xref: /openbmc/linux/drivers/net/wireless/intel/ipw2x00/ipw2100.c (revision 5fa1f7680f2728d62561db6d4a9282c4d21f2324)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /******************************************************************************
3 
4   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
5 
6 
7   Contact Information:
8   Intel Linux Wireless <ilw@linux.intel.com>
9   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
10 
11   Portions of this file are based on the sample_* files provided by Wireless
12   Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
13   <jt@hpl.hp.com>
14 
15   Portions of this file are based on the Host AP project,
16   Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
17     <j@w1.fi>
18   Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
19 
20   Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
21   ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
22   available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
23 
24 ******************************************************************************/
25 /*
26 
27  Initial driver on which this is based was developed by Janusz Gorycki,
28  Maciej Urbaniak, and Maciej Sosnowski.
29 
30  Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
31 
32 Theory of Operation
33 
34 Tx - Commands and Data
35 
36 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
37 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
38 sent to the firmware as well as the length of the data.
39 
40 The host writes to the TBD queue at the WRITE index.  The WRITE index points
41 to the _next_ packet to be written and is advanced when after the TBD has been
42 filled.
43 
44 The firmware pulls from the TBD queue at the READ index.  The READ index points
45 to the currently being read entry, and is advanced once the firmware is
46 done with a packet.
47 
48 When data is sent to the firmware, the first TBD is used to indicate to the
49 firmware if a Command or Data is being sent.  If it is Command, all of the
50 command information is contained within the physical address referred to by the
51 TBD.  If it is Data, the first TBD indicates the type of data packet, number
52 of fragments, etc.  The next TBD then refers to the actual packet location.
53 
54 The Tx flow cycle is as follows:
55 
56 1) ipw2100_tx() is called by kernel with SKB to transmit
57 2) Packet is move from the tx_free_list and appended to the transmit pending
58    list (tx_pend_list)
59 3) work is scheduled to move pending packets into the shared circular queue.
60 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
61    to a physical address.  That address is entered into a TBD.  Two TBDs are
62    filled out.  The first indicating a data packet, the second referring to the
63    actual payload data.
64 5) the packet is removed from tx_pend_list and placed on the end of the
65    firmware pending list (fw_pend_list)
66 6) firmware is notified that the WRITE index has
67 7) Once the firmware has processed the TBD, INTA is triggered.
68 8) For each Tx interrupt received from the firmware, the READ index is checked
69    to see which TBDs are done being processed.
70 9) For each TBD that has been processed, the ISR pulls the oldest packet
71    from the fw_pend_list.
72 10)The packet structure contained in the fw_pend_list is then used
73    to unmap the DMA address and to free the SKB originally passed to the driver
74    from the kernel.
75 11)The packet structure is placed onto the tx_free_list
76 
77 The above steps are the same for commands, only the msg_free_list/msg_pend_list
78 are used instead of tx_free_list/tx_pend_list
79 
80 ...
81 
82 Critical Sections / Locking :
83 
84 There are two locks utilized.  The first is the low level lock (priv->low_lock)
85 that protects the following:
86 
87 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
88 
89   tx_free_list : Holds pre-allocated Tx buffers.
90     TAIL modified in __ipw2100_tx_process()
91     HEAD modified in ipw2100_tx()
92 
93   tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
94     TAIL modified ipw2100_tx()
95     HEAD modified by ipw2100_tx_send_data()
96 
97   msg_free_list : Holds pre-allocated Msg (Command) buffers
98     TAIL modified in __ipw2100_tx_process()
99     HEAD modified in ipw2100_hw_send_command()
100 
101   msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
102     TAIL modified in ipw2100_hw_send_command()
103     HEAD modified in ipw2100_tx_send_commands()
104 
105   The flow of data on the TX side is as follows:
106 
107   MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
108   TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
109 
110   The methods that work on the TBD ring are protected via priv->low_lock.
111 
112 - The internal data state of the device itself
113 - Access to the firmware read/write indexes for the BD queues
114   and associated logic
115 
116 All external entry functions are locked with the priv->action_lock to ensure
117 that only one external action is invoked at a time.
118 
119 
120 */
121 
122 #include <linux/compiler.h>
123 #include <linux/errno.h>
124 #include <linux/if_arp.h>
125 #include <linux/in6.h>
126 #include <linux/in.h>
127 #include <linux/ip.h>
128 #include <linux/kernel.h>
129 #include <linux/kmod.h>
130 #include <linux/module.h>
131 #include <linux/netdevice.h>
132 #include <linux/ethtool.h>
133 #include <linux/pci.h>
134 #include <linux/dma-mapping.h>
135 #include <linux/proc_fs.h>
136 #include <linux/skbuff.h>
137 #include <linux/uaccess.h>
138 #include <asm/io.h>
139 #include <linux/fs.h>
140 #include <linux/mm.h>
141 #include <linux/slab.h>
142 #include <linux/unistd.h>
143 #include <linux/stringify.h>
144 #include <linux/tcp.h>
145 #include <linux/types.h>
146 #include <linux/time.h>
147 #include <linux/firmware.h>
148 #include <linux/acpi.h>
149 #include <linux/ctype.h>
150 #include <linux/pm_qos.h>
151 
152 #include <net/lib80211.h>
153 
154 #include "ipw2100.h"
155 #include "ipw.h"
156 
157 #define IPW2100_VERSION "git-1.2.2"
158 
159 #define DRV_NAME	"ipw2100"
160 #define DRV_VERSION	IPW2100_VERSION
161 #define DRV_DESCRIPTION	"Intel(R) PRO/Wireless 2100 Network Driver"
162 #define DRV_COPYRIGHT	"Copyright(c) 2003-2006 Intel Corporation"
163 
164 static struct pm_qos_request ipw2100_pm_qos_req;
165 
166 /* Debugging stuff */
167 #ifdef CONFIG_IPW2100_DEBUG
168 #define IPW2100_RX_DEBUG	/* Reception debugging */
169 #endif
170 
171 MODULE_DESCRIPTION(DRV_DESCRIPTION);
172 MODULE_VERSION(DRV_VERSION);
173 MODULE_AUTHOR(DRV_COPYRIGHT);
174 MODULE_LICENSE("GPL");
175 
176 static int debug = 0;
177 static int network_mode = 0;
178 static int channel = 0;
179 static int associate = 0;
180 static int disable = 0;
181 #ifdef CONFIG_PM
182 static struct ipw2100_fw ipw2100_firmware;
183 #endif
184 
185 #include <linux/moduleparam.h>
186 module_param(debug, int, 0444);
187 module_param_named(mode, network_mode, int, 0444);
188 module_param(channel, int, 0444);
189 module_param(associate, int, 0444);
190 module_param(disable, int, 0444);
191 
192 MODULE_PARM_DESC(debug, "debug level");
193 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
194 MODULE_PARM_DESC(channel, "channel");
195 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
196 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
197 
198 static u32 ipw2100_debug_level = IPW_DL_NONE;
199 
200 #ifdef CONFIG_IPW2100_DEBUG
201 #define IPW_DEBUG(level, message...) \
202 do { \
203 	if (ipw2100_debug_level & (level)) { \
204 		printk(KERN_DEBUG "ipw2100: %c %s ", \
205                        in_interrupt() ? 'I' : 'U',  __func__); \
206 		printk(message); \
207 	} \
208 } while (0)
209 #else
210 #define IPW_DEBUG(level, message...) do {} while (0)
211 #endif				/* CONFIG_IPW2100_DEBUG */
212 
213 #ifdef CONFIG_IPW2100_DEBUG
214 static const char *command_types[] = {
215 	"undefined",
216 	"unused",		/* HOST_ATTENTION */
217 	"HOST_COMPLETE",
218 	"unused",		/* SLEEP */
219 	"unused",		/* HOST_POWER_DOWN */
220 	"unused",
221 	"SYSTEM_CONFIG",
222 	"unused",		/* SET_IMR */
223 	"SSID",
224 	"MANDATORY_BSSID",
225 	"AUTHENTICATION_TYPE",
226 	"ADAPTER_ADDRESS",
227 	"PORT_TYPE",
228 	"INTERNATIONAL_MODE",
229 	"CHANNEL",
230 	"RTS_THRESHOLD",
231 	"FRAG_THRESHOLD",
232 	"POWER_MODE",
233 	"TX_RATES",
234 	"BASIC_TX_RATES",
235 	"WEP_KEY_INFO",
236 	"unused",
237 	"unused",
238 	"unused",
239 	"unused",
240 	"WEP_KEY_INDEX",
241 	"WEP_FLAGS",
242 	"ADD_MULTICAST",
243 	"CLEAR_ALL_MULTICAST",
244 	"BEACON_INTERVAL",
245 	"ATIM_WINDOW",
246 	"CLEAR_STATISTICS",
247 	"undefined",
248 	"undefined",
249 	"undefined",
250 	"undefined",
251 	"TX_POWER_INDEX",
252 	"undefined",
253 	"undefined",
254 	"undefined",
255 	"undefined",
256 	"undefined",
257 	"undefined",
258 	"BROADCAST_SCAN",
259 	"CARD_DISABLE",
260 	"PREFERRED_BSSID",
261 	"SET_SCAN_OPTIONS",
262 	"SCAN_DWELL_TIME",
263 	"SWEEP_TABLE",
264 	"AP_OR_STATION_TABLE",
265 	"GROUP_ORDINALS",
266 	"SHORT_RETRY_LIMIT",
267 	"LONG_RETRY_LIMIT",
268 	"unused",		/* SAVE_CALIBRATION */
269 	"unused",		/* RESTORE_CALIBRATION */
270 	"undefined",
271 	"undefined",
272 	"undefined",
273 	"HOST_PRE_POWER_DOWN",
274 	"unused",		/* HOST_INTERRUPT_COALESCING */
275 	"undefined",
276 	"CARD_DISABLE_PHY_OFF",
277 	"MSDU_TX_RATES",
278 	"undefined",
279 	"SET_STATION_STAT_BITS",
280 	"CLEAR_STATIONS_STAT_BITS",
281 	"LEAP_ROGUE_MODE",
282 	"SET_SECURITY_INFORMATION",
283 	"DISASSOCIATION_BSSID",
284 	"SET_WPA_ASS_IE"
285 };
286 #endif
287 
288 static const long ipw2100_frequencies[] = {
289 	2412, 2417, 2422, 2427,
290 	2432, 2437, 2442, 2447,
291 	2452, 2457, 2462, 2467,
292 	2472, 2484
293 };
294 
295 #define FREQ_COUNT	ARRAY_SIZE(ipw2100_frequencies)
296 
297 static struct ieee80211_rate ipw2100_bg_rates[] = {
298 	{ .bitrate = 10 },
299 	{ .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
300 	{ .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
301 	{ .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
302 };
303 
304 #define RATE_COUNT ARRAY_SIZE(ipw2100_bg_rates)
305 
306 /* Pre-decl until we get the code solid and then we can clean it up */
307 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
308 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
309 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
310 
311 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
312 static void ipw2100_queues_free(struct ipw2100_priv *priv);
313 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
314 
315 static int ipw2100_fw_download(struct ipw2100_priv *priv,
316 			       struct ipw2100_fw *fw);
317 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
318 				struct ipw2100_fw *fw);
319 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
320 				 size_t max);
321 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
322 				    size_t max);
323 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
324 				     struct ipw2100_fw *fw);
325 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
326 				  struct ipw2100_fw *fw);
327 static void ipw2100_wx_event_work(struct work_struct *work);
328 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
329 static const struct iw_handler_def ipw2100_wx_handler_def;
330 
331 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
332 {
333 	struct ipw2100_priv *priv = libipw_priv(dev);
334 
335 	*val = ioread32(priv->ioaddr + reg);
336 	IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
337 }
338 
339 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
340 {
341 	struct ipw2100_priv *priv = libipw_priv(dev);
342 
343 	iowrite32(val, priv->ioaddr + reg);
344 	IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
345 }
346 
347 static inline void read_register_word(struct net_device *dev, u32 reg,
348 				      u16 * val)
349 {
350 	struct ipw2100_priv *priv = libipw_priv(dev);
351 
352 	*val = ioread16(priv->ioaddr + reg);
353 	IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
354 }
355 
356 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
357 {
358 	struct ipw2100_priv *priv = libipw_priv(dev);
359 
360 	*val = ioread8(priv->ioaddr + reg);
361 	IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
362 }
363 
364 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
365 {
366 	struct ipw2100_priv *priv = libipw_priv(dev);
367 
368 	iowrite16(val, priv->ioaddr + reg);
369 	IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
370 }
371 
372 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
373 {
374 	struct ipw2100_priv *priv = libipw_priv(dev);
375 
376 	iowrite8(val, priv->ioaddr + reg);
377 	IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
378 }
379 
380 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
381 {
382 	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
383 		       addr & IPW_REG_INDIRECT_ADDR_MASK);
384 	read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
385 }
386 
387 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
388 {
389 	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
390 		       addr & IPW_REG_INDIRECT_ADDR_MASK);
391 	write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
392 }
393 
394 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
395 {
396 	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
397 		       addr & IPW_REG_INDIRECT_ADDR_MASK);
398 	read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
399 }
400 
401 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
402 {
403 	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
404 		       addr & IPW_REG_INDIRECT_ADDR_MASK);
405 	write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
406 }
407 
408 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
409 {
410 	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
411 		       addr & IPW_REG_INDIRECT_ADDR_MASK);
412 	read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
413 }
414 
415 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
416 {
417 	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
418 		       addr & IPW_REG_INDIRECT_ADDR_MASK);
419 	write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
420 }
421 
422 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
423 {
424 	write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
425 		       addr & IPW_REG_INDIRECT_ADDR_MASK);
426 }
427 
428 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
429 {
430 	write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
431 }
432 
433 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
434 				    const u8 * buf)
435 {
436 	u32 aligned_addr;
437 	u32 aligned_len;
438 	u32 dif_len;
439 	u32 i;
440 
441 	/* read first nibble byte by byte */
442 	aligned_addr = addr & (~0x3);
443 	dif_len = addr - aligned_addr;
444 	if (dif_len) {
445 		/* Start reading at aligned_addr + dif_len */
446 		write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
447 			       aligned_addr);
448 		for (i = dif_len; i < 4; i++, buf++)
449 			write_register_byte(dev,
450 					    IPW_REG_INDIRECT_ACCESS_DATA + i,
451 					    *buf);
452 
453 		len -= dif_len;
454 		aligned_addr += 4;
455 	}
456 
457 	/* read DWs through autoincrement registers */
458 	write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
459 	aligned_len = len & (~0x3);
460 	for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
461 		write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
462 
463 	/* copy the last nibble */
464 	dif_len = len - aligned_len;
465 	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
466 	for (i = 0; i < dif_len; i++, buf++)
467 		write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
468 				    *buf);
469 }
470 
471 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
472 				   u8 * buf)
473 {
474 	u32 aligned_addr;
475 	u32 aligned_len;
476 	u32 dif_len;
477 	u32 i;
478 
479 	/* read first nibble byte by byte */
480 	aligned_addr = addr & (~0x3);
481 	dif_len = addr - aligned_addr;
482 	if (dif_len) {
483 		/* Start reading at aligned_addr + dif_len */
484 		write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
485 			       aligned_addr);
486 		for (i = dif_len; i < 4; i++, buf++)
487 			read_register_byte(dev,
488 					   IPW_REG_INDIRECT_ACCESS_DATA + i,
489 					   buf);
490 
491 		len -= dif_len;
492 		aligned_addr += 4;
493 	}
494 
495 	/* read DWs through autoincrement registers */
496 	write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
497 	aligned_len = len & (~0x3);
498 	for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
499 		read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
500 
501 	/* copy the last nibble */
502 	dif_len = len - aligned_len;
503 	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
504 	for (i = 0; i < dif_len; i++, buf++)
505 		read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
506 }
507 
508 static bool ipw2100_hw_is_adapter_in_system(struct net_device *dev)
509 {
510 	u32 dbg;
511 
512 	read_register(dev, IPW_REG_DOA_DEBUG_AREA_START, &dbg);
513 
514 	return dbg == IPW_DATA_DOA_DEBUG_VALUE;
515 }
516 
517 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
518 			       void *val, u32 * len)
519 {
520 	struct ipw2100_ordinals *ordinals = &priv->ordinals;
521 	u32 addr;
522 	u32 field_info;
523 	u16 field_len;
524 	u16 field_count;
525 	u32 total_length;
526 
527 	if (ordinals->table1_addr == 0) {
528 		printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
529 		       "before they have been loaded.\n");
530 		return -EINVAL;
531 	}
532 
533 	if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
534 		if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
535 			*len = IPW_ORD_TAB_1_ENTRY_SIZE;
536 
537 			printk(KERN_WARNING DRV_NAME
538 			       ": ordinal buffer length too small, need %zd\n",
539 			       IPW_ORD_TAB_1_ENTRY_SIZE);
540 
541 			return -EINVAL;
542 		}
543 
544 		read_nic_dword(priv->net_dev,
545 			       ordinals->table1_addr + (ord << 2), &addr);
546 		read_nic_dword(priv->net_dev, addr, val);
547 
548 		*len = IPW_ORD_TAB_1_ENTRY_SIZE;
549 
550 		return 0;
551 	}
552 
553 	if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
554 
555 		ord -= IPW_START_ORD_TAB_2;
556 
557 		/* get the address of statistic */
558 		read_nic_dword(priv->net_dev,
559 			       ordinals->table2_addr + (ord << 3), &addr);
560 
561 		/* get the second DW of statistics ;
562 		 * two 16-bit words - first is length, second is count */
563 		read_nic_dword(priv->net_dev,
564 			       ordinals->table2_addr + (ord << 3) + sizeof(u32),
565 			       &field_info);
566 
567 		/* get each entry length */
568 		field_len = *((u16 *) & field_info);
569 
570 		/* get number of entries */
571 		field_count = *(((u16 *) & field_info) + 1);
572 
573 		/* abort if no enough memory */
574 		total_length = field_len * field_count;
575 		if (total_length > *len) {
576 			*len = total_length;
577 			return -EINVAL;
578 		}
579 
580 		*len = total_length;
581 		if (!total_length)
582 			return 0;
583 
584 		/* read the ordinal data from the SRAM */
585 		read_nic_memory(priv->net_dev, addr, total_length, val);
586 
587 		return 0;
588 	}
589 
590 	printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
591 	       "in table 2\n", ord);
592 
593 	return -EINVAL;
594 }
595 
596 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
597 			       u32 * len)
598 {
599 	struct ipw2100_ordinals *ordinals = &priv->ordinals;
600 	u32 addr;
601 
602 	if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
603 		if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
604 			*len = IPW_ORD_TAB_1_ENTRY_SIZE;
605 			IPW_DEBUG_INFO("wrong size\n");
606 			return -EINVAL;
607 		}
608 
609 		read_nic_dword(priv->net_dev,
610 			       ordinals->table1_addr + (ord << 2), &addr);
611 
612 		write_nic_dword(priv->net_dev, addr, *val);
613 
614 		*len = IPW_ORD_TAB_1_ENTRY_SIZE;
615 
616 		return 0;
617 	}
618 
619 	IPW_DEBUG_INFO("wrong table\n");
620 	if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
621 		return -EINVAL;
622 
623 	return -EINVAL;
624 }
625 
626 static char *snprint_line(char *buf, size_t count,
627 			  const u8 * data, u32 len, u32 ofs)
628 {
629 	int out, i, j, l;
630 	char c;
631 
632 	out = scnprintf(buf, count, "%08X", ofs);
633 
634 	for (l = 0, i = 0; i < 2; i++) {
635 		out += scnprintf(buf + out, count - out, " ");
636 		for (j = 0; j < 8 && l < len; j++, l++)
637 			out += scnprintf(buf + out, count - out, "%02X ",
638 					data[(i * 8 + j)]);
639 		for (; j < 8; j++)
640 			out += scnprintf(buf + out, count - out, "   ");
641 	}
642 
643 	out += scnprintf(buf + out, count - out, " ");
644 	for (l = 0, i = 0; i < 2; i++) {
645 		out += scnprintf(buf + out, count - out, " ");
646 		for (j = 0; j < 8 && l < len; j++, l++) {
647 			c = data[(i * 8 + j)];
648 			if (!isascii(c) || !isprint(c))
649 				c = '.';
650 
651 			out += scnprintf(buf + out, count - out, "%c", c);
652 		}
653 
654 		for (; j < 8; j++)
655 			out += scnprintf(buf + out, count - out, " ");
656 	}
657 
658 	return buf;
659 }
660 
661 static void printk_buf(int level, const u8 * data, u32 len)
662 {
663 	char line[81];
664 	u32 ofs = 0;
665 	if (!(ipw2100_debug_level & level))
666 		return;
667 
668 	while (len) {
669 		printk(KERN_DEBUG "%s\n",
670 		       snprint_line(line, sizeof(line), &data[ofs],
671 				    min(len, 16U), ofs));
672 		ofs += 16;
673 		len -= min(len, 16U);
674 	}
675 }
676 
677 #define MAX_RESET_BACKOFF 10
678 
679 static void schedule_reset(struct ipw2100_priv *priv)
680 {
681 	time64_t now = ktime_get_boottime_seconds();
682 
683 	/* If we haven't received a reset request within the backoff period,
684 	 * then we can reset the backoff interval so this reset occurs
685 	 * immediately */
686 	if (priv->reset_backoff &&
687 	    (now - priv->last_reset > priv->reset_backoff))
688 		priv->reset_backoff = 0;
689 
690 	priv->last_reset = now;
691 
692 	if (!(priv->status & STATUS_RESET_PENDING)) {
693 		IPW_DEBUG_INFO("%s: Scheduling firmware restart (%llds).\n",
694 			       priv->net_dev->name, priv->reset_backoff);
695 		netif_carrier_off(priv->net_dev);
696 		netif_stop_queue(priv->net_dev);
697 		priv->status |= STATUS_RESET_PENDING;
698 		if (priv->reset_backoff)
699 			schedule_delayed_work(&priv->reset_work,
700 					      priv->reset_backoff * HZ);
701 		else
702 			schedule_delayed_work(&priv->reset_work, 0);
703 
704 		if (priv->reset_backoff < MAX_RESET_BACKOFF)
705 			priv->reset_backoff++;
706 
707 		wake_up_interruptible(&priv->wait_command_queue);
708 	} else
709 		IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
710 			       priv->net_dev->name);
711 
712 }
713 
714 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
715 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
716 				   struct host_command *cmd)
717 {
718 	struct list_head *element;
719 	struct ipw2100_tx_packet *packet;
720 	unsigned long flags;
721 	int err = 0;
722 
723 	IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
724 		     command_types[cmd->host_command], cmd->host_command,
725 		     cmd->host_command_length);
726 	printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
727 		   cmd->host_command_length);
728 
729 	spin_lock_irqsave(&priv->low_lock, flags);
730 
731 	if (priv->fatal_error) {
732 		IPW_DEBUG_INFO
733 		    ("Attempt to send command while hardware in fatal error condition.\n");
734 		err = -EIO;
735 		goto fail_unlock;
736 	}
737 
738 	if (!(priv->status & STATUS_RUNNING)) {
739 		IPW_DEBUG_INFO
740 		    ("Attempt to send command while hardware is not running.\n");
741 		err = -EIO;
742 		goto fail_unlock;
743 	}
744 
745 	if (priv->status & STATUS_CMD_ACTIVE) {
746 		IPW_DEBUG_INFO
747 		    ("Attempt to send command while another command is pending.\n");
748 		err = -EBUSY;
749 		goto fail_unlock;
750 	}
751 
752 	if (list_empty(&priv->msg_free_list)) {
753 		IPW_DEBUG_INFO("no available msg buffers\n");
754 		goto fail_unlock;
755 	}
756 
757 	priv->status |= STATUS_CMD_ACTIVE;
758 	priv->messages_sent++;
759 
760 	element = priv->msg_free_list.next;
761 
762 	packet = list_entry(element, struct ipw2100_tx_packet, list);
763 	packet->jiffy_start = jiffies;
764 
765 	/* initialize the firmware command packet */
766 	packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
767 	packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
768 	packet->info.c_struct.cmd->host_command_len_reg =
769 	    cmd->host_command_length;
770 	packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
771 
772 	memcpy(packet->info.c_struct.cmd->host_command_params_reg,
773 	       cmd->host_command_parameters,
774 	       sizeof(packet->info.c_struct.cmd->host_command_params_reg));
775 
776 	list_del(element);
777 	DEC_STAT(&priv->msg_free_stat);
778 
779 	list_add_tail(element, &priv->msg_pend_list);
780 	INC_STAT(&priv->msg_pend_stat);
781 
782 	ipw2100_tx_send_commands(priv);
783 	ipw2100_tx_send_data(priv);
784 
785 	spin_unlock_irqrestore(&priv->low_lock, flags);
786 
787 	/*
788 	 * We must wait for this command to complete before another
789 	 * command can be sent...  but if we wait more than 3 seconds
790 	 * then there is a problem.
791 	 */
792 
793 	err =
794 	    wait_event_interruptible_timeout(priv->wait_command_queue,
795 					     !(priv->
796 					       status & STATUS_CMD_ACTIVE),
797 					     HOST_COMPLETE_TIMEOUT);
798 
799 	if (err == 0) {
800 		IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
801 			       1000 * (HOST_COMPLETE_TIMEOUT / HZ));
802 		priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
803 		priv->status &= ~STATUS_CMD_ACTIVE;
804 		schedule_reset(priv);
805 		return -EIO;
806 	}
807 
808 	if (priv->fatal_error) {
809 		printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
810 		       priv->net_dev->name);
811 		return -EIO;
812 	}
813 
814 	/* !!!!! HACK TEST !!!!!
815 	 * When lots of debug trace statements are enabled, the driver
816 	 * doesn't seem to have as many firmware restart cycles...
817 	 *
818 	 * As a test, we're sticking in a 1/100s delay here */
819 	schedule_timeout_uninterruptible(msecs_to_jiffies(10));
820 
821 	return 0;
822 
823       fail_unlock:
824 	spin_unlock_irqrestore(&priv->low_lock, flags);
825 
826 	return err;
827 }
828 
829 /*
830  * Verify the values and data access of the hardware
831  * No locks needed or used.  No functions called.
832  */
833 static int ipw2100_verify(struct ipw2100_priv *priv)
834 {
835 	u32 data1, data2;
836 	u32 address;
837 
838 	u32 val1 = 0x76543210;
839 	u32 val2 = 0xFEDCBA98;
840 
841 	/* Domain 0 check - all values should be DOA_DEBUG */
842 	for (address = IPW_REG_DOA_DEBUG_AREA_START;
843 	     address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
844 		read_register(priv->net_dev, address, &data1);
845 		if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
846 			return -EIO;
847 	}
848 
849 	/* Domain 1 check - use arbitrary read/write compare  */
850 	for (address = 0; address < 5; address++) {
851 		/* The memory area is not used now */
852 		write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
853 			       val1);
854 		write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
855 			       val2);
856 		read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
857 			      &data1);
858 		read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
859 			      &data2);
860 		if (val1 == data1 && val2 == data2)
861 			return 0;
862 	}
863 
864 	return -EIO;
865 }
866 
867 /*
868  *
869  * Loop until the CARD_DISABLED bit is the same value as the
870  * supplied parameter
871  *
872  * TODO: See if it would be more efficient to do a wait/wake
873  *       cycle and have the completion event trigger the wakeup
874  *
875  */
876 #define IPW_CARD_DISABLE_COMPLETE_WAIT		    100	// 100 milli
877 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
878 {
879 	int i;
880 	u32 card_state;
881 	u32 len = sizeof(card_state);
882 	int err;
883 
884 	for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
885 		err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
886 					  &card_state, &len);
887 		if (err) {
888 			IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
889 				       "failed.\n");
890 			return 0;
891 		}
892 
893 		/* We'll break out if either the HW state says it is
894 		 * in the state we want, or if HOST_COMPLETE command
895 		 * finishes */
896 		if ((card_state == state) ||
897 		    ((priv->status & STATUS_ENABLED) ?
898 		     IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
899 			if (state == IPW_HW_STATE_ENABLED)
900 				priv->status |= STATUS_ENABLED;
901 			else
902 				priv->status &= ~STATUS_ENABLED;
903 
904 			return 0;
905 		}
906 
907 		udelay(50);
908 	}
909 
910 	IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
911 		       state ? "DISABLED" : "ENABLED");
912 	return -EIO;
913 }
914 
915 /*********************************************************************
916     Procedure   :   sw_reset_and_clock
917     Purpose     :   Asserts s/w reset, asserts clock initialization
918                     and waits for clock stabilization
919  ********************************************************************/
920 static int sw_reset_and_clock(struct ipw2100_priv *priv)
921 {
922 	int i;
923 	u32 r;
924 
925 	// assert s/w reset
926 	write_register(priv->net_dev, IPW_REG_RESET_REG,
927 		       IPW_AUX_HOST_RESET_REG_SW_RESET);
928 
929 	// wait for clock stabilization
930 	for (i = 0; i < 1000; i++) {
931 		udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
932 
933 		// check clock ready bit
934 		read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
935 		if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
936 			break;
937 	}
938 
939 	if (i == 1000)
940 		return -EIO;	// TODO: better error value
941 
942 	/* set "initialization complete" bit to move adapter to
943 	 * D0 state */
944 	write_register(priv->net_dev, IPW_REG_GP_CNTRL,
945 		       IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
946 
947 	/* wait for clock stabilization */
948 	for (i = 0; i < 10000; i++) {
949 		udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
950 
951 		/* check clock ready bit */
952 		read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
953 		if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
954 			break;
955 	}
956 
957 	if (i == 10000)
958 		return -EIO;	/* TODO: better error value */
959 
960 	/* set D0 standby bit */
961 	read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
962 	write_register(priv->net_dev, IPW_REG_GP_CNTRL,
963 		       r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
964 
965 	return 0;
966 }
967 
968 /*********************************************************************
969     Procedure   :   ipw2100_download_firmware
970     Purpose     :   Initiaze adapter after power on.
971                     The sequence is:
972                     1. assert s/w reset first!
973                     2. awake clocks & wait for clock stabilization
974                     3. hold ARC (don't ask me why...)
975                     4. load Dino ucode and reset/clock init again
976                     5. zero-out shared mem
977                     6. download f/w
978  *******************************************************************/
979 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
980 {
981 	u32 address;
982 	int err;
983 
984 #ifndef CONFIG_PM
985 	/* Fetch the firmware and microcode */
986 	struct ipw2100_fw ipw2100_firmware;
987 #endif
988 
989 	if (priv->fatal_error) {
990 		IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
991 				"fatal error %d.  Interface must be brought down.\n",
992 				priv->net_dev->name, priv->fatal_error);
993 		return -EINVAL;
994 	}
995 #ifdef CONFIG_PM
996 	if (!ipw2100_firmware.version) {
997 		err = ipw2100_get_firmware(priv, &ipw2100_firmware);
998 		if (err) {
999 			IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1000 					priv->net_dev->name, err);
1001 			priv->fatal_error = IPW2100_ERR_FW_LOAD;
1002 			goto fail;
1003 		}
1004 	}
1005 #else
1006 	err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1007 	if (err) {
1008 		IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1009 				priv->net_dev->name, err);
1010 		priv->fatal_error = IPW2100_ERR_FW_LOAD;
1011 		goto fail;
1012 	}
1013 #endif
1014 	priv->firmware_version = ipw2100_firmware.version;
1015 
1016 	/* s/w reset and clock stabilization */
1017 	err = sw_reset_and_clock(priv);
1018 	if (err) {
1019 		IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1020 				priv->net_dev->name, err);
1021 		goto fail;
1022 	}
1023 
1024 	err = ipw2100_verify(priv);
1025 	if (err) {
1026 		IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1027 				priv->net_dev->name, err);
1028 		goto fail;
1029 	}
1030 
1031 	/* Hold ARC */
1032 	write_nic_dword(priv->net_dev,
1033 			IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1034 
1035 	/* allow ARC to run */
1036 	write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1037 
1038 	/* load microcode */
1039 	err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1040 	if (err) {
1041 		printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1042 		       priv->net_dev->name, err);
1043 		goto fail;
1044 	}
1045 
1046 	/* release ARC */
1047 	write_nic_dword(priv->net_dev,
1048 			IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1049 
1050 	/* s/w reset and clock stabilization (again!!!) */
1051 	err = sw_reset_and_clock(priv);
1052 	if (err) {
1053 		printk(KERN_ERR DRV_NAME
1054 		       ": %s: sw_reset_and_clock failed: %d\n",
1055 		       priv->net_dev->name, err);
1056 		goto fail;
1057 	}
1058 
1059 	/* load f/w */
1060 	err = ipw2100_fw_download(priv, &ipw2100_firmware);
1061 	if (err) {
1062 		IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1063 				priv->net_dev->name, err);
1064 		goto fail;
1065 	}
1066 #ifndef CONFIG_PM
1067 	/*
1068 	 * When the .resume method of the driver is called, the other
1069 	 * part of the system, i.e. the ide driver could still stay in
1070 	 * the suspend stage. This prevents us from loading the firmware
1071 	 * from the disk.  --YZ
1072 	 */
1073 
1074 	/* free any storage allocated for firmware image */
1075 	ipw2100_release_firmware(priv, &ipw2100_firmware);
1076 #endif
1077 
1078 	/* zero out Domain 1 area indirectly (Si requirement) */
1079 	for (address = IPW_HOST_FW_SHARED_AREA0;
1080 	     address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1081 		write_nic_dword(priv->net_dev, address, 0);
1082 	for (address = IPW_HOST_FW_SHARED_AREA1;
1083 	     address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1084 		write_nic_dword(priv->net_dev, address, 0);
1085 	for (address = IPW_HOST_FW_SHARED_AREA2;
1086 	     address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1087 		write_nic_dword(priv->net_dev, address, 0);
1088 	for (address = IPW_HOST_FW_SHARED_AREA3;
1089 	     address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1090 		write_nic_dword(priv->net_dev, address, 0);
1091 	for (address = IPW_HOST_FW_INTERRUPT_AREA;
1092 	     address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1093 		write_nic_dword(priv->net_dev, address, 0);
1094 
1095 	return 0;
1096 
1097       fail:
1098 	ipw2100_release_firmware(priv, &ipw2100_firmware);
1099 	return err;
1100 }
1101 
1102 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1103 {
1104 	if (priv->status & STATUS_INT_ENABLED)
1105 		return;
1106 	priv->status |= STATUS_INT_ENABLED;
1107 	write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1108 }
1109 
1110 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1111 {
1112 	if (!(priv->status & STATUS_INT_ENABLED))
1113 		return;
1114 	priv->status &= ~STATUS_INT_ENABLED;
1115 	write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1116 }
1117 
1118 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1119 {
1120 	struct ipw2100_ordinals *ord = &priv->ordinals;
1121 
1122 	IPW_DEBUG_INFO("enter\n");
1123 
1124 	read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1125 		      &ord->table1_addr);
1126 
1127 	read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1128 		      &ord->table2_addr);
1129 
1130 	read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1131 	read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1132 
1133 	ord->table2_size &= 0x0000FFFF;
1134 
1135 	IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1136 	IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1137 	IPW_DEBUG_INFO("exit\n");
1138 }
1139 
1140 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1141 {
1142 	u32 reg = 0;
1143 	/*
1144 	 * Set GPIO 3 writable by FW; GPIO 1 writable
1145 	 * by driver and enable clock
1146 	 */
1147 	reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1148 	       IPW_BIT_GPIO_LED_OFF);
1149 	write_register(priv->net_dev, IPW_REG_GPIO, reg);
1150 }
1151 
1152 static int rf_kill_active(struct ipw2100_priv *priv)
1153 {
1154 #define MAX_RF_KILL_CHECKS 5
1155 #define RF_KILL_CHECK_DELAY 40
1156 
1157 	unsigned short value = 0;
1158 	u32 reg = 0;
1159 	int i;
1160 
1161 	if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1162 		wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1163 		priv->status &= ~STATUS_RF_KILL_HW;
1164 		return 0;
1165 	}
1166 
1167 	for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1168 		udelay(RF_KILL_CHECK_DELAY);
1169 		read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1170 		value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1171 	}
1172 
1173 	if (value == 0) {
1174 		wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1175 		priv->status |= STATUS_RF_KILL_HW;
1176 	} else {
1177 		wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1178 		priv->status &= ~STATUS_RF_KILL_HW;
1179 	}
1180 
1181 	return (value == 0);
1182 }
1183 
1184 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1185 {
1186 	u32 addr, len;
1187 	u32 val;
1188 
1189 	/*
1190 	 * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1191 	 */
1192 	len = sizeof(addr);
1193 	if (ipw2100_get_ordinal
1194 	    (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1195 		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1196 			       __LINE__);
1197 		return -EIO;
1198 	}
1199 
1200 	IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1201 
1202 	/*
1203 	 * EEPROM version is the byte at offset 0xfd in firmware
1204 	 * We read 4 bytes, then shift out the byte we actually want */
1205 	read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1206 	priv->eeprom_version = (val >> 24) & 0xFF;
1207 	IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1208 
1209 	/*
1210 	 *  HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1211 	 *
1212 	 *  notice that the EEPROM bit is reverse polarity, i.e.
1213 	 *     bit = 0  signifies HW RF kill switch is supported
1214 	 *     bit = 1  signifies HW RF kill switch is NOT supported
1215 	 */
1216 	read_nic_dword(priv->net_dev, addr + 0x20, &val);
1217 	if (!((val >> 24) & 0x01))
1218 		priv->hw_features |= HW_FEATURE_RFKILL;
1219 
1220 	IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1221 		       (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1222 
1223 	return 0;
1224 }
1225 
1226 /*
1227  * Start firmware execution after power on and initialization
1228  * The sequence is:
1229  *  1. Release ARC
1230  *  2. Wait for f/w initialization completes;
1231  */
1232 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1233 {
1234 	int i;
1235 	u32 inta, inta_mask, gpio;
1236 
1237 	IPW_DEBUG_INFO("enter\n");
1238 
1239 	if (priv->status & STATUS_RUNNING)
1240 		return 0;
1241 
1242 	/*
1243 	 * Initialize the hw - drive adapter to DO state by setting
1244 	 * init_done bit. Wait for clk_ready bit and Download
1245 	 * fw & dino ucode
1246 	 */
1247 	if (ipw2100_download_firmware(priv)) {
1248 		printk(KERN_ERR DRV_NAME
1249 		       ": %s: Failed to power on the adapter.\n",
1250 		       priv->net_dev->name);
1251 		return -EIO;
1252 	}
1253 
1254 	/* Clear the Tx, Rx and Msg queues and the r/w indexes
1255 	 * in the firmware RBD and TBD ring queue */
1256 	ipw2100_queues_initialize(priv);
1257 
1258 	ipw2100_hw_set_gpio(priv);
1259 
1260 	/* TODO -- Look at disabling interrupts here to make sure none
1261 	 * get fired during FW initialization */
1262 
1263 	/* Release ARC - clear reset bit */
1264 	write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1265 
1266 	/* wait for f/w initialization complete */
1267 	IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1268 	i = 5000;
1269 	do {
1270 		schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1271 		/* Todo... wait for sync command ... */
1272 
1273 		read_register(priv->net_dev, IPW_REG_INTA, &inta);
1274 
1275 		/* check "init done" bit */
1276 		if (inta & IPW2100_INTA_FW_INIT_DONE) {
1277 			/* reset "init done" bit */
1278 			write_register(priv->net_dev, IPW_REG_INTA,
1279 				       IPW2100_INTA_FW_INIT_DONE);
1280 			break;
1281 		}
1282 
1283 		/* check error conditions : we check these after the firmware
1284 		 * check so that if there is an error, the interrupt handler
1285 		 * will see it and the adapter will be reset */
1286 		if (inta &
1287 		    (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1288 			/* clear error conditions */
1289 			write_register(priv->net_dev, IPW_REG_INTA,
1290 				       IPW2100_INTA_FATAL_ERROR |
1291 				       IPW2100_INTA_PARITY_ERROR);
1292 		}
1293 	} while (--i);
1294 
1295 	/* Clear out any pending INTAs since we aren't supposed to have
1296 	 * interrupts enabled at this point... */
1297 	read_register(priv->net_dev, IPW_REG_INTA, &inta);
1298 	read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1299 	inta &= IPW_INTERRUPT_MASK;
1300 	/* Clear out any pending interrupts */
1301 	if (inta & inta_mask)
1302 		write_register(priv->net_dev, IPW_REG_INTA, inta);
1303 
1304 	IPW_DEBUG_FW("f/w initialization complete: %s\n",
1305 		     i ? "SUCCESS" : "FAILED");
1306 
1307 	if (!i) {
1308 		printk(KERN_WARNING DRV_NAME
1309 		       ": %s: Firmware did not initialize.\n",
1310 		       priv->net_dev->name);
1311 		return -EIO;
1312 	}
1313 
1314 	/* allow firmware to write to GPIO1 & GPIO3 */
1315 	read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1316 
1317 	gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1318 
1319 	write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1320 
1321 	/* Ready to receive commands */
1322 	priv->status |= STATUS_RUNNING;
1323 
1324 	/* The adapter has been reset; we are not associated */
1325 	priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1326 
1327 	IPW_DEBUG_INFO("exit\n");
1328 
1329 	return 0;
1330 }
1331 
1332 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1333 {
1334 	if (!priv->fatal_error)
1335 		return;
1336 
1337 	priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1338 	priv->fatal_index %= IPW2100_ERROR_QUEUE;
1339 	priv->fatal_error = 0;
1340 }
1341 
1342 /* NOTE: Our interrupt is disabled when this method is called */
1343 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1344 {
1345 	u32 reg;
1346 	int i;
1347 
1348 	IPW_DEBUG_INFO("Power cycling the hardware.\n");
1349 
1350 	ipw2100_hw_set_gpio(priv);
1351 
1352 	/* Step 1. Stop Master Assert */
1353 	write_register(priv->net_dev, IPW_REG_RESET_REG,
1354 		       IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1355 
1356 	/* Step 2. Wait for stop Master Assert
1357 	 *         (not more than 50us, otherwise ret error */
1358 	i = 5;
1359 	do {
1360 		udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1361 		read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1362 
1363 		if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1364 			break;
1365 	} while (--i);
1366 
1367 	priv->status &= ~STATUS_RESET_PENDING;
1368 
1369 	if (!i) {
1370 		IPW_DEBUG_INFO
1371 		    ("exit - waited too long for master assert stop\n");
1372 		return -EIO;
1373 	}
1374 
1375 	write_register(priv->net_dev, IPW_REG_RESET_REG,
1376 		       IPW_AUX_HOST_RESET_REG_SW_RESET);
1377 
1378 	/* Reset any fatal_error conditions */
1379 	ipw2100_reset_fatalerror(priv);
1380 
1381 	/* At this point, the adapter is now stopped and disabled */
1382 	priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1383 			  STATUS_ASSOCIATED | STATUS_ENABLED);
1384 
1385 	return 0;
1386 }
1387 
1388 /*
1389  * Send the CARD_DISABLE_PHY_OFF command to the card to disable it
1390  *
1391  * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1392  *
1393  * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1394  * if STATUS_ASSN_LOST is sent.
1395  */
1396 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1397 {
1398 
1399 #define HW_PHY_OFF_LOOP_DELAY (msecs_to_jiffies(50))
1400 
1401 	struct host_command cmd = {
1402 		.host_command = CARD_DISABLE_PHY_OFF,
1403 		.host_command_sequence = 0,
1404 		.host_command_length = 0,
1405 	};
1406 	int err, i;
1407 	u32 val1, val2;
1408 
1409 	IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1410 
1411 	/* Turn off the radio */
1412 	err = ipw2100_hw_send_command(priv, &cmd);
1413 	if (err)
1414 		return err;
1415 
1416 	for (i = 0; i < 2500; i++) {
1417 		read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1418 		read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1419 
1420 		if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1421 		    (val2 & IPW2100_COMMAND_PHY_OFF))
1422 			return 0;
1423 
1424 		schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1425 	}
1426 
1427 	return -EIO;
1428 }
1429 
1430 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1431 {
1432 	struct host_command cmd = {
1433 		.host_command = HOST_COMPLETE,
1434 		.host_command_sequence = 0,
1435 		.host_command_length = 0
1436 	};
1437 	int err = 0;
1438 
1439 	IPW_DEBUG_HC("HOST_COMPLETE\n");
1440 
1441 	if (priv->status & STATUS_ENABLED)
1442 		return 0;
1443 
1444 	mutex_lock(&priv->adapter_mutex);
1445 
1446 	if (rf_kill_active(priv)) {
1447 		IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1448 		goto fail_up;
1449 	}
1450 
1451 	err = ipw2100_hw_send_command(priv, &cmd);
1452 	if (err) {
1453 		IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1454 		goto fail_up;
1455 	}
1456 
1457 	err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1458 	if (err) {
1459 		IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1460 			       priv->net_dev->name);
1461 		goto fail_up;
1462 	}
1463 
1464 	if (priv->stop_hang_check) {
1465 		priv->stop_hang_check = 0;
1466 		schedule_delayed_work(&priv->hang_check, HZ / 2);
1467 	}
1468 
1469       fail_up:
1470 	mutex_unlock(&priv->adapter_mutex);
1471 	return err;
1472 }
1473 
1474 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1475 {
1476 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1477 
1478 	struct host_command cmd = {
1479 		.host_command = HOST_PRE_POWER_DOWN,
1480 		.host_command_sequence = 0,
1481 		.host_command_length = 0,
1482 	};
1483 	int err, i;
1484 	u32 reg;
1485 
1486 	if (!(priv->status & STATUS_RUNNING))
1487 		return 0;
1488 
1489 	priv->status |= STATUS_STOPPING;
1490 
1491 	/* We can only shut down the card if the firmware is operational.  So,
1492 	 * if we haven't reset since a fatal_error, then we can not send the
1493 	 * shutdown commands. */
1494 	if (!priv->fatal_error) {
1495 		/* First, make sure the adapter is enabled so that the PHY_OFF
1496 		 * command can shut it down */
1497 		ipw2100_enable_adapter(priv);
1498 
1499 		err = ipw2100_hw_phy_off(priv);
1500 		if (err)
1501 			printk(KERN_WARNING DRV_NAME
1502 			       ": Error disabling radio %d\n", err);
1503 
1504 		/*
1505 		 * If in D0-standby mode going directly to D3 may cause a
1506 		 * PCI bus violation.  Therefore we must change out of the D0
1507 		 * state.
1508 		 *
1509 		 * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1510 		 * hardware from going into standby mode and will transition
1511 		 * out of D0-standby if it is already in that state.
1512 		 *
1513 		 * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1514 		 * driver upon completion.  Once received, the driver can
1515 		 * proceed to the D3 state.
1516 		 *
1517 		 * Prepare for power down command to fw.  This command would
1518 		 * take HW out of D0-standby and prepare it for D3 state.
1519 		 *
1520 		 * Currently FW does not support event notification for this
1521 		 * event. Therefore, skip waiting for it.  Just wait a fixed
1522 		 * 100ms
1523 		 */
1524 		IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1525 
1526 		err = ipw2100_hw_send_command(priv, &cmd);
1527 		if (err)
1528 			printk(KERN_WARNING DRV_NAME ": "
1529 			       "%s: Power down command failed: Error %d\n",
1530 			       priv->net_dev->name, err);
1531 		else
1532 			schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1533 	}
1534 
1535 	priv->status &= ~STATUS_ENABLED;
1536 
1537 	/*
1538 	 * Set GPIO 3 writable by FW; GPIO 1 writable
1539 	 * by driver and enable clock
1540 	 */
1541 	ipw2100_hw_set_gpio(priv);
1542 
1543 	/*
1544 	 * Power down adapter.  Sequence:
1545 	 * 1. Stop master assert (RESET_REG[9]=1)
1546 	 * 2. Wait for stop master (RESET_REG[8]==1)
1547 	 * 3. S/w reset assert (RESET_REG[7] = 1)
1548 	 */
1549 
1550 	/* Stop master assert */
1551 	write_register(priv->net_dev, IPW_REG_RESET_REG,
1552 		       IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1553 
1554 	/* wait stop master not more than 50 usec.
1555 	 * Otherwise return error. */
1556 	for (i = 5; i > 0; i--) {
1557 		udelay(10);
1558 
1559 		/* Check master stop bit */
1560 		read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1561 
1562 		if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1563 			break;
1564 	}
1565 
1566 	if (i == 0)
1567 		printk(KERN_WARNING DRV_NAME
1568 		       ": %s: Could now power down adapter.\n",
1569 		       priv->net_dev->name);
1570 
1571 	/* assert s/w reset */
1572 	write_register(priv->net_dev, IPW_REG_RESET_REG,
1573 		       IPW_AUX_HOST_RESET_REG_SW_RESET);
1574 
1575 	priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1576 
1577 	return 0;
1578 }
1579 
1580 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1581 {
1582 	struct host_command cmd = {
1583 		.host_command = CARD_DISABLE,
1584 		.host_command_sequence = 0,
1585 		.host_command_length = 0
1586 	};
1587 	int err = 0;
1588 
1589 	IPW_DEBUG_HC("CARD_DISABLE\n");
1590 
1591 	if (!(priv->status & STATUS_ENABLED))
1592 		return 0;
1593 
1594 	/* Make sure we clear the associated state */
1595 	priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1596 
1597 	if (!priv->stop_hang_check) {
1598 		priv->stop_hang_check = 1;
1599 		cancel_delayed_work(&priv->hang_check);
1600 	}
1601 
1602 	mutex_lock(&priv->adapter_mutex);
1603 
1604 	err = ipw2100_hw_send_command(priv, &cmd);
1605 	if (err) {
1606 		printk(KERN_WARNING DRV_NAME
1607 		       ": exit - failed to send CARD_DISABLE command\n");
1608 		goto fail_up;
1609 	}
1610 
1611 	err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1612 	if (err) {
1613 		printk(KERN_WARNING DRV_NAME
1614 		       ": exit - card failed to change to DISABLED\n");
1615 		goto fail_up;
1616 	}
1617 
1618 	IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1619 
1620       fail_up:
1621 	mutex_unlock(&priv->adapter_mutex);
1622 	return err;
1623 }
1624 
1625 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1626 {
1627 	struct host_command cmd = {
1628 		.host_command = SET_SCAN_OPTIONS,
1629 		.host_command_sequence = 0,
1630 		.host_command_length = 8
1631 	};
1632 	int err;
1633 
1634 	IPW_DEBUG_INFO("enter\n");
1635 
1636 	IPW_DEBUG_SCAN("setting scan options\n");
1637 
1638 	cmd.host_command_parameters[0] = 0;
1639 
1640 	if (!(priv->config & CFG_ASSOCIATE))
1641 		cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1642 	if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1643 		cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1644 	if (priv->config & CFG_PASSIVE_SCAN)
1645 		cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1646 
1647 	cmd.host_command_parameters[1] = priv->channel_mask;
1648 
1649 	err = ipw2100_hw_send_command(priv, &cmd);
1650 
1651 	IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1652 		     cmd.host_command_parameters[0]);
1653 
1654 	return err;
1655 }
1656 
1657 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1658 {
1659 	struct host_command cmd = {
1660 		.host_command = BROADCAST_SCAN,
1661 		.host_command_sequence = 0,
1662 		.host_command_length = 4
1663 	};
1664 	int err;
1665 
1666 	IPW_DEBUG_HC("START_SCAN\n");
1667 
1668 	cmd.host_command_parameters[0] = 0;
1669 
1670 	/* No scanning if in monitor mode */
1671 	if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1672 		return 1;
1673 
1674 	if (priv->status & STATUS_SCANNING) {
1675 		IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1676 		return 0;
1677 	}
1678 
1679 	IPW_DEBUG_INFO("enter\n");
1680 
1681 	/* Not clearing here; doing so makes iwlist always return nothing...
1682 	 *
1683 	 * We should modify the table logic to use aging tables vs. clearing
1684 	 * the table on each scan start.
1685 	 */
1686 	IPW_DEBUG_SCAN("starting scan\n");
1687 
1688 	priv->status |= STATUS_SCANNING;
1689 	err = ipw2100_hw_send_command(priv, &cmd);
1690 	if (err)
1691 		priv->status &= ~STATUS_SCANNING;
1692 
1693 	IPW_DEBUG_INFO("exit\n");
1694 
1695 	return err;
1696 }
1697 
1698 static const struct libipw_geo ipw_geos[] = {
1699 	{			/* Restricted */
1700 	 "---",
1701 	 .bg_channels = 14,
1702 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1703 		{2427, 4}, {2432, 5}, {2437, 6},
1704 		{2442, 7}, {2447, 8}, {2452, 9},
1705 		{2457, 10}, {2462, 11}, {2467, 12},
1706 		{2472, 13}, {2484, 14}},
1707 	 },
1708 };
1709 
1710 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1711 {
1712 	unsigned long flags;
1713 	int err = 0;
1714 	u32 lock;
1715 	u32 ord_len = sizeof(lock);
1716 
1717 	/* Age scan list entries found before suspend */
1718 	if (priv->suspend_time) {
1719 		libipw_networks_age(priv->ieee, priv->suspend_time);
1720 		priv->suspend_time = 0;
1721 	}
1722 
1723 	/* Quiet if manually disabled. */
1724 	if (priv->status & STATUS_RF_KILL_SW) {
1725 		IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1726 			       "switch\n", priv->net_dev->name);
1727 		return 0;
1728 	}
1729 
1730 	/* the ipw2100 hardware really doesn't want power management delays
1731 	 * longer than 175usec
1732 	 */
1733 	cpu_latency_qos_update_request(&ipw2100_pm_qos_req, 175);
1734 
1735 	/* If the interrupt is enabled, turn it off... */
1736 	spin_lock_irqsave(&priv->low_lock, flags);
1737 	ipw2100_disable_interrupts(priv);
1738 
1739 	/* Reset any fatal_error conditions */
1740 	ipw2100_reset_fatalerror(priv);
1741 	spin_unlock_irqrestore(&priv->low_lock, flags);
1742 
1743 	if (priv->status & STATUS_POWERED ||
1744 	    (priv->status & STATUS_RESET_PENDING)) {
1745 		/* Power cycle the card ... */
1746 		err = ipw2100_power_cycle_adapter(priv);
1747 		if (err) {
1748 			printk(KERN_WARNING DRV_NAME
1749 			       ": %s: Could not cycle adapter.\n",
1750 			       priv->net_dev->name);
1751 			goto exit;
1752 		}
1753 	} else
1754 		priv->status |= STATUS_POWERED;
1755 
1756 	/* Load the firmware, start the clocks, etc. */
1757 	err = ipw2100_start_adapter(priv);
1758 	if (err) {
1759 		printk(KERN_ERR DRV_NAME
1760 		       ": %s: Failed to start the firmware.\n",
1761 		       priv->net_dev->name);
1762 		goto exit;
1763 	}
1764 
1765 	ipw2100_initialize_ordinals(priv);
1766 
1767 	/* Determine capabilities of this particular HW configuration */
1768 	err = ipw2100_get_hw_features(priv);
1769 	if (err) {
1770 		printk(KERN_ERR DRV_NAME
1771 		       ": %s: Failed to determine HW features.\n",
1772 		       priv->net_dev->name);
1773 		goto exit;
1774 	}
1775 
1776 	/* Initialize the geo */
1777 	libipw_set_geo(priv->ieee, &ipw_geos[0]);
1778 	priv->ieee->freq_band = LIBIPW_24GHZ_BAND;
1779 
1780 	lock = LOCK_NONE;
1781 	err = ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len);
1782 	if (err) {
1783 		printk(KERN_ERR DRV_NAME
1784 		       ": %s: Failed to clear ordinal lock.\n",
1785 		       priv->net_dev->name);
1786 		goto exit;
1787 	}
1788 
1789 	priv->status &= ~STATUS_SCANNING;
1790 
1791 	if (rf_kill_active(priv)) {
1792 		printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1793 		       priv->net_dev->name);
1794 
1795 		if (priv->stop_rf_kill) {
1796 			priv->stop_rf_kill = 0;
1797 			schedule_delayed_work(&priv->rf_kill,
1798 					      round_jiffies_relative(HZ));
1799 		}
1800 
1801 		deferred = 1;
1802 	}
1803 
1804 	/* Turn on the interrupt so that commands can be processed */
1805 	ipw2100_enable_interrupts(priv);
1806 
1807 	/* Send all of the commands that must be sent prior to
1808 	 * HOST_COMPLETE */
1809 	err = ipw2100_adapter_setup(priv);
1810 	if (err) {
1811 		printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1812 		       priv->net_dev->name);
1813 		goto exit;
1814 	}
1815 
1816 	if (!deferred) {
1817 		/* Enable the adapter - sends HOST_COMPLETE */
1818 		err = ipw2100_enable_adapter(priv);
1819 		if (err) {
1820 			printk(KERN_ERR DRV_NAME ": "
1821 			       "%s: failed in call to enable adapter.\n",
1822 			       priv->net_dev->name);
1823 			ipw2100_hw_stop_adapter(priv);
1824 			goto exit;
1825 		}
1826 
1827 		/* Start a scan . . . */
1828 		ipw2100_set_scan_options(priv);
1829 		ipw2100_start_scan(priv);
1830 	}
1831 
1832       exit:
1833 	return err;
1834 }
1835 
1836 static void ipw2100_down(struct ipw2100_priv *priv)
1837 {
1838 	unsigned long flags;
1839 	union iwreq_data wrqu = {
1840 		.ap_addr = {
1841 			    .sa_family = ARPHRD_ETHER}
1842 	};
1843 	int associated = priv->status & STATUS_ASSOCIATED;
1844 
1845 	/* Kill the RF switch timer */
1846 	if (!priv->stop_rf_kill) {
1847 		priv->stop_rf_kill = 1;
1848 		cancel_delayed_work(&priv->rf_kill);
1849 	}
1850 
1851 	/* Kill the firmware hang check timer */
1852 	if (!priv->stop_hang_check) {
1853 		priv->stop_hang_check = 1;
1854 		cancel_delayed_work(&priv->hang_check);
1855 	}
1856 
1857 	/* Kill any pending resets */
1858 	if (priv->status & STATUS_RESET_PENDING)
1859 		cancel_delayed_work(&priv->reset_work);
1860 
1861 	/* Make sure the interrupt is on so that FW commands will be
1862 	 * processed correctly */
1863 	spin_lock_irqsave(&priv->low_lock, flags);
1864 	ipw2100_enable_interrupts(priv);
1865 	spin_unlock_irqrestore(&priv->low_lock, flags);
1866 
1867 	if (ipw2100_hw_stop_adapter(priv))
1868 		printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1869 		       priv->net_dev->name);
1870 
1871 	/* Do not disable the interrupt until _after_ we disable
1872 	 * the adaptor.  Otherwise the CARD_DISABLE command will never
1873 	 * be ack'd by the firmware */
1874 	spin_lock_irqsave(&priv->low_lock, flags);
1875 	ipw2100_disable_interrupts(priv);
1876 	spin_unlock_irqrestore(&priv->low_lock, flags);
1877 
1878 	cpu_latency_qos_update_request(&ipw2100_pm_qos_req,
1879 				       PM_QOS_DEFAULT_VALUE);
1880 
1881 	/* We have to signal any supplicant if we are disassociating */
1882 	if (associated)
1883 		wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1884 
1885 	priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1886 	netif_carrier_off(priv->net_dev);
1887 	netif_stop_queue(priv->net_dev);
1888 }
1889 
1890 static int ipw2100_wdev_init(struct net_device *dev)
1891 {
1892 	struct ipw2100_priv *priv = libipw_priv(dev);
1893 	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1894 	struct wireless_dev *wdev = &priv->ieee->wdev;
1895 	int i;
1896 
1897 	memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
1898 
1899 	/* fill-out priv->ieee->bg_band */
1900 	if (geo->bg_channels) {
1901 		struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
1902 
1903 		bg_band->band = NL80211_BAND_2GHZ;
1904 		bg_band->n_channels = geo->bg_channels;
1905 		bg_band->channels = kcalloc(geo->bg_channels,
1906 					    sizeof(struct ieee80211_channel),
1907 					    GFP_KERNEL);
1908 		if (!bg_band->channels) {
1909 			ipw2100_down(priv);
1910 			return -ENOMEM;
1911 		}
1912 		/* translate geo->bg to bg_band.channels */
1913 		for (i = 0; i < geo->bg_channels; i++) {
1914 			bg_band->channels[i].band = NL80211_BAND_2GHZ;
1915 			bg_band->channels[i].center_freq = geo->bg[i].freq;
1916 			bg_band->channels[i].hw_value = geo->bg[i].channel;
1917 			bg_band->channels[i].max_power = geo->bg[i].max_power;
1918 			if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
1919 				bg_band->channels[i].flags |=
1920 					IEEE80211_CHAN_NO_IR;
1921 			if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
1922 				bg_band->channels[i].flags |=
1923 					IEEE80211_CHAN_NO_IR;
1924 			if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
1925 				bg_band->channels[i].flags |=
1926 					IEEE80211_CHAN_RADAR;
1927 			/* No equivalent for LIBIPW_CH_80211H_RULES,
1928 			   LIBIPW_CH_UNIFORM_SPREADING, or
1929 			   LIBIPW_CH_B_ONLY... */
1930 		}
1931 		/* point at bitrate info */
1932 		bg_band->bitrates = ipw2100_bg_rates;
1933 		bg_band->n_bitrates = RATE_COUNT;
1934 
1935 		wdev->wiphy->bands[NL80211_BAND_2GHZ] = bg_band;
1936 	}
1937 
1938 	wdev->wiphy->cipher_suites = ipw_cipher_suites;
1939 	wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
1940 
1941 	set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
1942 	if (wiphy_register(wdev->wiphy))
1943 		return -EIO;
1944 	return 0;
1945 }
1946 
1947 static void ipw2100_reset_adapter(struct work_struct *work)
1948 {
1949 	struct ipw2100_priv *priv =
1950 		container_of(work, struct ipw2100_priv, reset_work.work);
1951 	unsigned long flags;
1952 	union iwreq_data wrqu = {
1953 		.ap_addr = {
1954 			    .sa_family = ARPHRD_ETHER}
1955 	};
1956 	int associated = priv->status & STATUS_ASSOCIATED;
1957 
1958 	spin_lock_irqsave(&priv->low_lock, flags);
1959 	IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1960 	priv->resets++;
1961 	priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1962 	priv->status |= STATUS_SECURITY_UPDATED;
1963 
1964 	/* Force a power cycle even if interface hasn't been opened
1965 	 * yet */
1966 	cancel_delayed_work(&priv->reset_work);
1967 	priv->status |= STATUS_RESET_PENDING;
1968 	spin_unlock_irqrestore(&priv->low_lock, flags);
1969 
1970 	mutex_lock(&priv->action_mutex);
1971 	/* stop timed checks so that they don't interfere with reset */
1972 	priv->stop_hang_check = 1;
1973 	cancel_delayed_work(&priv->hang_check);
1974 
1975 	/* We have to signal any supplicant if we are disassociating */
1976 	if (associated)
1977 		wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1978 
1979 	ipw2100_up(priv, 0);
1980 	mutex_unlock(&priv->action_mutex);
1981 
1982 }
1983 
1984 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1985 {
1986 
1987 #define MAC_ASSOCIATION_READ_DELAY (HZ)
1988 	int ret;
1989 	unsigned int len, essid_len;
1990 	char essid[IW_ESSID_MAX_SIZE];
1991 	u32 txrate;
1992 	u32 chan;
1993 	char *txratename;
1994 	u8 bssid[ETH_ALEN];
1995 
1996 	/*
1997 	 * TBD: BSSID is usually 00:00:00:00:00:00 here and not
1998 	 *      an actual MAC of the AP. Seems like FW sets this
1999 	 *      address too late. Read it later and expose through
2000 	 *      /proc or schedule a later task to query and update
2001 	 */
2002 
2003 	essid_len = IW_ESSID_MAX_SIZE;
2004 	ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
2005 				  essid, &essid_len);
2006 	if (ret) {
2007 		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2008 			       __LINE__);
2009 		return;
2010 	}
2011 
2012 	len = sizeof(u32);
2013 	ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
2014 	if (ret) {
2015 		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2016 			       __LINE__);
2017 		return;
2018 	}
2019 
2020 	len = sizeof(u32);
2021 	ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
2022 	if (ret) {
2023 		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2024 			       __LINE__);
2025 		return;
2026 	}
2027 	len = ETH_ALEN;
2028 	ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, bssid,
2029 				  &len);
2030 	if (ret) {
2031 		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2032 			       __LINE__);
2033 		return;
2034 	}
2035 	memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
2036 
2037 	switch (txrate) {
2038 	case TX_RATE_1_MBIT:
2039 		txratename = "1Mbps";
2040 		break;
2041 	case TX_RATE_2_MBIT:
2042 		txratename = "2Mbsp";
2043 		break;
2044 	case TX_RATE_5_5_MBIT:
2045 		txratename = "5.5Mbps";
2046 		break;
2047 	case TX_RATE_11_MBIT:
2048 		txratename = "11Mbps";
2049 		break;
2050 	default:
2051 		IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
2052 		txratename = "unknown rate";
2053 		break;
2054 	}
2055 
2056 	IPW_DEBUG_INFO("%s: Associated with '%*pE' at %s, channel %d (BSSID=%pM)\n",
2057 		       priv->net_dev->name, essid_len, essid,
2058 		       txratename, chan, bssid);
2059 
2060 	/* now we copy read ssid into dev */
2061 	if (!(priv->config & CFG_STATIC_ESSID)) {
2062 		priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
2063 		memcpy(priv->essid, essid, priv->essid_len);
2064 	}
2065 	priv->channel = chan;
2066 	memcpy(priv->bssid, bssid, ETH_ALEN);
2067 
2068 	priv->status |= STATUS_ASSOCIATING;
2069 	priv->connect_start = ktime_get_boottime_seconds();
2070 
2071 	schedule_delayed_work(&priv->wx_event_work, HZ / 10);
2072 }
2073 
2074 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2075 			     int length, int batch_mode)
2076 {
2077 	int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2078 	struct host_command cmd = {
2079 		.host_command = SSID,
2080 		.host_command_sequence = 0,
2081 		.host_command_length = ssid_len
2082 	};
2083 	int err;
2084 
2085 	IPW_DEBUG_HC("SSID: '%*pE'\n", ssid_len, essid);
2086 
2087 	if (ssid_len)
2088 		memcpy(cmd.host_command_parameters, essid, ssid_len);
2089 
2090 	if (!batch_mode) {
2091 		err = ipw2100_disable_adapter(priv);
2092 		if (err)
2093 			return err;
2094 	}
2095 
2096 	/* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2097 	 * disable auto association -- so we cheat by setting a bogus SSID */
2098 	if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2099 		int i;
2100 		u8 *bogus = (u8 *) cmd.host_command_parameters;
2101 		for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2102 			bogus[i] = 0x18 + i;
2103 		cmd.host_command_length = IW_ESSID_MAX_SIZE;
2104 	}
2105 
2106 	/* NOTE:  We always send the SSID command even if the provided ESSID is
2107 	 * the same as what we currently think is set. */
2108 
2109 	err = ipw2100_hw_send_command(priv, &cmd);
2110 	if (!err) {
2111 		memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2112 		memcpy(priv->essid, essid, ssid_len);
2113 		priv->essid_len = ssid_len;
2114 	}
2115 
2116 	if (!batch_mode) {
2117 		if (ipw2100_enable_adapter(priv))
2118 			err = -EIO;
2119 	}
2120 
2121 	return err;
2122 }
2123 
2124 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2125 {
2126 	IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2127 		  "disassociated: '%*pE' %pM\n", priv->essid_len, priv->essid,
2128 		  priv->bssid);
2129 
2130 	priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2131 
2132 	if (priv->status & STATUS_STOPPING) {
2133 		IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2134 		return;
2135 	}
2136 
2137 	eth_zero_addr(priv->bssid);
2138 	eth_zero_addr(priv->ieee->bssid);
2139 
2140 	netif_carrier_off(priv->net_dev);
2141 	netif_stop_queue(priv->net_dev);
2142 
2143 	if (!(priv->status & STATUS_RUNNING))
2144 		return;
2145 
2146 	if (priv->status & STATUS_SECURITY_UPDATED)
2147 		schedule_delayed_work(&priv->security_work, 0);
2148 
2149 	schedule_delayed_work(&priv->wx_event_work, 0);
2150 }
2151 
2152 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2153 {
2154 	IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2155 		       priv->net_dev->name);
2156 
2157 	/* RF_KILL is now enabled (else we wouldn't be here) */
2158 	wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2159 	priv->status |= STATUS_RF_KILL_HW;
2160 
2161 	/* Make sure the RF Kill check timer is running */
2162 	priv->stop_rf_kill = 0;
2163 	mod_delayed_work(system_wq, &priv->rf_kill, round_jiffies_relative(HZ));
2164 }
2165 
2166 static void ipw2100_scan_event(struct work_struct *work)
2167 {
2168 	struct ipw2100_priv *priv = container_of(work, struct ipw2100_priv,
2169 						 scan_event.work);
2170 	union iwreq_data wrqu;
2171 
2172 	wrqu.data.length = 0;
2173 	wrqu.data.flags = 0;
2174 	wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
2175 }
2176 
2177 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2178 {
2179 	IPW_DEBUG_SCAN("scan complete\n");
2180 	/* Age the scan results... */
2181 	priv->ieee->scans++;
2182 	priv->status &= ~STATUS_SCANNING;
2183 
2184 	/* Only userspace-requested scan completion events go out immediately */
2185 	if (!priv->user_requested_scan) {
2186 		schedule_delayed_work(&priv->scan_event,
2187 				      round_jiffies_relative(msecs_to_jiffies(4000)));
2188 	} else {
2189 		priv->user_requested_scan = 0;
2190 		mod_delayed_work(system_wq, &priv->scan_event, 0);
2191 	}
2192 }
2193 
2194 #ifdef CONFIG_IPW2100_DEBUG
2195 #define IPW2100_HANDLER(v, f) { v, f, # v }
2196 struct ipw2100_status_indicator {
2197 	int status;
2198 	void (*cb) (struct ipw2100_priv * priv, u32 status);
2199 	char *name;
2200 };
2201 #else
2202 #define IPW2100_HANDLER(v, f) { v, f }
2203 struct ipw2100_status_indicator {
2204 	int status;
2205 	void (*cb) (struct ipw2100_priv * priv, u32 status);
2206 };
2207 #endif				/* CONFIG_IPW2100_DEBUG */
2208 
2209 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2210 {
2211 	IPW_DEBUG_SCAN("Scanning...\n");
2212 	priv->status |= STATUS_SCANNING;
2213 }
2214 
2215 static const struct ipw2100_status_indicator status_handlers[] = {
2216 	IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2217 	IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2218 	IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2219 	IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2220 	IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2221 	IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2222 	IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2223 	IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2224 	IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2225 	IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2226 	IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2227 	IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2228 	IPW2100_HANDLER(-1, NULL)
2229 };
2230 
2231 static void isr_status_change(struct ipw2100_priv *priv, int status)
2232 {
2233 	int i;
2234 
2235 	if (status == IPW_STATE_SCANNING &&
2236 	    priv->status & STATUS_ASSOCIATED &&
2237 	    !(priv->status & STATUS_SCANNING)) {
2238 		IPW_DEBUG_INFO("Scan detected while associated, with "
2239 			       "no scan request.  Restarting firmware.\n");
2240 
2241 		/* Wake up any sleeping jobs */
2242 		schedule_reset(priv);
2243 	}
2244 
2245 	for (i = 0; status_handlers[i].status != -1; i++) {
2246 		if (status == status_handlers[i].status) {
2247 			IPW_DEBUG_NOTIF("Status change: %s\n",
2248 					status_handlers[i].name);
2249 			if (status_handlers[i].cb)
2250 				status_handlers[i].cb(priv, status);
2251 			priv->wstats.status = status;
2252 			return;
2253 		}
2254 	}
2255 
2256 	IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2257 }
2258 
2259 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2260 				    struct ipw2100_cmd_header *cmd)
2261 {
2262 #ifdef CONFIG_IPW2100_DEBUG
2263 	if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2264 		IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2265 			     command_types[cmd->host_command_reg],
2266 			     cmd->host_command_reg);
2267 	}
2268 #endif
2269 	if (cmd->host_command_reg == HOST_COMPLETE)
2270 		priv->status |= STATUS_ENABLED;
2271 
2272 	if (cmd->host_command_reg == CARD_DISABLE)
2273 		priv->status &= ~STATUS_ENABLED;
2274 
2275 	priv->status &= ~STATUS_CMD_ACTIVE;
2276 
2277 	wake_up_interruptible(&priv->wait_command_queue);
2278 }
2279 
2280 #ifdef CONFIG_IPW2100_DEBUG
2281 static const char *frame_types[] = {
2282 	"COMMAND_STATUS_VAL",
2283 	"STATUS_CHANGE_VAL",
2284 	"P80211_DATA_VAL",
2285 	"P8023_DATA_VAL",
2286 	"HOST_NOTIFICATION_VAL"
2287 };
2288 #endif
2289 
2290 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2291 				    struct ipw2100_rx_packet *packet)
2292 {
2293 	packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2294 	if (!packet->skb)
2295 		return -ENOMEM;
2296 
2297 	packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2298 	packet->dma_addr = dma_map_single(&priv->pci_dev->dev,
2299 					  packet->skb->data,
2300 					  sizeof(struct ipw2100_rx),
2301 					  DMA_FROM_DEVICE);
2302 	if (dma_mapping_error(&priv->pci_dev->dev, packet->dma_addr)) {
2303 		dev_kfree_skb(packet->skb);
2304 		return -ENOMEM;
2305 	}
2306 
2307 	return 0;
2308 }
2309 
2310 #define SEARCH_ERROR   0xffffffff
2311 #define SEARCH_FAIL    0xfffffffe
2312 #define SEARCH_SUCCESS 0xfffffff0
2313 #define SEARCH_DISCARD 0
2314 #define SEARCH_SNAPSHOT 1
2315 
2316 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2317 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2318 {
2319 	int i;
2320 	if (!priv->snapshot[0])
2321 		return;
2322 	for (i = 0; i < 0x30; i++)
2323 		kfree(priv->snapshot[i]);
2324 	priv->snapshot[0] = NULL;
2325 }
2326 
2327 #ifdef IPW2100_DEBUG_C3
2328 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2329 {
2330 	int i;
2331 	if (priv->snapshot[0])
2332 		return 1;
2333 	for (i = 0; i < 0x30; i++) {
2334 		priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2335 		if (!priv->snapshot[i]) {
2336 			IPW_DEBUG_INFO("%s: Error allocating snapshot "
2337 				       "buffer %d\n", priv->net_dev->name, i);
2338 			while (i > 0)
2339 				kfree(priv->snapshot[--i]);
2340 			priv->snapshot[0] = NULL;
2341 			return 0;
2342 		}
2343 	}
2344 
2345 	return 1;
2346 }
2347 
2348 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2349 				    size_t len, int mode)
2350 {
2351 	u32 i, j;
2352 	u32 tmp;
2353 	u8 *s, *d;
2354 	u32 ret;
2355 
2356 	s = in_buf;
2357 	if (mode == SEARCH_SNAPSHOT) {
2358 		if (!ipw2100_snapshot_alloc(priv))
2359 			mode = SEARCH_DISCARD;
2360 	}
2361 
2362 	for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2363 		read_nic_dword(priv->net_dev, i, &tmp);
2364 		if (mode == SEARCH_SNAPSHOT)
2365 			*(u32 *) SNAPSHOT_ADDR(i) = tmp;
2366 		if (ret == SEARCH_FAIL) {
2367 			d = (u8 *) & tmp;
2368 			for (j = 0; j < 4; j++) {
2369 				if (*s != *d) {
2370 					s = in_buf;
2371 					continue;
2372 				}
2373 
2374 				s++;
2375 				d++;
2376 
2377 				if ((s - in_buf) == len)
2378 					ret = (i + j) - len + 1;
2379 			}
2380 		} else if (mode == SEARCH_DISCARD)
2381 			return ret;
2382 	}
2383 
2384 	return ret;
2385 }
2386 #endif
2387 
2388 /*
2389  *
2390  * 0) Disconnect the SKB from the firmware (just unmap)
2391  * 1) Pack the ETH header into the SKB
2392  * 2) Pass the SKB to the network stack
2393  *
2394  * When packet is provided by the firmware, it contains the following:
2395  *
2396  * .  libipw_hdr
2397  * .  libipw_snap_hdr
2398  *
2399  * The size of the constructed ethernet
2400  *
2401  */
2402 #ifdef IPW2100_RX_DEBUG
2403 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2404 #endif
2405 
2406 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2407 {
2408 #ifdef IPW2100_DEBUG_C3
2409 	struct ipw2100_status *status = &priv->status_queue.drv[i];
2410 	u32 match, reg;
2411 	int j;
2412 #endif
2413 
2414 	IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2415 		       i * sizeof(struct ipw2100_status));
2416 
2417 #ifdef IPW2100_DEBUG_C3
2418 	/* Halt the firmware so we can get a good image */
2419 	write_register(priv->net_dev, IPW_REG_RESET_REG,
2420 		       IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2421 	j = 5;
2422 	do {
2423 		udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2424 		read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2425 
2426 		if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2427 			break;
2428 	} while (j--);
2429 
2430 	match = ipw2100_match_buf(priv, (u8 *) status,
2431 				  sizeof(struct ipw2100_status),
2432 				  SEARCH_SNAPSHOT);
2433 	if (match < SEARCH_SUCCESS)
2434 		IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2435 			       "offset 0x%06X, length %d:\n",
2436 			       priv->net_dev->name, match,
2437 			       sizeof(struct ipw2100_status));
2438 	else
2439 		IPW_DEBUG_INFO("%s: No DMA status match in "
2440 			       "Firmware.\n", priv->net_dev->name);
2441 
2442 	printk_buf((u8 *) priv->status_queue.drv,
2443 		   sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2444 #endif
2445 
2446 	priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2447 	priv->net_dev->stats.rx_errors++;
2448 	schedule_reset(priv);
2449 }
2450 
2451 static void isr_rx(struct ipw2100_priv *priv, int i,
2452 			  struct libipw_rx_stats *stats)
2453 {
2454 	struct net_device *dev = priv->net_dev;
2455 	struct ipw2100_status *status = &priv->status_queue.drv[i];
2456 	struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2457 
2458 	IPW_DEBUG_RX("Handler...\n");
2459 
2460 	if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2461 		IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2462 			       "  Dropping.\n",
2463 			       dev->name,
2464 			       status->frame_size, skb_tailroom(packet->skb));
2465 		dev->stats.rx_errors++;
2466 		return;
2467 	}
2468 
2469 	if (unlikely(!netif_running(dev))) {
2470 		dev->stats.rx_errors++;
2471 		priv->wstats.discard.misc++;
2472 		IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2473 		return;
2474 	}
2475 
2476 	if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2477 		     !(priv->status & STATUS_ASSOCIATED))) {
2478 		IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2479 		priv->wstats.discard.misc++;
2480 		return;
2481 	}
2482 
2483 	dma_unmap_single(&priv->pci_dev->dev, packet->dma_addr,
2484 			 sizeof(struct ipw2100_rx), DMA_FROM_DEVICE);
2485 
2486 	skb_put(packet->skb, status->frame_size);
2487 
2488 #ifdef IPW2100_RX_DEBUG
2489 	/* Make a copy of the frame so we can dump it to the logs if
2490 	 * libipw_rx fails */
2491 	skb_copy_from_linear_data(packet->skb, packet_data,
2492 				  min_t(u32, status->frame_size,
2493 					     IPW_RX_NIC_BUFFER_LENGTH));
2494 #endif
2495 
2496 	if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2497 #ifdef IPW2100_RX_DEBUG
2498 		IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2499 			       dev->name);
2500 		printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2501 #endif
2502 		dev->stats.rx_errors++;
2503 
2504 		/* libipw_rx failed, so it didn't free the SKB */
2505 		dev_kfree_skb_any(packet->skb);
2506 		packet->skb = NULL;
2507 	}
2508 
2509 	/* We need to allocate a new SKB and attach it to the RDB. */
2510 	if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2511 		printk(KERN_WARNING DRV_NAME ": "
2512 		       "%s: Unable to allocate SKB onto RBD ring - disabling "
2513 		       "adapter.\n", dev->name);
2514 		/* TODO: schedule adapter shutdown */
2515 		IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2516 	}
2517 
2518 	/* Update the RDB entry */
2519 	priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2520 }
2521 
2522 #ifdef CONFIG_IPW2100_MONITOR
2523 
2524 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2525 		   struct libipw_rx_stats *stats)
2526 {
2527 	struct net_device *dev = priv->net_dev;
2528 	struct ipw2100_status *status = &priv->status_queue.drv[i];
2529 	struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2530 
2531 	/* Magic struct that slots into the radiotap header -- no reason
2532 	 * to build this manually element by element, we can write it much
2533 	 * more efficiently than we can parse it. ORDER MATTERS HERE */
2534 	struct ipw_rt_hdr {
2535 		struct ieee80211_radiotap_header rt_hdr;
2536 		s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2537 	} *ipw_rt;
2538 
2539 	IPW_DEBUG_RX("Handler...\n");
2540 
2541 	if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2542 				sizeof(struct ipw_rt_hdr))) {
2543 		IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2544 			       "  Dropping.\n",
2545 			       dev->name,
2546 			       status->frame_size,
2547 			       skb_tailroom(packet->skb));
2548 		dev->stats.rx_errors++;
2549 		return;
2550 	}
2551 
2552 	if (unlikely(!netif_running(dev))) {
2553 		dev->stats.rx_errors++;
2554 		priv->wstats.discard.misc++;
2555 		IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2556 		return;
2557 	}
2558 
2559 	if (unlikely(priv->config & CFG_CRC_CHECK &&
2560 		     status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2561 		IPW_DEBUG_RX("CRC error in packet.  Dropping.\n");
2562 		dev->stats.rx_errors++;
2563 		return;
2564 	}
2565 
2566 	dma_unmap_single(&priv->pci_dev->dev, packet->dma_addr,
2567 			 sizeof(struct ipw2100_rx), DMA_FROM_DEVICE);
2568 	memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2569 		packet->skb->data, status->frame_size);
2570 
2571 	ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2572 
2573 	ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2574 	ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2575 	ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */
2576 
2577 	ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
2578 
2579 	ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2580 
2581 	skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2582 
2583 	if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2584 		dev->stats.rx_errors++;
2585 
2586 		/* libipw_rx failed, so it didn't free the SKB */
2587 		dev_kfree_skb_any(packet->skb);
2588 		packet->skb = NULL;
2589 	}
2590 
2591 	/* We need to allocate a new SKB and attach it to the RDB. */
2592 	if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2593 		IPW_DEBUG_WARNING(
2594 			"%s: Unable to allocate SKB onto RBD ring - disabling "
2595 			"adapter.\n", dev->name);
2596 		/* TODO: schedule adapter shutdown */
2597 		IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2598 	}
2599 
2600 	/* Update the RDB entry */
2601 	priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2602 }
2603 
2604 #endif
2605 
2606 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2607 {
2608 	struct ipw2100_status *status = &priv->status_queue.drv[i];
2609 	struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2610 	u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2611 
2612 	switch (frame_type) {
2613 	case COMMAND_STATUS_VAL:
2614 		return (status->frame_size != sizeof(u->rx_data.command));
2615 	case STATUS_CHANGE_VAL:
2616 		return (status->frame_size != sizeof(u->rx_data.status));
2617 	case HOST_NOTIFICATION_VAL:
2618 		return (status->frame_size < sizeof(u->rx_data.notification));
2619 	case P80211_DATA_VAL:
2620 	case P8023_DATA_VAL:
2621 #ifdef CONFIG_IPW2100_MONITOR
2622 		return 0;
2623 #else
2624 		switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2625 		case IEEE80211_FTYPE_MGMT:
2626 		case IEEE80211_FTYPE_CTL:
2627 			return 0;
2628 		case IEEE80211_FTYPE_DATA:
2629 			return (status->frame_size >
2630 				IPW_MAX_802_11_PAYLOAD_LENGTH);
2631 		}
2632 #endif
2633 	}
2634 
2635 	return 1;
2636 }
2637 
2638 /*
2639  * ipw2100 interrupts are disabled at this point, and the ISR
2640  * is the only code that calls this method.  So, we do not need
2641  * to play with any locks.
2642  *
2643  * RX Queue works as follows:
2644  *
2645  * Read index - firmware places packet in entry identified by the
2646  *              Read index and advances Read index.  In this manner,
2647  *              Read index will always point to the next packet to
2648  *              be filled--but not yet valid.
2649  *
2650  * Write index - driver fills this entry with an unused RBD entry.
2651  *               This entry has not filled by the firmware yet.
2652  *
2653  * In between the W and R indexes are the RBDs that have been received
2654  * but not yet processed.
2655  *
2656  * The process of handling packets will start at WRITE + 1 and advance
2657  * until it reaches the READ index.
2658  *
2659  * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2660  *
2661  */
2662 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2663 {
2664 	struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2665 	struct ipw2100_status_queue *sq = &priv->status_queue;
2666 	struct ipw2100_rx_packet *packet;
2667 	u16 frame_type;
2668 	u32 r, w, i, s;
2669 	struct ipw2100_rx *u;
2670 	struct libipw_rx_stats stats = {
2671 		.mac_time = jiffies,
2672 	};
2673 
2674 	read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2675 	read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2676 
2677 	if (r >= rxq->entries) {
2678 		IPW_DEBUG_RX("exit - bad read index\n");
2679 		return;
2680 	}
2681 
2682 	i = (rxq->next + 1) % rxq->entries;
2683 	s = i;
2684 	while (i != r) {
2685 		/* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2686 		   r, rxq->next, i); */
2687 
2688 		packet = &priv->rx_buffers[i];
2689 
2690 		/* Sync the DMA for the RX buffer so CPU is sure to get
2691 		 * the correct values */
2692 		dma_sync_single_for_cpu(&priv->pci_dev->dev, packet->dma_addr,
2693 					sizeof(struct ipw2100_rx),
2694 					DMA_FROM_DEVICE);
2695 
2696 		if (unlikely(ipw2100_corruption_check(priv, i))) {
2697 			ipw2100_corruption_detected(priv, i);
2698 			goto increment;
2699 		}
2700 
2701 		u = packet->rxp;
2702 		frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2703 		stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2704 		stats.len = sq->drv[i].frame_size;
2705 
2706 		stats.mask = 0;
2707 		if (stats.rssi != 0)
2708 			stats.mask |= LIBIPW_STATMASK_RSSI;
2709 		stats.freq = LIBIPW_24GHZ_BAND;
2710 
2711 		IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2712 			     priv->net_dev->name, frame_types[frame_type],
2713 			     stats.len);
2714 
2715 		switch (frame_type) {
2716 		case COMMAND_STATUS_VAL:
2717 			/* Reset Rx watchdog */
2718 			isr_rx_complete_command(priv, &u->rx_data.command);
2719 			break;
2720 
2721 		case STATUS_CHANGE_VAL:
2722 			isr_status_change(priv, u->rx_data.status);
2723 			break;
2724 
2725 		case P80211_DATA_VAL:
2726 		case P8023_DATA_VAL:
2727 #ifdef CONFIG_IPW2100_MONITOR
2728 			if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2729 				isr_rx_monitor(priv, i, &stats);
2730 				break;
2731 			}
2732 #endif
2733 			if (stats.len < sizeof(struct libipw_hdr_3addr))
2734 				break;
2735 			switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2736 			case IEEE80211_FTYPE_MGMT:
2737 				libipw_rx_mgt(priv->ieee,
2738 						 &u->rx_data.header, &stats);
2739 				break;
2740 
2741 			case IEEE80211_FTYPE_CTL:
2742 				break;
2743 
2744 			case IEEE80211_FTYPE_DATA:
2745 				isr_rx(priv, i, &stats);
2746 				break;
2747 
2748 			}
2749 			break;
2750 		}
2751 
2752 	      increment:
2753 		/* clear status field associated with this RBD */
2754 		rxq->drv[i].status.info.field = 0;
2755 
2756 		i = (i + 1) % rxq->entries;
2757 	}
2758 
2759 	if (i != s) {
2760 		/* backtrack one entry, wrapping to end if at 0 */
2761 		rxq->next = (i ? i : rxq->entries) - 1;
2762 
2763 		write_register(priv->net_dev,
2764 			       IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2765 	}
2766 }
2767 
2768 /*
2769  * __ipw2100_tx_process
2770  *
2771  * This routine will determine whether the next packet on
2772  * the fw_pend_list has been processed by the firmware yet.
2773  *
2774  * If not, then it does nothing and returns.
2775  *
2776  * If so, then it removes the item from the fw_pend_list, frees
2777  * any associated storage, and places the item back on the
2778  * free list of its source (either msg_free_list or tx_free_list)
2779  *
2780  * TX Queue works as follows:
2781  *
2782  * Read index - points to the next TBD that the firmware will
2783  *              process.  The firmware will read the data, and once
2784  *              done processing, it will advance the Read index.
2785  *
2786  * Write index - driver fills this entry with an constructed TBD
2787  *               entry.  The Write index is not advanced until the
2788  *               packet has been configured.
2789  *
2790  * In between the W and R indexes are the TBDs that have NOT been
2791  * processed.  Lagging behind the R index are packets that have
2792  * been processed but have not been freed by the driver.
2793  *
2794  * In order to free old storage, an internal index will be maintained
2795  * that points to the next packet to be freed.  When all used
2796  * packets have been freed, the oldest index will be the same as the
2797  * firmware's read index.
2798  *
2799  * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2800  *
2801  * Because the TBD structure can not contain arbitrary data, the
2802  * driver must keep an internal queue of cached allocations such that
2803  * it can put that data back into the tx_free_list and msg_free_list
2804  * for use by future command and data packets.
2805  *
2806  */
2807 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2808 {
2809 	struct ipw2100_bd_queue *txq = &priv->tx_queue;
2810 	struct ipw2100_bd *tbd;
2811 	struct list_head *element;
2812 	struct ipw2100_tx_packet *packet;
2813 	int descriptors_used;
2814 	int e, i;
2815 	u32 r, w, frag_num = 0;
2816 
2817 	if (list_empty(&priv->fw_pend_list))
2818 		return 0;
2819 
2820 	element = priv->fw_pend_list.next;
2821 
2822 	packet = list_entry(element, struct ipw2100_tx_packet, list);
2823 	tbd = &txq->drv[packet->index];
2824 
2825 	/* Determine how many TBD entries must be finished... */
2826 	switch (packet->type) {
2827 	case COMMAND:
2828 		/* COMMAND uses only one slot; don't advance */
2829 		descriptors_used = 1;
2830 		e = txq->oldest;
2831 		break;
2832 
2833 	case DATA:
2834 		/* DATA uses two slots; advance and loop position. */
2835 		descriptors_used = tbd->num_fragments;
2836 		frag_num = tbd->num_fragments - 1;
2837 		e = txq->oldest + frag_num;
2838 		e %= txq->entries;
2839 		break;
2840 
2841 	default:
2842 		printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2843 		       priv->net_dev->name);
2844 		return 0;
2845 	}
2846 
2847 	/* if the last TBD is not done by NIC yet, then packet is
2848 	 * not ready to be released.
2849 	 *
2850 	 */
2851 	read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2852 		      &r);
2853 	read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2854 		      &w);
2855 	if (w != txq->next)
2856 		printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2857 		       priv->net_dev->name);
2858 
2859 	/*
2860 	 * txq->next is the index of the last packet written txq->oldest is
2861 	 * the index of the r is the index of the next packet to be read by
2862 	 * firmware
2863 	 */
2864 
2865 	/*
2866 	 * Quick graphic to help you visualize the following
2867 	 * if / else statement
2868 	 *
2869 	 * ===>|                     s---->|===============
2870 	 *                               e>|
2871 	 * | a | b | c | d | e | f | g | h | i | j | k | l
2872 	 *       r---->|
2873 	 *               w
2874 	 *
2875 	 * w - updated by driver
2876 	 * r - updated by firmware
2877 	 * s - start of oldest BD entry (txq->oldest)
2878 	 * e - end of oldest BD entry
2879 	 *
2880 	 */
2881 	if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2882 		IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2883 		return 0;
2884 	}
2885 
2886 	list_del(element);
2887 	DEC_STAT(&priv->fw_pend_stat);
2888 
2889 #ifdef CONFIG_IPW2100_DEBUG
2890 	{
2891 		i = txq->oldest;
2892 		IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2893 			     &txq->drv[i],
2894 			     (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2895 			     txq->drv[i].host_addr, txq->drv[i].buf_length);
2896 
2897 		if (packet->type == DATA) {
2898 			i = (i + 1) % txq->entries;
2899 
2900 			IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2901 				     &txq->drv[i],
2902 				     (u32) (txq->nic + i *
2903 					    sizeof(struct ipw2100_bd)),
2904 				     (u32) txq->drv[i].host_addr,
2905 				     txq->drv[i].buf_length);
2906 		}
2907 	}
2908 #endif
2909 
2910 	switch (packet->type) {
2911 	case DATA:
2912 		if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2913 			printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2914 			       "Expecting DATA TBD but pulled "
2915 			       "something else: ids %d=%d.\n",
2916 			       priv->net_dev->name, txq->oldest, packet->index);
2917 
2918 		/* DATA packet; we have to unmap and free the SKB */
2919 		for (i = 0; i < frag_num; i++) {
2920 			tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2921 
2922 			IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2923 				     (packet->index + 1 + i) % txq->entries,
2924 				     tbd->host_addr, tbd->buf_length);
2925 
2926 			dma_unmap_single(&priv->pci_dev->dev, tbd->host_addr,
2927 					 tbd->buf_length, DMA_TO_DEVICE);
2928 		}
2929 
2930 		libipw_txb_free(packet->info.d_struct.txb);
2931 		packet->info.d_struct.txb = NULL;
2932 
2933 		list_add_tail(element, &priv->tx_free_list);
2934 		INC_STAT(&priv->tx_free_stat);
2935 
2936 		/* We have a free slot in the Tx queue, so wake up the
2937 		 * transmit layer if it is stopped. */
2938 		if (priv->status & STATUS_ASSOCIATED)
2939 			netif_wake_queue(priv->net_dev);
2940 
2941 		/* A packet was processed by the hardware, so update the
2942 		 * watchdog */
2943 		netif_trans_update(priv->net_dev);
2944 
2945 		break;
2946 
2947 	case COMMAND:
2948 		if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2949 			printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2950 			       "Expecting COMMAND TBD but pulled "
2951 			       "something else: ids %d=%d.\n",
2952 			       priv->net_dev->name, txq->oldest, packet->index);
2953 
2954 #ifdef CONFIG_IPW2100_DEBUG
2955 		if (packet->info.c_struct.cmd->host_command_reg <
2956 		    ARRAY_SIZE(command_types))
2957 			IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2958 				     command_types[packet->info.c_struct.cmd->
2959 						   host_command_reg],
2960 				     packet->info.c_struct.cmd->
2961 				     host_command_reg,
2962 				     packet->info.c_struct.cmd->cmd_status_reg);
2963 #endif
2964 
2965 		list_add_tail(element, &priv->msg_free_list);
2966 		INC_STAT(&priv->msg_free_stat);
2967 		break;
2968 	}
2969 
2970 	/* advance oldest used TBD pointer to start of next entry */
2971 	txq->oldest = (e + 1) % txq->entries;
2972 	/* increase available TBDs number */
2973 	txq->available += descriptors_used;
2974 	SET_STAT(&priv->txq_stat, txq->available);
2975 
2976 	IPW_DEBUG_TX("packet latency (send to process)  %ld jiffies\n",
2977 		     jiffies - packet->jiffy_start);
2978 
2979 	return (!list_empty(&priv->fw_pend_list));
2980 }
2981 
2982 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2983 {
2984 	int i = 0;
2985 
2986 	while (__ipw2100_tx_process(priv) && i < 200)
2987 		i++;
2988 
2989 	if (i == 200) {
2990 		printk(KERN_WARNING DRV_NAME ": "
2991 		       "%s: Driver is running slow (%d iters).\n",
2992 		       priv->net_dev->name, i);
2993 	}
2994 }
2995 
2996 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
2997 {
2998 	struct list_head *element;
2999 	struct ipw2100_tx_packet *packet;
3000 	struct ipw2100_bd_queue *txq = &priv->tx_queue;
3001 	struct ipw2100_bd *tbd;
3002 	int next = txq->next;
3003 
3004 	while (!list_empty(&priv->msg_pend_list)) {
3005 		/* if there isn't enough space in TBD queue, then
3006 		 * don't stuff a new one in.
3007 		 * NOTE: 3 are needed as a command will take one,
3008 		 *       and there is a minimum of 2 that must be
3009 		 *       maintained between the r and w indexes
3010 		 */
3011 		if (txq->available <= 3) {
3012 			IPW_DEBUG_TX("no room in tx_queue\n");
3013 			break;
3014 		}
3015 
3016 		element = priv->msg_pend_list.next;
3017 		list_del(element);
3018 		DEC_STAT(&priv->msg_pend_stat);
3019 
3020 		packet = list_entry(element, struct ipw2100_tx_packet, list);
3021 
3022 		IPW_DEBUG_TX("using TBD at virt=%p, phys=%04X\n",
3023 			     &txq->drv[txq->next],
3024 			     (u32) (txq->nic + txq->next *
3025 				      sizeof(struct ipw2100_bd)));
3026 
3027 		packet->index = txq->next;
3028 
3029 		tbd = &txq->drv[txq->next];
3030 
3031 		/* initialize TBD */
3032 		tbd->host_addr = packet->info.c_struct.cmd_phys;
3033 		tbd->buf_length = sizeof(struct ipw2100_cmd_header);
3034 		/* not marking number of fragments causes problems
3035 		 * with f/w debug version */
3036 		tbd->num_fragments = 1;
3037 		tbd->status.info.field =
3038 		    IPW_BD_STATUS_TX_FRAME_COMMAND |
3039 		    IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3040 
3041 		/* update TBD queue counters */
3042 		txq->next++;
3043 		txq->next %= txq->entries;
3044 		txq->available--;
3045 		DEC_STAT(&priv->txq_stat);
3046 
3047 		list_add_tail(element, &priv->fw_pend_list);
3048 		INC_STAT(&priv->fw_pend_stat);
3049 	}
3050 
3051 	if (txq->next != next) {
3052 		/* kick off the DMA by notifying firmware the
3053 		 * write index has moved; make sure TBD stores are sync'd */
3054 		wmb();
3055 		write_register(priv->net_dev,
3056 			       IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3057 			       txq->next);
3058 	}
3059 }
3060 
3061 /*
3062  * ipw2100_tx_send_data
3063  *
3064  */
3065 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3066 {
3067 	struct list_head *element;
3068 	struct ipw2100_tx_packet *packet;
3069 	struct ipw2100_bd_queue *txq = &priv->tx_queue;
3070 	struct ipw2100_bd *tbd;
3071 	int next = txq->next;
3072 	int i = 0;
3073 	struct ipw2100_data_header *ipw_hdr;
3074 	struct libipw_hdr_3addr *hdr;
3075 
3076 	while (!list_empty(&priv->tx_pend_list)) {
3077 		/* if there isn't enough space in TBD queue, then
3078 		 * don't stuff a new one in.
3079 		 * NOTE: 4 are needed as a data will take two,
3080 		 *       and there is a minimum of 2 that must be
3081 		 *       maintained between the r and w indexes
3082 		 */
3083 		element = priv->tx_pend_list.next;
3084 		packet = list_entry(element, struct ipw2100_tx_packet, list);
3085 
3086 		if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3087 			     IPW_MAX_BDS)) {
3088 			/* TODO: Support merging buffers if more than
3089 			 * IPW_MAX_BDS are used */
3090 			IPW_DEBUG_INFO("%s: Maximum BD threshold exceeded.  "
3091 				       "Increase fragmentation level.\n",
3092 				       priv->net_dev->name);
3093 		}
3094 
3095 		if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3096 			IPW_DEBUG_TX("no room in tx_queue\n");
3097 			break;
3098 		}
3099 
3100 		list_del(element);
3101 		DEC_STAT(&priv->tx_pend_stat);
3102 
3103 		tbd = &txq->drv[txq->next];
3104 
3105 		packet->index = txq->next;
3106 
3107 		ipw_hdr = packet->info.d_struct.data;
3108 		hdr = (struct libipw_hdr_3addr *)packet->info.d_struct.txb->
3109 		    fragments[0]->data;
3110 
3111 		if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3112 			/* To DS: Addr1 = BSSID, Addr2 = SA,
3113 			   Addr3 = DA */
3114 			memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3115 			memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3116 		} else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3117 			/* not From/To DS: Addr1 = DA, Addr2 = SA,
3118 			   Addr3 = BSSID */
3119 			memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3120 			memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3121 		}
3122 
3123 		ipw_hdr->host_command_reg = SEND;
3124 		ipw_hdr->host_command_reg1 = 0;
3125 
3126 		/* For now we only support host based encryption */
3127 		ipw_hdr->needs_encryption = 0;
3128 		ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3129 		if (packet->info.d_struct.txb->nr_frags > 1)
3130 			ipw_hdr->fragment_size =
3131 			    packet->info.d_struct.txb->frag_size -
3132 			    LIBIPW_3ADDR_LEN;
3133 		else
3134 			ipw_hdr->fragment_size = 0;
3135 
3136 		tbd->host_addr = packet->info.d_struct.data_phys;
3137 		tbd->buf_length = sizeof(struct ipw2100_data_header);
3138 		tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3139 		tbd->status.info.field =
3140 		    IPW_BD_STATUS_TX_FRAME_802_3 |
3141 		    IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3142 		txq->next++;
3143 		txq->next %= txq->entries;
3144 
3145 		IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3146 			     packet->index, tbd->host_addr, tbd->buf_length);
3147 #ifdef CONFIG_IPW2100_DEBUG
3148 		if (packet->info.d_struct.txb->nr_frags > 1)
3149 			IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3150 				       packet->info.d_struct.txb->nr_frags);
3151 #endif
3152 
3153 		for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3154 			tbd = &txq->drv[txq->next];
3155 			if (i == packet->info.d_struct.txb->nr_frags - 1)
3156 				tbd->status.info.field =
3157 				    IPW_BD_STATUS_TX_FRAME_802_3 |
3158 				    IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3159 			else
3160 				tbd->status.info.field =
3161 				    IPW_BD_STATUS_TX_FRAME_802_3 |
3162 				    IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3163 
3164 			tbd->buf_length = packet->info.d_struct.txb->
3165 			    fragments[i]->len - LIBIPW_3ADDR_LEN;
3166 
3167 			tbd->host_addr = dma_map_single(&priv->pci_dev->dev,
3168 							packet->info.d_struct.
3169 							txb->fragments[i]->data +
3170 							LIBIPW_3ADDR_LEN,
3171 							tbd->buf_length,
3172 							DMA_TO_DEVICE);
3173 			if (dma_mapping_error(&priv->pci_dev->dev, tbd->host_addr)) {
3174 				IPW_DEBUG_TX("dma mapping error\n");
3175 				break;
3176 			}
3177 
3178 			IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3179 				     txq->next, tbd->host_addr,
3180 				     tbd->buf_length);
3181 
3182 			dma_sync_single_for_device(&priv->pci_dev->dev,
3183 						   tbd->host_addr,
3184 						   tbd->buf_length,
3185 						   DMA_TO_DEVICE);
3186 
3187 			txq->next++;
3188 			txq->next %= txq->entries;
3189 		}
3190 
3191 		txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3192 		SET_STAT(&priv->txq_stat, txq->available);
3193 
3194 		list_add_tail(element, &priv->fw_pend_list);
3195 		INC_STAT(&priv->fw_pend_stat);
3196 	}
3197 
3198 	if (txq->next != next) {
3199 		/* kick off the DMA by notifying firmware the
3200 		 * write index has moved; make sure TBD stores are sync'd */
3201 		write_register(priv->net_dev,
3202 			       IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3203 			       txq->next);
3204 	}
3205 }
3206 
3207 static void ipw2100_irq_tasklet(unsigned long data)
3208 {
3209 	struct ipw2100_priv *priv = (struct ipw2100_priv *)data;
3210 	struct net_device *dev = priv->net_dev;
3211 	unsigned long flags;
3212 	u32 inta, tmp;
3213 
3214 	spin_lock_irqsave(&priv->low_lock, flags);
3215 	ipw2100_disable_interrupts(priv);
3216 
3217 	read_register(dev, IPW_REG_INTA, &inta);
3218 
3219 	IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3220 		      (unsigned long)inta & IPW_INTERRUPT_MASK);
3221 
3222 	priv->in_isr++;
3223 	priv->interrupts++;
3224 
3225 	/* We do not loop and keep polling for more interrupts as this
3226 	 * is frowned upon and doesn't play nicely with other potentially
3227 	 * chained IRQs */
3228 	IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3229 		      (unsigned long)inta & IPW_INTERRUPT_MASK);
3230 
3231 	if (inta & IPW2100_INTA_FATAL_ERROR) {
3232 		printk(KERN_WARNING DRV_NAME
3233 		       ": Fatal interrupt. Scheduling firmware restart.\n");
3234 		priv->inta_other++;
3235 		write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3236 
3237 		read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3238 		IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3239 			       priv->net_dev->name, priv->fatal_error);
3240 
3241 		read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3242 		IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3243 			       priv->net_dev->name, tmp);
3244 
3245 		/* Wake up any sleeping jobs */
3246 		schedule_reset(priv);
3247 	}
3248 
3249 	if (inta & IPW2100_INTA_PARITY_ERROR) {
3250 		printk(KERN_ERR DRV_NAME
3251 		       ": ***** PARITY ERROR INTERRUPT !!!!\n");
3252 		priv->inta_other++;
3253 		write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3254 	}
3255 
3256 	if (inta & IPW2100_INTA_RX_TRANSFER) {
3257 		IPW_DEBUG_ISR("RX interrupt\n");
3258 
3259 		priv->rx_interrupts++;
3260 
3261 		write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3262 
3263 		__ipw2100_rx_process(priv);
3264 		__ipw2100_tx_complete(priv);
3265 	}
3266 
3267 	if (inta & IPW2100_INTA_TX_TRANSFER) {
3268 		IPW_DEBUG_ISR("TX interrupt\n");
3269 
3270 		priv->tx_interrupts++;
3271 
3272 		write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3273 
3274 		__ipw2100_tx_complete(priv);
3275 		ipw2100_tx_send_commands(priv);
3276 		ipw2100_tx_send_data(priv);
3277 	}
3278 
3279 	if (inta & IPW2100_INTA_TX_COMPLETE) {
3280 		IPW_DEBUG_ISR("TX complete\n");
3281 		priv->inta_other++;
3282 		write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3283 
3284 		__ipw2100_tx_complete(priv);
3285 	}
3286 
3287 	if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3288 		/* ipw2100_handle_event(dev); */
3289 		priv->inta_other++;
3290 		write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3291 	}
3292 
3293 	if (inta & IPW2100_INTA_FW_INIT_DONE) {
3294 		IPW_DEBUG_ISR("FW init done interrupt\n");
3295 		priv->inta_other++;
3296 
3297 		read_register(dev, IPW_REG_INTA, &tmp);
3298 		if (tmp & (IPW2100_INTA_FATAL_ERROR |
3299 			   IPW2100_INTA_PARITY_ERROR)) {
3300 			write_register(dev, IPW_REG_INTA,
3301 				       IPW2100_INTA_FATAL_ERROR |
3302 				       IPW2100_INTA_PARITY_ERROR);
3303 		}
3304 
3305 		write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3306 	}
3307 
3308 	if (inta & IPW2100_INTA_STATUS_CHANGE) {
3309 		IPW_DEBUG_ISR("Status change interrupt\n");
3310 		priv->inta_other++;
3311 		write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3312 	}
3313 
3314 	if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3315 		IPW_DEBUG_ISR("slave host mode interrupt\n");
3316 		priv->inta_other++;
3317 		write_register(dev, IPW_REG_INTA,
3318 			       IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3319 	}
3320 
3321 	priv->in_isr--;
3322 	ipw2100_enable_interrupts(priv);
3323 
3324 	spin_unlock_irqrestore(&priv->low_lock, flags);
3325 
3326 	IPW_DEBUG_ISR("exit\n");
3327 }
3328 
3329 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3330 {
3331 	struct ipw2100_priv *priv = data;
3332 	u32 inta, inta_mask;
3333 
3334 	if (!data)
3335 		return IRQ_NONE;
3336 
3337 	spin_lock(&priv->low_lock);
3338 
3339 	/* We check to see if we should be ignoring interrupts before
3340 	 * we touch the hardware.  During ucode load if we try and handle
3341 	 * an interrupt we can cause keyboard problems as well as cause
3342 	 * the ucode to fail to initialize */
3343 	if (!(priv->status & STATUS_INT_ENABLED)) {
3344 		/* Shared IRQ */
3345 		goto none;
3346 	}
3347 
3348 	read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3349 	read_register(priv->net_dev, IPW_REG_INTA, &inta);
3350 
3351 	if (inta == 0xFFFFFFFF) {
3352 		/* Hardware disappeared */
3353 		printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3354 		goto none;
3355 	}
3356 
3357 	inta &= IPW_INTERRUPT_MASK;
3358 
3359 	if (!(inta & inta_mask)) {
3360 		/* Shared interrupt */
3361 		goto none;
3362 	}
3363 
3364 	/* We disable the hardware interrupt here just to prevent unneeded
3365 	 * calls to be made.  We disable this again within the actual
3366 	 * work tasklet, so if another part of the code re-enables the
3367 	 * interrupt, that is fine */
3368 	ipw2100_disable_interrupts(priv);
3369 
3370 	tasklet_schedule(&priv->irq_tasklet);
3371 	spin_unlock(&priv->low_lock);
3372 
3373 	return IRQ_HANDLED;
3374       none:
3375 	spin_unlock(&priv->low_lock);
3376 	return IRQ_NONE;
3377 }
3378 
3379 static netdev_tx_t ipw2100_tx(struct libipw_txb *txb,
3380 			      struct net_device *dev, int pri)
3381 {
3382 	struct ipw2100_priv *priv = libipw_priv(dev);
3383 	struct list_head *element;
3384 	struct ipw2100_tx_packet *packet;
3385 	unsigned long flags;
3386 
3387 	spin_lock_irqsave(&priv->low_lock, flags);
3388 
3389 	if (!(priv->status & STATUS_ASSOCIATED)) {
3390 		IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3391 		priv->net_dev->stats.tx_carrier_errors++;
3392 		netif_stop_queue(dev);
3393 		goto fail_unlock;
3394 	}
3395 
3396 	if (list_empty(&priv->tx_free_list))
3397 		goto fail_unlock;
3398 
3399 	element = priv->tx_free_list.next;
3400 	packet = list_entry(element, struct ipw2100_tx_packet, list);
3401 
3402 	packet->info.d_struct.txb = txb;
3403 
3404 	IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3405 	printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3406 
3407 	packet->jiffy_start = jiffies;
3408 
3409 	list_del(element);
3410 	DEC_STAT(&priv->tx_free_stat);
3411 
3412 	list_add_tail(element, &priv->tx_pend_list);
3413 	INC_STAT(&priv->tx_pend_stat);
3414 
3415 	ipw2100_tx_send_data(priv);
3416 
3417 	spin_unlock_irqrestore(&priv->low_lock, flags);
3418 	return NETDEV_TX_OK;
3419 
3420 fail_unlock:
3421 	netif_stop_queue(dev);
3422 	spin_unlock_irqrestore(&priv->low_lock, flags);
3423 	return NETDEV_TX_BUSY;
3424 }
3425 
3426 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3427 {
3428 	int i, j, err = -EINVAL;
3429 	void *v;
3430 	dma_addr_t p;
3431 
3432 	priv->msg_buffers =
3433 	    kmalloc_array(IPW_COMMAND_POOL_SIZE,
3434 			  sizeof(struct ipw2100_tx_packet),
3435 			  GFP_KERNEL);
3436 	if (!priv->msg_buffers)
3437 		return -ENOMEM;
3438 
3439 	for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3440 		v = dma_alloc_coherent(&priv->pci_dev->dev,
3441 				       sizeof(struct ipw2100_cmd_header), &p,
3442 				       GFP_KERNEL);
3443 		if (!v) {
3444 			printk(KERN_ERR DRV_NAME ": "
3445 			       "%s: PCI alloc failed for msg "
3446 			       "buffers.\n", priv->net_dev->name);
3447 			err = -ENOMEM;
3448 			break;
3449 		}
3450 
3451 		priv->msg_buffers[i].type = COMMAND;
3452 		priv->msg_buffers[i].info.c_struct.cmd =
3453 		    (struct ipw2100_cmd_header *)v;
3454 		priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3455 	}
3456 
3457 	if (i == IPW_COMMAND_POOL_SIZE)
3458 		return 0;
3459 
3460 	for (j = 0; j < i; j++) {
3461 		dma_free_coherent(&priv->pci_dev->dev,
3462 				  sizeof(struct ipw2100_cmd_header),
3463 				  priv->msg_buffers[j].info.c_struct.cmd,
3464 				  priv->msg_buffers[j].info.c_struct.cmd_phys);
3465 	}
3466 
3467 	kfree(priv->msg_buffers);
3468 	priv->msg_buffers = NULL;
3469 
3470 	return err;
3471 }
3472 
3473 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3474 {
3475 	int i;
3476 
3477 	INIT_LIST_HEAD(&priv->msg_free_list);
3478 	INIT_LIST_HEAD(&priv->msg_pend_list);
3479 
3480 	for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3481 		list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3482 	SET_STAT(&priv->msg_free_stat, i);
3483 
3484 	return 0;
3485 }
3486 
3487 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3488 {
3489 	int i;
3490 
3491 	if (!priv->msg_buffers)
3492 		return;
3493 
3494 	for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3495 		dma_free_coherent(&priv->pci_dev->dev,
3496 				  sizeof(struct ipw2100_cmd_header),
3497 				  priv->msg_buffers[i].info.c_struct.cmd,
3498 				  priv->msg_buffers[i].info.c_struct.cmd_phys);
3499 	}
3500 
3501 	kfree(priv->msg_buffers);
3502 	priv->msg_buffers = NULL;
3503 }
3504 
3505 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3506 			char *buf)
3507 {
3508 	struct pci_dev *pci_dev = to_pci_dev(d);
3509 	char *out = buf;
3510 	int i, j;
3511 	u32 val;
3512 
3513 	for (i = 0; i < 16; i++) {
3514 		out += sprintf(out, "[%08X] ", i * 16);
3515 		for (j = 0; j < 16; j += 4) {
3516 			pci_read_config_dword(pci_dev, i * 16 + j, &val);
3517 			out += sprintf(out, "%08X ", val);
3518 		}
3519 		out += sprintf(out, "\n");
3520 	}
3521 
3522 	return out - buf;
3523 }
3524 
3525 static DEVICE_ATTR(pci, 0444, show_pci, NULL);
3526 
3527 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3528 			char *buf)
3529 {
3530 	struct ipw2100_priv *p = dev_get_drvdata(d);
3531 	return sprintf(buf, "0x%08x\n", (int)p->config);
3532 }
3533 
3534 static DEVICE_ATTR(cfg, 0444, show_cfg, NULL);
3535 
3536 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3537 			   char *buf)
3538 {
3539 	struct ipw2100_priv *p = dev_get_drvdata(d);
3540 	return sprintf(buf, "0x%08x\n", (int)p->status);
3541 }
3542 
3543 static DEVICE_ATTR(status, 0444, show_status, NULL);
3544 
3545 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3546 			       char *buf)
3547 {
3548 	struct ipw2100_priv *p = dev_get_drvdata(d);
3549 	return sprintf(buf, "0x%08x\n", (int)p->capability);
3550 }
3551 
3552 static DEVICE_ATTR(capability, 0444, show_capability, NULL);
3553 
3554 #define IPW2100_REG(x) { IPW_ ##x, #x }
3555 static const struct {
3556 	u32 addr;
3557 	const char *name;
3558 } hw_data[] = {
3559 IPW2100_REG(REG_GP_CNTRL),
3560 	    IPW2100_REG(REG_GPIO),
3561 	    IPW2100_REG(REG_INTA),
3562 	    IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3563 #define IPW2100_NIC(x, s) { x, #x, s }
3564 static const struct {
3565 	u32 addr;
3566 	const char *name;
3567 	size_t size;
3568 } nic_data[] = {
3569 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3570 	    IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3571 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3572 static const struct {
3573 	u8 index;
3574 	const char *name;
3575 	const char *desc;
3576 } ord_data[] = {
3577 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3578 	    IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3579 				"successful Host Tx's (MSDU)"),
3580 	    IPW2100_ORD(STAT_TX_DIR_DATA,
3581 				"successful Directed Tx's (MSDU)"),
3582 	    IPW2100_ORD(STAT_TX_DIR_DATA1,
3583 				"successful Directed Tx's (MSDU) @ 1MB"),
3584 	    IPW2100_ORD(STAT_TX_DIR_DATA2,
3585 				"successful Directed Tx's (MSDU) @ 2MB"),
3586 	    IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3587 				"successful Directed Tx's (MSDU) @ 5_5MB"),
3588 	    IPW2100_ORD(STAT_TX_DIR_DATA11,
3589 				"successful Directed Tx's (MSDU) @ 11MB"),
3590 	    IPW2100_ORD(STAT_TX_NODIR_DATA1,
3591 				"successful Non_Directed Tx's (MSDU) @ 1MB"),
3592 	    IPW2100_ORD(STAT_TX_NODIR_DATA2,
3593 				"successful Non_Directed Tx's (MSDU) @ 2MB"),
3594 	    IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3595 				"successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3596 	    IPW2100_ORD(STAT_TX_NODIR_DATA11,
3597 				"successful Non_Directed Tx's (MSDU) @ 11MB"),
3598 	    IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3599 	    IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3600 	    IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3601 	    IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3602 	    IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3603 	    IPW2100_ORD(STAT_TX_ASSN_RESP,
3604 				"successful Association response Tx's"),
3605 	    IPW2100_ORD(STAT_TX_REASSN,
3606 				"successful Reassociation Tx's"),
3607 	    IPW2100_ORD(STAT_TX_REASSN_RESP,
3608 				"successful Reassociation response Tx's"),
3609 	    IPW2100_ORD(STAT_TX_PROBE,
3610 				"probes successfully transmitted"),
3611 	    IPW2100_ORD(STAT_TX_PROBE_RESP,
3612 				"probe responses successfully transmitted"),
3613 	    IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3614 	    IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3615 	    IPW2100_ORD(STAT_TX_DISASSN,
3616 				"successful Disassociation TX"),
3617 	    IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3618 	    IPW2100_ORD(STAT_TX_DEAUTH,
3619 				"successful Deauthentication TX"),
3620 	    IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3621 				"Total successful Tx data bytes"),
3622 	    IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3623 	    IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3624 	    IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3625 	    IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3626 	    IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3627 	    IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3628 	    IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3629 				"times max tries in a hop failed"),
3630 	    IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3631 				"times disassociation failed"),
3632 	    IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3633 	    IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3634 	    IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3635 	    IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3636 	    IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3637 	    IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3638 	    IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3639 				"directed packets at 5.5MB"),
3640 	    IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3641 	    IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3642 	    IPW2100_ORD(STAT_RX_NODIR_DATA1,
3643 				"nondirected packets at 1MB"),
3644 	    IPW2100_ORD(STAT_RX_NODIR_DATA2,
3645 				"nondirected packets at 2MB"),
3646 	    IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3647 				"nondirected packets at 5.5MB"),
3648 	    IPW2100_ORD(STAT_RX_NODIR_DATA11,
3649 				"nondirected packets at 11MB"),
3650 	    IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3651 	    IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3652 								    "Rx CTS"),
3653 	    IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3654 	    IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3655 	    IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3656 	    IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3657 	    IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3658 	    IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3659 	    IPW2100_ORD(STAT_RX_REASSN_RESP,
3660 				"Reassociation response Rx's"),
3661 	    IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3662 	    IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3663 	    IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3664 	    IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3665 	    IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3666 	    IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3667 	    IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3668 	    IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3669 				"Total rx data bytes received"),
3670 	    IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3671 	    IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3672 	    IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3673 	    IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3674 	    IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3675 	    IPW2100_ORD(STAT_RX_DUPLICATE1,
3676 				"duplicate rx packets at 1MB"),
3677 	    IPW2100_ORD(STAT_RX_DUPLICATE2,
3678 				"duplicate rx packets at 2MB"),
3679 	    IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3680 				"duplicate rx packets at 5.5MB"),
3681 	    IPW2100_ORD(STAT_RX_DUPLICATE11,
3682 				"duplicate rx packets at 11MB"),
3683 	    IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3684 	    IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent  db"),
3685 	    IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent  db"),
3686 	    IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent  db"),
3687 	    IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3688 				"rx frames with invalid protocol"),
3689 	    IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3690 	    IPW2100_ORD(STAT_RX_NO_BUFFER,
3691 				"rx frames rejected due to no buffer"),
3692 	    IPW2100_ORD(STAT_RX_MISSING_FRAG,
3693 				"rx frames dropped due to missing fragment"),
3694 	    IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3695 				"rx frames dropped due to non-sequential fragment"),
3696 	    IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3697 				"rx frames dropped due to unmatched 1st frame"),
3698 	    IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3699 				"rx frames dropped due to uncompleted frame"),
3700 	    IPW2100_ORD(STAT_RX_ICV_ERRORS,
3701 				"ICV errors during decryption"),
3702 	    IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3703 	    IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3704 	    IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3705 				"poll response timeouts"),
3706 	    IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3707 				"timeouts waiting for last {broad,multi}cast pkt"),
3708 	    IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3709 	    IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3710 	    IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3711 	    IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3712 	    IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3713 				"current calculation of % missed beacons"),
3714 	    IPW2100_ORD(STAT_PERCENT_RETRIES,
3715 				"current calculation of % missed tx retries"),
3716 	    IPW2100_ORD(ASSOCIATED_AP_PTR,
3717 				"0 if not associated, else pointer to AP table entry"),
3718 	    IPW2100_ORD(AVAILABLE_AP_CNT,
3719 				"AP's described in the AP table"),
3720 	    IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3721 	    IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3722 	    IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3723 	    IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3724 				"failures due to response fail"),
3725 	    IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3726 	    IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3727 	    IPW2100_ORD(STAT_ROAM_INHIBIT,
3728 				"times roaming was inhibited due to activity"),
3729 	    IPW2100_ORD(RSSI_AT_ASSN,
3730 				"RSSI of associated AP at time of association"),
3731 	    IPW2100_ORD(STAT_ASSN_CAUSE1,
3732 				"reassociation: no probe response or TX on hop"),
3733 	    IPW2100_ORD(STAT_ASSN_CAUSE2,
3734 				"reassociation: poor tx/rx quality"),
3735 	    IPW2100_ORD(STAT_ASSN_CAUSE3,
3736 				"reassociation: tx/rx quality (excessive AP load"),
3737 	    IPW2100_ORD(STAT_ASSN_CAUSE4,
3738 				"reassociation: AP RSSI level"),
3739 	    IPW2100_ORD(STAT_ASSN_CAUSE5,
3740 				"reassociations due to load leveling"),
3741 	    IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3742 	    IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3743 				"times authentication response failed"),
3744 	    IPW2100_ORD(STATION_TABLE_CNT,
3745 				"entries in association table"),
3746 	    IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3747 	    IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3748 	    IPW2100_ORD(COUNTRY_CODE,
3749 				"IEEE country code as recv'd from beacon"),
3750 	    IPW2100_ORD(COUNTRY_CHANNELS,
3751 				"channels supported by country"),
3752 	    IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3753 	    IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3754 	    IPW2100_ORD(ANTENNA_DIVERSITY,
3755 				"TRUE if antenna diversity is disabled"),
3756 	    IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3757 	    IPW2100_ORD(OUR_FREQ,
3758 				"current radio freq lower digits - channel ID"),
3759 	    IPW2100_ORD(RTC_TIME, "current RTC time"),
3760 	    IPW2100_ORD(PORT_TYPE, "operating mode"),
3761 	    IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3762 	    IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3763 	    IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3764 	    IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3765 	    IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3766 	    IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3767 	    IPW2100_ORD(CAPABILITIES,
3768 				"Management frame capability field"),
3769 	    IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3770 	    IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3771 	    IPW2100_ORD(RTS_THRESHOLD,
3772 				"Min packet length for RTS handshaking"),
3773 	    IPW2100_ORD(INT_MODE, "International mode"),
3774 	    IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3775 				"protocol frag threshold"),
3776 	    IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3777 				"EEPROM offset in SRAM"),
3778 	    IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3779 				"EEPROM size in SRAM"),
3780 	    IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3781 	    IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3782 				"EEPROM IBSS 11b channel set"),
3783 	    IPW2100_ORD(MAC_VERSION, "MAC Version"),
3784 	    IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3785 	    IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3786 	    IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3787 	    IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3788 
3789 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3790 			      char *buf)
3791 {
3792 	int i;
3793 	struct ipw2100_priv *priv = dev_get_drvdata(d);
3794 	struct net_device *dev = priv->net_dev;
3795 	char *out = buf;
3796 	u32 val = 0;
3797 
3798 	out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3799 
3800 	for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3801 		read_register(dev, hw_data[i].addr, &val);
3802 		out += sprintf(out, "%30s [%08X] : %08X\n",
3803 			       hw_data[i].name, hw_data[i].addr, val);
3804 	}
3805 
3806 	return out - buf;
3807 }
3808 
3809 static DEVICE_ATTR(registers, 0444, show_registers, NULL);
3810 
3811 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3812 			     char *buf)
3813 {
3814 	struct ipw2100_priv *priv = dev_get_drvdata(d);
3815 	struct net_device *dev = priv->net_dev;
3816 	char *out = buf;
3817 	int i;
3818 
3819 	out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3820 
3821 	for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3822 		u8 tmp8;
3823 		u16 tmp16;
3824 		u32 tmp32;
3825 
3826 		switch (nic_data[i].size) {
3827 		case 1:
3828 			read_nic_byte(dev, nic_data[i].addr, &tmp8);
3829 			out += sprintf(out, "%30s [%08X] : %02X\n",
3830 				       nic_data[i].name, nic_data[i].addr,
3831 				       tmp8);
3832 			break;
3833 		case 2:
3834 			read_nic_word(dev, nic_data[i].addr, &tmp16);
3835 			out += sprintf(out, "%30s [%08X] : %04X\n",
3836 				       nic_data[i].name, nic_data[i].addr,
3837 				       tmp16);
3838 			break;
3839 		case 4:
3840 			read_nic_dword(dev, nic_data[i].addr, &tmp32);
3841 			out += sprintf(out, "%30s [%08X] : %08X\n",
3842 				       nic_data[i].name, nic_data[i].addr,
3843 				       tmp32);
3844 			break;
3845 		}
3846 	}
3847 	return out - buf;
3848 }
3849 
3850 static DEVICE_ATTR(hardware, 0444, show_hardware, NULL);
3851 
3852 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3853 			   char *buf)
3854 {
3855 	struct ipw2100_priv *priv = dev_get_drvdata(d);
3856 	struct net_device *dev = priv->net_dev;
3857 	static unsigned long loop = 0;
3858 	int len = 0;
3859 	u32 buffer[4];
3860 	int i;
3861 	char line[81];
3862 
3863 	if (loop >= 0x30000)
3864 		loop = 0;
3865 
3866 	/* sysfs provides us PAGE_SIZE buffer */
3867 	while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3868 
3869 		if (priv->snapshot[0])
3870 			for (i = 0; i < 4; i++)
3871 				buffer[i] =
3872 				    *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3873 		else
3874 			for (i = 0; i < 4; i++)
3875 				read_nic_dword(dev, loop + i * 4, &buffer[i]);
3876 
3877 		if (priv->dump_raw)
3878 			len += sprintf(buf + len,
3879 				       "%c%c%c%c"
3880 				       "%c%c%c%c"
3881 				       "%c%c%c%c"
3882 				       "%c%c%c%c",
3883 				       ((u8 *) buffer)[0x0],
3884 				       ((u8 *) buffer)[0x1],
3885 				       ((u8 *) buffer)[0x2],
3886 				       ((u8 *) buffer)[0x3],
3887 				       ((u8 *) buffer)[0x4],
3888 				       ((u8 *) buffer)[0x5],
3889 				       ((u8 *) buffer)[0x6],
3890 				       ((u8 *) buffer)[0x7],
3891 				       ((u8 *) buffer)[0x8],
3892 				       ((u8 *) buffer)[0x9],
3893 				       ((u8 *) buffer)[0xa],
3894 				       ((u8 *) buffer)[0xb],
3895 				       ((u8 *) buffer)[0xc],
3896 				       ((u8 *) buffer)[0xd],
3897 				       ((u8 *) buffer)[0xe],
3898 				       ((u8 *) buffer)[0xf]);
3899 		else
3900 			len += sprintf(buf + len, "%s\n",
3901 				       snprint_line(line, sizeof(line),
3902 						    (u8 *) buffer, 16, loop));
3903 		loop += 16;
3904 	}
3905 
3906 	return len;
3907 }
3908 
3909 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3910 			    const char *buf, size_t count)
3911 {
3912 	struct ipw2100_priv *priv = dev_get_drvdata(d);
3913 	struct net_device *dev = priv->net_dev;
3914 	const char *p = buf;
3915 
3916 	(void)dev;		/* kill unused-var warning for debug-only code */
3917 
3918 	if (count < 1)
3919 		return count;
3920 
3921 	if (p[0] == '1' ||
3922 	    (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3923 		IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3924 			       dev->name);
3925 		priv->dump_raw = 1;
3926 
3927 	} else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3928 				   tolower(p[1]) == 'f')) {
3929 		IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3930 			       dev->name);
3931 		priv->dump_raw = 0;
3932 
3933 	} else if (tolower(p[0]) == 'r') {
3934 		IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3935 		ipw2100_snapshot_free(priv);
3936 
3937 	} else
3938 		IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3939 			       "reset = clear memory snapshot\n", dev->name);
3940 
3941 	return count;
3942 }
3943 
3944 static DEVICE_ATTR(memory, 0644, show_memory, store_memory);
3945 
3946 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3947 			     char *buf)
3948 {
3949 	struct ipw2100_priv *priv = dev_get_drvdata(d);
3950 	u32 val = 0;
3951 	int len = 0;
3952 	u32 val_len;
3953 	static int loop = 0;
3954 
3955 	if (priv->status & STATUS_RF_KILL_MASK)
3956 		return 0;
3957 
3958 	if (loop >= ARRAY_SIZE(ord_data))
3959 		loop = 0;
3960 
3961 	/* sysfs provides us PAGE_SIZE buffer */
3962 	while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
3963 		val_len = sizeof(u32);
3964 
3965 		if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3966 					&val_len))
3967 			len += sprintf(buf + len, "[0x%02X] = ERROR    %s\n",
3968 				       ord_data[loop].index,
3969 				       ord_data[loop].desc);
3970 		else
3971 			len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3972 				       ord_data[loop].index, val,
3973 				       ord_data[loop].desc);
3974 		loop++;
3975 	}
3976 
3977 	return len;
3978 }
3979 
3980 static DEVICE_ATTR(ordinals, 0444, show_ordinals, NULL);
3981 
3982 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
3983 			  char *buf)
3984 {
3985 	struct ipw2100_priv *priv = dev_get_drvdata(d);
3986 	char *out = buf;
3987 
3988 	out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
3989 		       priv->interrupts, priv->tx_interrupts,
3990 		       priv->rx_interrupts, priv->inta_other);
3991 	out += sprintf(out, "firmware resets: %d\n", priv->resets);
3992 	out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
3993 #ifdef CONFIG_IPW2100_DEBUG
3994 	out += sprintf(out, "packet mismatch image: %s\n",
3995 		       priv->snapshot[0] ? "YES" : "NO");
3996 #endif
3997 
3998 	return out - buf;
3999 }
4000 
4001 static DEVICE_ATTR(stats, 0444, show_stats, NULL);
4002 
4003 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
4004 {
4005 	int err;
4006 
4007 	if (mode == priv->ieee->iw_mode)
4008 		return 0;
4009 
4010 	err = ipw2100_disable_adapter(priv);
4011 	if (err) {
4012 		printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
4013 		       priv->net_dev->name, err);
4014 		return err;
4015 	}
4016 
4017 	switch (mode) {
4018 	case IW_MODE_INFRA:
4019 		priv->net_dev->type = ARPHRD_ETHER;
4020 		break;
4021 	case IW_MODE_ADHOC:
4022 		priv->net_dev->type = ARPHRD_ETHER;
4023 		break;
4024 #ifdef CONFIG_IPW2100_MONITOR
4025 	case IW_MODE_MONITOR:
4026 		priv->last_mode = priv->ieee->iw_mode;
4027 		priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
4028 		break;
4029 #endif				/* CONFIG_IPW2100_MONITOR */
4030 	}
4031 
4032 	priv->ieee->iw_mode = mode;
4033 
4034 #ifdef CONFIG_PM
4035 	/* Indicate ipw2100_download_firmware download firmware
4036 	 * from disk instead of memory. */
4037 	ipw2100_firmware.version = 0;
4038 #endif
4039 
4040 	printk(KERN_INFO "%s: Resetting on mode change.\n", priv->net_dev->name);
4041 	priv->reset_backoff = 0;
4042 	schedule_reset(priv);
4043 
4044 	return 0;
4045 }
4046 
4047 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
4048 			      char *buf)
4049 {
4050 	struct ipw2100_priv *priv = dev_get_drvdata(d);
4051 	int len = 0;
4052 
4053 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
4054 
4055 	if (priv->status & STATUS_ASSOCIATED)
4056 		len += sprintf(buf + len, "connected: %llu\n",
4057 			       ktime_get_boottime_seconds() - priv->connect_start);
4058 	else
4059 		len += sprintf(buf + len, "not connected\n");
4060 
4061 	DUMP_VAR(ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx], "p");
4062 	DUMP_VAR(status, "08lx");
4063 	DUMP_VAR(config, "08lx");
4064 	DUMP_VAR(capability, "08lx");
4065 
4066 	len +=
4067 	    sprintf(buf + len, "last_rtc: %lu\n",
4068 		    (unsigned long)priv->last_rtc);
4069 
4070 	DUMP_VAR(fatal_error, "d");
4071 	DUMP_VAR(stop_hang_check, "d");
4072 	DUMP_VAR(stop_rf_kill, "d");
4073 	DUMP_VAR(messages_sent, "d");
4074 
4075 	DUMP_VAR(tx_pend_stat.value, "d");
4076 	DUMP_VAR(tx_pend_stat.hi, "d");
4077 
4078 	DUMP_VAR(tx_free_stat.value, "d");
4079 	DUMP_VAR(tx_free_stat.lo, "d");
4080 
4081 	DUMP_VAR(msg_free_stat.value, "d");
4082 	DUMP_VAR(msg_free_stat.lo, "d");
4083 
4084 	DUMP_VAR(msg_pend_stat.value, "d");
4085 	DUMP_VAR(msg_pend_stat.hi, "d");
4086 
4087 	DUMP_VAR(fw_pend_stat.value, "d");
4088 	DUMP_VAR(fw_pend_stat.hi, "d");
4089 
4090 	DUMP_VAR(txq_stat.value, "d");
4091 	DUMP_VAR(txq_stat.lo, "d");
4092 
4093 	DUMP_VAR(ieee->scans, "d");
4094 	DUMP_VAR(reset_backoff, "lld");
4095 
4096 	return len;
4097 }
4098 
4099 static DEVICE_ATTR(internals, 0444, show_internals, NULL);
4100 
4101 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4102 			    char *buf)
4103 {
4104 	struct ipw2100_priv *priv = dev_get_drvdata(d);
4105 	char essid[IW_ESSID_MAX_SIZE + 1];
4106 	u8 bssid[ETH_ALEN];
4107 	u32 chan = 0;
4108 	char *out = buf;
4109 	unsigned int length;
4110 	int ret;
4111 
4112 	if (priv->status & STATUS_RF_KILL_MASK)
4113 		return 0;
4114 
4115 	memset(essid, 0, sizeof(essid));
4116 	memset(bssid, 0, sizeof(bssid));
4117 
4118 	length = IW_ESSID_MAX_SIZE;
4119 	ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4120 	if (ret)
4121 		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4122 			       __LINE__);
4123 
4124 	length = sizeof(bssid);
4125 	ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4126 				  bssid, &length);
4127 	if (ret)
4128 		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4129 			       __LINE__);
4130 
4131 	length = sizeof(u32);
4132 	ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4133 	if (ret)
4134 		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4135 			       __LINE__);
4136 
4137 	out += sprintf(out, "ESSID: %s\n", essid);
4138 	out += sprintf(out, "BSSID:   %pM\n", bssid);
4139 	out += sprintf(out, "Channel: %d\n", chan);
4140 
4141 	return out - buf;
4142 }
4143 
4144 static DEVICE_ATTR(bssinfo, 0444, show_bssinfo, NULL);
4145 
4146 #ifdef CONFIG_IPW2100_DEBUG
4147 static ssize_t debug_level_show(struct device_driver *d, char *buf)
4148 {
4149 	return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4150 }
4151 
4152 static ssize_t debug_level_store(struct device_driver *d,
4153 				 const char *buf, size_t count)
4154 {
4155 	u32 val;
4156 	int ret;
4157 
4158 	ret = kstrtou32(buf, 0, &val);
4159 	if (ret)
4160 		IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4161 	else
4162 		ipw2100_debug_level = val;
4163 
4164 	return strnlen(buf, count);
4165 }
4166 static DRIVER_ATTR_RW(debug_level);
4167 #endif				/* CONFIG_IPW2100_DEBUG */
4168 
4169 static ssize_t show_fatal_error(struct device *d,
4170 				struct device_attribute *attr, char *buf)
4171 {
4172 	struct ipw2100_priv *priv = dev_get_drvdata(d);
4173 	char *out = buf;
4174 	int i;
4175 
4176 	if (priv->fatal_error)
4177 		out += sprintf(out, "0x%08X\n", priv->fatal_error);
4178 	else
4179 		out += sprintf(out, "0\n");
4180 
4181 	for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4182 		if (!priv->fatal_errors[(priv->fatal_index - i) %
4183 					IPW2100_ERROR_QUEUE])
4184 			continue;
4185 
4186 		out += sprintf(out, "%d. 0x%08X\n", i,
4187 			       priv->fatal_errors[(priv->fatal_index - i) %
4188 						  IPW2100_ERROR_QUEUE]);
4189 	}
4190 
4191 	return out - buf;
4192 }
4193 
4194 static ssize_t store_fatal_error(struct device *d,
4195 				 struct device_attribute *attr, const char *buf,
4196 				 size_t count)
4197 {
4198 	struct ipw2100_priv *priv = dev_get_drvdata(d);
4199 	schedule_reset(priv);
4200 	return count;
4201 }
4202 
4203 static DEVICE_ATTR(fatal_error, 0644, show_fatal_error, store_fatal_error);
4204 
4205 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4206 			     char *buf)
4207 {
4208 	struct ipw2100_priv *priv = dev_get_drvdata(d);
4209 	return sprintf(buf, "%d\n", priv->ieee->scan_age);
4210 }
4211 
4212 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4213 			      const char *buf, size_t count)
4214 {
4215 	struct ipw2100_priv *priv = dev_get_drvdata(d);
4216 	struct net_device *dev = priv->net_dev;
4217 	unsigned long val;
4218 	int ret;
4219 
4220 	(void)dev;		/* kill unused-var warning for debug-only code */
4221 
4222 	IPW_DEBUG_INFO("enter\n");
4223 
4224 	ret = kstrtoul(buf, 0, &val);
4225 	if (ret) {
4226 		IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4227 	} else {
4228 		priv->ieee->scan_age = val;
4229 		IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4230 	}
4231 
4232 	IPW_DEBUG_INFO("exit\n");
4233 	return strnlen(buf, count);
4234 }
4235 
4236 static DEVICE_ATTR(scan_age, 0644, show_scan_age, store_scan_age);
4237 
4238 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4239 			    char *buf)
4240 {
4241 	/* 0 - RF kill not enabled
4242 	   1 - SW based RF kill active (sysfs)
4243 	   2 - HW based RF kill active
4244 	   3 - Both HW and SW baed RF kill active */
4245 	struct ipw2100_priv *priv = dev_get_drvdata(d);
4246 	int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4247 	    (rf_kill_active(priv) ? 0x2 : 0x0);
4248 	return sprintf(buf, "%i\n", val);
4249 }
4250 
4251 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4252 {
4253 	if ((disable_radio ? 1 : 0) ==
4254 	    (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4255 		return 0;
4256 
4257 	IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
4258 			  disable_radio ? "OFF" : "ON");
4259 
4260 	mutex_lock(&priv->action_mutex);
4261 
4262 	if (disable_radio) {
4263 		priv->status |= STATUS_RF_KILL_SW;
4264 		ipw2100_down(priv);
4265 	} else {
4266 		priv->status &= ~STATUS_RF_KILL_SW;
4267 		if (rf_kill_active(priv)) {
4268 			IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4269 					  "disabled by HW switch\n");
4270 			/* Make sure the RF_KILL check timer is running */
4271 			priv->stop_rf_kill = 0;
4272 			mod_delayed_work(system_wq, &priv->rf_kill,
4273 					 round_jiffies_relative(HZ));
4274 		} else
4275 			schedule_reset(priv);
4276 	}
4277 
4278 	mutex_unlock(&priv->action_mutex);
4279 	return 1;
4280 }
4281 
4282 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4283 			     const char *buf, size_t count)
4284 {
4285 	struct ipw2100_priv *priv = dev_get_drvdata(d);
4286 	ipw_radio_kill_sw(priv, buf[0] == '1');
4287 	return count;
4288 }
4289 
4290 static DEVICE_ATTR(rf_kill, 0644, show_rf_kill, store_rf_kill);
4291 
4292 static struct attribute *ipw2100_sysfs_entries[] = {
4293 	&dev_attr_hardware.attr,
4294 	&dev_attr_registers.attr,
4295 	&dev_attr_ordinals.attr,
4296 	&dev_attr_pci.attr,
4297 	&dev_attr_stats.attr,
4298 	&dev_attr_internals.attr,
4299 	&dev_attr_bssinfo.attr,
4300 	&dev_attr_memory.attr,
4301 	&dev_attr_scan_age.attr,
4302 	&dev_attr_fatal_error.attr,
4303 	&dev_attr_rf_kill.attr,
4304 	&dev_attr_cfg.attr,
4305 	&dev_attr_status.attr,
4306 	&dev_attr_capability.attr,
4307 	NULL,
4308 };
4309 
4310 static const struct attribute_group ipw2100_attribute_group = {
4311 	.attrs = ipw2100_sysfs_entries,
4312 };
4313 
4314 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4315 {
4316 	struct ipw2100_status_queue *q = &priv->status_queue;
4317 
4318 	IPW_DEBUG_INFO("enter\n");
4319 
4320 	q->size = entries * sizeof(struct ipw2100_status);
4321 	q->drv = dma_alloc_coherent(&priv->pci_dev->dev, q->size, &q->nic,
4322 				    GFP_KERNEL);
4323 	if (!q->drv) {
4324 		IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4325 		return -ENOMEM;
4326 	}
4327 
4328 	IPW_DEBUG_INFO("exit\n");
4329 
4330 	return 0;
4331 }
4332 
4333 static void status_queue_free(struct ipw2100_priv *priv)
4334 {
4335 	IPW_DEBUG_INFO("enter\n");
4336 
4337 	if (priv->status_queue.drv) {
4338 		dma_free_coherent(&priv->pci_dev->dev,
4339 				  priv->status_queue.size,
4340 				  priv->status_queue.drv,
4341 				  priv->status_queue.nic);
4342 		priv->status_queue.drv = NULL;
4343 	}
4344 
4345 	IPW_DEBUG_INFO("exit\n");
4346 }
4347 
4348 static int bd_queue_allocate(struct ipw2100_priv *priv,
4349 			     struct ipw2100_bd_queue *q, int entries)
4350 {
4351 	IPW_DEBUG_INFO("enter\n");
4352 
4353 	memset(q, 0, sizeof(struct ipw2100_bd_queue));
4354 
4355 	q->entries = entries;
4356 	q->size = entries * sizeof(struct ipw2100_bd);
4357 	q->drv = dma_alloc_coherent(&priv->pci_dev->dev, q->size, &q->nic,
4358 				    GFP_KERNEL);
4359 	if (!q->drv) {
4360 		IPW_DEBUG_INFO
4361 		    ("can't allocate shared memory for buffer descriptors\n");
4362 		return -ENOMEM;
4363 	}
4364 
4365 	IPW_DEBUG_INFO("exit\n");
4366 
4367 	return 0;
4368 }
4369 
4370 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4371 {
4372 	IPW_DEBUG_INFO("enter\n");
4373 
4374 	if (!q)
4375 		return;
4376 
4377 	if (q->drv) {
4378 		dma_free_coherent(&priv->pci_dev->dev, q->size, q->drv,
4379 				  q->nic);
4380 		q->drv = NULL;
4381 	}
4382 
4383 	IPW_DEBUG_INFO("exit\n");
4384 }
4385 
4386 static void bd_queue_initialize(struct ipw2100_priv *priv,
4387 				struct ipw2100_bd_queue *q, u32 base, u32 size,
4388 				u32 r, u32 w)
4389 {
4390 	IPW_DEBUG_INFO("enter\n");
4391 
4392 	IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4393 		       (u32) q->nic);
4394 
4395 	write_register(priv->net_dev, base, q->nic);
4396 	write_register(priv->net_dev, size, q->entries);
4397 	write_register(priv->net_dev, r, q->oldest);
4398 	write_register(priv->net_dev, w, q->next);
4399 
4400 	IPW_DEBUG_INFO("exit\n");
4401 }
4402 
4403 static void ipw2100_kill_works(struct ipw2100_priv *priv)
4404 {
4405 	priv->stop_rf_kill = 1;
4406 	priv->stop_hang_check = 1;
4407 	cancel_delayed_work_sync(&priv->reset_work);
4408 	cancel_delayed_work_sync(&priv->security_work);
4409 	cancel_delayed_work_sync(&priv->wx_event_work);
4410 	cancel_delayed_work_sync(&priv->hang_check);
4411 	cancel_delayed_work_sync(&priv->rf_kill);
4412 	cancel_delayed_work_sync(&priv->scan_event);
4413 }
4414 
4415 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4416 {
4417 	int i, j, err;
4418 	void *v;
4419 	dma_addr_t p;
4420 
4421 	IPW_DEBUG_INFO("enter\n");
4422 
4423 	err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4424 	if (err) {
4425 		IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4426 				priv->net_dev->name);
4427 		return err;
4428 	}
4429 
4430 	priv->tx_buffers = kmalloc_array(TX_PENDED_QUEUE_LENGTH,
4431 					 sizeof(struct ipw2100_tx_packet),
4432 					 GFP_KERNEL);
4433 	if (!priv->tx_buffers) {
4434 		bd_queue_free(priv, &priv->tx_queue);
4435 		return -ENOMEM;
4436 	}
4437 
4438 	for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4439 		v = dma_alloc_coherent(&priv->pci_dev->dev,
4440 				       sizeof(struct ipw2100_data_header), &p,
4441 				       GFP_KERNEL);
4442 		if (!v) {
4443 			printk(KERN_ERR DRV_NAME
4444 			       ": %s: PCI alloc failed for tx " "buffers.\n",
4445 			       priv->net_dev->name);
4446 			err = -ENOMEM;
4447 			break;
4448 		}
4449 
4450 		priv->tx_buffers[i].type = DATA;
4451 		priv->tx_buffers[i].info.d_struct.data =
4452 		    (struct ipw2100_data_header *)v;
4453 		priv->tx_buffers[i].info.d_struct.data_phys = p;
4454 		priv->tx_buffers[i].info.d_struct.txb = NULL;
4455 	}
4456 
4457 	if (i == TX_PENDED_QUEUE_LENGTH)
4458 		return 0;
4459 
4460 	for (j = 0; j < i; j++) {
4461 		dma_free_coherent(&priv->pci_dev->dev,
4462 				  sizeof(struct ipw2100_data_header),
4463 				  priv->tx_buffers[j].info.d_struct.data,
4464 				  priv->tx_buffers[j].info.d_struct.data_phys);
4465 	}
4466 
4467 	kfree(priv->tx_buffers);
4468 	priv->tx_buffers = NULL;
4469 
4470 	return err;
4471 }
4472 
4473 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4474 {
4475 	int i;
4476 
4477 	IPW_DEBUG_INFO("enter\n");
4478 
4479 	/*
4480 	 * reinitialize packet info lists
4481 	 */
4482 	INIT_LIST_HEAD(&priv->fw_pend_list);
4483 	INIT_STAT(&priv->fw_pend_stat);
4484 
4485 	/*
4486 	 * reinitialize lists
4487 	 */
4488 	INIT_LIST_HEAD(&priv->tx_pend_list);
4489 	INIT_LIST_HEAD(&priv->tx_free_list);
4490 	INIT_STAT(&priv->tx_pend_stat);
4491 	INIT_STAT(&priv->tx_free_stat);
4492 
4493 	for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4494 		/* We simply drop any SKBs that have been queued for
4495 		 * transmit */
4496 		if (priv->tx_buffers[i].info.d_struct.txb) {
4497 			libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4498 					   txb);
4499 			priv->tx_buffers[i].info.d_struct.txb = NULL;
4500 		}
4501 
4502 		list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4503 	}
4504 
4505 	SET_STAT(&priv->tx_free_stat, i);
4506 
4507 	priv->tx_queue.oldest = 0;
4508 	priv->tx_queue.available = priv->tx_queue.entries;
4509 	priv->tx_queue.next = 0;
4510 	INIT_STAT(&priv->txq_stat);
4511 	SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4512 
4513 	bd_queue_initialize(priv, &priv->tx_queue,
4514 			    IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4515 			    IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4516 			    IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4517 			    IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4518 
4519 	IPW_DEBUG_INFO("exit\n");
4520 
4521 }
4522 
4523 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4524 {
4525 	int i;
4526 
4527 	IPW_DEBUG_INFO("enter\n");
4528 
4529 	bd_queue_free(priv, &priv->tx_queue);
4530 
4531 	if (!priv->tx_buffers)
4532 		return;
4533 
4534 	for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4535 		if (priv->tx_buffers[i].info.d_struct.txb) {
4536 			libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4537 					   txb);
4538 			priv->tx_buffers[i].info.d_struct.txb = NULL;
4539 		}
4540 		if (priv->tx_buffers[i].info.d_struct.data)
4541 			dma_free_coherent(&priv->pci_dev->dev,
4542 					  sizeof(struct ipw2100_data_header),
4543 					  priv->tx_buffers[i].info.d_struct.data,
4544 					  priv->tx_buffers[i].info.d_struct.data_phys);
4545 	}
4546 
4547 	kfree(priv->tx_buffers);
4548 	priv->tx_buffers = NULL;
4549 
4550 	IPW_DEBUG_INFO("exit\n");
4551 }
4552 
4553 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4554 {
4555 	int i, j, err = -EINVAL;
4556 
4557 	IPW_DEBUG_INFO("enter\n");
4558 
4559 	err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4560 	if (err) {
4561 		IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4562 		return err;
4563 	}
4564 
4565 	err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4566 	if (err) {
4567 		IPW_DEBUG_INFO("failed status_queue_allocate\n");
4568 		bd_queue_free(priv, &priv->rx_queue);
4569 		return err;
4570 	}
4571 
4572 	/*
4573 	 * allocate packets
4574 	 */
4575 	priv->rx_buffers = kmalloc_array(RX_QUEUE_LENGTH,
4576 					 sizeof(struct ipw2100_rx_packet),
4577 					 GFP_KERNEL);
4578 	if (!priv->rx_buffers) {
4579 		IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4580 
4581 		bd_queue_free(priv, &priv->rx_queue);
4582 
4583 		status_queue_free(priv);
4584 
4585 		return -ENOMEM;
4586 	}
4587 
4588 	for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4589 		struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4590 
4591 		err = ipw2100_alloc_skb(priv, packet);
4592 		if (unlikely(err)) {
4593 			err = -ENOMEM;
4594 			break;
4595 		}
4596 
4597 		/* The BD holds the cache aligned address */
4598 		priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4599 		priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4600 		priv->status_queue.drv[i].status_fields = 0;
4601 	}
4602 
4603 	if (i == RX_QUEUE_LENGTH)
4604 		return 0;
4605 
4606 	for (j = 0; j < i; j++) {
4607 		dma_unmap_single(&priv->pci_dev->dev,
4608 				 priv->rx_buffers[j].dma_addr,
4609 				 sizeof(struct ipw2100_rx_packet),
4610 				 DMA_FROM_DEVICE);
4611 		dev_kfree_skb(priv->rx_buffers[j].skb);
4612 	}
4613 
4614 	kfree(priv->rx_buffers);
4615 	priv->rx_buffers = NULL;
4616 
4617 	bd_queue_free(priv, &priv->rx_queue);
4618 
4619 	status_queue_free(priv);
4620 
4621 	return err;
4622 }
4623 
4624 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4625 {
4626 	IPW_DEBUG_INFO("enter\n");
4627 
4628 	priv->rx_queue.oldest = 0;
4629 	priv->rx_queue.available = priv->rx_queue.entries - 1;
4630 	priv->rx_queue.next = priv->rx_queue.entries - 1;
4631 
4632 	INIT_STAT(&priv->rxq_stat);
4633 	SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4634 
4635 	bd_queue_initialize(priv, &priv->rx_queue,
4636 			    IPW_MEM_HOST_SHARED_RX_BD_BASE,
4637 			    IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4638 			    IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4639 			    IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4640 
4641 	/* set up the status queue */
4642 	write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4643 		       priv->status_queue.nic);
4644 
4645 	IPW_DEBUG_INFO("exit\n");
4646 }
4647 
4648 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4649 {
4650 	int i;
4651 
4652 	IPW_DEBUG_INFO("enter\n");
4653 
4654 	bd_queue_free(priv, &priv->rx_queue);
4655 	status_queue_free(priv);
4656 
4657 	if (!priv->rx_buffers)
4658 		return;
4659 
4660 	for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4661 		if (priv->rx_buffers[i].rxp) {
4662 			dma_unmap_single(&priv->pci_dev->dev,
4663 					 priv->rx_buffers[i].dma_addr,
4664 					 sizeof(struct ipw2100_rx),
4665 					 DMA_FROM_DEVICE);
4666 			dev_kfree_skb(priv->rx_buffers[i].skb);
4667 		}
4668 	}
4669 
4670 	kfree(priv->rx_buffers);
4671 	priv->rx_buffers = NULL;
4672 
4673 	IPW_DEBUG_INFO("exit\n");
4674 }
4675 
4676 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4677 {
4678 	u32 length = ETH_ALEN;
4679 	u8 addr[ETH_ALEN];
4680 
4681 	int err;
4682 
4683 	err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length);
4684 	if (err) {
4685 		IPW_DEBUG_INFO("MAC address read failed\n");
4686 		return -EIO;
4687 	}
4688 
4689 	memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN);
4690 	IPW_DEBUG_INFO("card MAC is %pM\n", priv->net_dev->dev_addr);
4691 
4692 	return 0;
4693 }
4694 
4695 /********************************************************************
4696  *
4697  * Firmware Commands
4698  *
4699  ********************************************************************/
4700 
4701 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4702 {
4703 	struct host_command cmd = {
4704 		.host_command = ADAPTER_ADDRESS,
4705 		.host_command_sequence = 0,
4706 		.host_command_length = ETH_ALEN
4707 	};
4708 	int err;
4709 
4710 	IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4711 
4712 	IPW_DEBUG_INFO("enter\n");
4713 
4714 	if (priv->config & CFG_CUSTOM_MAC) {
4715 		memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4716 		memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4717 	} else
4718 		memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4719 		       ETH_ALEN);
4720 
4721 	err = ipw2100_hw_send_command(priv, &cmd);
4722 
4723 	IPW_DEBUG_INFO("exit\n");
4724 	return err;
4725 }
4726 
4727 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4728 				 int batch_mode)
4729 {
4730 	struct host_command cmd = {
4731 		.host_command = PORT_TYPE,
4732 		.host_command_sequence = 0,
4733 		.host_command_length = sizeof(u32)
4734 	};
4735 	int err;
4736 
4737 	switch (port_type) {
4738 	case IW_MODE_INFRA:
4739 		cmd.host_command_parameters[0] = IPW_BSS;
4740 		break;
4741 	case IW_MODE_ADHOC:
4742 		cmd.host_command_parameters[0] = IPW_IBSS;
4743 		break;
4744 	}
4745 
4746 	IPW_DEBUG_HC("PORT_TYPE: %s\n",
4747 		     port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4748 
4749 	if (!batch_mode) {
4750 		err = ipw2100_disable_adapter(priv);
4751 		if (err) {
4752 			printk(KERN_ERR DRV_NAME
4753 			       ": %s: Could not disable adapter %d\n",
4754 			       priv->net_dev->name, err);
4755 			return err;
4756 		}
4757 	}
4758 
4759 	/* send cmd to firmware */
4760 	err = ipw2100_hw_send_command(priv, &cmd);
4761 
4762 	if (!batch_mode)
4763 		ipw2100_enable_adapter(priv);
4764 
4765 	return err;
4766 }
4767 
4768 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4769 			       int batch_mode)
4770 {
4771 	struct host_command cmd = {
4772 		.host_command = CHANNEL,
4773 		.host_command_sequence = 0,
4774 		.host_command_length = sizeof(u32)
4775 	};
4776 	int err;
4777 
4778 	cmd.host_command_parameters[0] = channel;
4779 
4780 	IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4781 
4782 	/* If BSS then we don't support channel selection */
4783 	if (priv->ieee->iw_mode == IW_MODE_INFRA)
4784 		return 0;
4785 
4786 	if ((channel != 0) &&
4787 	    ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4788 		return -EINVAL;
4789 
4790 	if (!batch_mode) {
4791 		err = ipw2100_disable_adapter(priv);
4792 		if (err)
4793 			return err;
4794 	}
4795 
4796 	err = ipw2100_hw_send_command(priv, &cmd);
4797 	if (err) {
4798 		IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4799 		return err;
4800 	}
4801 
4802 	if (channel)
4803 		priv->config |= CFG_STATIC_CHANNEL;
4804 	else
4805 		priv->config &= ~CFG_STATIC_CHANNEL;
4806 
4807 	priv->channel = channel;
4808 
4809 	if (!batch_mode) {
4810 		err = ipw2100_enable_adapter(priv);
4811 		if (err)
4812 			return err;
4813 	}
4814 
4815 	return 0;
4816 }
4817 
4818 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4819 {
4820 	struct host_command cmd = {
4821 		.host_command = SYSTEM_CONFIG,
4822 		.host_command_sequence = 0,
4823 		.host_command_length = 12,
4824 	};
4825 	u32 ibss_mask, len = sizeof(u32);
4826 	int err;
4827 
4828 	/* Set system configuration */
4829 
4830 	if (!batch_mode) {
4831 		err = ipw2100_disable_adapter(priv);
4832 		if (err)
4833 			return err;
4834 	}
4835 
4836 	if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4837 		cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4838 
4839 	cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4840 	    IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4841 
4842 	if (!(priv->config & CFG_LONG_PREAMBLE))
4843 		cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4844 
4845 	err = ipw2100_get_ordinal(priv,
4846 				  IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4847 				  &ibss_mask, &len);
4848 	if (err)
4849 		ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4850 
4851 	cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4852 	cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4853 
4854 	/* 11b only */
4855 	/*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4856 
4857 	err = ipw2100_hw_send_command(priv, &cmd);
4858 	if (err)
4859 		return err;
4860 
4861 /* If IPv6 is configured in the kernel then we don't want to filter out all
4862  * of the multicast packets as IPv6 needs some. */
4863 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4864 	cmd.host_command = ADD_MULTICAST;
4865 	cmd.host_command_sequence = 0;
4866 	cmd.host_command_length = 0;
4867 
4868 	ipw2100_hw_send_command(priv, &cmd);
4869 #endif
4870 	if (!batch_mode) {
4871 		err = ipw2100_enable_adapter(priv);
4872 		if (err)
4873 			return err;
4874 	}
4875 
4876 	return 0;
4877 }
4878 
4879 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4880 				int batch_mode)
4881 {
4882 	struct host_command cmd = {
4883 		.host_command = BASIC_TX_RATES,
4884 		.host_command_sequence = 0,
4885 		.host_command_length = 4
4886 	};
4887 	int err;
4888 
4889 	cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4890 
4891 	if (!batch_mode) {
4892 		err = ipw2100_disable_adapter(priv);
4893 		if (err)
4894 			return err;
4895 	}
4896 
4897 	/* Set BASIC TX Rate first */
4898 	ipw2100_hw_send_command(priv, &cmd);
4899 
4900 	/* Set TX Rate */
4901 	cmd.host_command = TX_RATES;
4902 	ipw2100_hw_send_command(priv, &cmd);
4903 
4904 	/* Set MSDU TX Rate */
4905 	cmd.host_command = MSDU_TX_RATES;
4906 	ipw2100_hw_send_command(priv, &cmd);
4907 
4908 	if (!batch_mode) {
4909 		err = ipw2100_enable_adapter(priv);
4910 		if (err)
4911 			return err;
4912 	}
4913 
4914 	priv->tx_rates = rate;
4915 
4916 	return 0;
4917 }
4918 
4919 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4920 {
4921 	struct host_command cmd = {
4922 		.host_command = POWER_MODE,
4923 		.host_command_sequence = 0,
4924 		.host_command_length = 4
4925 	};
4926 	int err;
4927 
4928 	cmd.host_command_parameters[0] = power_level;
4929 
4930 	err = ipw2100_hw_send_command(priv, &cmd);
4931 	if (err)
4932 		return err;
4933 
4934 	if (power_level == IPW_POWER_MODE_CAM)
4935 		priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4936 	else
4937 		priv->power_mode = IPW_POWER_ENABLED | power_level;
4938 
4939 #ifdef IPW2100_TX_POWER
4940 	if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4941 		/* Set beacon interval */
4942 		cmd.host_command = TX_POWER_INDEX;
4943 		cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4944 
4945 		err = ipw2100_hw_send_command(priv, &cmd);
4946 		if (err)
4947 			return err;
4948 	}
4949 #endif
4950 
4951 	return 0;
4952 }
4953 
4954 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4955 {
4956 	struct host_command cmd = {
4957 		.host_command = RTS_THRESHOLD,
4958 		.host_command_sequence = 0,
4959 		.host_command_length = 4
4960 	};
4961 	int err;
4962 
4963 	if (threshold & RTS_DISABLED)
4964 		cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4965 	else
4966 		cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4967 
4968 	err = ipw2100_hw_send_command(priv, &cmd);
4969 	if (err)
4970 		return err;
4971 
4972 	priv->rts_threshold = threshold;
4973 
4974 	return 0;
4975 }
4976 
4977 #if 0
4978 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4979 					u32 threshold, int batch_mode)
4980 {
4981 	struct host_command cmd = {
4982 		.host_command = FRAG_THRESHOLD,
4983 		.host_command_sequence = 0,
4984 		.host_command_length = 4,
4985 		.host_command_parameters[0] = 0,
4986 	};
4987 	int err;
4988 
4989 	if (!batch_mode) {
4990 		err = ipw2100_disable_adapter(priv);
4991 		if (err)
4992 			return err;
4993 	}
4994 
4995 	if (threshold == 0)
4996 		threshold = DEFAULT_FRAG_THRESHOLD;
4997 	else {
4998 		threshold = max(threshold, MIN_FRAG_THRESHOLD);
4999 		threshold = min(threshold, MAX_FRAG_THRESHOLD);
5000 	}
5001 
5002 	cmd.host_command_parameters[0] = threshold;
5003 
5004 	IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
5005 
5006 	err = ipw2100_hw_send_command(priv, &cmd);
5007 
5008 	if (!batch_mode)
5009 		ipw2100_enable_adapter(priv);
5010 
5011 	if (!err)
5012 		priv->frag_threshold = threshold;
5013 
5014 	return err;
5015 }
5016 #endif
5017 
5018 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
5019 {
5020 	struct host_command cmd = {
5021 		.host_command = SHORT_RETRY_LIMIT,
5022 		.host_command_sequence = 0,
5023 		.host_command_length = 4
5024 	};
5025 	int err;
5026 
5027 	cmd.host_command_parameters[0] = retry;
5028 
5029 	err = ipw2100_hw_send_command(priv, &cmd);
5030 	if (err)
5031 		return err;
5032 
5033 	priv->short_retry_limit = retry;
5034 
5035 	return 0;
5036 }
5037 
5038 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5039 {
5040 	struct host_command cmd = {
5041 		.host_command = LONG_RETRY_LIMIT,
5042 		.host_command_sequence = 0,
5043 		.host_command_length = 4
5044 	};
5045 	int err;
5046 
5047 	cmd.host_command_parameters[0] = retry;
5048 
5049 	err = ipw2100_hw_send_command(priv, &cmd);
5050 	if (err)
5051 		return err;
5052 
5053 	priv->long_retry_limit = retry;
5054 
5055 	return 0;
5056 }
5057 
5058 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5059 				       int batch_mode)
5060 {
5061 	struct host_command cmd = {
5062 		.host_command = MANDATORY_BSSID,
5063 		.host_command_sequence = 0,
5064 		.host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5065 	};
5066 	int err;
5067 
5068 #ifdef CONFIG_IPW2100_DEBUG
5069 	if (bssid != NULL)
5070 		IPW_DEBUG_HC("MANDATORY_BSSID: %pM\n", bssid);
5071 	else
5072 		IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5073 #endif
5074 	/* if BSSID is empty then we disable mandatory bssid mode */
5075 	if (bssid != NULL)
5076 		memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5077 
5078 	if (!batch_mode) {
5079 		err = ipw2100_disable_adapter(priv);
5080 		if (err)
5081 			return err;
5082 	}
5083 
5084 	err = ipw2100_hw_send_command(priv, &cmd);
5085 
5086 	if (!batch_mode)
5087 		ipw2100_enable_adapter(priv);
5088 
5089 	return err;
5090 }
5091 
5092 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5093 {
5094 	struct host_command cmd = {
5095 		.host_command = DISASSOCIATION_BSSID,
5096 		.host_command_sequence = 0,
5097 		.host_command_length = ETH_ALEN
5098 	};
5099 	int err;
5100 
5101 	IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5102 
5103 	/* The Firmware currently ignores the BSSID and just disassociates from
5104 	 * the currently associated AP -- but in the off chance that a future
5105 	 * firmware does use the BSSID provided here, we go ahead and try and
5106 	 * set it to the currently associated AP's BSSID */
5107 	memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5108 
5109 	err = ipw2100_hw_send_command(priv, &cmd);
5110 
5111 	return err;
5112 }
5113 
5114 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5115 			      struct ipw2100_wpa_assoc_frame *, int)
5116     __attribute__ ((unused));
5117 
5118 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5119 			      struct ipw2100_wpa_assoc_frame *wpa_frame,
5120 			      int batch_mode)
5121 {
5122 	struct host_command cmd = {
5123 		.host_command = SET_WPA_IE,
5124 		.host_command_sequence = 0,
5125 		.host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5126 	};
5127 	int err;
5128 
5129 	IPW_DEBUG_HC("SET_WPA_IE\n");
5130 
5131 	if (!batch_mode) {
5132 		err = ipw2100_disable_adapter(priv);
5133 		if (err)
5134 			return err;
5135 	}
5136 
5137 	memcpy(cmd.host_command_parameters, wpa_frame,
5138 	       sizeof(struct ipw2100_wpa_assoc_frame));
5139 
5140 	err = ipw2100_hw_send_command(priv, &cmd);
5141 
5142 	if (!batch_mode) {
5143 		if (ipw2100_enable_adapter(priv))
5144 			err = -EIO;
5145 	}
5146 
5147 	return err;
5148 }
5149 
5150 struct security_info_params {
5151 	u32 allowed_ciphers;
5152 	u16 version;
5153 	u8 auth_mode;
5154 	u8 replay_counters_number;
5155 	u8 unicast_using_group;
5156 } __packed;
5157 
5158 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5159 					    int auth_mode,
5160 					    int security_level,
5161 					    int unicast_using_group,
5162 					    int batch_mode)
5163 {
5164 	struct host_command cmd = {
5165 		.host_command = SET_SECURITY_INFORMATION,
5166 		.host_command_sequence = 0,
5167 		.host_command_length = sizeof(struct security_info_params)
5168 	};
5169 	struct security_info_params *security =
5170 	    (struct security_info_params *)&cmd.host_command_parameters;
5171 	int err;
5172 	memset(security, 0, sizeof(*security));
5173 
5174 	/* If shared key AP authentication is turned on, then we need to
5175 	 * configure the firmware to try and use it.
5176 	 *
5177 	 * Actual data encryption/decryption is handled by the host. */
5178 	security->auth_mode = auth_mode;
5179 	security->unicast_using_group = unicast_using_group;
5180 
5181 	switch (security_level) {
5182 	default:
5183 	case SEC_LEVEL_0:
5184 		security->allowed_ciphers = IPW_NONE_CIPHER;
5185 		break;
5186 	case SEC_LEVEL_1:
5187 		security->allowed_ciphers = IPW_WEP40_CIPHER |
5188 		    IPW_WEP104_CIPHER;
5189 		break;
5190 	case SEC_LEVEL_2:
5191 		security->allowed_ciphers = IPW_WEP40_CIPHER |
5192 		    IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5193 		break;
5194 	case SEC_LEVEL_2_CKIP:
5195 		security->allowed_ciphers = IPW_WEP40_CIPHER |
5196 		    IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5197 		break;
5198 	case SEC_LEVEL_3:
5199 		security->allowed_ciphers = IPW_WEP40_CIPHER |
5200 		    IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5201 		break;
5202 	}
5203 
5204 	IPW_DEBUG_HC
5205 	    ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5206 	     security->auth_mode, security->allowed_ciphers, security_level);
5207 
5208 	security->replay_counters_number = 0;
5209 
5210 	if (!batch_mode) {
5211 		err = ipw2100_disable_adapter(priv);
5212 		if (err)
5213 			return err;
5214 	}
5215 
5216 	err = ipw2100_hw_send_command(priv, &cmd);
5217 
5218 	if (!batch_mode)
5219 		ipw2100_enable_adapter(priv);
5220 
5221 	return err;
5222 }
5223 
5224 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5225 {
5226 	struct host_command cmd = {
5227 		.host_command = TX_POWER_INDEX,
5228 		.host_command_sequence = 0,
5229 		.host_command_length = 4
5230 	};
5231 	int err = 0;
5232 	u32 tmp = tx_power;
5233 
5234 	if (tx_power != IPW_TX_POWER_DEFAULT)
5235 		tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5236 		      (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5237 
5238 	cmd.host_command_parameters[0] = tmp;
5239 
5240 	if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5241 		err = ipw2100_hw_send_command(priv, &cmd);
5242 	if (!err)
5243 		priv->tx_power = tx_power;
5244 
5245 	return 0;
5246 }
5247 
5248 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5249 					    u32 interval, int batch_mode)
5250 {
5251 	struct host_command cmd = {
5252 		.host_command = BEACON_INTERVAL,
5253 		.host_command_sequence = 0,
5254 		.host_command_length = 4
5255 	};
5256 	int err;
5257 
5258 	cmd.host_command_parameters[0] = interval;
5259 
5260 	IPW_DEBUG_INFO("enter\n");
5261 
5262 	if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5263 		if (!batch_mode) {
5264 			err = ipw2100_disable_adapter(priv);
5265 			if (err)
5266 				return err;
5267 		}
5268 
5269 		ipw2100_hw_send_command(priv, &cmd);
5270 
5271 		if (!batch_mode) {
5272 			err = ipw2100_enable_adapter(priv);
5273 			if (err)
5274 				return err;
5275 		}
5276 	}
5277 
5278 	IPW_DEBUG_INFO("exit\n");
5279 
5280 	return 0;
5281 }
5282 
5283 static void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5284 {
5285 	ipw2100_tx_initialize(priv);
5286 	ipw2100_rx_initialize(priv);
5287 	ipw2100_msg_initialize(priv);
5288 }
5289 
5290 static void ipw2100_queues_free(struct ipw2100_priv *priv)
5291 {
5292 	ipw2100_tx_free(priv);
5293 	ipw2100_rx_free(priv);
5294 	ipw2100_msg_free(priv);
5295 }
5296 
5297 static int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5298 {
5299 	if (ipw2100_tx_allocate(priv) ||
5300 	    ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5301 		goto fail;
5302 
5303 	return 0;
5304 
5305       fail:
5306 	ipw2100_tx_free(priv);
5307 	ipw2100_rx_free(priv);
5308 	ipw2100_msg_free(priv);
5309 	return -ENOMEM;
5310 }
5311 
5312 #define IPW_PRIVACY_CAPABLE 0x0008
5313 
5314 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5315 				 int batch_mode)
5316 {
5317 	struct host_command cmd = {
5318 		.host_command = WEP_FLAGS,
5319 		.host_command_sequence = 0,
5320 		.host_command_length = 4
5321 	};
5322 	int err;
5323 
5324 	cmd.host_command_parameters[0] = flags;
5325 
5326 	IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5327 
5328 	if (!batch_mode) {
5329 		err = ipw2100_disable_adapter(priv);
5330 		if (err) {
5331 			printk(KERN_ERR DRV_NAME
5332 			       ": %s: Could not disable adapter %d\n",
5333 			       priv->net_dev->name, err);
5334 			return err;
5335 		}
5336 	}
5337 
5338 	/* send cmd to firmware */
5339 	err = ipw2100_hw_send_command(priv, &cmd);
5340 
5341 	if (!batch_mode)
5342 		ipw2100_enable_adapter(priv);
5343 
5344 	return err;
5345 }
5346 
5347 struct ipw2100_wep_key {
5348 	u8 idx;
5349 	u8 len;
5350 	u8 key[13];
5351 };
5352 
5353 /* Macros to ease up priting WEP keys */
5354 #define WEP_FMT_64  "%02X%02X%02X%02X-%02X"
5355 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5356 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5357 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5358 
5359 /**
5360  * Set a the wep key
5361  *
5362  * @priv: struct to work on
5363  * @idx: index of the key we want to set
5364  * @key: ptr to the key data to set
5365  * @len: length of the buffer at @key
5366  * @batch_mode: FIXME perform the operation in batch mode, not
5367  *              disabling the device.
5368  *
5369  * @returns 0 if OK, < 0 errno code on error.
5370  *
5371  * Fill out a command structure with the new wep key, length an
5372  * index and send it down the wire.
5373  */
5374 static int ipw2100_set_key(struct ipw2100_priv *priv,
5375 			   int idx, char *key, int len, int batch_mode)
5376 {
5377 	int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5378 	struct host_command cmd = {
5379 		.host_command = WEP_KEY_INFO,
5380 		.host_command_sequence = 0,
5381 		.host_command_length = sizeof(struct ipw2100_wep_key),
5382 	};
5383 	struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5384 	int err;
5385 
5386 	IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5387 		     idx, keylen, len);
5388 
5389 	/* NOTE: We don't check cached values in case the firmware was reset
5390 	 * or some other problem is occurring.  If the user is setting the key,
5391 	 * then we push the change */
5392 
5393 	wep_key->idx = idx;
5394 	wep_key->len = keylen;
5395 
5396 	if (keylen) {
5397 		memcpy(wep_key->key, key, len);
5398 		memset(wep_key->key + len, 0, keylen - len);
5399 	}
5400 
5401 	/* Will be optimized out on debug not being configured in */
5402 	if (keylen == 0)
5403 		IPW_DEBUG_WEP("%s: Clearing key %d\n",
5404 			      priv->net_dev->name, wep_key->idx);
5405 	else if (keylen == 5)
5406 		IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5407 			      priv->net_dev->name, wep_key->idx, wep_key->len,
5408 			      WEP_STR_64(wep_key->key));
5409 	else
5410 		IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5411 			      "\n",
5412 			      priv->net_dev->name, wep_key->idx, wep_key->len,
5413 			      WEP_STR_128(wep_key->key));
5414 
5415 	if (!batch_mode) {
5416 		err = ipw2100_disable_adapter(priv);
5417 		/* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5418 		if (err) {
5419 			printk(KERN_ERR DRV_NAME
5420 			       ": %s: Could not disable adapter %d\n",
5421 			       priv->net_dev->name, err);
5422 			return err;
5423 		}
5424 	}
5425 
5426 	/* send cmd to firmware */
5427 	err = ipw2100_hw_send_command(priv, &cmd);
5428 
5429 	if (!batch_mode) {
5430 		int err2 = ipw2100_enable_adapter(priv);
5431 		if (err == 0)
5432 			err = err2;
5433 	}
5434 	return err;
5435 }
5436 
5437 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5438 				 int idx, int batch_mode)
5439 {
5440 	struct host_command cmd = {
5441 		.host_command = WEP_KEY_INDEX,
5442 		.host_command_sequence = 0,
5443 		.host_command_length = 4,
5444 		.host_command_parameters = {idx},
5445 	};
5446 	int err;
5447 
5448 	IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5449 
5450 	if (idx < 0 || idx > 3)
5451 		return -EINVAL;
5452 
5453 	if (!batch_mode) {
5454 		err = ipw2100_disable_adapter(priv);
5455 		if (err) {
5456 			printk(KERN_ERR DRV_NAME
5457 			       ": %s: Could not disable adapter %d\n",
5458 			       priv->net_dev->name, err);
5459 			return err;
5460 		}
5461 	}
5462 
5463 	/* send cmd to firmware */
5464 	err = ipw2100_hw_send_command(priv, &cmd);
5465 
5466 	if (!batch_mode)
5467 		ipw2100_enable_adapter(priv);
5468 
5469 	return err;
5470 }
5471 
5472 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5473 {
5474 	int i, err, auth_mode, sec_level, use_group;
5475 
5476 	if (!(priv->status & STATUS_RUNNING))
5477 		return 0;
5478 
5479 	if (!batch_mode) {
5480 		err = ipw2100_disable_adapter(priv);
5481 		if (err)
5482 			return err;
5483 	}
5484 
5485 	if (!priv->ieee->sec.enabled) {
5486 		err =
5487 		    ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5488 						     SEC_LEVEL_0, 0, 1);
5489 	} else {
5490 		auth_mode = IPW_AUTH_OPEN;
5491 		if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5492 			if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5493 				auth_mode = IPW_AUTH_SHARED;
5494 			else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5495 				auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5496 		}
5497 
5498 		sec_level = SEC_LEVEL_0;
5499 		if (priv->ieee->sec.flags & SEC_LEVEL)
5500 			sec_level = priv->ieee->sec.level;
5501 
5502 		use_group = 0;
5503 		if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5504 			use_group = priv->ieee->sec.unicast_uses_group;
5505 
5506 		err =
5507 		    ipw2100_set_security_information(priv, auth_mode, sec_level,
5508 						     use_group, 1);
5509 	}
5510 
5511 	if (err)
5512 		goto exit;
5513 
5514 	if (priv->ieee->sec.enabled) {
5515 		for (i = 0; i < 4; i++) {
5516 			if (!(priv->ieee->sec.flags & (1 << i))) {
5517 				memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5518 				priv->ieee->sec.key_sizes[i] = 0;
5519 			} else {
5520 				err = ipw2100_set_key(priv, i,
5521 						      priv->ieee->sec.keys[i],
5522 						      priv->ieee->sec.
5523 						      key_sizes[i], 1);
5524 				if (err)
5525 					goto exit;
5526 			}
5527 		}
5528 
5529 		ipw2100_set_key_index(priv, priv->ieee->crypt_info.tx_keyidx, 1);
5530 	}
5531 
5532 	/* Always enable privacy so the Host can filter WEP packets if
5533 	 * encrypted data is sent up */
5534 	err =
5535 	    ipw2100_set_wep_flags(priv,
5536 				  priv->ieee->sec.
5537 				  enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5538 	if (err)
5539 		goto exit;
5540 
5541 	priv->status &= ~STATUS_SECURITY_UPDATED;
5542 
5543       exit:
5544 	if (!batch_mode)
5545 		ipw2100_enable_adapter(priv);
5546 
5547 	return err;
5548 }
5549 
5550 static void ipw2100_security_work(struct work_struct *work)
5551 {
5552 	struct ipw2100_priv *priv =
5553 		container_of(work, struct ipw2100_priv, security_work.work);
5554 
5555 	/* If we happen to have reconnected before we get a chance to
5556 	 * process this, then update the security settings--which causes
5557 	 * a disassociation to occur */
5558 	if (!(priv->status & STATUS_ASSOCIATED) &&
5559 	    priv->status & STATUS_SECURITY_UPDATED)
5560 		ipw2100_configure_security(priv, 0);
5561 }
5562 
5563 static void shim__set_security(struct net_device *dev,
5564 			       struct libipw_security *sec)
5565 {
5566 	struct ipw2100_priv *priv = libipw_priv(dev);
5567 	int i;
5568 
5569 	mutex_lock(&priv->action_mutex);
5570 	if (!(priv->status & STATUS_INITIALIZED))
5571 		goto done;
5572 
5573 	for (i = 0; i < 4; i++) {
5574 		if (sec->flags & (1 << i)) {
5575 			priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5576 			if (sec->key_sizes[i] == 0)
5577 				priv->ieee->sec.flags &= ~(1 << i);
5578 			else
5579 				memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5580 				       sec->key_sizes[i]);
5581 			if (sec->level == SEC_LEVEL_1) {
5582 				priv->ieee->sec.flags |= (1 << i);
5583 				priv->status |= STATUS_SECURITY_UPDATED;
5584 			} else
5585 				priv->ieee->sec.flags &= ~(1 << i);
5586 		}
5587 	}
5588 
5589 	if ((sec->flags & SEC_ACTIVE_KEY) &&
5590 	    priv->ieee->sec.active_key != sec->active_key) {
5591 		priv->ieee->sec.active_key = sec->active_key;
5592 		priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5593 		priv->status |= STATUS_SECURITY_UPDATED;
5594 	}
5595 
5596 	if ((sec->flags & SEC_AUTH_MODE) &&
5597 	    (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5598 		priv->ieee->sec.auth_mode = sec->auth_mode;
5599 		priv->ieee->sec.flags |= SEC_AUTH_MODE;
5600 		priv->status |= STATUS_SECURITY_UPDATED;
5601 	}
5602 
5603 	if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5604 		priv->ieee->sec.flags |= SEC_ENABLED;
5605 		priv->ieee->sec.enabled = sec->enabled;
5606 		priv->status |= STATUS_SECURITY_UPDATED;
5607 	}
5608 
5609 	if (sec->flags & SEC_ENCRYPT)
5610 		priv->ieee->sec.encrypt = sec->encrypt;
5611 
5612 	if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5613 		priv->ieee->sec.level = sec->level;
5614 		priv->ieee->sec.flags |= SEC_LEVEL;
5615 		priv->status |= STATUS_SECURITY_UPDATED;
5616 	}
5617 
5618 	IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5619 		      priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5620 		      priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5621 		      priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5622 		      priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5623 		      priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5624 		      priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5625 		      priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5626 		      priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5627 		      priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5628 
5629 /* As a temporary work around to enable WPA until we figure out why
5630  * wpa_supplicant toggles the security capability of the driver, which
5631  * forces a disassociation with force_update...
5632  *
5633  *	if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5634 	if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5635 		ipw2100_configure_security(priv, 0);
5636       done:
5637 	mutex_unlock(&priv->action_mutex);
5638 }
5639 
5640 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5641 {
5642 	int err;
5643 	int batch_mode = 1;
5644 	u8 *bssid;
5645 
5646 	IPW_DEBUG_INFO("enter\n");
5647 
5648 	err = ipw2100_disable_adapter(priv);
5649 	if (err)
5650 		return err;
5651 #ifdef CONFIG_IPW2100_MONITOR
5652 	if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5653 		err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5654 		if (err)
5655 			return err;
5656 
5657 		IPW_DEBUG_INFO("exit\n");
5658 
5659 		return 0;
5660 	}
5661 #endif				/* CONFIG_IPW2100_MONITOR */
5662 
5663 	err = ipw2100_read_mac_address(priv);
5664 	if (err)
5665 		return -EIO;
5666 
5667 	err = ipw2100_set_mac_address(priv, batch_mode);
5668 	if (err)
5669 		return err;
5670 
5671 	err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5672 	if (err)
5673 		return err;
5674 
5675 	if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5676 		err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5677 		if (err)
5678 			return err;
5679 	}
5680 
5681 	err = ipw2100_system_config(priv, batch_mode);
5682 	if (err)
5683 		return err;
5684 
5685 	err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5686 	if (err)
5687 		return err;
5688 
5689 	/* Default to power mode OFF */
5690 	err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5691 	if (err)
5692 		return err;
5693 
5694 	err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5695 	if (err)
5696 		return err;
5697 
5698 	if (priv->config & CFG_STATIC_BSSID)
5699 		bssid = priv->bssid;
5700 	else
5701 		bssid = NULL;
5702 	err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5703 	if (err)
5704 		return err;
5705 
5706 	if (priv->config & CFG_STATIC_ESSID)
5707 		err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5708 					batch_mode);
5709 	else
5710 		err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5711 	if (err)
5712 		return err;
5713 
5714 	err = ipw2100_configure_security(priv, batch_mode);
5715 	if (err)
5716 		return err;
5717 
5718 	if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5719 		err =
5720 		    ipw2100_set_ibss_beacon_interval(priv,
5721 						     priv->beacon_interval,
5722 						     batch_mode);
5723 		if (err)
5724 			return err;
5725 
5726 		err = ipw2100_set_tx_power(priv, priv->tx_power);
5727 		if (err)
5728 			return err;
5729 	}
5730 
5731 	/*
5732 	   err = ipw2100_set_fragmentation_threshold(
5733 	   priv, priv->frag_threshold, batch_mode);
5734 	   if (err)
5735 	   return err;
5736 	 */
5737 
5738 	IPW_DEBUG_INFO("exit\n");
5739 
5740 	return 0;
5741 }
5742 
5743 /*************************************************************************
5744  *
5745  * EXTERNALLY CALLED METHODS
5746  *
5747  *************************************************************************/
5748 
5749 /* This method is called by the network layer -- not to be confused with
5750  * ipw2100_set_mac_address() declared above called by this driver (and this
5751  * method as well) to talk to the firmware */
5752 static int ipw2100_set_address(struct net_device *dev, void *p)
5753 {
5754 	struct ipw2100_priv *priv = libipw_priv(dev);
5755 	struct sockaddr *addr = p;
5756 	int err = 0;
5757 
5758 	if (!is_valid_ether_addr(addr->sa_data))
5759 		return -EADDRNOTAVAIL;
5760 
5761 	mutex_lock(&priv->action_mutex);
5762 
5763 	priv->config |= CFG_CUSTOM_MAC;
5764 	memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5765 
5766 	err = ipw2100_set_mac_address(priv, 0);
5767 	if (err)
5768 		goto done;
5769 
5770 	priv->reset_backoff = 0;
5771 	mutex_unlock(&priv->action_mutex);
5772 	ipw2100_reset_adapter(&priv->reset_work.work);
5773 	return 0;
5774 
5775       done:
5776 	mutex_unlock(&priv->action_mutex);
5777 	return err;
5778 }
5779 
5780 static int ipw2100_open(struct net_device *dev)
5781 {
5782 	struct ipw2100_priv *priv = libipw_priv(dev);
5783 	unsigned long flags;
5784 	IPW_DEBUG_INFO("dev->open\n");
5785 
5786 	spin_lock_irqsave(&priv->low_lock, flags);
5787 	if (priv->status & STATUS_ASSOCIATED) {
5788 		netif_carrier_on(dev);
5789 		netif_start_queue(dev);
5790 	}
5791 	spin_unlock_irqrestore(&priv->low_lock, flags);
5792 
5793 	return 0;
5794 }
5795 
5796 static int ipw2100_close(struct net_device *dev)
5797 {
5798 	struct ipw2100_priv *priv = libipw_priv(dev);
5799 	unsigned long flags;
5800 	struct list_head *element;
5801 	struct ipw2100_tx_packet *packet;
5802 
5803 	IPW_DEBUG_INFO("enter\n");
5804 
5805 	spin_lock_irqsave(&priv->low_lock, flags);
5806 
5807 	if (priv->status & STATUS_ASSOCIATED)
5808 		netif_carrier_off(dev);
5809 	netif_stop_queue(dev);
5810 
5811 	/* Flush the TX queue ... */
5812 	while (!list_empty(&priv->tx_pend_list)) {
5813 		element = priv->tx_pend_list.next;
5814 		packet = list_entry(element, struct ipw2100_tx_packet, list);
5815 
5816 		list_del(element);
5817 		DEC_STAT(&priv->tx_pend_stat);
5818 
5819 		libipw_txb_free(packet->info.d_struct.txb);
5820 		packet->info.d_struct.txb = NULL;
5821 
5822 		list_add_tail(element, &priv->tx_free_list);
5823 		INC_STAT(&priv->tx_free_stat);
5824 	}
5825 	spin_unlock_irqrestore(&priv->low_lock, flags);
5826 
5827 	IPW_DEBUG_INFO("exit\n");
5828 
5829 	return 0;
5830 }
5831 
5832 /*
5833  * TODO:  Fix this function... its just wrong
5834  */
5835 static void ipw2100_tx_timeout(struct net_device *dev, unsigned int txqueue)
5836 {
5837 	struct ipw2100_priv *priv = libipw_priv(dev);
5838 
5839 	dev->stats.tx_errors++;
5840 
5841 #ifdef CONFIG_IPW2100_MONITOR
5842 	if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5843 		return;
5844 #endif
5845 
5846 	IPW_DEBUG_INFO("%s: TX timed out.  Scheduling firmware restart.\n",
5847 		       dev->name);
5848 	schedule_reset(priv);
5849 }
5850 
5851 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5852 {
5853 	/* This is called when wpa_supplicant loads and closes the driver
5854 	 * interface. */
5855 	priv->ieee->wpa_enabled = value;
5856 	return 0;
5857 }
5858 
5859 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5860 {
5861 
5862 	struct libipw_device *ieee = priv->ieee;
5863 	struct libipw_security sec = {
5864 		.flags = SEC_AUTH_MODE,
5865 	};
5866 	int ret = 0;
5867 
5868 	if (value & IW_AUTH_ALG_SHARED_KEY) {
5869 		sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5870 		ieee->open_wep = 0;
5871 	} else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5872 		sec.auth_mode = WLAN_AUTH_OPEN;
5873 		ieee->open_wep = 1;
5874 	} else if (value & IW_AUTH_ALG_LEAP) {
5875 		sec.auth_mode = WLAN_AUTH_LEAP;
5876 		ieee->open_wep = 1;
5877 	} else
5878 		return -EINVAL;
5879 
5880 	if (ieee->set_security)
5881 		ieee->set_security(ieee->dev, &sec);
5882 	else
5883 		ret = -EOPNOTSUPP;
5884 
5885 	return ret;
5886 }
5887 
5888 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5889 				    char *wpa_ie, int wpa_ie_len)
5890 {
5891 
5892 	struct ipw2100_wpa_assoc_frame frame;
5893 
5894 	frame.fixed_ie_mask = 0;
5895 
5896 	/* copy WPA IE */
5897 	memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5898 	frame.var_ie_len = wpa_ie_len;
5899 
5900 	/* make sure WPA is enabled */
5901 	ipw2100_wpa_enable(priv, 1);
5902 	ipw2100_set_wpa_ie(priv, &frame, 0);
5903 }
5904 
5905 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5906 				    struct ethtool_drvinfo *info)
5907 {
5908 	struct ipw2100_priv *priv = libipw_priv(dev);
5909 	char fw_ver[64], ucode_ver[64];
5910 
5911 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
5912 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
5913 
5914 	ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5915 	ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5916 
5917 	snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5918 		 fw_ver, priv->eeprom_version, ucode_ver);
5919 
5920 	strlcpy(info->bus_info, pci_name(priv->pci_dev),
5921 		sizeof(info->bus_info));
5922 }
5923 
5924 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5925 {
5926 	struct ipw2100_priv *priv = libipw_priv(dev);
5927 	return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5928 }
5929 
5930 static const struct ethtool_ops ipw2100_ethtool_ops = {
5931 	.get_link = ipw2100_ethtool_get_link,
5932 	.get_drvinfo = ipw_ethtool_get_drvinfo,
5933 };
5934 
5935 static void ipw2100_hang_check(struct work_struct *work)
5936 {
5937 	struct ipw2100_priv *priv =
5938 		container_of(work, struct ipw2100_priv, hang_check.work);
5939 	unsigned long flags;
5940 	u32 rtc = 0xa5a5a5a5;
5941 	u32 len = sizeof(rtc);
5942 	int restart = 0;
5943 
5944 	spin_lock_irqsave(&priv->low_lock, flags);
5945 
5946 	if (priv->fatal_error != 0) {
5947 		/* If fatal_error is set then we need to restart */
5948 		IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5949 			       priv->net_dev->name);
5950 
5951 		restart = 1;
5952 	} else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5953 		   (rtc == priv->last_rtc)) {
5954 		/* Check if firmware is hung */
5955 		IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
5956 			       priv->net_dev->name);
5957 
5958 		restart = 1;
5959 	}
5960 
5961 	if (restart) {
5962 		/* Kill timer */
5963 		priv->stop_hang_check = 1;
5964 		priv->hangs++;
5965 
5966 		/* Restart the NIC */
5967 		schedule_reset(priv);
5968 	}
5969 
5970 	priv->last_rtc = rtc;
5971 
5972 	if (!priv->stop_hang_check)
5973 		schedule_delayed_work(&priv->hang_check, HZ / 2);
5974 
5975 	spin_unlock_irqrestore(&priv->low_lock, flags);
5976 }
5977 
5978 static void ipw2100_rf_kill(struct work_struct *work)
5979 {
5980 	struct ipw2100_priv *priv =
5981 		container_of(work, struct ipw2100_priv, rf_kill.work);
5982 	unsigned long flags;
5983 
5984 	spin_lock_irqsave(&priv->low_lock, flags);
5985 
5986 	if (rf_kill_active(priv)) {
5987 		IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
5988 		if (!priv->stop_rf_kill)
5989 			schedule_delayed_work(&priv->rf_kill,
5990 					      round_jiffies_relative(HZ));
5991 		goto exit_unlock;
5992 	}
5993 
5994 	/* RF Kill is now disabled, so bring the device back up */
5995 
5996 	if (!(priv->status & STATUS_RF_KILL_MASK)) {
5997 		IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
5998 				  "device\n");
5999 		schedule_reset(priv);
6000 	} else
6001 		IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
6002 				  "enabled\n");
6003 
6004       exit_unlock:
6005 	spin_unlock_irqrestore(&priv->low_lock, flags);
6006 }
6007 
6008 static void ipw2100_irq_tasklet(unsigned long data);
6009 
6010 static const struct net_device_ops ipw2100_netdev_ops = {
6011 	.ndo_open		= ipw2100_open,
6012 	.ndo_stop		= ipw2100_close,
6013 	.ndo_start_xmit		= libipw_xmit,
6014 	.ndo_tx_timeout		= ipw2100_tx_timeout,
6015 	.ndo_set_mac_address	= ipw2100_set_address,
6016 	.ndo_validate_addr	= eth_validate_addr,
6017 };
6018 
6019 /* Look into using netdev destructor to shutdown libipw? */
6020 
6021 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6022 					       void __iomem * ioaddr)
6023 {
6024 	struct ipw2100_priv *priv;
6025 	struct net_device *dev;
6026 
6027 	dev = alloc_libipw(sizeof(struct ipw2100_priv), 0);
6028 	if (!dev)
6029 		return NULL;
6030 	priv = libipw_priv(dev);
6031 	priv->ieee = netdev_priv(dev);
6032 	priv->pci_dev = pci_dev;
6033 	priv->net_dev = dev;
6034 	priv->ioaddr = ioaddr;
6035 
6036 	priv->ieee->hard_start_xmit = ipw2100_tx;
6037 	priv->ieee->set_security = shim__set_security;
6038 
6039 	priv->ieee->perfect_rssi = -20;
6040 	priv->ieee->worst_rssi = -85;
6041 
6042 	dev->netdev_ops = &ipw2100_netdev_ops;
6043 	dev->ethtool_ops = &ipw2100_ethtool_ops;
6044 	dev->wireless_handlers = &ipw2100_wx_handler_def;
6045 	priv->wireless_data.libipw = priv->ieee;
6046 	dev->wireless_data = &priv->wireless_data;
6047 	dev->watchdog_timeo = 3 * HZ;
6048 	dev->irq = 0;
6049 	dev->min_mtu = 68;
6050 	dev->max_mtu = LIBIPW_DATA_LEN;
6051 
6052 	/* NOTE: We don't use the wireless_handlers hook
6053 	 * in dev as the system will start throwing WX requests
6054 	 * to us before we're actually initialized and it just
6055 	 * ends up causing problems.  So, we just handle
6056 	 * the WX extensions through the ipw2100_ioctl interface */
6057 
6058 	/* memset() puts everything to 0, so we only have explicitly set
6059 	 * those values that need to be something else */
6060 
6061 	/* If power management is turned on, default to AUTO mode */
6062 	priv->power_mode = IPW_POWER_AUTO;
6063 
6064 #ifdef CONFIG_IPW2100_MONITOR
6065 	priv->config |= CFG_CRC_CHECK;
6066 #endif
6067 	priv->ieee->wpa_enabled = 0;
6068 	priv->ieee->drop_unencrypted = 0;
6069 	priv->ieee->privacy_invoked = 0;
6070 	priv->ieee->ieee802_1x = 1;
6071 
6072 	/* Set module parameters */
6073 	switch (network_mode) {
6074 	case 1:
6075 		priv->ieee->iw_mode = IW_MODE_ADHOC;
6076 		break;
6077 #ifdef CONFIG_IPW2100_MONITOR
6078 	case 2:
6079 		priv->ieee->iw_mode = IW_MODE_MONITOR;
6080 		break;
6081 #endif
6082 	default:
6083 	case 0:
6084 		priv->ieee->iw_mode = IW_MODE_INFRA;
6085 		break;
6086 	}
6087 
6088 	if (disable == 1)
6089 		priv->status |= STATUS_RF_KILL_SW;
6090 
6091 	if (channel != 0 &&
6092 	    ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6093 		priv->config |= CFG_STATIC_CHANNEL;
6094 		priv->channel = channel;
6095 	}
6096 
6097 	if (associate)
6098 		priv->config |= CFG_ASSOCIATE;
6099 
6100 	priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6101 	priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6102 	priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6103 	priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6104 	priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6105 	priv->tx_power = IPW_TX_POWER_DEFAULT;
6106 	priv->tx_rates = DEFAULT_TX_RATES;
6107 
6108 	strcpy(priv->nick, "ipw2100");
6109 
6110 	spin_lock_init(&priv->low_lock);
6111 	mutex_init(&priv->action_mutex);
6112 	mutex_init(&priv->adapter_mutex);
6113 
6114 	init_waitqueue_head(&priv->wait_command_queue);
6115 
6116 	netif_carrier_off(dev);
6117 
6118 	INIT_LIST_HEAD(&priv->msg_free_list);
6119 	INIT_LIST_HEAD(&priv->msg_pend_list);
6120 	INIT_STAT(&priv->msg_free_stat);
6121 	INIT_STAT(&priv->msg_pend_stat);
6122 
6123 	INIT_LIST_HEAD(&priv->tx_free_list);
6124 	INIT_LIST_HEAD(&priv->tx_pend_list);
6125 	INIT_STAT(&priv->tx_free_stat);
6126 	INIT_STAT(&priv->tx_pend_stat);
6127 
6128 	INIT_LIST_HEAD(&priv->fw_pend_list);
6129 	INIT_STAT(&priv->fw_pend_stat);
6130 
6131 	INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6132 	INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6133 	INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6134 	INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6135 	INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6136 	INIT_DELAYED_WORK(&priv->scan_event, ipw2100_scan_event);
6137 
6138 	tasklet_init(&priv->irq_tasklet,
6139 		     ipw2100_irq_tasklet, (unsigned long)priv);
6140 
6141 	/* NOTE:  We do not start the deferred work for status checks yet */
6142 	priv->stop_rf_kill = 1;
6143 	priv->stop_hang_check = 1;
6144 
6145 	return dev;
6146 }
6147 
6148 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6149 				const struct pci_device_id *ent)
6150 {
6151 	void __iomem *ioaddr;
6152 	struct net_device *dev = NULL;
6153 	struct ipw2100_priv *priv = NULL;
6154 	int err = 0;
6155 	int registered = 0;
6156 	u32 val;
6157 
6158 	IPW_DEBUG_INFO("enter\n");
6159 
6160 	if (!(pci_resource_flags(pci_dev, 0) & IORESOURCE_MEM)) {
6161 		IPW_DEBUG_INFO("weird - resource type is not memory\n");
6162 		err = -ENODEV;
6163 		goto out;
6164 	}
6165 
6166 	ioaddr = pci_iomap(pci_dev, 0, 0);
6167 	if (!ioaddr) {
6168 		printk(KERN_WARNING DRV_NAME
6169 		       "Error calling ioremap.\n");
6170 		err = -EIO;
6171 		goto fail;
6172 	}
6173 
6174 	/* allocate and initialize our net_device */
6175 	dev = ipw2100_alloc_device(pci_dev, ioaddr);
6176 	if (!dev) {
6177 		printk(KERN_WARNING DRV_NAME
6178 		       "Error calling ipw2100_alloc_device.\n");
6179 		err = -ENOMEM;
6180 		goto fail;
6181 	}
6182 
6183 	/* set up PCI mappings for device */
6184 	err = pci_enable_device(pci_dev);
6185 	if (err) {
6186 		printk(KERN_WARNING DRV_NAME
6187 		       "Error calling pci_enable_device.\n");
6188 		return err;
6189 	}
6190 
6191 	priv = libipw_priv(dev);
6192 
6193 	pci_set_master(pci_dev);
6194 	pci_set_drvdata(pci_dev, priv);
6195 
6196 	err = dma_set_mask(&pci_dev->dev, DMA_BIT_MASK(32));
6197 	if (err) {
6198 		printk(KERN_WARNING DRV_NAME
6199 		       "Error calling pci_set_dma_mask.\n");
6200 		pci_disable_device(pci_dev);
6201 		return err;
6202 	}
6203 
6204 	err = pci_request_regions(pci_dev, DRV_NAME);
6205 	if (err) {
6206 		printk(KERN_WARNING DRV_NAME
6207 		       "Error calling pci_request_regions.\n");
6208 		pci_disable_device(pci_dev);
6209 		return err;
6210 	}
6211 
6212 	/* We disable the RETRY_TIMEOUT register (0x41) to keep
6213 	 * PCI Tx retries from interfering with C3 CPU state */
6214 	pci_read_config_dword(pci_dev, 0x40, &val);
6215 	if ((val & 0x0000ff00) != 0)
6216 		pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6217 
6218 	if (!ipw2100_hw_is_adapter_in_system(dev)) {
6219 		printk(KERN_WARNING DRV_NAME
6220 		       "Device not found via register read.\n");
6221 		err = -ENODEV;
6222 		goto fail;
6223 	}
6224 
6225 	SET_NETDEV_DEV(dev, &pci_dev->dev);
6226 
6227 	/* Force interrupts to be shut off on the device */
6228 	priv->status |= STATUS_INT_ENABLED;
6229 	ipw2100_disable_interrupts(priv);
6230 
6231 	/* Allocate and initialize the Tx/Rx queues and lists */
6232 	if (ipw2100_queues_allocate(priv)) {
6233 		printk(KERN_WARNING DRV_NAME
6234 		       "Error calling ipw2100_queues_allocate.\n");
6235 		err = -ENOMEM;
6236 		goto fail;
6237 	}
6238 	ipw2100_queues_initialize(priv);
6239 
6240 	err = request_irq(pci_dev->irq,
6241 			  ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6242 	if (err) {
6243 		printk(KERN_WARNING DRV_NAME
6244 		       "Error calling request_irq: %d.\n", pci_dev->irq);
6245 		goto fail;
6246 	}
6247 	dev->irq = pci_dev->irq;
6248 
6249 	IPW_DEBUG_INFO("Attempting to register device...\n");
6250 
6251 	printk(KERN_INFO DRV_NAME
6252 	       ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6253 
6254 	err = ipw2100_up(priv, 1);
6255 	if (err)
6256 		goto fail;
6257 
6258 	err = ipw2100_wdev_init(dev);
6259 	if (err)
6260 		goto fail;
6261 	registered = 1;
6262 
6263 	/* Bring up the interface.  Pre 0.46, after we registered the
6264 	 * network device we would call ipw2100_up.  This introduced a race
6265 	 * condition with newer hotplug configurations (network was coming
6266 	 * up and making calls before the device was initialized).
6267 	 */
6268 	err = register_netdev(dev);
6269 	if (err) {
6270 		printk(KERN_WARNING DRV_NAME
6271 		       "Error calling register_netdev.\n");
6272 		goto fail;
6273 	}
6274 	registered = 2;
6275 
6276 	mutex_lock(&priv->action_mutex);
6277 
6278 	IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6279 
6280 	/* perform this after register_netdev so that dev->name is set */
6281 	err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6282 	if (err)
6283 		goto fail_unlock;
6284 
6285 	/* If the RF Kill switch is disabled, go ahead and complete the
6286 	 * startup sequence */
6287 	if (!(priv->status & STATUS_RF_KILL_MASK)) {
6288 		/* Enable the adapter - sends HOST_COMPLETE */
6289 		if (ipw2100_enable_adapter(priv)) {
6290 			printk(KERN_WARNING DRV_NAME
6291 			       ": %s: failed in call to enable adapter.\n",
6292 			       priv->net_dev->name);
6293 			ipw2100_hw_stop_adapter(priv);
6294 			err = -EIO;
6295 			goto fail_unlock;
6296 		}
6297 
6298 		/* Start a scan . . . */
6299 		ipw2100_set_scan_options(priv);
6300 		ipw2100_start_scan(priv);
6301 	}
6302 
6303 	IPW_DEBUG_INFO("exit\n");
6304 
6305 	priv->status |= STATUS_INITIALIZED;
6306 
6307 	mutex_unlock(&priv->action_mutex);
6308 out:
6309 	return err;
6310 
6311       fail_unlock:
6312 	mutex_unlock(&priv->action_mutex);
6313       fail:
6314 	if (dev) {
6315 		if (registered >= 2)
6316 			unregister_netdev(dev);
6317 
6318 		if (registered) {
6319 			wiphy_unregister(priv->ieee->wdev.wiphy);
6320 			kfree(priv->ieee->bg_band.channels);
6321 		}
6322 
6323 		ipw2100_hw_stop_adapter(priv);
6324 
6325 		ipw2100_disable_interrupts(priv);
6326 
6327 		if (dev->irq)
6328 			free_irq(dev->irq, priv);
6329 
6330 		ipw2100_kill_works(priv);
6331 
6332 		/* These are safe to call even if they weren't allocated */
6333 		ipw2100_queues_free(priv);
6334 		sysfs_remove_group(&pci_dev->dev.kobj,
6335 				   &ipw2100_attribute_group);
6336 
6337 		free_libipw(dev, 0);
6338 	}
6339 
6340 	pci_iounmap(pci_dev, ioaddr);
6341 
6342 	pci_release_regions(pci_dev);
6343 	pci_disable_device(pci_dev);
6344 	goto out;
6345 }
6346 
6347 static void ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6348 {
6349 	struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6350 	struct net_device *dev = priv->net_dev;
6351 
6352 	mutex_lock(&priv->action_mutex);
6353 
6354 	priv->status &= ~STATUS_INITIALIZED;
6355 
6356 	sysfs_remove_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6357 
6358 #ifdef CONFIG_PM
6359 	if (ipw2100_firmware.version)
6360 		ipw2100_release_firmware(priv, &ipw2100_firmware);
6361 #endif
6362 	/* Take down the hardware */
6363 	ipw2100_down(priv);
6364 
6365 	/* Release the mutex so that the network subsystem can
6366 	 * complete any needed calls into the driver... */
6367 	mutex_unlock(&priv->action_mutex);
6368 
6369 	/* Unregister the device first - this results in close()
6370 	 * being called if the device is open.  If we free storage
6371 	 * first, then close() will crash.
6372 	 * FIXME: remove the comment above. */
6373 	unregister_netdev(dev);
6374 
6375 	ipw2100_kill_works(priv);
6376 
6377 	ipw2100_queues_free(priv);
6378 
6379 	/* Free potential debugging firmware snapshot */
6380 	ipw2100_snapshot_free(priv);
6381 
6382 	free_irq(dev->irq, priv);
6383 
6384 	pci_iounmap(pci_dev, priv->ioaddr);
6385 
6386 	/* wiphy_unregister needs to be here, before free_libipw */
6387 	wiphy_unregister(priv->ieee->wdev.wiphy);
6388 	kfree(priv->ieee->bg_band.channels);
6389 	free_libipw(dev, 0);
6390 
6391 	pci_release_regions(pci_dev);
6392 	pci_disable_device(pci_dev);
6393 
6394 	IPW_DEBUG_INFO("exit\n");
6395 }
6396 
6397 static int __maybe_unused ipw2100_suspend(struct device *dev_d)
6398 {
6399 	struct ipw2100_priv *priv = dev_get_drvdata(dev_d);
6400 	struct net_device *dev = priv->net_dev;
6401 
6402 	IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6403 
6404 	mutex_lock(&priv->action_mutex);
6405 	if (priv->status & STATUS_INITIALIZED) {
6406 		/* Take down the device; powers it off, etc. */
6407 		ipw2100_down(priv);
6408 	}
6409 
6410 	/* Remove the PRESENT state of the device */
6411 	netif_device_detach(dev);
6412 
6413 	priv->suspend_at = ktime_get_boottime_seconds();
6414 
6415 	mutex_unlock(&priv->action_mutex);
6416 
6417 	return 0;
6418 }
6419 
6420 static int __maybe_unused ipw2100_resume(struct device *dev_d)
6421 {
6422 	struct pci_dev *pci_dev = to_pci_dev(dev_d);
6423 	struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6424 	struct net_device *dev = priv->net_dev;
6425 	u32 val;
6426 
6427 	if (IPW2100_PM_DISABLED)
6428 		return 0;
6429 
6430 	mutex_lock(&priv->action_mutex);
6431 
6432 	IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6433 
6434 	/*
6435 	 * Suspend/Resume resets the PCI configuration space, so we have to
6436 	 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6437 	 * from interfering with C3 CPU state. pci_restore_state won't help
6438 	 * here since it only restores the first 64 bytes pci config header.
6439 	 */
6440 	pci_read_config_dword(pci_dev, 0x40, &val);
6441 	if ((val & 0x0000ff00) != 0)
6442 		pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6443 
6444 	/* Set the device back into the PRESENT state; this will also wake
6445 	 * the queue of needed */
6446 	netif_device_attach(dev);
6447 
6448 	priv->suspend_time = ktime_get_boottime_seconds() - priv->suspend_at;
6449 
6450 	/* Bring the device back up */
6451 	if (!(priv->status & STATUS_RF_KILL_SW))
6452 		ipw2100_up(priv, 0);
6453 
6454 	mutex_unlock(&priv->action_mutex);
6455 
6456 	return 0;
6457 }
6458 
6459 static void ipw2100_shutdown(struct pci_dev *pci_dev)
6460 {
6461 	struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6462 
6463 	/* Take down the device; powers it off, etc. */
6464 	ipw2100_down(priv);
6465 
6466 	pci_disable_device(pci_dev);
6467 }
6468 
6469 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6470 
6471 static const struct pci_device_id ipw2100_pci_id_table[] = {
6472 	IPW2100_DEV_ID(0x2520),	/* IN 2100A mPCI 3A */
6473 	IPW2100_DEV_ID(0x2521),	/* IN 2100A mPCI 3B */
6474 	IPW2100_DEV_ID(0x2524),	/* IN 2100A mPCI 3B */
6475 	IPW2100_DEV_ID(0x2525),	/* IN 2100A mPCI 3B */
6476 	IPW2100_DEV_ID(0x2526),	/* IN 2100A mPCI Gen A3 */
6477 	IPW2100_DEV_ID(0x2522),	/* IN 2100 mPCI 3B */
6478 	IPW2100_DEV_ID(0x2523),	/* IN 2100 mPCI 3A */
6479 	IPW2100_DEV_ID(0x2527),	/* IN 2100 mPCI 3B */
6480 	IPW2100_DEV_ID(0x2528),	/* IN 2100 mPCI 3B */
6481 	IPW2100_DEV_ID(0x2529),	/* IN 2100 mPCI 3B */
6482 	IPW2100_DEV_ID(0x252B),	/* IN 2100 mPCI 3A */
6483 	IPW2100_DEV_ID(0x252C),	/* IN 2100 mPCI 3A */
6484 	IPW2100_DEV_ID(0x252D),	/* IN 2100 mPCI 3A */
6485 
6486 	IPW2100_DEV_ID(0x2550),	/* IB 2100A mPCI 3B */
6487 	IPW2100_DEV_ID(0x2551),	/* IB 2100 mPCI 3B */
6488 	IPW2100_DEV_ID(0x2553),	/* IB 2100 mPCI 3B */
6489 	IPW2100_DEV_ID(0x2554),	/* IB 2100 mPCI 3B */
6490 	IPW2100_DEV_ID(0x2555),	/* IB 2100 mPCI 3B */
6491 
6492 	IPW2100_DEV_ID(0x2560),	/* DE 2100A mPCI 3A */
6493 	IPW2100_DEV_ID(0x2562),	/* DE 2100A mPCI 3A */
6494 	IPW2100_DEV_ID(0x2563),	/* DE 2100A mPCI 3A */
6495 	IPW2100_DEV_ID(0x2561),	/* DE 2100 mPCI 3A */
6496 	IPW2100_DEV_ID(0x2565),	/* DE 2100 mPCI 3A */
6497 	IPW2100_DEV_ID(0x2566),	/* DE 2100 mPCI 3A */
6498 	IPW2100_DEV_ID(0x2567),	/* DE 2100 mPCI 3A */
6499 
6500 	IPW2100_DEV_ID(0x2570),	/* GA 2100 mPCI 3B */
6501 
6502 	IPW2100_DEV_ID(0x2580),	/* TO 2100A mPCI 3B */
6503 	IPW2100_DEV_ID(0x2582),	/* TO 2100A mPCI 3B */
6504 	IPW2100_DEV_ID(0x2583),	/* TO 2100A mPCI 3B */
6505 	IPW2100_DEV_ID(0x2581),	/* TO 2100 mPCI 3B */
6506 	IPW2100_DEV_ID(0x2585),	/* TO 2100 mPCI 3B */
6507 	IPW2100_DEV_ID(0x2586),	/* TO 2100 mPCI 3B */
6508 	IPW2100_DEV_ID(0x2587),	/* TO 2100 mPCI 3B */
6509 
6510 	IPW2100_DEV_ID(0x2590),	/* SO 2100A mPCI 3B */
6511 	IPW2100_DEV_ID(0x2592),	/* SO 2100A mPCI 3B */
6512 	IPW2100_DEV_ID(0x2591),	/* SO 2100 mPCI 3B */
6513 	IPW2100_DEV_ID(0x2593),	/* SO 2100 mPCI 3B */
6514 	IPW2100_DEV_ID(0x2596),	/* SO 2100 mPCI 3B */
6515 	IPW2100_DEV_ID(0x2598),	/* SO 2100 mPCI 3B */
6516 
6517 	IPW2100_DEV_ID(0x25A0),	/* HP 2100 mPCI 3B */
6518 	{0,},
6519 };
6520 
6521 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6522 
6523 static SIMPLE_DEV_PM_OPS(ipw2100_pm_ops, ipw2100_suspend, ipw2100_resume);
6524 
6525 static struct pci_driver ipw2100_pci_driver = {
6526 	.name = DRV_NAME,
6527 	.id_table = ipw2100_pci_id_table,
6528 	.probe = ipw2100_pci_init_one,
6529 	.remove = ipw2100_pci_remove_one,
6530 	.driver.pm = &ipw2100_pm_ops,
6531 	.shutdown = ipw2100_shutdown,
6532 };
6533 
6534 /**
6535  * Initialize the ipw2100 driver/module
6536  *
6537  * @returns 0 if ok, < 0 errno node con error.
6538  *
6539  * Note: we cannot init the /proc stuff until the PCI driver is there,
6540  * or we risk an unlikely race condition on someone accessing
6541  * uninitialized data in the PCI dev struct through /proc.
6542  */
6543 static int __init ipw2100_init(void)
6544 {
6545 	int ret;
6546 
6547 	printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6548 	printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6549 
6550 	cpu_latency_qos_add_request(&ipw2100_pm_qos_req, PM_QOS_DEFAULT_VALUE);
6551 
6552 	ret = pci_register_driver(&ipw2100_pci_driver);
6553 	if (ret)
6554 		goto out;
6555 
6556 #ifdef CONFIG_IPW2100_DEBUG
6557 	ipw2100_debug_level = debug;
6558 	ret = driver_create_file(&ipw2100_pci_driver.driver,
6559 				 &driver_attr_debug_level);
6560 #endif
6561 
6562 out:
6563 	return ret;
6564 }
6565 
6566 /**
6567  * Cleanup ipw2100 driver registration
6568  */
6569 static void __exit ipw2100_exit(void)
6570 {
6571 	/* FIXME: IPG: check that we have no instances of the devices open */
6572 #ifdef CONFIG_IPW2100_DEBUG
6573 	driver_remove_file(&ipw2100_pci_driver.driver,
6574 			   &driver_attr_debug_level);
6575 #endif
6576 	pci_unregister_driver(&ipw2100_pci_driver);
6577 	cpu_latency_qos_remove_request(&ipw2100_pm_qos_req);
6578 }
6579 
6580 module_init(ipw2100_init);
6581 module_exit(ipw2100_exit);
6582 
6583 static int ipw2100_wx_get_name(struct net_device *dev,
6584 			       struct iw_request_info *info,
6585 			       union iwreq_data *wrqu, char *extra)
6586 {
6587 	/*
6588 	 * This can be called at any time.  No action lock required
6589 	 */
6590 
6591 	struct ipw2100_priv *priv = libipw_priv(dev);
6592 	if (!(priv->status & STATUS_ASSOCIATED))
6593 		strcpy(wrqu->name, "unassociated");
6594 	else
6595 		snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6596 
6597 	IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6598 	return 0;
6599 }
6600 
6601 static int ipw2100_wx_set_freq(struct net_device *dev,
6602 			       struct iw_request_info *info,
6603 			       union iwreq_data *wrqu, char *extra)
6604 {
6605 	struct ipw2100_priv *priv = libipw_priv(dev);
6606 	struct iw_freq *fwrq = &wrqu->freq;
6607 	int err = 0;
6608 
6609 	if (priv->ieee->iw_mode == IW_MODE_INFRA)
6610 		return -EOPNOTSUPP;
6611 
6612 	mutex_lock(&priv->action_mutex);
6613 	if (!(priv->status & STATUS_INITIALIZED)) {
6614 		err = -EIO;
6615 		goto done;
6616 	}
6617 
6618 	/* if setting by freq convert to channel */
6619 	if (fwrq->e == 1) {
6620 		if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6621 			int f = fwrq->m / 100000;
6622 			int c = 0;
6623 
6624 			while ((c < REG_MAX_CHANNEL) &&
6625 			       (f != ipw2100_frequencies[c]))
6626 				c++;
6627 
6628 			/* hack to fall through */
6629 			fwrq->e = 0;
6630 			fwrq->m = c + 1;
6631 		}
6632 	}
6633 
6634 	if (fwrq->e > 0 || fwrq->m > 1000) {
6635 		err = -EOPNOTSUPP;
6636 		goto done;
6637 	} else {		/* Set the channel */
6638 		IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
6639 		err = ipw2100_set_channel(priv, fwrq->m, 0);
6640 	}
6641 
6642       done:
6643 	mutex_unlock(&priv->action_mutex);
6644 	return err;
6645 }
6646 
6647 static int ipw2100_wx_get_freq(struct net_device *dev,
6648 			       struct iw_request_info *info,
6649 			       union iwreq_data *wrqu, char *extra)
6650 {
6651 	/*
6652 	 * This can be called at any time.  No action lock required
6653 	 */
6654 
6655 	struct ipw2100_priv *priv = libipw_priv(dev);
6656 
6657 	wrqu->freq.e = 0;
6658 
6659 	/* If we are associated, trying to associate, or have a statically
6660 	 * configured CHANNEL then return that; otherwise return ANY */
6661 	if (priv->config & CFG_STATIC_CHANNEL ||
6662 	    priv->status & STATUS_ASSOCIATED)
6663 		wrqu->freq.m = priv->channel;
6664 	else
6665 		wrqu->freq.m = 0;
6666 
6667 	IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
6668 	return 0;
6669 
6670 }
6671 
6672 static int ipw2100_wx_set_mode(struct net_device *dev,
6673 			       struct iw_request_info *info,
6674 			       union iwreq_data *wrqu, char *extra)
6675 {
6676 	struct ipw2100_priv *priv = libipw_priv(dev);
6677 	int err = 0;
6678 
6679 	IPW_DEBUG_WX("SET Mode -> %d\n", wrqu->mode);
6680 
6681 	if (wrqu->mode == priv->ieee->iw_mode)
6682 		return 0;
6683 
6684 	mutex_lock(&priv->action_mutex);
6685 	if (!(priv->status & STATUS_INITIALIZED)) {
6686 		err = -EIO;
6687 		goto done;
6688 	}
6689 
6690 	switch (wrqu->mode) {
6691 #ifdef CONFIG_IPW2100_MONITOR
6692 	case IW_MODE_MONITOR:
6693 		err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6694 		break;
6695 #endif				/* CONFIG_IPW2100_MONITOR */
6696 	case IW_MODE_ADHOC:
6697 		err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6698 		break;
6699 	case IW_MODE_INFRA:
6700 	case IW_MODE_AUTO:
6701 	default:
6702 		err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6703 		break;
6704 	}
6705 
6706       done:
6707 	mutex_unlock(&priv->action_mutex);
6708 	return err;
6709 }
6710 
6711 static int ipw2100_wx_get_mode(struct net_device *dev,
6712 			       struct iw_request_info *info,
6713 			       union iwreq_data *wrqu, char *extra)
6714 {
6715 	/*
6716 	 * This can be called at any time.  No action lock required
6717 	 */
6718 
6719 	struct ipw2100_priv *priv = libipw_priv(dev);
6720 
6721 	wrqu->mode = priv->ieee->iw_mode;
6722 	IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6723 
6724 	return 0;
6725 }
6726 
6727 #define POWER_MODES 5
6728 
6729 /* Values are in microsecond */
6730 static const s32 timeout_duration[POWER_MODES] = {
6731 	350000,
6732 	250000,
6733 	75000,
6734 	37000,
6735 	25000,
6736 };
6737 
6738 static const s32 period_duration[POWER_MODES] = {
6739 	400000,
6740 	700000,
6741 	1000000,
6742 	1000000,
6743 	1000000
6744 };
6745 
6746 static int ipw2100_wx_get_range(struct net_device *dev,
6747 				struct iw_request_info *info,
6748 				union iwreq_data *wrqu, char *extra)
6749 {
6750 	/*
6751 	 * This can be called at any time.  No action lock required
6752 	 */
6753 
6754 	struct ipw2100_priv *priv = libipw_priv(dev);
6755 	struct iw_range *range = (struct iw_range *)extra;
6756 	u16 val;
6757 	int i, level;
6758 
6759 	wrqu->data.length = sizeof(*range);
6760 	memset(range, 0, sizeof(*range));
6761 
6762 	/* Let's try to keep this struct in the same order as in
6763 	 * linux/include/wireless.h
6764 	 */
6765 
6766 	/* TODO: See what values we can set, and remove the ones we can't
6767 	 * set, or fill them with some default data.
6768 	 */
6769 
6770 	/* ~5 Mb/s real (802.11b) */
6771 	range->throughput = 5 * 1000 * 1000;
6772 
6773 //      range->sensitivity;     /* signal level threshold range */
6774 
6775 	range->max_qual.qual = 100;
6776 	/* TODO: Find real max RSSI and stick here */
6777 	range->max_qual.level = 0;
6778 	range->max_qual.noise = 0;
6779 	range->max_qual.updated = 7;	/* Updated all three */
6780 
6781 	range->avg_qual.qual = 70;	/* > 8% missed beacons is 'bad' */
6782 	/* TODO: Find real 'good' to 'bad' threshold value for RSSI */
6783 	range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6784 	range->avg_qual.noise = 0;
6785 	range->avg_qual.updated = 7;	/* Updated all three */
6786 
6787 	range->num_bitrates = RATE_COUNT;
6788 
6789 	for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6790 		range->bitrate[i] = ipw2100_bg_rates[i].bitrate * 100 * 1000;
6791 	}
6792 
6793 	range->min_rts = MIN_RTS_THRESHOLD;
6794 	range->max_rts = MAX_RTS_THRESHOLD;
6795 	range->min_frag = MIN_FRAG_THRESHOLD;
6796 	range->max_frag = MAX_FRAG_THRESHOLD;
6797 
6798 	range->min_pmp = period_duration[0];	/* Minimal PM period */
6799 	range->max_pmp = period_duration[POWER_MODES - 1];	/* Maximal PM period */
6800 	range->min_pmt = timeout_duration[POWER_MODES - 1];	/* Minimal PM timeout */
6801 	range->max_pmt = timeout_duration[0];	/* Maximal PM timeout */
6802 
6803 	/* How to decode max/min PM period */
6804 	range->pmp_flags = IW_POWER_PERIOD;
6805 	/* How to decode max/min PM period */
6806 	range->pmt_flags = IW_POWER_TIMEOUT;
6807 	/* What PM options are supported */
6808 	range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6809 
6810 	range->encoding_size[0] = 5;
6811 	range->encoding_size[1] = 13;	/* Different token sizes */
6812 	range->num_encoding_sizes = 2;	/* Number of entry in the list */
6813 	range->max_encoding_tokens = WEP_KEYS;	/* Max number of tokens */
6814 //      range->encoding_login_index;            /* token index for login token */
6815 
6816 	if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6817 		range->txpower_capa = IW_TXPOW_DBM;
6818 		range->num_txpower = IW_MAX_TXPOWER;
6819 		for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6820 		     i < IW_MAX_TXPOWER;
6821 		     i++, level -=
6822 		     ((IPW_TX_POWER_MAX_DBM -
6823 		       IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6824 			range->txpower[i] = level / 16;
6825 	} else {
6826 		range->txpower_capa = 0;
6827 		range->num_txpower = 0;
6828 	}
6829 
6830 	/* Set the Wireless Extension versions */
6831 	range->we_version_compiled = WIRELESS_EXT;
6832 	range->we_version_source = 18;
6833 
6834 //      range->retry_capa;      /* What retry options are supported */
6835 //      range->retry_flags;     /* How to decode max/min retry limit */
6836 //      range->r_time_flags;    /* How to decode max/min retry life */
6837 //      range->min_retry;       /* Minimal number of retries */
6838 //      range->max_retry;       /* Maximal number of retries */
6839 //      range->min_r_time;      /* Minimal retry lifetime */
6840 //      range->max_r_time;      /* Maximal retry lifetime */
6841 
6842 	range->num_channels = FREQ_COUNT;
6843 
6844 	val = 0;
6845 	for (i = 0; i < FREQ_COUNT; i++) {
6846 		// TODO: Include only legal frequencies for some countries
6847 //              if (local->channel_mask & (1 << i)) {
6848 		range->freq[val].i = i + 1;
6849 		range->freq[val].m = ipw2100_frequencies[i] * 100000;
6850 		range->freq[val].e = 1;
6851 		val++;
6852 //              }
6853 		if (val == IW_MAX_FREQUENCIES)
6854 			break;
6855 	}
6856 	range->num_frequency = val;
6857 
6858 	/* Event capability (kernel + driver) */
6859 	range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6860 				IW_EVENT_CAPA_MASK(SIOCGIWAP));
6861 	range->event_capa[1] = IW_EVENT_CAPA_K_1;
6862 
6863 	range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6864 		IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6865 
6866 	IPW_DEBUG_WX("GET Range\n");
6867 
6868 	return 0;
6869 }
6870 
6871 static int ipw2100_wx_set_wap(struct net_device *dev,
6872 			      struct iw_request_info *info,
6873 			      union iwreq_data *wrqu, char *extra)
6874 {
6875 	struct ipw2100_priv *priv = libipw_priv(dev);
6876 	int err = 0;
6877 
6878 	// sanity checks
6879 	if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6880 		return -EINVAL;
6881 
6882 	mutex_lock(&priv->action_mutex);
6883 	if (!(priv->status & STATUS_INITIALIZED)) {
6884 		err = -EIO;
6885 		goto done;
6886 	}
6887 
6888 	if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) ||
6889 	    is_zero_ether_addr(wrqu->ap_addr.sa_data)) {
6890 		/* we disable mandatory BSSID association */
6891 		IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6892 		priv->config &= ~CFG_STATIC_BSSID;
6893 		err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6894 		goto done;
6895 	}
6896 
6897 	priv->config |= CFG_STATIC_BSSID;
6898 	memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6899 
6900 	err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6901 
6902 	IPW_DEBUG_WX("SET BSSID -> %pM\n", wrqu->ap_addr.sa_data);
6903 
6904       done:
6905 	mutex_unlock(&priv->action_mutex);
6906 	return err;
6907 }
6908 
6909 static int ipw2100_wx_get_wap(struct net_device *dev,
6910 			      struct iw_request_info *info,
6911 			      union iwreq_data *wrqu, char *extra)
6912 {
6913 	/*
6914 	 * This can be called at any time.  No action lock required
6915 	 */
6916 
6917 	struct ipw2100_priv *priv = libipw_priv(dev);
6918 
6919 	/* If we are associated, trying to associate, or have a statically
6920 	 * configured BSSID then return that; otherwise return ANY */
6921 	if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6922 		wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6923 		memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6924 	} else
6925 		eth_zero_addr(wrqu->ap_addr.sa_data);
6926 
6927 	IPW_DEBUG_WX("Getting WAP BSSID: %pM\n", wrqu->ap_addr.sa_data);
6928 	return 0;
6929 }
6930 
6931 static int ipw2100_wx_set_essid(struct net_device *dev,
6932 				struct iw_request_info *info,
6933 				union iwreq_data *wrqu, char *extra)
6934 {
6935 	struct ipw2100_priv *priv = libipw_priv(dev);
6936 	char *essid = "";	/* ANY */
6937 	int length = 0;
6938 	int err = 0;
6939 
6940 	mutex_lock(&priv->action_mutex);
6941 	if (!(priv->status & STATUS_INITIALIZED)) {
6942 		err = -EIO;
6943 		goto done;
6944 	}
6945 
6946 	if (wrqu->essid.flags && wrqu->essid.length) {
6947 		length = wrqu->essid.length;
6948 		essid = extra;
6949 	}
6950 
6951 	if (length == 0) {
6952 		IPW_DEBUG_WX("Setting ESSID to ANY\n");
6953 		priv->config &= ~CFG_STATIC_ESSID;
6954 		err = ipw2100_set_essid(priv, NULL, 0, 0);
6955 		goto done;
6956 	}
6957 
6958 	length = min(length, IW_ESSID_MAX_SIZE);
6959 
6960 	priv->config |= CFG_STATIC_ESSID;
6961 
6962 	if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
6963 		IPW_DEBUG_WX("ESSID set to current ESSID.\n");
6964 		err = 0;
6965 		goto done;
6966 	}
6967 
6968 	IPW_DEBUG_WX("Setting ESSID: '%*pE' (%d)\n", length, essid, length);
6969 
6970 	priv->essid_len = length;
6971 	memcpy(priv->essid, essid, priv->essid_len);
6972 
6973 	err = ipw2100_set_essid(priv, essid, length, 0);
6974 
6975       done:
6976 	mutex_unlock(&priv->action_mutex);
6977 	return err;
6978 }
6979 
6980 static int ipw2100_wx_get_essid(struct net_device *dev,
6981 				struct iw_request_info *info,
6982 				union iwreq_data *wrqu, char *extra)
6983 {
6984 	/*
6985 	 * This can be called at any time.  No action lock required
6986 	 */
6987 
6988 	struct ipw2100_priv *priv = libipw_priv(dev);
6989 
6990 	/* If we are associated, trying to associate, or have a statically
6991 	 * configured ESSID then return that; otherwise return ANY */
6992 	if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
6993 		IPW_DEBUG_WX("Getting essid: '%*pE'\n",
6994 			     priv->essid_len, priv->essid);
6995 		memcpy(extra, priv->essid, priv->essid_len);
6996 		wrqu->essid.length = priv->essid_len;
6997 		wrqu->essid.flags = 1;	/* active */
6998 	} else {
6999 		IPW_DEBUG_WX("Getting essid: ANY\n");
7000 		wrqu->essid.length = 0;
7001 		wrqu->essid.flags = 0;	/* active */
7002 	}
7003 
7004 	return 0;
7005 }
7006 
7007 static int ipw2100_wx_set_nick(struct net_device *dev,
7008 			       struct iw_request_info *info,
7009 			       union iwreq_data *wrqu, char *extra)
7010 {
7011 	/*
7012 	 * This can be called at any time.  No action lock required
7013 	 */
7014 
7015 	struct ipw2100_priv *priv = libipw_priv(dev);
7016 
7017 	if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7018 		return -E2BIG;
7019 
7020 	wrqu->data.length = min_t(size_t, wrqu->data.length, sizeof(priv->nick));
7021 	memset(priv->nick, 0, sizeof(priv->nick));
7022 	memcpy(priv->nick, extra, wrqu->data.length);
7023 
7024 	IPW_DEBUG_WX("SET Nickname -> %s\n", priv->nick);
7025 
7026 	return 0;
7027 }
7028 
7029 static int ipw2100_wx_get_nick(struct net_device *dev,
7030 			       struct iw_request_info *info,
7031 			       union iwreq_data *wrqu, char *extra)
7032 {
7033 	/*
7034 	 * This can be called at any time.  No action lock required
7035 	 */
7036 
7037 	struct ipw2100_priv *priv = libipw_priv(dev);
7038 
7039 	wrqu->data.length = strlen(priv->nick);
7040 	memcpy(extra, priv->nick, wrqu->data.length);
7041 	wrqu->data.flags = 1;	/* active */
7042 
7043 	IPW_DEBUG_WX("GET Nickname -> %s\n", extra);
7044 
7045 	return 0;
7046 }
7047 
7048 static int ipw2100_wx_set_rate(struct net_device *dev,
7049 			       struct iw_request_info *info,
7050 			       union iwreq_data *wrqu, char *extra)
7051 {
7052 	struct ipw2100_priv *priv = libipw_priv(dev);
7053 	u32 target_rate = wrqu->bitrate.value;
7054 	u32 rate;
7055 	int err = 0;
7056 
7057 	mutex_lock(&priv->action_mutex);
7058 	if (!(priv->status & STATUS_INITIALIZED)) {
7059 		err = -EIO;
7060 		goto done;
7061 	}
7062 
7063 	rate = 0;
7064 
7065 	if (target_rate == 1000000 ||
7066 	    (!wrqu->bitrate.fixed && target_rate > 1000000))
7067 		rate |= TX_RATE_1_MBIT;
7068 	if (target_rate == 2000000 ||
7069 	    (!wrqu->bitrate.fixed && target_rate > 2000000))
7070 		rate |= TX_RATE_2_MBIT;
7071 	if (target_rate == 5500000 ||
7072 	    (!wrqu->bitrate.fixed && target_rate > 5500000))
7073 		rate |= TX_RATE_5_5_MBIT;
7074 	if (target_rate == 11000000 ||
7075 	    (!wrqu->bitrate.fixed && target_rate > 11000000))
7076 		rate |= TX_RATE_11_MBIT;
7077 	if (rate == 0)
7078 		rate = DEFAULT_TX_RATES;
7079 
7080 	err = ipw2100_set_tx_rates(priv, rate, 0);
7081 
7082 	IPW_DEBUG_WX("SET Rate -> %04X\n", rate);
7083       done:
7084 	mutex_unlock(&priv->action_mutex);
7085 	return err;
7086 }
7087 
7088 static int ipw2100_wx_get_rate(struct net_device *dev,
7089 			       struct iw_request_info *info,
7090 			       union iwreq_data *wrqu, char *extra)
7091 {
7092 	struct ipw2100_priv *priv = libipw_priv(dev);
7093 	int val;
7094 	unsigned int len = sizeof(val);
7095 	int err = 0;
7096 
7097 	if (!(priv->status & STATUS_ENABLED) ||
7098 	    priv->status & STATUS_RF_KILL_MASK ||
7099 	    !(priv->status & STATUS_ASSOCIATED)) {
7100 		wrqu->bitrate.value = 0;
7101 		return 0;
7102 	}
7103 
7104 	mutex_lock(&priv->action_mutex);
7105 	if (!(priv->status & STATUS_INITIALIZED)) {
7106 		err = -EIO;
7107 		goto done;
7108 	}
7109 
7110 	err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7111 	if (err) {
7112 		IPW_DEBUG_WX("failed querying ordinals.\n");
7113 		goto done;
7114 	}
7115 
7116 	switch (val & TX_RATE_MASK) {
7117 	case TX_RATE_1_MBIT:
7118 		wrqu->bitrate.value = 1000000;
7119 		break;
7120 	case TX_RATE_2_MBIT:
7121 		wrqu->bitrate.value = 2000000;
7122 		break;
7123 	case TX_RATE_5_5_MBIT:
7124 		wrqu->bitrate.value = 5500000;
7125 		break;
7126 	case TX_RATE_11_MBIT:
7127 		wrqu->bitrate.value = 11000000;
7128 		break;
7129 	default:
7130 		wrqu->bitrate.value = 0;
7131 	}
7132 
7133 	IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
7134 
7135       done:
7136 	mutex_unlock(&priv->action_mutex);
7137 	return err;
7138 }
7139 
7140 static int ipw2100_wx_set_rts(struct net_device *dev,
7141 			      struct iw_request_info *info,
7142 			      union iwreq_data *wrqu, char *extra)
7143 {
7144 	struct ipw2100_priv *priv = libipw_priv(dev);
7145 	int value, err;
7146 
7147 	/* Auto RTS not yet supported */
7148 	if (wrqu->rts.fixed == 0)
7149 		return -EINVAL;
7150 
7151 	mutex_lock(&priv->action_mutex);
7152 	if (!(priv->status & STATUS_INITIALIZED)) {
7153 		err = -EIO;
7154 		goto done;
7155 	}
7156 
7157 	if (wrqu->rts.disabled)
7158 		value = priv->rts_threshold | RTS_DISABLED;
7159 	else {
7160 		if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7161 			err = -EINVAL;
7162 			goto done;
7163 		}
7164 		value = wrqu->rts.value;
7165 	}
7166 
7167 	err = ipw2100_set_rts_threshold(priv, value);
7168 
7169 	IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X\n", value);
7170       done:
7171 	mutex_unlock(&priv->action_mutex);
7172 	return err;
7173 }
7174 
7175 static int ipw2100_wx_get_rts(struct net_device *dev,
7176 			      struct iw_request_info *info,
7177 			      union iwreq_data *wrqu, char *extra)
7178 {
7179 	/*
7180 	 * This can be called at any time.  No action lock required
7181 	 */
7182 
7183 	struct ipw2100_priv *priv = libipw_priv(dev);
7184 
7185 	wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7186 	wrqu->rts.fixed = 1;	/* no auto select */
7187 
7188 	/* If RTS is set to the default value, then it is disabled */
7189 	wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7190 
7191 	IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X\n", wrqu->rts.value);
7192 
7193 	return 0;
7194 }
7195 
7196 static int ipw2100_wx_set_txpow(struct net_device *dev,
7197 				struct iw_request_info *info,
7198 				union iwreq_data *wrqu, char *extra)
7199 {
7200 	struct ipw2100_priv *priv = libipw_priv(dev);
7201 	int err = 0, value;
7202 
7203 	if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7204 		return -EINPROGRESS;
7205 
7206 	if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7207 		return 0;
7208 
7209 	if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7210 		return -EINVAL;
7211 
7212 	if (wrqu->txpower.fixed == 0)
7213 		value = IPW_TX_POWER_DEFAULT;
7214 	else {
7215 		if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7216 		    wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7217 			return -EINVAL;
7218 
7219 		value = wrqu->txpower.value;
7220 	}
7221 
7222 	mutex_lock(&priv->action_mutex);
7223 	if (!(priv->status & STATUS_INITIALIZED)) {
7224 		err = -EIO;
7225 		goto done;
7226 	}
7227 
7228 	err = ipw2100_set_tx_power(priv, value);
7229 
7230 	IPW_DEBUG_WX("SET TX Power -> %d\n", value);
7231 
7232       done:
7233 	mutex_unlock(&priv->action_mutex);
7234 	return err;
7235 }
7236 
7237 static int ipw2100_wx_get_txpow(struct net_device *dev,
7238 				struct iw_request_info *info,
7239 				union iwreq_data *wrqu, char *extra)
7240 {
7241 	/*
7242 	 * This can be called at any time.  No action lock required
7243 	 */
7244 
7245 	struct ipw2100_priv *priv = libipw_priv(dev);
7246 
7247 	wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7248 
7249 	if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7250 		wrqu->txpower.fixed = 0;
7251 		wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7252 	} else {
7253 		wrqu->txpower.fixed = 1;
7254 		wrqu->txpower.value = priv->tx_power;
7255 	}
7256 
7257 	wrqu->txpower.flags = IW_TXPOW_DBM;
7258 
7259 	IPW_DEBUG_WX("GET TX Power -> %d\n", wrqu->txpower.value);
7260 
7261 	return 0;
7262 }
7263 
7264 static int ipw2100_wx_set_frag(struct net_device *dev,
7265 			       struct iw_request_info *info,
7266 			       union iwreq_data *wrqu, char *extra)
7267 {
7268 	/*
7269 	 * This can be called at any time.  No action lock required
7270 	 */
7271 
7272 	struct ipw2100_priv *priv = libipw_priv(dev);
7273 
7274 	if (!wrqu->frag.fixed)
7275 		return -EINVAL;
7276 
7277 	if (wrqu->frag.disabled) {
7278 		priv->frag_threshold |= FRAG_DISABLED;
7279 		priv->ieee->fts = DEFAULT_FTS;
7280 	} else {
7281 		if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7282 		    wrqu->frag.value > MAX_FRAG_THRESHOLD)
7283 			return -EINVAL;
7284 
7285 		priv->ieee->fts = wrqu->frag.value & ~0x1;
7286 		priv->frag_threshold = priv->ieee->fts;
7287 	}
7288 
7289 	IPW_DEBUG_WX("SET Frag Threshold -> %d\n", priv->ieee->fts);
7290 
7291 	return 0;
7292 }
7293 
7294 static int ipw2100_wx_get_frag(struct net_device *dev,
7295 			       struct iw_request_info *info,
7296 			       union iwreq_data *wrqu, char *extra)
7297 {
7298 	/*
7299 	 * This can be called at any time.  No action lock required
7300 	 */
7301 
7302 	struct ipw2100_priv *priv = libipw_priv(dev);
7303 	wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7304 	wrqu->frag.fixed = 0;	/* no auto select */
7305 	wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7306 
7307 	IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
7308 
7309 	return 0;
7310 }
7311 
7312 static int ipw2100_wx_set_retry(struct net_device *dev,
7313 				struct iw_request_info *info,
7314 				union iwreq_data *wrqu, char *extra)
7315 {
7316 	struct ipw2100_priv *priv = libipw_priv(dev);
7317 	int err = 0;
7318 
7319 	if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7320 		return -EINVAL;
7321 
7322 	if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7323 		return 0;
7324 
7325 	mutex_lock(&priv->action_mutex);
7326 	if (!(priv->status & STATUS_INITIALIZED)) {
7327 		err = -EIO;
7328 		goto done;
7329 	}
7330 
7331 	if (wrqu->retry.flags & IW_RETRY_SHORT) {
7332 		err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7333 		IPW_DEBUG_WX("SET Short Retry Limit -> %d\n",
7334 			     wrqu->retry.value);
7335 		goto done;
7336 	}
7337 
7338 	if (wrqu->retry.flags & IW_RETRY_LONG) {
7339 		err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7340 		IPW_DEBUG_WX("SET Long Retry Limit -> %d\n",
7341 			     wrqu->retry.value);
7342 		goto done;
7343 	}
7344 
7345 	err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7346 	if (!err)
7347 		err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7348 
7349 	IPW_DEBUG_WX("SET Both Retry Limits -> %d\n", wrqu->retry.value);
7350 
7351       done:
7352 	mutex_unlock(&priv->action_mutex);
7353 	return err;
7354 }
7355 
7356 static int ipw2100_wx_get_retry(struct net_device *dev,
7357 				struct iw_request_info *info,
7358 				union iwreq_data *wrqu, char *extra)
7359 {
7360 	/*
7361 	 * This can be called at any time.  No action lock required
7362 	 */
7363 
7364 	struct ipw2100_priv *priv = libipw_priv(dev);
7365 
7366 	wrqu->retry.disabled = 0;	/* can't be disabled */
7367 
7368 	if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7369 		return -EINVAL;
7370 
7371 	if (wrqu->retry.flags & IW_RETRY_LONG) {
7372 		wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7373 		wrqu->retry.value = priv->long_retry_limit;
7374 	} else {
7375 		wrqu->retry.flags =
7376 		    (priv->short_retry_limit !=
7377 		     priv->long_retry_limit) ?
7378 		    IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7379 
7380 		wrqu->retry.value = priv->short_retry_limit;
7381 	}
7382 
7383 	IPW_DEBUG_WX("GET Retry -> %d\n", wrqu->retry.value);
7384 
7385 	return 0;
7386 }
7387 
7388 static int ipw2100_wx_set_scan(struct net_device *dev,
7389 			       struct iw_request_info *info,
7390 			       union iwreq_data *wrqu, char *extra)
7391 {
7392 	struct ipw2100_priv *priv = libipw_priv(dev);
7393 	int err = 0;
7394 
7395 	mutex_lock(&priv->action_mutex);
7396 	if (!(priv->status & STATUS_INITIALIZED)) {
7397 		err = -EIO;
7398 		goto done;
7399 	}
7400 
7401 	IPW_DEBUG_WX("Initiating scan...\n");
7402 
7403 	priv->user_requested_scan = 1;
7404 	if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7405 		IPW_DEBUG_WX("Start scan failed.\n");
7406 
7407 		/* TODO: Mark a scan as pending so when hardware initialized
7408 		 *       a scan starts */
7409 	}
7410 
7411       done:
7412 	mutex_unlock(&priv->action_mutex);
7413 	return err;
7414 }
7415 
7416 static int ipw2100_wx_get_scan(struct net_device *dev,
7417 			       struct iw_request_info *info,
7418 			       union iwreq_data *wrqu, char *extra)
7419 {
7420 	/*
7421 	 * This can be called at any time.  No action lock required
7422 	 */
7423 
7424 	struct ipw2100_priv *priv = libipw_priv(dev);
7425 	return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
7426 }
7427 
7428 /*
7429  * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7430  */
7431 static int ipw2100_wx_set_encode(struct net_device *dev,
7432 				 struct iw_request_info *info,
7433 				 union iwreq_data *wrqu, char *key)
7434 {
7435 	/*
7436 	 * No check of STATUS_INITIALIZED required
7437 	 */
7438 
7439 	struct ipw2100_priv *priv = libipw_priv(dev);
7440 	return libipw_wx_set_encode(priv->ieee, info, wrqu, key);
7441 }
7442 
7443 static int ipw2100_wx_get_encode(struct net_device *dev,
7444 				 struct iw_request_info *info,
7445 				 union iwreq_data *wrqu, char *key)
7446 {
7447 	/*
7448 	 * This can be called at any time.  No action lock required
7449 	 */
7450 
7451 	struct ipw2100_priv *priv = libipw_priv(dev);
7452 	return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
7453 }
7454 
7455 static int ipw2100_wx_set_power(struct net_device *dev,
7456 				struct iw_request_info *info,
7457 				union iwreq_data *wrqu, char *extra)
7458 {
7459 	struct ipw2100_priv *priv = libipw_priv(dev);
7460 	int err = 0;
7461 
7462 	mutex_lock(&priv->action_mutex);
7463 	if (!(priv->status & STATUS_INITIALIZED)) {
7464 		err = -EIO;
7465 		goto done;
7466 	}
7467 
7468 	if (wrqu->power.disabled) {
7469 		priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7470 		err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7471 		IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7472 		goto done;
7473 	}
7474 
7475 	switch (wrqu->power.flags & IW_POWER_MODE) {
7476 	case IW_POWER_ON:	/* If not specified */
7477 	case IW_POWER_MODE:	/* If set all mask */
7478 	case IW_POWER_ALL_R:	/* If explicitly state all */
7479 		break;
7480 	default:		/* Otherwise we don't support it */
7481 		IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7482 			     wrqu->power.flags);
7483 		err = -EOPNOTSUPP;
7484 		goto done;
7485 	}
7486 
7487 	/* If the user hasn't specified a power management mode yet, default
7488 	 * to BATTERY */
7489 	priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7490 	err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7491 
7492 	IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7493 
7494       done:
7495 	mutex_unlock(&priv->action_mutex);
7496 	return err;
7497 
7498 }
7499 
7500 static int ipw2100_wx_get_power(struct net_device *dev,
7501 				struct iw_request_info *info,
7502 				union iwreq_data *wrqu, char *extra)
7503 {
7504 	/*
7505 	 * This can be called at any time.  No action lock required
7506 	 */
7507 
7508 	struct ipw2100_priv *priv = libipw_priv(dev);
7509 
7510 	if (!(priv->power_mode & IPW_POWER_ENABLED))
7511 		wrqu->power.disabled = 1;
7512 	else {
7513 		wrqu->power.disabled = 0;
7514 		wrqu->power.flags = 0;
7515 	}
7516 
7517 	IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7518 
7519 	return 0;
7520 }
7521 
7522 /*
7523  * WE-18 WPA support
7524  */
7525 
7526 /* SIOCSIWGENIE */
7527 static int ipw2100_wx_set_genie(struct net_device *dev,
7528 				struct iw_request_info *info,
7529 				union iwreq_data *wrqu, char *extra)
7530 {
7531 
7532 	struct ipw2100_priv *priv = libipw_priv(dev);
7533 	struct libipw_device *ieee = priv->ieee;
7534 	u8 *buf;
7535 
7536 	if (!ieee->wpa_enabled)
7537 		return -EOPNOTSUPP;
7538 
7539 	if (wrqu->data.length > MAX_WPA_IE_LEN ||
7540 	    (wrqu->data.length && extra == NULL))
7541 		return -EINVAL;
7542 
7543 	if (wrqu->data.length) {
7544 		buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7545 		if (buf == NULL)
7546 			return -ENOMEM;
7547 
7548 		kfree(ieee->wpa_ie);
7549 		ieee->wpa_ie = buf;
7550 		ieee->wpa_ie_len = wrqu->data.length;
7551 	} else {
7552 		kfree(ieee->wpa_ie);
7553 		ieee->wpa_ie = NULL;
7554 		ieee->wpa_ie_len = 0;
7555 	}
7556 
7557 	ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7558 
7559 	return 0;
7560 }
7561 
7562 /* SIOCGIWGENIE */
7563 static int ipw2100_wx_get_genie(struct net_device *dev,
7564 				struct iw_request_info *info,
7565 				union iwreq_data *wrqu, char *extra)
7566 {
7567 	struct ipw2100_priv *priv = libipw_priv(dev);
7568 	struct libipw_device *ieee = priv->ieee;
7569 
7570 	if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7571 		wrqu->data.length = 0;
7572 		return 0;
7573 	}
7574 
7575 	if (wrqu->data.length < ieee->wpa_ie_len)
7576 		return -E2BIG;
7577 
7578 	wrqu->data.length = ieee->wpa_ie_len;
7579 	memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7580 
7581 	return 0;
7582 }
7583 
7584 /* SIOCSIWAUTH */
7585 static int ipw2100_wx_set_auth(struct net_device *dev,
7586 			       struct iw_request_info *info,
7587 			       union iwreq_data *wrqu, char *extra)
7588 {
7589 	struct ipw2100_priv *priv = libipw_priv(dev);
7590 	struct libipw_device *ieee = priv->ieee;
7591 	struct iw_param *param = &wrqu->param;
7592 	struct lib80211_crypt_data *crypt;
7593 	unsigned long flags;
7594 	int ret = 0;
7595 
7596 	switch (param->flags & IW_AUTH_INDEX) {
7597 	case IW_AUTH_WPA_VERSION:
7598 	case IW_AUTH_CIPHER_PAIRWISE:
7599 	case IW_AUTH_CIPHER_GROUP:
7600 	case IW_AUTH_KEY_MGMT:
7601 		/*
7602 		 * ipw2200 does not use these parameters
7603 		 */
7604 		break;
7605 
7606 	case IW_AUTH_TKIP_COUNTERMEASURES:
7607 		crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7608 		if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7609 			break;
7610 
7611 		flags = crypt->ops->get_flags(crypt->priv);
7612 
7613 		if (param->value)
7614 			flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7615 		else
7616 			flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7617 
7618 		crypt->ops->set_flags(flags, crypt->priv);
7619 
7620 		break;
7621 
7622 	case IW_AUTH_DROP_UNENCRYPTED:{
7623 			/* HACK:
7624 			 *
7625 			 * wpa_supplicant calls set_wpa_enabled when the driver
7626 			 * is loaded and unloaded, regardless of if WPA is being
7627 			 * used.  No other calls are made which can be used to
7628 			 * determine if encryption will be used or not prior to
7629 			 * association being expected.  If encryption is not being
7630 			 * used, drop_unencrypted is set to false, else true -- we
7631 			 * can use this to determine if the CAP_PRIVACY_ON bit should
7632 			 * be set.
7633 			 */
7634 			struct libipw_security sec = {
7635 				.flags = SEC_ENABLED,
7636 				.enabled = param->value,
7637 			};
7638 			priv->ieee->drop_unencrypted = param->value;
7639 			/* We only change SEC_LEVEL for open mode. Others
7640 			 * are set by ipw_wpa_set_encryption.
7641 			 */
7642 			if (!param->value) {
7643 				sec.flags |= SEC_LEVEL;
7644 				sec.level = SEC_LEVEL_0;
7645 			} else {
7646 				sec.flags |= SEC_LEVEL;
7647 				sec.level = SEC_LEVEL_1;
7648 			}
7649 			if (priv->ieee->set_security)
7650 				priv->ieee->set_security(priv->ieee->dev, &sec);
7651 			break;
7652 		}
7653 
7654 	case IW_AUTH_80211_AUTH_ALG:
7655 		ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7656 		break;
7657 
7658 	case IW_AUTH_WPA_ENABLED:
7659 		ret = ipw2100_wpa_enable(priv, param->value);
7660 		break;
7661 
7662 	case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7663 		ieee->ieee802_1x = param->value;
7664 		break;
7665 
7666 		//case IW_AUTH_ROAMING_CONTROL:
7667 	case IW_AUTH_PRIVACY_INVOKED:
7668 		ieee->privacy_invoked = param->value;
7669 		break;
7670 
7671 	default:
7672 		return -EOPNOTSUPP;
7673 	}
7674 	return ret;
7675 }
7676 
7677 /* SIOCGIWAUTH */
7678 static int ipw2100_wx_get_auth(struct net_device *dev,
7679 			       struct iw_request_info *info,
7680 			       union iwreq_data *wrqu, char *extra)
7681 {
7682 	struct ipw2100_priv *priv = libipw_priv(dev);
7683 	struct libipw_device *ieee = priv->ieee;
7684 	struct lib80211_crypt_data *crypt;
7685 	struct iw_param *param = &wrqu->param;
7686 
7687 	switch (param->flags & IW_AUTH_INDEX) {
7688 	case IW_AUTH_WPA_VERSION:
7689 	case IW_AUTH_CIPHER_PAIRWISE:
7690 	case IW_AUTH_CIPHER_GROUP:
7691 	case IW_AUTH_KEY_MGMT:
7692 		/*
7693 		 * wpa_supplicant will control these internally
7694 		 */
7695 		break;
7696 
7697 	case IW_AUTH_TKIP_COUNTERMEASURES:
7698 		crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7699 		if (!crypt || !crypt->ops->get_flags) {
7700 			IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7701 					  "crypt not set!\n");
7702 			break;
7703 		}
7704 
7705 		param->value = (crypt->ops->get_flags(crypt->priv) &
7706 				IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7707 
7708 		break;
7709 
7710 	case IW_AUTH_DROP_UNENCRYPTED:
7711 		param->value = ieee->drop_unencrypted;
7712 		break;
7713 
7714 	case IW_AUTH_80211_AUTH_ALG:
7715 		param->value = priv->ieee->sec.auth_mode;
7716 		break;
7717 
7718 	case IW_AUTH_WPA_ENABLED:
7719 		param->value = ieee->wpa_enabled;
7720 		break;
7721 
7722 	case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7723 		param->value = ieee->ieee802_1x;
7724 		break;
7725 
7726 	case IW_AUTH_ROAMING_CONTROL:
7727 	case IW_AUTH_PRIVACY_INVOKED:
7728 		param->value = ieee->privacy_invoked;
7729 		break;
7730 
7731 	default:
7732 		return -EOPNOTSUPP;
7733 	}
7734 	return 0;
7735 }
7736 
7737 /* SIOCSIWENCODEEXT */
7738 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7739 				    struct iw_request_info *info,
7740 				    union iwreq_data *wrqu, char *extra)
7741 {
7742 	struct ipw2100_priv *priv = libipw_priv(dev);
7743 	return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7744 }
7745 
7746 /* SIOCGIWENCODEEXT */
7747 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7748 				    struct iw_request_info *info,
7749 				    union iwreq_data *wrqu, char *extra)
7750 {
7751 	struct ipw2100_priv *priv = libipw_priv(dev);
7752 	return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7753 }
7754 
7755 /* SIOCSIWMLME */
7756 static int ipw2100_wx_set_mlme(struct net_device *dev,
7757 			       struct iw_request_info *info,
7758 			       union iwreq_data *wrqu, char *extra)
7759 {
7760 	struct ipw2100_priv *priv = libipw_priv(dev);
7761 	struct iw_mlme *mlme = (struct iw_mlme *)extra;
7762 
7763 	switch (mlme->cmd) {
7764 	case IW_MLME_DEAUTH:
7765 		// silently ignore
7766 		break;
7767 
7768 	case IW_MLME_DISASSOC:
7769 		ipw2100_disassociate_bssid(priv);
7770 		break;
7771 
7772 	default:
7773 		return -EOPNOTSUPP;
7774 	}
7775 	return 0;
7776 }
7777 
7778 /*
7779  *
7780  * IWPRIV handlers
7781  *
7782  */
7783 #ifdef CONFIG_IPW2100_MONITOR
7784 static int ipw2100_wx_set_promisc(struct net_device *dev,
7785 				  struct iw_request_info *info,
7786 				  union iwreq_data *wrqu, char *extra)
7787 {
7788 	struct ipw2100_priv *priv = libipw_priv(dev);
7789 	int *parms = (int *)extra;
7790 	int enable = (parms[0] > 0);
7791 	int err = 0;
7792 
7793 	mutex_lock(&priv->action_mutex);
7794 	if (!(priv->status & STATUS_INITIALIZED)) {
7795 		err = -EIO;
7796 		goto done;
7797 	}
7798 
7799 	if (enable) {
7800 		if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7801 			err = ipw2100_set_channel(priv, parms[1], 0);
7802 			goto done;
7803 		}
7804 		priv->channel = parms[1];
7805 		err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7806 	} else {
7807 		if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7808 			err = ipw2100_switch_mode(priv, priv->last_mode);
7809 	}
7810       done:
7811 	mutex_unlock(&priv->action_mutex);
7812 	return err;
7813 }
7814 
7815 static int ipw2100_wx_reset(struct net_device *dev,
7816 			    struct iw_request_info *info,
7817 			    union iwreq_data *wrqu, char *extra)
7818 {
7819 	struct ipw2100_priv *priv = libipw_priv(dev);
7820 	if (priv->status & STATUS_INITIALIZED)
7821 		schedule_reset(priv);
7822 	return 0;
7823 }
7824 
7825 #endif
7826 
7827 static int ipw2100_wx_set_powermode(struct net_device *dev,
7828 				    struct iw_request_info *info,
7829 				    union iwreq_data *wrqu, char *extra)
7830 {
7831 	struct ipw2100_priv *priv = libipw_priv(dev);
7832 	int err = 0, mode = *(int *)extra;
7833 
7834 	mutex_lock(&priv->action_mutex);
7835 	if (!(priv->status & STATUS_INITIALIZED)) {
7836 		err = -EIO;
7837 		goto done;
7838 	}
7839 
7840 	if ((mode < 0) || (mode > POWER_MODES))
7841 		mode = IPW_POWER_AUTO;
7842 
7843 	if (IPW_POWER_LEVEL(priv->power_mode) != mode)
7844 		err = ipw2100_set_power_mode(priv, mode);
7845       done:
7846 	mutex_unlock(&priv->action_mutex);
7847 	return err;
7848 }
7849 
7850 #define MAX_POWER_STRING 80
7851 static int ipw2100_wx_get_powermode(struct net_device *dev,
7852 				    struct iw_request_info *info,
7853 				    union iwreq_data *wrqu, char *extra)
7854 {
7855 	/*
7856 	 * This can be called at any time.  No action lock required
7857 	 */
7858 
7859 	struct ipw2100_priv *priv = libipw_priv(dev);
7860 	int level = IPW_POWER_LEVEL(priv->power_mode);
7861 	s32 timeout, period;
7862 
7863 	if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7864 		snprintf(extra, MAX_POWER_STRING,
7865 			 "Power save level: %d (Off)", level);
7866 	} else {
7867 		switch (level) {
7868 		case IPW_POWER_MODE_CAM:
7869 			snprintf(extra, MAX_POWER_STRING,
7870 				 "Power save level: %d (None)", level);
7871 			break;
7872 		case IPW_POWER_AUTO:
7873 			snprintf(extra, MAX_POWER_STRING,
7874 				 "Power save level: %d (Auto)", level);
7875 			break;
7876 		default:
7877 			timeout = timeout_duration[level - 1] / 1000;
7878 			period = period_duration[level - 1] / 1000;
7879 			snprintf(extra, MAX_POWER_STRING,
7880 				 "Power save level: %d "
7881 				 "(Timeout %dms, Period %dms)",
7882 				 level, timeout, period);
7883 		}
7884 	}
7885 
7886 	wrqu->data.length = strlen(extra) + 1;
7887 
7888 	return 0;
7889 }
7890 
7891 static int ipw2100_wx_set_preamble(struct net_device *dev,
7892 				   struct iw_request_info *info,
7893 				   union iwreq_data *wrqu, char *extra)
7894 {
7895 	struct ipw2100_priv *priv = libipw_priv(dev);
7896 	int err, mode = *(int *)extra;
7897 
7898 	mutex_lock(&priv->action_mutex);
7899 	if (!(priv->status & STATUS_INITIALIZED)) {
7900 		err = -EIO;
7901 		goto done;
7902 	}
7903 
7904 	if (mode == 1)
7905 		priv->config |= CFG_LONG_PREAMBLE;
7906 	else if (mode == 0)
7907 		priv->config &= ~CFG_LONG_PREAMBLE;
7908 	else {
7909 		err = -EINVAL;
7910 		goto done;
7911 	}
7912 
7913 	err = ipw2100_system_config(priv, 0);
7914 
7915       done:
7916 	mutex_unlock(&priv->action_mutex);
7917 	return err;
7918 }
7919 
7920 static int ipw2100_wx_get_preamble(struct net_device *dev,
7921 				   struct iw_request_info *info,
7922 				   union iwreq_data *wrqu, char *extra)
7923 {
7924 	/*
7925 	 * This can be called at any time.  No action lock required
7926 	 */
7927 
7928 	struct ipw2100_priv *priv = libipw_priv(dev);
7929 
7930 	if (priv->config & CFG_LONG_PREAMBLE)
7931 		snprintf(wrqu->name, IFNAMSIZ, "long (1)");
7932 	else
7933 		snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
7934 
7935 	return 0;
7936 }
7937 
7938 #ifdef CONFIG_IPW2100_MONITOR
7939 static int ipw2100_wx_set_crc_check(struct net_device *dev,
7940 				    struct iw_request_info *info,
7941 				    union iwreq_data *wrqu, char *extra)
7942 {
7943 	struct ipw2100_priv *priv = libipw_priv(dev);
7944 	int err, mode = *(int *)extra;
7945 
7946 	mutex_lock(&priv->action_mutex);
7947 	if (!(priv->status & STATUS_INITIALIZED)) {
7948 		err = -EIO;
7949 		goto done;
7950 	}
7951 
7952 	if (mode == 1)
7953 		priv->config |= CFG_CRC_CHECK;
7954 	else if (mode == 0)
7955 		priv->config &= ~CFG_CRC_CHECK;
7956 	else {
7957 		err = -EINVAL;
7958 		goto done;
7959 	}
7960 	err = 0;
7961 
7962       done:
7963 	mutex_unlock(&priv->action_mutex);
7964 	return err;
7965 }
7966 
7967 static int ipw2100_wx_get_crc_check(struct net_device *dev,
7968 				    struct iw_request_info *info,
7969 				    union iwreq_data *wrqu, char *extra)
7970 {
7971 	/*
7972 	 * This can be called at any time.  No action lock required
7973 	 */
7974 
7975 	struct ipw2100_priv *priv = libipw_priv(dev);
7976 
7977 	if (priv->config & CFG_CRC_CHECK)
7978 		snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
7979 	else
7980 		snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
7981 
7982 	return 0;
7983 }
7984 #endif				/* CONFIG_IPW2100_MONITOR */
7985 
7986 static iw_handler ipw2100_wx_handlers[] = {
7987 	IW_HANDLER(SIOCGIWNAME, ipw2100_wx_get_name),
7988 	IW_HANDLER(SIOCSIWFREQ, ipw2100_wx_set_freq),
7989 	IW_HANDLER(SIOCGIWFREQ, ipw2100_wx_get_freq),
7990 	IW_HANDLER(SIOCSIWMODE, ipw2100_wx_set_mode),
7991 	IW_HANDLER(SIOCGIWMODE, ipw2100_wx_get_mode),
7992 	IW_HANDLER(SIOCGIWRANGE, ipw2100_wx_get_range),
7993 	IW_HANDLER(SIOCSIWAP, ipw2100_wx_set_wap),
7994 	IW_HANDLER(SIOCGIWAP, ipw2100_wx_get_wap),
7995 	IW_HANDLER(SIOCSIWMLME, ipw2100_wx_set_mlme),
7996 	IW_HANDLER(SIOCSIWSCAN, ipw2100_wx_set_scan),
7997 	IW_HANDLER(SIOCGIWSCAN, ipw2100_wx_get_scan),
7998 	IW_HANDLER(SIOCSIWESSID, ipw2100_wx_set_essid),
7999 	IW_HANDLER(SIOCGIWESSID, ipw2100_wx_get_essid),
8000 	IW_HANDLER(SIOCSIWNICKN, ipw2100_wx_set_nick),
8001 	IW_HANDLER(SIOCGIWNICKN, ipw2100_wx_get_nick),
8002 	IW_HANDLER(SIOCSIWRATE, ipw2100_wx_set_rate),
8003 	IW_HANDLER(SIOCGIWRATE, ipw2100_wx_get_rate),
8004 	IW_HANDLER(SIOCSIWRTS, ipw2100_wx_set_rts),
8005 	IW_HANDLER(SIOCGIWRTS, ipw2100_wx_get_rts),
8006 	IW_HANDLER(SIOCSIWFRAG, ipw2100_wx_set_frag),
8007 	IW_HANDLER(SIOCGIWFRAG, ipw2100_wx_get_frag),
8008 	IW_HANDLER(SIOCSIWTXPOW, ipw2100_wx_set_txpow),
8009 	IW_HANDLER(SIOCGIWTXPOW, ipw2100_wx_get_txpow),
8010 	IW_HANDLER(SIOCSIWRETRY, ipw2100_wx_set_retry),
8011 	IW_HANDLER(SIOCGIWRETRY, ipw2100_wx_get_retry),
8012 	IW_HANDLER(SIOCSIWENCODE, ipw2100_wx_set_encode),
8013 	IW_HANDLER(SIOCGIWENCODE, ipw2100_wx_get_encode),
8014 	IW_HANDLER(SIOCSIWPOWER, ipw2100_wx_set_power),
8015 	IW_HANDLER(SIOCGIWPOWER, ipw2100_wx_get_power),
8016 	IW_HANDLER(SIOCSIWGENIE, ipw2100_wx_set_genie),
8017 	IW_HANDLER(SIOCGIWGENIE, ipw2100_wx_get_genie),
8018 	IW_HANDLER(SIOCSIWAUTH, ipw2100_wx_set_auth),
8019 	IW_HANDLER(SIOCGIWAUTH, ipw2100_wx_get_auth),
8020 	IW_HANDLER(SIOCSIWENCODEEXT, ipw2100_wx_set_encodeext),
8021 	IW_HANDLER(SIOCGIWENCODEEXT, ipw2100_wx_get_encodeext),
8022 };
8023 
8024 #define IPW2100_PRIV_SET_MONITOR	SIOCIWFIRSTPRIV
8025 #define IPW2100_PRIV_RESET		SIOCIWFIRSTPRIV+1
8026 #define IPW2100_PRIV_SET_POWER		SIOCIWFIRSTPRIV+2
8027 #define IPW2100_PRIV_GET_POWER		SIOCIWFIRSTPRIV+3
8028 #define IPW2100_PRIV_SET_LONGPREAMBLE	SIOCIWFIRSTPRIV+4
8029 #define IPW2100_PRIV_GET_LONGPREAMBLE	SIOCIWFIRSTPRIV+5
8030 #define IPW2100_PRIV_SET_CRC_CHECK	SIOCIWFIRSTPRIV+6
8031 #define IPW2100_PRIV_GET_CRC_CHECK	SIOCIWFIRSTPRIV+7
8032 
8033 static const struct iw_priv_args ipw2100_private_args[] = {
8034 
8035 #ifdef CONFIG_IPW2100_MONITOR
8036 	{
8037 	 IPW2100_PRIV_SET_MONITOR,
8038 	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8039 	{
8040 	 IPW2100_PRIV_RESET,
8041 	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8042 #endif				/* CONFIG_IPW2100_MONITOR */
8043 
8044 	{
8045 	 IPW2100_PRIV_SET_POWER,
8046 	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8047 	{
8048 	 IPW2100_PRIV_GET_POWER,
8049 	 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8050 	 "get_power"},
8051 	{
8052 	 IPW2100_PRIV_SET_LONGPREAMBLE,
8053 	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8054 	{
8055 	 IPW2100_PRIV_GET_LONGPREAMBLE,
8056 	 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8057 #ifdef CONFIG_IPW2100_MONITOR
8058 	{
8059 	 IPW2100_PRIV_SET_CRC_CHECK,
8060 	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8061 	{
8062 	 IPW2100_PRIV_GET_CRC_CHECK,
8063 	 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8064 #endif				/* CONFIG_IPW2100_MONITOR */
8065 };
8066 
8067 static iw_handler ipw2100_private_handler[] = {
8068 #ifdef CONFIG_IPW2100_MONITOR
8069 	ipw2100_wx_set_promisc,
8070 	ipw2100_wx_reset,
8071 #else				/* CONFIG_IPW2100_MONITOR */
8072 	NULL,
8073 	NULL,
8074 #endif				/* CONFIG_IPW2100_MONITOR */
8075 	ipw2100_wx_set_powermode,
8076 	ipw2100_wx_get_powermode,
8077 	ipw2100_wx_set_preamble,
8078 	ipw2100_wx_get_preamble,
8079 #ifdef CONFIG_IPW2100_MONITOR
8080 	ipw2100_wx_set_crc_check,
8081 	ipw2100_wx_get_crc_check,
8082 #else				/* CONFIG_IPW2100_MONITOR */
8083 	NULL,
8084 	NULL,
8085 #endif				/* CONFIG_IPW2100_MONITOR */
8086 };
8087 
8088 /*
8089  * Get wireless statistics.
8090  * Called by /proc/net/wireless
8091  * Also called by SIOCGIWSTATS
8092  */
8093 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8094 {
8095 	enum {
8096 		POOR = 30,
8097 		FAIR = 60,
8098 		GOOD = 80,
8099 		VERY_GOOD = 90,
8100 		EXCELLENT = 95,
8101 		PERFECT = 100
8102 	};
8103 	int rssi_qual;
8104 	int tx_qual;
8105 	int beacon_qual;
8106 	int quality;
8107 
8108 	struct ipw2100_priv *priv = libipw_priv(dev);
8109 	struct iw_statistics *wstats;
8110 	u32 rssi, tx_retries, missed_beacons, tx_failures;
8111 	u32 ord_len = sizeof(u32);
8112 
8113 	if (!priv)
8114 		return (struct iw_statistics *)NULL;
8115 
8116 	wstats = &priv->wstats;
8117 
8118 	/* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8119 	 * ipw2100_wx_wireless_stats seems to be called before fw is
8120 	 * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
8121 	 * and associated; if not associcated, the values are all meaningless
8122 	 * anyway, so set them all to NULL and INVALID */
8123 	if (!(priv->status & STATUS_ASSOCIATED)) {
8124 		wstats->miss.beacon = 0;
8125 		wstats->discard.retries = 0;
8126 		wstats->qual.qual = 0;
8127 		wstats->qual.level = 0;
8128 		wstats->qual.noise = 0;
8129 		wstats->qual.updated = 7;
8130 		wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8131 		    IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8132 		return wstats;
8133 	}
8134 
8135 	if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8136 				&missed_beacons, &ord_len))
8137 		goto fail_get_ordinal;
8138 
8139 	/* If we don't have a connection the quality and level is 0 */
8140 	if (!(priv->status & STATUS_ASSOCIATED)) {
8141 		wstats->qual.qual = 0;
8142 		wstats->qual.level = 0;
8143 	} else {
8144 		if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8145 					&rssi, &ord_len))
8146 			goto fail_get_ordinal;
8147 		wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8148 		if (rssi < 10)
8149 			rssi_qual = rssi * POOR / 10;
8150 		else if (rssi < 15)
8151 			rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8152 		else if (rssi < 20)
8153 			rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8154 		else if (rssi < 30)
8155 			rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8156 			    10 + GOOD;
8157 		else
8158 			rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8159 			    10 + VERY_GOOD;
8160 
8161 		if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8162 					&tx_retries, &ord_len))
8163 			goto fail_get_ordinal;
8164 
8165 		if (tx_retries > 75)
8166 			tx_qual = (90 - tx_retries) * POOR / 15;
8167 		else if (tx_retries > 70)
8168 			tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8169 		else if (tx_retries > 65)
8170 			tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8171 		else if (tx_retries > 50)
8172 			tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8173 			    15 + GOOD;
8174 		else
8175 			tx_qual = (50 - tx_retries) *
8176 			    (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8177 
8178 		if (missed_beacons > 50)
8179 			beacon_qual = (60 - missed_beacons) * POOR / 10;
8180 		else if (missed_beacons > 40)
8181 			beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8182 			    10 + POOR;
8183 		else if (missed_beacons > 32)
8184 			beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8185 			    18 + FAIR;
8186 		else if (missed_beacons > 20)
8187 			beacon_qual = (32 - missed_beacons) *
8188 			    (VERY_GOOD - GOOD) / 20 + GOOD;
8189 		else
8190 			beacon_qual = (20 - missed_beacons) *
8191 			    (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8192 
8193 		quality = min(tx_qual, rssi_qual);
8194 		quality = min(beacon_qual, quality);
8195 
8196 #ifdef CONFIG_IPW2100_DEBUG
8197 		if (beacon_qual == quality)
8198 			IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8199 		else if (tx_qual == quality)
8200 			IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8201 		else if (quality != 100)
8202 			IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8203 		else
8204 			IPW_DEBUG_WX("Quality not clamped.\n");
8205 #endif
8206 
8207 		wstats->qual.qual = quality;
8208 		wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8209 	}
8210 
8211 	wstats->qual.noise = 0;
8212 	wstats->qual.updated = 7;
8213 	wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8214 
8215 	/* FIXME: this is percent and not a # */
8216 	wstats->miss.beacon = missed_beacons;
8217 
8218 	if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8219 				&tx_failures, &ord_len))
8220 		goto fail_get_ordinal;
8221 	wstats->discard.retries = tx_failures;
8222 
8223 	return wstats;
8224 
8225       fail_get_ordinal:
8226 	IPW_DEBUG_WX("failed querying ordinals.\n");
8227 
8228 	return (struct iw_statistics *)NULL;
8229 }
8230 
8231 static const struct iw_handler_def ipw2100_wx_handler_def = {
8232 	.standard = ipw2100_wx_handlers,
8233 	.num_standard = ARRAY_SIZE(ipw2100_wx_handlers),
8234 	.num_private = ARRAY_SIZE(ipw2100_private_handler),
8235 	.num_private_args = ARRAY_SIZE(ipw2100_private_args),
8236 	.private = (iw_handler *) ipw2100_private_handler,
8237 	.private_args = (struct iw_priv_args *)ipw2100_private_args,
8238 	.get_wireless_stats = ipw2100_wx_wireless_stats,
8239 };
8240 
8241 static void ipw2100_wx_event_work(struct work_struct *work)
8242 {
8243 	struct ipw2100_priv *priv =
8244 		container_of(work, struct ipw2100_priv, wx_event_work.work);
8245 	union iwreq_data wrqu;
8246 	unsigned int len = ETH_ALEN;
8247 
8248 	if (priv->status & STATUS_STOPPING)
8249 		return;
8250 
8251 	mutex_lock(&priv->action_mutex);
8252 
8253 	IPW_DEBUG_WX("enter\n");
8254 
8255 	mutex_unlock(&priv->action_mutex);
8256 
8257 	wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8258 
8259 	/* Fetch BSSID from the hardware */
8260 	if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8261 	    priv->status & STATUS_RF_KILL_MASK ||
8262 	    ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8263 				&priv->bssid, &len)) {
8264 		eth_zero_addr(wrqu.ap_addr.sa_data);
8265 	} else {
8266 		/* We now have the BSSID, so can finish setting to the full
8267 		 * associated state */
8268 		memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8269 		memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8270 		priv->status &= ~STATUS_ASSOCIATING;
8271 		priv->status |= STATUS_ASSOCIATED;
8272 		netif_carrier_on(priv->net_dev);
8273 		netif_wake_queue(priv->net_dev);
8274 	}
8275 
8276 	if (!(priv->status & STATUS_ASSOCIATED)) {
8277 		IPW_DEBUG_WX("Configuring ESSID\n");
8278 		mutex_lock(&priv->action_mutex);
8279 		/* This is a disassociation event, so kick the firmware to
8280 		 * look for another AP */
8281 		if (priv->config & CFG_STATIC_ESSID)
8282 			ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8283 					  0);
8284 		else
8285 			ipw2100_set_essid(priv, NULL, 0, 0);
8286 		mutex_unlock(&priv->action_mutex);
8287 	}
8288 
8289 	wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8290 }
8291 
8292 #define IPW2100_FW_MAJOR_VERSION 1
8293 #define IPW2100_FW_MINOR_VERSION 3
8294 
8295 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8296 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8297 
8298 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8299                              IPW2100_FW_MAJOR_VERSION)
8300 
8301 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8302 "." __stringify(IPW2100_FW_MINOR_VERSION)
8303 
8304 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8305 
8306 /*
8307 
8308 BINARY FIRMWARE HEADER FORMAT
8309 
8310 offset      length   desc
8311 0           2        version
8312 2           2        mode == 0:BSS,1:IBSS,2:MONITOR
8313 4           4        fw_len
8314 8           4        uc_len
8315 C           fw_len   firmware data
8316 12 + fw_len uc_len   microcode data
8317 
8318 */
8319 
8320 struct ipw2100_fw_header {
8321 	short version;
8322 	short mode;
8323 	unsigned int fw_size;
8324 	unsigned int uc_size;
8325 } __packed;
8326 
8327 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8328 {
8329 	struct ipw2100_fw_header *h =
8330 	    (struct ipw2100_fw_header *)fw->fw_entry->data;
8331 
8332 	if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8333 		printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8334 		       "(detected version id of %u). "
8335 		       "See Documentation/networking/device_drivers/wifi/intel/ipw2100.rst\n",
8336 		       h->version);
8337 		return 1;
8338 	}
8339 
8340 	fw->version = h->version;
8341 	fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8342 	fw->fw.size = h->fw_size;
8343 	fw->uc.data = fw->fw.data + h->fw_size;
8344 	fw->uc.size = h->uc_size;
8345 
8346 	return 0;
8347 }
8348 
8349 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8350 				struct ipw2100_fw *fw)
8351 {
8352 	char *fw_name;
8353 	int rc;
8354 
8355 	IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8356 		       priv->net_dev->name);
8357 
8358 	switch (priv->ieee->iw_mode) {
8359 	case IW_MODE_ADHOC:
8360 		fw_name = IPW2100_FW_NAME("-i");
8361 		break;
8362 #ifdef CONFIG_IPW2100_MONITOR
8363 	case IW_MODE_MONITOR:
8364 		fw_name = IPW2100_FW_NAME("-p");
8365 		break;
8366 #endif
8367 	case IW_MODE_INFRA:
8368 	default:
8369 		fw_name = IPW2100_FW_NAME("");
8370 		break;
8371 	}
8372 
8373 	rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8374 
8375 	if (rc < 0) {
8376 		printk(KERN_ERR DRV_NAME ": "
8377 		       "%s: Firmware '%s' not available or load failed.\n",
8378 		       priv->net_dev->name, fw_name);
8379 		return rc;
8380 	}
8381 	IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8382 		       fw->fw_entry->size);
8383 
8384 	ipw2100_mod_firmware_load(fw);
8385 
8386 	return 0;
8387 }
8388 
8389 MODULE_FIRMWARE(IPW2100_FW_NAME("-i"));
8390 #ifdef CONFIG_IPW2100_MONITOR
8391 MODULE_FIRMWARE(IPW2100_FW_NAME("-p"));
8392 #endif
8393 MODULE_FIRMWARE(IPW2100_FW_NAME(""));
8394 
8395 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8396 				     struct ipw2100_fw *fw)
8397 {
8398 	fw->version = 0;
8399 	release_firmware(fw->fw_entry);
8400 	fw->fw_entry = NULL;
8401 }
8402 
8403 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8404 				 size_t max)
8405 {
8406 	char ver[MAX_FW_VERSION_LEN];
8407 	u32 len = MAX_FW_VERSION_LEN;
8408 	u32 tmp;
8409 	int i;
8410 	/* firmware version is an ascii string (max len of 14) */
8411 	if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8412 		return -EIO;
8413 	tmp = max;
8414 	if (len >= max)
8415 		len = max - 1;
8416 	for (i = 0; i < len; i++)
8417 		buf[i] = ver[i];
8418 	buf[i] = '\0';
8419 	return tmp;
8420 }
8421 
8422 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8423 				    size_t max)
8424 {
8425 	u32 ver;
8426 	u32 len = sizeof(ver);
8427 	/* microcode version is a 32 bit integer */
8428 	if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8429 		return -EIO;
8430 	return snprintf(buf, max, "%08X", ver);
8431 }
8432 
8433 /*
8434  * On exit, the firmware will have been freed from the fw list
8435  */
8436 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8437 {
8438 	/* firmware is constructed of N contiguous entries, each entry is
8439 	 * structured as:
8440 	 *
8441 	 * offset    sie         desc
8442 	 * 0         4           address to write to
8443 	 * 4         2           length of data run
8444 	 * 6         length      data
8445 	 */
8446 	unsigned int addr;
8447 	unsigned short len;
8448 
8449 	const unsigned char *firmware_data = fw->fw.data;
8450 	unsigned int firmware_data_left = fw->fw.size;
8451 
8452 	while (firmware_data_left > 0) {
8453 		addr = *(u32 *) (firmware_data);
8454 		firmware_data += 4;
8455 		firmware_data_left -= 4;
8456 
8457 		len = *(u16 *) (firmware_data);
8458 		firmware_data += 2;
8459 		firmware_data_left -= 2;
8460 
8461 		if (len > 32) {
8462 			printk(KERN_ERR DRV_NAME ": "
8463 			       "Invalid firmware run-length of %d bytes\n",
8464 			       len);
8465 			return -EINVAL;
8466 		}
8467 
8468 		write_nic_memory(priv->net_dev, addr, len, firmware_data);
8469 		firmware_data += len;
8470 		firmware_data_left -= len;
8471 	}
8472 
8473 	return 0;
8474 }
8475 
8476 struct symbol_alive_response {
8477 	u8 cmd_id;
8478 	u8 seq_num;
8479 	u8 ucode_rev;
8480 	u8 eeprom_valid;
8481 	u16 valid_flags;
8482 	u8 IEEE_addr[6];
8483 	u16 flags;
8484 	u16 pcb_rev;
8485 	u16 clock_settle_time;	// 1us LSB
8486 	u16 powerup_settle_time;	// 1us LSB
8487 	u16 hop_settle_time;	// 1us LSB
8488 	u8 date[3];		// month, day, year
8489 	u8 time[2];		// hours, minutes
8490 	u8 ucode_valid;
8491 };
8492 
8493 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8494 				  struct ipw2100_fw *fw)
8495 {
8496 	struct net_device *dev = priv->net_dev;
8497 	const unsigned char *microcode_data = fw->uc.data;
8498 	unsigned int microcode_data_left = fw->uc.size;
8499 	void __iomem *reg = priv->ioaddr;
8500 
8501 	struct symbol_alive_response response;
8502 	int i, j;
8503 	u8 data;
8504 
8505 	/* Symbol control */
8506 	write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8507 	readl(reg);
8508 	write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8509 	readl(reg);
8510 
8511 	/* HW config */
8512 	write_nic_byte(dev, 0x210014, 0x72);	/* fifo width =16 */
8513 	readl(reg);
8514 	write_nic_byte(dev, 0x210014, 0x72);	/* fifo width =16 */
8515 	readl(reg);
8516 
8517 	/* EN_CS_ACCESS bit to reset control store pointer */
8518 	write_nic_byte(dev, 0x210000, 0x40);
8519 	readl(reg);
8520 	write_nic_byte(dev, 0x210000, 0x0);
8521 	readl(reg);
8522 	write_nic_byte(dev, 0x210000, 0x40);
8523 	readl(reg);
8524 
8525 	/* copy microcode from buffer into Symbol */
8526 
8527 	while (microcode_data_left > 0) {
8528 		write_nic_byte(dev, 0x210010, *microcode_data++);
8529 		write_nic_byte(dev, 0x210010, *microcode_data++);
8530 		microcode_data_left -= 2;
8531 	}
8532 
8533 	/* EN_CS_ACCESS bit to reset the control store pointer */
8534 	write_nic_byte(dev, 0x210000, 0x0);
8535 	readl(reg);
8536 
8537 	/* Enable System (Reg 0)
8538 	 * first enable causes garbage in RX FIFO */
8539 	write_nic_byte(dev, 0x210000, 0x0);
8540 	readl(reg);
8541 	write_nic_byte(dev, 0x210000, 0x80);
8542 	readl(reg);
8543 
8544 	/* Reset External Baseband Reg */
8545 	write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8546 	readl(reg);
8547 	write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8548 	readl(reg);
8549 
8550 	/* HW Config (Reg 5) */
8551 	write_nic_byte(dev, 0x210014, 0x72);	// fifo width =16
8552 	readl(reg);
8553 	write_nic_byte(dev, 0x210014, 0x72);	// fifo width =16
8554 	readl(reg);
8555 
8556 	/* Enable System (Reg 0)
8557 	 * second enable should be OK */
8558 	write_nic_byte(dev, 0x210000, 0x00);	// clear enable system
8559 	readl(reg);
8560 	write_nic_byte(dev, 0x210000, 0x80);	// set enable system
8561 
8562 	/* check Symbol is enabled - upped this from 5 as it wasn't always
8563 	 * catching the update */
8564 	for (i = 0; i < 10; i++) {
8565 		udelay(10);
8566 
8567 		/* check Dino is enabled bit */
8568 		read_nic_byte(dev, 0x210000, &data);
8569 		if (data & 0x1)
8570 			break;
8571 	}
8572 
8573 	if (i == 10) {
8574 		printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8575 		       dev->name);
8576 		return -EIO;
8577 	}
8578 
8579 	/* Get Symbol alive response */
8580 	for (i = 0; i < 30; i++) {
8581 		/* Read alive response structure */
8582 		for (j = 0;
8583 		     j < (sizeof(struct symbol_alive_response) >> 1); j++)
8584 			read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8585 
8586 		if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8587 			break;
8588 		udelay(10);
8589 	}
8590 
8591 	if (i == 30) {
8592 		printk(KERN_ERR DRV_NAME
8593 		       ": %s: No response from Symbol - hw not alive\n",
8594 		       dev->name);
8595 		printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8596 		return -EIO;
8597 	}
8598 
8599 	return 0;
8600 }
8601