1 // SPDX-License-Identifier: GPL-2.0-only
2 /******************************************************************************
3 
4   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
5 
6 
7   Contact Information:
8   Intel Linux Wireless <ilw@linux.intel.com>
9   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
10 
11   Portions of this file are based on the sample_* files provided by Wireless
12   Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
13   <jt@hpl.hp.com>
14 
15   Portions of this file are based on the Host AP project,
16   Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
17     <j@w1.fi>
18   Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
19 
20   Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
21   ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
22   available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
23 
24 ******************************************************************************/
25 /*
26 
27  Initial driver on which this is based was developed by Janusz Gorycki,
28  Maciej Urbaniak, and Maciej Sosnowski.
29 
30  Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
31 
32 Theory of Operation
33 
34 Tx - Commands and Data
35 
36 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
37 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
38 sent to the firmware as well as the length of the data.
39 
40 The host writes to the TBD queue at the WRITE index.  The WRITE index points
41 to the _next_ packet to be written and is advanced when after the TBD has been
42 filled.
43 
44 The firmware pulls from the TBD queue at the READ index.  The READ index points
45 to the currently being read entry, and is advanced once the firmware is
46 done with a packet.
47 
48 When data is sent to the firmware, the first TBD is used to indicate to the
49 firmware if a Command or Data is being sent.  If it is Command, all of the
50 command information is contained within the physical address referred to by the
51 TBD.  If it is Data, the first TBD indicates the type of data packet, number
52 of fragments, etc.  The next TBD then refers to the actual packet location.
53 
54 The Tx flow cycle is as follows:
55 
56 1) ipw2100_tx() is called by kernel with SKB to transmit
57 2) Packet is move from the tx_free_list and appended to the transmit pending
58    list (tx_pend_list)
59 3) work is scheduled to move pending packets into the shared circular queue.
60 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
61    to a physical address.  That address is entered into a TBD.  Two TBDs are
62    filled out.  The first indicating a data packet, the second referring to the
63    actual payload data.
64 5) the packet is removed from tx_pend_list and placed on the end of the
65    firmware pending list (fw_pend_list)
66 6) firmware is notified that the WRITE index has
67 7) Once the firmware has processed the TBD, INTA is triggered.
68 8) For each Tx interrupt received from the firmware, the READ index is checked
69    to see which TBDs are done being processed.
70 9) For each TBD that has been processed, the ISR pulls the oldest packet
71    from the fw_pend_list.
72 10)The packet structure contained in the fw_pend_list is then used
73    to unmap the DMA address and to free the SKB originally passed to the driver
74    from the kernel.
75 11)The packet structure is placed onto the tx_free_list
76 
77 The above steps are the same for commands, only the msg_free_list/msg_pend_list
78 are used instead of tx_free_list/tx_pend_list
79 
80 ...
81 
82 Critical Sections / Locking :
83 
84 There are two locks utilized.  The first is the low level lock (priv->low_lock)
85 that protects the following:
86 
87 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
88 
89   tx_free_list : Holds pre-allocated Tx buffers.
90     TAIL modified in __ipw2100_tx_process()
91     HEAD modified in ipw2100_tx()
92 
93   tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
94     TAIL modified ipw2100_tx()
95     HEAD modified by ipw2100_tx_send_data()
96 
97   msg_free_list : Holds pre-allocated Msg (Command) buffers
98     TAIL modified in __ipw2100_tx_process()
99     HEAD modified in ipw2100_hw_send_command()
100 
101   msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
102     TAIL modified in ipw2100_hw_send_command()
103     HEAD modified in ipw2100_tx_send_commands()
104 
105   The flow of data on the TX side is as follows:
106 
107   MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
108   TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
109 
110   The methods that work on the TBD ring are protected via priv->low_lock.
111 
112 - The internal data state of the device itself
113 - Access to the firmware read/write indexes for the BD queues
114   and associated logic
115 
116 All external entry functions are locked with the priv->action_lock to ensure
117 that only one external action is invoked at a time.
118 
119 
120 */
121 
122 #include <linux/compiler.h>
123 #include <linux/errno.h>
124 #include <linux/if_arp.h>
125 #include <linux/in6.h>
126 #include <linux/in.h>
127 #include <linux/ip.h>
128 #include <linux/kernel.h>
129 #include <linux/kmod.h>
130 #include <linux/module.h>
131 #include <linux/netdevice.h>
132 #include <linux/ethtool.h>
133 #include <linux/pci.h>
134 #include <linux/dma-mapping.h>
135 #include <linux/proc_fs.h>
136 #include <linux/skbuff.h>
137 #include <linux/uaccess.h>
138 #include <asm/io.h>
139 #include <linux/fs.h>
140 #include <linux/mm.h>
141 #include <linux/slab.h>
142 #include <linux/unistd.h>
143 #include <linux/stringify.h>
144 #include <linux/tcp.h>
145 #include <linux/types.h>
146 #include <linux/time.h>
147 #include <linux/firmware.h>
148 #include <linux/acpi.h>
149 #include <linux/ctype.h>
150 #include <linux/pm_qos.h>
151 
152 #include <net/lib80211.h>
153 
154 #include "ipw2100.h"
155 #include "ipw.h"
156 
157 #define IPW2100_VERSION "git-1.2.2"
158 
159 #define DRV_NAME	"ipw2100"
160 #define DRV_VERSION	IPW2100_VERSION
161 #define DRV_DESCRIPTION	"Intel(R) PRO/Wireless 2100 Network Driver"
162 #define DRV_COPYRIGHT	"Copyright(c) 2003-2006 Intel Corporation"
163 
164 static struct pm_qos_request ipw2100_pm_qos_req;
165 
166 /* Debugging stuff */
167 #ifdef CONFIG_IPW2100_DEBUG
168 #define IPW2100_RX_DEBUG	/* Reception debugging */
169 #endif
170 
171 MODULE_DESCRIPTION(DRV_DESCRIPTION);
172 MODULE_VERSION(DRV_VERSION);
173 MODULE_AUTHOR(DRV_COPYRIGHT);
174 MODULE_LICENSE("GPL");
175 
176 static int debug = 0;
177 static int network_mode = 0;
178 static int channel = 0;
179 static int associate = 0;
180 static int disable = 0;
181 #ifdef CONFIG_PM
182 static struct ipw2100_fw ipw2100_firmware;
183 #endif
184 
185 #include <linux/moduleparam.h>
186 module_param(debug, int, 0444);
187 module_param_named(mode, network_mode, int, 0444);
188 module_param(channel, int, 0444);
189 module_param(associate, int, 0444);
190 module_param(disable, int, 0444);
191 
192 MODULE_PARM_DESC(debug, "debug level");
193 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
194 MODULE_PARM_DESC(channel, "channel");
195 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
196 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
197 
198 static u32 ipw2100_debug_level = IPW_DL_NONE;
199 
200 #ifdef CONFIG_IPW2100_DEBUG
201 #define IPW_DEBUG(level, message...) \
202 do { \
203 	if (ipw2100_debug_level & (level)) { \
204 		printk(KERN_DEBUG "ipw2100: %c %s ", \
205                        in_interrupt() ? 'I' : 'U',  __func__); \
206 		printk(message); \
207 	} \
208 } while (0)
209 #else
210 #define IPW_DEBUG(level, message...) do {} while (0)
211 #endif				/* CONFIG_IPW2100_DEBUG */
212 
213 #ifdef CONFIG_IPW2100_DEBUG
214 static const char *command_types[] = {
215 	"undefined",
216 	"unused",		/* HOST_ATTENTION */
217 	"HOST_COMPLETE",
218 	"unused",		/* SLEEP */
219 	"unused",		/* HOST_POWER_DOWN */
220 	"unused",
221 	"SYSTEM_CONFIG",
222 	"unused",		/* SET_IMR */
223 	"SSID",
224 	"MANDATORY_BSSID",
225 	"AUTHENTICATION_TYPE",
226 	"ADAPTER_ADDRESS",
227 	"PORT_TYPE",
228 	"INTERNATIONAL_MODE",
229 	"CHANNEL",
230 	"RTS_THRESHOLD",
231 	"FRAG_THRESHOLD",
232 	"POWER_MODE",
233 	"TX_RATES",
234 	"BASIC_TX_RATES",
235 	"WEP_KEY_INFO",
236 	"unused",
237 	"unused",
238 	"unused",
239 	"unused",
240 	"WEP_KEY_INDEX",
241 	"WEP_FLAGS",
242 	"ADD_MULTICAST",
243 	"CLEAR_ALL_MULTICAST",
244 	"BEACON_INTERVAL",
245 	"ATIM_WINDOW",
246 	"CLEAR_STATISTICS",
247 	"undefined",
248 	"undefined",
249 	"undefined",
250 	"undefined",
251 	"TX_POWER_INDEX",
252 	"undefined",
253 	"undefined",
254 	"undefined",
255 	"undefined",
256 	"undefined",
257 	"undefined",
258 	"BROADCAST_SCAN",
259 	"CARD_DISABLE",
260 	"PREFERRED_BSSID",
261 	"SET_SCAN_OPTIONS",
262 	"SCAN_DWELL_TIME",
263 	"SWEEP_TABLE",
264 	"AP_OR_STATION_TABLE",
265 	"GROUP_ORDINALS",
266 	"SHORT_RETRY_LIMIT",
267 	"LONG_RETRY_LIMIT",
268 	"unused",		/* SAVE_CALIBRATION */
269 	"unused",		/* RESTORE_CALIBRATION */
270 	"undefined",
271 	"undefined",
272 	"undefined",
273 	"HOST_PRE_POWER_DOWN",
274 	"unused",		/* HOST_INTERRUPT_COALESCING */
275 	"undefined",
276 	"CARD_DISABLE_PHY_OFF",
277 	"MSDU_TX_RATES",
278 	"undefined",
279 	"SET_STATION_STAT_BITS",
280 	"CLEAR_STATIONS_STAT_BITS",
281 	"LEAP_ROGUE_MODE",
282 	"SET_SECURITY_INFORMATION",
283 	"DISASSOCIATION_BSSID",
284 	"SET_WPA_ASS_IE"
285 };
286 #endif
287 
288 static const long ipw2100_frequencies[] = {
289 	2412, 2417, 2422, 2427,
290 	2432, 2437, 2442, 2447,
291 	2452, 2457, 2462, 2467,
292 	2472, 2484
293 };
294 
295 #define FREQ_COUNT	ARRAY_SIZE(ipw2100_frequencies)
296 
297 static struct ieee80211_rate ipw2100_bg_rates[] = {
298 	{ .bitrate = 10 },
299 	{ .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
300 	{ .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
301 	{ .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
302 };
303 
304 #define RATE_COUNT ARRAY_SIZE(ipw2100_bg_rates)
305 
306 /* Pre-decl until we get the code solid and then we can clean it up */
307 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
308 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
309 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
310 
311 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
312 static void ipw2100_queues_free(struct ipw2100_priv *priv);
313 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
314 
315 static int ipw2100_fw_download(struct ipw2100_priv *priv,
316 			       struct ipw2100_fw *fw);
317 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
318 				struct ipw2100_fw *fw);
319 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
320 				 size_t max);
321 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
322 				    size_t max);
323 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
324 				     struct ipw2100_fw *fw);
325 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
326 				  struct ipw2100_fw *fw);
327 static void ipw2100_wx_event_work(struct work_struct *work);
328 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
329 static const struct iw_handler_def ipw2100_wx_handler_def;
330 
331 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
332 {
333 	struct ipw2100_priv *priv = libipw_priv(dev);
334 
335 	*val = ioread32(priv->ioaddr + reg);
336 	IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
337 }
338 
339 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
340 {
341 	struct ipw2100_priv *priv = libipw_priv(dev);
342 
343 	iowrite32(val, priv->ioaddr + reg);
344 	IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
345 }
346 
347 static inline void read_register_word(struct net_device *dev, u32 reg,
348 				      u16 * val)
349 {
350 	struct ipw2100_priv *priv = libipw_priv(dev);
351 
352 	*val = ioread16(priv->ioaddr + reg);
353 	IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
354 }
355 
356 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
357 {
358 	struct ipw2100_priv *priv = libipw_priv(dev);
359 
360 	*val = ioread8(priv->ioaddr + reg);
361 	IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
362 }
363 
364 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
365 {
366 	struct ipw2100_priv *priv = libipw_priv(dev);
367 
368 	iowrite16(val, priv->ioaddr + reg);
369 	IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
370 }
371 
372 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
373 {
374 	struct ipw2100_priv *priv = libipw_priv(dev);
375 
376 	iowrite8(val, priv->ioaddr + reg);
377 	IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
378 }
379 
380 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
381 {
382 	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
383 		       addr & IPW_REG_INDIRECT_ADDR_MASK);
384 	read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
385 }
386 
387 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
388 {
389 	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
390 		       addr & IPW_REG_INDIRECT_ADDR_MASK);
391 	write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
392 }
393 
394 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
395 {
396 	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
397 		       addr & IPW_REG_INDIRECT_ADDR_MASK);
398 	read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
399 }
400 
401 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
402 {
403 	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
404 		       addr & IPW_REG_INDIRECT_ADDR_MASK);
405 	write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
406 }
407 
408 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
409 {
410 	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
411 		       addr & IPW_REG_INDIRECT_ADDR_MASK);
412 	read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
413 }
414 
415 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
416 {
417 	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
418 		       addr & IPW_REG_INDIRECT_ADDR_MASK);
419 	write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
420 }
421 
422 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
423 {
424 	write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
425 		       addr & IPW_REG_INDIRECT_ADDR_MASK);
426 }
427 
428 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
429 {
430 	write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
431 }
432 
433 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
434 				    const u8 * buf)
435 {
436 	u32 aligned_addr;
437 	u32 aligned_len;
438 	u32 dif_len;
439 	u32 i;
440 
441 	/* read first nibble byte by byte */
442 	aligned_addr = addr & (~0x3);
443 	dif_len = addr - aligned_addr;
444 	if (dif_len) {
445 		/* Start reading at aligned_addr + dif_len */
446 		write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
447 			       aligned_addr);
448 		for (i = dif_len; i < 4; i++, buf++)
449 			write_register_byte(dev,
450 					    IPW_REG_INDIRECT_ACCESS_DATA + i,
451 					    *buf);
452 
453 		len -= dif_len;
454 		aligned_addr += 4;
455 	}
456 
457 	/* read DWs through autoincrement registers */
458 	write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
459 	aligned_len = len & (~0x3);
460 	for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
461 		write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
462 
463 	/* copy the last nibble */
464 	dif_len = len - aligned_len;
465 	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
466 	for (i = 0; i < dif_len; i++, buf++)
467 		write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
468 				    *buf);
469 }
470 
471 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
472 				   u8 * buf)
473 {
474 	u32 aligned_addr;
475 	u32 aligned_len;
476 	u32 dif_len;
477 	u32 i;
478 
479 	/* read first nibble byte by byte */
480 	aligned_addr = addr & (~0x3);
481 	dif_len = addr - aligned_addr;
482 	if (dif_len) {
483 		/* Start reading at aligned_addr + dif_len */
484 		write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
485 			       aligned_addr);
486 		for (i = dif_len; i < 4; i++, buf++)
487 			read_register_byte(dev,
488 					   IPW_REG_INDIRECT_ACCESS_DATA + i,
489 					   buf);
490 
491 		len -= dif_len;
492 		aligned_addr += 4;
493 	}
494 
495 	/* read DWs through autoincrement registers */
496 	write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
497 	aligned_len = len & (~0x3);
498 	for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
499 		read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
500 
501 	/* copy the last nibble */
502 	dif_len = len - aligned_len;
503 	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
504 	for (i = 0; i < dif_len; i++, buf++)
505 		read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
506 }
507 
508 static bool ipw2100_hw_is_adapter_in_system(struct net_device *dev)
509 {
510 	u32 dbg;
511 
512 	read_register(dev, IPW_REG_DOA_DEBUG_AREA_START, &dbg);
513 
514 	return dbg == IPW_DATA_DOA_DEBUG_VALUE;
515 }
516 
517 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
518 			       void *val, u32 * len)
519 {
520 	struct ipw2100_ordinals *ordinals = &priv->ordinals;
521 	u32 addr;
522 	u32 field_info;
523 	u16 field_len;
524 	u16 field_count;
525 	u32 total_length;
526 
527 	if (ordinals->table1_addr == 0) {
528 		printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
529 		       "before they have been loaded.\n");
530 		return -EINVAL;
531 	}
532 
533 	if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
534 		if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
535 			*len = IPW_ORD_TAB_1_ENTRY_SIZE;
536 
537 			printk(KERN_WARNING DRV_NAME
538 			       ": ordinal buffer length too small, need %zd\n",
539 			       IPW_ORD_TAB_1_ENTRY_SIZE);
540 
541 			return -EINVAL;
542 		}
543 
544 		read_nic_dword(priv->net_dev,
545 			       ordinals->table1_addr + (ord << 2), &addr);
546 		read_nic_dword(priv->net_dev, addr, val);
547 
548 		*len = IPW_ORD_TAB_1_ENTRY_SIZE;
549 
550 		return 0;
551 	}
552 
553 	if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
554 
555 		ord -= IPW_START_ORD_TAB_2;
556 
557 		/* get the address of statistic */
558 		read_nic_dword(priv->net_dev,
559 			       ordinals->table2_addr + (ord << 3), &addr);
560 
561 		/* get the second DW of statistics ;
562 		 * two 16-bit words - first is length, second is count */
563 		read_nic_dword(priv->net_dev,
564 			       ordinals->table2_addr + (ord << 3) + sizeof(u32),
565 			       &field_info);
566 
567 		/* get each entry length */
568 		field_len = *((u16 *) & field_info);
569 
570 		/* get number of entries */
571 		field_count = *(((u16 *) & field_info) + 1);
572 
573 		/* abort if no enough memory */
574 		total_length = field_len * field_count;
575 		if (total_length > *len) {
576 			*len = total_length;
577 			return -EINVAL;
578 		}
579 
580 		*len = total_length;
581 		if (!total_length)
582 			return 0;
583 
584 		/* read the ordinal data from the SRAM */
585 		read_nic_memory(priv->net_dev, addr, total_length, val);
586 
587 		return 0;
588 	}
589 
590 	printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
591 	       "in table 2\n", ord);
592 
593 	return -EINVAL;
594 }
595 
596 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
597 			       u32 * len)
598 {
599 	struct ipw2100_ordinals *ordinals = &priv->ordinals;
600 	u32 addr;
601 
602 	if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
603 		if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
604 			*len = IPW_ORD_TAB_1_ENTRY_SIZE;
605 			IPW_DEBUG_INFO("wrong size\n");
606 			return -EINVAL;
607 		}
608 
609 		read_nic_dword(priv->net_dev,
610 			       ordinals->table1_addr + (ord << 2), &addr);
611 
612 		write_nic_dword(priv->net_dev, addr, *val);
613 
614 		*len = IPW_ORD_TAB_1_ENTRY_SIZE;
615 
616 		return 0;
617 	}
618 
619 	IPW_DEBUG_INFO("wrong table\n");
620 	if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
621 		return -EINVAL;
622 
623 	return -EINVAL;
624 }
625 
626 static char *snprint_line(char *buf, size_t count,
627 			  const u8 * data, u32 len, u32 ofs)
628 {
629 	int out, i, j, l;
630 	char c;
631 
632 	out = snprintf(buf, count, "%08X", ofs);
633 
634 	for (l = 0, i = 0; i < 2; i++) {
635 		out += snprintf(buf + out, count - out, " ");
636 		for (j = 0; j < 8 && l < len; j++, l++)
637 			out += snprintf(buf + out, count - out, "%02X ",
638 					data[(i * 8 + j)]);
639 		for (; j < 8; j++)
640 			out += snprintf(buf + out, count - out, "   ");
641 	}
642 
643 	out += snprintf(buf + out, count - out, " ");
644 	for (l = 0, i = 0; i < 2; i++) {
645 		out += snprintf(buf + out, count - out, " ");
646 		for (j = 0; j < 8 && l < len; j++, l++) {
647 			c = data[(i * 8 + j)];
648 			if (!isascii(c) || !isprint(c))
649 				c = '.';
650 
651 			out += snprintf(buf + out, count - out, "%c", c);
652 		}
653 
654 		for (; j < 8; j++)
655 			out += snprintf(buf + out, count - out, " ");
656 	}
657 
658 	return buf;
659 }
660 
661 static void printk_buf(int level, const u8 * data, u32 len)
662 {
663 	char line[81];
664 	u32 ofs = 0;
665 	if (!(ipw2100_debug_level & level))
666 		return;
667 
668 	while (len) {
669 		printk(KERN_DEBUG "%s\n",
670 		       snprint_line(line, sizeof(line), &data[ofs],
671 				    min(len, 16U), ofs));
672 		ofs += 16;
673 		len -= min(len, 16U);
674 	}
675 }
676 
677 #define MAX_RESET_BACKOFF 10
678 
679 static void schedule_reset(struct ipw2100_priv *priv)
680 {
681 	time64_t now = ktime_get_boottime_seconds();
682 
683 	/* If we haven't received a reset request within the backoff period,
684 	 * then we can reset the backoff interval so this reset occurs
685 	 * immediately */
686 	if (priv->reset_backoff &&
687 	    (now - priv->last_reset > priv->reset_backoff))
688 		priv->reset_backoff = 0;
689 
690 	priv->last_reset = now;
691 
692 	if (!(priv->status & STATUS_RESET_PENDING)) {
693 		IPW_DEBUG_INFO("%s: Scheduling firmware restart (%llds).\n",
694 			       priv->net_dev->name, priv->reset_backoff);
695 		netif_carrier_off(priv->net_dev);
696 		netif_stop_queue(priv->net_dev);
697 		priv->status |= STATUS_RESET_PENDING;
698 		if (priv->reset_backoff)
699 			schedule_delayed_work(&priv->reset_work,
700 					      priv->reset_backoff * HZ);
701 		else
702 			schedule_delayed_work(&priv->reset_work, 0);
703 
704 		if (priv->reset_backoff < MAX_RESET_BACKOFF)
705 			priv->reset_backoff++;
706 
707 		wake_up_interruptible(&priv->wait_command_queue);
708 	} else
709 		IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
710 			       priv->net_dev->name);
711 
712 }
713 
714 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
715 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
716 				   struct host_command *cmd)
717 {
718 	struct list_head *element;
719 	struct ipw2100_tx_packet *packet;
720 	unsigned long flags;
721 	int err = 0;
722 
723 	IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
724 		     command_types[cmd->host_command], cmd->host_command,
725 		     cmd->host_command_length);
726 	printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
727 		   cmd->host_command_length);
728 
729 	spin_lock_irqsave(&priv->low_lock, flags);
730 
731 	if (priv->fatal_error) {
732 		IPW_DEBUG_INFO
733 		    ("Attempt to send command while hardware in fatal error condition.\n");
734 		err = -EIO;
735 		goto fail_unlock;
736 	}
737 
738 	if (!(priv->status & STATUS_RUNNING)) {
739 		IPW_DEBUG_INFO
740 		    ("Attempt to send command while hardware is not running.\n");
741 		err = -EIO;
742 		goto fail_unlock;
743 	}
744 
745 	if (priv->status & STATUS_CMD_ACTIVE) {
746 		IPW_DEBUG_INFO
747 		    ("Attempt to send command while another command is pending.\n");
748 		err = -EBUSY;
749 		goto fail_unlock;
750 	}
751 
752 	if (list_empty(&priv->msg_free_list)) {
753 		IPW_DEBUG_INFO("no available msg buffers\n");
754 		goto fail_unlock;
755 	}
756 
757 	priv->status |= STATUS_CMD_ACTIVE;
758 	priv->messages_sent++;
759 
760 	element = priv->msg_free_list.next;
761 
762 	packet = list_entry(element, struct ipw2100_tx_packet, list);
763 	packet->jiffy_start = jiffies;
764 
765 	/* initialize the firmware command packet */
766 	packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
767 	packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
768 	packet->info.c_struct.cmd->host_command_len_reg =
769 	    cmd->host_command_length;
770 	packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
771 
772 	memcpy(packet->info.c_struct.cmd->host_command_params_reg,
773 	       cmd->host_command_parameters,
774 	       sizeof(packet->info.c_struct.cmd->host_command_params_reg));
775 
776 	list_del(element);
777 	DEC_STAT(&priv->msg_free_stat);
778 
779 	list_add_tail(element, &priv->msg_pend_list);
780 	INC_STAT(&priv->msg_pend_stat);
781 
782 	ipw2100_tx_send_commands(priv);
783 	ipw2100_tx_send_data(priv);
784 
785 	spin_unlock_irqrestore(&priv->low_lock, flags);
786 
787 	/*
788 	 * We must wait for this command to complete before another
789 	 * command can be sent...  but if we wait more than 3 seconds
790 	 * then there is a problem.
791 	 */
792 
793 	err =
794 	    wait_event_interruptible_timeout(priv->wait_command_queue,
795 					     !(priv->
796 					       status & STATUS_CMD_ACTIVE),
797 					     HOST_COMPLETE_TIMEOUT);
798 
799 	if (err == 0) {
800 		IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
801 			       1000 * (HOST_COMPLETE_TIMEOUT / HZ));
802 		priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
803 		priv->status &= ~STATUS_CMD_ACTIVE;
804 		schedule_reset(priv);
805 		return -EIO;
806 	}
807 
808 	if (priv->fatal_error) {
809 		printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
810 		       priv->net_dev->name);
811 		return -EIO;
812 	}
813 
814 	/* !!!!! HACK TEST !!!!!
815 	 * When lots of debug trace statements are enabled, the driver
816 	 * doesn't seem to have as many firmware restart cycles...
817 	 *
818 	 * As a test, we're sticking in a 1/100s delay here */
819 	schedule_timeout_uninterruptible(msecs_to_jiffies(10));
820 
821 	return 0;
822 
823       fail_unlock:
824 	spin_unlock_irqrestore(&priv->low_lock, flags);
825 
826 	return err;
827 }
828 
829 /*
830  * Verify the values and data access of the hardware
831  * No locks needed or used.  No functions called.
832  */
833 static int ipw2100_verify(struct ipw2100_priv *priv)
834 {
835 	u32 data1, data2;
836 	u32 address;
837 
838 	u32 val1 = 0x76543210;
839 	u32 val2 = 0xFEDCBA98;
840 
841 	/* Domain 0 check - all values should be DOA_DEBUG */
842 	for (address = IPW_REG_DOA_DEBUG_AREA_START;
843 	     address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
844 		read_register(priv->net_dev, address, &data1);
845 		if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
846 			return -EIO;
847 	}
848 
849 	/* Domain 1 check - use arbitrary read/write compare  */
850 	for (address = 0; address < 5; address++) {
851 		/* The memory area is not used now */
852 		write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
853 			       val1);
854 		write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
855 			       val2);
856 		read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
857 			      &data1);
858 		read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
859 			      &data2);
860 		if (val1 == data1 && val2 == data2)
861 			return 0;
862 	}
863 
864 	return -EIO;
865 }
866 
867 /*
868  *
869  * Loop until the CARD_DISABLED bit is the same value as the
870  * supplied parameter
871  *
872  * TODO: See if it would be more efficient to do a wait/wake
873  *       cycle and have the completion event trigger the wakeup
874  *
875  */
876 #define IPW_CARD_DISABLE_COMPLETE_WAIT		    100	// 100 milli
877 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
878 {
879 	int i;
880 	u32 card_state;
881 	u32 len = sizeof(card_state);
882 	int err;
883 
884 	for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
885 		err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
886 					  &card_state, &len);
887 		if (err) {
888 			IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
889 				       "failed.\n");
890 			return 0;
891 		}
892 
893 		/* We'll break out if either the HW state says it is
894 		 * in the state we want, or if HOST_COMPLETE command
895 		 * finishes */
896 		if ((card_state == state) ||
897 		    ((priv->status & STATUS_ENABLED) ?
898 		     IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
899 			if (state == IPW_HW_STATE_ENABLED)
900 				priv->status |= STATUS_ENABLED;
901 			else
902 				priv->status &= ~STATUS_ENABLED;
903 
904 			return 0;
905 		}
906 
907 		udelay(50);
908 	}
909 
910 	IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
911 		       state ? "DISABLED" : "ENABLED");
912 	return -EIO;
913 }
914 
915 /*********************************************************************
916     Procedure   :   sw_reset_and_clock
917     Purpose     :   Asserts s/w reset, asserts clock initialization
918                     and waits for clock stabilization
919  ********************************************************************/
920 static int sw_reset_and_clock(struct ipw2100_priv *priv)
921 {
922 	int i;
923 	u32 r;
924 
925 	// assert s/w reset
926 	write_register(priv->net_dev, IPW_REG_RESET_REG,
927 		       IPW_AUX_HOST_RESET_REG_SW_RESET);
928 
929 	// wait for clock stabilization
930 	for (i = 0; i < 1000; i++) {
931 		udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
932 
933 		// check clock ready bit
934 		read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
935 		if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
936 			break;
937 	}
938 
939 	if (i == 1000)
940 		return -EIO;	// TODO: better error value
941 
942 	/* set "initialization complete" bit to move adapter to
943 	 * D0 state */
944 	write_register(priv->net_dev, IPW_REG_GP_CNTRL,
945 		       IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
946 
947 	/* wait for clock stabilization */
948 	for (i = 0; i < 10000; i++) {
949 		udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
950 
951 		/* check clock ready bit */
952 		read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
953 		if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
954 			break;
955 	}
956 
957 	if (i == 10000)
958 		return -EIO;	/* TODO: better error value */
959 
960 	/* set D0 standby bit */
961 	read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
962 	write_register(priv->net_dev, IPW_REG_GP_CNTRL,
963 		       r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
964 
965 	return 0;
966 }
967 
968 /*********************************************************************
969     Procedure   :   ipw2100_download_firmware
970     Purpose     :   Initiaze adapter after power on.
971                     The sequence is:
972                     1. assert s/w reset first!
973                     2. awake clocks & wait for clock stabilization
974                     3. hold ARC (don't ask me why...)
975                     4. load Dino ucode and reset/clock init again
976                     5. zero-out shared mem
977                     6. download f/w
978  *******************************************************************/
979 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
980 {
981 	u32 address;
982 	int err;
983 
984 #ifndef CONFIG_PM
985 	/* Fetch the firmware and microcode */
986 	struct ipw2100_fw ipw2100_firmware;
987 #endif
988 
989 	if (priv->fatal_error) {
990 		IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
991 				"fatal error %d.  Interface must be brought down.\n",
992 				priv->net_dev->name, priv->fatal_error);
993 		return -EINVAL;
994 	}
995 #ifdef CONFIG_PM
996 	if (!ipw2100_firmware.version) {
997 		err = ipw2100_get_firmware(priv, &ipw2100_firmware);
998 		if (err) {
999 			IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1000 					priv->net_dev->name, err);
1001 			priv->fatal_error = IPW2100_ERR_FW_LOAD;
1002 			goto fail;
1003 		}
1004 	}
1005 #else
1006 	err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1007 	if (err) {
1008 		IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1009 				priv->net_dev->name, err);
1010 		priv->fatal_error = IPW2100_ERR_FW_LOAD;
1011 		goto fail;
1012 	}
1013 #endif
1014 	priv->firmware_version = ipw2100_firmware.version;
1015 
1016 	/* s/w reset and clock stabilization */
1017 	err = sw_reset_and_clock(priv);
1018 	if (err) {
1019 		IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1020 				priv->net_dev->name, err);
1021 		goto fail;
1022 	}
1023 
1024 	err = ipw2100_verify(priv);
1025 	if (err) {
1026 		IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1027 				priv->net_dev->name, err);
1028 		goto fail;
1029 	}
1030 
1031 	/* Hold ARC */
1032 	write_nic_dword(priv->net_dev,
1033 			IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1034 
1035 	/* allow ARC to run */
1036 	write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1037 
1038 	/* load microcode */
1039 	err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1040 	if (err) {
1041 		printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1042 		       priv->net_dev->name, err);
1043 		goto fail;
1044 	}
1045 
1046 	/* release ARC */
1047 	write_nic_dword(priv->net_dev,
1048 			IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1049 
1050 	/* s/w reset and clock stabilization (again!!!) */
1051 	err = sw_reset_and_clock(priv);
1052 	if (err) {
1053 		printk(KERN_ERR DRV_NAME
1054 		       ": %s: sw_reset_and_clock failed: %d\n",
1055 		       priv->net_dev->name, err);
1056 		goto fail;
1057 	}
1058 
1059 	/* load f/w */
1060 	err = ipw2100_fw_download(priv, &ipw2100_firmware);
1061 	if (err) {
1062 		IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1063 				priv->net_dev->name, err);
1064 		goto fail;
1065 	}
1066 #ifndef CONFIG_PM
1067 	/*
1068 	 * When the .resume method of the driver is called, the other
1069 	 * part of the system, i.e. the ide driver could still stay in
1070 	 * the suspend stage. This prevents us from loading the firmware
1071 	 * from the disk.  --YZ
1072 	 */
1073 
1074 	/* free any storage allocated for firmware image */
1075 	ipw2100_release_firmware(priv, &ipw2100_firmware);
1076 #endif
1077 
1078 	/* zero out Domain 1 area indirectly (Si requirement) */
1079 	for (address = IPW_HOST_FW_SHARED_AREA0;
1080 	     address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1081 		write_nic_dword(priv->net_dev, address, 0);
1082 	for (address = IPW_HOST_FW_SHARED_AREA1;
1083 	     address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1084 		write_nic_dword(priv->net_dev, address, 0);
1085 	for (address = IPW_HOST_FW_SHARED_AREA2;
1086 	     address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1087 		write_nic_dword(priv->net_dev, address, 0);
1088 	for (address = IPW_HOST_FW_SHARED_AREA3;
1089 	     address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1090 		write_nic_dword(priv->net_dev, address, 0);
1091 	for (address = IPW_HOST_FW_INTERRUPT_AREA;
1092 	     address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1093 		write_nic_dword(priv->net_dev, address, 0);
1094 
1095 	return 0;
1096 
1097       fail:
1098 	ipw2100_release_firmware(priv, &ipw2100_firmware);
1099 	return err;
1100 }
1101 
1102 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1103 {
1104 	if (priv->status & STATUS_INT_ENABLED)
1105 		return;
1106 	priv->status |= STATUS_INT_ENABLED;
1107 	write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1108 }
1109 
1110 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1111 {
1112 	if (!(priv->status & STATUS_INT_ENABLED))
1113 		return;
1114 	priv->status &= ~STATUS_INT_ENABLED;
1115 	write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1116 }
1117 
1118 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1119 {
1120 	struct ipw2100_ordinals *ord = &priv->ordinals;
1121 
1122 	IPW_DEBUG_INFO("enter\n");
1123 
1124 	read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1125 		      &ord->table1_addr);
1126 
1127 	read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1128 		      &ord->table2_addr);
1129 
1130 	read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1131 	read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1132 
1133 	ord->table2_size &= 0x0000FFFF;
1134 
1135 	IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1136 	IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1137 	IPW_DEBUG_INFO("exit\n");
1138 }
1139 
1140 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1141 {
1142 	u32 reg = 0;
1143 	/*
1144 	 * Set GPIO 3 writable by FW; GPIO 1 writable
1145 	 * by driver and enable clock
1146 	 */
1147 	reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1148 	       IPW_BIT_GPIO_LED_OFF);
1149 	write_register(priv->net_dev, IPW_REG_GPIO, reg);
1150 }
1151 
1152 static int rf_kill_active(struct ipw2100_priv *priv)
1153 {
1154 #define MAX_RF_KILL_CHECKS 5
1155 #define RF_KILL_CHECK_DELAY 40
1156 
1157 	unsigned short value = 0;
1158 	u32 reg = 0;
1159 	int i;
1160 
1161 	if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1162 		wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1163 		priv->status &= ~STATUS_RF_KILL_HW;
1164 		return 0;
1165 	}
1166 
1167 	for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1168 		udelay(RF_KILL_CHECK_DELAY);
1169 		read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1170 		value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1171 	}
1172 
1173 	if (value == 0) {
1174 		wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1175 		priv->status |= STATUS_RF_KILL_HW;
1176 	} else {
1177 		wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1178 		priv->status &= ~STATUS_RF_KILL_HW;
1179 	}
1180 
1181 	return (value == 0);
1182 }
1183 
1184 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1185 {
1186 	u32 addr, len;
1187 	u32 val;
1188 
1189 	/*
1190 	 * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1191 	 */
1192 	len = sizeof(addr);
1193 	if (ipw2100_get_ordinal
1194 	    (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1195 		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1196 			       __LINE__);
1197 		return -EIO;
1198 	}
1199 
1200 	IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1201 
1202 	/*
1203 	 * EEPROM version is the byte at offset 0xfd in firmware
1204 	 * We read 4 bytes, then shift out the byte we actually want */
1205 	read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1206 	priv->eeprom_version = (val >> 24) & 0xFF;
1207 	IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1208 
1209 	/*
1210 	 *  HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1211 	 *
1212 	 *  notice that the EEPROM bit is reverse polarity, i.e.
1213 	 *     bit = 0  signifies HW RF kill switch is supported
1214 	 *     bit = 1  signifies HW RF kill switch is NOT supported
1215 	 */
1216 	read_nic_dword(priv->net_dev, addr + 0x20, &val);
1217 	if (!((val >> 24) & 0x01))
1218 		priv->hw_features |= HW_FEATURE_RFKILL;
1219 
1220 	IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1221 		       (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1222 
1223 	return 0;
1224 }
1225 
1226 /*
1227  * Start firmware execution after power on and initialization
1228  * The sequence is:
1229  *  1. Release ARC
1230  *  2. Wait for f/w initialization completes;
1231  */
1232 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1233 {
1234 	int i;
1235 	u32 inta, inta_mask, gpio;
1236 
1237 	IPW_DEBUG_INFO("enter\n");
1238 
1239 	if (priv->status & STATUS_RUNNING)
1240 		return 0;
1241 
1242 	/*
1243 	 * Initialize the hw - drive adapter to DO state by setting
1244 	 * init_done bit. Wait for clk_ready bit and Download
1245 	 * fw & dino ucode
1246 	 */
1247 	if (ipw2100_download_firmware(priv)) {
1248 		printk(KERN_ERR DRV_NAME
1249 		       ": %s: Failed to power on the adapter.\n",
1250 		       priv->net_dev->name);
1251 		return -EIO;
1252 	}
1253 
1254 	/* Clear the Tx, Rx and Msg queues and the r/w indexes
1255 	 * in the firmware RBD and TBD ring queue */
1256 	ipw2100_queues_initialize(priv);
1257 
1258 	ipw2100_hw_set_gpio(priv);
1259 
1260 	/* TODO -- Look at disabling interrupts here to make sure none
1261 	 * get fired during FW initialization */
1262 
1263 	/* Release ARC - clear reset bit */
1264 	write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1265 
1266 	/* wait for f/w initialization complete */
1267 	IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1268 	i = 5000;
1269 	do {
1270 		schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1271 		/* Todo... wait for sync command ... */
1272 
1273 		read_register(priv->net_dev, IPW_REG_INTA, &inta);
1274 
1275 		/* check "init done" bit */
1276 		if (inta & IPW2100_INTA_FW_INIT_DONE) {
1277 			/* reset "init done" bit */
1278 			write_register(priv->net_dev, IPW_REG_INTA,
1279 				       IPW2100_INTA_FW_INIT_DONE);
1280 			break;
1281 		}
1282 
1283 		/* check error conditions : we check these after the firmware
1284 		 * check so that if there is an error, the interrupt handler
1285 		 * will see it and the adapter will be reset */
1286 		if (inta &
1287 		    (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1288 			/* clear error conditions */
1289 			write_register(priv->net_dev, IPW_REG_INTA,
1290 				       IPW2100_INTA_FATAL_ERROR |
1291 				       IPW2100_INTA_PARITY_ERROR);
1292 		}
1293 	} while (--i);
1294 
1295 	/* Clear out any pending INTAs since we aren't supposed to have
1296 	 * interrupts enabled at this point... */
1297 	read_register(priv->net_dev, IPW_REG_INTA, &inta);
1298 	read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1299 	inta &= IPW_INTERRUPT_MASK;
1300 	/* Clear out any pending interrupts */
1301 	if (inta & inta_mask)
1302 		write_register(priv->net_dev, IPW_REG_INTA, inta);
1303 
1304 	IPW_DEBUG_FW("f/w initialization complete: %s\n",
1305 		     i ? "SUCCESS" : "FAILED");
1306 
1307 	if (!i) {
1308 		printk(KERN_WARNING DRV_NAME
1309 		       ": %s: Firmware did not initialize.\n",
1310 		       priv->net_dev->name);
1311 		return -EIO;
1312 	}
1313 
1314 	/* allow firmware to write to GPIO1 & GPIO3 */
1315 	read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1316 
1317 	gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1318 
1319 	write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1320 
1321 	/* Ready to receive commands */
1322 	priv->status |= STATUS_RUNNING;
1323 
1324 	/* The adapter has been reset; we are not associated */
1325 	priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1326 
1327 	IPW_DEBUG_INFO("exit\n");
1328 
1329 	return 0;
1330 }
1331 
1332 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1333 {
1334 	if (!priv->fatal_error)
1335 		return;
1336 
1337 	priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1338 	priv->fatal_index %= IPW2100_ERROR_QUEUE;
1339 	priv->fatal_error = 0;
1340 }
1341 
1342 /* NOTE: Our interrupt is disabled when this method is called */
1343 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1344 {
1345 	u32 reg;
1346 	int i;
1347 
1348 	IPW_DEBUG_INFO("Power cycling the hardware.\n");
1349 
1350 	ipw2100_hw_set_gpio(priv);
1351 
1352 	/* Step 1. Stop Master Assert */
1353 	write_register(priv->net_dev, IPW_REG_RESET_REG,
1354 		       IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1355 
1356 	/* Step 2. Wait for stop Master Assert
1357 	 *         (not more than 50us, otherwise ret error */
1358 	i = 5;
1359 	do {
1360 		udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1361 		read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1362 
1363 		if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1364 			break;
1365 	} while (--i);
1366 
1367 	priv->status &= ~STATUS_RESET_PENDING;
1368 
1369 	if (!i) {
1370 		IPW_DEBUG_INFO
1371 		    ("exit - waited too long for master assert stop\n");
1372 		return -EIO;
1373 	}
1374 
1375 	write_register(priv->net_dev, IPW_REG_RESET_REG,
1376 		       IPW_AUX_HOST_RESET_REG_SW_RESET);
1377 
1378 	/* Reset any fatal_error conditions */
1379 	ipw2100_reset_fatalerror(priv);
1380 
1381 	/* At this point, the adapter is now stopped and disabled */
1382 	priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1383 			  STATUS_ASSOCIATED | STATUS_ENABLED);
1384 
1385 	return 0;
1386 }
1387 
1388 /*
1389  * Send the CARD_DISABLE_PHY_OFF command to the card to disable it
1390  *
1391  * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1392  *
1393  * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1394  * if STATUS_ASSN_LOST is sent.
1395  */
1396 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1397 {
1398 
1399 #define HW_PHY_OFF_LOOP_DELAY (msecs_to_jiffies(50))
1400 
1401 	struct host_command cmd = {
1402 		.host_command = CARD_DISABLE_PHY_OFF,
1403 		.host_command_sequence = 0,
1404 		.host_command_length = 0,
1405 	};
1406 	int err, i;
1407 	u32 val1, val2;
1408 
1409 	IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1410 
1411 	/* Turn off the radio */
1412 	err = ipw2100_hw_send_command(priv, &cmd);
1413 	if (err)
1414 		return err;
1415 
1416 	for (i = 0; i < 2500; i++) {
1417 		read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1418 		read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1419 
1420 		if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1421 		    (val2 & IPW2100_COMMAND_PHY_OFF))
1422 			return 0;
1423 
1424 		schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1425 	}
1426 
1427 	return -EIO;
1428 }
1429 
1430 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1431 {
1432 	struct host_command cmd = {
1433 		.host_command = HOST_COMPLETE,
1434 		.host_command_sequence = 0,
1435 		.host_command_length = 0
1436 	};
1437 	int err = 0;
1438 
1439 	IPW_DEBUG_HC("HOST_COMPLETE\n");
1440 
1441 	if (priv->status & STATUS_ENABLED)
1442 		return 0;
1443 
1444 	mutex_lock(&priv->adapter_mutex);
1445 
1446 	if (rf_kill_active(priv)) {
1447 		IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1448 		goto fail_up;
1449 	}
1450 
1451 	err = ipw2100_hw_send_command(priv, &cmd);
1452 	if (err) {
1453 		IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1454 		goto fail_up;
1455 	}
1456 
1457 	err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1458 	if (err) {
1459 		IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1460 			       priv->net_dev->name);
1461 		goto fail_up;
1462 	}
1463 
1464 	if (priv->stop_hang_check) {
1465 		priv->stop_hang_check = 0;
1466 		schedule_delayed_work(&priv->hang_check, HZ / 2);
1467 	}
1468 
1469       fail_up:
1470 	mutex_unlock(&priv->adapter_mutex);
1471 	return err;
1472 }
1473 
1474 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1475 {
1476 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1477 
1478 	struct host_command cmd = {
1479 		.host_command = HOST_PRE_POWER_DOWN,
1480 		.host_command_sequence = 0,
1481 		.host_command_length = 0,
1482 	};
1483 	int err, i;
1484 	u32 reg;
1485 
1486 	if (!(priv->status & STATUS_RUNNING))
1487 		return 0;
1488 
1489 	priv->status |= STATUS_STOPPING;
1490 
1491 	/* We can only shut down the card if the firmware is operational.  So,
1492 	 * if we haven't reset since a fatal_error, then we can not send the
1493 	 * shutdown commands. */
1494 	if (!priv->fatal_error) {
1495 		/* First, make sure the adapter is enabled so that the PHY_OFF
1496 		 * command can shut it down */
1497 		ipw2100_enable_adapter(priv);
1498 
1499 		err = ipw2100_hw_phy_off(priv);
1500 		if (err)
1501 			printk(KERN_WARNING DRV_NAME
1502 			       ": Error disabling radio %d\n", err);
1503 
1504 		/*
1505 		 * If in D0-standby mode going directly to D3 may cause a
1506 		 * PCI bus violation.  Therefore we must change out of the D0
1507 		 * state.
1508 		 *
1509 		 * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1510 		 * hardware from going into standby mode and will transition
1511 		 * out of D0-standby if it is already in that state.
1512 		 *
1513 		 * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1514 		 * driver upon completion.  Once received, the driver can
1515 		 * proceed to the D3 state.
1516 		 *
1517 		 * Prepare for power down command to fw.  This command would
1518 		 * take HW out of D0-standby and prepare it for D3 state.
1519 		 *
1520 		 * Currently FW does not support event notification for this
1521 		 * event. Therefore, skip waiting for it.  Just wait a fixed
1522 		 * 100ms
1523 		 */
1524 		IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1525 
1526 		err = ipw2100_hw_send_command(priv, &cmd);
1527 		if (err)
1528 			printk(KERN_WARNING DRV_NAME ": "
1529 			       "%s: Power down command failed: Error %d\n",
1530 			       priv->net_dev->name, err);
1531 		else
1532 			schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1533 	}
1534 
1535 	priv->status &= ~STATUS_ENABLED;
1536 
1537 	/*
1538 	 * Set GPIO 3 writable by FW; GPIO 1 writable
1539 	 * by driver and enable clock
1540 	 */
1541 	ipw2100_hw_set_gpio(priv);
1542 
1543 	/*
1544 	 * Power down adapter.  Sequence:
1545 	 * 1. Stop master assert (RESET_REG[9]=1)
1546 	 * 2. Wait for stop master (RESET_REG[8]==1)
1547 	 * 3. S/w reset assert (RESET_REG[7] = 1)
1548 	 */
1549 
1550 	/* Stop master assert */
1551 	write_register(priv->net_dev, IPW_REG_RESET_REG,
1552 		       IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1553 
1554 	/* wait stop master not more than 50 usec.
1555 	 * Otherwise return error. */
1556 	for (i = 5; i > 0; i--) {
1557 		udelay(10);
1558 
1559 		/* Check master stop bit */
1560 		read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1561 
1562 		if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1563 			break;
1564 	}
1565 
1566 	if (i == 0)
1567 		printk(KERN_WARNING DRV_NAME
1568 		       ": %s: Could now power down adapter.\n",
1569 		       priv->net_dev->name);
1570 
1571 	/* assert s/w reset */
1572 	write_register(priv->net_dev, IPW_REG_RESET_REG,
1573 		       IPW_AUX_HOST_RESET_REG_SW_RESET);
1574 
1575 	priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1576 
1577 	return 0;
1578 }
1579 
1580 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1581 {
1582 	struct host_command cmd = {
1583 		.host_command = CARD_DISABLE,
1584 		.host_command_sequence = 0,
1585 		.host_command_length = 0
1586 	};
1587 	int err = 0;
1588 
1589 	IPW_DEBUG_HC("CARD_DISABLE\n");
1590 
1591 	if (!(priv->status & STATUS_ENABLED))
1592 		return 0;
1593 
1594 	/* Make sure we clear the associated state */
1595 	priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1596 
1597 	if (!priv->stop_hang_check) {
1598 		priv->stop_hang_check = 1;
1599 		cancel_delayed_work(&priv->hang_check);
1600 	}
1601 
1602 	mutex_lock(&priv->adapter_mutex);
1603 
1604 	err = ipw2100_hw_send_command(priv, &cmd);
1605 	if (err) {
1606 		printk(KERN_WARNING DRV_NAME
1607 		       ": exit - failed to send CARD_DISABLE command\n");
1608 		goto fail_up;
1609 	}
1610 
1611 	err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1612 	if (err) {
1613 		printk(KERN_WARNING DRV_NAME
1614 		       ": exit - card failed to change to DISABLED\n");
1615 		goto fail_up;
1616 	}
1617 
1618 	IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1619 
1620       fail_up:
1621 	mutex_unlock(&priv->adapter_mutex);
1622 	return err;
1623 }
1624 
1625 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1626 {
1627 	struct host_command cmd = {
1628 		.host_command = SET_SCAN_OPTIONS,
1629 		.host_command_sequence = 0,
1630 		.host_command_length = 8
1631 	};
1632 	int err;
1633 
1634 	IPW_DEBUG_INFO("enter\n");
1635 
1636 	IPW_DEBUG_SCAN("setting scan options\n");
1637 
1638 	cmd.host_command_parameters[0] = 0;
1639 
1640 	if (!(priv->config & CFG_ASSOCIATE))
1641 		cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1642 	if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1643 		cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1644 	if (priv->config & CFG_PASSIVE_SCAN)
1645 		cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1646 
1647 	cmd.host_command_parameters[1] = priv->channel_mask;
1648 
1649 	err = ipw2100_hw_send_command(priv, &cmd);
1650 
1651 	IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1652 		     cmd.host_command_parameters[0]);
1653 
1654 	return err;
1655 }
1656 
1657 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1658 {
1659 	struct host_command cmd = {
1660 		.host_command = BROADCAST_SCAN,
1661 		.host_command_sequence = 0,
1662 		.host_command_length = 4
1663 	};
1664 	int err;
1665 
1666 	IPW_DEBUG_HC("START_SCAN\n");
1667 
1668 	cmd.host_command_parameters[0] = 0;
1669 
1670 	/* No scanning if in monitor mode */
1671 	if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1672 		return 1;
1673 
1674 	if (priv->status & STATUS_SCANNING) {
1675 		IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1676 		return 0;
1677 	}
1678 
1679 	IPW_DEBUG_INFO("enter\n");
1680 
1681 	/* Not clearing here; doing so makes iwlist always return nothing...
1682 	 *
1683 	 * We should modify the table logic to use aging tables vs. clearing
1684 	 * the table on each scan start.
1685 	 */
1686 	IPW_DEBUG_SCAN("starting scan\n");
1687 
1688 	priv->status |= STATUS_SCANNING;
1689 	err = ipw2100_hw_send_command(priv, &cmd);
1690 	if (err)
1691 		priv->status &= ~STATUS_SCANNING;
1692 
1693 	IPW_DEBUG_INFO("exit\n");
1694 
1695 	return err;
1696 }
1697 
1698 static const struct libipw_geo ipw_geos[] = {
1699 	{			/* Restricted */
1700 	 "---",
1701 	 .bg_channels = 14,
1702 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1703 		{2427, 4}, {2432, 5}, {2437, 6},
1704 		{2442, 7}, {2447, 8}, {2452, 9},
1705 		{2457, 10}, {2462, 11}, {2467, 12},
1706 		{2472, 13}, {2484, 14}},
1707 	 },
1708 };
1709 
1710 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1711 {
1712 	unsigned long flags;
1713 	int err = 0;
1714 	u32 lock;
1715 	u32 ord_len = sizeof(lock);
1716 
1717 	/* Age scan list entries found before suspend */
1718 	if (priv->suspend_time) {
1719 		libipw_networks_age(priv->ieee, priv->suspend_time);
1720 		priv->suspend_time = 0;
1721 	}
1722 
1723 	/* Quiet if manually disabled. */
1724 	if (priv->status & STATUS_RF_KILL_SW) {
1725 		IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1726 			       "switch\n", priv->net_dev->name);
1727 		return 0;
1728 	}
1729 
1730 	/* the ipw2100 hardware really doesn't want power management delays
1731 	 * longer than 175usec
1732 	 */
1733 	pm_qos_update_request(&ipw2100_pm_qos_req, 175);
1734 
1735 	/* If the interrupt is enabled, turn it off... */
1736 	spin_lock_irqsave(&priv->low_lock, flags);
1737 	ipw2100_disable_interrupts(priv);
1738 
1739 	/* Reset any fatal_error conditions */
1740 	ipw2100_reset_fatalerror(priv);
1741 	spin_unlock_irqrestore(&priv->low_lock, flags);
1742 
1743 	if (priv->status & STATUS_POWERED ||
1744 	    (priv->status & STATUS_RESET_PENDING)) {
1745 		/* Power cycle the card ... */
1746 		err = ipw2100_power_cycle_adapter(priv);
1747 		if (err) {
1748 			printk(KERN_WARNING DRV_NAME
1749 			       ": %s: Could not cycle adapter.\n",
1750 			       priv->net_dev->name);
1751 			goto exit;
1752 		}
1753 	} else
1754 		priv->status |= STATUS_POWERED;
1755 
1756 	/* Load the firmware, start the clocks, etc. */
1757 	err = ipw2100_start_adapter(priv);
1758 	if (err) {
1759 		printk(KERN_ERR DRV_NAME
1760 		       ": %s: Failed to start the firmware.\n",
1761 		       priv->net_dev->name);
1762 		goto exit;
1763 	}
1764 
1765 	ipw2100_initialize_ordinals(priv);
1766 
1767 	/* Determine capabilities of this particular HW configuration */
1768 	err = ipw2100_get_hw_features(priv);
1769 	if (err) {
1770 		printk(KERN_ERR DRV_NAME
1771 		       ": %s: Failed to determine HW features.\n",
1772 		       priv->net_dev->name);
1773 		goto exit;
1774 	}
1775 
1776 	/* Initialize the geo */
1777 	libipw_set_geo(priv->ieee, &ipw_geos[0]);
1778 	priv->ieee->freq_band = LIBIPW_24GHZ_BAND;
1779 
1780 	lock = LOCK_NONE;
1781 	err = ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len);
1782 	if (err) {
1783 		printk(KERN_ERR DRV_NAME
1784 		       ": %s: Failed to clear ordinal lock.\n",
1785 		       priv->net_dev->name);
1786 		goto exit;
1787 	}
1788 
1789 	priv->status &= ~STATUS_SCANNING;
1790 
1791 	if (rf_kill_active(priv)) {
1792 		printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1793 		       priv->net_dev->name);
1794 
1795 		if (priv->stop_rf_kill) {
1796 			priv->stop_rf_kill = 0;
1797 			schedule_delayed_work(&priv->rf_kill,
1798 					      round_jiffies_relative(HZ));
1799 		}
1800 
1801 		deferred = 1;
1802 	}
1803 
1804 	/* Turn on the interrupt so that commands can be processed */
1805 	ipw2100_enable_interrupts(priv);
1806 
1807 	/* Send all of the commands that must be sent prior to
1808 	 * HOST_COMPLETE */
1809 	err = ipw2100_adapter_setup(priv);
1810 	if (err) {
1811 		printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1812 		       priv->net_dev->name);
1813 		goto exit;
1814 	}
1815 
1816 	if (!deferred) {
1817 		/* Enable the adapter - sends HOST_COMPLETE */
1818 		err = ipw2100_enable_adapter(priv);
1819 		if (err) {
1820 			printk(KERN_ERR DRV_NAME ": "
1821 			       "%s: failed in call to enable adapter.\n",
1822 			       priv->net_dev->name);
1823 			ipw2100_hw_stop_adapter(priv);
1824 			goto exit;
1825 		}
1826 
1827 		/* Start a scan . . . */
1828 		ipw2100_set_scan_options(priv);
1829 		ipw2100_start_scan(priv);
1830 	}
1831 
1832       exit:
1833 	return err;
1834 }
1835 
1836 static void ipw2100_down(struct ipw2100_priv *priv)
1837 {
1838 	unsigned long flags;
1839 	union iwreq_data wrqu = {
1840 		.ap_addr = {
1841 			    .sa_family = ARPHRD_ETHER}
1842 	};
1843 	int associated = priv->status & STATUS_ASSOCIATED;
1844 
1845 	/* Kill the RF switch timer */
1846 	if (!priv->stop_rf_kill) {
1847 		priv->stop_rf_kill = 1;
1848 		cancel_delayed_work(&priv->rf_kill);
1849 	}
1850 
1851 	/* Kill the firmware hang check timer */
1852 	if (!priv->stop_hang_check) {
1853 		priv->stop_hang_check = 1;
1854 		cancel_delayed_work(&priv->hang_check);
1855 	}
1856 
1857 	/* Kill any pending resets */
1858 	if (priv->status & STATUS_RESET_PENDING)
1859 		cancel_delayed_work(&priv->reset_work);
1860 
1861 	/* Make sure the interrupt is on so that FW commands will be
1862 	 * processed correctly */
1863 	spin_lock_irqsave(&priv->low_lock, flags);
1864 	ipw2100_enable_interrupts(priv);
1865 	spin_unlock_irqrestore(&priv->low_lock, flags);
1866 
1867 	if (ipw2100_hw_stop_adapter(priv))
1868 		printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1869 		       priv->net_dev->name);
1870 
1871 	/* Do not disable the interrupt until _after_ we disable
1872 	 * the adaptor.  Otherwise the CARD_DISABLE command will never
1873 	 * be ack'd by the firmware */
1874 	spin_lock_irqsave(&priv->low_lock, flags);
1875 	ipw2100_disable_interrupts(priv);
1876 	spin_unlock_irqrestore(&priv->low_lock, flags);
1877 
1878 	pm_qos_update_request(&ipw2100_pm_qos_req, PM_QOS_DEFAULT_VALUE);
1879 
1880 	/* We have to signal any supplicant if we are disassociating */
1881 	if (associated)
1882 		wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1883 
1884 	priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1885 	netif_carrier_off(priv->net_dev);
1886 	netif_stop_queue(priv->net_dev);
1887 }
1888 
1889 static int ipw2100_wdev_init(struct net_device *dev)
1890 {
1891 	struct ipw2100_priv *priv = libipw_priv(dev);
1892 	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1893 	struct wireless_dev *wdev = &priv->ieee->wdev;
1894 	int i;
1895 
1896 	memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
1897 
1898 	/* fill-out priv->ieee->bg_band */
1899 	if (geo->bg_channels) {
1900 		struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
1901 
1902 		bg_band->band = NL80211_BAND_2GHZ;
1903 		bg_band->n_channels = geo->bg_channels;
1904 		bg_band->channels = kcalloc(geo->bg_channels,
1905 					    sizeof(struct ieee80211_channel),
1906 					    GFP_KERNEL);
1907 		if (!bg_band->channels) {
1908 			ipw2100_down(priv);
1909 			return -ENOMEM;
1910 		}
1911 		/* translate geo->bg to bg_band.channels */
1912 		for (i = 0; i < geo->bg_channels; i++) {
1913 			bg_band->channels[i].band = NL80211_BAND_2GHZ;
1914 			bg_band->channels[i].center_freq = geo->bg[i].freq;
1915 			bg_band->channels[i].hw_value = geo->bg[i].channel;
1916 			bg_band->channels[i].max_power = geo->bg[i].max_power;
1917 			if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
1918 				bg_band->channels[i].flags |=
1919 					IEEE80211_CHAN_NO_IR;
1920 			if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
1921 				bg_band->channels[i].flags |=
1922 					IEEE80211_CHAN_NO_IR;
1923 			if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
1924 				bg_band->channels[i].flags |=
1925 					IEEE80211_CHAN_RADAR;
1926 			/* No equivalent for LIBIPW_CH_80211H_RULES,
1927 			   LIBIPW_CH_UNIFORM_SPREADING, or
1928 			   LIBIPW_CH_B_ONLY... */
1929 		}
1930 		/* point at bitrate info */
1931 		bg_band->bitrates = ipw2100_bg_rates;
1932 		bg_band->n_bitrates = RATE_COUNT;
1933 
1934 		wdev->wiphy->bands[NL80211_BAND_2GHZ] = bg_band;
1935 	}
1936 
1937 	wdev->wiphy->cipher_suites = ipw_cipher_suites;
1938 	wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
1939 
1940 	set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
1941 	if (wiphy_register(wdev->wiphy))
1942 		return -EIO;
1943 	return 0;
1944 }
1945 
1946 static void ipw2100_reset_adapter(struct work_struct *work)
1947 {
1948 	struct ipw2100_priv *priv =
1949 		container_of(work, struct ipw2100_priv, reset_work.work);
1950 	unsigned long flags;
1951 	union iwreq_data wrqu = {
1952 		.ap_addr = {
1953 			    .sa_family = ARPHRD_ETHER}
1954 	};
1955 	int associated = priv->status & STATUS_ASSOCIATED;
1956 
1957 	spin_lock_irqsave(&priv->low_lock, flags);
1958 	IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1959 	priv->resets++;
1960 	priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1961 	priv->status |= STATUS_SECURITY_UPDATED;
1962 
1963 	/* Force a power cycle even if interface hasn't been opened
1964 	 * yet */
1965 	cancel_delayed_work(&priv->reset_work);
1966 	priv->status |= STATUS_RESET_PENDING;
1967 	spin_unlock_irqrestore(&priv->low_lock, flags);
1968 
1969 	mutex_lock(&priv->action_mutex);
1970 	/* stop timed checks so that they don't interfere with reset */
1971 	priv->stop_hang_check = 1;
1972 	cancel_delayed_work(&priv->hang_check);
1973 
1974 	/* We have to signal any supplicant if we are disassociating */
1975 	if (associated)
1976 		wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1977 
1978 	ipw2100_up(priv, 0);
1979 	mutex_unlock(&priv->action_mutex);
1980 
1981 }
1982 
1983 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1984 {
1985 
1986 #define MAC_ASSOCIATION_READ_DELAY (HZ)
1987 	int ret;
1988 	unsigned int len, essid_len;
1989 	char essid[IW_ESSID_MAX_SIZE];
1990 	u32 txrate;
1991 	u32 chan;
1992 	char *txratename;
1993 	u8 bssid[ETH_ALEN];
1994 
1995 	/*
1996 	 * TBD: BSSID is usually 00:00:00:00:00:00 here and not
1997 	 *      an actual MAC of the AP. Seems like FW sets this
1998 	 *      address too late. Read it later and expose through
1999 	 *      /proc or schedule a later task to query and update
2000 	 */
2001 
2002 	essid_len = IW_ESSID_MAX_SIZE;
2003 	ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
2004 				  essid, &essid_len);
2005 	if (ret) {
2006 		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2007 			       __LINE__);
2008 		return;
2009 	}
2010 
2011 	len = sizeof(u32);
2012 	ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
2013 	if (ret) {
2014 		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2015 			       __LINE__);
2016 		return;
2017 	}
2018 
2019 	len = sizeof(u32);
2020 	ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
2021 	if (ret) {
2022 		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2023 			       __LINE__);
2024 		return;
2025 	}
2026 	len = ETH_ALEN;
2027 	ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, bssid,
2028 				  &len);
2029 	if (ret) {
2030 		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2031 			       __LINE__);
2032 		return;
2033 	}
2034 	memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
2035 
2036 	switch (txrate) {
2037 	case TX_RATE_1_MBIT:
2038 		txratename = "1Mbps";
2039 		break;
2040 	case TX_RATE_2_MBIT:
2041 		txratename = "2Mbsp";
2042 		break;
2043 	case TX_RATE_5_5_MBIT:
2044 		txratename = "5.5Mbps";
2045 		break;
2046 	case TX_RATE_11_MBIT:
2047 		txratename = "11Mbps";
2048 		break;
2049 	default:
2050 		IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
2051 		txratename = "unknown rate";
2052 		break;
2053 	}
2054 
2055 	IPW_DEBUG_INFO("%s: Associated with '%*pE' at %s, channel %d (BSSID=%pM)\n",
2056 		       priv->net_dev->name, essid_len, essid,
2057 		       txratename, chan, bssid);
2058 
2059 	/* now we copy read ssid into dev */
2060 	if (!(priv->config & CFG_STATIC_ESSID)) {
2061 		priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
2062 		memcpy(priv->essid, essid, priv->essid_len);
2063 	}
2064 	priv->channel = chan;
2065 	memcpy(priv->bssid, bssid, ETH_ALEN);
2066 
2067 	priv->status |= STATUS_ASSOCIATING;
2068 	priv->connect_start = ktime_get_boottime_seconds();
2069 
2070 	schedule_delayed_work(&priv->wx_event_work, HZ / 10);
2071 }
2072 
2073 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2074 			     int length, int batch_mode)
2075 {
2076 	int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2077 	struct host_command cmd = {
2078 		.host_command = SSID,
2079 		.host_command_sequence = 0,
2080 		.host_command_length = ssid_len
2081 	};
2082 	int err;
2083 
2084 	IPW_DEBUG_HC("SSID: '%*pE'\n", ssid_len, essid);
2085 
2086 	if (ssid_len)
2087 		memcpy(cmd.host_command_parameters, essid, ssid_len);
2088 
2089 	if (!batch_mode) {
2090 		err = ipw2100_disable_adapter(priv);
2091 		if (err)
2092 			return err;
2093 	}
2094 
2095 	/* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2096 	 * disable auto association -- so we cheat by setting a bogus SSID */
2097 	if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2098 		int i;
2099 		u8 *bogus = (u8 *) cmd.host_command_parameters;
2100 		for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2101 			bogus[i] = 0x18 + i;
2102 		cmd.host_command_length = IW_ESSID_MAX_SIZE;
2103 	}
2104 
2105 	/* NOTE:  We always send the SSID command even if the provided ESSID is
2106 	 * the same as what we currently think is set. */
2107 
2108 	err = ipw2100_hw_send_command(priv, &cmd);
2109 	if (!err) {
2110 		memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2111 		memcpy(priv->essid, essid, ssid_len);
2112 		priv->essid_len = ssid_len;
2113 	}
2114 
2115 	if (!batch_mode) {
2116 		if (ipw2100_enable_adapter(priv))
2117 			err = -EIO;
2118 	}
2119 
2120 	return err;
2121 }
2122 
2123 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2124 {
2125 	IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2126 		  "disassociated: '%*pE' %pM\n", priv->essid_len, priv->essid,
2127 		  priv->bssid);
2128 
2129 	priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2130 
2131 	if (priv->status & STATUS_STOPPING) {
2132 		IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2133 		return;
2134 	}
2135 
2136 	eth_zero_addr(priv->bssid);
2137 	eth_zero_addr(priv->ieee->bssid);
2138 
2139 	netif_carrier_off(priv->net_dev);
2140 	netif_stop_queue(priv->net_dev);
2141 
2142 	if (!(priv->status & STATUS_RUNNING))
2143 		return;
2144 
2145 	if (priv->status & STATUS_SECURITY_UPDATED)
2146 		schedule_delayed_work(&priv->security_work, 0);
2147 
2148 	schedule_delayed_work(&priv->wx_event_work, 0);
2149 }
2150 
2151 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2152 {
2153 	IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2154 		       priv->net_dev->name);
2155 
2156 	/* RF_KILL is now enabled (else we wouldn't be here) */
2157 	wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2158 	priv->status |= STATUS_RF_KILL_HW;
2159 
2160 	/* Make sure the RF Kill check timer is running */
2161 	priv->stop_rf_kill = 0;
2162 	mod_delayed_work(system_wq, &priv->rf_kill, round_jiffies_relative(HZ));
2163 }
2164 
2165 static void ipw2100_scan_event(struct work_struct *work)
2166 {
2167 	struct ipw2100_priv *priv = container_of(work, struct ipw2100_priv,
2168 						 scan_event.work);
2169 	union iwreq_data wrqu;
2170 
2171 	wrqu.data.length = 0;
2172 	wrqu.data.flags = 0;
2173 	wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
2174 }
2175 
2176 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2177 {
2178 	IPW_DEBUG_SCAN("scan complete\n");
2179 	/* Age the scan results... */
2180 	priv->ieee->scans++;
2181 	priv->status &= ~STATUS_SCANNING;
2182 
2183 	/* Only userspace-requested scan completion events go out immediately */
2184 	if (!priv->user_requested_scan) {
2185 		schedule_delayed_work(&priv->scan_event,
2186 				      round_jiffies_relative(msecs_to_jiffies(4000)));
2187 	} else {
2188 		priv->user_requested_scan = 0;
2189 		mod_delayed_work(system_wq, &priv->scan_event, 0);
2190 	}
2191 }
2192 
2193 #ifdef CONFIG_IPW2100_DEBUG
2194 #define IPW2100_HANDLER(v, f) { v, f, # v }
2195 struct ipw2100_status_indicator {
2196 	int status;
2197 	void (*cb) (struct ipw2100_priv * priv, u32 status);
2198 	char *name;
2199 };
2200 #else
2201 #define IPW2100_HANDLER(v, f) { v, f }
2202 struct ipw2100_status_indicator {
2203 	int status;
2204 	void (*cb) (struct ipw2100_priv * priv, u32 status);
2205 };
2206 #endif				/* CONFIG_IPW2100_DEBUG */
2207 
2208 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2209 {
2210 	IPW_DEBUG_SCAN("Scanning...\n");
2211 	priv->status |= STATUS_SCANNING;
2212 }
2213 
2214 static const struct ipw2100_status_indicator status_handlers[] = {
2215 	IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2216 	IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2217 	IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2218 	IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2219 	IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2220 	IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2221 	IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2222 	IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2223 	IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2224 	IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2225 	IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2226 	IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2227 	IPW2100_HANDLER(-1, NULL)
2228 };
2229 
2230 static void isr_status_change(struct ipw2100_priv *priv, int status)
2231 {
2232 	int i;
2233 
2234 	if (status == IPW_STATE_SCANNING &&
2235 	    priv->status & STATUS_ASSOCIATED &&
2236 	    !(priv->status & STATUS_SCANNING)) {
2237 		IPW_DEBUG_INFO("Scan detected while associated, with "
2238 			       "no scan request.  Restarting firmware.\n");
2239 
2240 		/* Wake up any sleeping jobs */
2241 		schedule_reset(priv);
2242 	}
2243 
2244 	for (i = 0; status_handlers[i].status != -1; i++) {
2245 		if (status == status_handlers[i].status) {
2246 			IPW_DEBUG_NOTIF("Status change: %s\n",
2247 					status_handlers[i].name);
2248 			if (status_handlers[i].cb)
2249 				status_handlers[i].cb(priv, status);
2250 			priv->wstats.status = status;
2251 			return;
2252 		}
2253 	}
2254 
2255 	IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2256 }
2257 
2258 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2259 				    struct ipw2100_cmd_header *cmd)
2260 {
2261 #ifdef CONFIG_IPW2100_DEBUG
2262 	if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2263 		IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2264 			     command_types[cmd->host_command_reg],
2265 			     cmd->host_command_reg);
2266 	}
2267 #endif
2268 	if (cmd->host_command_reg == HOST_COMPLETE)
2269 		priv->status |= STATUS_ENABLED;
2270 
2271 	if (cmd->host_command_reg == CARD_DISABLE)
2272 		priv->status &= ~STATUS_ENABLED;
2273 
2274 	priv->status &= ~STATUS_CMD_ACTIVE;
2275 
2276 	wake_up_interruptible(&priv->wait_command_queue);
2277 }
2278 
2279 #ifdef CONFIG_IPW2100_DEBUG
2280 static const char *frame_types[] = {
2281 	"COMMAND_STATUS_VAL",
2282 	"STATUS_CHANGE_VAL",
2283 	"P80211_DATA_VAL",
2284 	"P8023_DATA_VAL",
2285 	"HOST_NOTIFICATION_VAL"
2286 };
2287 #endif
2288 
2289 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2290 				    struct ipw2100_rx_packet *packet)
2291 {
2292 	packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2293 	if (!packet->skb)
2294 		return -ENOMEM;
2295 
2296 	packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2297 	packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2298 					  sizeof(struct ipw2100_rx),
2299 					  PCI_DMA_FROMDEVICE);
2300 	if (pci_dma_mapping_error(priv->pci_dev, packet->dma_addr)) {
2301 		dev_kfree_skb(packet->skb);
2302 		return -ENOMEM;
2303 	}
2304 
2305 	return 0;
2306 }
2307 
2308 #define SEARCH_ERROR   0xffffffff
2309 #define SEARCH_FAIL    0xfffffffe
2310 #define SEARCH_SUCCESS 0xfffffff0
2311 #define SEARCH_DISCARD 0
2312 #define SEARCH_SNAPSHOT 1
2313 
2314 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2315 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2316 {
2317 	int i;
2318 	if (!priv->snapshot[0])
2319 		return;
2320 	for (i = 0; i < 0x30; i++)
2321 		kfree(priv->snapshot[i]);
2322 	priv->snapshot[0] = NULL;
2323 }
2324 
2325 #ifdef IPW2100_DEBUG_C3
2326 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2327 {
2328 	int i;
2329 	if (priv->snapshot[0])
2330 		return 1;
2331 	for (i = 0; i < 0x30; i++) {
2332 		priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2333 		if (!priv->snapshot[i]) {
2334 			IPW_DEBUG_INFO("%s: Error allocating snapshot "
2335 				       "buffer %d\n", priv->net_dev->name, i);
2336 			while (i > 0)
2337 				kfree(priv->snapshot[--i]);
2338 			priv->snapshot[0] = NULL;
2339 			return 0;
2340 		}
2341 	}
2342 
2343 	return 1;
2344 }
2345 
2346 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2347 				    size_t len, int mode)
2348 {
2349 	u32 i, j;
2350 	u32 tmp;
2351 	u8 *s, *d;
2352 	u32 ret;
2353 
2354 	s = in_buf;
2355 	if (mode == SEARCH_SNAPSHOT) {
2356 		if (!ipw2100_snapshot_alloc(priv))
2357 			mode = SEARCH_DISCARD;
2358 	}
2359 
2360 	for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2361 		read_nic_dword(priv->net_dev, i, &tmp);
2362 		if (mode == SEARCH_SNAPSHOT)
2363 			*(u32 *) SNAPSHOT_ADDR(i) = tmp;
2364 		if (ret == SEARCH_FAIL) {
2365 			d = (u8 *) & tmp;
2366 			for (j = 0; j < 4; j++) {
2367 				if (*s != *d) {
2368 					s = in_buf;
2369 					continue;
2370 				}
2371 
2372 				s++;
2373 				d++;
2374 
2375 				if ((s - in_buf) == len)
2376 					ret = (i + j) - len + 1;
2377 			}
2378 		} else if (mode == SEARCH_DISCARD)
2379 			return ret;
2380 	}
2381 
2382 	return ret;
2383 }
2384 #endif
2385 
2386 /*
2387  *
2388  * 0) Disconnect the SKB from the firmware (just unmap)
2389  * 1) Pack the ETH header into the SKB
2390  * 2) Pass the SKB to the network stack
2391  *
2392  * When packet is provided by the firmware, it contains the following:
2393  *
2394  * .  libipw_hdr
2395  * .  libipw_snap_hdr
2396  *
2397  * The size of the constructed ethernet
2398  *
2399  */
2400 #ifdef IPW2100_RX_DEBUG
2401 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2402 #endif
2403 
2404 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2405 {
2406 #ifdef IPW2100_DEBUG_C3
2407 	struct ipw2100_status *status = &priv->status_queue.drv[i];
2408 	u32 match, reg;
2409 	int j;
2410 #endif
2411 
2412 	IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2413 		       i * sizeof(struct ipw2100_status));
2414 
2415 #ifdef IPW2100_DEBUG_C3
2416 	/* Halt the firmware so we can get a good image */
2417 	write_register(priv->net_dev, IPW_REG_RESET_REG,
2418 		       IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2419 	j = 5;
2420 	do {
2421 		udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2422 		read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2423 
2424 		if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2425 			break;
2426 	} while (j--);
2427 
2428 	match = ipw2100_match_buf(priv, (u8 *) status,
2429 				  sizeof(struct ipw2100_status),
2430 				  SEARCH_SNAPSHOT);
2431 	if (match < SEARCH_SUCCESS)
2432 		IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2433 			       "offset 0x%06X, length %d:\n",
2434 			       priv->net_dev->name, match,
2435 			       sizeof(struct ipw2100_status));
2436 	else
2437 		IPW_DEBUG_INFO("%s: No DMA status match in "
2438 			       "Firmware.\n", priv->net_dev->name);
2439 
2440 	printk_buf((u8 *) priv->status_queue.drv,
2441 		   sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2442 #endif
2443 
2444 	priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2445 	priv->net_dev->stats.rx_errors++;
2446 	schedule_reset(priv);
2447 }
2448 
2449 static void isr_rx(struct ipw2100_priv *priv, int i,
2450 			  struct libipw_rx_stats *stats)
2451 {
2452 	struct net_device *dev = priv->net_dev;
2453 	struct ipw2100_status *status = &priv->status_queue.drv[i];
2454 	struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2455 
2456 	IPW_DEBUG_RX("Handler...\n");
2457 
2458 	if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2459 		IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2460 			       "  Dropping.\n",
2461 			       dev->name,
2462 			       status->frame_size, skb_tailroom(packet->skb));
2463 		dev->stats.rx_errors++;
2464 		return;
2465 	}
2466 
2467 	if (unlikely(!netif_running(dev))) {
2468 		dev->stats.rx_errors++;
2469 		priv->wstats.discard.misc++;
2470 		IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2471 		return;
2472 	}
2473 
2474 	if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2475 		     !(priv->status & STATUS_ASSOCIATED))) {
2476 		IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2477 		priv->wstats.discard.misc++;
2478 		return;
2479 	}
2480 
2481 	pci_unmap_single(priv->pci_dev,
2482 			 packet->dma_addr,
2483 			 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2484 
2485 	skb_put(packet->skb, status->frame_size);
2486 
2487 #ifdef IPW2100_RX_DEBUG
2488 	/* Make a copy of the frame so we can dump it to the logs if
2489 	 * libipw_rx fails */
2490 	skb_copy_from_linear_data(packet->skb, packet_data,
2491 				  min_t(u32, status->frame_size,
2492 					     IPW_RX_NIC_BUFFER_LENGTH));
2493 #endif
2494 
2495 	if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2496 #ifdef IPW2100_RX_DEBUG
2497 		IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2498 			       dev->name);
2499 		printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2500 #endif
2501 		dev->stats.rx_errors++;
2502 
2503 		/* libipw_rx failed, so it didn't free the SKB */
2504 		dev_kfree_skb_any(packet->skb);
2505 		packet->skb = NULL;
2506 	}
2507 
2508 	/* We need to allocate a new SKB and attach it to the RDB. */
2509 	if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2510 		printk(KERN_WARNING DRV_NAME ": "
2511 		       "%s: Unable to allocate SKB onto RBD ring - disabling "
2512 		       "adapter.\n", dev->name);
2513 		/* TODO: schedule adapter shutdown */
2514 		IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2515 	}
2516 
2517 	/* Update the RDB entry */
2518 	priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2519 }
2520 
2521 #ifdef CONFIG_IPW2100_MONITOR
2522 
2523 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2524 		   struct libipw_rx_stats *stats)
2525 {
2526 	struct net_device *dev = priv->net_dev;
2527 	struct ipw2100_status *status = &priv->status_queue.drv[i];
2528 	struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2529 
2530 	/* Magic struct that slots into the radiotap header -- no reason
2531 	 * to build this manually element by element, we can write it much
2532 	 * more efficiently than we can parse it. ORDER MATTERS HERE */
2533 	struct ipw_rt_hdr {
2534 		struct ieee80211_radiotap_header rt_hdr;
2535 		s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2536 	} *ipw_rt;
2537 
2538 	IPW_DEBUG_RX("Handler...\n");
2539 
2540 	if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2541 				sizeof(struct ipw_rt_hdr))) {
2542 		IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2543 			       "  Dropping.\n",
2544 			       dev->name,
2545 			       status->frame_size,
2546 			       skb_tailroom(packet->skb));
2547 		dev->stats.rx_errors++;
2548 		return;
2549 	}
2550 
2551 	if (unlikely(!netif_running(dev))) {
2552 		dev->stats.rx_errors++;
2553 		priv->wstats.discard.misc++;
2554 		IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2555 		return;
2556 	}
2557 
2558 	if (unlikely(priv->config & CFG_CRC_CHECK &&
2559 		     status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2560 		IPW_DEBUG_RX("CRC error in packet.  Dropping.\n");
2561 		dev->stats.rx_errors++;
2562 		return;
2563 	}
2564 
2565 	pci_unmap_single(priv->pci_dev, packet->dma_addr,
2566 			 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2567 	memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2568 		packet->skb->data, status->frame_size);
2569 
2570 	ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2571 
2572 	ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2573 	ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2574 	ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */
2575 
2576 	ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
2577 
2578 	ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2579 
2580 	skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2581 
2582 	if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2583 		dev->stats.rx_errors++;
2584 
2585 		/* libipw_rx failed, so it didn't free the SKB */
2586 		dev_kfree_skb_any(packet->skb);
2587 		packet->skb = NULL;
2588 	}
2589 
2590 	/* We need to allocate a new SKB and attach it to the RDB. */
2591 	if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2592 		IPW_DEBUG_WARNING(
2593 			"%s: Unable to allocate SKB onto RBD ring - disabling "
2594 			"adapter.\n", dev->name);
2595 		/* TODO: schedule adapter shutdown */
2596 		IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2597 	}
2598 
2599 	/* Update the RDB entry */
2600 	priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2601 }
2602 
2603 #endif
2604 
2605 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2606 {
2607 	struct ipw2100_status *status = &priv->status_queue.drv[i];
2608 	struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2609 	u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2610 
2611 	switch (frame_type) {
2612 	case COMMAND_STATUS_VAL:
2613 		return (status->frame_size != sizeof(u->rx_data.command));
2614 	case STATUS_CHANGE_VAL:
2615 		return (status->frame_size != sizeof(u->rx_data.status));
2616 	case HOST_NOTIFICATION_VAL:
2617 		return (status->frame_size < sizeof(u->rx_data.notification));
2618 	case P80211_DATA_VAL:
2619 	case P8023_DATA_VAL:
2620 #ifdef CONFIG_IPW2100_MONITOR
2621 		return 0;
2622 #else
2623 		switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2624 		case IEEE80211_FTYPE_MGMT:
2625 		case IEEE80211_FTYPE_CTL:
2626 			return 0;
2627 		case IEEE80211_FTYPE_DATA:
2628 			return (status->frame_size >
2629 				IPW_MAX_802_11_PAYLOAD_LENGTH);
2630 		}
2631 #endif
2632 	}
2633 
2634 	return 1;
2635 }
2636 
2637 /*
2638  * ipw2100 interrupts are disabled at this point, and the ISR
2639  * is the only code that calls this method.  So, we do not need
2640  * to play with any locks.
2641  *
2642  * RX Queue works as follows:
2643  *
2644  * Read index - firmware places packet in entry identified by the
2645  *              Read index and advances Read index.  In this manner,
2646  *              Read index will always point to the next packet to
2647  *              be filled--but not yet valid.
2648  *
2649  * Write index - driver fills this entry with an unused RBD entry.
2650  *               This entry has not filled by the firmware yet.
2651  *
2652  * In between the W and R indexes are the RBDs that have been received
2653  * but not yet processed.
2654  *
2655  * The process of handling packets will start at WRITE + 1 and advance
2656  * until it reaches the READ index.
2657  *
2658  * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2659  *
2660  */
2661 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2662 {
2663 	struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2664 	struct ipw2100_status_queue *sq = &priv->status_queue;
2665 	struct ipw2100_rx_packet *packet;
2666 	u16 frame_type;
2667 	u32 r, w, i, s;
2668 	struct ipw2100_rx *u;
2669 	struct libipw_rx_stats stats = {
2670 		.mac_time = jiffies,
2671 	};
2672 
2673 	read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2674 	read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2675 
2676 	if (r >= rxq->entries) {
2677 		IPW_DEBUG_RX("exit - bad read index\n");
2678 		return;
2679 	}
2680 
2681 	i = (rxq->next + 1) % rxq->entries;
2682 	s = i;
2683 	while (i != r) {
2684 		/* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2685 		   r, rxq->next, i); */
2686 
2687 		packet = &priv->rx_buffers[i];
2688 
2689 		/* Sync the DMA for the RX buffer so CPU is sure to get
2690 		 * the correct values */
2691 		pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2692 					    sizeof(struct ipw2100_rx),
2693 					    PCI_DMA_FROMDEVICE);
2694 
2695 		if (unlikely(ipw2100_corruption_check(priv, i))) {
2696 			ipw2100_corruption_detected(priv, i);
2697 			goto increment;
2698 		}
2699 
2700 		u = packet->rxp;
2701 		frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2702 		stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2703 		stats.len = sq->drv[i].frame_size;
2704 
2705 		stats.mask = 0;
2706 		if (stats.rssi != 0)
2707 			stats.mask |= LIBIPW_STATMASK_RSSI;
2708 		stats.freq = LIBIPW_24GHZ_BAND;
2709 
2710 		IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2711 			     priv->net_dev->name, frame_types[frame_type],
2712 			     stats.len);
2713 
2714 		switch (frame_type) {
2715 		case COMMAND_STATUS_VAL:
2716 			/* Reset Rx watchdog */
2717 			isr_rx_complete_command(priv, &u->rx_data.command);
2718 			break;
2719 
2720 		case STATUS_CHANGE_VAL:
2721 			isr_status_change(priv, u->rx_data.status);
2722 			break;
2723 
2724 		case P80211_DATA_VAL:
2725 		case P8023_DATA_VAL:
2726 #ifdef CONFIG_IPW2100_MONITOR
2727 			if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2728 				isr_rx_monitor(priv, i, &stats);
2729 				break;
2730 			}
2731 #endif
2732 			if (stats.len < sizeof(struct libipw_hdr_3addr))
2733 				break;
2734 			switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2735 			case IEEE80211_FTYPE_MGMT:
2736 				libipw_rx_mgt(priv->ieee,
2737 						 &u->rx_data.header, &stats);
2738 				break;
2739 
2740 			case IEEE80211_FTYPE_CTL:
2741 				break;
2742 
2743 			case IEEE80211_FTYPE_DATA:
2744 				isr_rx(priv, i, &stats);
2745 				break;
2746 
2747 			}
2748 			break;
2749 		}
2750 
2751 	      increment:
2752 		/* clear status field associated with this RBD */
2753 		rxq->drv[i].status.info.field = 0;
2754 
2755 		i = (i + 1) % rxq->entries;
2756 	}
2757 
2758 	if (i != s) {
2759 		/* backtrack one entry, wrapping to end if at 0 */
2760 		rxq->next = (i ? i : rxq->entries) - 1;
2761 
2762 		write_register(priv->net_dev,
2763 			       IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2764 	}
2765 }
2766 
2767 /*
2768  * __ipw2100_tx_process
2769  *
2770  * This routine will determine whether the next packet on
2771  * the fw_pend_list has been processed by the firmware yet.
2772  *
2773  * If not, then it does nothing and returns.
2774  *
2775  * If so, then it removes the item from the fw_pend_list, frees
2776  * any associated storage, and places the item back on the
2777  * free list of its source (either msg_free_list or tx_free_list)
2778  *
2779  * TX Queue works as follows:
2780  *
2781  * Read index - points to the next TBD that the firmware will
2782  *              process.  The firmware will read the data, and once
2783  *              done processing, it will advance the Read index.
2784  *
2785  * Write index - driver fills this entry with an constructed TBD
2786  *               entry.  The Write index is not advanced until the
2787  *               packet has been configured.
2788  *
2789  * In between the W and R indexes are the TBDs that have NOT been
2790  * processed.  Lagging behind the R index are packets that have
2791  * been processed but have not been freed by the driver.
2792  *
2793  * In order to free old storage, an internal index will be maintained
2794  * that points to the next packet to be freed.  When all used
2795  * packets have been freed, the oldest index will be the same as the
2796  * firmware's read index.
2797  *
2798  * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2799  *
2800  * Because the TBD structure can not contain arbitrary data, the
2801  * driver must keep an internal queue of cached allocations such that
2802  * it can put that data back into the tx_free_list and msg_free_list
2803  * for use by future command and data packets.
2804  *
2805  */
2806 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2807 {
2808 	struct ipw2100_bd_queue *txq = &priv->tx_queue;
2809 	struct ipw2100_bd *tbd;
2810 	struct list_head *element;
2811 	struct ipw2100_tx_packet *packet;
2812 	int descriptors_used;
2813 	int e, i;
2814 	u32 r, w, frag_num = 0;
2815 
2816 	if (list_empty(&priv->fw_pend_list))
2817 		return 0;
2818 
2819 	element = priv->fw_pend_list.next;
2820 
2821 	packet = list_entry(element, struct ipw2100_tx_packet, list);
2822 	tbd = &txq->drv[packet->index];
2823 
2824 	/* Determine how many TBD entries must be finished... */
2825 	switch (packet->type) {
2826 	case COMMAND:
2827 		/* COMMAND uses only one slot; don't advance */
2828 		descriptors_used = 1;
2829 		e = txq->oldest;
2830 		break;
2831 
2832 	case DATA:
2833 		/* DATA uses two slots; advance and loop position. */
2834 		descriptors_used = tbd->num_fragments;
2835 		frag_num = tbd->num_fragments - 1;
2836 		e = txq->oldest + frag_num;
2837 		e %= txq->entries;
2838 		break;
2839 
2840 	default:
2841 		printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2842 		       priv->net_dev->name);
2843 		return 0;
2844 	}
2845 
2846 	/* if the last TBD is not done by NIC yet, then packet is
2847 	 * not ready to be released.
2848 	 *
2849 	 */
2850 	read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2851 		      &r);
2852 	read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2853 		      &w);
2854 	if (w != txq->next)
2855 		printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2856 		       priv->net_dev->name);
2857 
2858 	/*
2859 	 * txq->next is the index of the last packet written txq->oldest is
2860 	 * the index of the r is the index of the next packet to be read by
2861 	 * firmware
2862 	 */
2863 
2864 	/*
2865 	 * Quick graphic to help you visualize the following
2866 	 * if / else statement
2867 	 *
2868 	 * ===>|                     s---->|===============
2869 	 *                               e>|
2870 	 * | a | b | c | d | e | f | g | h | i | j | k | l
2871 	 *       r---->|
2872 	 *               w
2873 	 *
2874 	 * w - updated by driver
2875 	 * r - updated by firmware
2876 	 * s - start of oldest BD entry (txq->oldest)
2877 	 * e - end of oldest BD entry
2878 	 *
2879 	 */
2880 	if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2881 		IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2882 		return 0;
2883 	}
2884 
2885 	list_del(element);
2886 	DEC_STAT(&priv->fw_pend_stat);
2887 
2888 #ifdef CONFIG_IPW2100_DEBUG
2889 	{
2890 		i = txq->oldest;
2891 		IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2892 			     &txq->drv[i],
2893 			     (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2894 			     txq->drv[i].host_addr, txq->drv[i].buf_length);
2895 
2896 		if (packet->type == DATA) {
2897 			i = (i + 1) % txq->entries;
2898 
2899 			IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2900 				     &txq->drv[i],
2901 				     (u32) (txq->nic + i *
2902 					    sizeof(struct ipw2100_bd)),
2903 				     (u32) txq->drv[i].host_addr,
2904 				     txq->drv[i].buf_length);
2905 		}
2906 	}
2907 #endif
2908 
2909 	switch (packet->type) {
2910 	case DATA:
2911 		if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2912 			printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2913 			       "Expecting DATA TBD but pulled "
2914 			       "something else: ids %d=%d.\n",
2915 			       priv->net_dev->name, txq->oldest, packet->index);
2916 
2917 		/* DATA packet; we have to unmap and free the SKB */
2918 		for (i = 0; i < frag_num; i++) {
2919 			tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2920 
2921 			IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2922 				     (packet->index + 1 + i) % txq->entries,
2923 				     tbd->host_addr, tbd->buf_length);
2924 
2925 			pci_unmap_single(priv->pci_dev,
2926 					 tbd->host_addr,
2927 					 tbd->buf_length, PCI_DMA_TODEVICE);
2928 		}
2929 
2930 		libipw_txb_free(packet->info.d_struct.txb);
2931 		packet->info.d_struct.txb = NULL;
2932 
2933 		list_add_tail(element, &priv->tx_free_list);
2934 		INC_STAT(&priv->tx_free_stat);
2935 
2936 		/* We have a free slot in the Tx queue, so wake up the
2937 		 * transmit layer if it is stopped. */
2938 		if (priv->status & STATUS_ASSOCIATED)
2939 			netif_wake_queue(priv->net_dev);
2940 
2941 		/* A packet was processed by the hardware, so update the
2942 		 * watchdog */
2943 		netif_trans_update(priv->net_dev);
2944 
2945 		break;
2946 
2947 	case COMMAND:
2948 		if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2949 			printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2950 			       "Expecting COMMAND TBD but pulled "
2951 			       "something else: ids %d=%d.\n",
2952 			       priv->net_dev->name, txq->oldest, packet->index);
2953 
2954 #ifdef CONFIG_IPW2100_DEBUG
2955 		if (packet->info.c_struct.cmd->host_command_reg <
2956 		    ARRAY_SIZE(command_types))
2957 			IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2958 				     command_types[packet->info.c_struct.cmd->
2959 						   host_command_reg],
2960 				     packet->info.c_struct.cmd->
2961 				     host_command_reg,
2962 				     packet->info.c_struct.cmd->cmd_status_reg);
2963 #endif
2964 
2965 		list_add_tail(element, &priv->msg_free_list);
2966 		INC_STAT(&priv->msg_free_stat);
2967 		break;
2968 	}
2969 
2970 	/* advance oldest used TBD pointer to start of next entry */
2971 	txq->oldest = (e + 1) % txq->entries;
2972 	/* increase available TBDs number */
2973 	txq->available += descriptors_used;
2974 	SET_STAT(&priv->txq_stat, txq->available);
2975 
2976 	IPW_DEBUG_TX("packet latency (send to process)  %ld jiffies\n",
2977 		     jiffies - packet->jiffy_start);
2978 
2979 	return (!list_empty(&priv->fw_pend_list));
2980 }
2981 
2982 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2983 {
2984 	int i = 0;
2985 
2986 	while (__ipw2100_tx_process(priv) && i < 200)
2987 		i++;
2988 
2989 	if (i == 200) {
2990 		printk(KERN_WARNING DRV_NAME ": "
2991 		       "%s: Driver is running slow (%d iters).\n",
2992 		       priv->net_dev->name, i);
2993 	}
2994 }
2995 
2996 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
2997 {
2998 	struct list_head *element;
2999 	struct ipw2100_tx_packet *packet;
3000 	struct ipw2100_bd_queue *txq = &priv->tx_queue;
3001 	struct ipw2100_bd *tbd;
3002 	int next = txq->next;
3003 
3004 	while (!list_empty(&priv->msg_pend_list)) {
3005 		/* if there isn't enough space in TBD queue, then
3006 		 * don't stuff a new one in.
3007 		 * NOTE: 3 are needed as a command will take one,
3008 		 *       and there is a minimum of 2 that must be
3009 		 *       maintained between the r and w indexes
3010 		 */
3011 		if (txq->available <= 3) {
3012 			IPW_DEBUG_TX("no room in tx_queue\n");
3013 			break;
3014 		}
3015 
3016 		element = priv->msg_pend_list.next;
3017 		list_del(element);
3018 		DEC_STAT(&priv->msg_pend_stat);
3019 
3020 		packet = list_entry(element, struct ipw2100_tx_packet, list);
3021 
3022 		IPW_DEBUG_TX("using TBD at virt=%p, phys=%04X\n",
3023 			     &txq->drv[txq->next],
3024 			     (u32) (txq->nic + txq->next *
3025 				      sizeof(struct ipw2100_bd)));
3026 
3027 		packet->index = txq->next;
3028 
3029 		tbd = &txq->drv[txq->next];
3030 
3031 		/* initialize TBD */
3032 		tbd->host_addr = packet->info.c_struct.cmd_phys;
3033 		tbd->buf_length = sizeof(struct ipw2100_cmd_header);
3034 		/* not marking number of fragments causes problems
3035 		 * with f/w debug version */
3036 		tbd->num_fragments = 1;
3037 		tbd->status.info.field =
3038 		    IPW_BD_STATUS_TX_FRAME_COMMAND |
3039 		    IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3040 
3041 		/* update TBD queue counters */
3042 		txq->next++;
3043 		txq->next %= txq->entries;
3044 		txq->available--;
3045 		DEC_STAT(&priv->txq_stat);
3046 
3047 		list_add_tail(element, &priv->fw_pend_list);
3048 		INC_STAT(&priv->fw_pend_stat);
3049 	}
3050 
3051 	if (txq->next != next) {
3052 		/* kick off the DMA by notifying firmware the
3053 		 * write index has moved; make sure TBD stores are sync'd */
3054 		wmb();
3055 		write_register(priv->net_dev,
3056 			       IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3057 			       txq->next);
3058 	}
3059 }
3060 
3061 /*
3062  * ipw2100_tx_send_data
3063  *
3064  */
3065 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3066 {
3067 	struct list_head *element;
3068 	struct ipw2100_tx_packet *packet;
3069 	struct ipw2100_bd_queue *txq = &priv->tx_queue;
3070 	struct ipw2100_bd *tbd;
3071 	int next = txq->next;
3072 	int i = 0;
3073 	struct ipw2100_data_header *ipw_hdr;
3074 	struct libipw_hdr_3addr *hdr;
3075 
3076 	while (!list_empty(&priv->tx_pend_list)) {
3077 		/* if there isn't enough space in TBD queue, then
3078 		 * don't stuff a new one in.
3079 		 * NOTE: 4 are needed as a data will take two,
3080 		 *       and there is a minimum of 2 that must be
3081 		 *       maintained between the r and w indexes
3082 		 */
3083 		element = priv->tx_pend_list.next;
3084 		packet = list_entry(element, struct ipw2100_tx_packet, list);
3085 
3086 		if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3087 			     IPW_MAX_BDS)) {
3088 			/* TODO: Support merging buffers if more than
3089 			 * IPW_MAX_BDS are used */
3090 			IPW_DEBUG_INFO("%s: Maximum BD threshold exceeded.  "
3091 				       "Increase fragmentation level.\n",
3092 				       priv->net_dev->name);
3093 		}
3094 
3095 		if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3096 			IPW_DEBUG_TX("no room in tx_queue\n");
3097 			break;
3098 		}
3099 
3100 		list_del(element);
3101 		DEC_STAT(&priv->tx_pend_stat);
3102 
3103 		tbd = &txq->drv[txq->next];
3104 
3105 		packet->index = txq->next;
3106 
3107 		ipw_hdr = packet->info.d_struct.data;
3108 		hdr = (struct libipw_hdr_3addr *)packet->info.d_struct.txb->
3109 		    fragments[0]->data;
3110 
3111 		if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3112 			/* To DS: Addr1 = BSSID, Addr2 = SA,
3113 			   Addr3 = DA */
3114 			memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3115 			memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3116 		} else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3117 			/* not From/To DS: Addr1 = DA, Addr2 = SA,
3118 			   Addr3 = BSSID */
3119 			memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3120 			memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3121 		}
3122 
3123 		ipw_hdr->host_command_reg = SEND;
3124 		ipw_hdr->host_command_reg1 = 0;
3125 
3126 		/* For now we only support host based encryption */
3127 		ipw_hdr->needs_encryption = 0;
3128 		ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3129 		if (packet->info.d_struct.txb->nr_frags > 1)
3130 			ipw_hdr->fragment_size =
3131 			    packet->info.d_struct.txb->frag_size -
3132 			    LIBIPW_3ADDR_LEN;
3133 		else
3134 			ipw_hdr->fragment_size = 0;
3135 
3136 		tbd->host_addr = packet->info.d_struct.data_phys;
3137 		tbd->buf_length = sizeof(struct ipw2100_data_header);
3138 		tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3139 		tbd->status.info.field =
3140 		    IPW_BD_STATUS_TX_FRAME_802_3 |
3141 		    IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3142 		txq->next++;
3143 		txq->next %= txq->entries;
3144 
3145 		IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3146 			     packet->index, tbd->host_addr, tbd->buf_length);
3147 #ifdef CONFIG_IPW2100_DEBUG
3148 		if (packet->info.d_struct.txb->nr_frags > 1)
3149 			IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3150 				       packet->info.d_struct.txb->nr_frags);
3151 #endif
3152 
3153 		for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3154 			tbd = &txq->drv[txq->next];
3155 			if (i == packet->info.d_struct.txb->nr_frags - 1)
3156 				tbd->status.info.field =
3157 				    IPW_BD_STATUS_TX_FRAME_802_3 |
3158 				    IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3159 			else
3160 				tbd->status.info.field =
3161 				    IPW_BD_STATUS_TX_FRAME_802_3 |
3162 				    IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3163 
3164 			tbd->buf_length = packet->info.d_struct.txb->
3165 			    fragments[i]->len - LIBIPW_3ADDR_LEN;
3166 
3167 			tbd->host_addr = pci_map_single(priv->pci_dev,
3168 							packet->info.d_struct.
3169 							txb->fragments[i]->
3170 							data +
3171 							LIBIPW_3ADDR_LEN,
3172 							tbd->buf_length,
3173 							PCI_DMA_TODEVICE);
3174 			if (pci_dma_mapping_error(priv->pci_dev,
3175 						  tbd->host_addr)) {
3176 				IPW_DEBUG_TX("dma mapping error\n");
3177 				break;
3178 			}
3179 
3180 			IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3181 				     txq->next, tbd->host_addr,
3182 				     tbd->buf_length);
3183 
3184 			pci_dma_sync_single_for_device(priv->pci_dev,
3185 						       tbd->host_addr,
3186 						       tbd->buf_length,
3187 						       PCI_DMA_TODEVICE);
3188 
3189 			txq->next++;
3190 			txq->next %= txq->entries;
3191 		}
3192 
3193 		txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3194 		SET_STAT(&priv->txq_stat, txq->available);
3195 
3196 		list_add_tail(element, &priv->fw_pend_list);
3197 		INC_STAT(&priv->fw_pend_stat);
3198 	}
3199 
3200 	if (txq->next != next) {
3201 		/* kick off the DMA by notifying firmware the
3202 		 * write index has moved; make sure TBD stores are sync'd */
3203 		write_register(priv->net_dev,
3204 			       IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3205 			       txq->next);
3206 	}
3207 }
3208 
3209 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3210 {
3211 	struct net_device *dev = priv->net_dev;
3212 	unsigned long flags;
3213 	u32 inta, tmp;
3214 
3215 	spin_lock_irqsave(&priv->low_lock, flags);
3216 	ipw2100_disable_interrupts(priv);
3217 
3218 	read_register(dev, IPW_REG_INTA, &inta);
3219 
3220 	IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3221 		      (unsigned long)inta & IPW_INTERRUPT_MASK);
3222 
3223 	priv->in_isr++;
3224 	priv->interrupts++;
3225 
3226 	/* We do not loop and keep polling for more interrupts as this
3227 	 * is frowned upon and doesn't play nicely with other potentially
3228 	 * chained IRQs */
3229 	IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3230 		      (unsigned long)inta & IPW_INTERRUPT_MASK);
3231 
3232 	if (inta & IPW2100_INTA_FATAL_ERROR) {
3233 		printk(KERN_WARNING DRV_NAME
3234 		       ": Fatal interrupt. Scheduling firmware restart.\n");
3235 		priv->inta_other++;
3236 		write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3237 
3238 		read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3239 		IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3240 			       priv->net_dev->name, priv->fatal_error);
3241 
3242 		read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3243 		IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3244 			       priv->net_dev->name, tmp);
3245 
3246 		/* Wake up any sleeping jobs */
3247 		schedule_reset(priv);
3248 	}
3249 
3250 	if (inta & IPW2100_INTA_PARITY_ERROR) {
3251 		printk(KERN_ERR DRV_NAME
3252 		       ": ***** PARITY ERROR INTERRUPT !!!!\n");
3253 		priv->inta_other++;
3254 		write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3255 	}
3256 
3257 	if (inta & IPW2100_INTA_RX_TRANSFER) {
3258 		IPW_DEBUG_ISR("RX interrupt\n");
3259 
3260 		priv->rx_interrupts++;
3261 
3262 		write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3263 
3264 		__ipw2100_rx_process(priv);
3265 		__ipw2100_tx_complete(priv);
3266 	}
3267 
3268 	if (inta & IPW2100_INTA_TX_TRANSFER) {
3269 		IPW_DEBUG_ISR("TX interrupt\n");
3270 
3271 		priv->tx_interrupts++;
3272 
3273 		write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3274 
3275 		__ipw2100_tx_complete(priv);
3276 		ipw2100_tx_send_commands(priv);
3277 		ipw2100_tx_send_data(priv);
3278 	}
3279 
3280 	if (inta & IPW2100_INTA_TX_COMPLETE) {
3281 		IPW_DEBUG_ISR("TX complete\n");
3282 		priv->inta_other++;
3283 		write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3284 
3285 		__ipw2100_tx_complete(priv);
3286 	}
3287 
3288 	if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3289 		/* ipw2100_handle_event(dev); */
3290 		priv->inta_other++;
3291 		write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3292 	}
3293 
3294 	if (inta & IPW2100_INTA_FW_INIT_DONE) {
3295 		IPW_DEBUG_ISR("FW init done interrupt\n");
3296 		priv->inta_other++;
3297 
3298 		read_register(dev, IPW_REG_INTA, &tmp);
3299 		if (tmp & (IPW2100_INTA_FATAL_ERROR |
3300 			   IPW2100_INTA_PARITY_ERROR)) {
3301 			write_register(dev, IPW_REG_INTA,
3302 				       IPW2100_INTA_FATAL_ERROR |
3303 				       IPW2100_INTA_PARITY_ERROR);
3304 		}
3305 
3306 		write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3307 	}
3308 
3309 	if (inta & IPW2100_INTA_STATUS_CHANGE) {
3310 		IPW_DEBUG_ISR("Status change interrupt\n");
3311 		priv->inta_other++;
3312 		write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3313 	}
3314 
3315 	if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3316 		IPW_DEBUG_ISR("slave host mode interrupt\n");
3317 		priv->inta_other++;
3318 		write_register(dev, IPW_REG_INTA,
3319 			       IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3320 	}
3321 
3322 	priv->in_isr--;
3323 	ipw2100_enable_interrupts(priv);
3324 
3325 	spin_unlock_irqrestore(&priv->low_lock, flags);
3326 
3327 	IPW_DEBUG_ISR("exit\n");
3328 }
3329 
3330 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3331 {
3332 	struct ipw2100_priv *priv = data;
3333 	u32 inta, inta_mask;
3334 
3335 	if (!data)
3336 		return IRQ_NONE;
3337 
3338 	spin_lock(&priv->low_lock);
3339 
3340 	/* We check to see if we should be ignoring interrupts before
3341 	 * we touch the hardware.  During ucode load if we try and handle
3342 	 * an interrupt we can cause keyboard problems as well as cause
3343 	 * the ucode to fail to initialize */
3344 	if (!(priv->status & STATUS_INT_ENABLED)) {
3345 		/* Shared IRQ */
3346 		goto none;
3347 	}
3348 
3349 	read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3350 	read_register(priv->net_dev, IPW_REG_INTA, &inta);
3351 
3352 	if (inta == 0xFFFFFFFF) {
3353 		/* Hardware disappeared */
3354 		printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3355 		goto none;
3356 	}
3357 
3358 	inta &= IPW_INTERRUPT_MASK;
3359 
3360 	if (!(inta & inta_mask)) {
3361 		/* Shared interrupt */
3362 		goto none;
3363 	}
3364 
3365 	/* We disable the hardware interrupt here just to prevent unneeded
3366 	 * calls to be made.  We disable this again within the actual
3367 	 * work tasklet, so if another part of the code re-enables the
3368 	 * interrupt, that is fine */
3369 	ipw2100_disable_interrupts(priv);
3370 
3371 	tasklet_schedule(&priv->irq_tasklet);
3372 	spin_unlock(&priv->low_lock);
3373 
3374 	return IRQ_HANDLED;
3375       none:
3376 	spin_unlock(&priv->low_lock);
3377 	return IRQ_NONE;
3378 }
3379 
3380 static netdev_tx_t ipw2100_tx(struct libipw_txb *txb,
3381 			      struct net_device *dev, int pri)
3382 {
3383 	struct ipw2100_priv *priv = libipw_priv(dev);
3384 	struct list_head *element;
3385 	struct ipw2100_tx_packet *packet;
3386 	unsigned long flags;
3387 
3388 	spin_lock_irqsave(&priv->low_lock, flags);
3389 
3390 	if (!(priv->status & STATUS_ASSOCIATED)) {
3391 		IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3392 		priv->net_dev->stats.tx_carrier_errors++;
3393 		netif_stop_queue(dev);
3394 		goto fail_unlock;
3395 	}
3396 
3397 	if (list_empty(&priv->tx_free_list))
3398 		goto fail_unlock;
3399 
3400 	element = priv->tx_free_list.next;
3401 	packet = list_entry(element, struct ipw2100_tx_packet, list);
3402 
3403 	packet->info.d_struct.txb = txb;
3404 
3405 	IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3406 	printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3407 
3408 	packet->jiffy_start = jiffies;
3409 
3410 	list_del(element);
3411 	DEC_STAT(&priv->tx_free_stat);
3412 
3413 	list_add_tail(element, &priv->tx_pend_list);
3414 	INC_STAT(&priv->tx_pend_stat);
3415 
3416 	ipw2100_tx_send_data(priv);
3417 
3418 	spin_unlock_irqrestore(&priv->low_lock, flags);
3419 	return NETDEV_TX_OK;
3420 
3421 fail_unlock:
3422 	netif_stop_queue(dev);
3423 	spin_unlock_irqrestore(&priv->low_lock, flags);
3424 	return NETDEV_TX_BUSY;
3425 }
3426 
3427 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3428 {
3429 	int i, j, err = -EINVAL;
3430 	void *v;
3431 	dma_addr_t p;
3432 
3433 	priv->msg_buffers =
3434 	    kmalloc_array(IPW_COMMAND_POOL_SIZE,
3435 			  sizeof(struct ipw2100_tx_packet),
3436 			  GFP_KERNEL);
3437 	if (!priv->msg_buffers)
3438 		return -ENOMEM;
3439 
3440 	for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3441 		v = pci_zalloc_consistent(priv->pci_dev,
3442 					  sizeof(struct ipw2100_cmd_header),
3443 					  &p);
3444 		if (!v) {
3445 			printk(KERN_ERR DRV_NAME ": "
3446 			       "%s: PCI alloc failed for msg "
3447 			       "buffers.\n", priv->net_dev->name);
3448 			err = -ENOMEM;
3449 			break;
3450 		}
3451 
3452 		priv->msg_buffers[i].type = COMMAND;
3453 		priv->msg_buffers[i].info.c_struct.cmd =
3454 		    (struct ipw2100_cmd_header *)v;
3455 		priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3456 	}
3457 
3458 	if (i == IPW_COMMAND_POOL_SIZE)
3459 		return 0;
3460 
3461 	for (j = 0; j < i; j++) {
3462 		pci_free_consistent(priv->pci_dev,
3463 				    sizeof(struct ipw2100_cmd_header),
3464 				    priv->msg_buffers[j].info.c_struct.cmd,
3465 				    priv->msg_buffers[j].info.c_struct.
3466 				    cmd_phys);
3467 	}
3468 
3469 	kfree(priv->msg_buffers);
3470 	priv->msg_buffers = NULL;
3471 
3472 	return err;
3473 }
3474 
3475 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3476 {
3477 	int i;
3478 
3479 	INIT_LIST_HEAD(&priv->msg_free_list);
3480 	INIT_LIST_HEAD(&priv->msg_pend_list);
3481 
3482 	for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3483 		list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3484 	SET_STAT(&priv->msg_free_stat, i);
3485 
3486 	return 0;
3487 }
3488 
3489 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3490 {
3491 	int i;
3492 
3493 	if (!priv->msg_buffers)
3494 		return;
3495 
3496 	for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3497 		pci_free_consistent(priv->pci_dev,
3498 				    sizeof(struct ipw2100_cmd_header),
3499 				    priv->msg_buffers[i].info.c_struct.cmd,
3500 				    priv->msg_buffers[i].info.c_struct.
3501 				    cmd_phys);
3502 	}
3503 
3504 	kfree(priv->msg_buffers);
3505 	priv->msg_buffers = NULL;
3506 }
3507 
3508 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3509 			char *buf)
3510 {
3511 	struct pci_dev *pci_dev = to_pci_dev(d);
3512 	char *out = buf;
3513 	int i, j;
3514 	u32 val;
3515 
3516 	for (i = 0; i < 16; i++) {
3517 		out += sprintf(out, "[%08X] ", i * 16);
3518 		for (j = 0; j < 16; j += 4) {
3519 			pci_read_config_dword(pci_dev, i * 16 + j, &val);
3520 			out += sprintf(out, "%08X ", val);
3521 		}
3522 		out += sprintf(out, "\n");
3523 	}
3524 
3525 	return out - buf;
3526 }
3527 
3528 static DEVICE_ATTR(pci, 0444, show_pci, NULL);
3529 
3530 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3531 			char *buf)
3532 {
3533 	struct ipw2100_priv *p = dev_get_drvdata(d);
3534 	return sprintf(buf, "0x%08x\n", (int)p->config);
3535 }
3536 
3537 static DEVICE_ATTR(cfg, 0444, show_cfg, NULL);
3538 
3539 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3540 			   char *buf)
3541 {
3542 	struct ipw2100_priv *p = dev_get_drvdata(d);
3543 	return sprintf(buf, "0x%08x\n", (int)p->status);
3544 }
3545 
3546 static DEVICE_ATTR(status, 0444, show_status, NULL);
3547 
3548 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3549 			       char *buf)
3550 {
3551 	struct ipw2100_priv *p = dev_get_drvdata(d);
3552 	return sprintf(buf, "0x%08x\n", (int)p->capability);
3553 }
3554 
3555 static DEVICE_ATTR(capability, 0444, show_capability, NULL);
3556 
3557 #define IPW2100_REG(x) { IPW_ ##x, #x }
3558 static const struct {
3559 	u32 addr;
3560 	const char *name;
3561 } hw_data[] = {
3562 IPW2100_REG(REG_GP_CNTRL),
3563 	    IPW2100_REG(REG_GPIO),
3564 	    IPW2100_REG(REG_INTA),
3565 	    IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3566 #define IPW2100_NIC(x, s) { x, #x, s }
3567 static const struct {
3568 	u32 addr;
3569 	const char *name;
3570 	size_t size;
3571 } nic_data[] = {
3572 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3573 	    IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3574 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3575 static const struct {
3576 	u8 index;
3577 	const char *name;
3578 	const char *desc;
3579 } ord_data[] = {
3580 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3581 	    IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3582 				"successful Host Tx's (MSDU)"),
3583 	    IPW2100_ORD(STAT_TX_DIR_DATA,
3584 				"successful Directed Tx's (MSDU)"),
3585 	    IPW2100_ORD(STAT_TX_DIR_DATA1,
3586 				"successful Directed Tx's (MSDU) @ 1MB"),
3587 	    IPW2100_ORD(STAT_TX_DIR_DATA2,
3588 				"successful Directed Tx's (MSDU) @ 2MB"),
3589 	    IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3590 				"successful Directed Tx's (MSDU) @ 5_5MB"),
3591 	    IPW2100_ORD(STAT_TX_DIR_DATA11,
3592 				"successful Directed Tx's (MSDU) @ 11MB"),
3593 	    IPW2100_ORD(STAT_TX_NODIR_DATA1,
3594 				"successful Non_Directed Tx's (MSDU) @ 1MB"),
3595 	    IPW2100_ORD(STAT_TX_NODIR_DATA2,
3596 				"successful Non_Directed Tx's (MSDU) @ 2MB"),
3597 	    IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3598 				"successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3599 	    IPW2100_ORD(STAT_TX_NODIR_DATA11,
3600 				"successful Non_Directed Tx's (MSDU) @ 11MB"),
3601 	    IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3602 	    IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3603 	    IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3604 	    IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3605 	    IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3606 	    IPW2100_ORD(STAT_TX_ASSN_RESP,
3607 				"successful Association response Tx's"),
3608 	    IPW2100_ORD(STAT_TX_REASSN,
3609 				"successful Reassociation Tx's"),
3610 	    IPW2100_ORD(STAT_TX_REASSN_RESP,
3611 				"successful Reassociation response Tx's"),
3612 	    IPW2100_ORD(STAT_TX_PROBE,
3613 				"probes successfully transmitted"),
3614 	    IPW2100_ORD(STAT_TX_PROBE_RESP,
3615 				"probe responses successfully transmitted"),
3616 	    IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3617 	    IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3618 	    IPW2100_ORD(STAT_TX_DISASSN,
3619 				"successful Disassociation TX"),
3620 	    IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3621 	    IPW2100_ORD(STAT_TX_DEAUTH,
3622 				"successful Deauthentication TX"),
3623 	    IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3624 				"Total successful Tx data bytes"),
3625 	    IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3626 	    IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3627 	    IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3628 	    IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3629 	    IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3630 	    IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3631 	    IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3632 				"times max tries in a hop failed"),
3633 	    IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3634 				"times disassociation failed"),
3635 	    IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3636 	    IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3637 	    IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3638 	    IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3639 	    IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3640 	    IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3641 	    IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3642 				"directed packets at 5.5MB"),
3643 	    IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3644 	    IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3645 	    IPW2100_ORD(STAT_RX_NODIR_DATA1,
3646 				"nondirected packets at 1MB"),
3647 	    IPW2100_ORD(STAT_RX_NODIR_DATA2,
3648 				"nondirected packets at 2MB"),
3649 	    IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3650 				"nondirected packets at 5.5MB"),
3651 	    IPW2100_ORD(STAT_RX_NODIR_DATA11,
3652 				"nondirected packets at 11MB"),
3653 	    IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3654 	    IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3655 								    "Rx CTS"),
3656 	    IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3657 	    IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3658 	    IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3659 	    IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3660 	    IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3661 	    IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3662 	    IPW2100_ORD(STAT_RX_REASSN_RESP,
3663 				"Reassociation response Rx's"),
3664 	    IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3665 	    IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3666 	    IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3667 	    IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3668 	    IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3669 	    IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3670 	    IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3671 	    IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3672 				"Total rx data bytes received"),
3673 	    IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3674 	    IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3675 	    IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3676 	    IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3677 	    IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3678 	    IPW2100_ORD(STAT_RX_DUPLICATE1,
3679 				"duplicate rx packets at 1MB"),
3680 	    IPW2100_ORD(STAT_RX_DUPLICATE2,
3681 				"duplicate rx packets at 2MB"),
3682 	    IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3683 				"duplicate rx packets at 5.5MB"),
3684 	    IPW2100_ORD(STAT_RX_DUPLICATE11,
3685 				"duplicate rx packets at 11MB"),
3686 	    IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3687 	    IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent  db"),
3688 	    IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent  db"),
3689 	    IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent  db"),
3690 	    IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3691 				"rx frames with invalid protocol"),
3692 	    IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3693 	    IPW2100_ORD(STAT_RX_NO_BUFFER,
3694 				"rx frames rejected due to no buffer"),
3695 	    IPW2100_ORD(STAT_RX_MISSING_FRAG,
3696 				"rx frames dropped due to missing fragment"),
3697 	    IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3698 				"rx frames dropped due to non-sequential fragment"),
3699 	    IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3700 				"rx frames dropped due to unmatched 1st frame"),
3701 	    IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3702 				"rx frames dropped due to uncompleted frame"),
3703 	    IPW2100_ORD(STAT_RX_ICV_ERRORS,
3704 				"ICV errors during decryption"),
3705 	    IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3706 	    IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3707 	    IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3708 				"poll response timeouts"),
3709 	    IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3710 				"timeouts waiting for last {broad,multi}cast pkt"),
3711 	    IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3712 	    IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3713 	    IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3714 	    IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3715 	    IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3716 				"current calculation of % missed beacons"),
3717 	    IPW2100_ORD(STAT_PERCENT_RETRIES,
3718 				"current calculation of % missed tx retries"),
3719 	    IPW2100_ORD(ASSOCIATED_AP_PTR,
3720 				"0 if not associated, else pointer to AP table entry"),
3721 	    IPW2100_ORD(AVAILABLE_AP_CNT,
3722 				"AP's described in the AP table"),
3723 	    IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3724 	    IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3725 	    IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3726 	    IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3727 				"failures due to response fail"),
3728 	    IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3729 	    IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3730 	    IPW2100_ORD(STAT_ROAM_INHIBIT,
3731 				"times roaming was inhibited due to activity"),
3732 	    IPW2100_ORD(RSSI_AT_ASSN,
3733 				"RSSI of associated AP at time of association"),
3734 	    IPW2100_ORD(STAT_ASSN_CAUSE1,
3735 				"reassociation: no probe response or TX on hop"),
3736 	    IPW2100_ORD(STAT_ASSN_CAUSE2,
3737 				"reassociation: poor tx/rx quality"),
3738 	    IPW2100_ORD(STAT_ASSN_CAUSE3,
3739 				"reassociation: tx/rx quality (excessive AP load"),
3740 	    IPW2100_ORD(STAT_ASSN_CAUSE4,
3741 				"reassociation: AP RSSI level"),
3742 	    IPW2100_ORD(STAT_ASSN_CAUSE5,
3743 				"reassociations due to load leveling"),
3744 	    IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3745 	    IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3746 				"times authentication response failed"),
3747 	    IPW2100_ORD(STATION_TABLE_CNT,
3748 				"entries in association table"),
3749 	    IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3750 	    IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3751 	    IPW2100_ORD(COUNTRY_CODE,
3752 				"IEEE country code as recv'd from beacon"),
3753 	    IPW2100_ORD(COUNTRY_CHANNELS,
3754 				"channels supported by country"),
3755 	    IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3756 	    IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3757 	    IPW2100_ORD(ANTENNA_DIVERSITY,
3758 				"TRUE if antenna diversity is disabled"),
3759 	    IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3760 	    IPW2100_ORD(OUR_FREQ,
3761 				"current radio freq lower digits - channel ID"),
3762 	    IPW2100_ORD(RTC_TIME, "current RTC time"),
3763 	    IPW2100_ORD(PORT_TYPE, "operating mode"),
3764 	    IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3765 	    IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3766 	    IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3767 	    IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3768 	    IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3769 	    IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3770 	    IPW2100_ORD(CAPABILITIES,
3771 				"Management frame capability field"),
3772 	    IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3773 	    IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3774 	    IPW2100_ORD(RTS_THRESHOLD,
3775 				"Min packet length for RTS handshaking"),
3776 	    IPW2100_ORD(INT_MODE, "International mode"),
3777 	    IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3778 				"protocol frag threshold"),
3779 	    IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3780 				"EEPROM offset in SRAM"),
3781 	    IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3782 				"EEPROM size in SRAM"),
3783 	    IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3784 	    IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3785 				"EEPROM IBSS 11b channel set"),
3786 	    IPW2100_ORD(MAC_VERSION, "MAC Version"),
3787 	    IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3788 	    IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3789 	    IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3790 	    IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3791 
3792 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3793 			      char *buf)
3794 {
3795 	int i;
3796 	struct ipw2100_priv *priv = dev_get_drvdata(d);
3797 	struct net_device *dev = priv->net_dev;
3798 	char *out = buf;
3799 	u32 val = 0;
3800 
3801 	out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3802 
3803 	for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3804 		read_register(dev, hw_data[i].addr, &val);
3805 		out += sprintf(out, "%30s [%08X] : %08X\n",
3806 			       hw_data[i].name, hw_data[i].addr, val);
3807 	}
3808 
3809 	return out - buf;
3810 }
3811 
3812 static DEVICE_ATTR(registers, 0444, show_registers, NULL);
3813 
3814 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3815 			     char *buf)
3816 {
3817 	struct ipw2100_priv *priv = dev_get_drvdata(d);
3818 	struct net_device *dev = priv->net_dev;
3819 	char *out = buf;
3820 	int i;
3821 
3822 	out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3823 
3824 	for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3825 		u8 tmp8;
3826 		u16 tmp16;
3827 		u32 tmp32;
3828 
3829 		switch (nic_data[i].size) {
3830 		case 1:
3831 			read_nic_byte(dev, nic_data[i].addr, &tmp8);
3832 			out += sprintf(out, "%30s [%08X] : %02X\n",
3833 				       nic_data[i].name, nic_data[i].addr,
3834 				       tmp8);
3835 			break;
3836 		case 2:
3837 			read_nic_word(dev, nic_data[i].addr, &tmp16);
3838 			out += sprintf(out, "%30s [%08X] : %04X\n",
3839 				       nic_data[i].name, nic_data[i].addr,
3840 				       tmp16);
3841 			break;
3842 		case 4:
3843 			read_nic_dword(dev, nic_data[i].addr, &tmp32);
3844 			out += sprintf(out, "%30s [%08X] : %08X\n",
3845 				       nic_data[i].name, nic_data[i].addr,
3846 				       tmp32);
3847 			break;
3848 		}
3849 	}
3850 	return out - buf;
3851 }
3852 
3853 static DEVICE_ATTR(hardware, 0444, show_hardware, NULL);
3854 
3855 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3856 			   char *buf)
3857 {
3858 	struct ipw2100_priv *priv = dev_get_drvdata(d);
3859 	struct net_device *dev = priv->net_dev;
3860 	static unsigned long loop = 0;
3861 	int len = 0;
3862 	u32 buffer[4];
3863 	int i;
3864 	char line[81];
3865 
3866 	if (loop >= 0x30000)
3867 		loop = 0;
3868 
3869 	/* sysfs provides us PAGE_SIZE buffer */
3870 	while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3871 
3872 		if (priv->snapshot[0])
3873 			for (i = 0; i < 4; i++)
3874 				buffer[i] =
3875 				    *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3876 		else
3877 			for (i = 0; i < 4; i++)
3878 				read_nic_dword(dev, loop + i * 4, &buffer[i]);
3879 
3880 		if (priv->dump_raw)
3881 			len += sprintf(buf + len,
3882 				       "%c%c%c%c"
3883 				       "%c%c%c%c"
3884 				       "%c%c%c%c"
3885 				       "%c%c%c%c",
3886 				       ((u8 *) buffer)[0x0],
3887 				       ((u8 *) buffer)[0x1],
3888 				       ((u8 *) buffer)[0x2],
3889 				       ((u8 *) buffer)[0x3],
3890 				       ((u8 *) buffer)[0x4],
3891 				       ((u8 *) buffer)[0x5],
3892 				       ((u8 *) buffer)[0x6],
3893 				       ((u8 *) buffer)[0x7],
3894 				       ((u8 *) buffer)[0x8],
3895 				       ((u8 *) buffer)[0x9],
3896 				       ((u8 *) buffer)[0xa],
3897 				       ((u8 *) buffer)[0xb],
3898 				       ((u8 *) buffer)[0xc],
3899 				       ((u8 *) buffer)[0xd],
3900 				       ((u8 *) buffer)[0xe],
3901 				       ((u8 *) buffer)[0xf]);
3902 		else
3903 			len += sprintf(buf + len, "%s\n",
3904 				       snprint_line(line, sizeof(line),
3905 						    (u8 *) buffer, 16, loop));
3906 		loop += 16;
3907 	}
3908 
3909 	return len;
3910 }
3911 
3912 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3913 			    const char *buf, size_t count)
3914 {
3915 	struct ipw2100_priv *priv = dev_get_drvdata(d);
3916 	struct net_device *dev = priv->net_dev;
3917 	const char *p = buf;
3918 
3919 	(void)dev;		/* kill unused-var warning for debug-only code */
3920 
3921 	if (count < 1)
3922 		return count;
3923 
3924 	if (p[0] == '1' ||
3925 	    (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3926 		IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3927 			       dev->name);
3928 		priv->dump_raw = 1;
3929 
3930 	} else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3931 				   tolower(p[1]) == 'f')) {
3932 		IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3933 			       dev->name);
3934 		priv->dump_raw = 0;
3935 
3936 	} else if (tolower(p[0]) == 'r') {
3937 		IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3938 		ipw2100_snapshot_free(priv);
3939 
3940 	} else
3941 		IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3942 			       "reset = clear memory snapshot\n", dev->name);
3943 
3944 	return count;
3945 }
3946 
3947 static DEVICE_ATTR(memory, 0644, show_memory, store_memory);
3948 
3949 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3950 			     char *buf)
3951 {
3952 	struct ipw2100_priv *priv = dev_get_drvdata(d);
3953 	u32 val = 0;
3954 	int len = 0;
3955 	u32 val_len;
3956 	static int loop = 0;
3957 
3958 	if (priv->status & STATUS_RF_KILL_MASK)
3959 		return 0;
3960 
3961 	if (loop >= ARRAY_SIZE(ord_data))
3962 		loop = 0;
3963 
3964 	/* sysfs provides us PAGE_SIZE buffer */
3965 	while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
3966 		val_len = sizeof(u32);
3967 
3968 		if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3969 					&val_len))
3970 			len += sprintf(buf + len, "[0x%02X] = ERROR    %s\n",
3971 				       ord_data[loop].index,
3972 				       ord_data[loop].desc);
3973 		else
3974 			len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3975 				       ord_data[loop].index, val,
3976 				       ord_data[loop].desc);
3977 		loop++;
3978 	}
3979 
3980 	return len;
3981 }
3982 
3983 static DEVICE_ATTR(ordinals, 0444, show_ordinals, NULL);
3984 
3985 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
3986 			  char *buf)
3987 {
3988 	struct ipw2100_priv *priv = dev_get_drvdata(d);
3989 	char *out = buf;
3990 
3991 	out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
3992 		       priv->interrupts, priv->tx_interrupts,
3993 		       priv->rx_interrupts, priv->inta_other);
3994 	out += sprintf(out, "firmware resets: %d\n", priv->resets);
3995 	out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
3996 #ifdef CONFIG_IPW2100_DEBUG
3997 	out += sprintf(out, "packet mismatch image: %s\n",
3998 		       priv->snapshot[0] ? "YES" : "NO");
3999 #endif
4000 
4001 	return out - buf;
4002 }
4003 
4004 static DEVICE_ATTR(stats, 0444, show_stats, NULL);
4005 
4006 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
4007 {
4008 	int err;
4009 
4010 	if (mode == priv->ieee->iw_mode)
4011 		return 0;
4012 
4013 	err = ipw2100_disable_adapter(priv);
4014 	if (err) {
4015 		printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
4016 		       priv->net_dev->name, err);
4017 		return err;
4018 	}
4019 
4020 	switch (mode) {
4021 	case IW_MODE_INFRA:
4022 		priv->net_dev->type = ARPHRD_ETHER;
4023 		break;
4024 	case IW_MODE_ADHOC:
4025 		priv->net_dev->type = ARPHRD_ETHER;
4026 		break;
4027 #ifdef CONFIG_IPW2100_MONITOR
4028 	case IW_MODE_MONITOR:
4029 		priv->last_mode = priv->ieee->iw_mode;
4030 		priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
4031 		break;
4032 #endif				/* CONFIG_IPW2100_MONITOR */
4033 	}
4034 
4035 	priv->ieee->iw_mode = mode;
4036 
4037 #ifdef CONFIG_PM
4038 	/* Indicate ipw2100_download_firmware download firmware
4039 	 * from disk instead of memory. */
4040 	ipw2100_firmware.version = 0;
4041 #endif
4042 
4043 	printk(KERN_INFO "%s: Resetting on mode change.\n", priv->net_dev->name);
4044 	priv->reset_backoff = 0;
4045 	schedule_reset(priv);
4046 
4047 	return 0;
4048 }
4049 
4050 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
4051 			      char *buf)
4052 {
4053 	struct ipw2100_priv *priv = dev_get_drvdata(d);
4054 	int len = 0;
4055 
4056 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
4057 
4058 	if (priv->status & STATUS_ASSOCIATED)
4059 		len += sprintf(buf + len, "connected: %llu\n",
4060 			       ktime_get_boottime_seconds() - priv->connect_start);
4061 	else
4062 		len += sprintf(buf + len, "not connected\n");
4063 
4064 	DUMP_VAR(ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx], "p");
4065 	DUMP_VAR(status, "08lx");
4066 	DUMP_VAR(config, "08lx");
4067 	DUMP_VAR(capability, "08lx");
4068 
4069 	len +=
4070 	    sprintf(buf + len, "last_rtc: %lu\n",
4071 		    (unsigned long)priv->last_rtc);
4072 
4073 	DUMP_VAR(fatal_error, "d");
4074 	DUMP_VAR(stop_hang_check, "d");
4075 	DUMP_VAR(stop_rf_kill, "d");
4076 	DUMP_VAR(messages_sent, "d");
4077 
4078 	DUMP_VAR(tx_pend_stat.value, "d");
4079 	DUMP_VAR(tx_pend_stat.hi, "d");
4080 
4081 	DUMP_VAR(tx_free_stat.value, "d");
4082 	DUMP_VAR(tx_free_stat.lo, "d");
4083 
4084 	DUMP_VAR(msg_free_stat.value, "d");
4085 	DUMP_VAR(msg_free_stat.lo, "d");
4086 
4087 	DUMP_VAR(msg_pend_stat.value, "d");
4088 	DUMP_VAR(msg_pend_stat.hi, "d");
4089 
4090 	DUMP_VAR(fw_pend_stat.value, "d");
4091 	DUMP_VAR(fw_pend_stat.hi, "d");
4092 
4093 	DUMP_VAR(txq_stat.value, "d");
4094 	DUMP_VAR(txq_stat.lo, "d");
4095 
4096 	DUMP_VAR(ieee->scans, "d");
4097 	DUMP_VAR(reset_backoff, "lld");
4098 
4099 	return len;
4100 }
4101 
4102 static DEVICE_ATTR(internals, 0444, show_internals, NULL);
4103 
4104 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4105 			    char *buf)
4106 {
4107 	struct ipw2100_priv *priv = dev_get_drvdata(d);
4108 	char essid[IW_ESSID_MAX_SIZE + 1];
4109 	u8 bssid[ETH_ALEN];
4110 	u32 chan = 0;
4111 	char *out = buf;
4112 	unsigned int length;
4113 	int ret;
4114 
4115 	if (priv->status & STATUS_RF_KILL_MASK)
4116 		return 0;
4117 
4118 	memset(essid, 0, sizeof(essid));
4119 	memset(bssid, 0, sizeof(bssid));
4120 
4121 	length = IW_ESSID_MAX_SIZE;
4122 	ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4123 	if (ret)
4124 		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4125 			       __LINE__);
4126 
4127 	length = sizeof(bssid);
4128 	ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4129 				  bssid, &length);
4130 	if (ret)
4131 		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4132 			       __LINE__);
4133 
4134 	length = sizeof(u32);
4135 	ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4136 	if (ret)
4137 		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4138 			       __LINE__);
4139 
4140 	out += sprintf(out, "ESSID: %s\n", essid);
4141 	out += sprintf(out, "BSSID:   %pM\n", bssid);
4142 	out += sprintf(out, "Channel: %d\n", chan);
4143 
4144 	return out - buf;
4145 }
4146 
4147 static DEVICE_ATTR(bssinfo, 0444, show_bssinfo, NULL);
4148 
4149 #ifdef CONFIG_IPW2100_DEBUG
4150 static ssize_t debug_level_show(struct device_driver *d, char *buf)
4151 {
4152 	return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4153 }
4154 
4155 static ssize_t debug_level_store(struct device_driver *d,
4156 				 const char *buf, size_t count)
4157 {
4158 	u32 val;
4159 	int ret;
4160 
4161 	ret = kstrtou32(buf, 0, &val);
4162 	if (ret)
4163 		IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4164 	else
4165 		ipw2100_debug_level = val;
4166 
4167 	return strnlen(buf, count);
4168 }
4169 static DRIVER_ATTR_RW(debug_level);
4170 #endif				/* CONFIG_IPW2100_DEBUG */
4171 
4172 static ssize_t show_fatal_error(struct device *d,
4173 				struct device_attribute *attr, char *buf)
4174 {
4175 	struct ipw2100_priv *priv = dev_get_drvdata(d);
4176 	char *out = buf;
4177 	int i;
4178 
4179 	if (priv->fatal_error)
4180 		out += sprintf(out, "0x%08X\n", priv->fatal_error);
4181 	else
4182 		out += sprintf(out, "0\n");
4183 
4184 	for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4185 		if (!priv->fatal_errors[(priv->fatal_index - i) %
4186 					IPW2100_ERROR_QUEUE])
4187 			continue;
4188 
4189 		out += sprintf(out, "%d. 0x%08X\n", i,
4190 			       priv->fatal_errors[(priv->fatal_index - i) %
4191 						  IPW2100_ERROR_QUEUE]);
4192 	}
4193 
4194 	return out - buf;
4195 }
4196 
4197 static ssize_t store_fatal_error(struct device *d,
4198 				 struct device_attribute *attr, const char *buf,
4199 				 size_t count)
4200 {
4201 	struct ipw2100_priv *priv = dev_get_drvdata(d);
4202 	schedule_reset(priv);
4203 	return count;
4204 }
4205 
4206 static DEVICE_ATTR(fatal_error, 0644, show_fatal_error, store_fatal_error);
4207 
4208 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4209 			     char *buf)
4210 {
4211 	struct ipw2100_priv *priv = dev_get_drvdata(d);
4212 	return sprintf(buf, "%d\n", priv->ieee->scan_age);
4213 }
4214 
4215 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4216 			      const char *buf, size_t count)
4217 {
4218 	struct ipw2100_priv *priv = dev_get_drvdata(d);
4219 	struct net_device *dev = priv->net_dev;
4220 	unsigned long val;
4221 	int ret;
4222 
4223 	(void)dev;		/* kill unused-var warning for debug-only code */
4224 
4225 	IPW_DEBUG_INFO("enter\n");
4226 
4227 	ret = kstrtoul(buf, 0, &val);
4228 	if (ret) {
4229 		IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4230 	} else {
4231 		priv->ieee->scan_age = val;
4232 		IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4233 	}
4234 
4235 	IPW_DEBUG_INFO("exit\n");
4236 	return strnlen(buf, count);
4237 }
4238 
4239 static DEVICE_ATTR(scan_age, 0644, show_scan_age, store_scan_age);
4240 
4241 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4242 			    char *buf)
4243 {
4244 	/* 0 - RF kill not enabled
4245 	   1 - SW based RF kill active (sysfs)
4246 	   2 - HW based RF kill active
4247 	   3 - Both HW and SW baed RF kill active */
4248 	struct ipw2100_priv *priv = dev_get_drvdata(d);
4249 	int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4250 	    (rf_kill_active(priv) ? 0x2 : 0x0);
4251 	return sprintf(buf, "%i\n", val);
4252 }
4253 
4254 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4255 {
4256 	if ((disable_radio ? 1 : 0) ==
4257 	    (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4258 		return 0;
4259 
4260 	IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
4261 			  disable_radio ? "OFF" : "ON");
4262 
4263 	mutex_lock(&priv->action_mutex);
4264 
4265 	if (disable_radio) {
4266 		priv->status |= STATUS_RF_KILL_SW;
4267 		ipw2100_down(priv);
4268 	} else {
4269 		priv->status &= ~STATUS_RF_KILL_SW;
4270 		if (rf_kill_active(priv)) {
4271 			IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4272 					  "disabled by HW switch\n");
4273 			/* Make sure the RF_KILL check timer is running */
4274 			priv->stop_rf_kill = 0;
4275 			mod_delayed_work(system_wq, &priv->rf_kill,
4276 					 round_jiffies_relative(HZ));
4277 		} else
4278 			schedule_reset(priv);
4279 	}
4280 
4281 	mutex_unlock(&priv->action_mutex);
4282 	return 1;
4283 }
4284 
4285 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4286 			     const char *buf, size_t count)
4287 {
4288 	struct ipw2100_priv *priv = dev_get_drvdata(d);
4289 	ipw_radio_kill_sw(priv, buf[0] == '1');
4290 	return count;
4291 }
4292 
4293 static DEVICE_ATTR(rf_kill, 0644, show_rf_kill, store_rf_kill);
4294 
4295 static struct attribute *ipw2100_sysfs_entries[] = {
4296 	&dev_attr_hardware.attr,
4297 	&dev_attr_registers.attr,
4298 	&dev_attr_ordinals.attr,
4299 	&dev_attr_pci.attr,
4300 	&dev_attr_stats.attr,
4301 	&dev_attr_internals.attr,
4302 	&dev_attr_bssinfo.attr,
4303 	&dev_attr_memory.attr,
4304 	&dev_attr_scan_age.attr,
4305 	&dev_attr_fatal_error.attr,
4306 	&dev_attr_rf_kill.attr,
4307 	&dev_attr_cfg.attr,
4308 	&dev_attr_status.attr,
4309 	&dev_attr_capability.attr,
4310 	NULL,
4311 };
4312 
4313 static const struct attribute_group ipw2100_attribute_group = {
4314 	.attrs = ipw2100_sysfs_entries,
4315 };
4316 
4317 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4318 {
4319 	struct ipw2100_status_queue *q = &priv->status_queue;
4320 
4321 	IPW_DEBUG_INFO("enter\n");
4322 
4323 	q->size = entries * sizeof(struct ipw2100_status);
4324 	q->drv = pci_zalloc_consistent(priv->pci_dev, q->size, &q->nic);
4325 	if (!q->drv) {
4326 		IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4327 		return -ENOMEM;
4328 	}
4329 
4330 	IPW_DEBUG_INFO("exit\n");
4331 
4332 	return 0;
4333 }
4334 
4335 static void status_queue_free(struct ipw2100_priv *priv)
4336 {
4337 	IPW_DEBUG_INFO("enter\n");
4338 
4339 	if (priv->status_queue.drv) {
4340 		pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4341 				    priv->status_queue.drv,
4342 				    priv->status_queue.nic);
4343 		priv->status_queue.drv = NULL;
4344 	}
4345 
4346 	IPW_DEBUG_INFO("exit\n");
4347 }
4348 
4349 static int bd_queue_allocate(struct ipw2100_priv *priv,
4350 			     struct ipw2100_bd_queue *q, int entries)
4351 {
4352 	IPW_DEBUG_INFO("enter\n");
4353 
4354 	memset(q, 0, sizeof(struct ipw2100_bd_queue));
4355 
4356 	q->entries = entries;
4357 	q->size = entries * sizeof(struct ipw2100_bd);
4358 	q->drv = pci_zalloc_consistent(priv->pci_dev, q->size, &q->nic);
4359 	if (!q->drv) {
4360 		IPW_DEBUG_INFO
4361 		    ("can't allocate shared memory for buffer descriptors\n");
4362 		return -ENOMEM;
4363 	}
4364 
4365 	IPW_DEBUG_INFO("exit\n");
4366 
4367 	return 0;
4368 }
4369 
4370 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4371 {
4372 	IPW_DEBUG_INFO("enter\n");
4373 
4374 	if (!q)
4375 		return;
4376 
4377 	if (q->drv) {
4378 		pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4379 		q->drv = NULL;
4380 	}
4381 
4382 	IPW_DEBUG_INFO("exit\n");
4383 }
4384 
4385 static void bd_queue_initialize(struct ipw2100_priv *priv,
4386 				struct ipw2100_bd_queue *q, u32 base, u32 size,
4387 				u32 r, u32 w)
4388 {
4389 	IPW_DEBUG_INFO("enter\n");
4390 
4391 	IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4392 		       (u32) q->nic);
4393 
4394 	write_register(priv->net_dev, base, q->nic);
4395 	write_register(priv->net_dev, size, q->entries);
4396 	write_register(priv->net_dev, r, q->oldest);
4397 	write_register(priv->net_dev, w, q->next);
4398 
4399 	IPW_DEBUG_INFO("exit\n");
4400 }
4401 
4402 static void ipw2100_kill_works(struct ipw2100_priv *priv)
4403 {
4404 	priv->stop_rf_kill = 1;
4405 	priv->stop_hang_check = 1;
4406 	cancel_delayed_work_sync(&priv->reset_work);
4407 	cancel_delayed_work_sync(&priv->security_work);
4408 	cancel_delayed_work_sync(&priv->wx_event_work);
4409 	cancel_delayed_work_sync(&priv->hang_check);
4410 	cancel_delayed_work_sync(&priv->rf_kill);
4411 	cancel_delayed_work_sync(&priv->scan_event);
4412 }
4413 
4414 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4415 {
4416 	int i, j, err;
4417 	void *v;
4418 	dma_addr_t p;
4419 
4420 	IPW_DEBUG_INFO("enter\n");
4421 
4422 	err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4423 	if (err) {
4424 		IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4425 				priv->net_dev->name);
4426 		return err;
4427 	}
4428 
4429 	priv->tx_buffers = kmalloc_array(TX_PENDED_QUEUE_LENGTH,
4430 					 sizeof(struct ipw2100_tx_packet),
4431 					 GFP_ATOMIC);
4432 	if (!priv->tx_buffers) {
4433 		bd_queue_free(priv, &priv->tx_queue);
4434 		return -ENOMEM;
4435 	}
4436 
4437 	for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4438 		v = pci_alloc_consistent(priv->pci_dev,
4439 					 sizeof(struct ipw2100_data_header),
4440 					 &p);
4441 		if (!v) {
4442 			printk(KERN_ERR DRV_NAME
4443 			       ": %s: PCI alloc failed for tx " "buffers.\n",
4444 			       priv->net_dev->name);
4445 			err = -ENOMEM;
4446 			break;
4447 		}
4448 
4449 		priv->tx_buffers[i].type = DATA;
4450 		priv->tx_buffers[i].info.d_struct.data =
4451 		    (struct ipw2100_data_header *)v;
4452 		priv->tx_buffers[i].info.d_struct.data_phys = p;
4453 		priv->tx_buffers[i].info.d_struct.txb = NULL;
4454 	}
4455 
4456 	if (i == TX_PENDED_QUEUE_LENGTH)
4457 		return 0;
4458 
4459 	for (j = 0; j < i; j++) {
4460 		pci_free_consistent(priv->pci_dev,
4461 				    sizeof(struct ipw2100_data_header),
4462 				    priv->tx_buffers[j].info.d_struct.data,
4463 				    priv->tx_buffers[j].info.d_struct.
4464 				    data_phys);
4465 	}
4466 
4467 	kfree(priv->tx_buffers);
4468 	priv->tx_buffers = NULL;
4469 
4470 	return err;
4471 }
4472 
4473 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4474 {
4475 	int i;
4476 
4477 	IPW_DEBUG_INFO("enter\n");
4478 
4479 	/*
4480 	 * reinitialize packet info lists
4481 	 */
4482 	INIT_LIST_HEAD(&priv->fw_pend_list);
4483 	INIT_STAT(&priv->fw_pend_stat);
4484 
4485 	/*
4486 	 * reinitialize lists
4487 	 */
4488 	INIT_LIST_HEAD(&priv->tx_pend_list);
4489 	INIT_LIST_HEAD(&priv->tx_free_list);
4490 	INIT_STAT(&priv->tx_pend_stat);
4491 	INIT_STAT(&priv->tx_free_stat);
4492 
4493 	for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4494 		/* We simply drop any SKBs that have been queued for
4495 		 * transmit */
4496 		if (priv->tx_buffers[i].info.d_struct.txb) {
4497 			libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4498 					   txb);
4499 			priv->tx_buffers[i].info.d_struct.txb = NULL;
4500 		}
4501 
4502 		list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4503 	}
4504 
4505 	SET_STAT(&priv->tx_free_stat, i);
4506 
4507 	priv->tx_queue.oldest = 0;
4508 	priv->tx_queue.available = priv->tx_queue.entries;
4509 	priv->tx_queue.next = 0;
4510 	INIT_STAT(&priv->txq_stat);
4511 	SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4512 
4513 	bd_queue_initialize(priv, &priv->tx_queue,
4514 			    IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4515 			    IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4516 			    IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4517 			    IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4518 
4519 	IPW_DEBUG_INFO("exit\n");
4520 
4521 }
4522 
4523 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4524 {
4525 	int i;
4526 
4527 	IPW_DEBUG_INFO("enter\n");
4528 
4529 	bd_queue_free(priv, &priv->tx_queue);
4530 
4531 	if (!priv->tx_buffers)
4532 		return;
4533 
4534 	for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4535 		if (priv->tx_buffers[i].info.d_struct.txb) {
4536 			libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4537 					   txb);
4538 			priv->tx_buffers[i].info.d_struct.txb = NULL;
4539 		}
4540 		if (priv->tx_buffers[i].info.d_struct.data)
4541 			pci_free_consistent(priv->pci_dev,
4542 					    sizeof(struct ipw2100_data_header),
4543 					    priv->tx_buffers[i].info.d_struct.
4544 					    data,
4545 					    priv->tx_buffers[i].info.d_struct.
4546 					    data_phys);
4547 	}
4548 
4549 	kfree(priv->tx_buffers);
4550 	priv->tx_buffers = NULL;
4551 
4552 	IPW_DEBUG_INFO("exit\n");
4553 }
4554 
4555 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4556 {
4557 	int i, j, err = -EINVAL;
4558 
4559 	IPW_DEBUG_INFO("enter\n");
4560 
4561 	err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4562 	if (err) {
4563 		IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4564 		return err;
4565 	}
4566 
4567 	err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4568 	if (err) {
4569 		IPW_DEBUG_INFO("failed status_queue_allocate\n");
4570 		bd_queue_free(priv, &priv->rx_queue);
4571 		return err;
4572 	}
4573 
4574 	/*
4575 	 * allocate packets
4576 	 */
4577 	priv->rx_buffers = kmalloc_array(RX_QUEUE_LENGTH,
4578 					 sizeof(struct ipw2100_rx_packet),
4579 					 GFP_KERNEL);
4580 	if (!priv->rx_buffers) {
4581 		IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4582 
4583 		bd_queue_free(priv, &priv->rx_queue);
4584 
4585 		status_queue_free(priv);
4586 
4587 		return -ENOMEM;
4588 	}
4589 
4590 	for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4591 		struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4592 
4593 		err = ipw2100_alloc_skb(priv, packet);
4594 		if (unlikely(err)) {
4595 			err = -ENOMEM;
4596 			break;
4597 		}
4598 
4599 		/* The BD holds the cache aligned address */
4600 		priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4601 		priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4602 		priv->status_queue.drv[i].status_fields = 0;
4603 	}
4604 
4605 	if (i == RX_QUEUE_LENGTH)
4606 		return 0;
4607 
4608 	for (j = 0; j < i; j++) {
4609 		pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4610 				 sizeof(struct ipw2100_rx_packet),
4611 				 PCI_DMA_FROMDEVICE);
4612 		dev_kfree_skb(priv->rx_buffers[j].skb);
4613 	}
4614 
4615 	kfree(priv->rx_buffers);
4616 	priv->rx_buffers = NULL;
4617 
4618 	bd_queue_free(priv, &priv->rx_queue);
4619 
4620 	status_queue_free(priv);
4621 
4622 	return err;
4623 }
4624 
4625 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4626 {
4627 	IPW_DEBUG_INFO("enter\n");
4628 
4629 	priv->rx_queue.oldest = 0;
4630 	priv->rx_queue.available = priv->rx_queue.entries - 1;
4631 	priv->rx_queue.next = priv->rx_queue.entries - 1;
4632 
4633 	INIT_STAT(&priv->rxq_stat);
4634 	SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4635 
4636 	bd_queue_initialize(priv, &priv->rx_queue,
4637 			    IPW_MEM_HOST_SHARED_RX_BD_BASE,
4638 			    IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4639 			    IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4640 			    IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4641 
4642 	/* set up the status queue */
4643 	write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4644 		       priv->status_queue.nic);
4645 
4646 	IPW_DEBUG_INFO("exit\n");
4647 }
4648 
4649 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4650 {
4651 	int i;
4652 
4653 	IPW_DEBUG_INFO("enter\n");
4654 
4655 	bd_queue_free(priv, &priv->rx_queue);
4656 	status_queue_free(priv);
4657 
4658 	if (!priv->rx_buffers)
4659 		return;
4660 
4661 	for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4662 		if (priv->rx_buffers[i].rxp) {
4663 			pci_unmap_single(priv->pci_dev,
4664 					 priv->rx_buffers[i].dma_addr,
4665 					 sizeof(struct ipw2100_rx),
4666 					 PCI_DMA_FROMDEVICE);
4667 			dev_kfree_skb(priv->rx_buffers[i].skb);
4668 		}
4669 	}
4670 
4671 	kfree(priv->rx_buffers);
4672 	priv->rx_buffers = NULL;
4673 
4674 	IPW_DEBUG_INFO("exit\n");
4675 }
4676 
4677 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4678 {
4679 	u32 length = ETH_ALEN;
4680 	u8 addr[ETH_ALEN];
4681 
4682 	int err;
4683 
4684 	err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length);
4685 	if (err) {
4686 		IPW_DEBUG_INFO("MAC address read failed\n");
4687 		return -EIO;
4688 	}
4689 
4690 	memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN);
4691 	IPW_DEBUG_INFO("card MAC is %pM\n", priv->net_dev->dev_addr);
4692 
4693 	return 0;
4694 }
4695 
4696 /********************************************************************
4697  *
4698  * Firmware Commands
4699  *
4700  ********************************************************************/
4701 
4702 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4703 {
4704 	struct host_command cmd = {
4705 		.host_command = ADAPTER_ADDRESS,
4706 		.host_command_sequence = 0,
4707 		.host_command_length = ETH_ALEN
4708 	};
4709 	int err;
4710 
4711 	IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4712 
4713 	IPW_DEBUG_INFO("enter\n");
4714 
4715 	if (priv->config & CFG_CUSTOM_MAC) {
4716 		memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4717 		memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4718 	} else
4719 		memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4720 		       ETH_ALEN);
4721 
4722 	err = ipw2100_hw_send_command(priv, &cmd);
4723 
4724 	IPW_DEBUG_INFO("exit\n");
4725 	return err;
4726 }
4727 
4728 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4729 				 int batch_mode)
4730 {
4731 	struct host_command cmd = {
4732 		.host_command = PORT_TYPE,
4733 		.host_command_sequence = 0,
4734 		.host_command_length = sizeof(u32)
4735 	};
4736 	int err;
4737 
4738 	switch (port_type) {
4739 	case IW_MODE_INFRA:
4740 		cmd.host_command_parameters[0] = IPW_BSS;
4741 		break;
4742 	case IW_MODE_ADHOC:
4743 		cmd.host_command_parameters[0] = IPW_IBSS;
4744 		break;
4745 	}
4746 
4747 	IPW_DEBUG_HC("PORT_TYPE: %s\n",
4748 		     port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4749 
4750 	if (!batch_mode) {
4751 		err = ipw2100_disable_adapter(priv);
4752 		if (err) {
4753 			printk(KERN_ERR DRV_NAME
4754 			       ": %s: Could not disable adapter %d\n",
4755 			       priv->net_dev->name, err);
4756 			return err;
4757 		}
4758 	}
4759 
4760 	/* send cmd to firmware */
4761 	err = ipw2100_hw_send_command(priv, &cmd);
4762 
4763 	if (!batch_mode)
4764 		ipw2100_enable_adapter(priv);
4765 
4766 	return err;
4767 }
4768 
4769 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4770 			       int batch_mode)
4771 {
4772 	struct host_command cmd = {
4773 		.host_command = CHANNEL,
4774 		.host_command_sequence = 0,
4775 		.host_command_length = sizeof(u32)
4776 	};
4777 	int err;
4778 
4779 	cmd.host_command_parameters[0] = channel;
4780 
4781 	IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4782 
4783 	/* If BSS then we don't support channel selection */
4784 	if (priv->ieee->iw_mode == IW_MODE_INFRA)
4785 		return 0;
4786 
4787 	if ((channel != 0) &&
4788 	    ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4789 		return -EINVAL;
4790 
4791 	if (!batch_mode) {
4792 		err = ipw2100_disable_adapter(priv);
4793 		if (err)
4794 			return err;
4795 	}
4796 
4797 	err = ipw2100_hw_send_command(priv, &cmd);
4798 	if (err) {
4799 		IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4800 		return err;
4801 	}
4802 
4803 	if (channel)
4804 		priv->config |= CFG_STATIC_CHANNEL;
4805 	else
4806 		priv->config &= ~CFG_STATIC_CHANNEL;
4807 
4808 	priv->channel = channel;
4809 
4810 	if (!batch_mode) {
4811 		err = ipw2100_enable_adapter(priv);
4812 		if (err)
4813 			return err;
4814 	}
4815 
4816 	return 0;
4817 }
4818 
4819 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4820 {
4821 	struct host_command cmd = {
4822 		.host_command = SYSTEM_CONFIG,
4823 		.host_command_sequence = 0,
4824 		.host_command_length = 12,
4825 	};
4826 	u32 ibss_mask, len = sizeof(u32);
4827 	int err;
4828 
4829 	/* Set system configuration */
4830 
4831 	if (!batch_mode) {
4832 		err = ipw2100_disable_adapter(priv);
4833 		if (err)
4834 			return err;
4835 	}
4836 
4837 	if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4838 		cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4839 
4840 	cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4841 	    IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4842 
4843 	if (!(priv->config & CFG_LONG_PREAMBLE))
4844 		cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4845 
4846 	err = ipw2100_get_ordinal(priv,
4847 				  IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4848 				  &ibss_mask, &len);
4849 	if (err)
4850 		ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4851 
4852 	cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4853 	cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4854 
4855 	/* 11b only */
4856 	/*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4857 
4858 	err = ipw2100_hw_send_command(priv, &cmd);
4859 	if (err)
4860 		return err;
4861 
4862 /* If IPv6 is configured in the kernel then we don't want to filter out all
4863  * of the multicast packets as IPv6 needs some. */
4864 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4865 	cmd.host_command = ADD_MULTICAST;
4866 	cmd.host_command_sequence = 0;
4867 	cmd.host_command_length = 0;
4868 
4869 	ipw2100_hw_send_command(priv, &cmd);
4870 #endif
4871 	if (!batch_mode) {
4872 		err = ipw2100_enable_adapter(priv);
4873 		if (err)
4874 			return err;
4875 	}
4876 
4877 	return 0;
4878 }
4879 
4880 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4881 				int batch_mode)
4882 {
4883 	struct host_command cmd = {
4884 		.host_command = BASIC_TX_RATES,
4885 		.host_command_sequence = 0,
4886 		.host_command_length = 4
4887 	};
4888 	int err;
4889 
4890 	cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4891 
4892 	if (!batch_mode) {
4893 		err = ipw2100_disable_adapter(priv);
4894 		if (err)
4895 			return err;
4896 	}
4897 
4898 	/* Set BASIC TX Rate first */
4899 	ipw2100_hw_send_command(priv, &cmd);
4900 
4901 	/* Set TX Rate */
4902 	cmd.host_command = TX_RATES;
4903 	ipw2100_hw_send_command(priv, &cmd);
4904 
4905 	/* Set MSDU TX Rate */
4906 	cmd.host_command = MSDU_TX_RATES;
4907 	ipw2100_hw_send_command(priv, &cmd);
4908 
4909 	if (!batch_mode) {
4910 		err = ipw2100_enable_adapter(priv);
4911 		if (err)
4912 			return err;
4913 	}
4914 
4915 	priv->tx_rates = rate;
4916 
4917 	return 0;
4918 }
4919 
4920 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4921 {
4922 	struct host_command cmd = {
4923 		.host_command = POWER_MODE,
4924 		.host_command_sequence = 0,
4925 		.host_command_length = 4
4926 	};
4927 	int err;
4928 
4929 	cmd.host_command_parameters[0] = power_level;
4930 
4931 	err = ipw2100_hw_send_command(priv, &cmd);
4932 	if (err)
4933 		return err;
4934 
4935 	if (power_level == IPW_POWER_MODE_CAM)
4936 		priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4937 	else
4938 		priv->power_mode = IPW_POWER_ENABLED | power_level;
4939 
4940 #ifdef IPW2100_TX_POWER
4941 	if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4942 		/* Set beacon interval */
4943 		cmd.host_command = TX_POWER_INDEX;
4944 		cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4945 
4946 		err = ipw2100_hw_send_command(priv, &cmd);
4947 		if (err)
4948 			return err;
4949 	}
4950 #endif
4951 
4952 	return 0;
4953 }
4954 
4955 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4956 {
4957 	struct host_command cmd = {
4958 		.host_command = RTS_THRESHOLD,
4959 		.host_command_sequence = 0,
4960 		.host_command_length = 4
4961 	};
4962 	int err;
4963 
4964 	if (threshold & RTS_DISABLED)
4965 		cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4966 	else
4967 		cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4968 
4969 	err = ipw2100_hw_send_command(priv, &cmd);
4970 	if (err)
4971 		return err;
4972 
4973 	priv->rts_threshold = threshold;
4974 
4975 	return 0;
4976 }
4977 
4978 #if 0
4979 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4980 					u32 threshold, int batch_mode)
4981 {
4982 	struct host_command cmd = {
4983 		.host_command = FRAG_THRESHOLD,
4984 		.host_command_sequence = 0,
4985 		.host_command_length = 4,
4986 		.host_command_parameters[0] = 0,
4987 	};
4988 	int err;
4989 
4990 	if (!batch_mode) {
4991 		err = ipw2100_disable_adapter(priv);
4992 		if (err)
4993 			return err;
4994 	}
4995 
4996 	if (threshold == 0)
4997 		threshold = DEFAULT_FRAG_THRESHOLD;
4998 	else {
4999 		threshold = max(threshold, MIN_FRAG_THRESHOLD);
5000 		threshold = min(threshold, MAX_FRAG_THRESHOLD);
5001 	}
5002 
5003 	cmd.host_command_parameters[0] = threshold;
5004 
5005 	IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
5006 
5007 	err = ipw2100_hw_send_command(priv, &cmd);
5008 
5009 	if (!batch_mode)
5010 		ipw2100_enable_adapter(priv);
5011 
5012 	if (!err)
5013 		priv->frag_threshold = threshold;
5014 
5015 	return err;
5016 }
5017 #endif
5018 
5019 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
5020 {
5021 	struct host_command cmd = {
5022 		.host_command = SHORT_RETRY_LIMIT,
5023 		.host_command_sequence = 0,
5024 		.host_command_length = 4
5025 	};
5026 	int err;
5027 
5028 	cmd.host_command_parameters[0] = retry;
5029 
5030 	err = ipw2100_hw_send_command(priv, &cmd);
5031 	if (err)
5032 		return err;
5033 
5034 	priv->short_retry_limit = retry;
5035 
5036 	return 0;
5037 }
5038 
5039 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5040 {
5041 	struct host_command cmd = {
5042 		.host_command = LONG_RETRY_LIMIT,
5043 		.host_command_sequence = 0,
5044 		.host_command_length = 4
5045 	};
5046 	int err;
5047 
5048 	cmd.host_command_parameters[0] = retry;
5049 
5050 	err = ipw2100_hw_send_command(priv, &cmd);
5051 	if (err)
5052 		return err;
5053 
5054 	priv->long_retry_limit = retry;
5055 
5056 	return 0;
5057 }
5058 
5059 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5060 				       int batch_mode)
5061 {
5062 	struct host_command cmd = {
5063 		.host_command = MANDATORY_BSSID,
5064 		.host_command_sequence = 0,
5065 		.host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5066 	};
5067 	int err;
5068 
5069 #ifdef CONFIG_IPW2100_DEBUG
5070 	if (bssid != NULL)
5071 		IPW_DEBUG_HC("MANDATORY_BSSID: %pM\n", bssid);
5072 	else
5073 		IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5074 #endif
5075 	/* if BSSID is empty then we disable mandatory bssid mode */
5076 	if (bssid != NULL)
5077 		memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5078 
5079 	if (!batch_mode) {
5080 		err = ipw2100_disable_adapter(priv);
5081 		if (err)
5082 			return err;
5083 	}
5084 
5085 	err = ipw2100_hw_send_command(priv, &cmd);
5086 
5087 	if (!batch_mode)
5088 		ipw2100_enable_adapter(priv);
5089 
5090 	return err;
5091 }
5092 
5093 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5094 {
5095 	struct host_command cmd = {
5096 		.host_command = DISASSOCIATION_BSSID,
5097 		.host_command_sequence = 0,
5098 		.host_command_length = ETH_ALEN
5099 	};
5100 	int err;
5101 
5102 	IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5103 
5104 	/* The Firmware currently ignores the BSSID and just disassociates from
5105 	 * the currently associated AP -- but in the off chance that a future
5106 	 * firmware does use the BSSID provided here, we go ahead and try and
5107 	 * set it to the currently associated AP's BSSID */
5108 	memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5109 
5110 	err = ipw2100_hw_send_command(priv, &cmd);
5111 
5112 	return err;
5113 }
5114 
5115 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5116 			      struct ipw2100_wpa_assoc_frame *, int)
5117     __attribute__ ((unused));
5118 
5119 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5120 			      struct ipw2100_wpa_assoc_frame *wpa_frame,
5121 			      int batch_mode)
5122 {
5123 	struct host_command cmd = {
5124 		.host_command = SET_WPA_IE,
5125 		.host_command_sequence = 0,
5126 		.host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5127 	};
5128 	int err;
5129 
5130 	IPW_DEBUG_HC("SET_WPA_IE\n");
5131 
5132 	if (!batch_mode) {
5133 		err = ipw2100_disable_adapter(priv);
5134 		if (err)
5135 			return err;
5136 	}
5137 
5138 	memcpy(cmd.host_command_parameters, wpa_frame,
5139 	       sizeof(struct ipw2100_wpa_assoc_frame));
5140 
5141 	err = ipw2100_hw_send_command(priv, &cmd);
5142 
5143 	if (!batch_mode) {
5144 		if (ipw2100_enable_adapter(priv))
5145 			err = -EIO;
5146 	}
5147 
5148 	return err;
5149 }
5150 
5151 struct security_info_params {
5152 	u32 allowed_ciphers;
5153 	u16 version;
5154 	u8 auth_mode;
5155 	u8 replay_counters_number;
5156 	u8 unicast_using_group;
5157 } __packed;
5158 
5159 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5160 					    int auth_mode,
5161 					    int security_level,
5162 					    int unicast_using_group,
5163 					    int batch_mode)
5164 {
5165 	struct host_command cmd = {
5166 		.host_command = SET_SECURITY_INFORMATION,
5167 		.host_command_sequence = 0,
5168 		.host_command_length = sizeof(struct security_info_params)
5169 	};
5170 	struct security_info_params *security =
5171 	    (struct security_info_params *)&cmd.host_command_parameters;
5172 	int err;
5173 	memset(security, 0, sizeof(*security));
5174 
5175 	/* If shared key AP authentication is turned on, then we need to
5176 	 * configure the firmware to try and use it.
5177 	 *
5178 	 * Actual data encryption/decryption is handled by the host. */
5179 	security->auth_mode = auth_mode;
5180 	security->unicast_using_group = unicast_using_group;
5181 
5182 	switch (security_level) {
5183 	default:
5184 	case SEC_LEVEL_0:
5185 		security->allowed_ciphers = IPW_NONE_CIPHER;
5186 		break;
5187 	case SEC_LEVEL_1:
5188 		security->allowed_ciphers = IPW_WEP40_CIPHER |
5189 		    IPW_WEP104_CIPHER;
5190 		break;
5191 	case SEC_LEVEL_2:
5192 		security->allowed_ciphers = IPW_WEP40_CIPHER |
5193 		    IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5194 		break;
5195 	case SEC_LEVEL_2_CKIP:
5196 		security->allowed_ciphers = IPW_WEP40_CIPHER |
5197 		    IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5198 		break;
5199 	case SEC_LEVEL_3:
5200 		security->allowed_ciphers = IPW_WEP40_CIPHER |
5201 		    IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5202 		break;
5203 	}
5204 
5205 	IPW_DEBUG_HC
5206 	    ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5207 	     security->auth_mode, security->allowed_ciphers, security_level);
5208 
5209 	security->replay_counters_number = 0;
5210 
5211 	if (!batch_mode) {
5212 		err = ipw2100_disable_adapter(priv);
5213 		if (err)
5214 			return err;
5215 	}
5216 
5217 	err = ipw2100_hw_send_command(priv, &cmd);
5218 
5219 	if (!batch_mode)
5220 		ipw2100_enable_adapter(priv);
5221 
5222 	return err;
5223 }
5224 
5225 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5226 {
5227 	struct host_command cmd = {
5228 		.host_command = TX_POWER_INDEX,
5229 		.host_command_sequence = 0,
5230 		.host_command_length = 4
5231 	};
5232 	int err = 0;
5233 	u32 tmp = tx_power;
5234 
5235 	if (tx_power != IPW_TX_POWER_DEFAULT)
5236 		tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5237 		      (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5238 
5239 	cmd.host_command_parameters[0] = tmp;
5240 
5241 	if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5242 		err = ipw2100_hw_send_command(priv, &cmd);
5243 	if (!err)
5244 		priv->tx_power = tx_power;
5245 
5246 	return 0;
5247 }
5248 
5249 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5250 					    u32 interval, int batch_mode)
5251 {
5252 	struct host_command cmd = {
5253 		.host_command = BEACON_INTERVAL,
5254 		.host_command_sequence = 0,
5255 		.host_command_length = 4
5256 	};
5257 	int err;
5258 
5259 	cmd.host_command_parameters[0] = interval;
5260 
5261 	IPW_DEBUG_INFO("enter\n");
5262 
5263 	if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5264 		if (!batch_mode) {
5265 			err = ipw2100_disable_adapter(priv);
5266 			if (err)
5267 				return err;
5268 		}
5269 
5270 		ipw2100_hw_send_command(priv, &cmd);
5271 
5272 		if (!batch_mode) {
5273 			err = ipw2100_enable_adapter(priv);
5274 			if (err)
5275 				return err;
5276 		}
5277 	}
5278 
5279 	IPW_DEBUG_INFO("exit\n");
5280 
5281 	return 0;
5282 }
5283 
5284 static void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5285 {
5286 	ipw2100_tx_initialize(priv);
5287 	ipw2100_rx_initialize(priv);
5288 	ipw2100_msg_initialize(priv);
5289 }
5290 
5291 static void ipw2100_queues_free(struct ipw2100_priv *priv)
5292 {
5293 	ipw2100_tx_free(priv);
5294 	ipw2100_rx_free(priv);
5295 	ipw2100_msg_free(priv);
5296 }
5297 
5298 static int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5299 {
5300 	if (ipw2100_tx_allocate(priv) ||
5301 	    ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5302 		goto fail;
5303 
5304 	return 0;
5305 
5306       fail:
5307 	ipw2100_tx_free(priv);
5308 	ipw2100_rx_free(priv);
5309 	ipw2100_msg_free(priv);
5310 	return -ENOMEM;
5311 }
5312 
5313 #define IPW_PRIVACY_CAPABLE 0x0008
5314 
5315 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5316 				 int batch_mode)
5317 {
5318 	struct host_command cmd = {
5319 		.host_command = WEP_FLAGS,
5320 		.host_command_sequence = 0,
5321 		.host_command_length = 4
5322 	};
5323 	int err;
5324 
5325 	cmd.host_command_parameters[0] = flags;
5326 
5327 	IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5328 
5329 	if (!batch_mode) {
5330 		err = ipw2100_disable_adapter(priv);
5331 		if (err) {
5332 			printk(KERN_ERR DRV_NAME
5333 			       ": %s: Could not disable adapter %d\n",
5334 			       priv->net_dev->name, err);
5335 			return err;
5336 		}
5337 	}
5338 
5339 	/* send cmd to firmware */
5340 	err = ipw2100_hw_send_command(priv, &cmd);
5341 
5342 	if (!batch_mode)
5343 		ipw2100_enable_adapter(priv);
5344 
5345 	return err;
5346 }
5347 
5348 struct ipw2100_wep_key {
5349 	u8 idx;
5350 	u8 len;
5351 	u8 key[13];
5352 };
5353 
5354 /* Macros to ease up priting WEP keys */
5355 #define WEP_FMT_64  "%02X%02X%02X%02X-%02X"
5356 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5357 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5358 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5359 
5360 /**
5361  * Set a the wep key
5362  *
5363  * @priv: struct to work on
5364  * @idx: index of the key we want to set
5365  * @key: ptr to the key data to set
5366  * @len: length of the buffer at @key
5367  * @batch_mode: FIXME perform the operation in batch mode, not
5368  *              disabling the device.
5369  *
5370  * @returns 0 if OK, < 0 errno code on error.
5371  *
5372  * Fill out a command structure with the new wep key, length an
5373  * index and send it down the wire.
5374  */
5375 static int ipw2100_set_key(struct ipw2100_priv *priv,
5376 			   int idx, char *key, int len, int batch_mode)
5377 {
5378 	int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5379 	struct host_command cmd = {
5380 		.host_command = WEP_KEY_INFO,
5381 		.host_command_sequence = 0,
5382 		.host_command_length = sizeof(struct ipw2100_wep_key),
5383 	};
5384 	struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5385 	int err;
5386 
5387 	IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5388 		     idx, keylen, len);
5389 
5390 	/* NOTE: We don't check cached values in case the firmware was reset
5391 	 * or some other problem is occurring.  If the user is setting the key,
5392 	 * then we push the change */
5393 
5394 	wep_key->idx = idx;
5395 	wep_key->len = keylen;
5396 
5397 	if (keylen) {
5398 		memcpy(wep_key->key, key, len);
5399 		memset(wep_key->key + len, 0, keylen - len);
5400 	}
5401 
5402 	/* Will be optimized out on debug not being configured in */
5403 	if (keylen == 0)
5404 		IPW_DEBUG_WEP("%s: Clearing key %d\n",
5405 			      priv->net_dev->name, wep_key->idx);
5406 	else if (keylen == 5)
5407 		IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5408 			      priv->net_dev->name, wep_key->idx, wep_key->len,
5409 			      WEP_STR_64(wep_key->key));
5410 	else
5411 		IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5412 			      "\n",
5413 			      priv->net_dev->name, wep_key->idx, wep_key->len,
5414 			      WEP_STR_128(wep_key->key));
5415 
5416 	if (!batch_mode) {
5417 		err = ipw2100_disable_adapter(priv);
5418 		/* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5419 		if (err) {
5420 			printk(KERN_ERR DRV_NAME
5421 			       ": %s: Could not disable adapter %d\n",
5422 			       priv->net_dev->name, err);
5423 			return err;
5424 		}
5425 	}
5426 
5427 	/* send cmd to firmware */
5428 	err = ipw2100_hw_send_command(priv, &cmd);
5429 
5430 	if (!batch_mode) {
5431 		int err2 = ipw2100_enable_adapter(priv);
5432 		if (err == 0)
5433 			err = err2;
5434 	}
5435 	return err;
5436 }
5437 
5438 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5439 				 int idx, int batch_mode)
5440 {
5441 	struct host_command cmd = {
5442 		.host_command = WEP_KEY_INDEX,
5443 		.host_command_sequence = 0,
5444 		.host_command_length = 4,
5445 		.host_command_parameters = {idx},
5446 	};
5447 	int err;
5448 
5449 	IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5450 
5451 	if (idx < 0 || idx > 3)
5452 		return -EINVAL;
5453 
5454 	if (!batch_mode) {
5455 		err = ipw2100_disable_adapter(priv);
5456 		if (err) {
5457 			printk(KERN_ERR DRV_NAME
5458 			       ": %s: Could not disable adapter %d\n",
5459 			       priv->net_dev->name, err);
5460 			return err;
5461 		}
5462 	}
5463 
5464 	/* send cmd to firmware */
5465 	err = ipw2100_hw_send_command(priv, &cmd);
5466 
5467 	if (!batch_mode)
5468 		ipw2100_enable_adapter(priv);
5469 
5470 	return err;
5471 }
5472 
5473 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5474 {
5475 	int i, err, auth_mode, sec_level, use_group;
5476 
5477 	if (!(priv->status & STATUS_RUNNING))
5478 		return 0;
5479 
5480 	if (!batch_mode) {
5481 		err = ipw2100_disable_adapter(priv);
5482 		if (err)
5483 			return err;
5484 	}
5485 
5486 	if (!priv->ieee->sec.enabled) {
5487 		err =
5488 		    ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5489 						     SEC_LEVEL_0, 0, 1);
5490 	} else {
5491 		auth_mode = IPW_AUTH_OPEN;
5492 		if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5493 			if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5494 				auth_mode = IPW_AUTH_SHARED;
5495 			else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5496 				auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5497 		}
5498 
5499 		sec_level = SEC_LEVEL_0;
5500 		if (priv->ieee->sec.flags & SEC_LEVEL)
5501 			sec_level = priv->ieee->sec.level;
5502 
5503 		use_group = 0;
5504 		if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5505 			use_group = priv->ieee->sec.unicast_uses_group;
5506 
5507 		err =
5508 		    ipw2100_set_security_information(priv, auth_mode, sec_level,
5509 						     use_group, 1);
5510 	}
5511 
5512 	if (err)
5513 		goto exit;
5514 
5515 	if (priv->ieee->sec.enabled) {
5516 		for (i = 0; i < 4; i++) {
5517 			if (!(priv->ieee->sec.flags & (1 << i))) {
5518 				memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5519 				priv->ieee->sec.key_sizes[i] = 0;
5520 			} else {
5521 				err = ipw2100_set_key(priv, i,
5522 						      priv->ieee->sec.keys[i],
5523 						      priv->ieee->sec.
5524 						      key_sizes[i], 1);
5525 				if (err)
5526 					goto exit;
5527 			}
5528 		}
5529 
5530 		ipw2100_set_key_index(priv, priv->ieee->crypt_info.tx_keyidx, 1);
5531 	}
5532 
5533 	/* Always enable privacy so the Host can filter WEP packets if
5534 	 * encrypted data is sent up */
5535 	err =
5536 	    ipw2100_set_wep_flags(priv,
5537 				  priv->ieee->sec.
5538 				  enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5539 	if (err)
5540 		goto exit;
5541 
5542 	priv->status &= ~STATUS_SECURITY_UPDATED;
5543 
5544       exit:
5545 	if (!batch_mode)
5546 		ipw2100_enable_adapter(priv);
5547 
5548 	return err;
5549 }
5550 
5551 static void ipw2100_security_work(struct work_struct *work)
5552 {
5553 	struct ipw2100_priv *priv =
5554 		container_of(work, struct ipw2100_priv, security_work.work);
5555 
5556 	/* If we happen to have reconnected before we get a chance to
5557 	 * process this, then update the security settings--which causes
5558 	 * a disassociation to occur */
5559 	if (!(priv->status & STATUS_ASSOCIATED) &&
5560 	    priv->status & STATUS_SECURITY_UPDATED)
5561 		ipw2100_configure_security(priv, 0);
5562 }
5563 
5564 static void shim__set_security(struct net_device *dev,
5565 			       struct libipw_security *sec)
5566 {
5567 	struct ipw2100_priv *priv = libipw_priv(dev);
5568 	int i;
5569 
5570 	mutex_lock(&priv->action_mutex);
5571 	if (!(priv->status & STATUS_INITIALIZED))
5572 		goto done;
5573 
5574 	for (i = 0; i < 4; i++) {
5575 		if (sec->flags & (1 << i)) {
5576 			priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5577 			if (sec->key_sizes[i] == 0)
5578 				priv->ieee->sec.flags &= ~(1 << i);
5579 			else
5580 				memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5581 				       sec->key_sizes[i]);
5582 			if (sec->level == SEC_LEVEL_1) {
5583 				priv->ieee->sec.flags |= (1 << i);
5584 				priv->status |= STATUS_SECURITY_UPDATED;
5585 			} else
5586 				priv->ieee->sec.flags &= ~(1 << i);
5587 		}
5588 	}
5589 
5590 	if ((sec->flags & SEC_ACTIVE_KEY) &&
5591 	    priv->ieee->sec.active_key != sec->active_key) {
5592 		priv->ieee->sec.active_key = sec->active_key;
5593 		priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5594 		priv->status |= STATUS_SECURITY_UPDATED;
5595 	}
5596 
5597 	if ((sec->flags & SEC_AUTH_MODE) &&
5598 	    (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5599 		priv->ieee->sec.auth_mode = sec->auth_mode;
5600 		priv->ieee->sec.flags |= SEC_AUTH_MODE;
5601 		priv->status |= STATUS_SECURITY_UPDATED;
5602 	}
5603 
5604 	if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5605 		priv->ieee->sec.flags |= SEC_ENABLED;
5606 		priv->ieee->sec.enabled = sec->enabled;
5607 		priv->status |= STATUS_SECURITY_UPDATED;
5608 	}
5609 
5610 	if (sec->flags & SEC_ENCRYPT)
5611 		priv->ieee->sec.encrypt = sec->encrypt;
5612 
5613 	if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5614 		priv->ieee->sec.level = sec->level;
5615 		priv->ieee->sec.flags |= SEC_LEVEL;
5616 		priv->status |= STATUS_SECURITY_UPDATED;
5617 	}
5618 
5619 	IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5620 		      priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5621 		      priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5622 		      priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5623 		      priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5624 		      priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5625 		      priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5626 		      priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5627 		      priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5628 		      priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5629 
5630 /* As a temporary work around to enable WPA until we figure out why
5631  * wpa_supplicant toggles the security capability of the driver, which
5632  * forces a disassociation with force_update...
5633  *
5634  *	if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5635 	if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5636 		ipw2100_configure_security(priv, 0);
5637       done:
5638 	mutex_unlock(&priv->action_mutex);
5639 }
5640 
5641 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5642 {
5643 	int err;
5644 	int batch_mode = 1;
5645 	u8 *bssid;
5646 
5647 	IPW_DEBUG_INFO("enter\n");
5648 
5649 	err = ipw2100_disable_adapter(priv);
5650 	if (err)
5651 		return err;
5652 #ifdef CONFIG_IPW2100_MONITOR
5653 	if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5654 		err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5655 		if (err)
5656 			return err;
5657 
5658 		IPW_DEBUG_INFO("exit\n");
5659 
5660 		return 0;
5661 	}
5662 #endif				/* CONFIG_IPW2100_MONITOR */
5663 
5664 	err = ipw2100_read_mac_address(priv);
5665 	if (err)
5666 		return -EIO;
5667 
5668 	err = ipw2100_set_mac_address(priv, batch_mode);
5669 	if (err)
5670 		return err;
5671 
5672 	err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5673 	if (err)
5674 		return err;
5675 
5676 	if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5677 		err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5678 		if (err)
5679 			return err;
5680 	}
5681 
5682 	err = ipw2100_system_config(priv, batch_mode);
5683 	if (err)
5684 		return err;
5685 
5686 	err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5687 	if (err)
5688 		return err;
5689 
5690 	/* Default to power mode OFF */
5691 	err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5692 	if (err)
5693 		return err;
5694 
5695 	err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5696 	if (err)
5697 		return err;
5698 
5699 	if (priv->config & CFG_STATIC_BSSID)
5700 		bssid = priv->bssid;
5701 	else
5702 		bssid = NULL;
5703 	err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5704 	if (err)
5705 		return err;
5706 
5707 	if (priv->config & CFG_STATIC_ESSID)
5708 		err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5709 					batch_mode);
5710 	else
5711 		err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5712 	if (err)
5713 		return err;
5714 
5715 	err = ipw2100_configure_security(priv, batch_mode);
5716 	if (err)
5717 		return err;
5718 
5719 	if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5720 		err =
5721 		    ipw2100_set_ibss_beacon_interval(priv,
5722 						     priv->beacon_interval,
5723 						     batch_mode);
5724 		if (err)
5725 			return err;
5726 
5727 		err = ipw2100_set_tx_power(priv, priv->tx_power);
5728 		if (err)
5729 			return err;
5730 	}
5731 
5732 	/*
5733 	   err = ipw2100_set_fragmentation_threshold(
5734 	   priv, priv->frag_threshold, batch_mode);
5735 	   if (err)
5736 	   return err;
5737 	 */
5738 
5739 	IPW_DEBUG_INFO("exit\n");
5740 
5741 	return 0;
5742 }
5743 
5744 /*************************************************************************
5745  *
5746  * EXTERNALLY CALLED METHODS
5747  *
5748  *************************************************************************/
5749 
5750 /* This method is called by the network layer -- not to be confused with
5751  * ipw2100_set_mac_address() declared above called by this driver (and this
5752  * method as well) to talk to the firmware */
5753 static int ipw2100_set_address(struct net_device *dev, void *p)
5754 {
5755 	struct ipw2100_priv *priv = libipw_priv(dev);
5756 	struct sockaddr *addr = p;
5757 	int err = 0;
5758 
5759 	if (!is_valid_ether_addr(addr->sa_data))
5760 		return -EADDRNOTAVAIL;
5761 
5762 	mutex_lock(&priv->action_mutex);
5763 
5764 	priv->config |= CFG_CUSTOM_MAC;
5765 	memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5766 
5767 	err = ipw2100_set_mac_address(priv, 0);
5768 	if (err)
5769 		goto done;
5770 
5771 	priv->reset_backoff = 0;
5772 	mutex_unlock(&priv->action_mutex);
5773 	ipw2100_reset_adapter(&priv->reset_work.work);
5774 	return 0;
5775 
5776       done:
5777 	mutex_unlock(&priv->action_mutex);
5778 	return err;
5779 }
5780 
5781 static int ipw2100_open(struct net_device *dev)
5782 {
5783 	struct ipw2100_priv *priv = libipw_priv(dev);
5784 	unsigned long flags;
5785 	IPW_DEBUG_INFO("dev->open\n");
5786 
5787 	spin_lock_irqsave(&priv->low_lock, flags);
5788 	if (priv->status & STATUS_ASSOCIATED) {
5789 		netif_carrier_on(dev);
5790 		netif_start_queue(dev);
5791 	}
5792 	spin_unlock_irqrestore(&priv->low_lock, flags);
5793 
5794 	return 0;
5795 }
5796 
5797 static int ipw2100_close(struct net_device *dev)
5798 {
5799 	struct ipw2100_priv *priv = libipw_priv(dev);
5800 	unsigned long flags;
5801 	struct list_head *element;
5802 	struct ipw2100_tx_packet *packet;
5803 
5804 	IPW_DEBUG_INFO("enter\n");
5805 
5806 	spin_lock_irqsave(&priv->low_lock, flags);
5807 
5808 	if (priv->status & STATUS_ASSOCIATED)
5809 		netif_carrier_off(dev);
5810 	netif_stop_queue(dev);
5811 
5812 	/* Flush the TX queue ... */
5813 	while (!list_empty(&priv->tx_pend_list)) {
5814 		element = priv->tx_pend_list.next;
5815 		packet = list_entry(element, struct ipw2100_tx_packet, list);
5816 
5817 		list_del(element);
5818 		DEC_STAT(&priv->tx_pend_stat);
5819 
5820 		libipw_txb_free(packet->info.d_struct.txb);
5821 		packet->info.d_struct.txb = NULL;
5822 
5823 		list_add_tail(element, &priv->tx_free_list);
5824 		INC_STAT(&priv->tx_free_stat);
5825 	}
5826 	spin_unlock_irqrestore(&priv->low_lock, flags);
5827 
5828 	IPW_DEBUG_INFO("exit\n");
5829 
5830 	return 0;
5831 }
5832 
5833 /*
5834  * TODO:  Fix this function... its just wrong
5835  */
5836 static void ipw2100_tx_timeout(struct net_device *dev)
5837 {
5838 	struct ipw2100_priv *priv = libipw_priv(dev);
5839 
5840 	dev->stats.tx_errors++;
5841 
5842 #ifdef CONFIG_IPW2100_MONITOR
5843 	if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5844 		return;
5845 #endif
5846 
5847 	IPW_DEBUG_INFO("%s: TX timed out.  Scheduling firmware restart.\n",
5848 		       dev->name);
5849 	schedule_reset(priv);
5850 }
5851 
5852 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5853 {
5854 	/* This is called when wpa_supplicant loads and closes the driver
5855 	 * interface. */
5856 	priv->ieee->wpa_enabled = value;
5857 	return 0;
5858 }
5859 
5860 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5861 {
5862 
5863 	struct libipw_device *ieee = priv->ieee;
5864 	struct libipw_security sec = {
5865 		.flags = SEC_AUTH_MODE,
5866 	};
5867 	int ret = 0;
5868 
5869 	if (value & IW_AUTH_ALG_SHARED_KEY) {
5870 		sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5871 		ieee->open_wep = 0;
5872 	} else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5873 		sec.auth_mode = WLAN_AUTH_OPEN;
5874 		ieee->open_wep = 1;
5875 	} else if (value & IW_AUTH_ALG_LEAP) {
5876 		sec.auth_mode = WLAN_AUTH_LEAP;
5877 		ieee->open_wep = 1;
5878 	} else
5879 		return -EINVAL;
5880 
5881 	if (ieee->set_security)
5882 		ieee->set_security(ieee->dev, &sec);
5883 	else
5884 		ret = -EOPNOTSUPP;
5885 
5886 	return ret;
5887 }
5888 
5889 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5890 				    char *wpa_ie, int wpa_ie_len)
5891 {
5892 
5893 	struct ipw2100_wpa_assoc_frame frame;
5894 
5895 	frame.fixed_ie_mask = 0;
5896 
5897 	/* copy WPA IE */
5898 	memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5899 	frame.var_ie_len = wpa_ie_len;
5900 
5901 	/* make sure WPA is enabled */
5902 	ipw2100_wpa_enable(priv, 1);
5903 	ipw2100_set_wpa_ie(priv, &frame, 0);
5904 }
5905 
5906 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5907 				    struct ethtool_drvinfo *info)
5908 {
5909 	struct ipw2100_priv *priv = libipw_priv(dev);
5910 	char fw_ver[64], ucode_ver[64];
5911 
5912 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
5913 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
5914 
5915 	ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5916 	ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5917 
5918 	snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5919 		 fw_ver, priv->eeprom_version, ucode_ver);
5920 
5921 	strlcpy(info->bus_info, pci_name(priv->pci_dev),
5922 		sizeof(info->bus_info));
5923 }
5924 
5925 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5926 {
5927 	struct ipw2100_priv *priv = libipw_priv(dev);
5928 	return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5929 }
5930 
5931 static const struct ethtool_ops ipw2100_ethtool_ops = {
5932 	.get_link = ipw2100_ethtool_get_link,
5933 	.get_drvinfo = ipw_ethtool_get_drvinfo,
5934 };
5935 
5936 static void ipw2100_hang_check(struct work_struct *work)
5937 {
5938 	struct ipw2100_priv *priv =
5939 		container_of(work, struct ipw2100_priv, hang_check.work);
5940 	unsigned long flags;
5941 	u32 rtc = 0xa5a5a5a5;
5942 	u32 len = sizeof(rtc);
5943 	int restart = 0;
5944 
5945 	spin_lock_irqsave(&priv->low_lock, flags);
5946 
5947 	if (priv->fatal_error != 0) {
5948 		/* If fatal_error is set then we need to restart */
5949 		IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5950 			       priv->net_dev->name);
5951 
5952 		restart = 1;
5953 	} else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5954 		   (rtc == priv->last_rtc)) {
5955 		/* Check if firmware is hung */
5956 		IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
5957 			       priv->net_dev->name);
5958 
5959 		restart = 1;
5960 	}
5961 
5962 	if (restart) {
5963 		/* Kill timer */
5964 		priv->stop_hang_check = 1;
5965 		priv->hangs++;
5966 
5967 		/* Restart the NIC */
5968 		schedule_reset(priv);
5969 	}
5970 
5971 	priv->last_rtc = rtc;
5972 
5973 	if (!priv->stop_hang_check)
5974 		schedule_delayed_work(&priv->hang_check, HZ / 2);
5975 
5976 	spin_unlock_irqrestore(&priv->low_lock, flags);
5977 }
5978 
5979 static void ipw2100_rf_kill(struct work_struct *work)
5980 {
5981 	struct ipw2100_priv *priv =
5982 		container_of(work, struct ipw2100_priv, rf_kill.work);
5983 	unsigned long flags;
5984 
5985 	spin_lock_irqsave(&priv->low_lock, flags);
5986 
5987 	if (rf_kill_active(priv)) {
5988 		IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
5989 		if (!priv->stop_rf_kill)
5990 			schedule_delayed_work(&priv->rf_kill,
5991 					      round_jiffies_relative(HZ));
5992 		goto exit_unlock;
5993 	}
5994 
5995 	/* RF Kill is now disabled, so bring the device back up */
5996 
5997 	if (!(priv->status & STATUS_RF_KILL_MASK)) {
5998 		IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
5999 				  "device\n");
6000 		schedule_reset(priv);
6001 	} else
6002 		IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
6003 				  "enabled\n");
6004 
6005       exit_unlock:
6006 	spin_unlock_irqrestore(&priv->low_lock, flags);
6007 }
6008 
6009 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
6010 
6011 static const struct net_device_ops ipw2100_netdev_ops = {
6012 	.ndo_open		= ipw2100_open,
6013 	.ndo_stop		= ipw2100_close,
6014 	.ndo_start_xmit		= libipw_xmit,
6015 	.ndo_tx_timeout		= ipw2100_tx_timeout,
6016 	.ndo_set_mac_address	= ipw2100_set_address,
6017 	.ndo_validate_addr	= eth_validate_addr,
6018 };
6019 
6020 /* Look into using netdev destructor to shutdown libipw? */
6021 
6022 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6023 					       void __iomem * ioaddr)
6024 {
6025 	struct ipw2100_priv *priv;
6026 	struct net_device *dev;
6027 
6028 	dev = alloc_libipw(sizeof(struct ipw2100_priv), 0);
6029 	if (!dev)
6030 		return NULL;
6031 	priv = libipw_priv(dev);
6032 	priv->ieee = netdev_priv(dev);
6033 	priv->pci_dev = pci_dev;
6034 	priv->net_dev = dev;
6035 	priv->ioaddr = ioaddr;
6036 
6037 	priv->ieee->hard_start_xmit = ipw2100_tx;
6038 	priv->ieee->set_security = shim__set_security;
6039 
6040 	priv->ieee->perfect_rssi = -20;
6041 	priv->ieee->worst_rssi = -85;
6042 
6043 	dev->netdev_ops = &ipw2100_netdev_ops;
6044 	dev->ethtool_ops = &ipw2100_ethtool_ops;
6045 	dev->wireless_handlers = &ipw2100_wx_handler_def;
6046 	priv->wireless_data.libipw = priv->ieee;
6047 	dev->wireless_data = &priv->wireless_data;
6048 	dev->watchdog_timeo = 3 * HZ;
6049 	dev->irq = 0;
6050 	dev->min_mtu = 68;
6051 	dev->max_mtu = LIBIPW_DATA_LEN;
6052 
6053 	/* NOTE: We don't use the wireless_handlers hook
6054 	 * in dev as the system will start throwing WX requests
6055 	 * to us before we're actually initialized and it just
6056 	 * ends up causing problems.  So, we just handle
6057 	 * the WX extensions through the ipw2100_ioctl interface */
6058 
6059 	/* memset() puts everything to 0, so we only have explicitly set
6060 	 * those values that need to be something else */
6061 
6062 	/* If power management is turned on, default to AUTO mode */
6063 	priv->power_mode = IPW_POWER_AUTO;
6064 
6065 #ifdef CONFIG_IPW2100_MONITOR
6066 	priv->config |= CFG_CRC_CHECK;
6067 #endif
6068 	priv->ieee->wpa_enabled = 0;
6069 	priv->ieee->drop_unencrypted = 0;
6070 	priv->ieee->privacy_invoked = 0;
6071 	priv->ieee->ieee802_1x = 1;
6072 
6073 	/* Set module parameters */
6074 	switch (network_mode) {
6075 	case 1:
6076 		priv->ieee->iw_mode = IW_MODE_ADHOC;
6077 		break;
6078 #ifdef CONFIG_IPW2100_MONITOR
6079 	case 2:
6080 		priv->ieee->iw_mode = IW_MODE_MONITOR;
6081 		break;
6082 #endif
6083 	default:
6084 	case 0:
6085 		priv->ieee->iw_mode = IW_MODE_INFRA;
6086 		break;
6087 	}
6088 
6089 	if (disable == 1)
6090 		priv->status |= STATUS_RF_KILL_SW;
6091 
6092 	if (channel != 0 &&
6093 	    ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6094 		priv->config |= CFG_STATIC_CHANNEL;
6095 		priv->channel = channel;
6096 	}
6097 
6098 	if (associate)
6099 		priv->config |= CFG_ASSOCIATE;
6100 
6101 	priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6102 	priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6103 	priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6104 	priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6105 	priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6106 	priv->tx_power = IPW_TX_POWER_DEFAULT;
6107 	priv->tx_rates = DEFAULT_TX_RATES;
6108 
6109 	strcpy(priv->nick, "ipw2100");
6110 
6111 	spin_lock_init(&priv->low_lock);
6112 	mutex_init(&priv->action_mutex);
6113 	mutex_init(&priv->adapter_mutex);
6114 
6115 	init_waitqueue_head(&priv->wait_command_queue);
6116 
6117 	netif_carrier_off(dev);
6118 
6119 	INIT_LIST_HEAD(&priv->msg_free_list);
6120 	INIT_LIST_HEAD(&priv->msg_pend_list);
6121 	INIT_STAT(&priv->msg_free_stat);
6122 	INIT_STAT(&priv->msg_pend_stat);
6123 
6124 	INIT_LIST_HEAD(&priv->tx_free_list);
6125 	INIT_LIST_HEAD(&priv->tx_pend_list);
6126 	INIT_STAT(&priv->tx_free_stat);
6127 	INIT_STAT(&priv->tx_pend_stat);
6128 
6129 	INIT_LIST_HEAD(&priv->fw_pend_list);
6130 	INIT_STAT(&priv->fw_pend_stat);
6131 
6132 	INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6133 	INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6134 	INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6135 	INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6136 	INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6137 	INIT_DELAYED_WORK(&priv->scan_event, ipw2100_scan_event);
6138 
6139 	tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6140 		     ipw2100_irq_tasklet, (unsigned long)priv);
6141 
6142 	/* NOTE:  We do not start the deferred work for status checks yet */
6143 	priv->stop_rf_kill = 1;
6144 	priv->stop_hang_check = 1;
6145 
6146 	return dev;
6147 }
6148 
6149 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6150 				const struct pci_device_id *ent)
6151 {
6152 	void __iomem *ioaddr;
6153 	struct net_device *dev = NULL;
6154 	struct ipw2100_priv *priv = NULL;
6155 	int err = 0;
6156 	int registered = 0;
6157 	u32 val;
6158 
6159 	IPW_DEBUG_INFO("enter\n");
6160 
6161 	if (!(pci_resource_flags(pci_dev, 0) & IORESOURCE_MEM)) {
6162 		IPW_DEBUG_INFO("weird - resource type is not memory\n");
6163 		err = -ENODEV;
6164 		goto out;
6165 	}
6166 
6167 	ioaddr = pci_iomap(pci_dev, 0, 0);
6168 	if (!ioaddr) {
6169 		printk(KERN_WARNING DRV_NAME
6170 		       "Error calling ioremap_nocache.\n");
6171 		err = -EIO;
6172 		goto fail;
6173 	}
6174 
6175 	/* allocate and initialize our net_device */
6176 	dev = ipw2100_alloc_device(pci_dev, ioaddr);
6177 	if (!dev) {
6178 		printk(KERN_WARNING DRV_NAME
6179 		       "Error calling ipw2100_alloc_device.\n");
6180 		err = -ENOMEM;
6181 		goto fail;
6182 	}
6183 
6184 	/* set up PCI mappings for device */
6185 	err = pci_enable_device(pci_dev);
6186 	if (err) {
6187 		printk(KERN_WARNING DRV_NAME
6188 		       "Error calling pci_enable_device.\n");
6189 		return err;
6190 	}
6191 
6192 	priv = libipw_priv(dev);
6193 
6194 	pci_set_master(pci_dev);
6195 	pci_set_drvdata(pci_dev, priv);
6196 
6197 	err = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
6198 	if (err) {
6199 		printk(KERN_WARNING DRV_NAME
6200 		       "Error calling pci_set_dma_mask.\n");
6201 		pci_disable_device(pci_dev);
6202 		return err;
6203 	}
6204 
6205 	err = pci_request_regions(pci_dev, DRV_NAME);
6206 	if (err) {
6207 		printk(KERN_WARNING DRV_NAME
6208 		       "Error calling pci_request_regions.\n");
6209 		pci_disable_device(pci_dev);
6210 		return err;
6211 	}
6212 
6213 	/* We disable the RETRY_TIMEOUT register (0x41) to keep
6214 	 * PCI Tx retries from interfering with C3 CPU state */
6215 	pci_read_config_dword(pci_dev, 0x40, &val);
6216 	if ((val & 0x0000ff00) != 0)
6217 		pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6218 
6219 	if (!ipw2100_hw_is_adapter_in_system(dev)) {
6220 		printk(KERN_WARNING DRV_NAME
6221 		       "Device not found via register read.\n");
6222 		err = -ENODEV;
6223 		goto fail;
6224 	}
6225 
6226 	SET_NETDEV_DEV(dev, &pci_dev->dev);
6227 
6228 	/* Force interrupts to be shut off on the device */
6229 	priv->status |= STATUS_INT_ENABLED;
6230 	ipw2100_disable_interrupts(priv);
6231 
6232 	/* Allocate and initialize the Tx/Rx queues and lists */
6233 	if (ipw2100_queues_allocate(priv)) {
6234 		printk(KERN_WARNING DRV_NAME
6235 		       "Error calling ipw2100_queues_allocate.\n");
6236 		err = -ENOMEM;
6237 		goto fail;
6238 	}
6239 	ipw2100_queues_initialize(priv);
6240 
6241 	err = request_irq(pci_dev->irq,
6242 			  ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6243 	if (err) {
6244 		printk(KERN_WARNING DRV_NAME
6245 		       "Error calling request_irq: %d.\n", pci_dev->irq);
6246 		goto fail;
6247 	}
6248 	dev->irq = pci_dev->irq;
6249 
6250 	IPW_DEBUG_INFO("Attempting to register device...\n");
6251 
6252 	printk(KERN_INFO DRV_NAME
6253 	       ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6254 
6255 	err = ipw2100_up(priv, 1);
6256 	if (err)
6257 		goto fail;
6258 
6259 	err = ipw2100_wdev_init(dev);
6260 	if (err)
6261 		goto fail;
6262 	registered = 1;
6263 
6264 	/* Bring up the interface.  Pre 0.46, after we registered the
6265 	 * network device we would call ipw2100_up.  This introduced a race
6266 	 * condition with newer hotplug configurations (network was coming
6267 	 * up and making calls before the device was initialized).
6268 	 */
6269 	err = register_netdev(dev);
6270 	if (err) {
6271 		printk(KERN_WARNING DRV_NAME
6272 		       "Error calling register_netdev.\n");
6273 		goto fail;
6274 	}
6275 	registered = 2;
6276 
6277 	mutex_lock(&priv->action_mutex);
6278 
6279 	IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6280 
6281 	/* perform this after register_netdev so that dev->name is set */
6282 	err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6283 	if (err)
6284 		goto fail_unlock;
6285 
6286 	/* If the RF Kill switch is disabled, go ahead and complete the
6287 	 * startup sequence */
6288 	if (!(priv->status & STATUS_RF_KILL_MASK)) {
6289 		/* Enable the adapter - sends HOST_COMPLETE */
6290 		if (ipw2100_enable_adapter(priv)) {
6291 			printk(KERN_WARNING DRV_NAME
6292 			       ": %s: failed in call to enable adapter.\n",
6293 			       priv->net_dev->name);
6294 			ipw2100_hw_stop_adapter(priv);
6295 			err = -EIO;
6296 			goto fail_unlock;
6297 		}
6298 
6299 		/* Start a scan . . . */
6300 		ipw2100_set_scan_options(priv);
6301 		ipw2100_start_scan(priv);
6302 	}
6303 
6304 	IPW_DEBUG_INFO("exit\n");
6305 
6306 	priv->status |= STATUS_INITIALIZED;
6307 
6308 	mutex_unlock(&priv->action_mutex);
6309 out:
6310 	return err;
6311 
6312       fail_unlock:
6313 	mutex_unlock(&priv->action_mutex);
6314       fail:
6315 	if (dev) {
6316 		if (registered >= 2)
6317 			unregister_netdev(dev);
6318 
6319 		if (registered) {
6320 			wiphy_unregister(priv->ieee->wdev.wiphy);
6321 			kfree(priv->ieee->bg_band.channels);
6322 		}
6323 
6324 		ipw2100_hw_stop_adapter(priv);
6325 
6326 		ipw2100_disable_interrupts(priv);
6327 
6328 		if (dev->irq)
6329 			free_irq(dev->irq, priv);
6330 
6331 		ipw2100_kill_works(priv);
6332 
6333 		/* These are safe to call even if they weren't allocated */
6334 		ipw2100_queues_free(priv);
6335 		sysfs_remove_group(&pci_dev->dev.kobj,
6336 				   &ipw2100_attribute_group);
6337 
6338 		free_libipw(dev, 0);
6339 	}
6340 
6341 	pci_iounmap(pci_dev, ioaddr);
6342 
6343 	pci_release_regions(pci_dev);
6344 	pci_disable_device(pci_dev);
6345 	goto out;
6346 }
6347 
6348 static void ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6349 {
6350 	struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6351 	struct net_device *dev = priv->net_dev;
6352 
6353 	mutex_lock(&priv->action_mutex);
6354 
6355 	priv->status &= ~STATUS_INITIALIZED;
6356 
6357 	sysfs_remove_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6358 
6359 #ifdef CONFIG_PM
6360 	if (ipw2100_firmware.version)
6361 		ipw2100_release_firmware(priv, &ipw2100_firmware);
6362 #endif
6363 	/* Take down the hardware */
6364 	ipw2100_down(priv);
6365 
6366 	/* Release the mutex so that the network subsystem can
6367 	 * complete any needed calls into the driver... */
6368 	mutex_unlock(&priv->action_mutex);
6369 
6370 	/* Unregister the device first - this results in close()
6371 	 * being called if the device is open.  If we free storage
6372 	 * first, then close() will crash.
6373 	 * FIXME: remove the comment above. */
6374 	unregister_netdev(dev);
6375 
6376 	ipw2100_kill_works(priv);
6377 
6378 	ipw2100_queues_free(priv);
6379 
6380 	/* Free potential debugging firmware snapshot */
6381 	ipw2100_snapshot_free(priv);
6382 
6383 	free_irq(dev->irq, priv);
6384 
6385 	pci_iounmap(pci_dev, priv->ioaddr);
6386 
6387 	/* wiphy_unregister needs to be here, before free_libipw */
6388 	wiphy_unregister(priv->ieee->wdev.wiphy);
6389 	kfree(priv->ieee->bg_band.channels);
6390 	free_libipw(dev, 0);
6391 
6392 	pci_release_regions(pci_dev);
6393 	pci_disable_device(pci_dev);
6394 
6395 	IPW_DEBUG_INFO("exit\n");
6396 }
6397 
6398 #ifdef CONFIG_PM
6399 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6400 {
6401 	struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6402 	struct net_device *dev = priv->net_dev;
6403 
6404 	IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6405 
6406 	mutex_lock(&priv->action_mutex);
6407 	if (priv->status & STATUS_INITIALIZED) {
6408 		/* Take down the device; powers it off, etc. */
6409 		ipw2100_down(priv);
6410 	}
6411 
6412 	/* Remove the PRESENT state of the device */
6413 	netif_device_detach(dev);
6414 
6415 	pci_save_state(pci_dev);
6416 	pci_disable_device(pci_dev);
6417 	pci_set_power_state(pci_dev, PCI_D3hot);
6418 
6419 	priv->suspend_at = ktime_get_boottime_seconds();
6420 
6421 	mutex_unlock(&priv->action_mutex);
6422 
6423 	return 0;
6424 }
6425 
6426 static int ipw2100_resume(struct pci_dev *pci_dev)
6427 {
6428 	struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6429 	struct net_device *dev = priv->net_dev;
6430 	int err;
6431 	u32 val;
6432 
6433 	if (IPW2100_PM_DISABLED)
6434 		return 0;
6435 
6436 	mutex_lock(&priv->action_mutex);
6437 
6438 	IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6439 
6440 	pci_set_power_state(pci_dev, PCI_D0);
6441 	err = pci_enable_device(pci_dev);
6442 	if (err) {
6443 		printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
6444 		       dev->name);
6445 		mutex_unlock(&priv->action_mutex);
6446 		return err;
6447 	}
6448 	pci_restore_state(pci_dev);
6449 
6450 	/*
6451 	 * Suspend/Resume resets the PCI configuration space, so we have to
6452 	 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6453 	 * from interfering with C3 CPU state. pci_restore_state won't help
6454 	 * here since it only restores the first 64 bytes pci config header.
6455 	 */
6456 	pci_read_config_dword(pci_dev, 0x40, &val);
6457 	if ((val & 0x0000ff00) != 0)
6458 		pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6459 
6460 	/* Set the device back into the PRESENT state; this will also wake
6461 	 * the queue of needed */
6462 	netif_device_attach(dev);
6463 
6464 	priv->suspend_time = ktime_get_boottime_seconds() - priv->suspend_at;
6465 
6466 	/* Bring the device back up */
6467 	if (!(priv->status & STATUS_RF_KILL_SW))
6468 		ipw2100_up(priv, 0);
6469 
6470 	mutex_unlock(&priv->action_mutex);
6471 
6472 	return 0;
6473 }
6474 #endif
6475 
6476 static void ipw2100_shutdown(struct pci_dev *pci_dev)
6477 {
6478 	struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6479 
6480 	/* Take down the device; powers it off, etc. */
6481 	ipw2100_down(priv);
6482 
6483 	pci_disable_device(pci_dev);
6484 }
6485 
6486 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6487 
6488 static const struct pci_device_id ipw2100_pci_id_table[] = {
6489 	IPW2100_DEV_ID(0x2520),	/* IN 2100A mPCI 3A */
6490 	IPW2100_DEV_ID(0x2521),	/* IN 2100A mPCI 3B */
6491 	IPW2100_DEV_ID(0x2524),	/* IN 2100A mPCI 3B */
6492 	IPW2100_DEV_ID(0x2525),	/* IN 2100A mPCI 3B */
6493 	IPW2100_DEV_ID(0x2526),	/* IN 2100A mPCI Gen A3 */
6494 	IPW2100_DEV_ID(0x2522),	/* IN 2100 mPCI 3B */
6495 	IPW2100_DEV_ID(0x2523),	/* IN 2100 mPCI 3A */
6496 	IPW2100_DEV_ID(0x2527),	/* IN 2100 mPCI 3B */
6497 	IPW2100_DEV_ID(0x2528),	/* IN 2100 mPCI 3B */
6498 	IPW2100_DEV_ID(0x2529),	/* IN 2100 mPCI 3B */
6499 	IPW2100_DEV_ID(0x252B),	/* IN 2100 mPCI 3A */
6500 	IPW2100_DEV_ID(0x252C),	/* IN 2100 mPCI 3A */
6501 	IPW2100_DEV_ID(0x252D),	/* IN 2100 mPCI 3A */
6502 
6503 	IPW2100_DEV_ID(0x2550),	/* IB 2100A mPCI 3B */
6504 	IPW2100_DEV_ID(0x2551),	/* IB 2100 mPCI 3B */
6505 	IPW2100_DEV_ID(0x2553),	/* IB 2100 mPCI 3B */
6506 	IPW2100_DEV_ID(0x2554),	/* IB 2100 mPCI 3B */
6507 	IPW2100_DEV_ID(0x2555),	/* IB 2100 mPCI 3B */
6508 
6509 	IPW2100_DEV_ID(0x2560),	/* DE 2100A mPCI 3A */
6510 	IPW2100_DEV_ID(0x2562),	/* DE 2100A mPCI 3A */
6511 	IPW2100_DEV_ID(0x2563),	/* DE 2100A mPCI 3A */
6512 	IPW2100_DEV_ID(0x2561),	/* DE 2100 mPCI 3A */
6513 	IPW2100_DEV_ID(0x2565),	/* DE 2100 mPCI 3A */
6514 	IPW2100_DEV_ID(0x2566),	/* DE 2100 mPCI 3A */
6515 	IPW2100_DEV_ID(0x2567),	/* DE 2100 mPCI 3A */
6516 
6517 	IPW2100_DEV_ID(0x2570),	/* GA 2100 mPCI 3B */
6518 
6519 	IPW2100_DEV_ID(0x2580),	/* TO 2100A mPCI 3B */
6520 	IPW2100_DEV_ID(0x2582),	/* TO 2100A mPCI 3B */
6521 	IPW2100_DEV_ID(0x2583),	/* TO 2100A mPCI 3B */
6522 	IPW2100_DEV_ID(0x2581),	/* TO 2100 mPCI 3B */
6523 	IPW2100_DEV_ID(0x2585),	/* TO 2100 mPCI 3B */
6524 	IPW2100_DEV_ID(0x2586),	/* TO 2100 mPCI 3B */
6525 	IPW2100_DEV_ID(0x2587),	/* TO 2100 mPCI 3B */
6526 
6527 	IPW2100_DEV_ID(0x2590),	/* SO 2100A mPCI 3B */
6528 	IPW2100_DEV_ID(0x2592),	/* SO 2100A mPCI 3B */
6529 	IPW2100_DEV_ID(0x2591),	/* SO 2100 mPCI 3B */
6530 	IPW2100_DEV_ID(0x2593),	/* SO 2100 mPCI 3B */
6531 	IPW2100_DEV_ID(0x2596),	/* SO 2100 mPCI 3B */
6532 	IPW2100_DEV_ID(0x2598),	/* SO 2100 mPCI 3B */
6533 
6534 	IPW2100_DEV_ID(0x25A0),	/* HP 2100 mPCI 3B */
6535 	{0,},
6536 };
6537 
6538 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6539 
6540 static struct pci_driver ipw2100_pci_driver = {
6541 	.name = DRV_NAME,
6542 	.id_table = ipw2100_pci_id_table,
6543 	.probe = ipw2100_pci_init_one,
6544 	.remove = ipw2100_pci_remove_one,
6545 #ifdef CONFIG_PM
6546 	.suspend = ipw2100_suspend,
6547 	.resume = ipw2100_resume,
6548 #endif
6549 	.shutdown = ipw2100_shutdown,
6550 };
6551 
6552 /**
6553  * Initialize the ipw2100 driver/module
6554  *
6555  * @returns 0 if ok, < 0 errno node con error.
6556  *
6557  * Note: we cannot init the /proc stuff until the PCI driver is there,
6558  * or we risk an unlikely race condition on someone accessing
6559  * uninitialized data in the PCI dev struct through /proc.
6560  */
6561 static int __init ipw2100_init(void)
6562 {
6563 	int ret;
6564 
6565 	printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6566 	printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6567 
6568 	pm_qos_add_request(&ipw2100_pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
6569 			   PM_QOS_DEFAULT_VALUE);
6570 
6571 	ret = pci_register_driver(&ipw2100_pci_driver);
6572 	if (ret)
6573 		goto out;
6574 
6575 #ifdef CONFIG_IPW2100_DEBUG
6576 	ipw2100_debug_level = debug;
6577 	ret = driver_create_file(&ipw2100_pci_driver.driver,
6578 				 &driver_attr_debug_level);
6579 #endif
6580 
6581 out:
6582 	return ret;
6583 }
6584 
6585 /**
6586  * Cleanup ipw2100 driver registration
6587  */
6588 static void __exit ipw2100_exit(void)
6589 {
6590 	/* FIXME: IPG: check that we have no instances of the devices open */
6591 #ifdef CONFIG_IPW2100_DEBUG
6592 	driver_remove_file(&ipw2100_pci_driver.driver,
6593 			   &driver_attr_debug_level);
6594 #endif
6595 	pci_unregister_driver(&ipw2100_pci_driver);
6596 	pm_qos_remove_request(&ipw2100_pm_qos_req);
6597 }
6598 
6599 module_init(ipw2100_init);
6600 module_exit(ipw2100_exit);
6601 
6602 static int ipw2100_wx_get_name(struct net_device *dev,
6603 			       struct iw_request_info *info,
6604 			       union iwreq_data *wrqu, char *extra)
6605 {
6606 	/*
6607 	 * This can be called at any time.  No action lock required
6608 	 */
6609 
6610 	struct ipw2100_priv *priv = libipw_priv(dev);
6611 	if (!(priv->status & STATUS_ASSOCIATED))
6612 		strcpy(wrqu->name, "unassociated");
6613 	else
6614 		snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6615 
6616 	IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6617 	return 0;
6618 }
6619 
6620 static int ipw2100_wx_set_freq(struct net_device *dev,
6621 			       struct iw_request_info *info,
6622 			       union iwreq_data *wrqu, char *extra)
6623 {
6624 	struct ipw2100_priv *priv = libipw_priv(dev);
6625 	struct iw_freq *fwrq = &wrqu->freq;
6626 	int err = 0;
6627 
6628 	if (priv->ieee->iw_mode == IW_MODE_INFRA)
6629 		return -EOPNOTSUPP;
6630 
6631 	mutex_lock(&priv->action_mutex);
6632 	if (!(priv->status & STATUS_INITIALIZED)) {
6633 		err = -EIO;
6634 		goto done;
6635 	}
6636 
6637 	/* if setting by freq convert to channel */
6638 	if (fwrq->e == 1) {
6639 		if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6640 			int f = fwrq->m / 100000;
6641 			int c = 0;
6642 
6643 			while ((c < REG_MAX_CHANNEL) &&
6644 			       (f != ipw2100_frequencies[c]))
6645 				c++;
6646 
6647 			/* hack to fall through */
6648 			fwrq->e = 0;
6649 			fwrq->m = c + 1;
6650 		}
6651 	}
6652 
6653 	if (fwrq->e > 0 || fwrq->m > 1000) {
6654 		err = -EOPNOTSUPP;
6655 		goto done;
6656 	} else {		/* Set the channel */
6657 		IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
6658 		err = ipw2100_set_channel(priv, fwrq->m, 0);
6659 	}
6660 
6661       done:
6662 	mutex_unlock(&priv->action_mutex);
6663 	return err;
6664 }
6665 
6666 static int ipw2100_wx_get_freq(struct net_device *dev,
6667 			       struct iw_request_info *info,
6668 			       union iwreq_data *wrqu, char *extra)
6669 {
6670 	/*
6671 	 * This can be called at any time.  No action lock required
6672 	 */
6673 
6674 	struct ipw2100_priv *priv = libipw_priv(dev);
6675 
6676 	wrqu->freq.e = 0;
6677 
6678 	/* If we are associated, trying to associate, or have a statically
6679 	 * configured CHANNEL then return that; otherwise return ANY */
6680 	if (priv->config & CFG_STATIC_CHANNEL ||
6681 	    priv->status & STATUS_ASSOCIATED)
6682 		wrqu->freq.m = priv->channel;
6683 	else
6684 		wrqu->freq.m = 0;
6685 
6686 	IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
6687 	return 0;
6688 
6689 }
6690 
6691 static int ipw2100_wx_set_mode(struct net_device *dev,
6692 			       struct iw_request_info *info,
6693 			       union iwreq_data *wrqu, char *extra)
6694 {
6695 	struct ipw2100_priv *priv = libipw_priv(dev);
6696 	int err = 0;
6697 
6698 	IPW_DEBUG_WX("SET Mode -> %d\n", wrqu->mode);
6699 
6700 	if (wrqu->mode == priv->ieee->iw_mode)
6701 		return 0;
6702 
6703 	mutex_lock(&priv->action_mutex);
6704 	if (!(priv->status & STATUS_INITIALIZED)) {
6705 		err = -EIO;
6706 		goto done;
6707 	}
6708 
6709 	switch (wrqu->mode) {
6710 #ifdef CONFIG_IPW2100_MONITOR
6711 	case IW_MODE_MONITOR:
6712 		err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6713 		break;
6714 #endif				/* CONFIG_IPW2100_MONITOR */
6715 	case IW_MODE_ADHOC:
6716 		err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6717 		break;
6718 	case IW_MODE_INFRA:
6719 	case IW_MODE_AUTO:
6720 	default:
6721 		err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6722 		break;
6723 	}
6724 
6725       done:
6726 	mutex_unlock(&priv->action_mutex);
6727 	return err;
6728 }
6729 
6730 static int ipw2100_wx_get_mode(struct net_device *dev,
6731 			       struct iw_request_info *info,
6732 			       union iwreq_data *wrqu, char *extra)
6733 {
6734 	/*
6735 	 * This can be called at any time.  No action lock required
6736 	 */
6737 
6738 	struct ipw2100_priv *priv = libipw_priv(dev);
6739 
6740 	wrqu->mode = priv->ieee->iw_mode;
6741 	IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6742 
6743 	return 0;
6744 }
6745 
6746 #define POWER_MODES 5
6747 
6748 /* Values are in microsecond */
6749 static const s32 timeout_duration[POWER_MODES] = {
6750 	350000,
6751 	250000,
6752 	75000,
6753 	37000,
6754 	25000,
6755 };
6756 
6757 static const s32 period_duration[POWER_MODES] = {
6758 	400000,
6759 	700000,
6760 	1000000,
6761 	1000000,
6762 	1000000
6763 };
6764 
6765 static int ipw2100_wx_get_range(struct net_device *dev,
6766 				struct iw_request_info *info,
6767 				union iwreq_data *wrqu, char *extra)
6768 {
6769 	/*
6770 	 * This can be called at any time.  No action lock required
6771 	 */
6772 
6773 	struct ipw2100_priv *priv = libipw_priv(dev);
6774 	struct iw_range *range = (struct iw_range *)extra;
6775 	u16 val;
6776 	int i, level;
6777 
6778 	wrqu->data.length = sizeof(*range);
6779 	memset(range, 0, sizeof(*range));
6780 
6781 	/* Let's try to keep this struct in the same order as in
6782 	 * linux/include/wireless.h
6783 	 */
6784 
6785 	/* TODO: See what values we can set, and remove the ones we can't
6786 	 * set, or fill them with some default data.
6787 	 */
6788 
6789 	/* ~5 Mb/s real (802.11b) */
6790 	range->throughput = 5 * 1000 * 1000;
6791 
6792 //      range->sensitivity;     /* signal level threshold range */
6793 
6794 	range->max_qual.qual = 100;
6795 	/* TODO: Find real max RSSI and stick here */
6796 	range->max_qual.level = 0;
6797 	range->max_qual.noise = 0;
6798 	range->max_qual.updated = 7;	/* Updated all three */
6799 
6800 	range->avg_qual.qual = 70;	/* > 8% missed beacons is 'bad' */
6801 	/* TODO: Find real 'good' to 'bad' threshold value for RSSI */
6802 	range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6803 	range->avg_qual.noise = 0;
6804 	range->avg_qual.updated = 7;	/* Updated all three */
6805 
6806 	range->num_bitrates = RATE_COUNT;
6807 
6808 	for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6809 		range->bitrate[i] = ipw2100_bg_rates[i].bitrate * 100 * 1000;
6810 	}
6811 
6812 	range->min_rts = MIN_RTS_THRESHOLD;
6813 	range->max_rts = MAX_RTS_THRESHOLD;
6814 	range->min_frag = MIN_FRAG_THRESHOLD;
6815 	range->max_frag = MAX_FRAG_THRESHOLD;
6816 
6817 	range->min_pmp = period_duration[0];	/* Minimal PM period */
6818 	range->max_pmp = period_duration[POWER_MODES - 1];	/* Maximal PM period */
6819 	range->min_pmt = timeout_duration[POWER_MODES - 1];	/* Minimal PM timeout */
6820 	range->max_pmt = timeout_duration[0];	/* Maximal PM timeout */
6821 
6822 	/* How to decode max/min PM period */
6823 	range->pmp_flags = IW_POWER_PERIOD;
6824 	/* How to decode max/min PM period */
6825 	range->pmt_flags = IW_POWER_TIMEOUT;
6826 	/* What PM options are supported */
6827 	range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6828 
6829 	range->encoding_size[0] = 5;
6830 	range->encoding_size[1] = 13;	/* Different token sizes */
6831 	range->num_encoding_sizes = 2;	/* Number of entry in the list */
6832 	range->max_encoding_tokens = WEP_KEYS;	/* Max number of tokens */
6833 //      range->encoding_login_index;            /* token index for login token */
6834 
6835 	if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6836 		range->txpower_capa = IW_TXPOW_DBM;
6837 		range->num_txpower = IW_MAX_TXPOWER;
6838 		for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6839 		     i < IW_MAX_TXPOWER;
6840 		     i++, level -=
6841 		     ((IPW_TX_POWER_MAX_DBM -
6842 		       IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6843 			range->txpower[i] = level / 16;
6844 	} else {
6845 		range->txpower_capa = 0;
6846 		range->num_txpower = 0;
6847 	}
6848 
6849 	/* Set the Wireless Extension versions */
6850 	range->we_version_compiled = WIRELESS_EXT;
6851 	range->we_version_source = 18;
6852 
6853 //      range->retry_capa;      /* What retry options are supported */
6854 //      range->retry_flags;     /* How to decode max/min retry limit */
6855 //      range->r_time_flags;    /* How to decode max/min retry life */
6856 //      range->min_retry;       /* Minimal number of retries */
6857 //      range->max_retry;       /* Maximal number of retries */
6858 //      range->min_r_time;      /* Minimal retry lifetime */
6859 //      range->max_r_time;      /* Maximal retry lifetime */
6860 
6861 	range->num_channels = FREQ_COUNT;
6862 
6863 	val = 0;
6864 	for (i = 0; i < FREQ_COUNT; i++) {
6865 		// TODO: Include only legal frequencies for some countries
6866 //              if (local->channel_mask & (1 << i)) {
6867 		range->freq[val].i = i + 1;
6868 		range->freq[val].m = ipw2100_frequencies[i] * 100000;
6869 		range->freq[val].e = 1;
6870 		val++;
6871 //              }
6872 		if (val == IW_MAX_FREQUENCIES)
6873 			break;
6874 	}
6875 	range->num_frequency = val;
6876 
6877 	/* Event capability (kernel + driver) */
6878 	range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6879 				IW_EVENT_CAPA_MASK(SIOCGIWAP));
6880 	range->event_capa[1] = IW_EVENT_CAPA_K_1;
6881 
6882 	range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6883 		IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6884 
6885 	IPW_DEBUG_WX("GET Range\n");
6886 
6887 	return 0;
6888 }
6889 
6890 static int ipw2100_wx_set_wap(struct net_device *dev,
6891 			      struct iw_request_info *info,
6892 			      union iwreq_data *wrqu, char *extra)
6893 {
6894 	struct ipw2100_priv *priv = libipw_priv(dev);
6895 	int err = 0;
6896 
6897 	// sanity checks
6898 	if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6899 		return -EINVAL;
6900 
6901 	mutex_lock(&priv->action_mutex);
6902 	if (!(priv->status & STATUS_INITIALIZED)) {
6903 		err = -EIO;
6904 		goto done;
6905 	}
6906 
6907 	if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) ||
6908 	    is_zero_ether_addr(wrqu->ap_addr.sa_data)) {
6909 		/* we disable mandatory BSSID association */
6910 		IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6911 		priv->config &= ~CFG_STATIC_BSSID;
6912 		err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6913 		goto done;
6914 	}
6915 
6916 	priv->config |= CFG_STATIC_BSSID;
6917 	memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6918 
6919 	err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6920 
6921 	IPW_DEBUG_WX("SET BSSID -> %pM\n", wrqu->ap_addr.sa_data);
6922 
6923       done:
6924 	mutex_unlock(&priv->action_mutex);
6925 	return err;
6926 }
6927 
6928 static int ipw2100_wx_get_wap(struct net_device *dev,
6929 			      struct iw_request_info *info,
6930 			      union iwreq_data *wrqu, char *extra)
6931 {
6932 	/*
6933 	 * This can be called at any time.  No action lock required
6934 	 */
6935 
6936 	struct ipw2100_priv *priv = libipw_priv(dev);
6937 
6938 	/* If we are associated, trying to associate, or have a statically
6939 	 * configured BSSID then return that; otherwise return ANY */
6940 	if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6941 		wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6942 		memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6943 	} else
6944 		eth_zero_addr(wrqu->ap_addr.sa_data);
6945 
6946 	IPW_DEBUG_WX("Getting WAP BSSID: %pM\n", wrqu->ap_addr.sa_data);
6947 	return 0;
6948 }
6949 
6950 static int ipw2100_wx_set_essid(struct net_device *dev,
6951 				struct iw_request_info *info,
6952 				union iwreq_data *wrqu, char *extra)
6953 {
6954 	struct ipw2100_priv *priv = libipw_priv(dev);
6955 	char *essid = "";	/* ANY */
6956 	int length = 0;
6957 	int err = 0;
6958 
6959 	mutex_lock(&priv->action_mutex);
6960 	if (!(priv->status & STATUS_INITIALIZED)) {
6961 		err = -EIO;
6962 		goto done;
6963 	}
6964 
6965 	if (wrqu->essid.flags && wrqu->essid.length) {
6966 		length = wrqu->essid.length;
6967 		essid = extra;
6968 	}
6969 
6970 	if (length == 0) {
6971 		IPW_DEBUG_WX("Setting ESSID to ANY\n");
6972 		priv->config &= ~CFG_STATIC_ESSID;
6973 		err = ipw2100_set_essid(priv, NULL, 0, 0);
6974 		goto done;
6975 	}
6976 
6977 	length = min(length, IW_ESSID_MAX_SIZE);
6978 
6979 	priv->config |= CFG_STATIC_ESSID;
6980 
6981 	if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
6982 		IPW_DEBUG_WX("ESSID set to current ESSID.\n");
6983 		err = 0;
6984 		goto done;
6985 	}
6986 
6987 	IPW_DEBUG_WX("Setting ESSID: '%*pE' (%d)\n", length, essid, length);
6988 
6989 	priv->essid_len = length;
6990 	memcpy(priv->essid, essid, priv->essid_len);
6991 
6992 	err = ipw2100_set_essid(priv, essid, length, 0);
6993 
6994       done:
6995 	mutex_unlock(&priv->action_mutex);
6996 	return err;
6997 }
6998 
6999 static int ipw2100_wx_get_essid(struct net_device *dev,
7000 				struct iw_request_info *info,
7001 				union iwreq_data *wrqu, char *extra)
7002 {
7003 	/*
7004 	 * This can be called at any time.  No action lock required
7005 	 */
7006 
7007 	struct ipw2100_priv *priv = libipw_priv(dev);
7008 
7009 	/* If we are associated, trying to associate, or have a statically
7010 	 * configured ESSID then return that; otherwise return ANY */
7011 	if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7012 		IPW_DEBUG_WX("Getting essid: '%*pE'\n",
7013 			     priv->essid_len, priv->essid);
7014 		memcpy(extra, priv->essid, priv->essid_len);
7015 		wrqu->essid.length = priv->essid_len;
7016 		wrqu->essid.flags = 1;	/* active */
7017 	} else {
7018 		IPW_DEBUG_WX("Getting essid: ANY\n");
7019 		wrqu->essid.length = 0;
7020 		wrqu->essid.flags = 0;	/* active */
7021 	}
7022 
7023 	return 0;
7024 }
7025 
7026 static int ipw2100_wx_set_nick(struct net_device *dev,
7027 			       struct iw_request_info *info,
7028 			       union iwreq_data *wrqu, char *extra)
7029 {
7030 	/*
7031 	 * This can be called at any time.  No action lock required
7032 	 */
7033 
7034 	struct ipw2100_priv *priv = libipw_priv(dev);
7035 
7036 	if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7037 		return -E2BIG;
7038 
7039 	wrqu->data.length = min_t(size_t, wrqu->data.length, sizeof(priv->nick));
7040 	memset(priv->nick, 0, sizeof(priv->nick));
7041 	memcpy(priv->nick, extra, wrqu->data.length);
7042 
7043 	IPW_DEBUG_WX("SET Nickname -> %s\n", priv->nick);
7044 
7045 	return 0;
7046 }
7047 
7048 static int ipw2100_wx_get_nick(struct net_device *dev,
7049 			       struct iw_request_info *info,
7050 			       union iwreq_data *wrqu, char *extra)
7051 {
7052 	/*
7053 	 * This can be called at any time.  No action lock required
7054 	 */
7055 
7056 	struct ipw2100_priv *priv = libipw_priv(dev);
7057 
7058 	wrqu->data.length = strlen(priv->nick);
7059 	memcpy(extra, priv->nick, wrqu->data.length);
7060 	wrqu->data.flags = 1;	/* active */
7061 
7062 	IPW_DEBUG_WX("GET Nickname -> %s\n", extra);
7063 
7064 	return 0;
7065 }
7066 
7067 static int ipw2100_wx_set_rate(struct net_device *dev,
7068 			       struct iw_request_info *info,
7069 			       union iwreq_data *wrqu, char *extra)
7070 {
7071 	struct ipw2100_priv *priv = libipw_priv(dev);
7072 	u32 target_rate = wrqu->bitrate.value;
7073 	u32 rate;
7074 	int err = 0;
7075 
7076 	mutex_lock(&priv->action_mutex);
7077 	if (!(priv->status & STATUS_INITIALIZED)) {
7078 		err = -EIO;
7079 		goto done;
7080 	}
7081 
7082 	rate = 0;
7083 
7084 	if (target_rate == 1000000 ||
7085 	    (!wrqu->bitrate.fixed && target_rate > 1000000))
7086 		rate |= TX_RATE_1_MBIT;
7087 	if (target_rate == 2000000 ||
7088 	    (!wrqu->bitrate.fixed && target_rate > 2000000))
7089 		rate |= TX_RATE_2_MBIT;
7090 	if (target_rate == 5500000 ||
7091 	    (!wrqu->bitrate.fixed && target_rate > 5500000))
7092 		rate |= TX_RATE_5_5_MBIT;
7093 	if (target_rate == 11000000 ||
7094 	    (!wrqu->bitrate.fixed && target_rate > 11000000))
7095 		rate |= TX_RATE_11_MBIT;
7096 	if (rate == 0)
7097 		rate = DEFAULT_TX_RATES;
7098 
7099 	err = ipw2100_set_tx_rates(priv, rate, 0);
7100 
7101 	IPW_DEBUG_WX("SET Rate -> %04X\n", rate);
7102       done:
7103 	mutex_unlock(&priv->action_mutex);
7104 	return err;
7105 }
7106 
7107 static int ipw2100_wx_get_rate(struct net_device *dev,
7108 			       struct iw_request_info *info,
7109 			       union iwreq_data *wrqu, char *extra)
7110 {
7111 	struct ipw2100_priv *priv = libipw_priv(dev);
7112 	int val;
7113 	unsigned int len = sizeof(val);
7114 	int err = 0;
7115 
7116 	if (!(priv->status & STATUS_ENABLED) ||
7117 	    priv->status & STATUS_RF_KILL_MASK ||
7118 	    !(priv->status & STATUS_ASSOCIATED)) {
7119 		wrqu->bitrate.value = 0;
7120 		return 0;
7121 	}
7122 
7123 	mutex_lock(&priv->action_mutex);
7124 	if (!(priv->status & STATUS_INITIALIZED)) {
7125 		err = -EIO;
7126 		goto done;
7127 	}
7128 
7129 	err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7130 	if (err) {
7131 		IPW_DEBUG_WX("failed querying ordinals.\n");
7132 		goto done;
7133 	}
7134 
7135 	switch (val & TX_RATE_MASK) {
7136 	case TX_RATE_1_MBIT:
7137 		wrqu->bitrate.value = 1000000;
7138 		break;
7139 	case TX_RATE_2_MBIT:
7140 		wrqu->bitrate.value = 2000000;
7141 		break;
7142 	case TX_RATE_5_5_MBIT:
7143 		wrqu->bitrate.value = 5500000;
7144 		break;
7145 	case TX_RATE_11_MBIT:
7146 		wrqu->bitrate.value = 11000000;
7147 		break;
7148 	default:
7149 		wrqu->bitrate.value = 0;
7150 	}
7151 
7152 	IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
7153 
7154       done:
7155 	mutex_unlock(&priv->action_mutex);
7156 	return err;
7157 }
7158 
7159 static int ipw2100_wx_set_rts(struct net_device *dev,
7160 			      struct iw_request_info *info,
7161 			      union iwreq_data *wrqu, char *extra)
7162 {
7163 	struct ipw2100_priv *priv = libipw_priv(dev);
7164 	int value, err;
7165 
7166 	/* Auto RTS not yet supported */
7167 	if (wrqu->rts.fixed == 0)
7168 		return -EINVAL;
7169 
7170 	mutex_lock(&priv->action_mutex);
7171 	if (!(priv->status & STATUS_INITIALIZED)) {
7172 		err = -EIO;
7173 		goto done;
7174 	}
7175 
7176 	if (wrqu->rts.disabled)
7177 		value = priv->rts_threshold | RTS_DISABLED;
7178 	else {
7179 		if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7180 			err = -EINVAL;
7181 			goto done;
7182 		}
7183 		value = wrqu->rts.value;
7184 	}
7185 
7186 	err = ipw2100_set_rts_threshold(priv, value);
7187 
7188 	IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X\n", value);
7189       done:
7190 	mutex_unlock(&priv->action_mutex);
7191 	return err;
7192 }
7193 
7194 static int ipw2100_wx_get_rts(struct net_device *dev,
7195 			      struct iw_request_info *info,
7196 			      union iwreq_data *wrqu, char *extra)
7197 {
7198 	/*
7199 	 * This can be called at any time.  No action lock required
7200 	 */
7201 
7202 	struct ipw2100_priv *priv = libipw_priv(dev);
7203 
7204 	wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7205 	wrqu->rts.fixed = 1;	/* no auto select */
7206 
7207 	/* If RTS is set to the default value, then it is disabled */
7208 	wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7209 
7210 	IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X\n", wrqu->rts.value);
7211 
7212 	return 0;
7213 }
7214 
7215 static int ipw2100_wx_set_txpow(struct net_device *dev,
7216 				struct iw_request_info *info,
7217 				union iwreq_data *wrqu, char *extra)
7218 {
7219 	struct ipw2100_priv *priv = libipw_priv(dev);
7220 	int err = 0, value;
7221 
7222 	if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7223 		return -EINPROGRESS;
7224 
7225 	if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7226 		return 0;
7227 
7228 	if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7229 		return -EINVAL;
7230 
7231 	if (wrqu->txpower.fixed == 0)
7232 		value = IPW_TX_POWER_DEFAULT;
7233 	else {
7234 		if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7235 		    wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7236 			return -EINVAL;
7237 
7238 		value = wrqu->txpower.value;
7239 	}
7240 
7241 	mutex_lock(&priv->action_mutex);
7242 	if (!(priv->status & STATUS_INITIALIZED)) {
7243 		err = -EIO;
7244 		goto done;
7245 	}
7246 
7247 	err = ipw2100_set_tx_power(priv, value);
7248 
7249 	IPW_DEBUG_WX("SET TX Power -> %d\n", value);
7250 
7251       done:
7252 	mutex_unlock(&priv->action_mutex);
7253 	return err;
7254 }
7255 
7256 static int ipw2100_wx_get_txpow(struct net_device *dev,
7257 				struct iw_request_info *info,
7258 				union iwreq_data *wrqu, char *extra)
7259 {
7260 	/*
7261 	 * This can be called at any time.  No action lock required
7262 	 */
7263 
7264 	struct ipw2100_priv *priv = libipw_priv(dev);
7265 
7266 	wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7267 
7268 	if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7269 		wrqu->txpower.fixed = 0;
7270 		wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7271 	} else {
7272 		wrqu->txpower.fixed = 1;
7273 		wrqu->txpower.value = priv->tx_power;
7274 	}
7275 
7276 	wrqu->txpower.flags = IW_TXPOW_DBM;
7277 
7278 	IPW_DEBUG_WX("GET TX Power -> %d\n", wrqu->txpower.value);
7279 
7280 	return 0;
7281 }
7282 
7283 static int ipw2100_wx_set_frag(struct net_device *dev,
7284 			       struct iw_request_info *info,
7285 			       union iwreq_data *wrqu, char *extra)
7286 {
7287 	/*
7288 	 * This can be called at any time.  No action lock required
7289 	 */
7290 
7291 	struct ipw2100_priv *priv = libipw_priv(dev);
7292 
7293 	if (!wrqu->frag.fixed)
7294 		return -EINVAL;
7295 
7296 	if (wrqu->frag.disabled) {
7297 		priv->frag_threshold |= FRAG_DISABLED;
7298 		priv->ieee->fts = DEFAULT_FTS;
7299 	} else {
7300 		if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7301 		    wrqu->frag.value > MAX_FRAG_THRESHOLD)
7302 			return -EINVAL;
7303 
7304 		priv->ieee->fts = wrqu->frag.value & ~0x1;
7305 		priv->frag_threshold = priv->ieee->fts;
7306 	}
7307 
7308 	IPW_DEBUG_WX("SET Frag Threshold -> %d\n", priv->ieee->fts);
7309 
7310 	return 0;
7311 }
7312 
7313 static int ipw2100_wx_get_frag(struct net_device *dev,
7314 			       struct iw_request_info *info,
7315 			       union iwreq_data *wrqu, char *extra)
7316 {
7317 	/*
7318 	 * This can be called at any time.  No action lock required
7319 	 */
7320 
7321 	struct ipw2100_priv *priv = libipw_priv(dev);
7322 	wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7323 	wrqu->frag.fixed = 0;	/* no auto select */
7324 	wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7325 
7326 	IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
7327 
7328 	return 0;
7329 }
7330 
7331 static int ipw2100_wx_set_retry(struct net_device *dev,
7332 				struct iw_request_info *info,
7333 				union iwreq_data *wrqu, char *extra)
7334 {
7335 	struct ipw2100_priv *priv = libipw_priv(dev);
7336 	int err = 0;
7337 
7338 	if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7339 		return -EINVAL;
7340 
7341 	if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7342 		return 0;
7343 
7344 	mutex_lock(&priv->action_mutex);
7345 	if (!(priv->status & STATUS_INITIALIZED)) {
7346 		err = -EIO;
7347 		goto done;
7348 	}
7349 
7350 	if (wrqu->retry.flags & IW_RETRY_SHORT) {
7351 		err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7352 		IPW_DEBUG_WX("SET Short Retry Limit -> %d\n",
7353 			     wrqu->retry.value);
7354 		goto done;
7355 	}
7356 
7357 	if (wrqu->retry.flags & IW_RETRY_LONG) {
7358 		err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7359 		IPW_DEBUG_WX("SET Long Retry Limit -> %d\n",
7360 			     wrqu->retry.value);
7361 		goto done;
7362 	}
7363 
7364 	err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7365 	if (!err)
7366 		err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7367 
7368 	IPW_DEBUG_WX("SET Both Retry Limits -> %d\n", wrqu->retry.value);
7369 
7370       done:
7371 	mutex_unlock(&priv->action_mutex);
7372 	return err;
7373 }
7374 
7375 static int ipw2100_wx_get_retry(struct net_device *dev,
7376 				struct iw_request_info *info,
7377 				union iwreq_data *wrqu, char *extra)
7378 {
7379 	/*
7380 	 * This can be called at any time.  No action lock required
7381 	 */
7382 
7383 	struct ipw2100_priv *priv = libipw_priv(dev);
7384 
7385 	wrqu->retry.disabled = 0;	/* can't be disabled */
7386 
7387 	if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7388 		return -EINVAL;
7389 
7390 	if (wrqu->retry.flags & IW_RETRY_LONG) {
7391 		wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7392 		wrqu->retry.value = priv->long_retry_limit;
7393 	} else {
7394 		wrqu->retry.flags =
7395 		    (priv->short_retry_limit !=
7396 		     priv->long_retry_limit) ?
7397 		    IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7398 
7399 		wrqu->retry.value = priv->short_retry_limit;
7400 	}
7401 
7402 	IPW_DEBUG_WX("GET Retry -> %d\n", wrqu->retry.value);
7403 
7404 	return 0;
7405 }
7406 
7407 static int ipw2100_wx_set_scan(struct net_device *dev,
7408 			       struct iw_request_info *info,
7409 			       union iwreq_data *wrqu, char *extra)
7410 {
7411 	struct ipw2100_priv *priv = libipw_priv(dev);
7412 	int err = 0;
7413 
7414 	mutex_lock(&priv->action_mutex);
7415 	if (!(priv->status & STATUS_INITIALIZED)) {
7416 		err = -EIO;
7417 		goto done;
7418 	}
7419 
7420 	IPW_DEBUG_WX("Initiating scan...\n");
7421 
7422 	priv->user_requested_scan = 1;
7423 	if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7424 		IPW_DEBUG_WX("Start scan failed.\n");
7425 
7426 		/* TODO: Mark a scan as pending so when hardware initialized
7427 		 *       a scan starts */
7428 	}
7429 
7430       done:
7431 	mutex_unlock(&priv->action_mutex);
7432 	return err;
7433 }
7434 
7435 static int ipw2100_wx_get_scan(struct net_device *dev,
7436 			       struct iw_request_info *info,
7437 			       union iwreq_data *wrqu, char *extra)
7438 {
7439 	/*
7440 	 * This can be called at any time.  No action lock required
7441 	 */
7442 
7443 	struct ipw2100_priv *priv = libipw_priv(dev);
7444 	return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
7445 }
7446 
7447 /*
7448  * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7449  */
7450 static int ipw2100_wx_set_encode(struct net_device *dev,
7451 				 struct iw_request_info *info,
7452 				 union iwreq_data *wrqu, char *key)
7453 {
7454 	/*
7455 	 * No check of STATUS_INITIALIZED required
7456 	 */
7457 
7458 	struct ipw2100_priv *priv = libipw_priv(dev);
7459 	return libipw_wx_set_encode(priv->ieee, info, wrqu, key);
7460 }
7461 
7462 static int ipw2100_wx_get_encode(struct net_device *dev,
7463 				 struct iw_request_info *info,
7464 				 union iwreq_data *wrqu, char *key)
7465 {
7466 	/*
7467 	 * This can be called at any time.  No action lock required
7468 	 */
7469 
7470 	struct ipw2100_priv *priv = libipw_priv(dev);
7471 	return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
7472 }
7473 
7474 static int ipw2100_wx_set_power(struct net_device *dev,
7475 				struct iw_request_info *info,
7476 				union iwreq_data *wrqu, char *extra)
7477 {
7478 	struct ipw2100_priv *priv = libipw_priv(dev);
7479 	int err = 0;
7480 
7481 	mutex_lock(&priv->action_mutex);
7482 	if (!(priv->status & STATUS_INITIALIZED)) {
7483 		err = -EIO;
7484 		goto done;
7485 	}
7486 
7487 	if (wrqu->power.disabled) {
7488 		priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7489 		err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7490 		IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7491 		goto done;
7492 	}
7493 
7494 	switch (wrqu->power.flags & IW_POWER_MODE) {
7495 	case IW_POWER_ON:	/* If not specified */
7496 	case IW_POWER_MODE:	/* If set all mask */
7497 	case IW_POWER_ALL_R:	/* If explicitly state all */
7498 		break;
7499 	default:		/* Otherwise we don't support it */
7500 		IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7501 			     wrqu->power.flags);
7502 		err = -EOPNOTSUPP;
7503 		goto done;
7504 	}
7505 
7506 	/* If the user hasn't specified a power management mode yet, default
7507 	 * to BATTERY */
7508 	priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7509 	err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7510 
7511 	IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7512 
7513       done:
7514 	mutex_unlock(&priv->action_mutex);
7515 	return err;
7516 
7517 }
7518 
7519 static int ipw2100_wx_get_power(struct net_device *dev,
7520 				struct iw_request_info *info,
7521 				union iwreq_data *wrqu, char *extra)
7522 {
7523 	/*
7524 	 * This can be called at any time.  No action lock required
7525 	 */
7526 
7527 	struct ipw2100_priv *priv = libipw_priv(dev);
7528 
7529 	if (!(priv->power_mode & IPW_POWER_ENABLED))
7530 		wrqu->power.disabled = 1;
7531 	else {
7532 		wrqu->power.disabled = 0;
7533 		wrqu->power.flags = 0;
7534 	}
7535 
7536 	IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7537 
7538 	return 0;
7539 }
7540 
7541 /*
7542  * WE-18 WPA support
7543  */
7544 
7545 /* SIOCSIWGENIE */
7546 static int ipw2100_wx_set_genie(struct net_device *dev,
7547 				struct iw_request_info *info,
7548 				union iwreq_data *wrqu, char *extra)
7549 {
7550 
7551 	struct ipw2100_priv *priv = libipw_priv(dev);
7552 	struct libipw_device *ieee = priv->ieee;
7553 	u8 *buf;
7554 
7555 	if (!ieee->wpa_enabled)
7556 		return -EOPNOTSUPP;
7557 
7558 	if (wrqu->data.length > MAX_WPA_IE_LEN ||
7559 	    (wrqu->data.length && extra == NULL))
7560 		return -EINVAL;
7561 
7562 	if (wrqu->data.length) {
7563 		buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7564 		if (buf == NULL)
7565 			return -ENOMEM;
7566 
7567 		kfree(ieee->wpa_ie);
7568 		ieee->wpa_ie = buf;
7569 		ieee->wpa_ie_len = wrqu->data.length;
7570 	} else {
7571 		kfree(ieee->wpa_ie);
7572 		ieee->wpa_ie = NULL;
7573 		ieee->wpa_ie_len = 0;
7574 	}
7575 
7576 	ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7577 
7578 	return 0;
7579 }
7580 
7581 /* SIOCGIWGENIE */
7582 static int ipw2100_wx_get_genie(struct net_device *dev,
7583 				struct iw_request_info *info,
7584 				union iwreq_data *wrqu, char *extra)
7585 {
7586 	struct ipw2100_priv *priv = libipw_priv(dev);
7587 	struct libipw_device *ieee = priv->ieee;
7588 
7589 	if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7590 		wrqu->data.length = 0;
7591 		return 0;
7592 	}
7593 
7594 	if (wrqu->data.length < ieee->wpa_ie_len)
7595 		return -E2BIG;
7596 
7597 	wrqu->data.length = ieee->wpa_ie_len;
7598 	memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7599 
7600 	return 0;
7601 }
7602 
7603 /* SIOCSIWAUTH */
7604 static int ipw2100_wx_set_auth(struct net_device *dev,
7605 			       struct iw_request_info *info,
7606 			       union iwreq_data *wrqu, char *extra)
7607 {
7608 	struct ipw2100_priv *priv = libipw_priv(dev);
7609 	struct libipw_device *ieee = priv->ieee;
7610 	struct iw_param *param = &wrqu->param;
7611 	struct lib80211_crypt_data *crypt;
7612 	unsigned long flags;
7613 	int ret = 0;
7614 
7615 	switch (param->flags & IW_AUTH_INDEX) {
7616 	case IW_AUTH_WPA_VERSION:
7617 	case IW_AUTH_CIPHER_PAIRWISE:
7618 	case IW_AUTH_CIPHER_GROUP:
7619 	case IW_AUTH_KEY_MGMT:
7620 		/*
7621 		 * ipw2200 does not use these parameters
7622 		 */
7623 		break;
7624 
7625 	case IW_AUTH_TKIP_COUNTERMEASURES:
7626 		crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7627 		if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7628 			break;
7629 
7630 		flags = crypt->ops->get_flags(crypt->priv);
7631 
7632 		if (param->value)
7633 			flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7634 		else
7635 			flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7636 
7637 		crypt->ops->set_flags(flags, crypt->priv);
7638 
7639 		break;
7640 
7641 	case IW_AUTH_DROP_UNENCRYPTED:{
7642 			/* HACK:
7643 			 *
7644 			 * wpa_supplicant calls set_wpa_enabled when the driver
7645 			 * is loaded and unloaded, regardless of if WPA is being
7646 			 * used.  No other calls are made which can be used to
7647 			 * determine if encryption will be used or not prior to
7648 			 * association being expected.  If encryption is not being
7649 			 * used, drop_unencrypted is set to false, else true -- we
7650 			 * can use this to determine if the CAP_PRIVACY_ON bit should
7651 			 * be set.
7652 			 */
7653 			struct libipw_security sec = {
7654 				.flags = SEC_ENABLED,
7655 				.enabled = param->value,
7656 			};
7657 			priv->ieee->drop_unencrypted = param->value;
7658 			/* We only change SEC_LEVEL for open mode. Others
7659 			 * are set by ipw_wpa_set_encryption.
7660 			 */
7661 			if (!param->value) {
7662 				sec.flags |= SEC_LEVEL;
7663 				sec.level = SEC_LEVEL_0;
7664 			} else {
7665 				sec.flags |= SEC_LEVEL;
7666 				sec.level = SEC_LEVEL_1;
7667 			}
7668 			if (priv->ieee->set_security)
7669 				priv->ieee->set_security(priv->ieee->dev, &sec);
7670 			break;
7671 		}
7672 
7673 	case IW_AUTH_80211_AUTH_ALG:
7674 		ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7675 		break;
7676 
7677 	case IW_AUTH_WPA_ENABLED:
7678 		ret = ipw2100_wpa_enable(priv, param->value);
7679 		break;
7680 
7681 	case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7682 		ieee->ieee802_1x = param->value;
7683 		break;
7684 
7685 		//case IW_AUTH_ROAMING_CONTROL:
7686 	case IW_AUTH_PRIVACY_INVOKED:
7687 		ieee->privacy_invoked = param->value;
7688 		break;
7689 
7690 	default:
7691 		return -EOPNOTSUPP;
7692 	}
7693 	return ret;
7694 }
7695 
7696 /* SIOCGIWAUTH */
7697 static int ipw2100_wx_get_auth(struct net_device *dev,
7698 			       struct iw_request_info *info,
7699 			       union iwreq_data *wrqu, char *extra)
7700 {
7701 	struct ipw2100_priv *priv = libipw_priv(dev);
7702 	struct libipw_device *ieee = priv->ieee;
7703 	struct lib80211_crypt_data *crypt;
7704 	struct iw_param *param = &wrqu->param;
7705 
7706 	switch (param->flags & IW_AUTH_INDEX) {
7707 	case IW_AUTH_WPA_VERSION:
7708 	case IW_AUTH_CIPHER_PAIRWISE:
7709 	case IW_AUTH_CIPHER_GROUP:
7710 	case IW_AUTH_KEY_MGMT:
7711 		/*
7712 		 * wpa_supplicant will control these internally
7713 		 */
7714 		break;
7715 
7716 	case IW_AUTH_TKIP_COUNTERMEASURES:
7717 		crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7718 		if (!crypt || !crypt->ops->get_flags) {
7719 			IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7720 					  "crypt not set!\n");
7721 			break;
7722 		}
7723 
7724 		param->value = (crypt->ops->get_flags(crypt->priv) &
7725 				IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7726 
7727 		break;
7728 
7729 	case IW_AUTH_DROP_UNENCRYPTED:
7730 		param->value = ieee->drop_unencrypted;
7731 		break;
7732 
7733 	case IW_AUTH_80211_AUTH_ALG:
7734 		param->value = priv->ieee->sec.auth_mode;
7735 		break;
7736 
7737 	case IW_AUTH_WPA_ENABLED:
7738 		param->value = ieee->wpa_enabled;
7739 		break;
7740 
7741 	case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7742 		param->value = ieee->ieee802_1x;
7743 		break;
7744 
7745 	case IW_AUTH_ROAMING_CONTROL:
7746 	case IW_AUTH_PRIVACY_INVOKED:
7747 		param->value = ieee->privacy_invoked;
7748 		break;
7749 
7750 	default:
7751 		return -EOPNOTSUPP;
7752 	}
7753 	return 0;
7754 }
7755 
7756 /* SIOCSIWENCODEEXT */
7757 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7758 				    struct iw_request_info *info,
7759 				    union iwreq_data *wrqu, char *extra)
7760 {
7761 	struct ipw2100_priv *priv = libipw_priv(dev);
7762 	return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7763 }
7764 
7765 /* SIOCGIWENCODEEXT */
7766 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7767 				    struct iw_request_info *info,
7768 				    union iwreq_data *wrqu, char *extra)
7769 {
7770 	struct ipw2100_priv *priv = libipw_priv(dev);
7771 	return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7772 }
7773 
7774 /* SIOCSIWMLME */
7775 static int ipw2100_wx_set_mlme(struct net_device *dev,
7776 			       struct iw_request_info *info,
7777 			       union iwreq_data *wrqu, char *extra)
7778 {
7779 	struct ipw2100_priv *priv = libipw_priv(dev);
7780 	struct iw_mlme *mlme = (struct iw_mlme *)extra;
7781 
7782 	switch (mlme->cmd) {
7783 	case IW_MLME_DEAUTH:
7784 		// silently ignore
7785 		break;
7786 
7787 	case IW_MLME_DISASSOC:
7788 		ipw2100_disassociate_bssid(priv);
7789 		break;
7790 
7791 	default:
7792 		return -EOPNOTSUPP;
7793 	}
7794 	return 0;
7795 }
7796 
7797 /*
7798  *
7799  * IWPRIV handlers
7800  *
7801  */
7802 #ifdef CONFIG_IPW2100_MONITOR
7803 static int ipw2100_wx_set_promisc(struct net_device *dev,
7804 				  struct iw_request_info *info,
7805 				  union iwreq_data *wrqu, char *extra)
7806 {
7807 	struct ipw2100_priv *priv = libipw_priv(dev);
7808 	int *parms = (int *)extra;
7809 	int enable = (parms[0] > 0);
7810 	int err = 0;
7811 
7812 	mutex_lock(&priv->action_mutex);
7813 	if (!(priv->status & STATUS_INITIALIZED)) {
7814 		err = -EIO;
7815 		goto done;
7816 	}
7817 
7818 	if (enable) {
7819 		if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7820 			err = ipw2100_set_channel(priv, parms[1], 0);
7821 			goto done;
7822 		}
7823 		priv->channel = parms[1];
7824 		err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7825 	} else {
7826 		if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7827 			err = ipw2100_switch_mode(priv, priv->last_mode);
7828 	}
7829       done:
7830 	mutex_unlock(&priv->action_mutex);
7831 	return err;
7832 }
7833 
7834 static int ipw2100_wx_reset(struct net_device *dev,
7835 			    struct iw_request_info *info,
7836 			    union iwreq_data *wrqu, char *extra)
7837 {
7838 	struct ipw2100_priv *priv = libipw_priv(dev);
7839 	if (priv->status & STATUS_INITIALIZED)
7840 		schedule_reset(priv);
7841 	return 0;
7842 }
7843 
7844 #endif
7845 
7846 static int ipw2100_wx_set_powermode(struct net_device *dev,
7847 				    struct iw_request_info *info,
7848 				    union iwreq_data *wrqu, char *extra)
7849 {
7850 	struct ipw2100_priv *priv = libipw_priv(dev);
7851 	int err = 0, mode = *(int *)extra;
7852 
7853 	mutex_lock(&priv->action_mutex);
7854 	if (!(priv->status & STATUS_INITIALIZED)) {
7855 		err = -EIO;
7856 		goto done;
7857 	}
7858 
7859 	if ((mode < 0) || (mode > POWER_MODES))
7860 		mode = IPW_POWER_AUTO;
7861 
7862 	if (IPW_POWER_LEVEL(priv->power_mode) != mode)
7863 		err = ipw2100_set_power_mode(priv, mode);
7864       done:
7865 	mutex_unlock(&priv->action_mutex);
7866 	return err;
7867 }
7868 
7869 #define MAX_POWER_STRING 80
7870 static int ipw2100_wx_get_powermode(struct net_device *dev,
7871 				    struct iw_request_info *info,
7872 				    union iwreq_data *wrqu, char *extra)
7873 {
7874 	/*
7875 	 * This can be called at any time.  No action lock required
7876 	 */
7877 
7878 	struct ipw2100_priv *priv = libipw_priv(dev);
7879 	int level = IPW_POWER_LEVEL(priv->power_mode);
7880 	s32 timeout, period;
7881 
7882 	if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7883 		snprintf(extra, MAX_POWER_STRING,
7884 			 "Power save level: %d (Off)", level);
7885 	} else {
7886 		switch (level) {
7887 		case IPW_POWER_MODE_CAM:
7888 			snprintf(extra, MAX_POWER_STRING,
7889 				 "Power save level: %d (None)", level);
7890 			break;
7891 		case IPW_POWER_AUTO:
7892 			snprintf(extra, MAX_POWER_STRING,
7893 				 "Power save level: %d (Auto)", level);
7894 			break;
7895 		default:
7896 			timeout = timeout_duration[level - 1] / 1000;
7897 			period = period_duration[level - 1] / 1000;
7898 			snprintf(extra, MAX_POWER_STRING,
7899 				 "Power save level: %d "
7900 				 "(Timeout %dms, Period %dms)",
7901 				 level, timeout, period);
7902 		}
7903 	}
7904 
7905 	wrqu->data.length = strlen(extra) + 1;
7906 
7907 	return 0;
7908 }
7909 
7910 static int ipw2100_wx_set_preamble(struct net_device *dev,
7911 				   struct iw_request_info *info,
7912 				   union iwreq_data *wrqu, char *extra)
7913 {
7914 	struct ipw2100_priv *priv = libipw_priv(dev);
7915 	int err, mode = *(int *)extra;
7916 
7917 	mutex_lock(&priv->action_mutex);
7918 	if (!(priv->status & STATUS_INITIALIZED)) {
7919 		err = -EIO;
7920 		goto done;
7921 	}
7922 
7923 	if (mode == 1)
7924 		priv->config |= CFG_LONG_PREAMBLE;
7925 	else if (mode == 0)
7926 		priv->config &= ~CFG_LONG_PREAMBLE;
7927 	else {
7928 		err = -EINVAL;
7929 		goto done;
7930 	}
7931 
7932 	err = ipw2100_system_config(priv, 0);
7933 
7934       done:
7935 	mutex_unlock(&priv->action_mutex);
7936 	return err;
7937 }
7938 
7939 static int ipw2100_wx_get_preamble(struct net_device *dev,
7940 				   struct iw_request_info *info,
7941 				   union iwreq_data *wrqu, char *extra)
7942 {
7943 	/*
7944 	 * This can be called at any time.  No action lock required
7945 	 */
7946 
7947 	struct ipw2100_priv *priv = libipw_priv(dev);
7948 
7949 	if (priv->config & CFG_LONG_PREAMBLE)
7950 		snprintf(wrqu->name, IFNAMSIZ, "long (1)");
7951 	else
7952 		snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
7953 
7954 	return 0;
7955 }
7956 
7957 #ifdef CONFIG_IPW2100_MONITOR
7958 static int ipw2100_wx_set_crc_check(struct net_device *dev,
7959 				    struct iw_request_info *info,
7960 				    union iwreq_data *wrqu, char *extra)
7961 {
7962 	struct ipw2100_priv *priv = libipw_priv(dev);
7963 	int err, mode = *(int *)extra;
7964 
7965 	mutex_lock(&priv->action_mutex);
7966 	if (!(priv->status & STATUS_INITIALIZED)) {
7967 		err = -EIO;
7968 		goto done;
7969 	}
7970 
7971 	if (mode == 1)
7972 		priv->config |= CFG_CRC_CHECK;
7973 	else if (mode == 0)
7974 		priv->config &= ~CFG_CRC_CHECK;
7975 	else {
7976 		err = -EINVAL;
7977 		goto done;
7978 	}
7979 	err = 0;
7980 
7981       done:
7982 	mutex_unlock(&priv->action_mutex);
7983 	return err;
7984 }
7985 
7986 static int ipw2100_wx_get_crc_check(struct net_device *dev,
7987 				    struct iw_request_info *info,
7988 				    union iwreq_data *wrqu, char *extra)
7989 {
7990 	/*
7991 	 * This can be called at any time.  No action lock required
7992 	 */
7993 
7994 	struct ipw2100_priv *priv = libipw_priv(dev);
7995 
7996 	if (priv->config & CFG_CRC_CHECK)
7997 		snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
7998 	else
7999 		snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8000 
8001 	return 0;
8002 }
8003 #endif				/* CONFIG_IPW2100_MONITOR */
8004 
8005 static iw_handler ipw2100_wx_handlers[] = {
8006 	IW_HANDLER(SIOCGIWNAME, ipw2100_wx_get_name),
8007 	IW_HANDLER(SIOCSIWFREQ, ipw2100_wx_set_freq),
8008 	IW_HANDLER(SIOCGIWFREQ, ipw2100_wx_get_freq),
8009 	IW_HANDLER(SIOCSIWMODE, ipw2100_wx_set_mode),
8010 	IW_HANDLER(SIOCGIWMODE, ipw2100_wx_get_mode),
8011 	IW_HANDLER(SIOCGIWRANGE, ipw2100_wx_get_range),
8012 	IW_HANDLER(SIOCSIWAP, ipw2100_wx_set_wap),
8013 	IW_HANDLER(SIOCGIWAP, ipw2100_wx_get_wap),
8014 	IW_HANDLER(SIOCSIWMLME, ipw2100_wx_set_mlme),
8015 	IW_HANDLER(SIOCSIWSCAN, ipw2100_wx_set_scan),
8016 	IW_HANDLER(SIOCGIWSCAN, ipw2100_wx_get_scan),
8017 	IW_HANDLER(SIOCSIWESSID, ipw2100_wx_set_essid),
8018 	IW_HANDLER(SIOCGIWESSID, ipw2100_wx_get_essid),
8019 	IW_HANDLER(SIOCSIWNICKN, ipw2100_wx_set_nick),
8020 	IW_HANDLER(SIOCGIWNICKN, ipw2100_wx_get_nick),
8021 	IW_HANDLER(SIOCSIWRATE, ipw2100_wx_set_rate),
8022 	IW_HANDLER(SIOCGIWRATE, ipw2100_wx_get_rate),
8023 	IW_HANDLER(SIOCSIWRTS, ipw2100_wx_set_rts),
8024 	IW_HANDLER(SIOCGIWRTS, ipw2100_wx_get_rts),
8025 	IW_HANDLER(SIOCSIWFRAG, ipw2100_wx_set_frag),
8026 	IW_HANDLER(SIOCGIWFRAG, ipw2100_wx_get_frag),
8027 	IW_HANDLER(SIOCSIWTXPOW, ipw2100_wx_set_txpow),
8028 	IW_HANDLER(SIOCGIWTXPOW, ipw2100_wx_get_txpow),
8029 	IW_HANDLER(SIOCSIWRETRY, ipw2100_wx_set_retry),
8030 	IW_HANDLER(SIOCGIWRETRY, ipw2100_wx_get_retry),
8031 	IW_HANDLER(SIOCSIWENCODE, ipw2100_wx_set_encode),
8032 	IW_HANDLER(SIOCGIWENCODE, ipw2100_wx_get_encode),
8033 	IW_HANDLER(SIOCSIWPOWER, ipw2100_wx_set_power),
8034 	IW_HANDLER(SIOCGIWPOWER, ipw2100_wx_get_power),
8035 	IW_HANDLER(SIOCSIWGENIE, ipw2100_wx_set_genie),
8036 	IW_HANDLER(SIOCGIWGENIE, ipw2100_wx_get_genie),
8037 	IW_HANDLER(SIOCSIWAUTH, ipw2100_wx_set_auth),
8038 	IW_HANDLER(SIOCGIWAUTH, ipw2100_wx_get_auth),
8039 	IW_HANDLER(SIOCSIWENCODEEXT, ipw2100_wx_set_encodeext),
8040 	IW_HANDLER(SIOCGIWENCODEEXT, ipw2100_wx_get_encodeext),
8041 };
8042 
8043 #define IPW2100_PRIV_SET_MONITOR	SIOCIWFIRSTPRIV
8044 #define IPW2100_PRIV_RESET		SIOCIWFIRSTPRIV+1
8045 #define IPW2100_PRIV_SET_POWER		SIOCIWFIRSTPRIV+2
8046 #define IPW2100_PRIV_GET_POWER		SIOCIWFIRSTPRIV+3
8047 #define IPW2100_PRIV_SET_LONGPREAMBLE	SIOCIWFIRSTPRIV+4
8048 #define IPW2100_PRIV_GET_LONGPREAMBLE	SIOCIWFIRSTPRIV+5
8049 #define IPW2100_PRIV_SET_CRC_CHECK	SIOCIWFIRSTPRIV+6
8050 #define IPW2100_PRIV_GET_CRC_CHECK	SIOCIWFIRSTPRIV+7
8051 
8052 static const struct iw_priv_args ipw2100_private_args[] = {
8053 
8054 #ifdef CONFIG_IPW2100_MONITOR
8055 	{
8056 	 IPW2100_PRIV_SET_MONITOR,
8057 	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8058 	{
8059 	 IPW2100_PRIV_RESET,
8060 	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8061 #endif				/* CONFIG_IPW2100_MONITOR */
8062 
8063 	{
8064 	 IPW2100_PRIV_SET_POWER,
8065 	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8066 	{
8067 	 IPW2100_PRIV_GET_POWER,
8068 	 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8069 	 "get_power"},
8070 	{
8071 	 IPW2100_PRIV_SET_LONGPREAMBLE,
8072 	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8073 	{
8074 	 IPW2100_PRIV_GET_LONGPREAMBLE,
8075 	 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8076 #ifdef CONFIG_IPW2100_MONITOR
8077 	{
8078 	 IPW2100_PRIV_SET_CRC_CHECK,
8079 	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8080 	{
8081 	 IPW2100_PRIV_GET_CRC_CHECK,
8082 	 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8083 #endif				/* CONFIG_IPW2100_MONITOR */
8084 };
8085 
8086 static iw_handler ipw2100_private_handler[] = {
8087 #ifdef CONFIG_IPW2100_MONITOR
8088 	ipw2100_wx_set_promisc,
8089 	ipw2100_wx_reset,
8090 #else				/* CONFIG_IPW2100_MONITOR */
8091 	NULL,
8092 	NULL,
8093 #endif				/* CONFIG_IPW2100_MONITOR */
8094 	ipw2100_wx_set_powermode,
8095 	ipw2100_wx_get_powermode,
8096 	ipw2100_wx_set_preamble,
8097 	ipw2100_wx_get_preamble,
8098 #ifdef CONFIG_IPW2100_MONITOR
8099 	ipw2100_wx_set_crc_check,
8100 	ipw2100_wx_get_crc_check,
8101 #else				/* CONFIG_IPW2100_MONITOR */
8102 	NULL,
8103 	NULL,
8104 #endif				/* CONFIG_IPW2100_MONITOR */
8105 };
8106 
8107 /*
8108  * Get wireless statistics.
8109  * Called by /proc/net/wireless
8110  * Also called by SIOCGIWSTATS
8111  */
8112 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8113 {
8114 	enum {
8115 		POOR = 30,
8116 		FAIR = 60,
8117 		GOOD = 80,
8118 		VERY_GOOD = 90,
8119 		EXCELLENT = 95,
8120 		PERFECT = 100
8121 	};
8122 	int rssi_qual;
8123 	int tx_qual;
8124 	int beacon_qual;
8125 	int quality;
8126 
8127 	struct ipw2100_priv *priv = libipw_priv(dev);
8128 	struct iw_statistics *wstats;
8129 	u32 rssi, tx_retries, missed_beacons, tx_failures;
8130 	u32 ord_len = sizeof(u32);
8131 
8132 	if (!priv)
8133 		return (struct iw_statistics *)NULL;
8134 
8135 	wstats = &priv->wstats;
8136 
8137 	/* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8138 	 * ipw2100_wx_wireless_stats seems to be called before fw is
8139 	 * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
8140 	 * and associated; if not associcated, the values are all meaningless
8141 	 * anyway, so set them all to NULL and INVALID */
8142 	if (!(priv->status & STATUS_ASSOCIATED)) {
8143 		wstats->miss.beacon = 0;
8144 		wstats->discard.retries = 0;
8145 		wstats->qual.qual = 0;
8146 		wstats->qual.level = 0;
8147 		wstats->qual.noise = 0;
8148 		wstats->qual.updated = 7;
8149 		wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8150 		    IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8151 		return wstats;
8152 	}
8153 
8154 	if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8155 				&missed_beacons, &ord_len))
8156 		goto fail_get_ordinal;
8157 
8158 	/* If we don't have a connection the quality and level is 0 */
8159 	if (!(priv->status & STATUS_ASSOCIATED)) {
8160 		wstats->qual.qual = 0;
8161 		wstats->qual.level = 0;
8162 	} else {
8163 		if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8164 					&rssi, &ord_len))
8165 			goto fail_get_ordinal;
8166 		wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8167 		if (rssi < 10)
8168 			rssi_qual = rssi * POOR / 10;
8169 		else if (rssi < 15)
8170 			rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8171 		else if (rssi < 20)
8172 			rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8173 		else if (rssi < 30)
8174 			rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8175 			    10 + GOOD;
8176 		else
8177 			rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8178 			    10 + VERY_GOOD;
8179 
8180 		if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8181 					&tx_retries, &ord_len))
8182 			goto fail_get_ordinal;
8183 
8184 		if (tx_retries > 75)
8185 			tx_qual = (90 - tx_retries) * POOR / 15;
8186 		else if (tx_retries > 70)
8187 			tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8188 		else if (tx_retries > 65)
8189 			tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8190 		else if (tx_retries > 50)
8191 			tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8192 			    15 + GOOD;
8193 		else
8194 			tx_qual = (50 - tx_retries) *
8195 			    (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8196 
8197 		if (missed_beacons > 50)
8198 			beacon_qual = (60 - missed_beacons) * POOR / 10;
8199 		else if (missed_beacons > 40)
8200 			beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8201 			    10 + POOR;
8202 		else if (missed_beacons > 32)
8203 			beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8204 			    18 + FAIR;
8205 		else if (missed_beacons > 20)
8206 			beacon_qual = (32 - missed_beacons) *
8207 			    (VERY_GOOD - GOOD) / 20 + GOOD;
8208 		else
8209 			beacon_qual = (20 - missed_beacons) *
8210 			    (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8211 
8212 		quality = min(tx_qual, rssi_qual);
8213 		quality = min(beacon_qual, quality);
8214 
8215 #ifdef CONFIG_IPW2100_DEBUG
8216 		if (beacon_qual == quality)
8217 			IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8218 		else if (tx_qual == quality)
8219 			IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8220 		else if (quality != 100)
8221 			IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8222 		else
8223 			IPW_DEBUG_WX("Quality not clamped.\n");
8224 #endif
8225 
8226 		wstats->qual.qual = quality;
8227 		wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8228 	}
8229 
8230 	wstats->qual.noise = 0;
8231 	wstats->qual.updated = 7;
8232 	wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8233 
8234 	/* FIXME: this is percent and not a # */
8235 	wstats->miss.beacon = missed_beacons;
8236 
8237 	if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8238 				&tx_failures, &ord_len))
8239 		goto fail_get_ordinal;
8240 	wstats->discard.retries = tx_failures;
8241 
8242 	return wstats;
8243 
8244       fail_get_ordinal:
8245 	IPW_DEBUG_WX("failed querying ordinals.\n");
8246 
8247 	return (struct iw_statistics *)NULL;
8248 }
8249 
8250 static const struct iw_handler_def ipw2100_wx_handler_def = {
8251 	.standard = ipw2100_wx_handlers,
8252 	.num_standard = ARRAY_SIZE(ipw2100_wx_handlers),
8253 	.num_private = ARRAY_SIZE(ipw2100_private_handler),
8254 	.num_private_args = ARRAY_SIZE(ipw2100_private_args),
8255 	.private = (iw_handler *) ipw2100_private_handler,
8256 	.private_args = (struct iw_priv_args *)ipw2100_private_args,
8257 	.get_wireless_stats = ipw2100_wx_wireless_stats,
8258 };
8259 
8260 static void ipw2100_wx_event_work(struct work_struct *work)
8261 {
8262 	struct ipw2100_priv *priv =
8263 		container_of(work, struct ipw2100_priv, wx_event_work.work);
8264 	union iwreq_data wrqu;
8265 	unsigned int len = ETH_ALEN;
8266 
8267 	if (priv->status & STATUS_STOPPING)
8268 		return;
8269 
8270 	mutex_lock(&priv->action_mutex);
8271 
8272 	IPW_DEBUG_WX("enter\n");
8273 
8274 	mutex_unlock(&priv->action_mutex);
8275 
8276 	wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8277 
8278 	/* Fetch BSSID from the hardware */
8279 	if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8280 	    priv->status & STATUS_RF_KILL_MASK ||
8281 	    ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8282 				&priv->bssid, &len)) {
8283 		eth_zero_addr(wrqu.ap_addr.sa_data);
8284 	} else {
8285 		/* We now have the BSSID, so can finish setting to the full
8286 		 * associated state */
8287 		memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8288 		memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8289 		priv->status &= ~STATUS_ASSOCIATING;
8290 		priv->status |= STATUS_ASSOCIATED;
8291 		netif_carrier_on(priv->net_dev);
8292 		netif_wake_queue(priv->net_dev);
8293 	}
8294 
8295 	if (!(priv->status & STATUS_ASSOCIATED)) {
8296 		IPW_DEBUG_WX("Configuring ESSID\n");
8297 		mutex_lock(&priv->action_mutex);
8298 		/* This is a disassociation event, so kick the firmware to
8299 		 * look for another AP */
8300 		if (priv->config & CFG_STATIC_ESSID)
8301 			ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8302 					  0);
8303 		else
8304 			ipw2100_set_essid(priv, NULL, 0, 0);
8305 		mutex_unlock(&priv->action_mutex);
8306 	}
8307 
8308 	wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8309 }
8310 
8311 #define IPW2100_FW_MAJOR_VERSION 1
8312 #define IPW2100_FW_MINOR_VERSION 3
8313 
8314 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8315 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8316 
8317 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8318                              IPW2100_FW_MAJOR_VERSION)
8319 
8320 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8321 "." __stringify(IPW2100_FW_MINOR_VERSION)
8322 
8323 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8324 
8325 /*
8326 
8327 BINARY FIRMWARE HEADER FORMAT
8328 
8329 offset      length   desc
8330 0           2        version
8331 2           2        mode == 0:BSS,1:IBSS,2:MONITOR
8332 4           4        fw_len
8333 8           4        uc_len
8334 C           fw_len   firmware data
8335 12 + fw_len uc_len   microcode data
8336 
8337 */
8338 
8339 struct ipw2100_fw_header {
8340 	short version;
8341 	short mode;
8342 	unsigned int fw_size;
8343 	unsigned int uc_size;
8344 } __packed;
8345 
8346 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8347 {
8348 	struct ipw2100_fw_header *h =
8349 	    (struct ipw2100_fw_header *)fw->fw_entry->data;
8350 
8351 	if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8352 		printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8353 		       "(detected version id of %u). "
8354 		       "See Documentation/networking/device_drivers/intel/ipw2100.txt\n",
8355 		       h->version);
8356 		return 1;
8357 	}
8358 
8359 	fw->version = h->version;
8360 	fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8361 	fw->fw.size = h->fw_size;
8362 	fw->uc.data = fw->fw.data + h->fw_size;
8363 	fw->uc.size = h->uc_size;
8364 
8365 	return 0;
8366 }
8367 
8368 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8369 				struct ipw2100_fw *fw)
8370 {
8371 	char *fw_name;
8372 	int rc;
8373 
8374 	IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8375 		       priv->net_dev->name);
8376 
8377 	switch (priv->ieee->iw_mode) {
8378 	case IW_MODE_ADHOC:
8379 		fw_name = IPW2100_FW_NAME("-i");
8380 		break;
8381 #ifdef CONFIG_IPW2100_MONITOR
8382 	case IW_MODE_MONITOR:
8383 		fw_name = IPW2100_FW_NAME("-p");
8384 		break;
8385 #endif
8386 	case IW_MODE_INFRA:
8387 	default:
8388 		fw_name = IPW2100_FW_NAME("");
8389 		break;
8390 	}
8391 
8392 	rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8393 
8394 	if (rc < 0) {
8395 		printk(KERN_ERR DRV_NAME ": "
8396 		       "%s: Firmware '%s' not available or load failed.\n",
8397 		       priv->net_dev->name, fw_name);
8398 		return rc;
8399 	}
8400 	IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8401 		       fw->fw_entry->size);
8402 
8403 	ipw2100_mod_firmware_load(fw);
8404 
8405 	return 0;
8406 }
8407 
8408 MODULE_FIRMWARE(IPW2100_FW_NAME("-i"));
8409 #ifdef CONFIG_IPW2100_MONITOR
8410 MODULE_FIRMWARE(IPW2100_FW_NAME("-p"));
8411 #endif
8412 MODULE_FIRMWARE(IPW2100_FW_NAME(""));
8413 
8414 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8415 				     struct ipw2100_fw *fw)
8416 {
8417 	fw->version = 0;
8418 	release_firmware(fw->fw_entry);
8419 	fw->fw_entry = NULL;
8420 }
8421 
8422 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8423 				 size_t max)
8424 {
8425 	char ver[MAX_FW_VERSION_LEN];
8426 	u32 len = MAX_FW_VERSION_LEN;
8427 	u32 tmp;
8428 	int i;
8429 	/* firmware version is an ascii string (max len of 14) */
8430 	if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8431 		return -EIO;
8432 	tmp = max;
8433 	if (len >= max)
8434 		len = max - 1;
8435 	for (i = 0; i < len; i++)
8436 		buf[i] = ver[i];
8437 	buf[i] = '\0';
8438 	return tmp;
8439 }
8440 
8441 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8442 				    size_t max)
8443 {
8444 	u32 ver;
8445 	u32 len = sizeof(ver);
8446 	/* microcode version is a 32 bit integer */
8447 	if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8448 		return -EIO;
8449 	return snprintf(buf, max, "%08X", ver);
8450 }
8451 
8452 /*
8453  * On exit, the firmware will have been freed from the fw list
8454  */
8455 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8456 {
8457 	/* firmware is constructed of N contiguous entries, each entry is
8458 	 * structured as:
8459 	 *
8460 	 * offset    sie         desc
8461 	 * 0         4           address to write to
8462 	 * 4         2           length of data run
8463 	 * 6         length      data
8464 	 */
8465 	unsigned int addr;
8466 	unsigned short len;
8467 
8468 	const unsigned char *firmware_data = fw->fw.data;
8469 	unsigned int firmware_data_left = fw->fw.size;
8470 
8471 	while (firmware_data_left > 0) {
8472 		addr = *(u32 *) (firmware_data);
8473 		firmware_data += 4;
8474 		firmware_data_left -= 4;
8475 
8476 		len = *(u16 *) (firmware_data);
8477 		firmware_data += 2;
8478 		firmware_data_left -= 2;
8479 
8480 		if (len > 32) {
8481 			printk(KERN_ERR DRV_NAME ": "
8482 			       "Invalid firmware run-length of %d bytes\n",
8483 			       len);
8484 			return -EINVAL;
8485 		}
8486 
8487 		write_nic_memory(priv->net_dev, addr, len, firmware_data);
8488 		firmware_data += len;
8489 		firmware_data_left -= len;
8490 	}
8491 
8492 	return 0;
8493 }
8494 
8495 struct symbol_alive_response {
8496 	u8 cmd_id;
8497 	u8 seq_num;
8498 	u8 ucode_rev;
8499 	u8 eeprom_valid;
8500 	u16 valid_flags;
8501 	u8 IEEE_addr[6];
8502 	u16 flags;
8503 	u16 pcb_rev;
8504 	u16 clock_settle_time;	// 1us LSB
8505 	u16 powerup_settle_time;	// 1us LSB
8506 	u16 hop_settle_time;	// 1us LSB
8507 	u8 date[3];		// month, day, year
8508 	u8 time[2];		// hours, minutes
8509 	u8 ucode_valid;
8510 };
8511 
8512 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8513 				  struct ipw2100_fw *fw)
8514 {
8515 	struct net_device *dev = priv->net_dev;
8516 	const unsigned char *microcode_data = fw->uc.data;
8517 	unsigned int microcode_data_left = fw->uc.size;
8518 	void __iomem *reg = priv->ioaddr;
8519 
8520 	struct symbol_alive_response response;
8521 	int i, j;
8522 	u8 data;
8523 
8524 	/* Symbol control */
8525 	write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8526 	readl(reg);
8527 	write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8528 	readl(reg);
8529 
8530 	/* HW config */
8531 	write_nic_byte(dev, 0x210014, 0x72);	/* fifo width =16 */
8532 	readl(reg);
8533 	write_nic_byte(dev, 0x210014, 0x72);	/* fifo width =16 */
8534 	readl(reg);
8535 
8536 	/* EN_CS_ACCESS bit to reset control store pointer */
8537 	write_nic_byte(dev, 0x210000, 0x40);
8538 	readl(reg);
8539 	write_nic_byte(dev, 0x210000, 0x0);
8540 	readl(reg);
8541 	write_nic_byte(dev, 0x210000, 0x40);
8542 	readl(reg);
8543 
8544 	/* copy microcode from buffer into Symbol */
8545 
8546 	while (microcode_data_left > 0) {
8547 		write_nic_byte(dev, 0x210010, *microcode_data++);
8548 		write_nic_byte(dev, 0x210010, *microcode_data++);
8549 		microcode_data_left -= 2;
8550 	}
8551 
8552 	/* EN_CS_ACCESS bit to reset the control store pointer */
8553 	write_nic_byte(dev, 0x210000, 0x0);
8554 	readl(reg);
8555 
8556 	/* Enable System (Reg 0)
8557 	 * first enable causes garbage in RX FIFO */
8558 	write_nic_byte(dev, 0x210000, 0x0);
8559 	readl(reg);
8560 	write_nic_byte(dev, 0x210000, 0x80);
8561 	readl(reg);
8562 
8563 	/* Reset External Baseband Reg */
8564 	write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8565 	readl(reg);
8566 	write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8567 	readl(reg);
8568 
8569 	/* HW Config (Reg 5) */
8570 	write_nic_byte(dev, 0x210014, 0x72);	// fifo width =16
8571 	readl(reg);
8572 	write_nic_byte(dev, 0x210014, 0x72);	// fifo width =16
8573 	readl(reg);
8574 
8575 	/* Enable System (Reg 0)
8576 	 * second enable should be OK */
8577 	write_nic_byte(dev, 0x210000, 0x00);	// clear enable system
8578 	readl(reg);
8579 	write_nic_byte(dev, 0x210000, 0x80);	// set enable system
8580 
8581 	/* check Symbol is enabled - upped this from 5 as it wasn't always
8582 	 * catching the update */
8583 	for (i = 0; i < 10; i++) {
8584 		udelay(10);
8585 
8586 		/* check Dino is enabled bit */
8587 		read_nic_byte(dev, 0x210000, &data);
8588 		if (data & 0x1)
8589 			break;
8590 	}
8591 
8592 	if (i == 10) {
8593 		printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8594 		       dev->name);
8595 		return -EIO;
8596 	}
8597 
8598 	/* Get Symbol alive response */
8599 	for (i = 0; i < 30; i++) {
8600 		/* Read alive response structure */
8601 		for (j = 0;
8602 		     j < (sizeof(struct symbol_alive_response) >> 1); j++)
8603 			read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8604 
8605 		if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8606 			break;
8607 		udelay(10);
8608 	}
8609 
8610 	if (i == 30) {
8611 		printk(KERN_ERR DRV_NAME
8612 		       ": %s: No response from Symbol - hw not alive\n",
8613 		       dev->name);
8614 		printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8615 		return -EIO;
8616 	}
8617 
8618 	return 0;
8619 }
8620