1 // SPDX-License-Identifier: GPL-2.0-only
2 /******************************************************************************
3 
4   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
5 
6 
7   Contact Information:
8   Intel Linux Wireless <ilw@linux.intel.com>
9   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
10 
11   Portions of this file are based on the sample_* files provided by Wireless
12   Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
13   <jt@hpl.hp.com>
14 
15   Portions of this file are based on the Host AP project,
16   Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
17     <j@w1.fi>
18   Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
19 
20   Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
21   ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
22   available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
23 
24 ******************************************************************************/
25 /*
26 
27  Initial driver on which this is based was developed by Janusz Gorycki,
28  Maciej Urbaniak, and Maciej Sosnowski.
29 
30  Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
31 
32 Theory of Operation
33 
34 Tx - Commands and Data
35 
36 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
37 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
38 sent to the firmware as well as the length of the data.
39 
40 The host writes to the TBD queue at the WRITE index.  The WRITE index points
41 to the _next_ packet to be written and is advanced when after the TBD has been
42 filled.
43 
44 The firmware pulls from the TBD queue at the READ index.  The READ index points
45 to the currently being read entry, and is advanced once the firmware is
46 done with a packet.
47 
48 When data is sent to the firmware, the first TBD is used to indicate to the
49 firmware if a Command or Data is being sent.  If it is Command, all of the
50 command information is contained within the physical address referred to by the
51 TBD.  If it is Data, the first TBD indicates the type of data packet, number
52 of fragments, etc.  The next TBD then refers to the actual packet location.
53 
54 The Tx flow cycle is as follows:
55 
56 1) ipw2100_tx() is called by kernel with SKB to transmit
57 2) Packet is move from the tx_free_list and appended to the transmit pending
58    list (tx_pend_list)
59 3) work is scheduled to move pending packets into the shared circular queue.
60 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
61    to a physical address.  That address is entered into a TBD.  Two TBDs are
62    filled out.  The first indicating a data packet, the second referring to the
63    actual payload data.
64 5) the packet is removed from tx_pend_list and placed on the end of the
65    firmware pending list (fw_pend_list)
66 6) firmware is notified that the WRITE index has
67 7) Once the firmware has processed the TBD, INTA is triggered.
68 8) For each Tx interrupt received from the firmware, the READ index is checked
69    to see which TBDs are done being processed.
70 9) For each TBD that has been processed, the ISR pulls the oldest packet
71    from the fw_pend_list.
72 10)The packet structure contained in the fw_pend_list is then used
73    to unmap the DMA address and to free the SKB originally passed to the driver
74    from the kernel.
75 11)The packet structure is placed onto the tx_free_list
76 
77 The above steps are the same for commands, only the msg_free_list/msg_pend_list
78 are used instead of tx_free_list/tx_pend_list
79 
80 ...
81 
82 Critical Sections / Locking :
83 
84 There are two locks utilized.  The first is the low level lock (priv->low_lock)
85 that protects the following:
86 
87 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
88 
89   tx_free_list : Holds pre-allocated Tx buffers.
90     TAIL modified in __ipw2100_tx_process()
91     HEAD modified in ipw2100_tx()
92 
93   tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
94     TAIL modified ipw2100_tx()
95     HEAD modified by ipw2100_tx_send_data()
96 
97   msg_free_list : Holds pre-allocated Msg (Command) buffers
98     TAIL modified in __ipw2100_tx_process()
99     HEAD modified in ipw2100_hw_send_command()
100 
101   msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
102     TAIL modified in ipw2100_hw_send_command()
103     HEAD modified in ipw2100_tx_send_commands()
104 
105   The flow of data on the TX side is as follows:
106 
107   MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
108   TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
109 
110   The methods that work on the TBD ring are protected via priv->low_lock.
111 
112 - The internal data state of the device itself
113 - Access to the firmware read/write indexes for the BD queues
114   and associated logic
115 
116 All external entry functions are locked with the priv->action_lock to ensure
117 that only one external action is invoked at a time.
118 
119 
120 */
121 
122 #include <linux/compiler.h>
123 #include <linux/errno.h>
124 #include <linux/if_arp.h>
125 #include <linux/in6.h>
126 #include <linux/in.h>
127 #include <linux/ip.h>
128 #include <linux/kernel.h>
129 #include <linux/kmod.h>
130 #include <linux/module.h>
131 #include <linux/netdevice.h>
132 #include <linux/ethtool.h>
133 #include <linux/pci.h>
134 #include <linux/dma-mapping.h>
135 #include <linux/proc_fs.h>
136 #include <linux/skbuff.h>
137 #include <linux/uaccess.h>
138 #include <asm/io.h>
139 #include <linux/fs.h>
140 #include <linux/mm.h>
141 #include <linux/slab.h>
142 #include <linux/unistd.h>
143 #include <linux/stringify.h>
144 #include <linux/tcp.h>
145 #include <linux/types.h>
146 #include <linux/time.h>
147 #include <linux/firmware.h>
148 #include <linux/acpi.h>
149 #include <linux/ctype.h>
150 #include <linux/pm_qos.h>
151 
152 #include <net/lib80211.h>
153 
154 #include "ipw2100.h"
155 #include "ipw.h"
156 
157 #define IPW2100_VERSION "git-1.2.2"
158 
159 #define DRV_NAME	"ipw2100"
160 #define DRV_VERSION	IPW2100_VERSION
161 #define DRV_DESCRIPTION	"Intel(R) PRO/Wireless 2100 Network Driver"
162 #define DRV_COPYRIGHT	"Copyright(c) 2003-2006 Intel Corporation"
163 
164 static struct pm_qos_request ipw2100_pm_qos_req;
165 
166 /* Debugging stuff */
167 #ifdef CONFIG_IPW2100_DEBUG
168 #define IPW2100_RX_DEBUG	/* Reception debugging */
169 #endif
170 
171 MODULE_DESCRIPTION(DRV_DESCRIPTION);
172 MODULE_VERSION(DRV_VERSION);
173 MODULE_AUTHOR(DRV_COPYRIGHT);
174 MODULE_LICENSE("GPL");
175 
176 static int debug = 0;
177 static int network_mode = 0;
178 static int channel = 0;
179 static int associate = 0;
180 static int disable = 0;
181 #ifdef CONFIG_PM
182 static struct ipw2100_fw ipw2100_firmware;
183 #endif
184 
185 #include <linux/moduleparam.h>
186 module_param(debug, int, 0444);
187 module_param_named(mode, network_mode, int, 0444);
188 module_param(channel, int, 0444);
189 module_param(associate, int, 0444);
190 module_param(disable, int, 0444);
191 
192 MODULE_PARM_DESC(debug, "debug level");
193 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
194 MODULE_PARM_DESC(channel, "channel");
195 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
196 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
197 
198 static u32 ipw2100_debug_level = IPW_DL_NONE;
199 
200 #ifdef CONFIG_IPW2100_DEBUG
201 #define IPW_DEBUG(level, message...) \
202 do { \
203 	if (ipw2100_debug_level & (level)) { \
204 		printk(KERN_DEBUG "ipw2100: %c %s ", \
205                        in_interrupt() ? 'I' : 'U',  __func__); \
206 		printk(message); \
207 	} \
208 } while (0)
209 #else
210 #define IPW_DEBUG(level, message...) do {} while (0)
211 #endif				/* CONFIG_IPW2100_DEBUG */
212 
213 #ifdef CONFIG_IPW2100_DEBUG
214 static const char *command_types[] = {
215 	"undefined",
216 	"unused",		/* HOST_ATTENTION */
217 	"HOST_COMPLETE",
218 	"unused",		/* SLEEP */
219 	"unused",		/* HOST_POWER_DOWN */
220 	"unused",
221 	"SYSTEM_CONFIG",
222 	"unused",		/* SET_IMR */
223 	"SSID",
224 	"MANDATORY_BSSID",
225 	"AUTHENTICATION_TYPE",
226 	"ADAPTER_ADDRESS",
227 	"PORT_TYPE",
228 	"INTERNATIONAL_MODE",
229 	"CHANNEL",
230 	"RTS_THRESHOLD",
231 	"FRAG_THRESHOLD",
232 	"POWER_MODE",
233 	"TX_RATES",
234 	"BASIC_TX_RATES",
235 	"WEP_KEY_INFO",
236 	"unused",
237 	"unused",
238 	"unused",
239 	"unused",
240 	"WEP_KEY_INDEX",
241 	"WEP_FLAGS",
242 	"ADD_MULTICAST",
243 	"CLEAR_ALL_MULTICAST",
244 	"BEACON_INTERVAL",
245 	"ATIM_WINDOW",
246 	"CLEAR_STATISTICS",
247 	"undefined",
248 	"undefined",
249 	"undefined",
250 	"undefined",
251 	"TX_POWER_INDEX",
252 	"undefined",
253 	"undefined",
254 	"undefined",
255 	"undefined",
256 	"undefined",
257 	"undefined",
258 	"BROADCAST_SCAN",
259 	"CARD_DISABLE",
260 	"PREFERRED_BSSID",
261 	"SET_SCAN_OPTIONS",
262 	"SCAN_DWELL_TIME",
263 	"SWEEP_TABLE",
264 	"AP_OR_STATION_TABLE",
265 	"GROUP_ORDINALS",
266 	"SHORT_RETRY_LIMIT",
267 	"LONG_RETRY_LIMIT",
268 	"unused",		/* SAVE_CALIBRATION */
269 	"unused",		/* RESTORE_CALIBRATION */
270 	"undefined",
271 	"undefined",
272 	"undefined",
273 	"HOST_PRE_POWER_DOWN",
274 	"unused",		/* HOST_INTERRUPT_COALESCING */
275 	"undefined",
276 	"CARD_DISABLE_PHY_OFF",
277 	"MSDU_TX_RATES",
278 	"undefined",
279 	"SET_STATION_STAT_BITS",
280 	"CLEAR_STATIONS_STAT_BITS",
281 	"LEAP_ROGUE_MODE",
282 	"SET_SECURITY_INFORMATION",
283 	"DISASSOCIATION_BSSID",
284 	"SET_WPA_ASS_IE"
285 };
286 #endif
287 
288 static const long ipw2100_frequencies[] = {
289 	2412, 2417, 2422, 2427,
290 	2432, 2437, 2442, 2447,
291 	2452, 2457, 2462, 2467,
292 	2472, 2484
293 };
294 
295 #define FREQ_COUNT	ARRAY_SIZE(ipw2100_frequencies)
296 
297 static struct ieee80211_rate ipw2100_bg_rates[] = {
298 	{ .bitrate = 10 },
299 	{ .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
300 	{ .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
301 	{ .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
302 };
303 
304 #define RATE_COUNT ARRAY_SIZE(ipw2100_bg_rates)
305 
306 /* Pre-decl until we get the code solid and then we can clean it up */
307 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
308 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
309 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
310 
311 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
312 static void ipw2100_queues_free(struct ipw2100_priv *priv);
313 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
314 
315 static int ipw2100_fw_download(struct ipw2100_priv *priv,
316 			       struct ipw2100_fw *fw);
317 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
318 				struct ipw2100_fw *fw);
319 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
320 				 size_t max);
321 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
322 				    size_t max);
323 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
324 				     struct ipw2100_fw *fw);
325 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
326 				  struct ipw2100_fw *fw);
327 static void ipw2100_wx_event_work(struct work_struct *work);
328 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
329 static const struct iw_handler_def ipw2100_wx_handler_def;
330 
331 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
332 {
333 	struct ipw2100_priv *priv = libipw_priv(dev);
334 
335 	*val = ioread32(priv->ioaddr + reg);
336 	IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
337 }
338 
339 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
340 {
341 	struct ipw2100_priv *priv = libipw_priv(dev);
342 
343 	iowrite32(val, priv->ioaddr + reg);
344 	IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
345 }
346 
347 static inline void read_register_word(struct net_device *dev, u32 reg,
348 				      u16 * val)
349 {
350 	struct ipw2100_priv *priv = libipw_priv(dev);
351 
352 	*val = ioread16(priv->ioaddr + reg);
353 	IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
354 }
355 
356 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
357 {
358 	struct ipw2100_priv *priv = libipw_priv(dev);
359 
360 	*val = ioread8(priv->ioaddr + reg);
361 	IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
362 }
363 
364 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
365 {
366 	struct ipw2100_priv *priv = libipw_priv(dev);
367 
368 	iowrite16(val, priv->ioaddr + reg);
369 	IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
370 }
371 
372 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
373 {
374 	struct ipw2100_priv *priv = libipw_priv(dev);
375 
376 	iowrite8(val, priv->ioaddr + reg);
377 	IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
378 }
379 
380 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
381 {
382 	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
383 		       addr & IPW_REG_INDIRECT_ADDR_MASK);
384 	read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
385 }
386 
387 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
388 {
389 	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
390 		       addr & IPW_REG_INDIRECT_ADDR_MASK);
391 	write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
392 }
393 
394 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
395 {
396 	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
397 		       addr & IPW_REG_INDIRECT_ADDR_MASK);
398 	read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
399 }
400 
401 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
402 {
403 	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
404 		       addr & IPW_REG_INDIRECT_ADDR_MASK);
405 	write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
406 }
407 
408 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
409 {
410 	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
411 		       addr & IPW_REG_INDIRECT_ADDR_MASK);
412 	read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
413 }
414 
415 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
416 {
417 	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
418 		       addr & IPW_REG_INDIRECT_ADDR_MASK);
419 	write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
420 }
421 
422 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
423 {
424 	write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
425 		       addr & IPW_REG_INDIRECT_ADDR_MASK);
426 }
427 
428 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
429 {
430 	write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
431 }
432 
433 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
434 				    const u8 * buf)
435 {
436 	u32 aligned_addr;
437 	u32 aligned_len;
438 	u32 dif_len;
439 	u32 i;
440 
441 	/* read first nibble byte by byte */
442 	aligned_addr = addr & (~0x3);
443 	dif_len = addr - aligned_addr;
444 	if (dif_len) {
445 		/* Start reading at aligned_addr + dif_len */
446 		write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
447 			       aligned_addr);
448 		for (i = dif_len; i < 4; i++, buf++)
449 			write_register_byte(dev,
450 					    IPW_REG_INDIRECT_ACCESS_DATA + i,
451 					    *buf);
452 
453 		len -= dif_len;
454 		aligned_addr += 4;
455 	}
456 
457 	/* read DWs through autoincrement registers */
458 	write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
459 	aligned_len = len & (~0x3);
460 	for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
461 		write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
462 
463 	/* copy the last nibble */
464 	dif_len = len - aligned_len;
465 	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
466 	for (i = 0; i < dif_len; i++, buf++)
467 		write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
468 				    *buf);
469 }
470 
471 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
472 				   u8 * buf)
473 {
474 	u32 aligned_addr;
475 	u32 aligned_len;
476 	u32 dif_len;
477 	u32 i;
478 
479 	/* read first nibble byte by byte */
480 	aligned_addr = addr & (~0x3);
481 	dif_len = addr - aligned_addr;
482 	if (dif_len) {
483 		/* Start reading at aligned_addr + dif_len */
484 		write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
485 			       aligned_addr);
486 		for (i = dif_len; i < 4; i++, buf++)
487 			read_register_byte(dev,
488 					   IPW_REG_INDIRECT_ACCESS_DATA + i,
489 					   buf);
490 
491 		len -= dif_len;
492 		aligned_addr += 4;
493 	}
494 
495 	/* read DWs through autoincrement registers */
496 	write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
497 	aligned_len = len & (~0x3);
498 	for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
499 		read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
500 
501 	/* copy the last nibble */
502 	dif_len = len - aligned_len;
503 	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
504 	for (i = 0; i < dif_len; i++, buf++)
505 		read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
506 }
507 
508 static bool ipw2100_hw_is_adapter_in_system(struct net_device *dev)
509 {
510 	u32 dbg;
511 
512 	read_register(dev, IPW_REG_DOA_DEBUG_AREA_START, &dbg);
513 
514 	return dbg == IPW_DATA_DOA_DEBUG_VALUE;
515 }
516 
517 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
518 			       void *val, u32 * len)
519 {
520 	struct ipw2100_ordinals *ordinals = &priv->ordinals;
521 	u32 addr;
522 	u32 field_info;
523 	u16 field_len;
524 	u16 field_count;
525 	u32 total_length;
526 
527 	if (ordinals->table1_addr == 0) {
528 		printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
529 		       "before they have been loaded.\n");
530 		return -EINVAL;
531 	}
532 
533 	if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
534 		if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
535 			*len = IPW_ORD_TAB_1_ENTRY_SIZE;
536 
537 			printk(KERN_WARNING DRV_NAME
538 			       ": ordinal buffer length too small, need %zd\n",
539 			       IPW_ORD_TAB_1_ENTRY_SIZE);
540 
541 			return -EINVAL;
542 		}
543 
544 		read_nic_dword(priv->net_dev,
545 			       ordinals->table1_addr + (ord << 2), &addr);
546 		read_nic_dword(priv->net_dev, addr, val);
547 
548 		*len = IPW_ORD_TAB_1_ENTRY_SIZE;
549 
550 		return 0;
551 	}
552 
553 	if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
554 
555 		ord -= IPW_START_ORD_TAB_2;
556 
557 		/* get the address of statistic */
558 		read_nic_dword(priv->net_dev,
559 			       ordinals->table2_addr + (ord << 3), &addr);
560 
561 		/* get the second DW of statistics ;
562 		 * two 16-bit words - first is length, second is count */
563 		read_nic_dword(priv->net_dev,
564 			       ordinals->table2_addr + (ord << 3) + sizeof(u32),
565 			       &field_info);
566 
567 		/* get each entry length */
568 		field_len = *((u16 *) & field_info);
569 
570 		/* get number of entries */
571 		field_count = *(((u16 *) & field_info) + 1);
572 
573 		/* abort if no enough memory */
574 		total_length = field_len * field_count;
575 		if (total_length > *len) {
576 			*len = total_length;
577 			return -EINVAL;
578 		}
579 
580 		*len = total_length;
581 		if (!total_length)
582 			return 0;
583 
584 		/* read the ordinal data from the SRAM */
585 		read_nic_memory(priv->net_dev, addr, total_length, val);
586 
587 		return 0;
588 	}
589 
590 	printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
591 	       "in table 2\n", ord);
592 
593 	return -EINVAL;
594 }
595 
596 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
597 			       u32 * len)
598 {
599 	struct ipw2100_ordinals *ordinals = &priv->ordinals;
600 	u32 addr;
601 
602 	if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
603 		if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
604 			*len = IPW_ORD_TAB_1_ENTRY_SIZE;
605 			IPW_DEBUG_INFO("wrong size\n");
606 			return -EINVAL;
607 		}
608 
609 		read_nic_dword(priv->net_dev,
610 			       ordinals->table1_addr + (ord << 2), &addr);
611 
612 		write_nic_dword(priv->net_dev, addr, *val);
613 
614 		*len = IPW_ORD_TAB_1_ENTRY_SIZE;
615 
616 		return 0;
617 	}
618 
619 	IPW_DEBUG_INFO("wrong table\n");
620 	if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
621 		return -EINVAL;
622 
623 	return -EINVAL;
624 }
625 
626 static char *snprint_line(char *buf, size_t count,
627 			  const u8 * data, u32 len, u32 ofs)
628 {
629 	int out, i, j, l;
630 	char c;
631 
632 	out = snprintf(buf, count, "%08X", ofs);
633 
634 	for (l = 0, i = 0; i < 2; i++) {
635 		out += snprintf(buf + out, count - out, " ");
636 		for (j = 0; j < 8 && l < len; j++, l++)
637 			out += snprintf(buf + out, count - out, "%02X ",
638 					data[(i * 8 + j)]);
639 		for (; j < 8; j++)
640 			out += snprintf(buf + out, count - out, "   ");
641 	}
642 
643 	out += snprintf(buf + out, count - out, " ");
644 	for (l = 0, i = 0; i < 2; i++) {
645 		out += snprintf(buf + out, count - out, " ");
646 		for (j = 0; j < 8 && l < len; j++, l++) {
647 			c = data[(i * 8 + j)];
648 			if (!isascii(c) || !isprint(c))
649 				c = '.';
650 
651 			out += snprintf(buf + out, count - out, "%c", c);
652 		}
653 
654 		for (; j < 8; j++)
655 			out += snprintf(buf + out, count - out, " ");
656 	}
657 
658 	return buf;
659 }
660 
661 static void printk_buf(int level, const u8 * data, u32 len)
662 {
663 	char line[81];
664 	u32 ofs = 0;
665 	if (!(ipw2100_debug_level & level))
666 		return;
667 
668 	while (len) {
669 		printk(KERN_DEBUG "%s\n",
670 		       snprint_line(line, sizeof(line), &data[ofs],
671 				    min(len, 16U), ofs));
672 		ofs += 16;
673 		len -= min(len, 16U);
674 	}
675 }
676 
677 #define MAX_RESET_BACKOFF 10
678 
679 static void schedule_reset(struct ipw2100_priv *priv)
680 {
681 	time64_t now = ktime_get_boottime_seconds();
682 
683 	/* If we haven't received a reset request within the backoff period,
684 	 * then we can reset the backoff interval so this reset occurs
685 	 * immediately */
686 	if (priv->reset_backoff &&
687 	    (now - priv->last_reset > priv->reset_backoff))
688 		priv->reset_backoff = 0;
689 
690 	priv->last_reset = now;
691 
692 	if (!(priv->status & STATUS_RESET_PENDING)) {
693 		IPW_DEBUG_INFO("%s: Scheduling firmware restart (%llds).\n",
694 			       priv->net_dev->name, priv->reset_backoff);
695 		netif_carrier_off(priv->net_dev);
696 		netif_stop_queue(priv->net_dev);
697 		priv->status |= STATUS_RESET_PENDING;
698 		if (priv->reset_backoff)
699 			schedule_delayed_work(&priv->reset_work,
700 					      priv->reset_backoff * HZ);
701 		else
702 			schedule_delayed_work(&priv->reset_work, 0);
703 
704 		if (priv->reset_backoff < MAX_RESET_BACKOFF)
705 			priv->reset_backoff++;
706 
707 		wake_up_interruptible(&priv->wait_command_queue);
708 	} else
709 		IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
710 			       priv->net_dev->name);
711 
712 }
713 
714 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
715 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
716 				   struct host_command *cmd)
717 {
718 	struct list_head *element;
719 	struct ipw2100_tx_packet *packet;
720 	unsigned long flags;
721 	int err = 0;
722 
723 	IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
724 		     command_types[cmd->host_command], cmd->host_command,
725 		     cmd->host_command_length);
726 	printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
727 		   cmd->host_command_length);
728 
729 	spin_lock_irqsave(&priv->low_lock, flags);
730 
731 	if (priv->fatal_error) {
732 		IPW_DEBUG_INFO
733 		    ("Attempt to send command while hardware in fatal error condition.\n");
734 		err = -EIO;
735 		goto fail_unlock;
736 	}
737 
738 	if (!(priv->status & STATUS_RUNNING)) {
739 		IPW_DEBUG_INFO
740 		    ("Attempt to send command while hardware is not running.\n");
741 		err = -EIO;
742 		goto fail_unlock;
743 	}
744 
745 	if (priv->status & STATUS_CMD_ACTIVE) {
746 		IPW_DEBUG_INFO
747 		    ("Attempt to send command while another command is pending.\n");
748 		err = -EBUSY;
749 		goto fail_unlock;
750 	}
751 
752 	if (list_empty(&priv->msg_free_list)) {
753 		IPW_DEBUG_INFO("no available msg buffers\n");
754 		goto fail_unlock;
755 	}
756 
757 	priv->status |= STATUS_CMD_ACTIVE;
758 	priv->messages_sent++;
759 
760 	element = priv->msg_free_list.next;
761 
762 	packet = list_entry(element, struct ipw2100_tx_packet, list);
763 	packet->jiffy_start = jiffies;
764 
765 	/* initialize the firmware command packet */
766 	packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
767 	packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
768 	packet->info.c_struct.cmd->host_command_len_reg =
769 	    cmd->host_command_length;
770 	packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
771 
772 	memcpy(packet->info.c_struct.cmd->host_command_params_reg,
773 	       cmd->host_command_parameters,
774 	       sizeof(packet->info.c_struct.cmd->host_command_params_reg));
775 
776 	list_del(element);
777 	DEC_STAT(&priv->msg_free_stat);
778 
779 	list_add_tail(element, &priv->msg_pend_list);
780 	INC_STAT(&priv->msg_pend_stat);
781 
782 	ipw2100_tx_send_commands(priv);
783 	ipw2100_tx_send_data(priv);
784 
785 	spin_unlock_irqrestore(&priv->low_lock, flags);
786 
787 	/*
788 	 * We must wait for this command to complete before another
789 	 * command can be sent...  but if we wait more than 3 seconds
790 	 * then there is a problem.
791 	 */
792 
793 	err =
794 	    wait_event_interruptible_timeout(priv->wait_command_queue,
795 					     !(priv->
796 					       status & STATUS_CMD_ACTIVE),
797 					     HOST_COMPLETE_TIMEOUT);
798 
799 	if (err == 0) {
800 		IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
801 			       1000 * (HOST_COMPLETE_TIMEOUT / HZ));
802 		priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
803 		priv->status &= ~STATUS_CMD_ACTIVE;
804 		schedule_reset(priv);
805 		return -EIO;
806 	}
807 
808 	if (priv->fatal_error) {
809 		printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
810 		       priv->net_dev->name);
811 		return -EIO;
812 	}
813 
814 	/* !!!!! HACK TEST !!!!!
815 	 * When lots of debug trace statements are enabled, the driver
816 	 * doesn't seem to have as many firmware restart cycles...
817 	 *
818 	 * As a test, we're sticking in a 1/100s delay here */
819 	schedule_timeout_uninterruptible(msecs_to_jiffies(10));
820 
821 	return 0;
822 
823       fail_unlock:
824 	spin_unlock_irqrestore(&priv->low_lock, flags);
825 
826 	return err;
827 }
828 
829 /*
830  * Verify the values and data access of the hardware
831  * No locks needed or used.  No functions called.
832  */
833 static int ipw2100_verify(struct ipw2100_priv *priv)
834 {
835 	u32 data1, data2;
836 	u32 address;
837 
838 	u32 val1 = 0x76543210;
839 	u32 val2 = 0xFEDCBA98;
840 
841 	/* Domain 0 check - all values should be DOA_DEBUG */
842 	for (address = IPW_REG_DOA_DEBUG_AREA_START;
843 	     address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
844 		read_register(priv->net_dev, address, &data1);
845 		if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
846 			return -EIO;
847 	}
848 
849 	/* Domain 1 check - use arbitrary read/write compare  */
850 	for (address = 0; address < 5; address++) {
851 		/* The memory area is not used now */
852 		write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
853 			       val1);
854 		write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
855 			       val2);
856 		read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
857 			      &data1);
858 		read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
859 			      &data2);
860 		if (val1 == data1 && val2 == data2)
861 			return 0;
862 	}
863 
864 	return -EIO;
865 }
866 
867 /*
868  *
869  * Loop until the CARD_DISABLED bit is the same value as the
870  * supplied parameter
871  *
872  * TODO: See if it would be more efficient to do a wait/wake
873  *       cycle and have the completion event trigger the wakeup
874  *
875  */
876 #define IPW_CARD_DISABLE_COMPLETE_WAIT		    100	// 100 milli
877 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
878 {
879 	int i;
880 	u32 card_state;
881 	u32 len = sizeof(card_state);
882 	int err;
883 
884 	for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
885 		err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
886 					  &card_state, &len);
887 		if (err) {
888 			IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
889 				       "failed.\n");
890 			return 0;
891 		}
892 
893 		/* We'll break out if either the HW state says it is
894 		 * in the state we want, or if HOST_COMPLETE command
895 		 * finishes */
896 		if ((card_state == state) ||
897 		    ((priv->status & STATUS_ENABLED) ?
898 		     IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
899 			if (state == IPW_HW_STATE_ENABLED)
900 				priv->status |= STATUS_ENABLED;
901 			else
902 				priv->status &= ~STATUS_ENABLED;
903 
904 			return 0;
905 		}
906 
907 		udelay(50);
908 	}
909 
910 	IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
911 		       state ? "DISABLED" : "ENABLED");
912 	return -EIO;
913 }
914 
915 /*********************************************************************
916     Procedure   :   sw_reset_and_clock
917     Purpose     :   Asserts s/w reset, asserts clock initialization
918                     and waits for clock stabilization
919  ********************************************************************/
920 static int sw_reset_and_clock(struct ipw2100_priv *priv)
921 {
922 	int i;
923 	u32 r;
924 
925 	// assert s/w reset
926 	write_register(priv->net_dev, IPW_REG_RESET_REG,
927 		       IPW_AUX_HOST_RESET_REG_SW_RESET);
928 
929 	// wait for clock stabilization
930 	for (i = 0; i < 1000; i++) {
931 		udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
932 
933 		// check clock ready bit
934 		read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
935 		if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
936 			break;
937 	}
938 
939 	if (i == 1000)
940 		return -EIO;	// TODO: better error value
941 
942 	/* set "initialization complete" bit to move adapter to
943 	 * D0 state */
944 	write_register(priv->net_dev, IPW_REG_GP_CNTRL,
945 		       IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
946 
947 	/* wait for clock stabilization */
948 	for (i = 0; i < 10000; i++) {
949 		udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
950 
951 		/* check clock ready bit */
952 		read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
953 		if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
954 			break;
955 	}
956 
957 	if (i == 10000)
958 		return -EIO;	/* TODO: better error value */
959 
960 	/* set D0 standby bit */
961 	read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
962 	write_register(priv->net_dev, IPW_REG_GP_CNTRL,
963 		       r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
964 
965 	return 0;
966 }
967 
968 /*********************************************************************
969     Procedure   :   ipw2100_download_firmware
970     Purpose     :   Initiaze adapter after power on.
971                     The sequence is:
972                     1. assert s/w reset first!
973                     2. awake clocks & wait for clock stabilization
974                     3. hold ARC (don't ask me why...)
975                     4. load Dino ucode and reset/clock init again
976                     5. zero-out shared mem
977                     6. download f/w
978  *******************************************************************/
979 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
980 {
981 	u32 address;
982 	int err;
983 
984 #ifndef CONFIG_PM
985 	/* Fetch the firmware and microcode */
986 	struct ipw2100_fw ipw2100_firmware;
987 #endif
988 
989 	if (priv->fatal_error) {
990 		IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
991 				"fatal error %d.  Interface must be brought down.\n",
992 				priv->net_dev->name, priv->fatal_error);
993 		return -EINVAL;
994 	}
995 #ifdef CONFIG_PM
996 	if (!ipw2100_firmware.version) {
997 		err = ipw2100_get_firmware(priv, &ipw2100_firmware);
998 		if (err) {
999 			IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1000 					priv->net_dev->name, err);
1001 			priv->fatal_error = IPW2100_ERR_FW_LOAD;
1002 			goto fail;
1003 		}
1004 	}
1005 #else
1006 	err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1007 	if (err) {
1008 		IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1009 				priv->net_dev->name, err);
1010 		priv->fatal_error = IPW2100_ERR_FW_LOAD;
1011 		goto fail;
1012 	}
1013 #endif
1014 	priv->firmware_version = ipw2100_firmware.version;
1015 
1016 	/* s/w reset and clock stabilization */
1017 	err = sw_reset_and_clock(priv);
1018 	if (err) {
1019 		IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1020 				priv->net_dev->name, err);
1021 		goto fail;
1022 	}
1023 
1024 	err = ipw2100_verify(priv);
1025 	if (err) {
1026 		IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1027 				priv->net_dev->name, err);
1028 		goto fail;
1029 	}
1030 
1031 	/* Hold ARC */
1032 	write_nic_dword(priv->net_dev,
1033 			IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1034 
1035 	/* allow ARC to run */
1036 	write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1037 
1038 	/* load microcode */
1039 	err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1040 	if (err) {
1041 		printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1042 		       priv->net_dev->name, err);
1043 		goto fail;
1044 	}
1045 
1046 	/* release ARC */
1047 	write_nic_dword(priv->net_dev,
1048 			IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1049 
1050 	/* s/w reset and clock stabilization (again!!!) */
1051 	err = sw_reset_and_clock(priv);
1052 	if (err) {
1053 		printk(KERN_ERR DRV_NAME
1054 		       ": %s: sw_reset_and_clock failed: %d\n",
1055 		       priv->net_dev->name, err);
1056 		goto fail;
1057 	}
1058 
1059 	/* load f/w */
1060 	err = ipw2100_fw_download(priv, &ipw2100_firmware);
1061 	if (err) {
1062 		IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1063 				priv->net_dev->name, err);
1064 		goto fail;
1065 	}
1066 #ifndef CONFIG_PM
1067 	/*
1068 	 * When the .resume method of the driver is called, the other
1069 	 * part of the system, i.e. the ide driver could still stay in
1070 	 * the suspend stage. This prevents us from loading the firmware
1071 	 * from the disk.  --YZ
1072 	 */
1073 
1074 	/* free any storage allocated for firmware image */
1075 	ipw2100_release_firmware(priv, &ipw2100_firmware);
1076 #endif
1077 
1078 	/* zero out Domain 1 area indirectly (Si requirement) */
1079 	for (address = IPW_HOST_FW_SHARED_AREA0;
1080 	     address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1081 		write_nic_dword(priv->net_dev, address, 0);
1082 	for (address = IPW_HOST_FW_SHARED_AREA1;
1083 	     address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1084 		write_nic_dword(priv->net_dev, address, 0);
1085 	for (address = IPW_HOST_FW_SHARED_AREA2;
1086 	     address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1087 		write_nic_dword(priv->net_dev, address, 0);
1088 	for (address = IPW_HOST_FW_SHARED_AREA3;
1089 	     address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1090 		write_nic_dword(priv->net_dev, address, 0);
1091 	for (address = IPW_HOST_FW_INTERRUPT_AREA;
1092 	     address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1093 		write_nic_dword(priv->net_dev, address, 0);
1094 
1095 	return 0;
1096 
1097       fail:
1098 	ipw2100_release_firmware(priv, &ipw2100_firmware);
1099 	return err;
1100 }
1101 
1102 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1103 {
1104 	if (priv->status & STATUS_INT_ENABLED)
1105 		return;
1106 	priv->status |= STATUS_INT_ENABLED;
1107 	write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1108 }
1109 
1110 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1111 {
1112 	if (!(priv->status & STATUS_INT_ENABLED))
1113 		return;
1114 	priv->status &= ~STATUS_INT_ENABLED;
1115 	write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1116 }
1117 
1118 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1119 {
1120 	struct ipw2100_ordinals *ord = &priv->ordinals;
1121 
1122 	IPW_DEBUG_INFO("enter\n");
1123 
1124 	read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1125 		      &ord->table1_addr);
1126 
1127 	read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1128 		      &ord->table2_addr);
1129 
1130 	read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1131 	read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1132 
1133 	ord->table2_size &= 0x0000FFFF;
1134 
1135 	IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1136 	IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1137 	IPW_DEBUG_INFO("exit\n");
1138 }
1139 
1140 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1141 {
1142 	u32 reg = 0;
1143 	/*
1144 	 * Set GPIO 3 writable by FW; GPIO 1 writable
1145 	 * by driver and enable clock
1146 	 */
1147 	reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1148 	       IPW_BIT_GPIO_LED_OFF);
1149 	write_register(priv->net_dev, IPW_REG_GPIO, reg);
1150 }
1151 
1152 static int rf_kill_active(struct ipw2100_priv *priv)
1153 {
1154 #define MAX_RF_KILL_CHECKS 5
1155 #define RF_KILL_CHECK_DELAY 40
1156 
1157 	unsigned short value = 0;
1158 	u32 reg = 0;
1159 	int i;
1160 
1161 	if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1162 		wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1163 		priv->status &= ~STATUS_RF_KILL_HW;
1164 		return 0;
1165 	}
1166 
1167 	for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1168 		udelay(RF_KILL_CHECK_DELAY);
1169 		read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1170 		value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1171 	}
1172 
1173 	if (value == 0) {
1174 		wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1175 		priv->status |= STATUS_RF_KILL_HW;
1176 	} else {
1177 		wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1178 		priv->status &= ~STATUS_RF_KILL_HW;
1179 	}
1180 
1181 	return (value == 0);
1182 }
1183 
1184 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1185 {
1186 	u32 addr, len;
1187 	u32 val;
1188 
1189 	/*
1190 	 * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1191 	 */
1192 	len = sizeof(addr);
1193 	if (ipw2100_get_ordinal
1194 	    (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1195 		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1196 			       __LINE__);
1197 		return -EIO;
1198 	}
1199 
1200 	IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1201 
1202 	/*
1203 	 * EEPROM version is the byte at offset 0xfd in firmware
1204 	 * We read 4 bytes, then shift out the byte we actually want */
1205 	read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1206 	priv->eeprom_version = (val >> 24) & 0xFF;
1207 	IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1208 
1209 	/*
1210 	 *  HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1211 	 *
1212 	 *  notice that the EEPROM bit is reverse polarity, i.e.
1213 	 *     bit = 0  signifies HW RF kill switch is supported
1214 	 *     bit = 1  signifies HW RF kill switch is NOT supported
1215 	 */
1216 	read_nic_dword(priv->net_dev, addr + 0x20, &val);
1217 	if (!((val >> 24) & 0x01))
1218 		priv->hw_features |= HW_FEATURE_RFKILL;
1219 
1220 	IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1221 		       (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1222 
1223 	return 0;
1224 }
1225 
1226 /*
1227  * Start firmware execution after power on and initialization
1228  * The sequence is:
1229  *  1. Release ARC
1230  *  2. Wait for f/w initialization completes;
1231  */
1232 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1233 {
1234 	int i;
1235 	u32 inta, inta_mask, gpio;
1236 
1237 	IPW_DEBUG_INFO("enter\n");
1238 
1239 	if (priv->status & STATUS_RUNNING)
1240 		return 0;
1241 
1242 	/*
1243 	 * Initialize the hw - drive adapter to DO state by setting
1244 	 * init_done bit. Wait for clk_ready bit and Download
1245 	 * fw & dino ucode
1246 	 */
1247 	if (ipw2100_download_firmware(priv)) {
1248 		printk(KERN_ERR DRV_NAME
1249 		       ": %s: Failed to power on the adapter.\n",
1250 		       priv->net_dev->name);
1251 		return -EIO;
1252 	}
1253 
1254 	/* Clear the Tx, Rx and Msg queues and the r/w indexes
1255 	 * in the firmware RBD and TBD ring queue */
1256 	ipw2100_queues_initialize(priv);
1257 
1258 	ipw2100_hw_set_gpio(priv);
1259 
1260 	/* TODO -- Look at disabling interrupts here to make sure none
1261 	 * get fired during FW initialization */
1262 
1263 	/* Release ARC - clear reset bit */
1264 	write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1265 
1266 	/* wait for f/w initialization complete */
1267 	IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1268 	i = 5000;
1269 	do {
1270 		schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1271 		/* Todo... wait for sync command ... */
1272 
1273 		read_register(priv->net_dev, IPW_REG_INTA, &inta);
1274 
1275 		/* check "init done" bit */
1276 		if (inta & IPW2100_INTA_FW_INIT_DONE) {
1277 			/* reset "init done" bit */
1278 			write_register(priv->net_dev, IPW_REG_INTA,
1279 				       IPW2100_INTA_FW_INIT_DONE);
1280 			break;
1281 		}
1282 
1283 		/* check error conditions : we check these after the firmware
1284 		 * check so that if there is an error, the interrupt handler
1285 		 * will see it and the adapter will be reset */
1286 		if (inta &
1287 		    (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1288 			/* clear error conditions */
1289 			write_register(priv->net_dev, IPW_REG_INTA,
1290 				       IPW2100_INTA_FATAL_ERROR |
1291 				       IPW2100_INTA_PARITY_ERROR);
1292 		}
1293 	} while (--i);
1294 
1295 	/* Clear out any pending INTAs since we aren't supposed to have
1296 	 * interrupts enabled at this point... */
1297 	read_register(priv->net_dev, IPW_REG_INTA, &inta);
1298 	read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1299 	inta &= IPW_INTERRUPT_MASK;
1300 	/* Clear out any pending interrupts */
1301 	if (inta & inta_mask)
1302 		write_register(priv->net_dev, IPW_REG_INTA, inta);
1303 
1304 	IPW_DEBUG_FW("f/w initialization complete: %s\n",
1305 		     i ? "SUCCESS" : "FAILED");
1306 
1307 	if (!i) {
1308 		printk(KERN_WARNING DRV_NAME
1309 		       ": %s: Firmware did not initialize.\n",
1310 		       priv->net_dev->name);
1311 		return -EIO;
1312 	}
1313 
1314 	/* allow firmware to write to GPIO1 & GPIO3 */
1315 	read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1316 
1317 	gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1318 
1319 	write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1320 
1321 	/* Ready to receive commands */
1322 	priv->status |= STATUS_RUNNING;
1323 
1324 	/* The adapter has been reset; we are not associated */
1325 	priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1326 
1327 	IPW_DEBUG_INFO("exit\n");
1328 
1329 	return 0;
1330 }
1331 
1332 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1333 {
1334 	if (!priv->fatal_error)
1335 		return;
1336 
1337 	priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1338 	priv->fatal_index %= IPW2100_ERROR_QUEUE;
1339 	priv->fatal_error = 0;
1340 }
1341 
1342 /* NOTE: Our interrupt is disabled when this method is called */
1343 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1344 {
1345 	u32 reg;
1346 	int i;
1347 
1348 	IPW_DEBUG_INFO("Power cycling the hardware.\n");
1349 
1350 	ipw2100_hw_set_gpio(priv);
1351 
1352 	/* Step 1. Stop Master Assert */
1353 	write_register(priv->net_dev, IPW_REG_RESET_REG,
1354 		       IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1355 
1356 	/* Step 2. Wait for stop Master Assert
1357 	 *         (not more than 50us, otherwise ret error */
1358 	i = 5;
1359 	do {
1360 		udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1361 		read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1362 
1363 		if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1364 			break;
1365 	} while (--i);
1366 
1367 	priv->status &= ~STATUS_RESET_PENDING;
1368 
1369 	if (!i) {
1370 		IPW_DEBUG_INFO
1371 		    ("exit - waited too long for master assert stop\n");
1372 		return -EIO;
1373 	}
1374 
1375 	write_register(priv->net_dev, IPW_REG_RESET_REG,
1376 		       IPW_AUX_HOST_RESET_REG_SW_RESET);
1377 
1378 	/* Reset any fatal_error conditions */
1379 	ipw2100_reset_fatalerror(priv);
1380 
1381 	/* At this point, the adapter is now stopped and disabled */
1382 	priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1383 			  STATUS_ASSOCIATED | STATUS_ENABLED);
1384 
1385 	return 0;
1386 }
1387 
1388 /*
1389  * Send the CARD_DISABLE_PHY_OFF command to the card to disable it
1390  *
1391  * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1392  *
1393  * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1394  * if STATUS_ASSN_LOST is sent.
1395  */
1396 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1397 {
1398 
1399 #define HW_PHY_OFF_LOOP_DELAY (msecs_to_jiffies(50))
1400 
1401 	struct host_command cmd = {
1402 		.host_command = CARD_DISABLE_PHY_OFF,
1403 		.host_command_sequence = 0,
1404 		.host_command_length = 0,
1405 	};
1406 	int err, i;
1407 	u32 val1, val2;
1408 
1409 	IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1410 
1411 	/* Turn off the radio */
1412 	err = ipw2100_hw_send_command(priv, &cmd);
1413 	if (err)
1414 		return err;
1415 
1416 	for (i = 0; i < 2500; i++) {
1417 		read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1418 		read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1419 
1420 		if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1421 		    (val2 & IPW2100_COMMAND_PHY_OFF))
1422 			return 0;
1423 
1424 		schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1425 	}
1426 
1427 	return -EIO;
1428 }
1429 
1430 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1431 {
1432 	struct host_command cmd = {
1433 		.host_command = HOST_COMPLETE,
1434 		.host_command_sequence = 0,
1435 		.host_command_length = 0
1436 	};
1437 	int err = 0;
1438 
1439 	IPW_DEBUG_HC("HOST_COMPLETE\n");
1440 
1441 	if (priv->status & STATUS_ENABLED)
1442 		return 0;
1443 
1444 	mutex_lock(&priv->adapter_mutex);
1445 
1446 	if (rf_kill_active(priv)) {
1447 		IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1448 		goto fail_up;
1449 	}
1450 
1451 	err = ipw2100_hw_send_command(priv, &cmd);
1452 	if (err) {
1453 		IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1454 		goto fail_up;
1455 	}
1456 
1457 	err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1458 	if (err) {
1459 		IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1460 			       priv->net_dev->name);
1461 		goto fail_up;
1462 	}
1463 
1464 	if (priv->stop_hang_check) {
1465 		priv->stop_hang_check = 0;
1466 		schedule_delayed_work(&priv->hang_check, HZ / 2);
1467 	}
1468 
1469       fail_up:
1470 	mutex_unlock(&priv->adapter_mutex);
1471 	return err;
1472 }
1473 
1474 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1475 {
1476 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1477 
1478 	struct host_command cmd = {
1479 		.host_command = HOST_PRE_POWER_DOWN,
1480 		.host_command_sequence = 0,
1481 		.host_command_length = 0,
1482 	};
1483 	int err, i;
1484 	u32 reg;
1485 
1486 	if (!(priv->status & STATUS_RUNNING))
1487 		return 0;
1488 
1489 	priv->status |= STATUS_STOPPING;
1490 
1491 	/* We can only shut down the card if the firmware is operational.  So,
1492 	 * if we haven't reset since a fatal_error, then we can not send the
1493 	 * shutdown commands. */
1494 	if (!priv->fatal_error) {
1495 		/* First, make sure the adapter is enabled so that the PHY_OFF
1496 		 * command can shut it down */
1497 		ipw2100_enable_adapter(priv);
1498 
1499 		err = ipw2100_hw_phy_off(priv);
1500 		if (err)
1501 			printk(KERN_WARNING DRV_NAME
1502 			       ": Error disabling radio %d\n", err);
1503 
1504 		/*
1505 		 * If in D0-standby mode going directly to D3 may cause a
1506 		 * PCI bus violation.  Therefore we must change out of the D0
1507 		 * state.
1508 		 *
1509 		 * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1510 		 * hardware from going into standby mode and will transition
1511 		 * out of D0-standby if it is already in that state.
1512 		 *
1513 		 * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1514 		 * driver upon completion.  Once received, the driver can
1515 		 * proceed to the D3 state.
1516 		 *
1517 		 * Prepare for power down command to fw.  This command would
1518 		 * take HW out of D0-standby and prepare it for D3 state.
1519 		 *
1520 		 * Currently FW does not support event notification for this
1521 		 * event. Therefore, skip waiting for it.  Just wait a fixed
1522 		 * 100ms
1523 		 */
1524 		IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1525 
1526 		err = ipw2100_hw_send_command(priv, &cmd);
1527 		if (err)
1528 			printk(KERN_WARNING DRV_NAME ": "
1529 			       "%s: Power down command failed: Error %d\n",
1530 			       priv->net_dev->name, err);
1531 		else
1532 			schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1533 	}
1534 
1535 	priv->status &= ~STATUS_ENABLED;
1536 
1537 	/*
1538 	 * Set GPIO 3 writable by FW; GPIO 1 writable
1539 	 * by driver and enable clock
1540 	 */
1541 	ipw2100_hw_set_gpio(priv);
1542 
1543 	/*
1544 	 * Power down adapter.  Sequence:
1545 	 * 1. Stop master assert (RESET_REG[9]=1)
1546 	 * 2. Wait for stop master (RESET_REG[8]==1)
1547 	 * 3. S/w reset assert (RESET_REG[7] = 1)
1548 	 */
1549 
1550 	/* Stop master assert */
1551 	write_register(priv->net_dev, IPW_REG_RESET_REG,
1552 		       IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1553 
1554 	/* wait stop master not more than 50 usec.
1555 	 * Otherwise return error. */
1556 	for (i = 5; i > 0; i--) {
1557 		udelay(10);
1558 
1559 		/* Check master stop bit */
1560 		read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1561 
1562 		if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1563 			break;
1564 	}
1565 
1566 	if (i == 0)
1567 		printk(KERN_WARNING DRV_NAME
1568 		       ": %s: Could now power down adapter.\n",
1569 		       priv->net_dev->name);
1570 
1571 	/* assert s/w reset */
1572 	write_register(priv->net_dev, IPW_REG_RESET_REG,
1573 		       IPW_AUX_HOST_RESET_REG_SW_RESET);
1574 
1575 	priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1576 
1577 	return 0;
1578 }
1579 
1580 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1581 {
1582 	struct host_command cmd = {
1583 		.host_command = CARD_DISABLE,
1584 		.host_command_sequence = 0,
1585 		.host_command_length = 0
1586 	};
1587 	int err = 0;
1588 
1589 	IPW_DEBUG_HC("CARD_DISABLE\n");
1590 
1591 	if (!(priv->status & STATUS_ENABLED))
1592 		return 0;
1593 
1594 	/* Make sure we clear the associated state */
1595 	priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1596 
1597 	if (!priv->stop_hang_check) {
1598 		priv->stop_hang_check = 1;
1599 		cancel_delayed_work(&priv->hang_check);
1600 	}
1601 
1602 	mutex_lock(&priv->adapter_mutex);
1603 
1604 	err = ipw2100_hw_send_command(priv, &cmd);
1605 	if (err) {
1606 		printk(KERN_WARNING DRV_NAME
1607 		       ": exit - failed to send CARD_DISABLE command\n");
1608 		goto fail_up;
1609 	}
1610 
1611 	err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1612 	if (err) {
1613 		printk(KERN_WARNING DRV_NAME
1614 		       ": exit - card failed to change to DISABLED\n");
1615 		goto fail_up;
1616 	}
1617 
1618 	IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1619 
1620       fail_up:
1621 	mutex_unlock(&priv->adapter_mutex);
1622 	return err;
1623 }
1624 
1625 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1626 {
1627 	struct host_command cmd = {
1628 		.host_command = SET_SCAN_OPTIONS,
1629 		.host_command_sequence = 0,
1630 		.host_command_length = 8
1631 	};
1632 	int err;
1633 
1634 	IPW_DEBUG_INFO("enter\n");
1635 
1636 	IPW_DEBUG_SCAN("setting scan options\n");
1637 
1638 	cmd.host_command_parameters[0] = 0;
1639 
1640 	if (!(priv->config & CFG_ASSOCIATE))
1641 		cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1642 	if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1643 		cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1644 	if (priv->config & CFG_PASSIVE_SCAN)
1645 		cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1646 
1647 	cmd.host_command_parameters[1] = priv->channel_mask;
1648 
1649 	err = ipw2100_hw_send_command(priv, &cmd);
1650 
1651 	IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1652 		     cmd.host_command_parameters[0]);
1653 
1654 	return err;
1655 }
1656 
1657 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1658 {
1659 	struct host_command cmd = {
1660 		.host_command = BROADCAST_SCAN,
1661 		.host_command_sequence = 0,
1662 		.host_command_length = 4
1663 	};
1664 	int err;
1665 
1666 	IPW_DEBUG_HC("START_SCAN\n");
1667 
1668 	cmd.host_command_parameters[0] = 0;
1669 
1670 	/* No scanning if in monitor mode */
1671 	if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1672 		return 1;
1673 
1674 	if (priv->status & STATUS_SCANNING) {
1675 		IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1676 		return 0;
1677 	}
1678 
1679 	IPW_DEBUG_INFO("enter\n");
1680 
1681 	/* Not clearing here; doing so makes iwlist always return nothing...
1682 	 *
1683 	 * We should modify the table logic to use aging tables vs. clearing
1684 	 * the table on each scan start.
1685 	 */
1686 	IPW_DEBUG_SCAN("starting scan\n");
1687 
1688 	priv->status |= STATUS_SCANNING;
1689 	err = ipw2100_hw_send_command(priv, &cmd);
1690 	if (err)
1691 		priv->status &= ~STATUS_SCANNING;
1692 
1693 	IPW_DEBUG_INFO("exit\n");
1694 
1695 	return err;
1696 }
1697 
1698 static const struct libipw_geo ipw_geos[] = {
1699 	{			/* Restricted */
1700 	 "---",
1701 	 .bg_channels = 14,
1702 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1703 		{2427, 4}, {2432, 5}, {2437, 6},
1704 		{2442, 7}, {2447, 8}, {2452, 9},
1705 		{2457, 10}, {2462, 11}, {2467, 12},
1706 		{2472, 13}, {2484, 14}},
1707 	 },
1708 };
1709 
1710 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1711 {
1712 	unsigned long flags;
1713 	int err = 0;
1714 	u32 lock;
1715 	u32 ord_len = sizeof(lock);
1716 
1717 	/* Age scan list entries found before suspend */
1718 	if (priv->suspend_time) {
1719 		libipw_networks_age(priv->ieee, priv->suspend_time);
1720 		priv->suspend_time = 0;
1721 	}
1722 
1723 	/* Quiet if manually disabled. */
1724 	if (priv->status & STATUS_RF_KILL_SW) {
1725 		IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1726 			       "switch\n", priv->net_dev->name);
1727 		return 0;
1728 	}
1729 
1730 	/* the ipw2100 hardware really doesn't want power management delays
1731 	 * longer than 175usec
1732 	 */
1733 	pm_qos_update_request(&ipw2100_pm_qos_req, 175);
1734 
1735 	/* If the interrupt is enabled, turn it off... */
1736 	spin_lock_irqsave(&priv->low_lock, flags);
1737 	ipw2100_disable_interrupts(priv);
1738 
1739 	/* Reset any fatal_error conditions */
1740 	ipw2100_reset_fatalerror(priv);
1741 	spin_unlock_irqrestore(&priv->low_lock, flags);
1742 
1743 	if (priv->status & STATUS_POWERED ||
1744 	    (priv->status & STATUS_RESET_PENDING)) {
1745 		/* Power cycle the card ... */
1746 		err = ipw2100_power_cycle_adapter(priv);
1747 		if (err) {
1748 			printk(KERN_WARNING DRV_NAME
1749 			       ": %s: Could not cycle adapter.\n",
1750 			       priv->net_dev->name);
1751 			goto exit;
1752 		}
1753 	} else
1754 		priv->status |= STATUS_POWERED;
1755 
1756 	/* Load the firmware, start the clocks, etc. */
1757 	err = ipw2100_start_adapter(priv);
1758 	if (err) {
1759 		printk(KERN_ERR DRV_NAME
1760 		       ": %s: Failed to start the firmware.\n",
1761 		       priv->net_dev->name);
1762 		goto exit;
1763 	}
1764 
1765 	ipw2100_initialize_ordinals(priv);
1766 
1767 	/* Determine capabilities of this particular HW configuration */
1768 	err = ipw2100_get_hw_features(priv);
1769 	if (err) {
1770 		printk(KERN_ERR DRV_NAME
1771 		       ": %s: Failed to determine HW features.\n",
1772 		       priv->net_dev->name);
1773 		goto exit;
1774 	}
1775 
1776 	/* Initialize the geo */
1777 	libipw_set_geo(priv->ieee, &ipw_geos[0]);
1778 	priv->ieee->freq_band = LIBIPW_24GHZ_BAND;
1779 
1780 	lock = LOCK_NONE;
1781 	err = ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len);
1782 	if (err) {
1783 		printk(KERN_ERR DRV_NAME
1784 		       ": %s: Failed to clear ordinal lock.\n",
1785 		       priv->net_dev->name);
1786 		goto exit;
1787 	}
1788 
1789 	priv->status &= ~STATUS_SCANNING;
1790 
1791 	if (rf_kill_active(priv)) {
1792 		printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1793 		       priv->net_dev->name);
1794 
1795 		if (priv->stop_rf_kill) {
1796 			priv->stop_rf_kill = 0;
1797 			schedule_delayed_work(&priv->rf_kill,
1798 					      round_jiffies_relative(HZ));
1799 		}
1800 
1801 		deferred = 1;
1802 	}
1803 
1804 	/* Turn on the interrupt so that commands can be processed */
1805 	ipw2100_enable_interrupts(priv);
1806 
1807 	/* Send all of the commands that must be sent prior to
1808 	 * HOST_COMPLETE */
1809 	err = ipw2100_adapter_setup(priv);
1810 	if (err) {
1811 		printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1812 		       priv->net_dev->name);
1813 		goto exit;
1814 	}
1815 
1816 	if (!deferred) {
1817 		/* Enable the adapter - sends HOST_COMPLETE */
1818 		err = ipw2100_enable_adapter(priv);
1819 		if (err) {
1820 			printk(KERN_ERR DRV_NAME ": "
1821 			       "%s: failed in call to enable adapter.\n",
1822 			       priv->net_dev->name);
1823 			ipw2100_hw_stop_adapter(priv);
1824 			goto exit;
1825 		}
1826 
1827 		/* Start a scan . . . */
1828 		ipw2100_set_scan_options(priv);
1829 		ipw2100_start_scan(priv);
1830 	}
1831 
1832       exit:
1833 	return err;
1834 }
1835 
1836 static void ipw2100_down(struct ipw2100_priv *priv)
1837 {
1838 	unsigned long flags;
1839 	union iwreq_data wrqu = {
1840 		.ap_addr = {
1841 			    .sa_family = ARPHRD_ETHER}
1842 	};
1843 	int associated = priv->status & STATUS_ASSOCIATED;
1844 
1845 	/* Kill the RF switch timer */
1846 	if (!priv->stop_rf_kill) {
1847 		priv->stop_rf_kill = 1;
1848 		cancel_delayed_work(&priv->rf_kill);
1849 	}
1850 
1851 	/* Kill the firmware hang check timer */
1852 	if (!priv->stop_hang_check) {
1853 		priv->stop_hang_check = 1;
1854 		cancel_delayed_work(&priv->hang_check);
1855 	}
1856 
1857 	/* Kill any pending resets */
1858 	if (priv->status & STATUS_RESET_PENDING)
1859 		cancel_delayed_work(&priv->reset_work);
1860 
1861 	/* Make sure the interrupt is on so that FW commands will be
1862 	 * processed correctly */
1863 	spin_lock_irqsave(&priv->low_lock, flags);
1864 	ipw2100_enable_interrupts(priv);
1865 	spin_unlock_irqrestore(&priv->low_lock, flags);
1866 
1867 	if (ipw2100_hw_stop_adapter(priv))
1868 		printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1869 		       priv->net_dev->name);
1870 
1871 	/* Do not disable the interrupt until _after_ we disable
1872 	 * the adaptor.  Otherwise the CARD_DISABLE command will never
1873 	 * be ack'd by the firmware */
1874 	spin_lock_irqsave(&priv->low_lock, flags);
1875 	ipw2100_disable_interrupts(priv);
1876 	spin_unlock_irqrestore(&priv->low_lock, flags);
1877 
1878 	pm_qos_update_request(&ipw2100_pm_qos_req, PM_QOS_DEFAULT_VALUE);
1879 
1880 	/* We have to signal any supplicant if we are disassociating */
1881 	if (associated)
1882 		wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1883 
1884 	priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1885 	netif_carrier_off(priv->net_dev);
1886 	netif_stop_queue(priv->net_dev);
1887 }
1888 
1889 static int ipw2100_wdev_init(struct net_device *dev)
1890 {
1891 	struct ipw2100_priv *priv = libipw_priv(dev);
1892 	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1893 	struct wireless_dev *wdev = &priv->ieee->wdev;
1894 	int i;
1895 
1896 	memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
1897 
1898 	/* fill-out priv->ieee->bg_band */
1899 	if (geo->bg_channels) {
1900 		struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
1901 
1902 		bg_band->band = NL80211_BAND_2GHZ;
1903 		bg_band->n_channels = geo->bg_channels;
1904 		bg_band->channels = kcalloc(geo->bg_channels,
1905 					    sizeof(struct ieee80211_channel),
1906 					    GFP_KERNEL);
1907 		if (!bg_band->channels) {
1908 			ipw2100_down(priv);
1909 			return -ENOMEM;
1910 		}
1911 		/* translate geo->bg to bg_band.channels */
1912 		for (i = 0; i < geo->bg_channels; i++) {
1913 			bg_band->channels[i].band = NL80211_BAND_2GHZ;
1914 			bg_band->channels[i].center_freq = geo->bg[i].freq;
1915 			bg_band->channels[i].hw_value = geo->bg[i].channel;
1916 			bg_band->channels[i].max_power = geo->bg[i].max_power;
1917 			if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
1918 				bg_band->channels[i].flags |=
1919 					IEEE80211_CHAN_NO_IR;
1920 			if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
1921 				bg_band->channels[i].flags |=
1922 					IEEE80211_CHAN_NO_IR;
1923 			if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
1924 				bg_band->channels[i].flags |=
1925 					IEEE80211_CHAN_RADAR;
1926 			/* No equivalent for LIBIPW_CH_80211H_RULES,
1927 			   LIBIPW_CH_UNIFORM_SPREADING, or
1928 			   LIBIPW_CH_B_ONLY... */
1929 		}
1930 		/* point at bitrate info */
1931 		bg_band->bitrates = ipw2100_bg_rates;
1932 		bg_band->n_bitrates = RATE_COUNT;
1933 
1934 		wdev->wiphy->bands[NL80211_BAND_2GHZ] = bg_band;
1935 	}
1936 
1937 	wdev->wiphy->cipher_suites = ipw_cipher_suites;
1938 	wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
1939 
1940 	set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
1941 	if (wiphy_register(wdev->wiphy))
1942 		return -EIO;
1943 	return 0;
1944 }
1945 
1946 static void ipw2100_reset_adapter(struct work_struct *work)
1947 {
1948 	struct ipw2100_priv *priv =
1949 		container_of(work, struct ipw2100_priv, reset_work.work);
1950 	unsigned long flags;
1951 	union iwreq_data wrqu = {
1952 		.ap_addr = {
1953 			    .sa_family = ARPHRD_ETHER}
1954 	};
1955 	int associated = priv->status & STATUS_ASSOCIATED;
1956 
1957 	spin_lock_irqsave(&priv->low_lock, flags);
1958 	IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1959 	priv->resets++;
1960 	priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1961 	priv->status |= STATUS_SECURITY_UPDATED;
1962 
1963 	/* Force a power cycle even if interface hasn't been opened
1964 	 * yet */
1965 	cancel_delayed_work(&priv->reset_work);
1966 	priv->status |= STATUS_RESET_PENDING;
1967 	spin_unlock_irqrestore(&priv->low_lock, flags);
1968 
1969 	mutex_lock(&priv->action_mutex);
1970 	/* stop timed checks so that they don't interfere with reset */
1971 	priv->stop_hang_check = 1;
1972 	cancel_delayed_work(&priv->hang_check);
1973 
1974 	/* We have to signal any supplicant if we are disassociating */
1975 	if (associated)
1976 		wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1977 
1978 	ipw2100_up(priv, 0);
1979 	mutex_unlock(&priv->action_mutex);
1980 
1981 }
1982 
1983 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1984 {
1985 
1986 #define MAC_ASSOCIATION_READ_DELAY (HZ)
1987 	int ret;
1988 	unsigned int len, essid_len;
1989 	char essid[IW_ESSID_MAX_SIZE];
1990 	u32 txrate;
1991 	u32 chan;
1992 	char *txratename;
1993 	u8 bssid[ETH_ALEN];
1994 
1995 	/*
1996 	 * TBD: BSSID is usually 00:00:00:00:00:00 here and not
1997 	 *      an actual MAC of the AP. Seems like FW sets this
1998 	 *      address too late. Read it later and expose through
1999 	 *      /proc or schedule a later task to query and update
2000 	 */
2001 
2002 	essid_len = IW_ESSID_MAX_SIZE;
2003 	ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
2004 				  essid, &essid_len);
2005 	if (ret) {
2006 		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2007 			       __LINE__);
2008 		return;
2009 	}
2010 
2011 	len = sizeof(u32);
2012 	ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
2013 	if (ret) {
2014 		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2015 			       __LINE__);
2016 		return;
2017 	}
2018 
2019 	len = sizeof(u32);
2020 	ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
2021 	if (ret) {
2022 		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2023 			       __LINE__);
2024 		return;
2025 	}
2026 	len = ETH_ALEN;
2027 	ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, bssid,
2028 				  &len);
2029 	if (ret) {
2030 		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2031 			       __LINE__);
2032 		return;
2033 	}
2034 	memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
2035 
2036 	switch (txrate) {
2037 	case TX_RATE_1_MBIT:
2038 		txratename = "1Mbps";
2039 		break;
2040 	case TX_RATE_2_MBIT:
2041 		txratename = "2Mbsp";
2042 		break;
2043 	case TX_RATE_5_5_MBIT:
2044 		txratename = "5.5Mbps";
2045 		break;
2046 	case TX_RATE_11_MBIT:
2047 		txratename = "11Mbps";
2048 		break;
2049 	default:
2050 		IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
2051 		txratename = "unknown rate";
2052 		break;
2053 	}
2054 
2055 	IPW_DEBUG_INFO("%s: Associated with '%*pE' at %s, channel %d (BSSID=%pM)\n",
2056 		       priv->net_dev->name, essid_len, essid,
2057 		       txratename, chan, bssid);
2058 
2059 	/* now we copy read ssid into dev */
2060 	if (!(priv->config & CFG_STATIC_ESSID)) {
2061 		priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
2062 		memcpy(priv->essid, essid, priv->essid_len);
2063 	}
2064 	priv->channel = chan;
2065 	memcpy(priv->bssid, bssid, ETH_ALEN);
2066 
2067 	priv->status |= STATUS_ASSOCIATING;
2068 	priv->connect_start = ktime_get_boottime_seconds();
2069 
2070 	schedule_delayed_work(&priv->wx_event_work, HZ / 10);
2071 }
2072 
2073 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2074 			     int length, int batch_mode)
2075 {
2076 	int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2077 	struct host_command cmd = {
2078 		.host_command = SSID,
2079 		.host_command_sequence = 0,
2080 		.host_command_length = ssid_len
2081 	};
2082 	int err;
2083 
2084 	IPW_DEBUG_HC("SSID: '%*pE'\n", ssid_len, essid);
2085 
2086 	if (ssid_len)
2087 		memcpy(cmd.host_command_parameters, essid, ssid_len);
2088 
2089 	if (!batch_mode) {
2090 		err = ipw2100_disable_adapter(priv);
2091 		if (err)
2092 			return err;
2093 	}
2094 
2095 	/* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2096 	 * disable auto association -- so we cheat by setting a bogus SSID */
2097 	if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2098 		int i;
2099 		u8 *bogus = (u8 *) cmd.host_command_parameters;
2100 		for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2101 			bogus[i] = 0x18 + i;
2102 		cmd.host_command_length = IW_ESSID_MAX_SIZE;
2103 	}
2104 
2105 	/* NOTE:  We always send the SSID command even if the provided ESSID is
2106 	 * the same as what we currently think is set. */
2107 
2108 	err = ipw2100_hw_send_command(priv, &cmd);
2109 	if (!err) {
2110 		memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2111 		memcpy(priv->essid, essid, ssid_len);
2112 		priv->essid_len = ssid_len;
2113 	}
2114 
2115 	if (!batch_mode) {
2116 		if (ipw2100_enable_adapter(priv))
2117 			err = -EIO;
2118 	}
2119 
2120 	return err;
2121 }
2122 
2123 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2124 {
2125 	IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2126 		  "disassociated: '%*pE' %pM\n", priv->essid_len, priv->essid,
2127 		  priv->bssid);
2128 
2129 	priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2130 
2131 	if (priv->status & STATUS_STOPPING) {
2132 		IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2133 		return;
2134 	}
2135 
2136 	eth_zero_addr(priv->bssid);
2137 	eth_zero_addr(priv->ieee->bssid);
2138 
2139 	netif_carrier_off(priv->net_dev);
2140 	netif_stop_queue(priv->net_dev);
2141 
2142 	if (!(priv->status & STATUS_RUNNING))
2143 		return;
2144 
2145 	if (priv->status & STATUS_SECURITY_UPDATED)
2146 		schedule_delayed_work(&priv->security_work, 0);
2147 
2148 	schedule_delayed_work(&priv->wx_event_work, 0);
2149 }
2150 
2151 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2152 {
2153 	IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2154 		       priv->net_dev->name);
2155 
2156 	/* RF_KILL is now enabled (else we wouldn't be here) */
2157 	wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2158 	priv->status |= STATUS_RF_KILL_HW;
2159 
2160 	/* Make sure the RF Kill check timer is running */
2161 	priv->stop_rf_kill = 0;
2162 	mod_delayed_work(system_wq, &priv->rf_kill, round_jiffies_relative(HZ));
2163 }
2164 
2165 static void ipw2100_scan_event(struct work_struct *work)
2166 {
2167 	struct ipw2100_priv *priv = container_of(work, struct ipw2100_priv,
2168 						 scan_event.work);
2169 	union iwreq_data wrqu;
2170 
2171 	wrqu.data.length = 0;
2172 	wrqu.data.flags = 0;
2173 	wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
2174 }
2175 
2176 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2177 {
2178 	IPW_DEBUG_SCAN("scan complete\n");
2179 	/* Age the scan results... */
2180 	priv->ieee->scans++;
2181 	priv->status &= ~STATUS_SCANNING;
2182 
2183 	/* Only userspace-requested scan completion events go out immediately */
2184 	if (!priv->user_requested_scan) {
2185 		schedule_delayed_work(&priv->scan_event,
2186 				      round_jiffies_relative(msecs_to_jiffies(4000)));
2187 	} else {
2188 		priv->user_requested_scan = 0;
2189 		mod_delayed_work(system_wq, &priv->scan_event, 0);
2190 	}
2191 }
2192 
2193 #ifdef CONFIG_IPW2100_DEBUG
2194 #define IPW2100_HANDLER(v, f) { v, f, # v }
2195 struct ipw2100_status_indicator {
2196 	int status;
2197 	void (*cb) (struct ipw2100_priv * priv, u32 status);
2198 	char *name;
2199 };
2200 #else
2201 #define IPW2100_HANDLER(v, f) { v, f }
2202 struct ipw2100_status_indicator {
2203 	int status;
2204 	void (*cb) (struct ipw2100_priv * priv, u32 status);
2205 };
2206 #endif				/* CONFIG_IPW2100_DEBUG */
2207 
2208 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2209 {
2210 	IPW_DEBUG_SCAN("Scanning...\n");
2211 	priv->status |= STATUS_SCANNING;
2212 }
2213 
2214 static const struct ipw2100_status_indicator status_handlers[] = {
2215 	IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2216 	IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2217 	IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2218 	IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2219 	IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2220 	IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2221 	IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2222 	IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2223 	IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2224 	IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2225 	IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2226 	IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2227 	IPW2100_HANDLER(-1, NULL)
2228 };
2229 
2230 static void isr_status_change(struct ipw2100_priv *priv, int status)
2231 {
2232 	int i;
2233 
2234 	if (status == IPW_STATE_SCANNING &&
2235 	    priv->status & STATUS_ASSOCIATED &&
2236 	    !(priv->status & STATUS_SCANNING)) {
2237 		IPW_DEBUG_INFO("Scan detected while associated, with "
2238 			       "no scan request.  Restarting firmware.\n");
2239 
2240 		/* Wake up any sleeping jobs */
2241 		schedule_reset(priv);
2242 	}
2243 
2244 	for (i = 0; status_handlers[i].status != -1; i++) {
2245 		if (status == status_handlers[i].status) {
2246 			IPW_DEBUG_NOTIF("Status change: %s\n",
2247 					status_handlers[i].name);
2248 			if (status_handlers[i].cb)
2249 				status_handlers[i].cb(priv, status);
2250 			priv->wstats.status = status;
2251 			return;
2252 		}
2253 	}
2254 
2255 	IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2256 }
2257 
2258 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2259 				    struct ipw2100_cmd_header *cmd)
2260 {
2261 #ifdef CONFIG_IPW2100_DEBUG
2262 	if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2263 		IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2264 			     command_types[cmd->host_command_reg],
2265 			     cmd->host_command_reg);
2266 	}
2267 #endif
2268 	if (cmd->host_command_reg == HOST_COMPLETE)
2269 		priv->status |= STATUS_ENABLED;
2270 
2271 	if (cmd->host_command_reg == CARD_DISABLE)
2272 		priv->status &= ~STATUS_ENABLED;
2273 
2274 	priv->status &= ~STATUS_CMD_ACTIVE;
2275 
2276 	wake_up_interruptible(&priv->wait_command_queue);
2277 }
2278 
2279 #ifdef CONFIG_IPW2100_DEBUG
2280 static const char *frame_types[] = {
2281 	"COMMAND_STATUS_VAL",
2282 	"STATUS_CHANGE_VAL",
2283 	"P80211_DATA_VAL",
2284 	"P8023_DATA_VAL",
2285 	"HOST_NOTIFICATION_VAL"
2286 };
2287 #endif
2288 
2289 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2290 				    struct ipw2100_rx_packet *packet)
2291 {
2292 	packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2293 	if (!packet->skb)
2294 		return -ENOMEM;
2295 
2296 	packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2297 	packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2298 					  sizeof(struct ipw2100_rx),
2299 					  PCI_DMA_FROMDEVICE);
2300 	if (pci_dma_mapping_error(priv->pci_dev, packet->dma_addr)) {
2301 		dev_kfree_skb(packet->skb);
2302 		return -ENOMEM;
2303 	}
2304 
2305 	return 0;
2306 }
2307 
2308 #define SEARCH_ERROR   0xffffffff
2309 #define SEARCH_FAIL    0xfffffffe
2310 #define SEARCH_SUCCESS 0xfffffff0
2311 #define SEARCH_DISCARD 0
2312 #define SEARCH_SNAPSHOT 1
2313 
2314 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2315 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2316 {
2317 	int i;
2318 	if (!priv->snapshot[0])
2319 		return;
2320 	for (i = 0; i < 0x30; i++)
2321 		kfree(priv->snapshot[i]);
2322 	priv->snapshot[0] = NULL;
2323 }
2324 
2325 #ifdef IPW2100_DEBUG_C3
2326 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2327 {
2328 	int i;
2329 	if (priv->snapshot[0])
2330 		return 1;
2331 	for (i = 0; i < 0x30; i++) {
2332 		priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2333 		if (!priv->snapshot[i]) {
2334 			IPW_DEBUG_INFO("%s: Error allocating snapshot "
2335 				       "buffer %d\n", priv->net_dev->name, i);
2336 			while (i > 0)
2337 				kfree(priv->snapshot[--i]);
2338 			priv->snapshot[0] = NULL;
2339 			return 0;
2340 		}
2341 	}
2342 
2343 	return 1;
2344 }
2345 
2346 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2347 				    size_t len, int mode)
2348 {
2349 	u32 i, j;
2350 	u32 tmp;
2351 	u8 *s, *d;
2352 	u32 ret;
2353 
2354 	s = in_buf;
2355 	if (mode == SEARCH_SNAPSHOT) {
2356 		if (!ipw2100_snapshot_alloc(priv))
2357 			mode = SEARCH_DISCARD;
2358 	}
2359 
2360 	for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2361 		read_nic_dword(priv->net_dev, i, &tmp);
2362 		if (mode == SEARCH_SNAPSHOT)
2363 			*(u32 *) SNAPSHOT_ADDR(i) = tmp;
2364 		if (ret == SEARCH_FAIL) {
2365 			d = (u8 *) & tmp;
2366 			for (j = 0; j < 4; j++) {
2367 				if (*s != *d) {
2368 					s = in_buf;
2369 					continue;
2370 				}
2371 
2372 				s++;
2373 				d++;
2374 
2375 				if ((s - in_buf) == len)
2376 					ret = (i + j) - len + 1;
2377 			}
2378 		} else if (mode == SEARCH_DISCARD)
2379 			return ret;
2380 	}
2381 
2382 	return ret;
2383 }
2384 #endif
2385 
2386 /*
2387  *
2388  * 0) Disconnect the SKB from the firmware (just unmap)
2389  * 1) Pack the ETH header into the SKB
2390  * 2) Pass the SKB to the network stack
2391  *
2392  * When packet is provided by the firmware, it contains the following:
2393  *
2394  * .  libipw_hdr
2395  * .  libipw_snap_hdr
2396  *
2397  * The size of the constructed ethernet
2398  *
2399  */
2400 #ifdef IPW2100_RX_DEBUG
2401 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2402 #endif
2403 
2404 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2405 {
2406 #ifdef IPW2100_DEBUG_C3
2407 	struct ipw2100_status *status = &priv->status_queue.drv[i];
2408 	u32 match, reg;
2409 	int j;
2410 #endif
2411 
2412 	IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2413 		       i * sizeof(struct ipw2100_status));
2414 
2415 #ifdef IPW2100_DEBUG_C3
2416 	/* Halt the firmware so we can get a good image */
2417 	write_register(priv->net_dev, IPW_REG_RESET_REG,
2418 		       IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2419 	j = 5;
2420 	do {
2421 		udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2422 		read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2423 
2424 		if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2425 			break;
2426 	} while (j--);
2427 
2428 	match = ipw2100_match_buf(priv, (u8 *) status,
2429 				  sizeof(struct ipw2100_status),
2430 				  SEARCH_SNAPSHOT);
2431 	if (match < SEARCH_SUCCESS)
2432 		IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2433 			       "offset 0x%06X, length %d:\n",
2434 			       priv->net_dev->name, match,
2435 			       sizeof(struct ipw2100_status));
2436 	else
2437 		IPW_DEBUG_INFO("%s: No DMA status match in "
2438 			       "Firmware.\n", priv->net_dev->name);
2439 
2440 	printk_buf((u8 *) priv->status_queue.drv,
2441 		   sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2442 #endif
2443 
2444 	priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2445 	priv->net_dev->stats.rx_errors++;
2446 	schedule_reset(priv);
2447 }
2448 
2449 static void isr_rx(struct ipw2100_priv *priv, int i,
2450 			  struct libipw_rx_stats *stats)
2451 {
2452 	struct net_device *dev = priv->net_dev;
2453 	struct ipw2100_status *status = &priv->status_queue.drv[i];
2454 	struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2455 
2456 	IPW_DEBUG_RX("Handler...\n");
2457 
2458 	if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2459 		IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2460 			       "  Dropping.\n",
2461 			       dev->name,
2462 			       status->frame_size, skb_tailroom(packet->skb));
2463 		dev->stats.rx_errors++;
2464 		return;
2465 	}
2466 
2467 	if (unlikely(!netif_running(dev))) {
2468 		dev->stats.rx_errors++;
2469 		priv->wstats.discard.misc++;
2470 		IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2471 		return;
2472 	}
2473 
2474 	if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2475 		     !(priv->status & STATUS_ASSOCIATED))) {
2476 		IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2477 		priv->wstats.discard.misc++;
2478 		return;
2479 	}
2480 
2481 	pci_unmap_single(priv->pci_dev,
2482 			 packet->dma_addr,
2483 			 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2484 
2485 	skb_put(packet->skb, status->frame_size);
2486 
2487 #ifdef IPW2100_RX_DEBUG
2488 	/* Make a copy of the frame so we can dump it to the logs if
2489 	 * libipw_rx fails */
2490 	skb_copy_from_linear_data(packet->skb, packet_data,
2491 				  min_t(u32, status->frame_size,
2492 					     IPW_RX_NIC_BUFFER_LENGTH));
2493 #endif
2494 
2495 	if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2496 #ifdef IPW2100_RX_DEBUG
2497 		IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2498 			       dev->name);
2499 		printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2500 #endif
2501 		dev->stats.rx_errors++;
2502 
2503 		/* libipw_rx failed, so it didn't free the SKB */
2504 		dev_kfree_skb_any(packet->skb);
2505 		packet->skb = NULL;
2506 	}
2507 
2508 	/* We need to allocate a new SKB and attach it to the RDB. */
2509 	if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2510 		printk(KERN_WARNING DRV_NAME ": "
2511 		       "%s: Unable to allocate SKB onto RBD ring - disabling "
2512 		       "adapter.\n", dev->name);
2513 		/* TODO: schedule adapter shutdown */
2514 		IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2515 	}
2516 
2517 	/* Update the RDB entry */
2518 	priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2519 }
2520 
2521 #ifdef CONFIG_IPW2100_MONITOR
2522 
2523 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2524 		   struct libipw_rx_stats *stats)
2525 {
2526 	struct net_device *dev = priv->net_dev;
2527 	struct ipw2100_status *status = &priv->status_queue.drv[i];
2528 	struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2529 
2530 	/* Magic struct that slots into the radiotap header -- no reason
2531 	 * to build this manually element by element, we can write it much
2532 	 * more efficiently than we can parse it. ORDER MATTERS HERE */
2533 	struct ipw_rt_hdr {
2534 		struct ieee80211_radiotap_header rt_hdr;
2535 		s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2536 	} *ipw_rt;
2537 
2538 	IPW_DEBUG_RX("Handler...\n");
2539 
2540 	if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2541 				sizeof(struct ipw_rt_hdr))) {
2542 		IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2543 			       "  Dropping.\n",
2544 			       dev->name,
2545 			       status->frame_size,
2546 			       skb_tailroom(packet->skb));
2547 		dev->stats.rx_errors++;
2548 		return;
2549 	}
2550 
2551 	if (unlikely(!netif_running(dev))) {
2552 		dev->stats.rx_errors++;
2553 		priv->wstats.discard.misc++;
2554 		IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2555 		return;
2556 	}
2557 
2558 	if (unlikely(priv->config & CFG_CRC_CHECK &&
2559 		     status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2560 		IPW_DEBUG_RX("CRC error in packet.  Dropping.\n");
2561 		dev->stats.rx_errors++;
2562 		return;
2563 	}
2564 
2565 	pci_unmap_single(priv->pci_dev, packet->dma_addr,
2566 			 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2567 	memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2568 		packet->skb->data, status->frame_size);
2569 
2570 	ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2571 
2572 	ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2573 	ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2574 	ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */
2575 
2576 	ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
2577 
2578 	ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2579 
2580 	skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2581 
2582 	if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2583 		dev->stats.rx_errors++;
2584 
2585 		/* libipw_rx failed, so it didn't free the SKB */
2586 		dev_kfree_skb_any(packet->skb);
2587 		packet->skb = NULL;
2588 	}
2589 
2590 	/* We need to allocate a new SKB and attach it to the RDB. */
2591 	if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2592 		IPW_DEBUG_WARNING(
2593 			"%s: Unable to allocate SKB onto RBD ring - disabling "
2594 			"adapter.\n", dev->name);
2595 		/* TODO: schedule adapter shutdown */
2596 		IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2597 	}
2598 
2599 	/* Update the RDB entry */
2600 	priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2601 }
2602 
2603 #endif
2604 
2605 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2606 {
2607 	struct ipw2100_status *status = &priv->status_queue.drv[i];
2608 	struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2609 	u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2610 
2611 	switch (frame_type) {
2612 	case COMMAND_STATUS_VAL:
2613 		return (status->frame_size != sizeof(u->rx_data.command));
2614 	case STATUS_CHANGE_VAL:
2615 		return (status->frame_size != sizeof(u->rx_data.status));
2616 	case HOST_NOTIFICATION_VAL:
2617 		return (status->frame_size < sizeof(u->rx_data.notification));
2618 	case P80211_DATA_VAL:
2619 	case P8023_DATA_VAL:
2620 #ifdef CONFIG_IPW2100_MONITOR
2621 		return 0;
2622 #else
2623 		switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2624 		case IEEE80211_FTYPE_MGMT:
2625 		case IEEE80211_FTYPE_CTL:
2626 			return 0;
2627 		case IEEE80211_FTYPE_DATA:
2628 			return (status->frame_size >
2629 				IPW_MAX_802_11_PAYLOAD_LENGTH);
2630 		}
2631 #endif
2632 	}
2633 
2634 	return 1;
2635 }
2636 
2637 /*
2638  * ipw2100 interrupts are disabled at this point, and the ISR
2639  * is the only code that calls this method.  So, we do not need
2640  * to play with any locks.
2641  *
2642  * RX Queue works as follows:
2643  *
2644  * Read index - firmware places packet in entry identified by the
2645  *              Read index and advances Read index.  In this manner,
2646  *              Read index will always point to the next packet to
2647  *              be filled--but not yet valid.
2648  *
2649  * Write index - driver fills this entry with an unused RBD entry.
2650  *               This entry has not filled by the firmware yet.
2651  *
2652  * In between the W and R indexes are the RBDs that have been received
2653  * but not yet processed.
2654  *
2655  * The process of handling packets will start at WRITE + 1 and advance
2656  * until it reaches the READ index.
2657  *
2658  * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2659  *
2660  */
2661 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2662 {
2663 	struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2664 	struct ipw2100_status_queue *sq = &priv->status_queue;
2665 	struct ipw2100_rx_packet *packet;
2666 	u16 frame_type;
2667 	u32 r, w, i, s;
2668 	struct ipw2100_rx *u;
2669 	struct libipw_rx_stats stats = {
2670 		.mac_time = jiffies,
2671 	};
2672 
2673 	read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2674 	read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2675 
2676 	if (r >= rxq->entries) {
2677 		IPW_DEBUG_RX("exit - bad read index\n");
2678 		return;
2679 	}
2680 
2681 	i = (rxq->next + 1) % rxq->entries;
2682 	s = i;
2683 	while (i != r) {
2684 		/* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2685 		   r, rxq->next, i); */
2686 
2687 		packet = &priv->rx_buffers[i];
2688 
2689 		/* Sync the DMA for the RX buffer so CPU is sure to get
2690 		 * the correct values */
2691 		pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2692 					    sizeof(struct ipw2100_rx),
2693 					    PCI_DMA_FROMDEVICE);
2694 
2695 		if (unlikely(ipw2100_corruption_check(priv, i))) {
2696 			ipw2100_corruption_detected(priv, i);
2697 			goto increment;
2698 		}
2699 
2700 		u = packet->rxp;
2701 		frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2702 		stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2703 		stats.len = sq->drv[i].frame_size;
2704 
2705 		stats.mask = 0;
2706 		if (stats.rssi != 0)
2707 			stats.mask |= LIBIPW_STATMASK_RSSI;
2708 		stats.freq = LIBIPW_24GHZ_BAND;
2709 
2710 		IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2711 			     priv->net_dev->name, frame_types[frame_type],
2712 			     stats.len);
2713 
2714 		switch (frame_type) {
2715 		case COMMAND_STATUS_VAL:
2716 			/* Reset Rx watchdog */
2717 			isr_rx_complete_command(priv, &u->rx_data.command);
2718 			break;
2719 
2720 		case STATUS_CHANGE_VAL:
2721 			isr_status_change(priv, u->rx_data.status);
2722 			break;
2723 
2724 		case P80211_DATA_VAL:
2725 		case P8023_DATA_VAL:
2726 #ifdef CONFIG_IPW2100_MONITOR
2727 			if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2728 				isr_rx_monitor(priv, i, &stats);
2729 				break;
2730 			}
2731 #endif
2732 			if (stats.len < sizeof(struct libipw_hdr_3addr))
2733 				break;
2734 			switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2735 			case IEEE80211_FTYPE_MGMT:
2736 				libipw_rx_mgt(priv->ieee,
2737 						 &u->rx_data.header, &stats);
2738 				break;
2739 
2740 			case IEEE80211_FTYPE_CTL:
2741 				break;
2742 
2743 			case IEEE80211_FTYPE_DATA:
2744 				isr_rx(priv, i, &stats);
2745 				break;
2746 
2747 			}
2748 			break;
2749 		}
2750 
2751 	      increment:
2752 		/* clear status field associated with this RBD */
2753 		rxq->drv[i].status.info.field = 0;
2754 
2755 		i = (i + 1) % rxq->entries;
2756 	}
2757 
2758 	if (i != s) {
2759 		/* backtrack one entry, wrapping to end if at 0 */
2760 		rxq->next = (i ? i : rxq->entries) - 1;
2761 
2762 		write_register(priv->net_dev,
2763 			       IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2764 	}
2765 }
2766 
2767 /*
2768  * __ipw2100_tx_process
2769  *
2770  * This routine will determine whether the next packet on
2771  * the fw_pend_list has been processed by the firmware yet.
2772  *
2773  * If not, then it does nothing and returns.
2774  *
2775  * If so, then it removes the item from the fw_pend_list, frees
2776  * any associated storage, and places the item back on the
2777  * free list of its source (either msg_free_list or tx_free_list)
2778  *
2779  * TX Queue works as follows:
2780  *
2781  * Read index - points to the next TBD that the firmware will
2782  *              process.  The firmware will read the data, and once
2783  *              done processing, it will advance the Read index.
2784  *
2785  * Write index - driver fills this entry with an constructed TBD
2786  *               entry.  The Write index is not advanced until the
2787  *               packet has been configured.
2788  *
2789  * In between the W and R indexes are the TBDs that have NOT been
2790  * processed.  Lagging behind the R index are packets that have
2791  * been processed but have not been freed by the driver.
2792  *
2793  * In order to free old storage, an internal index will be maintained
2794  * that points to the next packet to be freed.  When all used
2795  * packets have been freed, the oldest index will be the same as the
2796  * firmware's read index.
2797  *
2798  * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2799  *
2800  * Because the TBD structure can not contain arbitrary data, the
2801  * driver must keep an internal queue of cached allocations such that
2802  * it can put that data back into the tx_free_list and msg_free_list
2803  * for use by future command and data packets.
2804  *
2805  */
2806 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2807 {
2808 	struct ipw2100_bd_queue *txq = &priv->tx_queue;
2809 	struct ipw2100_bd *tbd;
2810 	struct list_head *element;
2811 	struct ipw2100_tx_packet *packet;
2812 	int descriptors_used;
2813 	int e, i;
2814 	u32 r, w, frag_num = 0;
2815 
2816 	if (list_empty(&priv->fw_pend_list))
2817 		return 0;
2818 
2819 	element = priv->fw_pend_list.next;
2820 
2821 	packet = list_entry(element, struct ipw2100_tx_packet, list);
2822 	tbd = &txq->drv[packet->index];
2823 
2824 	/* Determine how many TBD entries must be finished... */
2825 	switch (packet->type) {
2826 	case COMMAND:
2827 		/* COMMAND uses only one slot; don't advance */
2828 		descriptors_used = 1;
2829 		e = txq->oldest;
2830 		break;
2831 
2832 	case DATA:
2833 		/* DATA uses two slots; advance and loop position. */
2834 		descriptors_used = tbd->num_fragments;
2835 		frag_num = tbd->num_fragments - 1;
2836 		e = txq->oldest + frag_num;
2837 		e %= txq->entries;
2838 		break;
2839 
2840 	default:
2841 		printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2842 		       priv->net_dev->name);
2843 		return 0;
2844 	}
2845 
2846 	/* if the last TBD is not done by NIC yet, then packet is
2847 	 * not ready to be released.
2848 	 *
2849 	 */
2850 	read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2851 		      &r);
2852 	read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2853 		      &w);
2854 	if (w != txq->next)
2855 		printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2856 		       priv->net_dev->name);
2857 
2858 	/*
2859 	 * txq->next is the index of the last packet written txq->oldest is
2860 	 * the index of the r is the index of the next packet to be read by
2861 	 * firmware
2862 	 */
2863 
2864 	/*
2865 	 * Quick graphic to help you visualize the following
2866 	 * if / else statement
2867 	 *
2868 	 * ===>|                     s---->|===============
2869 	 *                               e>|
2870 	 * | a | b | c | d | e | f | g | h | i | j | k | l
2871 	 *       r---->|
2872 	 *               w
2873 	 *
2874 	 * w - updated by driver
2875 	 * r - updated by firmware
2876 	 * s - start of oldest BD entry (txq->oldest)
2877 	 * e - end of oldest BD entry
2878 	 *
2879 	 */
2880 	if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2881 		IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2882 		return 0;
2883 	}
2884 
2885 	list_del(element);
2886 	DEC_STAT(&priv->fw_pend_stat);
2887 
2888 #ifdef CONFIG_IPW2100_DEBUG
2889 	{
2890 		i = txq->oldest;
2891 		IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2892 			     &txq->drv[i],
2893 			     (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2894 			     txq->drv[i].host_addr, txq->drv[i].buf_length);
2895 
2896 		if (packet->type == DATA) {
2897 			i = (i + 1) % txq->entries;
2898 
2899 			IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2900 				     &txq->drv[i],
2901 				     (u32) (txq->nic + i *
2902 					    sizeof(struct ipw2100_bd)),
2903 				     (u32) txq->drv[i].host_addr,
2904 				     txq->drv[i].buf_length);
2905 		}
2906 	}
2907 #endif
2908 
2909 	switch (packet->type) {
2910 	case DATA:
2911 		if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2912 			printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2913 			       "Expecting DATA TBD but pulled "
2914 			       "something else: ids %d=%d.\n",
2915 			       priv->net_dev->name, txq->oldest, packet->index);
2916 
2917 		/* DATA packet; we have to unmap and free the SKB */
2918 		for (i = 0; i < frag_num; i++) {
2919 			tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2920 
2921 			IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2922 				     (packet->index + 1 + i) % txq->entries,
2923 				     tbd->host_addr, tbd->buf_length);
2924 
2925 			pci_unmap_single(priv->pci_dev,
2926 					 tbd->host_addr,
2927 					 tbd->buf_length, PCI_DMA_TODEVICE);
2928 		}
2929 
2930 		libipw_txb_free(packet->info.d_struct.txb);
2931 		packet->info.d_struct.txb = NULL;
2932 
2933 		list_add_tail(element, &priv->tx_free_list);
2934 		INC_STAT(&priv->tx_free_stat);
2935 
2936 		/* We have a free slot in the Tx queue, so wake up the
2937 		 * transmit layer if it is stopped. */
2938 		if (priv->status & STATUS_ASSOCIATED)
2939 			netif_wake_queue(priv->net_dev);
2940 
2941 		/* A packet was processed by the hardware, so update the
2942 		 * watchdog */
2943 		netif_trans_update(priv->net_dev);
2944 
2945 		break;
2946 
2947 	case COMMAND:
2948 		if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2949 			printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2950 			       "Expecting COMMAND TBD but pulled "
2951 			       "something else: ids %d=%d.\n",
2952 			       priv->net_dev->name, txq->oldest, packet->index);
2953 
2954 #ifdef CONFIG_IPW2100_DEBUG
2955 		if (packet->info.c_struct.cmd->host_command_reg <
2956 		    ARRAY_SIZE(command_types))
2957 			IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2958 				     command_types[packet->info.c_struct.cmd->
2959 						   host_command_reg],
2960 				     packet->info.c_struct.cmd->
2961 				     host_command_reg,
2962 				     packet->info.c_struct.cmd->cmd_status_reg);
2963 #endif
2964 
2965 		list_add_tail(element, &priv->msg_free_list);
2966 		INC_STAT(&priv->msg_free_stat);
2967 		break;
2968 	}
2969 
2970 	/* advance oldest used TBD pointer to start of next entry */
2971 	txq->oldest = (e + 1) % txq->entries;
2972 	/* increase available TBDs number */
2973 	txq->available += descriptors_used;
2974 	SET_STAT(&priv->txq_stat, txq->available);
2975 
2976 	IPW_DEBUG_TX("packet latency (send to process)  %ld jiffies\n",
2977 		     jiffies - packet->jiffy_start);
2978 
2979 	return (!list_empty(&priv->fw_pend_list));
2980 }
2981 
2982 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2983 {
2984 	int i = 0;
2985 
2986 	while (__ipw2100_tx_process(priv) && i < 200)
2987 		i++;
2988 
2989 	if (i == 200) {
2990 		printk(KERN_WARNING DRV_NAME ": "
2991 		       "%s: Driver is running slow (%d iters).\n",
2992 		       priv->net_dev->name, i);
2993 	}
2994 }
2995 
2996 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
2997 {
2998 	struct list_head *element;
2999 	struct ipw2100_tx_packet *packet;
3000 	struct ipw2100_bd_queue *txq = &priv->tx_queue;
3001 	struct ipw2100_bd *tbd;
3002 	int next = txq->next;
3003 
3004 	while (!list_empty(&priv->msg_pend_list)) {
3005 		/* if there isn't enough space in TBD queue, then
3006 		 * don't stuff a new one in.
3007 		 * NOTE: 3 are needed as a command will take one,
3008 		 *       and there is a minimum of 2 that must be
3009 		 *       maintained between the r and w indexes
3010 		 */
3011 		if (txq->available <= 3) {
3012 			IPW_DEBUG_TX("no room in tx_queue\n");
3013 			break;
3014 		}
3015 
3016 		element = priv->msg_pend_list.next;
3017 		list_del(element);
3018 		DEC_STAT(&priv->msg_pend_stat);
3019 
3020 		packet = list_entry(element, struct ipw2100_tx_packet, list);
3021 
3022 		IPW_DEBUG_TX("using TBD at virt=%p, phys=%04X\n",
3023 			     &txq->drv[txq->next],
3024 			     (u32) (txq->nic + txq->next *
3025 				      sizeof(struct ipw2100_bd)));
3026 
3027 		packet->index = txq->next;
3028 
3029 		tbd = &txq->drv[txq->next];
3030 
3031 		/* initialize TBD */
3032 		tbd->host_addr = packet->info.c_struct.cmd_phys;
3033 		tbd->buf_length = sizeof(struct ipw2100_cmd_header);
3034 		/* not marking number of fragments causes problems
3035 		 * with f/w debug version */
3036 		tbd->num_fragments = 1;
3037 		tbd->status.info.field =
3038 		    IPW_BD_STATUS_TX_FRAME_COMMAND |
3039 		    IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3040 
3041 		/* update TBD queue counters */
3042 		txq->next++;
3043 		txq->next %= txq->entries;
3044 		txq->available--;
3045 		DEC_STAT(&priv->txq_stat);
3046 
3047 		list_add_tail(element, &priv->fw_pend_list);
3048 		INC_STAT(&priv->fw_pend_stat);
3049 	}
3050 
3051 	if (txq->next != next) {
3052 		/* kick off the DMA by notifying firmware the
3053 		 * write index has moved; make sure TBD stores are sync'd */
3054 		wmb();
3055 		write_register(priv->net_dev,
3056 			       IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3057 			       txq->next);
3058 	}
3059 }
3060 
3061 /*
3062  * ipw2100_tx_send_data
3063  *
3064  */
3065 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3066 {
3067 	struct list_head *element;
3068 	struct ipw2100_tx_packet *packet;
3069 	struct ipw2100_bd_queue *txq = &priv->tx_queue;
3070 	struct ipw2100_bd *tbd;
3071 	int next = txq->next;
3072 	int i = 0;
3073 	struct ipw2100_data_header *ipw_hdr;
3074 	struct libipw_hdr_3addr *hdr;
3075 
3076 	while (!list_empty(&priv->tx_pend_list)) {
3077 		/* if there isn't enough space in TBD queue, then
3078 		 * don't stuff a new one in.
3079 		 * NOTE: 4 are needed as a data will take two,
3080 		 *       and there is a minimum of 2 that must be
3081 		 *       maintained between the r and w indexes
3082 		 */
3083 		element = priv->tx_pend_list.next;
3084 		packet = list_entry(element, struct ipw2100_tx_packet, list);
3085 
3086 		if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3087 			     IPW_MAX_BDS)) {
3088 			/* TODO: Support merging buffers if more than
3089 			 * IPW_MAX_BDS are used */
3090 			IPW_DEBUG_INFO("%s: Maximum BD threshold exceeded.  "
3091 				       "Increase fragmentation level.\n",
3092 				       priv->net_dev->name);
3093 		}
3094 
3095 		if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3096 			IPW_DEBUG_TX("no room in tx_queue\n");
3097 			break;
3098 		}
3099 
3100 		list_del(element);
3101 		DEC_STAT(&priv->tx_pend_stat);
3102 
3103 		tbd = &txq->drv[txq->next];
3104 
3105 		packet->index = txq->next;
3106 
3107 		ipw_hdr = packet->info.d_struct.data;
3108 		hdr = (struct libipw_hdr_3addr *)packet->info.d_struct.txb->
3109 		    fragments[0]->data;
3110 
3111 		if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3112 			/* To DS: Addr1 = BSSID, Addr2 = SA,
3113 			   Addr3 = DA */
3114 			memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3115 			memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3116 		} else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3117 			/* not From/To DS: Addr1 = DA, Addr2 = SA,
3118 			   Addr3 = BSSID */
3119 			memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3120 			memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3121 		}
3122 
3123 		ipw_hdr->host_command_reg = SEND;
3124 		ipw_hdr->host_command_reg1 = 0;
3125 
3126 		/* For now we only support host based encryption */
3127 		ipw_hdr->needs_encryption = 0;
3128 		ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3129 		if (packet->info.d_struct.txb->nr_frags > 1)
3130 			ipw_hdr->fragment_size =
3131 			    packet->info.d_struct.txb->frag_size -
3132 			    LIBIPW_3ADDR_LEN;
3133 		else
3134 			ipw_hdr->fragment_size = 0;
3135 
3136 		tbd->host_addr = packet->info.d_struct.data_phys;
3137 		tbd->buf_length = sizeof(struct ipw2100_data_header);
3138 		tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3139 		tbd->status.info.field =
3140 		    IPW_BD_STATUS_TX_FRAME_802_3 |
3141 		    IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3142 		txq->next++;
3143 		txq->next %= txq->entries;
3144 
3145 		IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3146 			     packet->index, tbd->host_addr, tbd->buf_length);
3147 #ifdef CONFIG_IPW2100_DEBUG
3148 		if (packet->info.d_struct.txb->nr_frags > 1)
3149 			IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3150 				       packet->info.d_struct.txb->nr_frags);
3151 #endif
3152 
3153 		for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3154 			tbd = &txq->drv[txq->next];
3155 			if (i == packet->info.d_struct.txb->nr_frags - 1)
3156 				tbd->status.info.field =
3157 				    IPW_BD_STATUS_TX_FRAME_802_3 |
3158 				    IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3159 			else
3160 				tbd->status.info.field =
3161 				    IPW_BD_STATUS_TX_FRAME_802_3 |
3162 				    IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3163 
3164 			tbd->buf_length = packet->info.d_struct.txb->
3165 			    fragments[i]->len - LIBIPW_3ADDR_LEN;
3166 
3167 			tbd->host_addr = pci_map_single(priv->pci_dev,
3168 							packet->info.d_struct.
3169 							txb->fragments[i]->
3170 							data +
3171 							LIBIPW_3ADDR_LEN,
3172 							tbd->buf_length,
3173 							PCI_DMA_TODEVICE);
3174 			if (pci_dma_mapping_error(priv->pci_dev,
3175 						  tbd->host_addr)) {
3176 				IPW_DEBUG_TX("dma mapping error\n");
3177 				break;
3178 			}
3179 
3180 			IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3181 				     txq->next, tbd->host_addr,
3182 				     tbd->buf_length);
3183 
3184 			pci_dma_sync_single_for_device(priv->pci_dev,
3185 						       tbd->host_addr,
3186 						       tbd->buf_length,
3187 						       PCI_DMA_TODEVICE);
3188 
3189 			txq->next++;
3190 			txq->next %= txq->entries;
3191 		}
3192 
3193 		txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3194 		SET_STAT(&priv->txq_stat, txq->available);
3195 
3196 		list_add_tail(element, &priv->fw_pend_list);
3197 		INC_STAT(&priv->fw_pend_stat);
3198 	}
3199 
3200 	if (txq->next != next) {
3201 		/* kick off the DMA by notifying firmware the
3202 		 * write index has moved; make sure TBD stores are sync'd */
3203 		write_register(priv->net_dev,
3204 			       IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3205 			       txq->next);
3206 	}
3207 }
3208 
3209 static void ipw2100_irq_tasklet(unsigned long data)
3210 {
3211 	struct ipw2100_priv *priv = (struct ipw2100_priv *)data;
3212 	struct net_device *dev = priv->net_dev;
3213 	unsigned long flags;
3214 	u32 inta, tmp;
3215 
3216 	spin_lock_irqsave(&priv->low_lock, flags);
3217 	ipw2100_disable_interrupts(priv);
3218 
3219 	read_register(dev, IPW_REG_INTA, &inta);
3220 
3221 	IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3222 		      (unsigned long)inta & IPW_INTERRUPT_MASK);
3223 
3224 	priv->in_isr++;
3225 	priv->interrupts++;
3226 
3227 	/* We do not loop and keep polling for more interrupts as this
3228 	 * is frowned upon and doesn't play nicely with other potentially
3229 	 * chained IRQs */
3230 	IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3231 		      (unsigned long)inta & IPW_INTERRUPT_MASK);
3232 
3233 	if (inta & IPW2100_INTA_FATAL_ERROR) {
3234 		printk(KERN_WARNING DRV_NAME
3235 		       ": Fatal interrupt. Scheduling firmware restart.\n");
3236 		priv->inta_other++;
3237 		write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3238 
3239 		read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3240 		IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3241 			       priv->net_dev->name, priv->fatal_error);
3242 
3243 		read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3244 		IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3245 			       priv->net_dev->name, tmp);
3246 
3247 		/* Wake up any sleeping jobs */
3248 		schedule_reset(priv);
3249 	}
3250 
3251 	if (inta & IPW2100_INTA_PARITY_ERROR) {
3252 		printk(KERN_ERR DRV_NAME
3253 		       ": ***** PARITY ERROR INTERRUPT !!!!\n");
3254 		priv->inta_other++;
3255 		write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3256 	}
3257 
3258 	if (inta & IPW2100_INTA_RX_TRANSFER) {
3259 		IPW_DEBUG_ISR("RX interrupt\n");
3260 
3261 		priv->rx_interrupts++;
3262 
3263 		write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3264 
3265 		__ipw2100_rx_process(priv);
3266 		__ipw2100_tx_complete(priv);
3267 	}
3268 
3269 	if (inta & IPW2100_INTA_TX_TRANSFER) {
3270 		IPW_DEBUG_ISR("TX interrupt\n");
3271 
3272 		priv->tx_interrupts++;
3273 
3274 		write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3275 
3276 		__ipw2100_tx_complete(priv);
3277 		ipw2100_tx_send_commands(priv);
3278 		ipw2100_tx_send_data(priv);
3279 	}
3280 
3281 	if (inta & IPW2100_INTA_TX_COMPLETE) {
3282 		IPW_DEBUG_ISR("TX complete\n");
3283 		priv->inta_other++;
3284 		write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3285 
3286 		__ipw2100_tx_complete(priv);
3287 	}
3288 
3289 	if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3290 		/* ipw2100_handle_event(dev); */
3291 		priv->inta_other++;
3292 		write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3293 	}
3294 
3295 	if (inta & IPW2100_INTA_FW_INIT_DONE) {
3296 		IPW_DEBUG_ISR("FW init done interrupt\n");
3297 		priv->inta_other++;
3298 
3299 		read_register(dev, IPW_REG_INTA, &tmp);
3300 		if (tmp & (IPW2100_INTA_FATAL_ERROR |
3301 			   IPW2100_INTA_PARITY_ERROR)) {
3302 			write_register(dev, IPW_REG_INTA,
3303 				       IPW2100_INTA_FATAL_ERROR |
3304 				       IPW2100_INTA_PARITY_ERROR);
3305 		}
3306 
3307 		write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3308 	}
3309 
3310 	if (inta & IPW2100_INTA_STATUS_CHANGE) {
3311 		IPW_DEBUG_ISR("Status change interrupt\n");
3312 		priv->inta_other++;
3313 		write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3314 	}
3315 
3316 	if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3317 		IPW_DEBUG_ISR("slave host mode interrupt\n");
3318 		priv->inta_other++;
3319 		write_register(dev, IPW_REG_INTA,
3320 			       IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3321 	}
3322 
3323 	priv->in_isr--;
3324 	ipw2100_enable_interrupts(priv);
3325 
3326 	spin_unlock_irqrestore(&priv->low_lock, flags);
3327 
3328 	IPW_DEBUG_ISR("exit\n");
3329 }
3330 
3331 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3332 {
3333 	struct ipw2100_priv *priv = data;
3334 	u32 inta, inta_mask;
3335 
3336 	if (!data)
3337 		return IRQ_NONE;
3338 
3339 	spin_lock(&priv->low_lock);
3340 
3341 	/* We check to see if we should be ignoring interrupts before
3342 	 * we touch the hardware.  During ucode load if we try and handle
3343 	 * an interrupt we can cause keyboard problems as well as cause
3344 	 * the ucode to fail to initialize */
3345 	if (!(priv->status & STATUS_INT_ENABLED)) {
3346 		/* Shared IRQ */
3347 		goto none;
3348 	}
3349 
3350 	read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3351 	read_register(priv->net_dev, IPW_REG_INTA, &inta);
3352 
3353 	if (inta == 0xFFFFFFFF) {
3354 		/* Hardware disappeared */
3355 		printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3356 		goto none;
3357 	}
3358 
3359 	inta &= IPW_INTERRUPT_MASK;
3360 
3361 	if (!(inta & inta_mask)) {
3362 		/* Shared interrupt */
3363 		goto none;
3364 	}
3365 
3366 	/* We disable the hardware interrupt here just to prevent unneeded
3367 	 * calls to be made.  We disable this again within the actual
3368 	 * work tasklet, so if another part of the code re-enables the
3369 	 * interrupt, that is fine */
3370 	ipw2100_disable_interrupts(priv);
3371 
3372 	tasklet_schedule(&priv->irq_tasklet);
3373 	spin_unlock(&priv->low_lock);
3374 
3375 	return IRQ_HANDLED;
3376       none:
3377 	spin_unlock(&priv->low_lock);
3378 	return IRQ_NONE;
3379 }
3380 
3381 static netdev_tx_t ipw2100_tx(struct libipw_txb *txb,
3382 			      struct net_device *dev, int pri)
3383 {
3384 	struct ipw2100_priv *priv = libipw_priv(dev);
3385 	struct list_head *element;
3386 	struct ipw2100_tx_packet *packet;
3387 	unsigned long flags;
3388 
3389 	spin_lock_irqsave(&priv->low_lock, flags);
3390 
3391 	if (!(priv->status & STATUS_ASSOCIATED)) {
3392 		IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3393 		priv->net_dev->stats.tx_carrier_errors++;
3394 		netif_stop_queue(dev);
3395 		goto fail_unlock;
3396 	}
3397 
3398 	if (list_empty(&priv->tx_free_list))
3399 		goto fail_unlock;
3400 
3401 	element = priv->tx_free_list.next;
3402 	packet = list_entry(element, struct ipw2100_tx_packet, list);
3403 
3404 	packet->info.d_struct.txb = txb;
3405 
3406 	IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3407 	printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3408 
3409 	packet->jiffy_start = jiffies;
3410 
3411 	list_del(element);
3412 	DEC_STAT(&priv->tx_free_stat);
3413 
3414 	list_add_tail(element, &priv->tx_pend_list);
3415 	INC_STAT(&priv->tx_pend_stat);
3416 
3417 	ipw2100_tx_send_data(priv);
3418 
3419 	spin_unlock_irqrestore(&priv->low_lock, flags);
3420 	return NETDEV_TX_OK;
3421 
3422 fail_unlock:
3423 	netif_stop_queue(dev);
3424 	spin_unlock_irqrestore(&priv->low_lock, flags);
3425 	return NETDEV_TX_BUSY;
3426 }
3427 
3428 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3429 {
3430 	int i, j, err = -EINVAL;
3431 	void *v;
3432 	dma_addr_t p;
3433 
3434 	priv->msg_buffers =
3435 	    kmalloc_array(IPW_COMMAND_POOL_SIZE,
3436 			  sizeof(struct ipw2100_tx_packet),
3437 			  GFP_KERNEL);
3438 	if (!priv->msg_buffers)
3439 		return -ENOMEM;
3440 
3441 	for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3442 		v = pci_zalloc_consistent(priv->pci_dev,
3443 					  sizeof(struct ipw2100_cmd_header),
3444 					  &p);
3445 		if (!v) {
3446 			printk(KERN_ERR DRV_NAME ": "
3447 			       "%s: PCI alloc failed for msg "
3448 			       "buffers.\n", priv->net_dev->name);
3449 			err = -ENOMEM;
3450 			break;
3451 		}
3452 
3453 		priv->msg_buffers[i].type = COMMAND;
3454 		priv->msg_buffers[i].info.c_struct.cmd =
3455 		    (struct ipw2100_cmd_header *)v;
3456 		priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3457 	}
3458 
3459 	if (i == IPW_COMMAND_POOL_SIZE)
3460 		return 0;
3461 
3462 	for (j = 0; j < i; j++) {
3463 		pci_free_consistent(priv->pci_dev,
3464 				    sizeof(struct ipw2100_cmd_header),
3465 				    priv->msg_buffers[j].info.c_struct.cmd,
3466 				    priv->msg_buffers[j].info.c_struct.
3467 				    cmd_phys);
3468 	}
3469 
3470 	kfree(priv->msg_buffers);
3471 	priv->msg_buffers = NULL;
3472 
3473 	return err;
3474 }
3475 
3476 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3477 {
3478 	int i;
3479 
3480 	INIT_LIST_HEAD(&priv->msg_free_list);
3481 	INIT_LIST_HEAD(&priv->msg_pend_list);
3482 
3483 	for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3484 		list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3485 	SET_STAT(&priv->msg_free_stat, i);
3486 
3487 	return 0;
3488 }
3489 
3490 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3491 {
3492 	int i;
3493 
3494 	if (!priv->msg_buffers)
3495 		return;
3496 
3497 	for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3498 		pci_free_consistent(priv->pci_dev,
3499 				    sizeof(struct ipw2100_cmd_header),
3500 				    priv->msg_buffers[i].info.c_struct.cmd,
3501 				    priv->msg_buffers[i].info.c_struct.
3502 				    cmd_phys);
3503 	}
3504 
3505 	kfree(priv->msg_buffers);
3506 	priv->msg_buffers = NULL;
3507 }
3508 
3509 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3510 			char *buf)
3511 {
3512 	struct pci_dev *pci_dev = to_pci_dev(d);
3513 	char *out = buf;
3514 	int i, j;
3515 	u32 val;
3516 
3517 	for (i = 0; i < 16; i++) {
3518 		out += sprintf(out, "[%08X] ", i * 16);
3519 		for (j = 0; j < 16; j += 4) {
3520 			pci_read_config_dword(pci_dev, i * 16 + j, &val);
3521 			out += sprintf(out, "%08X ", val);
3522 		}
3523 		out += sprintf(out, "\n");
3524 	}
3525 
3526 	return out - buf;
3527 }
3528 
3529 static DEVICE_ATTR(pci, 0444, show_pci, NULL);
3530 
3531 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3532 			char *buf)
3533 {
3534 	struct ipw2100_priv *p = dev_get_drvdata(d);
3535 	return sprintf(buf, "0x%08x\n", (int)p->config);
3536 }
3537 
3538 static DEVICE_ATTR(cfg, 0444, show_cfg, NULL);
3539 
3540 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3541 			   char *buf)
3542 {
3543 	struct ipw2100_priv *p = dev_get_drvdata(d);
3544 	return sprintf(buf, "0x%08x\n", (int)p->status);
3545 }
3546 
3547 static DEVICE_ATTR(status, 0444, show_status, NULL);
3548 
3549 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3550 			       char *buf)
3551 {
3552 	struct ipw2100_priv *p = dev_get_drvdata(d);
3553 	return sprintf(buf, "0x%08x\n", (int)p->capability);
3554 }
3555 
3556 static DEVICE_ATTR(capability, 0444, show_capability, NULL);
3557 
3558 #define IPW2100_REG(x) { IPW_ ##x, #x }
3559 static const struct {
3560 	u32 addr;
3561 	const char *name;
3562 } hw_data[] = {
3563 IPW2100_REG(REG_GP_CNTRL),
3564 	    IPW2100_REG(REG_GPIO),
3565 	    IPW2100_REG(REG_INTA),
3566 	    IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3567 #define IPW2100_NIC(x, s) { x, #x, s }
3568 static const struct {
3569 	u32 addr;
3570 	const char *name;
3571 	size_t size;
3572 } nic_data[] = {
3573 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3574 	    IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3575 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3576 static const struct {
3577 	u8 index;
3578 	const char *name;
3579 	const char *desc;
3580 } ord_data[] = {
3581 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3582 	    IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3583 				"successful Host Tx's (MSDU)"),
3584 	    IPW2100_ORD(STAT_TX_DIR_DATA,
3585 				"successful Directed Tx's (MSDU)"),
3586 	    IPW2100_ORD(STAT_TX_DIR_DATA1,
3587 				"successful Directed Tx's (MSDU) @ 1MB"),
3588 	    IPW2100_ORD(STAT_TX_DIR_DATA2,
3589 				"successful Directed Tx's (MSDU) @ 2MB"),
3590 	    IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3591 				"successful Directed Tx's (MSDU) @ 5_5MB"),
3592 	    IPW2100_ORD(STAT_TX_DIR_DATA11,
3593 				"successful Directed Tx's (MSDU) @ 11MB"),
3594 	    IPW2100_ORD(STAT_TX_NODIR_DATA1,
3595 				"successful Non_Directed Tx's (MSDU) @ 1MB"),
3596 	    IPW2100_ORD(STAT_TX_NODIR_DATA2,
3597 				"successful Non_Directed Tx's (MSDU) @ 2MB"),
3598 	    IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3599 				"successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3600 	    IPW2100_ORD(STAT_TX_NODIR_DATA11,
3601 				"successful Non_Directed Tx's (MSDU) @ 11MB"),
3602 	    IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3603 	    IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3604 	    IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3605 	    IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3606 	    IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3607 	    IPW2100_ORD(STAT_TX_ASSN_RESP,
3608 				"successful Association response Tx's"),
3609 	    IPW2100_ORD(STAT_TX_REASSN,
3610 				"successful Reassociation Tx's"),
3611 	    IPW2100_ORD(STAT_TX_REASSN_RESP,
3612 				"successful Reassociation response Tx's"),
3613 	    IPW2100_ORD(STAT_TX_PROBE,
3614 				"probes successfully transmitted"),
3615 	    IPW2100_ORD(STAT_TX_PROBE_RESP,
3616 				"probe responses successfully transmitted"),
3617 	    IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3618 	    IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3619 	    IPW2100_ORD(STAT_TX_DISASSN,
3620 				"successful Disassociation TX"),
3621 	    IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3622 	    IPW2100_ORD(STAT_TX_DEAUTH,
3623 				"successful Deauthentication TX"),
3624 	    IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3625 				"Total successful Tx data bytes"),
3626 	    IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3627 	    IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3628 	    IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3629 	    IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3630 	    IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3631 	    IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3632 	    IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3633 				"times max tries in a hop failed"),
3634 	    IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3635 				"times disassociation failed"),
3636 	    IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3637 	    IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3638 	    IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3639 	    IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3640 	    IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3641 	    IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3642 	    IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3643 				"directed packets at 5.5MB"),
3644 	    IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3645 	    IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3646 	    IPW2100_ORD(STAT_RX_NODIR_DATA1,
3647 				"nondirected packets at 1MB"),
3648 	    IPW2100_ORD(STAT_RX_NODIR_DATA2,
3649 				"nondirected packets at 2MB"),
3650 	    IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3651 				"nondirected packets at 5.5MB"),
3652 	    IPW2100_ORD(STAT_RX_NODIR_DATA11,
3653 				"nondirected packets at 11MB"),
3654 	    IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3655 	    IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3656 								    "Rx CTS"),
3657 	    IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3658 	    IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3659 	    IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3660 	    IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3661 	    IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3662 	    IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3663 	    IPW2100_ORD(STAT_RX_REASSN_RESP,
3664 				"Reassociation response Rx's"),
3665 	    IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3666 	    IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3667 	    IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3668 	    IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3669 	    IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3670 	    IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3671 	    IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3672 	    IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3673 				"Total rx data bytes received"),
3674 	    IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3675 	    IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3676 	    IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3677 	    IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3678 	    IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3679 	    IPW2100_ORD(STAT_RX_DUPLICATE1,
3680 				"duplicate rx packets at 1MB"),
3681 	    IPW2100_ORD(STAT_RX_DUPLICATE2,
3682 				"duplicate rx packets at 2MB"),
3683 	    IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3684 				"duplicate rx packets at 5.5MB"),
3685 	    IPW2100_ORD(STAT_RX_DUPLICATE11,
3686 				"duplicate rx packets at 11MB"),
3687 	    IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3688 	    IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent  db"),
3689 	    IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent  db"),
3690 	    IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent  db"),
3691 	    IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3692 				"rx frames with invalid protocol"),
3693 	    IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3694 	    IPW2100_ORD(STAT_RX_NO_BUFFER,
3695 				"rx frames rejected due to no buffer"),
3696 	    IPW2100_ORD(STAT_RX_MISSING_FRAG,
3697 				"rx frames dropped due to missing fragment"),
3698 	    IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3699 				"rx frames dropped due to non-sequential fragment"),
3700 	    IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3701 				"rx frames dropped due to unmatched 1st frame"),
3702 	    IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3703 				"rx frames dropped due to uncompleted frame"),
3704 	    IPW2100_ORD(STAT_RX_ICV_ERRORS,
3705 				"ICV errors during decryption"),
3706 	    IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3707 	    IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3708 	    IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3709 				"poll response timeouts"),
3710 	    IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3711 				"timeouts waiting for last {broad,multi}cast pkt"),
3712 	    IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3713 	    IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3714 	    IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3715 	    IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3716 	    IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3717 				"current calculation of % missed beacons"),
3718 	    IPW2100_ORD(STAT_PERCENT_RETRIES,
3719 				"current calculation of % missed tx retries"),
3720 	    IPW2100_ORD(ASSOCIATED_AP_PTR,
3721 				"0 if not associated, else pointer to AP table entry"),
3722 	    IPW2100_ORD(AVAILABLE_AP_CNT,
3723 				"AP's described in the AP table"),
3724 	    IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3725 	    IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3726 	    IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3727 	    IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3728 				"failures due to response fail"),
3729 	    IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3730 	    IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3731 	    IPW2100_ORD(STAT_ROAM_INHIBIT,
3732 				"times roaming was inhibited due to activity"),
3733 	    IPW2100_ORD(RSSI_AT_ASSN,
3734 				"RSSI of associated AP at time of association"),
3735 	    IPW2100_ORD(STAT_ASSN_CAUSE1,
3736 				"reassociation: no probe response or TX on hop"),
3737 	    IPW2100_ORD(STAT_ASSN_CAUSE2,
3738 				"reassociation: poor tx/rx quality"),
3739 	    IPW2100_ORD(STAT_ASSN_CAUSE3,
3740 				"reassociation: tx/rx quality (excessive AP load"),
3741 	    IPW2100_ORD(STAT_ASSN_CAUSE4,
3742 				"reassociation: AP RSSI level"),
3743 	    IPW2100_ORD(STAT_ASSN_CAUSE5,
3744 				"reassociations due to load leveling"),
3745 	    IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3746 	    IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3747 				"times authentication response failed"),
3748 	    IPW2100_ORD(STATION_TABLE_CNT,
3749 				"entries in association table"),
3750 	    IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3751 	    IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3752 	    IPW2100_ORD(COUNTRY_CODE,
3753 				"IEEE country code as recv'd from beacon"),
3754 	    IPW2100_ORD(COUNTRY_CHANNELS,
3755 				"channels supported by country"),
3756 	    IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3757 	    IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3758 	    IPW2100_ORD(ANTENNA_DIVERSITY,
3759 				"TRUE if antenna diversity is disabled"),
3760 	    IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3761 	    IPW2100_ORD(OUR_FREQ,
3762 				"current radio freq lower digits - channel ID"),
3763 	    IPW2100_ORD(RTC_TIME, "current RTC time"),
3764 	    IPW2100_ORD(PORT_TYPE, "operating mode"),
3765 	    IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3766 	    IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3767 	    IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3768 	    IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3769 	    IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3770 	    IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3771 	    IPW2100_ORD(CAPABILITIES,
3772 				"Management frame capability field"),
3773 	    IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3774 	    IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3775 	    IPW2100_ORD(RTS_THRESHOLD,
3776 				"Min packet length for RTS handshaking"),
3777 	    IPW2100_ORD(INT_MODE, "International mode"),
3778 	    IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3779 				"protocol frag threshold"),
3780 	    IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3781 				"EEPROM offset in SRAM"),
3782 	    IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3783 				"EEPROM size in SRAM"),
3784 	    IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3785 	    IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3786 				"EEPROM IBSS 11b channel set"),
3787 	    IPW2100_ORD(MAC_VERSION, "MAC Version"),
3788 	    IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3789 	    IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3790 	    IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3791 	    IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3792 
3793 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3794 			      char *buf)
3795 {
3796 	int i;
3797 	struct ipw2100_priv *priv = dev_get_drvdata(d);
3798 	struct net_device *dev = priv->net_dev;
3799 	char *out = buf;
3800 	u32 val = 0;
3801 
3802 	out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3803 
3804 	for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3805 		read_register(dev, hw_data[i].addr, &val);
3806 		out += sprintf(out, "%30s [%08X] : %08X\n",
3807 			       hw_data[i].name, hw_data[i].addr, val);
3808 	}
3809 
3810 	return out - buf;
3811 }
3812 
3813 static DEVICE_ATTR(registers, 0444, show_registers, NULL);
3814 
3815 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3816 			     char *buf)
3817 {
3818 	struct ipw2100_priv *priv = dev_get_drvdata(d);
3819 	struct net_device *dev = priv->net_dev;
3820 	char *out = buf;
3821 	int i;
3822 
3823 	out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3824 
3825 	for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3826 		u8 tmp8;
3827 		u16 tmp16;
3828 		u32 tmp32;
3829 
3830 		switch (nic_data[i].size) {
3831 		case 1:
3832 			read_nic_byte(dev, nic_data[i].addr, &tmp8);
3833 			out += sprintf(out, "%30s [%08X] : %02X\n",
3834 				       nic_data[i].name, nic_data[i].addr,
3835 				       tmp8);
3836 			break;
3837 		case 2:
3838 			read_nic_word(dev, nic_data[i].addr, &tmp16);
3839 			out += sprintf(out, "%30s [%08X] : %04X\n",
3840 				       nic_data[i].name, nic_data[i].addr,
3841 				       tmp16);
3842 			break;
3843 		case 4:
3844 			read_nic_dword(dev, nic_data[i].addr, &tmp32);
3845 			out += sprintf(out, "%30s [%08X] : %08X\n",
3846 				       nic_data[i].name, nic_data[i].addr,
3847 				       tmp32);
3848 			break;
3849 		}
3850 	}
3851 	return out - buf;
3852 }
3853 
3854 static DEVICE_ATTR(hardware, 0444, show_hardware, NULL);
3855 
3856 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3857 			   char *buf)
3858 {
3859 	struct ipw2100_priv *priv = dev_get_drvdata(d);
3860 	struct net_device *dev = priv->net_dev;
3861 	static unsigned long loop = 0;
3862 	int len = 0;
3863 	u32 buffer[4];
3864 	int i;
3865 	char line[81];
3866 
3867 	if (loop >= 0x30000)
3868 		loop = 0;
3869 
3870 	/* sysfs provides us PAGE_SIZE buffer */
3871 	while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3872 
3873 		if (priv->snapshot[0])
3874 			for (i = 0; i < 4; i++)
3875 				buffer[i] =
3876 				    *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3877 		else
3878 			for (i = 0; i < 4; i++)
3879 				read_nic_dword(dev, loop + i * 4, &buffer[i]);
3880 
3881 		if (priv->dump_raw)
3882 			len += sprintf(buf + len,
3883 				       "%c%c%c%c"
3884 				       "%c%c%c%c"
3885 				       "%c%c%c%c"
3886 				       "%c%c%c%c",
3887 				       ((u8 *) buffer)[0x0],
3888 				       ((u8 *) buffer)[0x1],
3889 				       ((u8 *) buffer)[0x2],
3890 				       ((u8 *) buffer)[0x3],
3891 				       ((u8 *) buffer)[0x4],
3892 				       ((u8 *) buffer)[0x5],
3893 				       ((u8 *) buffer)[0x6],
3894 				       ((u8 *) buffer)[0x7],
3895 				       ((u8 *) buffer)[0x8],
3896 				       ((u8 *) buffer)[0x9],
3897 				       ((u8 *) buffer)[0xa],
3898 				       ((u8 *) buffer)[0xb],
3899 				       ((u8 *) buffer)[0xc],
3900 				       ((u8 *) buffer)[0xd],
3901 				       ((u8 *) buffer)[0xe],
3902 				       ((u8 *) buffer)[0xf]);
3903 		else
3904 			len += sprintf(buf + len, "%s\n",
3905 				       snprint_line(line, sizeof(line),
3906 						    (u8 *) buffer, 16, loop));
3907 		loop += 16;
3908 	}
3909 
3910 	return len;
3911 }
3912 
3913 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3914 			    const char *buf, size_t count)
3915 {
3916 	struct ipw2100_priv *priv = dev_get_drvdata(d);
3917 	struct net_device *dev = priv->net_dev;
3918 	const char *p = buf;
3919 
3920 	(void)dev;		/* kill unused-var warning for debug-only code */
3921 
3922 	if (count < 1)
3923 		return count;
3924 
3925 	if (p[0] == '1' ||
3926 	    (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3927 		IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3928 			       dev->name);
3929 		priv->dump_raw = 1;
3930 
3931 	} else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3932 				   tolower(p[1]) == 'f')) {
3933 		IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3934 			       dev->name);
3935 		priv->dump_raw = 0;
3936 
3937 	} else if (tolower(p[0]) == 'r') {
3938 		IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3939 		ipw2100_snapshot_free(priv);
3940 
3941 	} else
3942 		IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3943 			       "reset = clear memory snapshot\n", dev->name);
3944 
3945 	return count;
3946 }
3947 
3948 static DEVICE_ATTR(memory, 0644, show_memory, store_memory);
3949 
3950 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3951 			     char *buf)
3952 {
3953 	struct ipw2100_priv *priv = dev_get_drvdata(d);
3954 	u32 val = 0;
3955 	int len = 0;
3956 	u32 val_len;
3957 	static int loop = 0;
3958 
3959 	if (priv->status & STATUS_RF_KILL_MASK)
3960 		return 0;
3961 
3962 	if (loop >= ARRAY_SIZE(ord_data))
3963 		loop = 0;
3964 
3965 	/* sysfs provides us PAGE_SIZE buffer */
3966 	while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
3967 		val_len = sizeof(u32);
3968 
3969 		if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3970 					&val_len))
3971 			len += sprintf(buf + len, "[0x%02X] = ERROR    %s\n",
3972 				       ord_data[loop].index,
3973 				       ord_data[loop].desc);
3974 		else
3975 			len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3976 				       ord_data[loop].index, val,
3977 				       ord_data[loop].desc);
3978 		loop++;
3979 	}
3980 
3981 	return len;
3982 }
3983 
3984 static DEVICE_ATTR(ordinals, 0444, show_ordinals, NULL);
3985 
3986 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
3987 			  char *buf)
3988 {
3989 	struct ipw2100_priv *priv = dev_get_drvdata(d);
3990 	char *out = buf;
3991 
3992 	out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
3993 		       priv->interrupts, priv->tx_interrupts,
3994 		       priv->rx_interrupts, priv->inta_other);
3995 	out += sprintf(out, "firmware resets: %d\n", priv->resets);
3996 	out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
3997 #ifdef CONFIG_IPW2100_DEBUG
3998 	out += sprintf(out, "packet mismatch image: %s\n",
3999 		       priv->snapshot[0] ? "YES" : "NO");
4000 #endif
4001 
4002 	return out - buf;
4003 }
4004 
4005 static DEVICE_ATTR(stats, 0444, show_stats, NULL);
4006 
4007 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
4008 {
4009 	int err;
4010 
4011 	if (mode == priv->ieee->iw_mode)
4012 		return 0;
4013 
4014 	err = ipw2100_disable_adapter(priv);
4015 	if (err) {
4016 		printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
4017 		       priv->net_dev->name, err);
4018 		return err;
4019 	}
4020 
4021 	switch (mode) {
4022 	case IW_MODE_INFRA:
4023 		priv->net_dev->type = ARPHRD_ETHER;
4024 		break;
4025 	case IW_MODE_ADHOC:
4026 		priv->net_dev->type = ARPHRD_ETHER;
4027 		break;
4028 #ifdef CONFIG_IPW2100_MONITOR
4029 	case IW_MODE_MONITOR:
4030 		priv->last_mode = priv->ieee->iw_mode;
4031 		priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
4032 		break;
4033 #endif				/* CONFIG_IPW2100_MONITOR */
4034 	}
4035 
4036 	priv->ieee->iw_mode = mode;
4037 
4038 #ifdef CONFIG_PM
4039 	/* Indicate ipw2100_download_firmware download firmware
4040 	 * from disk instead of memory. */
4041 	ipw2100_firmware.version = 0;
4042 #endif
4043 
4044 	printk(KERN_INFO "%s: Resetting on mode change.\n", priv->net_dev->name);
4045 	priv->reset_backoff = 0;
4046 	schedule_reset(priv);
4047 
4048 	return 0;
4049 }
4050 
4051 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
4052 			      char *buf)
4053 {
4054 	struct ipw2100_priv *priv = dev_get_drvdata(d);
4055 	int len = 0;
4056 
4057 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
4058 
4059 	if (priv->status & STATUS_ASSOCIATED)
4060 		len += sprintf(buf + len, "connected: %llu\n",
4061 			       ktime_get_boottime_seconds() - priv->connect_start);
4062 	else
4063 		len += sprintf(buf + len, "not connected\n");
4064 
4065 	DUMP_VAR(ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx], "p");
4066 	DUMP_VAR(status, "08lx");
4067 	DUMP_VAR(config, "08lx");
4068 	DUMP_VAR(capability, "08lx");
4069 
4070 	len +=
4071 	    sprintf(buf + len, "last_rtc: %lu\n",
4072 		    (unsigned long)priv->last_rtc);
4073 
4074 	DUMP_VAR(fatal_error, "d");
4075 	DUMP_VAR(stop_hang_check, "d");
4076 	DUMP_VAR(stop_rf_kill, "d");
4077 	DUMP_VAR(messages_sent, "d");
4078 
4079 	DUMP_VAR(tx_pend_stat.value, "d");
4080 	DUMP_VAR(tx_pend_stat.hi, "d");
4081 
4082 	DUMP_VAR(tx_free_stat.value, "d");
4083 	DUMP_VAR(tx_free_stat.lo, "d");
4084 
4085 	DUMP_VAR(msg_free_stat.value, "d");
4086 	DUMP_VAR(msg_free_stat.lo, "d");
4087 
4088 	DUMP_VAR(msg_pend_stat.value, "d");
4089 	DUMP_VAR(msg_pend_stat.hi, "d");
4090 
4091 	DUMP_VAR(fw_pend_stat.value, "d");
4092 	DUMP_VAR(fw_pend_stat.hi, "d");
4093 
4094 	DUMP_VAR(txq_stat.value, "d");
4095 	DUMP_VAR(txq_stat.lo, "d");
4096 
4097 	DUMP_VAR(ieee->scans, "d");
4098 	DUMP_VAR(reset_backoff, "lld");
4099 
4100 	return len;
4101 }
4102 
4103 static DEVICE_ATTR(internals, 0444, show_internals, NULL);
4104 
4105 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4106 			    char *buf)
4107 {
4108 	struct ipw2100_priv *priv = dev_get_drvdata(d);
4109 	char essid[IW_ESSID_MAX_SIZE + 1];
4110 	u8 bssid[ETH_ALEN];
4111 	u32 chan = 0;
4112 	char *out = buf;
4113 	unsigned int length;
4114 	int ret;
4115 
4116 	if (priv->status & STATUS_RF_KILL_MASK)
4117 		return 0;
4118 
4119 	memset(essid, 0, sizeof(essid));
4120 	memset(bssid, 0, sizeof(bssid));
4121 
4122 	length = IW_ESSID_MAX_SIZE;
4123 	ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4124 	if (ret)
4125 		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4126 			       __LINE__);
4127 
4128 	length = sizeof(bssid);
4129 	ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4130 				  bssid, &length);
4131 	if (ret)
4132 		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4133 			       __LINE__);
4134 
4135 	length = sizeof(u32);
4136 	ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4137 	if (ret)
4138 		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4139 			       __LINE__);
4140 
4141 	out += sprintf(out, "ESSID: %s\n", essid);
4142 	out += sprintf(out, "BSSID:   %pM\n", bssid);
4143 	out += sprintf(out, "Channel: %d\n", chan);
4144 
4145 	return out - buf;
4146 }
4147 
4148 static DEVICE_ATTR(bssinfo, 0444, show_bssinfo, NULL);
4149 
4150 #ifdef CONFIG_IPW2100_DEBUG
4151 static ssize_t debug_level_show(struct device_driver *d, char *buf)
4152 {
4153 	return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4154 }
4155 
4156 static ssize_t debug_level_store(struct device_driver *d,
4157 				 const char *buf, size_t count)
4158 {
4159 	u32 val;
4160 	int ret;
4161 
4162 	ret = kstrtou32(buf, 0, &val);
4163 	if (ret)
4164 		IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4165 	else
4166 		ipw2100_debug_level = val;
4167 
4168 	return strnlen(buf, count);
4169 }
4170 static DRIVER_ATTR_RW(debug_level);
4171 #endif				/* CONFIG_IPW2100_DEBUG */
4172 
4173 static ssize_t show_fatal_error(struct device *d,
4174 				struct device_attribute *attr, char *buf)
4175 {
4176 	struct ipw2100_priv *priv = dev_get_drvdata(d);
4177 	char *out = buf;
4178 	int i;
4179 
4180 	if (priv->fatal_error)
4181 		out += sprintf(out, "0x%08X\n", priv->fatal_error);
4182 	else
4183 		out += sprintf(out, "0\n");
4184 
4185 	for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4186 		if (!priv->fatal_errors[(priv->fatal_index - i) %
4187 					IPW2100_ERROR_QUEUE])
4188 			continue;
4189 
4190 		out += sprintf(out, "%d. 0x%08X\n", i,
4191 			       priv->fatal_errors[(priv->fatal_index - i) %
4192 						  IPW2100_ERROR_QUEUE]);
4193 	}
4194 
4195 	return out - buf;
4196 }
4197 
4198 static ssize_t store_fatal_error(struct device *d,
4199 				 struct device_attribute *attr, const char *buf,
4200 				 size_t count)
4201 {
4202 	struct ipw2100_priv *priv = dev_get_drvdata(d);
4203 	schedule_reset(priv);
4204 	return count;
4205 }
4206 
4207 static DEVICE_ATTR(fatal_error, 0644, show_fatal_error, store_fatal_error);
4208 
4209 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4210 			     char *buf)
4211 {
4212 	struct ipw2100_priv *priv = dev_get_drvdata(d);
4213 	return sprintf(buf, "%d\n", priv->ieee->scan_age);
4214 }
4215 
4216 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4217 			      const char *buf, size_t count)
4218 {
4219 	struct ipw2100_priv *priv = dev_get_drvdata(d);
4220 	struct net_device *dev = priv->net_dev;
4221 	unsigned long val;
4222 	int ret;
4223 
4224 	(void)dev;		/* kill unused-var warning for debug-only code */
4225 
4226 	IPW_DEBUG_INFO("enter\n");
4227 
4228 	ret = kstrtoul(buf, 0, &val);
4229 	if (ret) {
4230 		IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4231 	} else {
4232 		priv->ieee->scan_age = val;
4233 		IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4234 	}
4235 
4236 	IPW_DEBUG_INFO("exit\n");
4237 	return strnlen(buf, count);
4238 }
4239 
4240 static DEVICE_ATTR(scan_age, 0644, show_scan_age, store_scan_age);
4241 
4242 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4243 			    char *buf)
4244 {
4245 	/* 0 - RF kill not enabled
4246 	   1 - SW based RF kill active (sysfs)
4247 	   2 - HW based RF kill active
4248 	   3 - Both HW and SW baed RF kill active */
4249 	struct ipw2100_priv *priv = dev_get_drvdata(d);
4250 	int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4251 	    (rf_kill_active(priv) ? 0x2 : 0x0);
4252 	return sprintf(buf, "%i\n", val);
4253 }
4254 
4255 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4256 {
4257 	if ((disable_radio ? 1 : 0) ==
4258 	    (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4259 		return 0;
4260 
4261 	IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
4262 			  disable_radio ? "OFF" : "ON");
4263 
4264 	mutex_lock(&priv->action_mutex);
4265 
4266 	if (disable_radio) {
4267 		priv->status |= STATUS_RF_KILL_SW;
4268 		ipw2100_down(priv);
4269 	} else {
4270 		priv->status &= ~STATUS_RF_KILL_SW;
4271 		if (rf_kill_active(priv)) {
4272 			IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4273 					  "disabled by HW switch\n");
4274 			/* Make sure the RF_KILL check timer is running */
4275 			priv->stop_rf_kill = 0;
4276 			mod_delayed_work(system_wq, &priv->rf_kill,
4277 					 round_jiffies_relative(HZ));
4278 		} else
4279 			schedule_reset(priv);
4280 	}
4281 
4282 	mutex_unlock(&priv->action_mutex);
4283 	return 1;
4284 }
4285 
4286 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4287 			     const char *buf, size_t count)
4288 {
4289 	struct ipw2100_priv *priv = dev_get_drvdata(d);
4290 	ipw_radio_kill_sw(priv, buf[0] == '1');
4291 	return count;
4292 }
4293 
4294 static DEVICE_ATTR(rf_kill, 0644, show_rf_kill, store_rf_kill);
4295 
4296 static struct attribute *ipw2100_sysfs_entries[] = {
4297 	&dev_attr_hardware.attr,
4298 	&dev_attr_registers.attr,
4299 	&dev_attr_ordinals.attr,
4300 	&dev_attr_pci.attr,
4301 	&dev_attr_stats.attr,
4302 	&dev_attr_internals.attr,
4303 	&dev_attr_bssinfo.attr,
4304 	&dev_attr_memory.attr,
4305 	&dev_attr_scan_age.attr,
4306 	&dev_attr_fatal_error.attr,
4307 	&dev_attr_rf_kill.attr,
4308 	&dev_attr_cfg.attr,
4309 	&dev_attr_status.attr,
4310 	&dev_attr_capability.attr,
4311 	NULL,
4312 };
4313 
4314 static const struct attribute_group ipw2100_attribute_group = {
4315 	.attrs = ipw2100_sysfs_entries,
4316 };
4317 
4318 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4319 {
4320 	struct ipw2100_status_queue *q = &priv->status_queue;
4321 
4322 	IPW_DEBUG_INFO("enter\n");
4323 
4324 	q->size = entries * sizeof(struct ipw2100_status);
4325 	q->drv = pci_zalloc_consistent(priv->pci_dev, q->size, &q->nic);
4326 	if (!q->drv) {
4327 		IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4328 		return -ENOMEM;
4329 	}
4330 
4331 	IPW_DEBUG_INFO("exit\n");
4332 
4333 	return 0;
4334 }
4335 
4336 static void status_queue_free(struct ipw2100_priv *priv)
4337 {
4338 	IPW_DEBUG_INFO("enter\n");
4339 
4340 	if (priv->status_queue.drv) {
4341 		pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4342 				    priv->status_queue.drv,
4343 				    priv->status_queue.nic);
4344 		priv->status_queue.drv = NULL;
4345 	}
4346 
4347 	IPW_DEBUG_INFO("exit\n");
4348 }
4349 
4350 static int bd_queue_allocate(struct ipw2100_priv *priv,
4351 			     struct ipw2100_bd_queue *q, int entries)
4352 {
4353 	IPW_DEBUG_INFO("enter\n");
4354 
4355 	memset(q, 0, sizeof(struct ipw2100_bd_queue));
4356 
4357 	q->entries = entries;
4358 	q->size = entries * sizeof(struct ipw2100_bd);
4359 	q->drv = pci_zalloc_consistent(priv->pci_dev, q->size, &q->nic);
4360 	if (!q->drv) {
4361 		IPW_DEBUG_INFO
4362 		    ("can't allocate shared memory for buffer descriptors\n");
4363 		return -ENOMEM;
4364 	}
4365 
4366 	IPW_DEBUG_INFO("exit\n");
4367 
4368 	return 0;
4369 }
4370 
4371 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4372 {
4373 	IPW_DEBUG_INFO("enter\n");
4374 
4375 	if (!q)
4376 		return;
4377 
4378 	if (q->drv) {
4379 		pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4380 		q->drv = NULL;
4381 	}
4382 
4383 	IPW_DEBUG_INFO("exit\n");
4384 }
4385 
4386 static void bd_queue_initialize(struct ipw2100_priv *priv,
4387 				struct ipw2100_bd_queue *q, u32 base, u32 size,
4388 				u32 r, u32 w)
4389 {
4390 	IPW_DEBUG_INFO("enter\n");
4391 
4392 	IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4393 		       (u32) q->nic);
4394 
4395 	write_register(priv->net_dev, base, q->nic);
4396 	write_register(priv->net_dev, size, q->entries);
4397 	write_register(priv->net_dev, r, q->oldest);
4398 	write_register(priv->net_dev, w, q->next);
4399 
4400 	IPW_DEBUG_INFO("exit\n");
4401 }
4402 
4403 static void ipw2100_kill_works(struct ipw2100_priv *priv)
4404 {
4405 	priv->stop_rf_kill = 1;
4406 	priv->stop_hang_check = 1;
4407 	cancel_delayed_work_sync(&priv->reset_work);
4408 	cancel_delayed_work_sync(&priv->security_work);
4409 	cancel_delayed_work_sync(&priv->wx_event_work);
4410 	cancel_delayed_work_sync(&priv->hang_check);
4411 	cancel_delayed_work_sync(&priv->rf_kill);
4412 	cancel_delayed_work_sync(&priv->scan_event);
4413 }
4414 
4415 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4416 {
4417 	int i, j, err;
4418 	void *v;
4419 	dma_addr_t p;
4420 
4421 	IPW_DEBUG_INFO("enter\n");
4422 
4423 	err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4424 	if (err) {
4425 		IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4426 				priv->net_dev->name);
4427 		return err;
4428 	}
4429 
4430 	priv->tx_buffers = kmalloc_array(TX_PENDED_QUEUE_LENGTH,
4431 					 sizeof(struct ipw2100_tx_packet),
4432 					 GFP_ATOMIC);
4433 	if (!priv->tx_buffers) {
4434 		bd_queue_free(priv, &priv->tx_queue);
4435 		return -ENOMEM;
4436 	}
4437 
4438 	for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4439 		v = pci_alloc_consistent(priv->pci_dev,
4440 					 sizeof(struct ipw2100_data_header),
4441 					 &p);
4442 		if (!v) {
4443 			printk(KERN_ERR DRV_NAME
4444 			       ": %s: PCI alloc failed for tx " "buffers.\n",
4445 			       priv->net_dev->name);
4446 			err = -ENOMEM;
4447 			break;
4448 		}
4449 
4450 		priv->tx_buffers[i].type = DATA;
4451 		priv->tx_buffers[i].info.d_struct.data =
4452 		    (struct ipw2100_data_header *)v;
4453 		priv->tx_buffers[i].info.d_struct.data_phys = p;
4454 		priv->tx_buffers[i].info.d_struct.txb = NULL;
4455 	}
4456 
4457 	if (i == TX_PENDED_QUEUE_LENGTH)
4458 		return 0;
4459 
4460 	for (j = 0; j < i; j++) {
4461 		pci_free_consistent(priv->pci_dev,
4462 				    sizeof(struct ipw2100_data_header),
4463 				    priv->tx_buffers[j].info.d_struct.data,
4464 				    priv->tx_buffers[j].info.d_struct.
4465 				    data_phys);
4466 	}
4467 
4468 	kfree(priv->tx_buffers);
4469 	priv->tx_buffers = NULL;
4470 
4471 	return err;
4472 }
4473 
4474 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4475 {
4476 	int i;
4477 
4478 	IPW_DEBUG_INFO("enter\n");
4479 
4480 	/*
4481 	 * reinitialize packet info lists
4482 	 */
4483 	INIT_LIST_HEAD(&priv->fw_pend_list);
4484 	INIT_STAT(&priv->fw_pend_stat);
4485 
4486 	/*
4487 	 * reinitialize lists
4488 	 */
4489 	INIT_LIST_HEAD(&priv->tx_pend_list);
4490 	INIT_LIST_HEAD(&priv->tx_free_list);
4491 	INIT_STAT(&priv->tx_pend_stat);
4492 	INIT_STAT(&priv->tx_free_stat);
4493 
4494 	for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4495 		/* We simply drop any SKBs that have been queued for
4496 		 * transmit */
4497 		if (priv->tx_buffers[i].info.d_struct.txb) {
4498 			libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4499 					   txb);
4500 			priv->tx_buffers[i].info.d_struct.txb = NULL;
4501 		}
4502 
4503 		list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4504 	}
4505 
4506 	SET_STAT(&priv->tx_free_stat, i);
4507 
4508 	priv->tx_queue.oldest = 0;
4509 	priv->tx_queue.available = priv->tx_queue.entries;
4510 	priv->tx_queue.next = 0;
4511 	INIT_STAT(&priv->txq_stat);
4512 	SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4513 
4514 	bd_queue_initialize(priv, &priv->tx_queue,
4515 			    IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4516 			    IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4517 			    IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4518 			    IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4519 
4520 	IPW_DEBUG_INFO("exit\n");
4521 
4522 }
4523 
4524 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4525 {
4526 	int i;
4527 
4528 	IPW_DEBUG_INFO("enter\n");
4529 
4530 	bd_queue_free(priv, &priv->tx_queue);
4531 
4532 	if (!priv->tx_buffers)
4533 		return;
4534 
4535 	for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4536 		if (priv->tx_buffers[i].info.d_struct.txb) {
4537 			libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4538 					   txb);
4539 			priv->tx_buffers[i].info.d_struct.txb = NULL;
4540 		}
4541 		if (priv->tx_buffers[i].info.d_struct.data)
4542 			pci_free_consistent(priv->pci_dev,
4543 					    sizeof(struct ipw2100_data_header),
4544 					    priv->tx_buffers[i].info.d_struct.
4545 					    data,
4546 					    priv->tx_buffers[i].info.d_struct.
4547 					    data_phys);
4548 	}
4549 
4550 	kfree(priv->tx_buffers);
4551 	priv->tx_buffers = NULL;
4552 
4553 	IPW_DEBUG_INFO("exit\n");
4554 }
4555 
4556 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4557 {
4558 	int i, j, err = -EINVAL;
4559 
4560 	IPW_DEBUG_INFO("enter\n");
4561 
4562 	err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4563 	if (err) {
4564 		IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4565 		return err;
4566 	}
4567 
4568 	err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4569 	if (err) {
4570 		IPW_DEBUG_INFO("failed status_queue_allocate\n");
4571 		bd_queue_free(priv, &priv->rx_queue);
4572 		return err;
4573 	}
4574 
4575 	/*
4576 	 * allocate packets
4577 	 */
4578 	priv->rx_buffers = kmalloc_array(RX_QUEUE_LENGTH,
4579 					 sizeof(struct ipw2100_rx_packet),
4580 					 GFP_KERNEL);
4581 	if (!priv->rx_buffers) {
4582 		IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4583 
4584 		bd_queue_free(priv, &priv->rx_queue);
4585 
4586 		status_queue_free(priv);
4587 
4588 		return -ENOMEM;
4589 	}
4590 
4591 	for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4592 		struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4593 
4594 		err = ipw2100_alloc_skb(priv, packet);
4595 		if (unlikely(err)) {
4596 			err = -ENOMEM;
4597 			break;
4598 		}
4599 
4600 		/* The BD holds the cache aligned address */
4601 		priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4602 		priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4603 		priv->status_queue.drv[i].status_fields = 0;
4604 	}
4605 
4606 	if (i == RX_QUEUE_LENGTH)
4607 		return 0;
4608 
4609 	for (j = 0; j < i; j++) {
4610 		pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4611 				 sizeof(struct ipw2100_rx_packet),
4612 				 PCI_DMA_FROMDEVICE);
4613 		dev_kfree_skb(priv->rx_buffers[j].skb);
4614 	}
4615 
4616 	kfree(priv->rx_buffers);
4617 	priv->rx_buffers = NULL;
4618 
4619 	bd_queue_free(priv, &priv->rx_queue);
4620 
4621 	status_queue_free(priv);
4622 
4623 	return err;
4624 }
4625 
4626 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4627 {
4628 	IPW_DEBUG_INFO("enter\n");
4629 
4630 	priv->rx_queue.oldest = 0;
4631 	priv->rx_queue.available = priv->rx_queue.entries - 1;
4632 	priv->rx_queue.next = priv->rx_queue.entries - 1;
4633 
4634 	INIT_STAT(&priv->rxq_stat);
4635 	SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4636 
4637 	bd_queue_initialize(priv, &priv->rx_queue,
4638 			    IPW_MEM_HOST_SHARED_RX_BD_BASE,
4639 			    IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4640 			    IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4641 			    IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4642 
4643 	/* set up the status queue */
4644 	write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4645 		       priv->status_queue.nic);
4646 
4647 	IPW_DEBUG_INFO("exit\n");
4648 }
4649 
4650 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4651 {
4652 	int i;
4653 
4654 	IPW_DEBUG_INFO("enter\n");
4655 
4656 	bd_queue_free(priv, &priv->rx_queue);
4657 	status_queue_free(priv);
4658 
4659 	if (!priv->rx_buffers)
4660 		return;
4661 
4662 	for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4663 		if (priv->rx_buffers[i].rxp) {
4664 			pci_unmap_single(priv->pci_dev,
4665 					 priv->rx_buffers[i].dma_addr,
4666 					 sizeof(struct ipw2100_rx),
4667 					 PCI_DMA_FROMDEVICE);
4668 			dev_kfree_skb(priv->rx_buffers[i].skb);
4669 		}
4670 	}
4671 
4672 	kfree(priv->rx_buffers);
4673 	priv->rx_buffers = NULL;
4674 
4675 	IPW_DEBUG_INFO("exit\n");
4676 }
4677 
4678 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4679 {
4680 	u32 length = ETH_ALEN;
4681 	u8 addr[ETH_ALEN];
4682 
4683 	int err;
4684 
4685 	err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length);
4686 	if (err) {
4687 		IPW_DEBUG_INFO("MAC address read failed\n");
4688 		return -EIO;
4689 	}
4690 
4691 	memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN);
4692 	IPW_DEBUG_INFO("card MAC is %pM\n", priv->net_dev->dev_addr);
4693 
4694 	return 0;
4695 }
4696 
4697 /********************************************************************
4698  *
4699  * Firmware Commands
4700  *
4701  ********************************************************************/
4702 
4703 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4704 {
4705 	struct host_command cmd = {
4706 		.host_command = ADAPTER_ADDRESS,
4707 		.host_command_sequence = 0,
4708 		.host_command_length = ETH_ALEN
4709 	};
4710 	int err;
4711 
4712 	IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4713 
4714 	IPW_DEBUG_INFO("enter\n");
4715 
4716 	if (priv->config & CFG_CUSTOM_MAC) {
4717 		memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4718 		memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4719 	} else
4720 		memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4721 		       ETH_ALEN);
4722 
4723 	err = ipw2100_hw_send_command(priv, &cmd);
4724 
4725 	IPW_DEBUG_INFO("exit\n");
4726 	return err;
4727 }
4728 
4729 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4730 				 int batch_mode)
4731 {
4732 	struct host_command cmd = {
4733 		.host_command = PORT_TYPE,
4734 		.host_command_sequence = 0,
4735 		.host_command_length = sizeof(u32)
4736 	};
4737 	int err;
4738 
4739 	switch (port_type) {
4740 	case IW_MODE_INFRA:
4741 		cmd.host_command_parameters[0] = IPW_BSS;
4742 		break;
4743 	case IW_MODE_ADHOC:
4744 		cmd.host_command_parameters[0] = IPW_IBSS;
4745 		break;
4746 	}
4747 
4748 	IPW_DEBUG_HC("PORT_TYPE: %s\n",
4749 		     port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4750 
4751 	if (!batch_mode) {
4752 		err = ipw2100_disable_adapter(priv);
4753 		if (err) {
4754 			printk(KERN_ERR DRV_NAME
4755 			       ": %s: Could not disable adapter %d\n",
4756 			       priv->net_dev->name, err);
4757 			return err;
4758 		}
4759 	}
4760 
4761 	/* send cmd to firmware */
4762 	err = ipw2100_hw_send_command(priv, &cmd);
4763 
4764 	if (!batch_mode)
4765 		ipw2100_enable_adapter(priv);
4766 
4767 	return err;
4768 }
4769 
4770 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4771 			       int batch_mode)
4772 {
4773 	struct host_command cmd = {
4774 		.host_command = CHANNEL,
4775 		.host_command_sequence = 0,
4776 		.host_command_length = sizeof(u32)
4777 	};
4778 	int err;
4779 
4780 	cmd.host_command_parameters[0] = channel;
4781 
4782 	IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4783 
4784 	/* If BSS then we don't support channel selection */
4785 	if (priv->ieee->iw_mode == IW_MODE_INFRA)
4786 		return 0;
4787 
4788 	if ((channel != 0) &&
4789 	    ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4790 		return -EINVAL;
4791 
4792 	if (!batch_mode) {
4793 		err = ipw2100_disable_adapter(priv);
4794 		if (err)
4795 			return err;
4796 	}
4797 
4798 	err = ipw2100_hw_send_command(priv, &cmd);
4799 	if (err) {
4800 		IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4801 		return err;
4802 	}
4803 
4804 	if (channel)
4805 		priv->config |= CFG_STATIC_CHANNEL;
4806 	else
4807 		priv->config &= ~CFG_STATIC_CHANNEL;
4808 
4809 	priv->channel = channel;
4810 
4811 	if (!batch_mode) {
4812 		err = ipw2100_enable_adapter(priv);
4813 		if (err)
4814 			return err;
4815 	}
4816 
4817 	return 0;
4818 }
4819 
4820 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4821 {
4822 	struct host_command cmd = {
4823 		.host_command = SYSTEM_CONFIG,
4824 		.host_command_sequence = 0,
4825 		.host_command_length = 12,
4826 	};
4827 	u32 ibss_mask, len = sizeof(u32);
4828 	int err;
4829 
4830 	/* Set system configuration */
4831 
4832 	if (!batch_mode) {
4833 		err = ipw2100_disable_adapter(priv);
4834 		if (err)
4835 			return err;
4836 	}
4837 
4838 	if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4839 		cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4840 
4841 	cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4842 	    IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4843 
4844 	if (!(priv->config & CFG_LONG_PREAMBLE))
4845 		cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4846 
4847 	err = ipw2100_get_ordinal(priv,
4848 				  IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4849 				  &ibss_mask, &len);
4850 	if (err)
4851 		ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4852 
4853 	cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4854 	cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4855 
4856 	/* 11b only */
4857 	/*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4858 
4859 	err = ipw2100_hw_send_command(priv, &cmd);
4860 	if (err)
4861 		return err;
4862 
4863 /* If IPv6 is configured in the kernel then we don't want to filter out all
4864  * of the multicast packets as IPv6 needs some. */
4865 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4866 	cmd.host_command = ADD_MULTICAST;
4867 	cmd.host_command_sequence = 0;
4868 	cmd.host_command_length = 0;
4869 
4870 	ipw2100_hw_send_command(priv, &cmd);
4871 #endif
4872 	if (!batch_mode) {
4873 		err = ipw2100_enable_adapter(priv);
4874 		if (err)
4875 			return err;
4876 	}
4877 
4878 	return 0;
4879 }
4880 
4881 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4882 				int batch_mode)
4883 {
4884 	struct host_command cmd = {
4885 		.host_command = BASIC_TX_RATES,
4886 		.host_command_sequence = 0,
4887 		.host_command_length = 4
4888 	};
4889 	int err;
4890 
4891 	cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4892 
4893 	if (!batch_mode) {
4894 		err = ipw2100_disable_adapter(priv);
4895 		if (err)
4896 			return err;
4897 	}
4898 
4899 	/* Set BASIC TX Rate first */
4900 	ipw2100_hw_send_command(priv, &cmd);
4901 
4902 	/* Set TX Rate */
4903 	cmd.host_command = TX_RATES;
4904 	ipw2100_hw_send_command(priv, &cmd);
4905 
4906 	/* Set MSDU TX Rate */
4907 	cmd.host_command = MSDU_TX_RATES;
4908 	ipw2100_hw_send_command(priv, &cmd);
4909 
4910 	if (!batch_mode) {
4911 		err = ipw2100_enable_adapter(priv);
4912 		if (err)
4913 			return err;
4914 	}
4915 
4916 	priv->tx_rates = rate;
4917 
4918 	return 0;
4919 }
4920 
4921 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4922 {
4923 	struct host_command cmd = {
4924 		.host_command = POWER_MODE,
4925 		.host_command_sequence = 0,
4926 		.host_command_length = 4
4927 	};
4928 	int err;
4929 
4930 	cmd.host_command_parameters[0] = power_level;
4931 
4932 	err = ipw2100_hw_send_command(priv, &cmd);
4933 	if (err)
4934 		return err;
4935 
4936 	if (power_level == IPW_POWER_MODE_CAM)
4937 		priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4938 	else
4939 		priv->power_mode = IPW_POWER_ENABLED | power_level;
4940 
4941 #ifdef IPW2100_TX_POWER
4942 	if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4943 		/* Set beacon interval */
4944 		cmd.host_command = TX_POWER_INDEX;
4945 		cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4946 
4947 		err = ipw2100_hw_send_command(priv, &cmd);
4948 		if (err)
4949 			return err;
4950 	}
4951 #endif
4952 
4953 	return 0;
4954 }
4955 
4956 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4957 {
4958 	struct host_command cmd = {
4959 		.host_command = RTS_THRESHOLD,
4960 		.host_command_sequence = 0,
4961 		.host_command_length = 4
4962 	};
4963 	int err;
4964 
4965 	if (threshold & RTS_DISABLED)
4966 		cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4967 	else
4968 		cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4969 
4970 	err = ipw2100_hw_send_command(priv, &cmd);
4971 	if (err)
4972 		return err;
4973 
4974 	priv->rts_threshold = threshold;
4975 
4976 	return 0;
4977 }
4978 
4979 #if 0
4980 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4981 					u32 threshold, int batch_mode)
4982 {
4983 	struct host_command cmd = {
4984 		.host_command = FRAG_THRESHOLD,
4985 		.host_command_sequence = 0,
4986 		.host_command_length = 4,
4987 		.host_command_parameters[0] = 0,
4988 	};
4989 	int err;
4990 
4991 	if (!batch_mode) {
4992 		err = ipw2100_disable_adapter(priv);
4993 		if (err)
4994 			return err;
4995 	}
4996 
4997 	if (threshold == 0)
4998 		threshold = DEFAULT_FRAG_THRESHOLD;
4999 	else {
5000 		threshold = max(threshold, MIN_FRAG_THRESHOLD);
5001 		threshold = min(threshold, MAX_FRAG_THRESHOLD);
5002 	}
5003 
5004 	cmd.host_command_parameters[0] = threshold;
5005 
5006 	IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
5007 
5008 	err = ipw2100_hw_send_command(priv, &cmd);
5009 
5010 	if (!batch_mode)
5011 		ipw2100_enable_adapter(priv);
5012 
5013 	if (!err)
5014 		priv->frag_threshold = threshold;
5015 
5016 	return err;
5017 }
5018 #endif
5019 
5020 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
5021 {
5022 	struct host_command cmd = {
5023 		.host_command = SHORT_RETRY_LIMIT,
5024 		.host_command_sequence = 0,
5025 		.host_command_length = 4
5026 	};
5027 	int err;
5028 
5029 	cmd.host_command_parameters[0] = retry;
5030 
5031 	err = ipw2100_hw_send_command(priv, &cmd);
5032 	if (err)
5033 		return err;
5034 
5035 	priv->short_retry_limit = retry;
5036 
5037 	return 0;
5038 }
5039 
5040 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5041 {
5042 	struct host_command cmd = {
5043 		.host_command = LONG_RETRY_LIMIT,
5044 		.host_command_sequence = 0,
5045 		.host_command_length = 4
5046 	};
5047 	int err;
5048 
5049 	cmd.host_command_parameters[0] = retry;
5050 
5051 	err = ipw2100_hw_send_command(priv, &cmd);
5052 	if (err)
5053 		return err;
5054 
5055 	priv->long_retry_limit = retry;
5056 
5057 	return 0;
5058 }
5059 
5060 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5061 				       int batch_mode)
5062 {
5063 	struct host_command cmd = {
5064 		.host_command = MANDATORY_BSSID,
5065 		.host_command_sequence = 0,
5066 		.host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5067 	};
5068 	int err;
5069 
5070 #ifdef CONFIG_IPW2100_DEBUG
5071 	if (bssid != NULL)
5072 		IPW_DEBUG_HC("MANDATORY_BSSID: %pM\n", bssid);
5073 	else
5074 		IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5075 #endif
5076 	/* if BSSID is empty then we disable mandatory bssid mode */
5077 	if (bssid != NULL)
5078 		memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5079 
5080 	if (!batch_mode) {
5081 		err = ipw2100_disable_adapter(priv);
5082 		if (err)
5083 			return err;
5084 	}
5085 
5086 	err = ipw2100_hw_send_command(priv, &cmd);
5087 
5088 	if (!batch_mode)
5089 		ipw2100_enable_adapter(priv);
5090 
5091 	return err;
5092 }
5093 
5094 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5095 {
5096 	struct host_command cmd = {
5097 		.host_command = DISASSOCIATION_BSSID,
5098 		.host_command_sequence = 0,
5099 		.host_command_length = ETH_ALEN
5100 	};
5101 	int err;
5102 
5103 	IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5104 
5105 	/* The Firmware currently ignores the BSSID and just disassociates from
5106 	 * the currently associated AP -- but in the off chance that a future
5107 	 * firmware does use the BSSID provided here, we go ahead and try and
5108 	 * set it to the currently associated AP's BSSID */
5109 	memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5110 
5111 	err = ipw2100_hw_send_command(priv, &cmd);
5112 
5113 	return err;
5114 }
5115 
5116 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5117 			      struct ipw2100_wpa_assoc_frame *, int)
5118     __attribute__ ((unused));
5119 
5120 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5121 			      struct ipw2100_wpa_assoc_frame *wpa_frame,
5122 			      int batch_mode)
5123 {
5124 	struct host_command cmd = {
5125 		.host_command = SET_WPA_IE,
5126 		.host_command_sequence = 0,
5127 		.host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5128 	};
5129 	int err;
5130 
5131 	IPW_DEBUG_HC("SET_WPA_IE\n");
5132 
5133 	if (!batch_mode) {
5134 		err = ipw2100_disable_adapter(priv);
5135 		if (err)
5136 			return err;
5137 	}
5138 
5139 	memcpy(cmd.host_command_parameters, wpa_frame,
5140 	       sizeof(struct ipw2100_wpa_assoc_frame));
5141 
5142 	err = ipw2100_hw_send_command(priv, &cmd);
5143 
5144 	if (!batch_mode) {
5145 		if (ipw2100_enable_adapter(priv))
5146 			err = -EIO;
5147 	}
5148 
5149 	return err;
5150 }
5151 
5152 struct security_info_params {
5153 	u32 allowed_ciphers;
5154 	u16 version;
5155 	u8 auth_mode;
5156 	u8 replay_counters_number;
5157 	u8 unicast_using_group;
5158 } __packed;
5159 
5160 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5161 					    int auth_mode,
5162 					    int security_level,
5163 					    int unicast_using_group,
5164 					    int batch_mode)
5165 {
5166 	struct host_command cmd = {
5167 		.host_command = SET_SECURITY_INFORMATION,
5168 		.host_command_sequence = 0,
5169 		.host_command_length = sizeof(struct security_info_params)
5170 	};
5171 	struct security_info_params *security =
5172 	    (struct security_info_params *)&cmd.host_command_parameters;
5173 	int err;
5174 	memset(security, 0, sizeof(*security));
5175 
5176 	/* If shared key AP authentication is turned on, then we need to
5177 	 * configure the firmware to try and use it.
5178 	 *
5179 	 * Actual data encryption/decryption is handled by the host. */
5180 	security->auth_mode = auth_mode;
5181 	security->unicast_using_group = unicast_using_group;
5182 
5183 	switch (security_level) {
5184 	default:
5185 	case SEC_LEVEL_0:
5186 		security->allowed_ciphers = IPW_NONE_CIPHER;
5187 		break;
5188 	case SEC_LEVEL_1:
5189 		security->allowed_ciphers = IPW_WEP40_CIPHER |
5190 		    IPW_WEP104_CIPHER;
5191 		break;
5192 	case SEC_LEVEL_2:
5193 		security->allowed_ciphers = IPW_WEP40_CIPHER |
5194 		    IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5195 		break;
5196 	case SEC_LEVEL_2_CKIP:
5197 		security->allowed_ciphers = IPW_WEP40_CIPHER |
5198 		    IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5199 		break;
5200 	case SEC_LEVEL_3:
5201 		security->allowed_ciphers = IPW_WEP40_CIPHER |
5202 		    IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5203 		break;
5204 	}
5205 
5206 	IPW_DEBUG_HC
5207 	    ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5208 	     security->auth_mode, security->allowed_ciphers, security_level);
5209 
5210 	security->replay_counters_number = 0;
5211 
5212 	if (!batch_mode) {
5213 		err = ipw2100_disable_adapter(priv);
5214 		if (err)
5215 			return err;
5216 	}
5217 
5218 	err = ipw2100_hw_send_command(priv, &cmd);
5219 
5220 	if (!batch_mode)
5221 		ipw2100_enable_adapter(priv);
5222 
5223 	return err;
5224 }
5225 
5226 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5227 {
5228 	struct host_command cmd = {
5229 		.host_command = TX_POWER_INDEX,
5230 		.host_command_sequence = 0,
5231 		.host_command_length = 4
5232 	};
5233 	int err = 0;
5234 	u32 tmp = tx_power;
5235 
5236 	if (tx_power != IPW_TX_POWER_DEFAULT)
5237 		tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5238 		      (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5239 
5240 	cmd.host_command_parameters[0] = tmp;
5241 
5242 	if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5243 		err = ipw2100_hw_send_command(priv, &cmd);
5244 	if (!err)
5245 		priv->tx_power = tx_power;
5246 
5247 	return 0;
5248 }
5249 
5250 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5251 					    u32 interval, int batch_mode)
5252 {
5253 	struct host_command cmd = {
5254 		.host_command = BEACON_INTERVAL,
5255 		.host_command_sequence = 0,
5256 		.host_command_length = 4
5257 	};
5258 	int err;
5259 
5260 	cmd.host_command_parameters[0] = interval;
5261 
5262 	IPW_DEBUG_INFO("enter\n");
5263 
5264 	if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5265 		if (!batch_mode) {
5266 			err = ipw2100_disable_adapter(priv);
5267 			if (err)
5268 				return err;
5269 		}
5270 
5271 		ipw2100_hw_send_command(priv, &cmd);
5272 
5273 		if (!batch_mode) {
5274 			err = ipw2100_enable_adapter(priv);
5275 			if (err)
5276 				return err;
5277 		}
5278 	}
5279 
5280 	IPW_DEBUG_INFO("exit\n");
5281 
5282 	return 0;
5283 }
5284 
5285 static void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5286 {
5287 	ipw2100_tx_initialize(priv);
5288 	ipw2100_rx_initialize(priv);
5289 	ipw2100_msg_initialize(priv);
5290 }
5291 
5292 static void ipw2100_queues_free(struct ipw2100_priv *priv)
5293 {
5294 	ipw2100_tx_free(priv);
5295 	ipw2100_rx_free(priv);
5296 	ipw2100_msg_free(priv);
5297 }
5298 
5299 static int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5300 {
5301 	if (ipw2100_tx_allocate(priv) ||
5302 	    ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5303 		goto fail;
5304 
5305 	return 0;
5306 
5307       fail:
5308 	ipw2100_tx_free(priv);
5309 	ipw2100_rx_free(priv);
5310 	ipw2100_msg_free(priv);
5311 	return -ENOMEM;
5312 }
5313 
5314 #define IPW_PRIVACY_CAPABLE 0x0008
5315 
5316 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5317 				 int batch_mode)
5318 {
5319 	struct host_command cmd = {
5320 		.host_command = WEP_FLAGS,
5321 		.host_command_sequence = 0,
5322 		.host_command_length = 4
5323 	};
5324 	int err;
5325 
5326 	cmd.host_command_parameters[0] = flags;
5327 
5328 	IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5329 
5330 	if (!batch_mode) {
5331 		err = ipw2100_disable_adapter(priv);
5332 		if (err) {
5333 			printk(KERN_ERR DRV_NAME
5334 			       ": %s: Could not disable adapter %d\n",
5335 			       priv->net_dev->name, err);
5336 			return err;
5337 		}
5338 	}
5339 
5340 	/* send cmd to firmware */
5341 	err = ipw2100_hw_send_command(priv, &cmd);
5342 
5343 	if (!batch_mode)
5344 		ipw2100_enable_adapter(priv);
5345 
5346 	return err;
5347 }
5348 
5349 struct ipw2100_wep_key {
5350 	u8 idx;
5351 	u8 len;
5352 	u8 key[13];
5353 };
5354 
5355 /* Macros to ease up priting WEP keys */
5356 #define WEP_FMT_64  "%02X%02X%02X%02X-%02X"
5357 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5358 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5359 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5360 
5361 /**
5362  * Set a the wep key
5363  *
5364  * @priv: struct to work on
5365  * @idx: index of the key we want to set
5366  * @key: ptr to the key data to set
5367  * @len: length of the buffer at @key
5368  * @batch_mode: FIXME perform the operation in batch mode, not
5369  *              disabling the device.
5370  *
5371  * @returns 0 if OK, < 0 errno code on error.
5372  *
5373  * Fill out a command structure with the new wep key, length an
5374  * index and send it down the wire.
5375  */
5376 static int ipw2100_set_key(struct ipw2100_priv *priv,
5377 			   int idx, char *key, int len, int batch_mode)
5378 {
5379 	int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5380 	struct host_command cmd = {
5381 		.host_command = WEP_KEY_INFO,
5382 		.host_command_sequence = 0,
5383 		.host_command_length = sizeof(struct ipw2100_wep_key),
5384 	};
5385 	struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5386 	int err;
5387 
5388 	IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5389 		     idx, keylen, len);
5390 
5391 	/* NOTE: We don't check cached values in case the firmware was reset
5392 	 * or some other problem is occurring.  If the user is setting the key,
5393 	 * then we push the change */
5394 
5395 	wep_key->idx = idx;
5396 	wep_key->len = keylen;
5397 
5398 	if (keylen) {
5399 		memcpy(wep_key->key, key, len);
5400 		memset(wep_key->key + len, 0, keylen - len);
5401 	}
5402 
5403 	/* Will be optimized out on debug not being configured in */
5404 	if (keylen == 0)
5405 		IPW_DEBUG_WEP("%s: Clearing key %d\n",
5406 			      priv->net_dev->name, wep_key->idx);
5407 	else if (keylen == 5)
5408 		IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5409 			      priv->net_dev->name, wep_key->idx, wep_key->len,
5410 			      WEP_STR_64(wep_key->key));
5411 	else
5412 		IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5413 			      "\n",
5414 			      priv->net_dev->name, wep_key->idx, wep_key->len,
5415 			      WEP_STR_128(wep_key->key));
5416 
5417 	if (!batch_mode) {
5418 		err = ipw2100_disable_adapter(priv);
5419 		/* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5420 		if (err) {
5421 			printk(KERN_ERR DRV_NAME
5422 			       ": %s: Could not disable adapter %d\n",
5423 			       priv->net_dev->name, err);
5424 			return err;
5425 		}
5426 	}
5427 
5428 	/* send cmd to firmware */
5429 	err = ipw2100_hw_send_command(priv, &cmd);
5430 
5431 	if (!batch_mode) {
5432 		int err2 = ipw2100_enable_adapter(priv);
5433 		if (err == 0)
5434 			err = err2;
5435 	}
5436 	return err;
5437 }
5438 
5439 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5440 				 int idx, int batch_mode)
5441 {
5442 	struct host_command cmd = {
5443 		.host_command = WEP_KEY_INDEX,
5444 		.host_command_sequence = 0,
5445 		.host_command_length = 4,
5446 		.host_command_parameters = {idx},
5447 	};
5448 	int err;
5449 
5450 	IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5451 
5452 	if (idx < 0 || idx > 3)
5453 		return -EINVAL;
5454 
5455 	if (!batch_mode) {
5456 		err = ipw2100_disable_adapter(priv);
5457 		if (err) {
5458 			printk(KERN_ERR DRV_NAME
5459 			       ": %s: Could not disable adapter %d\n",
5460 			       priv->net_dev->name, err);
5461 			return err;
5462 		}
5463 	}
5464 
5465 	/* send cmd to firmware */
5466 	err = ipw2100_hw_send_command(priv, &cmd);
5467 
5468 	if (!batch_mode)
5469 		ipw2100_enable_adapter(priv);
5470 
5471 	return err;
5472 }
5473 
5474 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5475 {
5476 	int i, err, auth_mode, sec_level, use_group;
5477 
5478 	if (!(priv->status & STATUS_RUNNING))
5479 		return 0;
5480 
5481 	if (!batch_mode) {
5482 		err = ipw2100_disable_adapter(priv);
5483 		if (err)
5484 			return err;
5485 	}
5486 
5487 	if (!priv->ieee->sec.enabled) {
5488 		err =
5489 		    ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5490 						     SEC_LEVEL_0, 0, 1);
5491 	} else {
5492 		auth_mode = IPW_AUTH_OPEN;
5493 		if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5494 			if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5495 				auth_mode = IPW_AUTH_SHARED;
5496 			else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5497 				auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5498 		}
5499 
5500 		sec_level = SEC_LEVEL_0;
5501 		if (priv->ieee->sec.flags & SEC_LEVEL)
5502 			sec_level = priv->ieee->sec.level;
5503 
5504 		use_group = 0;
5505 		if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5506 			use_group = priv->ieee->sec.unicast_uses_group;
5507 
5508 		err =
5509 		    ipw2100_set_security_information(priv, auth_mode, sec_level,
5510 						     use_group, 1);
5511 	}
5512 
5513 	if (err)
5514 		goto exit;
5515 
5516 	if (priv->ieee->sec.enabled) {
5517 		for (i = 0; i < 4; i++) {
5518 			if (!(priv->ieee->sec.flags & (1 << i))) {
5519 				memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5520 				priv->ieee->sec.key_sizes[i] = 0;
5521 			} else {
5522 				err = ipw2100_set_key(priv, i,
5523 						      priv->ieee->sec.keys[i],
5524 						      priv->ieee->sec.
5525 						      key_sizes[i], 1);
5526 				if (err)
5527 					goto exit;
5528 			}
5529 		}
5530 
5531 		ipw2100_set_key_index(priv, priv->ieee->crypt_info.tx_keyidx, 1);
5532 	}
5533 
5534 	/* Always enable privacy so the Host can filter WEP packets if
5535 	 * encrypted data is sent up */
5536 	err =
5537 	    ipw2100_set_wep_flags(priv,
5538 				  priv->ieee->sec.
5539 				  enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5540 	if (err)
5541 		goto exit;
5542 
5543 	priv->status &= ~STATUS_SECURITY_UPDATED;
5544 
5545       exit:
5546 	if (!batch_mode)
5547 		ipw2100_enable_adapter(priv);
5548 
5549 	return err;
5550 }
5551 
5552 static void ipw2100_security_work(struct work_struct *work)
5553 {
5554 	struct ipw2100_priv *priv =
5555 		container_of(work, struct ipw2100_priv, security_work.work);
5556 
5557 	/* If we happen to have reconnected before we get a chance to
5558 	 * process this, then update the security settings--which causes
5559 	 * a disassociation to occur */
5560 	if (!(priv->status & STATUS_ASSOCIATED) &&
5561 	    priv->status & STATUS_SECURITY_UPDATED)
5562 		ipw2100_configure_security(priv, 0);
5563 }
5564 
5565 static void shim__set_security(struct net_device *dev,
5566 			       struct libipw_security *sec)
5567 {
5568 	struct ipw2100_priv *priv = libipw_priv(dev);
5569 	int i;
5570 
5571 	mutex_lock(&priv->action_mutex);
5572 	if (!(priv->status & STATUS_INITIALIZED))
5573 		goto done;
5574 
5575 	for (i = 0; i < 4; i++) {
5576 		if (sec->flags & (1 << i)) {
5577 			priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5578 			if (sec->key_sizes[i] == 0)
5579 				priv->ieee->sec.flags &= ~(1 << i);
5580 			else
5581 				memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5582 				       sec->key_sizes[i]);
5583 			if (sec->level == SEC_LEVEL_1) {
5584 				priv->ieee->sec.flags |= (1 << i);
5585 				priv->status |= STATUS_SECURITY_UPDATED;
5586 			} else
5587 				priv->ieee->sec.flags &= ~(1 << i);
5588 		}
5589 	}
5590 
5591 	if ((sec->flags & SEC_ACTIVE_KEY) &&
5592 	    priv->ieee->sec.active_key != sec->active_key) {
5593 		priv->ieee->sec.active_key = sec->active_key;
5594 		priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5595 		priv->status |= STATUS_SECURITY_UPDATED;
5596 	}
5597 
5598 	if ((sec->flags & SEC_AUTH_MODE) &&
5599 	    (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5600 		priv->ieee->sec.auth_mode = sec->auth_mode;
5601 		priv->ieee->sec.flags |= SEC_AUTH_MODE;
5602 		priv->status |= STATUS_SECURITY_UPDATED;
5603 	}
5604 
5605 	if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5606 		priv->ieee->sec.flags |= SEC_ENABLED;
5607 		priv->ieee->sec.enabled = sec->enabled;
5608 		priv->status |= STATUS_SECURITY_UPDATED;
5609 	}
5610 
5611 	if (sec->flags & SEC_ENCRYPT)
5612 		priv->ieee->sec.encrypt = sec->encrypt;
5613 
5614 	if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5615 		priv->ieee->sec.level = sec->level;
5616 		priv->ieee->sec.flags |= SEC_LEVEL;
5617 		priv->status |= STATUS_SECURITY_UPDATED;
5618 	}
5619 
5620 	IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5621 		      priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5622 		      priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5623 		      priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5624 		      priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5625 		      priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5626 		      priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5627 		      priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5628 		      priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5629 		      priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5630 
5631 /* As a temporary work around to enable WPA until we figure out why
5632  * wpa_supplicant toggles the security capability of the driver, which
5633  * forces a disassociation with force_update...
5634  *
5635  *	if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5636 	if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5637 		ipw2100_configure_security(priv, 0);
5638       done:
5639 	mutex_unlock(&priv->action_mutex);
5640 }
5641 
5642 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5643 {
5644 	int err;
5645 	int batch_mode = 1;
5646 	u8 *bssid;
5647 
5648 	IPW_DEBUG_INFO("enter\n");
5649 
5650 	err = ipw2100_disable_adapter(priv);
5651 	if (err)
5652 		return err;
5653 #ifdef CONFIG_IPW2100_MONITOR
5654 	if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5655 		err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5656 		if (err)
5657 			return err;
5658 
5659 		IPW_DEBUG_INFO("exit\n");
5660 
5661 		return 0;
5662 	}
5663 #endif				/* CONFIG_IPW2100_MONITOR */
5664 
5665 	err = ipw2100_read_mac_address(priv);
5666 	if (err)
5667 		return -EIO;
5668 
5669 	err = ipw2100_set_mac_address(priv, batch_mode);
5670 	if (err)
5671 		return err;
5672 
5673 	err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5674 	if (err)
5675 		return err;
5676 
5677 	if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5678 		err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5679 		if (err)
5680 			return err;
5681 	}
5682 
5683 	err = ipw2100_system_config(priv, batch_mode);
5684 	if (err)
5685 		return err;
5686 
5687 	err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5688 	if (err)
5689 		return err;
5690 
5691 	/* Default to power mode OFF */
5692 	err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5693 	if (err)
5694 		return err;
5695 
5696 	err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5697 	if (err)
5698 		return err;
5699 
5700 	if (priv->config & CFG_STATIC_BSSID)
5701 		bssid = priv->bssid;
5702 	else
5703 		bssid = NULL;
5704 	err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5705 	if (err)
5706 		return err;
5707 
5708 	if (priv->config & CFG_STATIC_ESSID)
5709 		err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5710 					batch_mode);
5711 	else
5712 		err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5713 	if (err)
5714 		return err;
5715 
5716 	err = ipw2100_configure_security(priv, batch_mode);
5717 	if (err)
5718 		return err;
5719 
5720 	if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5721 		err =
5722 		    ipw2100_set_ibss_beacon_interval(priv,
5723 						     priv->beacon_interval,
5724 						     batch_mode);
5725 		if (err)
5726 			return err;
5727 
5728 		err = ipw2100_set_tx_power(priv, priv->tx_power);
5729 		if (err)
5730 			return err;
5731 	}
5732 
5733 	/*
5734 	   err = ipw2100_set_fragmentation_threshold(
5735 	   priv, priv->frag_threshold, batch_mode);
5736 	   if (err)
5737 	   return err;
5738 	 */
5739 
5740 	IPW_DEBUG_INFO("exit\n");
5741 
5742 	return 0;
5743 }
5744 
5745 /*************************************************************************
5746  *
5747  * EXTERNALLY CALLED METHODS
5748  *
5749  *************************************************************************/
5750 
5751 /* This method is called by the network layer -- not to be confused with
5752  * ipw2100_set_mac_address() declared above called by this driver (and this
5753  * method as well) to talk to the firmware */
5754 static int ipw2100_set_address(struct net_device *dev, void *p)
5755 {
5756 	struct ipw2100_priv *priv = libipw_priv(dev);
5757 	struct sockaddr *addr = p;
5758 	int err = 0;
5759 
5760 	if (!is_valid_ether_addr(addr->sa_data))
5761 		return -EADDRNOTAVAIL;
5762 
5763 	mutex_lock(&priv->action_mutex);
5764 
5765 	priv->config |= CFG_CUSTOM_MAC;
5766 	memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5767 
5768 	err = ipw2100_set_mac_address(priv, 0);
5769 	if (err)
5770 		goto done;
5771 
5772 	priv->reset_backoff = 0;
5773 	mutex_unlock(&priv->action_mutex);
5774 	ipw2100_reset_adapter(&priv->reset_work.work);
5775 	return 0;
5776 
5777       done:
5778 	mutex_unlock(&priv->action_mutex);
5779 	return err;
5780 }
5781 
5782 static int ipw2100_open(struct net_device *dev)
5783 {
5784 	struct ipw2100_priv *priv = libipw_priv(dev);
5785 	unsigned long flags;
5786 	IPW_DEBUG_INFO("dev->open\n");
5787 
5788 	spin_lock_irqsave(&priv->low_lock, flags);
5789 	if (priv->status & STATUS_ASSOCIATED) {
5790 		netif_carrier_on(dev);
5791 		netif_start_queue(dev);
5792 	}
5793 	spin_unlock_irqrestore(&priv->low_lock, flags);
5794 
5795 	return 0;
5796 }
5797 
5798 static int ipw2100_close(struct net_device *dev)
5799 {
5800 	struct ipw2100_priv *priv = libipw_priv(dev);
5801 	unsigned long flags;
5802 	struct list_head *element;
5803 	struct ipw2100_tx_packet *packet;
5804 
5805 	IPW_DEBUG_INFO("enter\n");
5806 
5807 	spin_lock_irqsave(&priv->low_lock, flags);
5808 
5809 	if (priv->status & STATUS_ASSOCIATED)
5810 		netif_carrier_off(dev);
5811 	netif_stop_queue(dev);
5812 
5813 	/* Flush the TX queue ... */
5814 	while (!list_empty(&priv->tx_pend_list)) {
5815 		element = priv->tx_pend_list.next;
5816 		packet = list_entry(element, struct ipw2100_tx_packet, list);
5817 
5818 		list_del(element);
5819 		DEC_STAT(&priv->tx_pend_stat);
5820 
5821 		libipw_txb_free(packet->info.d_struct.txb);
5822 		packet->info.d_struct.txb = NULL;
5823 
5824 		list_add_tail(element, &priv->tx_free_list);
5825 		INC_STAT(&priv->tx_free_stat);
5826 	}
5827 	spin_unlock_irqrestore(&priv->low_lock, flags);
5828 
5829 	IPW_DEBUG_INFO("exit\n");
5830 
5831 	return 0;
5832 }
5833 
5834 /*
5835  * TODO:  Fix this function... its just wrong
5836  */
5837 static void ipw2100_tx_timeout(struct net_device *dev, unsigned int txqueue)
5838 {
5839 	struct ipw2100_priv *priv = libipw_priv(dev);
5840 
5841 	dev->stats.tx_errors++;
5842 
5843 #ifdef CONFIG_IPW2100_MONITOR
5844 	if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5845 		return;
5846 #endif
5847 
5848 	IPW_DEBUG_INFO("%s: TX timed out.  Scheduling firmware restart.\n",
5849 		       dev->name);
5850 	schedule_reset(priv);
5851 }
5852 
5853 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5854 {
5855 	/* This is called when wpa_supplicant loads and closes the driver
5856 	 * interface. */
5857 	priv->ieee->wpa_enabled = value;
5858 	return 0;
5859 }
5860 
5861 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5862 {
5863 
5864 	struct libipw_device *ieee = priv->ieee;
5865 	struct libipw_security sec = {
5866 		.flags = SEC_AUTH_MODE,
5867 	};
5868 	int ret = 0;
5869 
5870 	if (value & IW_AUTH_ALG_SHARED_KEY) {
5871 		sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5872 		ieee->open_wep = 0;
5873 	} else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5874 		sec.auth_mode = WLAN_AUTH_OPEN;
5875 		ieee->open_wep = 1;
5876 	} else if (value & IW_AUTH_ALG_LEAP) {
5877 		sec.auth_mode = WLAN_AUTH_LEAP;
5878 		ieee->open_wep = 1;
5879 	} else
5880 		return -EINVAL;
5881 
5882 	if (ieee->set_security)
5883 		ieee->set_security(ieee->dev, &sec);
5884 	else
5885 		ret = -EOPNOTSUPP;
5886 
5887 	return ret;
5888 }
5889 
5890 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5891 				    char *wpa_ie, int wpa_ie_len)
5892 {
5893 
5894 	struct ipw2100_wpa_assoc_frame frame;
5895 
5896 	frame.fixed_ie_mask = 0;
5897 
5898 	/* copy WPA IE */
5899 	memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5900 	frame.var_ie_len = wpa_ie_len;
5901 
5902 	/* make sure WPA is enabled */
5903 	ipw2100_wpa_enable(priv, 1);
5904 	ipw2100_set_wpa_ie(priv, &frame, 0);
5905 }
5906 
5907 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5908 				    struct ethtool_drvinfo *info)
5909 {
5910 	struct ipw2100_priv *priv = libipw_priv(dev);
5911 	char fw_ver[64], ucode_ver[64];
5912 
5913 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
5914 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
5915 
5916 	ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5917 	ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5918 
5919 	snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5920 		 fw_ver, priv->eeprom_version, ucode_ver);
5921 
5922 	strlcpy(info->bus_info, pci_name(priv->pci_dev),
5923 		sizeof(info->bus_info));
5924 }
5925 
5926 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5927 {
5928 	struct ipw2100_priv *priv = libipw_priv(dev);
5929 	return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5930 }
5931 
5932 static const struct ethtool_ops ipw2100_ethtool_ops = {
5933 	.get_link = ipw2100_ethtool_get_link,
5934 	.get_drvinfo = ipw_ethtool_get_drvinfo,
5935 };
5936 
5937 static void ipw2100_hang_check(struct work_struct *work)
5938 {
5939 	struct ipw2100_priv *priv =
5940 		container_of(work, struct ipw2100_priv, hang_check.work);
5941 	unsigned long flags;
5942 	u32 rtc = 0xa5a5a5a5;
5943 	u32 len = sizeof(rtc);
5944 	int restart = 0;
5945 
5946 	spin_lock_irqsave(&priv->low_lock, flags);
5947 
5948 	if (priv->fatal_error != 0) {
5949 		/* If fatal_error is set then we need to restart */
5950 		IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5951 			       priv->net_dev->name);
5952 
5953 		restart = 1;
5954 	} else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5955 		   (rtc == priv->last_rtc)) {
5956 		/* Check if firmware is hung */
5957 		IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
5958 			       priv->net_dev->name);
5959 
5960 		restart = 1;
5961 	}
5962 
5963 	if (restart) {
5964 		/* Kill timer */
5965 		priv->stop_hang_check = 1;
5966 		priv->hangs++;
5967 
5968 		/* Restart the NIC */
5969 		schedule_reset(priv);
5970 	}
5971 
5972 	priv->last_rtc = rtc;
5973 
5974 	if (!priv->stop_hang_check)
5975 		schedule_delayed_work(&priv->hang_check, HZ / 2);
5976 
5977 	spin_unlock_irqrestore(&priv->low_lock, flags);
5978 }
5979 
5980 static void ipw2100_rf_kill(struct work_struct *work)
5981 {
5982 	struct ipw2100_priv *priv =
5983 		container_of(work, struct ipw2100_priv, rf_kill.work);
5984 	unsigned long flags;
5985 
5986 	spin_lock_irqsave(&priv->low_lock, flags);
5987 
5988 	if (rf_kill_active(priv)) {
5989 		IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
5990 		if (!priv->stop_rf_kill)
5991 			schedule_delayed_work(&priv->rf_kill,
5992 					      round_jiffies_relative(HZ));
5993 		goto exit_unlock;
5994 	}
5995 
5996 	/* RF Kill is now disabled, so bring the device back up */
5997 
5998 	if (!(priv->status & STATUS_RF_KILL_MASK)) {
5999 		IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
6000 				  "device\n");
6001 		schedule_reset(priv);
6002 	} else
6003 		IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
6004 				  "enabled\n");
6005 
6006       exit_unlock:
6007 	spin_unlock_irqrestore(&priv->low_lock, flags);
6008 }
6009 
6010 static void ipw2100_irq_tasklet(unsigned long data);
6011 
6012 static const struct net_device_ops ipw2100_netdev_ops = {
6013 	.ndo_open		= ipw2100_open,
6014 	.ndo_stop		= ipw2100_close,
6015 	.ndo_start_xmit		= libipw_xmit,
6016 	.ndo_tx_timeout		= ipw2100_tx_timeout,
6017 	.ndo_set_mac_address	= ipw2100_set_address,
6018 	.ndo_validate_addr	= eth_validate_addr,
6019 };
6020 
6021 /* Look into using netdev destructor to shutdown libipw? */
6022 
6023 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6024 					       void __iomem * ioaddr)
6025 {
6026 	struct ipw2100_priv *priv;
6027 	struct net_device *dev;
6028 
6029 	dev = alloc_libipw(sizeof(struct ipw2100_priv), 0);
6030 	if (!dev)
6031 		return NULL;
6032 	priv = libipw_priv(dev);
6033 	priv->ieee = netdev_priv(dev);
6034 	priv->pci_dev = pci_dev;
6035 	priv->net_dev = dev;
6036 	priv->ioaddr = ioaddr;
6037 
6038 	priv->ieee->hard_start_xmit = ipw2100_tx;
6039 	priv->ieee->set_security = shim__set_security;
6040 
6041 	priv->ieee->perfect_rssi = -20;
6042 	priv->ieee->worst_rssi = -85;
6043 
6044 	dev->netdev_ops = &ipw2100_netdev_ops;
6045 	dev->ethtool_ops = &ipw2100_ethtool_ops;
6046 	dev->wireless_handlers = &ipw2100_wx_handler_def;
6047 	priv->wireless_data.libipw = priv->ieee;
6048 	dev->wireless_data = &priv->wireless_data;
6049 	dev->watchdog_timeo = 3 * HZ;
6050 	dev->irq = 0;
6051 	dev->min_mtu = 68;
6052 	dev->max_mtu = LIBIPW_DATA_LEN;
6053 
6054 	/* NOTE: We don't use the wireless_handlers hook
6055 	 * in dev as the system will start throwing WX requests
6056 	 * to us before we're actually initialized and it just
6057 	 * ends up causing problems.  So, we just handle
6058 	 * the WX extensions through the ipw2100_ioctl interface */
6059 
6060 	/* memset() puts everything to 0, so we only have explicitly set
6061 	 * those values that need to be something else */
6062 
6063 	/* If power management is turned on, default to AUTO mode */
6064 	priv->power_mode = IPW_POWER_AUTO;
6065 
6066 #ifdef CONFIG_IPW2100_MONITOR
6067 	priv->config |= CFG_CRC_CHECK;
6068 #endif
6069 	priv->ieee->wpa_enabled = 0;
6070 	priv->ieee->drop_unencrypted = 0;
6071 	priv->ieee->privacy_invoked = 0;
6072 	priv->ieee->ieee802_1x = 1;
6073 
6074 	/* Set module parameters */
6075 	switch (network_mode) {
6076 	case 1:
6077 		priv->ieee->iw_mode = IW_MODE_ADHOC;
6078 		break;
6079 #ifdef CONFIG_IPW2100_MONITOR
6080 	case 2:
6081 		priv->ieee->iw_mode = IW_MODE_MONITOR;
6082 		break;
6083 #endif
6084 	default:
6085 	case 0:
6086 		priv->ieee->iw_mode = IW_MODE_INFRA;
6087 		break;
6088 	}
6089 
6090 	if (disable == 1)
6091 		priv->status |= STATUS_RF_KILL_SW;
6092 
6093 	if (channel != 0 &&
6094 	    ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6095 		priv->config |= CFG_STATIC_CHANNEL;
6096 		priv->channel = channel;
6097 	}
6098 
6099 	if (associate)
6100 		priv->config |= CFG_ASSOCIATE;
6101 
6102 	priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6103 	priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6104 	priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6105 	priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6106 	priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6107 	priv->tx_power = IPW_TX_POWER_DEFAULT;
6108 	priv->tx_rates = DEFAULT_TX_RATES;
6109 
6110 	strcpy(priv->nick, "ipw2100");
6111 
6112 	spin_lock_init(&priv->low_lock);
6113 	mutex_init(&priv->action_mutex);
6114 	mutex_init(&priv->adapter_mutex);
6115 
6116 	init_waitqueue_head(&priv->wait_command_queue);
6117 
6118 	netif_carrier_off(dev);
6119 
6120 	INIT_LIST_HEAD(&priv->msg_free_list);
6121 	INIT_LIST_HEAD(&priv->msg_pend_list);
6122 	INIT_STAT(&priv->msg_free_stat);
6123 	INIT_STAT(&priv->msg_pend_stat);
6124 
6125 	INIT_LIST_HEAD(&priv->tx_free_list);
6126 	INIT_LIST_HEAD(&priv->tx_pend_list);
6127 	INIT_STAT(&priv->tx_free_stat);
6128 	INIT_STAT(&priv->tx_pend_stat);
6129 
6130 	INIT_LIST_HEAD(&priv->fw_pend_list);
6131 	INIT_STAT(&priv->fw_pend_stat);
6132 
6133 	INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6134 	INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6135 	INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6136 	INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6137 	INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6138 	INIT_DELAYED_WORK(&priv->scan_event, ipw2100_scan_event);
6139 
6140 	tasklet_init(&priv->irq_tasklet,
6141 		     ipw2100_irq_tasklet, (unsigned long)priv);
6142 
6143 	/* NOTE:  We do not start the deferred work for status checks yet */
6144 	priv->stop_rf_kill = 1;
6145 	priv->stop_hang_check = 1;
6146 
6147 	return dev;
6148 }
6149 
6150 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6151 				const struct pci_device_id *ent)
6152 {
6153 	void __iomem *ioaddr;
6154 	struct net_device *dev = NULL;
6155 	struct ipw2100_priv *priv = NULL;
6156 	int err = 0;
6157 	int registered = 0;
6158 	u32 val;
6159 
6160 	IPW_DEBUG_INFO("enter\n");
6161 
6162 	if (!(pci_resource_flags(pci_dev, 0) & IORESOURCE_MEM)) {
6163 		IPW_DEBUG_INFO("weird - resource type is not memory\n");
6164 		err = -ENODEV;
6165 		goto out;
6166 	}
6167 
6168 	ioaddr = pci_iomap(pci_dev, 0, 0);
6169 	if (!ioaddr) {
6170 		printk(KERN_WARNING DRV_NAME
6171 		       "Error calling ioremap.\n");
6172 		err = -EIO;
6173 		goto fail;
6174 	}
6175 
6176 	/* allocate and initialize our net_device */
6177 	dev = ipw2100_alloc_device(pci_dev, ioaddr);
6178 	if (!dev) {
6179 		printk(KERN_WARNING DRV_NAME
6180 		       "Error calling ipw2100_alloc_device.\n");
6181 		err = -ENOMEM;
6182 		goto fail;
6183 	}
6184 
6185 	/* set up PCI mappings for device */
6186 	err = pci_enable_device(pci_dev);
6187 	if (err) {
6188 		printk(KERN_WARNING DRV_NAME
6189 		       "Error calling pci_enable_device.\n");
6190 		return err;
6191 	}
6192 
6193 	priv = libipw_priv(dev);
6194 
6195 	pci_set_master(pci_dev);
6196 	pci_set_drvdata(pci_dev, priv);
6197 
6198 	err = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
6199 	if (err) {
6200 		printk(KERN_WARNING DRV_NAME
6201 		       "Error calling pci_set_dma_mask.\n");
6202 		pci_disable_device(pci_dev);
6203 		return err;
6204 	}
6205 
6206 	err = pci_request_regions(pci_dev, DRV_NAME);
6207 	if (err) {
6208 		printk(KERN_WARNING DRV_NAME
6209 		       "Error calling pci_request_regions.\n");
6210 		pci_disable_device(pci_dev);
6211 		return err;
6212 	}
6213 
6214 	/* We disable the RETRY_TIMEOUT register (0x41) to keep
6215 	 * PCI Tx retries from interfering with C3 CPU state */
6216 	pci_read_config_dword(pci_dev, 0x40, &val);
6217 	if ((val & 0x0000ff00) != 0)
6218 		pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6219 
6220 	if (!ipw2100_hw_is_adapter_in_system(dev)) {
6221 		printk(KERN_WARNING DRV_NAME
6222 		       "Device not found via register read.\n");
6223 		err = -ENODEV;
6224 		goto fail;
6225 	}
6226 
6227 	SET_NETDEV_DEV(dev, &pci_dev->dev);
6228 
6229 	/* Force interrupts to be shut off on the device */
6230 	priv->status |= STATUS_INT_ENABLED;
6231 	ipw2100_disable_interrupts(priv);
6232 
6233 	/* Allocate and initialize the Tx/Rx queues and lists */
6234 	if (ipw2100_queues_allocate(priv)) {
6235 		printk(KERN_WARNING DRV_NAME
6236 		       "Error calling ipw2100_queues_allocate.\n");
6237 		err = -ENOMEM;
6238 		goto fail;
6239 	}
6240 	ipw2100_queues_initialize(priv);
6241 
6242 	err = request_irq(pci_dev->irq,
6243 			  ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6244 	if (err) {
6245 		printk(KERN_WARNING DRV_NAME
6246 		       "Error calling request_irq: %d.\n", pci_dev->irq);
6247 		goto fail;
6248 	}
6249 	dev->irq = pci_dev->irq;
6250 
6251 	IPW_DEBUG_INFO("Attempting to register device...\n");
6252 
6253 	printk(KERN_INFO DRV_NAME
6254 	       ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6255 
6256 	err = ipw2100_up(priv, 1);
6257 	if (err)
6258 		goto fail;
6259 
6260 	err = ipw2100_wdev_init(dev);
6261 	if (err)
6262 		goto fail;
6263 	registered = 1;
6264 
6265 	/* Bring up the interface.  Pre 0.46, after we registered the
6266 	 * network device we would call ipw2100_up.  This introduced a race
6267 	 * condition with newer hotplug configurations (network was coming
6268 	 * up and making calls before the device was initialized).
6269 	 */
6270 	err = register_netdev(dev);
6271 	if (err) {
6272 		printk(KERN_WARNING DRV_NAME
6273 		       "Error calling register_netdev.\n");
6274 		goto fail;
6275 	}
6276 	registered = 2;
6277 
6278 	mutex_lock(&priv->action_mutex);
6279 
6280 	IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6281 
6282 	/* perform this after register_netdev so that dev->name is set */
6283 	err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6284 	if (err)
6285 		goto fail_unlock;
6286 
6287 	/* If the RF Kill switch is disabled, go ahead and complete the
6288 	 * startup sequence */
6289 	if (!(priv->status & STATUS_RF_KILL_MASK)) {
6290 		/* Enable the adapter - sends HOST_COMPLETE */
6291 		if (ipw2100_enable_adapter(priv)) {
6292 			printk(KERN_WARNING DRV_NAME
6293 			       ": %s: failed in call to enable adapter.\n",
6294 			       priv->net_dev->name);
6295 			ipw2100_hw_stop_adapter(priv);
6296 			err = -EIO;
6297 			goto fail_unlock;
6298 		}
6299 
6300 		/* Start a scan . . . */
6301 		ipw2100_set_scan_options(priv);
6302 		ipw2100_start_scan(priv);
6303 	}
6304 
6305 	IPW_DEBUG_INFO("exit\n");
6306 
6307 	priv->status |= STATUS_INITIALIZED;
6308 
6309 	mutex_unlock(&priv->action_mutex);
6310 out:
6311 	return err;
6312 
6313       fail_unlock:
6314 	mutex_unlock(&priv->action_mutex);
6315       fail:
6316 	if (dev) {
6317 		if (registered >= 2)
6318 			unregister_netdev(dev);
6319 
6320 		if (registered) {
6321 			wiphy_unregister(priv->ieee->wdev.wiphy);
6322 			kfree(priv->ieee->bg_band.channels);
6323 		}
6324 
6325 		ipw2100_hw_stop_adapter(priv);
6326 
6327 		ipw2100_disable_interrupts(priv);
6328 
6329 		if (dev->irq)
6330 			free_irq(dev->irq, priv);
6331 
6332 		ipw2100_kill_works(priv);
6333 
6334 		/* These are safe to call even if they weren't allocated */
6335 		ipw2100_queues_free(priv);
6336 		sysfs_remove_group(&pci_dev->dev.kobj,
6337 				   &ipw2100_attribute_group);
6338 
6339 		free_libipw(dev, 0);
6340 	}
6341 
6342 	pci_iounmap(pci_dev, ioaddr);
6343 
6344 	pci_release_regions(pci_dev);
6345 	pci_disable_device(pci_dev);
6346 	goto out;
6347 }
6348 
6349 static void ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6350 {
6351 	struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6352 	struct net_device *dev = priv->net_dev;
6353 
6354 	mutex_lock(&priv->action_mutex);
6355 
6356 	priv->status &= ~STATUS_INITIALIZED;
6357 
6358 	sysfs_remove_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6359 
6360 #ifdef CONFIG_PM
6361 	if (ipw2100_firmware.version)
6362 		ipw2100_release_firmware(priv, &ipw2100_firmware);
6363 #endif
6364 	/* Take down the hardware */
6365 	ipw2100_down(priv);
6366 
6367 	/* Release the mutex so that the network subsystem can
6368 	 * complete any needed calls into the driver... */
6369 	mutex_unlock(&priv->action_mutex);
6370 
6371 	/* Unregister the device first - this results in close()
6372 	 * being called if the device is open.  If we free storage
6373 	 * first, then close() will crash.
6374 	 * FIXME: remove the comment above. */
6375 	unregister_netdev(dev);
6376 
6377 	ipw2100_kill_works(priv);
6378 
6379 	ipw2100_queues_free(priv);
6380 
6381 	/* Free potential debugging firmware snapshot */
6382 	ipw2100_snapshot_free(priv);
6383 
6384 	free_irq(dev->irq, priv);
6385 
6386 	pci_iounmap(pci_dev, priv->ioaddr);
6387 
6388 	/* wiphy_unregister needs to be here, before free_libipw */
6389 	wiphy_unregister(priv->ieee->wdev.wiphy);
6390 	kfree(priv->ieee->bg_band.channels);
6391 	free_libipw(dev, 0);
6392 
6393 	pci_release_regions(pci_dev);
6394 	pci_disable_device(pci_dev);
6395 
6396 	IPW_DEBUG_INFO("exit\n");
6397 }
6398 
6399 #ifdef CONFIG_PM
6400 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6401 {
6402 	struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6403 	struct net_device *dev = priv->net_dev;
6404 
6405 	IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6406 
6407 	mutex_lock(&priv->action_mutex);
6408 	if (priv->status & STATUS_INITIALIZED) {
6409 		/* Take down the device; powers it off, etc. */
6410 		ipw2100_down(priv);
6411 	}
6412 
6413 	/* Remove the PRESENT state of the device */
6414 	netif_device_detach(dev);
6415 
6416 	pci_save_state(pci_dev);
6417 	pci_disable_device(pci_dev);
6418 	pci_set_power_state(pci_dev, PCI_D3hot);
6419 
6420 	priv->suspend_at = ktime_get_boottime_seconds();
6421 
6422 	mutex_unlock(&priv->action_mutex);
6423 
6424 	return 0;
6425 }
6426 
6427 static int ipw2100_resume(struct pci_dev *pci_dev)
6428 {
6429 	struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6430 	struct net_device *dev = priv->net_dev;
6431 	int err;
6432 	u32 val;
6433 
6434 	if (IPW2100_PM_DISABLED)
6435 		return 0;
6436 
6437 	mutex_lock(&priv->action_mutex);
6438 
6439 	IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6440 
6441 	pci_set_power_state(pci_dev, PCI_D0);
6442 	err = pci_enable_device(pci_dev);
6443 	if (err) {
6444 		printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
6445 		       dev->name);
6446 		mutex_unlock(&priv->action_mutex);
6447 		return err;
6448 	}
6449 	pci_restore_state(pci_dev);
6450 
6451 	/*
6452 	 * Suspend/Resume resets the PCI configuration space, so we have to
6453 	 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6454 	 * from interfering with C3 CPU state. pci_restore_state won't help
6455 	 * here since it only restores the first 64 bytes pci config header.
6456 	 */
6457 	pci_read_config_dword(pci_dev, 0x40, &val);
6458 	if ((val & 0x0000ff00) != 0)
6459 		pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6460 
6461 	/* Set the device back into the PRESENT state; this will also wake
6462 	 * the queue of needed */
6463 	netif_device_attach(dev);
6464 
6465 	priv->suspend_time = ktime_get_boottime_seconds() - priv->suspend_at;
6466 
6467 	/* Bring the device back up */
6468 	if (!(priv->status & STATUS_RF_KILL_SW))
6469 		ipw2100_up(priv, 0);
6470 
6471 	mutex_unlock(&priv->action_mutex);
6472 
6473 	return 0;
6474 }
6475 #endif
6476 
6477 static void ipw2100_shutdown(struct pci_dev *pci_dev)
6478 {
6479 	struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6480 
6481 	/* Take down the device; powers it off, etc. */
6482 	ipw2100_down(priv);
6483 
6484 	pci_disable_device(pci_dev);
6485 }
6486 
6487 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6488 
6489 static const struct pci_device_id ipw2100_pci_id_table[] = {
6490 	IPW2100_DEV_ID(0x2520),	/* IN 2100A mPCI 3A */
6491 	IPW2100_DEV_ID(0x2521),	/* IN 2100A mPCI 3B */
6492 	IPW2100_DEV_ID(0x2524),	/* IN 2100A mPCI 3B */
6493 	IPW2100_DEV_ID(0x2525),	/* IN 2100A mPCI 3B */
6494 	IPW2100_DEV_ID(0x2526),	/* IN 2100A mPCI Gen A3 */
6495 	IPW2100_DEV_ID(0x2522),	/* IN 2100 mPCI 3B */
6496 	IPW2100_DEV_ID(0x2523),	/* IN 2100 mPCI 3A */
6497 	IPW2100_DEV_ID(0x2527),	/* IN 2100 mPCI 3B */
6498 	IPW2100_DEV_ID(0x2528),	/* IN 2100 mPCI 3B */
6499 	IPW2100_DEV_ID(0x2529),	/* IN 2100 mPCI 3B */
6500 	IPW2100_DEV_ID(0x252B),	/* IN 2100 mPCI 3A */
6501 	IPW2100_DEV_ID(0x252C),	/* IN 2100 mPCI 3A */
6502 	IPW2100_DEV_ID(0x252D),	/* IN 2100 mPCI 3A */
6503 
6504 	IPW2100_DEV_ID(0x2550),	/* IB 2100A mPCI 3B */
6505 	IPW2100_DEV_ID(0x2551),	/* IB 2100 mPCI 3B */
6506 	IPW2100_DEV_ID(0x2553),	/* IB 2100 mPCI 3B */
6507 	IPW2100_DEV_ID(0x2554),	/* IB 2100 mPCI 3B */
6508 	IPW2100_DEV_ID(0x2555),	/* IB 2100 mPCI 3B */
6509 
6510 	IPW2100_DEV_ID(0x2560),	/* DE 2100A mPCI 3A */
6511 	IPW2100_DEV_ID(0x2562),	/* DE 2100A mPCI 3A */
6512 	IPW2100_DEV_ID(0x2563),	/* DE 2100A mPCI 3A */
6513 	IPW2100_DEV_ID(0x2561),	/* DE 2100 mPCI 3A */
6514 	IPW2100_DEV_ID(0x2565),	/* DE 2100 mPCI 3A */
6515 	IPW2100_DEV_ID(0x2566),	/* DE 2100 mPCI 3A */
6516 	IPW2100_DEV_ID(0x2567),	/* DE 2100 mPCI 3A */
6517 
6518 	IPW2100_DEV_ID(0x2570),	/* GA 2100 mPCI 3B */
6519 
6520 	IPW2100_DEV_ID(0x2580),	/* TO 2100A mPCI 3B */
6521 	IPW2100_DEV_ID(0x2582),	/* TO 2100A mPCI 3B */
6522 	IPW2100_DEV_ID(0x2583),	/* TO 2100A mPCI 3B */
6523 	IPW2100_DEV_ID(0x2581),	/* TO 2100 mPCI 3B */
6524 	IPW2100_DEV_ID(0x2585),	/* TO 2100 mPCI 3B */
6525 	IPW2100_DEV_ID(0x2586),	/* TO 2100 mPCI 3B */
6526 	IPW2100_DEV_ID(0x2587),	/* TO 2100 mPCI 3B */
6527 
6528 	IPW2100_DEV_ID(0x2590),	/* SO 2100A mPCI 3B */
6529 	IPW2100_DEV_ID(0x2592),	/* SO 2100A mPCI 3B */
6530 	IPW2100_DEV_ID(0x2591),	/* SO 2100 mPCI 3B */
6531 	IPW2100_DEV_ID(0x2593),	/* SO 2100 mPCI 3B */
6532 	IPW2100_DEV_ID(0x2596),	/* SO 2100 mPCI 3B */
6533 	IPW2100_DEV_ID(0x2598),	/* SO 2100 mPCI 3B */
6534 
6535 	IPW2100_DEV_ID(0x25A0),	/* HP 2100 mPCI 3B */
6536 	{0,},
6537 };
6538 
6539 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6540 
6541 static struct pci_driver ipw2100_pci_driver = {
6542 	.name = DRV_NAME,
6543 	.id_table = ipw2100_pci_id_table,
6544 	.probe = ipw2100_pci_init_one,
6545 	.remove = ipw2100_pci_remove_one,
6546 #ifdef CONFIG_PM
6547 	.suspend = ipw2100_suspend,
6548 	.resume = ipw2100_resume,
6549 #endif
6550 	.shutdown = ipw2100_shutdown,
6551 };
6552 
6553 /**
6554  * Initialize the ipw2100 driver/module
6555  *
6556  * @returns 0 if ok, < 0 errno node con error.
6557  *
6558  * Note: we cannot init the /proc stuff until the PCI driver is there,
6559  * or we risk an unlikely race condition on someone accessing
6560  * uninitialized data in the PCI dev struct through /proc.
6561  */
6562 static int __init ipw2100_init(void)
6563 {
6564 	int ret;
6565 
6566 	printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6567 	printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6568 
6569 	pm_qos_add_request(&ipw2100_pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
6570 			   PM_QOS_DEFAULT_VALUE);
6571 
6572 	ret = pci_register_driver(&ipw2100_pci_driver);
6573 	if (ret)
6574 		goto out;
6575 
6576 #ifdef CONFIG_IPW2100_DEBUG
6577 	ipw2100_debug_level = debug;
6578 	ret = driver_create_file(&ipw2100_pci_driver.driver,
6579 				 &driver_attr_debug_level);
6580 #endif
6581 
6582 out:
6583 	return ret;
6584 }
6585 
6586 /**
6587  * Cleanup ipw2100 driver registration
6588  */
6589 static void __exit ipw2100_exit(void)
6590 {
6591 	/* FIXME: IPG: check that we have no instances of the devices open */
6592 #ifdef CONFIG_IPW2100_DEBUG
6593 	driver_remove_file(&ipw2100_pci_driver.driver,
6594 			   &driver_attr_debug_level);
6595 #endif
6596 	pci_unregister_driver(&ipw2100_pci_driver);
6597 	pm_qos_remove_request(&ipw2100_pm_qos_req);
6598 }
6599 
6600 module_init(ipw2100_init);
6601 module_exit(ipw2100_exit);
6602 
6603 static int ipw2100_wx_get_name(struct net_device *dev,
6604 			       struct iw_request_info *info,
6605 			       union iwreq_data *wrqu, char *extra)
6606 {
6607 	/*
6608 	 * This can be called at any time.  No action lock required
6609 	 */
6610 
6611 	struct ipw2100_priv *priv = libipw_priv(dev);
6612 	if (!(priv->status & STATUS_ASSOCIATED))
6613 		strcpy(wrqu->name, "unassociated");
6614 	else
6615 		snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6616 
6617 	IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6618 	return 0;
6619 }
6620 
6621 static int ipw2100_wx_set_freq(struct net_device *dev,
6622 			       struct iw_request_info *info,
6623 			       union iwreq_data *wrqu, char *extra)
6624 {
6625 	struct ipw2100_priv *priv = libipw_priv(dev);
6626 	struct iw_freq *fwrq = &wrqu->freq;
6627 	int err = 0;
6628 
6629 	if (priv->ieee->iw_mode == IW_MODE_INFRA)
6630 		return -EOPNOTSUPP;
6631 
6632 	mutex_lock(&priv->action_mutex);
6633 	if (!(priv->status & STATUS_INITIALIZED)) {
6634 		err = -EIO;
6635 		goto done;
6636 	}
6637 
6638 	/* if setting by freq convert to channel */
6639 	if (fwrq->e == 1) {
6640 		if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6641 			int f = fwrq->m / 100000;
6642 			int c = 0;
6643 
6644 			while ((c < REG_MAX_CHANNEL) &&
6645 			       (f != ipw2100_frequencies[c]))
6646 				c++;
6647 
6648 			/* hack to fall through */
6649 			fwrq->e = 0;
6650 			fwrq->m = c + 1;
6651 		}
6652 	}
6653 
6654 	if (fwrq->e > 0 || fwrq->m > 1000) {
6655 		err = -EOPNOTSUPP;
6656 		goto done;
6657 	} else {		/* Set the channel */
6658 		IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
6659 		err = ipw2100_set_channel(priv, fwrq->m, 0);
6660 	}
6661 
6662       done:
6663 	mutex_unlock(&priv->action_mutex);
6664 	return err;
6665 }
6666 
6667 static int ipw2100_wx_get_freq(struct net_device *dev,
6668 			       struct iw_request_info *info,
6669 			       union iwreq_data *wrqu, char *extra)
6670 {
6671 	/*
6672 	 * This can be called at any time.  No action lock required
6673 	 */
6674 
6675 	struct ipw2100_priv *priv = libipw_priv(dev);
6676 
6677 	wrqu->freq.e = 0;
6678 
6679 	/* If we are associated, trying to associate, or have a statically
6680 	 * configured CHANNEL then return that; otherwise return ANY */
6681 	if (priv->config & CFG_STATIC_CHANNEL ||
6682 	    priv->status & STATUS_ASSOCIATED)
6683 		wrqu->freq.m = priv->channel;
6684 	else
6685 		wrqu->freq.m = 0;
6686 
6687 	IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
6688 	return 0;
6689 
6690 }
6691 
6692 static int ipw2100_wx_set_mode(struct net_device *dev,
6693 			       struct iw_request_info *info,
6694 			       union iwreq_data *wrqu, char *extra)
6695 {
6696 	struct ipw2100_priv *priv = libipw_priv(dev);
6697 	int err = 0;
6698 
6699 	IPW_DEBUG_WX("SET Mode -> %d\n", wrqu->mode);
6700 
6701 	if (wrqu->mode == priv->ieee->iw_mode)
6702 		return 0;
6703 
6704 	mutex_lock(&priv->action_mutex);
6705 	if (!(priv->status & STATUS_INITIALIZED)) {
6706 		err = -EIO;
6707 		goto done;
6708 	}
6709 
6710 	switch (wrqu->mode) {
6711 #ifdef CONFIG_IPW2100_MONITOR
6712 	case IW_MODE_MONITOR:
6713 		err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6714 		break;
6715 #endif				/* CONFIG_IPW2100_MONITOR */
6716 	case IW_MODE_ADHOC:
6717 		err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6718 		break;
6719 	case IW_MODE_INFRA:
6720 	case IW_MODE_AUTO:
6721 	default:
6722 		err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6723 		break;
6724 	}
6725 
6726       done:
6727 	mutex_unlock(&priv->action_mutex);
6728 	return err;
6729 }
6730 
6731 static int ipw2100_wx_get_mode(struct net_device *dev,
6732 			       struct iw_request_info *info,
6733 			       union iwreq_data *wrqu, char *extra)
6734 {
6735 	/*
6736 	 * This can be called at any time.  No action lock required
6737 	 */
6738 
6739 	struct ipw2100_priv *priv = libipw_priv(dev);
6740 
6741 	wrqu->mode = priv->ieee->iw_mode;
6742 	IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6743 
6744 	return 0;
6745 }
6746 
6747 #define POWER_MODES 5
6748 
6749 /* Values are in microsecond */
6750 static const s32 timeout_duration[POWER_MODES] = {
6751 	350000,
6752 	250000,
6753 	75000,
6754 	37000,
6755 	25000,
6756 };
6757 
6758 static const s32 period_duration[POWER_MODES] = {
6759 	400000,
6760 	700000,
6761 	1000000,
6762 	1000000,
6763 	1000000
6764 };
6765 
6766 static int ipw2100_wx_get_range(struct net_device *dev,
6767 				struct iw_request_info *info,
6768 				union iwreq_data *wrqu, char *extra)
6769 {
6770 	/*
6771 	 * This can be called at any time.  No action lock required
6772 	 */
6773 
6774 	struct ipw2100_priv *priv = libipw_priv(dev);
6775 	struct iw_range *range = (struct iw_range *)extra;
6776 	u16 val;
6777 	int i, level;
6778 
6779 	wrqu->data.length = sizeof(*range);
6780 	memset(range, 0, sizeof(*range));
6781 
6782 	/* Let's try to keep this struct in the same order as in
6783 	 * linux/include/wireless.h
6784 	 */
6785 
6786 	/* TODO: See what values we can set, and remove the ones we can't
6787 	 * set, or fill them with some default data.
6788 	 */
6789 
6790 	/* ~5 Mb/s real (802.11b) */
6791 	range->throughput = 5 * 1000 * 1000;
6792 
6793 //      range->sensitivity;     /* signal level threshold range */
6794 
6795 	range->max_qual.qual = 100;
6796 	/* TODO: Find real max RSSI and stick here */
6797 	range->max_qual.level = 0;
6798 	range->max_qual.noise = 0;
6799 	range->max_qual.updated = 7;	/* Updated all three */
6800 
6801 	range->avg_qual.qual = 70;	/* > 8% missed beacons is 'bad' */
6802 	/* TODO: Find real 'good' to 'bad' threshold value for RSSI */
6803 	range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6804 	range->avg_qual.noise = 0;
6805 	range->avg_qual.updated = 7;	/* Updated all three */
6806 
6807 	range->num_bitrates = RATE_COUNT;
6808 
6809 	for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6810 		range->bitrate[i] = ipw2100_bg_rates[i].bitrate * 100 * 1000;
6811 	}
6812 
6813 	range->min_rts = MIN_RTS_THRESHOLD;
6814 	range->max_rts = MAX_RTS_THRESHOLD;
6815 	range->min_frag = MIN_FRAG_THRESHOLD;
6816 	range->max_frag = MAX_FRAG_THRESHOLD;
6817 
6818 	range->min_pmp = period_duration[0];	/* Minimal PM period */
6819 	range->max_pmp = period_duration[POWER_MODES - 1];	/* Maximal PM period */
6820 	range->min_pmt = timeout_duration[POWER_MODES - 1];	/* Minimal PM timeout */
6821 	range->max_pmt = timeout_duration[0];	/* Maximal PM timeout */
6822 
6823 	/* How to decode max/min PM period */
6824 	range->pmp_flags = IW_POWER_PERIOD;
6825 	/* How to decode max/min PM period */
6826 	range->pmt_flags = IW_POWER_TIMEOUT;
6827 	/* What PM options are supported */
6828 	range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6829 
6830 	range->encoding_size[0] = 5;
6831 	range->encoding_size[1] = 13;	/* Different token sizes */
6832 	range->num_encoding_sizes = 2;	/* Number of entry in the list */
6833 	range->max_encoding_tokens = WEP_KEYS;	/* Max number of tokens */
6834 //      range->encoding_login_index;            /* token index for login token */
6835 
6836 	if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6837 		range->txpower_capa = IW_TXPOW_DBM;
6838 		range->num_txpower = IW_MAX_TXPOWER;
6839 		for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6840 		     i < IW_MAX_TXPOWER;
6841 		     i++, level -=
6842 		     ((IPW_TX_POWER_MAX_DBM -
6843 		       IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6844 			range->txpower[i] = level / 16;
6845 	} else {
6846 		range->txpower_capa = 0;
6847 		range->num_txpower = 0;
6848 	}
6849 
6850 	/* Set the Wireless Extension versions */
6851 	range->we_version_compiled = WIRELESS_EXT;
6852 	range->we_version_source = 18;
6853 
6854 //      range->retry_capa;      /* What retry options are supported */
6855 //      range->retry_flags;     /* How to decode max/min retry limit */
6856 //      range->r_time_flags;    /* How to decode max/min retry life */
6857 //      range->min_retry;       /* Minimal number of retries */
6858 //      range->max_retry;       /* Maximal number of retries */
6859 //      range->min_r_time;      /* Minimal retry lifetime */
6860 //      range->max_r_time;      /* Maximal retry lifetime */
6861 
6862 	range->num_channels = FREQ_COUNT;
6863 
6864 	val = 0;
6865 	for (i = 0; i < FREQ_COUNT; i++) {
6866 		// TODO: Include only legal frequencies for some countries
6867 //              if (local->channel_mask & (1 << i)) {
6868 		range->freq[val].i = i + 1;
6869 		range->freq[val].m = ipw2100_frequencies[i] * 100000;
6870 		range->freq[val].e = 1;
6871 		val++;
6872 //              }
6873 		if (val == IW_MAX_FREQUENCIES)
6874 			break;
6875 	}
6876 	range->num_frequency = val;
6877 
6878 	/* Event capability (kernel + driver) */
6879 	range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6880 				IW_EVENT_CAPA_MASK(SIOCGIWAP));
6881 	range->event_capa[1] = IW_EVENT_CAPA_K_1;
6882 
6883 	range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6884 		IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6885 
6886 	IPW_DEBUG_WX("GET Range\n");
6887 
6888 	return 0;
6889 }
6890 
6891 static int ipw2100_wx_set_wap(struct net_device *dev,
6892 			      struct iw_request_info *info,
6893 			      union iwreq_data *wrqu, char *extra)
6894 {
6895 	struct ipw2100_priv *priv = libipw_priv(dev);
6896 	int err = 0;
6897 
6898 	// sanity checks
6899 	if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6900 		return -EINVAL;
6901 
6902 	mutex_lock(&priv->action_mutex);
6903 	if (!(priv->status & STATUS_INITIALIZED)) {
6904 		err = -EIO;
6905 		goto done;
6906 	}
6907 
6908 	if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) ||
6909 	    is_zero_ether_addr(wrqu->ap_addr.sa_data)) {
6910 		/* we disable mandatory BSSID association */
6911 		IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6912 		priv->config &= ~CFG_STATIC_BSSID;
6913 		err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6914 		goto done;
6915 	}
6916 
6917 	priv->config |= CFG_STATIC_BSSID;
6918 	memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6919 
6920 	err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6921 
6922 	IPW_DEBUG_WX("SET BSSID -> %pM\n", wrqu->ap_addr.sa_data);
6923 
6924       done:
6925 	mutex_unlock(&priv->action_mutex);
6926 	return err;
6927 }
6928 
6929 static int ipw2100_wx_get_wap(struct net_device *dev,
6930 			      struct iw_request_info *info,
6931 			      union iwreq_data *wrqu, char *extra)
6932 {
6933 	/*
6934 	 * This can be called at any time.  No action lock required
6935 	 */
6936 
6937 	struct ipw2100_priv *priv = libipw_priv(dev);
6938 
6939 	/* If we are associated, trying to associate, or have a statically
6940 	 * configured BSSID then return that; otherwise return ANY */
6941 	if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6942 		wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6943 		memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6944 	} else
6945 		eth_zero_addr(wrqu->ap_addr.sa_data);
6946 
6947 	IPW_DEBUG_WX("Getting WAP BSSID: %pM\n", wrqu->ap_addr.sa_data);
6948 	return 0;
6949 }
6950 
6951 static int ipw2100_wx_set_essid(struct net_device *dev,
6952 				struct iw_request_info *info,
6953 				union iwreq_data *wrqu, char *extra)
6954 {
6955 	struct ipw2100_priv *priv = libipw_priv(dev);
6956 	char *essid = "";	/* ANY */
6957 	int length = 0;
6958 	int err = 0;
6959 
6960 	mutex_lock(&priv->action_mutex);
6961 	if (!(priv->status & STATUS_INITIALIZED)) {
6962 		err = -EIO;
6963 		goto done;
6964 	}
6965 
6966 	if (wrqu->essid.flags && wrqu->essid.length) {
6967 		length = wrqu->essid.length;
6968 		essid = extra;
6969 	}
6970 
6971 	if (length == 0) {
6972 		IPW_DEBUG_WX("Setting ESSID to ANY\n");
6973 		priv->config &= ~CFG_STATIC_ESSID;
6974 		err = ipw2100_set_essid(priv, NULL, 0, 0);
6975 		goto done;
6976 	}
6977 
6978 	length = min(length, IW_ESSID_MAX_SIZE);
6979 
6980 	priv->config |= CFG_STATIC_ESSID;
6981 
6982 	if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
6983 		IPW_DEBUG_WX("ESSID set to current ESSID.\n");
6984 		err = 0;
6985 		goto done;
6986 	}
6987 
6988 	IPW_DEBUG_WX("Setting ESSID: '%*pE' (%d)\n", length, essid, length);
6989 
6990 	priv->essid_len = length;
6991 	memcpy(priv->essid, essid, priv->essid_len);
6992 
6993 	err = ipw2100_set_essid(priv, essid, length, 0);
6994 
6995       done:
6996 	mutex_unlock(&priv->action_mutex);
6997 	return err;
6998 }
6999 
7000 static int ipw2100_wx_get_essid(struct net_device *dev,
7001 				struct iw_request_info *info,
7002 				union iwreq_data *wrqu, char *extra)
7003 {
7004 	/*
7005 	 * This can be called at any time.  No action lock required
7006 	 */
7007 
7008 	struct ipw2100_priv *priv = libipw_priv(dev);
7009 
7010 	/* If we are associated, trying to associate, or have a statically
7011 	 * configured ESSID then return that; otherwise return ANY */
7012 	if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7013 		IPW_DEBUG_WX("Getting essid: '%*pE'\n",
7014 			     priv->essid_len, priv->essid);
7015 		memcpy(extra, priv->essid, priv->essid_len);
7016 		wrqu->essid.length = priv->essid_len;
7017 		wrqu->essid.flags = 1;	/* active */
7018 	} else {
7019 		IPW_DEBUG_WX("Getting essid: ANY\n");
7020 		wrqu->essid.length = 0;
7021 		wrqu->essid.flags = 0;	/* active */
7022 	}
7023 
7024 	return 0;
7025 }
7026 
7027 static int ipw2100_wx_set_nick(struct net_device *dev,
7028 			       struct iw_request_info *info,
7029 			       union iwreq_data *wrqu, char *extra)
7030 {
7031 	/*
7032 	 * This can be called at any time.  No action lock required
7033 	 */
7034 
7035 	struct ipw2100_priv *priv = libipw_priv(dev);
7036 
7037 	if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7038 		return -E2BIG;
7039 
7040 	wrqu->data.length = min_t(size_t, wrqu->data.length, sizeof(priv->nick));
7041 	memset(priv->nick, 0, sizeof(priv->nick));
7042 	memcpy(priv->nick, extra, wrqu->data.length);
7043 
7044 	IPW_DEBUG_WX("SET Nickname -> %s\n", priv->nick);
7045 
7046 	return 0;
7047 }
7048 
7049 static int ipw2100_wx_get_nick(struct net_device *dev,
7050 			       struct iw_request_info *info,
7051 			       union iwreq_data *wrqu, char *extra)
7052 {
7053 	/*
7054 	 * This can be called at any time.  No action lock required
7055 	 */
7056 
7057 	struct ipw2100_priv *priv = libipw_priv(dev);
7058 
7059 	wrqu->data.length = strlen(priv->nick);
7060 	memcpy(extra, priv->nick, wrqu->data.length);
7061 	wrqu->data.flags = 1;	/* active */
7062 
7063 	IPW_DEBUG_WX("GET Nickname -> %s\n", extra);
7064 
7065 	return 0;
7066 }
7067 
7068 static int ipw2100_wx_set_rate(struct net_device *dev,
7069 			       struct iw_request_info *info,
7070 			       union iwreq_data *wrqu, char *extra)
7071 {
7072 	struct ipw2100_priv *priv = libipw_priv(dev);
7073 	u32 target_rate = wrqu->bitrate.value;
7074 	u32 rate;
7075 	int err = 0;
7076 
7077 	mutex_lock(&priv->action_mutex);
7078 	if (!(priv->status & STATUS_INITIALIZED)) {
7079 		err = -EIO;
7080 		goto done;
7081 	}
7082 
7083 	rate = 0;
7084 
7085 	if (target_rate == 1000000 ||
7086 	    (!wrqu->bitrate.fixed && target_rate > 1000000))
7087 		rate |= TX_RATE_1_MBIT;
7088 	if (target_rate == 2000000 ||
7089 	    (!wrqu->bitrate.fixed && target_rate > 2000000))
7090 		rate |= TX_RATE_2_MBIT;
7091 	if (target_rate == 5500000 ||
7092 	    (!wrqu->bitrate.fixed && target_rate > 5500000))
7093 		rate |= TX_RATE_5_5_MBIT;
7094 	if (target_rate == 11000000 ||
7095 	    (!wrqu->bitrate.fixed && target_rate > 11000000))
7096 		rate |= TX_RATE_11_MBIT;
7097 	if (rate == 0)
7098 		rate = DEFAULT_TX_RATES;
7099 
7100 	err = ipw2100_set_tx_rates(priv, rate, 0);
7101 
7102 	IPW_DEBUG_WX("SET Rate -> %04X\n", rate);
7103       done:
7104 	mutex_unlock(&priv->action_mutex);
7105 	return err;
7106 }
7107 
7108 static int ipw2100_wx_get_rate(struct net_device *dev,
7109 			       struct iw_request_info *info,
7110 			       union iwreq_data *wrqu, char *extra)
7111 {
7112 	struct ipw2100_priv *priv = libipw_priv(dev);
7113 	int val;
7114 	unsigned int len = sizeof(val);
7115 	int err = 0;
7116 
7117 	if (!(priv->status & STATUS_ENABLED) ||
7118 	    priv->status & STATUS_RF_KILL_MASK ||
7119 	    !(priv->status & STATUS_ASSOCIATED)) {
7120 		wrqu->bitrate.value = 0;
7121 		return 0;
7122 	}
7123 
7124 	mutex_lock(&priv->action_mutex);
7125 	if (!(priv->status & STATUS_INITIALIZED)) {
7126 		err = -EIO;
7127 		goto done;
7128 	}
7129 
7130 	err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7131 	if (err) {
7132 		IPW_DEBUG_WX("failed querying ordinals.\n");
7133 		goto done;
7134 	}
7135 
7136 	switch (val & TX_RATE_MASK) {
7137 	case TX_RATE_1_MBIT:
7138 		wrqu->bitrate.value = 1000000;
7139 		break;
7140 	case TX_RATE_2_MBIT:
7141 		wrqu->bitrate.value = 2000000;
7142 		break;
7143 	case TX_RATE_5_5_MBIT:
7144 		wrqu->bitrate.value = 5500000;
7145 		break;
7146 	case TX_RATE_11_MBIT:
7147 		wrqu->bitrate.value = 11000000;
7148 		break;
7149 	default:
7150 		wrqu->bitrate.value = 0;
7151 	}
7152 
7153 	IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
7154 
7155       done:
7156 	mutex_unlock(&priv->action_mutex);
7157 	return err;
7158 }
7159 
7160 static int ipw2100_wx_set_rts(struct net_device *dev,
7161 			      struct iw_request_info *info,
7162 			      union iwreq_data *wrqu, char *extra)
7163 {
7164 	struct ipw2100_priv *priv = libipw_priv(dev);
7165 	int value, err;
7166 
7167 	/* Auto RTS not yet supported */
7168 	if (wrqu->rts.fixed == 0)
7169 		return -EINVAL;
7170 
7171 	mutex_lock(&priv->action_mutex);
7172 	if (!(priv->status & STATUS_INITIALIZED)) {
7173 		err = -EIO;
7174 		goto done;
7175 	}
7176 
7177 	if (wrqu->rts.disabled)
7178 		value = priv->rts_threshold | RTS_DISABLED;
7179 	else {
7180 		if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7181 			err = -EINVAL;
7182 			goto done;
7183 		}
7184 		value = wrqu->rts.value;
7185 	}
7186 
7187 	err = ipw2100_set_rts_threshold(priv, value);
7188 
7189 	IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X\n", value);
7190       done:
7191 	mutex_unlock(&priv->action_mutex);
7192 	return err;
7193 }
7194 
7195 static int ipw2100_wx_get_rts(struct net_device *dev,
7196 			      struct iw_request_info *info,
7197 			      union iwreq_data *wrqu, char *extra)
7198 {
7199 	/*
7200 	 * This can be called at any time.  No action lock required
7201 	 */
7202 
7203 	struct ipw2100_priv *priv = libipw_priv(dev);
7204 
7205 	wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7206 	wrqu->rts.fixed = 1;	/* no auto select */
7207 
7208 	/* If RTS is set to the default value, then it is disabled */
7209 	wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7210 
7211 	IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X\n", wrqu->rts.value);
7212 
7213 	return 0;
7214 }
7215 
7216 static int ipw2100_wx_set_txpow(struct net_device *dev,
7217 				struct iw_request_info *info,
7218 				union iwreq_data *wrqu, char *extra)
7219 {
7220 	struct ipw2100_priv *priv = libipw_priv(dev);
7221 	int err = 0, value;
7222 
7223 	if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7224 		return -EINPROGRESS;
7225 
7226 	if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7227 		return 0;
7228 
7229 	if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7230 		return -EINVAL;
7231 
7232 	if (wrqu->txpower.fixed == 0)
7233 		value = IPW_TX_POWER_DEFAULT;
7234 	else {
7235 		if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7236 		    wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7237 			return -EINVAL;
7238 
7239 		value = wrqu->txpower.value;
7240 	}
7241 
7242 	mutex_lock(&priv->action_mutex);
7243 	if (!(priv->status & STATUS_INITIALIZED)) {
7244 		err = -EIO;
7245 		goto done;
7246 	}
7247 
7248 	err = ipw2100_set_tx_power(priv, value);
7249 
7250 	IPW_DEBUG_WX("SET TX Power -> %d\n", value);
7251 
7252       done:
7253 	mutex_unlock(&priv->action_mutex);
7254 	return err;
7255 }
7256 
7257 static int ipw2100_wx_get_txpow(struct net_device *dev,
7258 				struct iw_request_info *info,
7259 				union iwreq_data *wrqu, char *extra)
7260 {
7261 	/*
7262 	 * This can be called at any time.  No action lock required
7263 	 */
7264 
7265 	struct ipw2100_priv *priv = libipw_priv(dev);
7266 
7267 	wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7268 
7269 	if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7270 		wrqu->txpower.fixed = 0;
7271 		wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7272 	} else {
7273 		wrqu->txpower.fixed = 1;
7274 		wrqu->txpower.value = priv->tx_power;
7275 	}
7276 
7277 	wrqu->txpower.flags = IW_TXPOW_DBM;
7278 
7279 	IPW_DEBUG_WX("GET TX Power -> %d\n", wrqu->txpower.value);
7280 
7281 	return 0;
7282 }
7283 
7284 static int ipw2100_wx_set_frag(struct net_device *dev,
7285 			       struct iw_request_info *info,
7286 			       union iwreq_data *wrqu, char *extra)
7287 {
7288 	/*
7289 	 * This can be called at any time.  No action lock required
7290 	 */
7291 
7292 	struct ipw2100_priv *priv = libipw_priv(dev);
7293 
7294 	if (!wrqu->frag.fixed)
7295 		return -EINVAL;
7296 
7297 	if (wrqu->frag.disabled) {
7298 		priv->frag_threshold |= FRAG_DISABLED;
7299 		priv->ieee->fts = DEFAULT_FTS;
7300 	} else {
7301 		if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7302 		    wrqu->frag.value > MAX_FRAG_THRESHOLD)
7303 			return -EINVAL;
7304 
7305 		priv->ieee->fts = wrqu->frag.value & ~0x1;
7306 		priv->frag_threshold = priv->ieee->fts;
7307 	}
7308 
7309 	IPW_DEBUG_WX("SET Frag Threshold -> %d\n", priv->ieee->fts);
7310 
7311 	return 0;
7312 }
7313 
7314 static int ipw2100_wx_get_frag(struct net_device *dev,
7315 			       struct iw_request_info *info,
7316 			       union iwreq_data *wrqu, char *extra)
7317 {
7318 	/*
7319 	 * This can be called at any time.  No action lock required
7320 	 */
7321 
7322 	struct ipw2100_priv *priv = libipw_priv(dev);
7323 	wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7324 	wrqu->frag.fixed = 0;	/* no auto select */
7325 	wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7326 
7327 	IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
7328 
7329 	return 0;
7330 }
7331 
7332 static int ipw2100_wx_set_retry(struct net_device *dev,
7333 				struct iw_request_info *info,
7334 				union iwreq_data *wrqu, char *extra)
7335 {
7336 	struct ipw2100_priv *priv = libipw_priv(dev);
7337 	int err = 0;
7338 
7339 	if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7340 		return -EINVAL;
7341 
7342 	if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7343 		return 0;
7344 
7345 	mutex_lock(&priv->action_mutex);
7346 	if (!(priv->status & STATUS_INITIALIZED)) {
7347 		err = -EIO;
7348 		goto done;
7349 	}
7350 
7351 	if (wrqu->retry.flags & IW_RETRY_SHORT) {
7352 		err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7353 		IPW_DEBUG_WX("SET Short Retry Limit -> %d\n",
7354 			     wrqu->retry.value);
7355 		goto done;
7356 	}
7357 
7358 	if (wrqu->retry.flags & IW_RETRY_LONG) {
7359 		err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7360 		IPW_DEBUG_WX("SET Long Retry Limit -> %d\n",
7361 			     wrqu->retry.value);
7362 		goto done;
7363 	}
7364 
7365 	err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7366 	if (!err)
7367 		err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7368 
7369 	IPW_DEBUG_WX("SET Both Retry Limits -> %d\n", wrqu->retry.value);
7370 
7371       done:
7372 	mutex_unlock(&priv->action_mutex);
7373 	return err;
7374 }
7375 
7376 static int ipw2100_wx_get_retry(struct net_device *dev,
7377 				struct iw_request_info *info,
7378 				union iwreq_data *wrqu, char *extra)
7379 {
7380 	/*
7381 	 * This can be called at any time.  No action lock required
7382 	 */
7383 
7384 	struct ipw2100_priv *priv = libipw_priv(dev);
7385 
7386 	wrqu->retry.disabled = 0;	/* can't be disabled */
7387 
7388 	if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7389 		return -EINVAL;
7390 
7391 	if (wrqu->retry.flags & IW_RETRY_LONG) {
7392 		wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7393 		wrqu->retry.value = priv->long_retry_limit;
7394 	} else {
7395 		wrqu->retry.flags =
7396 		    (priv->short_retry_limit !=
7397 		     priv->long_retry_limit) ?
7398 		    IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7399 
7400 		wrqu->retry.value = priv->short_retry_limit;
7401 	}
7402 
7403 	IPW_DEBUG_WX("GET Retry -> %d\n", wrqu->retry.value);
7404 
7405 	return 0;
7406 }
7407 
7408 static int ipw2100_wx_set_scan(struct net_device *dev,
7409 			       struct iw_request_info *info,
7410 			       union iwreq_data *wrqu, char *extra)
7411 {
7412 	struct ipw2100_priv *priv = libipw_priv(dev);
7413 	int err = 0;
7414 
7415 	mutex_lock(&priv->action_mutex);
7416 	if (!(priv->status & STATUS_INITIALIZED)) {
7417 		err = -EIO;
7418 		goto done;
7419 	}
7420 
7421 	IPW_DEBUG_WX("Initiating scan...\n");
7422 
7423 	priv->user_requested_scan = 1;
7424 	if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7425 		IPW_DEBUG_WX("Start scan failed.\n");
7426 
7427 		/* TODO: Mark a scan as pending so when hardware initialized
7428 		 *       a scan starts */
7429 	}
7430 
7431       done:
7432 	mutex_unlock(&priv->action_mutex);
7433 	return err;
7434 }
7435 
7436 static int ipw2100_wx_get_scan(struct net_device *dev,
7437 			       struct iw_request_info *info,
7438 			       union iwreq_data *wrqu, char *extra)
7439 {
7440 	/*
7441 	 * This can be called at any time.  No action lock required
7442 	 */
7443 
7444 	struct ipw2100_priv *priv = libipw_priv(dev);
7445 	return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
7446 }
7447 
7448 /*
7449  * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7450  */
7451 static int ipw2100_wx_set_encode(struct net_device *dev,
7452 				 struct iw_request_info *info,
7453 				 union iwreq_data *wrqu, char *key)
7454 {
7455 	/*
7456 	 * No check of STATUS_INITIALIZED required
7457 	 */
7458 
7459 	struct ipw2100_priv *priv = libipw_priv(dev);
7460 	return libipw_wx_set_encode(priv->ieee, info, wrqu, key);
7461 }
7462 
7463 static int ipw2100_wx_get_encode(struct net_device *dev,
7464 				 struct iw_request_info *info,
7465 				 union iwreq_data *wrqu, char *key)
7466 {
7467 	/*
7468 	 * This can be called at any time.  No action lock required
7469 	 */
7470 
7471 	struct ipw2100_priv *priv = libipw_priv(dev);
7472 	return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
7473 }
7474 
7475 static int ipw2100_wx_set_power(struct net_device *dev,
7476 				struct iw_request_info *info,
7477 				union iwreq_data *wrqu, char *extra)
7478 {
7479 	struct ipw2100_priv *priv = libipw_priv(dev);
7480 	int err = 0;
7481 
7482 	mutex_lock(&priv->action_mutex);
7483 	if (!(priv->status & STATUS_INITIALIZED)) {
7484 		err = -EIO;
7485 		goto done;
7486 	}
7487 
7488 	if (wrqu->power.disabled) {
7489 		priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7490 		err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7491 		IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7492 		goto done;
7493 	}
7494 
7495 	switch (wrqu->power.flags & IW_POWER_MODE) {
7496 	case IW_POWER_ON:	/* If not specified */
7497 	case IW_POWER_MODE:	/* If set all mask */
7498 	case IW_POWER_ALL_R:	/* If explicitly state all */
7499 		break;
7500 	default:		/* Otherwise we don't support it */
7501 		IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7502 			     wrqu->power.flags);
7503 		err = -EOPNOTSUPP;
7504 		goto done;
7505 	}
7506 
7507 	/* If the user hasn't specified a power management mode yet, default
7508 	 * to BATTERY */
7509 	priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7510 	err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7511 
7512 	IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7513 
7514       done:
7515 	mutex_unlock(&priv->action_mutex);
7516 	return err;
7517 
7518 }
7519 
7520 static int ipw2100_wx_get_power(struct net_device *dev,
7521 				struct iw_request_info *info,
7522 				union iwreq_data *wrqu, char *extra)
7523 {
7524 	/*
7525 	 * This can be called at any time.  No action lock required
7526 	 */
7527 
7528 	struct ipw2100_priv *priv = libipw_priv(dev);
7529 
7530 	if (!(priv->power_mode & IPW_POWER_ENABLED))
7531 		wrqu->power.disabled = 1;
7532 	else {
7533 		wrqu->power.disabled = 0;
7534 		wrqu->power.flags = 0;
7535 	}
7536 
7537 	IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7538 
7539 	return 0;
7540 }
7541 
7542 /*
7543  * WE-18 WPA support
7544  */
7545 
7546 /* SIOCSIWGENIE */
7547 static int ipw2100_wx_set_genie(struct net_device *dev,
7548 				struct iw_request_info *info,
7549 				union iwreq_data *wrqu, char *extra)
7550 {
7551 
7552 	struct ipw2100_priv *priv = libipw_priv(dev);
7553 	struct libipw_device *ieee = priv->ieee;
7554 	u8 *buf;
7555 
7556 	if (!ieee->wpa_enabled)
7557 		return -EOPNOTSUPP;
7558 
7559 	if (wrqu->data.length > MAX_WPA_IE_LEN ||
7560 	    (wrqu->data.length && extra == NULL))
7561 		return -EINVAL;
7562 
7563 	if (wrqu->data.length) {
7564 		buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7565 		if (buf == NULL)
7566 			return -ENOMEM;
7567 
7568 		kfree(ieee->wpa_ie);
7569 		ieee->wpa_ie = buf;
7570 		ieee->wpa_ie_len = wrqu->data.length;
7571 	} else {
7572 		kfree(ieee->wpa_ie);
7573 		ieee->wpa_ie = NULL;
7574 		ieee->wpa_ie_len = 0;
7575 	}
7576 
7577 	ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7578 
7579 	return 0;
7580 }
7581 
7582 /* SIOCGIWGENIE */
7583 static int ipw2100_wx_get_genie(struct net_device *dev,
7584 				struct iw_request_info *info,
7585 				union iwreq_data *wrqu, char *extra)
7586 {
7587 	struct ipw2100_priv *priv = libipw_priv(dev);
7588 	struct libipw_device *ieee = priv->ieee;
7589 
7590 	if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7591 		wrqu->data.length = 0;
7592 		return 0;
7593 	}
7594 
7595 	if (wrqu->data.length < ieee->wpa_ie_len)
7596 		return -E2BIG;
7597 
7598 	wrqu->data.length = ieee->wpa_ie_len;
7599 	memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7600 
7601 	return 0;
7602 }
7603 
7604 /* SIOCSIWAUTH */
7605 static int ipw2100_wx_set_auth(struct net_device *dev,
7606 			       struct iw_request_info *info,
7607 			       union iwreq_data *wrqu, char *extra)
7608 {
7609 	struct ipw2100_priv *priv = libipw_priv(dev);
7610 	struct libipw_device *ieee = priv->ieee;
7611 	struct iw_param *param = &wrqu->param;
7612 	struct lib80211_crypt_data *crypt;
7613 	unsigned long flags;
7614 	int ret = 0;
7615 
7616 	switch (param->flags & IW_AUTH_INDEX) {
7617 	case IW_AUTH_WPA_VERSION:
7618 	case IW_AUTH_CIPHER_PAIRWISE:
7619 	case IW_AUTH_CIPHER_GROUP:
7620 	case IW_AUTH_KEY_MGMT:
7621 		/*
7622 		 * ipw2200 does not use these parameters
7623 		 */
7624 		break;
7625 
7626 	case IW_AUTH_TKIP_COUNTERMEASURES:
7627 		crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7628 		if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7629 			break;
7630 
7631 		flags = crypt->ops->get_flags(crypt->priv);
7632 
7633 		if (param->value)
7634 			flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7635 		else
7636 			flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7637 
7638 		crypt->ops->set_flags(flags, crypt->priv);
7639 
7640 		break;
7641 
7642 	case IW_AUTH_DROP_UNENCRYPTED:{
7643 			/* HACK:
7644 			 *
7645 			 * wpa_supplicant calls set_wpa_enabled when the driver
7646 			 * is loaded and unloaded, regardless of if WPA is being
7647 			 * used.  No other calls are made which can be used to
7648 			 * determine if encryption will be used or not prior to
7649 			 * association being expected.  If encryption is not being
7650 			 * used, drop_unencrypted is set to false, else true -- we
7651 			 * can use this to determine if the CAP_PRIVACY_ON bit should
7652 			 * be set.
7653 			 */
7654 			struct libipw_security sec = {
7655 				.flags = SEC_ENABLED,
7656 				.enabled = param->value,
7657 			};
7658 			priv->ieee->drop_unencrypted = param->value;
7659 			/* We only change SEC_LEVEL for open mode. Others
7660 			 * are set by ipw_wpa_set_encryption.
7661 			 */
7662 			if (!param->value) {
7663 				sec.flags |= SEC_LEVEL;
7664 				sec.level = SEC_LEVEL_0;
7665 			} else {
7666 				sec.flags |= SEC_LEVEL;
7667 				sec.level = SEC_LEVEL_1;
7668 			}
7669 			if (priv->ieee->set_security)
7670 				priv->ieee->set_security(priv->ieee->dev, &sec);
7671 			break;
7672 		}
7673 
7674 	case IW_AUTH_80211_AUTH_ALG:
7675 		ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7676 		break;
7677 
7678 	case IW_AUTH_WPA_ENABLED:
7679 		ret = ipw2100_wpa_enable(priv, param->value);
7680 		break;
7681 
7682 	case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7683 		ieee->ieee802_1x = param->value;
7684 		break;
7685 
7686 		//case IW_AUTH_ROAMING_CONTROL:
7687 	case IW_AUTH_PRIVACY_INVOKED:
7688 		ieee->privacy_invoked = param->value;
7689 		break;
7690 
7691 	default:
7692 		return -EOPNOTSUPP;
7693 	}
7694 	return ret;
7695 }
7696 
7697 /* SIOCGIWAUTH */
7698 static int ipw2100_wx_get_auth(struct net_device *dev,
7699 			       struct iw_request_info *info,
7700 			       union iwreq_data *wrqu, char *extra)
7701 {
7702 	struct ipw2100_priv *priv = libipw_priv(dev);
7703 	struct libipw_device *ieee = priv->ieee;
7704 	struct lib80211_crypt_data *crypt;
7705 	struct iw_param *param = &wrqu->param;
7706 
7707 	switch (param->flags & IW_AUTH_INDEX) {
7708 	case IW_AUTH_WPA_VERSION:
7709 	case IW_AUTH_CIPHER_PAIRWISE:
7710 	case IW_AUTH_CIPHER_GROUP:
7711 	case IW_AUTH_KEY_MGMT:
7712 		/*
7713 		 * wpa_supplicant will control these internally
7714 		 */
7715 		break;
7716 
7717 	case IW_AUTH_TKIP_COUNTERMEASURES:
7718 		crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7719 		if (!crypt || !crypt->ops->get_flags) {
7720 			IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7721 					  "crypt not set!\n");
7722 			break;
7723 		}
7724 
7725 		param->value = (crypt->ops->get_flags(crypt->priv) &
7726 				IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7727 
7728 		break;
7729 
7730 	case IW_AUTH_DROP_UNENCRYPTED:
7731 		param->value = ieee->drop_unencrypted;
7732 		break;
7733 
7734 	case IW_AUTH_80211_AUTH_ALG:
7735 		param->value = priv->ieee->sec.auth_mode;
7736 		break;
7737 
7738 	case IW_AUTH_WPA_ENABLED:
7739 		param->value = ieee->wpa_enabled;
7740 		break;
7741 
7742 	case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7743 		param->value = ieee->ieee802_1x;
7744 		break;
7745 
7746 	case IW_AUTH_ROAMING_CONTROL:
7747 	case IW_AUTH_PRIVACY_INVOKED:
7748 		param->value = ieee->privacy_invoked;
7749 		break;
7750 
7751 	default:
7752 		return -EOPNOTSUPP;
7753 	}
7754 	return 0;
7755 }
7756 
7757 /* SIOCSIWENCODEEXT */
7758 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7759 				    struct iw_request_info *info,
7760 				    union iwreq_data *wrqu, char *extra)
7761 {
7762 	struct ipw2100_priv *priv = libipw_priv(dev);
7763 	return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7764 }
7765 
7766 /* SIOCGIWENCODEEXT */
7767 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7768 				    struct iw_request_info *info,
7769 				    union iwreq_data *wrqu, char *extra)
7770 {
7771 	struct ipw2100_priv *priv = libipw_priv(dev);
7772 	return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7773 }
7774 
7775 /* SIOCSIWMLME */
7776 static int ipw2100_wx_set_mlme(struct net_device *dev,
7777 			       struct iw_request_info *info,
7778 			       union iwreq_data *wrqu, char *extra)
7779 {
7780 	struct ipw2100_priv *priv = libipw_priv(dev);
7781 	struct iw_mlme *mlme = (struct iw_mlme *)extra;
7782 
7783 	switch (mlme->cmd) {
7784 	case IW_MLME_DEAUTH:
7785 		// silently ignore
7786 		break;
7787 
7788 	case IW_MLME_DISASSOC:
7789 		ipw2100_disassociate_bssid(priv);
7790 		break;
7791 
7792 	default:
7793 		return -EOPNOTSUPP;
7794 	}
7795 	return 0;
7796 }
7797 
7798 /*
7799  *
7800  * IWPRIV handlers
7801  *
7802  */
7803 #ifdef CONFIG_IPW2100_MONITOR
7804 static int ipw2100_wx_set_promisc(struct net_device *dev,
7805 				  struct iw_request_info *info,
7806 				  union iwreq_data *wrqu, char *extra)
7807 {
7808 	struct ipw2100_priv *priv = libipw_priv(dev);
7809 	int *parms = (int *)extra;
7810 	int enable = (parms[0] > 0);
7811 	int err = 0;
7812 
7813 	mutex_lock(&priv->action_mutex);
7814 	if (!(priv->status & STATUS_INITIALIZED)) {
7815 		err = -EIO;
7816 		goto done;
7817 	}
7818 
7819 	if (enable) {
7820 		if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7821 			err = ipw2100_set_channel(priv, parms[1], 0);
7822 			goto done;
7823 		}
7824 		priv->channel = parms[1];
7825 		err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7826 	} else {
7827 		if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7828 			err = ipw2100_switch_mode(priv, priv->last_mode);
7829 	}
7830       done:
7831 	mutex_unlock(&priv->action_mutex);
7832 	return err;
7833 }
7834 
7835 static int ipw2100_wx_reset(struct net_device *dev,
7836 			    struct iw_request_info *info,
7837 			    union iwreq_data *wrqu, char *extra)
7838 {
7839 	struct ipw2100_priv *priv = libipw_priv(dev);
7840 	if (priv->status & STATUS_INITIALIZED)
7841 		schedule_reset(priv);
7842 	return 0;
7843 }
7844 
7845 #endif
7846 
7847 static int ipw2100_wx_set_powermode(struct net_device *dev,
7848 				    struct iw_request_info *info,
7849 				    union iwreq_data *wrqu, char *extra)
7850 {
7851 	struct ipw2100_priv *priv = libipw_priv(dev);
7852 	int err = 0, mode = *(int *)extra;
7853 
7854 	mutex_lock(&priv->action_mutex);
7855 	if (!(priv->status & STATUS_INITIALIZED)) {
7856 		err = -EIO;
7857 		goto done;
7858 	}
7859 
7860 	if ((mode < 0) || (mode > POWER_MODES))
7861 		mode = IPW_POWER_AUTO;
7862 
7863 	if (IPW_POWER_LEVEL(priv->power_mode) != mode)
7864 		err = ipw2100_set_power_mode(priv, mode);
7865       done:
7866 	mutex_unlock(&priv->action_mutex);
7867 	return err;
7868 }
7869 
7870 #define MAX_POWER_STRING 80
7871 static int ipw2100_wx_get_powermode(struct net_device *dev,
7872 				    struct iw_request_info *info,
7873 				    union iwreq_data *wrqu, char *extra)
7874 {
7875 	/*
7876 	 * This can be called at any time.  No action lock required
7877 	 */
7878 
7879 	struct ipw2100_priv *priv = libipw_priv(dev);
7880 	int level = IPW_POWER_LEVEL(priv->power_mode);
7881 	s32 timeout, period;
7882 
7883 	if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7884 		snprintf(extra, MAX_POWER_STRING,
7885 			 "Power save level: %d (Off)", level);
7886 	} else {
7887 		switch (level) {
7888 		case IPW_POWER_MODE_CAM:
7889 			snprintf(extra, MAX_POWER_STRING,
7890 				 "Power save level: %d (None)", level);
7891 			break;
7892 		case IPW_POWER_AUTO:
7893 			snprintf(extra, MAX_POWER_STRING,
7894 				 "Power save level: %d (Auto)", level);
7895 			break;
7896 		default:
7897 			timeout = timeout_duration[level - 1] / 1000;
7898 			period = period_duration[level - 1] / 1000;
7899 			snprintf(extra, MAX_POWER_STRING,
7900 				 "Power save level: %d "
7901 				 "(Timeout %dms, Period %dms)",
7902 				 level, timeout, period);
7903 		}
7904 	}
7905 
7906 	wrqu->data.length = strlen(extra) + 1;
7907 
7908 	return 0;
7909 }
7910 
7911 static int ipw2100_wx_set_preamble(struct net_device *dev,
7912 				   struct iw_request_info *info,
7913 				   union iwreq_data *wrqu, char *extra)
7914 {
7915 	struct ipw2100_priv *priv = libipw_priv(dev);
7916 	int err, mode = *(int *)extra;
7917 
7918 	mutex_lock(&priv->action_mutex);
7919 	if (!(priv->status & STATUS_INITIALIZED)) {
7920 		err = -EIO;
7921 		goto done;
7922 	}
7923 
7924 	if (mode == 1)
7925 		priv->config |= CFG_LONG_PREAMBLE;
7926 	else if (mode == 0)
7927 		priv->config &= ~CFG_LONG_PREAMBLE;
7928 	else {
7929 		err = -EINVAL;
7930 		goto done;
7931 	}
7932 
7933 	err = ipw2100_system_config(priv, 0);
7934 
7935       done:
7936 	mutex_unlock(&priv->action_mutex);
7937 	return err;
7938 }
7939 
7940 static int ipw2100_wx_get_preamble(struct net_device *dev,
7941 				   struct iw_request_info *info,
7942 				   union iwreq_data *wrqu, char *extra)
7943 {
7944 	/*
7945 	 * This can be called at any time.  No action lock required
7946 	 */
7947 
7948 	struct ipw2100_priv *priv = libipw_priv(dev);
7949 
7950 	if (priv->config & CFG_LONG_PREAMBLE)
7951 		snprintf(wrqu->name, IFNAMSIZ, "long (1)");
7952 	else
7953 		snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
7954 
7955 	return 0;
7956 }
7957 
7958 #ifdef CONFIG_IPW2100_MONITOR
7959 static int ipw2100_wx_set_crc_check(struct net_device *dev,
7960 				    struct iw_request_info *info,
7961 				    union iwreq_data *wrqu, char *extra)
7962 {
7963 	struct ipw2100_priv *priv = libipw_priv(dev);
7964 	int err, mode = *(int *)extra;
7965 
7966 	mutex_lock(&priv->action_mutex);
7967 	if (!(priv->status & STATUS_INITIALIZED)) {
7968 		err = -EIO;
7969 		goto done;
7970 	}
7971 
7972 	if (mode == 1)
7973 		priv->config |= CFG_CRC_CHECK;
7974 	else if (mode == 0)
7975 		priv->config &= ~CFG_CRC_CHECK;
7976 	else {
7977 		err = -EINVAL;
7978 		goto done;
7979 	}
7980 	err = 0;
7981 
7982       done:
7983 	mutex_unlock(&priv->action_mutex);
7984 	return err;
7985 }
7986 
7987 static int ipw2100_wx_get_crc_check(struct net_device *dev,
7988 				    struct iw_request_info *info,
7989 				    union iwreq_data *wrqu, char *extra)
7990 {
7991 	/*
7992 	 * This can be called at any time.  No action lock required
7993 	 */
7994 
7995 	struct ipw2100_priv *priv = libipw_priv(dev);
7996 
7997 	if (priv->config & CFG_CRC_CHECK)
7998 		snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
7999 	else
8000 		snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8001 
8002 	return 0;
8003 }
8004 #endif				/* CONFIG_IPW2100_MONITOR */
8005 
8006 static iw_handler ipw2100_wx_handlers[] = {
8007 	IW_HANDLER(SIOCGIWNAME, ipw2100_wx_get_name),
8008 	IW_HANDLER(SIOCSIWFREQ, ipw2100_wx_set_freq),
8009 	IW_HANDLER(SIOCGIWFREQ, ipw2100_wx_get_freq),
8010 	IW_HANDLER(SIOCSIWMODE, ipw2100_wx_set_mode),
8011 	IW_HANDLER(SIOCGIWMODE, ipw2100_wx_get_mode),
8012 	IW_HANDLER(SIOCGIWRANGE, ipw2100_wx_get_range),
8013 	IW_HANDLER(SIOCSIWAP, ipw2100_wx_set_wap),
8014 	IW_HANDLER(SIOCGIWAP, ipw2100_wx_get_wap),
8015 	IW_HANDLER(SIOCSIWMLME, ipw2100_wx_set_mlme),
8016 	IW_HANDLER(SIOCSIWSCAN, ipw2100_wx_set_scan),
8017 	IW_HANDLER(SIOCGIWSCAN, ipw2100_wx_get_scan),
8018 	IW_HANDLER(SIOCSIWESSID, ipw2100_wx_set_essid),
8019 	IW_HANDLER(SIOCGIWESSID, ipw2100_wx_get_essid),
8020 	IW_HANDLER(SIOCSIWNICKN, ipw2100_wx_set_nick),
8021 	IW_HANDLER(SIOCGIWNICKN, ipw2100_wx_get_nick),
8022 	IW_HANDLER(SIOCSIWRATE, ipw2100_wx_set_rate),
8023 	IW_HANDLER(SIOCGIWRATE, ipw2100_wx_get_rate),
8024 	IW_HANDLER(SIOCSIWRTS, ipw2100_wx_set_rts),
8025 	IW_HANDLER(SIOCGIWRTS, ipw2100_wx_get_rts),
8026 	IW_HANDLER(SIOCSIWFRAG, ipw2100_wx_set_frag),
8027 	IW_HANDLER(SIOCGIWFRAG, ipw2100_wx_get_frag),
8028 	IW_HANDLER(SIOCSIWTXPOW, ipw2100_wx_set_txpow),
8029 	IW_HANDLER(SIOCGIWTXPOW, ipw2100_wx_get_txpow),
8030 	IW_HANDLER(SIOCSIWRETRY, ipw2100_wx_set_retry),
8031 	IW_HANDLER(SIOCGIWRETRY, ipw2100_wx_get_retry),
8032 	IW_HANDLER(SIOCSIWENCODE, ipw2100_wx_set_encode),
8033 	IW_HANDLER(SIOCGIWENCODE, ipw2100_wx_get_encode),
8034 	IW_HANDLER(SIOCSIWPOWER, ipw2100_wx_set_power),
8035 	IW_HANDLER(SIOCGIWPOWER, ipw2100_wx_get_power),
8036 	IW_HANDLER(SIOCSIWGENIE, ipw2100_wx_set_genie),
8037 	IW_HANDLER(SIOCGIWGENIE, ipw2100_wx_get_genie),
8038 	IW_HANDLER(SIOCSIWAUTH, ipw2100_wx_set_auth),
8039 	IW_HANDLER(SIOCGIWAUTH, ipw2100_wx_get_auth),
8040 	IW_HANDLER(SIOCSIWENCODEEXT, ipw2100_wx_set_encodeext),
8041 	IW_HANDLER(SIOCGIWENCODEEXT, ipw2100_wx_get_encodeext),
8042 };
8043 
8044 #define IPW2100_PRIV_SET_MONITOR	SIOCIWFIRSTPRIV
8045 #define IPW2100_PRIV_RESET		SIOCIWFIRSTPRIV+1
8046 #define IPW2100_PRIV_SET_POWER		SIOCIWFIRSTPRIV+2
8047 #define IPW2100_PRIV_GET_POWER		SIOCIWFIRSTPRIV+3
8048 #define IPW2100_PRIV_SET_LONGPREAMBLE	SIOCIWFIRSTPRIV+4
8049 #define IPW2100_PRIV_GET_LONGPREAMBLE	SIOCIWFIRSTPRIV+5
8050 #define IPW2100_PRIV_SET_CRC_CHECK	SIOCIWFIRSTPRIV+6
8051 #define IPW2100_PRIV_GET_CRC_CHECK	SIOCIWFIRSTPRIV+7
8052 
8053 static const struct iw_priv_args ipw2100_private_args[] = {
8054 
8055 #ifdef CONFIG_IPW2100_MONITOR
8056 	{
8057 	 IPW2100_PRIV_SET_MONITOR,
8058 	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8059 	{
8060 	 IPW2100_PRIV_RESET,
8061 	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8062 #endif				/* CONFIG_IPW2100_MONITOR */
8063 
8064 	{
8065 	 IPW2100_PRIV_SET_POWER,
8066 	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8067 	{
8068 	 IPW2100_PRIV_GET_POWER,
8069 	 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8070 	 "get_power"},
8071 	{
8072 	 IPW2100_PRIV_SET_LONGPREAMBLE,
8073 	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8074 	{
8075 	 IPW2100_PRIV_GET_LONGPREAMBLE,
8076 	 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8077 #ifdef CONFIG_IPW2100_MONITOR
8078 	{
8079 	 IPW2100_PRIV_SET_CRC_CHECK,
8080 	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8081 	{
8082 	 IPW2100_PRIV_GET_CRC_CHECK,
8083 	 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8084 #endif				/* CONFIG_IPW2100_MONITOR */
8085 };
8086 
8087 static iw_handler ipw2100_private_handler[] = {
8088 #ifdef CONFIG_IPW2100_MONITOR
8089 	ipw2100_wx_set_promisc,
8090 	ipw2100_wx_reset,
8091 #else				/* CONFIG_IPW2100_MONITOR */
8092 	NULL,
8093 	NULL,
8094 #endif				/* CONFIG_IPW2100_MONITOR */
8095 	ipw2100_wx_set_powermode,
8096 	ipw2100_wx_get_powermode,
8097 	ipw2100_wx_set_preamble,
8098 	ipw2100_wx_get_preamble,
8099 #ifdef CONFIG_IPW2100_MONITOR
8100 	ipw2100_wx_set_crc_check,
8101 	ipw2100_wx_get_crc_check,
8102 #else				/* CONFIG_IPW2100_MONITOR */
8103 	NULL,
8104 	NULL,
8105 #endif				/* CONFIG_IPW2100_MONITOR */
8106 };
8107 
8108 /*
8109  * Get wireless statistics.
8110  * Called by /proc/net/wireless
8111  * Also called by SIOCGIWSTATS
8112  */
8113 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8114 {
8115 	enum {
8116 		POOR = 30,
8117 		FAIR = 60,
8118 		GOOD = 80,
8119 		VERY_GOOD = 90,
8120 		EXCELLENT = 95,
8121 		PERFECT = 100
8122 	};
8123 	int rssi_qual;
8124 	int tx_qual;
8125 	int beacon_qual;
8126 	int quality;
8127 
8128 	struct ipw2100_priv *priv = libipw_priv(dev);
8129 	struct iw_statistics *wstats;
8130 	u32 rssi, tx_retries, missed_beacons, tx_failures;
8131 	u32 ord_len = sizeof(u32);
8132 
8133 	if (!priv)
8134 		return (struct iw_statistics *)NULL;
8135 
8136 	wstats = &priv->wstats;
8137 
8138 	/* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8139 	 * ipw2100_wx_wireless_stats seems to be called before fw is
8140 	 * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
8141 	 * and associated; if not associcated, the values are all meaningless
8142 	 * anyway, so set them all to NULL and INVALID */
8143 	if (!(priv->status & STATUS_ASSOCIATED)) {
8144 		wstats->miss.beacon = 0;
8145 		wstats->discard.retries = 0;
8146 		wstats->qual.qual = 0;
8147 		wstats->qual.level = 0;
8148 		wstats->qual.noise = 0;
8149 		wstats->qual.updated = 7;
8150 		wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8151 		    IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8152 		return wstats;
8153 	}
8154 
8155 	if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8156 				&missed_beacons, &ord_len))
8157 		goto fail_get_ordinal;
8158 
8159 	/* If we don't have a connection the quality and level is 0 */
8160 	if (!(priv->status & STATUS_ASSOCIATED)) {
8161 		wstats->qual.qual = 0;
8162 		wstats->qual.level = 0;
8163 	} else {
8164 		if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8165 					&rssi, &ord_len))
8166 			goto fail_get_ordinal;
8167 		wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8168 		if (rssi < 10)
8169 			rssi_qual = rssi * POOR / 10;
8170 		else if (rssi < 15)
8171 			rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8172 		else if (rssi < 20)
8173 			rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8174 		else if (rssi < 30)
8175 			rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8176 			    10 + GOOD;
8177 		else
8178 			rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8179 			    10 + VERY_GOOD;
8180 
8181 		if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8182 					&tx_retries, &ord_len))
8183 			goto fail_get_ordinal;
8184 
8185 		if (tx_retries > 75)
8186 			tx_qual = (90 - tx_retries) * POOR / 15;
8187 		else if (tx_retries > 70)
8188 			tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8189 		else if (tx_retries > 65)
8190 			tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8191 		else if (tx_retries > 50)
8192 			tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8193 			    15 + GOOD;
8194 		else
8195 			tx_qual = (50 - tx_retries) *
8196 			    (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8197 
8198 		if (missed_beacons > 50)
8199 			beacon_qual = (60 - missed_beacons) * POOR / 10;
8200 		else if (missed_beacons > 40)
8201 			beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8202 			    10 + POOR;
8203 		else if (missed_beacons > 32)
8204 			beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8205 			    18 + FAIR;
8206 		else if (missed_beacons > 20)
8207 			beacon_qual = (32 - missed_beacons) *
8208 			    (VERY_GOOD - GOOD) / 20 + GOOD;
8209 		else
8210 			beacon_qual = (20 - missed_beacons) *
8211 			    (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8212 
8213 		quality = min(tx_qual, rssi_qual);
8214 		quality = min(beacon_qual, quality);
8215 
8216 #ifdef CONFIG_IPW2100_DEBUG
8217 		if (beacon_qual == quality)
8218 			IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8219 		else if (tx_qual == quality)
8220 			IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8221 		else if (quality != 100)
8222 			IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8223 		else
8224 			IPW_DEBUG_WX("Quality not clamped.\n");
8225 #endif
8226 
8227 		wstats->qual.qual = quality;
8228 		wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8229 	}
8230 
8231 	wstats->qual.noise = 0;
8232 	wstats->qual.updated = 7;
8233 	wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8234 
8235 	/* FIXME: this is percent and not a # */
8236 	wstats->miss.beacon = missed_beacons;
8237 
8238 	if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8239 				&tx_failures, &ord_len))
8240 		goto fail_get_ordinal;
8241 	wstats->discard.retries = tx_failures;
8242 
8243 	return wstats;
8244 
8245       fail_get_ordinal:
8246 	IPW_DEBUG_WX("failed querying ordinals.\n");
8247 
8248 	return (struct iw_statistics *)NULL;
8249 }
8250 
8251 static const struct iw_handler_def ipw2100_wx_handler_def = {
8252 	.standard = ipw2100_wx_handlers,
8253 	.num_standard = ARRAY_SIZE(ipw2100_wx_handlers),
8254 	.num_private = ARRAY_SIZE(ipw2100_private_handler),
8255 	.num_private_args = ARRAY_SIZE(ipw2100_private_args),
8256 	.private = (iw_handler *) ipw2100_private_handler,
8257 	.private_args = (struct iw_priv_args *)ipw2100_private_args,
8258 	.get_wireless_stats = ipw2100_wx_wireless_stats,
8259 };
8260 
8261 static void ipw2100_wx_event_work(struct work_struct *work)
8262 {
8263 	struct ipw2100_priv *priv =
8264 		container_of(work, struct ipw2100_priv, wx_event_work.work);
8265 	union iwreq_data wrqu;
8266 	unsigned int len = ETH_ALEN;
8267 
8268 	if (priv->status & STATUS_STOPPING)
8269 		return;
8270 
8271 	mutex_lock(&priv->action_mutex);
8272 
8273 	IPW_DEBUG_WX("enter\n");
8274 
8275 	mutex_unlock(&priv->action_mutex);
8276 
8277 	wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8278 
8279 	/* Fetch BSSID from the hardware */
8280 	if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8281 	    priv->status & STATUS_RF_KILL_MASK ||
8282 	    ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8283 				&priv->bssid, &len)) {
8284 		eth_zero_addr(wrqu.ap_addr.sa_data);
8285 	} else {
8286 		/* We now have the BSSID, so can finish setting to the full
8287 		 * associated state */
8288 		memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8289 		memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8290 		priv->status &= ~STATUS_ASSOCIATING;
8291 		priv->status |= STATUS_ASSOCIATED;
8292 		netif_carrier_on(priv->net_dev);
8293 		netif_wake_queue(priv->net_dev);
8294 	}
8295 
8296 	if (!(priv->status & STATUS_ASSOCIATED)) {
8297 		IPW_DEBUG_WX("Configuring ESSID\n");
8298 		mutex_lock(&priv->action_mutex);
8299 		/* This is a disassociation event, so kick the firmware to
8300 		 * look for another AP */
8301 		if (priv->config & CFG_STATIC_ESSID)
8302 			ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8303 					  0);
8304 		else
8305 			ipw2100_set_essid(priv, NULL, 0, 0);
8306 		mutex_unlock(&priv->action_mutex);
8307 	}
8308 
8309 	wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8310 }
8311 
8312 #define IPW2100_FW_MAJOR_VERSION 1
8313 #define IPW2100_FW_MINOR_VERSION 3
8314 
8315 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8316 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8317 
8318 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8319                              IPW2100_FW_MAJOR_VERSION)
8320 
8321 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8322 "." __stringify(IPW2100_FW_MINOR_VERSION)
8323 
8324 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8325 
8326 /*
8327 
8328 BINARY FIRMWARE HEADER FORMAT
8329 
8330 offset      length   desc
8331 0           2        version
8332 2           2        mode == 0:BSS,1:IBSS,2:MONITOR
8333 4           4        fw_len
8334 8           4        uc_len
8335 C           fw_len   firmware data
8336 12 + fw_len uc_len   microcode data
8337 
8338 */
8339 
8340 struct ipw2100_fw_header {
8341 	short version;
8342 	short mode;
8343 	unsigned int fw_size;
8344 	unsigned int uc_size;
8345 } __packed;
8346 
8347 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8348 {
8349 	struct ipw2100_fw_header *h =
8350 	    (struct ipw2100_fw_header *)fw->fw_entry->data;
8351 
8352 	if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8353 		printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8354 		       "(detected version id of %u). "
8355 		       "See Documentation/networking/device_drivers/intel/ipw2100.txt\n",
8356 		       h->version);
8357 		return 1;
8358 	}
8359 
8360 	fw->version = h->version;
8361 	fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8362 	fw->fw.size = h->fw_size;
8363 	fw->uc.data = fw->fw.data + h->fw_size;
8364 	fw->uc.size = h->uc_size;
8365 
8366 	return 0;
8367 }
8368 
8369 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8370 				struct ipw2100_fw *fw)
8371 {
8372 	char *fw_name;
8373 	int rc;
8374 
8375 	IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8376 		       priv->net_dev->name);
8377 
8378 	switch (priv->ieee->iw_mode) {
8379 	case IW_MODE_ADHOC:
8380 		fw_name = IPW2100_FW_NAME("-i");
8381 		break;
8382 #ifdef CONFIG_IPW2100_MONITOR
8383 	case IW_MODE_MONITOR:
8384 		fw_name = IPW2100_FW_NAME("-p");
8385 		break;
8386 #endif
8387 	case IW_MODE_INFRA:
8388 	default:
8389 		fw_name = IPW2100_FW_NAME("");
8390 		break;
8391 	}
8392 
8393 	rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8394 
8395 	if (rc < 0) {
8396 		printk(KERN_ERR DRV_NAME ": "
8397 		       "%s: Firmware '%s' not available or load failed.\n",
8398 		       priv->net_dev->name, fw_name);
8399 		return rc;
8400 	}
8401 	IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8402 		       fw->fw_entry->size);
8403 
8404 	ipw2100_mod_firmware_load(fw);
8405 
8406 	return 0;
8407 }
8408 
8409 MODULE_FIRMWARE(IPW2100_FW_NAME("-i"));
8410 #ifdef CONFIG_IPW2100_MONITOR
8411 MODULE_FIRMWARE(IPW2100_FW_NAME("-p"));
8412 #endif
8413 MODULE_FIRMWARE(IPW2100_FW_NAME(""));
8414 
8415 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8416 				     struct ipw2100_fw *fw)
8417 {
8418 	fw->version = 0;
8419 	release_firmware(fw->fw_entry);
8420 	fw->fw_entry = NULL;
8421 }
8422 
8423 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8424 				 size_t max)
8425 {
8426 	char ver[MAX_FW_VERSION_LEN];
8427 	u32 len = MAX_FW_VERSION_LEN;
8428 	u32 tmp;
8429 	int i;
8430 	/* firmware version is an ascii string (max len of 14) */
8431 	if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8432 		return -EIO;
8433 	tmp = max;
8434 	if (len >= max)
8435 		len = max - 1;
8436 	for (i = 0; i < len; i++)
8437 		buf[i] = ver[i];
8438 	buf[i] = '\0';
8439 	return tmp;
8440 }
8441 
8442 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8443 				    size_t max)
8444 {
8445 	u32 ver;
8446 	u32 len = sizeof(ver);
8447 	/* microcode version is a 32 bit integer */
8448 	if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8449 		return -EIO;
8450 	return snprintf(buf, max, "%08X", ver);
8451 }
8452 
8453 /*
8454  * On exit, the firmware will have been freed from the fw list
8455  */
8456 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8457 {
8458 	/* firmware is constructed of N contiguous entries, each entry is
8459 	 * structured as:
8460 	 *
8461 	 * offset    sie         desc
8462 	 * 0         4           address to write to
8463 	 * 4         2           length of data run
8464 	 * 6         length      data
8465 	 */
8466 	unsigned int addr;
8467 	unsigned short len;
8468 
8469 	const unsigned char *firmware_data = fw->fw.data;
8470 	unsigned int firmware_data_left = fw->fw.size;
8471 
8472 	while (firmware_data_left > 0) {
8473 		addr = *(u32 *) (firmware_data);
8474 		firmware_data += 4;
8475 		firmware_data_left -= 4;
8476 
8477 		len = *(u16 *) (firmware_data);
8478 		firmware_data += 2;
8479 		firmware_data_left -= 2;
8480 
8481 		if (len > 32) {
8482 			printk(KERN_ERR DRV_NAME ": "
8483 			       "Invalid firmware run-length of %d bytes\n",
8484 			       len);
8485 			return -EINVAL;
8486 		}
8487 
8488 		write_nic_memory(priv->net_dev, addr, len, firmware_data);
8489 		firmware_data += len;
8490 		firmware_data_left -= len;
8491 	}
8492 
8493 	return 0;
8494 }
8495 
8496 struct symbol_alive_response {
8497 	u8 cmd_id;
8498 	u8 seq_num;
8499 	u8 ucode_rev;
8500 	u8 eeprom_valid;
8501 	u16 valid_flags;
8502 	u8 IEEE_addr[6];
8503 	u16 flags;
8504 	u16 pcb_rev;
8505 	u16 clock_settle_time;	// 1us LSB
8506 	u16 powerup_settle_time;	// 1us LSB
8507 	u16 hop_settle_time;	// 1us LSB
8508 	u8 date[3];		// month, day, year
8509 	u8 time[2];		// hours, minutes
8510 	u8 ucode_valid;
8511 };
8512 
8513 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8514 				  struct ipw2100_fw *fw)
8515 {
8516 	struct net_device *dev = priv->net_dev;
8517 	const unsigned char *microcode_data = fw->uc.data;
8518 	unsigned int microcode_data_left = fw->uc.size;
8519 	void __iomem *reg = priv->ioaddr;
8520 
8521 	struct symbol_alive_response response;
8522 	int i, j;
8523 	u8 data;
8524 
8525 	/* Symbol control */
8526 	write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8527 	readl(reg);
8528 	write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8529 	readl(reg);
8530 
8531 	/* HW config */
8532 	write_nic_byte(dev, 0x210014, 0x72);	/* fifo width =16 */
8533 	readl(reg);
8534 	write_nic_byte(dev, 0x210014, 0x72);	/* fifo width =16 */
8535 	readl(reg);
8536 
8537 	/* EN_CS_ACCESS bit to reset control store pointer */
8538 	write_nic_byte(dev, 0x210000, 0x40);
8539 	readl(reg);
8540 	write_nic_byte(dev, 0x210000, 0x0);
8541 	readl(reg);
8542 	write_nic_byte(dev, 0x210000, 0x40);
8543 	readl(reg);
8544 
8545 	/* copy microcode from buffer into Symbol */
8546 
8547 	while (microcode_data_left > 0) {
8548 		write_nic_byte(dev, 0x210010, *microcode_data++);
8549 		write_nic_byte(dev, 0x210010, *microcode_data++);
8550 		microcode_data_left -= 2;
8551 	}
8552 
8553 	/* EN_CS_ACCESS bit to reset the control store pointer */
8554 	write_nic_byte(dev, 0x210000, 0x0);
8555 	readl(reg);
8556 
8557 	/* Enable System (Reg 0)
8558 	 * first enable causes garbage in RX FIFO */
8559 	write_nic_byte(dev, 0x210000, 0x0);
8560 	readl(reg);
8561 	write_nic_byte(dev, 0x210000, 0x80);
8562 	readl(reg);
8563 
8564 	/* Reset External Baseband Reg */
8565 	write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8566 	readl(reg);
8567 	write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8568 	readl(reg);
8569 
8570 	/* HW Config (Reg 5) */
8571 	write_nic_byte(dev, 0x210014, 0x72);	// fifo width =16
8572 	readl(reg);
8573 	write_nic_byte(dev, 0x210014, 0x72);	// fifo width =16
8574 	readl(reg);
8575 
8576 	/* Enable System (Reg 0)
8577 	 * second enable should be OK */
8578 	write_nic_byte(dev, 0x210000, 0x00);	// clear enable system
8579 	readl(reg);
8580 	write_nic_byte(dev, 0x210000, 0x80);	// set enable system
8581 
8582 	/* check Symbol is enabled - upped this from 5 as it wasn't always
8583 	 * catching the update */
8584 	for (i = 0; i < 10; i++) {
8585 		udelay(10);
8586 
8587 		/* check Dino is enabled bit */
8588 		read_nic_byte(dev, 0x210000, &data);
8589 		if (data & 0x1)
8590 			break;
8591 	}
8592 
8593 	if (i == 10) {
8594 		printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8595 		       dev->name);
8596 		return -EIO;
8597 	}
8598 
8599 	/* Get Symbol alive response */
8600 	for (i = 0; i < 30; i++) {
8601 		/* Read alive response structure */
8602 		for (j = 0;
8603 		     j < (sizeof(struct symbol_alive_response) >> 1); j++)
8604 			read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8605 
8606 		if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8607 			break;
8608 		udelay(10);
8609 	}
8610 
8611 	if (i == 30) {
8612 		printk(KERN_ERR DRV_NAME
8613 		       ": %s: No response from Symbol - hw not alive\n",
8614 		       dev->name);
8615 		printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8616 		return -EIO;
8617 	}
8618 
8619 	return 0;
8620 }
8621