1 // SPDX-License-Identifier: GPL-2.0-only 2 /****************************************************************************** 3 4 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved. 5 6 7 Contact Information: 8 Intel Linux Wireless <ilw@linux.intel.com> 9 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 10 11 Portions of this file are based on the sample_* files provided by Wireless 12 Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes 13 <jt@hpl.hp.com> 14 15 Portions of this file are based on the Host AP project, 16 Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen 17 <j@w1.fi> 18 Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi> 19 20 Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and 21 ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c 22 available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox 23 24 ******************************************************************************/ 25 /* 26 27 Initial driver on which this is based was developed by Janusz Gorycki, 28 Maciej Urbaniak, and Maciej Sosnowski. 29 30 Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak. 31 32 Theory of Operation 33 34 Tx - Commands and Data 35 36 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs) 37 Each TBD contains a pointer to the physical (dma_addr_t) address of data being 38 sent to the firmware as well as the length of the data. 39 40 The host writes to the TBD queue at the WRITE index. The WRITE index points 41 to the _next_ packet to be written and is advanced when after the TBD has been 42 filled. 43 44 The firmware pulls from the TBD queue at the READ index. The READ index points 45 to the currently being read entry, and is advanced once the firmware is 46 done with a packet. 47 48 When data is sent to the firmware, the first TBD is used to indicate to the 49 firmware if a Command or Data is being sent. If it is Command, all of the 50 command information is contained within the physical address referred to by the 51 TBD. If it is Data, the first TBD indicates the type of data packet, number 52 of fragments, etc. The next TBD then refers to the actual packet location. 53 54 The Tx flow cycle is as follows: 55 56 1) ipw2100_tx() is called by kernel with SKB to transmit 57 2) Packet is move from the tx_free_list and appended to the transmit pending 58 list (tx_pend_list) 59 3) work is scheduled to move pending packets into the shared circular queue. 60 4) when placing packet in the circular queue, the incoming SKB is DMA mapped 61 to a physical address. That address is entered into a TBD. Two TBDs are 62 filled out. The first indicating a data packet, the second referring to the 63 actual payload data. 64 5) the packet is removed from tx_pend_list and placed on the end of the 65 firmware pending list (fw_pend_list) 66 6) firmware is notified that the WRITE index has 67 7) Once the firmware has processed the TBD, INTA is triggered. 68 8) For each Tx interrupt received from the firmware, the READ index is checked 69 to see which TBDs are done being processed. 70 9) For each TBD that has been processed, the ISR pulls the oldest packet 71 from the fw_pend_list. 72 10)The packet structure contained in the fw_pend_list is then used 73 to unmap the DMA address and to free the SKB originally passed to the driver 74 from the kernel. 75 11)The packet structure is placed onto the tx_free_list 76 77 The above steps are the same for commands, only the msg_free_list/msg_pend_list 78 are used instead of tx_free_list/tx_pend_list 79 80 ... 81 82 Critical Sections / Locking : 83 84 There are two locks utilized. The first is the low level lock (priv->low_lock) 85 that protects the following: 86 87 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows: 88 89 tx_free_list : Holds pre-allocated Tx buffers. 90 TAIL modified in __ipw2100_tx_process() 91 HEAD modified in ipw2100_tx() 92 93 tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring 94 TAIL modified ipw2100_tx() 95 HEAD modified by ipw2100_tx_send_data() 96 97 msg_free_list : Holds pre-allocated Msg (Command) buffers 98 TAIL modified in __ipw2100_tx_process() 99 HEAD modified in ipw2100_hw_send_command() 100 101 msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring 102 TAIL modified in ipw2100_hw_send_command() 103 HEAD modified in ipw2100_tx_send_commands() 104 105 The flow of data on the TX side is as follows: 106 107 MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST 108 TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST 109 110 The methods that work on the TBD ring are protected via priv->low_lock. 111 112 - The internal data state of the device itself 113 - Access to the firmware read/write indexes for the BD queues 114 and associated logic 115 116 All external entry functions are locked with the priv->action_lock to ensure 117 that only one external action is invoked at a time. 118 119 120 */ 121 122 #include <linux/compiler.h> 123 #include <linux/errno.h> 124 #include <linux/if_arp.h> 125 #include <linux/in6.h> 126 #include <linux/in.h> 127 #include <linux/ip.h> 128 #include <linux/kernel.h> 129 #include <linux/kmod.h> 130 #include <linux/module.h> 131 #include <linux/netdevice.h> 132 #include <linux/ethtool.h> 133 #include <linux/pci.h> 134 #include <linux/dma-mapping.h> 135 #include <linux/proc_fs.h> 136 #include <linux/skbuff.h> 137 #include <linux/uaccess.h> 138 #include <asm/io.h> 139 #include <linux/fs.h> 140 #include <linux/mm.h> 141 #include <linux/slab.h> 142 #include <linux/unistd.h> 143 #include <linux/stringify.h> 144 #include <linux/tcp.h> 145 #include <linux/types.h> 146 #include <linux/time.h> 147 #include <linux/firmware.h> 148 #include <linux/acpi.h> 149 #include <linux/ctype.h> 150 #include <linux/pm_qos.h> 151 152 #include <net/lib80211.h> 153 154 #include "ipw2100.h" 155 #include "ipw.h" 156 157 #define IPW2100_VERSION "git-1.2.2" 158 159 #define DRV_NAME "ipw2100" 160 #define DRV_VERSION IPW2100_VERSION 161 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver" 162 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation" 163 164 static struct pm_qos_request ipw2100_pm_qos_req; 165 166 /* Debugging stuff */ 167 #ifdef CONFIG_IPW2100_DEBUG 168 #define IPW2100_RX_DEBUG /* Reception debugging */ 169 #endif 170 171 MODULE_DESCRIPTION(DRV_DESCRIPTION); 172 MODULE_VERSION(DRV_VERSION); 173 MODULE_AUTHOR(DRV_COPYRIGHT); 174 MODULE_LICENSE("GPL"); 175 176 static int debug = 0; 177 static int network_mode = 0; 178 static int channel = 0; 179 static int associate = 0; 180 static int disable = 0; 181 #ifdef CONFIG_PM 182 static struct ipw2100_fw ipw2100_firmware; 183 #endif 184 185 #include <linux/moduleparam.h> 186 module_param(debug, int, 0444); 187 module_param_named(mode, network_mode, int, 0444); 188 module_param(channel, int, 0444); 189 module_param(associate, int, 0444); 190 module_param(disable, int, 0444); 191 192 MODULE_PARM_DESC(debug, "debug level"); 193 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)"); 194 MODULE_PARM_DESC(channel, "channel"); 195 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)"); 196 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])"); 197 198 static u32 ipw2100_debug_level = IPW_DL_NONE; 199 200 #ifdef CONFIG_IPW2100_DEBUG 201 #define IPW_DEBUG(level, message...) \ 202 do { \ 203 if (ipw2100_debug_level & (level)) { \ 204 printk(KERN_DEBUG "ipw2100: %s ", __func__); \ 205 printk(message); \ 206 } \ 207 } while (0) 208 #else 209 #define IPW_DEBUG(level, message...) do {} while (0) 210 #endif /* CONFIG_IPW2100_DEBUG */ 211 212 #ifdef CONFIG_IPW2100_DEBUG 213 static const char *command_types[] = { 214 "undefined", 215 "unused", /* HOST_ATTENTION */ 216 "HOST_COMPLETE", 217 "unused", /* SLEEP */ 218 "unused", /* HOST_POWER_DOWN */ 219 "unused", 220 "SYSTEM_CONFIG", 221 "unused", /* SET_IMR */ 222 "SSID", 223 "MANDATORY_BSSID", 224 "AUTHENTICATION_TYPE", 225 "ADAPTER_ADDRESS", 226 "PORT_TYPE", 227 "INTERNATIONAL_MODE", 228 "CHANNEL", 229 "RTS_THRESHOLD", 230 "FRAG_THRESHOLD", 231 "POWER_MODE", 232 "TX_RATES", 233 "BASIC_TX_RATES", 234 "WEP_KEY_INFO", 235 "unused", 236 "unused", 237 "unused", 238 "unused", 239 "WEP_KEY_INDEX", 240 "WEP_FLAGS", 241 "ADD_MULTICAST", 242 "CLEAR_ALL_MULTICAST", 243 "BEACON_INTERVAL", 244 "ATIM_WINDOW", 245 "CLEAR_STATISTICS", 246 "undefined", 247 "undefined", 248 "undefined", 249 "undefined", 250 "TX_POWER_INDEX", 251 "undefined", 252 "undefined", 253 "undefined", 254 "undefined", 255 "undefined", 256 "undefined", 257 "BROADCAST_SCAN", 258 "CARD_DISABLE", 259 "PREFERRED_BSSID", 260 "SET_SCAN_OPTIONS", 261 "SCAN_DWELL_TIME", 262 "SWEEP_TABLE", 263 "AP_OR_STATION_TABLE", 264 "GROUP_ORDINALS", 265 "SHORT_RETRY_LIMIT", 266 "LONG_RETRY_LIMIT", 267 "unused", /* SAVE_CALIBRATION */ 268 "unused", /* RESTORE_CALIBRATION */ 269 "undefined", 270 "undefined", 271 "undefined", 272 "HOST_PRE_POWER_DOWN", 273 "unused", /* HOST_INTERRUPT_COALESCING */ 274 "undefined", 275 "CARD_DISABLE_PHY_OFF", 276 "MSDU_TX_RATES", 277 "undefined", 278 "SET_STATION_STAT_BITS", 279 "CLEAR_STATIONS_STAT_BITS", 280 "LEAP_ROGUE_MODE", 281 "SET_SECURITY_INFORMATION", 282 "DISASSOCIATION_BSSID", 283 "SET_WPA_ASS_IE" 284 }; 285 #endif 286 287 static const long ipw2100_frequencies[] = { 288 2412, 2417, 2422, 2427, 289 2432, 2437, 2442, 2447, 290 2452, 2457, 2462, 2467, 291 2472, 2484 292 }; 293 294 #define FREQ_COUNT ARRAY_SIZE(ipw2100_frequencies) 295 296 static struct ieee80211_rate ipw2100_bg_rates[] = { 297 { .bitrate = 10 }, 298 { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 299 { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 300 { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 301 }; 302 303 #define RATE_COUNT ARRAY_SIZE(ipw2100_bg_rates) 304 305 /* Pre-decl until we get the code solid and then we can clean it up */ 306 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv); 307 static void ipw2100_tx_send_data(struct ipw2100_priv *priv); 308 static int ipw2100_adapter_setup(struct ipw2100_priv *priv); 309 310 static void ipw2100_queues_initialize(struct ipw2100_priv *priv); 311 static void ipw2100_queues_free(struct ipw2100_priv *priv); 312 static int ipw2100_queues_allocate(struct ipw2100_priv *priv); 313 314 static int ipw2100_fw_download(struct ipw2100_priv *priv, 315 struct ipw2100_fw *fw); 316 static int ipw2100_get_firmware(struct ipw2100_priv *priv, 317 struct ipw2100_fw *fw); 318 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf, 319 size_t max); 320 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf, 321 size_t max); 322 static void ipw2100_release_firmware(struct ipw2100_priv *priv, 323 struct ipw2100_fw *fw); 324 static int ipw2100_ucode_download(struct ipw2100_priv *priv, 325 struct ipw2100_fw *fw); 326 static void ipw2100_wx_event_work(struct work_struct *work); 327 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev); 328 static const struct iw_handler_def ipw2100_wx_handler_def; 329 330 static inline void read_register(struct net_device *dev, u32 reg, u32 * val) 331 { 332 struct ipw2100_priv *priv = libipw_priv(dev); 333 334 *val = ioread32(priv->ioaddr + reg); 335 IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val); 336 } 337 338 static inline void write_register(struct net_device *dev, u32 reg, u32 val) 339 { 340 struct ipw2100_priv *priv = libipw_priv(dev); 341 342 iowrite32(val, priv->ioaddr + reg); 343 IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val); 344 } 345 346 static inline void read_register_word(struct net_device *dev, u32 reg, 347 u16 * val) 348 { 349 struct ipw2100_priv *priv = libipw_priv(dev); 350 351 *val = ioread16(priv->ioaddr + reg); 352 IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val); 353 } 354 355 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val) 356 { 357 struct ipw2100_priv *priv = libipw_priv(dev); 358 359 *val = ioread8(priv->ioaddr + reg); 360 IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val); 361 } 362 363 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val) 364 { 365 struct ipw2100_priv *priv = libipw_priv(dev); 366 367 iowrite16(val, priv->ioaddr + reg); 368 IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val); 369 } 370 371 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val) 372 { 373 struct ipw2100_priv *priv = libipw_priv(dev); 374 375 iowrite8(val, priv->ioaddr + reg); 376 IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val); 377 } 378 379 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val) 380 { 381 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, 382 addr & IPW_REG_INDIRECT_ADDR_MASK); 383 read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val); 384 } 385 386 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val) 387 { 388 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, 389 addr & IPW_REG_INDIRECT_ADDR_MASK); 390 write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val); 391 } 392 393 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val) 394 { 395 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, 396 addr & IPW_REG_INDIRECT_ADDR_MASK); 397 read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val); 398 } 399 400 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val) 401 { 402 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, 403 addr & IPW_REG_INDIRECT_ADDR_MASK); 404 write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val); 405 } 406 407 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val) 408 { 409 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, 410 addr & IPW_REG_INDIRECT_ADDR_MASK); 411 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val); 412 } 413 414 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val) 415 { 416 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, 417 addr & IPW_REG_INDIRECT_ADDR_MASK); 418 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val); 419 } 420 421 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len, 422 const u8 * buf) 423 { 424 u32 aligned_addr; 425 u32 aligned_len; 426 u32 dif_len; 427 u32 i; 428 429 /* read first nibble byte by byte */ 430 aligned_addr = addr & (~0x3); 431 dif_len = addr - aligned_addr; 432 if (dif_len) { 433 /* Start reading at aligned_addr + dif_len */ 434 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, 435 aligned_addr); 436 for (i = dif_len; i < 4; i++, buf++) 437 write_register_byte(dev, 438 IPW_REG_INDIRECT_ACCESS_DATA + i, 439 *buf); 440 441 len -= dif_len; 442 aligned_addr += 4; 443 } 444 445 /* read DWs through autoincrement registers */ 446 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr); 447 aligned_len = len & (~0x3); 448 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4) 449 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf); 450 451 /* copy the last nibble */ 452 dif_len = len - aligned_len; 453 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr); 454 for (i = 0; i < dif_len; i++, buf++) 455 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, 456 *buf); 457 } 458 459 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len, 460 u8 * buf) 461 { 462 u32 aligned_addr; 463 u32 aligned_len; 464 u32 dif_len; 465 u32 i; 466 467 /* read first nibble byte by byte */ 468 aligned_addr = addr & (~0x3); 469 dif_len = addr - aligned_addr; 470 if (dif_len) { 471 /* Start reading at aligned_addr + dif_len */ 472 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, 473 aligned_addr); 474 for (i = dif_len; i < 4; i++, buf++) 475 read_register_byte(dev, 476 IPW_REG_INDIRECT_ACCESS_DATA + i, 477 buf); 478 479 len -= dif_len; 480 aligned_addr += 4; 481 } 482 483 /* read DWs through autoincrement registers */ 484 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr); 485 aligned_len = len & (~0x3); 486 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4) 487 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf); 488 489 /* copy the last nibble */ 490 dif_len = len - aligned_len; 491 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr); 492 for (i = 0; i < dif_len; i++, buf++) 493 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf); 494 } 495 496 static bool ipw2100_hw_is_adapter_in_system(struct net_device *dev) 497 { 498 u32 dbg; 499 500 read_register(dev, IPW_REG_DOA_DEBUG_AREA_START, &dbg); 501 502 return dbg == IPW_DATA_DOA_DEBUG_VALUE; 503 } 504 505 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord, 506 void *val, u32 * len) 507 { 508 struct ipw2100_ordinals *ordinals = &priv->ordinals; 509 u32 addr; 510 u32 field_info; 511 u16 field_len; 512 u16 field_count; 513 u32 total_length; 514 515 if (ordinals->table1_addr == 0) { 516 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals " 517 "before they have been loaded.\n"); 518 return -EINVAL; 519 } 520 521 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) { 522 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) { 523 *len = IPW_ORD_TAB_1_ENTRY_SIZE; 524 525 printk(KERN_WARNING DRV_NAME 526 ": ordinal buffer length too small, need %zd\n", 527 IPW_ORD_TAB_1_ENTRY_SIZE); 528 529 return -EINVAL; 530 } 531 532 read_nic_dword(priv->net_dev, 533 ordinals->table1_addr + (ord << 2), &addr); 534 read_nic_dword(priv->net_dev, addr, val); 535 536 *len = IPW_ORD_TAB_1_ENTRY_SIZE; 537 538 return 0; 539 } 540 541 if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) { 542 543 ord -= IPW_START_ORD_TAB_2; 544 545 /* get the address of statistic */ 546 read_nic_dword(priv->net_dev, 547 ordinals->table2_addr + (ord << 3), &addr); 548 549 /* get the second DW of statistics ; 550 * two 16-bit words - first is length, second is count */ 551 read_nic_dword(priv->net_dev, 552 ordinals->table2_addr + (ord << 3) + sizeof(u32), 553 &field_info); 554 555 /* get each entry length */ 556 field_len = *((u16 *) & field_info); 557 558 /* get number of entries */ 559 field_count = *(((u16 *) & field_info) + 1); 560 561 /* abort if no enough memory */ 562 total_length = field_len * field_count; 563 if (total_length > *len) { 564 *len = total_length; 565 return -EINVAL; 566 } 567 568 *len = total_length; 569 if (!total_length) 570 return 0; 571 572 /* read the ordinal data from the SRAM */ 573 read_nic_memory(priv->net_dev, addr, total_length, val); 574 575 return 0; 576 } 577 578 printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor " 579 "in table 2\n", ord); 580 581 return -EINVAL; 582 } 583 584 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val, 585 u32 * len) 586 { 587 struct ipw2100_ordinals *ordinals = &priv->ordinals; 588 u32 addr; 589 590 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) { 591 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) { 592 *len = IPW_ORD_TAB_1_ENTRY_SIZE; 593 IPW_DEBUG_INFO("wrong size\n"); 594 return -EINVAL; 595 } 596 597 read_nic_dword(priv->net_dev, 598 ordinals->table1_addr + (ord << 2), &addr); 599 600 write_nic_dword(priv->net_dev, addr, *val); 601 602 *len = IPW_ORD_TAB_1_ENTRY_SIZE; 603 604 return 0; 605 } 606 607 IPW_DEBUG_INFO("wrong table\n"); 608 if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) 609 return -EINVAL; 610 611 return -EINVAL; 612 } 613 614 static char *snprint_line(char *buf, size_t count, 615 const u8 * data, u32 len, u32 ofs) 616 { 617 int out, i, j, l; 618 char c; 619 620 out = scnprintf(buf, count, "%08X", ofs); 621 622 for (l = 0, i = 0; i < 2; i++) { 623 out += scnprintf(buf + out, count - out, " "); 624 for (j = 0; j < 8 && l < len; j++, l++) 625 out += scnprintf(buf + out, count - out, "%02X ", 626 data[(i * 8 + j)]); 627 for (; j < 8; j++) 628 out += scnprintf(buf + out, count - out, " "); 629 } 630 631 out += scnprintf(buf + out, count - out, " "); 632 for (l = 0, i = 0; i < 2; i++) { 633 out += scnprintf(buf + out, count - out, " "); 634 for (j = 0; j < 8 && l < len; j++, l++) { 635 c = data[(i * 8 + j)]; 636 if (!isascii(c) || !isprint(c)) 637 c = '.'; 638 639 out += scnprintf(buf + out, count - out, "%c", c); 640 } 641 642 for (; j < 8; j++) 643 out += scnprintf(buf + out, count - out, " "); 644 } 645 646 return buf; 647 } 648 649 static void printk_buf(int level, const u8 * data, u32 len) 650 { 651 char line[81]; 652 u32 ofs = 0; 653 if (!(ipw2100_debug_level & level)) 654 return; 655 656 while (len) { 657 printk(KERN_DEBUG "%s\n", 658 snprint_line(line, sizeof(line), &data[ofs], 659 min(len, 16U), ofs)); 660 ofs += 16; 661 len -= min(len, 16U); 662 } 663 } 664 665 #define MAX_RESET_BACKOFF 10 666 667 static void schedule_reset(struct ipw2100_priv *priv) 668 { 669 time64_t now = ktime_get_boottime_seconds(); 670 671 /* If we haven't received a reset request within the backoff period, 672 * then we can reset the backoff interval so this reset occurs 673 * immediately */ 674 if (priv->reset_backoff && 675 (now - priv->last_reset > priv->reset_backoff)) 676 priv->reset_backoff = 0; 677 678 priv->last_reset = now; 679 680 if (!(priv->status & STATUS_RESET_PENDING)) { 681 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%llds).\n", 682 priv->net_dev->name, priv->reset_backoff); 683 netif_carrier_off(priv->net_dev); 684 netif_stop_queue(priv->net_dev); 685 priv->status |= STATUS_RESET_PENDING; 686 if (priv->reset_backoff) 687 schedule_delayed_work(&priv->reset_work, 688 priv->reset_backoff * HZ); 689 else 690 schedule_delayed_work(&priv->reset_work, 0); 691 692 if (priv->reset_backoff < MAX_RESET_BACKOFF) 693 priv->reset_backoff++; 694 695 wake_up_interruptible(&priv->wait_command_queue); 696 } else 697 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n", 698 priv->net_dev->name); 699 700 } 701 702 #define HOST_COMPLETE_TIMEOUT (2 * HZ) 703 static int ipw2100_hw_send_command(struct ipw2100_priv *priv, 704 struct host_command *cmd) 705 { 706 struct list_head *element; 707 struct ipw2100_tx_packet *packet; 708 unsigned long flags; 709 int err = 0; 710 711 IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n", 712 command_types[cmd->host_command], cmd->host_command, 713 cmd->host_command_length); 714 printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters, 715 cmd->host_command_length); 716 717 spin_lock_irqsave(&priv->low_lock, flags); 718 719 if (priv->fatal_error) { 720 IPW_DEBUG_INFO 721 ("Attempt to send command while hardware in fatal error condition.\n"); 722 err = -EIO; 723 goto fail_unlock; 724 } 725 726 if (!(priv->status & STATUS_RUNNING)) { 727 IPW_DEBUG_INFO 728 ("Attempt to send command while hardware is not running.\n"); 729 err = -EIO; 730 goto fail_unlock; 731 } 732 733 if (priv->status & STATUS_CMD_ACTIVE) { 734 IPW_DEBUG_INFO 735 ("Attempt to send command while another command is pending.\n"); 736 err = -EBUSY; 737 goto fail_unlock; 738 } 739 740 if (list_empty(&priv->msg_free_list)) { 741 IPW_DEBUG_INFO("no available msg buffers\n"); 742 goto fail_unlock; 743 } 744 745 priv->status |= STATUS_CMD_ACTIVE; 746 priv->messages_sent++; 747 748 element = priv->msg_free_list.next; 749 750 packet = list_entry(element, struct ipw2100_tx_packet, list); 751 packet->jiffy_start = jiffies; 752 753 /* initialize the firmware command packet */ 754 packet->info.c_struct.cmd->host_command_reg = cmd->host_command; 755 packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1; 756 packet->info.c_struct.cmd->host_command_len_reg = 757 cmd->host_command_length; 758 packet->info.c_struct.cmd->sequence = cmd->host_command_sequence; 759 760 memcpy(packet->info.c_struct.cmd->host_command_params_reg, 761 cmd->host_command_parameters, 762 sizeof(packet->info.c_struct.cmd->host_command_params_reg)); 763 764 list_del(element); 765 DEC_STAT(&priv->msg_free_stat); 766 767 list_add_tail(element, &priv->msg_pend_list); 768 INC_STAT(&priv->msg_pend_stat); 769 770 ipw2100_tx_send_commands(priv); 771 ipw2100_tx_send_data(priv); 772 773 spin_unlock_irqrestore(&priv->low_lock, flags); 774 775 /* 776 * We must wait for this command to complete before another 777 * command can be sent... but if we wait more than 3 seconds 778 * then there is a problem. 779 */ 780 781 err = 782 wait_event_interruptible_timeout(priv->wait_command_queue, 783 !(priv-> 784 status & STATUS_CMD_ACTIVE), 785 HOST_COMPLETE_TIMEOUT); 786 787 if (err == 0) { 788 IPW_DEBUG_INFO("Command completion failed out after %dms.\n", 789 1000 * (HOST_COMPLETE_TIMEOUT / HZ)); 790 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT; 791 priv->status &= ~STATUS_CMD_ACTIVE; 792 schedule_reset(priv); 793 return -EIO; 794 } 795 796 if (priv->fatal_error) { 797 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n", 798 priv->net_dev->name); 799 return -EIO; 800 } 801 802 /* !!!!! HACK TEST !!!!! 803 * When lots of debug trace statements are enabled, the driver 804 * doesn't seem to have as many firmware restart cycles... 805 * 806 * As a test, we're sticking in a 1/100s delay here */ 807 schedule_timeout_uninterruptible(msecs_to_jiffies(10)); 808 809 return 0; 810 811 fail_unlock: 812 spin_unlock_irqrestore(&priv->low_lock, flags); 813 814 return err; 815 } 816 817 /* 818 * Verify the values and data access of the hardware 819 * No locks needed or used. No functions called. 820 */ 821 static int ipw2100_verify(struct ipw2100_priv *priv) 822 { 823 u32 data1, data2; 824 u32 address; 825 826 u32 val1 = 0x76543210; 827 u32 val2 = 0xFEDCBA98; 828 829 /* Domain 0 check - all values should be DOA_DEBUG */ 830 for (address = IPW_REG_DOA_DEBUG_AREA_START; 831 address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) { 832 read_register(priv->net_dev, address, &data1); 833 if (data1 != IPW_DATA_DOA_DEBUG_VALUE) 834 return -EIO; 835 } 836 837 /* Domain 1 check - use arbitrary read/write compare */ 838 for (address = 0; address < 5; address++) { 839 /* The memory area is not used now */ 840 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32, 841 val1); 842 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36, 843 val2); 844 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32, 845 &data1); 846 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36, 847 &data2); 848 if (val1 == data1 && val2 == data2) 849 return 0; 850 } 851 852 return -EIO; 853 } 854 855 /* 856 * 857 * Loop until the CARD_DISABLED bit is the same value as the 858 * supplied parameter 859 * 860 * TODO: See if it would be more efficient to do a wait/wake 861 * cycle and have the completion event trigger the wakeup 862 * 863 */ 864 #define IPW_CARD_DISABLE_COMPLETE_WAIT 100 // 100 milli 865 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state) 866 { 867 int i; 868 u32 card_state; 869 u32 len = sizeof(card_state); 870 int err; 871 872 for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) { 873 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED, 874 &card_state, &len); 875 if (err) { 876 IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal " 877 "failed.\n"); 878 return 0; 879 } 880 881 /* We'll break out if either the HW state says it is 882 * in the state we want, or if HOST_COMPLETE command 883 * finishes */ 884 if ((card_state == state) || 885 ((priv->status & STATUS_ENABLED) ? 886 IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) { 887 if (state == IPW_HW_STATE_ENABLED) 888 priv->status |= STATUS_ENABLED; 889 else 890 priv->status &= ~STATUS_ENABLED; 891 892 return 0; 893 } 894 895 udelay(50); 896 } 897 898 IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n", 899 state ? "DISABLED" : "ENABLED"); 900 return -EIO; 901 } 902 903 /********************************************************************* 904 Procedure : sw_reset_and_clock 905 Purpose : Asserts s/w reset, asserts clock initialization 906 and waits for clock stabilization 907 ********************************************************************/ 908 static int sw_reset_and_clock(struct ipw2100_priv *priv) 909 { 910 int i; 911 u32 r; 912 913 // assert s/w reset 914 write_register(priv->net_dev, IPW_REG_RESET_REG, 915 IPW_AUX_HOST_RESET_REG_SW_RESET); 916 917 // wait for clock stabilization 918 for (i = 0; i < 1000; i++) { 919 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY); 920 921 // check clock ready bit 922 read_register(priv->net_dev, IPW_REG_RESET_REG, &r); 923 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET) 924 break; 925 } 926 927 if (i == 1000) 928 return -EIO; // TODO: better error value 929 930 /* set "initialization complete" bit to move adapter to 931 * D0 state */ 932 write_register(priv->net_dev, IPW_REG_GP_CNTRL, 933 IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE); 934 935 /* wait for clock stabilization */ 936 for (i = 0; i < 10000; i++) { 937 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4); 938 939 /* check clock ready bit */ 940 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r); 941 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY) 942 break; 943 } 944 945 if (i == 10000) 946 return -EIO; /* TODO: better error value */ 947 948 /* set D0 standby bit */ 949 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r); 950 write_register(priv->net_dev, IPW_REG_GP_CNTRL, 951 r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY); 952 953 return 0; 954 } 955 956 /********************************************************************* 957 Procedure : ipw2100_download_firmware 958 Purpose : Initiaze adapter after power on. 959 The sequence is: 960 1. assert s/w reset first! 961 2. awake clocks & wait for clock stabilization 962 3. hold ARC (don't ask me why...) 963 4. load Dino ucode and reset/clock init again 964 5. zero-out shared mem 965 6. download f/w 966 *******************************************************************/ 967 static int ipw2100_download_firmware(struct ipw2100_priv *priv) 968 { 969 u32 address; 970 int err; 971 972 #ifndef CONFIG_PM 973 /* Fetch the firmware and microcode */ 974 struct ipw2100_fw ipw2100_firmware; 975 #endif 976 977 if (priv->fatal_error) { 978 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after " 979 "fatal error %d. Interface must be brought down.\n", 980 priv->net_dev->name, priv->fatal_error); 981 return -EINVAL; 982 } 983 #ifdef CONFIG_PM 984 if (!ipw2100_firmware.version) { 985 err = ipw2100_get_firmware(priv, &ipw2100_firmware); 986 if (err) { 987 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n", 988 priv->net_dev->name, err); 989 priv->fatal_error = IPW2100_ERR_FW_LOAD; 990 goto fail; 991 } 992 } 993 #else 994 err = ipw2100_get_firmware(priv, &ipw2100_firmware); 995 if (err) { 996 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n", 997 priv->net_dev->name, err); 998 priv->fatal_error = IPW2100_ERR_FW_LOAD; 999 goto fail; 1000 } 1001 #endif 1002 priv->firmware_version = ipw2100_firmware.version; 1003 1004 /* s/w reset and clock stabilization */ 1005 err = sw_reset_and_clock(priv); 1006 if (err) { 1007 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n", 1008 priv->net_dev->name, err); 1009 goto fail; 1010 } 1011 1012 err = ipw2100_verify(priv); 1013 if (err) { 1014 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n", 1015 priv->net_dev->name, err); 1016 goto fail; 1017 } 1018 1019 /* Hold ARC */ 1020 write_nic_dword(priv->net_dev, 1021 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000); 1022 1023 /* allow ARC to run */ 1024 write_register(priv->net_dev, IPW_REG_RESET_REG, 0); 1025 1026 /* load microcode */ 1027 err = ipw2100_ucode_download(priv, &ipw2100_firmware); 1028 if (err) { 1029 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n", 1030 priv->net_dev->name, err); 1031 goto fail; 1032 } 1033 1034 /* release ARC */ 1035 write_nic_dword(priv->net_dev, 1036 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000); 1037 1038 /* s/w reset and clock stabilization (again!!!) */ 1039 err = sw_reset_and_clock(priv); 1040 if (err) { 1041 printk(KERN_ERR DRV_NAME 1042 ": %s: sw_reset_and_clock failed: %d\n", 1043 priv->net_dev->name, err); 1044 goto fail; 1045 } 1046 1047 /* load f/w */ 1048 err = ipw2100_fw_download(priv, &ipw2100_firmware); 1049 if (err) { 1050 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n", 1051 priv->net_dev->name, err); 1052 goto fail; 1053 } 1054 #ifndef CONFIG_PM 1055 /* 1056 * When the .resume method of the driver is called, the other 1057 * part of the system, i.e. the ide driver could still stay in 1058 * the suspend stage. This prevents us from loading the firmware 1059 * from the disk. --YZ 1060 */ 1061 1062 /* free any storage allocated for firmware image */ 1063 ipw2100_release_firmware(priv, &ipw2100_firmware); 1064 #endif 1065 1066 /* zero out Domain 1 area indirectly (Si requirement) */ 1067 for (address = IPW_HOST_FW_SHARED_AREA0; 1068 address < IPW_HOST_FW_SHARED_AREA0_END; address += 4) 1069 write_nic_dword(priv->net_dev, address, 0); 1070 for (address = IPW_HOST_FW_SHARED_AREA1; 1071 address < IPW_HOST_FW_SHARED_AREA1_END; address += 4) 1072 write_nic_dword(priv->net_dev, address, 0); 1073 for (address = IPW_HOST_FW_SHARED_AREA2; 1074 address < IPW_HOST_FW_SHARED_AREA2_END; address += 4) 1075 write_nic_dword(priv->net_dev, address, 0); 1076 for (address = IPW_HOST_FW_SHARED_AREA3; 1077 address < IPW_HOST_FW_SHARED_AREA3_END; address += 4) 1078 write_nic_dword(priv->net_dev, address, 0); 1079 for (address = IPW_HOST_FW_INTERRUPT_AREA; 1080 address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4) 1081 write_nic_dword(priv->net_dev, address, 0); 1082 1083 return 0; 1084 1085 fail: 1086 ipw2100_release_firmware(priv, &ipw2100_firmware); 1087 return err; 1088 } 1089 1090 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv) 1091 { 1092 if (priv->status & STATUS_INT_ENABLED) 1093 return; 1094 priv->status |= STATUS_INT_ENABLED; 1095 write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK); 1096 } 1097 1098 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv) 1099 { 1100 if (!(priv->status & STATUS_INT_ENABLED)) 1101 return; 1102 priv->status &= ~STATUS_INT_ENABLED; 1103 write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0); 1104 } 1105 1106 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv) 1107 { 1108 struct ipw2100_ordinals *ord = &priv->ordinals; 1109 1110 IPW_DEBUG_INFO("enter\n"); 1111 1112 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1, 1113 &ord->table1_addr); 1114 1115 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2, 1116 &ord->table2_addr); 1117 1118 read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size); 1119 read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size); 1120 1121 ord->table2_size &= 0x0000FFFF; 1122 1123 IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size); 1124 IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size); 1125 IPW_DEBUG_INFO("exit\n"); 1126 } 1127 1128 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv) 1129 { 1130 u32 reg = 0; 1131 /* 1132 * Set GPIO 3 writable by FW; GPIO 1 writable 1133 * by driver and enable clock 1134 */ 1135 reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE | 1136 IPW_BIT_GPIO_LED_OFF); 1137 write_register(priv->net_dev, IPW_REG_GPIO, reg); 1138 } 1139 1140 static int rf_kill_active(struct ipw2100_priv *priv) 1141 { 1142 #define MAX_RF_KILL_CHECKS 5 1143 #define RF_KILL_CHECK_DELAY 40 1144 1145 unsigned short value = 0; 1146 u32 reg = 0; 1147 int i; 1148 1149 if (!(priv->hw_features & HW_FEATURE_RFKILL)) { 1150 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false); 1151 priv->status &= ~STATUS_RF_KILL_HW; 1152 return 0; 1153 } 1154 1155 for (i = 0; i < MAX_RF_KILL_CHECKS; i++) { 1156 udelay(RF_KILL_CHECK_DELAY); 1157 read_register(priv->net_dev, IPW_REG_GPIO, ®); 1158 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1); 1159 } 1160 1161 if (value == 0) { 1162 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true); 1163 priv->status |= STATUS_RF_KILL_HW; 1164 } else { 1165 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false); 1166 priv->status &= ~STATUS_RF_KILL_HW; 1167 } 1168 1169 return (value == 0); 1170 } 1171 1172 static int ipw2100_get_hw_features(struct ipw2100_priv *priv) 1173 { 1174 u32 addr, len; 1175 u32 val; 1176 1177 /* 1178 * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1 1179 */ 1180 len = sizeof(addr); 1181 if (ipw2100_get_ordinal 1182 (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) { 1183 IPW_DEBUG_INFO("failed querying ordinals at line %d\n", 1184 __LINE__); 1185 return -EIO; 1186 } 1187 1188 IPW_DEBUG_INFO("EEPROM address: %08X\n", addr); 1189 1190 /* 1191 * EEPROM version is the byte at offset 0xfd in firmware 1192 * We read 4 bytes, then shift out the byte we actually want */ 1193 read_nic_dword(priv->net_dev, addr + 0xFC, &val); 1194 priv->eeprom_version = (val >> 24) & 0xFF; 1195 IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version); 1196 1197 /* 1198 * HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware 1199 * 1200 * notice that the EEPROM bit is reverse polarity, i.e. 1201 * bit = 0 signifies HW RF kill switch is supported 1202 * bit = 1 signifies HW RF kill switch is NOT supported 1203 */ 1204 read_nic_dword(priv->net_dev, addr + 0x20, &val); 1205 if (!((val >> 24) & 0x01)) 1206 priv->hw_features |= HW_FEATURE_RFKILL; 1207 1208 IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n", 1209 (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not "); 1210 1211 return 0; 1212 } 1213 1214 /* 1215 * Start firmware execution after power on and initialization 1216 * The sequence is: 1217 * 1. Release ARC 1218 * 2. Wait for f/w initialization completes; 1219 */ 1220 static int ipw2100_start_adapter(struct ipw2100_priv *priv) 1221 { 1222 int i; 1223 u32 inta, inta_mask, gpio; 1224 1225 IPW_DEBUG_INFO("enter\n"); 1226 1227 if (priv->status & STATUS_RUNNING) 1228 return 0; 1229 1230 /* 1231 * Initialize the hw - drive adapter to DO state by setting 1232 * init_done bit. Wait for clk_ready bit and Download 1233 * fw & dino ucode 1234 */ 1235 if (ipw2100_download_firmware(priv)) { 1236 printk(KERN_ERR DRV_NAME 1237 ": %s: Failed to power on the adapter.\n", 1238 priv->net_dev->name); 1239 return -EIO; 1240 } 1241 1242 /* Clear the Tx, Rx and Msg queues and the r/w indexes 1243 * in the firmware RBD and TBD ring queue */ 1244 ipw2100_queues_initialize(priv); 1245 1246 ipw2100_hw_set_gpio(priv); 1247 1248 /* TODO -- Look at disabling interrupts here to make sure none 1249 * get fired during FW initialization */ 1250 1251 /* Release ARC - clear reset bit */ 1252 write_register(priv->net_dev, IPW_REG_RESET_REG, 0); 1253 1254 /* wait for f/w initialization complete */ 1255 IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n"); 1256 i = 5000; 1257 do { 1258 schedule_timeout_uninterruptible(msecs_to_jiffies(40)); 1259 /* Todo... wait for sync command ... */ 1260 1261 read_register(priv->net_dev, IPW_REG_INTA, &inta); 1262 1263 /* check "init done" bit */ 1264 if (inta & IPW2100_INTA_FW_INIT_DONE) { 1265 /* reset "init done" bit */ 1266 write_register(priv->net_dev, IPW_REG_INTA, 1267 IPW2100_INTA_FW_INIT_DONE); 1268 break; 1269 } 1270 1271 /* check error conditions : we check these after the firmware 1272 * check so that if there is an error, the interrupt handler 1273 * will see it and the adapter will be reset */ 1274 if (inta & 1275 (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) { 1276 /* clear error conditions */ 1277 write_register(priv->net_dev, IPW_REG_INTA, 1278 IPW2100_INTA_FATAL_ERROR | 1279 IPW2100_INTA_PARITY_ERROR); 1280 } 1281 } while (--i); 1282 1283 /* Clear out any pending INTAs since we aren't supposed to have 1284 * interrupts enabled at this point... */ 1285 read_register(priv->net_dev, IPW_REG_INTA, &inta); 1286 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask); 1287 inta &= IPW_INTERRUPT_MASK; 1288 /* Clear out any pending interrupts */ 1289 if (inta & inta_mask) 1290 write_register(priv->net_dev, IPW_REG_INTA, inta); 1291 1292 IPW_DEBUG_FW("f/w initialization complete: %s\n", 1293 i ? "SUCCESS" : "FAILED"); 1294 1295 if (!i) { 1296 printk(KERN_WARNING DRV_NAME 1297 ": %s: Firmware did not initialize.\n", 1298 priv->net_dev->name); 1299 return -EIO; 1300 } 1301 1302 /* allow firmware to write to GPIO1 & GPIO3 */ 1303 read_register(priv->net_dev, IPW_REG_GPIO, &gpio); 1304 1305 gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK); 1306 1307 write_register(priv->net_dev, IPW_REG_GPIO, gpio); 1308 1309 /* Ready to receive commands */ 1310 priv->status |= STATUS_RUNNING; 1311 1312 /* The adapter has been reset; we are not associated */ 1313 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED); 1314 1315 IPW_DEBUG_INFO("exit\n"); 1316 1317 return 0; 1318 } 1319 1320 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv) 1321 { 1322 if (!priv->fatal_error) 1323 return; 1324 1325 priv->fatal_errors[priv->fatal_index++] = priv->fatal_error; 1326 priv->fatal_index %= IPW2100_ERROR_QUEUE; 1327 priv->fatal_error = 0; 1328 } 1329 1330 /* NOTE: Our interrupt is disabled when this method is called */ 1331 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv) 1332 { 1333 u32 reg; 1334 int i; 1335 1336 IPW_DEBUG_INFO("Power cycling the hardware.\n"); 1337 1338 ipw2100_hw_set_gpio(priv); 1339 1340 /* Step 1. Stop Master Assert */ 1341 write_register(priv->net_dev, IPW_REG_RESET_REG, 1342 IPW_AUX_HOST_RESET_REG_STOP_MASTER); 1343 1344 /* Step 2. Wait for stop Master Assert 1345 * (not more than 50us, otherwise ret error */ 1346 i = 5; 1347 do { 1348 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY); 1349 read_register(priv->net_dev, IPW_REG_RESET_REG, ®); 1350 1351 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED) 1352 break; 1353 } while (--i); 1354 1355 priv->status &= ~STATUS_RESET_PENDING; 1356 1357 if (!i) { 1358 IPW_DEBUG_INFO 1359 ("exit - waited too long for master assert stop\n"); 1360 return -EIO; 1361 } 1362 1363 write_register(priv->net_dev, IPW_REG_RESET_REG, 1364 IPW_AUX_HOST_RESET_REG_SW_RESET); 1365 1366 /* Reset any fatal_error conditions */ 1367 ipw2100_reset_fatalerror(priv); 1368 1369 /* At this point, the adapter is now stopped and disabled */ 1370 priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING | 1371 STATUS_ASSOCIATED | STATUS_ENABLED); 1372 1373 return 0; 1374 } 1375 1376 /* 1377 * Send the CARD_DISABLE_PHY_OFF command to the card to disable it 1378 * 1379 * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent. 1380 * 1381 * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of 1382 * if STATUS_ASSN_LOST is sent. 1383 */ 1384 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv) 1385 { 1386 1387 #define HW_PHY_OFF_LOOP_DELAY (msecs_to_jiffies(50)) 1388 1389 struct host_command cmd = { 1390 .host_command = CARD_DISABLE_PHY_OFF, 1391 .host_command_sequence = 0, 1392 .host_command_length = 0, 1393 }; 1394 int err, i; 1395 u32 val1, val2; 1396 1397 IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n"); 1398 1399 /* Turn off the radio */ 1400 err = ipw2100_hw_send_command(priv, &cmd); 1401 if (err) 1402 return err; 1403 1404 for (i = 0; i < 2500; i++) { 1405 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1); 1406 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2); 1407 1408 if ((val1 & IPW2100_CONTROL_PHY_OFF) && 1409 (val2 & IPW2100_COMMAND_PHY_OFF)) 1410 return 0; 1411 1412 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY); 1413 } 1414 1415 return -EIO; 1416 } 1417 1418 static int ipw2100_enable_adapter(struct ipw2100_priv *priv) 1419 { 1420 struct host_command cmd = { 1421 .host_command = HOST_COMPLETE, 1422 .host_command_sequence = 0, 1423 .host_command_length = 0 1424 }; 1425 int err = 0; 1426 1427 IPW_DEBUG_HC("HOST_COMPLETE\n"); 1428 1429 if (priv->status & STATUS_ENABLED) 1430 return 0; 1431 1432 mutex_lock(&priv->adapter_mutex); 1433 1434 if (rf_kill_active(priv)) { 1435 IPW_DEBUG_HC("Command aborted due to RF kill active.\n"); 1436 goto fail_up; 1437 } 1438 1439 err = ipw2100_hw_send_command(priv, &cmd); 1440 if (err) { 1441 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n"); 1442 goto fail_up; 1443 } 1444 1445 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED); 1446 if (err) { 1447 IPW_DEBUG_INFO("%s: card not responding to init command.\n", 1448 priv->net_dev->name); 1449 goto fail_up; 1450 } 1451 1452 if (priv->stop_hang_check) { 1453 priv->stop_hang_check = 0; 1454 schedule_delayed_work(&priv->hang_check, HZ / 2); 1455 } 1456 1457 fail_up: 1458 mutex_unlock(&priv->adapter_mutex); 1459 return err; 1460 } 1461 1462 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv) 1463 { 1464 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100)) 1465 1466 struct host_command cmd = { 1467 .host_command = HOST_PRE_POWER_DOWN, 1468 .host_command_sequence = 0, 1469 .host_command_length = 0, 1470 }; 1471 int err, i; 1472 u32 reg; 1473 1474 if (!(priv->status & STATUS_RUNNING)) 1475 return 0; 1476 1477 priv->status |= STATUS_STOPPING; 1478 1479 /* We can only shut down the card if the firmware is operational. So, 1480 * if we haven't reset since a fatal_error, then we can not send the 1481 * shutdown commands. */ 1482 if (!priv->fatal_error) { 1483 /* First, make sure the adapter is enabled so that the PHY_OFF 1484 * command can shut it down */ 1485 ipw2100_enable_adapter(priv); 1486 1487 err = ipw2100_hw_phy_off(priv); 1488 if (err) 1489 printk(KERN_WARNING DRV_NAME 1490 ": Error disabling radio %d\n", err); 1491 1492 /* 1493 * If in D0-standby mode going directly to D3 may cause a 1494 * PCI bus violation. Therefore we must change out of the D0 1495 * state. 1496 * 1497 * Sending the PREPARE_FOR_POWER_DOWN will restrict the 1498 * hardware from going into standby mode and will transition 1499 * out of D0-standby if it is already in that state. 1500 * 1501 * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the 1502 * driver upon completion. Once received, the driver can 1503 * proceed to the D3 state. 1504 * 1505 * Prepare for power down command to fw. This command would 1506 * take HW out of D0-standby and prepare it for D3 state. 1507 * 1508 * Currently FW does not support event notification for this 1509 * event. Therefore, skip waiting for it. Just wait a fixed 1510 * 100ms 1511 */ 1512 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n"); 1513 1514 err = ipw2100_hw_send_command(priv, &cmd); 1515 if (err) 1516 printk(KERN_WARNING DRV_NAME ": " 1517 "%s: Power down command failed: Error %d\n", 1518 priv->net_dev->name, err); 1519 else 1520 schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY); 1521 } 1522 1523 priv->status &= ~STATUS_ENABLED; 1524 1525 /* 1526 * Set GPIO 3 writable by FW; GPIO 1 writable 1527 * by driver and enable clock 1528 */ 1529 ipw2100_hw_set_gpio(priv); 1530 1531 /* 1532 * Power down adapter. Sequence: 1533 * 1. Stop master assert (RESET_REG[9]=1) 1534 * 2. Wait for stop master (RESET_REG[8]==1) 1535 * 3. S/w reset assert (RESET_REG[7] = 1) 1536 */ 1537 1538 /* Stop master assert */ 1539 write_register(priv->net_dev, IPW_REG_RESET_REG, 1540 IPW_AUX_HOST_RESET_REG_STOP_MASTER); 1541 1542 /* wait stop master not more than 50 usec. 1543 * Otherwise return error. */ 1544 for (i = 5; i > 0; i--) { 1545 udelay(10); 1546 1547 /* Check master stop bit */ 1548 read_register(priv->net_dev, IPW_REG_RESET_REG, ®); 1549 1550 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED) 1551 break; 1552 } 1553 1554 if (i == 0) 1555 printk(KERN_WARNING DRV_NAME 1556 ": %s: Could now power down adapter.\n", 1557 priv->net_dev->name); 1558 1559 /* assert s/w reset */ 1560 write_register(priv->net_dev, IPW_REG_RESET_REG, 1561 IPW_AUX_HOST_RESET_REG_SW_RESET); 1562 1563 priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING); 1564 1565 return 0; 1566 } 1567 1568 static int ipw2100_disable_adapter(struct ipw2100_priv *priv) 1569 { 1570 struct host_command cmd = { 1571 .host_command = CARD_DISABLE, 1572 .host_command_sequence = 0, 1573 .host_command_length = 0 1574 }; 1575 int err = 0; 1576 1577 IPW_DEBUG_HC("CARD_DISABLE\n"); 1578 1579 if (!(priv->status & STATUS_ENABLED)) 1580 return 0; 1581 1582 /* Make sure we clear the associated state */ 1583 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING); 1584 1585 if (!priv->stop_hang_check) { 1586 priv->stop_hang_check = 1; 1587 cancel_delayed_work(&priv->hang_check); 1588 } 1589 1590 mutex_lock(&priv->adapter_mutex); 1591 1592 err = ipw2100_hw_send_command(priv, &cmd); 1593 if (err) { 1594 printk(KERN_WARNING DRV_NAME 1595 ": exit - failed to send CARD_DISABLE command\n"); 1596 goto fail_up; 1597 } 1598 1599 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED); 1600 if (err) { 1601 printk(KERN_WARNING DRV_NAME 1602 ": exit - card failed to change to DISABLED\n"); 1603 goto fail_up; 1604 } 1605 1606 IPW_DEBUG_INFO("TODO: implement scan state machine\n"); 1607 1608 fail_up: 1609 mutex_unlock(&priv->adapter_mutex); 1610 return err; 1611 } 1612 1613 static int ipw2100_set_scan_options(struct ipw2100_priv *priv) 1614 { 1615 struct host_command cmd = { 1616 .host_command = SET_SCAN_OPTIONS, 1617 .host_command_sequence = 0, 1618 .host_command_length = 8 1619 }; 1620 int err; 1621 1622 IPW_DEBUG_INFO("enter\n"); 1623 1624 IPW_DEBUG_SCAN("setting scan options\n"); 1625 1626 cmd.host_command_parameters[0] = 0; 1627 1628 if (!(priv->config & CFG_ASSOCIATE)) 1629 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE; 1630 if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled) 1631 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL; 1632 if (priv->config & CFG_PASSIVE_SCAN) 1633 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE; 1634 1635 cmd.host_command_parameters[1] = priv->channel_mask; 1636 1637 err = ipw2100_hw_send_command(priv, &cmd); 1638 1639 IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n", 1640 cmd.host_command_parameters[0]); 1641 1642 return err; 1643 } 1644 1645 static int ipw2100_start_scan(struct ipw2100_priv *priv) 1646 { 1647 struct host_command cmd = { 1648 .host_command = BROADCAST_SCAN, 1649 .host_command_sequence = 0, 1650 .host_command_length = 4 1651 }; 1652 int err; 1653 1654 IPW_DEBUG_HC("START_SCAN\n"); 1655 1656 cmd.host_command_parameters[0] = 0; 1657 1658 /* No scanning if in monitor mode */ 1659 if (priv->ieee->iw_mode == IW_MODE_MONITOR) 1660 return 1; 1661 1662 if (priv->status & STATUS_SCANNING) { 1663 IPW_DEBUG_SCAN("Scan requested while already in scan...\n"); 1664 return 0; 1665 } 1666 1667 IPW_DEBUG_INFO("enter\n"); 1668 1669 /* Not clearing here; doing so makes iwlist always return nothing... 1670 * 1671 * We should modify the table logic to use aging tables vs. clearing 1672 * the table on each scan start. 1673 */ 1674 IPW_DEBUG_SCAN("starting scan\n"); 1675 1676 priv->status |= STATUS_SCANNING; 1677 err = ipw2100_hw_send_command(priv, &cmd); 1678 if (err) 1679 priv->status &= ~STATUS_SCANNING; 1680 1681 IPW_DEBUG_INFO("exit\n"); 1682 1683 return err; 1684 } 1685 1686 static const struct libipw_geo ipw_geos[] = { 1687 { /* Restricted */ 1688 "---", 1689 .bg_channels = 14, 1690 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 1691 {2427, 4}, {2432, 5}, {2437, 6}, 1692 {2442, 7}, {2447, 8}, {2452, 9}, 1693 {2457, 10}, {2462, 11}, {2467, 12}, 1694 {2472, 13}, {2484, 14}}, 1695 }, 1696 }; 1697 1698 static int ipw2100_up(struct ipw2100_priv *priv, int deferred) 1699 { 1700 unsigned long flags; 1701 int err = 0; 1702 u32 lock; 1703 u32 ord_len = sizeof(lock); 1704 1705 /* Age scan list entries found before suspend */ 1706 if (priv->suspend_time) { 1707 libipw_networks_age(priv->ieee, priv->suspend_time); 1708 priv->suspend_time = 0; 1709 } 1710 1711 /* Quiet if manually disabled. */ 1712 if (priv->status & STATUS_RF_KILL_SW) { 1713 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable " 1714 "switch\n", priv->net_dev->name); 1715 return 0; 1716 } 1717 1718 /* the ipw2100 hardware really doesn't want power management delays 1719 * longer than 175usec 1720 */ 1721 cpu_latency_qos_update_request(&ipw2100_pm_qos_req, 175); 1722 1723 /* If the interrupt is enabled, turn it off... */ 1724 spin_lock_irqsave(&priv->low_lock, flags); 1725 ipw2100_disable_interrupts(priv); 1726 1727 /* Reset any fatal_error conditions */ 1728 ipw2100_reset_fatalerror(priv); 1729 spin_unlock_irqrestore(&priv->low_lock, flags); 1730 1731 if (priv->status & STATUS_POWERED || 1732 (priv->status & STATUS_RESET_PENDING)) { 1733 /* Power cycle the card ... */ 1734 err = ipw2100_power_cycle_adapter(priv); 1735 if (err) { 1736 printk(KERN_WARNING DRV_NAME 1737 ": %s: Could not cycle adapter.\n", 1738 priv->net_dev->name); 1739 goto exit; 1740 } 1741 } else 1742 priv->status |= STATUS_POWERED; 1743 1744 /* Load the firmware, start the clocks, etc. */ 1745 err = ipw2100_start_adapter(priv); 1746 if (err) { 1747 printk(KERN_ERR DRV_NAME 1748 ": %s: Failed to start the firmware.\n", 1749 priv->net_dev->name); 1750 goto exit; 1751 } 1752 1753 ipw2100_initialize_ordinals(priv); 1754 1755 /* Determine capabilities of this particular HW configuration */ 1756 err = ipw2100_get_hw_features(priv); 1757 if (err) { 1758 printk(KERN_ERR DRV_NAME 1759 ": %s: Failed to determine HW features.\n", 1760 priv->net_dev->name); 1761 goto exit; 1762 } 1763 1764 /* Initialize the geo */ 1765 libipw_set_geo(priv->ieee, &ipw_geos[0]); 1766 priv->ieee->freq_band = LIBIPW_24GHZ_BAND; 1767 1768 lock = LOCK_NONE; 1769 err = ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len); 1770 if (err) { 1771 printk(KERN_ERR DRV_NAME 1772 ": %s: Failed to clear ordinal lock.\n", 1773 priv->net_dev->name); 1774 goto exit; 1775 } 1776 1777 priv->status &= ~STATUS_SCANNING; 1778 1779 if (rf_kill_active(priv)) { 1780 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n", 1781 priv->net_dev->name); 1782 1783 if (priv->stop_rf_kill) { 1784 priv->stop_rf_kill = 0; 1785 schedule_delayed_work(&priv->rf_kill, 1786 round_jiffies_relative(HZ)); 1787 } 1788 1789 deferred = 1; 1790 } 1791 1792 /* Turn on the interrupt so that commands can be processed */ 1793 ipw2100_enable_interrupts(priv); 1794 1795 /* Send all of the commands that must be sent prior to 1796 * HOST_COMPLETE */ 1797 err = ipw2100_adapter_setup(priv); 1798 if (err) { 1799 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n", 1800 priv->net_dev->name); 1801 goto exit; 1802 } 1803 1804 if (!deferred) { 1805 /* Enable the adapter - sends HOST_COMPLETE */ 1806 err = ipw2100_enable_adapter(priv); 1807 if (err) { 1808 printk(KERN_ERR DRV_NAME ": " 1809 "%s: failed in call to enable adapter.\n", 1810 priv->net_dev->name); 1811 ipw2100_hw_stop_adapter(priv); 1812 goto exit; 1813 } 1814 1815 /* Start a scan . . . */ 1816 ipw2100_set_scan_options(priv); 1817 ipw2100_start_scan(priv); 1818 } 1819 1820 exit: 1821 return err; 1822 } 1823 1824 static void ipw2100_down(struct ipw2100_priv *priv) 1825 { 1826 unsigned long flags; 1827 union iwreq_data wrqu = { 1828 .ap_addr = { 1829 .sa_family = ARPHRD_ETHER} 1830 }; 1831 int associated = priv->status & STATUS_ASSOCIATED; 1832 1833 /* Kill the RF switch timer */ 1834 if (!priv->stop_rf_kill) { 1835 priv->stop_rf_kill = 1; 1836 cancel_delayed_work(&priv->rf_kill); 1837 } 1838 1839 /* Kill the firmware hang check timer */ 1840 if (!priv->stop_hang_check) { 1841 priv->stop_hang_check = 1; 1842 cancel_delayed_work(&priv->hang_check); 1843 } 1844 1845 /* Kill any pending resets */ 1846 if (priv->status & STATUS_RESET_PENDING) 1847 cancel_delayed_work(&priv->reset_work); 1848 1849 /* Make sure the interrupt is on so that FW commands will be 1850 * processed correctly */ 1851 spin_lock_irqsave(&priv->low_lock, flags); 1852 ipw2100_enable_interrupts(priv); 1853 spin_unlock_irqrestore(&priv->low_lock, flags); 1854 1855 if (ipw2100_hw_stop_adapter(priv)) 1856 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n", 1857 priv->net_dev->name); 1858 1859 /* Do not disable the interrupt until _after_ we disable 1860 * the adaptor. Otherwise the CARD_DISABLE command will never 1861 * be ack'd by the firmware */ 1862 spin_lock_irqsave(&priv->low_lock, flags); 1863 ipw2100_disable_interrupts(priv); 1864 spin_unlock_irqrestore(&priv->low_lock, flags); 1865 1866 cpu_latency_qos_update_request(&ipw2100_pm_qos_req, 1867 PM_QOS_DEFAULT_VALUE); 1868 1869 /* We have to signal any supplicant if we are disassociating */ 1870 if (associated) 1871 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL); 1872 1873 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING); 1874 netif_carrier_off(priv->net_dev); 1875 netif_stop_queue(priv->net_dev); 1876 } 1877 1878 static int ipw2100_wdev_init(struct net_device *dev) 1879 { 1880 struct ipw2100_priv *priv = libipw_priv(dev); 1881 const struct libipw_geo *geo = libipw_get_geo(priv->ieee); 1882 struct wireless_dev *wdev = &priv->ieee->wdev; 1883 int i; 1884 1885 memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN); 1886 1887 /* fill-out priv->ieee->bg_band */ 1888 if (geo->bg_channels) { 1889 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band; 1890 1891 bg_band->band = NL80211_BAND_2GHZ; 1892 bg_band->n_channels = geo->bg_channels; 1893 bg_band->channels = kcalloc(geo->bg_channels, 1894 sizeof(struct ieee80211_channel), 1895 GFP_KERNEL); 1896 if (!bg_band->channels) { 1897 ipw2100_down(priv); 1898 return -ENOMEM; 1899 } 1900 /* translate geo->bg to bg_band.channels */ 1901 for (i = 0; i < geo->bg_channels; i++) { 1902 bg_band->channels[i].band = NL80211_BAND_2GHZ; 1903 bg_band->channels[i].center_freq = geo->bg[i].freq; 1904 bg_band->channels[i].hw_value = geo->bg[i].channel; 1905 bg_band->channels[i].max_power = geo->bg[i].max_power; 1906 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY) 1907 bg_band->channels[i].flags |= 1908 IEEE80211_CHAN_NO_IR; 1909 if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS) 1910 bg_band->channels[i].flags |= 1911 IEEE80211_CHAN_NO_IR; 1912 if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT) 1913 bg_band->channels[i].flags |= 1914 IEEE80211_CHAN_RADAR; 1915 /* No equivalent for LIBIPW_CH_80211H_RULES, 1916 LIBIPW_CH_UNIFORM_SPREADING, or 1917 LIBIPW_CH_B_ONLY... */ 1918 } 1919 /* point at bitrate info */ 1920 bg_band->bitrates = ipw2100_bg_rates; 1921 bg_band->n_bitrates = RATE_COUNT; 1922 1923 wdev->wiphy->bands[NL80211_BAND_2GHZ] = bg_band; 1924 } 1925 1926 wdev->wiphy->cipher_suites = ipw_cipher_suites; 1927 wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites); 1928 1929 set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev); 1930 if (wiphy_register(wdev->wiphy)) 1931 return -EIO; 1932 return 0; 1933 } 1934 1935 static void ipw2100_reset_adapter(struct work_struct *work) 1936 { 1937 struct ipw2100_priv *priv = 1938 container_of(work, struct ipw2100_priv, reset_work.work); 1939 unsigned long flags; 1940 union iwreq_data wrqu = { 1941 .ap_addr = { 1942 .sa_family = ARPHRD_ETHER} 1943 }; 1944 int associated = priv->status & STATUS_ASSOCIATED; 1945 1946 spin_lock_irqsave(&priv->low_lock, flags); 1947 IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name); 1948 priv->resets++; 1949 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING); 1950 priv->status |= STATUS_SECURITY_UPDATED; 1951 1952 /* Force a power cycle even if interface hasn't been opened 1953 * yet */ 1954 cancel_delayed_work(&priv->reset_work); 1955 priv->status |= STATUS_RESET_PENDING; 1956 spin_unlock_irqrestore(&priv->low_lock, flags); 1957 1958 mutex_lock(&priv->action_mutex); 1959 /* stop timed checks so that they don't interfere with reset */ 1960 priv->stop_hang_check = 1; 1961 cancel_delayed_work(&priv->hang_check); 1962 1963 /* We have to signal any supplicant if we are disassociating */ 1964 if (associated) 1965 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL); 1966 1967 ipw2100_up(priv, 0); 1968 mutex_unlock(&priv->action_mutex); 1969 1970 } 1971 1972 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status) 1973 { 1974 1975 #define MAC_ASSOCIATION_READ_DELAY (HZ) 1976 int ret; 1977 unsigned int len, essid_len; 1978 char essid[IW_ESSID_MAX_SIZE]; 1979 u32 txrate; 1980 u32 chan; 1981 char *txratename; 1982 u8 bssid[ETH_ALEN]; 1983 1984 /* 1985 * TBD: BSSID is usually 00:00:00:00:00:00 here and not 1986 * an actual MAC of the AP. Seems like FW sets this 1987 * address too late. Read it later and expose through 1988 * /proc or schedule a later task to query and update 1989 */ 1990 1991 essid_len = IW_ESSID_MAX_SIZE; 1992 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, 1993 essid, &essid_len); 1994 if (ret) { 1995 IPW_DEBUG_INFO("failed querying ordinals at line %d\n", 1996 __LINE__); 1997 return; 1998 } 1999 2000 len = sizeof(u32); 2001 ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len); 2002 if (ret) { 2003 IPW_DEBUG_INFO("failed querying ordinals at line %d\n", 2004 __LINE__); 2005 return; 2006 } 2007 2008 len = sizeof(u32); 2009 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len); 2010 if (ret) { 2011 IPW_DEBUG_INFO("failed querying ordinals at line %d\n", 2012 __LINE__); 2013 return; 2014 } 2015 len = ETH_ALEN; 2016 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, bssid, 2017 &len); 2018 if (ret) { 2019 IPW_DEBUG_INFO("failed querying ordinals at line %d\n", 2020 __LINE__); 2021 return; 2022 } 2023 memcpy(priv->ieee->bssid, bssid, ETH_ALEN); 2024 2025 switch (txrate) { 2026 case TX_RATE_1_MBIT: 2027 txratename = "1Mbps"; 2028 break; 2029 case TX_RATE_2_MBIT: 2030 txratename = "2Mbsp"; 2031 break; 2032 case TX_RATE_5_5_MBIT: 2033 txratename = "5.5Mbps"; 2034 break; 2035 case TX_RATE_11_MBIT: 2036 txratename = "11Mbps"; 2037 break; 2038 default: 2039 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate); 2040 txratename = "unknown rate"; 2041 break; 2042 } 2043 2044 IPW_DEBUG_INFO("%s: Associated with '%*pE' at %s, channel %d (BSSID=%pM)\n", 2045 priv->net_dev->name, essid_len, essid, 2046 txratename, chan, bssid); 2047 2048 /* now we copy read ssid into dev */ 2049 if (!(priv->config & CFG_STATIC_ESSID)) { 2050 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE); 2051 memcpy(priv->essid, essid, priv->essid_len); 2052 } 2053 priv->channel = chan; 2054 memcpy(priv->bssid, bssid, ETH_ALEN); 2055 2056 priv->status |= STATUS_ASSOCIATING; 2057 priv->connect_start = ktime_get_boottime_seconds(); 2058 2059 schedule_delayed_work(&priv->wx_event_work, HZ / 10); 2060 } 2061 2062 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid, 2063 int length, int batch_mode) 2064 { 2065 int ssid_len = min(length, IW_ESSID_MAX_SIZE); 2066 struct host_command cmd = { 2067 .host_command = SSID, 2068 .host_command_sequence = 0, 2069 .host_command_length = ssid_len 2070 }; 2071 int err; 2072 2073 IPW_DEBUG_HC("SSID: '%*pE'\n", ssid_len, essid); 2074 2075 if (ssid_len) 2076 memcpy(cmd.host_command_parameters, essid, ssid_len); 2077 2078 if (!batch_mode) { 2079 err = ipw2100_disable_adapter(priv); 2080 if (err) 2081 return err; 2082 } 2083 2084 /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to 2085 * disable auto association -- so we cheat by setting a bogus SSID */ 2086 if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) { 2087 int i; 2088 u8 *bogus = (u8 *) cmd.host_command_parameters; 2089 for (i = 0; i < IW_ESSID_MAX_SIZE; i++) 2090 bogus[i] = 0x18 + i; 2091 cmd.host_command_length = IW_ESSID_MAX_SIZE; 2092 } 2093 2094 /* NOTE: We always send the SSID command even if the provided ESSID is 2095 * the same as what we currently think is set. */ 2096 2097 err = ipw2100_hw_send_command(priv, &cmd); 2098 if (!err) { 2099 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len); 2100 memcpy(priv->essid, essid, ssid_len); 2101 priv->essid_len = ssid_len; 2102 } 2103 2104 if (!batch_mode) { 2105 if (ipw2100_enable_adapter(priv)) 2106 err = -EIO; 2107 } 2108 2109 return err; 2110 } 2111 2112 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status) 2113 { 2114 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC, 2115 "disassociated: '%*pE' %pM\n", priv->essid_len, priv->essid, 2116 priv->bssid); 2117 2118 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING); 2119 2120 if (priv->status & STATUS_STOPPING) { 2121 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n"); 2122 return; 2123 } 2124 2125 eth_zero_addr(priv->bssid); 2126 eth_zero_addr(priv->ieee->bssid); 2127 2128 netif_carrier_off(priv->net_dev); 2129 netif_stop_queue(priv->net_dev); 2130 2131 if (!(priv->status & STATUS_RUNNING)) 2132 return; 2133 2134 if (priv->status & STATUS_SECURITY_UPDATED) 2135 schedule_delayed_work(&priv->security_work, 0); 2136 2137 schedule_delayed_work(&priv->wx_event_work, 0); 2138 } 2139 2140 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status) 2141 { 2142 IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n", 2143 priv->net_dev->name); 2144 2145 /* RF_KILL is now enabled (else we wouldn't be here) */ 2146 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true); 2147 priv->status |= STATUS_RF_KILL_HW; 2148 2149 /* Make sure the RF Kill check timer is running */ 2150 priv->stop_rf_kill = 0; 2151 mod_delayed_work(system_wq, &priv->rf_kill, round_jiffies_relative(HZ)); 2152 } 2153 2154 static void ipw2100_scan_event(struct work_struct *work) 2155 { 2156 struct ipw2100_priv *priv = container_of(work, struct ipw2100_priv, 2157 scan_event.work); 2158 union iwreq_data wrqu; 2159 2160 wrqu.data.length = 0; 2161 wrqu.data.flags = 0; 2162 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL); 2163 } 2164 2165 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status) 2166 { 2167 IPW_DEBUG_SCAN("scan complete\n"); 2168 /* Age the scan results... */ 2169 priv->ieee->scans++; 2170 priv->status &= ~STATUS_SCANNING; 2171 2172 /* Only userspace-requested scan completion events go out immediately */ 2173 if (!priv->user_requested_scan) { 2174 schedule_delayed_work(&priv->scan_event, 2175 round_jiffies_relative(msecs_to_jiffies(4000))); 2176 } else { 2177 priv->user_requested_scan = 0; 2178 mod_delayed_work(system_wq, &priv->scan_event, 0); 2179 } 2180 } 2181 2182 #ifdef CONFIG_IPW2100_DEBUG 2183 #define IPW2100_HANDLER(v, f) { v, f, # v } 2184 struct ipw2100_status_indicator { 2185 int status; 2186 void (*cb) (struct ipw2100_priv * priv, u32 status); 2187 char *name; 2188 }; 2189 #else 2190 #define IPW2100_HANDLER(v, f) { v, f } 2191 struct ipw2100_status_indicator { 2192 int status; 2193 void (*cb) (struct ipw2100_priv * priv, u32 status); 2194 }; 2195 #endif /* CONFIG_IPW2100_DEBUG */ 2196 2197 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status) 2198 { 2199 IPW_DEBUG_SCAN("Scanning...\n"); 2200 priv->status |= STATUS_SCANNING; 2201 } 2202 2203 static const struct ipw2100_status_indicator status_handlers[] = { 2204 IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL), 2205 IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL), 2206 IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated), 2207 IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost), 2208 IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL), 2209 IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete), 2210 IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL), 2211 IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL), 2212 IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill), 2213 IPW2100_HANDLER(IPW_STATE_DISABLED, NULL), 2214 IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL), 2215 IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning), 2216 IPW2100_HANDLER(-1, NULL) 2217 }; 2218 2219 static void isr_status_change(struct ipw2100_priv *priv, int status) 2220 { 2221 int i; 2222 2223 if (status == IPW_STATE_SCANNING && 2224 priv->status & STATUS_ASSOCIATED && 2225 !(priv->status & STATUS_SCANNING)) { 2226 IPW_DEBUG_INFO("Scan detected while associated, with " 2227 "no scan request. Restarting firmware.\n"); 2228 2229 /* Wake up any sleeping jobs */ 2230 schedule_reset(priv); 2231 } 2232 2233 for (i = 0; status_handlers[i].status != -1; i++) { 2234 if (status == status_handlers[i].status) { 2235 IPW_DEBUG_NOTIF("Status change: %s\n", 2236 status_handlers[i].name); 2237 if (status_handlers[i].cb) 2238 status_handlers[i].cb(priv, status); 2239 priv->wstats.status = status; 2240 return; 2241 } 2242 } 2243 2244 IPW_DEBUG_NOTIF("unknown status received: %04x\n", status); 2245 } 2246 2247 static void isr_rx_complete_command(struct ipw2100_priv *priv, 2248 struct ipw2100_cmd_header *cmd) 2249 { 2250 #ifdef CONFIG_IPW2100_DEBUG 2251 if (cmd->host_command_reg < ARRAY_SIZE(command_types)) { 2252 IPW_DEBUG_HC("Command completed '%s (%d)'\n", 2253 command_types[cmd->host_command_reg], 2254 cmd->host_command_reg); 2255 } 2256 #endif 2257 if (cmd->host_command_reg == HOST_COMPLETE) 2258 priv->status |= STATUS_ENABLED; 2259 2260 if (cmd->host_command_reg == CARD_DISABLE) 2261 priv->status &= ~STATUS_ENABLED; 2262 2263 priv->status &= ~STATUS_CMD_ACTIVE; 2264 2265 wake_up_interruptible(&priv->wait_command_queue); 2266 } 2267 2268 #ifdef CONFIG_IPW2100_DEBUG 2269 static const char *frame_types[] = { 2270 "COMMAND_STATUS_VAL", 2271 "STATUS_CHANGE_VAL", 2272 "P80211_DATA_VAL", 2273 "P8023_DATA_VAL", 2274 "HOST_NOTIFICATION_VAL" 2275 }; 2276 #endif 2277 2278 static int ipw2100_alloc_skb(struct ipw2100_priv *priv, 2279 struct ipw2100_rx_packet *packet) 2280 { 2281 packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx)); 2282 if (!packet->skb) 2283 return -ENOMEM; 2284 2285 packet->rxp = (struct ipw2100_rx *)packet->skb->data; 2286 packet->dma_addr = dma_map_single(&priv->pci_dev->dev, 2287 packet->skb->data, 2288 sizeof(struct ipw2100_rx), 2289 DMA_FROM_DEVICE); 2290 if (dma_mapping_error(&priv->pci_dev->dev, packet->dma_addr)) { 2291 dev_kfree_skb(packet->skb); 2292 return -ENOMEM; 2293 } 2294 2295 return 0; 2296 } 2297 2298 #define SEARCH_ERROR 0xffffffff 2299 #define SEARCH_FAIL 0xfffffffe 2300 #define SEARCH_SUCCESS 0xfffffff0 2301 #define SEARCH_DISCARD 0 2302 #define SEARCH_SNAPSHOT 1 2303 2304 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff)) 2305 static void ipw2100_snapshot_free(struct ipw2100_priv *priv) 2306 { 2307 int i; 2308 if (!priv->snapshot[0]) 2309 return; 2310 for (i = 0; i < 0x30; i++) 2311 kfree(priv->snapshot[i]); 2312 priv->snapshot[0] = NULL; 2313 } 2314 2315 #ifdef IPW2100_DEBUG_C3 2316 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv) 2317 { 2318 int i; 2319 if (priv->snapshot[0]) 2320 return 1; 2321 for (i = 0; i < 0x30; i++) { 2322 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC); 2323 if (!priv->snapshot[i]) { 2324 IPW_DEBUG_INFO("%s: Error allocating snapshot " 2325 "buffer %d\n", priv->net_dev->name, i); 2326 while (i > 0) 2327 kfree(priv->snapshot[--i]); 2328 priv->snapshot[0] = NULL; 2329 return 0; 2330 } 2331 } 2332 2333 return 1; 2334 } 2335 2336 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf, 2337 size_t len, int mode) 2338 { 2339 u32 i, j; 2340 u32 tmp; 2341 u8 *s, *d; 2342 u32 ret; 2343 2344 s = in_buf; 2345 if (mode == SEARCH_SNAPSHOT) { 2346 if (!ipw2100_snapshot_alloc(priv)) 2347 mode = SEARCH_DISCARD; 2348 } 2349 2350 for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) { 2351 read_nic_dword(priv->net_dev, i, &tmp); 2352 if (mode == SEARCH_SNAPSHOT) 2353 *(u32 *) SNAPSHOT_ADDR(i) = tmp; 2354 if (ret == SEARCH_FAIL) { 2355 d = (u8 *) & tmp; 2356 for (j = 0; j < 4; j++) { 2357 if (*s != *d) { 2358 s = in_buf; 2359 continue; 2360 } 2361 2362 s++; 2363 d++; 2364 2365 if ((s - in_buf) == len) 2366 ret = (i + j) - len + 1; 2367 } 2368 } else if (mode == SEARCH_DISCARD) 2369 return ret; 2370 } 2371 2372 return ret; 2373 } 2374 #endif 2375 2376 /* 2377 * 2378 * 0) Disconnect the SKB from the firmware (just unmap) 2379 * 1) Pack the ETH header into the SKB 2380 * 2) Pass the SKB to the network stack 2381 * 2382 * When packet is provided by the firmware, it contains the following: 2383 * 2384 * . libipw_hdr 2385 * . libipw_snap_hdr 2386 * 2387 * The size of the constructed ethernet 2388 * 2389 */ 2390 #ifdef IPW2100_RX_DEBUG 2391 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH]; 2392 #endif 2393 2394 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i) 2395 { 2396 #ifdef IPW2100_DEBUG_C3 2397 struct ipw2100_status *status = &priv->status_queue.drv[i]; 2398 u32 match, reg; 2399 int j; 2400 #endif 2401 2402 IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n", 2403 i * sizeof(struct ipw2100_status)); 2404 2405 #ifdef IPW2100_DEBUG_C3 2406 /* Halt the firmware so we can get a good image */ 2407 write_register(priv->net_dev, IPW_REG_RESET_REG, 2408 IPW_AUX_HOST_RESET_REG_STOP_MASTER); 2409 j = 5; 2410 do { 2411 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY); 2412 read_register(priv->net_dev, IPW_REG_RESET_REG, ®); 2413 2414 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED) 2415 break; 2416 } while (j--); 2417 2418 match = ipw2100_match_buf(priv, (u8 *) status, 2419 sizeof(struct ipw2100_status), 2420 SEARCH_SNAPSHOT); 2421 if (match < SEARCH_SUCCESS) 2422 IPW_DEBUG_INFO("%s: DMA status match in Firmware at " 2423 "offset 0x%06X, length %d:\n", 2424 priv->net_dev->name, match, 2425 sizeof(struct ipw2100_status)); 2426 else 2427 IPW_DEBUG_INFO("%s: No DMA status match in " 2428 "Firmware.\n", priv->net_dev->name); 2429 2430 printk_buf((u8 *) priv->status_queue.drv, 2431 sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH); 2432 #endif 2433 2434 priv->fatal_error = IPW2100_ERR_C3_CORRUPTION; 2435 priv->net_dev->stats.rx_errors++; 2436 schedule_reset(priv); 2437 } 2438 2439 static void isr_rx(struct ipw2100_priv *priv, int i, 2440 struct libipw_rx_stats *stats) 2441 { 2442 struct net_device *dev = priv->net_dev; 2443 struct ipw2100_status *status = &priv->status_queue.drv[i]; 2444 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i]; 2445 2446 IPW_DEBUG_RX("Handler...\n"); 2447 2448 if (unlikely(status->frame_size > skb_tailroom(packet->skb))) { 2449 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!" 2450 " Dropping.\n", 2451 dev->name, 2452 status->frame_size, skb_tailroom(packet->skb)); 2453 dev->stats.rx_errors++; 2454 return; 2455 } 2456 2457 if (unlikely(!netif_running(dev))) { 2458 dev->stats.rx_errors++; 2459 priv->wstats.discard.misc++; 2460 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n"); 2461 return; 2462 } 2463 2464 if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR && 2465 !(priv->status & STATUS_ASSOCIATED))) { 2466 IPW_DEBUG_DROP("Dropping packet while not associated.\n"); 2467 priv->wstats.discard.misc++; 2468 return; 2469 } 2470 2471 dma_unmap_single(&priv->pci_dev->dev, packet->dma_addr, 2472 sizeof(struct ipw2100_rx), DMA_FROM_DEVICE); 2473 2474 skb_put(packet->skb, status->frame_size); 2475 2476 #ifdef IPW2100_RX_DEBUG 2477 /* Make a copy of the frame so we can dump it to the logs if 2478 * libipw_rx fails */ 2479 skb_copy_from_linear_data(packet->skb, packet_data, 2480 min_t(u32, status->frame_size, 2481 IPW_RX_NIC_BUFFER_LENGTH)); 2482 #endif 2483 2484 if (!libipw_rx(priv->ieee, packet->skb, stats)) { 2485 #ifdef IPW2100_RX_DEBUG 2486 IPW_DEBUG_DROP("%s: Non consumed packet:\n", 2487 dev->name); 2488 printk_buf(IPW_DL_DROP, packet_data, status->frame_size); 2489 #endif 2490 dev->stats.rx_errors++; 2491 2492 /* libipw_rx failed, so it didn't free the SKB */ 2493 dev_kfree_skb_any(packet->skb); 2494 packet->skb = NULL; 2495 } 2496 2497 /* We need to allocate a new SKB and attach it to the RDB. */ 2498 if (unlikely(ipw2100_alloc_skb(priv, packet))) { 2499 printk(KERN_WARNING DRV_NAME ": " 2500 "%s: Unable to allocate SKB onto RBD ring - disabling " 2501 "adapter.\n", dev->name); 2502 /* TODO: schedule adapter shutdown */ 2503 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n"); 2504 } 2505 2506 /* Update the RDB entry */ 2507 priv->rx_queue.drv[i].host_addr = packet->dma_addr; 2508 } 2509 2510 #ifdef CONFIG_IPW2100_MONITOR 2511 2512 static void isr_rx_monitor(struct ipw2100_priv *priv, int i, 2513 struct libipw_rx_stats *stats) 2514 { 2515 struct net_device *dev = priv->net_dev; 2516 struct ipw2100_status *status = &priv->status_queue.drv[i]; 2517 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i]; 2518 2519 /* Magic struct that slots into the radiotap header -- no reason 2520 * to build this manually element by element, we can write it much 2521 * more efficiently than we can parse it. ORDER MATTERS HERE */ 2522 struct ipw_rt_hdr { 2523 struct ieee80211_radiotap_header_fixed rt_hdr; 2524 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */ 2525 } *ipw_rt; 2526 2527 IPW_DEBUG_RX("Handler...\n"); 2528 2529 if (unlikely(status->frame_size > skb_tailroom(packet->skb) - 2530 sizeof(struct ipw_rt_hdr))) { 2531 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!" 2532 " Dropping.\n", 2533 dev->name, 2534 status->frame_size, 2535 skb_tailroom(packet->skb)); 2536 dev->stats.rx_errors++; 2537 return; 2538 } 2539 2540 if (unlikely(!netif_running(dev))) { 2541 dev->stats.rx_errors++; 2542 priv->wstats.discard.misc++; 2543 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n"); 2544 return; 2545 } 2546 2547 if (unlikely(priv->config & CFG_CRC_CHECK && 2548 status->flags & IPW_STATUS_FLAG_CRC_ERROR)) { 2549 IPW_DEBUG_RX("CRC error in packet. Dropping.\n"); 2550 dev->stats.rx_errors++; 2551 return; 2552 } 2553 2554 dma_unmap_single(&priv->pci_dev->dev, packet->dma_addr, 2555 sizeof(struct ipw2100_rx), DMA_FROM_DEVICE); 2556 memmove(packet->skb->data + sizeof(struct ipw_rt_hdr), 2557 packet->skb->data, status->frame_size); 2558 2559 ipw_rt = (struct ipw_rt_hdr *) packet->skb->data; 2560 2561 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION; 2562 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */ 2563 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */ 2564 2565 ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 2566 2567 ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM; 2568 2569 skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr)); 2570 2571 if (!libipw_rx(priv->ieee, packet->skb, stats)) { 2572 dev->stats.rx_errors++; 2573 2574 /* libipw_rx failed, so it didn't free the SKB */ 2575 dev_kfree_skb_any(packet->skb); 2576 packet->skb = NULL; 2577 } 2578 2579 /* We need to allocate a new SKB and attach it to the RDB. */ 2580 if (unlikely(ipw2100_alloc_skb(priv, packet))) { 2581 IPW_DEBUG_WARNING( 2582 "%s: Unable to allocate SKB onto RBD ring - disabling " 2583 "adapter.\n", dev->name); 2584 /* TODO: schedule adapter shutdown */ 2585 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n"); 2586 } 2587 2588 /* Update the RDB entry */ 2589 priv->rx_queue.drv[i].host_addr = packet->dma_addr; 2590 } 2591 2592 #endif 2593 2594 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i) 2595 { 2596 struct ipw2100_status *status = &priv->status_queue.drv[i]; 2597 struct ipw2100_rx *u = priv->rx_buffers[i].rxp; 2598 u16 frame_type = status->status_fields & STATUS_TYPE_MASK; 2599 2600 switch (frame_type) { 2601 case COMMAND_STATUS_VAL: 2602 return (status->frame_size != sizeof(u->rx_data.command)); 2603 case STATUS_CHANGE_VAL: 2604 return (status->frame_size != sizeof(u->rx_data.status)); 2605 case HOST_NOTIFICATION_VAL: 2606 return (status->frame_size < sizeof(u->rx_data.notification)); 2607 case P80211_DATA_VAL: 2608 case P8023_DATA_VAL: 2609 #ifdef CONFIG_IPW2100_MONITOR 2610 return 0; 2611 #else 2612 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) { 2613 case IEEE80211_FTYPE_MGMT: 2614 case IEEE80211_FTYPE_CTL: 2615 return 0; 2616 case IEEE80211_FTYPE_DATA: 2617 return (status->frame_size > 2618 IPW_MAX_802_11_PAYLOAD_LENGTH); 2619 } 2620 #endif 2621 } 2622 2623 return 1; 2624 } 2625 2626 /* 2627 * ipw2100 interrupts are disabled at this point, and the ISR 2628 * is the only code that calls this method. So, we do not need 2629 * to play with any locks. 2630 * 2631 * RX Queue works as follows: 2632 * 2633 * Read index - firmware places packet in entry identified by the 2634 * Read index and advances Read index. In this manner, 2635 * Read index will always point to the next packet to 2636 * be filled--but not yet valid. 2637 * 2638 * Write index - driver fills this entry with an unused RBD entry. 2639 * This entry has not filled by the firmware yet. 2640 * 2641 * In between the W and R indexes are the RBDs that have been received 2642 * but not yet processed. 2643 * 2644 * The process of handling packets will start at WRITE + 1 and advance 2645 * until it reaches the READ index. 2646 * 2647 * The WRITE index is cached in the variable 'priv->rx_queue.next'. 2648 * 2649 */ 2650 static void __ipw2100_rx_process(struct ipw2100_priv *priv) 2651 { 2652 struct ipw2100_bd_queue *rxq = &priv->rx_queue; 2653 struct ipw2100_status_queue *sq = &priv->status_queue; 2654 struct ipw2100_rx_packet *packet; 2655 u16 frame_type; 2656 u32 r, w, i, s; 2657 struct ipw2100_rx *u; 2658 struct libipw_rx_stats stats = { 2659 .mac_time = jiffies, 2660 }; 2661 2662 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r); 2663 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w); 2664 2665 if (r >= rxq->entries) { 2666 IPW_DEBUG_RX("exit - bad read index\n"); 2667 return; 2668 } 2669 2670 i = (rxq->next + 1) % rxq->entries; 2671 s = i; 2672 while (i != r) { 2673 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n", 2674 r, rxq->next, i); */ 2675 2676 packet = &priv->rx_buffers[i]; 2677 2678 /* Sync the DMA for the RX buffer so CPU is sure to get 2679 * the correct values */ 2680 dma_sync_single_for_cpu(&priv->pci_dev->dev, packet->dma_addr, 2681 sizeof(struct ipw2100_rx), 2682 DMA_FROM_DEVICE); 2683 2684 if (unlikely(ipw2100_corruption_check(priv, i))) { 2685 ipw2100_corruption_detected(priv, i); 2686 goto increment; 2687 } 2688 2689 u = packet->rxp; 2690 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK; 2691 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM; 2692 stats.len = sq->drv[i].frame_size; 2693 2694 stats.mask = 0; 2695 if (stats.rssi != 0) 2696 stats.mask |= LIBIPW_STATMASK_RSSI; 2697 stats.freq = LIBIPW_24GHZ_BAND; 2698 2699 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n", 2700 priv->net_dev->name, frame_types[frame_type], 2701 stats.len); 2702 2703 switch (frame_type) { 2704 case COMMAND_STATUS_VAL: 2705 /* Reset Rx watchdog */ 2706 isr_rx_complete_command(priv, &u->rx_data.command); 2707 break; 2708 2709 case STATUS_CHANGE_VAL: 2710 isr_status_change(priv, u->rx_data.status); 2711 break; 2712 2713 case P80211_DATA_VAL: 2714 case P8023_DATA_VAL: 2715 #ifdef CONFIG_IPW2100_MONITOR 2716 if (priv->ieee->iw_mode == IW_MODE_MONITOR) { 2717 isr_rx_monitor(priv, i, &stats); 2718 break; 2719 } 2720 #endif 2721 if (stats.len < sizeof(struct libipw_hdr_3addr)) 2722 break; 2723 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) { 2724 case IEEE80211_FTYPE_MGMT: 2725 libipw_rx_mgt(priv->ieee, 2726 &u->rx_data.header, &stats); 2727 break; 2728 2729 case IEEE80211_FTYPE_CTL: 2730 break; 2731 2732 case IEEE80211_FTYPE_DATA: 2733 isr_rx(priv, i, &stats); 2734 break; 2735 2736 } 2737 break; 2738 } 2739 2740 increment: 2741 /* clear status field associated with this RBD */ 2742 rxq->drv[i].status.info.field = 0; 2743 2744 i = (i + 1) % rxq->entries; 2745 } 2746 2747 if (i != s) { 2748 /* backtrack one entry, wrapping to end if at 0 */ 2749 rxq->next = (i ? i : rxq->entries) - 1; 2750 2751 write_register(priv->net_dev, 2752 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next); 2753 } 2754 } 2755 2756 /* 2757 * __ipw2100_tx_process 2758 * 2759 * This routine will determine whether the next packet on 2760 * the fw_pend_list has been processed by the firmware yet. 2761 * 2762 * If not, then it does nothing and returns. 2763 * 2764 * If so, then it removes the item from the fw_pend_list, frees 2765 * any associated storage, and places the item back on the 2766 * free list of its source (either msg_free_list or tx_free_list) 2767 * 2768 * TX Queue works as follows: 2769 * 2770 * Read index - points to the next TBD that the firmware will 2771 * process. The firmware will read the data, and once 2772 * done processing, it will advance the Read index. 2773 * 2774 * Write index - driver fills this entry with an constructed TBD 2775 * entry. The Write index is not advanced until the 2776 * packet has been configured. 2777 * 2778 * In between the W and R indexes are the TBDs that have NOT been 2779 * processed. Lagging behind the R index are packets that have 2780 * been processed but have not been freed by the driver. 2781 * 2782 * In order to free old storage, an internal index will be maintained 2783 * that points to the next packet to be freed. When all used 2784 * packets have been freed, the oldest index will be the same as the 2785 * firmware's read index. 2786 * 2787 * The OLDEST index is cached in the variable 'priv->tx_queue.oldest' 2788 * 2789 * Because the TBD structure can not contain arbitrary data, the 2790 * driver must keep an internal queue of cached allocations such that 2791 * it can put that data back into the tx_free_list and msg_free_list 2792 * for use by future command and data packets. 2793 * 2794 */ 2795 static int __ipw2100_tx_process(struct ipw2100_priv *priv) 2796 { 2797 struct ipw2100_bd_queue *txq = &priv->tx_queue; 2798 struct ipw2100_bd *tbd; 2799 struct list_head *element; 2800 struct ipw2100_tx_packet *packet; 2801 int descriptors_used; 2802 int e, i; 2803 u32 r, w, frag_num = 0; 2804 2805 if (list_empty(&priv->fw_pend_list)) 2806 return 0; 2807 2808 element = priv->fw_pend_list.next; 2809 2810 packet = list_entry(element, struct ipw2100_tx_packet, list); 2811 tbd = &txq->drv[packet->index]; 2812 2813 /* Determine how many TBD entries must be finished... */ 2814 switch (packet->type) { 2815 case COMMAND: 2816 /* COMMAND uses only one slot; don't advance */ 2817 descriptors_used = 1; 2818 e = txq->oldest; 2819 break; 2820 2821 case DATA: 2822 /* DATA uses two slots; advance and loop position. */ 2823 descriptors_used = tbd->num_fragments; 2824 frag_num = tbd->num_fragments - 1; 2825 e = txq->oldest + frag_num; 2826 e %= txq->entries; 2827 break; 2828 2829 default: 2830 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n", 2831 priv->net_dev->name); 2832 return 0; 2833 } 2834 2835 /* if the last TBD is not done by NIC yet, then packet is 2836 * not ready to be released. 2837 * 2838 */ 2839 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX, 2840 &r); 2841 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX, 2842 &w); 2843 if (w != txq->next) 2844 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n", 2845 priv->net_dev->name); 2846 2847 /* 2848 * txq->next is the index of the last packet written txq->oldest is 2849 * the index of the r is the index of the next packet to be read by 2850 * firmware 2851 */ 2852 2853 /* 2854 * Quick graphic to help you visualize the following 2855 * if / else statement 2856 * 2857 * ===>| s---->|=============== 2858 * e>| 2859 * | a | b | c | d | e | f | g | h | i | j | k | l 2860 * r---->| 2861 * w 2862 * 2863 * w - updated by driver 2864 * r - updated by firmware 2865 * s - start of oldest BD entry (txq->oldest) 2866 * e - end of oldest BD entry 2867 * 2868 */ 2869 if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) { 2870 IPW_DEBUG_TX("exit - no processed packets ready to release.\n"); 2871 return 0; 2872 } 2873 2874 list_del(element); 2875 DEC_STAT(&priv->fw_pend_stat); 2876 2877 #ifdef CONFIG_IPW2100_DEBUG 2878 { 2879 i = txq->oldest; 2880 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i, 2881 &txq->drv[i], 2882 (u32) (txq->nic + i * sizeof(struct ipw2100_bd)), 2883 txq->drv[i].host_addr, txq->drv[i].buf_length); 2884 2885 if (packet->type == DATA) { 2886 i = (i + 1) % txq->entries; 2887 2888 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i, 2889 &txq->drv[i], 2890 (u32) (txq->nic + i * 2891 sizeof(struct ipw2100_bd)), 2892 (u32) txq->drv[i].host_addr, 2893 txq->drv[i].buf_length); 2894 } 2895 } 2896 #endif 2897 2898 switch (packet->type) { 2899 case DATA: 2900 if (txq->drv[txq->oldest].status.info.fields.txType != 0) 2901 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. " 2902 "Expecting DATA TBD but pulled " 2903 "something else: ids %d=%d.\n", 2904 priv->net_dev->name, txq->oldest, packet->index); 2905 2906 /* DATA packet; we have to unmap and free the SKB */ 2907 for (i = 0; i < frag_num; i++) { 2908 tbd = &txq->drv[(packet->index + 1 + i) % txq->entries]; 2909 2910 IPW_DEBUG_TX("TX%d P=%08x L=%d\n", 2911 (packet->index + 1 + i) % txq->entries, 2912 tbd->host_addr, tbd->buf_length); 2913 2914 dma_unmap_single(&priv->pci_dev->dev, tbd->host_addr, 2915 tbd->buf_length, DMA_TO_DEVICE); 2916 } 2917 2918 libipw_txb_free(packet->info.d_struct.txb); 2919 packet->info.d_struct.txb = NULL; 2920 2921 list_add_tail(element, &priv->tx_free_list); 2922 INC_STAT(&priv->tx_free_stat); 2923 2924 /* We have a free slot in the Tx queue, so wake up the 2925 * transmit layer if it is stopped. */ 2926 if (priv->status & STATUS_ASSOCIATED) 2927 netif_wake_queue(priv->net_dev); 2928 2929 /* A packet was processed by the hardware, so update the 2930 * watchdog */ 2931 netif_trans_update(priv->net_dev); 2932 2933 break; 2934 2935 case COMMAND: 2936 if (txq->drv[txq->oldest].status.info.fields.txType != 1) 2937 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. " 2938 "Expecting COMMAND TBD but pulled " 2939 "something else: ids %d=%d.\n", 2940 priv->net_dev->name, txq->oldest, packet->index); 2941 2942 #ifdef CONFIG_IPW2100_DEBUG 2943 if (packet->info.c_struct.cmd->host_command_reg < 2944 ARRAY_SIZE(command_types)) 2945 IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n", 2946 command_types[packet->info.c_struct.cmd-> 2947 host_command_reg], 2948 packet->info.c_struct.cmd-> 2949 host_command_reg, 2950 packet->info.c_struct.cmd->cmd_status_reg); 2951 #endif 2952 2953 list_add_tail(element, &priv->msg_free_list); 2954 INC_STAT(&priv->msg_free_stat); 2955 break; 2956 } 2957 2958 /* advance oldest used TBD pointer to start of next entry */ 2959 txq->oldest = (e + 1) % txq->entries; 2960 /* increase available TBDs number */ 2961 txq->available += descriptors_used; 2962 SET_STAT(&priv->txq_stat, txq->available); 2963 2964 IPW_DEBUG_TX("packet latency (send to process) %ld jiffies\n", 2965 jiffies - packet->jiffy_start); 2966 2967 return (!list_empty(&priv->fw_pend_list)); 2968 } 2969 2970 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv) 2971 { 2972 int i = 0; 2973 2974 while (__ipw2100_tx_process(priv) && i < 200) 2975 i++; 2976 2977 if (i == 200) { 2978 printk(KERN_WARNING DRV_NAME ": " 2979 "%s: Driver is running slow (%d iters).\n", 2980 priv->net_dev->name, i); 2981 } 2982 } 2983 2984 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv) 2985 { 2986 struct list_head *element; 2987 struct ipw2100_tx_packet *packet; 2988 struct ipw2100_bd_queue *txq = &priv->tx_queue; 2989 struct ipw2100_bd *tbd; 2990 int next = txq->next; 2991 2992 while (!list_empty(&priv->msg_pend_list)) { 2993 /* if there isn't enough space in TBD queue, then 2994 * don't stuff a new one in. 2995 * NOTE: 3 are needed as a command will take one, 2996 * and there is a minimum of 2 that must be 2997 * maintained between the r and w indexes 2998 */ 2999 if (txq->available <= 3) { 3000 IPW_DEBUG_TX("no room in tx_queue\n"); 3001 break; 3002 } 3003 3004 element = priv->msg_pend_list.next; 3005 list_del(element); 3006 DEC_STAT(&priv->msg_pend_stat); 3007 3008 packet = list_entry(element, struct ipw2100_tx_packet, list); 3009 3010 IPW_DEBUG_TX("using TBD at virt=%p, phys=%04X\n", 3011 &txq->drv[txq->next], 3012 (u32) (txq->nic + txq->next * 3013 sizeof(struct ipw2100_bd))); 3014 3015 packet->index = txq->next; 3016 3017 tbd = &txq->drv[txq->next]; 3018 3019 /* initialize TBD */ 3020 tbd->host_addr = packet->info.c_struct.cmd_phys; 3021 tbd->buf_length = sizeof(struct ipw2100_cmd_header); 3022 /* not marking number of fragments causes problems 3023 * with f/w debug version */ 3024 tbd->num_fragments = 1; 3025 tbd->status.info.field = 3026 IPW_BD_STATUS_TX_FRAME_COMMAND | 3027 IPW_BD_STATUS_TX_INTERRUPT_ENABLE; 3028 3029 /* update TBD queue counters */ 3030 txq->next++; 3031 txq->next %= txq->entries; 3032 txq->available--; 3033 DEC_STAT(&priv->txq_stat); 3034 3035 list_add_tail(element, &priv->fw_pend_list); 3036 INC_STAT(&priv->fw_pend_stat); 3037 } 3038 3039 if (txq->next != next) { 3040 /* kick off the DMA by notifying firmware the 3041 * write index has moved; make sure TBD stores are sync'd */ 3042 wmb(); 3043 write_register(priv->net_dev, 3044 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX, 3045 txq->next); 3046 } 3047 } 3048 3049 /* 3050 * ipw2100_tx_send_data 3051 * 3052 */ 3053 static void ipw2100_tx_send_data(struct ipw2100_priv *priv) 3054 { 3055 struct list_head *element; 3056 struct ipw2100_tx_packet *packet; 3057 struct ipw2100_bd_queue *txq = &priv->tx_queue; 3058 struct ipw2100_bd *tbd; 3059 int next = txq->next; 3060 int i = 0; 3061 struct ipw2100_data_header *ipw_hdr; 3062 struct libipw_hdr_3addr *hdr; 3063 3064 while (!list_empty(&priv->tx_pend_list)) { 3065 /* if there isn't enough space in TBD queue, then 3066 * don't stuff a new one in. 3067 * NOTE: 4 are needed as a data will take two, 3068 * and there is a minimum of 2 that must be 3069 * maintained between the r and w indexes 3070 */ 3071 element = priv->tx_pend_list.next; 3072 packet = list_entry(element, struct ipw2100_tx_packet, list); 3073 3074 if (unlikely(1 + packet->info.d_struct.txb->nr_frags > 3075 IPW_MAX_BDS)) { 3076 /* TODO: Support merging buffers if more than 3077 * IPW_MAX_BDS are used */ 3078 IPW_DEBUG_INFO("%s: Maximum BD threshold exceeded. " 3079 "Increase fragmentation level.\n", 3080 priv->net_dev->name); 3081 } 3082 3083 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) { 3084 IPW_DEBUG_TX("no room in tx_queue\n"); 3085 break; 3086 } 3087 3088 list_del(element); 3089 DEC_STAT(&priv->tx_pend_stat); 3090 3091 tbd = &txq->drv[txq->next]; 3092 3093 packet->index = txq->next; 3094 3095 ipw_hdr = packet->info.d_struct.data; 3096 hdr = (struct libipw_hdr_3addr *)packet->info.d_struct.txb-> 3097 fragments[0]->data; 3098 3099 if (priv->ieee->iw_mode == IW_MODE_INFRA) { 3100 /* To DS: Addr1 = BSSID, Addr2 = SA, 3101 Addr3 = DA */ 3102 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN); 3103 memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN); 3104 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) { 3105 /* not From/To DS: Addr1 = DA, Addr2 = SA, 3106 Addr3 = BSSID */ 3107 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN); 3108 memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN); 3109 } 3110 3111 ipw_hdr->host_command_reg = SEND; 3112 ipw_hdr->host_command_reg1 = 0; 3113 3114 /* For now we only support host based encryption */ 3115 ipw_hdr->needs_encryption = 0; 3116 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted; 3117 if (packet->info.d_struct.txb->nr_frags > 1) 3118 ipw_hdr->fragment_size = 3119 packet->info.d_struct.txb->frag_size - 3120 LIBIPW_3ADDR_LEN; 3121 else 3122 ipw_hdr->fragment_size = 0; 3123 3124 tbd->host_addr = packet->info.d_struct.data_phys; 3125 tbd->buf_length = sizeof(struct ipw2100_data_header); 3126 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags; 3127 tbd->status.info.field = 3128 IPW_BD_STATUS_TX_FRAME_802_3 | 3129 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT; 3130 txq->next++; 3131 txq->next %= txq->entries; 3132 3133 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n", 3134 packet->index, tbd->host_addr, tbd->buf_length); 3135 #ifdef CONFIG_IPW2100_DEBUG 3136 if (packet->info.d_struct.txb->nr_frags > 1) 3137 IPW_DEBUG_FRAG("fragment Tx: %d frames\n", 3138 packet->info.d_struct.txb->nr_frags); 3139 #endif 3140 3141 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) { 3142 tbd = &txq->drv[txq->next]; 3143 if (i == packet->info.d_struct.txb->nr_frags - 1) 3144 tbd->status.info.field = 3145 IPW_BD_STATUS_TX_FRAME_802_3 | 3146 IPW_BD_STATUS_TX_INTERRUPT_ENABLE; 3147 else 3148 tbd->status.info.field = 3149 IPW_BD_STATUS_TX_FRAME_802_3 | 3150 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT; 3151 3152 tbd->buf_length = packet->info.d_struct.txb-> 3153 fragments[i]->len - LIBIPW_3ADDR_LEN; 3154 3155 tbd->host_addr = dma_map_single(&priv->pci_dev->dev, 3156 packet->info.d_struct. 3157 txb->fragments[i]->data + 3158 LIBIPW_3ADDR_LEN, 3159 tbd->buf_length, 3160 DMA_TO_DEVICE); 3161 if (dma_mapping_error(&priv->pci_dev->dev, tbd->host_addr)) { 3162 IPW_DEBUG_TX("dma mapping error\n"); 3163 break; 3164 } 3165 3166 IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n", 3167 txq->next, tbd->host_addr, 3168 tbd->buf_length); 3169 3170 dma_sync_single_for_device(&priv->pci_dev->dev, 3171 tbd->host_addr, 3172 tbd->buf_length, 3173 DMA_TO_DEVICE); 3174 3175 txq->next++; 3176 txq->next %= txq->entries; 3177 } 3178 3179 txq->available -= 1 + packet->info.d_struct.txb->nr_frags; 3180 SET_STAT(&priv->txq_stat, txq->available); 3181 3182 list_add_tail(element, &priv->fw_pend_list); 3183 INC_STAT(&priv->fw_pend_stat); 3184 } 3185 3186 if (txq->next != next) { 3187 /* kick off the DMA by notifying firmware the 3188 * write index has moved; make sure TBD stores are sync'd */ 3189 write_register(priv->net_dev, 3190 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX, 3191 txq->next); 3192 } 3193 } 3194 3195 static void ipw2100_irq_tasklet(struct tasklet_struct *t) 3196 { 3197 struct ipw2100_priv *priv = from_tasklet(priv, t, irq_tasklet); 3198 struct net_device *dev = priv->net_dev; 3199 unsigned long flags; 3200 u32 inta, tmp; 3201 3202 spin_lock_irqsave(&priv->low_lock, flags); 3203 ipw2100_disable_interrupts(priv); 3204 3205 read_register(dev, IPW_REG_INTA, &inta); 3206 3207 IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n", 3208 (unsigned long)inta & IPW_INTERRUPT_MASK); 3209 3210 priv->in_isr++; 3211 priv->interrupts++; 3212 3213 /* We do not loop and keep polling for more interrupts as this 3214 * is frowned upon and doesn't play nicely with other potentially 3215 * chained IRQs */ 3216 IPW_DEBUG_ISR("INTA: 0x%08lX\n", 3217 (unsigned long)inta & IPW_INTERRUPT_MASK); 3218 3219 if (inta & IPW2100_INTA_FATAL_ERROR) { 3220 printk(KERN_WARNING DRV_NAME 3221 ": Fatal interrupt. Scheduling firmware restart.\n"); 3222 priv->inta_other++; 3223 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR); 3224 3225 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error); 3226 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n", 3227 priv->net_dev->name, priv->fatal_error); 3228 3229 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp); 3230 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n", 3231 priv->net_dev->name, tmp); 3232 3233 /* Wake up any sleeping jobs */ 3234 schedule_reset(priv); 3235 } 3236 3237 if (inta & IPW2100_INTA_PARITY_ERROR) { 3238 printk(KERN_ERR DRV_NAME 3239 ": ***** PARITY ERROR INTERRUPT !!!!\n"); 3240 priv->inta_other++; 3241 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR); 3242 } 3243 3244 if (inta & IPW2100_INTA_RX_TRANSFER) { 3245 IPW_DEBUG_ISR("RX interrupt\n"); 3246 3247 priv->rx_interrupts++; 3248 3249 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER); 3250 3251 __ipw2100_rx_process(priv); 3252 __ipw2100_tx_complete(priv); 3253 } 3254 3255 if (inta & IPW2100_INTA_TX_TRANSFER) { 3256 IPW_DEBUG_ISR("TX interrupt\n"); 3257 3258 priv->tx_interrupts++; 3259 3260 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER); 3261 3262 __ipw2100_tx_complete(priv); 3263 ipw2100_tx_send_commands(priv); 3264 ipw2100_tx_send_data(priv); 3265 } 3266 3267 if (inta & IPW2100_INTA_TX_COMPLETE) { 3268 IPW_DEBUG_ISR("TX complete\n"); 3269 priv->inta_other++; 3270 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE); 3271 3272 __ipw2100_tx_complete(priv); 3273 } 3274 3275 if (inta & IPW2100_INTA_EVENT_INTERRUPT) { 3276 /* ipw2100_handle_event(dev); */ 3277 priv->inta_other++; 3278 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT); 3279 } 3280 3281 if (inta & IPW2100_INTA_FW_INIT_DONE) { 3282 IPW_DEBUG_ISR("FW init done interrupt\n"); 3283 priv->inta_other++; 3284 3285 read_register(dev, IPW_REG_INTA, &tmp); 3286 if (tmp & (IPW2100_INTA_FATAL_ERROR | 3287 IPW2100_INTA_PARITY_ERROR)) { 3288 write_register(dev, IPW_REG_INTA, 3289 IPW2100_INTA_FATAL_ERROR | 3290 IPW2100_INTA_PARITY_ERROR); 3291 } 3292 3293 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE); 3294 } 3295 3296 if (inta & IPW2100_INTA_STATUS_CHANGE) { 3297 IPW_DEBUG_ISR("Status change interrupt\n"); 3298 priv->inta_other++; 3299 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE); 3300 } 3301 3302 if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) { 3303 IPW_DEBUG_ISR("slave host mode interrupt\n"); 3304 priv->inta_other++; 3305 write_register(dev, IPW_REG_INTA, 3306 IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE); 3307 } 3308 3309 priv->in_isr--; 3310 ipw2100_enable_interrupts(priv); 3311 3312 spin_unlock_irqrestore(&priv->low_lock, flags); 3313 3314 IPW_DEBUG_ISR("exit\n"); 3315 } 3316 3317 static irqreturn_t ipw2100_interrupt(int irq, void *data) 3318 { 3319 struct ipw2100_priv *priv = data; 3320 u32 inta, inta_mask; 3321 3322 if (!data) 3323 return IRQ_NONE; 3324 3325 spin_lock(&priv->low_lock); 3326 3327 /* We check to see if we should be ignoring interrupts before 3328 * we touch the hardware. During ucode load if we try and handle 3329 * an interrupt we can cause keyboard problems as well as cause 3330 * the ucode to fail to initialize */ 3331 if (!(priv->status & STATUS_INT_ENABLED)) { 3332 /* Shared IRQ */ 3333 goto none; 3334 } 3335 3336 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask); 3337 read_register(priv->net_dev, IPW_REG_INTA, &inta); 3338 3339 if (inta == 0xFFFFFFFF) { 3340 /* Hardware disappeared */ 3341 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n"); 3342 goto none; 3343 } 3344 3345 inta &= IPW_INTERRUPT_MASK; 3346 3347 if (!(inta & inta_mask)) { 3348 /* Shared interrupt */ 3349 goto none; 3350 } 3351 3352 /* We disable the hardware interrupt here just to prevent unneeded 3353 * calls to be made. We disable this again within the actual 3354 * work tasklet, so if another part of the code re-enables the 3355 * interrupt, that is fine */ 3356 ipw2100_disable_interrupts(priv); 3357 3358 tasklet_schedule(&priv->irq_tasklet); 3359 spin_unlock(&priv->low_lock); 3360 3361 return IRQ_HANDLED; 3362 none: 3363 spin_unlock(&priv->low_lock); 3364 return IRQ_NONE; 3365 } 3366 3367 static netdev_tx_t ipw2100_tx(struct libipw_txb *txb, 3368 struct net_device *dev, int pri) 3369 { 3370 struct ipw2100_priv *priv = libipw_priv(dev); 3371 struct list_head *element; 3372 struct ipw2100_tx_packet *packet; 3373 unsigned long flags; 3374 3375 spin_lock_irqsave(&priv->low_lock, flags); 3376 3377 if (!(priv->status & STATUS_ASSOCIATED)) { 3378 IPW_DEBUG_INFO("Can not transmit when not connected.\n"); 3379 priv->net_dev->stats.tx_carrier_errors++; 3380 netif_stop_queue(dev); 3381 goto fail_unlock; 3382 } 3383 3384 if (list_empty(&priv->tx_free_list)) 3385 goto fail_unlock; 3386 3387 element = priv->tx_free_list.next; 3388 packet = list_entry(element, struct ipw2100_tx_packet, list); 3389 3390 packet->info.d_struct.txb = txb; 3391 3392 IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len); 3393 printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len); 3394 3395 packet->jiffy_start = jiffies; 3396 3397 list_del(element); 3398 DEC_STAT(&priv->tx_free_stat); 3399 3400 list_add_tail(element, &priv->tx_pend_list); 3401 INC_STAT(&priv->tx_pend_stat); 3402 3403 ipw2100_tx_send_data(priv); 3404 3405 spin_unlock_irqrestore(&priv->low_lock, flags); 3406 return NETDEV_TX_OK; 3407 3408 fail_unlock: 3409 netif_stop_queue(dev); 3410 spin_unlock_irqrestore(&priv->low_lock, flags); 3411 return NETDEV_TX_BUSY; 3412 } 3413 3414 static int ipw2100_msg_allocate(struct ipw2100_priv *priv) 3415 { 3416 int i, j, err = -EINVAL; 3417 void *v; 3418 dma_addr_t p; 3419 3420 priv->msg_buffers = 3421 kmalloc_array(IPW_COMMAND_POOL_SIZE, 3422 sizeof(struct ipw2100_tx_packet), 3423 GFP_KERNEL); 3424 if (!priv->msg_buffers) 3425 return -ENOMEM; 3426 3427 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) { 3428 v = dma_alloc_coherent(&priv->pci_dev->dev, 3429 sizeof(struct ipw2100_cmd_header), &p, 3430 GFP_KERNEL); 3431 if (!v) { 3432 printk(KERN_ERR DRV_NAME ": " 3433 "%s: PCI alloc failed for msg " 3434 "buffers.\n", priv->net_dev->name); 3435 err = -ENOMEM; 3436 break; 3437 } 3438 3439 priv->msg_buffers[i].type = COMMAND; 3440 priv->msg_buffers[i].info.c_struct.cmd = 3441 (struct ipw2100_cmd_header *)v; 3442 priv->msg_buffers[i].info.c_struct.cmd_phys = p; 3443 } 3444 3445 if (i == IPW_COMMAND_POOL_SIZE) 3446 return 0; 3447 3448 for (j = 0; j < i; j++) { 3449 dma_free_coherent(&priv->pci_dev->dev, 3450 sizeof(struct ipw2100_cmd_header), 3451 priv->msg_buffers[j].info.c_struct.cmd, 3452 priv->msg_buffers[j].info.c_struct.cmd_phys); 3453 } 3454 3455 kfree(priv->msg_buffers); 3456 priv->msg_buffers = NULL; 3457 3458 return err; 3459 } 3460 3461 static int ipw2100_msg_initialize(struct ipw2100_priv *priv) 3462 { 3463 int i; 3464 3465 INIT_LIST_HEAD(&priv->msg_free_list); 3466 INIT_LIST_HEAD(&priv->msg_pend_list); 3467 3468 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) 3469 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list); 3470 SET_STAT(&priv->msg_free_stat, i); 3471 3472 return 0; 3473 } 3474 3475 static void ipw2100_msg_free(struct ipw2100_priv *priv) 3476 { 3477 int i; 3478 3479 if (!priv->msg_buffers) 3480 return; 3481 3482 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) { 3483 dma_free_coherent(&priv->pci_dev->dev, 3484 sizeof(struct ipw2100_cmd_header), 3485 priv->msg_buffers[i].info.c_struct.cmd, 3486 priv->msg_buffers[i].info.c_struct.cmd_phys); 3487 } 3488 3489 kfree(priv->msg_buffers); 3490 priv->msg_buffers = NULL; 3491 } 3492 3493 static ssize_t pci_show(struct device *d, struct device_attribute *attr, 3494 char *buf) 3495 { 3496 struct pci_dev *pci_dev = to_pci_dev(d); 3497 char *out = buf; 3498 int i, j; 3499 u32 val; 3500 3501 for (i = 0; i < 16; i++) { 3502 out += sprintf(out, "[%08X] ", i * 16); 3503 for (j = 0; j < 16; j += 4) { 3504 pci_read_config_dword(pci_dev, i * 16 + j, &val); 3505 out += sprintf(out, "%08X ", val); 3506 } 3507 out += sprintf(out, "\n"); 3508 } 3509 3510 return out - buf; 3511 } 3512 3513 static DEVICE_ATTR_RO(pci); 3514 3515 static ssize_t cfg_show(struct device *d, struct device_attribute *attr, 3516 char *buf) 3517 { 3518 struct ipw2100_priv *p = dev_get_drvdata(d); 3519 return sprintf(buf, "0x%08x\n", (int)p->config); 3520 } 3521 3522 static DEVICE_ATTR_RO(cfg); 3523 3524 static ssize_t status_show(struct device *d, struct device_attribute *attr, 3525 char *buf) 3526 { 3527 struct ipw2100_priv *p = dev_get_drvdata(d); 3528 return sprintf(buf, "0x%08x\n", (int)p->status); 3529 } 3530 3531 static DEVICE_ATTR_RO(status); 3532 3533 static ssize_t capability_show(struct device *d, struct device_attribute *attr, 3534 char *buf) 3535 { 3536 struct ipw2100_priv *p = dev_get_drvdata(d); 3537 return sprintf(buf, "0x%08x\n", (int)p->capability); 3538 } 3539 3540 static DEVICE_ATTR_RO(capability); 3541 3542 #define IPW2100_REG(x) { IPW_ ##x, #x } 3543 static const struct { 3544 u32 addr; 3545 const char *name; 3546 } hw_data[] = { 3547 IPW2100_REG(REG_GP_CNTRL), 3548 IPW2100_REG(REG_GPIO), 3549 IPW2100_REG(REG_INTA), 3550 IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),}; 3551 #define IPW2100_NIC(x, s) { x, #x, s } 3552 static const struct { 3553 u32 addr; 3554 const char *name; 3555 size_t size; 3556 } nic_data[] = { 3557 IPW2100_NIC(IPW2100_CONTROL_REG, 2), 3558 IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),}; 3559 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d } 3560 static const struct { 3561 u8 index; 3562 const char *name; 3563 const char *desc; 3564 } ord_data[] = { 3565 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"), 3566 IPW2100_ORD(STAT_TX_HOST_COMPLETE, 3567 "successful Host Tx's (MSDU)"), 3568 IPW2100_ORD(STAT_TX_DIR_DATA, 3569 "successful Directed Tx's (MSDU)"), 3570 IPW2100_ORD(STAT_TX_DIR_DATA1, 3571 "successful Directed Tx's (MSDU) @ 1MB"), 3572 IPW2100_ORD(STAT_TX_DIR_DATA2, 3573 "successful Directed Tx's (MSDU) @ 2MB"), 3574 IPW2100_ORD(STAT_TX_DIR_DATA5_5, 3575 "successful Directed Tx's (MSDU) @ 5_5MB"), 3576 IPW2100_ORD(STAT_TX_DIR_DATA11, 3577 "successful Directed Tx's (MSDU) @ 11MB"), 3578 IPW2100_ORD(STAT_TX_NODIR_DATA1, 3579 "successful Non_Directed Tx's (MSDU) @ 1MB"), 3580 IPW2100_ORD(STAT_TX_NODIR_DATA2, 3581 "successful Non_Directed Tx's (MSDU) @ 2MB"), 3582 IPW2100_ORD(STAT_TX_NODIR_DATA5_5, 3583 "successful Non_Directed Tx's (MSDU) @ 5.5MB"), 3584 IPW2100_ORD(STAT_TX_NODIR_DATA11, 3585 "successful Non_Directed Tx's (MSDU) @ 11MB"), 3586 IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"), 3587 IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"), 3588 IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"), 3589 IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"), 3590 IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"), 3591 IPW2100_ORD(STAT_TX_ASSN_RESP, 3592 "successful Association response Tx's"), 3593 IPW2100_ORD(STAT_TX_REASSN, 3594 "successful Reassociation Tx's"), 3595 IPW2100_ORD(STAT_TX_REASSN_RESP, 3596 "successful Reassociation response Tx's"), 3597 IPW2100_ORD(STAT_TX_PROBE, 3598 "probes successfully transmitted"), 3599 IPW2100_ORD(STAT_TX_PROBE_RESP, 3600 "probe responses successfully transmitted"), 3601 IPW2100_ORD(STAT_TX_BEACON, "tx beacon"), 3602 IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"), 3603 IPW2100_ORD(STAT_TX_DISASSN, 3604 "successful Disassociation TX"), 3605 IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"), 3606 IPW2100_ORD(STAT_TX_DEAUTH, 3607 "successful Deauthentication TX"), 3608 IPW2100_ORD(STAT_TX_TOTAL_BYTES, 3609 "Total successful Tx data bytes"), 3610 IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"), 3611 IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"), 3612 IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"), 3613 IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"), 3614 IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"), 3615 IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"), 3616 IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP, 3617 "times max tries in a hop failed"), 3618 IPW2100_ORD(STAT_TX_DISASSN_FAIL, 3619 "times disassociation failed"), 3620 IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"), 3621 IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"), 3622 IPW2100_ORD(STAT_RX_HOST, "packets passed to host"), 3623 IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"), 3624 IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"), 3625 IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"), 3626 IPW2100_ORD(STAT_RX_DIR_DATA5_5, 3627 "directed packets at 5.5MB"), 3628 IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"), 3629 IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"), 3630 IPW2100_ORD(STAT_RX_NODIR_DATA1, 3631 "nondirected packets at 1MB"), 3632 IPW2100_ORD(STAT_RX_NODIR_DATA2, 3633 "nondirected packets at 2MB"), 3634 IPW2100_ORD(STAT_RX_NODIR_DATA5_5, 3635 "nondirected packets at 5.5MB"), 3636 IPW2100_ORD(STAT_RX_NODIR_DATA11, 3637 "nondirected packets at 11MB"), 3638 IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"), 3639 IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS, 3640 "Rx CTS"), 3641 IPW2100_ORD(STAT_RX_ACK, "Rx ACK"), 3642 IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"), 3643 IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"), 3644 IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"), 3645 IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"), 3646 IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"), 3647 IPW2100_ORD(STAT_RX_REASSN_RESP, 3648 "Reassociation response Rx's"), 3649 IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"), 3650 IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"), 3651 IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"), 3652 IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"), 3653 IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"), 3654 IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"), 3655 IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"), 3656 IPW2100_ORD(STAT_RX_TOTAL_BYTES, 3657 "Total rx data bytes received"), 3658 IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"), 3659 IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"), 3660 IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"), 3661 IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"), 3662 IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"), 3663 IPW2100_ORD(STAT_RX_DUPLICATE1, 3664 "duplicate rx packets at 1MB"), 3665 IPW2100_ORD(STAT_RX_DUPLICATE2, 3666 "duplicate rx packets at 2MB"), 3667 IPW2100_ORD(STAT_RX_DUPLICATE5_5, 3668 "duplicate rx packets at 5.5MB"), 3669 IPW2100_ORD(STAT_RX_DUPLICATE11, 3670 "duplicate rx packets at 11MB"), 3671 IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"), 3672 IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent db"), 3673 IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent db"), 3674 IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent db"), 3675 IPW2100_ORD(STAT_RX_INVALID_PROTOCOL, 3676 "rx frames with invalid protocol"), 3677 IPW2100_ORD(SYS_BOOT_TIME, "Boot time"), 3678 IPW2100_ORD(STAT_RX_NO_BUFFER, 3679 "rx frames rejected due to no buffer"), 3680 IPW2100_ORD(STAT_RX_MISSING_FRAG, 3681 "rx frames dropped due to missing fragment"), 3682 IPW2100_ORD(STAT_RX_ORPHAN_FRAG, 3683 "rx frames dropped due to non-sequential fragment"), 3684 IPW2100_ORD(STAT_RX_ORPHAN_FRAME, 3685 "rx frames dropped due to unmatched 1st frame"), 3686 IPW2100_ORD(STAT_RX_FRAG_AGEOUT, 3687 "rx frames dropped due to uncompleted frame"), 3688 IPW2100_ORD(STAT_RX_ICV_ERRORS, 3689 "ICV errors during decryption"), 3690 IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"), 3691 IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"), 3692 IPW2100_ORD(STAT_PSP_POLL_TIMEOUT, 3693 "poll response timeouts"), 3694 IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT, 3695 "timeouts waiting for last {broad,multi}cast pkt"), 3696 IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"), 3697 IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"), 3698 IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"), 3699 IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"), 3700 IPW2100_ORD(STAT_PERCENT_MISSED_BCNS, 3701 "current calculation of % missed beacons"), 3702 IPW2100_ORD(STAT_PERCENT_RETRIES, 3703 "current calculation of % missed tx retries"), 3704 IPW2100_ORD(ASSOCIATED_AP_PTR, 3705 "0 if not associated, else pointer to AP table entry"), 3706 IPW2100_ORD(AVAILABLE_AP_CNT, 3707 "AP's described in the AP table"), 3708 IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"), 3709 IPW2100_ORD(STAT_AP_ASSNS, "associations"), 3710 IPW2100_ORD(STAT_ASSN_FAIL, "association failures"), 3711 IPW2100_ORD(STAT_ASSN_RESP_FAIL, 3712 "failures due to response fail"), 3713 IPW2100_ORD(STAT_FULL_SCANS, "full scans"), 3714 IPW2100_ORD(CARD_DISABLED, "Card Disabled"), 3715 IPW2100_ORD(STAT_ROAM_INHIBIT, 3716 "times roaming was inhibited due to activity"), 3717 IPW2100_ORD(RSSI_AT_ASSN, 3718 "RSSI of associated AP at time of association"), 3719 IPW2100_ORD(STAT_ASSN_CAUSE1, 3720 "reassociation: no probe response or TX on hop"), 3721 IPW2100_ORD(STAT_ASSN_CAUSE2, 3722 "reassociation: poor tx/rx quality"), 3723 IPW2100_ORD(STAT_ASSN_CAUSE3, 3724 "reassociation: tx/rx quality (excessive AP load"), 3725 IPW2100_ORD(STAT_ASSN_CAUSE4, 3726 "reassociation: AP RSSI level"), 3727 IPW2100_ORD(STAT_ASSN_CAUSE5, 3728 "reassociations due to load leveling"), 3729 IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"), 3730 IPW2100_ORD(STAT_AUTH_RESP_FAIL, 3731 "times authentication response failed"), 3732 IPW2100_ORD(STATION_TABLE_CNT, 3733 "entries in association table"), 3734 IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"), 3735 IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"), 3736 IPW2100_ORD(COUNTRY_CODE, 3737 "IEEE country code as recv'd from beacon"), 3738 IPW2100_ORD(COUNTRY_CHANNELS, 3739 "channels supported by country"), 3740 IPW2100_ORD(RESET_CNT, "adapter resets (warm)"), 3741 IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"), 3742 IPW2100_ORD(ANTENNA_DIVERSITY, 3743 "TRUE if antenna diversity is disabled"), 3744 IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"), 3745 IPW2100_ORD(OUR_FREQ, 3746 "current radio freq lower digits - channel ID"), 3747 IPW2100_ORD(RTC_TIME, "current RTC time"), 3748 IPW2100_ORD(PORT_TYPE, "operating mode"), 3749 IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"), 3750 IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"), 3751 IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"), 3752 IPW2100_ORD(BASIC_RATES, "basic tx rates"), 3753 IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"), 3754 IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"), 3755 IPW2100_ORD(CAPABILITIES, 3756 "Management frame capability field"), 3757 IPW2100_ORD(AUTH_TYPE, "Type of authentication"), 3758 IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"), 3759 IPW2100_ORD(RTS_THRESHOLD, 3760 "Min packet length for RTS handshaking"), 3761 IPW2100_ORD(INT_MODE, "International mode"), 3762 IPW2100_ORD(FRAGMENTATION_THRESHOLD, 3763 "protocol frag threshold"), 3764 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS, 3765 "EEPROM offset in SRAM"), 3766 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE, 3767 "EEPROM size in SRAM"), 3768 IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"), 3769 IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS, 3770 "EEPROM IBSS 11b channel set"), 3771 IPW2100_ORD(MAC_VERSION, "MAC Version"), 3772 IPW2100_ORD(MAC_REVISION, "MAC Revision"), 3773 IPW2100_ORD(RADIO_VERSION, "Radio Version"), 3774 IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"), 3775 IPW2100_ORD(UCODE_VERSION, "Ucode Version"),}; 3776 3777 static ssize_t registers_show(struct device *d, struct device_attribute *attr, 3778 char *buf) 3779 { 3780 int i; 3781 struct ipw2100_priv *priv = dev_get_drvdata(d); 3782 struct net_device *dev = priv->net_dev; 3783 char *out = buf; 3784 u32 val = 0; 3785 3786 out += sprintf(out, "%30s [Address ] : Hex\n", "Register"); 3787 3788 for (i = 0; i < ARRAY_SIZE(hw_data); i++) { 3789 read_register(dev, hw_data[i].addr, &val); 3790 out += sprintf(out, "%30s [%08X] : %08X\n", 3791 hw_data[i].name, hw_data[i].addr, val); 3792 } 3793 3794 return out - buf; 3795 } 3796 3797 static DEVICE_ATTR_RO(registers); 3798 3799 static ssize_t hardware_show(struct device *d, struct device_attribute *attr, 3800 char *buf) 3801 { 3802 struct ipw2100_priv *priv = dev_get_drvdata(d); 3803 struct net_device *dev = priv->net_dev; 3804 char *out = buf; 3805 int i; 3806 3807 out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry"); 3808 3809 for (i = 0; i < ARRAY_SIZE(nic_data); i++) { 3810 u8 tmp8; 3811 u16 tmp16; 3812 u32 tmp32; 3813 3814 switch (nic_data[i].size) { 3815 case 1: 3816 read_nic_byte(dev, nic_data[i].addr, &tmp8); 3817 out += sprintf(out, "%30s [%08X] : %02X\n", 3818 nic_data[i].name, nic_data[i].addr, 3819 tmp8); 3820 break; 3821 case 2: 3822 read_nic_word(dev, nic_data[i].addr, &tmp16); 3823 out += sprintf(out, "%30s [%08X] : %04X\n", 3824 nic_data[i].name, nic_data[i].addr, 3825 tmp16); 3826 break; 3827 case 4: 3828 read_nic_dword(dev, nic_data[i].addr, &tmp32); 3829 out += sprintf(out, "%30s [%08X] : %08X\n", 3830 nic_data[i].name, nic_data[i].addr, 3831 tmp32); 3832 break; 3833 } 3834 } 3835 return out - buf; 3836 } 3837 3838 static DEVICE_ATTR_RO(hardware); 3839 3840 static ssize_t memory_show(struct device *d, struct device_attribute *attr, 3841 char *buf) 3842 { 3843 struct ipw2100_priv *priv = dev_get_drvdata(d); 3844 struct net_device *dev = priv->net_dev; 3845 static unsigned long loop = 0; 3846 int len = 0; 3847 u32 buffer[4]; 3848 int i; 3849 char line[81]; 3850 3851 if (loop >= 0x30000) 3852 loop = 0; 3853 3854 /* sysfs provides us PAGE_SIZE buffer */ 3855 while (len < PAGE_SIZE - 128 && loop < 0x30000) { 3856 3857 if (priv->snapshot[0]) 3858 for (i = 0; i < 4; i++) 3859 buffer[i] = 3860 *(u32 *) SNAPSHOT_ADDR(loop + i * 4); 3861 else 3862 for (i = 0; i < 4; i++) 3863 read_nic_dword(dev, loop + i * 4, &buffer[i]); 3864 3865 if (priv->dump_raw) 3866 len += sprintf(buf + len, 3867 "%c%c%c%c" 3868 "%c%c%c%c" 3869 "%c%c%c%c" 3870 "%c%c%c%c", 3871 ((u8 *) buffer)[0x0], 3872 ((u8 *) buffer)[0x1], 3873 ((u8 *) buffer)[0x2], 3874 ((u8 *) buffer)[0x3], 3875 ((u8 *) buffer)[0x4], 3876 ((u8 *) buffer)[0x5], 3877 ((u8 *) buffer)[0x6], 3878 ((u8 *) buffer)[0x7], 3879 ((u8 *) buffer)[0x8], 3880 ((u8 *) buffer)[0x9], 3881 ((u8 *) buffer)[0xa], 3882 ((u8 *) buffer)[0xb], 3883 ((u8 *) buffer)[0xc], 3884 ((u8 *) buffer)[0xd], 3885 ((u8 *) buffer)[0xe], 3886 ((u8 *) buffer)[0xf]); 3887 else 3888 len += sprintf(buf + len, "%s\n", 3889 snprint_line(line, sizeof(line), 3890 (u8 *) buffer, 16, loop)); 3891 loop += 16; 3892 } 3893 3894 return len; 3895 } 3896 3897 static ssize_t memory_store(struct device *d, struct device_attribute *attr, 3898 const char *buf, size_t count) 3899 { 3900 struct ipw2100_priv *priv = dev_get_drvdata(d); 3901 struct net_device *dev = priv->net_dev; 3902 const char *p = buf; 3903 3904 (void)dev; /* kill unused-var warning for debug-only code */ 3905 3906 if (count < 1) 3907 return count; 3908 3909 if (p[0] == '1' || 3910 (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) { 3911 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n", 3912 dev->name); 3913 priv->dump_raw = 1; 3914 3915 } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' && 3916 tolower(p[1]) == 'f')) { 3917 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n", 3918 dev->name); 3919 priv->dump_raw = 0; 3920 3921 } else if (tolower(p[0]) == 'r') { 3922 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name); 3923 ipw2100_snapshot_free(priv); 3924 3925 } else 3926 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, " 3927 "reset = clear memory snapshot\n", dev->name); 3928 3929 return count; 3930 } 3931 3932 static DEVICE_ATTR_RW(memory); 3933 3934 static ssize_t ordinals_show(struct device *d, struct device_attribute *attr, 3935 char *buf) 3936 { 3937 struct ipw2100_priv *priv = dev_get_drvdata(d); 3938 u32 val = 0; 3939 int len = 0; 3940 u32 val_len; 3941 static int loop = 0; 3942 3943 if (priv->status & STATUS_RF_KILL_MASK) 3944 return 0; 3945 3946 if (loop >= ARRAY_SIZE(ord_data)) 3947 loop = 0; 3948 3949 /* sysfs provides us PAGE_SIZE buffer */ 3950 while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) { 3951 val_len = sizeof(u32); 3952 3953 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val, 3954 &val_len)) 3955 len += sprintf(buf + len, "[0x%02X] = ERROR %s\n", 3956 ord_data[loop].index, 3957 ord_data[loop].desc); 3958 else 3959 len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n", 3960 ord_data[loop].index, val, 3961 ord_data[loop].desc); 3962 loop++; 3963 } 3964 3965 return len; 3966 } 3967 3968 static DEVICE_ATTR_RO(ordinals); 3969 3970 static ssize_t stats_show(struct device *d, struct device_attribute *attr, 3971 char *buf) 3972 { 3973 struct ipw2100_priv *priv = dev_get_drvdata(d); 3974 char *out = buf; 3975 3976 out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n", 3977 priv->interrupts, priv->tx_interrupts, 3978 priv->rx_interrupts, priv->inta_other); 3979 out += sprintf(out, "firmware resets: %d\n", priv->resets); 3980 out += sprintf(out, "firmware hangs: %d\n", priv->hangs); 3981 #ifdef CONFIG_IPW2100_DEBUG 3982 out += sprintf(out, "packet mismatch image: %s\n", 3983 priv->snapshot[0] ? "YES" : "NO"); 3984 #endif 3985 3986 return out - buf; 3987 } 3988 3989 static DEVICE_ATTR_RO(stats); 3990 3991 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode) 3992 { 3993 int err; 3994 3995 if (mode == priv->ieee->iw_mode) 3996 return 0; 3997 3998 err = ipw2100_disable_adapter(priv); 3999 if (err) { 4000 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n", 4001 priv->net_dev->name, err); 4002 return err; 4003 } 4004 4005 switch (mode) { 4006 case IW_MODE_INFRA: 4007 priv->net_dev->type = ARPHRD_ETHER; 4008 break; 4009 case IW_MODE_ADHOC: 4010 priv->net_dev->type = ARPHRD_ETHER; 4011 break; 4012 #ifdef CONFIG_IPW2100_MONITOR 4013 case IW_MODE_MONITOR: 4014 priv->last_mode = priv->ieee->iw_mode; 4015 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP; 4016 break; 4017 #endif /* CONFIG_IPW2100_MONITOR */ 4018 } 4019 4020 priv->ieee->iw_mode = mode; 4021 4022 #ifdef CONFIG_PM 4023 /* Indicate ipw2100_download_firmware download firmware 4024 * from disk instead of memory. */ 4025 ipw2100_firmware.version = 0; 4026 #endif 4027 4028 printk(KERN_INFO "%s: Resetting on mode change.\n", priv->net_dev->name); 4029 priv->reset_backoff = 0; 4030 schedule_reset(priv); 4031 4032 return 0; 4033 } 4034 4035 static ssize_t internals_show(struct device *d, struct device_attribute *attr, 4036 char *buf) 4037 { 4038 struct ipw2100_priv *priv = dev_get_drvdata(d); 4039 int len = 0; 4040 4041 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x) 4042 4043 if (priv->status & STATUS_ASSOCIATED) 4044 len += sprintf(buf + len, "connected: %llu\n", 4045 ktime_get_boottime_seconds() - priv->connect_start); 4046 else 4047 len += sprintf(buf + len, "not connected\n"); 4048 4049 DUMP_VAR(ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx], "p"); 4050 DUMP_VAR(status, "08lx"); 4051 DUMP_VAR(config, "08lx"); 4052 DUMP_VAR(capability, "08lx"); 4053 4054 len += 4055 sprintf(buf + len, "last_rtc: %lu\n", 4056 (unsigned long)priv->last_rtc); 4057 4058 DUMP_VAR(fatal_error, "d"); 4059 DUMP_VAR(stop_hang_check, "d"); 4060 DUMP_VAR(stop_rf_kill, "d"); 4061 DUMP_VAR(messages_sent, "d"); 4062 4063 DUMP_VAR(tx_pend_stat.value, "d"); 4064 DUMP_VAR(tx_pend_stat.hi, "d"); 4065 4066 DUMP_VAR(tx_free_stat.value, "d"); 4067 DUMP_VAR(tx_free_stat.lo, "d"); 4068 4069 DUMP_VAR(msg_free_stat.value, "d"); 4070 DUMP_VAR(msg_free_stat.lo, "d"); 4071 4072 DUMP_VAR(msg_pend_stat.value, "d"); 4073 DUMP_VAR(msg_pend_stat.hi, "d"); 4074 4075 DUMP_VAR(fw_pend_stat.value, "d"); 4076 DUMP_VAR(fw_pend_stat.hi, "d"); 4077 4078 DUMP_VAR(txq_stat.value, "d"); 4079 DUMP_VAR(txq_stat.lo, "d"); 4080 4081 DUMP_VAR(ieee->scans, "d"); 4082 DUMP_VAR(reset_backoff, "lld"); 4083 4084 return len; 4085 } 4086 4087 static DEVICE_ATTR_RO(internals); 4088 4089 static ssize_t bssinfo_show(struct device *d, struct device_attribute *attr, 4090 char *buf) 4091 { 4092 struct ipw2100_priv *priv = dev_get_drvdata(d); 4093 char essid[IW_ESSID_MAX_SIZE + 1]; 4094 u8 bssid[ETH_ALEN]; 4095 u32 chan = 0; 4096 char *out = buf; 4097 unsigned int length; 4098 int ret; 4099 4100 if (priv->status & STATUS_RF_KILL_MASK) 4101 return 0; 4102 4103 memset(essid, 0, sizeof(essid)); 4104 memset(bssid, 0, sizeof(bssid)); 4105 4106 length = IW_ESSID_MAX_SIZE; 4107 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length); 4108 if (ret) 4109 IPW_DEBUG_INFO("failed querying ordinals at line %d\n", 4110 __LINE__); 4111 4112 length = sizeof(bssid); 4113 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, 4114 bssid, &length); 4115 if (ret) 4116 IPW_DEBUG_INFO("failed querying ordinals at line %d\n", 4117 __LINE__); 4118 4119 length = sizeof(u32); 4120 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length); 4121 if (ret) 4122 IPW_DEBUG_INFO("failed querying ordinals at line %d\n", 4123 __LINE__); 4124 4125 out += sprintf(out, "ESSID: %s\n", essid); 4126 out += sprintf(out, "BSSID: %pM\n", bssid); 4127 out += sprintf(out, "Channel: %d\n", chan); 4128 4129 return out - buf; 4130 } 4131 4132 static DEVICE_ATTR_RO(bssinfo); 4133 4134 #ifdef CONFIG_IPW2100_DEBUG 4135 static ssize_t debug_level_show(struct device_driver *d, char *buf) 4136 { 4137 return sprintf(buf, "0x%08X\n", ipw2100_debug_level); 4138 } 4139 4140 static ssize_t debug_level_store(struct device_driver *d, 4141 const char *buf, size_t count) 4142 { 4143 u32 val; 4144 int ret; 4145 4146 ret = kstrtou32(buf, 0, &val); 4147 if (ret) 4148 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf); 4149 else 4150 ipw2100_debug_level = val; 4151 4152 return strnlen(buf, count); 4153 } 4154 static DRIVER_ATTR_RW(debug_level); 4155 #endif /* CONFIG_IPW2100_DEBUG */ 4156 4157 static ssize_t fatal_error_show(struct device *d, 4158 struct device_attribute *attr, char *buf) 4159 { 4160 struct ipw2100_priv *priv = dev_get_drvdata(d); 4161 char *out = buf; 4162 int i; 4163 4164 if (priv->fatal_error) 4165 out += sprintf(out, "0x%08X\n", priv->fatal_error); 4166 else 4167 out += sprintf(out, "0\n"); 4168 4169 for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) { 4170 if (!priv->fatal_errors[(priv->fatal_index - i) % 4171 IPW2100_ERROR_QUEUE]) 4172 continue; 4173 4174 out += sprintf(out, "%d. 0x%08X\n", i, 4175 priv->fatal_errors[(priv->fatal_index - i) % 4176 IPW2100_ERROR_QUEUE]); 4177 } 4178 4179 return out - buf; 4180 } 4181 4182 static ssize_t fatal_error_store(struct device *d, 4183 struct device_attribute *attr, const char *buf, 4184 size_t count) 4185 { 4186 struct ipw2100_priv *priv = dev_get_drvdata(d); 4187 schedule_reset(priv); 4188 return count; 4189 } 4190 4191 static DEVICE_ATTR_RW(fatal_error); 4192 4193 static ssize_t scan_age_show(struct device *d, struct device_attribute *attr, 4194 char *buf) 4195 { 4196 struct ipw2100_priv *priv = dev_get_drvdata(d); 4197 return sprintf(buf, "%d\n", priv->ieee->scan_age); 4198 } 4199 4200 static ssize_t scan_age_store(struct device *d, struct device_attribute *attr, 4201 const char *buf, size_t count) 4202 { 4203 struct ipw2100_priv *priv = dev_get_drvdata(d); 4204 struct net_device *dev = priv->net_dev; 4205 unsigned long val; 4206 int ret; 4207 4208 (void)dev; /* kill unused-var warning for debug-only code */ 4209 4210 IPW_DEBUG_INFO("enter\n"); 4211 4212 ret = kstrtoul(buf, 0, &val); 4213 if (ret) { 4214 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name); 4215 } else { 4216 priv->ieee->scan_age = val; 4217 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age); 4218 } 4219 4220 IPW_DEBUG_INFO("exit\n"); 4221 return strnlen(buf, count); 4222 } 4223 4224 static DEVICE_ATTR_RW(scan_age); 4225 4226 static ssize_t rf_kill_show(struct device *d, struct device_attribute *attr, 4227 char *buf) 4228 { 4229 /* 0 - RF kill not enabled 4230 1 - SW based RF kill active (sysfs) 4231 2 - HW based RF kill active 4232 3 - Both HW and SW baed RF kill active */ 4233 struct ipw2100_priv *priv = dev_get_drvdata(d); 4234 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) | 4235 (rf_kill_active(priv) ? 0x2 : 0x0); 4236 return sprintf(buf, "%i\n", val); 4237 } 4238 4239 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio) 4240 { 4241 if ((disable_radio ? 1 : 0) == 4242 (priv->status & STATUS_RF_KILL_SW ? 1 : 0)) 4243 return 0; 4244 4245 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n", 4246 disable_radio ? "OFF" : "ON"); 4247 4248 mutex_lock(&priv->action_mutex); 4249 4250 if (disable_radio) { 4251 priv->status |= STATUS_RF_KILL_SW; 4252 ipw2100_down(priv); 4253 } else { 4254 priv->status &= ~STATUS_RF_KILL_SW; 4255 if (rf_kill_active(priv)) { 4256 IPW_DEBUG_RF_KILL("Can not turn radio back on - " 4257 "disabled by HW switch\n"); 4258 /* Make sure the RF_KILL check timer is running */ 4259 priv->stop_rf_kill = 0; 4260 mod_delayed_work(system_wq, &priv->rf_kill, 4261 round_jiffies_relative(HZ)); 4262 } else 4263 schedule_reset(priv); 4264 } 4265 4266 mutex_unlock(&priv->action_mutex); 4267 return 1; 4268 } 4269 4270 static ssize_t rf_kill_store(struct device *d, struct device_attribute *attr, 4271 const char *buf, size_t count) 4272 { 4273 struct ipw2100_priv *priv = dev_get_drvdata(d); 4274 ipw_radio_kill_sw(priv, buf[0] == '1'); 4275 return count; 4276 } 4277 4278 static DEVICE_ATTR_RW(rf_kill); 4279 4280 static struct attribute *ipw2100_sysfs_entries[] = { 4281 &dev_attr_hardware.attr, 4282 &dev_attr_registers.attr, 4283 &dev_attr_ordinals.attr, 4284 &dev_attr_pci.attr, 4285 &dev_attr_stats.attr, 4286 &dev_attr_internals.attr, 4287 &dev_attr_bssinfo.attr, 4288 &dev_attr_memory.attr, 4289 &dev_attr_scan_age.attr, 4290 &dev_attr_fatal_error.attr, 4291 &dev_attr_rf_kill.attr, 4292 &dev_attr_cfg.attr, 4293 &dev_attr_status.attr, 4294 &dev_attr_capability.attr, 4295 NULL, 4296 }; 4297 4298 static const struct attribute_group ipw2100_attribute_group = { 4299 .attrs = ipw2100_sysfs_entries, 4300 }; 4301 4302 static int status_queue_allocate(struct ipw2100_priv *priv, int entries) 4303 { 4304 struct ipw2100_status_queue *q = &priv->status_queue; 4305 4306 IPW_DEBUG_INFO("enter\n"); 4307 4308 q->size = entries * sizeof(struct ipw2100_status); 4309 q->drv = dma_alloc_coherent(&priv->pci_dev->dev, q->size, &q->nic, 4310 GFP_KERNEL); 4311 if (!q->drv) { 4312 IPW_DEBUG_WARNING("Can not allocate status queue.\n"); 4313 return -ENOMEM; 4314 } 4315 4316 IPW_DEBUG_INFO("exit\n"); 4317 4318 return 0; 4319 } 4320 4321 static void status_queue_free(struct ipw2100_priv *priv) 4322 { 4323 IPW_DEBUG_INFO("enter\n"); 4324 4325 if (priv->status_queue.drv) { 4326 dma_free_coherent(&priv->pci_dev->dev, 4327 priv->status_queue.size, 4328 priv->status_queue.drv, 4329 priv->status_queue.nic); 4330 priv->status_queue.drv = NULL; 4331 } 4332 4333 IPW_DEBUG_INFO("exit\n"); 4334 } 4335 4336 static int bd_queue_allocate(struct ipw2100_priv *priv, 4337 struct ipw2100_bd_queue *q, int entries) 4338 { 4339 IPW_DEBUG_INFO("enter\n"); 4340 4341 memset(q, 0, sizeof(struct ipw2100_bd_queue)); 4342 4343 q->entries = entries; 4344 q->size = entries * sizeof(struct ipw2100_bd); 4345 q->drv = dma_alloc_coherent(&priv->pci_dev->dev, q->size, &q->nic, 4346 GFP_KERNEL); 4347 if (!q->drv) { 4348 IPW_DEBUG_INFO 4349 ("can't allocate shared memory for buffer descriptors\n"); 4350 return -ENOMEM; 4351 } 4352 4353 IPW_DEBUG_INFO("exit\n"); 4354 4355 return 0; 4356 } 4357 4358 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q) 4359 { 4360 IPW_DEBUG_INFO("enter\n"); 4361 4362 if (!q) 4363 return; 4364 4365 if (q->drv) { 4366 dma_free_coherent(&priv->pci_dev->dev, q->size, q->drv, 4367 q->nic); 4368 q->drv = NULL; 4369 } 4370 4371 IPW_DEBUG_INFO("exit\n"); 4372 } 4373 4374 static void bd_queue_initialize(struct ipw2100_priv *priv, 4375 struct ipw2100_bd_queue *q, u32 base, u32 size, 4376 u32 r, u32 w) 4377 { 4378 IPW_DEBUG_INFO("enter\n"); 4379 4380 IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv, 4381 (u32) q->nic); 4382 4383 write_register(priv->net_dev, base, q->nic); 4384 write_register(priv->net_dev, size, q->entries); 4385 write_register(priv->net_dev, r, q->oldest); 4386 write_register(priv->net_dev, w, q->next); 4387 4388 IPW_DEBUG_INFO("exit\n"); 4389 } 4390 4391 static void ipw2100_kill_works(struct ipw2100_priv *priv) 4392 { 4393 priv->stop_rf_kill = 1; 4394 priv->stop_hang_check = 1; 4395 cancel_delayed_work_sync(&priv->reset_work); 4396 cancel_delayed_work_sync(&priv->security_work); 4397 cancel_delayed_work_sync(&priv->wx_event_work); 4398 cancel_delayed_work_sync(&priv->hang_check); 4399 cancel_delayed_work_sync(&priv->rf_kill); 4400 cancel_delayed_work_sync(&priv->scan_event); 4401 } 4402 4403 static int ipw2100_tx_allocate(struct ipw2100_priv *priv) 4404 { 4405 int i, j, err; 4406 void *v; 4407 dma_addr_t p; 4408 4409 IPW_DEBUG_INFO("enter\n"); 4410 4411 err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH); 4412 if (err) { 4413 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n", 4414 priv->net_dev->name); 4415 return err; 4416 } 4417 4418 priv->tx_buffers = kmalloc_array(TX_PENDED_QUEUE_LENGTH, 4419 sizeof(struct ipw2100_tx_packet), 4420 GFP_KERNEL); 4421 if (!priv->tx_buffers) { 4422 bd_queue_free(priv, &priv->tx_queue); 4423 return -ENOMEM; 4424 } 4425 4426 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) { 4427 v = dma_alloc_coherent(&priv->pci_dev->dev, 4428 sizeof(struct ipw2100_data_header), &p, 4429 GFP_KERNEL); 4430 if (!v) { 4431 printk(KERN_ERR DRV_NAME 4432 ": %s: PCI alloc failed for tx " "buffers.\n", 4433 priv->net_dev->name); 4434 err = -ENOMEM; 4435 break; 4436 } 4437 4438 priv->tx_buffers[i].type = DATA; 4439 priv->tx_buffers[i].info.d_struct.data = 4440 (struct ipw2100_data_header *)v; 4441 priv->tx_buffers[i].info.d_struct.data_phys = p; 4442 priv->tx_buffers[i].info.d_struct.txb = NULL; 4443 } 4444 4445 if (i == TX_PENDED_QUEUE_LENGTH) 4446 return 0; 4447 4448 for (j = 0; j < i; j++) { 4449 dma_free_coherent(&priv->pci_dev->dev, 4450 sizeof(struct ipw2100_data_header), 4451 priv->tx_buffers[j].info.d_struct.data, 4452 priv->tx_buffers[j].info.d_struct.data_phys); 4453 } 4454 4455 kfree(priv->tx_buffers); 4456 priv->tx_buffers = NULL; 4457 4458 return err; 4459 } 4460 4461 static void ipw2100_tx_initialize(struct ipw2100_priv *priv) 4462 { 4463 int i; 4464 4465 IPW_DEBUG_INFO("enter\n"); 4466 4467 /* 4468 * reinitialize packet info lists 4469 */ 4470 INIT_LIST_HEAD(&priv->fw_pend_list); 4471 INIT_STAT(&priv->fw_pend_stat); 4472 4473 /* 4474 * reinitialize lists 4475 */ 4476 INIT_LIST_HEAD(&priv->tx_pend_list); 4477 INIT_LIST_HEAD(&priv->tx_free_list); 4478 INIT_STAT(&priv->tx_pend_stat); 4479 INIT_STAT(&priv->tx_free_stat); 4480 4481 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) { 4482 /* We simply drop any SKBs that have been queued for 4483 * transmit */ 4484 if (priv->tx_buffers[i].info.d_struct.txb) { 4485 libipw_txb_free(priv->tx_buffers[i].info.d_struct. 4486 txb); 4487 priv->tx_buffers[i].info.d_struct.txb = NULL; 4488 } 4489 4490 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list); 4491 } 4492 4493 SET_STAT(&priv->tx_free_stat, i); 4494 4495 priv->tx_queue.oldest = 0; 4496 priv->tx_queue.available = priv->tx_queue.entries; 4497 priv->tx_queue.next = 0; 4498 INIT_STAT(&priv->txq_stat); 4499 SET_STAT(&priv->txq_stat, priv->tx_queue.available); 4500 4501 bd_queue_initialize(priv, &priv->tx_queue, 4502 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE, 4503 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE, 4504 IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX, 4505 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX); 4506 4507 IPW_DEBUG_INFO("exit\n"); 4508 4509 } 4510 4511 static void ipw2100_tx_free(struct ipw2100_priv *priv) 4512 { 4513 int i; 4514 4515 IPW_DEBUG_INFO("enter\n"); 4516 4517 bd_queue_free(priv, &priv->tx_queue); 4518 4519 if (!priv->tx_buffers) 4520 return; 4521 4522 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) { 4523 if (priv->tx_buffers[i].info.d_struct.txb) { 4524 libipw_txb_free(priv->tx_buffers[i].info.d_struct. 4525 txb); 4526 priv->tx_buffers[i].info.d_struct.txb = NULL; 4527 } 4528 if (priv->tx_buffers[i].info.d_struct.data) 4529 dma_free_coherent(&priv->pci_dev->dev, 4530 sizeof(struct ipw2100_data_header), 4531 priv->tx_buffers[i].info.d_struct.data, 4532 priv->tx_buffers[i].info.d_struct.data_phys); 4533 } 4534 4535 kfree(priv->tx_buffers); 4536 priv->tx_buffers = NULL; 4537 4538 IPW_DEBUG_INFO("exit\n"); 4539 } 4540 4541 static int ipw2100_rx_allocate(struct ipw2100_priv *priv) 4542 { 4543 int i, j, err = -EINVAL; 4544 4545 IPW_DEBUG_INFO("enter\n"); 4546 4547 err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH); 4548 if (err) { 4549 IPW_DEBUG_INFO("failed bd_queue_allocate\n"); 4550 return err; 4551 } 4552 4553 err = status_queue_allocate(priv, RX_QUEUE_LENGTH); 4554 if (err) { 4555 IPW_DEBUG_INFO("failed status_queue_allocate\n"); 4556 bd_queue_free(priv, &priv->rx_queue); 4557 return err; 4558 } 4559 4560 /* 4561 * allocate packets 4562 */ 4563 priv->rx_buffers = kmalloc_array(RX_QUEUE_LENGTH, 4564 sizeof(struct ipw2100_rx_packet), 4565 GFP_KERNEL); 4566 if (!priv->rx_buffers) { 4567 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n"); 4568 4569 bd_queue_free(priv, &priv->rx_queue); 4570 4571 status_queue_free(priv); 4572 4573 return -ENOMEM; 4574 } 4575 4576 for (i = 0; i < RX_QUEUE_LENGTH; i++) { 4577 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i]; 4578 4579 err = ipw2100_alloc_skb(priv, packet); 4580 if (unlikely(err)) { 4581 err = -ENOMEM; 4582 break; 4583 } 4584 4585 /* The BD holds the cache aligned address */ 4586 priv->rx_queue.drv[i].host_addr = packet->dma_addr; 4587 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH; 4588 priv->status_queue.drv[i].status_fields = 0; 4589 } 4590 4591 if (i == RX_QUEUE_LENGTH) 4592 return 0; 4593 4594 for (j = 0; j < i; j++) { 4595 dma_unmap_single(&priv->pci_dev->dev, 4596 priv->rx_buffers[j].dma_addr, 4597 sizeof(struct ipw2100_rx_packet), 4598 DMA_FROM_DEVICE); 4599 dev_kfree_skb(priv->rx_buffers[j].skb); 4600 } 4601 4602 kfree(priv->rx_buffers); 4603 priv->rx_buffers = NULL; 4604 4605 bd_queue_free(priv, &priv->rx_queue); 4606 4607 status_queue_free(priv); 4608 4609 return err; 4610 } 4611 4612 static void ipw2100_rx_initialize(struct ipw2100_priv *priv) 4613 { 4614 IPW_DEBUG_INFO("enter\n"); 4615 4616 priv->rx_queue.oldest = 0; 4617 priv->rx_queue.available = priv->rx_queue.entries - 1; 4618 priv->rx_queue.next = priv->rx_queue.entries - 1; 4619 4620 INIT_STAT(&priv->rxq_stat); 4621 SET_STAT(&priv->rxq_stat, priv->rx_queue.available); 4622 4623 bd_queue_initialize(priv, &priv->rx_queue, 4624 IPW_MEM_HOST_SHARED_RX_BD_BASE, 4625 IPW_MEM_HOST_SHARED_RX_BD_SIZE, 4626 IPW_MEM_HOST_SHARED_RX_READ_INDEX, 4627 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX); 4628 4629 /* set up the status queue */ 4630 write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE, 4631 priv->status_queue.nic); 4632 4633 IPW_DEBUG_INFO("exit\n"); 4634 } 4635 4636 static void ipw2100_rx_free(struct ipw2100_priv *priv) 4637 { 4638 int i; 4639 4640 IPW_DEBUG_INFO("enter\n"); 4641 4642 bd_queue_free(priv, &priv->rx_queue); 4643 status_queue_free(priv); 4644 4645 if (!priv->rx_buffers) 4646 return; 4647 4648 for (i = 0; i < RX_QUEUE_LENGTH; i++) { 4649 if (priv->rx_buffers[i].rxp) { 4650 dma_unmap_single(&priv->pci_dev->dev, 4651 priv->rx_buffers[i].dma_addr, 4652 sizeof(struct ipw2100_rx), 4653 DMA_FROM_DEVICE); 4654 dev_kfree_skb(priv->rx_buffers[i].skb); 4655 } 4656 } 4657 4658 kfree(priv->rx_buffers); 4659 priv->rx_buffers = NULL; 4660 4661 IPW_DEBUG_INFO("exit\n"); 4662 } 4663 4664 static int ipw2100_read_mac_address(struct ipw2100_priv *priv) 4665 { 4666 u32 length = ETH_ALEN; 4667 u8 addr[ETH_ALEN]; 4668 4669 int err; 4670 4671 err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length); 4672 if (err) { 4673 IPW_DEBUG_INFO("MAC address read failed\n"); 4674 return -EIO; 4675 } 4676 4677 eth_hw_addr_set(priv->net_dev, addr); 4678 IPW_DEBUG_INFO("card MAC is %pM\n", priv->net_dev->dev_addr); 4679 4680 return 0; 4681 } 4682 4683 /******************************************************************** 4684 * 4685 * Firmware Commands 4686 * 4687 ********************************************************************/ 4688 4689 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode) 4690 { 4691 struct host_command cmd = { 4692 .host_command = ADAPTER_ADDRESS, 4693 .host_command_sequence = 0, 4694 .host_command_length = ETH_ALEN 4695 }; 4696 int err; 4697 4698 IPW_DEBUG_HC("SET_MAC_ADDRESS\n"); 4699 4700 IPW_DEBUG_INFO("enter\n"); 4701 4702 if (priv->config & CFG_CUSTOM_MAC) { 4703 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN); 4704 eth_hw_addr_set(priv->net_dev, priv->mac_addr); 4705 } else 4706 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr, 4707 ETH_ALEN); 4708 4709 err = ipw2100_hw_send_command(priv, &cmd); 4710 4711 IPW_DEBUG_INFO("exit\n"); 4712 return err; 4713 } 4714 4715 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type, 4716 int batch_mode) 4717 { 4718 struct host_command cmd = { 4719 .host_command = PORT_TYPE, 4720 .host_command_sequence = 0, 4721 .host_command_length = sizeof(u32) 4722 }; 4723 int err; 4724 4725 switch (port_type) { 4726 case IW_MODE_INFRA: 4727 cmd.host_command_parameters[0] = IPW_BSS; 4728 break; 4729 case IW_MODE_ADHOC: 4730 cmd.host_command_parameters[0] = IPW_IBSS; 4731 break; 4732 } 4733 4734 IPW_DEBUG_HC("PORT_TYPE: %s\n", 4735 port_type == IPW_IBSS ? "Ad-Hoc" : "Managed"); 4736 4737 if (!batch_mode) { 4738 err = ipw2100_disable_adapter(priv); 4739 if (err) { 4740 printk(KERN_ERR DRV_NAME 4741 ": %s: Could not disable adapter %d\n", 4742 priv->net_dev->name, err); 4743 return err; 4744 } 4745 } 4746 4747 /* send cmd to firmware */ 4748 err = ipw2100_hw_send_command(priv, &cmd); 4749 4750 if (!batch_mode) 4751 ipw2100_enable_adapter(priv); 4752 4753 return err; 4754 } 4755 4756 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel, 4757 int batch_mode) 4758 { 4759 struct host_command cmd = { 4760 .host_command = CHANNEL, 4761 .host_command_sequence = 0, 4762 .host_command_length = sizeof(u32) 4763 }; 4764 int err; 4765 4766 cmd.host_command_parameters[0] = channel; 4767 4768 IPW_DEBUG_HC("CHANNEL: %d\n", channel); 4769 4770 /* If BSS then we don't support channel selection */ 4771 if (priv->ieee->iw_mode == IW_MODE_INFRA) 4772 return 0; 4773 4774 if ((channel != 0) && 4775 ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL))) 4776 return -EINVAL; 4777 4778 if (!batch_mode) { 4779 err = ipw2100_disable_adapter(priv); 4780 if (err) 4781 return err; 4782 } 4783 4784 err = ipw2100_hw_send_command(priv, &cmd); 4785 if (err) { 4786 IPW_DEBUG_INFO("Failed to set channel to %d", channel); 4787 return err; 4788 } 4789 4790 if (channel) 4791 priv->config |= CFG_STATIC_CHANNEL; 4792 else 4793 priv->config &= ~CFG_STATIC_CHANNEL; 4794 4795 priv->channel = channel; 4796 4797 if (!batch_mode) { 4798 err = ipw2100_enable_adapter(priv); 4799 if (err) 4800 return err; 4801 } 4802 4803 return 0; 4804 } 4805 4806 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode) 4807 { 4808 struct host_command cmd = { 4809 .host_command = SYSTEM_CONFIG, 4810 .host_command_sequence = 0, 4811 .host_command_length = 12, 4812 }; 4813 u32 ibss_mask, len = sizeof(u32); 4814 int err; 4815 4816 /* Set system configuration */ 4817 4818 if (!batch_mode) { 4819 err = ipw2100_disable_adapter(priv); 4820 if (err) 4821 return err; 4822 } 4823 4824 if (priv->ieee->iw_mode == IW_MODE_ADHOC) 4825 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START; 4826 4827 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK | 4828 IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE; 4829 4830 if (!(priv->config & CFG_LONG_PREAMBLE)) 4831 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO; 4832 4833 err = ipw2100_get_ordinal(priv, 4834 IPW_ORD_EEPROM_IBSS_11B_CHANNELS, 4835 &ibss_mask, &len); 4836 if (err) 4837 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK; 4838 4839 cmd.host_command_parameters[1] = REG_CHANNEL_MASK; 4840 cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask; 4841 4842 /* 11b only */ 4843 /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */ 4844 4845 err = ipw2100_hw_send_command(priv, &cmd); 4846 if (err) 4847 return err; 4848 4849 /* If IPv6 is configured in the kernel then we don't want to filter out all 4850 * of the multicast packets as IPv6 needs some. */ 4851 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE) 4852 cmd.host_command = ADD_MULTICAST; 4853 cmd.host_command_sequence = 0; 4854 cmd.host_command_length = 0; 4855 4856 ipw2100_hw_send_command(priv, &cmd); 4857 #endif 4858 if (!batch_mode) { 4859 err = ipw2100_enable_adapter(priv); 4860 if (err) 4861 return err; 4862 } 4863 4864 return 0; 4865 } 4866 4867 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate, 4868 int batch_mode) 4869 { 4870 struct host_command cmd = { 4871 .host_command = BASIC_TX_RATES, 4872 .host_command_sequence = 0, 4873 .host_command_length = 4 4874 }; 4875 int err; 4876 4877 cmd.host_command_parameters[0] = rate & TX_RATE_MASK; 4878 4879 if (!batch_mode) { 4880 err = ipw2100_disable_adapter(priv); 4881 if (err) 4882 return err; 4883 } 4884 4885 /* Set BASIC TX Rate first */ 4886 ipw2100_hw_send_command(priv, &cmd); 4887 4888 /* Set TX Rate */ 4889 cmd.host_command = TX_RATES; 4890 ipw2100_hw_send_command(priv, &cmd); 4891 4892 /* Set MSDU TX Rate */ 4893 cmd.host_command = MSDU_TX_RATES; 4894 ipw2100_hw_send_command(priv, &cmd); 4895 4896 if (!batch_mode) { 4897 err = ipw2100_enable_adapter(priv); 4898 if (err) 4899 return err; 4900 } 4901 4902 priv->tx_rates = rate; 4903 4904 return 0; 4905 } 4906 4907 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level) 4908 { 4909 struct host_command cmd = { 4910 .host_command = POWER_MODE, 4911 .host_command_sequence = 0, 4912 .host_command_length = 4 4913 }; 4914 int err; 4915 4916 cmd.host_command_parameters[0] = power_level; 4917 4918 err = ipw2100_hw_send_command(priv, &cmd); 4919 if (err) 4920 return err; 4921 4922 if (power_level == IPW_POWER_MODE_CAM) 4923 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode); 4924 else 4925 priv->power_mode = IPW_POWER_ENABLED | power_level; 4926 4927 #ifdef IPW2100_TX_POWER 4928 if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) { 4929 /* Set beacon interval */ 4930 cmd.host_command = TX_POWER_INDEX; 4931 cmd.host_command_parameters[0] = (u32) priv->adhoc_power; 4932 4933 err = ipw2100_hw_send_command(priv, &cmd); 4934 if (err) 4935 return err; 4936 } 4937 #endif 4938 4939 return 0; 4940 } 4941 4942 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold) 4943 { 4944 struct host_command cmd = { 4945 .host_command = RTS_THRESHOLD, 4946 .host_command_sequence = 0, 4947 .host_command_length = 4 4948 }; 4949 int err; 4950 4951 if (threshold & RTS_DISABLED) 4952 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD; 4953 else 4954 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED; 4955 4956 err = ipw2100_hw_send_command(priv, &cmd); 4957 if (err) 4958 return err; 4959 4960 priv->rts_threshold = threshold; 4961 4962 return 0; 4963 } 4964 4965 #if 0 4966 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv, 4967 u32 threshold, int batch_mode) 4968 { 4969 struct host_command cmd = { 4970 .host_command = FRAG_THRESHOLD, 4971 .host_command_sequence = 0, 4972 .host_command_length = 4, 4973 .host_command_parameters[0] = 0, 4974 }; 4975 int err; 4976 4977 if (!batch_mode) { 4978 err = ipw2100_disable_adapter(priv); 4979 if (err) 4980 return err; 4981 } 4982 4983 if (threshold == 0) 4984 threshold = DEFAULT_FRAG_THRESHOLD; 4985 else { 4986 threshold = max(threshold, MIN_FRAG_THRESHOLD); 4987 threshold = min(threshold, MAX_FRAG_THRESHOLD); 4988 } 4989 4990 cmd.host_command_parameters[0] = threshold; 4991 4992 IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold); 4993 4994 err = ipw2100_hw_send_command(priv, &cmd); 4995 4996 if (!batch_mode) 4997 ipw2100_enable_adapter(priv); 4998 4999 if (!err) 5000 priv->frag_threshold = threshold; 5001 5002 return err; 5003 } 5004 #endif 5005 5006 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry) 5007 { 5008 struct host_command cmd = { 5009 .host_command = SHORT_RETRY_LIMIT, 5010 .host_command_sequence = 0, 5011 .host_command_length = 4 5012 }; 5013 int err; 5014 5015 cmd.host_command_parameters[0] = retry; 5016 5017 err = ipw2100_hw_send_command(priv, &cmd); 5018 if (err) 5019 return err; 5020 5021 priv->short_retry_limit = retry; 5022 5023 return 0; 5024 } 5025 5026 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry) 5027 { 5028 struct host_command cmd = { 5029 .host_command = LONG_RETRY_LIMIT, 5030 .host_command_sequence = 0, 5031 .host_command_length = 4 5032 }; 5033 int err; 5034 5035 cmd.host_command_parameters[0] = retry; 5036 5037 err = ipw2100_hw_send_command(priv, &cmd); 5038 if (err) 5039 return err; 5040 5041 priv->long_retry_limit = retry; 5042 5043 return 0; 5044 } 5045 5046 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid, 5047 int batch_mode) 5048 { 5049 struct host_command cmd = { 5050 .host_command = MANDATORY_BSSID, 5051 .host_command_sequence = 0, 5052 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN 5053 }; 5054 int err; 5055 5056 #ifdef CONFIG_IPW2100_DEBUG 5057 if (bssid != NULL) 5058 IPW_DEBUG_HC("MANDATORY_BSSID: %pM\n", bssid); 5059 else 5060 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n"); 5061 #endif 5062 /* if BSSID is empty then we disable mandatory bssid mode */ 5063 if (bssid != NULL) 5064 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN); 5065 5066 if (!batch_mode) { 5067 err = ipw2100_disable_adapter(priv); 5068 if (err) 5069 return err; 5070 } 5071 5072 err = ipw2100_hw_send_command(priv, &cmd); 5073 5074 if (!batch_mode) 5075 ipw2100_enable_adapter(priv); 5076 5077 return err; 5078 } 5079 5080 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv) 5081 { 5082 struct host_command cmd = { 5083 .host_command = DISASSOCIATION_BSSID, 5084 .host_command_sequence = 0, 5085 .host_command_length = ETH_ALEN 5086 }; 5087 int err; 5088 5089 IPW_DEBUG_HC("DISASSOCIATION_BSSID\n"); 5090 5091 /* The Firmware currently ignores the BSSID and just disassociates from 5092 * the currently associated AP -- but in the off chance that a future 5093 * firmware does use the BSSID provided here, we go ahead and try and 5094 * set it to the currently associated AP's BSSID */ 5095 memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN); 5096 5097 err = ipw2100_hw_send_command(priv, &cmd); 5098 5099 return err; 5100 } 5101 5102 static int ipw2100_set_wpa_ie(struct ipw2100_priv *, 5103 struct ipw2100_wpa_assoc_frame *, int) 5104 __attribute__ ((unused)); 5105 5106 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv, 5107 struct ipw2100_wpa_assoc_frame *wpa_frame, 5108 int batch_mode) 5109 { 5110 struct host_command cmd = { 5111 .host_command = SET_WPA_IE, 5112 .host_command_sequence = 0, 5113 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame), 5114 }; 5115 int err; 5116 5117 IPW_DEBUG_HC("SET_WPA_IE\n"); 5118 5119 if (!batch_mode) { 5120 err = ipw2100_disable_adapter(priv); 5121 if (err) 5122 return err; 5123 } 5124 5125 memcpy(cmd.host_command_parameters, wpa_frame, 5126 sizeof(struct ipw2100_wpa_assoc_frame)); 5127 5128 err = ipw2100_hw_send_command(priv, &cmd); 5129 5130 if (!batch_mode) { 5131 if (ipw2100_enable_adapter(priv)) 5132 err = -EIO; 5133 } 5134 5135 return err; 5136 } 5137 5138 struct security_info_params { 5139 u32 allowed_ciphers; 5140 u16 version; 5141 u8 auth_mode; 5142 u8 replay_counters_number; 5143 u8 unicast_using_group; 5144 } __packed; 5145 5146 static int ipw2100_set_security_information(struct ipw2100_priv *priv, 5147 int auth_mode, 5148 int security_level, 5149 int unicast_using_group, 5150 int batch_mode) 5151 { 5152 struct host_command cmd = { 5153 .host_command = SET_SECURITY_INFORMATION, 5154 .host_command_sequence = 0, 5155 .host_command_length = sizeof(struct security_info_params) 5156 }; 5157 struct security_info_params *security = 5158 (struct security_info_params *)&cmd.host_command_parameters; 5159 int err; 5160 memset(security, 0, sizeof(*security)); 5161 5162 /* If shared key AP authentication is turned on, then we need to 5163 * configure the firmware to try and use it. 5164 * 5165 * Actual data encryption/decryption is handled by the host. */ 5166 security->auth_mode = auth_mode; 5167 security->unicast_using_group = unicast_using_group; 5168 5169 switch (security_level) { 5170 default: 5171 case SEC_LEVEL_0: 5172 security->allowed_ciphers = IPW_NONE_CIPHER; 5173 break; 5174 case SEC_LEVEL_1: 5175 security->allowed_ciphers = IPW_WEP40_CIPHER | 5176 IPW_WEP104_CIPHER; 5177 break; 5178 case SEC_LEVEL_2: 5179 security->allowed_ciphers = IPW_WEP40_CIPHER | 5180 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER; 5181 break; 5182 case SEC_LEVEL_2_CKIP: 5183 security->allowed_ciphers = IPW_WEP40_CIPHER | 5184 IPW_WEP104_CIPHER | IPW_CKIP_CIPHER; 5185 break; 5186 case SEC_LEVEL_3: 5187 security->allowed_ciphers = IPW_WEP40_CIPHER | 5188 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER; 5189 break; 5190 } 5191 5192 IPW_DEBUG_HC 5193 ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n", 5194 security->auth_mode, security->allowed_ciphers, security_level); 5195 5196 security->replay_counters_number = 0; 5197 5198 if (!batch_mode) { 5199 err = ipw2100_disable_adapter(priv); 5200 if (err) 5201 return err; 5202 } 5203 5204 err = ipw2100_hw_send_command(priv, &cmd); 5205 5206 if (!batch_mode) 5207 ipw2100_enable_adapter(priv); 5208 5209 return err; 5210 } 5211 5212 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power) 5213 { 5214 struct host_command cmd = { 5215 .host_command = TX_POWER_INDEX, 5216 .host_command_sequence = 0, 5217 .host_command_length = 4 5218 }; 5219 int err = 0; 5220 u32 tmp = tx_power; 5221 5222 if (tx_power != IPW_TX_POWER_DEFAULT) 5223 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 / 5224 (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM); 5225 5226 cmd.host_command_parameters[0] = tmp; 5227 5228 if (priv->ieee->iw_mode == IW_MODE_ADHOC) 5229 err = ipw2100_hw_send_command(priv, &cmd); 5230 if (!err) 5231 priv->tx_power = tx_power; 5232 5233 return 0; 5234 } 5235 5236 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv, 5237 u32 interval, int batch_mode) 5238 { 5239 struct host_command cmd = { 5240 .host_command = BEACON_INTERVAL, 5241 .host_command_sequence = 0, 5242 .host_command_length = 4 5243 }; 5244 int err; 5245 5246 cmd.host_command_parameters[0] = interval; 5247 5248 IPW_DEBUG_INFO("enter\n"); 5249 5250 if (priv->ieee->iw_mode == IW_MODE_ADHOC) { 5251 if (!batch_mode) { 5252 err = ipw2100_disable_adapter(priv); 5253 if (err) 5254 return err; 5255 } 5256 5257 ipw2100_hw_send_command(priv, &cmd); 5258 5259 if (!batch_mode) { 5260 err = ipw2100_enable_adapter(priv); 5261 if (err) 5262 return err; 5263 } 5264 } 5265 5266 IPW_DEBUG_INFO("exit\n"); 5267 5268 return 0; 5269 } 5270 5271 static void ipw2100_queues_initialize(struct ipw2100_priv *priv) 5272 { 5273 ipw2100_tx_initialize(priv); 5274 ipw2100_rx_initialize(priv); 5275 ipw2100_msg_initialize(priv); 5276 } 5277 5278 static void ipw2100_queues_free(struct ipw2100_priv *priv) 5279 { 5280 ipw2100_tx_free(priv); 5281 ipw2100_rx_free(priv); 5282 ipw2100_msg_free(priv); 5283 } 5284 5285 static int ipw2100_queues_allocate(struct ipw2100_priv *priv) 5286 { 5287 if (ipw2100_tx_allocate(priv) || 5288 ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv)) 5289 goto fail; 5290 5291 return 0; 5292 5293 fail: 5294 ipw2100_tx_free(priv); 5295 ipw2100_rx_free(priv); 5296 ipw2100_msg_free(priv); 5297 return -ENOMEM; 5298 } 5299 5300 #define IPW_PRIVACY_CAPABLE 0x0008 5301 5302 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags, 5303 int batch_mode) 5304 { 5305 struct host_command cmd = { 5306 .host_command = WEP_FLAGS, 5307 .host_command_sequence = 0, 5308 .host_command_length = 4 5309 }; 5310 int err; 5311 5312 cmd.host_command_parameters[0] = flags; 5313 5314 IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags); 5315 5316 if (!batch_mode) { 5317 err = ipw2100_disable_adapter(priv); 5318 if (err) { 5319 printk(KERN_ERR DRV_NAME 5320 ": %s: Could not disable adapter %d\n", 5321 priv->net_dev->name, err); 5322 return err; 5323 } 5324 } 5325 5326 /* send cmd to firmware */ 5327 err = ipw2100_hw_send_command(priv, &cmd); 5328 5329 if (!batch_mode) 5330 ipw2100_enable_adapter(priv); 5331 5332 return err; 5333 } 5334 5335 struct ipw2100_wep_key { 5336 u8 idx; 5337 u8 len; 5338 u8 key[13]; 5339 }; 5340 5341 /* Macros to ease up priting WEP keys */ 5342 #define WEP_FMT_64 "%02X%02X%02X%02X-%02X" 5343 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X" 5344 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4] 5345 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10] 5346 5347 /** 5348 * ipw2100_set_key() - Set a the wep key 5349 * 5350 * @priv: struct to work on 5351 * @idx: index of the key we want to set 5352 * @key: ptr to the key data to set 5353 * @len: length of the buffer at @key 5354 * @batch_mode: FIXME perform the operation in batch mode, not 5355 * disabling the device. 5356 * 5357 * @returns 0 if OK, < 0 errno code on error. 5358 * 5359 * Fill out a command structure with the new wep key, length an 5360 * index and send it down the wire. 5361 */ 5362 static int ipw2100_set_key(struct ipw2100_priv *priv, 5363 int idx, char *key, int len, int batch_mode) 5364 { 5365 int keylen = len ? (len <= 5 ? 5 : 13) : 0; 5366 struct host_command cmd = { 5367 .host_command = WEP_KEY_INFO, 5368 .host_command_sequence = 0, 5369 .host_command_length = sizeof(struct ipw2100_wep_key), 5370 }; 5371 struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters; 5372 int err; 5373 5374 IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n", 5375 idx, keylen, len); 5376 5377 /* NOTE: We don't check cached values in case the firmware was reset 5378 * or some other problem is occurring. If the user is setting the key, 5379 * then we push the change */ 5380 5381 wep_key->idx = idx; 5382 wep_key->len = keylen; 5383 5384 if (keylen) { 5385 memcpy(wep_key->key, key, len); 5386 memset(wep_key->key + len, 0, keylen - len); 5387 } 5388 5389 /* Will be optimized out on debug not being configured in */ 5390 if (keylen == 0) 5391 IPW_DEBUG_WEP("%s: Clearing key %d\n", 5392 priv->net_dev->name, wep_key->idx); 5393 else if (keylen == 5) 5394 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n", 5395 priv->net_dev->name, wep_key->idx, wep_key->len, 5396 WEP_STR_64(wep_key->key)); 5397 else 5398 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128 5399 "\n", 5400 priv->net_dev->name, wep_key->idx, wep_key->len, 5401 WEP_STR_128(wep_key->key)); 5402 5403 if (!batch_mode) { 5404 err = ipw2100_disable_adapter(priv); 5405 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */ 5406 if (err) { 5407 printk(KERN_ERR DRV_NAME 5408 ": %s: Could not disable adapter %d\n", 5409 priv->net_dev->name, err); 5410 return err; 5411 } 5412 } 5413 5414 /* send cmd to firmware */ 5415 err = ipw2100_hw_send_command(priv, &cmd); 5416 5417 if (!batch_mode) { 5418 int err2 = ipw2100_enable_adapter(priv); 5419 if (err == 0) 5420 err = err2; 5421 } 5422 return err; 5423 } 5424 5425 static int ipw2100_set_key_index(struct ipw2100_priv *priv, 5426 int idx, int batch_mode) 5427 { 5428 struct host_command cmd = { 5429 .host_command = WEP_KEY_INDEX, 5430 .host_command_sequence = 0, 5431 .host_command_length = 4, 5432 .host_command_parameters = {idx}, 5433 }; 5434 int err; 5435 5436 IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx); 5437 5438 if (idx < 0 || idx > 3) 5439 return -EINVAL; 5440 5441 if (!batch_mode) { 5442 err = ipw2100_disable_adapter(priv); 5443 if (err) { 5444 printk(KERN_ERR DRV_NAME 5445 ": %s: Could not disable adapter %d\n", 5446 priv->net_dev->name, err); 5447 return err; 5448 } 5449 } 5450 5451 /* send cmd to firmware */ 5452 err = ipw2100_hw_send_command(priv, &cmd); 5453 5454 if (!batch_mode) 5455 ipw2100_enable_adapter(priv); 5456 5457 return err; 5458 } 5459 5460 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode) 5461 { 5462 int i, err, auth_mode, sec_level, use_group; 5463 5464 if (!(priv->status & STATUS_RUNNING)) 5465 return 0; 5466 5467 if (!batch_mode) { 5468 err = ipw2100_disable_adapter(priv); 5469 if (err) 5470 return err; 5471 } 5472 5473 if (!priv->ieee->sec.enabled) { 5474 err = 5475 ipw2100_set_security_information(priv, IPW_AUTH_OPEN, 5476 SEC_LEVEL_0, 0, 1); 5477 } else { 5478 auth_mode = IPW_AUTH_OPEN; 5479 if (priv->ieee->sec.flags & SEC_AUTH_MODE) { 5480 if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY) 5481 auth_mode = IPW_AUTH_SHARED; 5482 else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP) 5483 auth_mode = IPW_AUTH_LEAP_CISCO_ID; 5484 } 5485 5486 sec_level = SEC_LEVEL_0; 5487 if (priv->ieee->sec.flags & SEC_LEVEL) 5488 sec_level = priv->ieee->sec.level; 5489 5490 use_group = 0; 5491 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP) 5492 use_group = priv->ieee->sec.unicast_uses_group; 5493 5494 err = 5495 ipw2100_set_security_information(priv, auth_mode, sec_level, 5496 use_group, 1); 5497 } 5498 5499 if (err) 5500 goto exit; 5501 5502 if (priv->ieee->sec.enabled) { 5503 for (i = 0; i < 4; i++) { 5504 if (!(priv->ieee->sec.flags & (1 << i))) { 5505 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN); 5506 priv->ieee->sec.key_sizes[i] = 0; 5507 } else { 5508 err = ipw2100_set_key(priv, i, 5509 priv->ieee->sec.keys[i], 5510 priv->ieee->sec. 5511 key_sizes[i], 1); 5512 if (err) 5513 goto exit; 5514 } 5515 } 5516 5517 ipw2100_set_key_index(priv, priv->ieee->crypt_info.tx_keyidx, 1); 5518 } 5519 5520 /* Always enable privacy so the Host can filter WEP packets if 5521 * encrypted data is sent up */ 5522 err = 5523 ipw2100_set_wep_flags(priv, 5524 priv->ieee->sec. 5525 enabled ? IPW_PRIVACY_CAPABLE : 0, 1); 5526 if (err) 5527 goto exit; 5528 5529 priv->status &= ~STATUS_SECURITY_UPDATED; 5530 5531 exit: 5532 if (!batch_mode) 5533 ipw2100_enable_adapter(priv); 5534 5535 return err; 5536 } 5537 5538 static void ipw2100_security_work(struct work_struct *work) 5539 { 5540 struct ipw2100_priv *priv = 5541 container_of(work, struct ipw2100_priv, security_work.work); 5542 5543 /* If we happen to have reconnected before we get a chance to 5544 * process this, then update the security settings--which causes 5545 * a disassociation to occur */ 5546 if (!(priv->status & STATUS_ASSOCIATED) && 5547 priv->status & STATUS_SECURITY_UPDATED) 5548 ipw2100_configure_security(priv, 0); 5549 } 5550 5551 static void shim__set_security(struct net_device *dev, 5552 struct libipw_security *sec) 5553 { 5554 struct ipw2100_priv *priv = libipw_priv(dev); 5555 int i; 5556 5557 mutex_lock(&priv->action_mutex); 5558 if (!(priv->status & STATUS_INITIALIZED)) 5559 goto done; 5560 5561 for (i = 0; i < 4; i++) { 5562 if (sec->flags & (1 << i)) { 5563 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i]; 5564 if (sec->key_sizes[i] == 0) 5565 priv->ieee->sec.flags &= ~(1 << i); 5566 else 5567 memcpy(priv->ieee->sec.keys[i], sec->keys[i], 5568 sec->key_sizes[i]); 5569 if (sec->level == SEC_LEVEL_1) { 5570 priv->ieee->sec.flags |= (1 << i); 5571 priv->status |= STATUS_SECURITY_UPDATED; 5572 } else 5573 priv->ieee->sec.flags &= ~(1 << i); 5574 } 5575 } 5576 5577 if ((sec->flags & SEC_ACTIVE_KEY) && 5578 priv->ieee->sec.active_key != sec->active_key) { 5579 priv->ieee->sec.active_key = sec->active_key; 5580 priv->ieee->sec.flags |= SEC_ACTIVE_KEY; 5581 priv->status |= STATUS_SECURITY_UPDATED; 5582 } 5583 5584 if ((sec->flags & SEC_AUTH_MODE) && 5585 (priv->ieee->sec.auth_mode != sec->auth_mode)) { 5586 priv->ieee->sec.auth_mode = sec->auth_mode; 5587 priv->ieee->sec.flags |= SEC_AUTH_MODE; 5588 priv->status |= STATUS_SECURITY_UPDATED; 5589 } 5590 5591 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) { 5592 priv->ieee->sec.flags |= SEC_ENABLED; 5593 priv->ieee->sec.enabled = sec->enabled; 5594 priv->status |= STATUS_SECURITY_UPDATED; 5595 } 5596 5597 if (sec->flags & SEC_ENCRYPT) 5598 priv->ieee->sec.encrypt = sec->encrypt; 5599 5600 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) { 5601 priv->ieee->sec.level = sec->level; 5602 priv->ieee->sec.flags |= SEC_LEVEL; 5603 priv->status |= STATUS_SECURITY_UPDATED; 5604 } 5605 5606 IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n", 5607 priv->ieee->sec.flags & (1 << 8) ? '1' : '0', 5608 priv->ieee->sec.flags & (1 << 7) ? '1' : '0', 5609 priv->ieee->sec.flags & (1 << 6) ? '1' : '0', 5610 priv->ieee->sec.flags & (1 << 5) ? '1' : '0', 5611 priv->ieee->sec.flags & (1 << 4) ? '1' : '0', 5612 priv->ieee->sec.flags & (1 << 3) ? '1' : '0', 5613 priv->ieee->sec.flags & (1 << 2) ? '1' : '0', 5614 priv->ieee->sec.flags & (1 << 1) ? '1' : '0', 5615 priv->ieee->sec.flags & (1 << 0) ? '1' : '0'); 5616 5617 /* As a temporary work around to enable WPA until we figure out why 5618 * wpa_supplicant toggles the security capability of the driver, which 5619 * forces a disassociation with force_update... 5620 * 5621 * if (force_update || !(priv->status & STATUS_ASSOCIATED))*/ 5622 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) 5623 ipw2100_configure_security(priv, 0); 5624 done: 5625 mutex_unlock(&priv->action_mutex); 5626 } 5627 5628 static int ipw2100_adapter_setup(struct ipw2100_priv *priv) 5629 { 5630 int err; 5631 int batch_mode = 1; 5632 u8 *bssid; 5633 5634 IPW_DEBUG_INFO("enter\n"); 5635 5636 err = ipw2100_disable_adapter(priv); 5637 if (err) 5638 return err; 5639 #ifdef CONFIG_IPW2100_MONITOR 5640 if (priv->ieee->iw_mode == IW_MODE_MONITOR) { 5641 err = ipw2100_set_channel(priv, priv->channel, batch_mode); 5642 if (err) 5643 return err; 5644 5645 IPW_DEBUG_INFO("exit\n"); 5646 5647 return 0; 5648 } 5649 #endif /* CONFIG_IPW2100_MONITOR */ 5650 5651 err = ipw2100_read_mac_address(priv); 5652 if (err) 5653 return -EIO; 5654 5655 err = ipw2100_set_mac_address(priv, batch_mode); 5656 if (err) 5657 return err; 5658 5659 err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode); 5660 if (err) 5661 return err; 5662 5663 if (priv->ieee->iw_mode == IW_MODE_ADHOC) { 5664 err = ipw2100_set_channel(priv, priv->channel, batch_mode); 5665 if (err) 5666 return err; 5667 } 5668 5669 err = ipw2100_system_config(priv, batch_mode); 5670 if (err) 5671 return err; 5672 5673 err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode); 5674 if (err) 5675 return err; 5676 5677 /* Default to power mode OFF */ 5678 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM); 5679 if (err) 5680 return err; 5681 5682 err = ipw2100_set_rts_threshold(priv, priv->rts_threshold); 5683 if (err) 5684 return err; 5685 5686 if (priv->config & CFG_STATIC_BSSID) 5687 bssid = priv->bssid; 5688 else 5689 bssid = NULL; 5690 err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode); 5691 if (err) 5692 return err; 5693 5694 if (priv->config & CFG_STATIC_ESSID) 5695 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len, 5696 batch_mode); 5697 else 5698 err = ipw2100_set_essid(priv, NULL, 0, batch_mode); 5699 if (err) 5700 return err; 5701 5702 err = ipw2100_configure_security(priv, batch_mode); 5703 if (err) 5704 return err; 5705 5706 if (priv->ieee->iw_mode == IW_MODE_ADHOC) { 5707 err = 5708 ipw2100_set_ibss_beacon_interval(priv, 5709 priv->beacon_interval, 5710 batch_mode); 5711 if (err) 5712 return err; 5713 5714 err = ipw2100_set_tx_power(priv, priv->tx_power); 5715 if (err) 5716 return err; 5717 } 5718 5719 /* 5720 err = ipw2100_set_fragmentation_threshold( 5721 priv, priv->frag_threshold, batch_mode); 5722 if (err) 5723 return err; 5724 */ 5725 5726 IPW_DEBUG_INFO("exit\n"); 5727 5728 return 0; 5729 } 5730 5731 /************************************************************************* 5732 * 5733 * EXTERNALLY CALLED METHODS 5734 * 5735 *************************************************************************/ 5736 5737 /* This method is called by the network layer -- not to be confused with 5738 * ipw2100_set_mac_address() declared above called by this driver (and this 5739 * method as well) to talk to the firmware */ 5740 static int ipw2100_set_address(struct net_device *dev, void *p) 5741 { 5742 struct ipw2100_priv *priv = libipw_priv(dev); 5743 struct sockaddr *addr = p; 5744 int err = 0; 5745 5746 if (!is_valid_ether_addr(addr->sa_data)) 5747 return -EADDRNOTAVAIL; 5748 5749 mutex_lock(&priv->action_mutex); 5750 5751 priv->config |= CFG_CUSTOM_MAC; 5752 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN); 5753 5754 err = ipw2100_set_mac_address(priv, 0); 5755 if (err) 5756 goto done; 5757 5758 priv->reset_backoff = 0; 5759 mutex_unlock(&priv->action_mutex); 5760 ipw2100_reset_adapter(&priv->reset_work.work); 5761 return 0; 5762 5763 done: 5764 mutex_unlock(&priv->action_mutex); 5765 return err; 5766 } 5767 5768 static int ipw2100_open(struct net_device *dev) 5769 { 5770 struct ipw2100_priv *priv = libipw_priv(dev); 5771 unsigned long flags; 5772 IPW_DEBUG_INFO("dev->open\n"); 5773 5774 spin_lock_irqsave(&priv->low_lock, flags); 5775 if (priv->status & STATUS_ASSOCIATED) { 5776 netif_carrier_on(dev); 5777 netif_start_queue(dev); 5778 } 5779 spin_unlock_irqrestore(&priv->low_lock, flags); 5780 5781 return 0; 5782 } 5783 5784 static int ipw2100_close(struct net_device *dev) 5785 { 5786 struct ipw2100_priv *priv = libipw_priv(dev); 5787 unsigned long flags; 5788 struct list_head *element; 5789 struct ipw2100_tx_packet *packet; 5790 5791 IPW_DEBUG_INFO("enter\n"); 5792 5793 spin_lock_irqsave(&priv->low_lock, flags); 5794 5795 if (priv->status & STATUS_ASSOCIATED) 5796 netif_carrier_off(dev); 5797 netif_stop_queue(dev); 5798 5799 /* Flush the TX queue ... */ 5800 while (!list_empty(&priv->tx_pend_list)) { 5801 element = priv->tx_pend_list.next; 5802 packet = list_entry(element, struct ipw2100_tx_packet, list); 5803 5804 list_del(element); 5805 DEC_STAT(&priv->tx_pend_stat); 5806 5807 libipw_txb_free(packet->info.d_struct.txb); 5808 packet->info.d_struct.txb = NULL; 5809 5810 list_add_tail(element, &priv->tx_free_list); 5811 INC_STAT(&priv->tx_free_stat); 5812 } 5813 spin_unlock_irqrestore(&priv->low_lock, flags); 5814 5815 IPW_DEBUG_INFO("exit\n"); 5816 5817 return 0; 5818 } 5819 5820 /* 5821 * TODO: Fix this function... its just wrong 5822 */ 5823 static void ipw2100_tx_timeout(struct net_device *dev, unsigned int txqueue) 5824 { 5825 struct ipw2100_priv *priv = libipw_priv(dev); 5826 5827 dev->stats.tx_errors++; 5828 5829 #ifdef CONFIG_IPW2100_MONITOR 5830 if (priv->ieee->iw_mode == IW_MODE_MONITOR) 5831 return; 5832 #endif 5833 5834 IPW_DEBUG_INFO("%s: TX timed out. Scheduling firmware restart.\n", 5835 dev->name); 5836 schedule_reset(priv); 5837 } 5838 5839 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value) 5840 { 5841 /* This is called when wpa_supplicant loads and closes the driver 5842 * interface. */ 5843 priv->ieee->wpa_enabled = value; 5844 return 0; 5845 } 5846 5847 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value) 5848 { 5849 5850 struct libipw_device *ieee = priv->ieee; 5851 struct libipw_security sec = { 5852 .flags = SEC_AUTH_MODE, 5853 }; 5854 int ret = 0; 5855 5856 if (value & IW_AUTH_ALG_SHARED_KEY) { 5857 sec.auth_mode = WLAN_AUTH_SHARED_KEY; 5858 ieee->open_wep = 0; 5859 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) { 5860 sec.auth_mode = WLAN_AUTH_OPEN; 5861 ieee->open_wep = 1; 5862 } else if (value & IW_AUTH_ALG_LEAP) { 5863 sec.auth_mode = WLAN_AUTH_LEAP; 5864 ieee->open_wep = 1; 5865 } else 5866 return -EINVAL; 5867 5868 if (ieee->set_security) 5869 ieee->set_security(ieee->dev, &sec); 5870 else 5871 ret = -EOPNOTSUPP; 5872 5873 return ret; 5874 } 5875 5876 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv, 5877 char *wpa_ie, int wpa_ie_len) 5878 { 5879 5880 struct ipw2100_wpa_assoc_frame frame; 5881 5882 frame.fixed_ie_mask = 0; 5883 5884 /* copy WPA IE */ 5885 memcpy(frame.var_ie, wpa_ie, wpa_ie_len); 5886 frame.var_ie_len = wpa_ie_len; 5887 5888 /* make sure WPA is enabled */ 5889 ipw2100_wpa_enable(priv, 1); 5890 ipw2100_set_wpa_ie(priv, &frame, 0); 5891 } 5892 5893 static void ipw_ethtool_get_drvinfo(struct net_device *dev, 5894 struct ethtool_drvinfo *info) 5895 { 5896 struct ipw2100_priv *priv = libipw_priv(dev); 5897 char fw_ver[64], ucode_ver[64]; 5898 5899 strscpy(info->driver, DRV_NAME, sizeof(info->driver)); 5900 strscpy(info->version, DRV_VERSION, sizeof(info->version)); 5901 5902 ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver)); 5903 ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver)); 5904 5905 snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s", 5906 fw_ver, priv->eeprom_version, ucode_ver); 5907 5908 strscpy(info->bus_info, pci_name(priv->pci_dev), 5909 sizeof(info->bus_info)); 5910 } 5911 5912 static u32 ipw2100_ethtool_get_link(struct net_device *dev) 5913 { 5914 struct ipw2100_priv *priv = libipw_priv(dev); 5915 return (priv->status & STATUS_ASSOCIATED) ? 1 : 0; 5916 } 5917 5918 static const struct ethtool_ops ipw2100_ethtool_ops = { 5919 .get_link = ipw2100_ethtool_get_link, 5920 .get_drvinfo = ipw_ethtool_get_drvinfo, 5921 }; 5922 5923 static void ipw2100_hang_check(struct work_struct *work) 5924 { 5925 struct ipw2100_priv *priv = 5926 container_of(work, struct ipw2100_priv, hang_check.work); 5927 unsigned long flags; 5928 u32 rtc = 0xa5a5a5a5; 5929 u32 len = sizeof(rtc); 5930 int restart = 0; 5931 5932 spin_lock_irqsave(&priv->low_lock, flags); 5933 5934 if (priv->fatal_error != 0) { 5935 /* If fatal_error is set then we need to restart */ 5936 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n", 5937 priv->net_dev->name); 5938 5939 restart = 1; 5940 } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) || 5941 (rtc == priv->last_rtc)) { 5942 /* Check if firmware is hung */ 5943 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n", 5944 priv->net_dev->name); 5945 5946 restart = 1; 5947 } 5948 5949 if (restart) { 5950 /* Kill timer */ 5951 priv->stop_hang_check = 1; 5952 priv->hangs++; 5953 5954 /* Restart the NIC */ 5955 schedule_reset(priv); 5956 } 5957 5958 priv->last_rtc = rtc; 5959 5960 if (!priv->stop_hang_check) 5961 schedule_delayed_work(&priv->hang_check, HZ / 2); 5962 5963 spin_unlock_irqrestore(&priv->low_lock, flags); 5964 } 5965 5966 static void ipw2100_rf_kill(struct work_struct *work) 5967 { 5968 struct ipw2100_priv *priv = 5969 container_of(work, struct ipw2100_priv, rf_kill.work); 5970 unsigned long flags; 5971 5972 spin_lock_irqsave(&priv->low_lock, flags); 5973 5974 if (rf_kill_active(priv)) { 5975 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n"); 5976 if (!priv->stop_rf_kill) 5977 schedule_delayed_work(&priv->rf_kill, 5978 round_jiffies_relative(HZ)); 5979 goto exit_unlock; 5980 } 5981 5982 /* RF Kill is now disabled, so bring the device back up */ 5983 5984 if (!(priv->status & STATUS_RF_KILL_MASK)) { 5985 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting " 5986 "device\n"); 5987 schedule_reset(priv); 5988 } else 5989 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still " 5990 "enabled\n"); 5991 5992 exit_unlock: 5993 spin_unlock_irqrestore(&priv->low_lock, flags); 5994 } 5995 5996 static void ipw2100_irq_tasklet(struct tasklet_struct *t); 5997 5998 static const struct net_device_ops ipw2100_netdev_ops = { 5999 .ndo_open = ipw2100_open, 6000 .ndo_stop = ipw2100_close, 6001 .ndo_start_xmit = libipw_xmit, 6002 .ndo_tx_timeout = ipw2100_tx_timeout, 6003 .ndo_set_mac_address = ipw2100_set_address, 6004 .ndo_validate_addr = eth_validate_addr, 6005 }; 6006 6007 /* Look into using netdev destructor to shutdown libipw? */ 6008 6009 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev, 6010 void __iomem * ioaddr) 6011 { 6012 struct ipw2100_priv *priv; 6013 struct net_device *dev; 6014 6015 dev = alloc_libipw(sizeof(struct ipw2100_priv), 0); 6016 if (!dev) 6017 return NULL; 6018 priv = libipw_priv(dev); 6019 priv->ieee = netdev_priv(dev); 6020 priv->pci_dev = pci_dev; 6021 priv->net_dev = dev; 6022 priv->ioaddr = ioaddr; 6023 6024 priv->ieee->hard_start_xmit = ipw2100_tx; 6025 priv->ieee->set_security = shim__set_security; 6026 6027 priv->ieee->perfect_rssi = -20; 6028 priv->ieee->worst_rssi = -85; 6029 6030 dev->netdev_ops = &ipw2100_netdev_ops; 6031 dev->ethtool_ops = &ipw2100_ethtool_ops; 6032 dev->wireless_handlers = &ipw2100_wx_handler_def; 6033 priv->wireless_data.libipw = priv->ieee; 6034 dev->wireless_data = &priv->wireless_data; 6035 dev->watchdog_timeo = 3 * HZ; 6036 dev->irq = 0; 6037 dev->min_mtu = 68; 6038 dev->max_mtu = LIBIPW_DATA_LEN; 6039 6040 /* NOTE: We don't use the wireless_handlers hook 6041 * in dev as the system will start throwing WX requests 6042 * to us before we're actually initialized and it just 6043 * ends up causing problems. So, we just handle 6044 * the WX extensions through the ipw2100_ioctl interface */ 6045 6046 /* memset() puts everything to 0, so we only have explicitly set 6047 * those values that need to be something else */ 6048 6049 /* If power management is turned on, default to AUTO mode */ 6050 priv->power_mode = IPW_POWER_AUTO; 6051 6052 #ifdef CONFIG_IPW2100_MONITOR 6053 priv->config |= CFG_CRC_CHECK; 6054 #endif 6055 priv->ieee->wpa_enabled = 0; 6056 priv->ieee->drop_unencrypted = 0; 6057 priv->ieee->privacy_invoked = 0; 6058 priv->ieee->ieee802_1x = 1; 6059 6060 /* Set module parameters */ 6061 switch (network_mode) { 6062 case 1: 6063 priv->ieee->iw_mode = IW_MODE_ADHOC; 6064 break; 6065 #ifdef CONFIG_IPW2100_MONITOR 6066 case 2: 6067 priv->ieee->iw_mode = IW_MODE_MONITOR; 6068 break; 6069 #endif 6070 default: 6071 case 0: 6072 priv->ieee->iw_mode = IW_MODE_INFRA; 6073 break; 6074 } 6075 6076 if (disable == 1) 6077 priv->status |= STATUS_RF_KILL_SW; 6078 6079 if (channel != 0 && 6080 ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) { 6081 priv->config |= CFG_STATIC_CHANNEL; 6082 priv->channel = channel; 6083 } 6084 6085 if (associate) 6086 priv->config |= CFG_ASSOCIATE; 6087 6088 priv->beacon_interval = DEFAULT_BEACON_INTERVAL; 6089 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT; 6090 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT; 6091 priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED; 6092 priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED; 6093 priv->tx_power = IPW_TX_POWER_DEFAULT; 6094 priv->tx_rates = DEFAULT_TX_RATES; 6095 6096 strcpy(priv->nick, "ipw2100"); 6097 6098 spin_lock_init(&priv->low_lock); 6099 mutex_init(&priv->action_mutex); 6100 mutex_init(&priv->adapter_mutex); 6101 6102 init_waitqueue_head(&priv->wait_command_queue); 6103 6104 netif_carrier_off(dev); 6105 6106 INIT_LIST_HEAD(&priv->msg_free_list); 6107 INIT_LIST_HEAD(&priv->msg_pend_list); 6108 INIT_STAT(&priv->msg_free_stat); 6109 INIT_STAT(&priv->msg_pend_stat); 6110 6111 INIT_LIST_HEAD(&priv->tx_free_list); 6112 INIT_LIST_HEAD(&priv->tx_pend_list); 6113 INIT_STAT(&priv->tx_free_stat); 6114 INIT_STAT(&priv->tx_pend_stat); 6115 6116 INIT_LIST_HEAD(&priv->fw_pend_list); 6117 INIT_STAT(&priv->fw_pend_stat); 6118 6119 INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter); 6120 INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work); 6121 INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work); 6122 INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check); 6123 INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill); 6124 INIT_DELAYED_WORK(&priv->scan_event, ipw2100_scan_event); 6125 6126 tasklet_setup(&priv->irq_tasklet, ipw2100_irq_tasklet); 6127 6128 /* NOTE: We do not start the deferred work for status checks yet */ 6129 priv->stop_rf_kill = 1; 6130 priv->stop_hang_check = 1; 6131 6132 return dev; 6133 } 6134 6135 static int ipw2100_pci_init_one(struct pci_dev *pci_dev, 6136 const struct pci_device_id *ent) 6137 { 6138 void __iomem *ioaddr; 6139 struct net_device *dev = NULL; 6140 struct ipw2100_priv *priv = NULL; 6141 int err = 0; 6142 int registered = 0; 6143 u32 val; 6144 6145 IPW_DEBUG_INFO("enter\n"); 6146 6147 if (!(pci_resource_flags(pci_dev, 0) & IORESOURCE_MEM)) { 6148 IPW_DEBUG_INFO("weird - resource type is not memory\n"); 6149 err = -ENODEV; 6150 goto out; 6151 } 6152 6153 ioaddr = pci_iomap(pci_dev, 0, 0); 6154 if (!ioaddr) { 6155 printk(KERN_WARNING DRV_NAME 6156 "Error calling ioremap.\n"); 6157 err = -EIO; 6158 goto fail; 6159 } 6160 6161 /* allocate and initialize our net_device */ 6162 dev = ipw2100_alloc_device(pci_dev, ioaddr); 6163 if (!dev) { 6164 printk(KERN_WARNING DRV_NAME 6165 "Error calling ipw2100_alloc_device.\n"); 6166 err = -ENOMEM; 6167 goto fail; 6168 } 6169 6170 /* set up PCI mappings for device */ 6171 err = pci_enable_device(pci_dev); 6172 if (err) { 6173 printk(KERN_WARNING DRV_NAME 6174 "Error calling pci_enable_device.\n"); 6175 return err; 6176 } 6177 6178 priv = libipw_priv(dev); 6179 6180 pci_set_master(pci_dev); 6181 pci_set_drvdata(pci_dev, priv); 6182 6183 err = dma_set_mask(&pci_dev->dev, DMA_BIT_MASK(32)); 6184 if (err) { 6185 printk(KERN_WARNING DRV_NAME 6186 "Error calling pci_set_dma_mask.\n"); 6187 pci_disable_device(pci_dev); 6188 return err; 6189 } 6190 6191 err = pci_request_regions(pci_dev, DRV_NAME); 6192 if (err) { 6193 printk(KERN_WARNING DRV_NAME 6194 "Error calling pci_request_regions.\n"); 6195 pci_disable_device(pci_dev); 6196 return err; 6197 } 6198 6199 /* We disable the RETRY_TIMEOUT register (0x41) to keep 6200 * PCI Tx retries from interfering with C3 CPU state */ 6201 pci_read_config_dword(pci_dev, 0x40, &val); 6202 if ((val & 0x0000ff00) != 0) 6203 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff); 6204 6205 if (!ipw2100_hw_is_adapter_in_system(dev)) { 6206 printk(KERN_WARNING DRV_NAME 6207 "Device not found via register read.\n"); 6208 err = -ENODEV; 6209 goto fail; 6210 } 6211 6212 SET_NETDEV_DEV(dev, &pci_dev->dev); 6213 6214 /* Force interrupts to be shut off on the device */ 6215 priv->status |= STATUS_INT_ENABLED; 6216 ipw2100_disable_interrupts(priv); 6217 6218 /* Allocate and initialize the Tx/Rx queues and lists */ 6219 if (ipw2100_queues_allocate(priv)) { 6220 printk(KERN_WARNING DRV_NAME 6221 "Error calling ipw2100_queues_allocate.\n"); 6222 err = -ENOMEM; 6223 goto fail; 6224 } 6225 ipw2100_queues_initialize(priv); 6226 6227 err = request_irq(pci_dev->irq, 6228 ipw2100_interrupt, IRQF_SHARED, dev->name, priv); 6229 if (err) { 6230 printk(KERN_WARNING DRV_NAME 6231 "Error calling request_irq: %d.\n", pci_dev->irq); 6232 goto fail; 6233 } 6234 dev->irq = pci_dev->irq; 6235 6236 IPW_DEBUG_INFO("Attempting to register device...\n"); 6237 6238 printk(KERN_INFO DRV_NAME 6239 ": Detected Intel PRO/Wireless 2100 Network Connection\n"); 6240 6241 err = ipw2100_up(priv, 1); 6242 if (err) 6243 goto fail; 6244 6245 err = ipw2100_wdev_init(dev); 6246 if (err) 6247 goto fail; 6248 registered = 1; 6249 6250 /* Bring up the interface. Pre 0.46, after we registered the 6251 * network device we would call ipw2100_up. This introduced a race 6252 * condition with newer hotplug configurations (network was coming 6253 * up and making calls before the device was initialized). 6254 */ 6255 err = register_netdev(dev); 6256 if (err) { 6257 printk(KERN_WARNING DRV_NAME 6258 "Error calling register_netdev.\n"); 6259 goto fail; 6260 } 6261 registered = 2; 6262 6263 mutex_lock(&priv->action_mutex); 6264 6265 IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev)); 6266 6267 /* perform this after register_netdev so that dev->name is set */ 6268 err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group); 6269 if (err) 6270 goto fail_unlock; 6271 6272 /* If the RF Kill switch is disabled, go ahead and complete the 6273 * startup sequence */ 6274 if (!(priv->status & STATUS_RF_KILL_MASK)) { 6275 /* Enable the adapter - sends HOST_COMPLETE */ 6276 if (ipw2100_enable_adapter(priv)) { 6277 printk(KERN_WARNING DRV_NAME 6278 ": %s: failed in call to enable adapter.\n", 6279 priv->net_dev->name); 6280 ipw2100_hw_stop_adapter(priv); 6281 err = -EIO; 6282 goto fail_unlock; 6283 } 6284 6285 /* Start a scan . . . */ 6286 ipw2100_set_scan_options(priv); 6287 ipw2100_start_scan(priv); 6288 } 6289 6290 IPW_DEBUG_INFO("exit\n"); 6291 6292 priv->status |= STATUS_INITIALIZED; 6293 6294 mutex_unlock(&priv->action_mutex); 6295 out: 6296 return err; 6297 6298 fail_unlock: 6299 mutex_unlock(&priv->action_mutex); 6300 fail: 6301 if (dev) { 6302 if (registered >= 2) 6303 unregister_netdev(dev); 6304 6305 if (registered) { 6306 wiphy_unregister(priv->ieee->wdev.wiphy); 6307 kfree(priv->ieee->bg_band.channels); 6308 } 6309 6310 ipw2100_hw_stop_adapter(priv); 6311 6312 ipw2100_disable_interrupts(priv); 6313 6314 if (dev->irq) 6315 free_irq(dev->irq, priv); 6316 6317 ipw2100_kill_works(priv); 6318 6319 /* These are safe to call even if they weren't allocated */ 6320 ipw2100_queues_free(priv); 6321 sysfs_remove_group(&pci_dev->dev.kobj, 6322 &ipw2100_attribute_group); 6323 6324 free_libipw(dev, 0); 6325 } 6326 6327 pci_iounmap(pci_dev, ioaddr); 6328 6329 pci_release_regions(pci_dev); 6330 pci_disable_device(pci_dev); 6331 goto out; 6332 } 6333 6334 static void ipw2100_pci_remove_one(struct pci_dev *pci_dev) 6335 { 6336 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev); 6337 struct net_device *dev = priv->net_dev; 6338 6339 mutex_lock(&priv->action_mutex); 6340 6341 priv->status &= ~STATUS_INITIALIZED; 6342 6343 sysfs_remove_group(&pci_dev->dev.kobj, &ipw2100_attribute_group); 6344 6345 #ifdef CONFIG_PM 6346 if (ipw2100_firmware.version) 6347 ipw2100_release_firmware(priv, &ipw2100_firmware); 6348 #endif 6349 /* Take down the hardware */ 6350 ipw2100_down(priv); 6351 6352 /* Release the mutex so that the network subsystem can 6353 * complete any needed calls into the driver... */ 6354 mutex_unlock(&priv->action_mutex); 6355 6356 /* Unregister the device first - this results in close() 6357 * being called if the device is open. If we free storage 6358 * first, then close() will crash. 6359 * FIXME: remove the comment above. */ 6360 unregister_netdev(dev); 6361 6362 ipw2100_kill_works(priv); 6363 6364 ipw2100_queues_free(priv); 6365 6366 /* Free potential debugging firmware snapshot */ 6367 ipw2100_snapshot_free(priv); 6368 6369 free_irq(dev->irq, priv); 6370 6371 pci_iounmap(pci_dev, priv->ioaddr); 6372 6373 /* wiphy_unregister needs to be here, before free_libipw */ 6374 wiphy_unregister(priv->ieee->wdev.wiphy); 6375 kfree(priv->ieee->bg_band.channels); 6376 free_libipw(dev, 0); 6377 6378 pci_release_regions(pci_dev); 6379 pci_disable_device(pci_dev); 6380 6381 IPW_DEBUG_INFO("exit\n"); 6382 } 6383 6384 static int __maybe_unused ipw2100_suspend(struct device *dev_d) 6385 { 6386 struct ipw2100_priv *priv = dev_get_drvdata(dev_d); 6387 struct net_device *dev = priv->net_dev; 6388 6389 IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name); 6390 6391 mutex_lock(&priv->action_mutex); 6392 if (priv->status & STATUS_INITIALIZED) { 6393 /* Take down the device; powers it off, etc. */ 6394 ipw2100_down(priv); 6395 } 6396 6397 /* Remove the PRESENT state of the device */ 6398 netif_device_detach(dev); 6399 6400 priv->suspend_at = ktime_get_boottime_seconds(); 6401 6402 mutex_unlock(&priv->action_mutex); 6403 6404 return 0; 6405 } 6406 6407 static int __maybe_unused ipw2100_resume(struct device *dev_d) 6408 { 6409 struct pci_dev *pci_dev = to_pci_dev(dev_d); 6410 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev); 6411 struct net_device *dev = priv->net_dev; 6412 u32 val; 6413 6414 if (IPW2100_PM_DISABLED) 6415 return 0; 6416 6417 mutex_lock(&priv->action_mutex); 6418 6419 IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name); 6420 6421 /* 6422 * Suspend/Resume resets the PCI configuration space, so we have to 6423 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries 6424 * from interfering with C3 CPU state. pci_restore_state won't help 6425 * here since it only restores the first 64 bytes pci config header. 6426 */ 6427 pci_read_config_dword(pci_dev, 0x40, &val); 6428 if ((val & 0x0000ff00) != 0) 6429 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff); 6430 6431 /* Set the device back into the PRESENT state; this will also wake 6432 * the queue of needed */ 6433 netif_device_attach(dev); 6434 6435 priv->suspend_time = ktime_get_boottime_seconds() - priv->suspend_at; 6436 6437 /* Bring the device back up */ 6438 if (!(priv->status & STATUS_RF_KILL_SW)) 6439 ipw2100_up(priv, 0); 6440 6441 mutex_unlock(&priv->action_mutex); 6442 6443 return 0; 6444 } 6445 6446 static void ipw2100_shutdown(struct pci_dev *pci_dev) 6447 { 6448 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev); 6449 6450 /* Take down the device; powers it off, etc. */ 6451 ipw2100_down(priv); 6452 6453 pci_disable_device(pci_dev); 6454 } 6455 6456 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x } 6457 6458 static const struct pci_device_id ipw2100_pci_id_table[] = { 6459 IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */ 6460 IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */ 6461 IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */ 6462 IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */ 6463 IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */ 6464 IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */ 6465 IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */ 6466 IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */ 6467 IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */ 6468 IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */ 6469 IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */ 6470 IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */ 6471 IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */ 6472 6473 IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */ 6474 IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */ 6475 IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */ 6476 IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */ 6477 IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */ 6478 6479 IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */ 6480 IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */ 6481 IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */ 6482 IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */ 6483 IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */ 6484 IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */ 6485 IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */ 6486 6487 IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */ 6488 6489 IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */ 6490 IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */ 6491 IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */ 6492 IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */ 6493 IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */ 6494 IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */ 6495 IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */ 6496 6497 IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */ 6498 IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */ 6499 IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */ 6500 IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */ 6501 IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */ 6502 IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */ 6503 6504 IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */ 6505 {0,}, 6506 }; 6507 6508 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table); 6509 6510 static SIMPLE_DEV_PM_OPS(ipw2100_pm_ops, ipw2100_suspend, ipw2100_resume); 6511 6512 static struct pci_driver ipw2100_pci_driver = { 6513 .name = DRV_NAME, 6514 .id_table = ipw2100_pci_id_table, 6515 .probe = ipw2100_pci_init_one, 6516 .remove = ipw2100_pci_remove_one, 6517 .driver.pm = &ipw2100_pm_ops, 6518 .shutdown = ipw2100_shutdown, 6519 }; 6520 6521 /* 6522 * Initialize the ipw2100 driver/module 6523 * 6524 * @returns 0 if ok, < 0 errno node con error. 6525 * 6526 * Note: we cannot init the /proc stuff until the PCI driver is there, 6527 * or we risk an unlikely race condition on someone accessing 6528 * uninitialized data in the PCI dev struct through /proc. 6529 */ 6530 static int __init ipw2100_init(void) 6531 { 6532 int ret; 6533 6534 printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION); 6535 printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT); 6536 6537 cpu_latency_qos_add_request(&ipw2100_pm_qos_req, PM_QOS_DEFAULT_VALUE); 6538 6539 ret = pci_register_driver(&ipw2100_pci_driver); 6540 if (ret) 6541 goto out; 6542 6543 #ifdef CONFIG_IPW2100_DEBUG 6544 ipw2100_debug_level = debug; 6545 ret = driver_create_file(&ipw2100_pci_driver.driver, 6546 &driver_attr_debug_level); 6547 #endif 6548 6549 out: 6550 return ret; 6551 } 6552 6553 /* 6554 * Cleanup ipw2100 driver registration 6555 */ 6556 static void __exit ipw2100_exit(void) 6557 { 6558 /* FIXME: IPG: check that we have no instances of the devices open */ 6559 #ifdef CONFIG_IPW2100_DEBUG 6560 driver_remove_file(&ipw2100_pci_driver.driver, 6561 &driver_attr_debug_level); 6562 #endif 6563 pci_unregister_driver(&ipw2100_pci_driver); 6564 cpu_latency_qos_remove_request(&ipw2100_pm_qos_req); 6565 } 6566 6567 module_init(ipw2100_init); 6568 module_exit(ipw2100_exit); 6569 6570 static int ipw2100_wx_get_name(struct net_device *dev, 6571 struct iw_request_info *info, 6572 union iwreq_data *wrqu, char *extra) 6573 { 6574 /* 6575 * This can be called at any time. No action lock required 6576 */ 6577 6578 struct ipw2100_priv *priv = libipw_priv(dev); 6579 if (!(priv->status & STATUS_ASSOCIATED)) 6580 strcpy(wrqu->name, "unassociated"); 6581 else 6582 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b"); 6583 6584 IPW_DEBUG_WX("Name: %s\n", wrqu->name); 6585 return 0; 6586 } 6587 6588 static int ipw2100_wx_set_freq(struct net_device *dev, 6589 struct iw_request_info *info, 6590 union iwreq_data *wrqu, char *extra) 6591 { 6592 struct ipw2100_priv *priv = libipw_priv(dev); 6593 struct iw_freq *fwrq = &wrqu->freq; 6594 int err = 0; 6595 6596 if (priv->ieee->iw_mode == IW_MODE_INFRA) 6597 return -EOPNOTSUPP; 6598 6599 mutex_lock(&priv->action_mutex); 6600 if (!(priv->status & STATUS_INITIALIZED)) { 6601 err = -EIO; 6602 goto done; 6603 } 6604 6605 /* if setting by freq convert to channel */ 6606 if (fwrq->e == 1) { 6607 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) { 6608 int f = fwrq->m / 100000; 6609 int c = 0; 6610 6611 while ((c < REG_MAX_CHANNEL) && 6612 (f != ipw2100_frequencies[c])) 6613 c++; 6614 6615 /* hack to fall through */ 6616 fwrq->e = 0; 6617 fwrq->m = c + 1; 6618 } 6619 } 6620 6621 if (fwrq->e > 0 || fwrq->m > 1000) { 6622 err = -EOPNOTSUPP; 6623 goto done; 6624 } else { /* Set the channel */ 6625 IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m); 6626 err = ipw2100_set_channel(priv, fwrq->m, 0); 6627 } 6628 6629 done: 6630 mutex_unlock(&priv->action_mutex); 6631 return err; 6632 } 6633 6634 static int ipw2100_wx_get_freq(struct net_device *dev, 6635 struct iw_request_info *info, 6636 union iwreq_data *wrqu, char *extra) 6637 { 6638 /* 6639 * This can be called at any time. No action lock required 6640 */ 6641 6642 struct ipw2100_priv *priv = libipw_priv(dev); 6643 6644 wrqu->freq.e = 0; 6645 6646 /* If we are associated, trying to associate, or have a statically 6647 * configured CHANNEL then return that; otherwise return ANY */ 6648 if (priv->config & CFG_STATIC_CHANNEL || 6649 priv->status & STATUS_ASSOCIATED) 6650 wrqu->freq.m = priv->channel; 6651 else 6652 wrqu->freq.m = 0; 6653 6654 IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel); 6655 return 0; 6656 6657 } 6658 6659 static int ipw2100_wx_set_mode(struct net_device *dev, 6660 struct iw_request_info *info, 6661 union iwreq_data *wrqu, char *extra) 6662 { 6663 struct ipw2100_priv *priv = libipw_priv(dev); 6664 int err = 0; 6665 6666 IPW_DEBUG_WX("SET Mode -> %d\n", wrqu->mode); 6667 6668 if (wrqu->mode == priv->ieee->iw_mode) 6669 return 0; 6670 6671 mutex_lock(&priv->action_mutex); 6672 if (!(priv->status & STATUS_INITIALIZED)) { 6673 err = -EIO; 6674 goto done; 6675 } 6676 6677 switch (wrqu->mode) { 6678 #ifdef CONFIG_IPW2100_MONITOR 6679 case IW_MODE_MONITOR: 6680 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR); 6681 break; 6682 #endif /* CONFIG_IPW2100_MONITOR */ 6683 case IW_MODE_ADHOC: 6684 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC); 6685 break; 6686 case IW_MODE_INFRA: 6687 case IW_MODE_AUTO: 6688 default: 6689 err = ipw2100_switch_mode(priv, IW_MODE_INFRA); 6690 break; 6691 } 6692 6693 done: 6694 mutex_unlock(&priv->action_mutex); 6695 return err; 6696 } 6697 6698 static int ipw2100_wx_get_mode(struct net_device *dev, 6699 struct iw_request_info *info, 6700 union iwreq_data *wrqu, char *extra) 6701 { 6702 /* 6703 * This can be called at any time. No action lock required 6704 */ 6705 6706 struct ipw2100_priv *priv = libipw_priv(dev); 6707 6708 wrqu->mode = priv->ieee->iw_mode; 6709 IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode); 6710 6711 return 0; 6712 } 6713 6714 #define POWER_MODES 5 6715 6716 /* Values are in microsecond */ 6717 static const s32 timeout_duration[POWER_MODES] = { 6718 350000, 6719 250000, 6720 75000, 6721 37000, 6722 25000, 6723 }; 6724 6725 static const s32 period_duration[POWER_MODES] = { 6726 400000, 6727 700000, 6728 1000000, 6729 1000000, 6730 1000000 6731 }; 6732 6733 static int ipw2100_wx_get_range(struct net_device *dev, 6734 struct iw_request_info *info, 6735 union iwreq_data *wrqu, char *extra) 6736 { 6737 /* 6738 * This can be called at any time. No action lock required 6739 */ 6740 6741 struct ipw2100_priv *priv = libipw_priv(dev); 6742 struct iw_range *range = (struct iw_range *)extra; 6743 u16 val; 6744 int i, level; 6745 6746 wrqu->data.length = sizeof(*range); 6747 memset(range, 0, sizeof(*range)); 6748 6749 /* Let's try to keep this struct in the same order as in 6750 * linux/include/wireless.h 6751 */ 6752 6753 /* TODO: See what values we can set, and remove the ones we can't 6754 * set, or fill them with some default data. 6755 */ 6756 6757 /* ~5 Mb/s real (802.11b) */ 6758 range->throughput = 5 * 1000 * 1000; 6759 6760 // range->sensitivity; /* signal level threshold range */ 6761 6762 range->max_qual.qual = 100; 6763 /* TODO: Find real max RSSI and stick here */ 6764 range->max_qual.level = 0; 6765 range->max_qual.noise = 0; 6766 range->max_qual.updated = 7; /* Updated all three */ 6767 6768 range->avg_qual.qual = 70; /* > 8% missed beacons is 'bad' */ 6769 /* TODO: Find real 'good' to 'bad' threshold value for RSSI */ 6770 range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM; 6771 range->avg_qual.noise = 0; 6772 range->avg_qual.updated = 7; /* Updated all three */ 6773 6774 range->num_bitrates = RATE_COUNT; 6775 6776 for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) { 6777 range->bitrate[i] = ipw2100_bg_rates[i].bitrate * 100 * 1000; 6778 } 6779 6780 range->min_rts = MIN_RTS_THRESHOLD; 6781 range->max_rts = MAX_RTS_THRESHOLD; 6782 range->min_frag = MIN_FRAG_THRESHOLD; 6783 range->max_frag = MAX_FRAG_THRESHOLD; 6784 6785 range->min_pmp = period_duration[0]; /* Minimal PM period */ 6786 range->max_pmp = period_duration[POWER_MODES - 1]; /* Maximal PM period */ 6787 range->min_pmt = timeout_duration[POWER_MODES - 1]; /* Minimal PM timeout */ 6788 range->max_pmt = timeout_duration[0]; /* Maximal PM timeout */ 6789 6790 /* How to decode max/min PM period */ 6791 range->pmp_flags = IW_POWER_PERIOD; 6792 /* How to decode max/min PM period */ 6793 range->pmt_flags = IW_POWER_TIMEOUT; 6794 /* What PM options are supported */ 6795 range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD; 6796 6797 range->encoding_size[0] = 5; 6798 range->encoding_size[1] = 13; /* Different token sizes */ 6799 range->num_encoding_sizes = 2; /* Number of entry in the list */ 6800 range->max_encoding_tokens = WEP_KEYS; /* Max number of tokens */ 6801 // range->encoding_login_index; /* token index for login token */ 6802 6803 if (priv->ieee->iw_mode == IW_MODE_ADHOC) { 6804 range->txpower_capa = IW_TXPOW_DBM; 6805 range->num_txpower = IW_MAX_TXPOWER; 6806 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16); 6807 i < IW_MAX_TXPOWER; 6808 i++, level -= 6809 ((IPW_TX_POWER_MAX_DBM - 6810 IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1)) 6811 range->txpower[i] = level / 16; 6812 } else { 6813 range->txpower_capa = 0; 6814 range->num_txpower = 0; 6815 } 6816 6817 /* Set the Wireless Extension versions */ 6818 range->we_version_compiled = WIRELESS_EXT; 6819 range->we_version_source = 18; 6820 6821 // range->retry_capa; /* What retry options are supported */ 6822 // range->retry_flags; /* How to decode max/min retry limit */ 6823 // range->r_time_flags; /* How to decode max/min retry life */ 6824 // range->min_retry; /* Minimal number of retries */ 6825 // range->max_retry; /* Maximal number of retries */ 6826 // range->min_r_time; /* Minimal retry lifetime */ 6827 // range->max_r_time; /* Maximal retry lifetime */ 6828 6829 range->num_channels = FREQ_COUNT; 6830 6831 val = 0; 6832 for (i = 0; i < FREQ_COUNT; i++) { 6833 // TODO: Include only legal frequencies for some countries 6834 // if (local->channel_mask & (1 << i)) { 6835 range->freq[val].i = i + 1; 6836 range->freq[val].m = ipw2100_frequencies[i] * 100000; 6837 range->freq[val].e = 1; 6838 val++; 6839 // } 6840 if (val == IW_MAX_FREQUENCIES) 6841 break; 6842 } 6843 range->num_frequency = val; 6844 6845 /* Event capability (kernel + driver) */ 6846 range->event_capa[0] = (IW_EVENT_CAPA_K_0 | 6847 IW_EVENT_CAPA_MASK(SIOCGIWAP)); 6848 range->event_capa[1] = IW_EVENT_CAPA_K_1; 6849 6850 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 | 6851 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP; 6852 6853 IPW_DEBUG_WX("GET Range\n"); 6854 6855 return 0; 6856 } 6857 6858 static int ipw2100_wx_set_wap(struct net_device *dev, 6859 struct iw_request_info *info, 6860 union iwreq_data *wrqu, char *extra) 6861 { 6862 struct ipw2100_priv *priv = libipw_priv(dev); 6863 int err = 0; 6864 6865 // sanity checks 6866 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER) 6867 return -EINVAL; 6868 6869 mutex_lock(&priv->action_mutex); 6870 if (!(priv->status & STATUS_INITIALIZED)) { 6871 err = -EIO; 6872 goto done; 6873 } 6874 6875 if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) || 6876 is_zero_ether_addr(wrqu->ap_addr.sa_data)) { 6877 /* we disable mandatory BSSID association */ 6878 IPW_DEBUG_WX("exit - disable mandatory BSSID\n"); 6879 priv->config &= ~CFG_STATIC_BSSID; 6880 err = ipw2100_set_mandatory_bssid(priv, NULL, 0); 6881 goto done; 6882 } 6883 6884 priv->config |= CFG_STATIC_BSSID; 6885 memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN); 6886 6887 err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0); 6888 6889 IPW_DEBUG_WX("SET BSSID -> %pM\n", wrqu->ap_addr.sa_data); 6890 6891 done: 6892 mutex_unlock(&priv->action_mutex); 6893 return err; 6894 } 6895 6896 static int ipw2100_wx_get_wap(struct net_device *dev, 6897 struct iw_request_info *info, 6898 union iwreq_data *wrqu, char *extra) 6899 { 6900 /* 6901 * This can be called at any time. No action lock required 6902 */ 6903 6904 struct ipw2100_priv *priv = libipw_priv(dev); 6905 6906 /* If we are associated, trying to associate, or have a statically 6907 * configured BSSID then return that; otherwise return ANY */ 6908 if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) { 6909 wrqu->ap_addr.sa_family = ARPHRD_ETHER; 6910 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN); 6911 } else 6912 eth_zero_addr(wrqu->ap_addr.sa_data); 6913 6914 IPW_DEBUG_WX("Getting WAP BSSID: %pM\n", wrqu->ap_addr.sa_data); 6915 return 0; 6916 } 6917 6918 static int ipw2100_wx_set_essid(struct net_device *dev, 6919 struct iw_request_info *info, 6920 union iwreq_data *wrqu, char *extra) 6921 { 6922 struct ipw2100_priv *priv = libipw_priv(dev); 6923 char *essid = ""; /* ANY */ 6924 int length = 0; 6925 int err = 0; 6926 6927 mutex_lock(&priv->action_mutex); 6928 if (!(priv->status & STATUS_INITIALIZED)) { 6929 err = -EIO; 6930 goto done; 6931 } 6932 6933 if (wrqu->essid.flags && wrqu->essid.length) { 6934 length = wrqu->essid.length; 6935 essid = extra; 6936 } 6937 6938 if (length == 0) { 6939 IPW_DEBUG_WX("Setting ESSID to ANY\n"); 6940 priv->config &= ~CFG_STATIC_ESSID; 6941 err = ipw2100_set_essid(priv, NULL, 0, 0); 6942 goto done; 6943 } 6944 6945 length = min(length, IW_ESSID_MAX_SIZE); 6946 6947 priv->config |= CFG_STATIC_ESSID; 6948 6949 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) { 6950 IPW_DEBUG_WX("ESSID set to current ESSID.\n"); 6951 err = 0; 6952 goto done; 6953 } 6954 6955 IPW_DEBUG_WX("Setting ESSID: '%*pE' (%d)\n", length, essid, length); 6956 6957 priv->essid_len = length; 6958 memcpy(priv->essid, essid, priv->essid_len); 6959 6960 err = ipw2100_set_essid(priv, essid, length, 0); 6961 6962 done: 6963 mutex_unlock(&priv->action_mutex); 6964 return err; 6965 } 6966 6967 static int ipw2100_wx_get_essid(struct net_device *dev, 6968 struct iw_request_info *info, 6969 union iwreq_data *wrqu, char *extra) 6970 { 6971 /* 6972 * This can be called at any time. No action lock required 6973 */ 6974 6975 struct ipw2100_priv *priv = libipw_priv(dev); 6976 6977 /* If we are associated, trying to associate, or have a statically 6978 * configured ESSID then return that; otherwise return ANY */ 6979 if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) { 6980 IPW_DEBUG_WX("Getting essid: '%*pE'\n", 6981 priv->essid_len, priv->essid); 6982 memcpy(extra, priv->essid, priv->essid_len); 6983 wrqu->essid.length = priv->essid_len; 6984 wrqu->essid.flags = 1; /* active */ 6985 } else { 6986 IPW_DEBUG_WX("Getting essid: ANY\n"); 6987 wrqu->essid.length = 0; 6988 wrqu->essid.flags = 0; /* active */ 6989 } 6990 6991 return 0; 6992 } 6993 6994 static int ipw2100_wx_set_nick(struct net_device *dev, 6995 struct iw_request_info *info, 6996 union iwreq_data *wrqu, char *extra) 6997 { 6998 /* 6999 * This can be called at any time. No action lock required 7000 */ 7001 7002 struct ipw2100_priv *priv = libipw_priv(dev); 7003 7004 if (wrqu->data.length > IW_ESSID_MAX_SIZE) 7005 return -E2BIG; 7006 7007 wrqu->data.length = min_t(size_t, wrqu->data.length, sizeof(priv->nick)); 7008 memset(priv->nick, 0, sizeof(priv->nick)); 7009 memcpy(priv->nick, extra, wrqu->data.length); 7010 7011 IPW_DEBUG_WX("SET Nickname -> %s\n", priv->nick); 7012 7013 return 0; 7014 } 7015 7016 static int ipw2100_wx_get_nick(struct net_device *dev, 7017 struct iw_request_info *info, 7018 union iwreq_data *wrqu, char *extra) 7019 { 7020 /* 7021 * This can be called at any time. No action lock required 7022 */ 7023 7024 struct ipw2100_priv *priv = libipw_priv(dev); 7025 7026 wrqu->data.length = strlen(priv->nick); 7027 memcpy(extra, priv->nick, wrqu->data.length); 7028 wrqu->data.flags = 1; /* active */ 7029 7030 IPW_DEBUG_WX("GET Nickname -> %s\n", extra); 7031 7032 return 0; 7033 } 7034 7035 static int ipw2100_wx_set_rate(struct net_device *dev, 7036 struct iw_request_info *info, 7037 union iwreq_data *wrqu, char *extra) 7038 { 7039 struct ipw2100_priv *priv = libipw_priv(dev); 7040 u32 target_rate = wrqu->bitrate.value; 7041 u32 rate; 7042 int err = 0; 7043 7044 mutex_lock(&priv->action_mutex); 7045 if (!(priv->status & STATUS_INITIALIZED)) { 7046 err = -EIO; 7047 goto done; 7048 } 7049 7050 rate = 0; 7051 7052 if (target_rate == 1000000 || 7053 (!wrqu->bitrate.fixed && target_rate > 1000000)) 7054 rate |= TX_RATE_1_MBIT; 7055 if (target_rate == 2000000 || 7056 (!wrqu->bitrate.fixed && target_rate > 2000000)) 7057 rate |= TX_RATE_2_MBIT; 7058 if (target_rate == 5500000 || 7059 (!wrqu->bitrate.fixed && target_rate > 5500000)) 7060 rate |= TX_RATE_5_5_MBIT; 7061 if (target_rate == 11000000 || 7062 (!wrqu->bitrate.fixed && target_rate > 11000000)) 7063 rate |= TX_RATE_11_MBIT; 7064 if (rate == 0) 7065 rate = DEFAULT_TX_RATES; 7066 7067 err = ipw2100_set_tx_rates(priv, rate, 0); 7068 7069 IPW_DEBUG_WX("SET Rate -> %04X\n", rate); 7070 done: 7071 mutex_unlock(&priv->action_mutex); 7072 return err; 7073 } 7074 7075 static int ipw2100_wx_get_rate(struct net_device *dev, 7076 struct iw_request_info *info, 7077 union iwreq_data *wrqu, char *extra) 7078 { 7079 struct ipw2100_priv *priv = libipw_priv(dev); 7080 int val; 7081 unsigned int len = sizeof(val); 7082 int err = 0; 7083 7084 if (!(priv->status & STATUS_ENABLED) || 7085 priv->status & STATUS_RF_KILL_MASK || 7086 !(priv->status & STATUS_ASSOCIATED)) { 7087 wrqu->bitrate.value = 0; 7088 return 0; 7089 } 7090 7091 mutex_lock(&priv->action_mutex); 7092 if (!(priv->status & STATUS_INITIALIZED)) { 7093 err = -EIO; 7094 goto done; 7095 } 7096 7097 err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len); 7098 if (err) { 7099 IPW_DEBUG_WX("failed querying ordinals.\n"); 7100 goto done; 7101 } 7102 7103 switch (val & TX_RATE_MASK) { 7104 case TX_RATE_1_MBIT: 7105 wrqu->bitrate.value = 1000000; 7106 break; 7107 case TX_RATE_2_MBIT: 7108 wrqu->bitrate.value = 2000000; 7109 break; 7110 case TX_RATE_5_5_MBIT: 7111 wrqu->bitrate.value = 5500000; 7112 break; 7113 case TX_RATE_11_MBIT: 7114 wrqu->bitrate.value = 11000000; 7115 break; 7116 default: 7117 wrqu->bitrate.value = 0; 7118 } 7119 7120 IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value); 7121 7122 done: 7123 mutex_unlock(&priv->action_mutex); 7124 return err; 7125 } 7126 7127 static int ipw2100_wx_set_rts(struct net_device *dev, 7128 struct iw_request_info *info, 7129 union iwreq_data *wrqu, char *extra) 7130 { 7131 struct ipw2100_priv *priv = libipw_priv(dev); 7132 int value, err; 7133 7134 /* Auto RTS not yet supported */ 7135 if (wrqu->rts.fixed == 0) 7136 return -EINVAL; 7137 7138 mutex_lock(&priv->action_mutex); 7139 if (!(priv->status & STATUS_INITIALIZED)) { 7140 err = -EIO; 7141 goto done; 7142 } 7143 7144 if (wrqu->rts.disabled) 7145 value = priv->rts_threshold | RTS_DISABLED; 7146 else { 7147 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) { 7148 err = -EINVAL; 7149 goto done; 7150 } 7151 value = wrqu->rts.value; 7152 } 7153 7154 err = ipw2100_set_rts_threshold(priv, value); 7155 7156 IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X\n", value); 7157 done: 7158 mutex_unlock(&priv->action_mutex); 7159 return err; 7160 } 7161 7162 static int ipw2100_wx_get_rts(struct net_device *dev, 7163 struct iw_request_info *info, 7164 union iwreq_data *wrqu, char *extra) 7165 { 7166 /* 7167 * This can be called at any time. No action lock required 7168 */ 7169 7170 struct ipw2100_priv *priv = libipw_priv(dev); 7171 7172 wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED; 7173 wrqu->rts.fixed = 1; /* no auto select */ 7174 7175 /* If RTS is set to the default value, then it is disabled */ 7176 wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0; 7177 7178 IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X\n", wrqu->rts.value); 7179 7180 return 0; 7181 } 7182 7183 static int ipw2100_wx_set_txpow(struct net_device *dev, 7184 struct iw_request_info *info, 7185 union iwreq_data *wrqu, char *extra) 7186 { 7187 struct ipw2100_priv *priv = libipw_priv(dev); 7188 int err = 0, value; 7189 7190 if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled)) 7191 return -EINPROGRESS; 7192 7193 if (priv->ieee->iw_mode != IW_MODE_ADHOC) 7194 return 0; 7195 7196 if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM) 7197 return -EINVAL; 7198 7199 if (wrqu->txpower.fixed == 0) 7200 value = IPW_TX_POWER_DEFAULT; 7201 else { 7202 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM || 7203 wrqu->txpower.value > IPW_TX_POWER_MAX_DBM) 7204 return -EINVAL; 7205 7206 value = wrqu->txpower.value; 7207 } 7208 7209 mutex_lock(&priv->action_mutex); 7210 if (!(priv->status & STATUS_INITIALIZED)) { 7211 err = -EIO; 7212 goto done; 7213 } 7214 7215 err = ipw2100_set_tx_power(priv, value); 7216 7217 IPW_DEBUG_WX("SET TX Power -> %d\n", value); 7218 7219 done: 7220 mutex_unlock(&priv->action_mutex); 7221 return err; 7222 } 7223 7224 static int ipw2100_wx_get_txpow(struct net_device *dev, 7225 struct iw_request_info *info, 7226 union iwreq_data *wrqu, char *extra) 7227 { 7228 /* 7229 * This can be called at any time. No action lock required 7230 */ 7231 7232 struct ipw2100_priv *priv = libipw_priv(dev); 7233 7234 wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0; 7235 7236 if (priv->tx_power == IPW_TX_POWER_DEFAULT) { 7237 wrqu->txpower.fixed = 0; 7238 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM; 7239 } else { 7240 wrqu->txpower.fixed = 1; 7241 wrqu->txpower.value = priv->tx_power; 7242 } 7243 7244 wrqu->txpower.flags = IW_TXPOW_DBM; 7245 7246 IPW_DEBUG_WX("GET TX Power -> %d\n", wrqu->txpower.value); 7247 7248 return 0; 7249 } 7250 7251 static int ipw2100_wx_set_frag(struct net_device *dev, 7252 struct iw_request_info *info, 7253 union iwreq_data *wrqu, char *extra) 7254 { 7255 /* 7256 * This can be called at any time. No action lock required 7257 */ 7258 7259 struct ipw2100_priv *priv = libipw_priv(dev); 7260 7261 if (!wrqu->frag.fixed) 7262 return -EINVAL; 7263 7264 if (wrqu->frag.disabled) { 7265 priv->frag_threshold |= FRAG_DISABLED; 7266 priv->ieee->fts = DEFAULT_FTS; 7267 } else { 7268 if (wrqu->frag.value < MIN_FRAG_THRESHOLD || 7269 wrqu->frag.value > MAX_FRAG_THRESHOLD) 7270 return -EINVAL; 7271 7272 priv->ieee->fts = wrqu->frag.value & ~0x1; 7273 priv->frag_threshold = priv->ieee->fts; 7274 } 7275 7276 IPW_DEBUG_WX("SET Frag Threshold -> %d\n", priv->ieee->fts); 7277 7278 return 0; 7279 } 7280 7281 static int ipw2100_wx_get_frag(struct net_device *dev, 7282 struct iw_request_info *info, 7283 union iwreq_data *wrqu, char *extra) 7284 { 7285 /* 7286 * This can be called at any time. No action lock required 7287 */ 7288 7289 struct ipw2100_priv *priv = libipw_priv(dev); 7290 wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED; 7291 wrqu->frag.fixed = 0; /* no auto select */ 7292 wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0; 7293 7294 IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value); 7295 7296 return 0; 7297 } 7298 7299 static int ipw2100_wx_set_retry(struct net_device *dev, 7300 struct iw_request_info *info, 7301 union iwreq_data *wrqu, char *extra) 7302 { 7303 struct ipw2100_priv *priv = libipw_priv(dev); 7304 int err = 0; 7305 7306 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled) 7307 return -EINVAL; 7308 7309 if (!(wrqu->retry.flags & IW_RETRY_LIMIT)) 7310 return 0; 7311 7312 mutex_lock(&priv->action_mutex); 7313 if (!(priv->status & STATUS_INITIALIZED)) { 7314 err = -EIO; 7315 goto done; 7316 } 7317 7318 if (wrqu->retry.flags & IW_RETRY_SHORT) { 7319 err = ipw2100_set_short_retry(priv, wrqu->retry.value); 7320 IPW_DEBUG_WX("SET Short Retry Limit -> %d\n", 7321 wrqu->retry.value); 7322 goto done; 7323 } 7324 7325 if (wrqu->retry.flags & IW_RETRY_LONG) { 7326 err = ipw2100_set_long_retry(priv, wrqu->retry.value); 7327 IPW_DEBUG_WX("SET Long Retry Limit -> %d\n", 7328 wrqu->retry.value); 7329 goto done; 7330 } 7331 7332 err = ipw2100_set_short_retry(priv, wrqu->retry.value); 7333 if (!err) 7334 err = ipw2100_set_long_retry(priv, wrqu->retry.value); 7335 7336 IPW_DEBUG_WX("SET Both Retry Limits -> %d\n", wrqu->retry.value); 7337 7338 done: 7339 mutex_unlock(&priv->action_mutex); 7340 return err; 7341 } 7342 7343 static int ipw2100_wx_get_retry(struct net_device *dev, 7344 struct iw_request_info *info, 7345 union iwreq_data *wrqu, char *extra) 7346 { 7347 /* 7348 * This can be called at any time. No action lock required 7349 */ 7350 7351 struct ipw2100_priv *priv = libipw_priv(dev); 7352 7353 wrqu->retry.disabled = 0; /* can't be disabled */ 7354 7355 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) 7356 return -EINVAL; 7357 7358 if (wrqu->retry.flags & IW_RETRY_LONG) { 7359 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG; 7360 wrqu->retry.value = priv->long_retry_limit; 7361 } else { 7362 wrqu->retry.flags = 7363 (priv->short_retry_limit != 7364 priv->long_retry_limit) ? 7365 IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT; 7366 7367 wrqu->retry.value = priv->short_retry_limit; 7368 } 7369 7370 IPW_DEBUG_WX("GET Retry -> %d\n", wrqu->retry.value); 7371 7372 return 0; 7373 } 7374 7375 static int ipw2100_wx_set_scan(struct net_device *dev, 7376 struct iw_request_info *info, 7377 union iwreq_data *wrqu, char *extra) 7378 { 7379 struct ipw2100_priv *priv = libipw_priv(dev); 7380 int err = 0; 7381 7382 mutex_lock(&priv->action_mutex); 7383 if (!(priv->status & STATUS_INITIALIZED)) { 7384 err = -EIO; 7385 goto done; 7386 } 7387 7388 IPW_DEBUG_WX("Initiating scan...\n"); 7389 7390 priv->user_requested_scan = 1; 7391 if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) { 7392 IPW_DEBUG_WX("Start scan failed.\n"); 7393 7394 /* TODO: Mark a scan as pending so when hardware initialized 7395 * a scan starts */ 7396 } 7397 7398 done: 7399 mutex_unlock(&priv->action_mutex); 7400 return err; 7401 } 7402 7403 static int ipw2100_wx_get_scan(struct net_device *dev, 7404 struct iw_request_info *info, 7405 union iwreq_data *wrqu, char *extra) 7406 { 7407 /* 7408 * This can be called at any time. No action lock required 7409 */ 7410 7411 struct ipw2100_priv *priv = libipw_priv(dev); 7412 return libipw_wx_get_scan(priv->ieee, info, wrqu, extra); 7413 } 7414 7415 /* 7416 * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c 7417 */ 7418 static int ipw2100_wx_set_encode(struct net_device *dev, 7419 struct iw_request_info *info, 7420 union iwreq_data *wrqu, char *key) 7421 { 7422 /* 7423 * No check of STATUS_INITIALIZED required 7424 */ 7425 7426 struct ipw2100_priv *priv = libipw_priv(dev); 7427 return libipw_wx_set_encode(priv->ieee, info, wrqu, key); 7428 } 7429 7430 static int ipw2100_wx_get_encode(struct net_device *dev, 7431 struct iw_request_info *info, 7432 union iwreq_data *wrqu, char *key) 7433 { 7434 /* 7435 * This can be called at any time. No action lock required 7436 */ 7437 7438 struct ipw2100_priv *priv = libipw_priv(dev); 7439 return libipw_wx_get_encode(priv->ieee, info, wrqu, key); 7440 } 7441 7442 static int ipw2100_wx_set_power(struct net_device *dev, 7443 struct iw_request_info *info, 7444 union iwreq_data *wrqu, char *extra) 7445 { 7446 struct ipw2100_priv *priv = libipw_priv(dev); 7447 int err = 0; 7448 7449 mutex_lock(&priv->action_mutex); 7450 if (!(priv->status & STATUS_INITIALIZED)) { 7451 err = -EIO; 7452 goto done; 7453 } 7454 7455 if (wrqu->power.disabled) { 7456 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode); 7457 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM); 7458 IPW_DEBUG_WX("SET Power Management Mode -> off\n"); 7459 goto done; 7460 } 7461 7462 switch (wrqu->power.flags & IW_POWER_MODE) { 7463 case IW_POWER_ON: /* If not specified */ 7464 case IW_POWER_MODE: /* If set all mask */ 7465 case IW_POWER_ALL_R: /* If explicitly state all */ 7466 break; 7467 default: /* Otherwise we don't support it */ 7468 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n", 7469 wrqu->power.flags); 7470 err = -EOPNOTSUPP; 7471 goto done; 7472 } 7473 7474 /* If the user hasn't specified a power management mode yet, default 7475 * to BATTERY */ 7476 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode; 7477 err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode)); 7478 7479 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode); 7480 7481 done: 7482 mutex_unlock(&priv->action_mutex); 7483 return err; 7484 7485 } 7486 7487 static int ipw2100_wx_get_power(struct net_device *dev, 7488 struct iw_request_info *info, 7489 union iwreq_data *wrqu, char *extra) 7490 { 7491 /* 7492 * This can be called at any time. No action lock required 7493 */ 7494 7495 struct ipw2100_priv *priv = libipw_priv(dev); 7496 7497 if (!(priv->power_mode & IPW_POWER_ENABLED)) 7498 wrqu->power.disabled = 1; 7499 else { 7500 wrqu->power.disabled = 0; 7501 wrqu->power.flags = 0; 7502 } 7503 7504 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode); 7505 7506 return 0; 7507 } 7508 7509 /* 7510 * WE-18 WPA support 7511 */ 7512 7513 /* SIOCSIWGENIE */ 7514 static int ipw2100_wx_set_genie(struct net_device *dev, 7515 struct iw_request_info *info, 7516 union iwreq_data *wrqu, char *extra) 7517 { 7518 7519 struct ipw2100_priv *priv = libipw_priv(dev); 7520 struct libipw_device *ieee = priv->ieee; 7521 u8 *buf; 7522 7523 if (!ieee->wpa_enabled) 7524 return -EOPNOTSUPP; 7525 7526 if (wrqu->data.length > MAX_WPA_IE_LEN || 7527 (wrqu->data.length && extra == NULL)) 7528 return -EINVAL; 7529 7530 if (wrqu->data.length) { 7531 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL); 7532 if (buf == NULL) 7533 return -ENOMEM; 7534 7535 kfree(ieee->wpa_ie); 7536 ieee->wpa_ie = buf; 7537 ieee->wpa_ie_len = wrqu->data.length; 7538 } else { 7539 kfree(ieee->wpa_ie); 7540 ieee->wpa_ie = NULL; 7541 ieee->wpa_ie_len = 0; 7542 } 7543 7544 ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len); 7545 7546 return 0; 7547 } 7548 7549 /* SIOCGIWGENIE */ 7550 static int ipw2100_wx_get_genie(struct net_device *dev, 7551 struct iw_request_info *info, 7552 union iwreq_data *wrqu, char *extra) 7553 { 7554 struct ipw2100_priv *priv = libipw_priv(dev); 7555 struct libipw_device *ieee = priv->ieee; 7556 7557 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) { 7558 wrqu->data.length = 0; 7559 return 0; 7560 } 7561 7562 if (wrqu->data.length < ieee->wpa_ie_len) 7563 return -E2BIG; 7564 7565 wrqu->data.length = ieee->wpa_ie_len; 7566 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len); 7567 7568 return 0; 7569 } 7570 7571 /* SIOCSIWAUTH */ 7572 static int ipw2100_wx_set_auth(struct net_device *dev, 7573 struct iw_request_info *info, 7574 union iwreq_data *wrqu, char *extra) 7575 { 7576 struct ipw2100_priv *priv = libipw_priv(dev); 7577 struct libipw_device *ieee = priv->ieee; 7578 struct iw_param *param = &wrqu->param; 7579 struct lib80211_crypt_data *crypt; 7580 unsigned long flags; 7581 int ret = 0; 7582 7583 switch (param->flags & IW_AUTH_INDEX) { 7584 case IW_AUTH_WPA_VERSION: 7585 case IW_AUTH_CIPHER_PAIRWISE: 7586 case IW_AUTH_CIPHER_GROUP: 7587 case IW_AUTH_KEY_MGMT: 7588 /* 7589 * ipw2200 does not use these parameters 7590 */ 7591 break; 7592 7593 case IW_AUTH_TKIP_COUNTERMEASURES: 7594 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx]; 7595 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags) 7596 break; 7597 7598 flags = crypt->ops->get_flags(crypt->priv); 7599 7600 if (param->value) 7601 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES; 7602 else 7603 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES; 7604 7605 crypt->ops->set_flags(flags, crypt->priv); 7606 7607 break; 7608 7609 case IW_AUTH_DROP_UNENCRYPTED:{ 7610 /* HACK: 7611 * 7612 * wpa_supplicant calls set_wpa_enabled when the driver 7613 * is loaded and unloaded, regardless of if WPA is being 7614 * used. No other calls are made which can be used to 7615 * determine if encryption will be used or not prior to 7616 * association being expected. If encryption is not being 7617 * used, drop_unencrypted is set to false, else true -- we 7618 * can use this to determine if the CAP_PRIVACY_ON bit should 7619 * be set. 7620 */ 7621 struct libipw_security sec = { 7622 .flags = SEC_ENABLED, 7623 .enabled = param->value, 7624 }; 7625 priv->ieee->drop_unencrypted = param->value; 7626 /* We only change SEC_LEVEL for open mode. Others 7627 * are set by ipw_wpa_set_encryption. 7628 */ 7629 if (!param->value) { 7630 sec.flags |= SEC_LEVEL; 7631 sec.level = SEC_LEVEL_0; 7632 } else { 7633 sec.flags |= SEC_LEVEL; 7634 sec.level = SEC_LEVEL_1; 7635 } 7636 if (priv->ieee->set_security) 7637 priv->ieee->set_security(priv->ieee->dev, &sec); 7638 break; 7639 } 7640 7641 case IW_AUTH_80211_AUTH_ALG: 7642 ret = ipw2100_wpa_set_auth_algs(priv, param->value); 7643 break; 7644 7645 case IW_AUTH_WPA_ENABLED: 7646 ret = ipw2100_wpa_enable(priv, param->value); 7647 break; 7648 7649 case IW_AUTH_RX_UNENCRYPTED_EAPOL: 7650 ieee->ieee802_1x = param->value; 7651 break; 7652 7653 //case IW_AUTH_ROAMING_CONTROL: 7654 case IW_AUTH_PRIVACY_INVOKED: 7655 ieee->privacy_invoked = param->value; 7656 break; 7657 7658 default: 7659 return -EOPNOTSUPP; 7660 } 7661 return ret; 7662 } 7663 7664 /* SIOCGIWAUTH */ 7665 static int ipw2100_wx_get_auth(struct net_device *dev, 7666 struct iw_request_info *info, 7667 union iwreq_data *wrqu, char *extra) 7668 { 7669 struct ipw2100_priv *priv = libipw_priv(dev); 7670 struct libipw_device *ieee = priv->ieee; 7671 struct lib80211_crypt_data *crypt; 7672 struct iw_param *param = &wrqu->param; 7673 7674 switch (param->flags & IW_AUTH_INDEX) { 7675 case IW_AUTH_WPA_VERSION: 7676 case IW_AUTH_CIPHER_PAIRWISE: 7677 case IW_AUTH_CIPHER_GROUP: 7678 case IW_AUTH_KEY_MGMT: 7679 /* 7680 * wpa_supplicant will control these internally 7681 */ 7682 break; 7683 7684 case IW_AUTH_TKIP_COUNTERMEASURES: 7685 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx]; 7686 if (!crypt || !crypt->ops->get_flags) { 7687 IPW_DEBUG_WARNING("Can't get TKIP countermeasures: " 7688 "crypt not set!\n"); 7689 break; 7690 } 7691 7692 param->value = (crypt->ops->get_flags(crypt->priv) & 7693 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0; 7694 7695 break; 7696 7697 case IW_AUTH_DROP_UNENCRYPTED: 7698 param->value = ieee->drop_unencrypted; 7699 break; 7700 7701 case IW_AUTH_80211_AUTH_ALG: 7702 param->value = priv->ieee->sec.auth_mode; 7703 break; 7704 7705 case IW_AUTH_WPA_ENABLED: 7706 param->value = ieee->wpa_enabled; 7707 break; 7708 7709 case IW_AUTH_RX_UNENCRYPTED_EAPOL: 7710 param->value = ieee->ieee802_1x; 7711 break; 7712 7713 case IW_AUTH_ROAMING_CONTROL: 7714 case IW_AUTH_PRIVACY_INVOKED: 7715 param->value = ieee->privacy_invoked; 7716 break; 7717 7718 default: 7719 return -EOPNOTSUPP; 7720 } 7721 return 0; 7722 } 7723 7724 /* SIOCSIWENCODEEXT */ 7725 static int ipw2100_wx_set_encodeext(struct net_device *dev, 7726 struct iw_request_info *info, 7727 union iwreq_data *wrqu, char *extra) 7728 { 7729 struct ipw2100_priv *priv = libipw_priv(dev); 7730 return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra); 7731 } 7732 7733 /* SIOCGIWENCODEEXT */ 7734 static int ipw2100_wx_get_encodeext(struct net_device *dev, 7735 struct iw_request_info *info, 7736 union iwreq_data *wrqu, char *extra) 7737 { 7738 struct ipw2100_priv *priv = libipw_priv(dev); 7739 return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra); 7740 } 7741 7742 /* SIOCSIWMLME */ 7743 static int ipw2100_wx_set_mlme(struct net_device *dev, 7744 struct iw_request_info *info, 7745 union iwreq_data *wrqu, char *extra) 7746 { 7747 struct ipw2100_priv *priv = libipw_priv(dev); 7748 struct iw_mlme *mlme = (struct iw_mlme *)extra; 7749 7750 switch (mlme->cmd) { 7751 case IW_MLME_DEAUTH: 7752 // silently ignore 7753 break; 7754 7755 case IW_MLME_DISASSOC: 7756 ipw2100_disassociate_bssid(priv); 7757 break; 7758 7759 default: 7760 return -EOPNOTSUPP; 7761 } 7762 return 0; 7763 } 7764 7765 /* 7766 * 7767 * IWPRIV handlers 7768 * 7769 */ 7770 #ifdef CONFIG_IPW2100_MONITOR 7771 static int ipw2100_wx_set_promisc(struct net_device *dev, 7772 struct iw_request_info *info, 7773 union iwreq_data *wrqu, char *extra) 7774 { 7775 struct ipw2100_priv *priv = libipw_priv(dev); 7776 int *parms = (int *)extra; 7777 int enable = (parms[0] > 0); 7778 int err = 0; 7779 7780 mutex_lock(&priv->action_mutex); 7781 if (!(priv->status & STATUS_INITIALIZED)) { 7782 err = -EIO; 7783 goto done; 7784 } 7785 7786 if (enable) { 7787 if (priv->ieee->iw_mode == IW_MODE_MONITOR) { 7788 err = ipw2100_set_channel(priv, parms[1], 0); 7789 goto done; 7790 } 7791 priv->channel = parms[1]; 7792 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR); 7793 } else { 7794 if (priv->ieee->iw_mode == IW_MODE_MONITOR) 7795 err = ipw2100_switch_mode(priv, priv->last_mode); 7796 } 7797 done: 7798 mutex_unlock(&priv->action_mutex); 7799 return err; 7800 } 7801 7802 static int ipw2100_wx_reset(struct net_device *dev, 7803 struct iw_request_info *info, 7804 union iwreq_data *wrqu, char *extra) 7805 { 7806 struct ipw2100_priv *priv = libipw_priv(dev); 7807 if (priv->status & STATUS_INITIALIZED) 7808 schedule_reset(priv); 7809 return 0; 7810 } 7811 7812 #endif 7813 7814 static int ipw2100_wx_set_powermode(struct net_device *dev, 7815 struct iw_request_info *info, 7816 union iwreq_data *wrqu, char *extra) 7817 { 7818 struct ipw2100_priv *priv = libipw_priv(dev); 7819 int err = 0, mode = *(int *)extra; 7820 7821 mutex_lock(&priv->action_mutex); 7822 if (!(priv->status & STATUS_INITIALIZED)) { 7823 err = -EIO; 7824 goto done; 7825 } 7826 7827 if ((mode < 0) || (mode > POWER_MODES)) 7828 mode = IPW_POWER_AUTO; 7829 7830 if (IPW_POWER_LEVEL(priv->power_mode) != mode) 7831 err = ipw2100_set_power_mode(priv, mode); 7832 done: 7833 mutex_unlock(&priv->action_mutex); 7834 return err; 7835 } 7836 7837 #define MAX_POWER_STRING 80 7838 static int ipw2100_wx_get_powermode(struct net_device *dev, 7839 struct iw_request_info *info, 7840 union iwreq_data *wrqu, char *extra) 7841 { 7842 /* 7843 * This can be called at any time. No action lock required 7844 */ 7845 7846 struct ipw2100_priv *priv = libipw_priv(dev); 7847 int level = IPW_POWER_LEVEL(priv->power_mode); 7848 s32 timeout, period; 7849 7850 if (!(priv->power_mode & IPW_POWER_ENABLED)) { 7851 snprintf(extra, MAX_POWER_STRING, 7852 "Power save level: %d (Off)", level); 7853 } else { 7854 switch (level) { 7855 case IPW_POWER_MODE_CAM: 7856 snprintf(extra, MAX_POWER_STRING, 7857 "Power save level: %d (None)", level); 7858 break; 7859 case IPW_POWER_AUTO: 7860 snprintf(extra, MAX_POWER_STRING, 7861 "Power save level: %d (Auto)", level); 7862 break; 7863 default: 7864 timeout = timeout_duration[level - 1] / 1000; 7865 period = period_duration[level - 1] / 1000; 7866 snprintf(extra, MAX_POWER_STRING, 7867 "Power save level: %d " 7868 "(Timeout %dms, Period %dms)", 7869 level, timeout, period); 7870 } 7871 } 7872 7873 wrqu->data.length = strlen(extra) + 1; 7874 7875 return 0; 7876 } 7877 7878 static int ipw2100_wx_set_preamble(struct net_device *dev, 7879 struct iw_request_info *info, 7880 union iwreq_data *wrqu, char *extra) 7881 { 7882 struct ipw2100_priv *priv = libipw_priv(dev); 7883 int err, mode = *(int *)extra; 7884 7885 mutex_lock(&priv->action_mutex); 7886 if (!(priv->status & STATUS_INITIALIZED)) { 7887 err = -EIO; 7888 goto done; 7889 } 7890 7891 if (mode == 1) 7892 priv->config |= CFG_LONG_PREAMBLE; 7893 else if (mode == 0) 7894 priv->config &= ~CFG_LONG_PREAMBLE; 7895 else { 7896 err = -EINVAL; 7897 goto done; 7898 } 7899 7900 err = ipw2100_system_config(priv, 0); 7901 7902 done: 7903 mutex_unlock(&priv->action_mutex); 7904 return err; 7905 } 7906 7907 static int ipw2100_wx_get_preamble(struct net_device *dev, 7908 struct iw_request_info *info, 7909 union iwreq_data *wrqu, char *extra) 7910 { 7911 /* 7912 * This can be called at any time. No action lock required 7913 */ 7914 7915 struct ipw2100_priv *priv = libipw_priv(dev); 7916 7917 if (priv->config & CFG_LONG_PREAMBLE) 7918 snprintf(wrqu->name, IFNAMSIZ, "long (1)"); 7919 else 7920 snprintf(wrqu->name, IFNAMSIZ, "auto (0)"); 7921 7922 return 0; 7923 } 7924 7925 #ifdef CONFIG_IPW2100_MONITOR 7926 static int ipw2100_wx_set_crc_check(struct net_device *dev, 7927 struct iw_request_info *info, 7928 union iwreq_data *wrqu, char *extra) 7929 { 7930 struct ipw2100_priv *priv = libipw_priv(dev); 7931 int err, mode = *(int *)extra; 7932 7933 mutex_lock(&priv->action_mutex); 7934 if (!(priv->status & STATUS_INITIALIZED)) { 7935 err = -EIO; 7936 goto done; 7937 } 7938 7939 if (mode == 1) 7940 priv->config |= CFG_CRC_CHECK; 7941 else if (mode == 0) 7942 priv->config &= ~CFG_CRC_CHECK; 7943 else { 7944 err = -EINVAL; 7945 goto done; 7946 } 7947 err = 0; 7948 7949 done: 7950 mutex_unlock(&priv->action_mutex); 7951 return err; 7952 } 7953 7954 static int ipw2100_wx_get_crc_check(struct net_device *dev, 7955 struct iw_request_info *info, 7956 union iwreq_data *wrqu, char *extra) 7957 { 7958 /* 7959 * This can be called at any time. No action lock required 7960 */ 7961 7962 struct ipw2100_priv *priv = libipw_priv(dev); 7963 7964 if (priv->config & CFG_CRC_CHECK) 7965 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)"); 7966 else 7967 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)"); 7968 7969 return 0; 7970 } 7971 #endif /* CONFIG_IPW2100_MONITOR */ 7972 7973 static iw_handler ipw2100_wx_handlers[] = { 7974 IW_HANDLER(SIOCGIWNAME, ipw2100_wx_get_name), 7975 IW_HANDLER(SIOCSIWFREQ, ipw2100_wx_set_freq), 7976 IW_HANDLER(SIOCGIWFREQ, ipw2100_wx_get_freq), 7977 IW_HANDLER(SIOCSIWMODE, ipw2100_wx_set_mode), 7978 IW_HANDLER(SIOCGIWMODE, ipw2100_wx_get_mode), 7979 IW_HANDLER(SIOCGIWRANGE, ipw2100_wx_get_range), 7980 IW_HANDLER(SIOCSIWAP, ipw2100_wx_set_wap), 7981 IW_HANDLER(SIOCGIWAP, ipw2100_wx_get_wap), 7982 IW_HANDLER(SIOCSIWMLME, ipw2100_wx_set_mlme), 7983 IW_HANDLER(SIOCSIWSCAN, ipw2100_wx_set_scan), 7984 IW_HANDLER(SIOCGIWSCAN, ipw2100_wx_get_scan), 7985 IW_HANDLER(SIOCSIWESSID, ipw2100_wx_set_essid), 7986 IW_HANDLER(SIOCGIWESSID, ipw2100_wx_get_essid), 7987 IW_HANDLER(SIOCSIWNICKN, ipw2100_wx_set_nick), 7988 IW_HANDLER(SIOCGIWNICKN, ipw2100_wx_get_nick), 7989 IW_HANDLER(SIOCSIWRATE, ipw2100_wx_set_rate), 7990 IW_HANDLER(SIOCGIWRATE, ipw2100_wx_get_rate), 7991 IW_HANDLER(SIOCSIWRTS, ipw2100_wx_set_rts), 7992 IW_HANDLER(SIOCGIWRTS, ipw2100_wx_get_rts), 7993 IW_HANDLER(SIOCSIWFRAG, ipw2100_wx_set_frag), 7994 IW_HANDLER(SIOCGIWFRAG, ipw2100_wx_get_frag), 7995 IW_HANDLER(SIOCSIWTXPOW, ipw2100_wx_set_txpow), 7996 IW_HANDLER(SIOCGIWTXPOW, ipw2100_wx_get_txpow), 7997 IW_HANDLER(SIOCSIWRETRY, ipw2100_wx_set_retry), 7998 IW_HANDLER(SIOCGIWRETRY, ipw2100_wx_get_retry), 7999 IW_HANDLER(SIOCSIWENCODE, ipw2100_wx_set_encode), 8000 IW_HANDLER(SIOCGIWENCODE, ipw2100_wx_get_encode), 8001 IW_HANDLER(SIOCSIWPOWER, ipw2100_wx_set_power), 8002 IW_HANDLER(SIOCGIWPOWER, ipw2100_wx_get_power), 8003 IW_HANDLER(SIOCSIWGENIE, ipw2100_wx_set_genie), 8004 IW_HANDLER(SIOCGIWGENIE, ipw2100_wx_get_genie), 8005 IW_HANDLER(SIOCSIWAUTH, ipw2100_wx_set_auth), 8006 IW_HANDLER(SIOCGIWAUTH, ipw2100_wx_get_auth), 8007 IW_HANDLER(SIOCSIWENCODEEXT, ipw2100_wx_set_encodeext), 8008 IW_HANDLER(SIOCGIWENCODEEXT, ipw2100_wx_get_encodeext), 8009 }; 8010 8011 #define IPW2100_PRIV_SET_MONITOR SIOCIWFIRSTPRIV 8012 #define IPW2100_PRIV_RESET SIOCIWFIRSTPRIV+1 8013 #define IPW2100_PRIV_SET_POWER SIOCIWFIRSTPRIV+2 8014 #define IPW2100_PRIV_GET_POWER SIOCIWFIRSTPRIV+3 8015 #define IPW2100_PRIV_SET_LONGPREAMBLE SIOCIWFIRSTPRIV+4 8016 #define IPW2100_PRIV_GET_LONGPREAMBLE SIOCIWFIRSTPRIV+5 8017 #define IPW2100_PRIV_SET_CRC_CHECK SIOCIWFIRSTPRIV+6 8018 #define IPW2100_PRIV_GET_CRC_CHECK SIOCIWFIRSTPRIV+7 8019 8020 static const struct iw_priv_args ipw2100_private_args[] = { 8021 8022 #ifdef CONFIG_IPW2100_MONITOR 8023 { 8024 IPW2100_PRIV_SET_MONITOR, 8025 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"}, 8026 { 8027 IPW2100_PRIV_RESET, 8028 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"}, 8029 #endif /* CONFIG_IPW2100_MONITOR */ 8030 8031 { 8032 IPW2100_PRIV_SET_POWER, 8033 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"}, 8034 { 8035 IPW2100_PRIV_GET_POWER, 8036 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING, 8037 "get_power"}, 8038 { 8039 IPW2100_PRIV_SET_LONGPREAMBLE, 8040 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"}, 8041 { 8042 IPW2100_PRIV_GET_LONGPREAMBLE, 8043 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"}, 8044 #ifdef CONFIG_IPW2100_MONITOR 8045 { 8046 IPW2100_PRIV_SET_CRC_CHECK, 8047 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"}, 8048 { 8049 IPW2100_PRIV_GET_CRC_CHECK, 8050 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"}, 8051 #endif /* CONFIG_IPW2100_MONITOR */ 8052 }; 8053 8054 static iw_handler ipw2100_private_handler[] = { 8055 #ifdef CONFIG_IPW2100_MONITOR 8056 ipw2100_wx_set_promisc, 8057 ipw2100_wx_reset, 8058 #else /* CONFIG_IPW2100_MONITOR */ 8059 NULL, 8060 NULL, 8061 #endif /* CONFIG_IPW2100_MONITOR */ 8062 ipw2100_wx_set_powermode, 8063 ipw2100_wx_get_powermode, 8064 ipw2100_wx_set_preamble, 8065 ipw2100_wx_get_preamble, 8066 #ifdef CONFIG_IPW2100_MONITOR 8067 ipw2100_wx_set_crc_check, 8068 ipw2100_wx_get_crc_check, 8069 #else /* CONFIG_IPW2100_MONITOR */ 8070 NULL, 8071 NULL, 8072 #endif /* CONFIG_IPW2100_MONITOR */ 8073 }; 8074 8075 /* 8076 * Get wireless statistics. 8077 * Called by /proc/net/wireless 8078 * Also called by SIOCGIWSTATS 8079 */ 8080 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev) 8081 { 8082 enum { 8083 POOR = 30, 8084 FAIR = 60, 8085 GOOD = 80, 8086 VERY_GOOD = 90, 8087 EXCELLENT = 95, 8088 PERFECT = 100 8089 }; 8090 int rssi_qual; 8091 int tx_qual; 8092 int beacon_qual; 8093 int quality; 8094 8095 struct ipw2100_priv *priv = libipw_priv(dev); 8096 struct iw_statistics *wstats; 8097 u32 rssi, tx_retries, missed_beacons, tx_failures; 8098 u32 ord_len = sizeof(u32); 8099 8100 if (!priv) 8101 return (struct iw_statistics *)NULL; 8102 8103 wstats = &priv->wstats; 8104 8105 /* if hw is disabled, then ipw2100_get_ordinal() can't be called. 8106 * ipw2100_wx_wireless_stats seems to be called before fw is 8107 * initialized. STATUS_ASSOCIATED will only be set if the hw is up 8108 * and associated; if not associcated, the values are all meaningless 8109 * anyway, so set them all to NULL and INVALID */ 8110 if (!(priv->status & STATUS_ASSOCIATED)) { 8111 wstats->miss.beacon = 0; 8112 wstats->discard.retries = 0; 8113 wstats->qual.qual = 0; 8114 wstats->qual.level = 0; 8115 wstats->qual.noise = 0; 8116 wstats->qual.updated = 7; 8117 wstats->qual.updated |= IW_QUAL_NOISE_INVALID | 8118 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID; 8119 return wstats; 8120 } 8121 8122 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS, 8123 &missed_beacons, &ord_len)) 8124 goto fail_get_ordinal; 8125 8126 /* If we don't have a connection the quality and level is 0 */ 8127 if (!(priv->status & STATUS_ASSOCIATED)) { 8128 wstats->qual.qual = 0; 8129 wstats->qual.level = 0; 8130 } else { 8131 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR, 8132 &rssi, &ord_len)) 8133 goto fail_get_ordinal; 8134 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM; 8135 if (rssi < 10) 8136 rssi_qual = rssi * POOR / 10; 8137 else if (rssi < 15) 8138 rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR; 8139 else if (rssi < 20) 8140 rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR; 8141 else if (rssi < 30) 8142 rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) / 8143 10 + GOOD; 8144 else 8145 rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) / 8146 10 + VERY_GOOD; 8147 8148 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES, 8149 &tx_retries, &ord_len)) 8150 goto fail_get_ordinal; 8151 8152 if (tx_retries > 75) 8153 tx_qual = (90 - tx_retries) * POOR / 15; 8154 else if (tx_retries > 70) 8155 tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR; 8156 else if (tx_retries > 65) 8157 tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR; 8158 else if (tx_retries > 50) 8159 tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) / 8160 15 + GOOD; 8161 else 8162 tx_qual = (50 - tx_retries) * 8163 (PERFECT - VERY_GOOD) / 50 + VERY_GOOD; 8164 8165 if (missed_beacons > 50) 8166 beacon_qual = (60 - missed_beacons) * POOR / 10; 8167 else if (missed_beacons > 40) 8168 beacon_qual = (50 - missed_beacons) * (FAIR - POOR) / 8169 10 + POOR; 8170 else if (missed_beacons > 32) 8171 beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) / 8172 18 + FAIR; 8173 else if (missed_beacons > 20) 8174 beacon_qual = (32 - missed_beacons) * 8175 (VERY_GOOD - GOOD) / 20 + GOOD; 8176 else 8177 beacon_qual = (20 - missed_beacons) * 8178 (PERFECT - VERY_GOOD) / 20 + VERY_GOOD; 8179 8180 quality = min(tx_qual, rssi_qual); 8181 quality = min(beacon_qual, quality); 8182 8183 #ifdef CONFIG_IPW2100_DEBUG 8184 if (beacon_qual == quality) 8185 IPW_DEBUG_WX("Quality clamped by Missed Beacons\n"); 8186 else if (tx_qual == quality) 8187 IPW_DEBUG_WX("Quality clamped by Tx Retries\n"); 8188 else if (quality != 100) 8189 IPW_DEBUG_WX("Quality clamped by Signal Strength\n"); 8190 else 8191 IPW_DEBUG_WX("Quality not clamped.\n"); 8192 #endif 8193 8194 wstats->qual.qual = quality; 8195 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM; 8196 } 8197 8198 wstats->qual.noise = 0; 8199 wstats->qual.updated = 7; 8200 wstats->qual.updated |= IW_QUAL_NOISE_INVALID; 8201 8202 /* FIXME: this is percent and not a # */ 8203 wstats->miss.beacon = missed_beacons; 8204 8205 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES, 8206 &tx_failures, &ord_len)) 8207 goto fail_get_ordinal; 8208 wstats->discard.retries = tx_failures; 8209 8210 return wstats; 8211 8212 fail_get_ordinal: 8213 IPW_DEBUG_WX("failed querying ordinals.\n"); 8214 8215 return (struct iw_statistics *)NULL; 8216 } 8217 8218 static const struct iw_handler_def ipw2100_wx_handler_def = { 8219 .standard = ipw2100_wx_handlers, 8220 .num_standard = ARRAY_SIZE(ipw2100_wx_handlers), 8221 .num_private = ARRAY_SIZE(ipw2100_private_handler), 8222 .num_private_args = ARRAY_SIZE(ipw2100_private_args), 8223 .private = (iw_handler *) ipw2100_private_handler, 8224 .private_args = (struct iw_priv_args *)ipw2100_private_args, 8225 .get_wireless_stats = ipw2100_wx_wireless_stats, 8226 }; 8227 8228 static void ipw2100_wx_event_work(struct work_struct *work) 8229 { 8230 struct ipw2100_priv *priv = 8231 container_of(work, struct ipw2100_priv, wx_event_work.work); 8232 union iwreq_data wrqu; 8233 unsigned int len = ETH_ALEN; 8234 8235 if (priv->status & STATUS_STOPPING) 8236 return; 8237 8238 mutex_lock(&priv->action_mutex); 8239 8240 IPW_DEBUG_WX("enter\n"); 8241 8242 mutex_unlock(&priv->action_mutex); 8243 8244 wrqu.ap_addr.sa_family = ARPHRD_ETHER; 8245 8246 /* Fetch BSSID from the hardware */ 8247 if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) || 8248 priv->status & STATUS_RF_KILL_MASK || 8249 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, 8250 &priv->bssid, &len)) { 8251 eth_zero_addr(wrqu.ap_addr.sa_data); 8252 } else { 8253 /* We now have the BSSID, so can finish setting to the full 8254 * associated state */ 8255 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN); 8256 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN); 8257 priv->status &= ~STATUS_ASSOCIATING; 8258 priv->status |= STATUS_ASSOCIATED; 8259 netif_carrier_on(priv->net_dev); 8260 netif_wake_queue(priv->net_dev); 8261 } 8262 8263 if (!(priv->status & STATUS_ASSOCIATED)) { 8264 IPW_DEBUG_WX("Configuring ESSID\n"); 8265 mutex_lock(&priv->action_mutex); 8266 /* This is a disassociation event, so kick the firmware to 8267 * look for another AP */ 8268 if (priv->config & CFG_STATIC_ESSID) 8269 ipw2100_set_essid(priv, priv->essid, priv->essid_len, 8270 0); 8271 else 8272 ipw2100_set_essid(priv, NULL, 0, 0); 8273 mutex_unlock(&priv->action_mutex); 8274 } 8275 8276 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL); 8277 } 8278 8279 #define IPW2100_FW_MAJOR_VERSION 1 8280 #define IPW2100_FW_MINOR_VERSION 3 8281 8282 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8) 8283 #define IPW2100_FW_MAJOR(x) (x & 0xff) 8284 8285 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \ 8286 IPW2100_FW_MAJOR_VERSION) 8287 8288 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \ 8289 "." __stringify(IPW2100_FW_MINOR_VERSION) 8290 8291 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw" 8292 8293 /* 8294 8295 BINARY FIRMWARE HEADER FORMAT 8296 8297 offset length desc 8298 0 2 version 8299 2 2 mode == 0:BSS,1:IBSS,2:MONITOR 8300 4 4 fw_len 8301 8 4 uc_len 8302 C fw_len firmware data 8303 12 + fw_len uc_len microcode data 8304 8305 */ 8306 8307 struct ipw2100_fw_header { 8308 short version; 8309 short mode; 8310 unsigned int fw_size; 8311 unsigned int uc_size; 8312 } __packed; 8313 8314 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw) 8315 { 8316 struct ipw2100_fw_header *h = 8317 (struct ipw2100_fw_header *)fw->fw_entry->data; 8318 8319 if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) { 8320 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible " 8321 "(detected version id of %u). " 8322 "See Documentation/networking/device_drivers/wifi/intel/ipw2100.rst\n", 8323 h->version); 8324 return 1; 8325 } 8326 8327 fw->version = h->version; 8328 fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header); 8329 fw->fw.size = h->fw_size; 8330 fw->uc.data = fw->fw.data + h->fw_size; 8331 fw->uc.size = h->uc_size; 8332 8333 return 0; 8334 } 8335 8336 static int ipw2100_get_firmware(struct ipw2100_priv *priv, 8337 struct ipw2100_fw *fw) 8338 { 8339 char *fw_name; 8340 int rc; 8341 8342 IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n", 8343 priv->net_dev->name); 8344 8345 switch (priv->ieee->iw_mode) { 8346 case IW_MODE_ADHOC: 8347 fw_name = IPW2100_FW_NAME("-i"); 8348 break; 8349 #ifdef CONFIG_IPW2100_MONITOR 8350 case IW_MODE_MONITOR: 8351 fw_name = IPW2100_FW_NAME("-p"); 8352 break; 8353 #endif 8354 case IW_MODE_INFRA: 8355 default: 8356 fw_name = IPW2100_FW_NAME(""); 8357 break; 8358 } 8359 8360 rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev); 8361 8362 if (rc < 0) { 8363 printk(KERN_ERR DRV_NAME ": " 8364 "%s: Firmware '%s' not available or load failed.\n", 8365 priv->net_dev->name, fw_name); 8366 return rc; 8367 } 8368 IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data, 8369 fw->fw_entry->size); 8370 8371 ipw2100_mod_firmware_load(fw); 8372 8373 return 0; 8374 } 8375 8376 MODULE_FIRMWARE(IPW2100_FW_NAME("-i")); 8377 #ifdef CONFIG_IPW2100_MONITOR 8378 MODULE_FIRMWARE(IPW2100_FW_NAME("-p")); 8379 #endif 8380 MODULE_FIRMWARE(IPW2100_FW_NAME("")); 8381 8382 static void ipw2100_release_firmware(struct ipw2100_priv *priv, 8383 struct ipw2100_fw *fw) 8384 { 8385 fw->version = 0; 8386 release_firmware(fw->fw_entry); 8387 fw->fw_entry = NULL; 8388 } 8389 8390 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf, 8391 size_t max) 8392 { 8393 char ver[MAX_FW_VERSION_LEN]; 8394 u32 len = MAX_FW_VERSION_LEN; 8395 u32 tmp; 8396 int i; 8397 /* firmware version is an ascii string (max len of 14) */ 8398 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len)) 8399 return -EIO; 8400 tmp = max; 8401 if (len >= max) 8402 len = max - 1; 8403 for (i = 0; i < len; i++) 8404 buf[i] = ver[i]; 8405 buf[i] = '\0'; 8406 return tmp; 8407 } 8408 8409 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf, 8410 size_t max) 8411 { 8412 u32 ver; 8413 u32 len = sizeof(ver); 8414 /* microcode version is a 32 bit integer */ 8415 if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len)) 8416 return -EIO; 8417 return snprintf(buf, max, "%08X", ver); 8418 } 8419 8420 /* 8421 * On exit, the firmware will have been freed from the fw list 8422 */ 8423 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw) 8424 { 8425 /* firmware is constructed of N contiguous entries, each entry is 8426 * structured as: 8427 * 8428 * offset sie desc 8429 * 0 4 address to write to 8430 * 4 2 length of data run 8431 * 6 length data 8432 */ 8433 unsigned int addr; 8434 unsigned short len; 8435 8436 const unsigned char *firmware_data = fw->fw.data; 8437 unsigned int firmware_data_left = fw->fw.size; 8438 8439 while (firmware_data_left > 0) { 8440 addr = *(u32 *) (firmware_data); 8441 firmware_data += 4; 8442 firmware_data_left -= 4; 8443 8444 len = *(u16 *) (firmware_data); 8445 firmware_data += 2; 8446 firmware_data_left -= 2; 8447 8448 if (len > 32) { 8449 printk(KERN_ERR DRV_NAME ": " 8450 "Invalid firmware run-length of %d bytes\n", 8451 len); 8452 return -EINVAL; 8453 } 8454 8455 write_nic_memory(priv->net_dev, addr, len, firmware_data); 8456 firmware_data += len; 8457 firmware_data_left -= len; 8458 } 8459 8460 return 0; 8461 } 8462 8463 struct symbol_alive_response { 8464 u8 cmd_id; 8465 u8 seq_num; 8466 u8 ucode_rev; 8467 u8 eeprom_valid; 8468 u16 valid_flags; 8469 u8 IEEE_addr[6]; 8470 u16 flags; 8471 u16 pcb_rev; 8472 u16 clock_settle_time; // 1us LSB 8473 u16 powerup_settle_time; // 1us LSB 8474 u16 hop_settle_time; // 1us LSB 8475 u8 date[3]; // month, day, year 8476 u8 time[2]; // hours, minutes 8477 u8 ucode_valid; 8478 }; 8479 8480 static int ipw2100_ucode_download(struct ipw2100_priv *priv, 8481 struct ipw2100_fw *fw) 8482 { 8483 struct net_device *dev = priv->net_dev; 8484 const unsigned char *microcode_data = fw->uc.data; 8485 unsigned int microcode_data_left = fw->uc.size; 8486 void __iomem *reg = priv->ioaddr; 8487 8488 struct symbol_alive_response response; 8489 int i, j; 8490 u8 data; 8491 8492 /* Symbol control */ 8493 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703); 8494 readl(reg); 8495 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707); 8496 readl(reg); 8497 8498 /* HW config */ 8499 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */ 8500 readl(reg); 8501 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */ 8502 readl(reg); 8503 8504 /* EN_CS_ACCESS bit to reset control store pointer */ 8505 write_nic_byte(dev, 0x210000, 0x40); 8506 readl(reg); 8507 write_nic_byte(dev, 0x210000, 0x0); 8508 readl(reg); 8509 write_nic_byte(dev, 0x210000, 0x40); 8510 readl(reg); 8511 8512 /* copy microcode from buffer into Symbol */ 8513 8514 while (microcode_data_left > 0) { 8515 write_nic_byte(dev, 0x210010, *microcode_data++); 8516 write_nic_byte(dev, 0x210010, *microcode_data++); 8517 microcode_data_left -= 2; 8518 } 8519 8520 /* EN_CS_ACCESS bit to reset the control store pointer */ 8521 write_nic_byte(dev, 0x210000, 0x0); 8522 readl(reg); 8523 8524 /* Enable System (Reg 0) 8525 * first enable causes garbage in RX FIFO */ 8526 write_nic_byte(dev, 0x210000, 0x0); 8527 readl(reg); 8528 write_nic_byte(dev, 0x210000, 0x80); 8529 readl(reg); 8530 8531 /* Reset External Baseband Reg */ 8532 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703); 8533 readl(reg); 8534 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707); 8535 readl(reg); 8536 8537 /* HW Config (Reg 5) */ 8538 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16 8539 readl(reg); 8540 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16 8541 readl(reg); 8542 8543 /* Enable System (Reg 0) 8544 * second enable should be OK */ 8545 write_nic_byte(dev, 0x210000, 0x00); // clear enable system 8546 readl(reg); 8547 write_nic_byte(dev, 0x210000, 0x80); // set enable system 8548 8549 /* check Symbol is enabled - upped this from 5 as it wasn't always 8550 * catching the update */ 8551 for (i = 0; i < 10; i++) { 8552 udelay(10); 8553 8554 /* check Dino is enabled bit */ 8555 read_nic_byte(dev, 0x210000, &data); 8556 if (data & 0x1) 8557 break; 8558 } 8559 8560 if (i == 10) { 8561 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n", 8562 dev->name); 8563 return -EIO; 8564 } 8565 8566 /* Get Symbol alive response */ 8567 for (i = 0; i < 30; i++) { 8568 /* Read alive response structure */ 8569 for (j = 0; 8570 j < (sizeof(struct symbol_alive_response) >> 1); j++) 8571 read_nic_word(dev, 0x210004, ((u16 *) & response) + j); 8572 8573 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1)) 8574 break; 8575 udelay(10); 8576 } 8577 8578 if (i == 30) { 8579 printk(KERN_ERR DRV_NAME 8580 ": %s: No response from Symbol - hw not alive\n", 8581 dev->name); 8582 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response)); 8583 return -EIO; 8584 } 8585 8586 return 0; 8587 } 8588