = modulation;
9698 	init_supported_rates(priv, &priv->rates);
9699 
9700 	/* Network configuration changed -- force [re]association */
9701 	IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9702 	if (!ipw_disassociate(priv)) {
9703 		ipw_send_supported_rates(priv, &priv->rates);
9704 		ipw_associate(priv);
9705 	}
9706 
9707 	/* Update the band LEDs */
9708 	ipw_led_band_on(priv);
9709 
9710 	IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9711 		     mode & IEEE_A ? 'a' : '.',
9712 		     mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9713 	mutex_unlock(&priv->mutex);
9714 	return 0;
9715 }
9716 
9717 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9718 				    struct iw_request_info *info,
9719 				    union iwreq_data *wrqu, char *extra)
9720 {
9721 	struct ipw_priv *priv = libipw_priv(dev);
9722 	mutex_lock(&priv->mutex);
9723 	switch (priv->ieee->mode) {
9724 	case IEEE_A:
9725 		strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9726 		break;
9727 	case IEEE_B:
9728 		strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9729 		break;
9730 	case IEEE_A | IEEE_B:
9731 		strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9732 		break;
9733 	case IEEE_G:
9734 		strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9735 		break;
9736 	case IEEE_A | IEEE_G:
9737 		strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9738 		break;
9739 	case IEEE_B | IEEE_G:
9740 		strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9741 		break;
9742 	case IEEE_A | IEEE_B | IEEE_G:
9743 		strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9744 		break;
9745 	default:
9746 		strncpy(extra, "unknown", MAX_WX_STRING);
9747 		break;
9748 	}
9749 	extra[MAX_WX_STRING - 1] = '\0';
9750 
9751 	IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9752 
9753 	wrqu->data.length = strlen(extra) + 1;
9754 	mutex_unlock(&priv->mutex);
9755 
9756 	return 0;
9757 }
9758 
9759 static int ipw_wx_set_preamble(struct net_device *dev,
9760 			       struct iw_request_info *info,
9761 			       union iwreq_data *wrqu, char *extra)
9762 {
9763 	struct ipw_priv *priv = libipw_priv(dev);
9764 	int mode = *(int *)extra;
9765 	mutex_lock(&priv->mutex);
9766 	/* Switching from SHORT -> LONG requires a disassociation */
9767 	if (mode == 1) {
9768 		if (!(priv->config & CFG_PREAMBLE_LONG)) {
9769 			priv->config |= CFG_PREAMBLE_LONG;
9770 
9771 			/* Network configuration changed -- force [re]association */
9772 			IPW_DEBUG_ASSOC
9773 			    ("[re]association triggered due to preamble change.\n");
9774 			if (!ipw_disassociate(priv))
9775 				ipw_associate(priv);
9776 		}
9777 		goto done;
9778 	}
9779 
9780 	if (mode == 0) {
9781 		priv->config &= ~CFG_PREAMBLE_LONG;
9782 		goto done;
9783 	}
9784 	mutex_unlock(&priv->mutex);
9785 	return -EINVAL;
9786 
9787       done:
9788 	mutex_unlock(&priv->mutex);
9789 	return 0;
9790 }
9791 
9792 static int ipw_wx_get_preamble(struct net_device *dev,
9793 			       struct iw_request_info *info,
9794 			       union iwreq_data *wrqu, char *extra)
9795 {
9796 	struct ipw_priv *priv = libipw_priv(dev);
9797 	mutex_lock(&priv->mutex);
9798 	if (priv->config & CFG_PREAMBLE_LONG)
9799 		snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9800 	else
9801 		snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9802 	mutex_unlock(&priv->mutex);
9803 	return 0;
9804 }
9805 
9806 #ifdef CONFIG_IPW2200_MONITOR
9807 static int ipw_wx_set_monitor(struct net_device *dev,
9808 			      struct iw_request_info *info,
9809 			      union iwreq_data *wrqu, char *extra)
9810 {
9811 	struct ipw_priv *priv = libipw_priv(dev);
9812 	int *parms = (int *)extra;
9813 	int enable = (parms[0] > 0);
9814 	mutex_lock(&priv->mutex);
9815 	IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9816 	if (enable) {
9817 		if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9818 #ifdef CONFIG_IPW2200_RADIOTAP
9819 			priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9820 #else
9821 			priv->net_dev->type = ARPHRD_IEEE80211;
9822 #endif
9823 			schedule_work(&priv->adapter_restart);
9824 		}
9825 
9826 		ipw_set_channel(priv, parms[1]);
9827 	} else {
9828 		if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9829 			mutex_unlock(&priv->mutex);
9830 			return 0;
9831 		}
9832 		priv->net_dev->type = ARPHRD_ETHER;
9833 		schedule_work(&priv->adapter_restart);
9834 	}
9835 	mutex_unlock(&priv->mutex);
9836 	return 0;
9837 }
9838 
9839 #endif				/* CONFIG_IPW2200_MONITOR */
9840 
9841 static int ipw_wx_reset(struct net_device *dev,
9842 			struct iw_request_info *info,
9843 			union iwreq_data *wrqu, char *extra)
9844 {
9845 	struct ipw_priv *priv = libipw_priv(dev);
9846 	IPW_DEBUG_WX("RESET\n");
9847 	schedule_work(&priv->adapter_restart);
9848 	return 0;
9849 }
9850 
9851 static int ipw_wx_sw_reset(struct net_device *dev,
9852 			   struct iw_request_info *info,
9853 			   union iwreq_data *wrqu, char *extra)
9854 {
9855 	struct ipw_priv *priv = libipw_priv(dev);
9856 	union iwreq_data wrqu_sec = {
9857 		.encoding = {
9858 			     .flags = IW_ENCODE_DISABLED,
9859 			     },
9860 	};
9861 	int ret;
9862 
9863 	IPW_DEBUG_WX("SW_RESET\n");
9864 
9865 	mutex_lock(&priv->mutex);
9866 
9867 	ret = ipw_sw_reset(priv, 2);
9868 	if (!ret) {
9869 		free_firmware();
9870 		ipw_adapter_restart(priv);
9871 	}
9872 
9873 	/* The SW reset bit might have been toggled on by the 'disable'
9874 	 * module parameter, so take appropriate action */
9875 	ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9876 
9877 	mutex_unlock(&priv->mutex);
9878 	libipw_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9879 	mutex_lock(&priv->mutex);
9880 
9881 	if (!(priv->status & STATUS_RF_KILL_MASK)) {
9882 		/* Configuration likely changed -- force [re]association */
9883 		IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9884 				"reset.\n");
9885 		if (!ipw_disassociate(priv))
9886 			ipw_associate(priv);
9887 	}
9888 
9889 	mutex_unlock(&priv->mutex);
9890 
9891 	return 0;
9892 }
9893 
9894 /* Rebase the WE IOCTLs to zero for the handler array */
9895 static iw_handler ipw_wx_handlers[] = {
9896 	IW_HANDLER(SIOCGIWNAME, (iw_handler)cfg80211_wext_giwname),
9897 	IW_HANDLER(SIOCSIWFREQ, ipw_wx_set_freq),
9898 	IW_HANDLER(SIOCGIWFREQ, ipw_wx_get_freq),
9899 	IW_HANDLER(SIOCSIWMODE, ipw_wx_set_mode),
9900 	IW_HANDLER(SIOCGIWMODE, ipw_wx_get_mode),
9901 	IW_HANDLER(SIOCSIWSENS, ipw_wx_set_sens),
9902 	IW_HANDLER(SIOCGIWSENS, ipw_wx_get_sens),
9903 	IW_HANDLER(SIOCGIWRANGE, ipw_wx_get_range),
9904 	IW_HANDLER(SIOCSIWAP, ipw_wx_set_wap),
9905 	IW_HANDLER(SIOCGIWAP, ipw_wx_get_wap),
9906 	IW_HANDLER(SIOCSIWSCAN, ipw_wx_set_scan),
9907 	IW_HANDLER(SIOCGIWSCAN, ipw_wx_get_scan),
9908 	IW_HANDLER(SIOCSIWESSID, ipw_wx_set_essid),
9909 	IW_HANDLER(SIOCGIWESSID, ipw_wx_get_essid),
9910 	IW_HANDLER(SIOCSIWNICKN, ipw_wx_set_nick),
9911 	IW_HANDLER(SIOCGIWNICKN, ipw_wx_get_nick),
9912 	IW_HANDLER(SIOCSIWRATE, ipw_wx_set_rate),
9913 	IW_HANDLER(SIOCGIWRATE, ipw_wx_get_rate),
9914 	IW_HANDLER(SIOCSIWRTS, ipw_wx_set_rts),
9915 	IW_HANDLER(SIOCGIWRTS, ipw_wx_get_rts),
9916 	IW_HANDLER(SIOCSIWFRAG, ipw_wx_set_frag),
9917 	IW_HANDLER(SIOCGIWFRAG, ipw_wx_get_frag),
9918 	IW_HANDLER(SIOCSIWTXPOW, ipw_wx_set_txpow),
9919 	IW_HANDLER(SIOCGIWTXPOW, ipw_wx_get_txpow),
9920 	IW_HANDLER(SIOCSIWRETRY, ipw_wx_set_retry),
9921 	IW_HANDLER(SIOCGIWRETRY, ipw_wx_get_retry),
9922 	IW_HANDLER(SIOCSIWENCODE, ipw_wx_set_encode),
9923 	IW_HANDLER(SIOCGIWENCODE, ipw_wx_get_encode),
9924 	IW_HANDLER(SIOCSIWPOWER, ipw_wx_set_power),
9925 	IW_HANDLER(SIOCGIWPOWER, ipw_wx_get_power),
9926 	IW_HANDLER(SIOCSIWSPY, iw_handler_set_spy),
9927 	IW_HANDLER(SIOCGIWSPY, iw_handler_get_spy),
9928 	IW_HANDLER(SIOCSIWTHRSPY, iw_handler_set_thrspy),
9929 	IW_HANDLER(SIOCGIWTHRSPY, iw_handler_get_thrspy),
9930 	IW_HANDLER(SIOCSIWGENIE, ipw_wx_set_genie),
9931 	IW_HANDLER(SIOCGIWGENIE, ipw_wx_get_genie),
9932 	IW_HANDLER(SIOCSIWMLME, ipw_wx_set_mlme),
9933 	IW_HANDLER(SIOCSIWAUTH, ipw_wx_set_auth),
9934 	IW_HANDLER(SIOCGIWAUTH, ipw_wx_get_auth),
9935 	IW_HANDLER(SIOCSIWENCODEEXT, ipw_wx_set_encodeext),
9936 	IW_HANDLER(SIOCGIWENCODEEXT, ipw_wx_get_encodeext),
9937 };
9938 
9939 enum {
9940 	IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
9941 	IPW_PRIV_GET_POWER,
9942 	IPW_PRIV_SET_MODE,
9943 	IPW_PRIV_GET_MODE,
9944 	IPW_PRIV_SET_PREAMBLE,
9945 	IPW_PRIV_GET_PREAMBLE,
9946 	IPW_PRIV_RESET,
9947 	IPW_PRIV_SW_RESET,
9948 #ifdef CONFIG_IPW2200_MONITOR
9949 	IPW_PRIV_SET_MONITOR,
9950 #endif
9951 };
9952 
9953 static struct iw_priv_args ipw_priv_args[] = {
9954 	{
9955 	 .cmd = IPW_PRIV_SET_POWER,
9956 	 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9957 	 .name = "set_power"},
9958 	{
9959 	 .cmd = IPW_PRIV_GET_POWER,
9960 	 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9961 	 .name = "get_power"},
9962 	{
9963 	 .cmd = IPW_PRIV_SET_MODE,
9964 	 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9965 	 .name = "set_mode"},
9966 	{
9967 	 .cmd = IPW_PRIV_GET_MODE,
9968 	 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9969 	 .name = "get_mode"},
9970 	{
9971 	 .cmd = IPW_PRIV_SET_PREAMBLE,
9972 	 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9973 	 .name = "set_preamble"},
9974 	{
9975 	 .cmd = IPW_PRIV_GET_PREAMBLE,
9976 	 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
9977 	 .name = "get_preamble"},
9978 	{
9979 	 IPW_PRIV_RESET,
9980 	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
9981 	{
9982 	 IPW_PRIV_SW_RESET,
9983 	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
9984 #ifdef CONFIG_IPW2200_MONITOR
9985 	{
9986 	 IPW_PRIV_SET_MONITOR,
9987 	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
9988 #endif				/* CONFIG_IPW2200_MONITOR */
9989 };
9990 
9991 static iw_handler ipw_priv_handler[] = {
9992 	ipw_wx_set_powermode,
9993 	ipw_wx_get_powermode,
9994 	ipw_wx_set_wireless_mode,
9995 	ipw_wx_get_wireless_mode,
9996 	ipw_wx_set_preamble,
9997 	ipw_wx_get_preamble,
9998 	ipw_wx_reset,
9999 	ipw_wx_sw_reset,
10000 #ifdef CONFIG_IPW2200_MONITOR
10001 	ipw_wx_set_monitor,
10002 #endif
10003 };
10004 
10005 static const struct iw_handler_def ipw_wx_handler_def = {
10006 	.standard = ipw_wx_handlers,
10007 	.num_standard = ARRAY_SIZE(ipw_wx_handlers),
10008 	.num_private = ARRAY_SIZE(ipw_priv_handler),
10009 	.num_private_args = ARRAY_SIZE(ipw_priv_args),
10010 	.private = ipw_priv_handler,
10011 	.private_args = ipw_priv_args,
10012 	.get_wireless_stats = ipw_get_wireless_stats,
10013 };
10014 
10015 /*
10016  * Get wireless statistics.
10017  * Called by /proc/net/wireless
10018  * Also called by SIOCGIWSTATS
10019  */
10020 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
10021 {
10022 	struct ipw_priv *priv = libipw_priv(dev);
10023 	struct iw_statistics *wstats;
10024 
10025 	wstats = &priv->wstats;
10026 
10027 	/* if hw is disabled, then ipw_get_ordinal() can't be called.
10028 	 * netdev->get_wireless_stats seems to be called before fw is
10029 	 * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
10030 	 * and associated; if not associcated, the values are all meaningless
10031 	 * anyway, so set them all to NULL and INVALID */
10032 	if (!(priv->status & STATUS_ASSOCIATED)) {
10033 		wstats->miss.beacon = 0;
10034 		wstats->discard.retries = 0;
10035 		wstats->qual.qual = 0;
10036 		wstats->qual.level = 0;
10037 		wstats->qual.noise = 0;
10038 		wstats->qual.updated = 7;
10039 		wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
10040 		    IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
10041 		return wstats;
10042 	}
10043 
10044 	wstats->qual.qual = priv->quality;
10045 	wstats->qual.level = priv->exp_avg_rssi;
10046 	wstats->qual.noise = priv->exp_avg_noise;
10047 	wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
10048 	    IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
10049 
10050 	wstats->miss.beacon = average_value(&priv->average_missed_beacons);
10051 	wstats->discard.retries = priv->last_tx_failures;
10052 	wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
10053 
10054 /*	if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10055 	goto fail_get_ordinal;
10056 	wstats->discard.retries += tx_retry; */
10057 
10058 	return wstats;
10059 }
10060 
10061 /* net device stuff */
10062 
10063 static  void init_sys_config(struct ipw_sys_config *sys_config)
10064 {
10065 	memset(sys_config, 0, sizeof(struct ipw_sys_config));
10066 	sys_config->bt_coexistence = 0;
10067 	sys_config->answer_broadcast_ssid_probe = 0;
10068 	sys_config->accept_all_data_frames = 0;
10069 	sys_config->accept_non_directed_frames = 1;
10070 	sys_config->exclude_unicast_unencrypted = 0;
10071 	sys_config->disable_unicast_decryption = 1;
10072 	sys_config->exclude_multicast_unencrypted = 0;
10073 	sys_config->disable_multicast_decryption = 1;
10074 	if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10075 		antenna = CFG_SYS_ANTENNA_BOTH;
10076 	sys_config->antenna_diversity = antenna;
10077 	sys_config->pass_crc_to_host = 0;	/* TODO: See if 1 gives us FCS */
10078 	sys_config->dot11g_auto_detection = 0;
10079 	sys_config->enable_cts_to_self = 0;
10080 	sys_config->bt_coexist_collision_thr = 0;
10081 	sys_config->pass_noise_stats_to_host = 1;	/* 1 -- fix for 256 */
10082 	sys_config->silence_threshold = 0x1e;
10083 }
10084 
10085 static int ipw_net_open(struct net_device *dev)
10086 {
10087 	IPW_DEBUG_INFO("dev->open\n");
10088 	netif_start_queue(dev);
10089 	return 0;
10090 }
10091 
10092 static int ipw_net_stop(struct net_device *dev)
10093 {
10094 	IPW_DEBUG_INFO("dev->close\n");
10095 	netif_stop_queue(dev);
10096 	return 0;
10097 }
10098 
10099 /*
10100 todo:
10101 
10102 modify to send one tfd per fragment instead of using chunking.  otherwise
10103 we need to heavily modify the libipw_skb_to_txb.
10104 */
10105 
10106 static int ipw_tx_skb(struct ipw_priv *priv, struct libipw_txb *txb,
10107 			     int pri)
10108 {
10109 	struct libipw_hdr_3addrqos *hdr = (struct libipw_hdr_3addrqos *)
10110 	    txb->fragments[0]->data;
10111 	int i = 0;
10112 	struct tfd_frame *tfd;
10113 #ifdef CONFIG_IPW2200_QOS
10114 	int tx_id = ipw_get_tx_queue_number(priv, pri);
10115 	struct clx2_tx_queue *txq = &priv->txq[tx_id];
10116 #else
10117 	struct clx2_tx_queue *txq = &priv->txq[0];
10118 #endif
10119 	struct clx2_queue *q = &txq->q;
10120 	u8 id, hdr_len, unicast;
10121 	int fc;
10122 
10123 	if (!(priv->status & STATUS_ASSOCIATED))
10124 		goto drop;
10125 
10126 	hdr_len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10127 	switch (priv->ieee->iw_mode) {
10128 	case IW_MODE_ADHOC:
10129 		unicast = !is_multicast_ether_addr(hdr->addr1);
10130 		id = ipw_find_station(priv, hdr->addr1);
10131 		if (id == IPW_INVALID_STATION) {
10132 			id = ipw_add_station(priv, hdr->addr1);
10133 			if (id == IPW_INVALID_STATION) {
10134 				IPW_WARNING("Attempt to send data to "
10135 					    "invalid cell: %pM\n",
10136 					    hdr->addr1);
10137 				goto drop;
10138 			}
10139 		}
10140 		break;
10141 
10142 	case IW_MODE_INFRA:
10143 	default:
10144 		unicast = !is_multicast_ether_addr(hdr->addr3);
10145 		id = 0;
10146 		break;
10147 	}
10148 
10149 	tfd = &txq->bd[q->first_empty];
10150 	txq->txb[q->first_empty] = txb;
10151 	memset(tfd, 0, sizeof(*tfd));
10152 	tfd->u.data.station_number = id;
10153 
10154 	tfd->control_flags.message_type = TX_FRAME_TYPE;
10155 	tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10156 
10157 	tfd->u.data.cmd_id = DINO_CMD_TX;
10158 	tfd->u.data.len = cpu_to_le16(txb->payload_size);
10159 
10160 	if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10161 		tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10162 	else
10163 		tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10164 
10165 	if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10166 		tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10167 
10168 	fc = le16_to_cpu(hdr->frame_ctl);
10169 	hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10170 
10171 	memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10172 
10173 	if (likely(unicast))
10174 		tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10175 
10176 	if (txb->encrypted && !priv->ieee->host_encrypt) {
10177 		switch (priv->ieee->sec.level) {
10178 		case SEC_LEVEL_3:
10179 			tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10180 			    cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10181 			/* XXX: ACK flag must be set for CCMP even if it
10182 			 * is a multicast/broadcast packet, because CCMP
10183 			 * group communication encrypted by GTK is
10184 			 * actually done by the AP. */
10185 			if (!unicast)
10186 				tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10187 
10188 			tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10189 			tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10190 			tfd->u.data.key_index = 0;
10191 			tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10192 			break;
10193 		case SEC_LEVEL_2:
10194 			tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10195 			    cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10196 			tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10197 			tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10198 			tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10199 			break;
10200 		case SEC_LEVEL_1:
10201 			tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10202 			    cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10203 			tfd->u.data.key_index = priv->ieee->crypt_info.tx_keyidx;
10204 			if (priv->ieee->sec.key_sizes[priv->ieee->crypt_info.tx_keyidx] <=
10205 			    40)
10206 				tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10207 			else
10208 				tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10209 			break;
10210 		case SEC_LEVEL_0:
10211 			break;
10212 		default:
10213 			printk(KERN_ERR "Unknown security level %d\n",
10214 			       priv->ieee->sec.level);
10215 			break;
10216 		}
10217 	} else
10218 		/* No hardware encryption */
10219 		tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10220 
10221 #ifdef CONFIG_IPW2200_QOS
10222 	if (fc & IEEE80211_STYPE_QOS_DATA)
10223 		ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10224 #endif				/* CONFIG_IPW2200_QOS */
10225 
10226 	/* payload */
10227 	tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10228 						 txb->nr_frags));
10229 	IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10230 		       txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10231 	for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10232 		IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10233 			       i, le32_to_cpu(tfd->u.data.num_chunks),
10234 			       txb->fragments[i]->len - hdr_len);
10235 		IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10236 			     i, tfd->u.data.num_chunks,
10237 			     txb->fragments[i]->len - hdr_len);
10238 		printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10239 			   txb->fragments[i]->len - hdr_len);
10240 
10241 		tfd->u.data.chunk_ptr[i] =
10242 		    cpu_to_le32(pci_map_single
10243 				(priv->pci_dev,
10244 				 txb->fragments[i]->data + hdr_len,
10245 				 txb->fragments[i]->len - hdr_len,
10246 				 PCI_DMA_TODEVICE));
10247 		tfd->u.data.chunk_len[i] =
10248 		    cpu_to_le16(txb->fragments[i]->len - hdr_len);
10249 	}
10250 
10251 	if (i != txb->nr_frags) {
10252 		struct sk_buff *skb;
10253 		u16 remaining_bytes = 0;
10254 		int j;
10255 
10256 		for (j = i; j < txb->nr_frags; j++)
10257 			remaining_bytes += txb->fragments[j]->len - hdr_len;
10258 
10259 		printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10260 		       remaining_bytes);
10261 		skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10262 		if (skb != NULL) {
10263 			tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10264 			for (j = i; j < txb->nr_frags; j++) {
10265 				int size = txb->fragments[j]->len - hdr_len;
10266 
10267 				printk(KERN_INFO "Adding frag %d %d...\n",
10268 				       j, size);
10269 				skb_put_data(skb,
10270 					     txb->fragments[j]->data + hdr_len,
10271 					     size);
10272 			}
10273 			dev_kfree_skb_any(txb->fragments[i]);
10274 			txb->fragments[i] = skb;
10275 			tfd->u.data.chunk_ptr[i] =
10276 			    cpu_to_le32(pci_map_single
10277 					(priv->pci_dev, skb->data,
10278 					 remaining_bytes,
10279 					 PCI_DMA_TODEVICE));
10280 
10281 			le32_add_cpu(&tfd->u.data.num_chunks, 1);
10282 		}
10283 	}
10284 
10285 	/* kick DMA */
10286 	q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10287 	ipw_write32(priv, q->reg_w, q->first_empty);
10288 
10289 	if (ipw_tx_queue_space(q) < q->high_mark)
10290 		netif_stop_queue(priv->net_dev);
10291 
10292 	return NETDEV_TX_OK;
10293 
10294       drop:
10295 	IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10296 	libipw_txb_free(txb);
10297 	return NETDEV_TX_OK;
10298 }
10299 
10300 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10301 {
10302 	struct ipw_priv *priv = libipw_priv(dev);
10303 #ifdef CONFIG_IPW2200_QOS
10304 	int tx_id = ipw_get_tx_queue_number(priv, pri);
10305 	struct clx2_tx_queue *txq = &priv->txq[tx_id];
10306 #else
10307 	struct clx2_tx_queue *txq = &priv->txq[0];
10308 #endif				/* CONFIG_IPW2200_QOS */
10309 
10310 	if (ipw_tx_queue_space(&txq->q) < txq->q.high_mark)
10311 		return 1;
10312 
10313 	return 0;
10314 }
10315 
10316 #ifdef CONFIG_IPW2200_PROMISCUOUS
10317 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10318 				      struct libipw_txb *txb)
10319 {
10320 	struct libipw_rx_stats dummystats;
10321 	struct ieee80211_hdr *hdr;
10322 	u8 n;
10323 	u16 filter = priv->prom_priv->filter;
10324 	int hdr_only = 0;
10325 
10326 	if (filter & IPW_PROM_NO_TX)
10327 		return;
10328 
10329 	memset(&dummystats, 0, sizeof(dummystats));
10330 
10331 	/* Filtering of fragment chains is done against the first fragment */
10332 	hdr = (void *)txb->fragments[0]->data;
10333 	if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
10334 		if (filter & IPW_PROM_NO_MGMT)
10335 			return;
10336 		if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10337 			hdr_only = 1;
10338 	} else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
10339 		if (filter & IPW_PROM_NO_CTL)
10340 			return;
10341 		if (filter & IPW_PROM_CTL_HEADER_ONLY)
10342 			hdr_only = 1;
10343 	} else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
10344 		if (filter & IPW_PROM_NO_DATA)
10345 			return;
10346 		if (filter & IPW_PROM_DATA_HEADER_ONLY)
10347 			hdr_only = 1;
10348 	}
10349 
10350 	for(n=0; n<txb->nr_frags; ++n) {
10351 		struct sk_buff *src = txb->fragments[n];
10352 		struct sk_buff *dst;
10353 		struct ieee80211_radiotap_header *rt_hdr;
10354 		int len;
10355 
10356 		if (hdr_only) {
10357 			hdr = (void *)src->data;
10358 			len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
10359 		} else
10360 			len = src->len;
10361 
10362 		dst = alloc_skb(len + sizeof(*rt_hdr) + sizeof(u16)*2, GFP_ATOMIC);
10363 		if (!dst)
10364 			continue;
10365 
10366 		rt_hdr = skb_put(dst, sizeof(*rt_hdr));
10367 
10368 		rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10369 		rt_hdr->it_pad = 0;
10370 		rt_hdr->it_present = 0; /* after all, it's just an idea */
10371 		rt_hdr->it_present |=  cpu_to_le32(1 << IEEE80211_RADIOTAP_CHANNEL);
10372 
10373 		*(__le16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10374 			ieee80211chan2mhz(priv->channel));
10375 		if (priv->channel > 14) 	/* 802.11a */
10376 			*(__le16*)skb_put(dst, sizeof(u16)) =
10377 				cpu_to_le16(IEEE80211_CHAN_OFDM |
10378 					     IEEE80211_CHAN_5GHZ);
10379 		else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10380 			*(__le16*)skb_put(dst, sizeof(u16)) =
10381 				cpu_to_le16(IEEE80211_CHAN_CCK |
10382 					     IEEE80211_CHAN_2GHZ);
10383 		else 		/* 802.11g */
10384 			*(__le16*)skb_put(dst, sizeof(u16)) =
10385 				cpu_to_le16(IEEE80211_CHAN_OFDM |
10386 				 IEEE80211_CHAN_2GHZ);
10387 
10388 		rt_hdr->it_len = cpu_to_le16(dst->len);
10389 
10390 		skb_copy_from_linear_data(src, skb_put(dst, len), len);
10391 
10392 		if (!libipw_rx(priv->prom_priv->ieee, dst, &dummystats))
10393 			dev_kfree_skb_any(dst);
10394 	}
10395 }
10396 #endif
10397 
10398 static netdev_tx_t ipw_net_hard_start_xmit(struct libipw_txb *txb,
10399 					   struct net_device *dev, int pri)
10400 {
10401 	struct ipw_priv *priv = libipw_priv(dev);
10402 	unsigned long flags;
10403 	netdev_tx_t ret;
10404 
10405 	IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10406 	spin_lock_irqsave(&priv->lock, flags);
10407 
10408 #ifdef CONFIG_IPW2200_PROMISCUOUS
10409 	if (rtap_iface && netif_running(priv->prom_net_dev))
10410 		ipw_handle_promiscuous_tx(priv, txb);
10411 #endif
10412 
10413 	ret = ipw_tx_skb(priv, txb, pri);
10414 	if (ret == NETDEV_TX_OK)
10415 		__ipw_led_activity_on(priv);
10416 	spin_unlock_irqrestore(&priv->lock, flags);
10417 
10418 	return ret;
10419 }
10420 
10421 static void ipw_net_set_multicast_list(struct net_device *dev)
10422 {
10423 
10424 }
10425 
10426 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10427 {
10428 	struct ipw_priv *priv = libipw_priv(dev);
10429 	struct sockaddr *addr = p;
10430 
10431 	if (!is_valid_ether_addr(addr->sa_data))
10432 		return -EADDRNOTAVAIL;
10433 	mutex_lock(&priv->mutex);
10434 	priv->config |= CFG_CUSTOM_MAC;
10435 	memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10436 	printk(KERN_INFO "%s: Setting MAC to %pM\n",
10437 	       priv->net_dev->name, priv->mac_addr);
10438 	schedule_work(&priv->adapter_restart);
10439 	mutex_unlock(&priv->mutex);
10440 	return 0;
10441 }
10442 
10443 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10444 				    struct ethtool_drvinfo *info)
10445 {
10446 	struct ipw_priv *p = libipw_priv(dev);
10447 	char vers[64];
10448 	char date[32];
10449 	u32 len;
10450 
10451 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
10452 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
10453 
10454 	len = sizeof(vers);
10455 	ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10456 	len = sizeof(date);
10457 	ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10458 
10459 	snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10460 		 vers, date);
10461 	strlcpy(info->bus_info, pci_name(p->pci_dev),
10462 		sizeof(info->bus_info));
10463 }
10464 
10465 static u32 ipw_ethtool_get_link(struct net_device *dev)
10466 {
10467 	struct ipw_priv *priv = libipw_priv(dev);
10468 	return (priv->status & STATUS_ASSOCIATED) != 0;
10469 }
10470 
10471 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10472 {
10473 	return IPW_EEPROM_IMAGE_SIZE;
10474 }
10475 
10476 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10477 				  struct ethtool_eeprom *eeprom, u8 * bytes)
10478 {
10479 	struct ipw_priv *p = libipw_priv(dev);
10480 
10481 	if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10482 		return -EINVAL;
10483 	mutex_lock(&p->mutex);
10484 	memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10485 	mutex_unlock(&p->mutex);
10486 	return 0;
10487 }
10488 
10489 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10490 				  struct ethtool_eeprom *eeprom, u8 * bytes)
10491 {
10492 	struct ipw_priv *p = libipw_priv(dev);
10493 	int i;
10494 
10495 	if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10496 		return -EINVAL;
10497 	mutex_lock(&p->mutex);
10498 	memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10499 	for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10500 		ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10501 	mutex_unlock(&p->mutex);
10502 	return 0;
10503 }
10504 
10505 static const struct ethtool_ops ipw_ethtool_ops = {
10506 	.get_link = ipw_ethtool_get_link,
10507 	.get_drvinfo = ipw_ethtool_get_drvinfo,
10508 	.get_eeprom_len = ipw_ethtool_get_eeprom_len,
10509 	.get_eeprom = ipw_ethtool_get_eeprom,
10510 	.set_eeprom = ipw_ethtool_set_eeprom,
10511 };
10512 
10513 static irqreturn_t ipw_isr(int irq, void *data)
10514 {
10515 	struct ipw_priv *priv = data;
10516 	u32 inta, inta_mask;
10517 
10518 	if (!priv)
10519 		return IRQ_NONE;
10520 
10521 	spin_lock(&priv->irq_lock);
10522 
10523 	if (!(priv->status & STATUS_INT_ENABLED)) {
10524 		/* IRQ is disabled */
10525 		goto none;
10526 	}
10527 
10528 	inta = ipw_read32(priv, IPW_INTA_RW);
10529 	inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10530 
10531 	if (inta == 0xFFFFFFFF) {
10532 		/* Hardware disappeared */
10533 		IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10534 		goto none;
10535 	}
10536 
10537 	if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10538 		/* Shared interrupt */
10539 		goto none;
10540 	}
10541 
10542 	/* tell the device to stop sending interrupts */
10543 	__ipw_disable_interrupts(priv);
10544 
10545 	/* ack current interrupts */
10546 	inta &= (IPW_INTA_MASK_ALL & inta_mask);
10547 	ipw_write32(priv, IPW_INTA_RW, inta);
10548 
10549 	/* Cache INTA value for our tasklet */
10550 	priv->isr_inta = inta;
10551 
10552 	tasklet_schedule(&priv->irq_tasklet);
10553 
10554 	spin_unlock(&priv->irq_lock);
10555 
10556 	return IRQ_HANDLED;
10557       none:
10558 	spin_unlock(&priv->irq_lock);
10559 	return IRQ_NONE;
10560 }
10561 
10562 static void ipw_rf_kill(void *adapter)
10563 {
10564 	struct ipw_priv *priv = adapter;
10565 	unsigned long flags;
10566 
10567 	spin_lock_irqsave(&priv->lock, flags);
10568 
10569 	if (rf_kill_active(priv)) {
10570 		IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10571 		schedule_delayed_work(&priv->rf_kill, 2 * HZ);
10572 		goto exit_unlock;
10573 	}
10574 
10575 	/* RF Kill is now disabled, so bring the device back up */
10576 
10577 	if (!(priv->status & STATUS_RF_KILL_MASK)) {
10578 		IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10579 				  "device\n");
10580 
10581 		/* we can not do an adapter restart while inside an irq lock */
10582 		schedule_work(&priv->adapter_restart);
10583 	} else
10584 		IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
10585 				  "enabled\n");
10586 
10587       exit_unlock:
10588 	spin_unlock_irqrestore(&priv->lock, flags);
10589 }
10590 
10591 static void ipw_bg_rf_kill(struct work_struct *work)
10592 {
10593 	struct ipw_priv *priv =
10594 		container_of(work, struct ipw_priv, rf_kill.work);
10595 	mutex_lock(&priv->mutex);
10596 	ipw_rf_kill(priv);
10597 	mutex_unlock(&priv->mutex);
10598 }
10599 
10600 static void ipw_link_up(struct ipw_priv *priv)
10601 {
10602 	priv->last_seq_num = -1;
10603 	priv->last_frag_num = -1;
10604 	priv->last_packet_time = 0;
10605 
10606 	netif_carrier_on(priv->net_dev);
10607 
10608 	cancel_delayed_work(&priv->request_scan);
10609 	cancel_delayed_work(&priv->request_direct_scan);
10610 	cancel_delayed_work(&priv->request_passive_scan);
10611 	cancel_delayed_work(&priv->scan_event);
10612 	ipw_reset_stats(priv);
10613 	/* Ensure the rate is updated immediately */
10614 	priv->last_rate = ipw_get_current_rate(priv);
10615 	ipw_gather_stats(priv);
10616 	ipw_led_link_up(priv);
10617 	notify_wx_assoc_event(priv);
10618 
10619 	if (priv->config & CFG_BACKGROUND_SCAN)
10620 		schedule_delayed_work(&priv->request_scan, HZ);
10621 }
10622 
10623 static void ipw_bg_link_up(struct work_struct *work)
10624 {
10625 	struct ipw_priv *priv =
10626 		container_of(work, struct ipw_priv, link_up);
10627 	mutex_lock(&priv->mutex);
10628 	ipw_link_up(priv);
10629 	mutex_unlock(&priv->mutex);
10630 }
10631 
10632 static void ipw_link_down(struct ipw_priv *priv)
10633 {
10634 	ipw_led_link_down(priv);
10635 	netif_carrier_off(priv->net_dev);
10636 	notify_wx_assoc_event(priv);
10637 
10638 	/* Cancel any queued work ... */
10639 	cancel_delayed_work(&priv->request_scan);
10640 	cancel_delayed_work(&priv->request_direct_scan);
10641 	cancel_delayed_work(&priv->request_passive_scan);
10642 	cancel_delayed_work(&priv->adhoc_check);
10643 	cancel_delayed_work(&priv->gather_stats);
10644 
10645 	ipw_reset_stats(priv);
10646 
10647 	if (!(priv->status & STATUS_EXIT_PENDING)) {
10648 		/* Queue up another scan... */
10649 		schedule_delayed_work(&priv->request_scan, 0);
10650 	} else
10651 		cancel_delayed_work(&priv->scan_event);
10652 }
10653 
10654 static void ipw_bg_link_down(struct work_struct *work)
10655 {
10656 	struct ipw_priv *priv =
10657 		container_of(work, struct ipw_priv, link_down);
10658 	mutex_lock(&priv->mutex);
10659 	ipw_link_down(priv);
10660 	mutex_unlock(&priv->mutex);
10661 }
10662 
10663 static int ipw_setup_deferred_work(struct ipw_priv *priv)
10664 {
10665 	int ret = 0;
10666 
10667 	init_waitqueue_head(&priv->wait_command_queue);
10668 	init_waitqueue_head(&priv->wait_state);
10669 
10670 	INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10671 	INIT_WORK(&priv->associate, ipw_bg_associate);
10672 	INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10673 	INIT_WORK(&priv->system_config, ipw_system_config);
10674 	INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10675 	INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10676 	INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10677 	INIT_WORK(&priv->up, ipw_bg_up);
10678 	INIT_WORK(&priv->down, ipw_bg_down);
10679 	INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10680 	INIT_DELAYED_WORK(&priv->request_direct_scan, ipw_request_direct_scan);
10681 	INIT_DELAYED_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10682 	INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event);
10683 	INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10684 	INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10685 	INIT_WORK(&priv->roam, ipw_bg_roam);
10686 	INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10687 	INIT_WORK(&priv->link_up, ipw_bg_link_up);
10688 	INIT_WORK(&priv->link_down, ipw_bg_link_down);
10689 	INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10690 	INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10691 	INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10692 	INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10693 
10694 #ifdef CONFIG_IPW2200_QOS
10695 	INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10696 #endif				/* CONFIG_IPW2200_QOS */
10697 
10698 	tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10699 		     ipw_irq_tasklet, (unsigned long)priv);
10700 
10701 	return ret;
10702 }
10703 
10704 static void shim__set_security(struct net_device *dev,
10705 			       struct libipw_security *sec)
10706 {
10707 	struct ipw_priv *priv = libipw_priv(dev);
10708 	int i;
10709 	for (i = 0; i < 4; i++) {
10710 		if (sec->flags & (1 << i)) {
10711 			priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10712 			priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10713 			if (sec->key_sizes[i] == 0)
10714 				priv->ieee->sec.flags &= ~(1 << i);
10715 			else {
10716 				memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10717 				       sec->key_sizes[i]);
10718 				priv->ieee->sec.flags |= (1 << i);
10719 			}
10720 			priv->status |= STATUS_SECURITY_UPDATED;
10721 		} else if (sec->level != SEC_LEVEL_1)
10722 			priv->ieee->sec.flags &= ~(1 << i);
10723 	}
10724 
10725 	if (sec->flags & SEC_ACTIVE_KEY) {
10726 		if (sec->active_key <= 3) {
10727 			priv->ieee->sec.active_key = sec->active_key;
10728 			priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10729 		} else
10730 			priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10731 		priv->status |= STATUS_SECURITY_UPDATED;
10732 	} else
10733 		priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10734 
10735 	if ((sec->flags & SEC_AUTH_MODE) &&
10736 	    (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10737 		priv->ieee->sec.auth_mode = sec->auth_mode;
10738 		priv->ieee->sec.flags |= SEC_AUTH_MODE;
10739 		if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10740 			priv->capability |= CAP_SHARED_KEY;
10741 		else
10742 			priv->capability &= ~CAP_SHARED_KEY;
10743 		priv->status |= STATUS_SECURITY_UPDATED;
10744 	}
10745 
10746 	if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10747 		priv->ieee->sec.flags |= SEC_ENABLED;
10748 		priv->ieee->sec.enabled = sec->enabled;
10749 		priv->status |= STATUS_SECURITY_UPDATED;
10750 		if (sec->enabled)
10751 			priv->capability |= CAP_PRIVACY_ON;
10752 		else
10753 			priv->capability &= ~CAP_PRIVACY_ON;
10754 	}
10755 
10756 	if (sec->flags & SEC_ENCRYPT)
10757 		priv->ieee->sec.encrypt = sec->encrypt;
10758 
10759 	if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10760 		priv->ieee->sec.level = sec->level;
10761 		priv->ieee->sec.flags |= SEC_LEVEL;
10762 		priv->status |= STATUS_SECURITY_UPDATED;
10763 	}
10764 
10765 	if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10766 		ipw_set_hwcrypto_keys(priv);
10767 
10768 	/* To match current functionality of ipw2100 (which works well w/
10769 	 * various supplicants, we don't force a disassociate if the
10770 	 * privacy capability changes ... */
10771 #if 0
10772 	if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10773 	    (((priv->assoc_request.capability &
10774 	       cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && !sec->enabled) ||
10775 	     (!(priv->assoc_request.capability &
10776 		cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && sec->enabled))) {
10777 		IPW_DEBUG_ASSOC("Disassociating due to capability "
10778 				"change.\n");
10779 		ipw_disassociate(priv);
10780 	}
10781 #endif
10782 }
10783 
10784 static int init_supported_rates(struct ipw_priv *priv,
10785 				struct ipw_supported_rates *rates)
10786 {
10787 	/* TODO: Mask out rates based on priv->rates_mask */
10788 
10789 	memset(rates, 0, sizeof(*rates));
10790 	/* configure supported rates */
10791 	switch (priv->ieee->freq_band) {
10792 	case LIBIPW_52GHZ_BAND:
10793 		rates->ieee_mode = IPW_A_MODE;
10794 		rates->purpose = IPW_RATE_CAPABILITIES;
10795 		ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10796 					LIBIPW_OFDM_DEFAULT_RATES_MASK);
10797 		break;
10798 
10799 	default:		/* Mixed or 2.4Ghz */
10800 		rates->ieee_mode = IPW_G_MODE;
10801 		rates->purpose = IPW_RATE_CAPABILITIES;
10802 		ipw_add_cck_scan_rates(rates, LIBIPW_CCK_MODULATION,
10803 				       LIBIPW_CCK_DEFAULT_RATES_MASK);
10804 		if (priv->ieee->modulation & LIBIPW_OFDM_MODULATION) {
10805 			ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10806 						LIBIPW_OFDM_DEFAULT_RATES_MASK);
10807 		}
10808 		break;
10809 	}
10810 
10811 	return 0;
10812 }
10813 
10814 static int ipw_config(struct ipw_priv *priv)
10815 {
10816 	/* This is only called from ipw_up, which resets/reloads the firmware
10817 	   so, we don't need to first disable the card before we configure
10818 	   it */
10819 	if (ipw_set_tx_power(priv))
10820 		goto error;
10821 
10822 	/* initialize adapter address */
10823 	if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10824 		goto error;
10825 
10826 	/* set basic system config settings */
10827 	init_sys_config(&priv->sys_config);
10828 
10829 	/* Support Bluetooth if we have BT h/w on board, and user wants to.
10830 	 * Does not support BT priority yet (don't abort or defer our Tx) */
10831 	if (bt_coexist) {
10832 		unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10833 
10834 		if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10835 			priv->sys_config.bt_coexistence
10836 			    |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10837 		if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10838 			priv->sys_config.bt_coexistence
10839 			    |= CFG_BT_COEXISTENCE_OOB;
10840 	}
10841 
10842 #ifdef CONFIG_IPW2200_PROMISCUOUS
10843 	if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10844 		priv->sys_config.accept_all_data_frames = 1;
10845 		priv->sys_config.accept_non_directed_frames = 1;
10846 		priv->sys_config.accept_all_mgmt_bcpr = 1;
10847 		priv->sys_config.accept_all_mgmt_frames = 1;
10848 	}
10849 #endif
10850 
10851 	if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10852 		priv->sys_config.answer_broadcast_ssid_probe = 1;
10853 	else
10854 		priv->sys_config.answer_broadcast_ssid_probe = 0;
10855 
10856 	if (ipw_send_system_config(priv))
10857 		goto error;
10858 
10859 	init_supported_rates(priv, &priv->rates);
10860 	if (ipw_send_supported_rates(priv, &priv->rates))
10861 		goto error;
10862 
10863 	/* Set request-to-send threshold */
10864 	if (priv->rts_threshold) {
10865 		if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10866 			goto error;
10867 	}
10868 #ifdef CONFIG_IPW2200_QOS
10869 	IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10870 	ipw_qos_activate(priv, NULL);
10871 #endif				/* CONFIG_IPW2200_QOS */
10872 
10873 	if (ipw_set_random_seed(priv))
10874 		goto error;
10875 
10876 	/* final state transition to the RUN state */
10877 	if (ipw_send_host_complete(priv))
10878 		goto error;
10879 
10880 	priv->status |= STATUS_INIT;
10881 
10882 	ipw_led_init(priv);
10883 	ipw_led_radio_on(priv);
10884 	priv->notif_missed_beacons = 0;
10885 
10886 	/* Set hardware WEP key if it is configured. */
10887 	if ((priv->capability & CAP_PRIVACY_ON) &&
10888 	    (priv->ieee->sec.level == SEC_LEVEL_1) &&
10889 	    !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10890 		ipw_set_hwcrypto_keys(priv);
10891 
10892 	return 0;
10893 
10894       error:
10895 	return -EIO;
10896 }
10897 
10898 /*
10899  * NOTE:
10900  *
10901  * These tables have been tested in conjunction with the
10902  * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10903  *
10904  * Altering this values, using it on other hardware, or in geographies
10905  * not intended for resale of the above mentioned Intel adapters has
10906  * not been tested.
10907  *
10908  * Remember to update the table in README.ipw2200 when changing this
10909  * table.
10910  *
10911  */
10912 static const struct libipw_geo ipw_geos[] = {
10913 	{			/* Restricted */
10914 	 "---",
10915 	 .bg_channels = 11,
10916 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10917 		{2427, 4}, {2432, 5}, {2437, 6},
10918 		{2442, 7}, {2447, 8}, {2452, 9},
10919 		{2457, 10}, {2462, 11}},
10920 	 },
10921 
10922 	{			/* Custom US/Canada */
10923 	 "ZZF",
10924 	 .bg_channels = 11,
10925 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10926 		{2427, 4}, {2432, 5}, {2437, 6},
10927 		{2442, 7}, {2447, 8}, {2452, 9},
10928 		{2457, 10}, {2462, 11}},
10929 	 .a_channels = 8,
10930 	 .a = {{5180, 36},
10931 	       {5200, 40},
10932 	       {5220, 44},
10933 	       {5240, 48},
10934 	       {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10935 	       {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10936 	       {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10937 	       {5320, 64, LIBIPW_CH_PASSIVE_ONLY}},
10938 	 },
10939 
10940 	{			/* Rest of World */
10941 	 "ZZD",
10942 	 .bg_channels = 13,
10943 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10944 		{2427, 4}, {2432, 5}, {2437, 6},
10945 		{2442, 7}, {2447, 8}, {2452, 9},
10946 		{2457, 10}, {2462, 11}, {2467, 12},
10947 		{2472, 13}},
10948 	 },
10949 
10950 	{			/* Custom USA & Europe & High */
10951 	 "ZZA",
10952 	 .bg_channels = 11,
10953 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10954 		{2427, 4}, {2432, 5}, {2437, 6},
10955 		{2442, 7}, {2447, 8}, {2452, 9},
10956 		{2457, 10}, {2462, 11}},
10957 	 .a_channels = 13,
10958 	 .a = {{5180, 36},
10959 	       {5200, 40},
10960 	       {5220, 44},
10961 	       {5240, 48},
10962 	       {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10963 	       {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10964 	       {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10965 	       {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
10966 	       {5745, 149},
10967 	       {5765, 153},
10968 	       {5785, 157},
10969 	       {5805, 161},
10970 	       {5825, 165}},
10971 	 },
10972 
10973 	{			/* Custom NA & Europe */
10974 	 "ZZB",
10975 	 .bg_channels = 11,
10976 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10977 		{2427, 4}, {2432, 5}, {2437, 6},
10978 		{2442, 7}, {2447, 8}, {2452, 9},
10979 		{2457, 10}, {2462, 11}},
10980 	 .a_channels = 13,
10981 	 .a = {{5180, 36},
10982 	       {5200, 40},
10983 	       {5220, 44},
10984 	       {5240, 48},
10985 	       {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10986 	       {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10987 	       {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10988 	       {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
10989 	       {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
10990 	       {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
10991 	       {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
10992 	       {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
10993 	       {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
10994 	 },
10995 
10996 	{			/* Custom Japan */
10997 	 "ZZC",
10998 	 .bg_channels = 11,
10999 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11000 		{2427, 4}, {2432, 5}, {2437, 6},
11001 		{2442, 7}, {2447, 8}, {2452, 9},
11002 		{2457, 10}, {2462, 11}},
11003 	 .a_channels = 4,
11004 	 .a = {{5170, 34}, {5190, 38},
11005 	       {5210, 42}, {5230, 46}},
11006 	 },
11007 
11008 	{			/* Custom */
11009 	 "ZZM",
11010 	 .bg_channels = 11,
11011 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11012 		{2427, 4}, {2432, 5}, {2437, 6},
11013 		{2442, 7}, {2447, 8}, {2452, 9},
11014 		{2457, 10}, {2462, 11}},
11015 	 },
11016 
11017 	{			/* Europe */
11018 	 "ZZE",
11019 	 .bg_channels = 13,
11020 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11021 		{2427, 4}, {2432, 5}, {2437, 6},
11022 		{2442, 7}, {2447, 8}, {2452, 9},
11023 		{2457, 10}, {2462, 11}, {2467, 12},
11024 		{2472, 13}},
11025 	 .a_channels = 19,
11026 	 .a = {{5180, 36},
11027 	       {5200, 40},
11028 	       {5220, 44},
11029 	       {5240, 48},
11030 	       {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11031 	       {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11032 	       {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11033 	       {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11034 	       {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11035 	       {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11036 	       {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11037 	       {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11038 	       {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11039 	       {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11040 	       {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11041 	       {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11042 	       {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11043 	       {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11044 	       {5700, 140, LIBIPW_CH_PASSIVE_ONLY}},
11045 	 },
11046 
11047 	{			/* Custom Japan */
11048 	 "ZZJ",
11049 	 .bg_channels = 14,
11050 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11051 		{2427, 4}, {2432, 5}, {2437, 6},
11052 		{2442, 7}, {2447, 8}, {2452, 9},
11053 		{2457, 10}, {2462, 11}, {2467, 12},
11054 		{2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY}},
11055 	 .a_channels = 4,
11056 	 .a = {{5170, 34}, {5190, 38},
11057 	       {5210, 42}, {5230, 46}},
11058 	 },
11059 
11060 	{			/* Rest of World */
11061 	 "ZZR",
11062 	 .bg_channels = 14,
11063 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11064 		{2427, 4}, {2432, 5}, {2437, 6},
11065 		{2442, 7}, {2447, 8}, {2452, 9},
11066 		{2457, 10}, {2462, 11}, {2467, 12},
11067 		{2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY |
11068 			     LIBIPW_CH_PASSIVE_ONLY}},
11069 	 },
11070 
11071 	{			/* High Band */
11072 	 "ZZH",
11073 	 .bg_channels = 13,
11074 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11075 		{2427, 4}, {2432, 5}, {2437, 6},
11076 		{2442, 7}, {2447, 8}, {2452, 9},
11077 		{2457, 10}, {2462, 11},
11078 		{2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11079 		{2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11080 	 .a_channels = 4,
11081 	 .a = {{5745, 149}, {5765, 153},
11082 	       {5785, 157}, {5805, 161}},
11083 	 },
11084 
11085 	{			/* Custom Europe */
11086 	 "ZZG",
11087 	 .bg_channels = 13,
11088 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11089 		{2427, 4}, {2432, 5}, {2437, 6},
11090 		{2442, 7}, {2447, 8}, {2452, 9},
11091 		{2457, 10}, {2462, 11},
11092 		{2467, 12}, {2472, 13}},
11093 	 .a_channels = 4,
11094 	 .a = {{5180, 36}, {5200, 40},
11095 	       {5220, 44}, {5240, 48}},
11096 	 },
11097 
11098 	{			/* Europe */
11099 	 "ZZK",
11100 	 .bg_channels = 13,
11101 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11102 		{2427, 4}, {2432, 5}, {2437, 6},
11103 		{2442, 7}, {2447, 8}, {2452, 9},
11104 		{2457, 10}, {2462, 11},
11105 		{2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11106 		{2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11107 	 .a_channels = 24,
11108 	 .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11109 	       {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11110 	       {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11111 	       {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11112 	       {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11113 	       {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11114 	       {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11115 	       {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11116 	       {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11117 	       {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11118 	       {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11119 	       {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11120 	       {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11121 	       {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11122 	       {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11123 	       {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11124 	       {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11125 	       {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11126 	       {5700, 140, LIBIPW_CH_PASSIVE_ONLY},
11127 	       {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11128 	       {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11129 	       {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11130 	       {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11131 	       {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11132 	 },
11133 
11134 	{			/* Europe */
11135 	 "ZZL",
11136 	 .bg_channels = 11,
11137 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11138 		{2427, 4}, {2432, 5}, {2437, 6},
11139 		{2442, 7}, {2447, 8}, {2452, 9},
11140 		{2457, 10}, {2462, 11}},
11141 	 .a_channels = 13,
11142 	 .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11143 	       {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11144 	       {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11145 	       {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11146 	       {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11147 	       {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11148 	       {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11149 	       {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11150 	       {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11151 	       {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11152 	       {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11153 	       {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11154 	       {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11155 	 }
11156 };
11157 
11158 static void ipw_set_geo(struct ipw_priv *priv)
11159 {
11160 	int j;
11161 
11162 	for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11163 		if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11164 			    ipw_geos[j].name, 3))
11165 			break;
11166 	}
11167 
11168 	if (j == ARRAY_SIZE(ipw_geos)) {
11169 		IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11170 			    priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11171 			    priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11172 			    priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11173 		j = 0;
11174 	}
11175 
11176 	libipw_set_geo(priv->ieee, &ipw_geos[j]);
11177 }
11178 
11179 #define MAX_HW_RESTARTS 5
11180 static int ipw_up(struct ipw_priv *priv)
11181 {
11182 	int rc, i;
11183 
11184 	/* Age scan list entries found before suspend */
11185 	if (priv->suspend_time) {
11186 		libipw_networks_age(priv->ieee, priv->suspend_time);
11187 		priv->suspend_time = 0;
11188 	}
11189 
11190 	if (priv->status & STATUS_EXIT_PENDING)
11191 		return -EIO;
11192 
11193 	if (cmdlog && !priv->cmdlog) {
11194 		priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
11195 				       GFP_KERNEL);
11196 		if (priv->cmdlog == NULL) {
11197 			IPW_ERROR("Error allocating %d command log entries.\n",
11198 				  cmdlog);
11199 			return -ENOMEM;
11200 		} else {
11201 			priv->cmdlog_len = cmdlog;
11202 		}
11203 	}
11204 
11205 	for (i = 0; i < MAX_HW_RESTARTS; i++) {
11206 		/* Load the microcode, firmware, and eeprom.
11207 		 * Also start the clocks. */
11208 		rc = ipw_load(priv);
11209 		if (rc) {
11210 			IPW_ERROR("Unable to load firmware: %d\n", rc);
11211 			return rc;
11212 		}
11213 
11214 		ipw_init_ordinals(priv);
11215 		if (!(priv->config & CFG_CUSTOM_MAC))
11216 			eeprom_parse_mac(priv, priv->mac_addr);
11217 		memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11218 
11219 		ipw_set_geo(priv);
11220 
11221 		if (priv->status & STATUS_RF_KILL_SW) {
11222 			IPW_WARNING("Radio disabled by module parameter.\n");
11223 			return 0;
11224 		} else if (rf_kill_active(priv)) {
11225 			IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11226 				    "Kill switch must be turned off for "
11227 				    "wireless networking to work.\n");
11228 			schedule_delayed_work(&priv->rf_kill, 2 * HZ);
11229 			return 0;
11230 		}
11231 
11232 		rc = ipw_config(priv);
11233 		if (!rc) {
11234 			IPW_DEBUG_INFO("Configured device on count %i\n", i);
11235 
11236 			/* If configure to try and auto-associate, kick
11237 			 * off a scan. */
11238 			schedule_delayed_work(&priv->request_scan, 0);
11239 
11240 			return 0;
11241 		}
11242 
11243 		IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11244 		IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11245 			       i, MAX_HW_RESTARTS);
11246 
11247 		/* We had an error bringing up the hardware, so take it
11248 		 * all the way back down so we can try again */
11249 		ipw_down(priv);
11250 	}
11251 
11252 	/* tried to restart and config the device for as long as our
11253 	 * patience could withstand */
11254 	IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11255 
11256 	return -EIO;
11257 }
11258 
11259 static void ipw_bg_up(struct work_struct *work)
11260 {
11261 	struct ipw_priv *priv =
11262 		container_of(work, struct ipw_priv, up);
11263 	mutex_lock(&priv->mutex);
11264 	ipw_up(priv);
11265 	mutex_unlock(&priv->mutex);
11266 }
11267 
11268 static void ipw_deinit(struct ipw_priv *priv)
11269 {
11270 	int i;
11271 
11272 	if (priv->status & STATUS_SCANNING) {
11273 		IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11274 		ipw_abort_scan(priv);
11275 	}
11276 
11277 	if (priv->status & STATUS_ASSOCIATED) {
11278 		IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11279 		ipw_disassociate(priv);
11280 	}
11281 
11282 	ipw_led_shutdown(priv);
11283 
11284 	/* Wait up to 1s for status to change to not scanning and not
11285 	 * associated (disassociation can take a while for a ful 802.11
11286 	 * exchange */
11287 	for (i = 1000; i && (priv->status &
11288 			     (STATUS_DISASSOCIATING |
11289 			      STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11290 		udelay(10);
11291 
11292 	if (priv->status & (STATUS_DISASSOCIATING |
11293 			    STATUS_ASSOCIATED | STATUS_SCANNING))
11294 		IPW_DEBUG_INFO("Still associated or scanning...\n");
11295 	else
11296 		IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11297 
11298 	/* Attempt to disable the card */
11299 	ipw_send_card_disable(priv, 0);
11300 
11301 	priv->status &= ~STATUS_INIT;
11302 }
11303 
11304 static void ipw_down(struct ipw_priv *priv)
11305 {
11306 	int exit_pending = priv->status & STATUS_EXIT_PENDING;
11307 
11308 	priv->status |= STATUS_EXIT_PENDING;
11309 
11310 	if (ipw_is_init(priv))
11311 		ipw_deinit(priv);
11312 
11313 	/* Wipe out the EXIT_PENDING status bit if we are not actually
11314 	 * exiting the module */
11315 	if (!exit_pending)
11316 		priv->status &= ~STATUS_EXIT_PENDING;
11317 
11318 	/* tell the device to stop sending interrupts */
11319 	ipw_disable_interrupts(priv);
11320 
11321 	/* Clear all bits but the RF Kill */
11322 	priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11323 	netif_carrier_off(priv->net_dev);
11324 
11325 	ipw_stop_nic(priv);
11326 
11327 	ipw_led_radio_off(priv);
11328 }
11329 
11330 static void ipw_bg_down(struct work_struct *work)
11331 {
11332 	struct ipw_priv *priv =
11333 		container_of(work, struct ipw_priv, down);
11334 	mutex_lock(&priv->mutex);
11335 	ipw_down(priv);
11336 	mutex_unlock(&priv->mutex);
11337 }
11338 
11339 static int ipw_wdev_init(struct net_device *dev)
11340 {
11341 	int i, rc = 0;
11342 	struct ipw_priv *priv = libipw_priv(dev);
11343 	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
11344 	struct wireless_dev *wdev = &priv->ieee->wdev;
11345 
11346 	memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
11347 
11348 	/* fill-out priv->ieee->bg_band */
11349 	if (geo->bg_channels) {
11350 		struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
11351 
11352 		bg_band->band = NL80211_BAND_2GHZ;
11353 		bg_band->n_channels = geo->bg_channels;
11354 		bg_band->channels = kcalloc(geo->bg_channels,
11355 					    sizeof(struct ieee80211_channel),
11356 					    GFP_KERNEL);
11357 		if (!bg_band->channels) {
11358 			rc = -ENOMEM;
11359 			goto out;
11360 		}
11361 		/* translate geo->bg to bg_band.channels */
11362 		for (i = 0; i < geo->bg_channels; i++) {
11363 			bg_band->channels[i].band = NL80211_BAND_2GHZ;
11364 			bg_band->channels[i].center_freq = geo->bg[i].freq;
11365 			bg_band->channels[i].hw_value = geo->bg[i].channel;
11366 			bg_band->channels[i].max_power = geo->bg[i].max_power;
11367 			if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11368 				bg_band->channels[i].flags |=
11369 					IEEE80211_CHAN_NO_IR;
11370 			if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
11371 				bg_band->channels[i].flags |=
11372 					IEEE80211_CHAN_NO_IR;
11373 			if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
11374 				bg_band->channels[i].flags |=
11375 					IEEE80211_CHAN_RADAR;
11376 			/* No equivalent for LIBIPW_CH_80211H_RULES,
11377 			   LIBIPW_CH_UNIFORM_SPREADING, or
11378 			   LIBIPW_CH_B_ONLY... */
11379 		}
11380 		/* point at bitrate info */
11381 		bg_band->bitrates = ipw2200_bg_rates;
11382 		bg_band->n_bitrates = ipw2200_num_bg_rates;
11383 
11384 		wdev->wiphy->bands[NL80211_BAND_2GHZ] = bg_band;
11385 	}
11386 
11387 	/* fill-out priv->ieee->a_band */
11388 	if (geo->a_channels) {
11389 		struct ieee80211_supported_band *a_band = &priv->ieee->a_band;
11390 
11391 		a_band->band = NL80211_BAND_5GHZ;
11392 		a_band->n_channels = geo->a_channels;
11393 		a_band->channels = kcalloc(geo->a_channels,
11394 					   sizeof(struct ieee80211_channel),
11395 					   GFP_KERNEL);
11396 		if (!a_band->channels) {
11397 			rc = -ENOMEM;
11398 			goto out;
11399 		}
11400 		/* translate geo->a to a_band.channels */
11401 		for (i = 0; i < geo->a_channels; i++) {
11402 			a_band->channels[i].band = NL80211_BAND_5GHZ;
11403 			a_band->channels[i].center_freq = geo->a[i].freq;
11404 			a_band->channels[i].hw_value = geo->a[i].channel;
11405 			a_band->channels[i].max_power = geo->a[i].max_power;
11406 			if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11407 				a_band->channels[i].flags |=
11408 					IEEE80211_CHAN_NO_IR;
11409 			if (geo->a[i].flags & LIBIPW_CH_NO_IBSS)
11410 				a_band->channels[i].flags |=
11411 					IEEE80211_CHAN_NO_IR;
11412 			if (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT)
11413 				a_band->channels[i].flags |=
11414 					IEEE80211_CHAN_RADAR;
11415 			/* No equivalent for LIBIPW_CH_80211H_RULES,
11416 			   LIBIPW_CH_UNIFORM_SPREADING, or
11417 			   LIBIPW_CH_B_ONLY... */
11418 		}
11419 		/* point at bitrate info */
11420 		a_band->bitrates = ipw2200_a_rates;
11421 		a_band->n_bitrates = ipw2200_num_a_rates;
11422 
11423 		wdev->wiphy->bands[NL80211_BAND_5GHZ] = a_band;
11424 	}
11425 
11426 	wdev->wiphy->cipher_suites = ipw_cipher_suites;
11427 	wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
11428 
11429 	set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
11430 
11431 	/* With that information in place, we can now register the wiphy... */
11432 	if (wiphy_register(wdev->wiphy))
11433 		rc = -EIO;
11434 out:
11435 	return rc;
11436 }
11437 
11438 /* PCI driver stuff */
11439 static const struct pci_device_id card_ids[] = {
11440 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11441 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11442 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11443 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11444 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11445 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11446 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11447 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11448 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11449 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11450 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11451 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11452 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11453 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11454 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11455 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11456 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11457 	{PCI_VDEVICE(INTEL, 0x104f), 0},
11458 	{PCI_VDEVICE(INTEL, 0x4220), 0},	/* BG */
11459 	{PCI_VDEVICE(INTEL, 0x4221), 0},	/* BG */
11460 	{PCI_VDEVICE(INTEL, 0x4223), 0},	/* ABG */
11461 	{PCI_VDEVICE(INTEL, 0x4224), 0},	/* ABG */
11462 
11463 	/* required last entry */
11464 	{0,}
11465 };
11466 
11467 MODULE_DEVICE_TABLE(pci, card_ids);
11468 
11469 static struct attribute *ipw_sysfs_entries[] = {
11470 	&dev_attr_rf_kill.attr,
11471 	&dev_attr_direct_dword.attr,
11472 	&dev_attr_indirect_byte.attr,
11473 	&dev_attr_indirect_dword.attr,
11474 	&dev_attr_mem_gpio_reg.attr,
11475 	&dev_attr_command_event_reg.attr,
11476 	&dev_attr_nic_type.attr,
11477 	&dev_attr_status.attr,
11478 	&dev_attr_cfg.attr,
11479 	&dev_attr_error.attr,
11480 	&dev_attr_event_log.attr,
11481 	&dev_attr_cmd_log.attr,
11482 	&dev_attr_eeprom_delay.attr,
11483 	&dev_attr_ucode_version.attr,
11484 	&dev_attr_rtc.attr,
11485 	&dev_attr_scan_age.attr,
11486 	&dev_attr_led.attr,
11487 	&dev_attr_speed_scan.attr,
11488 	&dev_attr_net_stats.attr,
11489 	&dev_attr_channels.attr,
11490 #ifdef CONFIG_IPW2200_PROMISCUOUS
11491 	&dev_attr_rtap_iface.attr,
11492 	&dev_attr_rtap_filter.attr,
11493 #endif
11494 	NULL
11495 };
11496 
11497 static const struct attribute_group ipw_attribute_group = {
11498 	.name = NULL,		/* put in device directory */
11499 	.attrs = ipw_sysfs_entries,
11500 };
11501 
11502 #ifdef CONFIG_IPW2200_PROMISCUOUS
11503 static int ipw_prom_open(struct net_device *dev)
11504 {
11505 	struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11506 	struct ipw_priv *priv = prom_priv->priv;
11507 
11508 	IPW_DEBUG_INFO("prom dev->open\n");
11509 	netif_carrier_off(dev);
11510 
11511 	if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11512 		priv->sys_config.accept_all_data_frames = 1;
11513 		priv->sys_config.accept_non_directed_frames = 1;
11514 		priv->sys_config.accept_all_mgmt_bcpr = 1;
11515 		priv->sys_config.accept_all_mgmt_frames = 1;
11516 
11517 		ipw_send_system_config(priv);
11518 	}
11519 
11520 	return 0;
11521 }
11522 
11523 static int ipw_prom_stop(struct net_device *dev)
11524 {
11525 	struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11526 	struct ipw_priv *priv = prom_priv->priv;
11527 
11528 	IPW_DEBUG_INFO("prom dev->stop\n");
11529 
11530 	if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11531 		priv->sys_config.accept_all_data_frames = 0;
11532 		priv->sys_config.accept_non_directed_frames = 0;
11533 		priv->sys_config.accept_all_mgmt_bcpr = 0;
11534 		priv->sys_config.accept_all_mgmt_frames = 0;
11535 
11536 		ipw_send_system_config(priv);
11537 	}
11538 
11539 	return 0;
11540 }
11541 
11542 static netdev_tx_t ipw_prom_hard_start_xmit(struct sk_buff *skb,
11543 					    struct net_device *dev)
11544 {
11545 	IPW_DEBUG_INFO("prom dev->xmit\n");
11546 	dev_kfree_skb(skb);
11547 	return NETDEV_TX_OK;
11548 }
11549 
11550 static const struct net_device_ops ipw_prom_netdev_ops = {
11551 	.ndo_open 		= ipw_prom_open,
11552 	.ndo_stop		= ipw_prom_stop,
11553 	.ndo_start_xmit		= ipw_prom_hard_start_xmit,
11554 	.ndo_set_mac_address 	= eth_mac_addr,
11555 	.ndo_validate_addr	= eth_validate_addr,
11556 };
11557 
11558 static int ipw_prom_alloc(struct ipw_priv *priv)
11559 {
11560 	int rc = 0;
11561 
11562 	if (priv->prom_net_dev)
11563 		return -EPERM;
11564 
11565 	priv->prom_net_dev = alloc_libipw(sizeof(struct ipw_prom_priv), 1);
11566 	if (priv->prom_net_dev == NULL)
11567 		return -ENOMEM;
11568 
11569 	priv->prom_priv = libipw_priv(priv->prom_net_dev);
11570 	priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11571 	priv->prom_priv->priv = priv;
11572 
11573 	strcpy(priv->prom_net_dev->name, "rtap%d");
11574 	memcpy(priv->prom_net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11575 
11576 	priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11577 	priv->prom_net_dev->netdev_ops = &ipw_prom_netdev_ops;
11578 
11579 	priv->prom_net_dev->min_mtu = 68;
11580 	priv->prom_net_dev->max_mtu = LIBIPW_DATA_LEN;
11581 
11582 	priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11583 	SET_NETDEV_DEV(priv->prom_net_dev, &priv->pci_dev->dev);
11584 
11585 	rc = register_netdev(priv->prom_net_dev);
11586 	if (rc) {
11587 		free_libipw(priv->prom_net_dev, 1);
11588 		priv->prom_net_dev = NULL;
11589 		return rc;
11590 	}
11591 
11592 	return 0;
11593 }
11594 
11595 static void ipw_prom_free(struct ipw_priv *priv)
11596 {
11597 	if (!priv->prom_net_dev)
11598 		return;
11599 
11600 	unregister_netdev(priv->prom_net_dev);
11601 	free_libipw(priv->prom_net_dev, 1);
11602 
11603 	priv->prom_net_dev = NULL;
11604 }
11605 
11606 #endif
11607 
11608 static const struct net_device_ops ipw_netdev_ops = {
11609 	.ndo_open		= ipw_net_open,
11610 	.ndo_stop		= ipw_net_stop,
11611 	.ndo_set_rx_mode	= ipw_net_set_multicast_list,
11612 	.ndo_set_mac_address	= ipw_net_set_mac_address,
11613 	.ndo_start_xmit		= libipw_xmit,
11614 	.ndo_validate_addr	= eth_validate_addr,
11615 };
11616 
11617 static int ipw_pci_probe(struct pci_dev *pdev,
11618 				   const struct pci_device_id *ent)
11619 {
11620 	int err = 0;
11621 	struct net_device *net_dev;
11622 	void __iomem *base;
11623 	u32 length, val;
11624 	struct ipw_priv *priv;
11625 	int i;
11626 
11627 	net_dev = alloc_libipw(sizeof(struct ipw_priv), 0);
11628 	if (net_dev == NULL) {
11629 		err = -ENOMEM;
11630 		goto out;
11631 	}
11632 
11633 	priv = libipw_priv(net_dev);
11634 	priv->ieee = netdev_priv(net_dev);
11635 
11636 	priv->net_dev = net_dev;
11637 	priv->pci_dev = pdev;
11638 	ipw_debug_level = debug;
11639 	spin_lock_init(&priv->irq_lock);
11640 	spin_lock_init(&priv->lock);
11641 	for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11642 		INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11643 
11644 	mutex_init(&priv->mutex);
11645 	if (pci_enable_device(pdev)) {
11646 		err = -ENODEV;
11647 		goto out_free_libipw;
11648 	}
11649 
11650 	pci_set_master(pdev);
11651 
11652 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
11653 	if (!err)
11654 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
11655 	if (err) {
11656 		printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11657 		goto out_pci_disable_device;
11658 	}
11659 
11660 	pci_set_drvdata(pdev, priv);
11661 
11662 	err = pci_request_regions(pdev, DRV_NAME);
11663 	if (err)
11664 		goto out_pci_disable_device;
11665 
11666 	/* We disable the RETRY_TIMEOUT register (0x41) to keep
11667 	 * PCI Tx retries from interfering with C3 CPU state */
11668 	pci_read_config_dword(pdev, 0x40, &val);
11669 	if ((val & 0x0000ff00) != 0)
11670 		pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11671 
11672 	length = pci_resource_len(pdev, 0);
11673 	priv->hw_len = length;
11674 
11675 	base = pci_ioremap_bar(pdev, 0);
11676 	if (!base) {
11677 		err = -ENODEV;
11678 		goto out_pci_release_regions;
11679 	}
11680 
11681 	priv->hw_base = base;
11682 	IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11683 	IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11684 
11685 	err = ipw_setup_deferred_work(priv);
11686 	if (err) {
11687 		IPW_ERROR("Unable to setup deferred work\n");
11688 		goto out_iounmap;
11689 	}
11690 
11691 	ipw_sw_reset(priv, 1);
11692 
11693 	err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11694 	if (err) {
11695 		IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11696 		goto out_iounmap;
11697 	}
11698 
11699 	SET_NETDEV_DEV(net_dev, &pdev->dev);
11700 
11701 	mutex_lock(&priv->mutex);
11702 
11703 	priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11704 	priv->ieee->set_security = shim__set_security;
11705 	priv->ieee->is_queue_full = ipw_net_is_queue_full;
11706 
11707 #ifdef CONFIG_IPW2200_QOS
11708 	priv->ieee->is_qos_active = ipw_is_qos_active;
11709 	priv->ieee->handle_probe_response = ipw_handle_beacon;
11710 	priv->ieee->handle_beacon = ipw_handle_probe_response;
11711 	priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11712 #endif				/* CONFIG_IPW2200_QOS */
11713 
11714 	priv->ieee->perfect_rssi = -20;
11715 	priv->ieee->worst_rssi = -85;
11716 
11717 	net_dev->netdev_ops = &ipw_netdev_ops;
11718 	priv->wireless_data.spy_data = &priv->ieee->spy_data;
11719 	net_dev->wireless_data = &priv->wireless_data;
11720 	net_dev->wireless_handlers = &ipw_wx_handler_def;
11721 	net_dev->ethtool_ops = &ipw_ethtool_ops;
11722 
11723 	net_dev->min_mtu = 68;
11724 	net_dev->max_mtu = LIBIPW_DATA_LEN;
11725 
11726 	err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11727 	if (err) {
11728 		IPW_ERROR("failed to create sysfs device attributes\n");
11729 		mutex_unlock(&priv->mutex);
11730 		goto out_release_irq;
11731 	}
11732 
11733 	if (ipw_up(priv)) {
11734 		mutex_unlock(&priv->mutex);
11735 		err = -EIO;
11736 		goto out_remove_sysfs;
11737 	}
11738 
11739 	mutex_unlock(&priv->mutex);
11740 
11741 	err = ipw_wdev_init(net_dev);
11742 	if (err) {
11743 		IPW_ERROR("failed to register wireless device\n");
11744 		goto out_remove_sysfs;
11745 	}
11746 
11747 	err = register_netdev(net_dev);
11748 	if (err) {
11749 		IPW_ERROR("failed to register network device\n");
11750 		goto out_unregister_wiphy;
11751 	}
11752 
11753 #ifdef CONFIG_IPW2200_PROMISCUOUS
11754 	if (rtap_iface) {
11755 	        err = ipw_prom_alloc(priv);
11756 		if (err) {
11757 			IPW_ERROR("Failed to register promiscuous network "
11758 				  "device (error %d).\n", err);
11759 			unregister_netdev(priv->net_dev);
11760 			goto out_unregister_wiphy;
11761 		}
11762 	}
11763 #endif
11764 
11765 	printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11766 	       "channels, %d 802.11a channels)\n",
11767 	       priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11768 	       priv->ieee->geo.a_channels);
11769 
11770 	return 0;
11771 
11772       out_unregister_wiphy:
11773 	wiphy_unregister(priv->ieee->wdev.wiphy);
11774 	kfree(priv->ieee->a_band.channels);
11775 	kfree(priv->ieee->bg_band.channels);
11776       out_remove_sysfs:
11777 	sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11778       out_release_irq:
11779 	free_irq(pdev->irq, priv);
11780       out_iounmap:
11781 	iounmap(priv->hw_base);
11782       out_pci_release_regions:
11783 	pci_release_regions(pdev);
11784       out_pci_disable_device:
11785 	pci_disable_device(pdev);
11786       out_free_libipw:
11787 	free_libipw(priv->net_dev, 0);
11788       out:
11789 	return err;
11790 }
11791 
11792 static void ipw_pci_remove(struct pci_dev *pdev)
11793 {
11794 	struct ipw_priv *priv = pci_get_drvdata(pdev);
11795 	struct list_head *p, *q;
11796 	int i;
11797 
11798 	if (!priv)
11799 		return;
11800 
11801 	mutex_lock(&priv->mutex);
11802 
11803 	priv->status |= STATUS_EXIT_PENDING;
11804 	ipw_down(priv);
11805 	sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11806 
11807 	mutex_unlock(&priv->mutex);
11808 
11809 	unregister_netdev(priv->net_dev);
11810 
11811 	if (priv->rxq) {
11812 		ipw_rx_queue_free(priv, priv->rxq);
11813 		priv->rxq = NULL;
11814 	}
11815 	ipw_tx_queue_free(priv);
11816 
11817 	if (priv->cmdlog) {
11818 		kfree(priv->cmdlog);
11819 		priv->cmdlog = NULL;
11820 	}
11821 
11822 	/* make sure all works are inactive */
11823 	cancel_delayed_work_sync(&priv->adhoc_check);
11824 	cancel_work_sync(&priv->associate);
11825 	cancel_work_sync(&priv->disassociate);
11826 	cancel_work_sync(&priv->system_config);
11827 	cancel_work_sync(&priv->rx_replenish);
11828 	cancel_work_sync(&priv->adapter_restart);
11829 	cancel_delayed_work_sync(&priv->rf_kill);
11830 	cancel_work_sync(&priv->up);
11831 	cancel_work_sync(&priv->down);
11832 	cancel_delayed_work_sync(&priv->request_scan);
11833 	cancel_delayed_work_sync(&priv->request_direct_scan);
11834 	cancel_delayed_work_sync(&priv->request_passive_scan);
11835 	cancel_delayed_work_sync(&priv->scan_event);
11836 	cancel_delayed_work_sync(&priv->gather_stats);
11837 	cancel_work_sync(&priv->abort_scan);
11838 	cancel_work_sync(&priv->roam);
11839 	cancel_delayed_work_sync(&priv->scan_check);
11840 	cancel_work_sync(&priv->link_up);
11841 	cancel_work_sync(&priv->link_down);
11842 	cancel_delayed_work_sync(&priv->led_link_on);
11843 	cancel_delayed_work_sync(&priv->led_link_off);
11844 	cancel_delayed_work_sync(&priv->led_act_off);
11845 	cancel_work_sync(&priv->merge_networks);
11846 
11847 	/* Free MAC hash list for ADHOC */
11848 	for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11849 		list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11850 			list_del(p);
11851 			kfree(list_entry(p, struct ipw_ibss_seq, list));
11852 		}
11853 	}
11854 
11855 	kfree(priv->error);
11856 	priv->error = NULL;
11857 
11858 #ifdef CONFIG_IPW2200_PROMISCUOUS
11859 	ipw_prom_free(priv);
11860 #endif
11861 
11862 	free_irq(pdev->irq, priv);
11863 	iounmap(priv->hw_base);
11864 	pci_release_regions(pdev);
11865 	pci_disable_device(pdev);
11866 	/* wiphy_unregister needs to be here, before free_libipw */
11867 	wiphy_unregister(priv->ieee->wdev.wiphy);
11868 	kfree(priv->ieee->a_band.channels);
11869 	kfree(priv->ieee->bg_band.channels);
11870 	free_libipw(priv->net_dev, 0);
11871 	free_firmware();
11872 }
11873 
11874 #ifdef CONFIG_PM
11875 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11876 {
11877 	struct ipw_priv *priv = pci_get_drvdata(pdev);
11878 	struct net_device *dev = priv->net_dev;
11879 
11880 	printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11881 
11882 	/* Take down the device; powers it off, etc. */
11883 	ipw_down(priv);
11884 
11885 	/* Remove the PRESENT state of the device */
11886 	netif_device_detach(dev);
11887 
11888 	pci_save_state(pdev);
11889 	pci_disable_device(pdev);
11890 	pci_set_power_state(pdev, pci_choose_state(pdev, state));
11891 
11892 	priv->suspend_at = get_seconds();
11893 
11894 	return 0;
11895 }
11896 
11897 static int ipw_pci_resume(struct pci_dev *pdev)
11898 {
11899 	struct ipw_priv *priv = pci_get_drvdata(pdev);
11900 	struct net_device *dev = priv->net_dev;
11901 	int err;
11902 	u32 val;
11903 
11904 	printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11905 
11906 	pci_set_power_state(pdev, PCI_D0);
11907 	err = pci_enable_device(pdev);
11908 	if (err) {
11909 		printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
11910 		       dev->name);
11911 		return err;
11912 	}
11913 	pci_restore_state(pdev);
11914 
11915 	/*
11916 	 * Suspend/Resume resets the PCI configuration space, so we have to
11917 	 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11918 	 * from interfering with C3 CPU state. pci_restore_state won't help
11919 	 * here since it only restores the first 64 bytes pci config header.
11920 	 */
11921 	pci_read_config_dword(pdev, 0x40, &val);
11922 	if ((val & 0x0000ff00) != 0)
11923 		pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11924 
11925 	/* Set the device back into the PRESENT state; this will also wake
11926 	 * the queue of needed */
11927 	netif_device_attach(dev);
11928 
11929 	priv->suspend_time = get_seconds() - priv->suspend_at;
11930 
11931 	/* Bring the device back up */
11932 	schedule_work(&priv->up);
11933 
11934 	return 0;
11935 }
11936 #endif
11937 
11938 static void ipw_pci_shutdown(struct pci_dev *pdev)
11939 {
11940 	struct ipw_priv *priv = pci_get_drvdata(pdev);
11941 
11942 	/* Take down the device; powers it off, etc. */
11943 	ipw_down(priv);
11944 
11945 	pci_disable_device(pdev);
11946 }
11947 
11948 /* driver initialization stuff */
11949 static struct pci_driver ipw_driver = {
11950 	.name = DRV_NAME,
11951 	.id_table = card_ids,
11952 	.probe = ipw_pci_probe,
11953 	.remove = ipw_pci_remove,
11954 #ifdef CONFIG_PM
11955 	.suspend = ipw_pci_suspend,
11956 	.resume = ipw_pci_resume,
11957 #endif
11958 	.shutdown = ipw_pci_shutdown,
11959 };
11960 
11961 static int __init ipw_init(void)
11962 {
11963 	int ret;
11964 
11965 	printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11966 	printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11967 
11968 	ret = pci_register_driver(&ipw_driver);
11969 	if (ret) {
11970 		IPW_ERROR("Unable to initialize PCI module\n");
11971 		return ret;
11972 	}
11973 
11974 	ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11975 	if (ret) {
11976 		IPW_ERROR("Unable to create driver sysfs file\n");
11977 		pci_unregister_driver(&ipw_driver);
11978 		return ret;
11979 	}
11980 
11981 	return ret;
11982 }
11983 
11984 static void __exit ipw_exit(void)
11985 {
11986 	driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11987 	pci_unregister_driver(&ipw_driver);
11988 }
11989 
11990 module_param(disable, int, 0444);
11991 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11992 
11993 module_param(associate, int, 0444);
11994 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
11995 
11996 module_param(auto_create, int, 0444);
11997 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
11998 
11999 module_param_named(led, led_support, int, 0444);
12000 MODULE_PARM_DESC(led, "enable led control on some systems (default 1 on)");
12001 
12002 module_param(debug, int, 0444);
12003 MODULE_PARM_DESC(debug, "debug output mask");
12004 
12005 module_param_named(channel, default_channel, int, 0444);
12006 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
12007 
12008 #ifdef CONFIG_IPW2200_PROMISCUOUS
12009 module_param(rtap_iface, int, 0444);
12010 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
12011 #endif
12012 
12013 #ifdef CONFIG_IPW2200_QOS
12014 module_param(qos_enable, int, 0444);
12015 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
12016 
12017 module_param(qos_burst_enable, int, 0444);
12018 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
12019 
12020 module_param(qos_no_ack_mask, int, 0444);
12021 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
12022 
12023 module_param(burst_duration_CCK, int, 0444);
12024 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
12025 
12026 module_param(burst_duration_OFDM, int, 0444);
12027 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
12028 #endif				/* CONFIG_IPW2200_QOS */
12029 
12030 #ifdef CONFIG_IPW2200_MONITOR
12031 module_param_named(mode, network_mode, int, 0444);
12032 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
12033 #else
12034 module_param_named(mode, network_mode, int, 0444);
12035 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
12036 #endif
12037 
12038 module_param(bt_coexist, int, 0444);
12039 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
12040 
12041 module_param(hwcrypto, int, 0444);
12042 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
12043 
12044 module_param(cmdlog, int, 0444);
12045 MODULE_PARM_DESC(cmdlog,
12046 		 "allocate a ring buffer for logging firmware commands");
12047 
12048 module_param(roaming, int, 0444);
12049 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
12050 
12051 module_param(antenna, int, 0444);
12052 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
12053 
12054 module_exit(ipw_exit);
12055 module_init(ipw_init);
12056