1 /******************************************************************************
2 
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4 
5   This program is free software; you can redistribute it and/or modify it
6   under the terms of version 2 of the GNU General Public License as
7   published by the Free Software Foundation.
8 
9   This program is distributed in the hope that it will be useful, but WITHOUT
10   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12   more details.
13 
14   You should have received a copy of the GNU General Public License along with
15   this program; if not, write to the Free Software Foundation, Inc., 59
16   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17 
18   The full GNU General Public License is included in this distribution in the
19   file called LICENSE.
20 
21   Contact Information:
22   Intel Linux Wireless <ilw@linux.intel.com>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 
25   Portions of this file are based on the sample_* files provided by Wireless
26   Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27   <jt@hpl.hp.com>
28 
29   Portions of this file are based on the Host AP project,
30   Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31     <j@w1.fi>
32   Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
33 
34   Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35   ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36   available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37 
38 ******************************************************************************/
39 /*
40 
41  Initial driver on which this is based was developed by Janusz Gorycki,
42  Maciej Urbaniak, and Maciej Sosnowski.
43 
44  Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45 
46 Theory of Operation
47 
48 Tx - Commands and Data
49 
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53 
54 The host writes to the TBD queue at the WRITE index.  The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57 
58 The firmware pulls from the TBD queue at the READ index.  The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61 
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent.  If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD.  If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc.  The next TBD then refers to the actual packet location.
67 
68 The Tx flow cycle is as follows:
69 
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72    list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75    to a physical address.  That address is entered into a TBD.  Two TBDs are
76    filled out.  The first indicating a data packet, the second referring to the
77    actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79    firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83    to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85    from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87    to unmap the DMA address and to free the SKB originally passed to the driver
88    from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90 
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93 
94 ...
95 
96 Critical Sections / Locking :
97 
98 There are two locks utilized.  The first is the low level lock (priv->low_lock)
99 that protects the following:
100 
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102 
103   tx_free_list : Holds pre-allocated Tx buffers.
104     TAIL modified in __ipw2100_tx_process()
105     HEAD modified in ipw2100_tx()
106 
107   tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108     TAIL modified ipw2100_tx()
109     HEAD modified by ipw2100_tx_send_data()
110 
111   msg_free_list : Holds pre-allocated Msg (Command) buffers
112     TAIL modified in __ipw2100_tx_process()
113     HEAD modified in ipw2100_hw_send_command()
114 
115   msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116     TAIL modified in ipw2100_hw_send_command()
117     HEAD modified in ipw2100_tx_send_commands()
118 
119   The flow of data on the TX side is as follows:
120 
121   MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122   TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123 
124   The methods that work on the TBD ring are protected via priv->low_lock.
125 
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128   and associated logic
129 
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132 
133 
134 */
135 
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <linux/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/time.h>
161 #include <linux/firmware.h>
162 #include <linux/acpi.h>
163 #include <linux/ctype.h>
164 #include <linux/pm_qos.h>
165 
166 #include <net/lib80211.h>
167 
168 #include "ipw2100.h"
169 #include "ipw.h"
170 
171 #define IPW2100_VERSION "git-1.2.2"
172 
173 #define DRV_NAME	"ipw2100"
174 #define DRV_VERSION	IPW2100_VERSION
175 #define DRV_DESCRIPTION	"Intel(R) PRO/Wireless 2100 Network Driver"
176 #define DRV_COPYRIGHT	"Copyright(c) 2003-2006 Intel Corporation"
177 
178 static struct pm_qos_request ipw2100_pm_qos_req;
179 
180 /* Debugging stuff */
181 #ifdef CONFIG_IPW2100_DEBUG
182 #define IPW2100_RX_DEBUG	/* Reception debugging */
183 #endif
184 
185 MODULE_DESCRIPTION(DRV_DESCRIPTION);
186 MODULE_VERSION(DRV_VERSION);
187 MODULE_AUTHOR(DRV_COPYRIGHT);
188 MODULE_LICENSE("GPL");
189 
190 static int debug = 0;
191 static int network_mode = 0;
192 static int channel = 0;
193 static int associate = 0;
194 static int disable = 0;
195 #ifdef CONFIG_PM
196 static struct ipw2100_fw ipw2100_firmware;
197 #endif
198 
199 #include <linux/moduleparam.h>
200 module_param(debug, int, 0444);
201 module_param_named(mode, network_mode, int, 0444);
202 module_param(channel, int, 0444);
203 module_param(associate, int, 0444);
204 module_param(disable, int, 0444);
205 
206 MODULE_PARM_DESC(debug, "debug level");
207 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
208 MODULE_PARM_DESC(channel, "channel");
209 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
210 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
211 
212 static u32 ipw2100_debug_level = IPW_DL_NONE;
213 
214 #ifdef CONFIG_IPW2100_DEBUG
215 #define IPW_DEBUG(level, message...) \
216 do { \
217 	if (ipw2100_debug_level & (level)) { \
218 		printk(KERN_DEBUG "ipw2100: %c %s ", \
219                        in_interrupt() ? 'I' : 'U',  __func__); \
220 		printk(message); \
221 	} \
222 } while (0)
223 #else
224 #define IPW_DEBUG(level, message...) do {} while (0)
225 #endif				/* CONFIG_IPW2100_DEBUG */
226 
227 #ifdef CONFIG_IPW2100_DEBUG
228 static const char *command_types[] = {
229 	"undefined",
230 	"unused",		/* HOST_ATTENTION */
231 	"HOST_COMPLETE",
232 	"unused",		/* SLEEP */
233 	"unused",		/* HOST_POWER_DOWN */
234 	"unused",
235 	"SYSTEM_CONFIG",
236 	"unused",		/* SET_IMR */
237 	"SSID",
238 	"MANDATORY_BSSID",
239 	"AUTHENTICATION_TYPE",
240 	"ADAPTER_ADDRESS",
241 	"PORT_TYPE",
242 	"INTERNATIONAL_MODE",
243 	"CHANNEL",
244 	"RTS_THRESHOLD",
245 	"FRAG_THRESHOLD",
246 	"POWER_MODE",
247 	"TX_RATES",
248 	"BASIC_TX_RATES",
249 	"WEP_KEY_INFO",
250 	"unused",
251 	"unused",
252 	"unused",
253 	"unused",
254 	"WEP_KEY_INDEX",
255 	"WEP_FLAGS",
256 	"ADD_MULTICAST",
257 	"CLEAR_ALL_MULTICAST",
258 	"BEACON_INTERVAL",
259 	"ATIM_WINDOW",
260 	"CLEAR_STATISTICS",
261 	"undefined",
262 	"undefined",
263 	"undefined",
264 	"undefined",
265 	"TX_POWER_INDEX",
266 	"undefined",
267 	"undefined",
268 	"undefined",
269 	"undefined",
270 	"undefined",
271 	"undefined",
272 	"BROADCAST_SCAN",
273 	"CARD_DISABLE",
274 	"PREFERRED_BSSID",
275 	"SET_SCAN_OPTIONS",
276 	"SCAN_DWELL_TIME",
277 	"SWEEP_TABLE",
278 	"AP_OR_STATION_TABLE",
279 	"GROUP_ORDINALS",
280 	"SHORT_RETRY_LIMIT",
281 	"LONG_RETRY_LIMIT",
282 	"unused",		/* SAVE_CALIBRATION */
283 	"unused",		/* RESTORE_CALIBRATION */
284 	"undefined",
285 	"undefined",
286 	"undefined",
287 	"HOST_PRE_POWER_DOWN",
288 	"unused",		/* HOST_INTERRUPT_COALESCING */
289 	"undefined",
290 	"CARD_DISABLE_PHY_OFF",
291 	"MSDU_TX_RATES",
292 	"undefined",
293 	"SET_STATION_STAT_BITS",
294 	"CLEAR_STATIONS_STAT_BITS",
295 	"LEAP_ROGUE_MODE",
296 	"SET_SECURITY_INFORMATION",
297 	"DISASSOCIATION_BSSID",
298 	"SET_WPA_ASS_IE"
299 };
300 #endif
301 
302 static const long ipw2100_frequencies[] = {
303 	2412, 2417, 2422, 2427,
304 	2432, 2437, 2442, 2447,
305 	2452, 2457, 2462, 2467,
306 	2472, 2484
307 };
308 
309 #define FREQ_COUNT	ARRAY_SIZE(ipw2100_frequencies)
310 
311 static struct ieee80211_rate ipw2100_bg_rates[] = {
312 	{ .bitrate = 10 },
313 	{ .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
314 	{ .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
315 	{ .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
316 };
317 
318 #define RATE_COUNT ARRAY_SIZE(ipw2100_bg_rates)
319 
320 /* Pre-decl until we get the code solid and then we can clean it up */
321 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
322 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
323 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
324 
325 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
326 static void ipw2100_queues_free(struct ipw2100_priv *priv);
327 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
328 
329 static int ipw2100_fw_download(struct ipw2100_priv *priv,
330 			       struct ipw2100_fw *fw);
331 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
332 				struct ipw2100_fw *fw);
333 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
334 				 size_t max);
335 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
336 				    size_t max);
337 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
338 				     struct ipw2100_fw *fw);
339 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
340 				  struct ipw2100_fw *fw);
341 static void ipw2100_wx_event_work(struct work_struct *work);
342 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
343 static const struct iw_handler_def ipw2100_wx_handler_def;
344 
345 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
346 {
347 	struct ipw2100_priv *priv = libipw_priv(dev);
348 
349 	*val = ioread32(priv->ioaddr + reg);
350 	IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
351 }
352 
353 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
354 {
355 	struct ipw2100_priv *priv = libipw_priv(dev);
356 
357 	iowrite32(val, priv->ioaddr + reg);
358 	IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
359 }
360 
361 static inline void read_register_word(struct net_device *dev, u32 reg,
362 				      u16 * val)
363 {
364 	struct ipw2100_priv *priv = libipw_priv(dev);
365 
366 	*val = ioread16(priv->ioaddr + reg);
367 	IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
368 }
369 
370 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
371 {
372 	struct ipw2100_priv *priv = libipw_priv(dev);
373 
374 	*val = ioread8(priv->ioaddr + reg);
375 	IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
376 }
377 
378 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
379 {
380 	struct ipw2100_priv *priv = libipw_priv(dev);
381 
382 	iowrite16(val, priv->ioaddr + reg);
383 	IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
384 }
385 
386 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
387 {
388 	struct ipw2100_priv *priv = libipw_priv(dev);
389 
390 	iowrite8(val, priv->ioaddr + reg);
391 	IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
392 }
393 
394 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
395 {
396 	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
397 		       addr & IPW_REG_INDIRECT_ADDR_MASK);
398 	read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
399 }
400 
401 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
402 {
403 	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
404 		       addr & IPW_REG_INDIRECT_ADDR_MASK);
405 	write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
406 }
407 
408 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
409 {
410 	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
411 		       addr & IPW_REG_INDIRECT_ADDR_MASK);
412 	read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
413 }
414 
415 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
416 {
417 	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
418 		       addr & IPW_REG_INDIRECT_ADDR_MASK);
419 	write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
420 }
421 
422 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
423 {
424 	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
425 		       addr & IPW_REG_INDIRECT_ADDR_MASK);
426 	read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
427 }
428 
429 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
430 {
431 	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
432 		       addr & IPW_REG_INDIRECT_ADDR_MASK);
433 	write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
434 }
435 
436 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
437 {
438 	write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
439 		       addr & IPW_REG_INDIRECT_ADDR_MASK);
440 }
441 
442 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
443 {
444 	write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
445 }
446 
447 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
448 				    const u8 * buf)
449 {
450 	u32 aligned_addr;
451 	u32 aligned_len;
452 	u32 dif_len;
453 	u32 i;
454 
455 	/* read first nibble byte by byte */
456 	aligned_addr = addr & (~0x3);
457 	dif_len = addr - aligned_addr;
458 	if (dif_len) {
459 		/* Start reading at aligned_addr + dif_len */
460 		write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
461 			       aligned_addr);
462 		for (i = dif_len; i < 4; i++, buf++)
463 			write_register_byte(dev,
464 					    IPW_REG_INDIRECT_ACCESS_DATA + i,
465 					    *buf);
466 
467 		len -= dif_len;
468 		aligned_addr += 4;
469 	}
470 
471 	/* read DWs through autoincrement registers */
472 	write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
473 	aligned_len = len & (~0x3);
474 	for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
475 		write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
476 
477 	/* copy the last nibble */
478 	dif_len = len - aligned_len;
479 	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
480 	for (i = 0; i < dif_len; i++, buf++)
481 		write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
482 				    *buf);
483 }
484 
485 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
486 				   u8 * buf)
487 {
488 	u32 aligned_addr;
489 	u32 aligned_len;
490 	u32 dif_len;
491 	u32 i;
492 
493 	/* read first nibble byte by byte */
494 	aligned_addr = addr & (~0x3);
495 	dif_len = addr - aligned_addr;
496 	if (dif_len) {
497 		/* Start reading at aligned_addr + dif_len */
498 		write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
499 			       aligned_addr);
500 		for (i = dif_len; i < 4; i++, buf++)
501 			read_register_byte(dev,
502 					   IPW_REG_INDIRECT_ACCESS_DATA + i,
503 					   buf);
504 
505 		len -= dif_len;
506 		aligned_addr += 4;
507 	}
508 
509 	/* read DWs through autoincrement registers */
510 	write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
511 	aligned_len = len & (~0x3);
512 	for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
513 		read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
514 
515 	/* copy the last nibble */
516 	dif_len = len - aligned_len;
517 	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
518 	for (i = 0; i < dif_len; i++, buf++)
519 		read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
520 }
521 
522 static bool ipw2100_hw_is_adapter_in_system(struct net_device *dev)
523 {
524 	u32 dbg;
525 
526 	read_register(dev, IPW_REG_DOA_DEBUG_AREA_START, &dbg);
527 
528 	return dbg == IPW_DATA_DOA_DEBUG_VALUE;
529 }
530 
531 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
532 			       void *val, u32 * len)
533 {
534 	struct ipw2100_ordinals *ordinals = &priv->ordinals;
535 	u32 addr;
536 	u32 field_info;
537 	u16 field_len;
538 	u16 field_count;
539 	u32 total_length;
540 
541 	if (ordinals->table1_addr == 0) {
542 		printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
543 		       "before they have been loaded.\n");
544 		return -EINVAL;
545 	}
546 
547 	if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
548 		if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
549 			*len = IPW_ORD_TAB_1_ENTRY_SIZE;
550 
551 			printk(KERN_WARNING DRV_NAME
552 			       ": ordinal buffer length too small, need %zd\n",
553 			       IPW_ORD_TAB_1_ENTRY_SIZE);
554 
555 			return -EINVAL;
556 		}
557 
558 		read_nic_dword(priv->net_dev,
559 			       ordinals->table1_addr + (ord << 2), &addr);
560 		read_nic_dword(priv->net_dev, addr, val);
561 
562 		*len = IPW_ORD_TAB_1_ENTRY_SIZE;
563 
564 		return 0;
565 	}
566 
567 	if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
568 
569 		ord -= IPW_START_ORD_TAB_2;
570 
571 		/* get the address of statistic */
572 		read_nic_dword(priv->net_dev,
573 			       ordinals->table2_addr + (ord << 3), &addr);
574 
575 		/* get the second DW of statistics ;
576 		 * two 16-bit words - first is length, second is count */
577 		read_nic_dword(priv->net_dev,
578 			       ordinals->table2_addr + (ord << 3) + sizeof(u32),
579 			       &field_info);
580 
581 		/* get each entry length */
582 		field_len = *((u16 *) & field_info);
583 
584 		/* get number of entries */
585 		field_count = *(((u16 *) & field_info) + 1);
586 
587 		/* abort if no enough memory */
588 		total_length = field_len * field_count;
589 		if (total_length > *len) {
590 			*len = total_length;
591 			return -EINVAL;
592 		}
593 
594 		*len = total_length;
595 		if (!total_length)
596 			return 0;
597 
598 		/* read the ordinal data from the SRAM */
599 		read_nic_memory(priv->net_dev, addr, total_length, val);
600 
601 		return 0;
602 	}
603 
604 	printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
605 	       "in table 2\n", ord);
606 
607 	return -EINVAL;
608 }
609 
610 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
611 			       u32 * len)
612 {
613 	struct ipw2100_ordinals *ordinals = &priv->ordinals;
614 	u32 addr;
615 
616 	if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
617 		if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
618 			*len = IPW_ORD_TAB_1_ENTRY_SIZE;
619 			IPW_DEBUG_INFO("wrong size\n");
620 			return -EINVAL;
621 		}
622 
623 		read_nic_dword(priv->net_dev,
624 			       ordinals->table1_addr + (ord << 2), &addr);
625 
626 		write_nic_dword(priv->net_dev, addr, *val);
627 
628 		*len = IPW_ORD_TAB_1_ENTRY_SIZE;
629 
630 		return 0;
631 	}
632 
633 	IPW_DEBUG_INFO("wrong table\n");
634 	if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
635 		return -EINVAL;
636 
637 	return -EINVAL;
638 }
639 
640 static char *snprint_line(char *buf, size_t count,
641 			  const u8 * data, u32 len, u32 ofs)
642 {
643 	int out, i, j, l;
644 	char c;
645 
646 	out = snprintf(buf, count, "%08X", ofs);
647 
648 	for (l = 0, i = 0; i < 2; i++) {
649 		out += snprintf(buf + out, count - out, " ");
650 		for (j = 0; j < 8 && l < len; j++, l++)
651 			out += snprintf(buf + out, count - out, "%02X ",
652 					data[(i * 8 + j)]);
653 		for (; j < 8; j++)
654 			out += snprintf(buf + out, count - out, "   ");
655 	}
656 
657 	out += snprintf(buf + out, count - out, " ");
658 	for (l = 0, i = 0; i < 2; i++) {
659 		out += snprintf(buf + out, count - out, " ");
660 		for (j = 0; j < 8 && l < len; j++, l++) {
661 			c = data[(i * 8 + j)];
662 			if (!isascii(c) || !isprint(c))
663 				c = '.';
664 
665 			out += snprintf(buf + out, count - out, "%c", c);
666 		}
667 
668 		for (; j < 8; j++)
669 			out += snprintf(buf + out, count - out, " ");
670 	}
671 
672 	return buf;
673 }
674 
675 static void printk_buf(int level, const u8 * data, u32 len)
676 {
677 	char line[81];
678 	u32 ofs = 0;
679 	if (!(ipw2100_debug_level & level))
680 		return;
681 
682 	while (len) {
683 		printk(KERN_DEBUG "%s\n",
684 		       snprint_line(line, sizeof(line), &data[ofs],
685 				    min(len, 16U), ofs));
686 		ofs += 16;
687 		len -= min(len, 16U);
688 	}
689 }
690 
691 #define MAX_RESET_BACKOFF 10
692 
693 static void schedule_reset(struct ipw2100_priv *priv)
694 {
695 	unsigned long now = get_seconds();
696 
697 	/* If we haven't received a reset request within the backoff period,
698 	 * then we can reset the backoff interval so this reset occurs
699 	 * immediately */
700 	if (priv->reset_backoff &&
701 	    (now - priv->last_reset > priv->reset_backoff))
702 		priv->reset_backoff = 0;
703 
704 	priv->last_reset = get_seconds();
705 
706 	if (!(priv->status & STATUS_RESET_PENDING)) {
707 		IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
708 			       priv->net_dev->name, priv->reset_backoff);
709 		netif_carrier_off(priv->net_dev);
710 		netif_stop_queue(priv->net_dev);
711 		priv->status |= STATUS_RESET_PENDING;
712 		if (priv->reset_backoff)
713 			schedule_delayed_work(&priv->reset_work,
714 					      priv->reset_backoff * HZ);
715 		else
716 			schedule_delayed_work(&priv->reset_work, 0);
717 
718 		if (priv->reset_backoff < MAX_RESET_BACKOFF)
719 			priv->reset_backoff++;
720 
721 		wake_up_interruptible(&priv->wait_command_queue);
722 	} else
723 		IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
724 			       priv->net_dev->name);
725 
726 }
727 
728 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
729 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
730 				   struct host_command *cmd)
731 {
732 	struct list_head *element;
733 	struct ipw2100_tx_packet *packet;
734 	unsigned long flags;
735 	int err = 0;
736 
737 	IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
738 		     command_types[cmd->host_command], cmd->host_command,
739 		     cmd->host_command_length);
740 	printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
741 		   cmd->host_command_length);
742 
743 	spin_lock_irqsave(&priv->low_lock, flags);
744 
745 	if (priv->fatal_error) {
746 		IPW_DEBUG_INFO
747 		    ("Attempt to send command while hardware in fatal error condition.\n");
748 		err = -EIO;
749 		goto fail_unlock;
750 	}
751 
752 	if (!(priv->status & STATUS_RUNNING)) {
753 		IPW_DEBUG_INFO
754 		    ("Attempt to send command while hardware is not running.\n");
755 		err = -EIO;
756 		goto fail_unlock;
757 	}
758 
759 	if (priv->status & STATUS_CMD_ACTIVE) {
760 		IPW_DEBUG_INFO
761 		    ("Attempt to send command while another command is pending.\n");
762 		err = -EBUSY;
763 		goto fail_unlock;
764 	}
765 
766 	if (list_empty(&priv->msg_free_list)) {
767 		IPW_DEBUG_INFO("no available msg buffers\n");
768 		goto fail_unlock;
769 	}
770 
771 	priv->status |= STATUS_CMD_ACTIVE;
772 	priv->messages_sent++;
773 
774 	element = priv->msg_free_list.next;
775 
776 	packet = list_entry(element, struct ipw2100_tx_packet, list);
777 	packet->jiffy_start = jiffies;
778 
779 	/* initialize the firmware command packet */
780 	packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
781 	packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
782 	packet->info.c_struct.cmd->host_command_len_reg =
783 	    cmd->host_command_length;
784 	packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
785 
786 	memcpy(packet->info.c_struct.cmd->host_command_params_reg,
787 	       cmd->host_command_parameters,
788 	       sizeof(packet->info.c_struct.cmd->host_command_params_reg));
789 
790 	list_del(element);
791 	DEC_STAT(&priv->msg_free_stat);
792 
793 	list_add_tail(element, &priv->msg_pend_list);
794 	INC_STAT(&priv->msg_pend_stat);
795 
796 	ipw2100_tx_send_commands(priv);
797 	ipw2100_tx_send_data(priv);
798 
799 	spin_unlock_irqrestore(&priv->low_lock, flags);
800 
801 	/*
802 	 * We must wait for this command to complete before another
803 	 * command can be sent...  but if we wait more than 3 seconds
804 	 * then there is a problem.
805 	 */
806 
807 	err =
808 	    wait_event_interruptible_timeout(priv->wait_command_queue,
809 					     !(priv->
810 					       status & STATUS_CMD_ACTIVE),
811 					     HOST_COMPLETE_TIMEOUT);
812 
813 	if (err == 0) {
814 		IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
815 			       1000 * (HOST_COMPLETE_TIMEOUT / HZ));
816 		priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
817 		priv->status &= ~STATUS_CMD_ACTIVE;
818 		schedule_reset(priv);
819 		return -EIO;
820 	}
821 
822 	if (priv->fatal_error) {
823 		printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
824 		       priv->net_dev->name);
825 		return -EIO;
826 	}
827 
828 	/* !!!!! HACK TEST !!!!!
829 	 * When lots of debug trace statements are enabled, the driver
830 	 * doesn't seem to have as many firmware restart cycles...
831 	 *
832 	 * As a test, we're sticking in a 1/100s delay here */
833 	schedule_timeout_uninterruptible(msecs_to_jiffies(10));
834 
835 	return 0;
836 
837       fail_unlock:
838 	spin_unlock_irqrestore(&priv->low_lock, flags);
839 
840 	return err;
841 }
842 
843 /*
844  * Verify the values and data access of the hardware
845  * No locks needed or used.  No functions called.
846  */
847 static int ipw2100_verify(struct ipw2100_priv *priv)
848 {
849 	u32 data1, data2;
850 	u32 address;
851 
852 	u32 val1 = 0x76543210;
853 	u32 val2 = 0xFEDCBA98;
854 
855 	/* Domain 0 check - all values should be DOA_DEBUG */
856 	for (address = IPW_REG_DOA_DEBUG_AREA_START;
857 	     address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
858 		read_register(priv->net_dev, address, &data1);
859 		if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
860 			return -EIO;
861 	}
862 
863 	/* Domain 1 check - use arbitrary read/write compare  */
864 	for (address = 0; address < 5; address++) {
865 		/* The memory area is not used now */
866 		write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
867 			       val1);
868 		write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
869 			       val2);
870 		read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
871 			      &data1);
872 		read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
873 			      &data2);
874 		if (val1 == data1 && val2 == data2)
875 			return 0;
876 	}
877 
878 	return -EIO;
879 }
880 
881 /*
882  *
883  * Loop until the CARD_DISABLED bit is the same value as the
884  * supplied parameter
885  *
886  * TODO: See if it would be more efficient to do a wait/wake
887  *       cycle and have the completion event trigger the wakeup
888  *
889  */
890 #define IPW_CARD_DISABLE_COMPLETE_WAIT		    100	// 100 milli
891 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
892 {
893 	int i;
894 	u32 card_state;
895 	u32 len = sizeof(card_state);
896 	int err;
897 
898 	for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
899 		err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
900 					  &card_state, &len);
901 		if (err) {
902 			IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
903 				       "failed.\n");
904 			return 0;
905 		}
906 
907 		/* We'll break out if either the HW state says it is
908 		 * in the state we want, or if HOST_COMPLETE command
909 		 * finishes */
910 		if ((card_state == state) ||
911 		    ((priv->status & STATUS_ENABLED) ?
912 		     IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
913 			if (state == IPW_HW_STATE_ENABLED)
914 				priv->status |= STATUS_ENABLED;
915 			else
916 				priv->status &= ~STATUS_ENABLED;
917 
918 			return 0;
919 		}
920 
921 		udelay(50);
922 	}
923 
924 	IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
925 		       state ? "DISABLED" : "ENABLED");
926 	return -EIO;
927 }
928 
929 /*********************************************************************
930     Procedure   :   sw_reset_and_clock
931     Purpose     :   Asserts s/w reset, asserts clock initialization
932                     and waits for clock stabilization
933  ********************************************************************/
934 static int sw_reset_and_clock(struct ipw2100_priv *priv)
935 {
936 	int i;
937 	u32 r;
938 
939 	// assert s/w reset
940 	write_register(priv->net_dev, IPW_REG_RESET_REG,
941 		       IPW_AUX_HOST_RESET_REG_SW_RESET);
942 
943 	// wait for clock stabilization
944 	for (i = 0; i < 1000; i++) {
945 		udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
946 
947 		// check clock ready bit
948 		read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
949 		if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
950 			break;
951 	}
952 
953 	if (i == 1000)
954 		return -EIO;	// TODO: better error value
955 
956 	/* set "initialization complete" bit to move adapter to
957 	 * D0 state */
958 	write_register(priv->net_dev, IPW_REG_GP_CNTRL,
959 		       IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
960 
961 	/* wait for clock stabilization */
962 	for (i = 0; i < 10000; i++) {
963 		udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
964 
965 		/* check clock ready bit */
966 		read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
967 		if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
968 			break;
969 	}
970 
971 	if (i == 10000)
972 		return -EIO;	/* TODO: better error value */
973 
974 	/* set D0 standby bit */
975 	read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
976 	write_register(priv->net_dev, IPW_REG_GP_CNTRL,
977 		       r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
978 
979 	return 0;
980 }
981 
982 /*********************************************************************
983     Procedure   :   ipw2100_download_firmware
984     Purpose     :   Initiaze adapter after power on.
985                     The sequence is:
986                     1. assert s/w reset first!
987                     2. awake clocks & wait for clock stabilization
988                     3. hold ARC (don't ask me why...)
989                     4. load Dino ucode and reset/clock init again
990                     5. zero-out shared mem
991                     6. download f/w
992  *******************************************************************/
993 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
994 {
995 	u32 address;
996 	int err;
997 
998 #ifndef CONFIG_PM
999 	/* Fetch the firmware and microcode */
1000 	struct ipw2100_fw ipw2100_firmware;
1001 #endif
1002 
1003 	if (priv->fatal_error) {
1004 		IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
1005 				"fatal error %d.  Interface must be brought down.\n",
1006 				priv->net_dev->name, priv->fatal_error);
1007 		return -EINVAL;
1008 	}
1009 #ifdef CONFIG_PM
1010 	if (!ipw2100_firmware.version) {
1011 		err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1012 		if (err) {
1013 			IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1014 					priv->net_dev->name, err);
1015 			priv->fatal_error = IPW2100_ERR_FW_LOAD;
1016 			goto fail;
1017 		}
1018 	}
1019 #else
1020 	err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1021 	if (err) {
1022 		IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1023 				priv->net_dev->name, err);
1024 		priv->fatal_error = IPW2100_ERR_FW_LOAD;
1025 		goto fail;
1026 	}
1027 #endif
1028 	priv->firmware_version = ipw2100_firmware.version;
1029 
1030 	/* s/w reset and clock stabilization */
1031 	err = sw_reset_and_clock(priv);
1032 	if (err) {
1033 		IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1034 				priv->net_dev->name, err);
1035 		goto fail;
1036 	}
1037 
1038 	err = ipw2100_verify(priv);
1039 	if (err) {
1040 		IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1041 				priv->net_dev->name, err);
1042 		goto fail;
1043 	}
1044 
1045 	/* Hold ARC */
1046 	write_nic_dword(priv->net_dev,
1047 			IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1048 
1049 	/* allow ARC to run */
1050 	write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1051 
1052 	/* load microcode */
1053 	err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1054 	if (err) {
1055 		printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1056 		       priv->net_dev->name, err);
1057 		goto fail;
1058 	}
1059 
1060 	/* release ARC */
1061 	write_nic_dword(priv->net_dev,
1062 			IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1063 
1064 	/* s/w reset and clock stabilization (again!!!) */
1065 	err = sw_reset_and_clock(priv);
1066 	if (err) {
1067 		printk(KERN_ERR DRV_NAME
1068 		       ": %s: sw_reset_and_clock failed: %d\n",
1069 		       priv->net_dev->name, err);
1070 		goto fail;
1071 	}
1072 
1073 	/* load f/w */
1074 	err = ipw2100_fw_download(priv, &ipw2100_firmware);
1075 	if (err) {
1076 		IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1077 				priv->net_dev->name, err);
1078 		goto fail;
1079 	}
1080 #ifndef CONFIG_PM
1081 	/*
1082 	 * When the .resume method of the driver is called, the other
1083 	 * part of the system, i.e. the ide driver could still stay in
1084 	 * the suspend stage. This prevents us from loading the firmware
1085 	 * from the disk.  --YZ
1086 	 */
1087 
1088 	/* free any storage allocated for firmware image */
1089 	ipw2100_release_firmware(priv, &ipw2100_firmware);
1090 #endif
1091 
1092 	/* zero out Domain 1 area indirectly (Si requirement) */
1093 	for (address = IPW_HOST_FW_SHARED_AREA0;
1094 	     address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1095 		write_nic_dword(priv->net_dev, address, 0);
1096 	for (address = IPW_HOST_FW_SHARED_AREA1;
1097 	     address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1098 		write_nic_dword(priv->net_dev, address, 0);
1099 	for (address = IPW_HOST_FW_SHARED_AREA2;
1100 	     address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1101 		write_nic_dword(priv->net_dev, address, 0);
1102 	for (address = IPW_HOST_FW_SHARED_AREA3;
1103 	     address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1104 		write_nic_dword(priv->net_dev, address, 0);
1105 	for (address = IPW_HOST_FW_INTERRUPT_AREA;
1106 	     address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1107 		write_nic_dword(priv->net_dev, address, 0);
1108 
1109 	return 0;
1110 
1111       fail:
1112 	ipw2100_release_firmware(priv, &ipw2100_firmware);
1113 	return err;
1114 }
1115 
1116 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1117 {
1118 	if (priv->status & STATUS_INT_ENABLED)
1119 		return;
1120 	priv->status |= STATUS_INT_ENABLED;
1121 	write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1122 }
1123 
1124 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1125 {
1126 	if (!(priv->status & STATUS_INT_ENABLED))
1127 		return;
1128 	priv->status &= ~STATUS_INT_ENABLED;
1129 	write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1130 }
1131 
1132 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1133 {
1134 	struct ipw2100_ordinals *ord = &priv->ordinals;
1135 
1136 	IPW_DEBUG_INFO("enter\n");
1137 
1138 	read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1139 		      &ord->table1_addr);
1140 
1141 	read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1142 		      &ord->table2_addr);
1143 
1144 	read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1145 	read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1146 
1147 	ord->table2_size &= 0x0000FFFF;
1148 
1149 	IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1150 	IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1151 	IPW_DEBUG_INFO("exit\n");
1152 }
1153 
1154 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1155 {
1156 	u32 reg = 0;
1157 	/*
1158 	 * Set GPIO 3 writable by FW; GPIO 1 writable
1159 	 * by driver and enable clock
1160 	 */
1161 	reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1162 	       IPW_BIT_GPIO_LED_OFF);
1163 	write_register(priv->net_dev, IPW_REG_GPIO, reg);
1164 }
1165 
1166 static int rf_kill_active(struct ipw2100_priv *priv)
1167 {
1168 #define MAX_RF_KILL_CHECKS 5
1169 #define RF_KILL_CHECK_DELAY 40
1170 
1171 	unsigned short value = 0;
1172 	u32 reg = 0;
1173 	int i;
1174 
1175 	if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1176 		wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1177 		priv->status &= ~STATUS_RF_KILL_HW;
1178 		return 0;
1179 	}
1180 
1181 	for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1182 		udelay(RF_KILL_CHECK_DELAY);
1183 		read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1184 		value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1185 	}
1186 
1187 	if (value == 0) {
1188 		wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1189 		priv->status |= STATUS_RF_KILL_HW;
1190 	} else {
1191 		wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1192 		priv->status &= ~STATUS_RF_KILL_HW;
1193 	}
1194 
1195 	return (value == 0);
1196 }
1197 
1198 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1199 {
1200 	u32 addr, len;
1201 	u32 val;
1202 
1203 	/*
1204 	 * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1205 	 */
1206 	len = sizeof(addr);
1207 	if (ipw2100_get_ordinal
1208 	    (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1209 		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1210 			       __LINE__);
1211 		return -EIO;
1212 	}
1213 
1214 	IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1215 
1216 	/*
1217 	 * EEPROM version is the byte at offset 0xfd in firmware
1218 	 * We read 4 bytes, then shift out the byte we actually want */
1219 	read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1220 	priv->eeprom_version = (val >> 24) & 0xFF;
1221 	IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1222 
1223 	/*
1224 	 *  HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1225 	 *
1226 	 *  notice that the EEPROM bit is reverse polarity, i.e.
1227 	 *     bit = 0  signifies HW RF kill switch is supported
1228 	 *     bit = 1  signifies HW RF kill switch is NOT supported
1229 	 */
1230 	read_nic_dword(priv->net_dev, addr + 0x20, &val);
1231 	if (!((val >> 24) & 0x01))
1232 		priv->hw_features |= HW_FEATURE_RFKILL;
1233 
1234 	IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1235 		       (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1236 
1237 	return 0;
1238 }
1239 
1240 /*
1241  * Start firmware execution after power on and initialization
1242  * The sequence is:
1243  *  1. Release ARC
1244  *  2. Wait for f/w initialization completes;
1245  */
1246 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1247 {
1248 	int i;
1249 	u32 inta, inta_mask, gpio;
1250 
1251 	IPW_DEBUG_INFO("enter\n");
1252 
1253 	if (priv->status & STATUS_RUNNING)
1254 		return 0;
1255 
1256 	/*
1257 	 * Initialize the hw - drive adapter to DO state by setting
1258 	 * init_done bit. Wait for clk_ready bit and Download
1259 	 * fw & dino ucode
1260 	 */
1261 	if (ipw2100_download_firmware(priv)) {
1262 		printk(KERN_ERR DRV_NAME
1263 		       ": %s: Failed to power on the adapter.\n",
1264 		       priv->net_dev->name);
1265 		return -EIO;
1266 	}
1267 
1268 	/* Clear the Tx, Rx and Msg queues and the r/w indexes
1269 	 * in the firmware RBD and TBD ring queue */
1270 	ipw2100_queues_initialize(priv);
1271 
1272 	ipw2100_hw_set_gpio(priv);
1273 
1274 	/* TODO -- Look at disabling interrupts here to make sure none
1275 	 * get fired during FW initialization */
1276 
1277 	/* Release ARC - clear reset bit */
1278 	write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1279 
1280 	/* wait for f/w initialization complete */
1281 	IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1282 	i = 5000;
1283 	do {
1284 		schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1285 		/* Todo... wait for sync command ... */
1286 
1287 		read_register(priv->net_dev, IPW_REG_INTA, &inta);
1288 
1289 		/* check "init done" bit */
1290 		if (inta & IPW2100_INTA_FW_INIT_DONE) {
1291 			/* reset "init done" bit */
1292 			write_register(priv->net_dev, IPW_REG_INTA,
1293 				       IPW2100_INTA_FW_INIT_DONE);
1294 			break;
1295 		}
1296 
1297 		/* check error conditions : we check these after the firmware
1298 		 * check so that if there is an error, the interrupt handler
1299 		 * will see it and the adapter will be reset */
1300 		if (inta &
1301 		    (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1302 			/* clear error conditions */
1303 			write_register(priv->net_dev, IPW_REG_INTA,
1304 				       IPW2100_INTA_FATAL_ERROR |
1305 				       IPW2100_INTA_PARITY_ERROR);
1306 		}
1307 	} while (--i);
1308 
1309 	/* Clear out any pending INTAs since we aren't supposed to have
1310 	 * interrupts enabled at this point... */
1311 	read_register(priv->net_dev, IPW_REG_INTA, &inta);
1312 	read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1313 	inta &= IPW_INTERRUPT_MASK;
1314 	/* Clear out any pending interrupts */
1315 	if (inta & inta_mask)
1316 		write_register(priv->net_dev, IPW_REG_INTA, inta);
1317 
1318 	IPW_DEBUG_FW("f/w initialization complete: %s\n",
1319 		     i ? "SUCCESS" : "FAILED");
1320 
1321 	if (!i) {
1322 		printk(KERN_WARNING DRV_NAME
1323 		       ": %s: Firmware did not initialize.\n",
1324 		       priv->net_dev->name);
1325 		return -EIO;
1326 	}
1327 
1328 	/* allow firmware to write to GPIO1 & GPIO3 */
1329 	read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1330 
1331 	gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1332 
1333 	write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1334 
1335 	/* Ready to receive commands */
1336 	priv->status |= STATUS_RUNNING;
1337 
1338 	/* The adapter has been reset; we are not associated */
1339 	priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1340 
1341 	IPW_DEBUG_INFO("exit\n");
1342 
1343 	return 0;
1344 }
1345 
1346 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1347 {
1348 	if (!priv->fatal_error)
1349 		return;
1350 
1351 	priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1352 	priv->fatal_index %= IPW2100_ERROR_QUEUE;
1353 	priv->fatal_error = 0;
1354 }
1355 
1356 /* NOTE: Our interrupt is disabled when this method is called */
1357 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1358 {
1359 	u32 reg;
1360 	int i;
1361 
1362 	IPW_DEBUG_INFO("Power cycling the hardware.\n");
1363 
1364 	ipw2100_hw_set_gpio(priv);
1365 
1366 	/* Step 1. Stop Master Assert */
1367 	write_register(priv->net_dev, IPW_REG_RESET_REG,
1368 		       IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1369 
1370 	/* Step 2. Wait for stop Master Assert
1371 	 *         (not more than 50us, otherwise ret error */
1372 	i = 5;
1373 	do {
1374 		udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1375 		read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1376 
1377 		if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1378 			break;
1379 	} while (--i);
1380 
1381 	priv->status &= ~STATUS_RESET_PENDING;
1382 
1383 	if (!i) {
1384 		IPW_DEBUG_INFO
1385 		    ("exit - waited too long for master assert stop\n");
1386 		return -EIO;
1387 	}
1388 
1389 	write_register(priv->net_dev, IPW_REG_RESET_REG,
1390 		       IPW_AUX_HOST_RESET_REG_SW_RESET);
1391 
1392 	/* Reset any fatal_error conditions */
1393 	ipw2100_reset_fatalerror(priv);
1394 
1395 	/* At this point, the adapter is now stopped and disabled */
1396 	priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1397 			  STATUS_ASSOCIATED | STATUS_ENABLED);
1398 
1399 	return 0;
1400 }
1401 
1402 /*
1403  * Send the CARD_DISABLE_PHY_OFF command to the card to disable it
1404  *
1405  * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1406  *
1407  * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1408  * if STATUS_ASSN_LOST is sent.
1409  */
1410 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1411 {
1412 
1413 #define HW_PHY_OFF_LOOP_DELAY (msecs_to_jiffies(50))
1414 
1415 	struct host_command cmd = {
1416 		.host_command = CARD_DISABLE_PHY_OFF,
1417 		.host_command_sequence = 0,
1418 		.host_command_length = 0,
1419 	};
1420 	int err, i;
1421 	u32 val1, val2;
1422 
1423 	IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1424 
1425 	/* Turn off the radio */
1426 	err = ipw2100_hw_send_command(priv, &cmd);
1427 	if (err)
1428 		return err;
1429 
1430 	for (i = 0; i < 2500; i++) {
1431 		read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1432 		read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1433 
1434 		if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1435 		    (val2 & IPW2100_COMMAND_PHY_OFF))
1436 			return 0;
1437 
1438 		schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1439 	}
1440 
1441 	return -EIO;
1442 }
1443 
1444 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1445 {
1446 	struct host_command cmd = {
1447 		.host_command = HOST_COMPLETE,
1448 		.host_command_sequence = 0,
1449 		.host_command_length = 0
1450 	};
1451 	int err = 0;
1452 
1453 	IPW_DEBUG_HC("HOST_COMPLETE\n");
1454 
1455 	if (priv->status & STATUS_ENABLED)
1456 		return 0;
1457 
1458 	mutex_lock(&priv->adapter_mutex);
1459 
1460 	if (rf_kill_active(priv)) {
1461 		IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1462 		goto fail_up;
1463 	}
1464 
1465 	err = ipw2100_hw_send_command(priv, &cmd);
1466 	if (err) {
1467 		IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1468 		goto fail_up;
1469 	}
1470 
1471 	err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1472 	if (err) {
1473 		IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1474 			       priv->net_dev->name);
1475 		goto fail_up;
1476 	}
1477 
1478 	if (priv->stop_hang_check) {
1479 		priv->stop_hang_check = 0;
1480 		schedule_delayed_work(&priv->hang_check, HZ / 2);
1481 	}
1482 
1483       fail_up:
1484 	mutex_unlock(&priv->adapter_mutex);
1485 	return err;
1486 }
1487 
1488 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1489 {
1490 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1491 
1492 	struct host_command cmd = {
1493 		.host_command = HOST_PRE_POWER_DOWN,
1494 		.host_command_sequence = 0,
1495 		.host_command_length = 0,
1496 	};
1497 	int err, i;
1498 	u32 reg;
1499 
1500 	if (!(priv->status & STATUS_RUNNING))
1501 		return 0;
1502 
1503 	priv->status |= STATUS_STOPPING;
1504 
1505 	/* We can only shut down the card if the firmware is operational.  So,
1506 	 * if we haven't reset since a fatal_error, then we can not send the
1507 	 * shutdown commands. */
1508 	if (!priv->fatal_error) {
1509 		/* First, make sure the adapter is enabled so that the PHY_OFF
1510 		 * command can shut it down */
1511 		ipw2100_enable_adapter(priv);
1512 
1513 		err = ipw2100_hw_phy_off(priv);
1514 		if (err)
1515 			printk(KERN_WARNING DRV_NAME
1516 			       ": Error disabling radio %d\n", err);
1517 
1518 		/*
1519 		 * If in D0-standby mode going directly to D3 may cause a
1520 		 * PCI bus violation.  Therefore we must change out of the D0
1521 		 * state.
1522 		 *
1523 		 * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1524 		 * hardware from going into standby mode and will transition
1525 		 * out of D0-standby if it is already in that state.
1526 		 *
1527 		 * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1528 		 * driver upon completion.  Once received, the driver can
1529 		 * proceed to the D3 state.
1530 		 *
1531 		 * Prepare for power down command to fw.  This command would
1532 		 * take HW out of D0-standby and prepare it for D3 state.
1533 		 *
1534 		 * Currently FW does not support event notification for this
1535 		 * event. Therefore, skip waiting for it.  Just wait a fixed
1536 		 * 100ms
1537 		 */
1538 		IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1539 
1540 		err = ipw2100_hw_send_command(priv, &cmd);
1541 		if (err)
1542 			printk(KERN_WARNING DRV_NAME ": "
1543 			       "%s: Power down command failed: Error %d\n",
1544 			       priv->net_dev->name, err);
1545 		else
1546 			schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1547 	}
1548 
1549 	priv->status &= ~STATUS_ENABLED;
1550 
1551 	/*
1552 	 * Set GPIO 3 writable by FW; GPIO 1 writable
1553 	 * by driver and enable clock
1554 	 */
1555 	ipw2100_hw_set_gpio(priv);
1556 
1557 	/*
1558 	 * Power down adapter.  Sequence:
1559 	 * 1. Stop master assert (RESET_REG[9]=1)
1560 	 * 2. Wait for stop master (RESET_REG[8]==1)
1561 	 * 3. S/w reset assert (RESET_REG[7] = 1)
1562 	 */
1563 
1564 	/* Stop master assert */
1565 	write_register(priv->net_dev, IPW_REG_RESET_REG,
1566 		       IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1567 
1568 	/* wait stop master not more than 50 usec.
1569 	 * Otherwise return error. */
1570 	for (i = 5; i > 0; i--) {
1571 		udelay(10);
1572 
1573 		/* Check master stop bit */
1574 		read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1575 
1576 		if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1577 			break;
1578 	}
1579 
1580 	if (i == 0)
1581 		printk(KERN_WARNING DRV_NAME
1582 		       ": %s: Could now power down adapter.\n",
1583 		       priv->net_dev->name);
1584 
1585 	/* assert s/w reset */
1586 	write_register(priv->net_dev, IPW_REG_RESET_REG,
1587 		       IPW_AUX_HOST_RESET_REG_SW_RESET);
1588 
1589 	priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1590 
1591 	return 0;
1592 }
1593 
1594 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1595 {
1596 	struct host_command cmd = {
1597 		.host_command = CARD_DISABLE,
1598 		.host_command_sequence = 0,
1599 		.host_command_length = 0
1600 	};
1601 	int err = 0;
1602 
1603 	IPW_DEBUG_HC("CARD_DISABLE\n");
1604 
1605 	if (!(priv->status & STATUS_ENABLED))
1606 		return 0;
1607 
1608 	/* Make sure we clear the associated state */
1609 	priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1610 
1611 	if (!priv->stop_hang_check) {
1612 		priv->stop_hang_check = 1;
1613 		cancel_delayed_work(&priv->hang_check);
1614 	}
1615 
1616 	mutex_lock(&priv->adapter_mutex);
1617 
1618 	err = ipw2100_hw_send_command(priv, &cmd);
1619 	if (err) {
1620 		printk(KERN_WARNING DRV_NAME
1621 		       ": exit - failed to send CARD_DISABLE command\n");
1622 		goto fail_up;
1623 	}
1624 
1625 	err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1626 	if (err) {
1627 		printk(KERN_WARNING DRV_NAME
1628 		       ": exit - card failed to change to DISABLED\n");
1629 		goto fail_up;
1630 	}
1631 
1632 	IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1633 
1634       fail_up:
1635 	mutex_unlock(&priv->adapter_mutex);
1636 	return err;
1637 }
1638 
1639 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1640 {
1641 	struct host_command cmd = {
1642 		.host_command = SET_SCAN_OPTIONS,
1643 		.host_command_sequence = 0,
1644 		.host_command_length = 8
1645 	};
1646 	int err;
1647 
1648 	IPW_DEBUG_INFO("enter\n");
1649 
1650 	IPW_DEBUG_SCAN("setting scan options\n");
1651 
1652 	cmd.host_command_parameters[0] = 0;
1653 
1654 	if (!(priv->config & CFG_ASSOCIATE))
1655 		cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1656 	if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1657 		cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1658 	if (priv->config & CFG_PASSIVE_SCAN)
1659 		cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1660 
1661 	cmd.host_command_parameters[1] = priv->channel_mask;
1662 
1663 	err = ipw2100_hw_send_command(priv, &cmd);
1664 
1665 	IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1666 		     cmd.host_command_parameters[0]);
1667 
1668 	return err;
1669 }
1670 
1671 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1672 {
1673 	struct host_command cmd = {
1674 		.host_command = BROADCAST_SCAN,
1675 		.host_command_sequence = 0,
1676 		.host_command_length = 4
1677 	};
1678 	int err;
1679 
1680 	IPW_DEBUG_HC("START_SCAN\n");
1681 
1682 	cmd.host_command_parameters[0] = 0;
1683 
1684 	/* No scanning if in monitor mode */
1685 	if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1686 		return 1;
1687 
1688 	if (priv->status & STATUS_SCANNING) {
1689 		IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1690 		return 0;
1691 	}
1692 
1693 	IPW_DEBUG_INFO("enter\n");
1694 
1695 	/* Not clearing here; doing so makes iwlist always return nothing...
1696 	 *
1697 	 * We should modify the table logic to use aging tables vs. clearing
1698 	 * the table on each scan start.
1699 	 */
1700 	IPW_DEBUG_SCAN("starting scan\n");
1701 
1702 	priv->status |= STATUS_SCANNING;
1703 	err = ipw2100_hw_send_command(priv, &cmd);
1704 	if (err)
1705 		priv->status &= ~STATUS_SCANNING;
1706 
1707 	IPW_DEBUG_INFO("exit\n");
1708 
1709 	return err;
1710 }
1711 
1712 static const struct libipw_geo ipw_geos[] = {
1713 	{			/* Restricted */
1714 	 "---",
1715 	 .bg_channels = 14,
1716 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1717 		{2427, 4}, {2432, 5}, {2437, 6},
1718 		{2442, 7}, {2447, 8}, {2452, 9},
1719 		{2457, 10}, {2462, 11}, {2467, 12},
1720 		{2472, 13}, {2484, 14}},
1721 	 },
1722 };
1723 
1724 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1725 {
1726 	unsigned long flags;
1727 	int err = 0;
1728 	u32 lock;
1729 	u32 ord_len = sizeof(lock);
1730 
1731 	/* Age scan list entries found before suspend */
1732 	if (priv->suspend_time) {
1733 		libipw_networks_age(priv->ieee, priv->suspend_time);
1734 		priv->suspend_time = 0;
1735 	}
1736 
1737 	/* Quiet if manually disabled. */
1738 	if (priv->status & STATUS_RF_KILL_SW) {
1739 		IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1740 			       "switch\n", priv->net_dev->name);
1741 		return 0;
1742 	}
1743 
1744 	/* the ipw2100 hardware really doesn't want power management delays
1745 	 * longer than 175usec
1746 	 */
1747 	pm_qos_update_request(&ipw2100_pm_qos_req, 175);
1748 
1749 	/* If the interrupt is enabled, turn it off... */
1750 	spin_lock_irqsave(&priv->low_lock, flags);
1751 	ipw2100_disable_interrupts(priv);
1752 
1753 	/* Reset any fatal_error conditions */
1754 	ipw2100_reset_fatalerror(priv);
1755 	spin_unlock_irqrestore(&priv->low_lock, flags);
1756 
1757 	if (priv->status & STATUS_POWERED ||
1758 	    (priv->status & STATUS_RESET_PENDING)) {
1759 		/* Power cycle the card ... */
1760 		err = ipw2100_power_cycle_adapter(priv);
1761 		if (err) {
1762 			printk(KERN_WARNING DRV_NAME
1763 			       ": %s: Could not cycle adapter.\n",
1764 			       priv->net_dev->name);
1765 			goto exit;
1766 		}
1767 	} else
1768 		priv->status |= STATUS_POWERED;
1769 
1770 	/* Load the firmware, start the clocks, etc. */
1771 	err = ipw2100_start_adapter(priv);
1772 	if (err) {
1773 		printk(KERN_ERR DRV_NAME
1774 		       ": %s: Failed to start the firmware.\n",
1775 		       priv->net_dev->name);
1776 		goto exit;
1777 	}
1778 
1779 	ipw2100_initialize_ordinals(priv);
1780 
1781 	/* Determine capabilities of this particular HW configuration */
1782 	err = ipw2100_get_hw_features(priv);
1783 	if (err) {
1784 		printk(KERN_ERR DRV_NAME
1785 		       ": %s: Failed to determine HW features.\n",
1786 		       priv->net_dev->name);
1787 		goto exit;
1788 	}
1789 
1790 	/* Initialize the geo */
1791 	libipw_set_geo(priv->ieee, &ipw_geos[0]);
1792 	priv->ieee->freq_band = LIBIPW_24GHZ_BAND;
1793 
1794 	lock = LOCK_NONE;
1795 	err = ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len);
1796 	if (err) {
1797 		printk(KERN_ERR DRV_NAME
1798 		       ": %s: Failed to clear ordinal lock.\n",
1799 		       priv->net_dev->name);
1800 		goto exit;
1801 	}
1802 
1803 	priv->status &= ~STATUS_SCANNING;
1804 
1805 	if (rf_kill_active(priv)) {
1806 		printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1807 		       priv->net_dev->name);
1808 
1809 		if (priv->stop_rf_kill) {
1810 			priv->stop_rf_kill = 0;
1811 			schedule_delayed_work(&priv->rf_kill,
1812 					      round_jiffies_relative(HZ));
1813 		}
1814 
1815 		deferred = 1;
1816 	}
1817 
1818 	/* Turn on the interrupt so that commands can be processed */
1819 	ipw2100_enable_interrupts(priv);
1820 
1821 	/* Send all of the commands that must be sent prior to
1822 	 * HOST_COMPLETE */
1823 	err = ipw2100_adapter_setup(priv);
1824 	if (err) {
1825 		printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1826 		       priv->net_dev->name);
1827 		goto exit;
1828 	}
1829 
1830 	if (!deferred) {
1831 		/* Enable the adapter - sends HOST_COMPLETE */
1832 		err = ipw2100_enable_adapter(priv);
1833 		if (err) {
1834 			printk(KERN_ERR DRV_NAME ": "
1835 			       "%s: failed in call to enable adapter.\n",
1836 			       priv->net_dev->name);
1837 			ipw2100_hw_stop_adapter(priv);
1838 			goto exit;
1839 		}
1840 
1841 		/* Start a scan . . . */
1842 		ipw2100_set_scan_options(priv);
1843 		ipw2100_start_scan(priv);
1844 	}
1845 
1846       exit:
1847 	return err;
1848 }
1849 
1850 static void ipw2100_down(struct ipw2100_priv *priv)
1851 {
1852 	unsigned long flags;
1853 	union iwreq_data wrqu = {
1854 		.ap_addr = {
1855 			    .sa_family = ARPHRD_ETHER}
1856 	};
1857 	int associated = priv->status & STATUS_ASSOCIATED;
1858 
1859 	/* Kill the RF switch timer */
1860 	if (!priv->stop_rf_kill) {
1861 		priv->stop_rf_kill = 1;
1862 		cancel_delayed_work(&priv->rf_kill);
1863 	}
1864 
1865 	/* Kill the firmware hang check timer */
1866 	if (!priv->stop_hang_check) {
1867 		priv->stop_hang_check = 1;
1868 		cancel_delayed_work(&priv->hang_check);
1869 	}
1870 
1871 	/* Kill any pending resets */
1872 	if (priv->status & STATUS_RESET_PENDING)
1873 		cancel_delayed_work(&priv->reset_work);
1874 
1875 	/* Make sure the interrupt is on so that FW commands will be
1876 	 * processed correctly */
1877 	spin_lock_irqsave(&priv->low_lock, flags);
1878 	ipw2100_enable_interrupts(priv);
1879 	spin_unlock_irqrestore(&priv->low_lock, flags);
1880 
1881 	if (ipw2100_hw_stop_adapter(priv))
1882 		printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1883 		       priv->net_dev->name);
1884 
1885 	/* Do not disable the interrupt until _after_ we disable
1886 	 * the adaptor.  Otherwise the CARD_DISABLE command will never
1887 	 * be ack'd by the firmware */
1888 	spin_lock_irqsave(&priv->low_lock, flags);
1889 	ipw2100_disable_interrupts(priv);
1890 	spin_unlock_irqrestore(&priv->low_lock, flags);
1891 
1892 	pm_qos_update_request(&ipw2100_pm_qos_req, PM_QOS_DEFAULT_VALUE);
1893 
1894 	/* We have to signal any supplicant if we are disassociating */
1895 	if (associated)
1896 		wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1897 
1898 	priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1899 	netif_carrier_off(priv->net_dev);
1900 	netif_stop_queue(priv->net_dev);
1901 }
1902 
1903 static int ipw2100_wdev_init(struct net_device *dev)
1904 {
1905 	struct ipw2100_priv *priv = libipw_priv(dev);
1906 	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1907 	struct wireless_dev *wdev = &priv->ieee->wdev;
1908 	int i;
1909 
1910 	memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
1911 
1912 	/* fill-out priv->ieee->bg_band */
1913 	if (geo->bg_channels) {
1914 		struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
1915 
1916 		bg_band->band = NL80211_BAND_2GHZ;
1917 		bg_band->n_channels = geo->bg_channels;
1918 		bg_band->channels = kcalloc(geo->bg_channels,
1919 					    sizeof(struct ieee80211_channel),
1920 					    GFP_KERNEL);
1921 		if (!bg_band->channels) {
1922 			ipw2100_down(priv);
1923 			return -ENOMEM;
1924 		}
1925 		/* translate geo->bg to bg_band.channels */
1926 		for (i = 0; i < geo->bg_channels; i++) {
1927 			bg_band->channels[i].band = NL80211_BAND_2GHZ;
1928 			bg_band->channels[i].center_freq = geo->bg[i].freq;
1929 			bg_band->channels[i].hw_value = geo->bg[i].channel;
1930 			bg_band->channels[i].max_power = geo->bg[i].max_power;
1931 			if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
1932 				bg_band->channels[i].flags |=
1933 					IEEE80211_CHAN_NO_IR;
1934 			if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
1935 				bg_band->channels[i].flags |=
1936 					IEEE80211_CHAN_NO_IR;
1937 			if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
1938 				bg_band->channels[i].flags |=
1939 					IEEE80211_CHAN_RADAR;
1940 			/* No equivalent for LIBIPW_CH_80211H_RULES,
1941 			   LIBIPW_CH_UNIFORM_SPREADING, or
1942 			   LIBIPW_CH_B_ONLY... */
1943 		}
1944 		/* point at bitrate info */
1945 		bg_band->bitrates = ipw2100_bg_rates;
1946 		bg_band->n_bitrates = RATE_COUNT;
1947 
1948 		wdev->wiphy->bands[NL80211_BAND_2GHZ] = bg_band;
1949 	}
1950 
1951 	wdev->wiphy->cipher_suites = ipw_cipher_suites;
1952 	wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
1953 
1954 	set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
1955 	if (wiphy_register(wdev->wiphy))
1956 		return -EIO;
1957 	return 0;
1958 }
1959 
1960 static void ipw2100_reset_adapter(struct work_struct *work)
1961 {
1962 	struct ipw2100_priv *priv =
1963 		container_of(work, struct ipw2100_priv, reset_work.work);
1964 	unsigned long flags;
1965 	union iwreq_data wrqu = {
1966 		.ap_addr = {
1967 			    .sa_family = ARPHRD_ETHER}
1968 	};
1969 	int associated = priv->status & STATUS_ASSOCIATED;
1970 
1971 	spin_lock_irqsave(&priv->low_lock, flags);
1972 	IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1973 	priv->resets++;
1974 	priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1975 	priv->status |= STATUS_SECURITY_UPDATED;
1976 
1977 	/* Force a power cycle even if interface hasn't been opened
1978 	 * yet */
1979 	cancel_delayed_work(&priv->reset_work);
1980 	priv->status |= STATUS_RESET_PENDING;
1981 	spin_unlock_irqrestore(&priv->low_lock, flags);
1982 
1983 	mutex_lock(&priv->action_mutex);
1984 	/* stop timed checks so that they don't interfere with reset */
1985 	priv->stop_hang_check = 1;
1986 	cancel_delayed_work(&priv->hang_check);
1987 
1988 	/* We have to signal any supplicant if we are disassociating */
1989 	if (associated)
1990 		wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1991 
1992 	ipw2100_up(priv, 0);
1993 	mutex_unlock(&priv->action_mutex);
1994 
1995 }
1996 
1997 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1998 {
1999 
2000 #define MAC_ASSOCIATION_READ_DELAY (HZ)
2001 	int ret;
2002 	unsigned int len, essid_len;
2003 	char essid[IW_ESSID_MAX_SIZE];
2004 	u32 txrate;
2005 	u32 chan;
2006 	char *txratename;
2007 	u8 bssid[ETH_ALEN];
2008 
2009 	/*
2010 	 * TBD: BSSID is usually 00:00:00:00:00:00 here and not
2011 	 *      an actual MAC of the AP. Seems like FW sets this
2012 	 *      address too late. Read it later and expose through
2013 	 *      /proc or schedule a later task to query and update
2014 	 */
2015 
2016 	essid_len = IW_ESSID_MAX_SIZE;
2017 	ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
2018 				  essid, &essid_len);
2019 	if (ret) {
2020 		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2021 			       __LINE__);
2022 		return;
2023 	}
2024 
2025 	len = sizeof(u32);
2026 	ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
2027 	if (ret) {
2028 		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2029 			       __LINE__);
2030 		return;
2031 	}
2032 
2033 	len = sizeof(u32);
2034 	ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
2035 	if (ret) {
2036 		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2037 			       __LINE__);
2038 		return;
2039 	}
2040 	len = ETH_ALEN;
2041 	ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, bssid,
2042 				  &len);
2043 	if (ret) {
2044 		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2045 			       __LINE__);
2046 		return;
2047 	}
2048 	memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
2049 
2050 	switch (txrate) {
2051 	case TX_RATE_1_MBIT:
2052 		txratename = "1Mbps";
2053 		break;
2054 	case TX_RATE_2_MBIT:
2055 		txratename = "2Mbsp";
2056 		break;
2057 	case TX_RATE_5_5_MBIT:
2058 		txratename = "5.5Mbps";
2059 		break;
2060 	case TX_RATE_11_MBIT:
2061 		txratename = "11Mbps";
2062 		break;
2063 	default:
2064 		IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
2065 		txratename = "unknown rate";
2066 		break;
2067 	}
2068 
2069 	IPW_DEBUG_INFO("%s: Associated with '%*pE' at %s, channel %d (BSSID=%pM)\n",
2070 		       priv->net_dev->name, essid_len, essid,
2071 		       txratename, chan, bssid);
2072 
2073 	/* now we copy read ssid into dev */
2074 	if (!(priv->config & CFG_STATIC_ESSID)) {
2075 		priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
2076 		memcpy(priv->essid, essid, priv->essid_len);
2077 	}
2078 	priv->channel = chan;
2079 	memcpy(priv->bssid, bssid, ETH_ALEN);
2080 
2081 	priv->status |= STATUS_ASSOCIATING;
2082 	priv->connect_start = get_seconds();
2083 
2084 	schedule_delayed_work(&priv->wx_event_work, HZ / 10);
2085 }
2086 
2087 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2088 			     int length, int batch_mode)
2089 {
2090 	int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2091 	struct host_command cmd = {
2092 		.host_command = SSID,
2093 		.host_command_sequence = 0,
2094 		.host_command_length = ssid_len
2095 	};
2096 	int err;
2097 
2098 	IPW_DEBUG_HC("SSID: '%*pE'\n", ssid_len, essid);
2099 
2100 	if (ssid_len)
2101 		memcpy(cmd.host_command_parameters, essid, ssid_len);
2102 
2103 	if (!batch_mode) {
2104 		err = ipw2100_disable_adapter(priv);
2105 		if (err)
2106 			return err;
2107 	}
2108 
2109 	/* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2110 	 * disable auto association -- so we cheat by setting a bogus SSID */
2111 	if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2112 		int i;
2113 		u8 *bogus = (u8 *) cmd.host_command_parameters;
2114 		for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2115 			bogus[i] = 0x18 + i;
2116 		cmd.host_command_length = IW_ESSID_MAX_SIZE;
2117 	}
2118 
2119 	/* NOTE:  We always send the SSID command even if the provided ESSID is
2120 	 * the same as what we currently think is set. */
2121 
2122 	err = ipw2100_hw_send_command(priv, &cmd);
2123 	if (!err) {
2124 		memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2125 		memcpy(priv->essid, essid, ssid_len);
2126 		priv->essid_len = ssid_len;
2127 	}
2128 
2129 	if (!batch_mode) {
2130 		if (ipw2100_enable_adapter(priv))
2131 			err = -EIO;
2132 	}
2133 
2134 	return err;
2135 }
2136 
2137 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2138 {
2139 	IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2140 		  "disassociated: '%*pE' %pM\n", priv->essid_len, priv->essid,
2141 		  priv->bssid);
2142 
2143 	priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2144 
2145 	if (priv->status & STATUS_STOPPING) {
2146 		IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2147 		return;
2148 	}
2149 
2150 	eth_zero_addr(priv->bssid);
2151 	eth_zero_addr(priv->ieee->bssid);
2152 
2153 	netif_carrier_off(priv->net_dev);
2154 	netif_stop_queue(priv->net_dev);
2155 
2156 	if (!(priv->status & STATUS_RUNNING))
2157 		return;
2158 
2159 	if (priv->status & STATUS_SECURITY_UPDATED)
2160 		schedule_delayed_work(&priv->security_work, 0);
2161 
2162 	schedule_delayed_work(&priv->wx_event_work, 0);
2163 }
2164 
2165 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2166 {
2167 	IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2168 		       priv->net_dev->name);
2169 
2170 	/* RF_KILL is now enabled (else we wouldn't be here) */
2171 	wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2172 	priv->status |= STATUS_RF_KILL_HW;
2173 
2174 	/* Make sure the RF Kill check timer is running */
2175 	priv->stop_rf_kill = 0;
2176 	mod_delayed_work(system_wq, &priv->rf_kill, round_jiffies_relative(HZ));
2177 }
2178 
2179 static void ipw2100_scan_event(struct work_struct *work)
2180 {
2181 	struct ipw2100_priv *priv = container_of(work, struct ipw2100_priv,
2182 						 scan_event.work);
2183 	union iwreq_data wrqu;
2184 
2185 	wrqu.data.length = 0;
2186 	wrqu.data.flags = 0;
2187 	wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
2188 }
2189 
2190 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2191 {
2192 	IPW_DEBUG_SCAN("scan complete\n");
2193 	/* Age the scan results... */
2194 	priv->ieee->scans++;
2195 	priv->status &= ~STATUS_SCANNING;
2196 
2197 	/* Only userspace-requested scan completion events go out immediately */
2198 	if (!priv->user_requested_scan) {
2199 		schedule_delayed_work(&priv->scan_event,
2200 				      round_jiffies_relative(msecs_to_jiffies(4000)));
2201 	} else {
2202 		priv->user_requested_scan = 0;
2203 		mod_delayed_work(system_wq, &priv->scan_event, 0);
2204 	}
2205 }
2206 
2207 #ifdef CONFIG_IPW2100_DEBUG
2208 #define IPW2100_HANDLER(v, f) { v, f, # v }
2209 struct ipw2100_status_indicator {
2210 	int status;
2211 	void (*cb) (struct ipw2100_priv * priv, u32 status);
2212 	char *name;
2213 };
2214 #else
2215 #define IPW2100_HANDLER(v, f) { v, f }
2216 struct ipw2100_status_indicator {
2217 	int status;
2218 	void (*cb) (struct ipw2100_priv * priv, u32 status);
2219 };
2220 #endif				/* CONFIG_IPW2100_DEBUG */
2221 
2222 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2223 {
2224 	IPW_DEBUG_SCAN("Scanning...\n");
2225 	priv->status |= STATUS_SCANNING;
2226 }
2227 
2228 static const struct ipw2100_status_indicator status_handlers[] = {
2229 	IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2230 	IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2231 	IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2232 	IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2233 	IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2234 	IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2235 	IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2236 	IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2237 	IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2238 	IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2239 	IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2240 	IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2241 	IPW2100_HANDLER(-1, NULL)
2242 };
2243 
2244 static void isr_status_change(struct ipw2100_priv *priv, int status)
2245 {
2246 	int i;
2247 
2248 	if (status == IPW_STATE_SCANNING &&
2249 	    priv->status & STATUS_ASSOCIATED &&
2250 	    !(priv->status & STATUS_SCANNING)) {
2251 		IPW_DEBUG_INFO("Scan detected while associated, with "
2252 			       "no scan request.  Restarting firmware.\n");
2253 
2254 		/* Wake up any sleeping jobs */
2255 		schedule_reset(priv);
2256 	}
2257 
2258 	for (i = 0; status_handlers[i].status != -1; i++) {
2259 		if (status == status_handlers[i].status) {
2260 			IPW_DEBUG_NOTIF("Status change: %s\n",
2261 					status_handlers[i].name);
2262 			if (status_handlers[i].cb)
2263 				status_handlers[i].cb(priv, status);
2264 			priv->wstats.status = status;
2265 			return;
2266 		}
2267 	}
2268 
2269 	IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2270 }
2271 
2272 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2273 				    struct ipw2100_cmd_header *cmd)
2274 {
2275 #ifdef CONFIG_IPW2100_DEBUG
2276 	if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2277 		IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2278 			     command_types[cmd->host_command_reg],
2279 			     cmd->host_command_reg);
2280 	}
2281 #endif
2282 	if (cmd->host_command_reg == HOST_COMPLETE)
2283 		priv->status |= STATUS_ENABLED;
2284 
2285 	if (cmd->host_command_reg == CARD_DISABLE)
2286 		priv->status &= ~STATUS_ENABLED;
2287 
2288 	priv->status &= ~STATUS_CMD_ACTIVE;
2289 
2290 	wake_up_interruptible(&priv->wait_command_queue);
2291 }
2292 
2293 #ifdef CONFIG_IPW2100_DEBUG
2294 static const char *frame_types[] = {
2295 	"COMMAND_STATUS_VAL",
2296 	"STATUS_CHANGE_VAL",
2297 	"P80211_DATA_VAL",
2298 	"P8023_DATA_VAL",
2299 	"HOST_NOTIFICATION_VAL"
2300 };
2301 #endif
2302 
2303 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2304 				    struct ipw2100_rx_packet *packet)
2305 {
2306 	packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2307 	if (!packet->skb)
2308 		return -ENOMEM;
2309 
2310 	packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2311 	packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2312 					  sizeof(struct ipw2100_rx),
2313 					  PCI_DMA_FROMDEVICE);
2314 	if (pci_dma_mapping_error(priv->pci_dev, packet->dma_addr)) {
2315 		dev_kfree_skb(packet->skb);
2316 		return -ENOMEM;
2317 	}
2318 
2319 	return 0;
2320 }
2321 
2322 #define SEARCH_ERROR   0xffffffff
2323 #define SEARCH_FAIL    0xfffffffe
2324 #define SEARCH_SUCCESS 0xfffffff0
2325 #define SEARCH_DISCARD 0
2326 #define SEARCH_SNAPSHOT 1
2327 
2328 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2329 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2330 {
2331 	int i;
2332 	if (!priv->snapshot[0])
2333 		return;
2334 	for (i = 0; i < 0x30; i++)
2335 		kfree(priv->snapshot[i]);
2336 	priv->snapshot[0] = NULL;
2337 }
2338 
2339 #ifdef IPW2100_DEBUG_C3
2340 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2341 {
2342 	int i;
2343 	if (priv->snapshot[0])
2344 		return 1;
2345 	for (i = 0; i < 0x30; i++) {
2346 		priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2347 		if (!priv->snapshot[i]) {
2348 			IPW_DEBUG_INFO("%s: Error allocating snapshot "
2349 				       "buffer %d\n", priv->net_dev->name, i);
2350 			while (i > 0)
2351 				kfree(priv->snapshot[--i]);
2352 			priv->snapshot[0] = NULL;
2353 			return 0;
2354 		}
2355 	}
2356 
2357 	return 1;
2358 }
2359 
2360 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2361 				    size_t len, int mode)
2362 {
2363 	u32 i, j;
2364 	u32 tmp;
2365 	u8 *s, *d;
2366 	u32 ret;
2367 
2368 	s = in_buf;
2369 	if (mode == SEARCH_SNAPSHOT) {
2370 		if (!ipw2100_snapshot_alloc(priv))
2371 			mode = SEARCH_DISCARD;
2372 	}
2373 
2374 	for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2375 		read_nic_dword(priv->net_dev, i, &tmp);
2376 		if (mode == SEARCH_SNAPSHOT)
2377 			*(u32 *) SNAPSHOT_ADDR(i) = tmp;
2378 		if (ret == SEARCH_FAIL) {
2379 			d = (u8 *) & tmp;
2380 			for (j = 0; j < 4; j++) {
2381 				if (*s != *d) {
2382 					s = in_buf;
2383 					continue;
2384 				}
2385 
2386 				s++;
2387 				d++;
2388 
2389 				if ((s - in_buf) == len)
2390 					ret = (i + j) - len + 1;
2391 			}
2392 		} else if (mode == SEARCH_DISCARD)
2393 			return ret;
2394 	}
2395 
2396 	return ret;
2397 }
2398 #endif
2399 
2400 /*
2401  *
2402  * 0) Disconnect the SKB from the firmware (just unmap)
2403  * 1) Pack the ETH header into the SKB
2404  * 2) Pass the SKB to the network stack
2405  *
2406  * When packet is provided by the firmware, it contains the following:
2407  *
2408  * .  libipw_hdr
2409  * .  libipw_snap_hdr
2410  *
2411  * The size of the constructed ethernet
2412  *
2413  */
2414 #ifdef IPW2100_RX_DEBUG
2415 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2416 #endif
2417 
2418 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2419 {
2420 #ifdef IPW2100_DEBUG_C3
2421 	struct ipw2100_status *status = &priv->status_queue.drv[i];
2422 	u32 match, reg;
2423 	int j;
2424 #endif
2425 
2426 	IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2427 		       i * sizeof(struct ipw2100_status));
2428 
2429 #ifdef IPW2100_DEBUG_C3
2430 	/* Halt the firmware so we can get a good image */
2431 	write_register(priv->net_dev, IPW_REG_RESET_REG,
2432 		       IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2433 	j = 5;
2434 	do {
2435 		udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2436 		read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2437 
2438 		if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2439 			break;
2440 	} while (j--);
2441 
2442 	match = ipw2100_match_buf(priv, (u8 *) status,
2443 				  sizeof(struct ipw2100_status),
2444 				  SEARCH_SNAPSHOT);
2445 	if (match < SEARCH_SUCCESS)
2446 		IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2447 			       "offset 0x%06X, length %d:\n",
2448 			       priv->net_dev->name, match,
2449 			       sizeof(struct ipw2100_status));
2450 	else
2451 		IPW_DEBUG_INFO("%s: No DMA status match in "
2452 			       "Firmware.\n", priv->net_dev->name);
2453 
2454 	printk_buf((u8 *) priv->status_queue.drv,
2455 		   sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2456 #endif
2457 
2458 	priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2459 	priv->net_dev->stats.rx_errors++;
2460 	schedule_reset(priv);
2461 }
2462 
2463 static void isr_rx(struct ipw2100_priv *priv, int i,
2464 			  struct libipw_rx_stats *stats)
2465 {
2466 	struct net_device *dev = priv->net_dev;
2467 	struct ipw2100_status *status = &priv->status_queue.drv[i];
2468 	struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2469 
2470 	IPW_DEBUG_RX("Handler...\n");
2471 
2472 	if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2473 		IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2474 			       "  Dropping.\n",
2475 			       dev->name,
2476 			       status->frame_size, skb_tailroom(packet->skb));
2477 		dev->stats.rx_errors++;
2478 		return;
2479 	}
2480 
2481 	if (unlikely(!netif_running(dev))) {
2482 		dev->stats.rx_errors++;
2483 		priv->wstats.discard.misc++;
2484 		IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2485 		return;
2486 	}
2487 
2488 	if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2489 		     !(priv->status & STATUS_ASSOCIATED))) {
2490 		IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2491 		priv->wstats.discard.misc++;
2492 		return;
2493 	}
2494 
2495 	pci_unmap_single(priv->pci_dev,
2496 			 packet->dma_addr,
2497 			 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2498 
2499 	skb_put(packet->skb, status->frame_size);
2500 
2501 #ifdef IPW2100_RX_DEBUG
2502 	/* Make a copy of the frame so we can dump it to the logs if
2503 	 * libipw_rx fails */
2504 	skb_copy_from_linear_data(packet->skb, packet_data,
2505 				  min_t(u32, status->frame_size,
2506 					     IPW_RX_NIC_BUFFER_LENGTH));
2507 #endif
2508 
2509 	if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2510 #ifdef IPW2100_RX_DEBUG
2511 		IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2512 			       dev->name);
2513 		printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2514 #endif
2515 		dev->stats.rx_errors++;
2516 
2517 		/* libipw_rx failed, so it didn't free the SKB */
2518 		dev_kfree_skb_any(packet->skb);
2519 		packet->skb = NULL;
2520 	}
2521 
2522 	/* We need to allocate a new SKB and attach it to the RDB. */
2523 	if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2524 		printk(KERN_WARNING DRV_NAME ": "
2525 		       "%s: Unable to allocate SKB onto RBD ring - disabling "
2526 		       "adapter.\n", dev->name);
2527 		/* TODO: schedule adapter shutdown */
2528 		IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2529 	}
2530 
2531 	/* Update the RDB entry */
2532 	priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2533 }
2534 
2535 #ifdef CONFIG_IPW2100_MONITOR
2536 
2537 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2538 		   struct libipw_rx_stats *stats)
2539 {
2540 	struct net_device *dev = priv->net_dev;
2541 	struct ipw2100_status *status = &priv->status_queue.drv[i];
2542 	struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2543 
2544 	/* Magic struct that slots into the radiotap header -- no reason
2545 	 * to build this manually element by element, we can write it much
2546 	 * more efficiently than we can parse it. ORDER MATTERS HERE */
2547 	struct ipw_rt_hdr {
2548 		struct ieee80211_radiotap_header rt_hdr;
2549 		s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2550 	} *ipw_rt;
2551 
2552 	IPW_DEBUG_RX("Handler...\n");
2553 
2554 	if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2555 				sizeof(struct ipw_rt_hdr))) {
2556 		IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2557 			       "  Dropping.\n",
2558 			       dev->name,
2559 			       status->frame_size,
2560 			       skb_tailroom(packet->skb));
2561 		dev->stats.rx_errors++;
2562 		return;
2563 	}
2564 
2565 	if (unlikely(!netif_running(dev))) {
2566 		dev->stats.rx_errors++;
2567 		priv->wstats.discard.misc++;
2568 		IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2569 		return;
2570 	}
2571 
2572 	if (unlikely(priv->config & CFG_CRC_CHECK &&
2573 		     status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2574 		IPW_DEBUG_RX("CRC error in packet.  Dropping.\n");
2575 		dev->stats.rx_errors++;
2576 		return;
2577 	}
2578 
2579 	pci_unmap_single(priv->pci_dev, packet->dma_addr,
2580 			 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2581 	memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2582 		packet->skb->data, status->frame_size);
2583 
2584 	ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2585 
2586 	ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2587 	ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2588 	ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */
2589 
2590 	ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
2591 
2592 	ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2593 
2594 	skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2595 
2596 	if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2597 		dev->stats.rx_errors++;
2598 
2599 		/* libipw_rx failed, so it didn't free the SKB */
2600 		dev_kfree_skb_any(packet->skb);
2601 		packet->skb = NULL;
2602 	}
2603 
2604 	/* We need to allocate a new SKB and attach it to the RDB. */
2605 	if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2606 		IPW_DEBUG_WARNING(
2607 			"%s: Unable to allocate SKB onto RBD ring - disabling "
2608 			"adapter.\n", dev->name);
2609 		/* TODO: schedule adapter shutdown */
2610 		IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2611 	}
2612 
2613 	/* Update the RDB entry */
2614 	priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2615 }
2616 
2617 #endif
2618 
2619 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2620 {
2621 	struct ipw2100_status *status = &priv->status_queue.drv[i];
2622 	struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2623 	u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2624 
2625 	switch (frame_type) {
2626 	case COMMAND_STATUS_VAL:
2627 		return (status->frame_size != sizeof(u->rx_data.command));
2628 	case STATUS_CHANGE_VAL:
2629 		return (status->frame_size != sizeof(u->rx_data.status));
2630 	case HOST_NOTIFICATION_VAL:
2631 		return (status->frame_size < sizeof(u->rx_data.notification));
2632 	case P80211_DATA_VAL:
2633 	case P8023_DATA_VAL:
2634 #ifdef CONFIG_IPW2100_MONITOR
2635 		return 0;
2636 #else
2637 		switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2638 		case IEEE80211_FTYPE_MGMT:
2639 		case IEEE80211_FTYPE_CTL:
2640 			return 0;
2641 		case IEEE80211_FTYPE_DATA:
2642 			return (status->frame_size >
2643 				IPW_MAX_802_11_PAYLOAD_LENGTH);
2644 		}
2645 #endif
2646 	}
2647 
2648 	return 1;
2649 }
2650 
2651 /*
2652  * ipw2100 interrupts are disabled at this point, and the ISR
2653  * is the only code that calls this method.  So, we do not need
2654  * to play with any locks.
2655  *
2656  * RX Queue works as follows:
2657  *
2658  * Read index - firmware places packet in entry identified by the
2659  *              Read index and advances Read index.  In this manner,
2660  *              Read index will always point to the next packet to
2661  *              be filled--but not yet valid.
2662  *
2663  * Write index - driver fills this entry with an unused RBD entry.
2664  *               This entry has not filled by the firmware yet.
2665  *
2666  * In between the W and R indexes are the RBDs that have been received
2667  * but not yet processed.
2668  *
2669  * The process of handling packets will start at WRITE + 1 and advance
2670  * until it reaches the READ index.
2671  *
2672  * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2673  *
2674  */
2675 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2676 {
2677 	struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2678 	struct ipw2100_status_queue *sq = &priv->status_queue;
2679 	struct ipw2100_rx_packet *packet;
2680 	u16 frame_type;
2681 	u32 r, w, i, s;
2682 	struct ipw2100_rx *u;
2683 	struct libipw_rx_stats stats = {
2684 		.mac_time = jiffies,
2685 	};
2686 
2687 	read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2688 	read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2689 
2690 	if (r >= rxq->entries) {
2691 		IPW_DEBUG_RX("exit - bad read index\n");
2692 		return;
2693 	}
2694 
2695 	i = (rxq->next + 1) % rxq->entries;
2696 	s = i;
2697 	while (i != r) {
2698 		/* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2699 		   r, rxq->next, i); */
2700 
2701 		packet = &priv->rx_buffers[i];
2702 
2703 		/* Sync the DMA for the RX buffer so CPU is sure to get
2704 		 * the correct values */
2705 		pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2706 					    sizeof(struct ipw2100_rx),
2707 					    PCI_DMA_FROMDEVICE);
2708 
2709 		if (unlikely(ipw2100_corruption_check(priv, i))) {
2710 			ipw2100_corruption_detected(priv, i);
2711 			goto increment;
2712 		}
2713 
2714 		u = packet->rxp;
2715 		frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2716 		stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2717 		stats.len = sq->drv[i].frame_size;
2718 
2719 		stats.mask = 0;
2720 		if (stats.rssi != 0)
2721 			stats.mask |= LIBIPW_STATMASK_RSSI;
2722 		stats.freq = LIBIPW_24GHZ_BAND;
2723 
2724 		IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2725 			     priv->net_dev->name, frame_types[frame_type],
2726 			     stats.len);
2727 
2728 		switch (frame_type) {
2729 		case COMMAND_STATUS_VAL:
2730 			/* Reset Rx watchdog */
2731 			isr_rx_complete_command(priv, &u->rx_data.command);
2732 			break;
2733 
2734 		case STATUS_CHANGE_VAL:
2735 			isr_status_change(priv, u->rx_data.status);
2736 			break;
2737 
2738 		case P80211_DATA_VAL:
2739 		case P8023_DATA_VAL:
2740 #ifdef CONFIG_IPW2100_MONITOR
2741 			if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2742 				isr_rx_monitor(priv, i, &stats);
2743 				break;
2744 			}
2745 #endif
2746 			if (stats.len < sizeof(struct libipw_hdr_3addr))
2747 				break;
2748 			switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2749 			case IEEE80211_FTYPE_MGMT:
2750 				libipw_rx_mgt(priv->ieee,
2751 						 &u->rx_data.header, &stats);
2752 				break;
2753 
2754 			case IEEE80211_FTYPE_CTL:
2755 				break;
2756 
2757 			case IEEE80211_FTYPE_DATA:
2758 				isr_rx(priv, i, &stats);
2759 				break;
2760 
2761 			}
2762 			break;
2763 		}
2764 
2765 	      increment:
2766 		/* clear status field associated with this RBD */
2767 		rxq->drv[i].status.info.field = 0;
2768 
2769 		i = (i + 1) % rxq->entries;
2770 	}
2771 
2772 	if (i != s) {
2773 		/* backtrack one entry, wrapping to end if at 0 */
2774 		rxq->next = (i ? i : rxq->entries) - 1;
2775 
2776 		write_register(priv->net_dev,
2777 			       IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2778 	}
2779 }
2780 
2781 /*
2782  * __ipw2100_tx_process
2783  *
2784  * This routine will determine whether the next packet on
2785  * the fw_pend_list has been processed by the firmware yet.
2786  *
2787  * If not, then it does nothing and returns.
2788  *
2789  * If so, then it removes the item from the fw_pend_list, frees
2790  * any associated storage, and places the item back on the
2791  * free list of its source (either msg_free_list or tx_free_list)
2792  *
2793  * TX Queue works as follows:
2794  *
2795  * Read index - points to the next TBD that the firmware will
2796  *              process.  The firmware will read the data, and once
2797  *              done processing, it will advance the Read index.
2798  *
2799  * Write index - driver fills this entry with an constructed TBD
2800  *               entry.  The Write index is not advanced until the
2801  *               packet has been configured.
2802  *
2803  * In between the W and R indexes are the TBDs that have NOT been
2804  * processed.  Lagging behind the R index are packets that have
2805  * been processed but have not been freed by the driver.
2806  *
2807  * In order to free old storage, an internal index will be maintained
2808  * that points to the next packet to be freed.  When all used
2809  * packets have been freed, the oldest index will be the same as the
2810  * firmware's read index.
2811  *
2812  * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2813  *
2814  * Because the TBD structure can not contain arbitrary data, the
2815  * driver must keep an internal queue of cached allocations such that
2816  * it can put that data back into the tx_free_list and msg_free_list
2817  * for use by future command and data packets.
2818  *
2819  */
2820 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2821 {
2822 	struct ipw2100_bd_queue *txq = &priv->tx_queue;
2823 	struct ipw2100_bd *tbd;
2824 	struct list_head *element;
2825 	struct ipw2100_tx_packet *packet;
2826 	int descriptors_used;
2827 	int e, i;
2828 	u32 r, w, frag_num = 0;
2829 
2830 	if (list_empty(&priv->fw_pend_list))
2831 		return 0;
2832 
2833 	element = priv->fw_pend_list.next;
2834 
2835 	packet = list_entry(element, struct ipw2100_tx_packet, list);
2836 	tbd = &txq->drv[packet->index];
2837 
2838 	/* Determine how many TBD entries must be finished... */
2839 	switch (packet->type) {
2840 	case COMMAND:
2841 		/* COMMAND uses only one slot; don't advance */
2842 		descriptors_used = 1;
2843 		e = txq->oldest;
2844 		break;
2845 
2846 	case DATA:
2847 		/* DATA uses two slots; advance and loop position. */
2848 		descriptors_used = tbd->num_fragments;
2849 		frag_num = tbd->num_fragments - 1;
2850 		e = txq->oldest + frag_num;
2851 		e %= txq->entries;
2852 		break;
2853 
2854 	default:
2855 		printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2856 		       priv->net_dev->name);
2857 		return 0;
2858 	}
2859 
2860 	/* if the last TBD is not done by NIC yet, then packet is
2861 	 * not ready to be released.
2862 	 *
2863 	 */
2864 	read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2865 		      &r);
2866 	read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2867 		      &w);
2868 	if (w != txq->next)
2869 		printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2870 		       priv->net_dev->name);
2871 
2872 	/*
2873 	 * txq->next is the index of the last packet written txq->oldest is
2874 	 * the index of the r is the index of the next packet to be read by
2875 	 * firmware
2876 	 */
2877 
2878 	/*
2879 	 * Quick graphic to help you visualize the following
2880 	 * if / else statement
2881 	 *
2882 	 * ===>|                     s---->|===============
2883 	 *                               e>|
2884 	 * | a | b | c | d | e | f | g | h | i | j | k | l
2885 	 *       r---->|
2886 	 *               w
2887 	 *
2888 	 * w - updated by driver
2889 	 * r - updated by firmware
2890 	 * s - start of oldest BD entry (txq->oldest)
2891 	 * e - end of oldest BD entry
2892 	 *
2893 	 */
2894 	if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2895 		IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2896 		return 0;
2897 	}
2898 
2899 	list_del(element);
2900 	DEC_STAT(&priv->fw_pend_stat);
2901 
2902 #ifdef CONFIG_IPW2100_DEBUG
2903 	{
2904 		i = txq->oldest;
2905 		IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2906 			     &txq->drv[i],
2907 			     (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2908 			     txq->drv[i].host_addr, txq->drv[i].buf_length);
2909 
2910 		if (packet->type == DATA) {
2911 			i = (i + 1) % txq->entries;
2912 
2913 			IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2914 				     &txq->drv[i],
2915 				     (u32) (txq->nic + i *
2916 					    sizeof(struct ipw2100_bd)),
2917 				     (u32) txq->drv[i].host_addr,
2918 				     txq->drv[i].buf_length);
2919 		}
2920 	}
2921 #endif
2922 
2923 	switch (packet->type) {
2924 	case DATA:
2925 		if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2926 			printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2927 			       "Expecting DATA TBD but pulled "
2928 			       "something else: ids %d=%d.\n",
2929 			       priv->net_dev->name, txq->oldest, packet->index);
2930 
2931 		/* DATA packet; we have to unmap and free the SKB */
2932 		for (i = 0; i < frag_num; i++) {
2933 			tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2934 
2935 			IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2936 				     (packet->index + 1 + i) % txq->entries,
2937 				     tbd->host_addr, tbd->buf_length);
2938 
2939 			pci_unmap_single(priv->pci_dev,
2940 					 tbd->host_addr,
2941 					 tbd->buf_length, PCI_DMA_TODEVICE);
2942 		}
2943 
2944 		libipw_txb_free(packet->info.d_struct.txb);
2945 		packet->info.d_struct.txb = NULL;
2946 
2947 		list_add_tail(element, &priv->tx_free_list);
2948 		INC_STAT(&priv->tx_free_stat);
2949 
2950 		/* We have a free slot in the Tx queue, so wake up the
2951 		 * transmit layer if it is stopped. */
2952 		if (priv->status & STATUS_ASSOCIATED)
2953 			netif_wake_queue(priv->net_dev);
2954 
2955 		/* A packet was processed by the hardware, so update the
2956 		 * watchdog */
2957 		netif_trans_update(priv->net_dev);
2958 
2959 		break;
2960 
2961 	case COMMAND:
2962 		if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2963 			printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2964 			       "Expecting COMMAND TBD but pulled "
2965 			       "something else: ids %d=%d.\n",
2966 			       priv->net_dev->name, txq->oldest, packet->index);
2967 
2968 #ifdef CONFIG_IPW2100_DEBUG
2969 		if (packet->info.c_struct.cmd->host_command_reg <
2970 		    ARRAY_SIZE(command_types))
2971 			IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2972 				     command_types[packet->info.c_struct.cmd->
2973 						   host_command_reg],
2974 				     packet->info.c_struct.cmd->
2975 				     host_command_reg,
2976 				     packet->info.c_struct.cmd->cmd_status_reg);
2977 #endif
2978 
2979 		list_add_tail(element, &priv->msg_free_list);
2980 		INC_STAT(&priv->msg_free_stat);
2981 		break;
2982 	}
2983 
2984 	/* advance oldest used TBD pointer to start of next entry */
2985 	txq->oldest = (e + 1) % txq->entries;
2986 	/* increase available TBDs number */
2987 	txq->available += descriptors_used;
2988 	SET_STAT(&priv->txq_stat, txq->available);
2989 
2990 	IPW_DEBUG_TX("packet latency (send to process)  %ld jiffies\n",
2991 		     jiffies - packet->jiffy_start);
2992 
2993 	return (!list_empty(&priv->fw_pend_list));
2994 }
2995 
2996 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2997 {
2998 	int i = 0;
2999 
3000 	while (__ipw2100_tx_process(priv) && i < 200)
3001 		i++;
3002 
3003 	if (i == 200) {
3004 		printk(KERN_WARNING DRV_NAME ": "
3005 		       "%s: Driver is running slow (%d iters).\n",
3006 		       priv->net_dev->name, i);
3007 	}
3008 }
3009 
3010 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
3011 {
3012 	struct list_head *element;
3013 	struct ipw2100_tx_packet *packet;
3014 	struct ipw2100_bd_queue *txq = &priv->tx_queue;
3015 	struct ipw2100_bd *tbd;
3016 	int next = txq->next;
3017 
3018 	while (!list_empty(&priv->msg_pend_list)) {
3019 		/* if there isn't enough space in TBD queue, then
3020 		 * don't stuff a new one in.
3021 		 * NOTE: 3 are needed as a command will take one,
3022 		 *       and there is a minimum of 2 that must be
3023 		 *       maintained between the r and w indexes
3024 		 */
3025 		if (txq->available <= 3) {
3026 			IPW_DEBUG_TX("no room in tx_queue\n");
3027 			break;
3028 		}
3029 
3030 		element = priv->msg_pend_list.next;
3031 		list_del(element);
3032 		DEC_STAT(&priv->msg_pend_stat);
3033 
3034 		packet = list_entry(element, struct ipw2100_tx_packet, list);
3035 
3036 		IPW_DEBUG_TX("using TBD at virt=%p, phys=%04X\n",
3037 			     &txq->drv[txq->next],
3038 			     (u32) (txq->nic + txq->next *
3039 				      sizeof(struct ipw2100_bd)));
3040 
3041 		packet->index = txq->next;
3042 
3043 		tbd = &txq->drv[txq->next];
3044 
3045 		/* initialize TBD */
3046 		tbd->host_addr = packet->info.c_struct.cmd_phys;
3047 		tbd->buf_length = sizeof(struct ipw2100_cmd_header);
3048 		/* not marking number of fragments causes problems
3049 		 * with f/w debug version */
3050 		tbd->num_fragments = 1;
3051 		tbd->status.info.field =
3052 		    IPW_BD_STATUS_TX_FRAME_COMMAND |
3053 		    IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3054 
3055 		/* update TBD queue counters */
3056 		txq->next++;
3057 		txq->next %= txq->entries;
3058 		txq->available--;
3059 		DEC_STAT(&priv->txq_stat);
3060 
3061 		list_add_tail(element, &priv->fw_pend_list);
3062 		INC_STAT(&priv->fw_pend_stat);
3063 	}
3064 
3065 	if (txq->next != next) {
3066 		/* kick off the DMA by notifying firmware the
3067 		 * write index has moved; make sure TBD stores are sync'd */
3068 		wmb();
3069 		write_register(priv->net_dev,
3070 			       IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3071 			       txq->next);
3072 	}
3073 }
3074 
3075 /*
3076  * ipw2100_tx_send_data
3077  *
3078  */
3079 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3080 {
3081 	struct list_head *element;
3082 	struct ipw2100_tx_packet *packet;
3083 	struct ipw2100_bd_queue *txq = &priv->tx_queue;
3084 	struct ipw2100_bd *tbd;
3085 	int next = txq->next;
3086 	int i = 0;
3087 	struct ipw2100_data_header *ipw_hdr;
3088 	struct libipw_hdr_3addr *hdr;
3089 
3090 	while (!list_empty(&priv->tx_pend_list)) {
3091 		/* if there isn't enough space in TBD queue, then
3092 		 * don't stuff a new one in.
3093 		 * NOTE: 4 are needed as a data will take two,
3094 		 *       and there is a minimum of 2 that must be
3095 		 *       maintained between the r and w indexes
3096 		 */
3097 		element = priv->tx_pend_list.next;
3098 		packet = list_entry(element, struct ipw2100_tx_packet, list);
3099 
3100 		if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3101 			     IPW_MAX_BDS)) {
3102 			/* TODO: Support merging buffers if more than
3103 			 * IPW_MAX_BDS are used */
3104 			IPW_DEBUG_INFO("%s: Maximum BD threshold exceeded.  "
3105 				       "Increase fragmentation level.\n",
3106 				       priv->net_dev->name);
3107 		}
3108 
3109 		if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3110 			IPW_DEBUG_TX("no room in tx_queue\n");
3111 			break;
3112 		}
3113 
3114 		list_del(element);
3115 		DEC_STAT(&priv->tx_pend_stat);
3116 
3117 		tbd = &txq->drv[txq->next];
3118 
3119 		packet->index = txq->next;
3120 
3121 		ipw_hdr = packet->info.d_struct.data;
3122 		hdr = (struct libipw_hdr_3addr *)packet->info.d_struct.txb->
3123 		    fragments[0]->data;
3124 
3125 		if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3126 			/* To DS: Addr1 = BSSID, Addr2 = SA,
3127 			   Addr3 = DA */
3128 			memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3129 			memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3130 		} else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3131 			/* not From/To DS: Addr1 = DA, Addr2 = SA,
3132 			   Addr3 = BSSID */
3133 			memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3134 			memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3135 		}
3136 
3137 		ipw_hdr->host_command_reg = SEND;
3138 		ipw_hdr->host_command_reg1 = 0;
3139 
3140 		/* For now we only support host based encryption */
3141 		ipw_hdr->needs_encryption = 0;
3142 		ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3143 		if (packet->info.d_struct.txb->nr_frags > 1)
3144 			ipw_hdr->fragment_size =
3145 			    packet->info.d_struct.txb->frag_size -
3146 			    LIBIPW_3ADDR_LEN;
3147 		else
3148 			ipw_hdr->fragment_size = 0;
3149 
3150 		tbd->host_addr = packet->info.d_struct.data_phys;
3151 		tbd->buf_length = sizeof(struct ipw2100_data_header);
3152 		tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3153 		tbd->status.info.field =
3154 		    IPW_BD_STATUS_TX_FRAME_802_3 |
3155 		    IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3156 		txq->next++;
3157 		txq->next %= txq->entries;
3158 
3159 		IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3160 			     packet->index, tbd->host_addr, tbd->buf_length);
3161 #ifdef CONFIG_IPW2100_DEBUG
3162 		if (packet->info.d_struct.txb->nr_frags > 1)
3163 			IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3164 				       packet->info.d_struct.txb->nr_frags);
3165 #endif
3166 
3167 		for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3168 			tbd = &txq->drv[txq->next];
3169 			if (i == packet->info.d_struct.txb->nr_frags - 1)
3170 				tbd->status.info.field =
3171 				    IPW_BD_STATUS_TX_FRAME_802_3 |
3172 				    IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3173 			else
3174 				tbd->status.info.field =
3175 				    IPW_BD_STATUS_TX_FRAME_802_3 |
3176 				    IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3177 
3178 			tbd->buf_length = packet->info.d_struct.txb->
3179 			    fragments[i]->len - LIBIPW_3ADDR_LEN;
3180 
3181 			tbd->host_addr = pci_map_single(priv->pci_dev,
3182 							packet->info.d_struct.
3183 							txb->fragments[i]->
3184 							data +
3185 							LIBIPW_3ADDR_LEN,
3186 							tbd->buf_length,
3187 							PCI_DMA_TODEVICE);
3188 			if (pci_dma_mapping_error(priv->pci_dev,
3189 						  tbd->host_addr)) {
3190 				IPW_DEBUG_TX("dma mapping error\n");
3191 				break;
3192 			}
3193 
3194 			IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3195 				     txq->next, tbd->host_addr,
3196 				     tbd->buf_length);
3197 
3198 			pci_dma_sync_single_for_device(priv->pci_dev,
3199 						       tbd->host_addr,
3200 						       tbd->buf_length,
3201 						       PCI_DMA_TODEVICE);
3202 
3203 			txq->next++;
3204 			txq->next %= txq->entries;
3205 		}
3206 
3207 		txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3208 		SET_STAT(&priv->txq_stat, txq->available);
3209 
3210 		list_add_tail(element, &priv->fw_pend_list);
3211 		INC_STAT(&priv->fw_pend_stat);
3212 	}
3213 
3214 	if (txq->next != next) {
3215 		/* kick off the DMA by notifying firmware the
3216 		 * write index has moved; make sure TBD stores are sync'd */
3217 		write_register(priv->net_dev,
3218 			       IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3219 			       txq->next);
3220 	}
3221 }
3222 
3223 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3224 {
3225 	struct net_device *dev = priv->net_dev;
3226 	unsigned long flags;
3227 	u32 inta, tmp;
3228 
3229 	spin_lock_irqsave(&priv->low_lock, flags);
3230 	ipw2100_disable_interrupts(priv);
3231 
3232 	read_register(dev, IPW_REG_INTA, &inta);
3233 
3234 	IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3235 		      (unsigned long)inta & IPW_INTERRUPT_MASK);
3236 
3237 	priv->in_isr++;
3238 	priv->interrupts++;
3239 
3240 	/* We do not loop and keep polling for more interrupts as this
3241 	 * is frowned upon and doesn't play nicely with other potentially
3242 	 * chained IRQs */
3243 	IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3244 		      (unsigned long)inta & IPW_INTERRUPT_MASK);
3245 
3246 	if (inta & IPW2100_INTA_FATAL_ERROR) {
3247 		printk(KERN_WARNING DRV_NAME
3248 		       ": Fatal interrupt. Scheduling firmware restart.\n");
3249 		priv->inta_other++;
3250 		write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3251 
3252 		read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3253 		IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3254 			       priv->net_dev->name, priv->fatal_error);
3255 
3256 		read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3257 		IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3258 			       priv->net_dev->name, tmp);
3259 
3260 		/* Wake up any sleeping jobs */
3261 		schedule_reset(priv);
3262 	}
3263 
3264 	if (inta & IPW2100_INTA_PARITY_ERROR) {
3265 		printk(KERN_ERR DRV_NAME
3266 		       ": ***** PARITY ERROR INTERRUPT !!!!\n");
3267 		priv->inta_other++;
3268 		write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3269 	}
3270 
3271 	if (inta & IPW2100_INTA_RX_TRANSFER) {
3272 		IPW_DEBUG_ISR("RX interrupt\n");
3273 
3274 		priv->rx_interrupts++;
3275 
3276 		write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3277 
3278 		__ipw2100_rx_process(priv);
3279 		__ipw2100_tx_complete(priv);
3280 	}
3281 
3282 	if (inta & IPW2100_INTA_TX_TRANSFER) {
3283 		IPW_DEBUG_ISR("TX interrupt\n");
3284 
3285 		priv->tx_interrupts++;
3286 
3287 		write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3288 
3289 		__ipw2100_tx_complete(priv);
3290 		ipw2100_tx_send_commands(priv);
3291 		ipw2100_tx_send_data(priv);
3292 	}
3293 
3294 	if (inta & IPW2100_INTA_TX_COMPLETE) {
3295 		IPW_DEBUG_ISR("TX complete\n");
3296 		priv->inta_other++;
3297 		write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3298 
3299 		__ipw2100_tx_complete(priv);
3300 	}
3301 
3302 	if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3303 		/* ipw2100_handle_event(dev); */
3304 		priv->inta_other++;
3305 		write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3306 	}
3307 
3308 	if (inta & IPW2100_INTA_FW_INIT_DONE) {
3309 		IPW_DEBUG_ISR("FW init done interrupt\n");
3310 		priv->inta_other++;
3311 
3312 		read_register(dev, IPW_REG_INTA, &tmp);
3313 		if (tmp & (IPW2100_INTA_FATAL_ERROR |
3314 			   IPW2100_INTA_PARITY_ERROR)) {
3315 			write_register(dev, IPW_REG_INTA,
3316 				       IPW2100_INTA_FATAL_ERROR |
3317 				       IPW2100_INTA_PARITY_ERROR);
3318 		}
3319 
3320 		write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3321 	}
3322 
3323 	if (inta & IPW2100_INTA_STATUS_CHANGE) {
3324 		IPW_DEBUG_ISR("Status change interrupt\n");
3325 		priv->inta_other++;
3326 		write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3327 	}
3328 
3329 	if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3330 		IPW_DEBUG_ISR("slave host mode interrupt\n");
3331 		priv->inta_other++;
3332 		write_register(dev, IPW_REG_INTA,
3333 			       IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3334 	}
3335 
3336 	priv->in_isr--;
3337 	ipw2100_enable_interrupts(priv);
3338 
3339 	spin_unlock_irqrestore(&priv->low_lock, flags);
3340 
3341 	IPW_DEBUG_ISR("exit\n");
3342 }
3343 
3344 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3345 {
3346 	struct ipw2100_priv *priv = data;
3347 	u32 inta, inta_mask;
3348 
3349 	if (!data)
3350 		return IRQ_NONE;
3351 
3352 	spin_lock(&priv->low_lock);
3353 
3354 	/* We check to see if we should be ignoring interrupts before
3355 	 * we touch the hardware.  During ucode load if we try and handle
3356 	 * an interrupt we can cause keyboard problems as well as cause
3357 	 * the ucode to fail to initialize */
3358 	if (!(priv->status & STATUS_INT_ENABLED)) {
3359 		/* Shared IRQ */
3360 		goto none;
3361 	}
3362 
3363 	read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3364 	read_register(priv->net_dev, IPW_REG_INTA, &inta);
3365 
3366 	if (inta == 0xFFFFFFFF) {
3367 		/* Hardware disappeared */
3368 		printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3369 		goto none;
3370 	}
3371 
3372 	inta &= IPW_INTERRUPT_MASK;
3373 
3374 	if (!(inta & inta_mask)) {
3375 		/* Shared interrupt */
3376 		goto none;
3377 	}
3378 
3379 	/* We disable the hardware interrupt here just to prevent unneeded
3380 	 * calls to be made.  We disable this again within the actual
3381 	 * work tasklet, so if another part of the code re-enables the
3382 	 * interrupt, that is fine */
3383 	ipw2100_disable_interrupts(priv);
3384 
3385 	tasklet_schedule(&priv->irq_tasklet);
3386 	spin_unlock(&priv->low_lock);
3387 
3388 	return IRQ_HANDLED;
3389       none:
3390 	spin_unlock(&priv->low_lock);
3391 	return IRQ_NONE;
3392 }
3393 
3394 static netdev_tx_t ipw2100_tx(struct libipw_txb *txb,
3395 			      struct net_device *dev, int pri)
3396 {
3397 	struct ipw2100_priv *priv = libipw_priv(dev);
3398 	struct list_head *element;
3399 	struct ipw2100_tx_packet *packet;
3400 	unsigned long flags;
3401 
3402 	spin_lock_irqsave(&priv->low_lock, flags);
3403 
3404 	if (!(priv->status & STATUS_ASSOCIATED)) {
3405 		IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3406 		priv->net_dev->stats.tx_carrier_errors++;
3407 		netif_stop_queue(dev);
3408 		goto fail_unlock;
3409 	}
3410 
3411 	if (list_empty(&priv->tx_free_list))
3412 		goto fail_unlock;
3413 
3414 	element = priv->tx_free_list.next;
3415 	packet = list_entry(element, struct ipw2100_tx_packet, list);
3416 
3417 	packet->info.d_struct.txb = txb;
3418 
3419 	IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3420 	printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3421 
3422 	packet->jiffy_start = jiffies;
3423 
3424 	list_del(element);
3425 	DEC_STAT(&priv->tx_free_stat);
3426 
3427 	list_add_tail(element, &priv->tx_pend_list);
3428 	INC_STAT(&priv->tx_pend_stat);
3429 
3430 	ipw2100_tx_send_data(priv);
3431 
3432 	spin_unlock_irqrestore(&priv->low_lock, flags);
3433 	return NETDEV_TX_OK;
3434 
3435 fail_unlock:
3436 	netif_stop_queue(dev);
3437 	spin_unlock_irqrestore(&priv->low_lock, flags);
3438 	return NETDEV_TX_BUSY;
3439 }
3440 
3441 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3442 {
3443 	int i, j, err = -EINVAL;
3444 	void *v;
3445 	dma_addr_t p;
3446 
3447 	priv->msg_buffers =
3448 	    kmalloc(IPW_COMMAND_POOL_SIZE * sizeof(struct ipw2100_tx_packet),
3449 		    GFP_KERNEL);
3450 	if (!priv->msg_buffers)
3451 		return -ENOMEM;
3452 
3453 	for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3454 		v = pci_zalloc_consistent(priv->pci_dev,
3455 					  sizeof(struct ipw2100_cmd_header),
3456 					  &p);
3457 		if (!v) {
3458 			printk(KERN_ERR DRV_NAME ": "
3459 			       "%s: PCI alloc failed for msg "
3460 			       "buffers.\n", priv->net_dev->name);
3461 			err = -ENOMEM;
3462 			break;
3463 		}
3464 
3465 		priv->msg_buffers[i].type = COMMAND;
3466 		priv->msg_buffers[i].info.c_struct.cmd =
3467 		    (struct ipw2100_cmd_header *)v;
3468 		priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3469 	}
3470 
3471 	if (i == IPW_COMMAND_POOL_SIZE)
3472 		return 0;
3473 
3474 	for (j = 0; j < i; j++) {
3475 		pci_free_consistent(priv->pci_dev,
3476 				    sizeof(struct ipw2100_cmd_header),
3477 				    priv->msg_buffers[j].info.c_struct.cmd,
3478 				    priv->msg_buffers[j].info.c_struct.
3479 				    cmd_phys);
3480 	}
3481 
3482 	kfree(priv->msg_buffers);
3483 	priv->msg_buffers = NULL;
3484 
3485 	return err;
3486 }
3487 
3488 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3489 {
3490 	int i;
3491 
3492 	INIT_LIST_HEAD(&priv->msg_free_list);
3493 	INIT_LIST_HEAD(&priv->msg_pend_list);
3494 
3495 	for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3496 		list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3497 	SET_STAT(&priv->msg_free_stat, i);
3498 
3499 	return 0;
3500 }
3501 
3502 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3503 {
3504 	int i;
3505 
3506 	if (!priv->msg_buffers)
3507 		return;
3508 
3509 	for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3510 		pci_free_consistent(priv->pci_dev,
3511 				    sizeof(struct ipw2100_cmd_header),
3512 				    priv->msg_buffers[i].info.c_struct.cmd,
3513 				    priv->msg_buffers[i].info.c_struct.
3514 				    cmd_phys);
3515 	}
3516 
3517 	kfree(priv->msg_buffers);
3518 	priv->msg_buffers = NULL;
3519 }
3520 
3521 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3522 			char *buf)
3523 {
3524 	struct pci_dev *pci_dev = to_pci_dev(d);
3525 	char *out = buf;
3526 	int i, j;
3527 	u32 val;
3528 
3529 	for (i = 0; i < 16; i++) {
3530 		out += sprintf(out, "[%08X] ", i * 16);
3531 		for (j = 0; j < 16; j += 4) {
3532 			pci_read_config_dword(pci_dev, i * 16 + j, &val);
3533 			out += sprintf(out, "%08X ", val);
3534 		}
3535 		out += sprintf(out, "\n");
3536 	}
3537 
3538 	return out - buf;
3539 }
3540 
3541 static DEVICE_ATTR(pci, 0444, show_pci, NULL);
3542 
3543 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3544 			char *buf)
3545 {
3546 	struct ipw2100_priv *p = dev_get_drvdata(d);
3547 	return sprintf(buf, "0x%08x\n", (int)p->config);
3548 }
3549 
3550 static DEVICE_ATTR(cfg, 0444, show_cfg, NULL);
3551 
3552 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3553 			   char *buf)
3554 {
3555 	struct ipw2100_priv *p = dev_get_drvdata(d);
3556 	return sprintf(buf, "0x%08x\n", (int)p->status);
3557 }
3558 
3559 static DEVICE_ATTR(status, 0444, show_status, NULL);
3560 
3561 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3562 			       char *buf)
3563 {
3564 	struct ipw2100_priv *p = dev_get_drvdata(d);
3565 	return sprintf(buf, "0x%08x\n", (int)p->capability);
3566 }
3567 
3568 static DEVICE_ATTR(capability, 0444, show_capability, NULL);
3569 
3570 #define IPW2100_REG(x) { IPW_ ##x, #x }
3571 static const struct {
3572 	u32 addr;
3573 	const char *name;
3574 } hw_data[] = {
3575 IPW2100_REG(REG_GP_CNTRL),
3576 	    IPW2100_REG(REG_GPIO),
3577 	    IPW2100_REG(REG_INTA),
3578 	    IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3579 #define IPW2100_NIC(x, s) { x, #x, s }
3580 static const struct {
3581 	u32 addr;
3582 	const char *name;
3583 	size_t size;
3584 } nic_data[] = {
3585 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3586 	    IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3587 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3588 static const struct {
3589 	u8 index;
3590 	const char *name;
3591 	const char *desc;
3592 } ord_data[] = {
3593 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3594 	    IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3595 				"successful Host Tx's (MSDU)"),
3596 	    IPW2100_ORD(STAT_TX_DIR_DATA,
3597 				"successful Directed Tx's (MSDU)"),
3598 	    IPW2100_ORD(STAT_TX_DIR_DATA1,
3599 				"successful Directed Tx's (MSDU) @ 1MB"),
3600 	    IPW2100_ORD(STAT_TX_DIR_DATA2,
3601 				"successful Directed Tx's (MSDU) @ 2MB"),
3602 	    IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3603 				"successful Directed Tx's (MSDU) @ 5_5MB"),
3604 	    IPW2100_ORD(STAT_TX_DIR_DATA11,
3605 				"successful Directed Tx's (MSDU) @ 11MB"),
3606 	    IPW2100_ORD(STAT_TX_NODIR_DATA1,
3607 				"successful Non_Directed Tx's (MSDU) @ 1MB"),
3608 	    IPW2100_ORD(STAT_TX_NODIR_DATA2,
3609 				"successful Non_Directed Tx's (MSDU) @ 2MB"),
3610 	    IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3611 				"successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3612 	    IPW2100_ORD(STAT_TX_NODIR_DATA11,
3613 				"successful Non_Directed Tx's (MSDU) @ 11MB"),
3614 	    IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3615 	    IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3616 	    IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3617 	    IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3618 	    IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3619 	    IPW2100_ORD(STAT_TX_ASSN_RESP,
3620 				"successful Association response Tx's"),
3621 	    IPW2100_ORD(STAT_TX_REASSN,
3622 				"successful Reassociation Tx's"),
3623 	    IPW2100_ORD(STAT_TX_REASSN_RESP,
3624 				"successful Reassociation response Tx's"),
3625 	    IPW2100_ORD(STAT_TX_PROBE,
3626 				"probes successfully transmitted"),
3627 	    IPW2100_ORD(STAT_TX_PROBE_RESP,
3628 				"probe responses successfully transmitted"),
3629 	    IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3630 	    IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3631 	    IPW2100_ORD(STAT_TX_DISASSN,
3632 				"successful Disassociation TX"),
3633 	    IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3634 	    IPW2100_ORD(STAT_TX_DEAUTH,
3635 				"successful Deauthentication TX"),
3636 	    IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3637 				"Total successful Tx data bytes"),
3638 	    IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3639 	    IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3640 	    IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3641 	    IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3642 	    IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3643 	    IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3644 	    IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3645 				"times max tries in a hop failed"),
3646 	    IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3647 				"times disassociation failed"),
3648 	    IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3649 	    IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3650 	    IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3651 	    IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3652 	    IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3653 	    IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3654 	    IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3655 				"directed packets at 5.5MB"),
3656 	    IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3657 	    IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3658 	    IPW2100_ORD(STAT_RX_NODIR_DATA1,
3659 				"nondirected packets at 1MB"),
3660 	    IPW2100_ORD(STAT_RX_NODIR_DATA2,
3661 				"nondirected packets at 2MB"),
3662 	    IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3663 				"nondirected packets at 5.5MB"),
3664 	    IPW2100_ORD(STAT_RX_NODIR_DATA11,
3665 				"nondirected packets at 11MB"),
3666 	    IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3667 	    IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3668 								    "Rx CTS"),
3669 	    IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3670 	    IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3671 	    IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3672 	    IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3673 	    IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3674 	    IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3675 	    IPW2100_ORD(STAT_RX_REASSN_RESP,
3676 				"Reassociation response Rx's"),
3677 	    IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3678 	    IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3679 	    IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3680 	    IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3681 	    IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3682 	    IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3683 	    IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3684 	    IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3685 				"Total rx data bytes received"),
3686 	    IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3687 	    IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3688 	    IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3689 	    IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3690 	    IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3691 	    IPW2100_ORD(STAT_RX_DUPLICATE1,
3692 				"duplicate rx packets at 1MB"),
3693 	    IPW2100_ORD(STAT_RX_DUPLICATE2,
3694 				"duplicate rx packets at 2MB"),
3695 	    IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3696 				"duplicate rx packets at 5.5MB"),
3697 	    IPW2100_ORD(STAT_RX_DUPLICATE11,
3698 				"duplicate rx packets at 11MB"),
3699 	    IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3700 	    IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent  db"),
3701 	    IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent  db"),
3702 	    IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent  db"),
3703 	    IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3704 				"rx frames with invalid protocol"),
3705 	    IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3706 	    IPW2100_ORD(STAT_RX_NO_BUFFER,
3707 				"rx frames rejected due to no buffer"),
3708 	    IPW2100_ORD(STAT_RX_MISSING_FRAG,
3709 				"rx frames dropped due to missing fragment"),
3710 	    IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3711 				"rx frames dropped due to non-sequential fragment"),
3712 	    IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3713 				"rx frames dropped due to unmatched 1st frame"),
3714 	    IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3715 				"rx frames dropped due to uncompleted frame"),
3716 	    IPW2100_ORD(STAT_RX_ICV_ERRORS,
3717 				"ICV errors during decryption"),
3718 	    IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3719 	    IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3720 	    IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3721 				"poll response timeouts"),
3722 	    IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3723 				"timeouts waiting for last {broad,multi}cast pkt"),
3724 	    IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3725 	    IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3726 	    IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3727 	    IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3728 	    IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3729 				"current calculation of % missed beacons"),
3730 	    IPW2100_ORD(STAT_PERCENT_RETRIES,
3731 				"current calculation of % missed tx retries"),
3732 	    IPW2100_ORD(ASSOCIATED_AP_PTR,
3733 				"0 if not associated, else pointer to AP table entry"),
3734 	    IPW2100_ORD(AVAILABLE_AP_CNT,
3735 				"AP's decsribed in the AP table"),
3736 	    IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3737 	    IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3738 	    IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3739 	    IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3740 				"failures due to response fail"),
3741 	    IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3742 	    IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3743 	    IPW2100_ORD(STAT_ROAM_INHIBIT,
3744 				"times roaming was inhibited due to activity"),
3745 	    IPW2100_ORD(RSSI_AT_ASSN,
3746 				"RSSI of associated AP at time of association"),
3747 	    IPW2100_ORD(STAT_ASSN_CAUSE1,
3748 				"reassociation: no probe response or TX on hop"),
3749 	    IPW2100_ORD(STAT_ASSN_CAUSE2,
3750 				"reassociation: poor tx/rx quality"),
3751 	    IPW2100_ORD(STAT_ASSN_CAUSE3,
3752 				"reassociation: tx/rx quality (excessive AP load"),
3753 	    IPW2100_ORD(STAT_ASSN_CAUSE4,
3754 				"reassociation: AP RSSI level"),
3755 	    IPW2100_ORD(STAT_ASSN_CAUSE5,
3756 				"reassociations due to load leveling"),
3757 	    IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3758 	    IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3759 				"times authentication response failed"),
3760 	    IPW2100_ORD(STATION_TABLE_CNT,
3761 				"entries in association table"),
3762 	    IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3763 	    IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3764 	    IPW2100_ORD(COUNTRY_CODE,
3765 				"IEEE country code as recv'd from beacon"),
3766 	    IPW2100_ORD(COUNTRY_CHANNELS,
3767 				"channels supported by country"),
3768 	    IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3769 	    IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3770 	    IPW2100_ORD(ANTENNA_DIVERSITY,
3771 				"TRUE if antenna diversity is disabled"),
3772 	    IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3773 	    IPW2100_ORD(OUR_FREQ,
3774 				"current radio freq lower digits - channel ID"),
3775 	    IPW2100_ORD(RTC_TIME, "current RTC time"),
3776 	    IPW2100_ORD(PORT_TYPE, "operating mode"),
3777 	    IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3778 	    IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3779 	    IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3780 	    IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3781 	    IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3782 	    IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3783 	    IPW2100_ORD(CAPABILITIES,
3784 				"Management frame capability field"),
3785 	    IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3786 	    IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3787 	    IPW2100_ORD(RTS_THRESHOLD,
3788 				"Min packet length for RTS handshaking"),
3789 	    IPW2100_ORD(INT_MODE, "International mode"),
3790 	    IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3791 				"protocol frag threshold"),
3792 	    IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3793 				"EEPROM offset in SRAM"),
3794 	    IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3795 				"EEPROM size in SRAM"),
3796 	    IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3797 	    IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3798 				"EEPROM IBSS 11b channel set"),
3799 	    IPW2100_ORD(MAC_VERSION, "MAC Version"),
3800 	    IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3801 	    IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3802 	    IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3803 	    IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3804 
3805 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3806 			      char *buf)
3807 {
3808 	int i;
3809 	struct ipw2100_priv *priv = dev_get_drvdata(d);
3810 	struct net_device *dev = priv->net_dev;
3811 	char *out = buf;
3812 	u32 val = 0;
3813 
3814 	out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3815 
3816 	for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3817 		read_register(dev, hw_data[i].addr, &val);
3818 		out += sprintf(out, "%30s [%08X] : %08X\n",
3819 			       hw_data[i].name, hw_data[i].addr, val);
3820 	}
3821 
3822 	return out - buf;
3823 }
3824 
3825 static DEVICE_ATTR(registers, 0444, show_registers, NULL);
3826 
3827 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3828 			     char *buf)
3829 {
3830 	struct ipw2100_priv *priv = dev_get_drvdata(d);
3831 	struct net_device *dev = priv->net_dev;
3832 	char *out = buf;
3833 	int i;
3834 
3835 	out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3836 
3837 	for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3838 		u8 tmp8;
3839 		u16 tmp16;
3840 		u32 tmp32;
3841 
3842 		switch (nic_data[i].size) {
3843 		case 1:
3844 			read_nic_byte(dev, nic_data[i].addr, &tmp8);
3845 			out += sprintf(out, "%30s [%08X] : %02X\n",
3846 				       nic_data[i].name, nic_data[i].addr,
3847 				       tmp8);
3848 			break;
3849 		case 2:
3850 			read_nic_word(dev, nic_data[i].addr, &tmp16);
3851 			out += sprintf(out, "%30s [%08X] : %04X\n",
3852 				       nic_data[i].name, nic_data[i].addr,
3853 				       tmp16);
3854 			break;
3855 		case 4:
3856 			read_nic_dword(dev, nic_data[i].addr, &tmp32);
3857 			out += sprintf(out, "%30s [%08X] : %08X\n",
3858 				       nic_data[i].name, nic_data[i].addr,
3859 				       tmp32);
3860 			break;
3861 		}
3862 	}
3863 	return out - buf;
3864 }
3865 
3866 static DEVICE_ATTR(hardware, 0444, show_hardware, NULL);
3867 
3868 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3869 			   char *buf)
3870 {
3871 	struct ipw2100_priv *priv = dev_get_drvdata(d);
3872 	struct net_device *dev = priv->net_dev;
3873 	static unsigned long loop = 0;
3874 	int len = 0;
3875 	u32 buffer[4];
3876 	int i;
3877 	char line[81];
3878 
3879 	if (loop >= 0x30000)
3880 		loop = 0;
3881 
3882 	/* sysfs provides us PAGE_SIZE buffer */
3883 	while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3884 
3885 		if (priv->snapshot[0])
3886 			for (i = 0; i < 4; i++)
3887 				buffer[i] =
3888 				    *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3889 		else
3890 			for (i = 0; i < 4; i++)
3891 				read_nic_dword(dev, loop + i * 4, &buffer[i]);
3892 
3893 		if (priv->dump_raw)
3894 			len += sprintf(buf + len,
3895 				       "%c%c%c%c"
3896 				       "%c%c%c%c"
3897 				       "%c%c%c%c"
3898 				       "%c%c%c%c",
3899 				       ((u8 *) buffer)[0x0],
3900 				       ((u8 *) buffer)[0x1],
3901 				       ((u8 *) buffer)[0x2],
3902 				       ((u8 *) buffer)[0x3],
3903 				       ((u8 *) buffer)[0x4],
3904 				       ((u8 *) buffer)[0x5],
3905 				       ((u8 *) buffer)[0x6],
3906 				       ((u8 *) buffer)[0x7],
3907 				       ((u8 *) buffer)[0x8],
3908 				       ((u8 *) buffer)[0x9],
3909 				       ((u8 *) buffer)[0xa],
3910 				       ((u8 *) buffer)[0xb],
3911 				       ((u8 *) buffer)[0xc],
3912 				       ((u8 *) buffer)[0xd],
3913 				       ((u8 *) buffer)[0xe],
3914 				       ((u8 *) buffer)[0xf]);
3915 		else
3916 			len += sprintf(buf + len, "%s\n",
3917 				       snprint_line(line, sizeof(line),
3918 						    (u8 *) buffer, 16, loop));
3919 		loop += 16;
3920 	}
3921 
3922 	return len;
3923 }
3924 
3925 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3926 			    const char *buf, size_t count)
3927 {
3928 	struct ipw2100_priv *priv = dev_get_drvdata(d);
3929 	struct net_device *dev = priv->net_dev;
3930 	const char *p = buf;
3931 
3932 	(void)dev;		/* kill unused-var warning for debug-only code */
3933 
3934 	if (count < 1)
3935 		return count;
3936 
3937 	if (p[0] == '1' ||
3938 	    (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3939 		IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3940 			       dev->name);
3941 		priv->dump_raw = 1;
3942 
3943 	} else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3944 				   tolower(p[1]) == 'f')) {
3945 		IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3946 			       dev->name);
3947 		priv->dump_raw = 0;
3948 
3949 	} else if (tolower(p[0]) == 'r') {
3950 		IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3951 		ipw2100_snapshot_free(priv);
3952 
3953 	} else
3954 		IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3955 			       "reset = clear memory snapshot\n", dev->name);
3956 
3957 	return count;
3958 }
3959 
3960 static DEVICE_ATTR(memory, 0644, show_memory, store_memory);
3961 
3962 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3963 			     char *buf)
3964 {
3965 	struct ipw2100_priv *priv = dev_get_drvdata(d);
3966 	u32 val = 0;
3967 	int len = 0;
3968 	u32 val_len;
3969 	static int loop = 0;
3970 
3971 	if (priv->status & STATUS_RF_KILL_MASK)
3972 		return 0;
3973 
3974 	if (loop >= ARRAY_SIZE(ord_data))
3975 		loop = 0;
3976 
3977 	/* sysfs provides us PAGE_SIZE buffer */
3978 	while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
3979 		val_len = sizeof(u32);
3980 
3981 		if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3982 					&val_len))
3983 			len += sprintf(buf + len, "[0x%02X] = ERROR    %s\n",
3984 				       ord_data[loop].index,
3985 				       ord_data[loop].desc);
3986 		else
3987 			len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3988 				       ord_data[loop].index, val,
3989 				       ord_data[loop].desc);
3990 		loop++;
3991 	}
3992 
3993 	return len;
3994 }
3995 
3996 static DEVICE_ATTR(ordinals, 0444, show_ordinals, NULL);
3997 
3998 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
3999 			  char *buf)
4000 {
4001 	struct ipw2100_priv *priv = dev_get_drvdata(d);
4002 	char *out = buf;
4003 
4004 	out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
4005 		       priv->interrupts, priv->tx_interrupts,
4006 		       priv->rx_interrupts, priv->inta_other);
4007 	out += sprintf(out, "firmware resets: %d\n", priv->resets);
4008 	out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
4009 #ifdef CONFIG_IPW2100_DEBUG
4010 	out += sprintf(out, "packet mismatch image: %s\n",
4011 		       priv->snapshot[0] ? "YES" : "NO");
4012 #endif
4013 
4014 	return out - buf;
4015 }
4016 
4017 static DEVICE_ATTR(stats, 0444, show_stats, NULL);
4018 
4019 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
4020 {
4021 	int err;
4022 
4023 	if (mode == priv->ieee->iw_mode)
4024 		return 0;
4025 
4026 	err = ipw2100_disable_adapter(priv);
4027 	if (err) {
4028 		printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
4029 		       priv->net_dev->name, err);
4030 		return err;
4031 	}
4032 
4033 	switch (mode) {
4034 	case IW_MODE_INFRA:
4035 		priv->net_dev->type = ARPHRD_ETHER;
4036 		break;
4037 	case IW_MODE_ADHOC:
4038 		priv->net_dev->type = ARPHRD_ETHER;
4039 		break;
4040 #ifdef CONFIG_IPW2100_MONITOR
4041 	case IW_MODE_MONITOR:
4042 		priv->last_mode = priv->ieee->iw_mode;
4043 		priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
4044 		break;
4045 #endif				/* CONFIG_IPW2100_MONITOR */
4046 	}
4047 
4048 	priv->ieee->iw_mode = mode;
4049 
4050 #ifdef CONFIG_PM
4051 	/* Indicate ipw2100_download_firmware download firmware
4052 	 * from disk instead of memory. */
4053 	ipw2100_firmware.version = 0;
4054 #endif
4055 
4056 	printk(KERN_INFO "%s: Resetting on mode change.\n", priv->net_dev->name);
4057 	priv->reset_backoff = 0;
4058 	schedule_reset(priv);
4059 
4060 	return 0;
4061 }
4062 
4063 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
4064 			      char *buf)
4065 {
4066 	struct ipw2100_priv *priv = dev_get_drvdata(d);
4067 	int len = 0;
4068 
4069 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
4070 
4071 	if (priv->status & STATUS_ASSOCIATED)
4072 		len += sprintf(buf + len, "connected: %lu\n",
4073 			       get_seconds() - priv->connect_start);
4074 	else
4075 		len += sprintf(buf + len, "not connected\n");
4076 
4077 	DUMP_VAR(ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx], "p");
4078 	DUMP_VAR(status, "08lx");
4079 	DUMP_VAR(config, "08lx");
4080 	DUMP_VAR(capability, "08lx");
4081 
4082 	len +=
4083 	    sprintf(buf + len, "last_rtc: %lu\n",
4084 		    (unsigned long)priv->last_rtc);
4085 
4086 	DUMP_VAR(fatal_error, "d");
4087 	DUMP_VAR(stop_hang_check, "d");
4088 	DUMP_VAR(stop_rf_kill, "d");
4089 	DUMP_VAR(messages_sent, "d");
4090 
4091 	DUMP_VAR(tx_pend_stat.value, "d");
4092 	DUMP_VAR(tx_pend_stat.hi, "d");
4093 
4094 	DUMP_VAR(tx_free_stat.value, "d");
4095 	DUMP_VAR(tx_free_stat.lo, "d");
4096 
4097 	DUMP_VAR(msg_free_stat.value, "d");
4098 	DUMP_VAR(msg_free_stat.lo, "d");
4099 
4100 	DUMP_VAR(msg_pend_stat.value, "d");
4101 	DUMP_VAR(msg_pend_stat.hi, "d");
4102 
4103 	DUMP_VAR(fw_pend_stat.value, "d");
4104 	DUMP_VAR(fw_pend_stat.hi, "d");
4105 
4106 	DUMP_VAR(txq_stat.value, "d");
4107 	DUMP_VAR(txq_stat.lo, "d");
4108 
4109 	DUMP_VAR(ieee->scans, "d");
4110 	DUMP_VAR(reset_backoff, "d");
4111 
4112 	return len;
4113 }
4114 
4115 static DEVICE_ATTR(internals, 0444, show_internals, NULL);
4116 
4117 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4118 			    char *buf)
4119 {
4120 	struct ipw2100_priv *priv = dev_get_drvdata(d);
4121 	char essid[IW_ESSID_MAX_SIZE + 1];
4122 	u8 bssid[ETH_ALEN];
4123 	u32 chan = 0;
4124 	char *out = buf;
4125 	unsigned int length;
4126 	int ret;
4127 
4128 	if (priv->status & STATUS_RF_KILL_MASK)
4129 		return 0;
4130 
4131 	memset(essid, 0, sizeof(essid));
4132 	memset(bssid, 0, sizeof(bssid));
4133 
4134 	length = IW_ESSID_MAX_SIZE;
4135 	ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4136 	if (ret)
4137 		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4138 			       __LINE__);
4139 
4140 	length = sizeof(bssid);
4141 	ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4142 				  bssid, &length);
4143 	if (ret)
4144 		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4145 			       __LINE__);
4146 
4147 	length = sizeof(u32);
4148 	ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4149 	if (ret)
4150 		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4151 			       __LINE__);
4152 
4153 	out += sprintf(out, "ESSID: %s\n", essid);
4154 	out += sprintf(out, "BSSID:   %pM\n", bssid);
4155 	out += sprintf(out, "Channel: %d\n", chan);
4156 
4157 	return out - buf;
4158 }
4159 
4160 static DEVICE_ATTR(bssinfo, 0444, show_bssinfo, NULL);
4161 
4162 #ifdef CONFIG_IPW2100_DEBUG
4163 static ssize_t debug_level_show(struct device_driver *d, char *buf)
4164 {
4165 	return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4166 }
4167 
4168 static ssize_t debug_level_store(struct device_driver *d,
4169 				 const char *buf, size_t count)
4170 {
4171 	u32 val;
4172 	int ret;
4173 
4174 	ret = kstrtou32(buf, 0, &val);
4175 	if (ret)
4176 		IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4177 	else
4178 		ipw2100_debug_level = val;
4179 
4180 	return strnlen(buf, count);
4181 }
4182 static DRIVER_ATTR_RW(debug_level);
4183 #endif				/* CONFIG_IPW2100_DEBUG */
4184 
4185 static ssize_t show_fatal_error(struct device *d,
4186 				struct device_attribute *attr, char *buf)
4187 {
4188 	struct ipw2100_priv *priv = dev_get_drvdata(d);
4189 	char *out = buf;
4190 	int i;
4191 
4192 	if (priv->fatal_error)
4193 		out += sprintf(out, "0x%08X\n", priv->fatal_error);
4194 	else
4195 		out += sprintf(out, "0\n");
4196 
4197 	for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4198 		if (!priv->fatal_errors[(priv->fatal_index - i) %
4199 					IPW2100_ERROR_QUEUE])
4200 			continue;
4201 
4202 		out += sprintf(out, "%d. 0x%08X\n", i,
4203 			       priv->fatal_errors[(priv->fatal_index - i) %
4204 						  IPW2100_ERROR_QUEUE]);
4205 	}
4206 
4207 	return out - buf;
4208 }
4209 
4210 static ssize_t store_fatal_error(struct device *d,
4211 				 struct device_attribute *attr, const char *buf,
4212 				 size_t count)
4213 {
4214 	struct ipw2100_priv *priv = dev_get_drvdata(d);
4215 	schedule_reset(priv);
4216 	return count;
4217 }
4218 
4219 static DEVICE_ATTR(fatal_error, 0644, show_fatal_error, store_fatal_error);
4220 
4221 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4222 			     char *buf)
4223 {
4224 	struct ipw2100_priv *priv = dev_get_drvdata(d);
4225 	return sprintf(buf, "%d\n", priv->ieee->scan_age);
4226 }
4227 
4228 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4229 			      const char *buf, size_t count)
4230 {
4231 	struct ipw2100_priv *priv = dev_get_drvdata(d);
4232 	struct net_device *dev = priv->net_dev;
4233 	unsigned long val;
4234 	int ret;
4235 
4236 	(void)dev;		/* kill unused-var warning for debug-only code */
4237 
4238 	IPW_DEBUG_INFO("enter\n");
4239 
4240 	ret = kstrtoul(buf, 0, &val);
4241 	if (ret) {
4242 		IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4243 	} else {
4244 		priv->ieee->scan_age = val;
4245 		IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4246 	}
4247 
4248 	IPW_DEBUG_INFO("exit\n");
4249 	return strnlen(buf, count);
4250 }
4251 
4252 static DEVICE_ATTR(scan_age, 0644, show_scan_age, store_scan_age);
4253 
4254 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4255 			    char *buf)
4256 {
4257 	/* 0 - RF kill not enabled
4258 	   1 - SW based RF kill active (sysfs)
4259 	   2 - HW based RF kill active
4260 	   3 - Both HW and SW baed RF kill active */
4261 	struct ipw2100_priv *priv = dev_get_drvdata(d);
4262 	int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4263 	    (rf_kill_active(priv) ? 0x2 : 0x0);
4264 	return sprintf(buf, "%i\n", val);
4265 }
4266 
4267 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4268 {
4269 	if ((disable_radio ? 1 : 0) ==
4270 	    (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4271 		return 0;
4272 
4273 	IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
4274 			  disable_radio ? "OFF" : "ON");
4275 
4276 	mutex_lock(&priv->action_mutex);
4277 
4278 	if (disable_radio) {
4279 		priv->status |= STATUS_RF_KILL_SW;
4280 		ipw2100_down(priv);
4281 	} else {
4282 		priv->status &= ~STATUS_RF_KILL_SW;
4283 		if (rf_kill_active(priv)) {
4284 			IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4285 					  "disabled by HW switch\n");
4286 			/* Make sure the RF_KILL check timer is running */
4287 			priv->stop_rf_kill = 0;
4288 			mod_delayed_work(system_wq, &priv->rf_kill,
4289 					 round_jiffies_relative(HZ));
4290 		} else
4291 			schedule_reset(priv);
4292 	}
4293 
4294 	mutex_unlock(&priv->action_mutex);
4295 	return 1;
4296 }
4297 
4298 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4299 			     const char *buf, size_t count)
4300 {
4301 	struct ipw2100_priv *priv = dev_get_drvdata(d);
4302 	ipw_radio_kill_sw(priv, buf[0] == '1');
4303 	return count;
4304 }
4305 
4306 static DEVICE_ATTR(rf_kill, 0644, show_rf_kill, store_rf_kill);
4307 
4308 static struct attribute *ipw2100_sysfs_entries[] = {
4309 	&dev_attr_hardware.attr,
4310 	&dev_attr_registers.attr,
4311 	&dev_attr_ordinals.attr,
4312 	&dev_attr_pci.attr,
4313 	&dev_attr_stats.attr,
4314 	&dev_attr_internals.attr,
4315 	&dev_attr_bssinfo.attr,
4316 	&dev_attr_memory.attr,
4317 	&dev_attr_scan_age.attr,
4318 	&dev_attr_fatal_error.attr,
4319 	&dev_attr_rf_kill.attr,
4320 	&dev_attr_cfg.attr,
4321 	&dev_attr_status.attr,
4322 	&dev_attr_capability.attr,
4323 	NULL,
4324 };
4325 
4326 static const struct attribute_group ipw2100_attribute_group = {
4327 	.attrs = ipw2100_sysfs_entries,
4328 };
4329 
4330 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4331 {
4332 	struct ipw2100_status_queue *q = &priv->status_queue;
4333 
4334 	IPW_DEBUG_INFO("enter\n");
4335 
4336 	q->size = entries * sizeof(struct ipw2100_status);
4337 	q->drv = pci_zalloc_consistent(priv->pci_dev, q->size, &q->nic);
4338 	if (!q->drv) {
4339 		IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4340 		return -ENOMEM;
4341 	}
4342 
4343 	IPW_DEBUG_INFO("exit\n");
4344 
4345 	return 0;
4346 }
4347 
4348 static void status_queue_free(struct ipw2100_priv *priv)
4349 {
4350 	IPW_DEBUG_INFO("enter\n");
4351 
4352 	if (priv->status_queue.drv) {
4353 		pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4354 				    priv->status_queue.drv,
4355 				    priv->status_queue.nic);
4356 		priv->status_queue.drv = NULL;
4357 	}
4358 
4359 	IPW_DEBUG_INFO("exit\n");
4360 }
4361 
4362 static int bd_queue_allocate(struct ipw2100_priv *priv,
4363 			     struct ipw2100_bd_queue *q, int entries)
4364 {
4365 	IPW_DEBUG_INFO("enter\n");
4366 
4367 	memset(q, 0, sizeof(struct ipw2100_bd_queue));
4368 
4369 	q->entries = entries;
4370 	q->size = entries * sizeof(struct ipw2100_bd);
4371 	q->drv = pci_zalloc_consistent(priv->pci_dev, q->size, &q->nic);
4372 	if (!q->drv) {
4373 		IPW_DEBUG_INFO
4374 		    ("can't allocate shared memory for buffer descriptors\n");
4375 		return -ENOMEM;
4376 	}
4377 
4378 	IPW_DEBUG_INFO("exit\n");
4379 
4380 	return 0;
4381 }
4382 
4383 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4384 {
4385 	IPW_DEBUG_INFO("enter\n");
4386 
4387 	if (!q)
4388 		return;
4389 
4390 	if (q->drv) {
4391 		pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4392 		q->drv = NULL;
4393 	}
4394 
4395 	IPW_DEBUG_INFO("exit\n");
4396 }
4397 
4398 static void bd_queue_initialize(struct ipw2100_priv *priv,
4399 				struct ipw2100_bd_queue *q, u32 base, u32 size,
4400 				u32 r, u32 w)
4401 {
4402 	IPW_DEBUG_INFO("enter\n");
4403 
4404 	IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4405 		       (u32) q->nic);
4406 
4407 	write_register(priv->net_dev, base, q->nic);
4408 	write_register(priv->net_dev, size, q->entries);
4409 	write_register(priv->net_dev, r, q->oldest);
4410 	write_register(priv->net_dev, w, q->next);
4411 
4412 	IPW_DEBUG_INFO("exit\n");
4413 }
4414 
4415 static void ipw2100_kill_works(struct ipw2100_priv *priv)
4416 {
4417 	priv->stop_rf_kill = 1;
4418 	priv->stop_hang_check = 1;
4419 	cancel_delayed_work_sync(&priv->reset_work);
4420 	cancel_delayed_work_sync(&priv->security_work);
4421 	cancel_delayed_work_sync(&priv->wx_event_work);
4422 	cancel_delayed_work_sync(&priv->hang_check);
4423 	cancel_delayed_work_sync(&priv->rf_kill);
4424 	cancel_delayed_work_sync(&priv->scan_event);
4425 }
4426 
4427 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4428 {
4429 	int i, j, err = -EINVAL;
4430 	void *v;
4431 	dma_addr_t p;
4432 
4433 	IPW_DEBUG_INFO("enter\n");
4434 
4435 	err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4436 	if (err) {
4437 		IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4438 				priv->net_dev->name);
4439 		return err;
4440 	}
4441 
4442 	priv->tx_buffers = kmalloc_array(TX_PENDED_QUEUE_LENGTH,
4443 					 sizeof(struct ipw2100_tx_packet),
4444 					 GFP_ATOMIC);
4445 	if (!priv->tx_buffers) {
4446 		bd_queue_free(priv, &priv->tx_queue);
4447 		return -ENOMEM;
4448 	}
4449 
4450 	for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4451 		v = pci_alloc_consistent(priv->pci_dev,
4452 					 sizeof(struct ipw2100_data_header),
4453 					 &p);
4454 		if (!v) {
4455 			printk(KERN_ERR DRV_NAME
4456 			       ": %s: PCI alloc failed for tx " "buffers.\n",
4457 			       priv->net_dev->name);
4458 			err = -ENOMEM;
4459 			break;
4460 		}
4461 
4462 		priv->tx_buffers[i].type = DATA;
4463 		priv->tx_buffers[i].info.d_struct.data =
4464 		    (struct ipw2100_data_header *)v;
4465 		priv->tx_buffers[i].info.d_struct.data_phys = p;
4466 		priv->tx_buffers[i].info.d_struct.txb = NULL;
4467 	}
4468 
4469 	if (i == TX_PENDED_QUEUE_LENGTH)
4470 		return 0;
4471 
4472 	for (j = 0; j < i; j++) {
4473 		pci_free_consistent(priv->pci_dev,
4474 				    sizeof(struct ipw2100_data_header),
4475 				    priv->tx_buffers[j].info.d_struct.data,
4476 				    priv->tx_buffers[j].info.d_struct.
4477 				    data_phys);
4478 	}
4479 
4480 	kfree(priv->tx_buffers);
4481 	priv->tx_buffers = NULL;
4482 
4483 	return err;
4484 }
4485 
4486 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4487 {
4488 	int i;
4489 
4490 	IPW_DEBUG_INFO("enter\n");
4491 
4492 	/*
4493 	 * reinitialize packet info lists
4494 	 */
4495 	INIT_LIST_HEAD(&priv->fw_pend_list);
4496 	INIT_STAT(&priv->fw_pend_stat);
4497 
4498 	/*
4499 	 * reinitialize lists
4500 	 */
4501 	INIT_LIST_HEAD(&priv->tx_pend_list);
4502 	INIT_LIST_HEAD(&priv->tx_free_list);
4503 	INIT_STAT(&priv->tx_pend_stat);
4504 	INIT_STAT(&priv->tx_free_stat);
4505 
4506 	for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4507 		/* We simply drop any SKBs that have been queued for
4508 		 * transmit */
4509 		if (priv->tx_buffers[i].info.d_struct.txb) {
4510 			libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4511 					   txb);
4512 			priv->tx_buffers[i].info.d_struct.txb = NULL;
4513 		}
4514 
4515 		list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4516 	}
4517 
4518 	SET_STAT(&priv->tx_free_stat, i);
4519 
4520 	priv->tx_queue.oldest = 0;
4521 	priv->tx_queue.available = priv->tx_queue.entries;
4522 	priv->tx_queue.next = 0;
4523 	INIT_STAT(&priv->txq_stat);
4524 	SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4525 
4526 	bd_queue_initialize(priv, &priv->tx_queue,
4527 			    IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4528 			    IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4529 			    IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4530 			    IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4531 
4532 	IPW_DEBUG_INFO("exit\n");
4533 
4534 }
4535 
4536 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4537 {
4538 	int i;
4539 
4540 	IPW_DEBUG_INFO("enter\n");
4541 
4542 	bd_queue_free(priv, &priv->tx_queue);
4543 
4544 	if (!priv->tx_buffers)
4545 		return;
4546 
4547 	for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4548 		if (priv->tx_buffers[i].info.d_struct.txb) {
4549 			libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4550 					   txb);
4551 			priv->tx_buffers[i].info.d_struct.txb = NULL;
4552 		}
4553 		if (priv->tx_buffers[i].info.d_struct.data)
4554 			pci_free_consistent(priv->pci_dev,
4555 					    sizeof(struct ipw2100_data_header),
4556 					    priv->tx_buffers[i].info.d_struct.
4557 					    data,
4558 					    priv->tx_buffers[i].info.d_struct.
4559 					    data_phys);
4560 	}
4561 
4562 	kfree(priv->tx_buffers);
4563 	priv->tx_buffers = NULL;
4564 
4565 	IPW_DEBUG_INFO("exit\n");
4566 }
4567 
4568 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4569 {
4570 	int i, j, err = -EINVAL;
4571 
4572 	IPW_DEBUG_INFO("enter\n");
4573 
4574 	err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4575 	if (err) {
4576 		IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4577 		return err;
4578 	}
4579 
4580 	err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4581 	if (err) {
4582 		IPW_DEBUG_INFO("failed status_queue_allocate\n");
4583 		bd_queue_free(priv, &priv->rx_queue);
4584 		return err;
4585 	}
4586 
4587 	/*
4588 	 * allocate packets
4589 	 */
4590 	priv->rx_buffers = kmalloc(RX_QUEUE_LENGTH *
4591 				   sizeof(struct ipw2100_rx_packet),
4592 				   GFP_KERNEL);
4593 	if (!priv->rx_buffers) {
4594 		IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4595 
4596 		bd_queue_free(priv, &priv->rx_queue);
4597 
4598 		status_queue_free(priv);
4599 
4600 		return -ENOMEM;
4601 	}
4602 
4603 	for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4604 		struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4605 
4606 		err = ipw2100_alloc_skb(priv, packet);
4607 		if (unlikely(err)) {
4608 			err = -ENOMEM;
4609 			break;
4610 		}
4611 
4612 		/* The BD holds the cache aligned address */
4613 		priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4614 		priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4615 		priv->status_queue.drv[i].status_fields = 0;
4616 	}
4617 
4618 	if (i == RX_QUEUE_LENGTH)
4619 		return 0;
4620 
4621 	for (j = 0; j < i; j++) {
4622 		pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4623 				 sizeof(struct ipw2100_rx_packet),
4624 				 PCI_DMA_FROMDEVICE);
4625 		dev_kfree_skb(priv->rx_buffers[j].skb);
4626 	}
4627 
4628 	kfree(priv->rx_buffers);
4629 	priv->rx_buffers = NULL;
4630 
4631 	bd_queue_free(priv, &priv->rx_queue);
4632 
4633 	status_queue_free(priv);
4634 
4635 	return err;
4636 }
4637 
4638 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4639 {
4640 	IPW_DEBUG_INFO("enter\n");
4641 
4642 	priv->rx_queue.oldest = 0;
4643 	priv->rx_queue.available = priv->rx_queue.entries - 1;
4644 	priv->rx_queue.next = priv->rx_queue.entries - 1;
4645 
4646 	INIT_STAT(&priv->rxq_stat);
4647 	SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4648 
4649 	bd_queue_initialize(priv, &priv->rx_queue,
4650 			    IPW_MEM_HOST_SHARED_RX_BD_BASE,
4651 			    IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4652 			    IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4653 			    IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4654 
4655 	/* set up the status queue */
4656 	write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4657 		       priv->status_queue.nic);
4658 
4659 	IPW_DEBUG_INFO("exit\n");
4660 }
4661 
4662 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4663 {
4664 	int i;
4665 
4666 	IPW_DEBUG_INFO("enter\n");
4667 
4668 	bd_queue_free(priv, &priv->rx_queue);
4669 	status_queue_free(priv);
4670 
4671 	if (!priv->rx_buffers)
4672 		return;
4673 
4674 	for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4675 		if (priv->rx_buffers[i].rxp) {
4676 			pci_unmap_single(priv->pci_dev,
4677 					 priv->rx_buffers[i].dma_addr,
4678 					 sizeof(struct ipw2100_rx),
4679 					 PCI_DMA_FROMDEVICE);
4680 			dev_kfree_skb(priv->rx_buffers[i].skb);
4681 		}
4682 	}
4683 
4684 	kfree(priv->rx_buffers);
4685 	priv->rx_buffers = NULL;
4686 
4687 	IPW_DEBUG_INFO("exit\n");
4688 }
4689 
4690 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4691 {
4692 	u32 length = ETH_ALEN;
4693 	u8 addr[ETH_ALEN];
4694 
4695 	int err;
4696 
4697 	err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length);
4698 	if (err) {
4699 		IPW_DEBUG_INFO("MAC address read failed\n");
4700 		return -EIO;
4701 	}
4702 
4703 	memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN);
4704 	IPW_DEBUG_INFO("card MAC is %pM\n", priv->net_dev->dev_addr);
4705 
4706 	return 0;
4707 }
4708 
4709 /********************************************************************
4710  *
4711  * Firmware Commands
4712  *
4713  ********************************************************************/
4714 
4715 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4716 {
4717 	struct host_command cmd = {
4718 		.host_command = ADAPTER_ADDRESS,
4719 		.host_command_sequence = 0,
4720 		.host_command_length = ETH_ALEN
4721 	};
4722 	int err;
4723 
4724 	IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4725 
4726 	IPW_DEBUG_INFO("enter\n");
4727 
4728 	if (priv->config & CFG_CUSTOM_MAC) {
4729 		memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4730 		memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4731 	} else
4732 		memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4733 		       ETH_ALEN);
4734 
4735 	err = ipw2100_hw_send_command(priv, &cmd);
4736 
4737 	IPW_DEBUG_INFO("exit\n");
4738 	return err;
4739 }
4740 
4741 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4742 				 int batch_mode)
4743 {
4744 	struct host_command cmd = {
4745 		.host_command = PORT_TYPE,
4746 		.host_command_sequence = 0,
4747 		.host_command_length = sizeof(u32)
4748 	};
4749 	int err;
4750 
4751 	switch (port_type) {
4752 	case IW_MODE_INFRA:
4753 		cmd.host_command_parameters[0] = IPW_BSS;
4754 		break;
4755 	case IW_MODE_ADHOC:
4756 		cmd.host_command_parameters[0] = IPW_IBSS;
4757 		break;
4758 	}
4759 
4760 	IPW_DEBUG_HC("PORT_TYPE: %s\n",
4761 		     port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4762 
4763 	if (!batch_mode) {
4764 		err = ipw2100_disable_adapter(priv);
4765 		if (err) {
4766 			printk(KERN_ERR DRV_NAME
4767 			       ": %s: Could not disable adapter %d\n",
4768 			       priv->net_dev->name, err);
4769 			return err;
4770 		}
4771 	}
4772 
4773 	/* send cmd to firmware */
4774 	err = ipw2100_hw_send_command(priv, &cmd);
4775 
4776 	if (!batch_mode)
4777 		ipw2100_enable_adapter(priv);
4778 
4779 	return err;
4780 }
4781 
4782 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4783 			       int batch_mode)
4784 {
4785 	struct host_command cmd = {
4786 		.host_command = CHANNEL,
4787 		.host_command_sequence = 0,
4788 		.host_command_length = sizeof(u32)
4789 	};
4790 	int err;
4791 
4792 	cmd.host_command_parameters[0] = channel;
4793 
4794 	IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4795 
4796 	/* If BSS then we don't support channel selection */
4797 	if (priv->ieee->iw_mode == IW_MODE_INFRA)
4798 		return 0;
4799 
4800 	if ((channel != 0) &&
4801 	    ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4802 		return -EINVAL;
4803 
4804 	if (!batch_mode) {
4805 		err = ipw2100_disable_adapter(priv);
4806 		if (err)
4807 			return err;
4808 	}
4809 
4810 	err = ipw2100_hw_send_command(priv, &cmd);
4811 	if (err) {
4812 		IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4813 		return err;
4814 	}
4815 
4816 	if (channel)
4817 		priv->config |= CFG_STATIC_CHANNEL;
4818 	else
4819 		priv->config &= ~CFG_STATIC_CHANNEL;
4820 
4821 	priv->channel = channel;
4822 
4823 	if (!batch_mode) {
4824 		err = ipw2100_enable_adapter(priv);
4825 		if (err)
4826 			return err;
4827 	}
4828 
4829 	return 0;
4830 }
4831 
4832 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4833 {
4834 	struct host_command cmd = {
4835 		.host_command = SYSTEM_CONFIG,
4836 		.host_command_sequence = 0,
4837 		.host_command_length = 12,
4838 	};
4839 	u32 ibss_mask, len = sizeof(u32);
4840 	int err;
4841 
4842 	/* Set system configuration */
4843 
4844 	if (!batch_mode) {
4845 		err = ipw2100_disable_adapter(priv);
4846 		if (err)
4847 			return err;
4848 	}
4849 
4850 	if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4851 		cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4852 
4853 	cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4854 	    IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4855 
4856 	if (!(priv->config & CFG_LONG_PREAMBLE))
4857 		cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4858 
4859 	err = ipw2100_get_ordinal(priv,
4860 				  IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4861 				  &ibss_mask, &len);
4862 	if (err)
4863 		ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4864 
4865 	cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4866 	cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4867 
4868 	/* 11b only */
4869 	/*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4870 
4871 	err = ipw2100_hw_send_command(priv, &cmd);
4872 	if (err)
4873 		return err;
4874 
4875 /* If IPv6 is configured in the kernel then we don't want to filter out all
4876  * of the multicast packets as IPv6 needs some. */
4877 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4878 	cmd.host_command = ADD_MULTICAST;
4879 	cmd.host_command_sequence = 0;
4880 	cmd.host_command_length = 0;
4881 
4882 	ipw2100_hw_send_command(priv, &cmd);
4883 #endif
4884 	if (!batch_mode) {
4885 		err = ipw2100_enable_adapter(priv);
4886 		if (err)
4887 			return err;
4888 	}
4889 
4890 	return 0;
4891 }
4892 
4893 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4894 				int batch_mode)
4895 {
4896 	struct host_command cmd = {
4897 		.host_command = BASIC_TX_RATES,
4898 		.host_command_sequence = 0,
4899 		.host_command_length = 4
4900 	};
4901 	int err;
4902 
4903 	cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4904 
4905 	if (!batch_mode) {
4906 		err = ipw2100_disable_adapter(priv);
4907 		if (err)
4908 			return err;
4909 	}
4910 
4911 	/* Set BASIC TX Rate first */
4912 	ipw2100_hw_send_command(priv, &cmd);
4913 
4914 	/* Set TX Rate */
4915 	cmd.host_command = TX_RATES;
4916 	ipw2100_hw_send_command(priv, &cmd);
4917 
4918 	/* Set MSDU TX Rate */
4919 	cmd.host_command = MSDU_TX_RATES;
4920 	ipw2100_hw_send_command(priv, &cmd);
4921 
4922 	if (!batch_mode) {
4923 		err = ipw2100_enable_adapter(priv);
4924 		if (err)
4925 			return err;
4926 	}
4927 
4928 	priv->tx_rates = rate;
4929 
4930 	return 0;
4931 }
4932 
4933 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4934 {
4935 	struct host_command cmd = {
4936 		.host_command = POWER_MODE,
4937 		.host_command_sequence = 0,
4938 		.host_command_length = 4
4939 	};
4940 	int err;
4941 
4942 	cmd.host_command_parameters[0] = power_level;
4943 
4944 	err = ipw2100_hw_send_command(priv, &cmd);
4945 	if (err)
4946 		return err;
4947 
4948 	if (power_level == IPW_POWER_MODE_CAM)
4949 		priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4950 	else
4951 		priv->power_mode = IPW_POWER_ENABLED | power_level;
4952 
4953 #ifdef IPW2100_TX_POWER
4954 	if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4955 		/* Set beacon interval */
4956 		cmd.host_command = TX_POWER_INDEX;
4957 		cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4958 
4959 		err = ipw2100_hw_send_command(priv, &cmd);
4960 		if (err)
4961 			return err;
4962 	}
4963 #endif
4964 
4965 	return 0;
4966 }
4967 
4968 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4969 {
4970 	struct host_command cmd = {
4971 		.host_command = RTS_THRESHOLD,
4972 		.host_command_sequence = 0,
4973 		.host_command_length = 4
4974 	};
4975 	int err;
4976 
4977 	if (threshold & RTS_DISABLED)
4978 		cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4979 	else
4980 		cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4981 
4982 	err = ipw2100_hw_send_command(priv, &cmd);
4983 	if (err)
4984 		return err;
4985 
4986 	priv->rts_threshold = threshold;
4987 
4988 	return 0;
4989 }
4990 
4991 #if 0
4992 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4993 					u32 threshold, int batch_mode)
4994 {
4995 	struct host_command cmd = {
4996 		.host_command = FRAG_THRESHOLD,
4997 		.host_command_sequence = 0,
4998 		.host_command_length = 4,
4999 		.host_command_parameters[0] = 0,
5000 	};
5001 	int err;
5002 
5003 	if (!batch_mode) {
5004 		err = ipw2100_disable_adapter(priv);
5005 		if (err)
5006 			return err;
5007 	}
5008 
5009 	if (threshold == 0)
5010 		threshold = DEFAULT_FRAG_THRESHOLD;
5011 	else {
5012 		threshold = max(threshold, MIN_FRAG_THRESHOLD);
5013 		threshold = min(threshold, MAX_FRAG_THRESHOLD);
5014 	}
5015 
5016 	cmd.host_command_parameters[0] = threshold;
5017 
5018 	IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
5019 
5020 	err = ipw2100_hw_send_command(priv, &cmd);
5021 
5022 	if (!batch_mode)
5023 		ipw2100_enable_adapter(priv);
5024 
5025 	if (!err)
5026 		priv->frag_threshold = threshold;
5027 
5028 	return err;
5029 }
5030 #endif
5031 
5032 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
5033 {
5034 	struct host_command cmd = {
5035 		.host_command = SHORT_RETRY_LIMIT,
5036 		.host_command_sequence = 0,
5037 		.host_command_length = 4
5038 	};
5039 	int err;
5040 
5041 	cmd.host_command_parameters[0] = retry;
5042 
5043 	err = ipw2100_hw_send_command(priv, &cmd);
5044 	if (err)
5045 		return err;
5046 
5047 	priv->short_retry_limit = retry;
5048 
5049 	return 0;
5050 }
5051 
5052 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5053 {
5054 	struct host_command cmd = {
5055 		.host_command = LONG_RETRY_LIMIT,
5056 		.host_command_sequence = 0,
5057 		.host_command_length = 4
5058 	};
5059 	int err;
5060 
5061 	cmd.host_command_parameters[0] = retry;
5062 
5063 	err = ipw2100_hw_send_command(priv, &cmd);
5064 	if (err)
5065 		return err;
5066 
5067 	priv->long_retry_limit = retry;
5068 
5069 	return 0;
5070 }
5071 
5072 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5073 				       int batch_mode)
5074 {
5075 	struct host_command cmd = {
5076 		.host_command = MANDATORY_BSSID,
5077 		.host_command_sequence = 0,
5078 		.host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5079 	};
5080 	int err;
5081 
5082 #ifdef CONFIG_IPW2100_DEBUG
5083 	if (bssid != NULL)
5084 		IPW_DEBUG_HC("MANDATORY_BSSID: %pM\n", bssid);
5085 	else
5086 		IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5087 #endif
5088 	/* if BSSID is empty then we disable mandatory bssid mode */
5089 	if (bssid != NULL)
5090 		memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5091 
5092 	if (!batch_mode) {
5093 		err = ipw2100_disable_adapter(priv);
5094 		if (err)
5095 			return err;
5096 	}
5097 
5098 	err = ipw2100_hw_send_command(priv, &cmd);
5099 
5100 	if (!batch_mode)
5101 		ipw2100_enable_adapter(priv);
5102 
5103 	return err;
5104 }
5105 
5106 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5107 {
5108 	struct host_command cmd = {
5109 		.host_command = DISASSOCIATION_BSSID,
5110 		.host_command_sequence = 0,
5111 		.host_command_length = ETH_ALEN
5112 	};
5113 	int err;
5114 	int len;
5115 
5116 	IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5117 
5118 	len = ETH_ALEN;
5119 	/* The Firmware currently ignores the BSSID and just disassociates from
5120 	 * the currently associated AP -- but in the off chance that a future
5121 	 * firmware does use the BSSID provided here, we go ahead and try and
5122 	 * set it to the currently associated AP's BSSID */
5123 	memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5124 
5125 	err = ipw2100_hw_send_command(priv, &cmd);
5126 
5127 	return err;
5128 }
5129 
5130 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5131 			      struct ipw2100_wpa_assoc_frame *, int)
5132     __attribute__ ((unused));
5133 
5134 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5135 			      struct ipw2100_wpa_assoc_frame *wpa_frame,
5136 			      int batch_mode)
5137 {
5138 	struct host_command cmd = {
5139 		.host_command = SET_WPA_IE,
5140 		.host_command_sequence = 0,
5141 		.host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5142 	};
5143 	int err;
5144 
5145 	IPW_DEBUG_HC("SET_WPA_IE\n");
5146 
5147 	if (!batch_mode) {
5148 		err = ipw2100_disable_adapter(priv);
5149 		if (err)
5150 			return err;
5151 	}
5152 
5153 	memcpy(cmd.host_command_parameters, wpa_frame,
5154 	       sizeof(struct ipw2100_wpa_assoc_frame));
5155 
5156 	err = ipw2100_hw_send_command(priv, &cmd);
5157 
5158 	if (!batch_mode) {
5159 		if (ipw2100_enable_adapter(priv))
5160 			err = -EIO;
5161 	}
5162 
5163 	return err;
5164 }
5165 
5166 struct security_info_params {
5167 	u32 allowed_ciphers;
5168 	u16 version;
5169 	u8 auth_mode;
5170 	u8 replay_counters_number;
5171 	u8 unicast_using_group;
5172 } __packed;
5173 
5174 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5175 					    int auth_mode,
5176 					    int security_level,
5177 					    int unicast_using_group,
5178 					    int batch_mode)
5179 {
5180 	struct host_command cmd = {
5181 		.host_command = SET_SECURITY_INFORMATION,
5182 		.host_command_sequence = 0,
5183 		.host_command_length = sizeof(struct security_info_params)
5184 	};
5185 	struct security_info_params *security =
5186 	    (struct security_info_params *)&cmd.host_command_parameters;
5187 	int err;
5188 	memset(security, 0, sizeof(*security));
5189 
5190 	/* If shared key AP authentication is turned on, then we need to
5191 	 * configure the firmware to try and use it.
5192 	 *
5193 	 * Actual data encryption/decryption is handled by the host. */
5194 	security->auth_mode = auth_mode;
5195 	security->unicast_using_group = unicast_using_group;
5196 
5197 	switch (security_level) {
5198 	default:
5199 	case SEC_LEVEL_0:
5200 		security->allowed_ciphers = IPW_NONE_CIPHER;
5201 		break;
5202 	case SEC_LEVEL_1:
5203 		security->allowed_ciphers = IPW_WEP40_CIPHER |
5204 		    IPW_WEP104_CIPHER;
5205 		break;
5206 	case SEC_LEVEL_2:
5207 		security->allowed_ciphers = IPW_WEP40_CIPHER |
5208 		    IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5209 		break;
5210 	case SEC_LEVEL_2_CKIP:
5211 		security->allowed_ciphers = IPW_WEP40_CIPHER |
5212 		    IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5213 		break;
5214 	case SEC_LEVEL_3:
5215 		security->allowed_ciphers = IPW_WEP40_CIPHER |
5216 		    IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5217 		break;
5218 	}
5219 
5220 	IPW_DEBUG_HC
5221 	    ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5222 	     security->auth_mode, security->allowed_ciphers, security_level);
5223 
5224 	security->replay_counters_number = 0;
5225 
5226 	if (!batch_mode) {
5227 		err = ipw2100_disable_adapter(priv);
5228 		if (err)
5229 			return err;
5230 	}
5231 
5232 	err = ipw2100_hw_send_command(priv, &cmd);
5233 
5234 	if (!batch_mode)
5235 		ipw2100_enable_adapter(priv);
5236 
5237 	return err;
5238 }
5239 
5240 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5241 {
5242 	struct host_command cmd = {
5243 		.host_command = TX_POWER_INDEX,
5244 		.host_command_sequence = 0,
5245 		.host_command_length = 4
5246 	};
5247 	int err = 0;
5248 	u32 tmp = tx_power;
5249 
5250 	if (tx_power != IPW_TX_POWER_DEFAULT)
5251 		tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5252 		      (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5253 
5254 	cmd.host_command_parameters[0] = tmp;
5255 
5256 	if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5257 		err = ipw2100_hw_send_command(priv, &cmd);
5258 	if (!err)
5259 		priv->tx_power = tx_power;
5260 
5261 	return 0;
5262 }
5263 
5264 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5265 					    u32 interval, int batch_mode)
5266 {
5267 	struct host_command cmd = {
5268 		.host_command = BEACON_INTERVAL,
5269 		.host_command_sequence = 0,
5270 		.host_command_length = 4
5271 	};
5272 	int err;
5273 
5274 	cmd.host_command_parameters[0] = interval;
5275 
5276 	IPW_DEBUG_INFO("enter\n");
5277 
5278 	if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5279 		if (!batch_mode) {
5280 			err = ipw2100_disable_adapter(priv);
5281 			if (err)
5282 				return err;
5283 		}
5284 
5285 		ipw2100_hw_send_command(priv, &cmd);
5286 
5287 		if (!batch_mode) {
5288 			err = ipw2100_enable_adapter(priv);
5289 			if (err)
5290 				return err;
5291 		}
5292 	}
5293 
5294 	IPW_DEBUG_INFO("exit\n");
5295 
5296 	return 0;
5297 }
5298 
5299 static void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5300 {
5301 	ipw2100_tx_initialize(priv);
5302 	ipw2100_rx_initialize(priv);
5303 	ipw2100_msg_initialize(priv);
5304 }
5305 
5306 static void ipw2100_queues_free(struct ipw2100_priv *priv)
5307 {
5308 	ipw2100_tx_free(priv);
5309 	ipw2100_rx_free(priv);
5310 	ipw2100_msg_free(priv);
5311 }
5312 
5313 static int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5314 {
5315 	if (ipw2100_tx_allocate(priv) ||
5316 	    ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5317 		goto fail;
5318 
5319 	return 0;
5320 
5321       fail:
5322 	ipw2100_tx_free(priv);
5323 	ipw2100_rx_free(priv);
5324 	ipw2100_msg_free(priv);
5325 	return -ENOMEM;
5326 }
5327 
5328 #define IPW_PRIVACY_CAPABLE 0x0008
5329 
5330 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5331 				 int batch_mode)
5332 {
5333 	struct host_command cmd = {
5334 		.host_command = WEP_FLAGS,
5335 		.host_command_sequence = 0,
5336 		.host_command_length = 4
5337 	};
5338 	int err;
5339 
5340 	cmd.host_command_parameters[0] = flags;
5341 
5342 	IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5343 
5344 	if (!batch_mode) {
5345 		err = ipw2100_disable_adapter(priv);
5346 		if (err) {
5347 			printk(KERN_ERR DRV_NAME
5348 			       ": %s: Could not disable adapter %d\n",
5349 			       priv->net_dev->name, err);
5350 			return err;
5351 		}
5352 	}
5353 
5354 	/* send cmd to firmware */
5355 	err = ipw2100_hw_send_command(priv, &cmd);
5356 
5357 	if (!batch_mode)
5358 		ipw2100_enable_adapter(priv);
5359 
5360 	return err;
5361 }
5362 
5363 struct ipw2100_wep_key {
5364 	u8 idx;
5365 	u8 len;
5366 	u8 key[13];
5367 };
5368 
5369 /* Macros to ease up priting WEP keys */
5370 #define WEP_FMT_64  "%02X%02X%02X%02X-%02X"
5371 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5372 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5373 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5374 
5375 /**
5376  * Set a the wep key
5377  *
5378  * @priv: struct to work on
5379  * @idx: index of the key we want to set
5380  * @key: ptr to the key data to set
5381  * @len: length of the buffer at @key
5382  * @batch_mode: FIXME perform the operation in batch mode, not
5383  *              disabling the device.
5384  *
5385  * @returns 0 if OK, < 0 errno code on error.
5386  *
5387  * Fill out a command structure with the new wep key, length an
5388  * index and send it down the wire.
5389  */
5390 static int ipw2100_set_key(struct ipw2100_priv *priv,
5391 			   int idx, char *key, int len, int batch_mode)
5392 {
5393 	int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5394 	struct host_command cmd = {
5395 		.host_command = WEP_KEY_INFO,
5396 		.host_command_sequence = 0,
5397 		.host_command_length = sizeof(struct ipw2100_wep_key),
5398 	};
5399 	struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5400 	int err;
5401 
5402 	IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5403 		     idx, keylen, len);
5404 
5405 	/* NOTE: We don't check cached values in case the firmware was reset
5406 	 * or some other problem is occurring.  If the user is setting the key,
5407 	 * then we push the change */
5408 
5409 	wep_key->idx = idx;
5410 	wep_key->len = keylen;
5411 
5412 	if (keylen) {
5413 		memcpy(wep_key->key, key, len);
5414 		memset(wep_key->key + len, 0, keylen - len);
5415 	}
5416 
5417 	/* Will be optimized out on debug not being configured in */
5418 	if (keylen == 0)
5419 		IPW_DEBUG_WEP("%s: Clearing key %d\n",
5420 			      priv->net_dev->name, wep_key->idx);
5421 	else if (keylen == 5)
5422 		IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5423 			      priv->net_dev->name, wep_key->idx, wep_key->len,
5424 			      WEP_STR_64(wep_key->key));
5425 	else
5426 		IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5427 			      "\n",
5428 			      priv->net_dev->name, wep_key->idx, wep_key->len,
5429 			      WEP_STR_128(wep_key->key));
5430 
5431 	if (!batch_mode) {
5432 		err = ipw2100_disable_adapter(priv);
5433 		/* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5434 		if (err) {
5435 			printk(KERN_ERR DRV_NAME
5436 			       ": %s: Could not disable adapter %d\n",
5437 			       priv->net_dev->name, err);
5438 			return err;
5439 		}
5440 	}
5441 
5442 	/* send cmd to firmware */
5443 	err = ipw2100_hw_send_command(priv, &cmd);
5444 
5445 	if (!batch_mode) {
5446 		int err2 = ipw2100_enable_adapter(priv);
5447 		if (err == 0)
5448 			err = err2;
5449 	}
5450 	return err;
5451 }
5452 
5453 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5454 				 int idx, int batch_mode)
5455 {
5456 	struct host_command cmd = {
5457 		.host_command = WEP_KEY_INDEX,
5458 		.host_command_sequence = 0,
5459 		.host_command_length = 4,
5460 		.host_command_parameters = {idx},
5461 	};
5462 	int err;
5463 
5464 	IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5465 
5466 	if (idx < 0 || idx > 3)
5467 		return -EINVAL;
5468 
5469 	if (!batch_mode) {
5470 		err = ipw2100_disable_adapter(priv);
5471 		if (err) {
5472 			printk(KERN_ERR DRV_NAME
5473 			       ": %s: Could not disable adapter %d\n",
5474 			       priv->net_dev->name, err);
5475 			return err;
5476 		}
5477 	}
5478 
5479 	/* send cmd to firmware */
5480 	err = ipw2100_hw_send_command(priv, &cmd);
5481 
5482 	if (!batch_mode)
5483 		ipw2100_enable_adapter(priv);
5484 
5485 	return err;
5486 }
5487 
5488 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5489 {
5490 	int i, err, auth_mode, sec_level, use_group;
5491 
5492 	if (!(priv->status & STATUS_RUNNING))
5493 		return 0;
5494 
5495 	if (!batch_mode) {
5496 		err = ipw2100_disable_adapter(priv);
5497 		if (err)
5498 			return err;
5499 	}
5500 
5501 	if (!priv->ieee->sec.enabled) {
5502 		err =
5503 		    ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5504 						     SEC_LEVEL_0, 0, 1);
5505 	} else {
5506 		auth_mode = IPW_AUTH_OPEN;
5507 		if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5508 			if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5509 				auth_mode = IPW_AUTH_SHARED;
5510 			else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5511 				auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5512 		}
5513 
5514 		sec_level = SEC_LEVEL_0;
5515 		if (priv->ieee->sec.flags & SEC_LEVEL)
5516 			sec_level = priv->ieee->sec.level;
5517 
5518 		use_group = 0;
5519 		if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5520 			use_group = priv->ieee->sec.unicast_uses_group;
5521 
5522 		err =
5523 		    ipw2100_set_security_information(priv, auth_mode, sec_level,
5524 						     use_group, 1);
5525 	}
5526 
5527 	if (err)
5528 		goto exit;
5529 
5530 	if (priv->ieee->sec.enabled) {
5531 		for (i = 0; i < 4; i++) {
5532 			if (!(priv->ieee->sec.flags & (1 << i))) {
5533 				memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5534 				priv->ieee->sec.key_sizes[i] = 0;
5535 			} else {
5536 				err = ipw2100_set_key(priv, i,
5537 						      priv->ieee->sec.keys[i],
5538 						      priv->ieee->sec.
5539 						      key_sizes[i], 1);
5540 				if (err)
5541 					goto exit;
5542 			}
5543 		}
5544 
5545 		ipw2100_set_key_index(priv, priv->ieee->crypt_info.tx_keyidx, 1);
5546 	}
5547 
5548 	/* Always enable privacy so the Host can filter WEP packets if
5549 	 * encrypted data is sent up */
5550 	err =
5551 	    ipw2100_set_wep_flags(priv,
5552 				  priv->ieee->sec.
5553 				  enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5554 	if (err)
5555 		goto exit;
5556 
5557 	priv->status &= ~STATUS_SECURITY_UPDATED;
5558 
5559       exit:
5560 	if (!batch_mode)
5561 		ipw2100_enable_adapter(priv);
5562 
5563 	return err;
5564 }
5565 
5566 static void ipw2100_security_work(struct work_struct *work)
5567 {
5568 	struct ipw2100_priv *priv =
5569 		container_of(work, struct ipw2100_priv, security_work.work);
5570 
5571 	/* If we happen to have reconnected before we get a chance to
5572 	 * process this, then update the security settings--which causes
5573 	 * a disassociation to occur */
5574 	if (!(priv->status & STATUS_ASSOCIATED) &&
5575 	    priv->status & STATUS_SECURITY_UPDATED)
5576 		ipw2100_configure_security(priv, 0);
5577 }
5578 
5579 static void shim__set_security(struct net_device *dev,
5580 			       struct libipw_security *sec)
5581 {
5582 	struct ipw2100_priv *priv = libipw_priv(dev);
5583 	int i, force_update = 0;
5584 
5585 	mutex_lock(&priv->action_mutex);
5586 	if (!(priv->status & STATUS_INITIALIZED))
5587 		goto done;
5588 
5589 	for (i = 0; i < 4; i++) {
5590 		if (sec->flags & (1 << i)) {
5591 			priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5592 			if (sec->key_sizes[i] == 0)
5593 				priv->ieee->sec.flags &= ~(1 << i);
5594 			else
5595 				memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5596 				       sec->key_sizes[i]);
5597 			if (sec->level == SEC_LEVEL_1) {
5598 				priv->ieee->sec.flags |= (1 << i);
5599 				priv->status |= STATUS_SECURITY_UPDATED;
5600 			} else
5601 				priv->ieee->sec.flags &= ~(1 << i);
5602 		}
5603 	}
5604 
5605 	if ((sec->flags & SEC_ACTIVE_KEY) &&
5606 	    priv->ieee->sec.active_key != sec->active_key) {
5607 		if (sec->active_key <= 3) {
5608 			priv->ieee->sec.active_key = sec->active_key;
5609 			priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5610 		} else
5611 			priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5612 
5613 		priv->status |= STATUS_SECURITY_UPDATED;
5614 	}
5615 
5616 	if ((sec->flags & SEC_AUTH_MODE) &&
5617 	    (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5618 		priv->ieee->sec.auth_mode = sec->auth_mode;
5619 		priv->ieee->sec.flags |= SEC_AUTH_MODE;
5620 		priv->status |= STATUS_SECURITY_UPDATED;
5621 	}
5622 
5623 	if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5624 		priv->ieee->sec.flags |= SEC_ENABLED;
5625 		priv->ieee->sec.enabled = sec->enabled;
5626 		priv->status |= STATUS_SECURITY_UPDATED;
5627 		force_update = 1;
5628 	}
5629 
5630 	if (sec->flags & SEC_ENCRYPT)
5631 		priv->ieee->sec.encrypt = sec->encrypt;
5632 
5633 	if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5634 		priv->ieee->sec.level = sec->level;
5635 		priv->ieee->sec.flags |= SEC_LEVEL;
5636 		priv->status |= STATUS_SECURITY_UPDATED;
5637 	}
5638 
5639 	IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5640 		      priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5641 		      priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5642 		      priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5643 		      priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5644 		      priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5645 		      priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5646 		      priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5647 		      priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5648 		      priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5649 
5650 /* As a temporary work around to enable WPA until we figure out why
5651  * wpa_supplicant toggles the security capability of the driver, which
5652  * forces a disassociation with force_update...
5653  *
5654  *	if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5655 	if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5656 		ipw2100_configure_security(priv, 0);
5657       done:
5658 	mutex_unlock(&priv->action_mutex);
5659 }
5660 
5661 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5662 {
5663 	int err;
5664 	int batch_mode = 1;
5665 	u8 *bssid;
5666 
5667 	IPW_DEBUG_INFO("enter\n");
5668 
5669 	err = ipw2100_disable_adapter(priv);
5670 	if (err)
5671 		return err;
5672 #ifdef CONFIG_IPW2100_MONITOR
5673 	if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5674 		err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5675 		if (err)
5676 			return err;
5677 
5678 		IPW_DEBUG_INFO("exit\n");
5679 
5680 		return 0;
5681 	}
5682 #endif				/* CONFIG_IPW2100_MONITOR */
5683 
5684 	err = ipw2100_read_mac_address(priv);
5685 	if (err)
5686 		return -EIO;
5687 
5688 	err = ipw2100_set_mac_address(priv, batch_mode);
5689 	if (err)
5690 		return err;
5691 
5692 	err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5693 	if (err)
5694 		return err;
5695 
5696 	if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5697 		err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5698 		if (err)
5699 			return err;
5700 	}
5701 
5702 	err = ipw2100_system_config(priv, batch_mode);
5703 	if (err)
5704 		return err;
5705 
5706 	err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5707 	if (err)
5708 		return err;
5709 
5710 	/* Default to power mode OFF */
5711 	err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5712 	if (err)
5713 		return err;
5714 
5715 	err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5716 	if (err)
5717 		return err;
5718 
5719 	if (priv->config & CFG_STATIC_BSSID)
5720 		bssid = priv->bssid;
5721 	else
5722 		bssid = NULL;
5723 	err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5724 	if (err)
5725 		return err;
5726 
5727 	if (priv->config & CFG_STATIC_ESSID)
5728 		err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5729 					batch_mode);
5730 	else
5731 		err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5732 	if (err)
5733 		return err;
5734 
5735 	err = ipw2100_configure_security(priv, batch_mode);
5736 	if (err)
5737 		return err;
5738 
5739 	if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5740 		err =
5741 		    ipw2100_set_ibss_beacon_interval(priv,
5742 						     priv->beacon_interval,
5743 						     batch_mode);
5744 		if (err)
5745 			return err;
5746 
5747 		err = ipw2100_set_tx_power(priv, priv->tx_power);
5748 		if (err)
5749 			return err;
5750 	}
5751 
5752 	/*
5753 	   err = ipw2100_set_fragmentation_threshold(
5754 	   priv, priv->frag_threshold, batch_mode);
5755 	   if (err)
5756 	   return err;
5757 	 */
5758 
5759 	IPW_DEBUG_INFO("exit\n");
5760 
5761 	return 0;
5762 }
5763 
5764 /*************************************************************************
5765  *
5766  * EXTERNALLY CALLED METHODS
5767  *
5768  *************************************************************************/
5769 
5770 /* This method is called by the network layer -- not to be confused with
5771  * ipw2100_set_mac_address() declared above called by this driver (and this
5772  * method as well) to talk to the firmware */
5773 static int ipw2100_set_address(struct net_device *dev, void *p)
5774 {
5775 	struct ipw2100_priv *priv = libipw_priv(dev);
5776 	struct sockaddr *addr = p;
5777 	int err = 0;
5778 
5779 	if (!is_valid_ether_addr(addr->sa_data))
5780 		return -EADDRNOTAVAIL;
5781 
5782 	mutex_lock(&priv->action_mutex);
5783 
5784 	priv->config |= CFG_CUSTOM_MAC;
5785 	memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5786 
5787 	err = ipw2100_set_mac_address(priv, 0);
5788 	if (err)
5789 		goto done;
5790 
5791 	priv->reset_backoff = 0;
5792 	mutex_unlock(&priv->action_mutex);
5793 	ipw2100_reset_adapter(&priv->reset_work.work);
5794 	return 0;
5795 
5796       done:
5797 	mutex_unlock(&priv->action_mutex);
5798 	return err;
5799 }
5800 
5801 static int ipw2100_open(struct net_device *dev)
5802 {
5803 	struct ipw2100_priv *priv = libipw_priv(dev);
5804 	unsigned long flags;
5805 	IPW_DEBUG_INFO("dev->open\n");
5806 
5807 	spin_lock_irqsave(&priv->low_lock, flags);
5808 	if (priv->status & STATUS_ASSOCIATED) {
5809 		netif_carrier_on(dev);
5810 		netif_start_queue(dev);
5811 	}
5812 	spin_unlock_irqrestore(&priv->low_lock, flags);
5813 
5814 	return 0;
5815 }
5816 
5817 static int ipw2100_close(struct net_device *dev)
5818 {
5819 	struct ipw2100_priv *priv = libipw_priv(dev);
5820 	unsigned long flags;
5821 	struct list_head *element;
5822 	struct ipw2100_tx_packet *packet;
5823 
5824 	IPW_DEBUG_INFO("enter\n");
5825 
5826 	spin_lock_irqsave(&priv->low_lock, flags);
5827 
5828 	if (priv->status & STATUS_ASSOCIATED)
5829 		netif_carrier_off(dev);
5830 	netif_stop_queue(dev);
5831 
5832 	/* Flush the TX queue ... */
5833 	while (!list_empty(&priv->tx_pend_list)) {
5834 		element = priv->tx_pend_list.next;
5835 		packet = list_entry(element, struct ipw2100_tx_packet, list);
5836 
5837 		list_del(element);
5838 		DEC_STAT(&priv->tx_pend_stat);
5839 
5840 		libipw_txb_free(packet->info.d_struct.txb);
5841 		packet->info.d_struct.txb = NULL;
5842 
5843 		list_add_tail(element, &priv->tx_free_list);
5844 		INC_STAT(&priv->tx_free_stat);
5845 	}
5846 	spin_unlock_irqrestore(&priv->low_lock, flags);
5847 
5848 	IPW_DEBUG_INFO("exit\n");
5849 
5850 	return 0;
5851 }
5852 
5853 /*
5854  * TODO:  Fix this function... its just wrong
5855  */
5856 static void ipw2100_tx_timeout(struct net_device *dev)
5857 {
5858 	struct ipw2100_priv *priv = libipw_priv(dev);
5859 
5860 	dev->stats.tx_errors++;
5861 
5862 #ifdef CONFIG_IPW2100_MONITOR
5863 	if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5864 		return;
5865 #endif
5866 
5867 	IPW_DEBUG_INFO("%s: TX timed out.  Scheduling firmware restart.\n",
5868 		       dev->name);
5869 	schedule_reset(priv);
5870 }
5871 
5872 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5873 {
5874 	/* This is called when wpa_supplicant loads and closes the driver
5875 	 * interface. */
5876 	priv->ieee->wpa_enabled = value;
5877 	return 0;
5878 }
5879 
5880 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5881 {
5882 
5883 	struct libipw_device *ieee = priv->ieee;
5884 	struct libipw_security sec = {
5885 		.flags = SEC_AUTH_MODE,
5886 	};
5887 	int ret = 0;
5888 
5889 	if (value & IW_AUTH_ALG_SHARED_KEY) {
5890 		sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5891 		ieee->open_wep = 0;
5892 	} else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5893 		sec.auth_mode = WLAN_AUTH_OPEN;
5894 		ieee->open_wep = 1;
5895 	} else if (value & IW_AUTH_ALG_LEAP) {
5896 		sec.auth_mode = WLAN_AUTH_LEAP;
5897 		ieee->open_wep = 1;
5898 	} else
5899 		return -EINVAL;
5900 
5901 	if (ieee->set_security)
5902 		ieee->set_security(ieee->dev, &sec);
5903 	else
5904 		ret = -EOPNOTSUPP;
5905 
5906 	return ret;
5907 }
5908 
5909 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5910 				    char *wpa_ie, int wpa_ie_len)
5911 {
5912 
5913 	struct ipw2100_wpa_assoc_frame frame;
5914 
5915 	frame.fixed_ie_mask = 0;
5916 
5917 	/* copy WPA IE */
5918 	memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5919 	frame.var_ie_len = wpa_ie_len;
5920 
5921 	/* make sure WPA is enabled */
5922 	ipw2100_wpa_enable(priv, 1);
5923 	ipw2100_set_wpa_ie(priv, &frame, 0);
5924 }
5925 
5926 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5927 				    struct ethtool_drvinfo *info)
5928 {
5929 	struct ipw2100_priv *priv = libipw_priv(dev);
5930 	char fw_ver[64], ucode_ver[64];
5931 
5932 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
5933 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
5934 
5935 	ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5936 	ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5937 
5938 	snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5939 		 fw_ver, priv->eeprom_version, ucode_ver);
5940 
5941 	strlcpy(info->bus_info, pci_name(priv->pci_dev),
5942 		sizeof(info->bus_info));
5943 }
5944 
5945 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5946 {
5947 	struct ipw2100_priv *priv = libipw_priv(dev);
5948 	return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5949 }
5950 
5951 static const struct ethtool_ops ipw2100_ethtool_ops = {
5952 	.get_link = ipw2100_ethtool_get_link,
5953 	.get_drvinfo = ipw_ethtool_get_drvinfo,
5954 };
5955 
5956 static void ipw2100_hang_check(struct work_struct *work)
5957 {
5958 	struct ipw2100_priv *priv =
5959 		container_of(work, struct ipw2100_priv, hang_check.work);
5960 	unsigned long flags;
5961 	u32 rtc = 0xa5a5a5a5;
5962 	u32 len = sizeof(rtc);
5963 	int restart = 0;
5964 
5965 	spin_lock_irqsave(&priv->low_lock, flags);
5966 
5967 	if (priv->fatal_error != 0) {
5968 		/* If fatal_error is set then we need to restart */
5969 		IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5970 			       priv->net_dev->name);
5971 
5972 		restart = 1;
5973 	} else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5974 		   (rtc == priv->last_rtc)) {
5975 		/* Check if firmware is hung */
5976 		IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
5977 			       priv->net_dev->name);
5978 
5979 		restart = 1;
5980 	}
5981 
5982 	if (restart) {
5983 		/* Kill timer */
5984 		priv->stop_hang_check = 1;
5985 		priv->hangs++;
5986 
5987 		/* Restart the NIC */
5988 		schedule_reset(priv);
5989 	}
5990 
5991 	priv->last_rtc = rtc;
5992 
5993 	if (!priv->stop_hang_check)
5994 		schedule_delayed_work(&priv->hang_check, HZ / 2);
5995 
5996 	spin_unlock_irqrestore(&priv->low_lock, flags);
5997 }
5998 
5999 static void ipw2100_rf_kill(struct work_struct *work)
6000 {
6001 	struct ipw2100_priv *priv =
6002 		container_of(work, struct ipw2100_priv, rf_kill.work);
6003 	unsigned long flags;
6004 
6005 	spin_lock_irqsave(&priv->low_lock, flags);
6006 
6007 	if (rf_kill_active(priv)) {
6008 		IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
6009 		if (!priv->stop_rf_kill)
6010 			schedule_delayed_work(&priv->rf_kill,
6011 					      round_jiffies_relative(HZ));
6012 		goto exit_unlock;
6013 	}
6014 
6015 	/* RF Kill is now disabled, so bring the device back up */
6016 
6017 	if (!(priv->status & STATUS_RF_KILL_MASK)) {
6018 		IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
6019 				  "device\n");
6020 		schedule_reset(priv);
6021 	} else
6022 		IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
6023 				  "enabled\n");
6024 
6025       exit_unlock:
6026 	spin_unlock_irqrestore(&priv->low_lock, flags);
6027 }
6028 
6029 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
6030 
6031 static const struct net_device_ops ipw2100_netdev_ops = {
6032 	.ndo_open		= ipw2100_open,
6033 	.ndo_stop		= ipw2100_close,
6034 	.ndo_start_xmit		= libipw_xmit,
6035 	.ndo_tx_timeout		= ipw2100_tx_timeout,
6036 	.ndo_set_mac_address	= ipw2100_set_address,
6037 	.ndo_validate_addr	= eth_validate_addr,
6038 };
6039 
6040 /* Look into using netdev destructor to shutdown libipw? */
6041 
6042 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6043 					       void __iomem * ioaddr)
6044 {
6045 	struct ipw2100_priv *priv;
6046 	struct net_device *dev;
6047 
6048 	dev = alloc_libipw(sizeof(struct ipw2100_priv), 0);
6049 	if (!dev)
6050 		return NULL;
6051 	priv = libipw_priv(dev);
6052 	priv->ieee = netdev_priv(dev);
6053 	priv->pci_dev = pci_dev;
6054 	priv->net_dev = dev;
6055 	priv->ioaddr = ioaddr;
6056 
6057 	priv->ieee->hard_start_xmit = ipw2100_tx;
6058 	priv->ieee->set_security = shim__set_security;
6059 
6060 	priv->ieee->perfect_rssi = -20;
6061 	priv->ieee->worst_rssi = -85;
6062 
6063 	dev->netdev_ops = &ipw2100_netdev_ops;
6064 	dev->ethtool_ops = &ipw2100_ethtool_ops;
6065 	dev->wireless_handlers = &ipw2100_wx_handler_def;
6066 	priv->wireless_data.libipw = priv->ieee;
6067 	dev->wireless_data = &priv->wireless_data;
6068 	dev->watchdog_timeo = 3 * HZ;
6069 	dev->irq = 0;
6070 	dev->min_mtu = 68;
6071 	dev->max_mtu = LIBIPW_DATA_LEN;
6072 
6073 	/* NOTE: We don't use the wireless_handlers hook
6074 	 * in dev as the system will start throwing WX requests
6075 	 * to us before we're actually initialized and it just
6076 	 * ends up causing problems.  So, we just handle
6077 	 * the WX extensions through the ipw2100_ioctl interface */
6078 
6079 	/* memset() puts everything to 0, so we only have explicitly set
6080 	 * those values that need to be something else */
6081 
6082 	/* If power management is turned on, default to AUTO mode */
6083 	priv->power_mode = IPW_POWER_AUTO;
6084 
6085 #ifdef CONFIG_IPW2100_MONITOR
6086 	priv->config |= CFG_CRC_CHECK;
6087 #endif
6088 	priv->ieee->wpa_enabled = 0;
6089 	priv->ieee->drop_unencrypted = 0;
6090 	priv->ieee->privacy_invoked = 0;
6091 	priv->ieee->ieee802_1x = 1;
6092 
6093 	/* Set module parameters */
6094 	switch (network_mode) {
6095 	case 1:
6096 		priv->ieee->iw_mode = IW_MODE_ADHOC;
6097 		break;
6098 #ifdef CONFIG_IPW2100_MONITOR
6099 	case 2:
6100 		priv->ieee->iw_mode = IW_MODE_MONITOR;
6101 		break;
6102 #endif
6103 	default:
6104 	case 0:
6105 		priv->ieee->iw_mode = IW_MODE_INFRA;
6106 		break;
6107 	}
6108 
6109 	if (disable == 1)
6110 		priv->status |= STATUS_RF_KILL_SW;
6111 
6112 	if (channel != 0 &&
6113 	    ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6114 		priv->config |= CFG_STATIC_CHANNEL;
6115 		priv->channel = channel;
6116 	}
6117 
6118 	if (associate)
6119 		priv->config |= CFG_ASSOCIATE;
6120 
6121 	priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6122 	priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6123 	priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6124 	priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6125 	priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6126 	priv->tx_power = IPW_TX_POWER_DEFAULT;
6127 	priv->tx_rates = DEFAULT_TX_RATES;
6128 
6129 	strcpy(priv->nick, "ipw2100");
6130 
6131 	spin_lock_init(&priv->low_lock);
6132 	mutex_init(&priv->action_mutex);
6133 	mutex_init(&priv->adapter_mutex);
6134 
6135 	init_waitqueue_head(&priv->wait_command_queue);
6136 
6137 	netif_carrier_off(dev);
6138 
6139 	INIT_LIST_HEAD(&priv->msg_free_list);
6140 	INIT_LIST_HEAD(&priv->msg_pend_list);
6141 	INIT_STAT(&priv->msg_free_stat);
6142 	INIT_STAT(&priv->msg_pend_stat);
6143 
6144 	INIT_LIST_HEAD(&priv->tx_free_list);
6145 	INIT_LIST_HEAD(&priv->tx_pend_list);
6146 	INIT_STAT(&priv->tx_free_stat);
6147 	INIT_STAT(&priv->tx_pend_stat);
6148 
6149 	INIT_LIST_HEAD(&priv->fw_pend_list);
6150 	INIT_STAT(&priv->fw_pend_stat);
6151 
6152 	INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6153 	INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6154 	INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6155 	INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6156 	INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6157 	INIT_DELAYED_WORK(&priv->scan_event, ipw2100_scan_event);
6158 
6159 	tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6160 		     ipw2100_irq_tasklet, (unsigned long)priv);
6161 
6162 	/* NOTE:  We do not start the deferred work for status checks yet */
6163 	priv->stop_rf_kill = 1;
6164 	priv->stop_hang_check = 1;
6165 
6166 	return dev;
6167 }
6168 
6169 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6170 				const struct pci_device_id *ent)
6171 {
6172 	void __iomem *ioaddr;
6173 	struct net_device *dev = NULL;
6174 	struct ipw2100_priv *priv = NULL;
6175 	int err = 0;
6176 	int registered = 0;
6177 	u32 val;
6178 
6179 	IPW_DEBUG_INFO("enter\n");
6180 
6181 	if (!(pci_resource_flags(pci_dev, 0) & IORESOURCE_MEM)) {
6182 		IPW_DEBUG_INFO("weird - resource type is not memory\n");
6183 		err = -ENODEV;
6184 		goto out;
6185 	}
6186 
6187 	ioaddr = pci_iomap(pci_dev, 0, 0);
6188 	if (!ioaddr) {
6189 		printk(KERN_WARNING DRV_NAME
6190 		       "Error calling ioremap_nocache.\n");
6191 		err = -EIO;
6192 		goto fail;
6193 	}
6194 
6195 	/* allocate and initialize our net_device */
6196 	dev = ipw2100_alloc_device(pci_dev, ioaddr);
6197 	if (!dev) {
6198 		printk(KERN_WARNING DRV_NAME
6199 		       "Error calling ipw2100_alloc_device.\n");
6200 		err = -ENOMEM;
6201 		goto fail;
6202 	}
6203 
6204 	/* set up PCI mappings for device */
6205 	err = pci_enable_device(pci_dev);
6206 	if (err) {
6207 		printk(KERN_WARNING DRV_NAME
6208 		       "Error calling pci_enable_device.\n");
6209 		return err;
6210 	}
6211 
6212 	priv = libipw_priv(dev);
6213 
6214 	pci_set_master(pci_dev);
6215 	pci_set_drvdata(pci_dev, priv);
6216 
6217 	err = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
6218 	if (err) {
6219 		printk(KERN_WARNING DRV_NAME
6220 		       "Error calling pci_set_dma_mask.\n");
6221 		pci_disable_device(pci_dev);
6222 		return err;
6223 	}
6224 
6225 	err = pci_request_regions(pci_dev, DRV_NAME);
6226 	if (err) {
6227 		printk(KERN_WARNING DRV_NAME
6228 		       "Error calling pci_request_regions.\n");
6229 		pci_disable_device(pci_dev);
6230 		return err;
6231 	}
6232 
6233 	/* We disable the RETRY_TIMEOUT register (0x41) to keep
6234 	 * PCI Tx retries from interfering with C3 CPU state */
6235 	pci_read_config_dword(pci_dev, 0x40, &val);
6236 	if ((val & 0x0000ff00) != 0)
6237 		pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6238 
6239 	if (!ipw2100_hw_is_adapter_in_system(dev)) {
6240 		printk(KERN_WARNING DRV_NAME
6241 		       "Device not found via register read.\n");
6242 		err = -ENODEV;
6243 		goto fail;
6244 	}
6245 
6246 	SET_NETDEV_DEV(dev, &pci_dev->dev);
6247 
6248 	/* Force interrupts to be shut off on the device */
6249 	priv->status |= STATUS_INT_ENABLED;
6250 	ipw2100_disable_interrupts(priv);
6251 
6252 	/* Allocate and initialize the Tx/Rx queues and lists */
6253 	if (ipw2100_queues_allocate(priv)) {
6254 		printk(KERN_WARNING DRV_NAME
6255 		       "Error calling ipw2100_queues_allocate.\n");
6256 		err = -ENOMEM;
6257 		goto fail;
6258 	}
6259 	ipw2100_queues_initialize(priv);
6260 
6261 	err = request_irq(pci_dev->irq,
6262 			  ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6263 	if (err) {
6264 		printk(KERN_WARNING DRV_NAME
6265 		       "Error calling request_irq: %d.\n", pci_dev->irq);
6266 		goto fail;
6267 	}
6268 	dev->irq = pci_dev->irq;
6269 
6270 	IPW_DEBUG_INFO("Attempting to register device...\n");
6271 
6272 	printk(KERN_INFO DRV_NAME
6273 	       ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6274 
6275 	err = ipw2100_up(priv, 1);
6276 	if (err)
6277 		goto fail;
6278 
6279 	err = ipw2100_wdev_init(dev);
6280 	if (err)
6281 		goto fail;
6282 	registered = 1;
6283 
6284 	/* Bring up the interface.  Pre 0.46, after we registered the
6285 	 * network device we would call ipw2100_up.  This introduced a race
6286 	 * condition with newer hotplug configurations (network was coming
6287 	 * up and making calls before the device was initialized).
6288 	 */
6289 	err = register_netdev(dev);
6290 	if (err) {
6291 		printk(KERN_WARNING DRV_NAME
6292 		       "Error calling register_netdev.\n");
6293 		goto fail;
6294 	}
6295 	registered = 2;
6296 
6297 	mutex_lock(&priv->action_mutex);
6298 
6299 	IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6300 
6301 	/* perform this after register_netdev so that dev->name is set */
6302 	err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6303 	if (err)
6304 		goto fail_unlock;
6305 
6306 	/* If the RF Kill switch is disabled, go ahead and complete the
6307 	 * startup sequence */
6308 	if (!(priv->status & STATUS_RF_KILL_MASK)) {
6309 		/* Enable the adapter - sends HOST_COMPLETE */
6310 		if (ipw2100_enable_adapter(priv)) {
6311 			printk(KERN_WARNING DRV_NAME
6312 			       ": %s: failed in call to enable adapter.\n",
6313 			       priv->net_dev->name);
6314 			ipw2100_hw_stop_adapter(priv);
6315 			err = -EIO;
6316 			goto fail_unlock;
6317 		}
6318 
6319 		/* Start a scan . . . */
6320 		ipw2100_set_scan_options(priv);
6321 		ipw2100_start_scan(priv);
6322 	}
6323 
6324 	IPW_DEBUG_INFO("exit\n");
6325 
6326 	priv->status |= STATUS_INITIALIZED;
6327 
6328 	mutex_unlock(&priv->action_mutex);
6329 out:
6330 	return err;
6331 
6332       fail_unlock:
6333 	mutex_unlock(&priv->action_mutex);
6334       fail:
6335 	if (dev) {
6336 		if (registered >= 2)
6337 			unregister_netdev(dev);
6338 
6339 		if (registered) {
6340 			wiphy_unregister(priv->ieee->wdev.wiphy);
6341 			kfree(priv->ieee->bg_band.channels);
6342 		}
6343 
6344 		ipw2100_hw_stop_adapter(priv);
6345 
6346 		ipw2100_disable_interrupts(priv);
6347 
6348 		if (dev->irq)
6349 			free_irq(dev->irq, priv);
6350 
6351 		ipw2100_kill_works(priv);
6352 
6353 		/* These are safe to call even if they weren't allocated */
6354 		ipw2100_queues_free(priv);
6355 		sysfs_remove_group(&pci_dev->dev.kobj,
6356 				   &ipw2100_attribute_group);
6357 
6358 		free_libipw(dev, 0);
6359 	}
6360 
6361 	pci_iounmap(pci_dev, ioaddr);
6362 
6363 	pci_release_regions(pci_dev);
6364 	pci_disable_device(pci_dev);
6365 	goto out;
6366 }
6367 
6368 static void ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6369 {
6370 	struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6371 	struct net_device *dev = priv->net_dev;
6372 
6373 	mutex_lock(&priv->action_mutex);
6374 
6375 	priv->status &= ~STATUS_INITIALIZED;
6376 
6377 	sysfs_remove_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6378 
6379 #ifdef CONFIG_PM
6380 	if (ipw2100_firmware.version)
6381 		ipw2100_release_firmware(priv, &ipw2100_firmware);
6382 #endif
6383 	/* Take down the hardware */
6384 	ipw2100_down(priv);
6385 
6386 	/* Release the mutex so that the network subsystem can
6387 	 * complete any needed calls into the driver... */
6388 	mutex_unlock(&priv->action_mutex);
6389 
6390 	/* Unregister the device first - this results in close()
6391 	 * being called if the device is open.  If we free storage
6392 	 * first, then close() will crash.
6393 	 * FIXME: remove the comment above. */
6394 	unregister_netdev(dev);
6395 
6396 	ipw2100_kill_works(priv);
6397 
6398 	ipw2100_queues_free(priv);
6399 
6400 	/* Free potential debugging firmware snapshot */
6401 	ipw2100_snapshot_free(priv);
6402 
6403 	free_irq(dev->irq, priv);
6404 
6405 	pci_iounmap(pci_dev, priv->ioaddr);
6406 
6407 	/* wiphy_unregister needs to be here, before free_libipw */
6408 	wiphy_unregister(priv->ieee->wdev.wiphy);
6409 	kfree(priv->ieee->bg_band.channels);
6410 	free_libipw(dev, 0);
6411 
6412 	pci_release_regions(pci_dev);
6413 	pci_disable_device(pci_dev);
6414 
6415 	IPW_DEBUG_INFO("exit\n");
6416 }
6417 
6418 #ifdef CONFIG_PM
6419 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6420 {
6421 	struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6422 	struct net_device *dev = priv->net_dev;
6423 
6424 	IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6425 
6426 	mutex_lock(&priv->action_mutex);
6427 	if (priv->status & STATUS_INITIALIZED) {
6428 		/* Take down the device; powers it off, etc. */
6429 		ipw2100_down(priv);
6430 	}
6431 
6432 	/* Remove the PRESENT state of the device */
6433 	netif_device_detach(dev);
6434 
6435 	pci_save_state(pci_dev);
6436 	pci_disable_device(pci_dev);
6437 	pci_set_power_state(pci_dev, PCI_D3hot);
6438 
6439 	priv->suspend_at = get_seconds();
6440 
6441 	mutex_unlock(&priv->action_mutex);
6442 
6443 	return 0;
6444 }
6445 
6446 static int ipw2100_resume(struct pci_dev *pci_dev)
6447 {
6448 	struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6449 	struct net_device *dev = priv->net_dev;
6450 	int err;
6451 	u32 val;
6452 
6453 	if (IPW2100_PM_DISABLED)
6454 		return 0;
6455 
6456 	mutex_lock(&priv->action_mutex);
6457 
6458 	IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6459 
6460 	pci_set_power_state(pci_dev, PCI_D0);
6461 	err = pci_enable_device(pci_dev);
6462 	if (err) {
6463 		printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
6464 		       dev->name);
6465 		mutex_unlock(&priv->action_mutex);
6466 		return err;
6467 	}
6468 	pci_restore_state(pci_dev);
6469 
6470 	/*
6471 	 * Suspend/Resume resets the PCI configuration space, so we have to
6472 	 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6473 	 * from interfering with C3 CPU state. pci_restore_state won't help
6474 	 * here since it only restores the first 64 bytes pci config header.
6475 	 */
6476 	pci_read_config_dword(pci_dev, 0x40, &val);
6477 	if ((val & 0x0000ff00) != 0)
6478 		pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6479 
6480 	/* Set the device back into the PRESENT state; this will also wake
6481 	 * the queue of needed */
6482 	netif_device_attach(dev);
6483 
6484 	priv->suspend_time = get_seconds() - priv->suspend_at;
6485 
6486 	/* Bring the device back up */
6487 	if (!(priv->status & STATUS_RF_KILL_SW))
6488 		ipw2100_up(priv, 0);
6489 
6490 	mutex_unlock(&priv->action_mutex);
6491 
6492 	return 0;
6493 }
6494 #endif
6495 
6496 static void ipw2100_shutdown(struct pci_dev *pci_dev)
6497 {
6498 	struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6499 
6500 	/* Take down the device; powers it off, etc. */
6501 	ipw2100_down(priv);
6502 
6503 	pci_disable_device(pci_dev);
6504 }
6505 
6506 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6507 
6508 static const struct pci_device_id ipw2100_pci_id_table[] = {
6509 	IPW2100_DEV_ID(0x2520),	/* IN 2100A mPCI 3A */
6510 	IPW2100_DEV_ID(0x2521),	/* IN 2100A mPCI 3B */
6511 	IPW2100_DEV_ID(0x2524),	/* IN 2100A mPCI 3B */
6512 	IPW2100_DEV_ID(0x2525),	/* IN 2100A mPCI 3B */
6513 	IPW2100_DEV_ID(0x2526),	/* IN 2100A mPCI Gen A3 */
6514 	IPW2100_DEV_ID(0x2522),	/* IN 2100 mPCI 3B */
6515 	IPW2100_DEV_ID(0x2523),	/* IN 2100 mPCI 3A */
6516 	IPW2100_DEV_ID(0x2527),	/* IN 2100 mPCI 3B */
6517 	IPW2100_DEV_ID(0x2528),	/* IN 2100 mPCI 3B */
6518 	IPW2100_DEV_ID(0x2529),	/* IN 2100 mPCI 3B */
6519 	IPW2100_DEV_ID(0x252B),	/* IN 2100 mPCI 3A */
6520 	IPW2100_DEV_ID(0x252C),	/* IN 2100 mPCI 3A */
6521 	IPW2100_DEV_ID(0x252D),	/* IN 2100 mPCI 3A */
6522 
6523 	IPW2100_DEV_ID(0x2550),	/* IB 2100A mPCI 3B */
6524 	IPW2100_DEV_ID(0x2551),	/* IB 2100 mPCI 3B */
6525 	IPW2100_DEV_ID(0x2553),	/* IB 2100 mPCI 3B */
6526 	IPW2100_DEV_ID(0x2554),	/* IB 2100 mPCI 3B */
6527 	IPW2100_DEV_ID(0x2555),	/* IB 2100 mPCI 3B */
6528 
6529 	IPW2100_DEV_ID(0x2560),	/* DE 2100A mPCI 3A */
6530 	IPW2100_DEV_ID(0x2562),	/* DE 2100A mPCI 3A */
6531 	IPW2100_DEV_ID(0x2563),	/* DE 2100A mPCI 3A */
6532 	IPW2100_DEV_ID(0x2561),	/* DE 2100 mPCI 3A */
6533 	IPW2100_DEV_ID(0x2565),	/* DE 2100 mPCI 3A */
6534 	IPW2100_DEV_ID(0x2566),	/* DE 2100 mPCI 3A */
6535 	IPW2100_DEV_ID(0x2567),	/* DE 2100 mPCI 3A */
6536 
6537 	IPW2100_DEV_ID(0x2570),	/* GA 2100 mPCI 3B */
6538 
6539 	IPW2100_DEV_ID(0x2580),	/* TO 2100A mPCI 3B */
6540 	IPW2100_DEV_ID(0x2582),	/* TO 2100A mPCI 3B */
6541 	IPW2100_DEV_ID(0x2583),	/* TO 2100A mPCI 3B */
6542 	IPW2100_DEV_ID(0x2581),	/* TO 2100 mPCI 3B */
6543 	IPW2100_DEV_ID(0x2585),	/* TO 2100 mPCI 3B */
6544 	IPW2100_DEV_ID(0x2586),	/* TO 2100 mPCI 3B */
6545 	IPW2100_DEV_ID(0x2587),	/* TO 2100 mPCI 3B */
6546 
6547 	IPW2100_DEV_ID(0x2590),	/* SO 2100A mPCI 3B */
6548 	IPW2100_DEV_ID(0x2592),	/* SO 2100A mPCI 3B */
6549 	IPW2100_DEV_ID(0x2591),	/* SO 2100 mPCI 3B */
6550 	IPW2100_DEV_ID(0x2593),	/* SO 2100 mPCI 3B */
6551 	IPW2100_DEV_ID(0x2596),	/* SO 2100 mPCI 3B */
6552 	IPW2100_DEV_ID(0x2598),	/* SO 2100 mPCI 3B */
6553 
6554 	IPW2100_DEV_ID(0x25A0),	/* HP 2100 mPCI 3B */
6555 	{0,},
6556 };
6557 
6558 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6559 
6560 static struct pci_driver ipw2100_pci_driver = {
6561 	.name = DRV_NAME,
6562 	.id_table = ipw2100_pci_id_table,
6563 	.probe = ipw2100_pci_init_one,
6564 	.remove = ipw2100_pci_remove_one,
6565 #ifdef CONFIG_PM
6566 	.suspend = ipw2100_suspend,
6567 	.resume = ipw2100_resume,
6568 #endif
6569 	.shutdown = ipw2100_shutdown,
6570 };
6571 
6572 /**
6573  * Initialize the ipw2100 driver/module
6574  *
6575  * @returns 0 if ok, < 0 errno node con error.
6576  *
6577  * Note: we cannot init the /proc stuff until the PCI driver is there,
6578  * or we risk an unlikely race condition on someone accessing
6579  * uninitialized data in the PCI dev struct through /proc.
6580  */
6581 static int __init ipw2100_init(void)
6582 {
6583 	int ret;
6584 
6585 	printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6586 	printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6587 
6588 	pm_qos_add_request(&ipw2100_pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
6589 			   PM_QOS_DEFAULT_VALUE);
6590 
6591 	ret = pci_register_driver(&ipw2100_pci_driver);
6592 	if (ret)
6593 		goto out;
6594 
6595 #ifdef CONFIG_IPW2100_DEBUG
6596 	ipw2100_debug_level = debug;
6597 	ret = driver_create_file(&ipw2100_pci_driver.driver,
6598 				 &driver_attr_debug_level);
6599 #endif
6600 
6601 out:
6602 	return ret;
6603 }
6604 
6605 /**
6606  * Cleanup ipw2100 driver registration
6607  */
6608 static void __exit ipw2100_exit(void)
6609 {
6610 	/* FIXME: IPG: check that we have no instances of the devices open */
6611 #ifdef CONFIG_IPW2100_DEBUG
6612 	driver_remove_file(&ipw2100_pci_driver.driver,
6613 			   &driver_attr_debug_level);
6614 #endif
6615 	pci_unregister_driver(&ipw2100_pci_driver);
6616 	pm_qos_remove_request(&ipw2100_pm_qos_req);
6617 }
6618 
6619 module_init(ipw2100_init);
6620 module_exit(ipw2100_exit);
6621 
6622 static int ipw2100_wx_get_name(struct net_device *dev,
6623 			       struct iw_request_info *info,
6624 			       union iwreq_data *wrqu, char *extra)
6625 {
6626 	/*
6627 	 * This can be called at any time.  No action lock required
6628 	 */
6629 
6630 	struct ipw2100_priv *priv = libipw_priv(dev);
6631 	if (!(priv->status & STATUS_ASSOCIATED))
6632 		strcpy(wrqu->name, "unassociated");
6633 	else
6634 		snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6635 
6636 	IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6637 	return 0;
6638 }
6639 
6640 static int ipw2100_wx_set_freq(struct net_device *dev,
6641 			       struct iw_request_info *info,
6642 			       union iwreq_data *wrqu, char *extra)
6643 {
6644 	struct ipw2100_priv *priv = libipw_priv(dev);
6645 	struct iw_freq *fwrq = &wrqu->freq;
6646 	int err = 0;
6647 
6648 	if (priv->ieee->iw_mode == IW_MODE_INFRA)
6649 		return -EOPNOTSUPP;
6650 
6651 	mutex_lock(&priv->action_mutex);
6652 	if (!(priv->status & STATUS_INITIALIZED)) {
6653 		err = -EIO;
6654 		goto done;
6655 	}
6656 
6657 	/* if setting by freq convert to channel */
6658 	if (fwrq->e == 1) {
6659 		if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6660 			int f = fwrq->m / 100000;
6661 			int c = 0;
6662 
6663 			while ((c < REG_MAX_CHANNEL) &&
6664 			       (f != ipw2100_frequencies[c]))
6665 				c++;
6666 
6667 			/* hack to fall through */
6668 			fwrq->e = 0;
6669 			fwrq->m = c + 1;
6670 		}
6671 	}
6672 
6673 	if (fwrq->e > 0 || fwrq->m > 1000) {
6674 		err = -EOPNOTSUPP;
6675 		goto done;
6676 	} else {		/* Set the channel */
6677 		IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
6678 		err = ipw2100_set_channel(priv, fwrq->m, 0);
6679 	}
6680 
6681       done:
6682 	mutex_unlock(&priv->action_mutex);
6683 	return err;
6684 }
6685 
6686 static int ipw2100_wx_get_freq(struct net_device *dev,
6687 			       struct iw_request_info *info,
6688 			       union iwreq_data *wrqu, char *extra)
6689 {
6690 	/*
6691 	 * This can be called at any time.  No action lock required
6692 	 */
6693 
6694 	struct ipw2100_priv *priv = libipw_priv(dev);
6695 
6696 	wrqu->freq.e = 0;
6697 
6698 	/* If we are associated, trying to associate, or have a statically
6699 	 * configured CHANNEL then return that; otherwise return ANY */
6700 	if (priv->config & CFG_STATIC_CHANNEL ||
6701 	    priv->status & STATUS_ASSOCIATED)
6702 		wrqu->freq.m = priv->channel;
6703 	else
6704 		wrqu->freq.m = 0;
6705 
6706 	IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
6707 	return 0;
6708 
6709 }
6710 
6711 static int ipw2100_wx_set_mode(struct net_device *dev,
6712 			       struct iw_request_info *info,
6713 			       union iwreq_data *wrqu, char *extra)
6714 {
6715 	struct ipw2100_priv *priv = libipw_priv(dev);
6716 	int err = 0;
6717 
6718 	IPW_DEBUG_WX("SET Mode -> %d\n", wrqu->mode);
6719 
6720 	if (wrqu->mode == priv->ieee->iw_mode)
6721 		return 0;
6722 
6723 	mutex_lock(&priv->action_mutex);
6724 	if (!(priv->status & STATUS_INITIALIZED)) {
6725 		err = -EIO;
6726 		goto done;
6727 	}
6728 
6729 	switch (wrqu->mode) {
6730 #ifdef CONFIG_IPW2100_MONITOR
6731 	case IW_MODE_MONITOR:
6732 		err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6733 		break;
6734 #endif				/* CONFIG_IPW2100_MONITOR */
6735 	case IW_MODE_ADHOC:
6736 		err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6737 		break;
6738 	case IW_MODE_INFRA:
6739 	case IW_MODE_AUTO:
6740 	default:
6741 		err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6742 		break;
6743 	}
6744 
6745       done:
6746 	mutex_unlock(&priv->action_mutex);
6747 	return err;
6748 }
6749 
6750 static int ipw2100_wx_get_mode(struct net_device *dev,
6751 			       struct iw_request_info *info,
6752 			       union iwreq_data *wrqu, char *extra)
6753 {
6754 	/*
6755 	 * This can be called at any time.  No action lock required
6756 	 */
6757 
6758 	struct ipw2100_priv *priv = libipw_priv(dev);
6759 
6760 	wrqu->mode = priv->ieee->iw_mode;
6761 	IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6762 
6763 	return 0;
6764 }
6765 
6766 #define POWER_MODES 5
6767 
6768 /* Values are in microsecond */
6769 static const s32 timeout_duration[POWER_MODES] = {
6770 	350000,
6771 	250000,
6772 	75000,
6773 	37000,
6774 	25000,
6775 };
6776 
6777 static const s32 period_duration[POWER_MODES] = {
6778 	400000,
6779 	700000,
6780 	1000000,
6781 	1000000,
6782 	1000000
6783 };
6784 
6785 static int ipw2100_wx_get_range(struct net_device *dev,
6786 				struct iw_request_info *info,
6787 				union iwreq_data *wrqu, char *extra)
6788 {
6789 	/*
6790 	 * This can be called at any time.  No action lock required
6791 	 */
6792 
6793 	struct ipw2100_priv *priv = libipw_priv(dev);
6794 	struct iw_range *range = (struct iw_range *)extra;
6795 	u16 val;
6796 	int i, level;
6797 
6798 	wrqu->data.length = sizeof(*range);
6799 	memset(range, 0, sizeof(*range));
6800 
6801 	/* Let's try to keep this struct in the same order as in
6802 	 * linux/include/wireless.h
6803 	 */
6804 
6805 	/* TODO: See what values we can set, and remove the ones we can't
6806 	 * set, or fill them with some default data.
6807 	 */
6808 
6809 	/* ~5 Mb/s real (802.11b) */
6810 	range->throughput = 5 * 1000 * 1000;
6811 
6812 //      range->sensitivity;     /* signal level threshold range */
6813 
6814 	range->max_qual.qual = 100;
6815 	/* TODO: Find real max RSSI and stick here */
6816 	range->max_qual.level = 0;
6817 	range->max_qual.noise = 0;
6818 	range->max_qual.updated = 7;	/* Updated all three */
6819 
6820 	range->avg_qual.qual = 70;	/* > 8% missed beacons is 'bad' */
6821 	/* TODO: Find real 'good' to 'bad' threshold value for RSSI */
6822 	range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6823 	range->avg_qual.noise = 0;
6824 	range->avg_qual.updated = 7;	/* Updated all three */
6825 
6826 	range->num_bitrates = RATE_COUNT;
6827 
6828 	for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6829 		range->bitrate[i] = ipw2100_bg_rates[i].bitrate * 100 * 1000;
6830 	}
6831 
6832 	range->min_rts = MIN_RTS_THRESHOLD;
6833 	range->max_rts = MAX_RTS_THRESHOLD;
6834 	range->min_frag = MIN_FRAG_THRESHOLD;
6835 	range->max_frag = MAX_FRAG_THRESHOLD;
6836 
6837 	range->min_pmp = period_duration[0];	/* Minimal PM period */
6838 	range->max_pmp = period_duration[POWER_MODES - 1];	/* Maximal PM period */
6839 	range->min_pmt = timeout_duration[POWER_MODES - 1];	/* Minimal PM timeout */
6840 	range->max_pmt = timeout_duration[0];	/* Maximal PM timeout */
6841 
6842 	/* How to decode max/min PM period */
6843 	range->pmp_flags = IW_POWER_PERIOD;
6844 	/* How to decode max/min PM period */
6845 	range->pmt_flags = IW_POWER_TIMEOUT;
6846 	/* What PM options are supported */
6847 	range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6848 
6849 	range->encoding_size[0] = 5;
6850 	range->encoding_size[1] = 13;	/* Different token sizes */
6851 	range->num_encoding_sizes = 2;	/* Number of entry in the list */
6852 	range->max_encoding_tokens = WEP_KEYS;	/* Max number of tokens */
6853 //      range->encoding_login_index;            /* token index for login token */
6854 
6855 	if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6856 		range->txpower_capa = IW_TXPOW_DBM;
6857 		range->num_txpower = IW_MAX_TXPOWER;
6858 		for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6859 		     i < IW_MAX_TXPOWER;
6860 		     i++, level -=
6861 		     ((IPW_TX_POWER_MAX_DBM -
6862 		       IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6863 			range->txpower[i] = level / 16;
6864 	} else {
6865 		range->txpower_capa = 0;
6866 		range->num_txpower = 0;
6867 	}
6868 
6869 	/* Set the Wireless Extension versions */
6870 	range->we_version_compiled = WIRELESS_EXT;
6871 	range->we_version_source = 18;
6872 
6873 //      range->retry_capa;      /* What retry options are supported */
6874 //      range->retry_flags;     /* How to decode max/min retry limit */
6875 //      range->r_time_flags;    /* How to decode max/min retry life */
6876 //      range->min_retry;       /* Minimal number of retries */
6877 //      range->max_retry;       /* Maximal number of retries */
6878 //      range->min_r_time;      /* Minimal retry lifetime */
6879 //      range->max_r_time;      /* Maximal retry lifetime */
6880 
6881 	range->num_channels = FREQ_COUNT;
6882 
6883 	val = 0;
6884 	for (i = 0; i < FREQ_COUNT; i++) {
6885 		// TODO: Include only legal frequencies for some countries
6886 //              if (local->channel_mask & (1 << i)) {
6887 		range->freq[val].i = i + 1;
6888 		range->freq[val].m = ipw2100_frequencies[i] * 100000;
6889 		range->freq[val].e = 1;
6890 		val++;
6891 //              }
6892 		if (val == IW_MAX_FREQUENCIES)
6893 			break;
6894 	}
6895 	range->num_frequency = val;
6896 
6897 	/* Event capability (kernel + driver) */
6898 	range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6899 				IW_EVENT_CAPA_MASK(SIOCGIWAP));
6900 	range->event_capa[1] = IW_EVENT_CAPA_K_1;
6901 
6902 	range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6903 		IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6904 
6905 	IPW_DEBUG_WX("GET Range\n");
6906 
6907 	return 0;
6908 }
6909 
6910 static int ipw2100_wx_set_wap(struct net_device *dev,
6911 			      struct iw_request_info *info,
6912 			      union iwreq_data *wrqu, char *extra)
6913 {
6914 	struct ipw2100_priv *priv = libipw_priv(dev);
6915 	int err = 0;
6916 
6917 	// sanity checks
6918 	if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6919 		return -EINVAL;
6920 
6921 	mutex_lock(&priv->action_mutex);
6922 	if (!(priv->status & STATUS_INITIALIZED)) {
6923 		err = -EIO;
6924 		goto done;
6925 	}
6926 
6927 	if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) ||
6928 	    is_zero_ether_addr(wrqu->ap_addr.sa_data)) {
6929 		/* we disable mandatory BSSID association */
6930 		IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6931 		priv->config &= ~CFG_STATIC_BSSID;
6932 		err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6933 		goto done;
6934 	}
6935 
6936 	priv->config |= CFG_STATIC_BSSID;
6937 	memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6938 
6939 	err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6940 
6941 	IPW_DEBUG_WX("SET BSSID -> %pM\n", wrqu->ap_addr.sa_data);
6942 
6943       done:
6944 	mutex_unlock(&priv->action_mutex);
6945 	return err;
6946 }
6947 
6948 static int ipw2100_wx_get_wap(struct net_device *dev,
6949 			      struct iw_request_info *info,
6950 			      union iwreq_data *wrqu, char *extra)
6951 {
6952 	/*
6953 	 * This can be called at any time.  No action lock required
6954 	 */
6955 
6956 	struct ipw2100_priv *priv = libipw_priv(dev);
6957 
6958 	/* If we are associated, trying to associate, or have a statically
6959 	 * configured BSSID then return that; otherwise return ANY */
6960 	if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6961 		wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6962 		memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6963 	} else
6964 		eth_zero_addr(wrqu->ap_addr.sa_data);
6965 
6966 	IPW_DEBUG_WX("Getting WAP BSSID: %pM\n", wrqu->ap_addr.sa_data);
6967 	return 0;
6968 }
6969 
6970 static int ipw2100_wx_set_essid(struct net_device *dev,
6971 				struct iw_request_info *info,
6972 				union iwreq_data *wrqu, char *extra)
6973 {
6974 	struct ipw2100_priv *priv = libipw_priv(dev);
6975 	char *essid = "";	/* ANY */
6976 	int length = 0;
6977 	int err = 0;
6978 
6979 	mutex_lock(&priv->action_mutex);
6980 	if (!(priv->status & STATUS_INITIALIZED)) {
6981 		err = -EIO;
6982 		goto done;
6983 	}
6984 
6985 	if (wrqu->essid.flags && wrqu->essid.length) {
6986 		length = wrqu->essid.length;
6987 		essid = extra;
6988 	}
6989 
6990 	if (length == 0) {
6991 		IPW_DEBUG_WX("Setting ESSID to ANY\n");
6992 		priv->config &= ~CFG_STATIC_ESSID;
6993 		err = ipw2100_set_essid(priv, NULL, 0, 0);
6994 		goto done;
6995 	}
6996 
6997 	length = min(length, IW_ESSID_MAX_SIZE);
6998 
6999 	priv->config |= CFG_STATIC_ESSID;
7000 
7001 	if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
7002 		IPW_DEBUG_WX("ESSID set to current ESSID.\n");
7003 		err = 0;
7004 		goto done;
7005 	}
7006 
7007 	IPW_DEBUG_WX("Setting ESSID: '%*pE' (%d)\n", length, essid, length);
7008 
7009 	priv->essid_len = length;
7010 	memcpy(priv->essid, essid, priv->essid_len);
7011 
7012 	err = ipw2100_set_essid(priv, essid, length, 0);
7013 
7014       done:
7015 	mutex_unlock(&priv->action_mutex);
7016 	return err;
7017 }
7018 
7019 static int ipw2100_wx_get_essid(struct net_device *dev,
7020 				struct iw_request_info *info,
7021 				union iwreq_data *wrqu, char *extra)
7022 {
7023 	/*
7024 	 * This can be called at any time.  No action lock required
7025 	 */
7026 
7027 	struct ipw2100_priv *priv = libipw_priv(dev);
7028 
7029 	/* If we are associated, trying to associate, or have a statically
7030 	 * configured ESSID then return that; otherwise return ANY */
7031 	if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7032 		IPW_DEBUG_WX("Getting essid: '%*pE'\n",
7033 			     priv->essid_len, priv->essid);
7034 		memcpy(extra, priv->essid, priv->essid_len);
7035 		wrqu->essid.length = priv->essid_len;
7036 		wrqu->essid.flags = 1;	/* active */
7037 	} else {
7038 		IPW_DEBUG_WX("Getting essid: ANY\n");
7039 		wrqu->essid.length = 0;
7040 		wrqu->essid.flags = 0;	/* active */
7041 	}
7042 
7043 	return 0;
7044 }
7045 
7046 static int ipw2100_wx_set_nick(struct net_device *dev,
7047 			       struct iw_request_info *info,
7048 			       union iwreq_data *wrqu, char *extra)
7049 {
7050 	/*
7051 	 * This can be called at any time.  No action lock required
7052 	 */
7053 
7054 	struct ipw2100_priv *priv = libipw_priv(dev);
7055 
7056 	if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7057 		return -E2BIG;
7058 
7059 	wrqu->data.length = min_t(size_t, wrqu->data.length, sizeof(priv->nick));
7060 	memset(priv->nick, 0, sizeof(priv->nick));
7061 	memcpy(priv->nick, extra, wrqu->data.length);
7062 
7063 	IPW_DEBUG_WX("SET Nickname -> %s\n", priv->nick);
7064 
7065 	return 0;
7066 }
7067 
7068 static int ipw2100_wx_get_nick(struct net_device *dev,
7069 			       struct iw_request_info *info,
7070 			       union iwreq_data *wrqu, char *extra)
7071 {
7072 	/*
7073 	 * This can be called at any time.  No action lock required
7074 	 */
7075 
7076 	struct ipw2100_priv *priv = libipw_priv(dev);
7077 
7078 	wrqu->data.length = strlen(priv->nick);
7079 	memcpy(extra, priv->nick, wrqu->data.length);
7080 	wrqu->data.flags = 1;	/* active */
7081 
7082 	IPW_DEBUG_WX("GET Nickname -> %s\n", extra);
7083 
7084 	return 0;
7085 }
7086 
7087 static int ipw2100_wx_set_rate(struct net_device *dev,
7088 			       struct iw_request_info *info,
7089 			       union iwreq_data *wrqu, char *extra)
7090 {
7091 	struct ipw2100_priv *priv = libipw_priv(dev);
7092 	u32 target_rate = wrqu->bitrate.value;
7093 	u32 rate;
7094 	int err = 0;
7095 
7096 	mutex_lock(&priv->action_mutex);
7097 	if (!(priv->status & STATUS_INITIALIZED)) {
7098 		err = -EIO;
7099 		goto done;
7100 	}
7101 
7102 	rate = 0;
7103 
7104 	if (target_rate == 1000000 ||
7105 	    (!wrqu->bitrate.fixed && target_rate > 1000000))
7106 		rate |= TX_RATE_1_MBIT;
7107 	if (target_rate == 2000000 ||
7108 	    (!wrqu->bitrate.fixed && target_rate > 2000000))
7109 		rate |= TX_RATE_2_MBIT;
7110 	if (target_rate == 5500000 ||
7111 	    (!wrqu->bitrate.fixed && target_rate > 5500000))
7112 		rate |= TX_RATE_5_5_MBIT;
7113 	if (target_rate == 11000000 ||
7114 	    (!wrqu->bitrate.fixed && target_rate > 11000000))
7115 		rate |= TX_RATE_11_MBIT;
7116 	if (rate == 0)
7117 		rate = DEFAULT_TX_RATES;
7118 
7119 	err = ipw2100_set_tx_rates(priv, rate, 0);
7120 
7121 	IPW_DEBUG_WX("SET Rate -> %04X\n", rate);
7122       done:
7123 	mutex_unlock(&priv->action_mutex);
7124 	return err;
7125 }
7126 
7127 static int ipw2100_wx_get_rate(struct net_device *dev,
7128 			       struct iw_request_info *info,
7129 			       union iwreq_data *wrqu, char *extra)
7130 {
7131 	struct ipw2100_priv *priv = libipw_priv(dev);
7132 	int val;
7133 	unsigned int len = sizeof(val);
7134 	int err = 0;
7135 
7136 	if (!(priv->status & STATUS_ENABLED) ||
7137 	    priv->status & STATUS_RF_KILL_MASK ||
7138 	    !(priv->status & STATUS_ASSOCIATED)) {
7139 		wrqu->bitrate.value = 0;
7140 		return 0;
7141 	}
7142 
7143 	mutex_lock(&priv->action_mutex);
7144 	if (!(priv->status & STATUS_INITIALIZED)) {
7145 		err = -EIO;
7146 		goto done;
7147 	}
7148 
7149 	err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7150 	if (err) {
7151 		IPW_DEBUG_WX("failed querying ordinals.\n");
7152 		goto done;
7153 	}
7154 
7155 	switch (val & TX_RATE_MASK) {
7156 	case TX_RATE_1_MBIT:
7157 		wrqu->bitrate.value = 1000000;
7158 		break;
7159 	case TX_RATE_2_MBIT:
7160 		wrqu->bitrate.value = 2000000;
7161 		break;
7162 	case TX_RATE_5_5_MBIT:
7163 		wrqu->bitrate.value = 5500000;
7164 		break;
7165 	case TX_RATE_11_MBIT:
7166 		wrqu->bitrate.value = 11000000;
7167 		break;
7168 	default:
7169 		wrqu->bitrate.value = 0;
7170 	}
7171 
7172 	IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
7173 
7174       done:
7175 	mutex_unlock(&priv->action_mutex);
7176 	return err;
7177 }
7178 
7179 static int ipw2100_wx_set_rts(struct net_device *dev,
7180 			      struct iw_request_info *info,
7181 			      union iwreq_data *wrqu, char *extra)
7182 {
7183 	struct ipw2100_priv *priv = libipw_priv(dev);
7184 	int value, err;
7185 
7186 	/* Auto RTS not yet supported */
7187 	if (wrqu->rts.fixed == 0)
7188 		return -EINVAL;
7189 
7190 	mutex_lock(&priv->action_mutex);
7191 	if (!(priv->status & STATUS_INITIALIZED)) {
7192 		err = -EIO;
7193 		goto done;
7194 	}
7195 
7196 	if (wrqu->rts.disabled)
7197 		value = priv->rts_threshold | RTS_DISABLED;
7198 	else {
7199 		if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7200 			err = -EINVAL;
7201 			goto done;
7202 		}
7203 		value = wrqu->rts.value;
7204 	}
7205 
7206 	err = ipw2100_set_rts_threshold(priv, value);
7207 
7208 	IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X\n", value);
7209       done:
7210 	mutex_unlock(&priv->action_mutex);
7211 	return err;
7212 }
7213 
7214 static int ipw2100_wx_get_rts(struct net_device *dev,
7215 			      struct iw_request_info *info,
7216 			      union iwreq_data *wrqu, char *extra)
7217 {
7218 	/*
7219 	 * This can be called at any time.  No action lock required
7220 	 */
7221 
7222 	struct ipw2100_priv *priv = libipw_priv(dev);
7223 
7224 	wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7225 	wrqu->rts.fixed = 1;	/* no auto select */
7226 
7227 	/* If RTS is set to the default value, then it is disabled */
7228 	wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7229 
7230 	IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X\n", wrqu->rts.value);
7231 
7232 	return 0;
7233 }
7234 
7235 static int ipw2100_wx_set_txpow(struct net_device *dev,
7236 				struct iw_request_info *info,
7237 				union iwreq_data *wrqu, char *extra)
7238 {
7239 	struct ipw2100_priv *priv = libipw_priv(dev);
7240 	int err = 0, value;
7241 
7242 	if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7243 		return -EINPROGRESS;
7244 
7245 	if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7246 		return 0;
7247 
7248 	if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7249 		return -EINVAL;
7250 
7251 	if (wrqu->txpower.fixed == 0)
7252 		value = IPW_TX_POWER_DEFAULT;
7253 	else {
7254 		if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7255 		    wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7256 			return -EINVAL;
7257 
7258 		value = wrqu->txpower.value;
7259 	}
7260 
7261 	mutex_lock(&priv->action_mutex);
7262 	if (!(priv->status & STATUS_INITIALIZED)) {
7263 		err = -EIO;
7264 		goto done;
7265 	}
7266 
7267 	err = ipw2100_set_tx_power(priv, value);
7268 
7269 	IPW_DEBUG_WX("SET TX Power -> %d\n", value);
7270 
7271       done:
7272 	mutex_unlock(&priv->action_mutex);
7273 	return err;
7274 }
7275 
7276 static int ipw2100_wx_get_txpow(struct net_device *dev,
7277 				struct iw_request_info *info,
7278 				union iwreq_data *wrqu, char *extra)
7279 {
7280 	/*
7281 	 * This can be called at any time.  No action lock required
7282 	 */
7283 
7284 	struct ipw2100_priv *priv = libipw_priv(dev);
7285 
7286 	wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7287 
7288 	if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7289 		wrqu->txpower.fixed = 0;
7290 		wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7291 	} else {
7292 		wrqu->txpower.fixed = 1;
7293 		wrqu->txpower.value = priv->tx_power;
7294 	}
7295 
7296 	wrqu->txpower.flags = IW_TXPOW_DBM;
7297 
7298 	IPW_DEBUG_WX("GET TX Power -> %d\n", wrqu->txpower.value);
7299 
7300 	return 0;
7301 }
7302 
7303 static int ipw2100_wx_set_frag(struct net_device *dev,
7304 			       struct iw_request_info *info,
7305 			       union iwreq_data *wrqu, char *extra)
7306 {
7307 	/*
7308 	 * This can be called at any time.  No action lock required
7309 	 */
7310 
7311 	struct ipw2100_priv *priv = libipw_priv(dev);
7312 
7313 	if (!wrqu->frag.fixed)
7314 		return -EINVAL;
7315 
7316 	if (wrqu->frag.disabled) {
7317 		priv->frag_threshold |= FRAG_DISABLED;
7318 		priv->ieee->fts = DEFAULT_FTS;
7319 	} else {
7320 		if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7321 		    wrqu->frag.value > MAX_FRAG_THRESHOLD)
7322 			return -EINVAL;
7323 
7324 		priv->ieee->fts = wrqu->frag.value & ~0x1;
7325 		priv->frag_threshold = priv->ieee->fts;
7326 	}
7327 
7328 	IPW_DEBUG_WX("SET Frag Threshold -> %d\n", priv->ieee->fts);
7329 
7330 	return 0;
7331 }
7332 
7333 static int ipw2100_wx_get_frag(struct net_device *dev,
7334 			       struct iw_request_info *info,
7335 			       union iwreq_data *wrqu, char *extra)
7336 {
7337 	/*
7338 	 * This can be called at any time.  No action lock required
7339 	 */
7340 
7341 	struct ipw2100_priv *priv = libipw_priv(dev);
7342 	wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7343 	wrqu->frag.fixed = 0;	/* no auto select */
7344 	wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7345 
7346 	IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
7347 
7348 	return 0;
7349 }
7350 
7351 static int ipw2100_wx_set_retry(struct net_device *dev,
7352 				struct iw_request_info *info,
7353 				union iwreq_data *wrqu, char *extra)
7354 {
7355 	struct ipw2100_priv *priv = libipw_priv(dev);
7356 	int err = 0;
7357 
7358 	if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7359 		return -EINVAL;
7360 
7361 	if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7362 		return 0;
7363 
7364 	mutex_lock(&priv->action_mutex);
7365 	if (!(priv->status & STATUS_INITIALIZED)) {
7366 		err = -EIO;
7367 		goto done;
7368 	}
7369 
7370 	if (wrqu->retry.flags & IW_RETRY_SHORT) {
7371 		err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7372 		IPW_DEBUG_WX("SET Short Retry Limit -> %d\n",
7373 			     wrqu->retry.value);
7374 		goto done;
7375 	}
7376 
7377 	if (wrqu->retry.flags & IW_RETRY_LONG) {
7378 		err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7379 		IPW_DEBUG_WX("SET Long Retry Limit -> %d\n",
7380 			     wrqu->retry.value);
7381 		goto done;
7382 	}
7383 
7384 	err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7385 	if (!err)
7386 		err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7387 
7388 	IPW_DEBUG_WX("SET Both Retry Limits -> %d\n", wrqu->retry.value);
7389 
7390       done:
7391 	mutex_unlock(&priv->action_mutex);
7392 	return err;
7393 }
7394 
7395 static int ipw2100_wx_get_retry(struct net_device *dev,
7396 				struct iw_request_info *info,
7397 				union iwreq_data *wrqu, char *extra)
7398 {
7399 	/*
7400 	 * This can be called at any time.  No action lock required
7401 	 */
7402 
7403 	struct ipw2100_priv *priv = libipw_priv(dev);
7404 
7405 	wrqu->retry.disabled = 0;	/* can't be disabled */
7406 
7407 	if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7408 		return -EINVAL;
7409 
7410 	if (wrqu->retry.flags & IW_RETRY_LONG) {
7411 		wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7412 		wrqu->retry.value = priv->long_retry_limit;
7413 	} else {
7414 		wrqu->retry.flags =
7415 		    (priv->short_retry_limit !=
7416 		     priv->long_retry_limit) ?
7417 		    IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7418 
7419 		wrqu->retry.value = priv->short_retry_limit;
7420 	}
7421 
7422 	IPW_DEBUG_WX("GET Retry -> %d\n", wrqu->retry.value);
7423 
7424 	return 0;
7425 }
7426 
7427 static int ipw2100_wx_set_scan(struct net_device *dev,
7428 			       struct iw_request_info *info,
7429 			       union iwreq_data *wrqu, char *extra)
7430 {
7431 	struct ipw2100_priv *priv = libipw_priv(dev);
7432 	int err = 0;
7433 
7434 	mutex_lock(&priv->action_mutex);
7435 	if (!(priv->status & STATUS_INITIALIZED)) {
7436 		err = -EIO;
7437 		goto done;
7438 	}
7439 
7440 	IPW_DEBUG_WX("Initiating scan...\n");
7441 
7442 	priv->user_requested_scan = 1;
7443 	if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7444 		IPW_DEBUG_WX("Start scan failed.\n");
7445 
7446 		/* TODO: Mark a scan as pending so when hardware initialized
7447 		 *       a scan starts */
7448 	}
7449 
7450       done:
7451 	mutex_unlock(&priv->action_mutex);
7452 	return err;
7453 }
7454 
7455 static int ipw2100_wx_get_scan(struct net_device *dev,
7456 			       struct iw_request_info *info,
7457 			       union iwreq_data *wrqu, char *extra)
7458 {
7459 	/*
7460 	 * This can be called at any time.  No action lock required
7461 	 */
7462 
7463 	struct ipw2100_priv *priv = libipw_priv(dev);
7464 	return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
7465 }
7466 
7467 /*
7468  * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7469  */
7470 static int ipw2100_wx_set_encode(struct net_device *dev,
7471 				 struct iw_request_info *info,
7472 				 union iwreq_data *wrqu, char *key)
7473 {
7474 	/*
7475 	 * No check of STATUS_INITIALIZED required
7476 	 */
7477 
7478 	struct ipw2100_priv *priv = libipw_priv(dev);
7479 	return libipw_wx_set_encode(priv->ieee, info, wrqu, key);
7480 }
7481 
7482 static int ipw2100_wx_get_encode(struct net_device *dev,
7483 				 struct iw_request_info *info,
7484 				 union iwreq_data *wrqu, char *key)
7485 {
7486 	/*
7487 	 * This can be called at any time.  No action lock required
7488 	 */
7489 
7490 	struct ipw2100_priv *priv = libipw_priv(dev);
7491 	return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
7492 }
7493 
7494 static int ipw2100_wx_set_power(struct net_device *dev,
7495 				struct iw_request_info *info,
7496 				union iwreq_data *wrqu, char *extra)
7497 {
7498 	struct ipw2100_priv *priv = libipw_priv(dev);
7499 	int err = 0;
7500 
7501 	mutex_lock(&priv->action_mutex);
7502 	if (!(priv->status & STATUS_INITIALIZED)) {
7503 		err = -EIO;
7504 		goto done;
7505 	}
7506 
7507 	if (wrqu->power.disabled) {
7508 		priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7509 		err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7510 		IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7511 		goto done;
7512 	}
7513 
7514 	switch (wrqu->power.flags & IW_POWER_MODE) {
7515 	case IW_POWER_ON:	/* If not specified */
7516 	case IW_POWER_MODE:	/* If set all mask */
7517 	case IW_POWER_ALL_R:	/* If explicitly state all */
7518 		break;
7519 	default:		/* Otherwise we don't support it */
7520 		IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7521 			     wrqu->power.flags);
7522 		err = -EOPNOTSUPP;
7523 		goto done;
7524 	}
7525 
7526 	/* If the user hasn't specified a power management mode yet, default
7527 	 * to BATTERY */
7528 	priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7529 	err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7530 
7531 	IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7532 
7533       done:
7534 	mutex_unlock(&priv->action_mutex);
7535 	return err;
7536 
7537 }
7538 
7539 static int ipw2100_wx_get_power(struct net_device *dev,
7540 				struct iw_request_info *info,
7541 				union iwreq_data *wrqu, char *extra)
7542 {
7543 	/*
7544 	 * This can be called at any time.  No action lock required
7545 	 */
7546 
7547 	struct ipw2100_priv *priv = libipw_priv(dev);
7548 
7549 	if (!(priv->power_mode & IPW_POWER_ENABLED))
7550 		wrqu->power.disabled = 1;
7551 	else {
7552 		wrqu->power.disabled = 0;
7553 		wrqu->power.flags = 0;
7554 	}
7555 
7556 	IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7557 
7558 	return 0;
7559 }
7560 
7561 /*
7562  * WE-18 WPA support
7563  */
7564 
7565 /* SIOCSIWGENIE */
7566 static int ipw2100_wx_set_genie(struct net_device *dev,
7567 				struct iw_request_info *info,
7568 				union iwreq_data *wrqu, char *extra)
7569 {
7570 
7571 	struct ipw2100_priv *priv = libipw_priv(dev);
7572 	struct libipw_device *ieee = priv->ieee;
7573 	u8 *buf;
7574 
7575 	if (!ieee->wpa_enabled)
7576 		return -EOPNOTSUPP;
7577 
7578 	if (wrqu->data.length > MAX_WPA_IE_LEN ||
7579 	    (wrqu->data.length && extra == NULL))
7580 		return -EINVAL;
7581 
7582 	if (wrqu->data.length) {
7583 		buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7584 		if (buf == NULL)
7585 			return -ENOMEM;
7586 
7587 		kfree(ieee->wpa_ie);
7588 		ieee->wpa_ie = buf;
7589 		ieee->wpa_ie_len = wrqu->data.length;
7590 	} else {
7591 		kfree(ieee->wpa_ie);
7592 		ieee->wpa_ie = NULL;
7593 		ieee->wpa_ie_len = 0;
7594 	}
7595 
7596 	ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7597 
7598 	return 0;
7599 }
7600 
7601 /* SIOCGIWGENIE */
7602 static int ipw2100_wx_get_genie(struct net_device *dev,
7603 				struct iw_request_info *info,
7604 				union iwreq_data *wrqu, char *extra)
7605 {
7606 	struct ipw2100_priv *priv = libipw_priv(dev);
7607 	struct libipw_device *ieee = priv->ieee;
7608 
7609 	if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7610 		wrqu->data.length = 0;
7611 		return 0;
7612 	}
7613 
7614 	if (wrqu->data.length < ieee->wpa_ie_len)
7615 		return -E2BIG;
7616 
7617 	wrqu->data.length = ieee->wpa_ie_len;
7618 	memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7619 
7620 	return 0;
7621 }
7622 
7623 /* SIOCSIWAUTH */
7624 static int ipw2100_wx_set_auth(struct net_device *dev,
7625 			       struct iw_request_info *info,
7626 			       union iwreq_data *wrqu, char *extra)
7627 {
7628 	struct ipw2100_priv *priv = libipw_priv(dev);
7629 	struct libipw_device *ieee = priv->ieee;
7630 	struct iw_param *param = &wrqu->param;
7631 	struct lib80211_crypt_data *crypt;
7632 	unsigned long flags;
7633 	int ret = 0;
7634 
7635 	switch (param->flags & IW_AUTH_INDEX) {
7636 	case IW_AUTH_WPA_VERSION:
7637 	case IW_AUTH_CIPHER_PAIRWISE:
7638 	case IW_AUTH_CIPHER_GROUP:
7639 	case IW_AUTH_KEY_MGMT:
7640 		/*
7641 		 * ipw2200 does not use these parameters
7642 		 */
7643 		break;
7644 
7645 	case IW_AUTH_TKIP_COUNTERMEASURES:
7646 		crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7647 		if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7648 			break;
7649 
7650 		flags = crypt->ops->get_flags(crypt->priv);
7651 
7652 		if (param->value)
7653 			flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7654 		else
7655 			flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7656 
7657 		crypt->ops->set_flags(flags, crypt->priv);
7658 
7659 		break;
7660 
7661 	case IW_AUTH_DROP_UNENCRYPTED:{
7662 			/* HACK:
7663 			 *
7664 			 * wpa_supplicant calls set_wpa_enabled when the driver
7665 			 * is loaded and unloaded, regardless of if WPA is being
7666 			 * used.  No other calls are made which can be used to
7667 			 * determine if encryption will be used or not prior to
7668 			 * association being expected.  If encryption is not being
7669 			 * used, drop_unencrypted is set to false, else true -- we
7670 			 * can use this to determine if the CAP_PRIVACY_ON bit should
7671 			 * be set.
7672 			 */
7673 			struct libipw_security sec = {
7674 				.flags = SEC_ENABLED,
7675 				.enabled = param->value,
7676 			};
7677 			priv->ieee->drop_unencrypted = param->value;
7678 			/* We only change SEC_LEVEL for open mode. Others
7679 			 * are set by ipw_wpa_set_encryption.
7680 			 */
7681 			if (!param->value) {
7682 				sec.flags |= SEC_LEVEL;
7683 				sec.level = SEC_LEVEL_0;
7684 			} else {
7685 				sec.flags |= SEC_LEVEL;
7686 				sec.level = SEC_LEVEL_1;
7687 			}
7688 			if (priv->ieee->set_security)
7689 				priv->ieee->set_security(priv->ieee->dev, &sec);
7690 			break;
7691 		}
7692 
7693 	case IW_AUTH_80211_AUTH_ALG:
7694 		ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7695 		break;
7696 
7697 	case IW_AUTH_WPA_ENABLED:
7698 		ret = ipw2100_wpa_enable(priv, param->value);
7699 		break;
7700 
7701 	case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7702 		ieee->ieee802_1x = param->value;
7703 		break;
7704 
7705 		//case IW_AUTH_ROAMING_CONTROL:
7706 	case IW_AUTH_PRIVACY_INVOKED:
7707 		ieee->privacy_invoked = param->value;
7708 		break;
7709 
7710 	default:
7711 		return -EOPNOTSUPP;
7712 	}
7713 	return ret;
7714 }
7715 
7716 /* SIOCGIWAUTH */
7717 static int ipw2100_wx_get_auth(struct net_device *dev,
7718 			       struct iw_request_info *info,
7719 			       union iwreq_data *wrqu, char *extra)
7720 {
7721 	struct ipw2100_priv *priv = libipw_priv(dev);
7722 	struct libipw_device *ieee = priv->ieee;
7723 	struct lib80211_crypt_data *crypt;
7724 	struct iw_param *param = &wrqu->param;
7725 	int ret = 0;
7726 
7727 	switch (param->flags & IW_AUTH_INDEX) {
7728 	case IW_AUTH_WPA_VERSION:
7729 	case IW_AUTH_CIPHER_PAIRWISE:
7730 	case IW_AUTH_CIPHER_GROUP:
7731 	case IW_AUTH_KEY_MGMT:
7732 		/*
7733 		 * wpa_supplicant will control these internally
7734 		 */
7735 		ret = -EOPNOTSUPP;
7736 		break;
7737 
7738 	case IW_AUTH_TKIP_COUNTERMEASURES:
7739 		crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7740 		if (!crypt || !crypt->ops->get_flags) {
7741 			IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7742 					  "crypt not set!\n");
7743 			break;
7744 		}
7745 
7746 		param->value = (crypt->ops->get_flags(crypt->priv) &
7747 				IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7748 
7749 		break;
7750 
7751 	case IW_AUTH_DROP_UNENCRYPTED:
7752 		param->value = ieee->drop_unencrypted;
7753 		break;
7754 
7755 	case IW_AUTH_80211_AUTH_ALG:
7756 		param->value = priv->ieee->sec.auth_mode;
7757 		break;
7758 
7759 	case IW_AUTH_WPA_ENABLED:
7760 		param->value = ieee->wpa_enabled;
7761 		break;
7762 
7763 	case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7764 		param->value = ieee->ieee802_1x;
7765 		break;
7766 
7767 	case IW_AUTH_ROAMING_CONTROL:
7768 	case IW_AUTH_PRIVACY_INVOKED:
7769 		param->value = ieee->privacy_invoked;
7770 		break;
7771 
7772 	default:
7773 		return -EOPNOTSUPP;
7774 	}
7775 	return 0;
7776 }
7777 
7778 /* SIOCSIWENCODEEXT */
7779 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7780 				    struct iw_request_info *info,
7781 				    union iwreq_data *wrqu, char *extra)
7782 {
7783 	struct ipw2100_priv *priv = libipw_priv(dev);
7784 	return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7785 }
7786 
7787 /* SIOCGIWENCODEEXT */
7788 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7789 				    struct iw_request_info *info,
7790 				    union iwreq_data *wrqu, char *extra)
7791 {
7792 	struct ipw2100_priv *priv = libipw_priv(dev);
7793 	return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7794 }
7795 
7796 /* SIOCSIWMLME */
7797 static int ipw2100_wx_set_mlme(struct net_device *dev,
7798 			       struct iw_request_info *info,
7799 			       union iwreq_data *wrqu, char *extra)
7800 {
7801 	struct ipw2100_priv *priv = libipw_priv(dev);
7802 	struct iw_mlme *mlme = (struct iw_mlme *)extra;
7803 	__le16 reason;
7804 
7805 	reason = cpu_to_le16(mlme->reason_code);
7806 
7807 	switch (mlme->cmd) {
7808 	case IW_MLME_DEAUTH:
7809 		// silently ignore
7810 		break;
7811 
7812 	case IW_MLME_DISASSOC:
7813 		ipw2100_disassociate_bssid(priv);
7814 		break;
7815 
7816 	default:
7817 		return -EOPNOTSUPP;
7818 	}
7819 	return 0;
7820 }
7821 
7822 /*
7823  *
7824  * IWPRIV handlers
7825  *
7826  */
7827 #ifdef CONFIG_IPW2100_MONITOR
7828 static int ipw2100_wx_set_promisc(struct net_device *dev,
7829 				  struct iw_request_info *info,
7830 				  union iwreq_data *wrqu, char *extra)
7831 {
7832 	struct ipw2100_priv *priv = libipw_priv(dev);
7833 	int *parms = (int *)extra;
7834 	int enable = (parms[0] > 0);
7835 	int err = 0;
7836 
7837 	mutex_lock(&priv->action_mutex);
7838 	if (!(priv->status & STATUS_INITIALIZED)) {
7839 		err = -EIO;
7840 		goto done;
7841 	}
7842 
7843 	if (enable) {
7844 		if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7845 			err = ipw2100_set_channel(priv, parms[1], 0);
7846 			goto done;
7847 		}
7848 		priv->channel = parms[1];
7849 		err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7850 	} else {
7851 		if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7852 			err = ipw2100_switch_mode(priv, priv->last_mode);
7853 	}
7854       done:
7855 	mutex_unlock(&priv->action_mutex);
7856 	return err;
7857 }
7858 
7859 static int ipw2100_wx_reset(struct net_device *dev,
7860 			    struct iw_request_info *info,
7861 			    union iwreq_data *wrqu, char *extra)
7862 {
7863 	struct ipw2100_priv *priv = libipw_priv(dev);
7864 	if (priv->status & STATUS_INITIALIZED)
7865 		schedule_reset(priv);
7866 	return 0;
7867 }
7868 
7869 #endif
7870 
7871 static int ipw2100_wx_set_powermode(struct net_device *dev,
7872 				    struct iw_request_info *info,
7873 				    union iwreq_data *wrqu, char *extra)
7874 {
7875 	struct ipw2100_priv *priv = libipw_priv(dev);
7876 	int err = 0, mode = *(int *)extra;
7877 
7878 	mutex_lock(&priv->action_mutex);
7879 	if (!(priv->status & STATUS_INITIALIZED)) {
7880 		err = -EIO;
7881 		goto done;
7882 	}
7883 
7884 	if ((mode < 0) || (mode > POWER_MODES))
7885 		mode = IPW_POWER_AUTO;
7886 
7887 	if (IPW_POWER_LEVEL(priv->power_mode) != mode)
7888 		err = ipw2100_set_power_mode(priv, mode);
7889       done:
7890 	mutex_unlock(&priv->action_mutex);
7891 	return err;
7892 }
7893 
7894 #define MAX_POWER_STRING 80
7895 static int ipw2100_wx_get_powermode(struct net_device *dev,
7896 				    struct iw_request_info *info,
7897 				    union iwreq_data *wrqu, char *extra)
7898 {
7899 	/*
7900 	 * This can be called at any time.  No action lock required
7901 	 */
7902 
7903 	struct ipw2100_priv *priv = libipw_priv(dev);
7904 	int level = IPW_POWER_LEVEL(priv->power_mode);
7905 	s32 timeout, period;
7906 
7907 	if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7908 		snprintf(extra, MAX_POWER_STRING,
7909 			 "Power save level: %d (Off)", level);
7910 	} else {
7911 		switch (level) {
7912 		case IPW_POWER_MODE_CAM:
7913 			snprintf(extra, MAX_POWER_STRING,
7914 				 "Power save level: %d (None)", level);
7915 			break;
7916 		case IPW_POWER_AUTO:
7917 			snprintf(extra, MAX_POWER_STRING,
7918 				 "Power save level: %d (Auto)", level);
7919 			break;
7920 		default:
7921 			timeout = timeout_duration[level - 1] / 1000;
7922 			period = period_duration[level - 1] / 1000;
7923 			snprintf(extra, MAX_POWER_STRING,
7924 				 "Power save level: %d "
7925 				 "(Timeout %dms, Period %dms)",
7926 				 level, timeout, period);
7927 		}
7928 	}
7929 
7930 	wrqu->data.length = strlen(extra) + 1;
7931 
7932 	return 0;
7933 }
7934 
7935 static int ipw2100_wx_set_preamble(struct net_device *dev,
7936 				   struct iw_request_info *info,
7937 				   union iwreq_data *wrqu, char *extra)
7938 {
7939 	struct ipw2100_priv *priv = libipw_priv(dev);
7940 	int err, mode = *(int *)extra;
7941 
7942 	mutex_lock(&priv->action_mutex);
7943 	if (!(priv->status & STATUS_INITIALIZED)) {
7944 		err = -EIO;
7945 		goto done;
7946 	}
7947 
7948 	if (mode == 1)
7949 		priv->config |= CFG_LONG_PREAMBLE;
7950 	else if (mode == 0)
7951 		priv->config &= ~CFG_LONG_PREAMBLE;
7952 	else {
7953 		err = -EINVAL;
7954 		goto done;
7955 	}
7956 
7957 	err = ipw2100_system_config(priv, 0);
7958 
7959       done:
7960 	mutex_unlock(&priv->action_mutex);
7961 	return err;
7962 }
7963 
7964 static int ipw2100_wx_get_preamble(struct net_device *dev,
7965 				   struct iw_request_info *info,
7966 				   union iwreq_data *wrqu, char *extra)
7967 {
7968 	/*
7969 	 * This can be called at any time.  No action lock required
7970 	 */
7971 
7972 	struct ipw2100_priv *priv = libipw_priv(dev);
7973 
7974 	if (priv->config & CFG_LONG_PREAMBLE)
7975 		snprintf(wrqu->name, IFNAMSIZ, "long (1)");
7976 	else
7977 		snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
7978 
7979 	return 0;
7980 }
7981 
7982 #ifdef CONFIG_IPW2100_MONITOR
7983 static int ipw2100_wx_set_crc_check(struct net_device *dev,
7984 				    struct iw_request_info *info,
7985 				    union iwreq_data *wrqu, char *extra)
7986 {
7987 	struct ipw2100_priv *priv = libipw_priv(dev);
7988 	int err, mode = *(int *)extra;
7989 
7990 	mutex_lock(&priv->action_mutex);
7991 	if (!(priv->status & STATUS_INITIALIZED)) {
7992 		err = -EIO;
7993 		goto done;
7994 	}
7995 
7996 	if (mode == 1)
7997 		priv->config |= CFG_CRC_CHECK;
7998 	else if (mode == 0)
7999 		priv->config &= ~CFG_CRC_CHECK;
8000 	else {
8001 		err = -EINVAL;
8002 		goto done;
8003 	}
8004 	err = 0;
8005 
8006       done:
8007 	mutex_unlock(&priv->action_mutex);
8008 	return err;
8009 }
8010 
8011 static int ipw2100_wx_get_crc_check(struct net_device *dev,
8012 				    struct iw_request_info *info,
8013 				    union iwreq_data *wrqu, char *extra)
8014 {
8015 	/*
8016 	 * This can be called at any time.  No action lock required
8017 	 */
8018 
8019 	struct ipw2100_priv *priv = libipw_priv(dev);
8020 
8021 	if (priv->config & CFG_CRC_CHECK)
8022 		snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8023 	else
8024 		snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8025 
8026 	return 0;
8027 }
8028 #endif				/* CONFIG_IPW2100_MONITOR */
8029 
8030 static iw_handler ipw2100_wx_handlers[] = {
8031 	IW_HANDLER(SIOCGIWNAME, ipw2100_wx_get_name),
8032 	IW_HANDLER(SIOCSIWFREQ, ipw2100_wx_set_freq),
8033 	IW_HANDLER(SIOCGIWFREQ, ipw2100_wx_get_freq),
8034 	IW_HANDLER(SIOCSIWMODE, ipw2100_wx_set_mode),
8035 	IW_HANDLER(SIOCGIWMODE, ipw2100_wx_get_mode),
8036 	IW_HANDLER(SIOCGIWRANGE, ipw2100_wx_get_range),
8037 	IW_HANDLER(SIOCSIWAP, ipw2100_wx_set_wap),
8038 	IW_HANDLER(SIOCGIWAP, ipw2100_wx_get_wap),
8039 	IW_HANDLER(SIOCSIWMLME, ipw2100_wx_set_mlme),
8040 	IW_HANDLER(SIOCSIWSCAN, ipw2100_wx_set_scan),
8041 	IW_HANDLER(SIOCGIWSCAN, ipw2100_wx_get_scan),
8042 	IW_HANDLER(SIOCSIWESSID, ipw2100_wx_set_essid),
8043 	IW_HANDLER(SIOCGIWESSID, ipw2100_wx_get_essid),
8044 	IW_HANDLER(SIOCSIWNICKN, ipw2100_wx_set_nick),
8045 	IW_HANDLER(SIOCGIWNICKN, ipw2100_wx_get_nick),
8046 	IW_HANDLER(SIOCSIWRATE, ipw2100_wx_set_rate),
8047 	IW_HANDLER(SIOCGIWRATE, ipw2100_wx_get_rate),
8048 	IW_HANDLER(SIOCSIWRTS, ipw2100_wx_set_rts),
8049 	IW_HANDLER(SIOCGIWRTS, ipw2100_wx_get_rts),
8050 	IW_HANDLER(SIOCSIWFRAG, ipw2100_wx_set_frag),
8051 	IW_HANDLER(SIOCGIWFRAG, ipw2100_wx_get_frag),
8052 	IW_HANDLER(SIOCSIWTXPOW, ipw2100_wx_set_txpow),
8053 	IW_HANDLER(SIOCGIWTXPOW, ipw2100_wx_get_txpow),
8054 	IW_HANDLER(SIOCSIWRETRY, ipw2100_wx_set_retry),
8055 	IW_HANDLER(SIOCGIWRETRY, ipw2100_wx_get_retry),
8056 	IW_HANDLER(SIOCSIWENCODE, ipw2100_wx_set_encode),
8057 	IW_HANDLER(SIOCGIWENCODE, ipw2100_wx_get_encode),
8058 	IW_HANDLER(SIOCSIWPOWER, ipw2100_wx_set_power),
8059 	IW_HANDLER(SIOCGIWPOWER, ipw2100_wx_get_power),
8060 	IW_HANDLER(SIOCSIWGENIE, ipw2100_wx_set_genie),
8061 	IW_HANDLER(SIOCGIWGENIE, ipw2100_wx_get_genie),
8062 	IW_HANDLER(SIOCSIWAUTH, ipw2100_wx_set_auth),
8063 	IW_HANDLER(SIOCGIWAUTH, ipw2100_wx_get_auth),
8064 	IW_HANDLER(SIOCSIWENCODEEXT, ipw2100_wx_set_encodeext),
8065 	IW_HANDLER(SIOCGIWENCODEEXT, ipw2100_wx_get_encodeext),
8066 };
8067 
8068 #define IPW2100_PRIV_SET_MONITOR	SIOCIWFIRSTPRIV
8069 #define IPW2100_PRIV_RESET		SIOCIWFIRSTPRIV+1
8070 #define IPW2100_PRIV_SET_POWER		SIOCIWFIRSTPRIV+2
8071 #define IPW2100_PRIV_GET_POWER		SIOCIWFIRSTPRIV+3
8072 #define IPW2100_PRIV_SET_LONGPREAMBLE	SIOCIWFIRSTPRIV+4
8073 #define IPW2100_PRIV_GET_LONGPREAMBLE	SIOCIWFIRSTPRIV+5
8074 #define IPW2100_PRIV_SET_CRC_CHECK	SIOCIWFIRSTPRIV+6
8075 #define IPW2100_PRIV_GET_CRC_CHECK	SIOCIWFIRSTPRIV+7
8076 
8077 static const struct iw_priv_args ipw2100_private_args[] = {
8078 
8079 #ifdef CONFIG_IPW2100_MONITOR
8080 	{
8081 	 IPW2100_PRIV_SET_MONITOR,
8082 	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8083 	{
8084 	 IPW2100_PRIV_RESET,
8085 	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8086 #endif				/* CONFIG_IPW2100_MONITOR */
8087 
8088 	{
8089 	 IPW2100_PRIV_SET_POWER,
8090 	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8091 	{
8092 	 IPW2100_PRIV_GET_POWER,
8093 	 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8094 	 "get_power"},
8095 	{
8096 	 IPW2100_PRIV_SET_LONGPREAMBLE,
8097 	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8098 	{
8099 	 IPW2100_PRIV_GET_LONGPREAMBLE,
8100 	 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8101 #ifdef CONFIG_IPW2100_MONITOR
8102 	{
8103 	 IPW2100_PRIV_SET_CRC_CHECK,
8104 	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8105 	{
8106 	 IPW2100_PRIV_GET_CRC_CHECK,
8107 	 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8108 #endif				/* CONFIG_IPW2100_MONITOR */
8109 };
8110 
8111 static iw_handler ipw2100_private_handler[] = {
8112 #ifdef CONFIG_IPW2100_MONITOR
8113 	ipw2100_wx_set_promisc,
8114 	ipw2100_wx_reset,
8115 #else				/* CONFIG_IPW2100_MONITOR */
8116 	NULL,
8117 	NULL,
8118 #endif				/* CONFIG_IPW2100_MONITOR */
8119 	ipw2100_wx_set_powermode,
8120 	ipw2100_wx_get_powermode,
8121 	ipw2100_wx_set_preamble,
8122 	ipw2100_wx_get_preamble,
8123 #ifdef CONFIG_IPW2100_MONITOR
8124 	ipw2100_wx_set_crc_check,
8125 	ipw2100_wx_get_crc_check,
8126 #else				/* CONFIG_IPW2100_MONITOR */
8127 	NULL,
8128 	NULL,
8129 #endif				/* CONFIG_IPW2100_MONITOR */
8130 };
8131 
8132 /*
8133  * Get wireless statistics.
8134  * Called by /proc/net/wireless
8135  * Also called by SIOCGIWSTATS
8136  */
8137 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8138 {
8139 	enum {
8140 		POOR = 30,
8141 		FAIR = 60,
8142 		GOOD = 80,
8143 		VERY_GOOD = 90,
8144 		EXCELLENT = 95,
8145 		PERFECT = 100
8146 	};
8147 	int rssi_qual;
8148 	int tx_qual;
8149 	int beacon_qual;
8150 	int quality;
8151 
8152 	struct ipw2100_priv *priv = libipw_priv(dev);
8153 	struct iw_statistics *wstats;
8154 	u32 rssi, tx_retries, missed_beacons, tx_failures;
8155 	u32 ord_len = sizeof(u32);
8156 
8157 	if (!priv)
8158 		return (struct iw_statistics *)NULL;
8159 
8160 	wstats = &priv->wstats;
8161 
8162 	/* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8163 	 * ipw2100_wx_wireless_stats seems to be called before fw is
8164 	 * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
8165 	 * and associated; if not associcated, the values are all meaningless
8166 	 * anyway, so set them all to NULL and INVALID */
8167 	if (!(priv->status & STATUS_ASSOCIATED)) {
8168 		wstats->miss.beacon = 0;
8169 		wstats->discard.retries = 0;
8170 		wstats->qual.qual = 0;
8171 		wstats->qual.level = 0;
8172 		wstats->qual.noise = 0;
8173 		wstats->qual.updated = 7;
8174 		wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8175 		    IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8176 		return wstats;
8177 	}
8178 
8179 	if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8180 				&missed_beacons, &ord_len))
8181 		goto fail_get_ordinal;
8182 
8183 	/* If we don't have a connection the quality and level is 0 */
8184 	if (!(priv->status & STATUS_ASSOCIATED)) {
8185 		wstats->qual.qual = 0;
8186 		wstats->qual.level = 0;
8187 	} else {
8188 		if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8189 					&rssi, &ord_len))
8190 			goto fail_get_ordinal;
8191 		wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8192 		if (rssi < 10)
8193 			rssi_qual = rssi * POOR / 10;
8194 		else if (rssi < 15)
8195 			rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8196 		else if (rssi < 20)
8197 			rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8198 		else if (rssi < 30)
8199 			rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8200 			    10 + GOOD;
8201 		else
8202 			rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8203 			    10 + VERY_GOOD;
8204 
8205 		if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8206 					&tx_retries, &ord_len))
8207 			goto fail_get_ordinal;
8208 
8209 		if (tx_retries > 75)
8210 			tx_qual = (90 - tx_retries) * POOR / 15;
8211 		else if (tx_retries > 70)
8212 			tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8213 		else if (tx_retries > 65)
8214 			tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8215 		else if (tx_retries > 50)
8216 			tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8217 			    15 + GOOD;
8218 		else
8219 			tx_qual = (50 - tx_retries) *
8220 			    (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8221 
8222 		if (missed_beacons > 50)
8223 			beacon_qual = (60 - missed_beacons) * POOR / 10;
8224 		else if (missed_beacons > 40)
8225 			beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8226 			    10 + POOR;
8227 		else if (missed_beacons > 32)
8228 			beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8229 			    18 + FAIR;
8230 		else if (missed_beacons > 20)
8231 			beacon_qual = (32 - missed_beacons) *
8232 			    (VERY_GOOD - GOOD) / 20 + GOOD;
8233 		else
8234 			beacon_qual = (20 - missed_beacons) *
8235 			    (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8236 
8237 		quality = min(tx_qual, rssi_qual);
8238 		quality = min(beacon_qual, quality);
8239 
8240 #ifdef CONFIG_IPW2100_DEBUG
8241 		if (beacon_qual == quality)
8242 			IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8243 		else if (tx_qual == quality)
8244 			IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8245 		else if (quality != 100)
8246 			IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8247 		else
8248 			IPW_DEBUG_WX("Quality not clamped.\n");
8249 #endif
8250 
8251 		wstats->qual.qual = quality;
8252 		wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8253 	}
8254 
8255 	wstats->qual.noise = 0;
8256 	wstats->qual.updated = 7;
8257 	wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8258 
8259 	/* FIXME: this is percent and not a # */
8260 	wstats->miss.beacon = missed_beacons;
8261 
8262 	if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8263 				&tx_failures, &ord_len))
8264 		goto fail_get_ordinal;
8265 	wstats->discard.retries = tx_failures;
8266 
8267 	return wstats;
8268 
8269       fail_get_ordinal:
8270 	IPW_DEBUG_WX("failed querying ordinals.\n");
8271 
8272 	return (struct iw_statistics *)NULL;
8273 }
8274 
8275 static const struct iw_handler_def ipw2100_wx_handler_def = {
8276 	.standard = ipw2100_wx_handlers,
8277 	.num_standard = ARRAY_SIZE(ipw2100_wx_handlers),
8278 	.num_private = ARRAY_SIZE(ipw2100_private_handler),
8279 	.num_private_args = ARRAY_SIZE(ipw2100_private_args),
8280 	.private = (iw_handler *) ipw2100_private_handler,
8281 	.private_args = (struct iw_priv_args *)ipw2100_private_args,
8282 	.get_wireless_stats = ipw2100_wx_wireless_stats,
8283 };
8284 
8285 static void ipw2100_wx_event_work(struct work_struct *work)
8286 {
8287 	struct ipw2100_priv *priv =
8288 		container_of(work, struct ipw2100_priv, wx_event_work.work);
8289 	union iwreq_data wrqu;
8290 	unsigned int len = ETH_ALEN;
8291 
8292 	if (priv->status & STATUS_STOPPING)
8293 		return;
8294 
8295 	mutex_lock(&priv->action_mutex);
8296 
8297 	IPW_DEBUG_WX("enter\n");
8298 
8299 	mutex_unlock(&priv->action_mutex);
8300 
8301 	wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8302 
8303 	/* Fetch BSSID from the hardware */
8304 	if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8305 	    priv->status & STATUS_RF_KILL_MASK ||
8306 	    ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8307 				&priv->bssid, &len)) {
8308 		eth_zero_addr(wrqu.ap_addr.sa_data);
8309 	} else {
8310 		/* We now have the BSSID, so can finish setting to the full
8311 		 * associated state */
8312 		memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8313 		memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8314 		priv->status &= ~STATUS_ASSOCIATING;
8315 		priv->status |= STATUS_ASSOCIATED;
8316 		netif_carrier_on(priv->net_dev);
8317 		netif_wake_queue(priv->net_dev);
8318 	}
8319 
8320 	if (!(priv->status & STATUS_ASSOCIATED)) {
8321 		IPW_DEBUG_WX("Configuring ESSID\n");
8322 		mutex_lock(&priv->action_mutex);
8323 		/* This is a disassociation event, so kick the firmware to
8324 		 * look for another AP */
8325 		if (priv->config & CFG_STATIC_ESSID)
8326 			ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8327 					  0);
8328 		else
8329 			ipw2100_set_essid(priv, NULL, 0, 0);
8330 		mutex_unlock(&priv->action_mutex);
8331 	}
8332 
8333 	wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8334 }
8335 
8336 #define IPW2100_FW_MAJOR_VERSION 1
8337 #define IPW2100_FW_MINOR_VERSION 3
8338 
8339 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8340 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8341 
8342 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8343                              IPW2100_FW_MAJOR_VERSION)
8344 
8345 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8346 "." __stringify(IPW2100_FW_MINOR_VERSION)
8347 
8348 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8349 
8350 /*
8351 
8352 BINARY FIRMWARE HEADER FORMAT
8353 
8354 offset      length   desc
8355 0           2        version
8356 2           2        mode == 0:BSS,1:IBSS,2:MONITOR
8357 4           4        fw_len
8358 8           4        uc_len
8359 C           fw_len   firmware data
8360 12 + fw_len uc_len   microcode data
8361 
8362 */
8363 
8364 struct ipw2100_fw_header {
8365 	short version;
8366 	short mode;
8367 	unsigned int fw_size;
8368 	unsigned int uc_size;
8369 } __packed;
8370 
8371 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8372 {
8373 	struct ipw2100_fw_header *h =
8374 	    (struct ipw2100_fw_header *)fw->fw_entry->data;
8375 
8376 	if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8377 		printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8378 		       "(detected version id of %u). "
8379 		       "See Documentation/networking/README.ipw2100\n",
8380 		       h->version);
8381 		return 1;
8382 	}
8383 
8384 	fw->version = h->version;
8385 	fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8386 	fw->fw.size = h->fw_size;
8387 	fw->uc.data = fw->fw.data + h->fw_size;
8388 	fw->uc.size = h->uc_size;
8389 
8390 	return 0;
8391 }
8392 
8393 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8394 				struct ipw2100_fw *fw)
8395 {
8396 	char *fw_name;
8397 	int rc;
8398 
8399 	IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8400 		       priv->net_dev->name);
8401 
8402 	switch (priv->ieee->iw_mode) {
8403 	case IW_MODE_ADHOC:
8404 		fw_name = IPW2100_FW_NAME("-i");
8405 		break;
8406 #ifdef CONFIG_IPW2100_MONITOR
8407 	case IW_MODE_MONITOR:
8408 		fw_name = IPW2100_FW_NAME("-p");
8409 		break;
8410 #endif
8411 	case IW_MODE_INFRA:
8412 	default:
8413 		fw_name = IPW2100_FW_NAME("");
8414 		break;
8415 	}
8416 
8417 	rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8418 
8419 	if (rc < 0) {
8420 		printk(KERN_ERR DRV_NAME ": "
8421 		       "%s: Firmware '%s' not available or load failed.\n",
8422 		       priv->net_dev->name, fw_name);
8423 		return rc;
8424 	}
8425 	IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8426 		       fw->fw_entry->size);
8427 
8428 	ipw2100_mod_firmware_load(fw);
8429 
8430 	return 0;
8431 }
8432 
8433 MODULE_FIRMWARE(IPW2100_FW_NAME("-i"));
8434 #ifdef CONFIG_IPW2100_MONITOR
8435 MODULE_FIRMWARE(IPW2100_FW_NAME("-p"));
8436 #endif
8437 MODULE_FIRMWARE(IPW2100_FW_NAME(""));
8438 
8439 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8440 				     struct ipw2100_fw *fw)
8441 {
8442 	fw->version = 0;
8443 	release_firmware(fw->fw_entry);
8444 	fw->fw_entry = NULL;
8445 }
8446 
8447 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8448 				 size_t max)
8449 {
8450 	char ver[MAX_FW_VERSION_LEN];
8451 	u32 len = MAX_FW_VERSION_LEN;
8452 	u32 tmp;
8453 	int i;
8454 	/* firmware version is an ascii string (max len of 14) */
8455 	if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8456 		return -EIO;
8457 	tmp = max;
8458 	if (len >= max)
8459 		len = max - 1;
8460 	for (i = 0; i < len; i++)
8461 		buf[i] = ver[i];
8462 	buf[i] = '\0';
8463 	return tmp;
8464 }
8465 
8466 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8467 				    size_t max)
8468 {
8469 	u32 ver;
8470 	u32 len = sizeof(ver);
8471 	/* microcode version is a 32 bit integer */
8472 	if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8473 		return -EIO;
8474 	return snprintf(buf, max, "%08X", ver);
8475 }
8476 
8477 /*
8478  * On exit, the firmware will have been freed from the fw list
8479  */
8480 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8481 {
8482 	/* firmware is constructed of N contiguous entries, each entry is
8483 	 * structured as:
8484 	 *
8485 	 * offset    sie         desc
8486 	 * 0         4           address to write to
8487 	 * 4         2           length of data run
8488 	 * 6         length      data
8489 	 */
8490 	unsigned int addr;
8491 	unsigned short len;
8492 
8493 	const unsigned char *firmware_data = fw->fw.data;
8494 	unsigned int firmware_data_left = fw->fw.size;
8495 
8496 	while (firmware_data_left > 0) {
8497 		addr = *(u32 *) (firmware_data);
8498 		firmware_data += 4;
8499 		firmware_data_left -= 4;
8500 
8501 		len = *(u16 *) (firmware_data);
8502 		firmware_data += 2;
8503 		firmware_data_left -= 2;
8504 
8505 		if (len > 32) {
8506 			printk(KERN_ERR DRV_NAME ": "
8507 			       "Invalid firmware run-length of %d bytes\n",
8508 			       len);
8509 			return -EINVAL;
8510 		}
8511 
8512 		write_nic_memory(priv->net_dev, addr, len, firmware_data);
8513 		firmware_data += len;
8514 		firmware_data_left -= len;
8515 	}
8516 
8517 	return 0;
8518 }
8519 
8520 struct symbol_alive_response {
8521 	u8 cmd_id;
8522 	u8 seq_num;
8523 	u8 ucode_rev;
8524 	u8 eeprom_valid;
8525 	u16 valid_flags;
8526 	u8 IEEE_addr[6];
8527 	u16 flags;
8528 	u16 pcb_rev;
8529 	u16 clock_settle_time;	// 1us LSB
8530 	u16 powerup_settle_time;	// 1us LSB
8531 	u16 hop_settle_time;	// 1us LSB
8532 	u8 date[3];		// month, day, year
8533 	u8 time[2];		// hours, minutes
8534 	u8 ucode_valid;
8535 };
8536 
8537 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8538 				  struct ipw2100_fw *fw)
8539 {
8540 	struct net_device *dev = priv->net_dev;
8541 	const unsigned char *microcode_data = fw->uc.data;
8542 	unsigned int microcode_data_left = fw->uc.size;
8543 	void __iomem *reg = priv->ioaddr;
8544 
8545 	struct symbol_alive_response response;
8546 	int i, j;
8547 	u8 data;
8548 
8549 	/* Symbol control */
8550 	write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8551 	readl(reg);
8552 	write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8553 	readl(reg);
8554 
8555 	/* HW config */
8556 	write_nic_byte(dev, 0x210014, 0x72);	/* fifo width =16 */
8557 	readl(reg);
8558 	write_nic_byte(dev, 0x210014, 0x72);	/* fifo width =16 */
8559 	readl(reg);
8560 
8561 	/* EN_CS_ACCESS bit to reset control store pointer */
8562 	write_nic_byte(dev, 0x210000, 0x40);
8563 	readl(reg);
8564 	write_nic_byte(dev, 0x210000, 0x0);
8565 	readl(reg);
8566 	write_nic_byte(dev, 0x210000, 0x40);
8567 	readl(reg);
8568 
8569 	/* copy microcode from buffer into Symbol */
8570 
8571 	while (microcode_data_left > 0) {
8572 		write_nic_byte(dev, 0x210010, *microcode_data++);
8573 		write_nic_byte(dev, 0x210010, *microcode_data++);
8574 		microcode_data_left -= 2;
8575 	}
8576 
8577 	/* EN_CS_ACCESS bit to reset the control store pointer */
8578 	write_nic_byte(dev, 0x210000, 0x0);
8579 	readl(reg);
8580 
8581 	/* Enable System (Reg 0)
8582 	 * first enable causes garbage in RX FIFO */
8583 	write_nic_byte(dev, 0x210000, 0x0);
8584 	readl(reg);
8585 	write_nic_byte(dev, 0x210000, 0x80);
8586 	readl(reg);
8587 
8588 	/* Reset External Baseband Reg */
8589 	write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8590 	readl(reg);
8591 	write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8592 	readl(reg);
8593 
8594 	/* HW Config (Reg 5) */
8595 	write_nic_byte(dev, 0x210014, 0x72);	// fifo width =16
8596 	readl(reg);
8597 	write_nic_byte(dev, 0x210014, 0x72);	// fifo width =16
8598 	readl(reg);
8599 
8600 	/* Enable System (Reg 0)
8601 	 * second enable should be OK */
8602 	write_nic_byte(dev, 0x210000, 0x00);	// clear enable system
8603 	readl(reg);
8604 	write_nic_byte(dev, 0x210000, 0x80);	// set enable system
8605 
8606 	/* check Symbol is enabled - upped this from 5 as it wasn't always
8607 	 * catching the update */
8608 	for (i = 0; i < 10; i++) {
8609 		udelay(10);
8610 
8611 		/* check Dino is enabled bit */
8612 		read_nic_byte(dev, 0x210000, &data);
8613 		if (data & 0x1)
8614 			break;
8615 	}
8616 
8617 	if (i == 10) {
8618 		printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8619 		       dev->name);
8620 		return -EIO;
8621 	}
8622 
8623 	/* Get Symbol alive response */
8624 	for (i = 0; i < 30; i++) {
8625 		/* Read alive response structure */
8626 		for (j = 0;
8627 		     j < (sizeof(struct symbol_alive_response) >> 1); j++)
8628 			read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8629 
8630 		if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8631 			break;
8632 		udelay(10);
8633 	}
8634 
8635 	if (i == 30) {
8636 		printk(KERN_ERR DRV_NAME
8637 		       ": %s: No response from Symbol - hw not alive\n",
8638 		       dev->name);
8639 		printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8640 		return -EIO;
8641 	}
8642 
8643 	return 0;
8644 }
8645