1 /****************************************************************************** 2 3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved. 4 5 This program is free software; you can redistribute it and/or modify it 6 under the terms of version 2 of the GNU General Public License as 7 published by the Free Software Foundation. 8 9 This program is distributed in the hope that it will be useful, but WITHOUT 10 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 more details. 13 14 You should have received a copy of the GNU General Public License along with 15 this program; if not, write to the Free Software Foundation, Inc., 59 16 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 18 The full GNU General Public License is included in this distribution in the 19 file called LICENSE. 20 21 Contact Information: 22 Intel Linux Wireless <ilw@linux.intel.com> 23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 24 25 Portions of this file are based on the sample_* files provided by Wireless 26 Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes 27 <jt@hpl.hp.com> 28 29 Portions of this file are based on the Host AP project, 30 Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen 31 <j@w1.fi> 32 Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi> 33 34 Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and 35 ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c 36 available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox 37 38 ******************************************************************************/ 39 /* 40 41 Initial driver on which this is based was developed by Janusz Gorycki, 42 Maciej Urbaniak, and Maciej Sosnowski. 43 44 Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak. 45 46 Theory of Operation 47 48 Tx - Commands and Data 49 50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs) 51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being 52 sent to the firmware as well as the length of the data. 53 54 The host writes to the TBD queue at the WRITE index. The WRITE index points 55 to the _next_ packet to be written and is advanced when after the TBD has been 56 filled. 57 58 The firmware pulls from the TBD queue at the READ index. The READ index points 59 to the currently being read entry, and is advanced once the firmware is 60 done with a packet. 61 62 When data is sent to the firmware, the first TBD is used to indicate to the 63 firmware if a Command or Data is being sent. If it is Command, all of the 64 command information is contained within the physical address referred to by the 65 TBD. If it is Data, the first TBD indicates the type of data packet, number 66 of fragments, etc. The next TBD then refers to the actual packet location. 67 68 The Tx flow cycle is as follows: 69 70 1) ipw2100_tx() is called by kernel with SKB to transmit 71 2) Packet is move from the tx_free_list and appended to the transmit pending 72 list (tx_pend_list) 73 3) work is scheduled to move pending packets into the shared circular queue. 74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped 75 to a physical address. That address is entered into a TBD. Two TBDs are 76 filled out. The first indicating a data packet, the second referring to the 77 actual payload data. 78 5) the packet is removed from tx_pend_list and placed on the end of the 79 firmware pending list (fw_pend_list) 80 6) firmware is notified that the WRITE index has 81 7) Once the firmware has processed the TBD, INTA is triggered. 82 8) For each Tx interrupt received from the firmware, the READ index is checked 83 to see which TBDs are done being processed. 84 9) For each TBD that has been processed, the ISR pulls the oldest packet 85 from the fw_pend_list. 86 10)The packet structure contained in the fw_pend_list is then used 87 to unmap the DMA address and to free the SKB originally passed to the driver 88 from the kernel. 89 11)The packet structure is placed onto the tx_free_list 90 91 The above steps are the same for commands, only the msg_free_list/msg_pend_list 92 are used instead of tx_free_list/tx_pend_list 93 94 ... 95 96 Critical Sections / Locking : 97 98 There are two locks utilized. The first is the low level lock (priv->low_lock) 99 that protects the following: 100 101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows: 102 103 tx_free_list : Holds pre-allocated Tx buffers. 104 TAIL modified in __ipw2100_tx_process() 105 HEAD modified in ipw2100_tx() 106 107 tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring 108 TAIL modified ipw2100_tx() 109 HEAD modified by ipw2100_tx_send_data() 110 111 msg_free_list : Holds pre-allocated Msg (Command) buffers 112 TAIL modified in __ipw2100_tx_process() 113 HEAD modified in ipw2100_hw_send_command() 114 115 msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring 116 TAIL modified in ipw2100_hw_send_command() 117 HEAD modified in ipw2100_tx_send_commands() 118 119 The flow of data on the TX side is as follows: 120 121 MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST 122 TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST 123 124 The methods that work on the TBD ring are protected via priv->low_lock. 125 126 - The internal data state of the device itself 127 - Access to the firmware read/write indexes for the BD queues 128 and associated logic 129 130 All external entry functions are locked with the priv->action_lock to ensure 131 that only one external action is invoked at a time. 132 133 134 */ 135 136 #include <linux/compiler.h> 137 #include <linux/errno.h> 138 #include <linux/if_arp.h> 139 #include <linux/in6.h> 140 #include <linux/in.h> 141 #include <linux/ip.h> 142 #include <linux/kernel.h> 143 #include <linux/kmod.h> 144 #include <linux/module.h> 145 #include <linux/netdevice.h> 146 #include <linux/ethtool.h> 147 #include <linux/pci.h> 148 #include <linux/dma-mapping.h> 149 #include <linux/proc_fs.h> 150 #include <linux/skbuff.h> 151 #include <linux/uaccess.h> 152 #include <asm/io.h> 153 #include <linux/fs.h> 154 #include <linux/mm.h> 155 #include <linux/slab.h> 156 #include <linux/unistd.h> 157 #include <linux/stringify.h> 158 #include <linux/tcp.h> 159 #include <linux/types.h> 160 #include <linux/time.h> 161 #include <linux/firmware.h> 162 #include <linux/acpi.h> 163 #include <linux/ctype.h> 164 #include <linux/pm_qos.h> 165 166 #include <net/lib80211.h> 167 168 #include "ipw2100.h" 169 #include "ipw.h" 170 171 #define IPW2100_VERSION "git-1.2.2" 172 173 #define DRV_NAME "ipw2100" 174 #define DRV_VERSION IPW2100_VERSION 175 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver" 176 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation" 177 178 static struct pm_qos_request ipw2100_pm_qos_req; 179 180 /* Debugging stuff */ 181 #ifdef CONFIG_IPW2100_DEBUG 182 #define IPW2100_RX_DEBUG /* Reception debugging */ 183 #endif 184 185 MODULE_DESCRIPTION(DRV_DESCRIPTION); 186 MODULE_VERSION(DRV_VERSION); 187 MODULE_AUTHOR(DRV_COPYRIGHT); 188 MODULE_LICENSE("GPL"); 189 190 static int debug = 0; 191 static int network_mode = 0; 192 static int channel = 0; 193 static int associate = 0; 194 static int disable = 0; 195 #ifdef CONFIG_PM 196 static struct ipw2100_fw ipw2100_firmware; 197 #endif 198 199 #include <linux/moduleparam.h> 200 module_param(debug, int, 0444); 201 module_param_named(mode, network_mode, int, 0444); 202 module_param(channel, int, 0444); 203 module_param(associate, int, 0444); 204 module_param(disable, int, 0444); 205 206 MODULE_PARM_DESC(debug, "debug level"); 207 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)"); 208 MODULE_PARM_DESC(channel, "channel"); 209 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)"); 210 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])"); 211 212 static u32 ipw2100_debug_level = IPW_DL_NONE; 213 214 #ifdef CONFIG_IPW2100_DEBUG 215 #define IPW_DEBUG(level, message...) \ 216 do { \ 217 if (ipw2100_debug_level & (level)) { \ 218 printk(KERN_DEBUG "ipw2100: %c %s ", \ 219 in_interrupt() ? 'I' : 'U', __func__); \ 220 printk(message); \ 221 } \ 222 } while (0) 223 #else 224 #define IPW_DEBUG(level, message...) do {} while (0) 225 #endif /* CONFIG_IPW2100_DEBUG */ 226 227 #ifdef CONFIG_IPW2100_DEBUG 228 static const char *command_types[] = { 229 "undefined", 230 "unused", /* HOST_ATTENTION */ 231 "HOST_COMPLETE", 232 "unused", /* SLEEP */ 233 "unused", /* HOST_POWER_DOWN */ 234 "unused", 235 "SYSTEM_CONFIG", 236 "unused", /* SET_IMR */ 237 "SSID", 238 "MANDATORY_BSSID", 239 "AUTHENTICATION_TYPE", 240 "ADAPTER_ADDRESS", 241 "PORT_TYPE", 242 "INTERNATIONAL_MODE", 243 "CHANNEL", 244 "RTS_THRESHOLD", 245 "FRAG_THRESHOLD", 246 "POWER_MODE", 247 "TX_RATES", 248 "BASIC_TX_RATES", 249 "WEP_KEY_INFO", 250 "unused", 251 "unused", 252 "unused", 253 "unused", 254 "WEP_KEY_INDEX", 255 "WEP_FLAGS", 256 "ADD_MULTICAST", 257 "CLEAR_ALL_MULTICAST", 258 "BEACON_INTERVAL", 259 "ATIM_WINDOW", 260 "CLEAR_STATISTICS", 261 "undefined", 262 "undefined", 263 "undefined", 264 "undefined", 265 "TX_POWER_INDEX", 266 "undefined", 267 "undefined", 268 "undefined", 269 "undefined", 270 "undefined", 271 "undefined", 272 "BROADCAST_SCAN", 273 "CARD_DISABLE", 274 "PREFERRED_BSSID", 275 "SET_SCAN_OPTIONS", 276 "SCAN_DWELL_TIME", 277 "SWEEP_TABLE", 278 "AP_OR_STATION_TABLE", 279 "GROUP_ORDINALS", 280 "SHORT_RETRY_LIMIT", 281 "LONG_RETRY_LIMIT", 282 "unused", /* SAVE_CALIBRATION */ 283 "unused", /* RESTORE_CALIBRATION */ 284 "undefined", 285 "undefined", 286 "undefined", 287 "HOST_PRE_POWER_DOWN", 288 "unused", /* HOST_INTERRUPT_COALESCING */ 289 "undefined", 290 "CARD_DISABLE_PHY_OFF", 291 "MSDU_TX_RATES", 292 "undefined", 293 "SET_STATION_STAT_BITS", 294 "CLEAR_STATIONS_STAT_BITS", 295 "LEAP_ROGUE_MODE", 296 "SET_SECURITY_INFORMATION", 297 "DISASSOCIATION_BSSID", 298 "SET_WPA_ASS_IE" 299 }; 300 #endif 301 302 static const long ipw2100_frequencies[] = { 303 2412, 2417, 2422, 2427, 304 2432, 2437, 2442, 2447, 305 2452, 2457, 2462, 2467, 306 2472, 2484 307 }; 308 309 #define FREQ_COUNT ARRAY_SIZE(ipw2100_frequencies) 310 311 static struct ieee80211_rate ipw2100_bg_rates[] = { 312 { .bitrate = 10 }, 313 { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 314 { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 315 { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 316 }; 317 318 #define RATE_COUNT ARRAY_SIZE(ipw2100_bg_rates) 319 320 /* Pre-decl until we get the code solid and then we can clean it up */ 321 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv); 322 static void ipw2100_tx_send_data(struct ipw2100_priv *priv); 323 static int ipw2100_adapter_setup(struct ipw2100_priv *priv); 324 325 static void ipw2100_queues_initialize(struct ipw2100_priv *priv); 326 static void ipw2100_queues_free(struct ipw2100_priv *priv); 327 static int ipw2100_queues_allocate(struct ipw2100_priv *priv); 328 329 static int ipw2100_fw_download(struct ipw2100_priv *priv, 330 struct ipw2100_fw *fw); 331 static int ipw2100_get_firmware(struct ipw2100_priv *priv, 332 struct ipw2100_fw *fw); 333 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf, 334 size_t max); 335 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf, 336 size_t max); 337 static void ipw2100_release_firmware(struct ipw2100_priv *priv, 338 struct ipw2100_fw *fw); 339 static int ipw2100_ucode_download(struct ipw2100_priv *priv, 340 struct ipw2100_fw *fw); 341 static void ipw2100_wx_event_work(struct work_struct *work); 342 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev); 343 static const struct iw_handler_def ipw2100_wx_handler_def; 344 345 static inline void read_register(struct net_device *dev, u32 reg, u32 * val) 346 { 347 struct ipw2100_priv *priv = libipw_priv(dev); 348 349 *val = ioread32(priv->ioaddr + reg); 350 IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val); 351 } 352 353 static inline void write_register(struct net_device *dev, u32 reg, u32 val) 354 { 355 struct ipw2100_priv *priv = libipw_priv(dev); 356 357 iowrite32(val, priv->ioaddr + reg); 358 IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val); 359 } 360 361 static inline void read_register_word(struct net_device *dev, u32 reg, 362 u16 * val) 363 { 364 struct ipw2100_priv *priv = libipw_priv(dev); 365 366 *val = ioread16(priv->ioaddr + reg); 367 IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val); 368 } 369 370 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val) 371 { 372 struct ipw2100_priv *priv = libipw_priv(dev); 373 374 *val = ioread8(priv->ioaddr + reg); 375 IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val); 376 } 377 378 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val) 379 { 380 struct ipw2100_priv *priv = libipw_priv(dev); 381 382 iowrite16(val, priv->ioaddr + reg); 383 IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val); 384 } 385 386 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val) 387 { 388 struct ipw2100_priv *priv = libipw_priv(dev); 389 390 iowrite8(val, priv->ioaddr + reg); 391 IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val); 392 } 393 394 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val) 395 { 396 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, 397 addr & IPW_REG_INDIRECT_ADDR_MASK); 398 read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val); 399 } 400 401 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val) 402 { 403 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, 404 addr & IPW_REG_INDIRECT_ADDR_MASK); 405 write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val); 406 } 407 408 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val) 409 { 410 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, 411 addr & IPW_REG_INDIRECT_ADDR_MASK); 412 read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val); 413 } 414 415 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val) 416 { 417 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, 418 addr & IPW_REG_INDIRECT_ADDR_MASK); 419 write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val); 420 } 421 422 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val) 423 { 424 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, 425 addr & IPW_REG_INDIRECT_ADDR_MASK); 426 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val); 427 } 428 429 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val) 430 { 431 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, 432 addr & IPW_REG_INDIRECT_ADDR_MASK); 433 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val); 434 } 435 436 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr) 437 { 438 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, 439 addr & IPW_REG_INDIRECT_ADDR_MASK); 440 } 441 442 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val) 443 { 444 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val); 445 } 446 447 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len, 448 const u8 * buf) 449 { 450 u32 aligned_addr; 451 u32 aligned_len; 452 u32 dif_len; 453 u32 i; 454 455 /* read first nibble byte by byte */ 456 aligned_addr = addr & (~0x3); 457 dif_len = addr - aligned_addr; 458 if (dif_len) { 459 /* Start reading at aligned_addr + dif_len */ 460 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, 461 aligned_addr); 462 for (i = dif_len; i < 4; i++, buf++) 463 write_register_byte(dev, 464 IPW_REG_INDIRECT_ACCESS_DATA + i, 465 *buf); 466 467 len -= dif_len; 468 aligned_addr += 4; 469 } 470 471 /* read DWs through autoincrement registers */ 472 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr); 473 aligned_len = len & (~0x3); 474 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4) 475 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf); 476 477 /* copy the last nibble */ 478 dif_len = len - aligned_len; 479 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr); 480 for (i = 0; i < dif_len; i++, buf++) 481 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, 482 *buf); 483 } 484 485 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len, 486 u8 * buf) 487 { 488 u32 aligned_addr; 489 u32 aligned_len; 490 u32 dif_len; 491 u32 i; 492 493 /* read first nibble byte by byte */ 494 aligned_addr = addr & (~0x3); 495 dif_len = addr - aligned_addr; 496 if (dif_len) { 497 /* Start reading at aligned_addr + dif_len */ 498 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, 499 aligned_addr); 500 for (i = dif_len; i < 4; i++, buf++) 501 read_register_byte(dev, 502 IPW_REG_INDIRECT_ACCESS_DATA + i, 503 buf); 504 505 len -= dif_len; 506 aligned_addr += 4; 507 } 508 509 /* read DWs through autoincrement registers */ 510 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr); 511 aligned_len = len & (~0x3); 512 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4) 513 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf); 514 515 /* copy the last nibble */ 516 dif_len = len - aligned_len; 517 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr); 518 for (i = 0; i < dif_len; i++, buf++) 519 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf); 520 } 521 522 static bool ipw2100_hw_is_adapter_in_system(struct net_device *dev) 523 { 524 u32 dbg; 525 526 read_register(dev, IPW_REG_DOA_DEBUG_AREA_START, &dbg); 527 528 return dbg == IPW_DATA_DOA_DEBUG_VALUE; 529 } 530 531 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord, 532 void *val, u32 * len) 533 { 534 struct ipw2100_ordinals *ordinals = &priv->ordinals; 535 u32 addr; 536 u32 field_info; 537 u16 field_len; 538 u16 field_count; 539 u32 total_length; 540 541 if (ordinals->table1_addr == 0) { 542 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals " 543 "before they have been loaded.\n"); 544 return -EINVAL; 545 } 546 547 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) { 548 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) { 549 *len = IPW_ORD_TAB_1_ENTRY_SIZE; 550 551 printk(KERN_WARNING DRV_NAME 552 ": ordinal buffer length too small, need %zd\n", 553 IPW_ORD_TAB_1_ENTRY_SIZE); 554 555 return -EINVAL; 556 } 557 558 read_nic_dword(priv->net_dev, 559 ordinals->table1_addr + (ord << 2), &addr); 560 read_nic_dword(priv->net_dev, addr, val); 561 562 *len = IPW_ORD_TAB_1_ENTRY_SIZE; 563 564 return 0; 565 } 566 567 if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) { 568 569 ord -= IPW_START_ORD_TAB_2; 570 571 /* get the address of statistic */ 572 read_nic_dword(priv->net_dev, 573 ordinals->table2_addr + (ord << 3), &addr); 574 575 /* get the second DW of statistics ; 576 * two 16-bit words - first is length, second is count */ 577 read_nic_dword(priv->net_dev, 578 ordinals->table2_addr + (ord << 3) + sizeof(u32), 579 &field_info); 580 581 /* get each entry length */ 582 field_len = *((u16 *) & field_info); 583 584 /* get number of entries */ 585 field_count = *(((u16 *) & field_info) + 1); 586 587 /* abort if no enough memory */ 588 total_length = field_len * field_count; 589 if (total_length > *len) { 590 *len = total_length; 591 return -EINVAL; 592 } 593 594 *len = total_length; 595 if (!total_length) 596 return 0; 597 598 /* read the ordinal data from the SRAM */ 599 read_nic_memory(priv->net_dev, addr, total_length, val); 600 601 return 0; 602 } 603 604 printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor " 605 "in table 2\n", ord); 606 607 return -EINVAL; 608 } 609 610 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val, 611 u32 * len) 612 { 613 struct ipw2100_ordinals *ordinals = &priv->ordinals; 614 u32 addr; 615 616 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) { 617 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) { 618 *len = IPW_ORD_TAB_1_ENTRY_SIZE; 619 IPW_DEBUG_INFO("wrong size\n"); 620 return -EINVAL; 621 } 622 623 read_nic_dword(priv->net_dev, 624 ordinals->table1_addr + (ord << 2), &addr); 625 626 write_nic_dword(priv->net_dev, addr, *val); 627 628 *len = IPW_ORD_TAB_1_ENTRY_SIZE; 629 630 return 0; 631 } 632 633 IPW_DEBUG_INFO("wrong table\n"); 634 if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) 635 return -EINVAL; 636 637 return -EINVAL; 638 } 639 640 static char *snprint_line(char *buf, size_t count, 641 const u8 * data, u32 len, u32 ofs) 642 { 643 int out, i, j, l; 644 char c; 645 646 out = snprintf(buf, count, "%08X", ofs); 647 648 for (l = 0, i = 0; i < 2; i++) { 649 out += snprintf(buf + out, count - out, " "); 650 for (j = 0; j < 8 && l < len; j++, l++) 651 out += snprintf(buf + out, count - out, "%02X ", 652 data[(i * 8 + j)]); 653 for (; j < 8; j++) 654 out += snprintf(buf + out, count - out, " "); 655 } 656 657 out += snprintf(buf + out, count - out, " "); 658 for (l = 0, i = 0; i < 2; i++) { 659 out += snprintf(buf + out, count - out, " "); 660 for (j = 0; j < 8 && l < len; j++, l++) { 661 c = data[(i * 8 + j)]; 662 if (!isascii(c) || !isprint(c)) 663 c = '.'; 664 665 out += snprintf(buf + out, count - out, "%c", c); 666 } 667 668 for (; j < 8; j++) 669 out += snprintf(buf + out, count - out, " "); 670 } 671 672 return buf; 673 } 674 675 static void printk_buf(int level, const u8 * data, u32 len) 676 { 677 char line[81]; 678 u32 ofs = 0; 679 if (!(ipw2100_debug_level & level)) 680 return; 681 682 while (len) { 683 printk(KERN_DEBUG "%s\n", 684 snprint_line(line, sizeof(line), &data[ofs], 685 min(len, 16U), ofs)); 686 ofs += 16; 687 len -= min(len, 16U); 688 } 689 } 690 691 #define MAX_RESET_BACKOFF 10 692 693 static void schedule_reset(struct ipw2100_priv *priv) 694 { 695 unsigned long now = get_seconds(); 696 697 /* If we haven't received a reset request within the backoff period, 698 * then we can reset the backoff interval so this reset occurs 699 * immediately */ 700 if (priv->reset_backoff && 701 (now - priv->last_reset > priv->reset_backoff)) 702 priv->reset_backoff = 0; 703 704 priv->last_reset = get_seconds(); 705 706 if (!(priv->status & STATUS_RESET_PENDING)) { 707 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n", 708 priv->net_dev->name, priv->reset_backoff); 709 netif_carrier_off(priv->net_dev); 710 netif_stop_queue(priv->net_dev); 711 priv->status |= STATUS_RESET_PENDING; 712 if (priv->reset_backoff) 713 schedule_delayed_work(&priv->reset_work, 714 priv->reset_backoff * HZ); 715 else 716 schedule_delayed_work(&priv->reset_work, 0); 717 718 if (priv->reset_backoff < MAX_RESET_BACKOFF) 719 priv->reset_backoff++; 720 721 wake_up_interruptible(&priv->wait_command_queue); 722 } else 723 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n", 724 priv->net_dev->name); 725 726 } 727 728 #define HOST_COMPLETE_TIMEOUT (2 * HZ) 729 static int ipw2100_hw_send_command(struct ipw2100_priv *priv, 730 struct host_command *cmd) 731 { 732 struct list_head *element; 733 struct ipw2100_tx_packet *packet; 734 unsigned long flags; 735 int err = 0; 736 737 IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n", 738 command_types[cmd->host_command], cmd->host_command, 739 cmd->host_command_length); 740 printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters, 741 cmd->host_command_length); 742 743 spin_lock_irqsave(&priv->low_lock, flags); 744 745 if (priv->fatal_error) { 746 IPW_DEBUG_INFO 747 ("Attempt to send command while hardware in fatal error condition.\n"); 748 err = -EIO; 749 goto fail_unlock; 750 } 751 752 if (!(priv->status & STATUS_RUNNING)) { 753 IPW_DEBUG_INFO 754 ("Attempt to send command while hardware is not running.\n"); 755 err = -EIO; 756 goto fail_unlock; 757 } 758 759 if (priv->status & STATUS_CMD_ACTIVE) { 760 IPW_DEBUG_INFO 761 ("Attempt to send command while another command is pending.\n"); 762 err = -EBUSY; 763 goto fail_unlock; 764 } 765 766 if (list_empty(&priv->msg_free_list)) { 767 IPW_DEBUG_INFO("no available msg buffers\n"); 768 goto fail_unlock; 769 } 770 771 priv->status |= STATUS_CMD_ACTIVE; 772 priv->messages_sent++; 773 774 element = priv->msg_free_list.next; 775 776 packet = list_entry(element, struct ipw2100_tx_packet, list); 777 packet->jiffy_start = jiffies; 778 779 /* initialize the firmware command packet */ 780 packet->info.c_struct.cmd->host_command_reg = cmd->host_command; 781 packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1; 782 packet->info.c_struct.cmd->host_command_len_reg = 783 cmd->host_command_length; 784 packet->info.c_struct.cmd->sequence = cmd->host_command_sequence; 785 786 memcpy(packet->info.c_struct.cmd->host_command_params_reg, 787 cmd->host_command_parameters, 788 sizeof(packet->info.c_struct.cmd->host_command_params_reg)); 789 790 list_del(element); 791 DEC_STAT(&priv->msg_free_stat); 792 793 list_add_tail(element, &priv->msg_pend_list); 794 INC_STAT(&priv->msg_pend_stat); 795 796 ipw2100_tx_send_commands(priv); 797 ipw2100_tx_send_data(priv); 798 799 spin_unlock_irqrestore(&priv->low_lock, flags); 800 801 /* 802 * We must wait for this command to complete before another 803 * command can be sent... but if we wait more than 3 seconds 804 * then there is a problem. 805 */ 806 807 err = 808 wait_event_interruptible_timeout(priv->wait_command_queue, 809 !(priv-> 810 status & STATUS_CMD_ACTIVE), 811 HOST_COMPLETE_TIMEOUT); 812 813 if (err == 0) { 814 IPW_DEBUG_INFO("Command completion failed out after %dms.\n", 815 1000 * (HOST_COMPLETE_TIMEOUT / HZ)); 816 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT; 817 priv->status &= ~STATUS_CMD_ACTIVE; 818 schedule_reset(priv); 819 return -EIO; 820 } 821 822 if (priv->fatal_error) { 823 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n", 824 priv->net_dev->name); 825 return -EIO; 826 } 827 828 /* !!!!! HACK TEST !!!!! 829 * When lots of debug trace statements are enabled, the driver 830 * doesn't seem to have as many firmware restart cycles... 831 * 832 * As a test, we're sticking in a 1/100s delay here */ 833 schedule_timeout_uninterruptible(msecs_to_jiffies(10)); 834 835 return 0; 836 837 fail_unlock: 838 spin_unlock_irqrestore(&priv->low_lock, flags); 839 840 return err; 841 } 842 843 /* 844 * Verify the values and data access of the hardware 845 * No locks needed or used. No functions called. 846 */ 847 static int ipw2100_verify(struct ipw2100_priv *priv) 848 { 849 u32 data1, data2; 850 u32 address; 851 852 u32 val1 = 0x76543210; 853 u32 val2 = 0xFEDCBA98; 854 855 /* Domain 0 check - all values should be DOA_DEBUG */ 856 for (address = IPW_REG_DOA_DEBUG_AREA_START; 857 address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) { 858 read_register(priv->net_dev, address, &data1); 859 if (data1 != IPW_DATA_DOA_DEBUG_VALUE) 860 return -EIO; 861 } 862 863 /* Domain 1 check - use arbitrary read/write compare */ 864 for (address = 0; address < 5; address++) { 865 /* The memory area is not used now */ 866 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32, 867 val1); 868 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36, 869 val2); 870 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32, 871 &data1); 872 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36, 873 &data2); 874 if (val1 == data1 && val2 == data2) 875 return 0; 876 } 877 878 return -EIO; 879 } 880 881 /* 882 * 883 * Loop until the CARD_DISABLED bit is the same value as the 884 * supplied parameter 885 * 886 * TODO: See if it would be more efficient to do a wait/wake 887 * cycle and have the completion event trigger the wakeup 888 * 889 */ 890 #define IPW_CARD_DISABLE_COMPLETE_WAIT 100 // 100 milli 891 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state) 892 { 893 int i; 894 u32 card_state; 895 u32 len = sizeof(card_state); 896 int err; 897 898 for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) { 899 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED, 900 &card_state, &len); 901 if (err) { 902 IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal " 903 "failed.\n"); 904 return 0; 905 } 906 907 /* We'll break out if either the HW state says it is 908 * in the state we want, or if HOST_COMPLETE command 909 * finishes */ 910 if ((card_state == state) || 911 ((priv->status & STATUS_ENABLED) ? 912 IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) { 913 if (state == IPW_HW_STATE_ENABLED) 914 priv->status |= STATUS_ENABLED; 915 else 916 priv->status &= ~STATUS_ENABLED; 917 918 return 0; 919 } 920 921 udelay(50); 922 } 923 924 IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n", 925 state ? "DISABLED" : "ENABLED"); 926 return -EIO; 927 } 928 929 /********************************************************************* 930 Procedure : sw_reset_and_clock 931 Purpose : Asserts s/w reset, asserts clock initialization 932 and waits for clock stabilization 933 ********************************************************************/ 934 static int sw_reset_and_clock(struct ipw2100_priv *priv) 935 { 936 int i; 937 u32 r; 938 939 // assert s/w reset 940 write_register(priv->net_dev, IPW_REG_RESET_REG, 941 IPW_AUX_HOST_RESET_REG_SW_RESET); 942 943 // wait for clock stabilization 944 for (i = 0; i < 1000; i++) { 945 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY); 946 947 // check clock ready bit 948 read_register(priv->net_dev, IPW_REG_RESET_REG, &r); 949 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET) 950 break; 951 } 952 953 if (i == 1000) 954 return -EIO; // TODO: better error value 955 956 /* set "initialization complete" bit to move adapter to 957 * D0 state */ 958 write_register(priv->net_dev, IPW_REG_GP_CNTRL, 959 IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE); 960 961 /* wait for clock stabilization */ 962 for (i = 0; i < 10000; i++) { 963 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4); 964 965 /* check clock ready bit */ 966 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r); 967 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY) 968 break; 969 } 970 971 if (i == 10000) 972 return -EIO; /* TODO: better error value */ 973 974 /* set D0 standby bit */ 975 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r); 976 write_register(priv->net_dev, IPW_REG_GP_CNTRL, 977 r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY); 978 979 return 0; 980 } 981 982 /********************************************************************* 983 Procedure : ipw2100_download_firmware 984 Purpose : Initiaze adapter after power on. 985 The sequence is: 986 1. assert s/w reset first! 987 2. awake clocks & wait for clock stabilization 988 3. hold ARC (don't ask me why...) 989 4. load Dino ucode and reset/clock init again 990 5. zero-out shared mem 991 6. download f/w 992 *******************************************************************/ 993 static int ipw2100_download_firmware(struct ipw2100_priv *priv) 994 { 995 u32 address; 996 int err; 997 998 #ifndef CONFIG_PM 999 /* Fetch the firmware and microcode */ 1000 struct ipw2100_fw ipw2100_firmware; 1001 #endif 1002 1003 if (priv->fatal_error) { 1004 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after " 1005 "fatal error %d. Interface must be brought down.\n", 1006 priv->net_dev->name, priv->fatal_error); 1007 return -EINVAL; 1008 } 1009 #ifdef CONFIG_PM 1010 if (!ipw2100_firmware.version) { 1011 err = ipw2100_get_firmware(priv, &ipw2100_firmware); 1012 if (err) { 1013 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n", 1014 priv->net_dev->name, err); 1015 priv->fatal_error = IPW2100_ERR_FW_LOAD; 1016 goto fail; 1017 } 1018 } 1019 #else 1020 err = ipw2100_get_firmware(priv, &ipw2100_firmware); 1021 if (err) { 1022 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n", 1023 priv->net_dev->name, err); 1024 priv->fatal_error = IPW2100_ERR_FW_LOAD; 1025 goto fail; 1026 } 1027 #endif 1028 priv->firmware_version = ipw2100_firmware.version; 1029 1030 /* s/w reset and clock stabilization */ 1031 err = sw_reset_and_clock(priv); 1032 if (err) { 1033 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n", 1034 priv->net_dev->name, err); 1035 goto fail; 1036 } 1037 1038 err = ipw2100_verify(priv); 1039 if (err) { 1040 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n", 1041 priv->net_dev->name, err); 1042 goto fail; 1043 } 1044 1045 /* Hold ARC */ 1046 write_nic_dword(priv->net_dev, 1047 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000); 1048 1049 /* allow ARC to run */ 1050 write_register(priv->net_dev, IPW_REG_RESET_REG, 0); 1051 1052 /* load microcode */ 1053 err = ipw2100_ucode_download(priv, &ipw2100_firmware); 1054 if (err) { 1055 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n", 1056 priv->net_dev->name, err); 1057 goto fail; 1058 } 1059 1060 /* release ARC */ 1061 write_nic_dword(priv->net_dev, 1062 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000); 1063 1064 /* s/w reset and clock stabilization (again!!!) */ 1065 err = sw_reset_and_clock(priv); 1066 if (err) { 1067 printk(KERN_ERR DRV_NAME 1068 ": %s: sw_reset_and_clock failed: %d\n", 1069 priv->net_dev->name, err); 1070 goto fail; 1071 } 1072 1073 /* load f/w */ 1074 err = ipw2100_fw_download(priv, &ipw2100_firmware); 1075 if (err) { 1076 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n", 1077 priv->net_dev->name, err); 1078 goto fail; 1079 } 1080 #ifndef CONFIG_PM 1081 /* 1082 * When the .resume method of the driver is called, the other 1083 * part of the system, i.e. the ide driver could still stay in 1084 * the suspend stage. This prevents us from loading the firmware 1085 * from the disk. --YZ 1086 */ 1087 1088 /* free any storage allocated for firmware image */ 1089 ipw2100_release_firmware(priv, &ipw2100_firmware); 1090 #endif 1091 1092 /* zero out Domain 1 area indirectly (Si requirement) */ 1093 for (address = IPW_HOST_FW_SHARED_AREA0; 1094 address < IPW_HOST_FW_SHARED_AREA0_END; address += 4) 1095 write_nic_dword(priv->net_dev, address, 0); 1096 for (address = IPW_HOST_FW_SHARED_AREA1; 1097 address < IPW_HOST_FW_SHARED_AREA1_END; address += 4) 1098 write_nic_dword(priv->net_dev, address, 0); 1099 for (address = IPW_HOST_FW_SHARED_AREA2; 1100 address < IPW_HOST_FW_SHARED_AREA2_END; address += 4) 1101 write_nic_dword(priv->net_dev, address, 0); 1102 for (address = IPW_HOST_FW_SHARED_AREA3; 1103 address < IPW_HOST_FW_SHARED_AREA3_END; address += 4) 1104 write_nic_dword(priv->net_dev, address, 0); 1105 for (address = IPW_HOST_FW_INTERRUPT_AREA; 1106 address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4) 1107 write_nic_dword(priv->net_dev, address, 0); 1108 1109 return 0; 1110 1111 fail: 1112 ipw2100_release_firmware(priv, &ipw2100_firmware); 1113 return err; 1114 } 1115 1116 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv) 1117 { 1118 if (priv->status & STATUS_INT_ENABLED) 1119 return; 1120 priv->status |= STATUS_INT_ENABLED; 1121 write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK); 1122 } 1123 1124 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv) 1125 { 1126 if (!(priv->status & STATUS_INT_ENABLED)) 1127 return; 1128 priv->status &= ~STATUS_INT_ENABLED; 1129 write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0); 1130 } 1131 1132 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv) 1133 { 1134 struct ipw2100_ordinals *ord = &priv->ordinals; 1135 1136 IPW_DEBUG_INFO("enter\n"); 1137 1138 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1, 1139 &ord->table1_addr); 1140 1141 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2, 1142 &ord->table2_addr); 1143 1144 read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size); 1145 read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size); 1146 1147 ord->table2_size &= 0x0000FFFF; 1148 1149 IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size); 1150 IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size); 1151 IPW_DEBUG_INFO("exit\n"); 1152 } 1153 1154 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv) 1155 { 1156 u32 reg = 0; 1157 /* 1158 * Set GPIO 3 writable by FW; GPIO 1 writable 1159 * by driver and enable clock 1160 */ 1161 reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE | 1162 IPW_BIT_GPIO_LED_OFF); 1163 write_register(priv->net_dev, IPW_REG_GPIO, reg); 1164 } 1165 1166 static int rf_kill_active(struct ipw2100_priv *priv) 1167 { 1168 #define MAX_RF_KILL_CHECKS 5 1169 #define RF_KILL_CHECK_DELAY 40 1170 1171 unsigned short value = 0; 1172 u32 reg = 0; 1173 int i; 1174 1175 if (!(priv->hw_features & HW_FEATURE_RFKILL)) { 1176 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false); 1177 priv->status &= ~STATUS_RF_KILL_HW; 1178 return 0; 1179 } 1180 1181 for (i = 0; i < MAX_RF_KILL_CHECKS; i++) { 1182 udelay(RF_KILL_CHECK_DELAY); 1183 read_register(priv->net_dev, IPW_REG_GPIO, ®); 1184 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1); 1185 } 1186 1187 if (value == 0) { 1188 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true); 1189 priv->status |= STATUS_RF_KILL_HW; 1190 } else { 1191 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false); 1192 priv->status &= ~STATUS_RF_KILL_HW; 1193 } 1194 1195 return (value == 0); 1196 } 1197 1198 static int ipw2100_get_hw_features(struct ipw2100_priv *priv) 1199 { 1200 u32 addr, len; 1201 u32 val; 1202 1203 /* 1204 * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1 1205 */ 1206 len = sizeof(addr); 1207 if (ipw2100_get_ordinal 1208 (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) { 1209 IPW_DEBUG_INFO("failed querying ordinals at line %d\n", 1210 __LINE__); 1211 return -EIO; 1212 } 1213 1214 IPW_DEBUG_INFO("EEPROM address: %08X\n", addr); 1215 1216 /* 1217 * EEPROM version is the byte at offset 0xfd in firmware 1218 * We read 4 bytes, then shift out the byte we actually want */ 1219 read_nic_dword(priv->net_dev, addr + 0xFC, &val); 1220 priv->eeprom_version = (val >> 24) & 0xFF; 1221 IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version); 1222 1223 /* 1224 * HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware 1225 * 1226 * notice that the EEPROM bit is reverse polarity, i.e. 1227 * bit = 0 signifies HW RF kill switch is supported 1228 * bit = 1 signifies HW RF kill switch is NOT supported 1229 */ 1230 read_nic_dword(priv->net_dev, addr + 0x20, &val); 1231 if (!((val >> 24) & 0x01)) 1232 priv->hw_features |= HW_FEATURE_RFKILL; 1233 1234 IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n", 1235 (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not "); 1236 1237 return 0; 1238 } 1239 1240 /* 1241 * Start firmware execution after power on and initialization 1242 * The sequence is: 1243 * 1. Release ARC 1244 * 2. Wait for f/w initialization completes; 1245 */ 1246 static int ipw2100_start_adapter(struct ipw2100_priv *priv) 1247 { 1248 int i; 1249 u32 inta, inta_mask, gpio; 1250 1251 IPW_DEBUG_INFO("enter\n"); 1252 1253 if (priv->status & STATUS_RUNNING) 1254 return 0; 1255 1256 /* 1257 * Initialize the hw - drive adapter to DO state by setting 1258 * init_done bit. Wait for clk_ready bit and Download 1259 * fw & dino ucode 1260 */ 1261 if (ipw2100_download_firmware(priv)) { 1262 printk(KERN_ERR DRV_NAME 1263 ": %s: Failed to power on the adapter.\n", 1264 priv->net_dev->name); 1265 return -EIO; 1266 } 1267 1268 /* Clear the Tx, Rx and Msg queues and the r/w indexes 1269 * in the firmware RBD and TBD ring queue */ 1270 ipw2100_queues_initialize(priv); 1271 1272 ipw2100_hw_set_gpio(priv); 1273 1274 /* TODO -- Look at disabling interrupts here to make sure none 1275 * get fired during FW initialization */ 1276 1277 /* Release ARC - clear reset bit */ 1278 write_register(priv->net_dev, IPW_REG_RESET_REG, 0); 1279 1280 /* wait for f/w initialization complete */ 1281 IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n"); 1282 i = 5000; 1283 do { 1284 schedule_timeout_uninterruptible(msecs_to_jiffies(40)); 1285 /* Todo... wait for sync command ... */ 1286 1287 read_register(priv->net_dev, IPW_REG_INTA, &inta); 1288 1289 /* check "init done" bit */ 1290 if (inta & IPW2100_INTA_FW_INIT_DONE) { 1291 /* reset "init done" bit */ 1292 write_register(priv->net_dev, IPW_REG_INTA, 1293 IPW2100_INTA_FW_INIT_DONE); 1294 break; 1295 } 1296 1297 /* check error conditions : we check these after the firmware 1298 * check so that if there is an error, the interrupt handler 1299 * will see it and the adapter will be reset */ 1300 if (inta & 1301 (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) { 1302 /* clear error conditions */ 1303 write_register(priv->net_dev, IPW_REG_INTA, 1304 IPW2100_INTA_FATAL_ERROR | 1305 IPW2100_INTA_PARITY_ERROR); 1306 } 1307 } while (--i); 1308 1309 /* Clear out any pending INTAs since we aren't supposed to have 1310 * interrupts enabled at this point... */ 1311 read_register(priv->net_dev, IPW_REG_INTA, &inta); 1312 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask); 1313 inta &= IPW_INTERRUPT_MASK; 1314 /* Clear out any pending interrupts */ 1315 if (inta & inta_mask) 1316 write_register(priv->net_dev, IPW_REG_INTA, inta); 1317 1318 IPW_DEBUG_FW("f/w initialization complete: %s\n", 1319 i ? "SUCCESS" : "FAILED"); 1320 1321 if (!i) { 1322 printk(KERN_WARNING DRV_NAME 1323 ": %s: Firmware did not initialize.\n", 1324 priv->net_dev->name); 1325 return -EIO; 1326 } 1327 1328 /* allow firmware to write to GPIO1 & GPIO3 */ 1329 read_register(priv->net_dev, IPW_REG_GPIO, &gpio); 1330 1331 gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK); 1332 1333 write_register(priv->net_dev, IPW_REG_GPIO, gpio); 1334 1335 /* Ready to receive commands */ 1336 priv->status |= STATUS_RUNNING; 1337 1338 /* The adapter has been reset; we are not associated */ 1339 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED); 1340 1341 IPW_DEBUG_INFO("exit\n"); 1342 1343 return 0; 1344 } 1345 1346 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv) 1347 { 1348 if (!priv->fatal_error) 1349 return; 1350 1351 priv->fatal_errors[priv->fatal_index++] = priv->fatal_error; 1352 priv->fatal_index %= IPW2100_ERROR_QUEUE; 1353 priv->fatal_error = 0; 1354 } 1355 1356 /* NOTE: Our interrupt is disabled when this method is called */ 1357 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv) 1358 { 1359 u32 reg; 1360 int i; 1361 1362 IPW_DEBUG_INFO("Power cycling the hardware.\n"); 1363 1364 ipw2100_hw_set_gpio(priv); 1365 1366 /* Step 1. Stop Master Assert */ 1367 write_register(priv->net_dev, IPW_REG_RESET_REG, 1368 IPW_AUX_HOST_RESET_REG_STOP_MASTER); 1369 1370 /* Step 2. Wait for stop Master Assert 1371 * (not more than 50us, otherwise ret error */ 1372 i = 5; 1373 do { 1374 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY); 1375 read_register(priv->net_dev, IPW_REG_RESET_REG, ®); 1376 1377 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED) 1378 break; 1379 } while (--i); 1380 1381 priv->status &= ~STATUS_RESET_PENDING; 1382 1383 if (!i) { 1384 IPW_DEBUG_INFO 1385 ("exit - waited too long for master assert stop\n"); 1386 return -EIO; 1387 } 1388 1389 write_register(priv->net_dev, IPW_REG_RESET_REG, 1390 IPW_AUX_HOST_RESET_REG_SW_RESET); 1391 1392 /* Reset any fatal_error conditions */ 1393 ipw2100_reset_fatalerror(priv); 1394 1395 /* At this point, the adapter is now stopped and disabled */ 1396 priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING | 1397 STATUS_ASSOCIATED | STATUS_ENABLED); 1398 1399 return 0; 1400 } 1401 1402 /* 1403 * Send the CARD_DISABLE_PHY_OFF command to the card to disable it 1404 * 1405 * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent. 1406 * 1407 * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of 1408 * if STATUS_ASSN_LOST is sent. 1409 */ 1410 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv) 1411 { 1412 1413 #define HW_PHY_OFF_LOOP_DELAY (msecs_to_jiffies(50)) 1414 1415 struct host_command cmd = { 1416 .host_command = CARD_DISABLE_PHY_OFF, 1417 .host_command_sequence = 0, 1418 .host_command_length = 0, 1419 }; 1420 int err, i; 1421 u32 val1, val2; 1422 1423 IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n"); 1424 1425 /* Turn off the radio */ 1426 err = ipw2100_hw_send_command(priv, &cmd); 1427 if (err) 1428 return err; 1429 1430 for (i = 0; i < 2500; i++) { 1431 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1); 1432 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2); 1433 1434 if ((val1 & IPW2100_CONTROL_PHY_OFF) && 1435 (val2 & IPW2100_COMMAND_PHY_OFF)) 1436 return 0; 1437 1438 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY); 1439 } 1440 1441 return -EIO; 1442 } 1443 1444 static int ipw2100_enable_adapter(struct ipw2100_priv *priv) 1445 { 1446 struct host_command cmd = { 1447 .host_command = HOST_COMPLETE, 1448 .host_command_sequence = 0, 1449 .host_command_length = 0 1450 }; 1451 int err = 0; 1452 1453 IPW_DEBUG_HC("HOST_COMPLETE\n"); 1454 1455 if (priv->status & STATUS_ENABLED) 1456 return 0; 1457 1458 mutex_lock(&priv->adapter_mutex); 1459 1460 if (rf_kill_active(priv)) { 1461 IPW_DEBUG_HC("Command aborted due to RF kill active.\n"); 1462 goto fail_up; 1463 } 1464 1465 err = ipw2100_hw_send_command(priv, &cmd); 1466 if (err) { 1467 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n"); 1468 goto fail_up; 1469 } 1470 1471 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED); 1472 if (err) { 1473 IPW_DEBUG_INFO("%s: card not responding to init command.\n", 1474 priv->net_dev->name); 1475 goto fail_up; 1476 } 1477 1478 if (priv->stop_hang_check) { 1479 priv->stop_hang_check = 0; 1480 schedule_delayed_work(&priv->hang_check, HZ / 2); 1481 } 1482 1483 fail_up: 1484 mutex_unlock(&priv->adapter_mutex); 1485 return err; 1486 } 1487 1488 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv) 1489 { 1490 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100)) 1491 1492 struct host_command cmd = { 1493 .host_command = HOST_PRE_POWER_DOWN, 1494 .host_command_sequence = 0, 1495 .host_command_length = 0, 1496 }; 1497 int err, i; 1498 u32 reg; 1499 1500 if (!(priv->status & STATUS_RUNNING)) 1501 return 0; 1502 1503 priv->status |= STATUS_STOPPING; 1504 1505 /* We can only shut down the card if the firmware is operational. So, 1506 * if we haven't reset since a fatal_error, then we can not send the 1507 * shutdown commands. */ 1508 if (!priv->fatal_error) { 1509 /* First, make sure the adapter is enabled so that the PHY_OFF 1510 * command can shut it down */ 1511 ipw2100_enable_adapter(priv); 1512 1513 err = ipw2100_hw_phy_off(priv); 1514 if (err) 1515 printk(KERN_WARNING DRV_NAME 1516 ": Error disabling radio %d\n", err); 1517 1518 /* 1519 * If in D0-standby mode going directly to D3 may cause a 1520 * PCI bus violation. Therefore we must change out of the D0 1521 * state. 1522 * 1523 * Sending the PREPARE_FOR_POWER_DOWN will restrict the 1524 * hardware from going into standby mode and will transition 1525 * out of D0-standby if it is already in that state. 1526 * 1527 * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the 1528 * driver upon completion. Once received, the driver can 1529 * proceed to the D3 state. 1530 * 1531 * Prepare for power down command to fw. This command would 1532 * take HW out of D0-standby and prepare it for D3 state. 1533 * 1534 * Currently FW does not support event notification for this 1535 * event. Therefore, skip waiting for it. Just wait a fixed 1536 * 100ms 1537 */ 1538 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n"); 1539 1540 err = ipw2100_hw_send_command(priv, &cmd); 1541 if (err) 1542 printk(KERN_WARNING DRV_NAME ": " 1543 "%s: Power down command failed: Error %d\n", 1544 priv->net_dev->name, err); 1545 else 1546 schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY); 1547 } 1548 1549 priv->status &= ~STATUS_ENABLED; 1550 1551 /* 1552 * Set GPIO 3 writable by FW; GPIO 1 writable 1553 * by driver and enable clock 1554 */ 1555 ipw2100_hw_set_gpio(priv); 1556 1557 /* 1558 * Power down adapter. Sequence: 1559 * 1. Stop master assert (RESET_REG[9]=1) 1560 * 2. Wait for stop master (RESET_REG[8]==1) 1561 * 3. S/w reset assert (RESET_REG[7] = 1) 1562 */ 1563 1564 /* Stop master assert */ 1565 write_register(priv->net_dev, IPW_REG_RESET_REG, 1566 IPW_AUX_HOST_RESET_REG_STOP_MASTER); 1567 1568 /* wait stop master not more than 50 usec. 1569 * Otherwise return error. */ 1570 for (i = 5; i > 0; i--) { 1571 udelay(10); 1572 1573 /* Check master stop bit */ 1574 read_register(priv->net_dev, IPW_REG_RESET_REG, ®); 1575 1576 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED) 1577 break; 1578 } 1579 1580 if (i == 0) 1581 printk(KERN_WARNING DRV_NAME 1582 ": %s: Could now power down adapter.\n", 1583 priv->net_dev->name); 1584 1585 /* assert s/w reset */ 1586 write_register(priv->net_dev, IPW_REG_RESET_REG, 1587 IPW_AUX_HOST_RESET_REG_SW_RESET); 1588 1589 priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING); 1590 1591 return 0; 1592 } 1593 1594 static int ipw2100_disable_adapter(struct ipw2100_priv *priv) 1595 { 1596 struct host_command cmd = { 1597 .host_command = CARD_DISABLE, 1598 .host_command_sequence = 0, 1599 .host_command_length = 0 1600 }; 1601 int err = 0; 1602 1603 IPW_DEBUG_HC("CARD_DISABLE\n"); 1604 1605 if (!(priv->status & STATUS_ENABLED)) 1606 return 0; 1607 1608 /* Make sure we clear the associated state */ 1609 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING); 1610 1611 if (!priv->stop_hang_check) { 1612 priv->stop_hang_check = 1; 1613 cancel_delayed_work(&priv->hang_check); 1614 } 1615 1616 mutex_lock(&priv->adapter_mutex); 1617 1618 err = ipw2100_hw_send_command(priv, &cmd); 1619 if (err) { 1620 printk(KERN_WARNING DRV_NAME 1621 ": exit - failed to send CARD_DISABLE command\n"); 1622 goto fail_up; 1623 } 1624 1625 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED); 1626 if (err) { 1627 printk(KERN_WARNING DRV_NAME 1628 ": exit - card failed to change to DISABLED\n"); 1629 goto fail_up; 1630 } 1631 1632 IPW_DEBUG_INFO("TODO: implement scan state machine\n"); 1633 1634 fail_up: 1635 mutex_unlock(&priv->adapter_mutex); 1636 return err; 1637 } 1638 1639 static int ipw2100_set_scan_options(struct ipw2100_priv *priv) 1640 { 1641 struct host_command cmd = { 1642 .host_command = SET_SCAN_OPTIONS, 1643 .host_command_sequence = 0, 1644 .host_command_length = 8 1645 }; 1646 int err; 1647 1648 IPW_DEBUG_INFO("enter\n"); 1649 1650 IPW_DEBUG_SCAN("setting scan options\n"); 1651 1652 cmd.host_command_parameters[0] = 0; 1653 1654 if (!(priv->config & CFG_ASSOCIATE)) 1655 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE; 1656 if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled) 1657 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL; 1658 if (priv->config & CFG_PASSIVE_SCAN) 1659 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE; 1660 1661 cmd.host_command_parameters[1] = priv->channel_mask; 1662 1663 err = ipw2100_hw_send_command(priv, &cmd); 1664 1665 IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n", 1666 cmd.host_command_parameters[0]); 1667 1668 return err; 1669 } 1670 1671 static int ipw2100_start_scan(struct ipw2100_priv *priv) 1672 { 1673 struct host_command cmd = { 1674 .host_command = BROADCAST_SCAN, 1675 .host_command_sequence = 0, 1676 .host_command_length = 4 1677 }; 1678 int err; 1679 1680 IPW_DEBUG_HC("START_SCAN\n"); 1681 1682 cmd.host_command_parameters[0] = 0; 1683 1684 /* No scanning if in monitor mode */ 1685 if (priv->ieee->iw_mode == IW_MODE_MONITOR) 1686 return 1; 1687 1688 if (priv->status & STATUS_SCANNING) { 1689 IPW_DEBUG_SCAN("Scan requested while already in scan...\n"); 1690 return 0; 1691 } 1692 1693 IPW_DEBUG_INFO("enter\n"); 1694 1695 /* Not clearing here; doing so makes iwlist always return nothing... 1696 * 1697 * We should modify the table logic to use aging tables vs. clearing 1698 * the table on each scan start. 1699 */ 1700 IPW_DEBUG_SCAN("starting scan\n"); 1701 1702 priv->status |= STATUS_SCANNING; 1703 err = ipw2100_hw_send_command(priv, &cmd); 1704 if (err) 1705 priv->status &= ~STATUS_SCANNING; 1706 1707 IPW_DEBUG_INFO("exit\n"); 1708 1709 return err; 1710 } 1711 1712 static const struct libipw_geo ipw_geos[] = { 1713 { /* Restricted */ 1714 "---", 1715 .bg_channels = 14, 1716 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 1717 {2427, 4}, {2432, 5}, {2437, 6}, 1718 {2442, 7}, {2447, 8}, {2452, 9}, 1719 {2457, 10}, {2462, 11}, {2467, 12}, 1720 {2472, 13}, {2484, 14}}, 1721 }, 1722 }; 1723 1724 static int ipw2100_up(struct ipw2100_priv *priv, int deferred) 1725 { 1726 unsigned long flags; 1727 int err = 0; 1728 u32 lock; 1729 u32 ord_len = sizeof(lock); 1730 1731 /* Age scan list entries found before suspend */ 1732 if (priv->suspend_time) { 1733 libipw_networks_age(priv->ieee, priv->suspend_time); 1734 priv->suspend_time = 0; 1735 } 1736 1737 /* Quiet if manually disabled. */ 1738 if (priv->status & STATUS_RF_KILL_SW) { 1739 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable " 1740 "switch\n", priv->net_dev->name); 1741 return 0; 1742 } 1743 1744 /* the ipw2100 hardware really doesn't want power management delays 1745 * longer than 175usec 1746 */ 1747 pm_qos_update_request(&ipw2100_pm_qos_req, 175); 1748 1749 /* If the interrupt is enabled, turn it off... */ 1750 spin_lock_irqsave(&priv->low_lock, flags); 1751 ipw2100_disable_interrupts(priv); 1752 1753 /* Reset any fatal_error conditions */ 1754 ipw2100_reset_fatalerror(priv); 1755 spin_unlock_irqrestore(&priv->low_lock, flags); 1756 1757 if (priv->status & STATUS_POWERED || 1758 (priv->status & STATUS_RESET_PENDING)) { 1759 /* Power cycle the card ... */ 1760 err = ipw2100_power_cycle_adapter(priv); 1761 if (err) { 1762 printk(KERN_WARNING DRV_NAME 1763 ": %s: Could not cycle adapter.\n", 1764 priv->net_dev->name); 1765 goto exit; 1766 } 1767 } else 1768 priv->status |= STATUS_POWERED; 1769 1770 /* Load the firmware, start the clocks, etc. */ 1771 err = ipw2100_start_adapter(priv); 1772 if (err) { 1773 printk(KERN_ERR DRV_NAME 1774 ": %s: Failed to start the firmware.\n", 1775 priv->net_dev->name); 1776 goto exit; 1777 } 1778 1779 ipw2100_initialize_ordinals(priv); 1780 1781 /* Determine capabilities of this particular HW configuration */ 1782 err = ipw2100_get_hw_features(priv); 1783 if (err) { 1784 printk(KERN_ERR DRV_NAME 1785 ": %s: Failed to determine HW features.\n", 1786 priv->net_dev->name); 1787 goto exit; 1788 } 1789 1790 /* Initialize the geo */ 1791 libipw_set_geo(priv->ieee, &ipw_geos[0]); 1792 priv->ieee->freq_band = LIBIPW_24GHZ_BAND; 1793 1794 lock = LOCK_NONE; 1795 err = ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len); 1796 if (err) { 1797 printk(KERN_ERR DRV_NAME 1798 ": %s: Failed to clear ordinal lock.\n", 1799 priv->net_dev->name); 1800 goto exit; 1801 } 1802 1803 priv->status &= ~STATUS_SCANNING; 1804 1805 if (rf_kill_active(priv)) { 1806 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n", 1807 priv->net_dev->name); 1808 1809 if (priv->stop_rf_kill) { 1810 priv->stop_rf_kill = 0; 1811 schedule_delayed_work(&priv->rf_kill, 1812 round_jiffies_relative(HZ)); 1813 } 1814 1815 deferred = 1; 1816 } 1817 1818 /* Turn on the interrupt so that commands can be processed */ 1819 ipw2100_enable_interrupts(priv); 1820 1821 /* Send all of the commands that must be sent prior to 1822 * HOST_COMPLETE */ 1823 err = ipw2100_adapter_setup(priv); 1824 if (err) { 1825 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n", 1826 priv->net_dev->name); 1827 goto exit; 1828 } 1829 1830 if (!deferred) { 1831 /* Enable the adapter - sends HOST_COMPLETE */ 1832 err = ipw2100_enable_adapter(priv); 1833 if (err) { 1834 printk(KERN_ERR DRV_NAME ": " 1835 "%s: failed in call to enable adapter.\n", 1836 priv->net_dev->name); 1837 ipw2100_hw_stop_adapter(priv); 1838 goto exit; 1839 } 1840 1841 /* Start a scan . . . */ 1842 ipw2100_set_scan_options(priv); 1843 ipw2100_start_scan(priv); 1844 } 1845 1846 exit: 1847 return err; 1848 } 1849 1850 static void ipw2100_down(struct ipw2100_priv *priv) 1851 { 1852 unsigned long flags; 1853 union iwreq_data wrqu = { 1854 .ap_addr = { 1855 .sa_family = ARPHRD_ETHER} 1856 }; 1857 int associated = priv->status & STATUS_ASSOCIATED; 1858 1859 /* Kill the RF switch timer */ 1860 if (!priv->stop_rf_kill) { 1861 priv->stop_rf_kill = 1; 1862 cancel_delayed_work(&priv->rf_kill); 1863 } 1864 1865 /* Kill the firmware hang check timer */ 1866 if (!priv->stop_hang_check) { 1867 priv->stop_hang_check = 1; 1868 cancel_delayed_work(&priv->hang_check); 1869 } 1870 1871 /* Kill any pending resets */ 1872 if (priv->status & STATUS_RESET_PENDING) 1873 cancel_delayed_work(&priv->reset_work); 1874 1875 /* Make sure the interrupt is on so that FW commands will be 1876 * processed correctly */ 1877 spin_lock_irqsave(&priv->low_lock, flags); 1878 ipw2100_enable_interrupts(priv); 1879 spin_unlock_irqrestore(&priv->low_lock, flags); 1880 1881 if (ipw2100_hw_stop_adapter(priv)) 1882 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n", 1883 priv->net_dev->name); 1884 1885 /* Do not disable the interrupt until _after_ we disable 1886 * the adaptor. Otherwise the CARD_DISABLE command will never 1887 * be ack'd by the firmware */ 1888 spin_lock_irqsave(&priv->low_lock, flags); 1889 ipw2100_disable_interrupts(priv); 1890 spin_unlock_irqrestore(&priv->low_lock, flags); 1891 1892 pm_qos_update_request(&ipw2100_pm_qos_req, PM_QOS_DEFAULT_VALUE); 1893 1894 /* We have to signal any supplicant if we are disassociating */ 1895 if (associated) 1896 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL); 1897 1898 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING); 1899 netif_carrier_off(priv->net_dev); 1900 netif_stop_queue(priv->net_dev); 1901 } 1902 1903 static int ipw2100_wdev_init(struct net_device *dev) 1904 { 1905 struct ipw2100_priv *priv = libipw_priv(dev); 1906 const struct libipw_geo *geo = libipw_get_geo(priv->ieee); 1907 struct wireless_dev *wdev = &priv->ieee->wdev; 1908 int i; 1909 1910 memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN); 1911 1912 /* fill-out priv->ieee->bg_band */ 1913 if (geo->bg_channels) { 1914 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band; 1915 1916 bg_band->band = NL80211_BAND_2GHZ; 1917 bg_band->n_channels = geo->bg_channels; 1918 bg_band->channels = kcalloc(geo->bg_channels, 1919 sizeof(struct ieee80211_channel), 1920 GFP_KERNEL); 1921 if (!bg_band->channels) { 1922 ipw2100_down(priv); 1923 return -ENOMEM; 1924 } 1925 /* translate geo->bg to bg_band.channels */ 1926 for (i = 0; i < geo->bg_channels; i++) { 1927 bg_band->channels[i].band = NL80211_BAND_2GHZ; 1928 bg_band->channels[i].center_freq = geo->bg[i].freq; 1929 bg_band->channels[i].hw_value = geo->bg[i].channel; 1930 bg_band->channels[i].max_power = geo->bg[i].max_power; 1931 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY) 1932 bg_band->channels[i].flags |= 1933 IEEE80211_CHAN_NO_IR; 1934 if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS) 1935 bg_band->channels[i].flags |= 1936 IEEE80211_CHAN_NO_IR; 1937 if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT) 1938 bg_band->channels[i].flags |= 1939 IEEE80211_CHAN_RADAR; 1940 /* No equivalent for LIBIPW_CH_80211H_RULES, 1941 LIBIPW_CH_UNIFORM_SPREADING, or 1942 LIBIPW_CH_B_ONLY... */ 1943 } 1944 /* point at bitrate info */ 1945 bg_band->bitrates = ipw2100_bg_rates; 1946 bg_band->n_bitrates = RATE_COUNT; 1947 1948 wdev->wiphy->bands[NL80211_BAND_2GHZ] = bg_band; 1949 } 1950 1951 wdev->wiphy->cipher_suites = ipw_cipher_suites; 1952 wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites); 1953 1954 set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev); 1955 if (wiphy_register(wdev->wiphy)) 1956 return -EIO; 1957 return 0; 1958 } 1959 1960 static void ipw2100_reset_adapter(struct work_struct *work) 1961 { 1962 struct ipw2100_priv *priv = 1963 container_of(work, struct ipw2100_priv, reset_work.work); 1964 unsigned long flags; 1965 union iwreq_data wrqu = { 1966 .ap_addr = { 1967 .sa_family = ARPHRD_ETHER} 1968 }; 1969 int associated = priv->status & STATUS_ASSOCIATED; 1970 1971 spin_lock_irqsave(&priv->low_lock, flags); 1972 IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name); 1973 priv->resets++; 1974 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING); 1975 priv->status |= STATUS_SECURITY_UPDATED; 1976 1977 /* Force a power cycle even if interface hasn't been opened 1978 * yet */ 1979 cancel_delayed_work(&priv->reset_work); 1980 priv->status |= STATUS_RESET_PENDING; 1981 spin_unlock_irqrestore(&priv->low_lock, flags); 1982 1983 mutex_lock(&priv->action_mutex); 1984 /* stop timed checks so that they don't interfere with reset */ 1985 priv->stop_hang_check = 1; 1986 cancel_delayed_work(&priv->hang_check); 1987 1988 /* We have to signal any supplicant if we are disassociating */ 1989 if (associated) 1990 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL); 1991 1992 ipw2100_up(priv, 0); 1993 mutex_unlock(&priv->action_mutex); 1994 1995 } 1996 1997 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status) 1998 { 1999 2000 #define MAC_ASSOCIATION_READ_DELAY (HZ) 2001 int ret; 2002 unsigned int len, essid_len; 2003 char essid[IW_ESSID_MAX_SIZE]; 2004 u32 txrate; 2005 u32 chan; 2006 char *txratename; 2007 u8 bssid[ETH_ALEN]; 2008 2009 /* 2010 * TBD: BSSID is usually 00:00:00:00:00:00 here and not 2011 * an actual MAC of the AP. Seems like FW sets this 2012 * address too late. Read it later and expose through 2013 * /proc or schedule a later task to query and update 2014 */ 2015 2016 essid_len = IW_ESSID_MAX_SIZE; 2017 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, 2018 essid, &essid_len); 2019 if (ret) { 2020 IPW_DEBUG_INFO("failed querying ordinals at line %d\n", 2021 __LINE__); 2022 return; 2023 } 2024 2025 len = sizeof(u32); 2026 ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len); 2027 if (ret) { 2028 IPW_DEBUG_INFO("failed querying ordinals at line %d\n", 2029 __LINE__); 2030 return; 2031 } 2032 2033 len = sizeof(u32); 2034 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len); 2035 if (ret) { 2036 IPW_DEBUG_INFO("failed querying ordinals at line %d\n", 2037 __LINE__); 2038 return; 2039 } 2040 len = ETH_ALEN; 2041 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, bssid, 2042 &len); 2043 if (ret) { 2044 IPW_DEBUG_INFO("failed querying ordinals at line %d\n", 2045 __LINE__); 2046 return; 2047 } 2048 memcpy(priv->ieee->bssid, bssid, ETH_ALEN); 2049 2050 switch (txrate) { 2051 case TX_RATE_1_MBIT: 2052 txratename = "1Mbps"; 2053 break; 2054 case TX_RATE_2_MBIT: 2055 txratename = "2Mbsp"; 2056 break; 2057 case TX_RATE_5_5_MBIT: 2058 txratename = "5.5Mbps"; 2059 break; 2060 case TX_RATE_11_MBIT: 2061 txratename = "11Mbps"; 2062 break; 2063 default: 2064 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate); 2065 txratename = "unknown rate"; 2066 break; 2067 } 2068 2069 IPW_DEBUG_INFO("%s: Associated with '%*pE' at %s, channel %d (BSSID=%pM)\n", 2070 priv->net_dev->name, essid_len, essid, 2071 txratename, chan, bssid); 2072 2073 /* now we copy read ssid into dev */ 2074 if (!(priv->config & CFG_STATIC_ESSID)) { 2075 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE); 2076 memcpy(priv->essid, essid, priv->essid_len); 2077 } 2078 priv->channel = chan; 2079 memcpy(priv->bssid, bssid, ETH_ALEN); 2080 2081 priv->status |= STATUS_ASSOCIATING; 2082 priv->connect_start = get_seconds(); 2083 2084 schedule_delayed_work(&priv->wx_event_work, HZ / 10); 2085 } 2086 2087 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid, 2088 int length, int batch_mode) 2089 { 2090 int ssid_len = min(length, IW_ESSID_MAX_SIZE); 2091 struct host_command cmd = { 2092 .host_command = SSID, 2093 .host_command_sequence = 0, 2094 .host_command_length = ssid_len 2095 }; 2096 int err; 2097 2098 IPW_DEBUG_HC("SSID: '%*pE'\n", ssid_len, essid); 2099 2100 if (ssid_len) 2101 memcpy(cmd.host_command_parameters, essid, ssid_len); 2102 2103 if (!batch_mode) { 2104 err = ipw2100_disable_adapter(priv); 2105 if (err) 2106 return err; 2107 } 2108 2109 /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to 2110 * disable auto association -- so we cheat by setting a bogus SSID */ 2111 if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) { 2112 int i; 2113 u8 *bogus = (u8 *) cmd.host_command_parameters; 2114 for (i = 0; i < IW_ESSID_MAX_SIZE; i++) 2115 bogus[i] = 0x18 + i; 2116 cmd.host_command_length = IW_ESSID_MAX_SIZE; 2117 } 2118 2119 /* NOTE: We always send the SSID command even if the provided ESSID is 2120 * the same as what we currently think is set. */ 2121 2122 err = ipw2100_hw_send_command(priv, &cmd); 2123 if (!err) { 2124 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len); 2125 memcpy(priv->essid, essid, ssid_len); 2126 priv->essid_len = ssid_len; 2127 } 2128 2129 if (!batch_mode) { 2130 if (ipw2100_enable_adapter(priv)) 2131 err = -EIO; 2132 } 2133 2134 return err; 2135 } 2136 2137 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status) 2138 { 2139 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC, 2140 "disassociated: '%*pE' %pM\n", priv->essid_len, priv->essid, 2141 priv->bssid); 2142 2143 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING); 2144 2145 if (priv->status & STATUS_STOPPING) { 2146 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n"); 2147 return; 2148 } 2149 2150 eth_zero_addr(priv->bssid); 2151 eth_zero_addr(priv->ieee->bssid); 2152 2153 netif_carrier_off(priv->net_dev); 2154 netif_stop_queue(priv->net_dev); 2155 2156 if (!(priv->status & STATUS_RUNNING)) 2157 return; 2158 2159 if (priv->status & STATUS_SECURITY_UPDATED) 2160 schedule_delayed_work(&priv->security_work, 0); 2161 2162 schedule_delayed_work(&priv->wx_event_work, 0); 2163 } 2164 2165 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status) 2166 { 2167 IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n", 2168 priv->net_dev->name); 2169 2170 /* RF_KILL is now enabled (else we wouldn't be here) */ 2171 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true); 2172 priv->status |= STATUS_RF_KILL_HW; 2173 2174 /* Make sure the RF Kill check timer is running */ 2175 priv->stop_rf_kill = 0; 2176 mod_delayed_work(system_wq, &priv->rf_kill, round_jiffies_relative(HZ)); 2177 } 2178 2179 static void ipw2100_scan_event(struct work_struct *work) 2180 { 2181 struct ipw2100_priv *priv = container_of(work, struct ipw2100_priv, 2182 scan_event.work); 2183 union iwreq_data wrqu; 2184 2185 wrqu.data.length = 0; 2186 wrqu.data.flags = 0; 2187 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL); 2188 } 2189 2190 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status) 2191 { 2192 IPW_DEBUG_SCAN("scan complete\n"); 2193 /* Age the scan results... */ 2194 priv->ieee->scans++; 2195 priv->status &= ~STATUS_SCANNING; 2196 2197 /* Only userspace-requested scan completion events go out immediately */ 2198 if (!priv->user_requested_scan) { 2199 schedule_delayed_work(&priv->scan_event, 2200 round_jiffies_relative(msecs_to_jiffies(4000))); 2201 } else { 2202 priv->user_requested_scan = 0; 2203 mod_delayed_work(system_wq, &priv->scan_event, 0); 2204 } 2205 } 2206 2207 #ifdef CONFIG_IPW2100_DEBUG 2208 #define IPW2100_HANDLER(v, f) { v, f, # v } 2209 struct ipw2100_status_indicator { 2210 int status; 2211 void (*cb) (struct ipw2100_priv * priv, u32 status); 2212 char *name; 2213 }; 2214 #else 2215 #define IPW2100_HANDLER(v, f) { v, f } 2216 struct ipw2100_status_indicator { 2217 int status; 2218 void (*cb) (struct ipw2100_priv * priv, u32 status); 2219 }; 2220 #endif /* CONFIG_IPW2100_DEBUG */ 2221 2222 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status) 2223 { 2224 IPW_DEBUG_SCAN("Scanning...\n"); 2225 priv->status |= STATUS_SCANNING; 2226 } 2227 2228 static const struct ipw2100_status_indicator status_handlers[] = { 2229 IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL), 2230 IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL), 2231 IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated), 2232 IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost), 2233 IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL), 2234 IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete), 2235 IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL), 2236 IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL), 2237 IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill), 2238 IPW2100_HANDLER(IPW_STATE_DISABLED, NULL), 2239 IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL), 2240 IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning), 2241 IPW2100_HANDLER(-1, NULL) 2242 }; 2243 2244 static void isr_status_change(struct ipw2100_priv *priv, int status) 2245 { 2246 int i; 2247 2248 if (status == IPW_STATE_SCANNING && 2249 priv->status & STATUS_ASSOCIATED && 2250 !(priv->status & STATUS_SCANNING)) { 2251 IPW_DEBUG_INFO("Scan detected while associated, with " 2252 "no scan request. Restarting firmware.\n"); 2253 2254 /* Wake up any sleeping jobs */ 2255 schedule_reset(priv); 2256 } 2257 2258 for (i = 0; status_handlers[i].status != -1; i++) { 2259 if (status == status_handlers[i].status) { 2260 IPW_DEBUG_NOTIF("Status change: %s\n", 2261 status_handlers[i].name); 2262 if (status_handlers[i].cb) 2263 status_handlers[i].cb(priv, status); 2264 priv->wstats.status = status; 2265 return; 2266 } 2267 } 2268 2269 IPW_DEBUG_NOTIF("unknown status received: %04x\n", status); 2270 } 2271 2272 static void isr_rx_complete_command(struct ipw2100_priv *priv, 2273 struct ipw2100_cmd_header *cmd) 2274 { 2275 #ifdef CONFIG_IPW2100_DEBUG 2276 if (cmd->host_command_reg < ARRAY_SIZE(command_types)) { 2277 IPW_DEBUG_HC("Command completed '%s (%d)'\n", 2278 command_types[cmd->host_command_reg], 2279 cmd->host_command_reg); 2280 } 2281 #endif 2282 if (cmd->host_command_reg == HOST_COMPLETE) 2283 priv->status |= STATUS_ENABLED; 2284 2285 if (cmd->host_command_reg == CARD_DISABLE) 2286 priv->status &= ~STATUS_ENABLED; 2287 2288 priv->status &= ~STATUS_CMD_ACTIVE; 2289 2290 wake_up_interruptible(&priv->wait_command_queue); 2291 } 2292 2293 #ifdef CONFIG_IPW2100_DEBUG 2294 static const char *frame_types[] = { 2295 "COMMAND_STATUS_VAL", 2296 "STATUS_CHANGE_VAL", 2297 "P80211_DATA_VAL", 2298 "P8023_DATA_VAL", 2299 "HOST_NOTIFICATION_VAL" 2300 }; 2301 #endif 2302 2303 static int ipw2100_alloc_skb(struct ipw2100_priv *priv, 2304 struct ipw2100_rx_packet *packet) 2305 { 2306 packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx)); 2307 if (!packet->skb) 2308 return -ENOMEM; 2309 2310 packet->rxp = (struct ipw2100_rx *)packet->skb->data; 2311 packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data, 2312 sizeof(struct ipw2100_rx), 2313 PCI_DMA_FROMDEVICE); 2314 if (pci_dma_mapping_error(priv->pci_dev, packet->dma_addr)) { 2315 dev_kfree_skb(packet->skb); 2316 return -ENOMEM; 2317 } 2318 2319 return 0; 2320 } 2321 2322 #define SEARCH_ERROR 0xffffffff 2323 #define SEARCH_FAIL 0xfffffffe 2324 #define SEARCH_SUCCESS 0xfffffff0 2325 #define SEARCH_DISCARD 0 2326 #define SEARCH_SNAPSHOT 1 2327 2328 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff)) 2329 static void ipw2100_snapshot_free(struct ipw2100_priv *priv) 2330 { 2331 int i; 2332 if (!priv->snapshot[0]) 2333 return; 2334 for (i = 0; i < 0x30; i++) 2335 kfree(priv->snapshot[i]); 2336 priv->snapshot[0] = NULL; 2337 } 2338 2339 #ifdef IPW2100_DEBUG_C3 2340 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv) 2341 { 2342 int i; 2343 if (priv->snapshot[0]) 2344 return 1; 2345 for (i = 0; i < 0x30; i++) { 2346 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC); 2347 if (!priv->snapshot[i]) { 2348 IPW_DEBUG_INFO("%s: Error allocating snapshot " 2349 "buffer %d\n", priv->net_dev->name, i); 2350 while (i > 0) 2351 kfree(priv->snapshot[--i]); 2352 priv->snapshot[0] = NULL; 2353 return 0; 2354 } 2355 } 2356 2357 return 1; 2358 } 2359 2360 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf, 2361 size_t len, int mode) 2362 { 2363 u32 i, j; 2364 u32 tmp; 2365 u8 *s, *d; 2366 u32 ret; 2367 2368 s = in_buf; 2369 if (mode == SEARCH_SNAPSHOT) { 2370 if (!ipw2100_snapshot_alloc(priv)) 2371 mode = SEARCH_DISCARD; 2372 } 2373 2374 for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) { 2375 read_nic_dword(priv->net_dev, i, &tmp); 2376 if (mode == SEARCH_SNAPSHOT) 2377 *(u32 *) SNAPSHOT_ADDR(i) = tmp; 2378 if (ret == SEARCH_FAIL) { 2379 d = (u8 *) & tmp; 2380 for (j = 0; j < 4; j++) { 2381 if (*s != *d) { 2382 s = in_buf; 2383 continue; 2384 } 2385 2386 s++; 2387 d++; 2388 2389 if ((s - in_buf) == len) 2390 ret = (i + j) - len + 1; 2391 } 2392 } else if (mode == SEARCH_DISCARD) 2393 return ret; 2394 } 2395 2396 return ret; 2397 } 2398 #endif 2399 2400 /* 2401 * 2402 * 0) Disconnect the SKB from the firmware (just unmap) 2403 * 1) Pack the ETH header into the SKB 2404 * 2) Pass the SKB to the network stack 2405 * 2406 * When packet is provided by the firmware, it contains the following: 2407 * 2408 * . libipw_hdr 2409 * . libipw_snap_hdr 2410 * 2411 * The size of the constructed ethernet 2412 * 2413 */ 2414 #ifdef IPW2100_RX_DEBUG 2415 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH]; 2416 #endif 2417 2418 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i) 2419 { 2420 #ifdef IPW2100_DEBUG_C3 2421 struct ipw2100_status *status = &priv->status_queue.drv[i]; 2422 u32 match, reg; 2423 int j; 2424 #endif 2425 2426 IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n", 2427 i * sizeof(struct ipw2100_status)); 2428 2429 #ifdef IPW2100_DEBUG_C3 2430 /* Halt the firmware so we can get a good image */ 2431 write_register(priv->net_dev, IPW_REG_RESET_REG, 2432 IPW_AUX_HOST_RESET_REG_STOP_MASTER); 2433 j = 5; 2434 do { 2435 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY); 2436 read_register(priv->net_dev, IPW_REG_RESET_REG, ®); 2437 2438 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED) 2439 break; 2440 } while (j--); 2441 2442 match = ipw2100_match_buf(priv, (u8 *) status, 2443 sizeof(struct ipw2100_status), 2444 SEARCH_SNAPSHOT); 2445 if (match < SEARCH_SUCCESS) 2446 IPW_DEBUG_INFO("%s: DMA status match in Firmware at " 2447 "offset 0x%06X, length %d:\n", 2448 priv->net_dev->name, match, 2449 sizeof(struct ipw2100_status)); 2450 else 2451 IPW_DEBUG_INFO("%s: No DMA status match in " 2452 "Firmware.\n", priv->net_dev->name); 2453 2454 printk_buf((u8 *) priv->status_queue.drv, 2455 sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH); 2456 #endif 2457 2458 priv->fatal_error = IPW2100_ERR_C3_CORRUPTION; 2459 priv->net_dev->stats.rx_errors++; 2460 schedule_reset(priv); 2461 } 2462 2463 static void isr_rx(struct ipw2100_priv *priv, int i, 2464 struct libipw_rx_stats *stats) 2465 { 2466 struct net_device *dev = priv->net_dev; 2467 struct ipw2100_status *status = &priv->status_queue.drv[i]; 2468 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i]; 2469 2470 IPW_DEBUG_RX("Handler...\n"); 2471 2472 if (unlikely(status->frame_size > skb_tailroom(packet->skb))) { 2473 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!" 2474 " Dropping.\n", 2475 dev->name, 2476 status->frame_size, skb_tailroom(packet->skb)); 2477 dev->stats.rx_errors++; 2478 return; 2479 } 2480 2481 if (unlikely(!netif_running(dev))) { 2482 dev->stats.rx_errors++; 2483 priv->wstats.discard.misc++; 2484 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n"); 2485 return; 2486 } 2487 2488 if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR && 2489 !(priv->status & STATUS_ASSOCIATED))) { 2490 IPW_DEBUG_DROP("Dropping packet while not associated.\n"); 2491 priv->wstats.discard.misc++; 2492 return; 2493 } 2494 2495 pci_unmap_single(priv->pci_dev, 2496 packet->dma_addr, 2497 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE); 2498 2499 skb_put(packet->skb, status->frame_size); 2500 2501 #ifdef IPW2100_RX_DEBUG 2502 /* Make a copy of the frame so we can dump it to the logs if 2503 * libipw_rx fails */ 2504 skb_copy_from_linear_data(packet->skb, packet_data, 2505 min_t(u32, status->frame_size, 2506 IPW_RX_NIC_BUFFER_LENGTH)); 2507 #endif 2508 2509 if (!libipw_rx(priv->ieee, packet->skb, stats)) { 2510 #ifdef IPW2100_RX_DEBUG 2511 IPW_DEBUG_DROP("%s: Non consumed packet:\n", 2512 dev->name); 2513 printk_buf(IPW_DL_DROP, packet_data, status->frame_size); 2514 #endif 2515 dev->stats.rx_errors++; 2516 2517 /* libipw_rx failed, so it didn't free the SKB */ 2518 dev_kfree_skb_any(packet->skb); 2519 packet->skb = NULL; 2520 } 2521 2522 /* We need to allocate a new SKB and attach it to the RDB. */ 2523 if (unlikely(ipw2100_alloc_skb(priv, packet))) { 2524 printk(KERN_WARNING DRV_NAME ": " 2525 "%s: Unable to allocate SKB onto RBD ring - disabling " 2526 "adapter.\n", dev->name); 2527 /* TODO: schedule adapter shutdown */ 2528 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n"); 2529 } 2530 2531 /* Update the RDB entry */ 2532 priv->rx_queue.drv[i].host_addr = packet->dma_addr; 2533 } 2534 2535 #ifdef CONFIG_IPW2100_MONITOR 2536 2537 static void isr_rx_monitor(struct ipw2100_priv *priv, int i, 2538 struct libipw_rx_stats *stats) 2539 { 2540 struct net_device *dev = priv->net_dev; 2541 struct ipw2100_status *status = &priv->status_queue.drv[i]; 2542 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i]; 2543 2544 /* Magic struct that slots into the radiotap header -- no reason 2545 * to build this manually element by element, we can write it much 2546 * more efficiently than we can parse it. ORDER MATTERS HERE */ 2547 struct ipw_rt_hdr { 2548 struct ieee80211_radiotap_header rt_hdr; 2549 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */ 2550 } *ipw_rt; 2551 2552 IPW_DEBUG_RX("Handler...\n"); 2553 2554 if (unlikely(status->frame_size > skb_tailroom(packet->skb) - 2555 sizeof(struct ipw_rt_hdr))) { 2556 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!" 2557 " Dropping.\n", 2558 dev->name, 2559 status->frame_size, 2560 skb_tailroom(packet->skb)); 2561 dev->stats.rx_errors++; 2562 return; 2563 } 2564 2565 if (unlikely(!netif_running(dev))) { 2566 dev->stats.rx_errors++; 2567 priv->wstats.discard.misc++; 2568 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n"); 2569 return; 2570 } 2571 2572 if (unlikely(priv->config & CFG_CRC_CHECK && 2573 status->flags & IPW_STATUS_FLAG_CRC_ERROR)) { 2574 IPW_DEBUG_RX("CRC error in packet. Dropping.\n"); 2575 dev->stats.rx_errors++; 2576 return; 2577 } 2578 2579 pci_unmap_single(priv->pci_dev, packet->dma_addr, 2580 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE); 2581 memmove(packet->skb->data + sizeof(struct ipw_rt_hdr), 2582 packet->skb->data, status->frame_size); 2583 2584 ipw_rt = (struct ipw_rt_hdr *) packet->skb->data; 2585 2586 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION; 2587 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */ 2588 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */ 2589 2590 ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 2591 2592 ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM; 2593 2594 skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr)); 2595 2596 if (!libipw_rx(priv->ieee, packet->skb, stats)) { 2597 dev->stats.rx_errors++; 2598 2599 /* libipw_rx failed, so it didn't free the SKB */ 2600 dev_kfree_skb_any(packet->skb); 2601 packet->skb = NULL; 2602 } 2603 2604 /* We need to allocate a new SKB and attach it to the RDB. */ 2605 if (unlikely(ipw2100_alloc_skb(priv, packet))) { 2606 IPW_DEBUG_WARNING( 2607 "%s: Unable to allocate SKB onto RBD ring - disabling " 2608 "adapter.\n", dev->name); 2609 /* TODO: schedule adapter shutdown */ 2610 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n"); 2611 } 2612 2613 /* Update the RDB entry */ 2614 priv->rx_queue.drv[i].host_addr = packet->dma_addr; 2615 } 2616 2617 #endif 2618 2619 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i) 2620 { 2621 struct ipw2100_status *status = &priv->status_queue.drv[i]; 2622 struct ipw2100_rx *u = priv->rx_buffers[i].rxp; 2623 u16 frame_type = status->status_fields & STATUS_TYPE_MASK; 2624 2625 switch (frame_type) { 2626 case COMMAND_STATUS_VAL: 2627 return (status->frame_size != sizeof(u->rx_data.command)); 2628 case STATUS_CHANGE_VAL: 2629 return (status->frame_size != sizeof(u->rx_data.status)); 2630 case HOST_NOTIFICATION_VAL: 2631 return (status->frame_size < sizeof(u->rx_data.notification)); 2632 case P80211_DATA_VAL: 2633 case P8023_DATA_VAL: 2634 #ifdef CONFIG_IPW2100_MONITOR 2635 return 0; 2636 #else 2637 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) { 2638 case IEEE80211_FTYPE_MGMT: 2639 case IEEE80211_FTYPE_CTL: 2640 return 0; 2641 case IEEE80211_FTYPE_DATA: 2642 return (status->frame_size > 2643 IPW_MAX_802_11_PAYLOAD_LENGTH); 2644 } 2645 #endif 2646 } 2647 2648 return 1; 2649 } 2650 2651 /* 2652 * ipw2100 interrupts are disabled at this point, and the ISR 2653 * is the only code that calls this method. So, we do not need 2654 * to play with any locks. 2655 * 2656 * RX Queue works as follows: 2657 * 2658 * Read index - firmware places packet in entry identified by the 2659 * Read index and advances Read index. In this manner, 2660 * Read index will always point to the next packet to 2661 * be filled--but not yet valid. 2662 * 2663 * Write index - driver fills this entry with an unused RBD entry. 2664 * This entry has not filled by the firmware yet. 2665 * 2666 * In between the W and R indexes are the RBDs that have been received 2667 * but not yet processed. 2668 * 2669 * The process of handling packets will start at WRITE + 1 and advance 2670 * until it reaches the READ index. 2671 * 2672 * The WRITE index is cached in the variable 'priv->rx_queue.next'. 2673 * 2674 */ 2675 static void __ipw2100_rx_process(struct ipw2100_priv *priv) 2676 { 2677 struct ipw2100_bd_queue *rxq = &priv->rx_queue; 2678 struct ipw2100_status_queue *sq = &priv->status_queue; 2679 struct ipw2100_rx_packet *packet; 2680 u16 frame_type; 2681 u32 r, w, i, s; 2682 struct ipw2100_rx *u; 2683 struct libipw_rx_stats stats = { 2684 .mac_time = jiffies, 2685 }; 2686 2687 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r); 2688 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w); 2689 2690 if (r >= rxq->entries) { 2691 IPW_DEBUG_RX("exit - bad read index\n"); 2692 return; 2693 } 2694 2695 i = (rxq->next + 1) % rxq->entries; 2696 s = i; 2697 while (i != r) { 2698 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n", 2699 r, rxq->next, i); */ 2700 2701 packet = &priv->rx_buffers[i]; 2702 2703 /* Sync the DMA for the RX buffer so CPU is sure to get 2704 * the correct values */ 2705 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr, 2706 sizeof(struct ipw2100_rx), 2707 PCI_DMA_FROMDEVICE); 2708 2709 if (unlikely(ipw2100_corruption_check(priv, i))) { 2710 ipw2100_corruption_detected(priv, i); 2711 goto increment; 2712 } 2713 2714 u = packet->rxp; 2715 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK; 2716 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM; 2717 stats.len = sq->drv[i].frame_size; 2718 2719 stats.mask = 0; 2720 if (stats.rssi != 0) 2721 stats.mask |= LIBIPW_STATMASK_RSSI; 2722 stats.freq = LIBIPW_24GHZ_BAND; 2723 2724 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n", 2725 priv->net_dev->name, frame_types[frame_type], 2726 stats.len); 2727 2728 switch (frame_type) { 2729 case COMMAND_STATUS_VAL: 2730 /* Reset Rx watchdog */ 2731 isr_rx_complete_command(priv, &u->rx_data.command); 2732 break; 2733 2734 case STATUS_CHANGE_VAL: 2735 isr_status_change(priv, u->rx_data.status); 2736 break; 2737 2738 case P80211_DATA_VAL: 2739 case P8023_DATA_VAL: 2740 #ifdef CONFIG_IPW2100_MONITOR 2741 if (priv->ieee->iw_mode == IW_MODE_MONITOR) { 2742 isr_rx_monitor(priv, i, &stats); 2743 break; 2744 } 2745 #endif 2746 if (stats.len < sizeof(struct libipw_hdr_3addr)) 2747 break; 2748 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) { 2749 case IEEE80211_FTYPE_MGMT: 2750 libipw_rx_mgt(priv->ieee, 2751 &u->rx_data.header, &stats); 2752 break; 2753 2754 case IEEE80211_FTYPE_CTL: 2755 break; 2756 2757 case IEEE80211_FTYPE_DATA: 2758 isr_rx(priv, i, &stats); 2759 break; 2760 2761 } 2762 break; 2763 } 2764 2765 increment: 2766 /* clear status field associated with this RBD */ 2767 rxq->drv[i].status.info.field = 0; 2768 2769 i = (i + 1) % rxq->entries; 2770 } 2771 2772 if (i != s) { 2773 /* backtrack one entry, wrapping to end if at 0 */ 2774 rxq->next = (i ? i : rxq->entries) - 1; 2775 2776 write_register(priv->net_dev, 2777 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next); 2778 } 2779 } 2780 2781 /* 2782 * __ipw2100_tx_process 2783 * 2784 * This routine will determine whether the next packet on 2785 * the fw_pend_list has been processed by the firmware yet. 2786 * 2787 * If not, then it does nothing and returns. 2788 * 2789 * If so, then it removes the item from the fw_pend_list, frees 2790 * any associated storage, and places the item back on the 2791 * free list of its source (either msg_free_list or tx_free_list) 2792 * 2793 * TX Queue works as follows: 2794 * 2795 * Read index - points to the next TBD that the firmware will 2796 * process. The firmware will read the data, and once 2797 * done processing, it will advance the Read index. 2798 * 2799 * Write index - driver fills this entry with an constructed TBD 2800 * entry. The Write index is not advanced until the 2801 * packet has been configured. 2802 * 2803 * In between the W and R indexes are the TBDs that have NOT been 2804 * processed. Lagging behind the R index are packets that have 2805 * been processed but have not been freed by the driver. 2806 * 2807 * In order to free old storage, an internal index will be maintained 2808 * that points to the next packet to be freed. When all used 2809 * packets have been freed, the oldest index will be the same as the 2810 * firmware's read index. 2811 * 2812 * The OLDEST index is cached in the variable 'priv->tx_queue.oldest' 2813 * 2814 * Because the TBD structure can not contain arbitrary data, the 2815 * driver must keep an internal queue of cached allocations such that 2816 * it can put that data back into the tx_free_list and msg_free_list 2817 * for use by future command and data packets. 2818 * 2819 */ 2820 static int __ipw2100_tx_process(struct ipw2100_priv *priv) 2821 { 2822 struct ipw2100_bd_queue *txq = &priv->tx_queue; 2823 struct ipw2100_bd *tbd; 2824 struct list_head *element; 2825 struct ipw2100_tx_packet *packet; 2826 int descriptors_used; 2827 int e, i; 2828 u32 r, w, frag_num = 0; 2829 2830 if (list_empty(&priv->fw_pend_list)) 2831 return 0; 2832 2833 element = priv->fw_pend_list.next; 2834 2835 packet = list_entry(element, struct ipw2100_tx_packet, list); 2836 tbd = &txq->drv[packet->index]; 2837 2838 /* Determine how many TBD entries must be finished... */ 2839 switch (packet->type) { 2840 case COMMAND: 2841 /* COMMAND uses only one slot; don't advance */ 2842 descriptors_used = 1; 2843 e = txq->oldest; 2844 break; 2845 2846 case DATA: 2847 /* DATA uses two slots; advance and loop position. */ 2848 descriptors_used = tbd->num_fragments; 2849 frag_num = tbd->num_fragments - 1; 2850 e = txq->oldest + frag_num; 2851 e %= txq->entries; 2852 break; 2853 2854 default: 2855 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n", 2856 priv->net_dev->name); 2857 return 0; 2858 } 2859 2860 /* if the last TBD is not done by NIC yet, then packet is 2861 * not ready to be released. 2862 * 2863 */ 2864 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX, 2865 &r); 2866 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX, 2867 &w); 2868 if (w != txq->next) 2869 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n", 2870 priv->net_dev->name); 2871 2872 /* 2873 * txq->next is the index of the last packet written txq->oldest is 2874 * the index of the r is the index of the next packet to be read by 2875 * firmware 2876 */ 2877 2878 /* 2879 * Quick graphic to help you visualize the following 2880 * if / else statement 2881 * 2882 * ===>| s---->|=============== 2883 * e>| 2884 * | a | b | c | d | e | f | g | h | i | j | k | l 2885 * r---->| 2886 * w 2887 * 2888 * w - updated by driver 2889 * r - updated by firmware 2890 * s - start of oldest BD entry (txq->oldest) 2891 * e - end of oldest BD entry 2892 * 2893 */ 2894 if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) { 2895 IPW_DEBUG_TX("exit - no processed packets ready to release.\n"); 2896 return 0; 2897 } 2898 2899 list_del(element); 2900 DEC_STAT(&priv->fw_pend_stat); 2901 2902 #ifdef CONFIG_IPW2100_DEBUG 2903 { 2904 i = txq->oldest; 2905 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i, 2906 &txq->drv[i], 2907 (u32) (txq->nic + i * sizeof(struct ipw2100_bd)), 2908 txq->drv[i].host_addr, txq->drv[i].buf_length); 2909 2910 if (packet->type == DATA) { 2911 i = (i + 1) % txq->entries; 2912 2913 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i, 2914 &txq->drv[i], 2915 (u32) (txq->nic + i * 2916 sizeof(struct ipw2100_bd)), 2917 (u32) txq->drv[i].host_addr, 2918 txq->drv[i].buf_length); 2919 } 2920 } 2921 #endif 2922 2923 switch (packet->type) { 2924 case DATA: 2925 if (txq->drv[txq->oldest].status.info.fields.txType != 0) 2926 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. " 2927 "Expecting DATA TBD but pulled " 2928 "something else: ids %d=%d.\n", 2929 priv->net_dev->name, txq->oldest, packet->index); 2930 2931 /* DATA packet; we have to unmap and free the SKB */ 2932 for (i = 0; i < frag_num; i++) { 2933 tbd = &txq->drv[(packet->index + 1 + i) % txq->entries]; 2934 2935 IPW_DEBUG_TX("TX%d P=%08x L=%d\n", 2936 (packet->index + 1 + i) % txq->entries, 2937 tbd->host_addr, tbd->buf_length); 2938 2939 pci_unmap_single(priv->pci_dev, 2940 tbd->host_addr, 2941 tbd->buf_length, PCI_DMA_TODEVICE); 2942 } 2943 2944 libipw_txb_free(packet->info.d_struct.txb); 2945 packet->info.d_struct.txb = NULL; 2946 2947 list_add_tail(element, &priv->tx_free_list); 2948 INC_STAT(&priv->tx_free_stat); 2949 2950 /* We have a free slot in the Tx queue, so wake up the 2951 * transmit layer if it is stopped. */ 2952 if (priv->status & STATUS_ASSOCIATED) 2953 netif_wake_queue(priv->net_dev); 2954 2955 /* A packet was processed by the hardware, so update the 2956 * watchdog */ 2957 netif_trans_update(priv->net_dev); 2958 2959 break; 2960 2961 case COMMAND: 2962 if (txq->drv[txq->oldest].status.info.fields.txType != 1) 2963 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. " 2964 "Expecting COMMAND TBD but pulled " 2965 "something else: ids %d=%d.\n", 2966 priv->net_dev->name, txq->oldest, packet->index); 2967 2968 #ifdef CONFIG_IPW2100_DEBUG 2969 if (packet->info.c_struct.cmd->host_command_reg < 2970 ARRAY_SIZE(command_types)) 2971 IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n", 2972 command_types[packet->info.c_struct.cmd-> 2973 host_command_reg], 2974 packet->info.c_struct.cmd-> 2975 host_command_reg, 2976 packet->info.c_struct.cmd->cmd_status_reg); 2977 #endif 2978 2979 list_add_tail(element, &priv->msg_free_list); 2980 INC_STAT(&priv->msg_free_stat); 2981 break; 2982 } 2983 2984 /* advance oldest used TBD pointer to start of next entry */ 2985 txq->oldest = (e + 1) % txq->entries; 2986 /* increase available TBDs number */ 2987 txq->available += descriptors_used; 2988 SET_STAT(&priv->txq_stat, txq->available); 2989 2990 IPW_DEBUG_TX("packet latency (send to process) %ld jiffies\n", 2991 jiffies - packet->jiffy_start); 2992 2993 return (!list_empty(&priv->fw_pend_list)); 2994 } 2995 2996 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv) 2997 { 2998 int i = 0; 2999 3000 while (__ipw2100_tx_process(priv) && i < 200) 3001 i++; 3002 3003 if (i == 200) { 3004 printk(KERN_WARNING DRV_NAME ": " 3005 "%s: Driver is running slow (%d iters).\n", 3006 priv->net_dev->name, i); 3007 } 3008 } 3009 3010 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv) 3011 { 3012 struct list_head *element; 3013 struct ipw2100_tx_packet *packet; 3014 struct ipw2100_bd_queue *txq = &priv->tx_queue; 3015 struct ipw2100_bd *tbd; 3016 int next = txq->next; 3017 3018 while (!list_empty(&priv->msg_pend_list)) { 3019 /* if there isn't enough space in TBD queue, then 3020 * don't stuff a new one in. 3021 * NOTE: 3 are needed as a command will take one, 3022 * and there is a minimum of 2 that must be 3023 * maintained between the r and w indexes 3024 */ 3025 if (txq->available <= 3) { 3026 IPW_DEBUG_TX("no room in tx_queue\n"); 3027 break; 3028 } 3029 3030 element = priv->msg_pend_list.next; 3031 list_del(element); 3032 DEC_STAT(&priv->msg_pend_stat); 3033 3034 packet = list_entry(element, struct ipw2100_tx_packet, list); 3035 3036 IPW_DEBUG_TX("using TBD at virt=%p, phys=%04X\n", 3037 &txq->drv[txq->next], 3038 (u32) (txq->nic + txq->next * 3039 sizeof(struct ipw2100_bd))); 3040 3041 packet->index = txq->next; 3042 3043 tbd = &txq->drv[txq->next]; 3044 3045 /* initialize TBD */ 3046 tbd->host_addr = packet->info.c_struct.cmd_phys; 3047 tbd->buf_length = sizeof(struct ipw2100_cmd_header); 3048 /* not marking number of fragments causes problems 3049 * with f/w debug version */ 3050 tbd->num_fragments = 1; 3051 tbd->status.info.field = 3052 IPW_BD_STATUS_TX_FRAME_COMMAND | 3053 IPW_BD_STATUS_TX_INTERRUPT_ENABLE; 3054 3055 /* update TBD queue counters */ 3056 txq->next++; 3057 txq->next %= txq->entries; 3058 txq->available--; 3059 DEC_STAT(&priv->txq_stat); 3060 3061 list_add_tail(element, &priv->fw_pend_list); 3062 INC_STAT(&priv->fw_pend_stat); 3063 } 3064 3065 if (txq->next != next) { 3066 /* kick off the DMA by notifying firmware the 3067 * write index has moved; make sure TBD stores are sync'd */ 3068 wmb(); 3069 write_register(priv->net_dev, 3070 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX, 3071 txq->next); 3072 } 3073 } 3074 3075 /* 3076 * ipw2100_tx_send_data 3077 * 3078 */ 3079 static void ipw2100_tx_send_data(struct ipw2100_priv *priv) 3080 { 3081 struct list_head *element; 3082 struct ipw2100_tx_packet *packet; 3083 struct ipw2100_bd_queue *txq = &priv->tx_queue; 3084 struct ipw2100_bd *tbd; 3085 int next = txq->next; 3086 int i = 0; 3087 struct ipw2100_data_header *ipw_hdr; 3088 struct libipw_hdr_3addr *hdr; 3089 3090 while (!list_empty(&priv->tx_pend_list)) { 3091 /* if there isn't enough space in TBD queue, then 3092 * don't stuff a new one in. 3093 * NOTE: 4 are needed as a data will take two, 3094 * and there is a minimum of 2 that must be 3095 * maintained between the r and w indexes 3096 */ 3097 element = priv->tx_pend_list.next; 3098 packet = list_entry(element, struct ipw2100_tx_packet, list); 3099 3100 if (unlikely(1 + packet->info.d_struct.txb->nr_frags > 3101 IPW_MAX_BDS)) { 3102 /* TODO: Support merging buffers if more than 3103 * IPW_MAX_BDS are used */ 3104 IPW_DEBUG_INFO("%s: Maximum BD threshold exceeded. " 3105 "Increase fragmentation level.\n", 3106 priv->net_dev->name); 3107 } 3108 3109 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) { 3110 IPW_DEBUG_TX("no room in tx_queue\n"); 3111 break; 3112 } 3113 3114 list_del(element); 3115 DEC_STAT(&priv->tx_pend_stat); 3116 3117 tbd = &txq->drv[txq->next]; 3118 3119 packet->index = txq->next; 3120 3121 ipw_hdr = packet->info.d_struct.data; 3122 hdr = (struct libipw_hdr_3addr *)packet->info.d_struct.txb-> 3123 fragments[0]->data; 3124 3125 if (priv->ieee->iw_mode == IW_MODE_INFRA) { 3126 /* To DS: Addr1 = BSSID, Addr2 = SA, 3127 Addr3 = DA */ 3128 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN); 3129 memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN); 3130 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) { 3131 /* not From/To DS: Addr1 = DA, Addr2 = SA, 3132 Addr3 = BSSID */ 3133 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN); 3134 memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN); 3135 } 3136 3137 ipw_hdr->host_command_reg = SEND; 3138 ipw_hdr->host_command_reg1 = 0; 3139 3140 /* For now we only support host based encryption */ 3141 ipw_hdr->needs_encryption = 0; 3142 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted; 3143 if (packet->info.d_struct.txb->nr_frags > 1) 3144 ipw_hdr->fragment_size = 3145 packet->info.d_struct.txb->frag_size - 3146 LIBIPW_3ADDR_LEN; 3147 else 3148 ipw_hdr->fragment_size = 0; 3149 3150 tbd->host_addr = packet->info.d_struct.data_phys; 3151 tbd->buf_length = sizeof(struct ipw2100_data_header); 3152 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags; 3153 tbd->status.info.field = 3154 IPW_BD_STATUS_TX_FRAME_802_3 | 3155 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT; 3156 txq->next++; 3157 txq->next %= txq->entries; 3158 3159 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n", 3160 packet->index, tbd->host_addr, tbd->buf_length); 3161 #ifdef CONFIG_IPW2100_DEBUG 3162 if (packet->info.d_struct.txb->nr_frags > 1) 3163 IPW_DEBUG_FRAG("fragment Tx: %d frames\n", 3164 packet->info.d_struct.txb->nr_frags); 3165 #endif 3166 3167 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) { 3168 tbd = &txq->drv[txq->next]; 3169 if (i == packet->info.d_struct.txb->nr_frags - 1) 3170 tbd->status.info.field = 3171 IPW_BD_STATUS_TX_FRAME_802_3 | 3172 IPW_BD_STATUS_TX_INTERRUPT_ENABLE; 3173 else 3174 tbd->status.info.field = 3175 IPW_BD_STATUS_TX_FRAME_802_3 | 3176 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT; 3177 3178 tbd->buf_length = packet->info.d_struct.txb-> 3179 fragments[i]->len - LIBIPW_3ADDR_LEN; 3180 3181 tbd->host_addr = pci_map_single(priv->pci_dev, 3182 packet->info.d_struct. 3183 txb->fragments[i]-> 3184 data + 3185 LIBIPW_3ADDR_LEN, 3186 tbd->buf_length, 3187 PCI_DMA_TODEVICE); 3188 if (pci_dma_mapping_error(priv->pci_dev, 3189 tbd->host_addr)) { 3190 IPW_DEBUG_TX("dma mapping error\n"); 3191 break; 3192 } 3193 3194 IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n", 3195 txq->next, tbd->host_addr, 3196 tbd->buf_length); 3197 3198 pci_dma_sync_single_for_device(priv->pci_dev, 3199 tbd->host_addr, 3200 tbd->buf_length, 3201 PCI_DMA_TODEVICE); 3202 3203 txq->next++; 3204 txq->next %= txq->entries; 3205 } 3206 3207 txq->available -= 1 + packet->info.d_struct.txb->nr_frags; 3208 SET_STAT(&priv->txq_stat, txq->available); 3209 3210 list_add_tail(element, &priv->fw_pend_list); 3211 INC_STAT(&priv->fw_pend_stat); 3212 } 3213 3214 if (txq->next != next) { 3215 /* kick off the DMA by notifying firmware the 3216 * write index has moved; make sure TBD stores are sync'd */ 3217 write_register(priv->net_dev, 3218 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX, 3219 txq->next); 3220 } 3221 } 3222 3223 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv) 3224 { 3225 struct net_device *dev = priv->net_dev; 3226 unsigned long flags; 3227 u32 inta, tmp; 3228 3229 spin_lock_irqsave(&priv->low_lock, flags); 3230 ipw2100_disable_interrupts(priv); 3231 3232 read_register(dev, IPW_REG_INTA, &inta); 3233 3234 IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n", 3235 (unsigned long)inta & IPW_INTERRUPT_MASK); 3236 3237 priv->in_isr++; 3238 priv->interrupts++; 3239 3240 /* We do not loop and keep polling for more interrupts as this 3241 * is frowned upon and doesn't play nicely with other potentially 3242 * chained IRQs */ 3243 IPW_DEBUG_ISR("INTA: 0x%08lX\n", 3244 (unsigned long)inta & IPW_INTERRUPT_MASK); 3245 3246 if (inta & IPW2100_INTA_FATAL_ERROR) { 3247 printk(KERN_WARNING DRV_NAME 3248 ": Fatal interrupt. Scheduling firmware restart.\n"); 3249 priv->inta_other++; 3250 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR); 3251 3252 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error); 3253 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n", 3254 priv->net_dev->name, priv->fatal_error); 3255 3256 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp); 3257 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n", 3258 priv->net_dev->name, tmp); 3259 3260 /* Wake up any sleeping jobs */ 3261 schedule_reset(priv); 3262 } 3263 3264 if (inta & IPW2100_INTA_PARITY_ERROR) { 3265 printk(KERN_ERR DRV_NAME 3266 ": ***** PARITY ERROR INTERRUPT !!!!\n"); 3267 priv->inta_other++; 3268 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR); 3269 } 3270 3271 if (inta & IPW2100_INTA_RX_TRANSFER) { 3272 IPW_DEBUG_ISR("RX interrupt\n"); 3273 3274 priv->rx_interrupts++; 3275 3276 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER); 3277 3278 __ipw2100_rx_process(priv); 3279 __ipw2100_tx_complete(priv); 3280 } 3281 3282 if (inta & IPW2100_INTA_TX_TRANSFER) { 3283 IPW_DEBUG_ISR("TX interrupt\n"); 3284 3285 priv->tx_interrupts++; 3286 3287 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER); 3288 3289 __ipw2100_tx_complete(priv); 3290 ipw2100_tx_send_commands(priv); 3291 ipw2100_tx_send_data(priv); 3292 } 3293 3294 if (inta & IPW2100_INTA_TX_COMPLETE) { 3295 IPW_DEBUG_ISR("TX complete\n"); 3296 priv->inta_other++; 3297 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE); 3298 3299 __ipw2100_tx_complete(priv); 3300 } 3301 3302 if (inta & IPW2100_INTA_EVENT_INTERRUPT) { 3303 /* ipw2100_handle_event(dev); */ 3304 priv->inta_other++; 3305 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT); 3306 } 3307 3308 if (inta & IPW2100_INTA_FW_INIT_DONE) { 3309 IPW_DEBUG_ISR("FW init done interrupt\n"); 3310 priv->inta_other++; 3311 3312 read_register(dev, IPW_REG_INTA, &tmp); 3313 if (tmp & (IPW2100_INTA_FATAL_ERROR | 3314 IPW2100_INTA_PARITY_ERROR)) { 3315 write_register(dev, IPW_REG_INTA, 3316 IPW2100_INTA_FATAL_ERROR | 3317 IPW2100_INTA_PARITY_ERROR); 3318 } 3319 3320 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE); 3321 } 3322 3323 if (inta & IPW2100_INTA_STATUS_CHANGE) { 3324 IPW_DEBUG_ISR("Status change interrupt\n"); 3325 priv->inta_other++; 3326 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE); 3327 } 3328 3329 if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) { 3330 IPW_DEBUG_ISR("slave host mode interrupt\n"); 3331 priv->inta_other++; 3332 write_register(dev, IPW_REG_INTA, 3333 IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE); 3334 } 3335 3336 priv->in_isr--; 3337 ipw2100_enable_interrupts(priv); 3338 3339 spin_unlock_irqrestore(&priv->low_lock, flags); 3340 3341 IPW_DEBUG_ISR("exit\n"); 3342 } 3343 3344 static irqreturn_t ipw2100_interrupt(int irq, void *data) 3345 { 3346 struct ipw2100_priv *priv = data; 3347 u32 inta, inta_mask; 3348 3349 if (!data) 3350 return IRQ_NONE; 3351 3352 spin_lock(&priv->low_lock); 3353 3354 /* We check to see if we should be ignoring interrupts before 3355 * we touch the hardware. During ucode load if we try and handle 3356 * an interrupt we can cause keyboard problems as well as cause 3357 * the ucode to fail to initialize */ 3358 if (!(priv->status & STATUS_INT_ENABLED)) { 3359 /* Shared IRQ */ 3360 goto none; 3361 } 3362 3363 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask); 3364 read_register(priv->net_dev, IPW_REG_INTA, &inta); 3365 3366 if (inta == 0xFFFFFFFF) { 3367 /* Hardware disappeared */ 3368 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n"); 3369 goto none; 3370 } 3371 3372 inta &= IPW_INTERRUPT_MASK; 3373 3374 if (!(inta & inta_mask)) { 3375 /* Shared interrupt */ 3376 goto none; 3377 } 3378 3379 /* We disable the hardware interrupt here just to prevent unneeded 3380 * calls to be made. We disable this again within the actual 3381 * work tasklet, so if another part of the code re-enables the 3382 * interrupt, that is fine */ 3383 ipw2100_disable_interrupts(priv); 3384 3385 tasklet_schedule(&priv->irq_tasklet); 3386 spin_unlock(&priv->low_lock); 3387 3388 return IRQ_HANDLED; 3389 none: 3390 spin_unlock(&priv->low_lock); 3391 return IRQ_NONE; 3392 } 3393 3394 static netdev_tx_t ipw2100_tx(struct libipw_txb *txb, 3395 struct net_device *dev, int pri) 3396 { 3397 struct ipw2100_priv *priv = libipw_priv(dev); 3398 struct list_head *element; 3399 struct ipw2100_tx_packet *packet; 3400 unsigned long flags; 3401 3402 spin_lock_irqsave(&priv->low_lock, flags); 3403 3404 if (!(priv->status & STATUS_ASSOCIATED)) { 3405 IPW_DEBUG_INFO("Can not transmit when not connected.\n"); 3406 priv->net_dev->stats.tx_carrier_errors++; 3407 netif_stop_queue(dev); 3408 goto fail_unlock; 3409 } 3410 3411 if (list_empty(&priv->tx_free_list)) 3412 goto fail_unlock; 3413 3414 element = priv->tx_free_list.next; 3415 packet = list_entry(element, struct ipw2100_tx_packet, list); 3416 3417 packet->info.d_struct.txb = txb; 3418 3419 IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len); 3420 printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len); 3421 3422 packet->jiffy_start = jiffies; 3423 3424 list_del(element); 3425 DEC_STAT(&priv->tx_free_stat); 3426 3427 list_add_tail(element, &priv->tx_pend_list); 3428 INC_STAT(&priv->tx_pend_stat); 3429 3430 ipw2100_tx_send_data(priv); 3431 3432 spin_unlock_irqrestore(&priv->low_lock, flags); 3433 return NETDEV_TX_OK; 3434 3435 fail_unlock: 3436 netif_stop_queue(dev); 3437 spin_unlock_irqrestore(&priv->low_lock, flags); 3438 return NETDEV_TX_BUSY; 3439 } 3440 3441 static int ipw2100_msg_allocate(struct ipw2100_priv *priv) 3442 { 3443 int i, j, err = -EINVAL; 3444 void *v; 3445 dma_addr_t p; 3446 3447 priv->msg_buffers = 3448 kmalloc(IPW_COMMAND_POOL_SIZE * sizeof(struct ipw2100_tx_packet), 3449 GFP_KERNEL); 3450 if (!priv->msg_buffers) 3451 return -ENOMEM; 3452 3453 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) { 3454 v = pci_zalloc_consistent(priv->pci_dev, 3455 sizeof(struct ipw2100_cmd_header), 3456 &p); 3457 if (!v) { 3458 printk(KERN_ERR DRV_NAME ": " 3459 "%s: PCI alloc failed for msg " 3460 "buffers.\n", priv->net_dev->name); 3461 err = -ENOMEM; 3462 break; 3463 } 3464 3465 priv->msg_buffers[i].type = COMMAND; 3466 priv->msg_buffers[i].info.c_struct.cmd = 3467 (struct ipw2100_cmd_header *)v; 3468 priv->msg_buffers[i].info.c_struct.cmd_phys = p; 3469 } 3470 3471 if (i == IPW_COMMAND_POOL_SIZE) 3472 return 0; 3473 3474 for (j = 0; j < i; j++) { 3475 pci_free_consistent(priv->pci_dev, 3476 sizeof(struct ipw2100_cmd_header), 3477 priv->msg_buffers[j].info.c_struct.cmd, 3478 priv->msg_buffers[j].info.c_struct. 3479 cmd_phys); 3480 } 3481 3482 kfree(priv->msg_buffers); 3483 priv->msg_buffers = NULL; 3484 3485 return err; 3486 } 3487 3488 static int ipw2100_msg_initialize(struct ipw2100_priv *priv) 3489 { 3490 int i; 3491 3492 INIT_LIST_HEAD(&priv->msg_free_list); 3493 INIT_LIST_HEAD(&priv->msg_pend_list); 3494 3495 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) 3496 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list); 3497 SET_STAT(&priv->msg_free_stat, i); 3498 3499 return 0; 3500 } 3501 3502 static void ipw2100_msg_free(struct ipw2100_priv *priv) 3503 { 3504 int i; 3505 3506 if (!priv->msg_buffers) 3507 return; 3508 3509 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) { 3510 pci_free_consistent(priv->pci_dev, 3511 sizeof(struct ipw2100_cmd_header), 3512 priv->msg_buffers[i].info.c_struct.cmd, 3513 priv->msg_buffers[i].info.c_struct. 3514 cmd_phys); 3515 } 3516 3517 kfree(priv->msg_buffers); 3518 priv->msg_buffers = NULL; 3519 } 3520 3521 static ssize_t show_pci(struct device *d, struct device_attribute *attr, 3522 char *buf) 3523 { 3524 struct pci_dev *pci_dev = to_pci_dev(d); 3525 char *out = buf; 3526 int i, j; 3527 u32 val; 3528 3529 for (i = 0; i < 16; i++) { 3530 out += sprintf(out, "[%08X] ", i * 16); 3531 for (j = 0; j < 16; j += 4) { 3532 pci_read_config_dword(pci_dev, i * 16 + j, &val); 3533 out += sprintf(out, "%08X ", val); 3534 } 3535 out += sprintf(out, "\n"); 3536 } 3537 3538 return out - buf; 3539 } 3540 3541 static DEVICE_ATTR(pci, 0444, show_pci, NULL); 3542 3543 static ssize_t show_cfg(struct device *d, struct device_attribute *attr, 3544 char *buf) 3545 { 3546 struct ipw2100_priv *p = dev_get_drvdata(d); 3547 return sprintf(buf, "0x%08x\n", (int)p->config); 3548 } 3549 3550 static DEVICE_ATTR(cfg, 0444, show_cfg, NULL); 3551 3552 static ssize_t show_status(struct device *d, struct device_attribute *attr, 3553 char *buf) 3554 { 3555 struct ipw2100_priv *p = dev_get_drvdata(d); 3556 return sprintf(buf, "0x%08x\n", (int)p->status); 3557 } 3558 3559 static DEVICE_ATTR(status, 0444, show_status, NULL); 3560 3561 static ssize_t show_capability(struct device *d, struct device_attribute *attr, 3562 char *buf) 3563 { 3564 struct ipw2100_priv *p = dev_get_drvdata(d); 3565 return sprintf(buf, "0x%08x\n", (int)p->capability); 3566 } 3567 3568 static DEVICE_ATTR(capability, 0444, show_capability, NULL); 3569 3570 #define IPW2100_REG(x) { IPW_ ##x, #x } 3571 static const struct { 3572 u32 addr; 3573 const char *name; 3574 } hw_data[] = { 3575 IPW2100_REG(REG_GP_CNTRL), 3576 IPW2100_REG(REG_GPIO), 3577 IPW2100_REG(REG_INTA), 3578 IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),}; 3579 #define IPW2100_NIC(x, s) { x, #x, s } 3580 static const struct { 3581 u32 addr; 3582 const char *name; 3583 size_t size; 3584 } nic_data[] = { 3585 IPW2100_NIC(IPW2100_CONTROL_REG, 2), 3586 IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),}; 3587 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d } 3588 static const struct { 3589 u8 index; 3590 const char *name; 3591 const char *desc; 3592 } ord_data[] = { 3593 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"), 3594 IPW2100_ORD(STAT_TX_HOST_COMPLETE, 3595 "successful Host Tx's (MSDU)"), 3596 IPW2100_ORD(STAT_TX_DIR_DATA, 3597 "successful Directed Tx's (MSDU)"), 3598 IPW2100_ORD(STAT_TX_DIR_DATA1, 3599 "successful Directed Tx's (MSDU) @ 1MB"), 3600 IPW2100_ORD(STAT_TX_DIR_DATA2, 3601 "successful Directed Tx's (MSDU) @ 2MB"), 3602 IPW2100_ORD(STAT_TX_DIR_DATA5_5, 3603 "successful Directed Tx's (MSDU) @ 5_5MB"), 3604 IPW2100_ORD(STAT_TX_DIR_DATA11, 3605 "successful Directed Tx's (MSDU) @ 11MB"), 3606 IPW2100_ORD(STAT_TX_NODIR_DATA1, 3607 "successful Non_Directed Tx's (MSDU) @ 1MB"), 3608 IPW2100_ORD(STAT_TX_NODIR_DATA2, 3609 "successful Non_Directed Tx's (MSDU) @ 2MB"), 3610 IPW2100_ORD(STAT_TX_NODIR_DATA5_5, 3611 "successful Non_Directed Tx's (MSDU) @ 5.5MB"), 3612 IPW2100_ORD(STAT_TX_NODIR_DATA11, 3613 "successful Non_Directed Tx's (MSDU) @ 11MB"), 3614 IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"), 3615 IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"), 3616 IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"), 3617 IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"), 3618 IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"), 3619 IPW2100_ORD(STAT_TX_ASSN_RESP, 3620 "successful Association response Tx's"), 3621 IPW2100_ORD(STAT_TX_REASSN, 3622 "successful Reassociation Tx's"), 3623 IPW2100_ORD(STAT_TX_REASSN_RESP, 3624 "successful Reassociation response Tx's"), 3625 IPW2100_ORD(STAT_TX_PROBE, 3626 "probes successfully transmitted"), 3627 IPW2100_ORD(STAT_TX_PROBE_RESP, 3628 "probe responses successfully transmitted"), 3629 IPW2100_ORD(STAT_TX_BEACON, "tx beacon"), 3630 IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"), 3631 IPW2100_ORD(STAT_TX_DISASSN, 3632 "successful Disassociation TX"), 3633 IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"), 3634 IPW2100_ORD(STAT_TX_DEAUTH, 3635 "successful Deauthentication TX"), 3636 IPW2100_ORD(STAT_TX_TOTAL_BYTES, 3637 "Total successful Tx data bytes"), 3638 IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"), 3639 IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"), 3640 IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"), 3641 IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"), 3642 IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"), 3643 IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"), 3644 IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP, 3645 "times max tries in a hop failed"), 3646 IPW2100_ORD(STAT_TX_DISASSN_FAIL, 3647 "times disassociation failed"), 3648 IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"), 3649 IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"), 3650 IPW2100_ORD(STAT_RX_HOST, "packets passed to host"), 3651 IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"), 3652 IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"), 3653 IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"), 3654 IPW2100_ORD(STAT_RX_DIR_DATA5_5, 3655 "directed packets at 5.5MB"), 3656 IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"), 3657 IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"), 3658 IPW2100_ORD(STAT_RX_NODIR_DATA1, 3659 "nondirected packets at 1MB"), 3660 IPW2100_ORD(STAT_RX_NODIR_DATA2, 3661 "nondirected packets at 2MB"), 3662 IPW2100_ORD(STAT_RX_NODIR_DATA5_5, 3663 "nondirected packets at 5.5MB"), 3664 IPW2100_ORD(STAT_RX_NODIR_DATA11, 3665 "nondirected packets at 11MB"), 3666 IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"), 3667 IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS, 3668 "Rx CTS"), 3669 IPW2100_ORD(STAT_RX_ACK, "Rx ACK"), 3670 IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"), 3671 IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"), 3672 IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"), 3673 IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"), 3674 IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"), 3675 IPW2100_ORD(STAT_RX_REASSN_RESP, 3676 "Reassociation response Rx's"), 3677 IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"), 3678 IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"), 3679 IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"), 3680 IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"), 3681 IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"), 3682 IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"), 3683 IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"), 3684 IPW2100_ORD(STAT_RX_TOTAL_BYTES, 3685 "Total rx data bytes received"), 3686 IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"), 3687 IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"), 3688 IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"), 3689 IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"), 3690 IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"), 3691 IPW2100_ORD(STAT_RX_DUPLICATE1, 3692 "duplicate rx packets at 1MB"), 3693 IPW2100_ORD(STAT_RX_DUPLICATE2, 3694 "duplicate rx packets at 2MB"), 3695 IPW2100_ORD(STAT_RX_DUPLICATE5_5, 3696 "duplicate rx packets at 5.5MB"), 3697 IPW2100_ORD(STAT_RX_DUPLICATE11, 3698 "duplicate rx packets at 11MB"), 3699 IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"), 3700 IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent db"), 3701 IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent db"), 3702 IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent db"), 3703 IPW2100_ORD(STAT_RX_INVALID_PROTOCOL, 3704 "rx frames with invalid protocol"), 3705 IPW2100_ORD(SYS_BOOT_TIME, "Boot time"), 3706 IPW2100_ORD(STAT_RX_NO_BUFFER, 3707 "rx frames rejected due to no buffer"), 3708 IPW2100_ORD(STAT_RX_MISSING_FRAG, 3709 "rx frames dropped due to missing fragment"), 3710 IPW2100_ORD(STAT_RX_ORPHAN_FRAG, 3711 "rx frames dropped due to non-sequential fragment"), 3712 IPW2100_ORD(STAT_RX_ORPHAN_FRAME, 3713 "rx frames dropped due to unmatched 1st frame"), 3714 IPW2100_ORD(STAT_RX_FRAG_AGEOUT, 3715 "rx frames dropped due to uncompleted frame"), 3716 IPW2100_ORD(STAT_RX_ICV_ERRORS, 3717 "ICV errors during decryption"), 3718 IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"), 3719 IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"), 3720 IPW2100_ORD(STAT_PSP_POLL_TIMEOUT, 3721 "poll response timeouts"), 3722 IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT, 3723 "timeouts waiting for last {broad,multi}cast pkt"), 3724 IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"), 3725 IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"), 3726 IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"), 3727 IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"), 3728 IPW2100_ORD(STAT_PERCENT_MISSED_BCNS, 3729 "current calculation of % missed beacons"), 3730 IPW2100_ORD(STAT_PERCENT_RETRIES, 3731 "current calculation of % missed tx retries"), 3732 IPW2100_ORD(ASSOCIATED_AP_PTR, 3733 "0 if not associated, else pointer to AP table entry"), 3734 IPW2100_ORD(AVAILABLE_AP_CNT, 3735 "AP's decsribed in the AP table"), 3736 IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"), 3737 IPW2100_ORD(STAT_AP_ASSNS, "associations"), 3738 IPW2100_ORD(STAT_ASSN_FAIL, "association failures"), 3739 IPW2100_ORD(STAT_ASSN_RESP_FAIL, 3740 "failures due to response fail"), 3741 IPW2100_ORD(STAT_FULL_SCANS, "full scans"), 3742 IPW2100_ORD(CARD_DISABLED, "Card Disabled"), 3743 IPW2100_ORD(STAT_ROAM_INHIBIT, 3744 "times roaming was inhibited due to activity"), 3745 IPW2100_ORD(RSSI_AT_ASSN, 3746 "RSSI of associated AP at time of association"), 3747 IPW2100_ORD(STAT_ASSN_CAUSE1, 3748 "reassociation: no probe response or TX on hop"), 3749 IPW2100_ORD(STAT_ASSN_CAUSE2, 3750 "reassociation: poor tx/rx quality"), 3751 IPW2100_ORD(STAT_ASSN_CAUSE3, 3752 "reassociation: tx/rx quality (excessive AP load"), 3753 IPW2100_ORD(STAT_ASSN_CAUSE4, 3754 "reassociation: AP RSSI level"), 3755 IPW2100_ORD(STAT_ASSN_CAUSE5, 3756 "reassociations due to load leveling"), 3757 IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"), 3758 IPW2100_ORD(STAT_AUTH_RESP_FAIL, 3759 "times authentication response failed"), 3760 IPW2100_ORD(STATION_TABLE_CNT, 3761 "entries in association table"), 3762 IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"), 3763 IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"), 3764 IPW2100_ORD(COUNTRY_CODE, 3765 "IEEE country code as recv'd from beacon"), 3766 IPW2100_ORD(COUNTRY_CHANNELS, 3767 "channels supported by country"), 3768 IPW2100_ORD(RESET_CNT, "adapter resets (warm)"), 3769 IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"), 3770 IPW2100_ORD(ANTENNA_DIVERSITY, 3771 "TRUE if antenna diversity is disabled"), 3772 IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"), 3773 IPW2100_ORD(OUR_FREQ, 3774 "current radio freq lower digits - channel ID"), 3775 IPW2100_ORD(RTC_TIME, "current RTC time"), 3776 IPW2100_ORD(PORT_TYPE, "operating mode"), 3777 IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"), 3778 IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"), 3779 IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"), 3780 IPW2100_ORD(BASIC_RATES, "basic tx rates"), 3781 IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"), 3782 IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"), 3783 IPW2100_ORD(CAPABILITIES, 3784 "Management frame capability field"), 3785 IPW2100_ORD(AUTH_TYPE, "Type of authentication"), 3786 IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"), 3787 IPW2100_ORD(RTS_THRESHOLD, 3788 "Min packet length for RTS handshaking"), 3789 IPW2100_ORD(INT_MODE, "International mode"), 3790 IPW2100_ORD(FRAGMENTATION_THRESHOLD, 3791 "protocol frag threshold"), 3792 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS, 3793 "EEPROM offset in SRAM"), 3794 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE, 3795 "EEPROM size in SRAM"), 3796 IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"), 3797 IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS, 3798 "EEPROM IBSS 11b channel set"), 3799 IPW2100_ORD(MAC_VERSION, "MAC Version"), 3800 IPW2100_ORD(MAC_REVISION, "MAC Revision"), 3801 IPW2100_ORD(RADIO_VERSION, "Radio Version"), 3802 IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"), 3803 IPW2100_ORD(UCODE_VERSION, "Ucode Version"),}; 3804 3805 static ssize_t show_registers(struct device *d, struct device_attribute *attr, 3806 char *buf) 3807 { 3808 int i; 3809 struct ipw2100_priv *priv = dev_get_drvdata(d); 3810 struct net_device *dev = priv->net_dev; 3811 char *out = buf; 3812 u32 val = 0; 3813 3814 out += sprintf(out, "%30s [Address ] : Hex\n", "Register"); 3815 3816 for (i = 0; i < ARRAY_SIZE(hw_data); i++) { 3817 read_register(dev, hw_data[i].addr, &val); 3818 out += sprintf(out, "%30s [%08X] : %08X\n", 3819 hw_data[i].name, hw_data[i].addr, val); 3820 } 3821 3822 return out - buf; 3823 } 3824 3825 static DEVICE_ATTR(registers, 0444, show_registers, NULL); 3826 3827 static ssize_t show_hardware(struct device *d, struct device_attribute *attr, 3828 char *buf) 3829 { 3830 struct ipw2100_priv *priv = dev_get_drvdata(d); 3831 struct net_device *dev = priv->net_dev; 3832 char *out = buf; 3833 int i; 3834 3835 out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry"); 3836 3837 for (i = 0; i < ARRAY_SIZE(nic_data); i++) { 3838 u8 tmp8; 3839 u16 tmp16; 3840 u32 tmp32; 3841 3842 switch (nic_data[i].size) { 3843 case 1: 3844 read_nic_byte(dev, nic_data[i].addr, &tmp8); 3845 out += sprintf(out, "%30s [%08X] : %02X\n", 3846 nic_data[i].name, nic_data[i].addr, 3847 tmp8); 3848 break; 3849 case 2: 3850 read_nic_word(dev, nic_data[i].addr, &tmp16); 3851 out += sprintf(out, "%30s [%08X] : %04X\n", 3852 nic_data[i].name, nic_data[i].addr, 3853 tmp16); 3854 break; 3855 case 4: 3856 read_nic_dword(dev, nic_data[i].addr, &tmp32); 3857 out += sprintf(out, "%30s [%08X] : %08X\n", 3858 nic_data[i].name, nic_data[i].addr, 3859 tmp32); 3860 break; 3861 } 3862 } 3863 return out - buf; 3864 } 3865 3866 static DEVICE_ATTR(hardware, 0444, show_hardware, NULL); 3867 3868 static ssize_t show_memory(struct device *d, struct device_attribute *attr, 3869 char *buf) 3870 { 3871 struct ipw2100_priv *priv = dev_get_drvdata(d); 3872 struct net_device *dev = priv->net_dev; 3873 static unsigned long loop = 0; 3874 int len = 0; 3875 u32 buffer[4]; 3876 int i; 3877 char line[81]; 3878 3879 if (loop >= 0x30000) 3880 loop = 0; 3881 3882 /* sysfs provides us PAGE_SIZE buffer */ 3883 while (len < PAGE_SIZE - 128 && loop < 0x30000) { 3884 3885 if (priv->snapshot[0]) 3886 for (i = 0; i < 4; i++) 3887 buffer[i] = 3888 *(u32 *) SNAPSHOT_ADDR(loop + i * 4); 3889 else 3890 for (i = 0; i < 4; i++) 3891 read_nic_dword(dev, loop + i * 4, &buffer[i]); 3892 3893 if (priv->dump_raw) 3894 len += sprintf(buf + len, 3895 "%c%c%c%c" 3896 "%c%c%c%c" 3897 "%c%c%c%c" 3898 "%c%c%c%c", 3899 ((u8 *) buffer)[0x0], 3900 ((u8 *) buffer)[0x1], 3901 ((u8 *) buffer)[0x2], 3902 ((u8 *) buffer)[0x3], 3903 ((u8 *) buffer)[0x4], 3904 ((u8 *) buffer)[0x5], 3905 ((u8 *) buffer)[0x6], 3906 ((u8 *) buffer)[0x7], 3907 ((u8 *) buffer)[0x8], 3908 ((u8 *) buffer)[0x9], 3909 ((u8 *) buffer)[0xa], 3910 ((u8 *) buffer)[0xb], 3911 ((u8 *) buffer)[0xc], 3912 ((u8 *) buffer)[0xd], 3913 ((u8 *) buffer)[0xe], 3914 ((u8 *) buffer)[0xf]); 3915 else 3916 len += sprintf(buf + len, "%s\n", 3917 snprint_line(line, sizeof(line), 3918 (u8 *) buffer, 16, loop)); 3919 loop += 16; 3920 } 3921 3922 return len; 3923 } 3924 3925 static ssize_t store_memory(struct device *d, struct device_attribute *attr, 3926 const char *buf, size_t count) 3927 { 3928 struct ipw2100_priv *priv = dev_get_drvdata(d); 3929 struct net_device *dev = priv->net_dev; 3930 const char *p = buf; 3931 3932 (void)dev; /* kill unused-var warning for debug-only code */ 3933 3934 if (count < 1) 3935 return count; 3936 3937 if (p[0] == '1' || 3938 (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) { 3939 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n", 3940 dev->name); 3941 priv->dump_raw = 1; 3942 3943 } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' && 3944 tolower(p[1]) == 'f')) { 3945 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n", 3946 dev->name); 3947 priv->dump_raw = 0; 3948 3949 } else if (tolower(p[0]) == 'r') { 3950 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name); 3951 ipw2100_snapshot_free(priv); 3952 3953 } else 3954 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, " 3955 "reset = clear memory snapshot\n", dev->name); 3956 3957 return count; 3958 } 3959 3960 static DEVICE_ATTR(memory, 0644, show_memory, store_memory); 3961 3962 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr, 3963 char *buf) 3964 { 3965 struct ipw2100_priv *priv = dev_get_drvdata(d); 3966 u32 val = 0; 3967 int len = 0; 3968 u32 val_len; 3969 static int loop = 0; 3970 3971 if (priv->status & STATUS_RF_KILL_MASK) 3972 return 0; 3973 3974 if (loop >= ARRAY_SIZE(ord_data)) 3975 loop = 0; 3976 3977 /* sysfs provides us PAGE_SIZE buffer */ 3978 while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) { 3979 val_len = sizeof(u32); 3980 3981 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val, 3982 &val_len)) 3983 len += sprintf(buf + len, "[0x%02X] = ERROR %s\n", 3984 ord_data[loop].index, 3985 ord_data[loop].desc); 3986 else 3987 len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n", 3988 ord_data[loop].index, val, 3989 ord_data[loop].desc); 3990 loop++; 3991 } 3992 3993 return len; 3994 } 3995 3996 static DEVICE_ATTR(ordinals, 0444, show_ordinals, NULL); 3997 3998 static ssize_t show_stats(struct device *d, struct device_attribute *attr, 3999 char *buf) 4000 { 4001 struct ipw2100_priv *priv = dev_get_drvdata(d); 4002 char *out = buf; 4003 4004 out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n", 4005 priv->interrupts, priv->tx_interrupts, 4006 priv->rx_interrupts, priv->inta_other); 4007 out += sprintf(out, "firmware resets: %d\n", priv->resets); 4008 out += sprintf(out, "firmware hangs: %d\n", priv->hangs); 4009 #ifdef CONFIG_IPW2100_DEBUG 4010 out += sprintf(out, "packet mismatch image: %s\n", 4011 priv->snapshot[0] ? "YES" : "NO"); 4012 #endif 4013 4014 return out - buf; 4015 } 4016 4017 static DEVICE_ATTR(stats, 0444, show_stats, NULL); 4018 4019 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode) 4020 { 4021 int err; 4022 4023 if (mode == priv->ieee->iw_mode) 4024 return 0; 4025 4026 err = ipw2100_disable_adapter(priv); 4027 if (err) { 4028 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n", 4029 priv->net_dev->name, err); 4030 return err; 4031 } 4032 4033 switch (mode) { 4034 case IW_MODE_INFRA: 4035 priv->net_dev->type = ARPHRD_ETHER; 4036 break; 4037 case IW_MODE_ADHOC: 4038 priv->net_dev->type = ARPHRD_ETHER; 4039 break; 4040 #ifdef CONFIG_IPW2100_MONITOR 4041 case IW_MODE_MONITOR: 4042 priv->last_mode = priv->ieee->iw_mode; 4043 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP; 4044 break; 4045 #endif /* CONFIG_IPW2100_MONITOR */ 4046 } 4047 4048 priv->ieee->iw_mode = mode; 4049 4050 #ifdef CONFIG_PM 4051 /* Indicate ipw2100_download_firmware download firmware 4052 * from disk instead of memory. */ 4053 ipw2100_firmware.version = 0; 4054 #endif 4055 4056 printk(KERN_INFO "%s: Resetting on mode change.\n", priv->net_dev->name); 4057 priv->reset_backoff = 0; 4058 schedule_reset(priv); 4059 4060 return 0; 4061 } 4062 4063 static ssize_t show_internals(struct device *d, struct device_attribute *attr, 4064 char *buf) 4065 { 4066 struct ipw2100_priv *priv = dev_get_drvdata(d); 4067 int len = 0; 4068 4069 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x) 4070 4071 if (priv->status & STATUS_ASSOCIATED) 4072 len += sprintf(buf + len, "connected: %lu\n", 4073 get_seconds() - priv->connect_start); 4074 else 4075 len += sprintf(buf + len, "not connected\n"); 4076 4077 DUMP_VAR(ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx], "p"); 4078 DUMP_VAR(status, "08lx"); 4079 DUMP_VAR(config, "08lx"); 4080 DUMP_VAR(capability, "08lx"); 4081 4082 len += 4083 sprintf(buf + len, "last_rtc: %lu\n", 4084 (unsigned long)priv->last_rtc); 4085 4086 DUMP_VAR(fatal_error, "d"); 4087 DUMP_VAR(stop_hang_check, "d"); 4088 DUMP_VAR(stop_rf_kill, "d"); 4089 DUMP_VAR(messages_sent, "d"); 4090 4091 DUMP_VAR(tx_pend_stat.value, "d"); 4092 DUMP_VAR(tx_pend_stat.hi, "d"); 4093 4094 DUMP_VAR(tx_free_stat.value, "d"); 4095 DUMP_VAR(tx_free_stat.lo, "d"); 4096 4097 DUMP_VAR(msg_free_stat.value, "d"); 4098 DUMP_VAR(msg_free_stat.lo, "d"); 4099 4100 DUMP_VAR(msg_pend_stat.value, "d"); 4101 DUMP_VAR(msg_pend_stat.hi, "d"); 4102 4103 DUMP_VAR(fw_pend_stat.value, "d"); 4104 DUMP_VAR(fw_pend_stat.hi, "d"); 4105 4106 DUMP_VAR(txq_stat.value, "d"); 4107 DUMP_VAR(txq_stat.lo, "d"); 4108 4109 DUMP_VAR(ieee->scans, "d"); 4110 DUMP_VAR(reset_backoff, "d"); 4111 4112 return len; 4113 } 4114 4115 static DEVICE_ATTR(internals, 0444, show_internals, NULL); 4116 4117 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr, 4118 char *buf) 4119 { 4120 struct ipw2100_priv *priv = dev_get_drvdata(d); 4121 char essid[IW_ESSID_MAX_SIZE + 1]; 4122 u8 bssid[ETH_ALEN]; 4123 u32 chan = 0; 4124 char *out = buf; 4125 unsigned int length; 4126 int ret; 4127 4128 if (priv->status & STATUS_RF_KILL_MASK) 4129 return 0; 4130 4131 memset(essid, 0, sizeof(essid)); 4132 memset(bssid, 0, sizeof(bssid)); 4133 4134 length = IW_ESSID_MAX_SIZE; 4135 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length); 4136 if (ret) 4137 IPW_DEBUG_INFO("failed querying ordinals at line %d\n", 4138 __LINE__); 4139 4140 length = sizeof(bssid); 4141 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, 4142 bssid, &length); 4143 if (ret) 4144 IPW_DEBUG_INFO("failed querying ordinals at line %d\n", 4145 __LINE__); 4146 4147 length = sizeof(u32); 4148 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length); 4149 if (ret) 4150 IPW_DEBUG_INFO("failed querying ordinals at line %d\n", 4151 __LINE__); 4152 4153 out += sprintf(out, "ESSID: %s\n", essid); 4154 out += sprintf(out, "BSSID: %pM\n", bssid); 4155 out += sprintf(out, "Channel: %d\n", chan); 4156 4157 return out - buf; 4158 } 4159 4160 static DEVICE_ATTR(bssinfo, 0444, show_bssinfo, NULL); 4161 4162 #ifdef CONFIG_IPW2100_DEBUG 4163 static ssize_t debug_level_show(struct device_driver *d, char *buf) 4164 { 4165 return sprintf(buf, "0x%08X\n", ipw2100_debug_level); 4166 } 4167 4168 static ssize_t debug_level_store(struct device_driver *d, 4169 const char *buf, size_t count) 4170 { 4171 u32 val; 4172 int ret; 4173 4174 ret = kstrtou32(buf, 0, &val); 4175 if (ret) 4176 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf); 4177 else 4178 ipw2100_debug_level = val; 4179 4180 return strnlen(buf, count); 4181 } 4182 static DRIVER_ATTR_RW(debug_level); 4183 #endif /* CONFIG_IPW2100_DEBUG */ 4184 4185 static ssize_t show_fatal_error(struct device *d, 4186 struct device_attribute *attr, char *buf) 4187 { 4188 struct ipw2100_priv *priv = dev_get_drvdata(d); 4189 char *out = buf; 4190 int i; 4191 4192 if (priv->fatal_error) 4193 out += sprintf(out, "0x%08X\n", priv->fatal_error); 4194 else 4195 out += sprintf(out, "0\n"); 4196 4197 for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) { 4198 if (!priv->fatal_errors[(priv->fatal_index - i) % 4199 IPW2100_ERROR_QUEUE]) 4200 continue; 4201 4202 out += sprintf(out, "%d. 0x%08X\n", i, 4203 priv->fatal_errors[(priv->fatal_index - i) % 4204 IPW2100_ERROR_QUEUE]); 4205 } 4206 4207 return out - buf; 4208 } 4209 4210 static ssize_t store_fatal_error(struct device *d, 4211 struct device_attribute *attr, const char *buf, 4212 size_t count) 4213 { 4214 struct ipw2100_priv *priv = dev_get_drvdata(d); 4215 schedule_reset(priv); 4216 return count; 4217 } 4218 4219 static DEVICE_ATTR(fatal_error, 0644, show_fatal_error, store_fatal_error); 4220 4221 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr, 4222 char *buf) 4223 { 4224 struct ipw2100_priv *priv = dev_get_drvdata(d); 4225 return sprintf(buf, "%d\n", priv->ieee->scan_age); 4226 } 4227 4228 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr, 4229 const char *buf, size_t count) 4230 { 4231 struct ipw2100_priv *priv = dev_get_drvdata(d); 4232 struct net_device *dev = priv->net_dev; 4233 unsigned long val; 4234 int ret; 4235 4236 (void)dev; /* kill unused-var warning for debug-only code */ 4237 4238 IPW_DEBUG_INFO("enter\n"); 4239 4240 ret = kstrtoul(buf, 0, &val); 4241 if (ret) { 4242 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name); 4243 } else { 4244 priv->ieee->scan_age = val; 4245 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age); 4246 } 4247 4248 IPW_DEBUG_INFO("exit\n"); 4249 return strnlen(buf, count); 4250 } 4251 4252 static DEVICE_ATTR(scan_age, 0644, show_scan_age, store_scan_age); 4253 4254 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr, 4255 char *buf) 4256 { 4257 /* 0 - RF kill not enabled 4258 1 - SW based RF kill active (sysfs) 4259 2 - HW based RF kill active 4260 3 - Both HW and SW baed RF kill active */ 4261 struct ipw2100_priv *priv = dev_get_drvdata(d); 4262 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) | 4263 (rf_kill_active(priv) ? 0x2 : 0x0); 4264 return sprintf(buf, "%i\n", val); 4265 } 4266 4267 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio) 4268 { 4269 if ((disable_radio ? 1 : 0) == 4270 (priv->status & STATUS_RF_KILL_SW ? 1 : 0)) 4271 return 0; 4272 4273 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n", 4274 disable_radio ? "OFF" : "ON"); 4275 4276 mutex_lock(&priv->action_mutex); 4277 4278 if (disable_radio) { 4279 priv->status |= STATUS_RF_KILL_SW; 4280 ipw2100_down(priv); 4281 } else { 4282 priv->status &= ~STATUS_RF_KILL_SW; 4283 if (rf_kill_active(priv)) { 4284 IPW_DEBUG_RF_KILL("Can not turn radio back on - " 4285 "disabled by HW switch\n"); 4286 /* Make sure the RF_KILL check timer is running */ 4287 priv->stop_rf_kill = 0; 4288 mod_delayed_work(system_wq, &priv->rf_kill, 4289 round_jiffies_relative(HZ)); 4290 } else 4291 schedule_reset(priv); 4292 } 4293 4294 mutex_unlock(&priv->action_mutex); 4295 return 1; 4296 } 4297 4298 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr, 4299 const char *buf, size_t count) 4300 { 4301 struct ipw2100_priv *priv = dev_get_drvdata(d); 4302 ipw_radio_kill_sw(priv, buf[0] == '1'); 4303 return count; 4304 } 4305 4306 static DEVICE_ATTR(rf_kill, 0644, show_rf_kill, store_rf_kill); 4307 4308 static struct attribute *ipw2100_sysfs_entries[] = { 4309 &dev_attr_hardware.attr, 4310 &dev_attr_registers.attr, 4311 &dev_attr_ordinals.attr, 4312 &dev_attr_pci.attr, 4313 &dev_attr_stats.attr, 4314 &dev_attr_internals.attr, 4315 &dev_attr_bssinfo.attr, 4316 &dev_attr_memory.attr, 4317 &dev_attr_scan_age.attr, 4318 &dev_attr_fatal_error.attr, 4319 &dev_attr_rf_kill.attr, 4320 &dev_attr_cfg.attr, 4321 &dev_attr_status.attr, 4322 &dev_attr_capability.attr, 4323 NULL, 4324 }; 4325 4326 static const struct attribute_group ipw2100_attribute_group = { 4327 .attrs = ipw2100_sysfs_entries, 4328 }; 4329 4330 static int status_queue_allocate(struct ipw2100_priv *priv, int entries) 4331 { 4332 struct ipw2100_status_queue *q = &priv->status_queue; 4333 4334 IPW_DEBUG_INFO("enter\n"); 4335 4336 q->size = entries * sizeof(struct ipw2100_status); 4337 q->drv = pci_zalloc_consistent(priv->pci_dev, q->size, &q->nic); 4338 if (!q->drv) { 4339 IPW_DEBUG_WARNING("Can not allocate status queue.\n"); 4340 return -ENOMEM; 4341 } 4342 4343 IPW_DEBUG_INFO("exit\n"); 4344 4345 return 0; 4346 } 4347 4348 static void status_queue_free(struct ipw2100_priv *priv) 4349 { 4350 IPW_DEBUG_INFO("enter\n"); 4351 4352 if (priv->status_queue.drv) { 4353 pci_free_consistent(priv->pci_dev, priv->status_queue.size, 4354 priv->status_queue.drv, 4355 priv->status_queue.nic); 4356 priv->status_queue.drv = NULL; 4357 } 4358 4359 IPW_DEBUG_INFO("exit\n"); 4360 } 4361 4362 static int bd_queue_allocate(struct ipw2100_priv *priv, 4363 struct ipw2100_bd_queue *q, int entries) 4364 { 4365 IPW_DEBUG_INFO("enter\n"); 4366 4367 memset(q, 0, sizeof(struct ipw2100_bd_queue)); 4368 4369 q->entries = entries; 4370 q->size = entries * sizeof(struct ipw2100_bd); 4371 q->drv = pci_zalloc_consistent(priv->pci_dev, q->size, &q->nic); 4372 if (!q->drv) { 4373 IPW_DEBUG_INFO 4374 ("can't allocate shared memory for buffer descriptors\n"); 4375 return -ENOMEM; 4376 } 4377 4378 IPW_DEBUG_INFO("exit\n"); 4379 4380 return 0; 4381 } 4382 4383 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q) 4384 { 4385 IPW_DEBUG_INFO("enter\n"); 4386 4387 if (!q) 4388 return; 4389 4390 if (q->drv) { 4391 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic); 4392 q->drv = NULL; 4393 } 4394 4395 IPW_DEBUG_INFO("exit\n"); 4396 } 4397 4398 static void bd_queue_initialize(struct ipw2100_priv *priv, 4399 struct ipw2100_bd_queue *q, u32 base, u32 size, 4400 u32 r, u32 w) 4401 { 4402 IPW_DEBUG_INFO("enter\n"); 4403 4404 IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv, 4405 (u32) q->nic); 4406 4407 write_register(priv->net_dev, base, q->nic); 4408 write_register(priv->net_dev, size, q->entries); 4409 write_register(priv->net_dev, r, q->oldest); 4410 write_register(priv->net_dev, w, q->next); 4411 4412 IPW_DEBUG_INFO("exit\n"); 4413 } 4414 4415 static void ipw2100_kill_works(struct ipw2100_priv *priv) 4416 { 4417 priv->stop_rf_kill = 1; 4418 priv->stop_hang_check = 1; 4419 cancel_delayed_work_sync(&priv->reset_work); 4420 cancel_delayed_work_sync(&priv->security_work); 4421 cancel_delayed_work_sync(&priv->wx_event_work); 4422 cancel_delayed_work_sync(&priv->hang_check); 4423 cancel_delayed_work_sync(&priv->rf_kill); 4424 cancel_delayed_work_sync(&priv->scan_event); 4425 } 4426 4427 static int ipw2100_tx_allocate(struct ipw2100_priv *priv) 4428 { 4429 int i, j, err = -EINVAL; 4430 void *v; 4431 dma_addr_t p; 4432 4433 IPW_DEBUG_INFO("enter\n"); 4434 4435 err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH); 4436 if (err) { 4437 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n", 4438 priv->net_dev->name); 4439 return err; 4440 } 4441 4442 priv->tx_buffers = kmalloc_array(TX_PENDED_QUEUE_LENGTH, 4443 sizeof(struct ipw2100_tx_packet), 4444 GFP_ATOMIC); 4445 if (!priv->tx_buffers) { 4446 bd_queue_free(priv, &priv->tx_queue); 4447 return -ENOMEM; 4448 } 4449 4450 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) { 4451 v = pci_alloc_consistent(priv->pci_dev, 4452 sizeof(struct ipw2100_data_header), 4453 &p); 4454 if (!v) { 4455 printk(KERN_ERR DRV_NAME 4456 ": %s: PCI alloc failed for tx " "buffers.\n", 4457 priv->net_dev->name); 4458 err = -ENOMEM; 4459 break; 4460 } 4461 4462 priv->tx_buffers[i].type = DATA; 4463 priv->tx_buffers[i].info.d_struct.data = 4464 (struct ipw2100_data_header *)v; 4465 priv->tx_buffers[i].info.d_struct.data_phys = p; 4466 priv->tx_buffers[i].info.d_struct.txb = NULL; 4467 } 4468 4469 if (i == TX_PENDED_QUEUE_LENGTH) 4470 return 0; 4471 4472 for (j = 0; j < i; j++) { 4473 pci_free_consistent(priv->pci_dev, 4474 sizeof(struct ipw2100_data_header), 4475 priv->tx_buffers[j].info.d_struct.data, 4476 priv->tx_buffers[j].info.d_struct. 4477 data_phys); 4478 } 4479 4480 kfree(priv->tx_buffers); 4481 priv->tx_buffers = NULL; 4482 4483 return err; 4484 } 4485 4486 static void ipw2100_tx_initialize(struct ipw2100_priv *priv) 4487 { 4488 int i; 4489 4490 IPW_DEBUG_INFO("enter\n"); 4491 4492 /* 4493 * reinitialize packet info lists 4494 */ 4495 INIT_LIST_HEAD(&priv->fw_pend_list); 4496 INIT_STAT(&priv->fw_pend_stat); 4497 4498 /* 4499 * reinitialize lists 4500 */ 4501 INIT_LIST_HEAD(&priv->tx_pend_list); 4502 INIT_LIST_HEAD(&priv->tx_free_list); 4503 INIT_STAT(&priv->tx_pend_stat); 4504 INIT_STAT(&priv->tx_free_stat); 4505 4506 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) { 4507 /* We simply drop any SKBs that have been queued for 4508 * transmit */ 4509 if (priv->tx_buffers[i].info.d_struct.txb) { 4510 libipw_txb_free(priv->tx_buffers[i].info.d_struct. 4511 txb); 4512 priv->tx_buffers[i].info.d_struct.txb = NULL; 4513 } 4514 4515 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list); 4516 } 4517 4518 SET_STAT(&priv->tx_free_stat, i); 4519 4520 priv->tx_queue.oldest = 0; 4521 priv->tx_queue.available = priv->tx_queue.entries; 4522 priv->tx_queue.next = 0; 4523 INIT_STAT(&priv->txq_stat); 4524 SET_STAT(&priv->txq_stat, priv->tx_queue.available); 4525 4526 bd_queue_initialize(priv, &priv->tx_queue, 4527 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE, 4528 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE, 4529 IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX, 4530 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX); 4531 4532 IPW_DEBUG_INFO("exit\n"); 4533 4534 } 4535 4536 static void ipw2100_tx_free(struct ipw2100_priv *priv) 4537 { 4538 int i; 4539 4540 IPW_DEBUG_INFO("enter\n"); 4541 4542 bd_queue_free(priv, &priv->tx_queue); 4543 4544 if (!priv->tx_buffers) 4545 return; 4546 4547 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) { 4548 if (priv->tx_buffers[i].info.d_struct.txb) { 4549 libipw_txb_free(priv->tx_buffers[i].info.d_struct. 4550 txb); 4551 priv->tx_buffers[i].info.d_struct.txb = NULL; 4552 } 4553 if (priv->tx_buffers[i].info.d_struct.data) 4554 pci_free_consistent(priv->pci_dev, 4555 sizeof(struct ipw2100_data_header), 4556 priv->tx_buffers[i].info.d_struct. 4557 data, 4558 priv->tx_buffers[i].info.d_struct. 4559 data_phys); 4560 } 4561 4562 kfree(priv->tx_buffers); 4563 priv->tx_buffers = NULL; 4564 4565 IPW_DEBUG_INFO("exit\n"); 4566 } 4567 4568 static int ipw2100_rx_allocate(struct ipw2100_priv *priv) 4569 { 4570 int i, j, err = -EINVAL; 4571 4572 IPW_DEBUG_INFO("enter\n"); 4573 4574 err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH); 4575 if (err) { 4576 IPW_DEBUG_INFO("failed bd_queue_allocate\n"); 4577 return err; 4578 } 4579 4580 err = status_queue_allocate(priv, RX_QUEUE_LENGTH); 4581 if (err) { 4582 IPW_DEBUG_INFO("failed status_queue_allocate\n"); 4583 bd_queue_free(priv, &priv->rx_queue); 4584 return err; 4585 } 4586 4587 /* 4588 * allocate packets 4589 */ 4590 priv->rx_buffers = kmalloc(RX_QUEUE_LENGTH * 4591 sizeof(struct ipw2100_rx_packet), 4592 GFP_KERNEL); 4593 if (!priv->rx_buffers) { 4594 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n"); 4595 4596 bd_queue_free(priv, &priv->rx_queue); 4597 4598 status_queue_free(priv); 4599 4600 return -ENOMEM; 4601 } 4602 4603 for (i = 0; i < RX_QUEUE_LENGTH; i++) { 4604 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i]; 4605 4606 err = ipw2100_alloc_skb(priv, packet); 4607 if (unlikely(err)) { 4608 err = -ENOMEM; 4609 break; 4610 } 4611 4612 /* The BD holds the cache aligned address */ 4613 priv->rx_queue.drv[i].host_addr = packet->dma_addr; 4614 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH; 4615 priv->status_queue.drv[i].status_fields = 0; 4616 } 4617 4618 if (i == RX_QUEUE_LENGTH) 4619 return 0; 4620 4621 for (j = 0; j < i; j++) { 4622 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr, 4623 sizeof(struct ipw2100_rx_packet), 4624 PCI_DMA_FROMDEVICE); 4625 dev_kfree_skb(priv->rx_buffers[j].skb); 4626 } 4627 4628 kfree(priv->rx_buffers); 4629 priv->rx_buffers = NULL; 4630 4631 bd_queue_free(priv, &priv->rx_queue); 4632 4633 status_queue_free(priv); 4634 4635 return err; 4636 } 4637 4638 static void ipw2100_rx_initialize(struct ipw2100_priv *priv) 4639 { 4640 IPW_DEBUG_INFO("enter\n"); 4641 4642 priv->rx_queue.oldest = 0; 4643 priv->rx_queue.available = priv->rx_queue.entries - 1; 4644 priv->rx_queue.next = priv->rx_queue.entries - 1; 4645 4646 INIT_STAT(&priv->rxq_stat); 4647 SET_STAT(&priv->rxq_stat, priv->rx_queue.available); 4648 4649 bd_queue_initialize(priv, &priv->rx_queue, 4650 IPW_MEM_HOST_SHARED_RX_BD_BASE, 4651 IPW_MEM_HOST_SHARED_RX_BD_SIZE, 4652 IPW_MEM_HOST_SHARED_RX_READ_INDEX, 4653 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX); 4654 4655 /* set up the status queue */ 4656 write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE, 4657 priv->status_queue.nic); 4658 4659 IPW_DEBUG_INFO("exit\n"); 4660 } 4661 4662 static void ipw2100_rx_free(struct ipw2100_priv *priv) 4663 { 4664 int i; 4665 4666 IPW_DEBUG_INFO("enter\n"); 4667 4668 bd_queue_free(priv, &priv->rx_queue); 4669 status_queue_free(priv); 4670 4671 if (!priv->rx_buffers) 4672 return; 4673 4674 for (i = 0; i < RX_QUEUE_LENGTH; i++) { 4675 if (priv->rx_buffers[i].rxp) { 4676 pci_unmap_single(priv->pci_dev, 4677 priv->rx_buffers[i].dma_addr, 4678 sizeof(struct ipw2100_rx), 4679 PCI_DMA_FROMDEVICE); 4680 dev_kfree_skb(priv->rx_buffers[i].skb); 4681 } 4682 } 4683 4684 kfree(priv->rx_buffers); 4685 priv->rx_buffers = NULL; 4686 4687 IPW_DEBUG_INFO("exit\n"); 4688 } 4689 4690 static int ipw2100_read_mac_address(struct ipw2100_priv *priv) 4691 { 4692 u32 length = ETH_ALEN; 4693 u8 addr[ETH_ALEN]; 4694 4695 int err; 4696 4697 err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length); 4698 if (err) { 4699 IPW_DEBUG_INFO("MAC address read failed\n"); 4700 return -EIO; 4701 } 4702 4703 memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN); 4704 IPW_DEBUG_INFO("card MAC is %pM\n", priv->net_dev->dev_addr); 4705 4706 return 0; 4707 } 4708 4709 /******************************************************************** 4710 * 4711 * Firmware Commands 4712 * 4713 ********************************************************************/ 4714 4715 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode) 4716 { 4717 struct host_command cmd = { 4718 .host_command = ADAPTER_ADDRESS, 4719 .host_command_sequence = 0, 4720 .host_command_length = ETH_ALEN 4721 }; 4722 int err; 4723 4724 IPW_DEBUG_HC("SET_MAC_ADDRESS\n"); 4725 4726 IPW_DEBUG_INFO("enter\n"); 4727 4728 if (priv->config & CFG_CUSTOM_MAC) { 4729 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN); 4730 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN); 4731 } else 4732 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr, 4733 ETH_ALEN); 4734 4735 err = ipw2100_hw_send_command(priv, &cmd); 4736 4737 IPW_DEBUG_INFO("exit\n"); 4738 return err; 4739 } 4740 4741 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type, 4742 int batch_mode) 4743 { 4744 struct host_command cmd = { 4745 .host_command = PORT_TYPE, 4746 .host_command_sequence = 0, 4747 .host_command_length = sizeof(u32) 4748 }; 4749 int err; 4750 4751 switch (port_type) { 4752 case IW_MODE_INFRA: 4753 cmd.host_command_parameters[0] = IPW_BSS; 4754 break; 4755 case IW_MODE_ADHOC: 4756 cmd.host_command_parameters[0] = IPW_IBSS; 4757 break; 4758 } 4759 4760 IPW_DEBUG_HC("PORT_TYPE: %s\n", 4761 port_type == IPW_IBSS ? "Ad-Hoc" : "Managed"); 4762 4763 if (!batch_mode) { 4764 err = ipw2100_disable_adapter(priv); 4765 if (err) { 4766 printk(KERN_ERR DRV_NAME 4767 ": %s: Could not disable adapter %d\n", 4768 priv->net_dev->name, err); 4769 return err; 4770 } 4771 } 4772 4773 /* send cmd to firmware */ 4774 err = ipw2100_hw_send_command(priv, &cmd); 4775 4776 if (!batch_mode) 4777 ipw2100_enable_adapter(priv); 4778 4779 return err; 4780 } 4781 4782 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel, 4783 int batch_mode) 4784 { 4785 struct host_command cmd = { 4786 .host_command = CHANNEL, 4787 .host_command_sequence = 0, 4788 .host_command_length = sizeof(u32) 4789 }; 4790 int err; 4791 4792 cmd.host_command_parameters[0] = channel; 4793 4794 IPW_DEBUG_HC("CHANNEL: %d\n", channel); 4795 4796 /* If BSS then we don't support channel selection */ 4797 if (priv->ieee->iw_mode == IW_MODE_INFRA) 4798 return 0; 4799 4800 if ((channel != 0) && 4801 ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL))) 4802 return -EINVAL; 4803 4804 if (!batch_mode) { 4805 err = ipw2100_disable_adapter(priv); 4806 if (err) 4807 return err; 4808 } 4809 4810 err = ipw2100_hw_send_command(priv, &cmd); 4811 if (err) { 4812 IPW_DEBUG_INFO("Failed to set channel to %d", channel); 4813 return err; 4814 } 4815 4816 if (channel) 4817 priv->config |= CFG_STATIC_CHANNEL; 4818 else 4819 priv->config &= ~CFG_STATIC_CHANNEL; 4820 4821 priv->channel = channel; 4822 4823 if (!batch_mode) { 4824 err = ipw2100_enable_adapter(priv); 4825 if (err) 4826 return err; 4827 } 4828 4829 return 0; 4830 } 4831 4832 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode) 4833 { 4834 struct host_command cmd = { 4835 .host_command = SYSTEM_CONFIG, 4836 .host_command_sequence = 0, 4837 .host_command_length = 12, 4838 }; 4839 u32 ibss_mask, len = sizeof(u32); 4840 int err; 4841 4842 /* Set system configuration */ 4843 4844 if (!batch_mode) { 4845 err = ipw2100_disable_adapter(priv); 4846 if (err) 4847 return err; 4848 } 4849 4850 if (priv->ieee->iw_mode == IW_MODE_ADHOC) 4851 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START; 4852 4853 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK | 4854 IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE; 4855 4856 if (!(priv->config & CFG_LONG_PREAMBLE)) 4857 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO; 4858 4859 err = ipw2100_get_ordinal(priv, 4860 IPW_ORD_EEPROM_IBSS_11B_CHANNELS, 4861 &ibss_mask, &len); 4862 if (err) 4863 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK; 4864 4865 cmd.host_command_parameters[1] = REG_CHANNEL_MASK; 4866 cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask; 4867 4868 /* 11b only */ 4869 /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */ 4870 4871 err = ipw2100_hw_send_command(priv, &cmd); 4872 if (err) 4873 return err; 4874 4875 /* If IPv6 is configured in the kernel then we don't want to filter out all 4876 * of the multicast packets as IPv6 needs some. */ 4877 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE) 4878 cmd.host_command = ADD_MULTICAST; 4879 cmd.host_command_sequence = 0; 4880 cmd.host_command_length = 0; 4881 4882 ipw2100_hw_send_command(priv, &cmd); 4883 #endif 4884 if (!batch_mode) { 4885 err = ipw2100_enable_adapter(priv); 4886 if (err) 4887 return err; 4888 } 4889 4890 return 0; 4891 } 4892 4893 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate, 4894 int batch_mode) 4895 { 4896 struct host_command cmd = { 4897 .host_command = BASIC_TX_RATES, 4898 .host_command_sequence = 0, 4899 .host_command_length = 4 4900 }; 4901 int err; 4902 4903 cmd.host_command_parameters[0] = rate & TX_RATE_MASK; 4904 4905 if (!batch_mode) { 4906 err = ipw2100_disable_adapter(priv); 4907 if (err) 4908 return err; 4909 } 4910 4911 /* Set BASIC TX Rate first */ 4912 ipw2100_hw_send_command(priv, &cmd); 4913 4914 /* Set TX Rate */ 4915 cmd.host_command = TX_RATES; 4916 ipw2100_hw_send_command(priv, &cmd); 4917 4918 /* Set MSDU TX Rate */ 4919 cmd.host_command = MSDU_TX_RATES; 4920 ipw2100_hw_send_command(priv, &cmd); 4921 4922 if (!batch_mode) { 4923 err = ipw2100_enable_adapter(priv); 4924 if (err) 4925 return err; 4926 } 4927 4928 priv->tx_rates = rate; 4929 4930 return 0; 4931 } 4932 4933 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level) 4934 { 4935 struct host_command cmd = { 4936 .host_command = POWER_MODE, 4937 .host_command_sequence = 0, 4938 .host_command_length = 4 4939 }; 4940 int err; 4941 4942 cmd.host_command_parameters[0] = power_level; 4943 4944 err = ipw2100_hw_send_command(priv, &cmd); 4945 if (err) 4946 return err; 4947 4948 if (power_level == IPW_POWER_MODE_CAM) 4949 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode); 4950 else 4951 priv->power_mode = IPW_POWER_ENABLED | power_level; 4952 4953 #ifdef IPW2100_TX_POWER 4954 if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) { 4955 /* Set beacon interval */ 4956 cmd.host_command = TX_POWER_INDEX; 4957 cmd.host_command_parameters[0] = (u32) priv->adhoc_power; 4958 4959 err = ipw2100_hw_send_command(priv, &cmd); 4960 if (err) 4961 return err; 4962 } 4963 #endif 4964 4965 return 0; 4966 } 4967 4968 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold) 4969 { 4970 struct host_command cmd = { 4971 .host_command = RTS_THRESHOLD, 4972 .host_command_sequence = 0, 4973 .host_command_length = 4 4974 }; 4975 int err; 4976 4977 if (threshold & RTS_DISABLED) 4978 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD; 4979 else 4980 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED; 4981 4982 err = ipw2100_hw_send_command(priv, &cmd); 4983 if (err) 4984 return err; 4985 4986 priv->rts_threshold = threshold; 4987 4988 return 0; 4989 } 4990 4991 #if 0 4992 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv, 4993 u32 threshold, int batch_mode) 4994 { 4995 struct host_command cmd = { 4996 .host_command = FRAG_THRESHOLD, 4997 .host_command_sequence = 0, 4998 .host_command_length = 4, 4999 .host_command_parameters[0] = 0, 5000 }; 5001 int err; 5002 5003 if (!batch_mode) { 5004 err = ipw2100_disable_adapter(priv); 5005 if (err) 5006 return err; 5007 } 5008 5009 if (threshold == 0) 5010 threshold = DEFAULT_FRAG_THRESHOLD; 5011 else { 5012 threshold = max(threshold, MIN_FRAG_THRESHOLD); 5013 threshold = min(threshold, MAX_FRAG_THRESHOLD); 5014 } 5015 5016 cmd.host_command_parameters[0] = threshold; 5017 5018 IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold); 5019 5020 err = ipw2100_hw_send_command(priv, &cmd); 5021 5022 if (!batch_mode) 5023 ipw2100_enable_adapter(priv); 5024 5025 if (!err) 5026 priv->frag_threshold = threshold; 5027 5028 return err; 5029 } 5030 #endif 5031 5032 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry) 5033 { 5034 struct host_command cmd = { 5035 .host_command = SHORT_RETRY_LIMIT, 5036 .host_command_sequence = 0, 5037 .host_command_length = 4 5038 }; 5039 int err; 5040 5041 cmd.host_command_parameters[0] = retry; 5042 5043 err = ipw2100_hw_send_command(priv, &cmd); 5044 if (err) 5045 return err; 5046 5047 priv->short_retry_limit = retry; 5048 5049 return 0; 5050 } 5051 5052 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry) 5053 { 5054 struct host_command cmd = { 5055 .host_command = LONG_RETRY_LIMIT, 5056 .host_command_sequence = 0, 5057 .host_command_length = 4 5058 }; 5059 int err; 5060 5061 cmd.host_command_parameters[0] = retry; 5062 5063 err = ipw2100_hw_send_command(priv, &cmd); 5064 if (err) 5065 return err; 5066 5067 priv->long_retry_limit = retry; 5068 5069 return 0; 5070 } 5071 5072 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid, 5073 int batch_mode) 5074 { 5075 struct host_command cmd = { 5076 .host_command = MANDATORY_BSSID, 5077 .host_command_sequence = 0, 5078 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN 5079 }; 5080 int err; 5081 5082 #ifdef CONFIG_IPW2100_DEBUG 5083 if (bssid != NULL) 5084 IPW_DEBUG_HC("MANDATORY_BSSID: %pM\n", bssid); 5085 else 5086 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n"); 5087 #endif 5088 /* if BSSID is empty then we disable mandatory bssid mode */ 5089 if (bssid != NULL) 5090 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN); 5091 5092 if (!batch_mode) { 5093 err = ipw2100_disable_adapter(priv); 5094 if (err) 5095 return err; 5096 } 5097 5098 err = ipw2100_hw_send_command(priv, &cmd); 5099 5100 if (!batch_mode) 5101 ipw2100_enable_adapter(priv); 5102 5103 return err; 5104 } 5105 5106 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv) 5107 { 5108 struct host_command cmd = { 5109 .host_command = DISASSOCIATION_BSSID, 5110 .host_command_sequence = 0, 5111 .host_command_length = ETH_ALEN 5112 }; 5113 int err; 5114 int len; 5115 5116 IPW_DEBUG_HC("DISASSOCIATION_BSSID\n"); 5117 5118 len = ETH_ALEN; 5119 /* The Firmware currently ignores the BSSID and just disassociates from 5120 * the currently associated AP -- but in the off chance that a future 5121 * firmware does use the BSSID provided here, we go ahead and try and 5122 * set it to the currently associated AP's BSSID */ 5123 memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN); 5124 5125 err = ipw2100_hw_send_command(priv, &cmd); 5126 5127 return err; 5128 } 5129 5130 static int ipw2100_set_wpa_ie(struct ipw2100_priv *, 5131 struct ipw2100_wpa_assoc_frame *, int) 5132 __attribute__ ((unused)); 5133 5134 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv, 5135 struct ipw2100_wpa_assoc_frame *wpa_frame, 5136 int batch_mode) 5137 { 5138 struct host_command cmd = { 5139 .host_command = SET_WPA_IE, 5140 .host_command_sequence = 0, 5141 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame), 5142 }; 5143 int err; 5144 5145 IPW_DEBUG_HC("SET_WPA_IE\n"); 5146 5147 if (!batch_mode) { 5148 err = ipw2100_disable_adapter(priv); 5149 if (err) 5150 return err; 5151 } 5152 5153 memcpy(cmd.host_command_parameters, wpa_frame, 5154 sizeof(struct ipw2100_wpa_assoc_frame)); 5155 5156 err = ipw2100_hw_send_command(priv, &cmd); 5157 5158 if (!batch_mode) { 5159 if (ipw2100_enable_adapter(priv)) 5160 err = -EIO; 5161 } 5162 5163 return err; 5164 } 5165 5166 struct security_info_params { 5167 u32 allowed_ciphers; 5168 u16 version; 5169 u8 auth_mode; 5170 u8 replay_counters_number; 5171 u8 unicast_using_group; 5172 } __packed; 5173 5174 static int ipw2100_set_security_information(struct ipw2100_priv *priv, 5175 int auth_mode, 5176 int security_level, 5177 int unicast_using_group, 5178 int batch_mode) 5179 { 5180 struct host_command cmd = { 5181 .host_command = SET_SECURITY_INFORMATION, 5182 .host_command_sequence = 0, 5183 .host_command_length = sizeof(struct security_info_params) 5184 }; 5185 struct security_info_params *security = 5186 (struct security_info_params *)&cmd.host_command_parameters; 5187 int err; 5188 memset(security, 0, sizeof(*security)); 5189 5190 /* If shared key AP authentication is turned on, then we need to 5191 * configure the firmware to try and use it. 5192 * 5193 * Actual data encryption/decryption is handled by the host. */ 5194 security->auth_mode = auth_mode; 5195 security->unicast_using_group = unicast_using_group; 5196 5197 switch (security_level) { 5198 default: 5199 case SEC_LEVEL_0: 5200 security->allowed_ciphers = IPW_NONE_CIPHER; 5201 break; 5202 case SEC_LEVEL_1: 5203 security->allowed_ciphers = IPW_WEP40_CIPHER | 5204 IPW_WEP104_CIPHER; 5205 break; 5206 case SEC_LEVEL_2: 5207 security->allowed_ciphers = IPW_WEP40_CIPHER | 5208 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER; 5209 break; 5210 case SEC_LEVEL_2_CKIP: 5211 security->allowed_ciphers = IPW_WEP40_CIPHER | 5212 IPW_WEP104_CIPHER | IPW_CKIP_CIPHER; 5213 break; 5214 case SEC_LEVEL_3: 5215 security->allowed_ciphers = IPW_WEP40_CIPHER | 5216 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER; 5217 break; 5218 } 5219 5220 IPW_DEBUG_HC 5221 ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n", 5222 security->auth_mode, security->allowed_ciphers, security_level); 5223 5224 security->replay_counters_number = 0; 5225 5226 if (!batch_mode) { 5227 err = ipw2100_disable_adapter(priv); 5228 if (err) 5229 return err; 5230 } 5231 5232 err = ipw2100_hw_send_command(priv, &cmd); 5233 5234 if (!batch_mode) 5235 ipw2100_enable_adapter(priv); 5236 5237 return err; 5238 } 5239 5240 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power) 5241 { 5242 struct host_command cmd = { 5243 .host_command = TX_POWER_INDEX, 5244 .host_command_sequence = 0, 5245 .host_command_length = 4 5246 }; 5247 int err = 0; 5248 u32 tmp = tx_power; 5249 5250 if (tx_power != IPW_TX_POWER_DEFAULT) 5251 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 / 5252 (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM); 5253 5254 cmd.host_command_parameters[0] = tmp; 5255 5256 if (priv->ieee->iw_mode == IW_MODE_ADHOC) 5257 err = ipw2100_hw_send_command(priv, &cmd); 5258 if (!err) 5259 priv->tx_power = tx_power; 5260 5261 return 0; 5262 } 5263 5264 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv, 5265 u32 interval, int batch_mode) 5266 { 5267 struct host_command cmd = { 5268 .host_command = BEACON_INTERVAL, 5269 .host_command_sequence = 0, 5270 .host_command_length = 4 5271 }; 5272 int err; 5273 5274 cmd.host_command_parameters[0] = interval; 5275 5276 IPW_DEBUG_INFO("enter\n"); 5277 5278 if (priv->ieee->iw_mode == IW_MODE_ADHOC) { 5279 if (!batch_mode) { 5280 err = ipw2100_disable_adapter(priv); 5281 if (err) 5282 return err; 5283 } 5284 5285 ipw2100_hw_send_command(priv, &cmd); 5286 5287 if (!batch_mode) { 5288 err = ipw2100_enable_adapter(priv); 5289 if (err) 5290 return err; 5291 } 5292 } 5293 5294 IPW_DEBUG_INFO("exit\n"); 5295 5296 return 0; 5297 } 5298 5299 static void ipw2100_queues_initialize(struct ipw2100_priv *priv) 5300 { 5301 ipw2100_tx_initialize(priv); 5302 ipw2100_rx_initialize(priv); 5303 ipw2100_msg_initialize(priv); 5304 } 5305 5306 static void ipw2100_queues_free(struct ipw2100_priv *priv) 5307 { 5308 ipw2100_tx_free(priv); 5309 ipw2100_rx_free(priv); 5310 ipw2100_msg_free(priv); 5311 } 5312 5313 static int ipw2100_queues_allocate(struct ipw2100_priv *priv) 5314 { 5315 if (ipw2100_tx_allocate(priv) || 5316 ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv)) 5317 goto fail; 5318 5319 return 0; 5320 5321 fail: 5322 ipw2100_tx_free(priv); 5323 ipw2100_rx_free(priv); 5324 ipw2100_msg_free(priv); 5325 return -ENOMEM; 5326 } 5327 5328 #define IPW_PRIVACY_CAPABLE 0x0008 5329 5330 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags, 5331 int batch_mode) 5332 { 5333 struct host_command cmd = { 5334 .host_command = WEP_FLAGS, 5335 .host_command_sequence = 0, 5336 .host_command_length = 4 5337 }; 5338 int err; 5339 5340 cmd.host_command_parameters[0] = flags; 5341 5342 IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags); 5343 5344 if (!batch_mode) { 5345 err = ipw2100_disable_adapter(priv); 5346 if (err) { 5347 printk(KERN_ERR DRV_NAME 5348 ": %s: Could not disable adapter %d\n", 5349 priv->net_dev->name, err); 5350 return err; 5351 } 5352 } 5353 5354 /* send cmd to firmware */ 5355 err = ipw2100_hw_send_command(priv, &cmd); 5356 5357 if (!batch_mode) 5358 ipw2100_enable_adapter(priv); 5359 5360 return err; 5361 } 5362 5363 struct ipw2100_wep_key { 5364 u8 idx; 5365 u8 len; 5366 u8 key[13]; 5367 }; 5368 5369 /* Macros to ease up priting WEP keys */ 5370 #define WEP_FMT_64 "%02X%02X%02X%02X-%02X" 5371 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X" 5372 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4] 5373 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10] 5374 5375 /** 5376 * Set a the wep key 5377 * 5378 * @priv: struct to work on 5379 * @idx: index of the key we want to set 5380 * @key: ptr to the key data to set 5381 * @len: length of the buffer at @key 5382 * @batch_mode: FIXME perform the operation in batch mode, not 5383 * disabling the device. 5384 * 5385 * @returns 0 if OK, < 0 errno code on error. 5386 * 5387 * Fill out a command structure with the new wep key, length an 5388 * index and send it down the wire. 5389 */ 5390 static int ipw2100_set_key(struct ipw2100_priv *priv, 5391 int idx, char *key, int len, int batch_mode) 5392 { 5393 int keylen = len ? (len <= 5 ? 5 : 13) : 0; 5394 struct host_command cmd = { 5395 .host_command = WEP_KEY_INFO, 5396 .host_command_sequence = 0, 5397 .host_command_length = sizeof(struct ipw2100_wep_key), 5398 }; 5399 struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters; 5400 int err; 5401 5402 IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n", 5403 idx, keylen, len); 5404 5405 /* NOTE: We don't check cached values in case the firmware was reset 5406 * or some other problem is occurring. If the user is setting the key, 5407 * then we push the change */ 5408 5409 wep_key->idx = idx; 5410 wep_key->len = keylen; 5411 5412 if (keylen) { 5413 memcpy(wep_key->key, key, len); 5414 memset(wep_key->key + len, 0, keylen - len); 5415 } 5416 5417 /* Will be optimized out on debug not being configured in */ 5418 if (keylen == 0) 5419 IPW_DEBUG_WEP("%s: Clearing key %d\n", 5420 priv->net_dev->name, wep_key->idx); 5421 else if (keylen == 5) 5422 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n", 5423 priv->net_dev->name, wep_key->idx, wep_key->len, 5424 WEP_STR_64(wep_key->key)); 5425 else 5426 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128 5427 "\n", 5428 priv->net_dev->name, wep_key->idx, wep_key->len, 5429 WEP_STR_128(wep_key->key)); 5430 5431 if (!batch_mode) { 5432 err = ipw2100_disable_adapter(priv); 5433 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */ 5434 if (err) { 5435 printk(KERN_ERR DRV_NAME 5436 ": %s: Could not disable adapter %d\n", 5437 priv->net_dev->name, err); 5438 return err; 5439 } 5440 } 5441 5442 /* send cmd to firmware */ 5443 err = ipw2100_hw_send_command(priv, &cmd); 5444 5445 if (!batch_mode) { 5446 int err2 = ipw2100_enable_adapter(priv); 5447 if (err == 0) 5448 err = err2; 5449 } 5450 return err; 5451 } 5452 5453 static int ipw2100_set_key_index(struct ipw2100_priv *priv, 5454 int idx, int batch_mode) 5455 { 5456 struct host_command cmd = { 5457 .host_command = WEP_KEY_INDEX, 5458 .host_command_sequence = 0, 5459 .host_command_length = 4, 5460 .host_command_parameters = {idx}, 5461 }; 5462 int err; 5463 5464 IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx); 5465 5466 if (idx < 0 || idx > 3) 5467 return -EINVAL; 5468 5469 if (!batch_mode) { 5470 err = ipw2100_disable_adapter(priv); 5471 if (err) { 5472 printk(KERN_ERR DRV_NAME 5473 ": %s: Could not disable adapter %d\n", 5474 priv->net_dev->name, err); 5475 return err; 5476 } 5477 } 5478 5479 /* send cmd to firmware */ 5480 err = ipw2100_hw_send_command(priv, &cmd); 5481 5482 if (!batch_mode) 5483 ipw2100_enable_adapter(priv); 5484 5485 return err; 5486 } 5487 5488 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode) 5489 { 5490 int i, err, auth_mode, sec_level, use_group; 5491 5492 if (!(priv->status & STATUS_RUNNING)) 5493 return 0; 5494 5495 if (!batch_mode) { 5496 err = ipw2100_disable_adapter(priv); 5497 if (err) 5498 return err; 5499 } 5500 5501 if (!priv->ieee->sec.enabled) { 5502 err = 5503 ipw2100_set_security_information(priv, IPW_AUTH_OPEN, 5504 SEC_LEVEL_0, 0, 1); 5505 } else { 5506 auth_mode = IPW_AUTH_OPEN; 5507 if (priv->ieee->sec.flags & SEC_AUTH_MODE) { 5508 if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY) 5509 auth_mode = IPW_AUTH_SHARED; 5510 else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP) 5511 auth_mode = IPW_AUTH_LEAP_CISCO_ID; 5512 } 5513 5514 sec_level = SEC_LEVEL_0; 5515 if (priv->ieee->sec.flags & SEC_LEVEL) 5516 sec_level = priv->ieee->sec.level; 5517 5518 use_group = 0; 5519 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP) 5520 use_group = priv->ieee->sec.unicast_uses_group; 5521 5522 err = 5523 ipw2100_set_security_information(priv, auth_mode, sec_level, 5524 use_group, 1); 5525 } 5526 5527 if (err) 5528 goto exit; 5529 5530 if (priv->ieee->sec.enabled) { 5531 for (i = 0; i < 4; i++) { 5532 if (!(priv->ieee->sec.flags & (1 << i))) { 5533 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN); 5534 priv->ieee->sec.key_sizes[i] = 0; 5535 } else { 5536 err = ipw2100_set_key(priv, i, 5537 priv->ieee->sec.keys[i], 5538 priv->ieee->sec. 5539 key_sizes[i], 1); 5540 if (err) 5541 goto exit; 5542 } 5543 } 5544 5545 ipw2100_set_key_index(priv, priv->ieee->crypt_info.tx_keyidx, 1); 5546 } 5547 5548 /* Always enable privacy so the Host can filter WEP packets if 5549 * encrypted data is sent up */ 5550 err = 5551 ipw2100_set_wep_flags(priv, 5552 priv->ieee->sec. 5553 enabled ? IPW_PRIVACY_CAPABLE : 0, 1); 5554 if (err) 5555 goto exit; 5556 5557 priv->status &= ~STATUS_SECURITY_UPDATED; 5558 5559 exit: 5560 if (!batch_mode) 5561 ipw2100_enable_adapter(priv); 5562 5563 return err; 5564 } 5565 5566 static void ipw2100_security_work(struct work_struct *work) 5567 { 5568 struct ipw2100_priv *priv = 5569 container_of(work, struct ipw2100_priv, security_work.work); 5570 5571 /* If we happen to have reconnected before we get a chance to 5572 * process this, then update the security settings--which causes 5573 * a disassociation to occur */ 5574 if (!(priv->status & STATUS_ASSOCIATED) && 5575 priv->status & STATUS_SECURITY_UPDATED) 5576 ipw2100_configure_security(priv, 0); 5577 } 5578 5579 static void shim__set_security(struct net_device *dev, 5580 struct libipw_security *sec) 5581 { 5582 struct ipw2100_priv *priv = libipw_priv(dev); 5583 int i, force_update = 0; 5584 5585 mutex_lock(&priv->action_mutex); 5586 if (!(priv->status & STATUS_INITIALIZED)) 5587 goto done; 5588 5589 for (i = 0; i < 4; i++) { 5590 if (sec->flags & (1 << i)) { 5591 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i]; 5592 if (sec->key_sizes[i] == 0) 5593 priv->ieee->sec.flags &= ~(1 << i); 5594 else 5595 memcpy(priv->ieee->sec.keys[i], sec->keys[i], 5596 sec->key_sizes[i]); 5597 if (sec->level == SEC_LEVEL_1) { 5598 priv->ieee->sec.flags |= (1 << i); 5599 priv->status |= STATUS_SECURITY_UPDATED; 5600 } else 5601 priv->ieee->sec.flags &= ~(1 << i); 5602 } 5603 } 5604 5605 if ((sec->flags & SEC_ACTIVE_KEY) && 5606 priv->ieee->sec.active_key != sec->active_key) { 5607 if (sec->active_key <= 3) { 5608 priv->ieee->sec.active_key = sec->active_key; 5609 priv->ieee->sec.flags |= SEC_ACTIVE_KEY; 5610 } else 5611 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY; 5612 5613 priv->status |= STATUS_SECURITY_UPDATED; 5614 } 5615 5616 if ((sec->flags & SEC_AUTH_MODE) && 5617 (priv->ieee->sec.auth_mode != sec->auth_mode)) { 5618 priv->ieee->sec.auth_mode = sec->auth_mode; 5619 priv->ieee->sec.flags |= SEC_AUTH_MODE; 5620 priv->status |= STATUS_SECURITY_UPDATED; 5621 } 5622 5623 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) { 5624 priv->ieee->sec.flags |= SEC_ENABLED; 5625 priv->ieee->sec.enabled = sec->enabled; 5626 priv->status |= STATUS_SECURITY_UPDATED; 5627 force_update = 1; 5628 } 5629 5630 if (sec->flags & SEC_ENCRYPT) 5631 priv->ieee->sec.encrypt = sec->encrypt; 5632 5633 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) { 5634 priv->ieee->sec.level = sec->level; 5635 priv->ieee->sec.flags |= SEC_LEVEL; 5636 priv->status |= STATUS_SECURITY_UPDATED; 5637 } 5638 5639 IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n", 5640 priv->ieee->sec.flags & (1 << 8) ? '1' : '0', 5641 priv->ieee->sec.flags & (1 << 7) ? '1' : '0', 5642 priv->ieee->sec.flags & (1 << 6) ? '1' : '0', 5643 priv->ieee->sec.flags & (1 << 5) ? '1' : '0', 5644 priv->ieee->sec.flags & (1 << 4) ? '1' : '0', 5645 priv->ieee->sec.flags & (1 << 3) ? '1' : '0', 5646 priv->ieee->sec.flags & (1 << 2) ? '1' : '0', 5647 priv->ieee->sec.flags & (1 << 1) ? '1' : '0', 5648 priv->ieee->sec.flags & (1 << 0) ? '1' : '0'); 5649 5650 /* As a temporary work around to enable WPA until we figure out why 5651 * wpa_supplicant toggles the security capability of the driver, which 5652 * forces a disassociation with force_update... 5653 * 5654 * if (force_update || !(priv->status & STATUS_ASSOCIATED))*/ 5655 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) 5656 ipw2100_configure_security(priv, 0); 5657 done: 5658 mutex_unlock(&priv->action_mutex); 5659 } 5660 5661 static int ipw2100_adapter_setup(struct ipw2100_priv *priv) 5662 { 5663 int err; 5664 int batch_mode = 1; 5665 u8 *bssid; 5666 5667 IPW_DEBUG_INFO("enter\n"); 5668 5669 err = ipw2100_disable_adapter(priv); 5670 if (err) 5671 return err; 5672 #ifdef CONFIG_IPW2100_MONITOR 5673 if (priv->ieee->iw_mode == IW_MODE_MONITOR) { 5674 err = ipw2100_set_channel(priv, priv->channel, batch_mode); 5675 if (err) 5676 return err; 5677 5678 IPW_DEBUG_INFO("exit\n"); 5679 5680 return 0; 5681 } 5682 #endif /* CONFIG_IPW2100_MONITOR */ 5683 5684 err = ipw2100_read_mac_address(priv); 5685 if (err) 5686 return -EIO; 5687 5688 err = ipw2100_set_mac_address(priv, batch_mode); 5689 if (err) 5690 return err; 5691 5692 err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode); 5693 if (err) 5694 return err; 5695 5696 if (priv->ieee->iw_mode == IW_MODE_ADHOC) { 5697 err = ipw2100_set_channel(priv, priv->channel, batch_mode); 5698 if (err) 5699 return err; 5700 } 5701 5702 err = ipw2100_system_config(priv, batch_mode); 5703 if (err) 5704 return err; 5705 5706 err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode); 5707 if (err) 5708 return err; 5709 5710 /* Default to power mode OFF */ 5711 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM); 5712 if (err) 5713 return err; 5714 5715 err = ipw2100_set_rts_threshold(priv, priv->rts_threshold); 5716 if (err) 5717 return err; 5718 5719 if (priv->config & CFG_STATIC_BSSID) 5720 bssid = priv->bssid; 5721 else 5722 bssid = NULL; 5723 err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode); 5724 if (err) 5725 return err; 5726 5727 if (priv->config & CFG_STATIC_ESSID) 5728 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len, 5729 batch_mode); 5730 else 5731 err = ipw2100_set_essid(priv, NULL, 0, batch_mode); 5732 if (err) 5733 return err; 5734 5735 err = ipw2100_configure_security(priv, batch_mode); 5736 if (err) 5737 return err; 5738 5739 if (priv->ieee->iw_mode == IW_MODE_ADHOC) { 5740 err = 5741 ipw2100_set_ibss_beacon_interval(priv, 5742 priv->beacon_interval, 5743 batch_mode); 5744 if (err) 5745 return err; 5746 5747 err = ipw2100_set_tx_power(priv, priv->tx_power); 5748 if (err) 5749 return err; 5750 } 5751 5752 /* 5753 err = ipw2100_set_fragmentation_threshold( 5754 priv, priv->frag_threshold, batch_mode); 5755 if (err) 5756 return err; 5757 */ 5758 5759 IPW_DEBUG_INFO("exit\n"); 5760 5761 return 0; 5762 } 5763 5764 /************************************************************************* 5765 * 5766 * EXTERNALLY CALLED METHODS 5767 * 5768 *************************************************************************/ 5769 5770 /* This method is called by the network layer -- not to be confused with 5771 * ipw2100_set_mac_address() declared above called by this driver (and this 5772 * method as well) to talk to the firmware */ 5773 static int ipw2100_set_address(struct net_device *dev, void *p) 5774 { 5775 struct ipw2100_priv *priv = libipw_priv(dev); 5776 struct sockaddr *addr = p; 5777 int err = 0; 5778 5779 if (!is_valid_ether_addr(addr->sa_data)) 5780 return -EADDRNOTAVAIL; 5781 5782 mutex_lock(&priv->action_mutex); 5783 5784 priv->config |= CFG_CUSTOM_MAC; 5785 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN); 5786 5787 err = ipw2100_set_mac_address(priv, 0); 5788 if (err) 5789 goto done; 5790 5791 priv->reset_backoff = 0; 5792 mutex_unlock(&priv->action_mutex); 5793 ipw2100_reset_adapter(&priv->reset_work.work); 5794 return 0; 5795 5796 done: 5797 mutex_unlock(&priv->action_mutex); 5798 return err; 5799 } 5800 5801 static int ipw2100_open(struct net_device *dev) 5802 { 5803 struct ipw2100_priv *priv = libipw_priv(dev); 5804 unsigned long flags; 5805 IPW_DEBUG_INFO("dev->open\n"); 5806 5807 spin_lock_irqsave(&priv->low_lock, flags); 5808 if (priv->status & STATUS_ASSOCIATED) { 5809 netif_carrier_on(dev); 5810 netif_start_queue(dev); 5811 } 5812 spin_unlock_irqrestore(&priv->low_lock, flags); 5813 5814 return 0; 5815 } 5816 5817 static int ipw2100_close(struct net_device *dev) 5818 { 5819 struct ipw2100_priv *priv = libipw_priv(dev); 5820 unsigned long flags; 5821 struct list_head *element; 5822 struct ipw2100_tx_packet *packet; 5823 5824 IPW_DEBUG_INFO("enter\n"); 5825 5826 spin_lock_irqsave(&priv->low_lock, flags); 5827 5828 if (priv->status & STATUS_ASSOCIATED) 5829 netif_carrier_off(dev); 5830 netif_stop_queue(dev); 5831 5832 /* Flush the TX queue ... */ 5833 while (!list_empty(&priv->tx_pend_list)) { 5834 element = priv->tx_pend_list.next; 5835 packet = list_entry(element, struct ipw2100_tx_packet, list); 5836 5837 list_del(element); 5838 DEC_STAT(&priv->tx_pend_stat); 5839 5840 libipw_txb_free(packet->info.d_struct.txb); 5841 packet->info.d_struct.txb = NULL; 5842 5843 list_add_tail(element, &priv->tx_free_list); 5844 INC_STAT(&priv->tx_free_stat); 5845 } 5846 spin_unlock_irqrestore(&priv->low_lock, flags); 5847 5848 IPW_DEBUG_INFO("exit\n"); 5849 5850 return 0; 5851 } 5852 5853 /* 5854 * TODO: Fix this function... its just wrong 5855 */ 5856 static void ipw2100_tx_timeout(struct net_device *dev) 5857 { 5858 struct ipw2100_priv *priv = libipw_priv(dev); 5859 5860 dev->stats.tx_errors++; 5861 5862 #ifdef CONFIG_IPW2100_MONITOR 5863 if (priv->ieee->iw_mode == IW_MODE_MONITOR) 5864 return; 5865 #endif 5866 5867 IPW_DEBUG_INFO("%s: TX timed out. Scheduling firmware restart.\n", 5868 dev->name); 5869 schedule_reset(priv); 5870 } 5871 5872 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value) 5873 { 5874 /* This is called when wpa_supplicant loads and closes the driver 5875 * interface. */ 5876 priv->ieee->wpa_enabled = value; 5877 return 0; 5878 } 5879 5880 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value) 5881 { 5882 5883 struct libipw_device *ieee = priv->ieee; 5884 struct libipw_security sec = { 5885 .flags = SEC_AUTH_MODE, 5886 }; 5887 int ret = 0; 5888 5889 if (value & IW_AUTH_ALG_SHARED_KEY) { 5890 sec.auth_mode = WLAN_AUTH_SHARED_KEY; 5891 ieee->open_wep = 0; 5892 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) { 5893 sec.auth_mode = WLAN_AUTH_OPEN; 5894 ieee->open_wep = 1; 5895 } else if (value & IW_AUTH_ALG_LEAP) { 5896 sec.auth_mode = WLAN_AUTH_LEAP; 5897 ieee->open_wep = 1; 5898 } else 5899 return -EINVAL; 5900 5901 if (ieee->set_security) 5902 ieee->set_security(ieee->dev, &sec); 5903 else 5904 ret = -EOPNOTSUPP; 5905 5906 return ret; 5907 } 5908 5909 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv, 5910 char *wpa_ie, int wpa_ie_len) 5911 { 5912 5913 struct ipw2100_wpa_assoc_frame frame; 5914 5915 frame.fixed_ie_mask = 0; 5916 5917 /* copy WPA IE */ 5918 memcpy(frame.var_ie, wpa_ie, wpa_ie_len); 5919 frame.var_ie_len = wpa_ie_len; 5920 5921 /* make sure WPA is enabled */ 5922 ipw2100_wpa_enable(priv, 1); 5923 ipw2100_set_wpa_ie(priv, &frame, 0); 5924 } 5925 5926 static void ipw_ethtool_get_drvinfo(struct net_device *dev, 5927 struct ethtool_drvinfo *info) 5928 { 5929 struct ipw2100_priv *priv = libipw_priv(dev); 5930 char fw_ver[64], ucode_ver[64]; 5931 5932 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 5933 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 5934 5935 ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver)); 5936 ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver)); 5937 5938 snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s", 5939 fw_ver, priv->eeprom_version, ucode_ver); 5940 5941 strlcpy(info->bus_info, pci_name(priv->pci_dev), 5942 sizeof(info->bus_info)); 5943 } 5944 5945 static u32 ipw2100_ethtool_get_link(struct net_device *dev) 5946 { 5947 struct ipw2100_priv *priv = libipw_priv(dev); 5948 return (priv->status & STATUS_ASSOCIATED) ? 1 : 0; 5949 } 5950 5951 static const struct ethtool_ops ipw2100_ethtool_ops = { 5952 .get_link = ipw2100_ethtool_get_link, 5953 .get_drvinfo = ipw_ethtool_get_drvinfo, 5954 }; 5955 5956 static void ipw2100_hang_check(struct work_struct *work) 5957 { 5958 struct ipw2100_priv *priv = 5959 container_of(work, struct ipw2100_priv, hang_check.work); 5960 unsigned long flags; 5961 u32 rtc = 0xa5a5a5a5; 5962 u32 len = sizeof(rtc); 5963 int restart = 0; 5964 5965 spin_lock_irqsave(&priv->low_lock, flags); 5966 5967 if (priv->fatal_error != 0) { 5968 /* If fatal_error is set then we need to restart */ 5969 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n", 5970 priv->net_dev->name); 5971 5972 restart = 1; 5973 } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) || 5974 (rtc == priv->last_rtc)) { 5975 /* Check if firmware is hung */ 5976 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n", 5977 priv->net_dev->name); 5978 5979 restart = 1; 5980 } 5981 5982 if (restart) { 5983 /* Kill timer */ 5984 priv->stop_hang_check = 1; 5985 priv->hangs++; 5986 5987 /* Restart the NIC */ 5988 schedule_reset(priv); 5989 } 5990 5991 priv->last_rtc = rtc; 5992 5993 if (!priv->stop_hang_check) 5994 schedule_delayed_work(&priv->hang_check, HZ / 2); 5995 5996 spin_unlock_irqrestore(&priv->low_lock, flags); 5997 } 5998 5999 static void ipw2100_rf_kill(struct work_struct *work) 6000 { 6001 struct ipw2100_priv *priv = 6002 container_of(work, struct ipw2100_priv, rf_kill.work); 6003 unsigned long flags; 6004 6005 spin_lock_irqsave(&priv->low_lock, flags); 6006 6007 if (rf_kill_active(priv)) { 6008 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n"); 6009 if (!priv->stop_rf_kill) 6010 schedule_delayed_work(&priv->rf_kill, 6011 round_jiffies_relative(HZ)); 6012 goto exit_unlock; 6013 } 6014 6015 /* RF Kill is now disabled, so bring the device back up */ 6016 6017 if (!(priv->status & STATUS_RF_KILL_MASK)) { 6018 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting " 6019 "device\n"); 6020 schedule_reset(priv); 6021 } else 6022 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still " 6023 "enabled\n"); 6024 6025 exit_unlock: 6026 spin_unlock_irqrestore(&priv->low_lock, flags); 6027 } 6028 6029 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv); 6030 6031 static const struct net_device_ops ipw2100_netdev_ops = { 6032 .ndo_open = ipw2100_open, 6033 .ndo_stop = ipw2100_close, 6034 .ndo_start_xmit = libipw_xmit, 6035 .ndo_tx_timeout = ipw2100_tx_timeout, 6036 .ndo_set_mac_address = ipw2100_set_address, 6037 .ndo_validate_addr = eth_validate_addr, 6038 }; 6039 6040 /* Look into using netdev destructor to shutdown libipw? */ 6041 6042 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev, 6043 void __iomem * ioaddr) 6044 { 6045 struct ipw2100_priv *priv; 6046 struct net_device *dev; 6047 6048 dev = alloc_libipw(sizeof(struct ipw2100_priv), 0); 6049 if (!dev) 6050 return NULL; 6051 priv = libipw_priv(dev); 6052 priv->ieee = netdev_priv(dev); 6053 priv->pci_dev = pci_dev; 6054 priv->net_dev = dev; 6055 priv->ioaddr = ioaddr; 6056 6057 priv->ieee->hard_start_xmit = ipw2100_tx; 6058 priv->ieee->set_security = shim__set_security; 6059 6060 priv->ieee->perfect_rssi = -20; 6061 priv->ieee->worst_rssi = -85; 6062 6063 dev->netdev_ops = &ipw2100_netdev_ops; 6064 dev->ethtool_ops = &ipw2100_ethtool_ops; 6065 dev->wireless_handlers = &ipw2100_wx_handler_def; 6066 priv->wireless_data.libipw = priv->ieee; 6067 dev->wireless_data = &priv->wireless_data; 6068 dev->watchdog_timeo = 3 * HZ; 6069 dev->irq = 0; 6070 dev->min_mtu = 68; 6071 dev->max_mtu = LIBIPW_DATA_LEN; 6072 6073 /* NOTE: We don't use the wireless_handlers hook 6074 * in dev as the system will start throwing WX requests 6075 * to us before we're actually initialized and it just 6076 * ends up causing problems. So, we just handle 6077 * the WX extensions through the ipw2100_ioctl interface */ 6078 6079 /* memset() puts everything to 0, so we only have explicitly set 6080 * those values that need to be something else */ 6081 6082 /* If power management is turned on, default to AUTO mode */ 6083 priv->power_mode = IPW_POWER_AUTO; 6084 6085 #ifdef CONFIG_IPW2100_MONITOR 6086 priv->config |= CFG_CRC_CHECK; 6087 #endif 6088 priv->ieee->wpa_enabled = 0; 6089 priv->ieee->drop_unencrypted = 0; 6090 priv->ieee->privacy_invoked = 0; 6091 priv->ieee->ieee802_1x = 1; 6092 6093 /* Set module parameters */ 6094 switch (network_mode) { 6095 case 1: 6096 priv->ieee->iw_mode = IW_MODE_ADHOC; 6097 break; 6098 #ifdef CONFIG_IPW2100_MONITOR 6099 case 2: 6100 priv->ieee->iw_mode = IW_MODE_MONITOR; 6101 break; 6102 #endif 6103 default: 6104 case 0: 6105 priv->ieee->iw_mode = IW_MODE_INFRA; 6106 break; 6107 } 6108 6109 if (disable == 1) 6110 priv->status |= STATUS_RF_KILL_SW; 6111 6112 if (channel != 0 && 6113 ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) { 6114 priv->config |= CFG_STATIC_CHANNEL; 6115 priv->channel = channel; 6116 } 6117 6118 if (associate) 6119 priv->config |= CFG_ASSOCIATE; 6120 6121 priv->beacon_interval = DEFAULT_BEACON_INTERVAL; 6122 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT; 6123 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT; 6124 priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED; 6125 priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED; 6126 priv->tx_power = IPW_TX_POWER_DEFAULT; 6127 priv->tx_rates = DEFAULT_TX_RATES; 6128 6129 strcpy(priv->nick, "ipw2100"); 6130 6131 spin_lock_init(&priv->low_lock); 6132 mutex_init(&priv->action_mutex); 6133 mutex_init(&priv->adapter_mutex); 6134 6135 init_waitqueue_head(&priv->wait_command_queue); 6136 6137 netif_carrier_off(dev); 6138 6139 INIT_LIST_HEAD(&priv->msg_free_list); 6140 INIT_LIST_HEAD(&priv->msg_pend_list); 6141 INIT_STAT(&priv->msg_free_stat); 6142 INIT_STAT(&priv->msg_pend_stat); 6143 6144 INIT_LIST_HEAD(&priv->tx_free_list); 6145 INIT_LIST_HEAD(&priv->tx_pend_list); 6146 INIT_STAT(&priv->tx_free_stat); 6147 INIT_STAT(&priv->tx_pend_stat); 6148 6149 INIT_LIST_HEAD(&priv->fw_pend_list); 6150 INIT_STAT(&priv->fw_pend_stat); 6151 6152 INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter); 6153 INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work); 6154 INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work); 6155 INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check); 6156 INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill); 6157 INIT_DELAYED_WORK(&priv->scan_event, ipw2100_scan_event); 6158 6159 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long)) 6160 ipw2100_irq_tasklet, (unsigned long)priv); 6161 6162 /* NOTE: We do not start the deferred work for status checks yet */ 6163 priv->stop_rf_kill = 1; 6164 priv->stop_hang_check = 1; 6165 6166 return dev; 6167 } 6168 6169 static int ipw2100_pci_init_one(struct pci_dev *pci_dev, 6170 const struct pci_device_id *ent) 6171 { 6172 void __iomem *ioaddr; 6173 struct net_device *dev = NULL; 6174 struct ipw2100_priv *priv = NULL; 6175 int err = 0; 6176 int registered = 0; 6177 u32 val; 6178 6179 IPW_DEBUG_INFO("enter\n"); 6180 6181 if (!(pci_resource_flags(pci_dev, 0) & IORESOURCE_MEM)) { 6182 IPW_DEBUG_INFO("weird - resource type is not memory\n"); 6183 err = -ENODEV; 6184 goto out; 6185 } 6186 6187 ioaddr = pci_iomap(pci_dev, 0, 0); 6188 if (!ioaddr) { 6189 printk(KERN_WARNING DRV_NAME 6190 "Error calling ioremap_nocache.\n"); 6191 err = -EIO; 6192 goto fail; 6193 } 6194 6195 /* allocate and initialize our net_device */ 6196 dev = ipw2100_alloc_device(pci_dev, ioaddr); 6197 if (!dev) { 6198 printk(KERN_WARNING DRV_NAME 6199 "Error calling ipw2100_alloc_device.\n"); 6200 err = -ENOMEM; 6201 goto fail; 6202 } 6203 6204 /* set up PCI mappings for device */ 6205 err = pci_enable_device(pci_dev); 6206 if (err) { 6207 printk(KERN_WARNING DRV_NAME 6208 "Error calling pci_enable_device.\n"); 6209 return err; 6210 } 6211 6212 priv = libipw_priv(dev); 6213 6214 pci_set_master(pci_dev); 6215 pci_set_drvdata(pci_dev, priv); 6216 6217 err = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32)); 6218 if (err) { 6219 printk(KERN_WARNING DRV_NAME 6220 "Error calling pci_set_dma_mask.\n"); 6221 pci_disable_device(pci_dev); 6222 return err; 6223 } 6224 6225 err = pci_request_regions(pci_dev, DRV_NAME); 6226 if (err) { 6227 printk(KERN_WARNING DRV_NAME 6228 "Error calling pci_request_regions.\n"); 6229 pci_disable_device(pci_dev); 6230 return err; 6231 } 6232 6233 /* We disable the RETRY_TIMEOUT register (0x41) to keep 6234 * PCI Tx retries from interfering with C3 CPU state */ 6235 pci_read_config_dword(pci_dev, 0x40, &val); 6236 if ((val & 0x0000ff00) != 0) 6237 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff); 6238 6239 if (!ipw2100_hw_is_adapter_in_system(dev)) { 6240 printk(KERN_WARNING DRV_NAME 6241 "Device not found via register read.\n"); 6242 err = -ENODEV; 6243 goto fail; 6244 } 6245 6246 SET_NETDEV_DEV(dev, &pci_dev->dev); 6247 6248 /* Force interrupts to be shut off on the device */ 6249 priv->status |= STATUS_INT_ENABLED; 6250 ipw2100_disable_interrupts(priv); 6251 6252 /* Allocate and initialize the Tx/Rx queues and lists */ 6253 if (ipw2100_queues_allocate(priv)) { 6254 printk(KERN_WARNING DRV_NAME 6255 "Error calling ipw2100_queues_allocate.\n"); 6256 err = -ENOMEM; 6257 goto fail; 6258 } 6259 ipw2100_queues_initialize(priv); 6260 6261 err = request_irq(pci_dev->irq, 6262 ipw2100_interrupt, IRQF_SHARED, dev->name, priv); 6263 if (err) { 6264 printk(KERN_WARNING DRV_NAME 6265 "Error calling request_irq: %d.\n", pci_dev->irq); 6266 goto fail; 6267 } 6268 dev->irq = pci_dev->irq; 6269 6270 IPW_DEBUG_INFO("Attempting to register device...\n"); 6271 6272 printk(KERN_INFO DRV_NAME 6273 ": Detected Intel PRO/Wireless 2100 Network Connection\n"); 6274 6275 err = ipw2100_up(priv, 1); 6276 if (err) 6277 goto fail; 6278 6279 err = ipw2100_wdev_init(dev); 6280 if (err) 6281 goto fail; 6282 registered = 1; 6283 6284 /* Bring up the interface. Pre 0.46, after we registered the 6285 * network device we would call ipw2100_up. This introduced a race 6286 * condition with newer hotplug configurations (network was coming 6287 * up and making calls before the device was initialized). 6288 */ 6289 err = register_netdev(dev); 6290 if (err) { 6291 printk(KERN_WARNING DRV_NAME 6292 "Error calling register_netdev.\n"); 6293 goto fail; 6294 } 6295 registered = 2; 6296 6297 mutex_lock(&priv->action_mutex); 6298 6299 IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev)); 6300 6301 /* perform this after register_netdev so that dev->name is set */ 6302 err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group); 6303 if (err) 6304 goto fail_unlock; 6305 6306 /* If the RF Kill switch is disabled, go ahead and complete the 6307 * startup sequence */ 6308 if (!(priv->status & STATUS_RF_KILL_MASK)) { 6309 /* Enable the adapter - sends HOST_COMPLETE */ 6310 if (ipw2100_enable_adapter(priv)) { 6311 printk(KERN_WARNING DRV_NAME 6312 ": %s: failed in call to enable adapter.\n", 6313 priv->net_dev->name); 6314 ipw2100_hw_stop_adapter(priv); 6315 err = -EIO; 6316 goto fail_unlock; 6317 } 6318 6319 /* Start a scan . . . */ 6320 ipw2100_set_scan_options(priv); 6321 ipw2100_start_scan(priv); 6322 } 6323 6324 IPW_DEBUG_INFO("exit\n"); 6325 6326 priv->status |= STATUS_INITIALIZED; 6327 6328 mutex_unlock(&priv->action_mutex); 6329 out: 6330 return err; 6331 6332 fail_unlock: 6333 mutex_unlock(&priv->action_mutex); 6334 fail: 6335 if (dev) { 6336 if (registered >= 2) 6337 unregister_netdev(dev); 6338 6339 if (registered) { 6340 wiphy_unregister(priv->ieee->wdev.wiphy); 6341 kfree(priv->ieee->bg_band.channels); 6342 } 6343 6344 ipw2100_hw_stop_adapter(priv); 6345 6346 ipw2100_disable_interrupts(priv); 6347 6348 if (dev->irq) 6349 free_irq(dev->irq, priv); 6350 6351 ipw2100_kill_works(priv); 6352 6353 /* These are safe to call even if they weren't allocated */ 6354 ipw2100_queues_free(priv); 6355 sysfs_remove_group(&pci_dev->dev.kobj, 6356 &ipw2100_attribute_group); 6357 6358 free_libipw(dev, 0); 6359 } 6360 6361 pci_iounmap(pci_dev, ioaddr); 6362 6363 pci_release_regions(pci_dev); 6364 pci_disable_device(pci_dev); 6365 goto out; 6366 } 6367 6368 static void ipw2100_pci_remove_one(struct pci_dev *pci_dev) 6369 { 6370 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev); 6371 struct net_device *dev = priv->net_dev; 6372 6373 mutex_lock(&priv->action_mutex); 6374 6375 priv->status &= ~STATUS_INITIALIZED; 6376 6377 sysfs_remove_group(&pci_dev->dev.kobj, &ipw2100_attribute_group); 6378 6379 #ifdef CONFIG_PM 6380 if (ipw2100_firmware.version) 6381 ipw2100_release_firmware(priv, &ipw2100_firmware); 6382 #endif 6383 /* Take down the hardware */ 6384 ipw2100_down(priv); 6385 6386 /* Release the mutex so that the network subsystem can 6387 * complete any needed calls into the driver... */ 6388 mutex_unlock(&priv->action_mutex); 6389 6390 /* Unregister the device first - this results in close() 6391 * being called if the device is open. If we free storage 6392 * first, then close() will crash. 6393 * FIXME: remove the comment above. */ 6394 unregister_netdev(dev); 6395 6396 ipw2100_kill_works(priv); 6397 6398 ipw2100_queues_free(priv); 6399 6400 /* Free potential debugging firmware snapshot */ 6401 ipw2100_snapshot_free(priv); 6402 6403 free_irq(dev->irq, priv); 6404 6405 pci_iounmap(pci_dev, priv->ioaddr); 6406 6407 /* wiphy_unregister needs to be here, before free_libipw */ 6408 wiphy_unregister(priv->ieee->wdev.wiphy); 6409 kfree(priv->ieee->bg_band.channels); 6410 free_libipw(dev, 0); 6411 6412 pci_release_regions(pci_dev); 6413 pci_disable_device(pci_dev); 6414 6415 IPW_DEBUG_INFO("exit\n"); 6416 } 6417 6418 #ifdef CONFIG_PM 6419 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state) 6420 { 6421 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev); 6422 struct net_device *dev = priv->net_dev; 6423 6424 IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name); 6425 6426 mutex_lock(&priv->action_mutex); 6427 if (priv->status & STATUS_INITIALIZED) { 6428 /* Take down the device; powers it off, etc. */ 6429 ipw2100_down(priv); 6430 } 6431 6432 /* Remove the PRESENT state of the device */ 6433 netif_device_detach(dev); 6434 6435 pci_save_state(pci_dev); 6436 pci_disable_device(pci_dev); 6437 pci_set_power_state(pci_dev, PCI_D3hot); 6438 6439 priv->suspend_at = get_seconds(); 6440 6441 mutex_unlock(&priv->action_mutex); 6442 6443 return 0; 6444 } 6445 6446 static int ipw2100_resume(struct pci_dev *pci_dev) 6447 { 6448 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev); 6449 struct net_device *dev = priv->net_dev; 6450 int err; 6451 u32 val; 6452 6453 if (IPW2100_PM_DISABLED) 6454 return 0; 6455 6456 mutex_lock(&priv->action_mutex); 6457 6458 IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name); 6459 6460 pci_set_power_state(pci_dev, PCI_D0); 6461 err = pci_enable_device(pci_dev); 6462 if (err) { 6463 printk(KERN_ERR "%s: pci_enable_device failed on resume\n", 6464 dev->name); 6465 mutex_unlock(&priv->action_mutex); 6466 return err; 6467 } 6468 pci_restore_state(pci_dev); 6469 6470 /* 6471 * Suspend/Resume resets the PCI configuration space, so we have to 6472 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries 6473 * from interfering with C3 CPU state. pci_restore_state won't help 6474 * here since it only restores the first 64 bytes pci config header. 6475 */ 6476 pci_read_config_dword(pci_dev, 0x40, &val); 6477 if ((val & 0x0000ff00) != 0) 6478 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff); 6479 6480 /* Set the device back into the PRESENT state; this will also wake 6481 * the queue of needed */ 6482 netif_device_attach(dev); 6483 6484 priv->suspend_time = get_seconds() - priv->suspend_at; 6485 6486 /* Bring the device back up */ 6487 if (!(priv->status & STATUS_RF_KILL_SW)) 6488 ipw2100_up(priv, 0); 6489 6490 mutex_unlock(&priv->action_mutex); 6491 6492 return 0; 6493 } 6494 #endif 6495 6496 static void ipw2100_shutdown(struct pci_dev *pci_dev) 6497 { 6498 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev); 6499 6500 /* Take down the device; powers it off, etc. */ 6501 ipw2100_down(priv); 6502 6503 pci_disable_device(pci_dev); 6504 } 6505 6506 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x } 6507 6508 static const struct pci_device_id ipw2100_pci_id_table[] = { 6509 IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */ 6510 IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */ 6511 IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */ 6512 IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */ 6513 IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */ 6514 IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */ 6515 IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */ 6516 IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */ 6517 IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */ 6518 IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */ 6519 IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */ 6520 IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */ 6521 IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */ 6522 6523 IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */ 6524 IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */ 6525 IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */ 6526 IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */ 6527 IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */ 6528 6529 IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */ 6530 IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */ 6531 IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */ 6532 IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */ 6533 IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */ 6534 IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */ 6535 IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */ 6536 6537 IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */ 6538 6539 IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */ 6540 IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */ 6541 IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */ 6542 IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */ 6543 IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */ 6544 IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */ 6545 IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */ 6546 6547 IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */ 6548 IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */ 6549 IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */ 6550 IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */ 6551 IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */ 6552 IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */ 6553 6554 IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */ 6555 {0,}, 6556 }; 6557 6558 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table); 6559 6560 static struct pci_driver ipw2100_pci_driver = { 6561 .name = DRV_NAME, 6562 .id_table = ipw2100_pci_id_table, 6563 .probe = ipw2100_pci_init_one, 6564 .remove = ipw2100_pci_remove_one, 6565 #ifdef CONFIG_PM 6566 .suspend = ipw2100_suspend, 6567 .resume = ipw2100_resume, 6568 #endif 6569 .shutdown = ipw2100_shutdown, 6570 }; 6571 6572 /** 6573 * Initialize the ipw2100 driver/module 6574 * 6575 * @returns 0 if ok, < 0 errno node con error. 6576 * 6577 * Note: we cannot init the /proc stuff until the PCI driver is there, 6578 * or we risk an unlikely race condition on someone accessing 6579 * uninitialized data in the PCI dev struct through /proc. 6580 */ 6581 static int __init ipw2100_init(void) 6582 { 6583 int ret; 6584 6585 printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION); 6586 printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT); 6587 6588 pm_qos_add_request(&ipw2100_pm_qos_req, PM_QOS_CPU_DMA_LATENCY, 6589 PM_QOS_DEFAULT_VALUE); 6590 6591 ret = pci_register_driver(&ipw2100_pci_driver); 6592 if (ret) 6593 goto out; 6594 6595 #ifdef CONFIG_IPW2100_DEBUG 6596 ipw2100_debug_level = debug; 6597 ret = driver_create_file(&ipw2100_pci_driver.driver, 6598 &driver_attr_debug_level); 6599 #endif 6600 6601 out: 6602 return ret; 6603 } 6604 6605 /** 6606 * Cleanup ipw2100 driver registration 6607 */ 6608 static void __exit ipw2100_exit(void) 6609 { 6610 /* FIXME: IPG: check that we have no instances of the devices open */ 6611 #ifdef CONFIG_IPW2100_DEBUG 6612 driver_remove_file(&ipw2100_pci_driver.driver, 6613 &driver_attr_debug_level); 6614 #endif 6615 pci_unregister_driver(&ipw2100_pci_driver); 6616 pm_qos_remove_request(&ipw2100_pm_qos_req); 6617 } 6618 6619 module_init(ipw2100_init); 6620 module_exit(ipw2100_exit); 6621 6622 static int ipw2100_wx_get_name(struct net_device *dev, 6623 struct iw_request_info *info, 6624 union iwreq_data *wrqu, char *extra) 6625 { 6626 /* 6627 * This can be called at any time. No action lock required 6628 */ 6629 6630 struct ipw2100_priv *priv = libipw_priv(dev); 6631 if (!(priv->status & STATUS_ASSOCIATED)) 6632 strcpy(wrqu->name, "unassociated"); 6633 else 6634 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b"); 6635 6636 IPW_DEBUG_WX("Name: %s\n", wrqu->name); 6637 return 0; 6638 } 6639 6640 static int ipw2100_wx_set_freq(struct net_device *dev, 6641 struct iw_request_info *info, 6642 union iwreq_data *wrqu, char *extra) 6643 { 6644 struct ipw2100_priv *priv = libipw_priv(dev); 6645 struct iw_freq *fwrq = &wrqu->freq; 6646 int err = 0; 6647 6648 if (priv->ieee->iw_mode == IW_MODE_INFRA) 6649 return -EOPNOTSUPP; 6650 6651 mutex_lock(&priv->action_mutex); 6652 if (!(priv->status & STATUS_INITIALIZED)) { 6653 err = -EIO; 6654 goto done; 6655 } 6656 6657 /* if setting by freq convert to channel */ 6658 if (fwrq->e == 1) { 6659 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) { 6660 int f = fwrq->m / 100000; 6661 int c = 0; 6662 6663 while ((c < REG_MAX_CHANNEL) && 6664 (f != ipw2100_frequencies[c])) 6665 c++; 6666 6667 /* hack to fall through */ 6668 fwrq->e = 0; 6669 fwrq->m = c + 1; 6670 } 6671 } 6672 6673 if (fwrq->e > 0 || fwrq->m > 1000) { 6674 err = -EOPNOTSUPP; 6675 goto done; 6676 } else { /* Set the channel */ 6677 IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m); 6678 err = ipw2100_set_channel(priv, fwrq->m, 0); 6679 } 6680 6681 done: 6682 mutex_unlock(&priv->action_mutex); 6683 return err; 6684 } 6685 6686 static int ipw2100_wx_get_freq(struct net_device *dev, 6687 struct iw_request_info *info, 6688 union iwreq_data *wrqu, char *extra) 6689 { 6690 /* 6691 * This can be called at any time. No action lock required 6692 */ 6693 6694 struct ipw2100_priv *priv = libipw_priv(dev); 6695 6696 wrqu->freq.e = 0; 6697 6698 /* If we are associated, trying to associate, or have a statically 6699 * configured CHANNEL then return that; otherwise return ANY */ 6700 if (priv->config & CFG_STATIC_CHANNEL || 6701 priv->status & STATUS_ASSOCIATED) 6702 wrqu->freq.m = priv->channel; 6703 else 6704 wrqu->freq.m = 0; 6705 6706 IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel); 6707 return 0; 6708 6709 } 6710 6711 static int ipw2100_wx_set_mode(struct net_device *dev, 6712 struct iw_request_info *info, 6713 union iwreq_data *wrqu, char *extra) 6714 { 6715 struct ipw2100_priv *priv = libipw_priv(dev); 6716 int err = 0; 6717 6718 IPW_DEBUG_WX("SET Mode -> %d\n", wrqu->mode); 6719 6720 if (wrqu->mode == priv->ieee->iw_mode) 6721 return 0; 6722 6723 mutex_lock(&priv->action_mutex); 6724 if (!(priv->status & STATUS_INITIALIZED)) { 6725 err = -EIO; 6726 goto done; 6727 } 6728 6729 switch (wrqu->mode) { 6730 #ifdef CONFIG_IPW2100_MONITOR 6731 case IW_MODE_MONITOR: 6732 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR); 6733 break; 6734 #endif /* CONFIG_IPW2100_MONITOR */ 6735 case IW_MODE_ADHOC: 6736 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC); 6737 break; 6738 case IW_MODE_INFRA: 6739 case IW_MODE_AUTO: 6740 default: 6741 err = ipw2100_switch_mode(priv, IW_MODE_INFRA); 6742 break; 6743 } 6744 6745 done: 6746 mutex_unlock(&priv->action_mutex); 6747 return err; 6748 } 6749 6750 static int ipw2100_wx_get_mode(struct net_device *dev, 6751 struct iw_request_info *info, 6752 union iwreq_data *wrqu, char *extra) 6753 { 6754 /* 6755 * This can be called at any time. No action lock required 6756 */ 6757 6758 struct ipw2100_priv *priv = libipw_priv(dev); 6759 6760 wrqu->mode = priv->ieee->iw_mode; 6761 IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode); 6762 6763 return 0; 6764 } 6765 6766 #define POWER_MODES 5 6767 6768 /* Values are in microsecond */ 6769 static const s32 timeout_duration[POWER_MODES] = { 6770 350000, 6771 250000, 6772 75000, 6773 37000, 6774 25000, 6775 }; 6776 6777 static const s32 period_duration[POWER_MODES] = { 6778 400000, 6779 700000, 6780 1000000, 6781 1000000, 6782 1000000 6783 }; 6784 6785 static int ipw2100_wx_get_range(struct net_device *dev, 6786 struct iw_request_info *info, 6787 union iwreq_data *wrqu, char *extra) 6788 { 6789 /* 6790 * This can be called at any time. No action lock required 6791 */ 6792 6793 struct ipw2100_priv *priv = libipw_priv(dev); 6794 struct iw_range *range = (struct iw_range *)extra; 6795 u16 val; 6796 int i, level; 6797 6798 wrqu->data.length = sizeof(*range); 6799 memset(range, 0, sizeof(*range)); 6800 6801 /* Let's try to keep this struct in the same order as in 6802 * linux/include/wireless.h 6803 */ 6804 6805 /* TODO: See what values we can set, and remove the ones we can't 6806 * set, or fill them with some default data. 6807 */ 6808 6809 /* ~5 Mb/s real (802.11b) */ 6810 range->throughput = 5 * 1000 * 1000; 6811 6812 // range->sensitivity; /* signal level threshold range */ 6813 6814 range->max_qual.qual = 100; 6815 /* TODO: Find real max RSSI and stick here */ 6816 range->max_qual.level = 0; 6817 range->max_qual.noise = 0; 6818 range->max_qual.updated = 7; /* Updated all three */ 6819 6820 range->avg_qual.qual = 70; /* > 8% missed beacons is 'bad' */ 6821 /* TODO: Find real 'good' to 'bad' threshold value for RSSI */ 6822 range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM; 6823 range->avg_qual.noise = 0; 6824 range->avg_qual.updated = 7; /* Updated all three */ 6825 6826 range->num_bitrates = RATE_COUNT; 6827 6828 for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) { 6829 range->bitrate[i] = ipw2100_bg_rates[i].bitrate * 100 * 1000; 6830 } 6831 6832 range->min_rts = MIN_RTS_THRESHOLD; 6833 range->max_rts = MAX_RTS_THRESHOLD; 6834 range->min_frag = MIN_FRAG_THRESHOLD; 6835 range->max_frag = MAX_FRAG_THRESHOLD; 6836 6837 range->min_pmp = period_duration[0]; /* Minimal PM period */ 6838 range->max_pmp = period_duration[POWER_MODES - 1]; /* Maximal PM period */ 6839 range->min_pmt = timeout_duration[POWER_MODES - 1]; /* Minimal PM timeout */ 6840 range->max_pmt = timeout_duration[0]; /* Maximal PM timeout */ 6841 6842 /* How to decode max/min PM period */ 6843 range->pmp_flags = IW_POWER_PERIOD; 6844 /* How to decode max/min PM period */ 6845 range->pmt_flags = IW_POWER_TIMEOUT; 6846 /* What PM options are supported */ 6847 range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD; 6848 6849 range->encoding_size[0] = 5; 6850 range->encoding_size[1] = 13; /* Different token sizes */ 6851 range->num_encoding_sizes = 2; /* Number of entry in the list */ 6852 range->max_encoding_tokens = WEP_KEYS; /* Max number of tokens */ 6853 // range->encoding_login_index; /* token index for login token */ 6854 6855 if (priv->ieee->iw_mode == IW_MODE_ADHOC) { 6856 range->txpower_capa = IW_TXPOW_DBM; 6857 range->num_txpower = IW_MAX_TXPOWER; 6858 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16); 6859 i < IW_MAX_TXPOWER; 6860 i++, level -= 6861 ((IPW_TX_POWER_MAX_DBM - 6862 IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1)) 6863 range->txpower[i] = level / 16; 6864 } else { 6865 range->txpower_capa = 0; 6866 range->num_txpower = 0; 6867 } 6868 6869 /* Set the Wireless Extension versions */ 6870 range->we_version_compiled = WIRELESS_EXT; 6871 range->we_version_source = 18; 6872 6873 // range->retry_capa; /* What retry options are supported */ 6874 // range->retry_flags; /* How to decode max/min retry limit */ 6875 // range->r_time_flags; /* How to decode max/min retry life */ 6876 // range->min_retry; /* Minimal number of retries */ 6877 // range->max_retry; /* Maximal number of retries */ 6878 // range->min_r_time; /* Minimal retry lifetime */ 6879 // range->max_r_time; /* Maximal retry lifetime */ 6880 6881 range->num_channels = FREQ_COUNT; 6882 6883 val = 0; 6884 for (i = 0; i < FREQ_COUNT; i++) { 6885 // TODO: Include only legal frequencies for some countries 6886 // if (local->channel_mask & (1 << i)) { 6887 range->freq[val].i = i + 1; 6888 range->freq[val].m = ipw2100_frequencies[i] * 100000; 6889 range->freq[val].e = 1; 6890 val++; 6891 // } 6892 if (val == IW_MAX_FREQUENCIES) 6893 break; 6894 } 6895 range->num_frequency = val; 6896 6897 /* Event capability (kernel + driver) */ 6898 range->event_capa[0] = (IW_EVENT_CAPA_K_0 | 6899 IW_EVENT_CAPA_MASK(SIOCGIWAP)); 6900 range->event_capa[1] = IW_EVENT_CAPA_K_1; 6901 6902 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 | 6903 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP; 6904 6905 IPW_DEBUG_WX("GET Range\n"); 6906 6907 return 0; 6908 } 6909 6910 static int ipw2100_wx_set_wap(struct net_device *dev, 6911 struct iw_request_info *info, 6912 union iwreq_data *wrqu, char *extra) 6913 { 6914 struct ipw2100_priv *priv = libipw_priv(dev); 6915 int err = 0; 6916 6917 // sanity checks 6918 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER) 6919 return -EINVAL; 6920 6921 mutex_lock(&priv->action_mutex); 6922 if (!(priv->status & STATUS_INITIALIZED)) { 6923 err = -EIO; 6924 goto done; 6925 } 6926 6927 if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) || 6928 is_zero_ether_addr(wrqu->ap_addr.sa_data)) { 6929 /* we disable mandatory BSSID association */ 6930 IPW_DEBUG_WX("exit - disable mandatory BSSID\n"); 6931 priv->config &= ~CFG_STATIC_BSSID; 6932 err = ipw2100_set_mandatory_bssid(priv, NULL, 0); 6933 goto done; 6934 } 6935 6936 priv->config |= CFG_STATIC_BSSID; 6937 memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN); 6938 6939 err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0); 6940 6941 IPW_DEBUG_WX("SET BSSID -> %pM\n", wrqu->ap_addr.sa_data); 6942 6943 done: 6944 mutex_unlock(&priv->action_mutex); 6945 return err; 6946 } 6947 6948 static int ipw2100_wx_get_wap(struct net_device *dev, 6949 struct iw_request_info *info, 6950 union iwreq_data *wrqu, char *extra) 6951 { 6952 /* 6953 * This can be called at any time. No action lock required 6954 */ 6955 6956 struct ipw2100_priv *priv = libipw_priv(dev); 6957 6958 /* If we are associated, trying to associate, or have a statically 6959 * configured BSSID then return that; otherwise return ANY */ 6960 if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) { 6961 wrqu->ap_addr.sa_family = ARPHRD_ETHER; 6962 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN); 6963 } else 6964 eth_zero_addr(wrqu->ap_addr.sa_data); 6965 6966 IPW_DEBUG_WX("Getting WAP BSSID: %pM\n", wrqu->ap_addr.sa_data); 6967 return 0; 6968 } 6969 6970 static int ipw2100_wx_set_essid(struct net_device *dev, 6971 struct iw_request_info *info, 6972 union iwreq_data *wrqu, char *extra) 6973 { 6974 struct ipw2100_priv *priv = libipw_priv(dev); 6975 char *essid = ""; /* ANY */ 6976 int length = 0; 6977 int err = 0; 6978 6979 mutex_lock(&priv->action_mutex); 6980 if (!(priv->status & STATUS_INITIALIZED)) { 6981 err = -EIO; 6982 goto done; 6983 } 6984 6985 if (wrqu->essid.flags && wrqu->essid.length) { 6986 length = wrqu->essid.length; 6987 essid = extra; 6988 } 6989 6990 if (length == 0) { 6991 IPW_DEBUG_WX("Setting ESSID to ANY\n"); 6992 priv->config &= ~CFG_STATIC_ESSID; 6993 err = ipw2100_set_essid(priv, NULL, 0, 0); 6994 goto done; 6995 } 6996 6997 length = min(length, IW_ESSID_MAX_SIZE); 6998 6999 priv->config |= CFG_STATIC_ESSID; 7000 7001 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) { 7002 IPW_DEBUG_WX("ESSID set to current ESSID.\n"); 7003 err = 0; 7004 goto done; 7005 } 7006 7007 IPW_DEBUG_WX("Setting ESSID: '%*pE' (%d)\n", length, essid, length); 7008 7009 priv->essid_len = length; 7010 memcpy(priv->essid, essid, priv->essid_len); 7011 7012 err = ipw2100_set_essid(priv, essid, length, 0); 7013 7014 done: 7015 mutex_unlock(&priv->action_mutex); 7016 return err; 7017 } 7018 7019 static int ipw2100_wx_get_essid(struct net_device *dev, 7020 struct iw_request_info *info, 7021 union iwreq_data *wrqu, char *extra) 7022 { 7023 /* 7024 * This can be called at any time. No action lock required 7025 */ 7026 7027 struct ipw2100_priv *priv = libipw_priv(dev); 7028 7029 /* If we are associated, trying to associate, or have a statically 7030 * configured ESSID then return that; otherwise return ANY */ 7031 if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) { 7032 IPW_DEBUG_WX("Getting essid: '%*pE'\n", 7033 priv->essid_len, priv->essid); 7034 memcpy(extra, priv->essid, priv->essid_len); 7035 wrqu->essid.length = priv->essid_len; 7036 wrqu->essid.flags = 1; /* active */ 7037 } else { 7038 IPW_DEBUG_WX("Getting essid: ANY\n"); 7039 wrqu->essid.length = 0; 7040 wrqu->essid.flags = 0; /* active */ 7041 } 7042 7043 return 0; 7044 } 7045 7046 static int ipw2100_wx_set_nick(struct net_device *dev, 7047 struct iw_request_info *info, 7048 union iwreq_data *wrqu, char *extra) 7049 { 7050 /* 7051 * This can be called at any time. No action lock required 7052 */ 7053 7054 struct ipw2100_priv *priv = libipw_priv(dev); 7055 7056 if (wrqu->data.length > IW_ESSID_MAX_SIZE) 7057 return -E2BIG; 7058 7059 wrqu->data.length = min_t(size_t, wrqu->data.length, sizeof(priv->nick)); 7060 memset(priv->nick, 0, sizeof(priv->nick)); 7061 memcpy(priv->nick, extra, wrqu->data.length); 7062 7063 IPW_DEBUG_WX("SET Nickname -> %s\n", priv->nick); 7064 7065 return 0; 7066 } 7067 7068 static int ipw2100_wx_get_nick(struct net_device *dev, 7069 struct iw_request_info *info, 7070 union iwreq_data *wrqu, char *extra) 7071 { 7072 /* 7073 * This can be called at any time. No action lock required 7074 */ 7075 7076 struct ipw2100_priv *priv = libipw_priv(dev); 7077 7078 wrqu->data.length = strlen(priv->nick); 7079 memcpy(extra, priv->nick, wrqu->data.length); 7080 wrqu->data.flags = 1; /* active */ 7081 7082 IPW_DEBUG_WX("GET Nickname -> %s\n", extra); 7083 7084 return 0; 7085 } 7086 7087 static int ipw2100_wx_set_rate(struct net_device *dev, 7088 struct iw_request_info *info, 7089 union iwreq_data *wrqu, char *extra) 7090 { 7091 struct ipw2100_priv *priv = libipw_priv(dev); 7092 u32 target_rate = wrqu->bitrate.value; 7093 u32 rate; 7094 int err = 0; 7095 7096 mutex_lock(&priv->action_mutex); 7097 if (!(priv->status & STATUS_INITIALIZED)) { 7098 err = -EIO; 7099 goto done; 7100 } 7101 7102 rate = 0; 7103 7104 if (target_rate == 1000000 || 7105 (!wrqu->bitrate.fixed && target_rate > 1000000)) 7106 rate |= TX_RATE_1_MBIT; 7107 if (target_rate == 2000000 || 7108 (!wrqu->bitrate.fixed && target_rate > 2000000)) 7109 rate |= TX_RATE_2_MBIT; 7110 if (target_rate == 5500000 || 7111 (!wrqu->bitrate.fixed && target_rate > 5500000)) 7112 rate |= TX_RATE_5_5_MBIT; 7113 if (target_rate == 11000000 || 7114 (!wrqu->bitrate.fixed && target_rate > 11000000)) 7115 rate |= TX_RATE_11_MBIT; 7116 if (rate == 0) 7117 rate = DEFAULT_TX_RATES; 7118 7119 err = ipw2100_set_tx_rates(priv, rate, 0); 7120 7121 IPW_DEBUG_WX("SET Rate -> %04X\n", rate); 7122 done: 7123 mutex_unlock(&priv->action_mutex); 7124 return err; 7125 } 7126 7127 static int ipw2100_wx_get_rate(struct net_device *dev, 7128 struct iw_request_info *info, 7129 union iwreq_data *wrqu, char *extra) 7130 { 7131 struct ipw2100_priv *priv = libipw_priv(dev); 7132 int val; 7133 unsigned int len = sizeof(val); 7134 int err = 0; 7135 7136 if (!(priv->status & STATUS_ENABLED) || 7137 priv->status & STATUS_RF_KILL_MASK || 7138 !(priv->status & STATUS_ASSOCIATED)) { 7139 wrqu->bitrate.value = 0; 7140 return 0; 7141 } 7142 7143 mutex_lock(&priv->action_mutex); 7144 if (!(priv->status & STATUS_INITIALIZED)) { 7145 err = -EIO; 7146 goto done; 7147 } 7148 7149 err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len); 7150 if (err) { 7151 IPW_DEBUG_WX("failed querying ordinals.\n"); 7152 goto done; 7153 } 7154 7155 switch (val & TX_RATE_MASK) { 7156 case TX_RATE_1_MBIT: 7157 wrqu->bitrate.value = 1000000; 7158 break; 7159 case TX_RATE_2_MBIT: 7160 wrqu->bitrate.value = 2000000; 7161 break; 7162 case TX_RATE_5_5_MBIT: 7163 wrqu->bitrate.value = 5500000; 7164 break; 7165 case TX_RATE_11_MBIT: 7166 wrqu->bitrate.value = 11000000; 7167 break; 7168 default: 7169 wrqu->bitrate.value = 0; 7170 } 7171 7172 IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value); 7173 7174 done: 7175 mutex_unlock(&priv->action_mutex); 7176 return err; 7177 } 7178 7179 static int ipw2100_wx_set_rts(struct net_device *dev, 7180 struct iw_request_info *info, 7181 union iwreq_data *wrqu, char *extra) 7182 { 7183 struct ipw2100_priv *priv = libipw_priv(dev); 7184 int value, err; 7185 7186 /* Auto RTS not yet supported */ 7187 if (wrqu->rts.fixed == 0) 7188 return -EINVAL; 7189 7190 mutex_lock(&priv->action_mutex); 7191 if (!(priv->status & STATUS_INITIALIZED)) { 7192 err = -EIO; 7193 goto done; 7194 } 7195 7196 if (wrqu->rts.disabled) 7197 value = priv->rts_threshold | RTS_DISABLED; 7198 else { 7199 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) { 7200 err = -EINVAL; 7201 goto done; 7202 } 7203 value = wrqu->rts.value; 7204 } 7205 7206 err = ipw2100_set_rts_threshold(priv, value); 7207 7208 IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X\n", value); 7209 done: 7210 mutex_unlock(&priv->action_mutex); 7211 return err; 7212 } 7213 7214 static int ipw2100_wx_get_rts(struct net_device *dev, 7215 struct iw_request_info *info, 7216 union iwreq_data *wrqu, char *extra) 7217 { 7218 /* 7219 * This can be called at any time. No action lock required 7220 */ 7221 7222 struct ipw2100_priv *priv = libipw_priv(dev); 7223 7224 wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED; 7225 wrqu->rts.fixed = 1; /* no auto select */ 7226 7227 /* If RTS is set to the default value, then it is disabled */ 7228 wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0; 7229 7230 IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X\n", wrqu->rts.value); 7231 7232 return 0; 7233 } 7234 7235 static int ipw2100_wx_set_txpow(struct net_device *dev, 7236 struct iw_request_info *info, 7237 union iwreq_data *wrqu, char *extra) 7238 { 7239 struct ipw2100_priv *priv = libipw_priv(dev); 7240 int err = 0, value; 7241 7242 if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled)) 7243 return -EINPROGRESS; 7244 7245 if (priv->ieee->iw_mode != IW_MODE_ADHOC) 7246 return 0; 7247 7248 if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM) 7249 return -EINVAL; 7250 7251 if (wrqu->txpower.fixed == 0) 7252 value = IPW_TX_POWER_DEFAULT; 7253 else { 7254 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM || 7255 wrqu->txpower.value > IPW_TX_POWER_MAX_DBM) 7256 return -EINVAL; 7257 7258 value = wrqu->txpower.value; 7259 } 7260 7261 mutex_lock(&priv->action_mutex); 7262 if (!(priv->status & STATUS_INITIALIZED)) { 7263 err = -EIO; 7264 goto done; 7265 } 7266 7267 err = ipw2100_set_tx_power(priv, value); 7268 7269 IPW_DEBUG_WX("SET TX Power -> %d\n", value); 7270 7271 done: 7272 mutex_unlock(&priv->action_mutex); 7273 return err; 7274 } 7275 7276 static int ipw2100_wx_get_txpow(struct net_device *dev, 7277 struct iw_request_info *info, 7278 union iwreq_data *wrqu, char *extra) 7279 { 7280 /* 7281 * This can be called at any time. No action lock required 7282 */ 7283 7284 struct ipw2100_priv *priv = libipw_priv(dev); 7285 7286 wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0; 7287 7288 if (priv->tx_power == IPW_TX_POWER_DEFAULT) { 7289 wrqu->txpower.fixed = 0; 7290 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM; 7291 } else { 7292 wrqu->txpower.fixed = 1; 7293 wrqu->txpower.value = priv->tx_power; 7294 } 7295 7296 wrqu->txpower.flags = IW_TXPOW_DBM; 7297 7298 IPW_DEBUG_WX("GET TX Power -> %d\n", wrqu->txpower.value); 7299 7300 return 0; 7301 } 7302 7303 static int ipw2100_wx_set_frag(struct net_device *dev, 7304 struct iw_request_info *info, 7305 union iwreq_data *wrqu, char *extra) 7306 { 7307 /* 7308 * This can be called at any time. No action lock required 7309 */ 7310 7311 struct ipw2100_priv *priv = libipw_priv(dev); 7312 7313 if (!wrqu->frag.fixed) 7314 return -EINVAL; 7315 7316 if (wrqu->frag.disabled) { 7317 priv->frag_threshold |= FRAG_DISABLED; 7318 priv->ieee->fts = DEFAULT_FTS; 7319 } else { 7320 if (wrqu->frag.value < MIN_FRAG_THRESHOLD || 7321 wrqu->frag.value > MAX_FRAG_THRESHOLD) 7322 return -EINVAL; 7323 7324 priv->ieee->fts = wrqu->frag.value & ~0x1; 7325 priv->frag_threshold = priv->ieee->fts; 7326 } 7327 7328 IPW_DEBUG_WX("SET Frag Threshold -> %d\n", priv->ieee->fts); 7329 7330 return 0; 7331 } 7332 7333 static int ipw2100_wx_get_frag(struct net_device *dev, 7334 struct iw_request_info *info, 7335 union iwreq_data *wrqu, char *extra) 7336 { 7337 /* 7338 * This can be called at any time. No action lock required 7339 */ 7340 7341 struct ipw2100_priv *priv = libipw_priv(dev); 7342 wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED; 7343 wrqu->frag.fixed = 0; /* no auto select */ 7344 wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0; 7345 7346 IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value); 7347 7348 return 0; 7349 } 7350 7351 static int ipw2100_wx_set_retry(struct net_device *dev, 7352 struct iw_request_info *info, 7353 union iwreq_data *wrqu, char *extra) 7354 { 7355 struct ipw2100_priv *priv = libipw_priv(dev); 7356 int err = 0; 7357 7358 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled) 7359 return -EINVAL; 7360 7361 if (!(wrqu->retry.flags & IW_RETRY_LIMIT)) 7362 return 0; 7363 7364 mutex_lock(&priv->action_mutex); 7365 if (!(priv->status & STATUS_INITIALIZED)) { 7366 err = -EIO; 7367 goto done; 7368 } 7369 7370 if (wrqu->retry.flags & IW_RETRY_SHORT) { 7371 err = ipw2100_set_short_retry(priv, wrqu->retry.value); 7372 IPW_DEBUG_WX("SET Short Retry Limit -> %d\n", 7373 wrqu->retry.value); 7374 goto done; 7375 } 7376 7377 if (wrqu->retry.flags & IW_RETRY_LONG) { 7378 err = ipw2100_set_long_retry(priv, wrqu->retry.value); 7379 IPW_DEBUG_WX("SET Long Retry Limit -> %d\n", 7380 wrqu->retry.value); 7381 goto done; 7382 } 7383 7384 err = ipw2100_set_short_retry(priv, wrqu->retry.value); 7385 if (!err) 7386 err = ipw2100_set_long_retry(priv, wrqu->retry.value); 7387 7388 IPW_DEBUG_WX("SET Both Retry Limits -> %d\n", wrqu->retry.value); 7389 7390 done: 7391 mutex_unlock(&priv->action_mutex); 7392 return err; 7393 } 7394 7395 static int ipw2100_wx_get_retry(struct net_device *dev, 7396 struct iw_request_info *info, 7397 union iwreq_data *wrqu, char *extra) 7398 { 7399 /* 7400 * This can be called at any time. No action lock required 7401 */ 7402 7403 struct ipw2100_priv *priv = libipw_priv(dev); 7404 7405 wrqu->retry.disabled = 0; /* can't be disabled */ 7406 7407 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) 7408 return -EINVAL; 7409 7410 if (wrqu->retry.flags & IW_RETRY_LONG) { 7411 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG; 7412 wrqu->retry.value = priv->long_retry_limit; 7413 } else { 7414 wrqu->retry.flags = 7415 (priv->short_retry_limit != 7416 priv->long_retry_limit) ? 7417 IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT; 7418 7419 wrqu->retry.value = priv->short_retry_limit; 7420 } 7421 7422 IPW_DEBUG_WX("GET Retry -> %d\n", wrqu->retry.value); 7423 7424 return 0; 7425 } 7426 7427 static int ipw2100_wx_set_scan(struct net_device *dev, 7428 struct iw_request_info *info, 7429 union iwreq_data *wrqu, char *extra) 7430 { 7431 struct ipw2100_priv *priv = libipw_priv(dev); 7432 int err = 0; 7433 7434 mutex_lock(&priv->action_mutex); 7435 if (!(priv->status & STATUS_INITIALIZED)) { 7436 err = -EIO; 7437 goto done; 7438 } 7439 7440 IPW_DEBUG_WX("Initiating scan...\n"); 7441 7442 priv->user_requested_scan = 1; 7443 if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) { 7444 IPW_DEBUG_WX("Start scan failed.\n"); 7445 7446 /* TODO: Mark a scan as pending so when hardware initialized 7447 * a scan starts */ 7448 } 7449 7450 done: 7451 mutex_unlock(&priv->action_mutex); 7452 return err; 7453 } 7454 7455 static int ipw2100_wx_get_scan(struct net_device *dev, 7456 struct iw_request_info *info, 7457 union iwreq_data *wrqu, char *extra) 7458 { 7459 /* 7460 * This can be called at any time. No action lock required 7461 */ 7462 7463 struct ipw2100_priv *priv = libipw_priv(dev); 7464 return libipw_wx_get_scan(priv->ieee, info, wrqu, extra); 7465 } 7466 7467 /* 7468 * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c 7469 */ 7470 static int ipw2100_wx_set_encode(struct net_device *dev, 7471 struct iw_request_info *info, 7472 union iwreq_data *wrqu, char *key) 7473 { 7474 /* 7475 * No check of STATUS_INITIALIZED required 7476 */ 7477 7478 struct ipw2100_priv *priv = libipw_priv(dev); 7479 return libipw_wx_set_encode(priv->ieee, info, wrqu, key); 7480 } 7481 7482 static int ipw2100_wx_get_encode(struct net_device *dev, 7483 struct iw_request_info *info, 7484 union iwreq_data *wrqu, char *key) 7485 { 7486 /* 7487 * This can be called at any time. No action lock required 7488 */ 7489 7490 struct ipw2100_priv *priv = libipw_priv(dev); 7491 return libipw_wx_get_encode(priv->ieee, info, wrqu, key); 7492 } 7493 7494 static int ipw2100_wx_set_power(struct net_device *dev, 7495 struct iw_request_info *info, 7496 union iwreq_data *wrqu, char *extra) 7497 { 7498 struct ipw2100_priv *priv = libipw_priv(dev); 7499 int err = 0; 7500 7501 mutex_lock(&priv->action_mutex); 7502 if (!(priv->status & STATUS_INITIALIZED)) { 7503 err = -EIO; 7504 goto done; 7505 } 7506 7507 if (wrqu->power.disabled) { 7508 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode); 7509 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM); 7510 IPW_DEBUG_WX("SET Power Management Mode -> off\n"); 7511 goto done; 7512 } 7513 7514 switch (wrqu->power.flags & IW_POWER_MODE) { 7515 case IW_POWER_ON: /* If not specified */ 7516 case IW_POWER_MODE: /* If set all mask */ 7517 case IW_POWER_ALL_R: /* If explicitly state all */ 7518 break; 7519 default: /* Otherwise we don't support it */ 7520 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n", 7521 wrqu->power.flags); 7522 err = -EOPNOTSUPP; 7523 goto done; 7524 } 7525 7526 /* If the user hasn't specified a power management mode yet, default 7527 * to BATTERY */ 7528 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode; 7529 err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode)); 7530 7531 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode); 7532 7533 done: 7534 mutex_unlock(&priv->action_mutex); 7535 return err; 7536 7537 } 7538 7539 static int ipw2100_wx_get_power(struct net_device *dev, 7540 struct iw_request_info *info, 7541 union iwreq_data *wrqu, char *extra) 7542 { 7543 /* 7544 * This can be called at any time. No action lock required 7545 */ 7546 7547 struct ipw2100_priv *priv = libipw_priv(dev); 7548 7549 if (!(priv->power_mode & IPW_POWER_ENABLED)) 7550 wrqu->power.disabled = 1; 7551 else { 7552 wrqu->power.disabled = 0; 7553 wrqu->power.flags = 0; 7554 } 7555 7556 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode); 7557 7558 return 0; 7559 } 7560 7561 /* 7562 * WE-18 WPA support 7563 */ 7564 7565 /* SIOCSIWGENIE */ 7566 static int ipw2100_wx_set_genie(struct net_device *dev, 7567 struct iw_request_info *info, 7568 union iwreq_data *wrqu, char *extra) 7569 { 7570 7571 struct ipw2100_priv *priv = libipw_priv(dev); 7572 struct libipw_device *ieee = priv->ieee; 7573 u8 *buf; 7574 7575 if (!ieee->wpa_enabled) 7576 return -EOPNOTSUPP; 7577 7578 if (wrqu->data.length > MAX_WPA_IE_LEN || 7579 (wrqu->data.length && extra == NULL)) 7580 return -EINVAL; 7581 7582 if (wrqu->data.length) { 7583 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL); 7584 if (buf == NULL) 7585 return -ENOMEM; 7586 7587 kfree(ieee->wpa_ie); 7588 ieee->wpa_ie = buf; 7589 ieee->wpa_ie_len = wrqu->data.length; 7590 } else { 7591 kfree(ieee->wpa_ie); 7592 ieee->wpa_ie = NULL; 7593 ieee->wpa_ie_len = 0; 7594 } 7595 7596 ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len); 7597 7598 return 0; 7599 } 7600 7601 /* SIOCGIWGENIE */ 7602 static int ipw2100_wx_get_genie(struct net_device *dev, 7603 struct iw_request_info *info, 7604 union iwreq_data *wrqu, char *extra) 7605 { 7606 struct ipw2100_priv *priv = libipw_priv(dev); 7607 struct libipw_device *ieee = priv->ieee; 7608 7609 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) { 7610 wrqu->data.length = 0; 7611 return 0; 7612 } 7613 7614 if (wrqu->data.length < ieee->wpa_ie_len) 7615 return -E2BIG; 7616 7617 wrqu->data.length = ieee->wpa_ie_len; 7618 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len); 7619 7620 return 0; 7621 } 7622 7623 /* SIOCSIWAUTH */ 7624 static int ipw2100_wx_set_auth(struct net_device *dev, 7625 struct iw_request_info *info, 7626 union iwreq_data *wrqu, char *extra) 7627 { 7628 struct ipw2100_priv *priv = libipw_priv(dev); 7629 struct libipw_device *ieee = priv->ieee; 7630 struct iw_param *param = &wrqu->param; 7631 struct lib80211_crypt_data *crypt; 7632 unsigned long flags; 7633 int ret = 0; 7634 7635 switch (param->flags & IW_AUTH_INDEX) { 7636 case IW_AUTH_WPA_VERSION: 7637 case IW_AUTH_CIPHER_PAIRWISE: 7638 case IW_AUTH_CIPHER_GROUP: 7639 case IW_AUTH_KEY_MGMT: 7640 /* 7641 * ipw2200 does not use these parameters 7642 */ 7643 break; 7644 7645 case IW_AUTH_TKIP_COUNTERMEASURES: 7646 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx]; 7647 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags) 7648 break; 7649 7650 flags = crypt->ops->get_flags(crypt->priv); 7651 7652 if (param->value) 7653 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES; 7654 else 7655 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES; 7656 7657 crypt->ops->set_flags(flags, crypt->priv); 7658 7659 break; 7660 7661 case IW_AUTH_DROP_UNENCRYPTED:{ 7662 /* HACK: 7663 * 7664 * wpa_supplicant calls set_wpa_enabled when the driver 7665 * is loaded and unloaded, regardless of if WPA is being 7666 * used. No other calls are made which can be used to 7667 * determine if encryption will be used or not prior to 7668 * association being expected. If encryption is not being 7669 * used, drop_unencrypted is set to false, else true -- we 7670 * can use this to determine if the CAP_PRIVACY_ON bit should 7671 * be set. 7672 */ 7673 struct libipw_security sec = { 7674 .flags = SEC_ENABLED, 7675 .enabled = param->value, 7676 }; 7677 priv->ieee->drop_unencrypted = param->value; 7678 /* We only change SEC_LEVEL for open mode. Others 7679 * are set by ipw_wpa_set_encryption. 7680 */ 7681 if (!param->value) { 7682 sec.flags |= SEC_LEVEL; 7683 sec.level = SEC_LEVEL_0; 7684 } else { 7685 sec.flags |= SEC_LEVEL; 7686 sec.level = SEC_LEVEL_1; 7687 } 7688 if (priv->ieee->set_security) 7689 priv->ieee->set_security(priv->ieee->dev, &sec); 7690 break; 7691 } 7692 7693 case IW_AUTH_80211_AUTH_ALG: 7694 ret = ipw2100_wpa_set_auth_algs(priv, param->value); 7695 break; 7696 7697 case IW_AUTH_WPA_ENABLED: 7698 ret = ipw2100_wpa_enable(priv, param->value); 7699 break; 7700 7701 case IW_AUTH_RX_UNENCRYPTED_EAPOL: 7702 ieee->ieee802_1x = param->value; 7703 break; 7704 7705 //case IW_AUTH_ROAMING_CONTROL: 7706 case IW_AUTH_PRIVACY_INVOKED: 7707 ieee->privacy_invoked = param->value; 7708 break; 7709 7710 default: 7711 return -EOPNOTSUPP; 7712 } 7713 return ret; 7714 } 7715 7716 /* SIOCGIWAUTH */ 7717 static int ipw2100_wx_get_auth(struct net_device *dev, 7718 struct iw_request_info *info, 7719 union iwreq_data *wrqu, char *extra) 7720 { 7721 struct ipw2100_priv *priv = libipw_priv(dev); 7722 struct libipw_device *ieee = priv->ieee; 7723 struct lib80211_crypt_data *crypt; 7724 struct iw_param *param = &wrqu->param; 7725 int ret = 0; 7726 7727 switch (param->flags & IW_AUTH_INDEX) { 7728 case IW_AUTH_WPA_VERSION: 7729 case IW_AUTH_CIPHER_PAIRWISE: 7730 case IW_AUTH_CIPHER_GROUP: 7731 case IW_AUTH_KEY_MGMT: 7732 /* 7733 * wpa_supplicant will control these internally 7734 */ 7735 ret = -EOPNOTSUPP; 7736 break; 7737 7738 case IW_AUTH_TKIP_COUNTERMEASURES: 7739 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx]; 7740 if (!crypt || !crypt->ops->get_flags) { 7741 IPW_DEBUG_WARNING("Can't get TKIP countermeasures: " 7742 "crypt not set!\n"); 7743 break; 7744 } 7745 7746 param->value = (crypt->ops->get_flags(crypt->priv) & 7747 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0; 7748 7749 break; 7750 7751 case IW_AUTH_DROP_UNENCRYPTED: 7752 param->value = ieee->drop_unencrypted; 7753 break; 7754 7755 case IW_AUTH_80211_AUTH_ALG: 7756 param->value = priv->ieee->sec.auth_mode; 7757 break; 7758 7759 case IW_AUTH_WPA_ENABLED: 7760 param->value = ieee->wpa_enabled; 7761 break; 7762 7763 case IW_AUTH_RX_UNENCRYPTED_EAPOL: 7764 param->value = ieee->ieee802_1x; 7765 break; 7766 7767 case IW_AUTH_ROAMING_CONTROL: 7768 case IW_AUTH_PRIVACY_INVOKED: 7769 param->value = ieee->privacy_invoked; 7770 break; 7771 7772 default: 7773 return -EOPNOTSUPP; 7774 } 7775 return 0; 7776 } 7777 7778 /* SIOCSIWENCODEEXT */ 7779 static int ipw2100_wx_set_encodeext(struct net_device *dev, 7780 struct iw_request_info *info, 7781 union iwreq_data *wrqu, char *extra) 7782 { 7783 struct ipw2100_priv *priv = libipw_priv(dev); 7784 return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra); 7785 } 7786 7787 /* SIOCGIWENCODEEXT */ 7788 static int ipw2100_wx_get_encodeext(struct net_device *dev, 7789 struct iw_request_info *info, 7790 union iwreq_data *wrqu, char *extra) 7791 { 7792 struct ipw2100_priv *priv = libipw_priv(dev); 7793 return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra); 7794 } 7795 7796 /* SIOCSIWMLME */ 7797 static int ipw2100_wx_set_mlme(struct net_device *dev, 7798 struct iw_request_info *info, 7799 union iwreq_data *wrqu, char *extra) 7800 { 7801 struct ipw2100_priv *priv = libipw_priv(dev); 7802 struct iw_mlme *mlme = (struct iw_mlme *)extra; 7803 __le16 reason; 7804 7805 reason = cpu_to_le16(mlme->reason_code); 7806 7807 switch (mlme->cmd) { 7808 case IW_MLME_DEAUTH: 7809 // silently ignore 7810 break; 7811 7812 case IW_MLME_DISASSOC: 7813 ipw2100_disassociate_bssid(priv); 7814 break; 7815 7816 default: 7817 return -EOPNOTSUPP; 7818 } 7819 return 0; 7820 } 7821 7822 /* 7823 * 7824 * IWPRIV handlers 7825 * 7826 */ 7827 #ifdef CONFIG_IPW2100_MONITOR 7828 static int ipw2100_wx_set_promisc(struct net_device *dev, 7829 struct iw_request_info *info, 7830 union iwreq_data *wrqu, char *extra) 7831 { 7832 struct ipw2100_priv *priv = libipw_priv(dev); 7833 int *parms = (int *)extra; 7834 int enable = (parms[0] > 0); 7835 int err = 0; 7836 7837 mutex_lock(&priv->action_mutex); 7838 if (!(priv->status & STATUS_INITIALIZED)) { 7839 err = -EIO; 7840 goto done; 7841 } 7842 7843 if (enable) { 7844 if (priv->ieee->iw_mode == IW_MODE_MONITOR) { 7845 err = ipw2100_set_channel(priv, parms[1], 0); 7846 goto done; 7847 } 7848 priv->channel = parms[1]; 7849 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR); 7850 } else { 7851 if (priv->ieee->iw_mode == IW_MODE_MONITOR) 7852 err = ipw2100_switch_mode(priv, priv->last_mode); 7853 } 7854 done: 7855 mutex_unlock(&priv->action_mutex); 7856 return err; 7857 } 7858 7859 static int ipw2100_wx_reset(struct net_device *dev, 7860 struct iw_request_info *info, 7861 union iwreq_data *wrqu, char *extra) 7862 { 7863 struct ipw2100_priv *priv = libipw_priv(dev); 7864 if (priv->status & STATUS_INITIALIZED) 7865 schedule_reset(priv); 7866 return 0; 7867 } 7868 7869 #endif 7870 7871 static int ipw2100_wx_set_powermode(struct net_device *dev, 7872 struct iw_request_info *info, 7873 union iwreq_data *wrqu, char *extra) 7874 { 7875 struct ipw2100_priv *priv = libipw_priv(dev); 7876 int err = 0, mode = *(int *)extra; 7877 7878 mutex_lock(&priv->action_mutex); 7879 if (!(priv->status & STATUS_INITIALIZED)) { 7880 err = -EIO; 7881 goto done; 7882 } 7883 7884 if ((mode < 0) || (mode > POWER_MODES)) 7885 mode = IPW_POWER_AUTO; 7886 7887 if (IPW_POWER_LEVEL(priv->power_mode) != mode) 7888 err = ipw2100_set_power_mode(priv, mode); 7889 done: 7890 mutex_unlock(&priv->action_mutex); 7891 return err; 7892 } 7893 7894 #define MAX_POWER_STRING 80 7895 static int ipw2100_wx_get_powermode(struct net_device *dev, 7896 struct iw_request_info *info, 7897 union iwreq_data *wrqu, char *extra) 7898 { 7899 /* 7900 * This can be called at any time. No action lock required 7901 */ 7902 7903 struct ipw2100_priv *priv = libipw_priv(dev); 7904 int level = IPW_POWER_LEVEL(priv->power_mode); 7905 s32 timeout, period; 7906 7907 if (!(priv->power_mode & IPW_POWER_ENABLED)) { 7908 snprintf(extra, MAX_POWER_STRING, 7909 "Power save level: %d (Off)", level); 7910 } else { 7911 switch (level) { 7912 case IPW_POWER_MODE_CAM: 7913 snprintf(extra, MAX_POWER_STRING, 7914 "Power save level: %d (None)", level); 7915 break; 7916 case IPW_POWER_AUTO: 7917 snprintf(extra, MAX_POWER_STRING, 7918 "Power save level: %d (Auto)", level); 7919 break; 7920 default: 7921 timeout = timeout_duration[level - 1] / 1000; 7922 period = period_duration[level - 1] / 1000; 7923 snprintf(extra, MAX_POWER_STRING, 7924 "Power save level: %d " 7925 "(Timeout %dms, Period %dms)", 7926 level, timeout, period); 7927 } 7928 } 7929 7930 wrqu->data.length = strlen(extra) + 1; 7931 7932 return 0; 7933 } 7934 7935 static int ipw2100_wx_set_preamble(struct net_device *dev, 7936 struct iw_request_info *info, 7937 union iwreq_data *wrqu, char *extra) 7938 { 7939 struct ipw2100_priv *priv = libipw_priv(dev); 7940 int err, mode = *(int *)extra; 7941 7942 mutex_lock(&priv->action_mutex); 7943 if (!(priv->status & STATUS_INITIALIZED)) { 7944 err = -EIO; 7945 goto done; 7946 } 7947 7948 if (mode == 1) 7949 priv->config |= CFG_LONG_PREAMBLE; 7950 else if (mode == 0) 7951 priv->config &= ~CFG_LONG_PREAMBLE; 7952 else { 7953 err = -EINVAL; 7954 goto done; 7955 } 7956 7957 err = ipw2100_system_config(priv, 0); 7958 7959 done: 7960 mutex_unlock(&priv->action_mutex); 7961 return err; 7962 } 7963 7964 static int ipw2100_wx_get_preamble(struct net_device *dev, 7965 struct iw_request_info *info, 7966 union iwreq_data *wrqu, char *extra) 7967 { 7968 /* 7969 * This can be called at any time. No action lock required 7970 */ 7971 7972 struct ipw2100_priv *priv = libipw_priv(dev); 7973 7974 if (priv->config & CFG_LONG_PREAMBLE) 7975 snprintf(wrqu->name, IFNAMSIZ, "long (1)"); 7976 else 7977 snprintf(wrqu->name, IFNAMSIZ, "auto (0)"); 7978 7979 return 0; 7980 } 7981 7982 #ifdef CONFIG_IPW2100_MONITOR 7983 static int ipw2100_wx_set_crc_check(struct net_device *dev, 7984 struct iw_request_info *info, 7985 union iwreq_data *wrqu, char *extra) 7986 { 7987 struct ipw2100_priv *priv = libipw_priv(dev); 7988 int err, mode = *(int *)extra; 7989 7990 mutex_lock(&priv->action_mutex); 7991 if (!(priv->status & STATUS_INITIALIZED)) { 7992 err = -EIO; 7993 goto done; 7994 } 7995 7996 if (mode == 1) 7997 priv->config |= CFG_CRC_CHECK; 7998 else if (mode == 0) 7999 priv->config &= ~CFG_CRC_CHECK; 8000 else { 8001 err = -EINVAL; 8002 goto done; 8003 } 8004 err = 0; 8005 8006 done: 8007 mutex_unlock(&priv->action_mutex); 8008 return err; 8009 } 8010 8011 static int ipw2100_wx_get_crc_check(struct net_device *dev, 8012 struct iw_request_info *info, 8013 union iwreq_data *wrqu, char *extra) 8014 { 8015 /* 8016 * This can be called at any time. No action lock required 8017 */ 8018 8019 struct ipw2100_priv *priv = libipw_priv(dev); 8020 8021 if (priv->config & CFG_CRC_CHECK) 8022 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)"); 8023 else 8024 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)"); 8025 8026 return 0; 8027 } 8028 #endif /* CONFIG_IPW2100_MONITOR */ 8029 8030 static iw_handler ipw2100_wx_handlers[] = { 8031 IW_HANDLER(SIOCGIWNAME, ipw2100_wx_get_name), 8032 IW_HANDLER(SIOCSIWFREQ, ipw2100_wx_set_freq), 8033 IW_HANDLER(SIOCGIWFREQ, ipw2100_wx_get_freq), 8034 IW_HANDLER(SIOCSIWMODE, ipw2100_wx_set_mode), 8035 IW_HANDLER(SIOCGIWMODE, ipw2100_wx_get_mode), 8036 IW_HANDLER(SIOCGIWRANGE, ipw2100_wx_get_range), 8037 IW_HANDLER(SIOCSIWAP, ipw2100_wx_set_wap), 8038 IW_HANDLER(SIOCGIWAP, ipw2100_wx_get_wap), 8039 IW_HANDLER(SIOCSIWMLME, ipw2100_wx_set_mlme), 8040 IW_HANDLER(SIOCSIWSCAN, ipw2100_wx_set_scan), 8041 IW_HANDLER(SIOCGIWSCAN, ipw2100_wx_get_scan), 8042 IW_HANDLER(SIOCSIWESSID, ipw2100_wx_set_essid), 8043 IW_HANDLER(SIOCGIWESSID, ipw2100_wx_get_essid), 8044 IW_HANDLER(SIOCSIWNICKN, ipw2100_wx_set_nick), 8045 IW_HANDLER(SIOCGIWNICKN, ipw2100_wx_get_nick), 8046 IW_HANDLER(SIOCSIWRATE, ipw2100_wx_set_rate), 8047 IW_HANDLER(SIOCGIWRATE, ipw2100_wx_get_rate), 8048 IW_HANDLER(SIOCSIWRTS, ipw2100_wx_set_rts), 8049 IW_HANDLER(SIOCGIWRTS, ipw2100_wx_get_rts), 8050 IW_HANDLER(SIOCSIWFRAG, ipw2100_wx_set_frag), 8051 IW_HANDLER(SIOCGIWFRAG, ipw2100_wx_get_frag), 8052 IW_HANDLER(SIOCSIWTXPOW, ipw2100_wx_set_txpow), 8053 IW_HANDLER(SIOCGIWTXPOW, ipw2100_wx_get_txpow), 8054 IW_HANDLER(SIOCSIWRETRY, ipw2100_wx_set_retry), 8055 IW_HANDLER(SIOCGIWRETRY, ipw2100_wx_get_retry), 8056 IW_HANDLER(SIOCSIWENCODE, ipw2100_wx_set_encode), 8057 IW_HANDLER(SIOCGIWENCODE, ipw2100_wx_get_encode), 8058 IW_HANDLER(SIOCSIWPOWER, ipw2100_wx_set_power), 8059 IW_HANDLER(SIOCGIWPOWER, ipw2100_wx_get_power), 8060 IW_HANDLER(SIOCSIWGENIE, ipw2100_wx_set_genie), 8061 IW_HANDLER(SIOCGIWGENIE, ipw2100_wx_get_genie), 8062 IW_HANDLER(SIOCSIWAUTH, ipw2100_wx_set_auth), 8063 IW_HANDLER(SIOCGIWAUTH, ipw2100_wx_get_auth), 8064 IW_HANDLER(SIOCSIWENCODEEXT, ipw2100_wx_set_encodeext), 8065 IW_HANDLER(SIOCGIWENCODEEXT, ipw2100_wx_get_encodeext), 8066 }; 8067 8068 #define IPW2100_PRIV_SET_MONITOR SIOCIWFIRSTPRIV 8069 #define IPW2100_PRIV_RESET SIOCIWFIRSTPRIV+1 8070 #define IPW2100_PRIV_SET_POWER SIOCIWFIRSTPRIV+2 8071 #define IPW2100_PRIV_GET_POWER SIOCIWFIRSTPRIV+3 8072 #define IPW2100_PRIV_SET_LONGPREAMBLE SIOCIWFIRSTPRIV+4 8073 #define IPW2100_PRIV_GET_LONGPREAMBLE SIOCIWFIRSTPRIV+5 8074 #define IPW2100_PRIV_SET_CRC_CHECK SIOCIWFIRSTPRIV+6 8075 #define IPW2100_PRIV_GET_CRC_CHECK SIOCIWFIRSTPRIV+7 8076 8077 static const struct iw_priv_args ipw2100_private_args[] = { 8078 8079 #ifdef CONFIG_IPW2100_MONITOR 8080 { 8081 IPW2100_PRIV_SET_MONITOR, 8082 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"}, 8083 { 8084 IPW2100_PRIV_RESET, 8085 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"}, 8086 #endif /* CONFIG_IPW2100_MONITOR */ 8087 8088 { 8089 IPW2100_PRIV_SET_POWER, 8090 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"}, 8091 { 8092 IPW2100_PRIV_GET_POWER, 8093 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING, 8094 "get_power"}, 8095 { 8096 IPW2100_PRIV_SET_LONGPREAMBLE, 8097 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"}, 8098 { 8099 IPW2100_PRIV_GET_LONGPREAMBLE, 8100 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"}, 8101 #ifdef CONFIG_IPW2100_MONITOR 8102 { 8103 IPW2100_PRIV_SET_CRC_CHECK, 8104 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"}, 8105 { 8106 IPW2100_PRIV_GET_CRC_CHECK, 8107 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"}, 8108 #endif /* CONFIG_IPW2100_MONITOR */ 8109 }; 8110 8111 static iw_handler ipw2100_private_handler[] = { 8112 #ifdef CONFIG_IPW2100_MONITOR 8113 ipw2100_wx_set_promisc, 8114 ipw2100_wx_reset, 8115 #else /* CONFIG_IPW2100_MONITOR */ 8116 NULL, 8117 NULL, 8118 #endif /* CONFIG_IPW2100_MONITOR */ 8119 ipw2100_wx_set_powermode, 8120 ipw2100_wx_get_powermode, 8121 ipw2100_wx_set_preamble, 8122 ipw2100_wx_get_preamble, 8123 #ifdef CONFIG_IPW2100_MONITOR 8124 ipw2100_wx_set_crc_check, 8125 ipw2100_wx_get_crc_check, 8126 #else /* CONFIG_IPW2100_MONITOR */ 8127 NULL, 8128 NULL, 8129 #endif /* CONFIG_IPW2100_MONITOR */ 8130 }; 8131 8132 /* 8133 * Get wireless statistics. 8134 * Called by /proc/net/wireless 8135 * Also called by SIOCGIWSTATS 8136 */ 8137 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev) 8138 { 8139 enum { 8140 POOR = 30, 8141 FAIR = 60, 8142 GOOD = 80, 8143 VERY_GOOD = 90, 8144 EXCELLENT = 95, 8145 PERFECT = 100 8146 }; 8147 int rssi_qual; 8148 int tx_qual; 8149 int beacon_qual; 8150 int quality; 8151 8152 struct ipw2100_priv *priv = libipw_priv(dev); 8153 struct iw_statistics *wstats; 8154 u32 rssi, tx_retries, missed_beacons, tx_failures; 8155 u32 ord_len = sizeof(u32); 8156 8157 if (!priv) 8158 return (struct iw_statistics *)NULL; 8159 8160 wstats = &priv->wstats; 8161 8162 /* if hw is disabled, then ipw2100_get_ordinal() can't be called. 8163 * ipw2100_wx_wireless_stats seems to be called before fw is 8164 * initialized. STATUS_ASSOCIATED will only be set if the hw is up 8165 * and associated; if not associcated, the values are all meaningless 8166 * anyway, so set them all to NULL and INVALID */ 8167 if (!(priv->status & STATUS_ASSOCIATED)) { 8168 wstats->miss.beacon = 0; 8169 wstats->discard.retries = 0; 8170 wstats->qual.qual = 0; 8171 wstats->qual.level = 0; 8172 wstats->qual.noise = 0; 8173 wstats->qual.updated = 7; 8174 wstats->qual.updated |= IW_QUAL_NOISE_INVALID | 8175 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID; 8176 return wstats; 8177 } 8178 8179 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS, 8180 &missed_beacons, &ord_len)) 8181 goto fail_get_ordinal; 8182 8183 /* If we don't have a connection the quality and level is 0 */ 8184 if (!(priv->status & STATUS_ASSOCIATED)) { 8185 wstats->qual.qual = 0; 8186 wstats->qual.level = 0; 8187 } else { 8188 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR, 8189 &rssi, &ord_len)) 8190 goto fail_get_ordinal; 8191 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM; 8192 if (rssi < 10) 8193 rssi_qual = rssi * POOR / 10; 8194 else if (rssi < 15) 8195 rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR; 8196 else if (rssi < 20) 8197 rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR; 8198 else if (rssi < 30) 8199 rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) / 8200 10 + GOOD; 8201 else 8202 rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) / 8203 10 + VERY_GOOD; 8204 8205 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES, 8206 &tx_retries, &ord_len)) 8207 goto fail_get_ordinal; 8208 8209 if (tx_retries > 75) 8210 tx_qual = (90 - tx_retries) * POOR / 15; 8211 else if (tx_retries > 70) 8212 tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR; 8213 else if (tx_retries > 65) 8214 tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR; 8215 else if (tx_retries > 50) 8216 tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) / 8217 15 + GOOD; 8218 else 8219 tx_qual = (50 - tx_retries) * 8220 (PERFECT - VERY_GOOD) / 50 + VERY_GOOD; 8221 8222 if (missed_beacons > 50) 8223 beacon_qual = (60 - missed_beacons) * POOR / 10; 8224 else if (missed_beacons > 40) 8225 beacon_qual = (50 - missed_beacons) * (FAIR - POOR) / 8226 10 + POOR; 8227 else if (missed_beacons > 32) 8228 beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) / 8229 18 + FAIR; 8230 else if (missed_beacons > 20) 8231 beacon_qual = (32 - missed_beacons) * 8232 (VERY_GOOD - GOOD) / 20 + GOOD; 8233 else 8234 beacon_qual = (20 - missed_beacons) * 8235 (PERFECT - VERY_GOOD) / 20 + VERY_GOOD; 8236 8237 quality = min(tx_qual, rssi_qual); 8238 quality = min(beacon_qual, quality); 8239 8240 #ifdef CONFIG_IPW2100_DEBUG 8241 if (beacon_qual == quality) 8242 IPW_DEBUG_WX("Quality clamped by Missed Beacons\n"); 8243 else if (tx_qual == quality) 8244 IPW_DEBUG_WX("Quality clamped by Tx Retries\n"); 8245 else if (quality != 100) 8246 IPW_DEBUG_WX("Quality clamped by Signal Strength\n"); 8247 else 8248 IPW_DEBUG_WX("Quality not clamped.\n"); 8249 #endif 8250 8251 wstats->qual.qual = quality; 8252 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM; 8253 } 8254 8255 wstats->qual.noise = 0; 8256 wstats->qual.updated = 7; 8257 wstats->qual.updated |= IW_QUAL_NOISE_INVALID; 8258 8259 /* FIXME: this is percent and not a # */ 8260 wstats->miss.beacon = missed_beacons; 8261 8262 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES, 8263 &tx_failures, &ord_len)) 8264 goto fail_get_ordinal; 8265 wstats->discard.retries = tx_failures; 8266 8267 return wstats; 8268 8269 fail_get_ordinal: 8270 IPW_DEBUG_WX("failed querying ordinals.\n"); 8271 8272 return (struct iw_statistics *)NULL; 8273 } 8274 8275 static const struct iw_handler_def ipw2100_wx_handler_def = { 8276 .standard = ipw2100_wx_handlers, 8277 .num_standard = ARRAY_SIZE(ipw2100_wx_handlers), 8278 .num_private = ARRAY_SIZE(ipw2100_private_handler), 8279 .num_private_args = ARRAY_SIZE(ipw2100_private_args), 8280 .private = (iw_handler *) ipw2100_private_handler, 8281 .private_args = (struct iw_priv_args *)ipw2100_private_args, 8282 .get_wireless_stats = ipw2100_wx_wireless_stats, 8283 }; 8284 8285 static void ipw2100_wx_event_work(struct work_struct *work) 8286 { 8287 struct ipw2100_priv *priv = 8288 container_of(work, struct ipw2100_priv, wx_event_work.work); 8289 union iwreq_data wrqu; 8290 unsigned int len = ETH_ALEN; 8291 8292 if (priv->status & STATUS_STOPPING) 8293 return; 8294 8295 mutex_lock(&priv->action_mutex); 8296 8297 IPW_DEBUG_WX("enter\n"); 8298 8299 mutex_unlock(&priv->action_mutex); 8300 8301 wrqu.ap_addr.sa_family = ARPHRD_ETHER; 8302 8303 /* Fetch BSSID from the hardware */ 8304 if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) || 8305 priv->status & STATUS_RF_KILL_MASK || 8306 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, 8307 &priv->bssid, &len)) { 8308 eth_zero_addr(wrqu.ap_addr.sa_data); 8309 } else { 8310 /* We now have the BSSID, so can finish setting to the full 8311 * associated state */ 8312 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN); 8313 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN); 8314 priv->status &= ~STATUS_ASSOCIATING; 8315 priv->status |= STATUS_ASSOCIATED; 8316 netif_carrier_on(priv->net_dev); 8317 netif_wake_queue(priv->net_dev); 8318 } 8319 8320 if (!(priv->status & STATUS_ASSOCIATED)) { 8321 IPW_DEBUG_WX("Configuring ESSID\n"); 8322 mutex_lock(&priv->action_mutex); 8323 /* This is a disassociation event, so kick the firmware to 8324 * look for another AP */ 8325 if (priv->config & CFG_STATIC_ESSID) 8326 ipw2100_set_essid(priv, priv->essid, priv->essid_len, 8327 0); 8328 else 8329 ipw2100_set_essid(priv, NULL, 0, 0); 8330 mutex_unlock(&priv->action_mutex); 8331 } 8332 8333 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL); 8334 } 8335 8336 #define IPW2100_FW_MAJOR_VERSION 1 8337 #define IPW2100_FW_MINOR_VERSION 3 8338 8339 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8) 8340 #define IPW2100_FW_MAJOR(x) (x & 0xff) 8341 8342 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \ 8343 IPW2100_FW_MAJOR_VERSION) 8344 8345 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \ 8346 "." __stringify(IPW2100_FW_MINOR_VERSION) 8347 8348 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw" 8349 8350 /* 8351 8352 BINARY FIRMWARE HEADER FORMAT 8353 8354 offset length desc 8355 0 2 version 8356 2 2 mode == 0:BSS,1:IBSS,2:MONITOR 8357 4 4 fw_len 8358 8 4 uc_len 8359 C fw_len firmware data 8360 12 + fw_len uc_len microcode data 8361 8362 */ 8363 8364 struct ipw2100_fw_header { 8365 short version; 8366 short mode; 8367 unsigned int fw_size; 8368 unsigned int uc_size; 8369 } __packed; 8370 8371 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw) 8372 { 8373 struct ipw2100_fw_header *h = 8374 (struct ipw2100_fw_header *)fw->fw_entry->data; 8375 8376 if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) { 8377 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible " 8378 "(detected version id of %u). " 8379 "See Documentation/networking/README.ipw2100\n", 8380 h->version); 8381 return 1; 8382 } 8383 8384 fw->version = h->version; 8385 fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header); 8386 fw->fw.size = h->fw_size; 8387 fw->uc.data = fw->fw.data + h->fw_size; 8388 fw->uc.size = h->uc_size; 8389 8390 return 0; 8391 } 8392 8393 static int ipw2100_get_firmware(struct ipw2100_priv *priv, 8394 struct ipw2100_fw *fw) 8395 { 8396 char *fw_name; 8397 int rc; 8398 8399 IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n", 8400 priv->net_dev->name); 8401 8402 switch (priv->ieee->iw_mode) { 8403 case IW_MODE_ADHOC: 8404 fw_name = IPW2100_FW_NAME("-i"); 8405 break; 8406 #ifdef CONFIG_IPW2100_MONITOR 8407 case IW_MODE_MONITOR: 8408 fw_name = IPW2100_FW_NAME("-p"); 8409 break; 8410 #endif 8411 case IW_MODE_INFRA: 8412 default: 8413 fw_name = IPW2100_FW_NAME(""); 8414 break; 8415 } 8416 8417 rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev); 8418 8419 if (rc < 0) { 8420 printk(KERN_ERR DRV_NAME ": " 8421 "%s: Firmware '%s' not available or load failed.\n", 8422 priv->net_dev->name, fw_name); 8423 return rc; 8424 } 8425 IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data, 8426 fw->fw_entry->size); 8427 8428 ipw2100_mod_firmware_load(fw); 8429 8430 return 0; 8431 } 8432 8433 MODULE_FIRMWARE(IPW2100_FW_NAME("-i")); 8434 #ifdef CONFIG_IPW2100_MONITOR 8435 MODULE_FIRMWARE(IPW2100_FW_NAME("-p")); 8436 #endif 8437 MODULE_FIRMWARE(IPW2100_FW_NAME("")); 8438 8439 static void ipw2100_release_firmware(struct ipw2100_priv *priv, 8440 struct ipw2100_fw *fw) 8441 { 8442 fw->version = 0; 8443 release_firmware(fw->fw_entry); 8444 fw->fw_entry = NULL; 8445 } 8446 8447 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf, 8448 size_t max) 8449 { 8450 char ver[MAX_FW_VERSION_LEN]; 8451 u32 len = MAX_FW_VERSION_LEN; 8452 u32 tmp; 8453 int i; 8454 /* firmware version is an ascii string (max len of 14) */ 8455 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len)) 8456 return -EIO; 8457 tmp = max; 8458 if (len >= max) 8459 len = max - 1; 8460 for (i = 0; i < len; i++) 8461 buf[i] = ver[i]; 8462 buf[i] = '\0'; 8463 return tmp; 8464 } 8465 8466 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf, 8467 size_t max) 8468 { 8469 u32 ver; 8470 u32 len = sizeof(ver); 8471 /* microcode version is a 32 bit integer */ 8472 if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len)) 8473 return -EIO; 8474 return snprintf(buf, max, "%08X", ver); 8475 } 8476 8477 /* 8478 * On exit, the firmware will have been freed from the fw list 8479 */ 8480 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw) 8481 { 8482 /* firmware is constructed of N contiguous entries, each entry is 8483 * structured as: 8484 * 8485 * offset sie desc 8486 * 0 4 address to write to 8487 * 4 2 length of data run 8488 * 6 length data 8489 */ 8490 unsigned int addr; 8491 unsigned short len; 8492 8493 const unsigned char *firmware_data = fw->fw.data; 8494 unsigned int firmware_data_left = fw->fw.size; 8495 8496 while (firmware_data_left > 0) { 8497 addr = *(u32 *) (firmware_data); 8498 firmware_data += 4; 8499 firmware_data_left -= 4; 8500 8501 len = *(u16 *) (firmware_data); 8502 firmware_data += 2; 8503 firmware_data_left -= 2; 8504 8505 if (len > 32) { 8506 printk(KERN_ERR DRV_NAME ": " 8507 "Invalid firmware run-length of %d bytes\n", 8508 len); 8509 return -EINVAL; 8510 } 8511 8512 write_nic_memory(priv->net_dev, addr, len, firmware_data); 8513 firmware_data += len; 8514 firmware_data_left -= len; 8515 } 8516 8517 return 0; 8518 } 8519 8520 struct symbol_alive_response { 8521 u8 cmd_id; 8522 u8 seq_num; 8523 u8 ucode_rev; 8524 u8 eeprom_valid; 8525 u16 valid_flags; 8526 u8 IEEE_addr[6]; 8527 u16 flags; 8528 u16 pcb_rev; 8529 u16 clock_settle_time; // 1us LSB 8530 u16 powerup_settle_time; // 1us LSB 8531 u16 hop_settle_time; // 1us LSB 8532 u8 date[3]; // month, day, year 8533 u8 time[2]; // hours, minutes 8534 u8 ucode_valid; 8535 }; 8536 8537 static int ipw2100_ucode_download(struct ipw2100_priv *priv, 8538 struct ipw2100_fw *fw) 8539 { 8540 struct net_device *dev = priv->net_dev; 8541 const unsigned char *microcode_data = fw->uc.data; 8542 unsigned int microcode_data_left = fw->uc.size; 8543 void __iomem *reg = priv->ioaddr; 8544 8545 struct symbol_alive_response response; 8546 int i, j; 8547 u8 data; 8548 8549 /* Symbol control */ 8550 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703); 8551 readl(reg); 8552 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707); 8553 readl(reg); 8554 8555 /* HW config */ 8556 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */ 8557 readl(reg); 8558 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */ 8559 readl(reg); 8560 8561 /* EN_CS_ACCESS bit to reset control store pointer */ 8562 write_nic_byte(dev, 0x210000, 0x40); 8563 readl(reg); 8564 write_nic_byte(dev, 0x210000, 0x0); 8565 readl(reg); 8566 write_nic_byte(dev, 0x210000, 0x40); 8567 readl(reg); 8568 8569 /* copy microcode from buffer into Symbol */ 8570 8571 while (microcode_data_left > 0) { 8572 write_nic_byte(dev, 0x210010, *microcode_data++); 8573 write_nic_byte(dev, 0x210010, *microcode_data++); 8574 microcode_data_left -= 2; 8575 } 8576 8577 /* EN_CS_ACCESS bit to reset the control store pointer */ 8578 write_nic_byte(dev, 0x210000, 0x0); 8579 readl(reg); 8580 8581 /* Enable System (Reg 0) 8582 * first enable causes garbage in RX FIFO */ 8583 write_nic_byte(dev, 0x210000, 0x0); 8584 readl(reg); 8585 write_nic_byte(dev, 0x210000, 0x80); 8586 readl(reg); 8587 8588 /* Reset External Baseband Reg */ 8589 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703); 8590 readl(reg); 8591 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707); 8592 readl(reg); 8593 8594 /* HW Config (Reg 5) */ 8595 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16 8596 readl(reg); 8597 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16 8598 readl(reg); 8599 8600 /* Enable System (Reg 0) 8601 * second enable should be OK */ 8602 write_nic_byte(dev, 0x210000, 0x00); // clear enable system 8603 readl(reg); 8604 write_nic_byte(dev, 0x210000, 0x80); // set enable system 8605 8606 /* check Symbol is enabled - upped this from 5 as it wasn't always 8607 * catching the update */ 8608 for (i = 0; i < 10; i++) { 8609 udelay(10); 8610 8611 /* check Dino is enabled bit */ 8612 read_nic_byte(dev, 0x210000, &data); 8613 if (data & 0x1) 8614 break; 8615 } 8616 8617 if (i == 10) { 8618 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n", 8619 dev->name); 8620 return -EIO; 8621 } 8622 8623 /* Get Symbol alive response */ 8624 for (i = 0; i < 30; i++) { 8625 /* Read alive response structure */ 8626 for (j = 0; 8627 j < (sizeof(struct symbol_alive_response) >> 1); j++) 8628 read_nic_word(dev, 0x210004, ((u16 *) & response) + j); 8629 8630 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1)) 8631 break; 8632 udelay(10); 8633 } 8634 8635 if (i == 30) { 8636 printk(KERN_ERR DRV_NAME 8637 ": %s: No response from Symbol - hw not alive\n", 8638 dev->name); 8639 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response)); 8640 return -EIO; 8641 } 8642 8643 return 0; 8644 } 8645