1 /****************************************************************************** 2 3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved. 4 5 This program is free software; you can redistribute it and/or modify it 6 under the terms of version 2 of the GNU General Public License as 7 published by the Free Software Foundation. 8 9 This program is distributed in the hope that it will be useful, but WITHOUT 10 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 more details. 13 14 You should have received a copy of the GNU General Public License along with 15 this program; if not, write to the Free Software Foundation, Inc., 59 16 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 18 The full GNU General Public License is included in this distribution in the 19 file called LICENSE. 20 21 Contact Information: 22 Intel Linux Wireless <ilw@linux.intel.com> 23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 24 25 Portions of this file are based on the sample_* files provided by Wireless 26 Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes 27 <jt@hpl.hp.com> 28 29 Portions of this file are based on the Host AP project, 30 Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen 31 <j@w1.fi> 32 Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi> 33 34 Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and 35 ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c 36 available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox 37 38 ******************************************************************************/ 39 /* 40 41 Initial driver on which this is based was developed by Janusz Gorycki, 42 Maciej Urbaniak, and Maciej Sosnowski. 43 44 Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak. 45 46 Theory of Operation 47 48 Tx - Commands and Data 49 50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs) 51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being 52 sent to the firmware as well as the length of the data. 53 54 The host writes to the TBD queue at the WRITE index. The WRITE index points 55 to the _next_ packet to be written and is advanced when after the TBD has been 56 filled. 57 58 The firmware pulls from the TBD queue at the READ index. The READ index points 59 to the currently being read entry, and is advanced once the firmware is 60 done with a packet. 61 62 When data is sent to the firmware, the first TBD is used to indicate to the 63 firmware if a Command or Data is being sent. If it is Command, all of the 64 command information is contained within the physical address referred to by the 65 TBD. If it is Data, the first TBD indicates the type of data packet, number 66 of fragments, etc. The next TBD then refers to the actual packet location. 67 68 The Tx flow cycle is as follows: 69 70 1) ipw2100_tx() is called by kernel with SKB to transmit 71 2) Packet is move from the tx_free_list and appended to the transmit pending 72 list (tx_pend_list) 73 3) work is scheduled to move pending packets into the shared circular queue. 74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped 75 to a physical address. That address is entered into a TBD. Two TBDs are 76 filled out. The first indicating a data packet, the second referring to the 77 actual payload data. 78 5) the packet is removed from tx_pend_list and placed on the end of the 79 firmware pending list (fw_pend_list) 80 6) firmware is notified that the WRITE index has 81 7) Once the firmware has processed the TBD, INTA is triggered. 82 8) For each Tx interrupt received from the firmware, the READ index is checked 83 to see which TBDs are done being processed. 84 9) For each TBD that has been processed, the ISR pulls the oldest packet 85 from the fw_pend_list. 86 10)The packet structure contained in the fw_pend_list is then used 87 to unmap the DMA address and to free the SKB originally passed to the driver 88 from the kernel. 89 11)The packet structure is placed onto the tx_free_list 90 91 The above steps are the same for commands, only the msg_free_list/msg_pend_list 92 are used instead of tx_free_list/tx_pend_list 93 94 ... 95 96 Critical Sections / Locking : 97 98 There are two locks utilized. The first is the low level lock (priv->low_lock) 99 that protects the following: 100 101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows: 102 103 tx_free_list : Holds pre-allocated Tx buffers. 104 TAIL modified in __ipw2100_tx_process() 105 HEAD modified in ipw2100_tx() 106 107 tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring 108 TAIL modified ipw2100_tx() 109 HEAD modified by ipw2100_tx_send_data() 110 111 msg_free_list : Holds pre-allocated Msg (Command) buffers 112 TAIL modified in __ipw2100_tx_process() 113 HEAD modified in ipw2100_hw_send_command() 114 115 msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring 116 TAIL modified in ipw2100_hw_send_command() 117 HEAD modified in ipw2100_tx_send_commands() 118 119 The flow of data on the TX side is as follows: 120 121 MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST 122 TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST 123 124 The methods that work on the TBD ring are protected via priv->low_lock. 125 126 - The internal data state of the device itself 127 - Access to the firmware read/write indexes for the BD queues 128 and associated logic 129 130 All external entry functions are locked with the priv->action_lock to ensure 131 that only one external action is invoked at a time. 132 133 134 */ 135 136 #include <linux/compiler.h> 137 #include <linux/errno.h> 138 #include <linux/if_arp.h> 139 #include <linux/in6.h> 140 #include <linux/in.h> 141 #include <linux/ip.h> 142 #include <linux/kernel.h> 143 #include <linux/kmod.h> 144 #include <linux/module.h> 145 #include <linux/netdevice.h> 146 #include <linux/ethtool.h> 147 #include <linux/pci.h> 148 #include <linux/dma-mapping.h> 149 #include <linux/proc_fs.h> 150 #include <linux/skbuff.h> 151 #include <linux/uaccess.h> 152 #include <asm/io.h> 153 #include <linux/fs.h> 154 #include <linux/mm.h> 155 #include <linux/slab.h> 156 #include <linux/unistd.h> 157 #include <linux/stringify.h> 158 #include <linux/tcp.h> 159 #include <linux/types.h> 160 #include <linux/time.h> 161 #include <linux/firmware.h> 162 #include <linux/acpi.h> 163 #include <linux/ctype.h> 164 #include <linux/pm_qos.h> 165 166 #include <net/lib80211.h> 167 168 #include "ipw2100.h" 169 #include "ipw.h" 170 171 #define IPW2100_VERSION "git-1.2.2" 172 173 #define DRV_NAME "ipw2100" 174 #define DRV_VERSION IPW2100_VERSION 175 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver" 176 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation" 177 178 static struct pm_qos_request ipw2100_pm_qos_req; 179 180 /* Debugging stuff */ 181 #ifdef CONFIG_IPW2100_DEBUG 182 #define IPW2100_RX_DEBUG /* Reception debugging */ 183 #endif 184 185 MODULE_DESCRIPTION(DRV_DESCRIPTION); 186 MODULE_VERSION(DRV_VERSION); 187 MODULE_AUTHOR(DRV_COPYRIGHT); 188 MODULE_LICENSE("GPL"); 189 190 static int debug = 0; 191 static int network_mode = 0; 192 static int channel = 0; 193 static int associate = 0; 194 static int disable = 0; 195 #ifdef CONFIG_PM 196 static struct ipw2100_fw ipw2100_firmware; 197 #endif 198 199 #include <linux/moduleparam.h> 200 module_param(debug, int, 0444); 201 module_param_named(mode, network_mode, int, 0444); 202 module_param(channel, int, 0444); 203 module_param(associate, int, 0444); 204 module_param(disable, int, 0444); 205 206 MODULE_PARM_DESC(debug, "debug level"); 207 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)"); 208 MODULE_PARM_DESC(channel, "channel"); 209 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)"); 210 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])"); 211 212 static u32 ipw2100_debug_level = IPW_DL_NONE; 213 214 #ifdef CONFIG_IPW2100_DEBUG 215 #define IPW_DEBUG(level, message...) \ 216 do { \ 217 if (ipw2100_debug_level & (level)) { \ 218 printk(KERN_DEBUG "ipw2100: %c %s ", \ 219 in_interrupt() ? 'I' : 'U', __func__); \ 220 printk(message); \ 221 } \ 222 } while (0) 223 #else 224 #define IPW_DEBUG(level, message...) do {} while (0) 225 #endif /* CONFIG_IPW2100_DEBUG */ 226 227 #ifdef CONFIG_IPW2100_DEBUG 228 static const char *command_types[] = { 229 "undefined", 230 "unused", /* HOST_ATTENTION */ 231 "HOST_COMPLETE", 232 "unused", /* SLEEP */ 233 "unused", /* HOST_POWER_DOWN */ 234 "unused", 235 "SYSTEM_CONFIG", 236 "unused", /* SET_IMR */ 237 "SSID", 238 "MANDATORY_BSSID", 239 "AUTHENTICATION_TYPE", 240 "ADAPTER_ADDRESS", 241 "PORT_TYPE", 242 "INTERNATIONAL_MODE", 243 "CHANNEL", 244 "RTS_THRESHOLD", 245 "FRAG_THRESHOLD", 246 "POWER_MODE", 247 "TX_RATES", 248 "BASIC_TX_RATES", 249 "WEP_KEY_INFO", 250 "unused", 251 "unused", 252 "unused", 253 "unused", 254 "WEP_KEY_INDEX", 255 "WEP_FLAGS", 256 "ADD_MULTICAST", 257 "CLEAR_ALL_MULTICAST", 258 "BEACON_INTERVAL", 259 "ATIM_WINDOW", 260 "CLEAR_STATISTICS", 261 "undefined", 262 "undefined", 263 "undefined", 264 "undefined", 265 "TX_POWER_INDEX", 266 "undefined", 267 "undefined", 268 "undefined", 269 "undefined", 270 "undefined", 271 "undefined", 272 "BROADCAST_SCAN", 273 "CARD_DISABLE", 274 "PREFERRED_BSSID", 275 "SET_SCAN_OPTIONS", 276 "SCAN_DWELL_TIME", 277 "SWEEP_TABLE", 278 "AP_OR_STATION_TABLE", 279 "GROUP_ORDINALS", 280 "SHORT_RETRY_LIMIT", 281 "LONG_RETRY_LIMIT", 282 "unused", /* SAVE_CALIBRATION */ 283 "unused", /* RESTORE_CALIBRATION */ 284 "undefined", 285 "undefined", 286 "undefined", 287 "HOST_PRE_POWER_DOWN", 288 "unused", /* HOST_INTERRUPT_COALESCING */ 289 "undefined", 290 "CARD_DISABLE_PHY_OFF", 291 "MSDU_TX_RATES", 292 "undefined", 293 "SET_STATION_STAT_BITS", 294 "CLEAR_STATIONS_STAT_BITS", 295 "LEAP_ROGUE_MODE", 296 "SET_SECURITY_INFORMATION", 297 "DISASSOCIATION_BSSID", 298 "SET_WPA_ASS_IE" 299 }; 300 #endif 301 302 static const long ipw2100_frequencies[] = { 303 2412, 2417, 2422, 2427, 304 2432, 2437, 2442, 2447, 305 2452, 2457, 2462, 2467, 306 2472, 2484 307 }; 308 309 #define FREQ_COUNT ARRAY_SIZE(ipw2100_frequencies) 310 311 static struct ieee80211_rate ipw2100_bg_rates[] = { 312 { .bitrate = 10 }, 313 { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 314 { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 315 { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 316 }; 317 318 #define RATE_COUNT ARRAY_SIZE(ipw2100_bg_rates) 319 320 /* Pre-decl until we get the code solid and then we can clean it up */ 321 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv); 322 static void ipw2100_tx_send_data(struct ipw2100_priv *priv); 323 static int ipw2100_adapter_setup(struct ipw2100_priv *priv); 324 325 static void ipw2100_queues_initialize(struct ipw2100_priv *priv); 326 static void ipw2100_queues_free(struct ipw2100_priv *priv); 327 static int ipw2100_queues_allocate(struct ipw2100_priv *priv); 328 329 static int ipw2100_fw_download(struct ipw2100_priv *priv, 330 struct ipw2100_fw *fw); 331 static int ipw2100_get_firmware(struct ipw2100_priv *priv, 332 struct ipw2100_fw *fw); 333 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf, 334 size_t max); 335 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf, 336 size_t max); 337 static void ipw2100_release_firmware(struct ipw2100_priv *priv, 338 struct ipw2100_fw *fw); 339 static int ipw2100_ucode_download(struct ipw2100_priv *priv, 340 struct ipw2100_fw *fw); 341 static void ipw2100_wx_event_work(struct work_struct *work); 342 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev); 343 static const struct iw_handler_def ipw2100_wx_handler_def; 344 345 static inline void read_register(struct net_device *dev, u32 reg, u32 * val) 346 { 347 struct ipw2100_priv *priv = libipw_priv(dev); 348 349 *val = ioread32(priv->ioaddr + reg); 350 IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val); 351 } 352 353 static inline void write_register(struct net_device *dev, u32 reg, u32 val) 354 { 355 struct ipw2100_priv *priv = libipw_priv(dev); 356 357 iowrite32(val, priv->ioaddr + reg); 358 IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val); 359 } 360 361 static inline void read_register_word(struct net_device *dev, u32 reg, 362 u16 * val) 363 { 364 struct ipw2100_priv *priv = libipw_priv(dev); 365 366 *val = ioread16(priv->ioaddr + reg); 367 IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val); 368 } 369 370 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val) 371 { 372 struct ipw2100_priv *priv = libipw_priv(dev); 373 374 *val = ioread8(priv->ioaddr + reg); 375 IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val); 376 } 377 378 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val) 379 { 380 struct ipw2100_priv *priv = libipw_priv(dev); 381 382 iowrite16(val, priv->ioaddr + reg); 383 IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val); 384 } 385 386 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val) 387 { 388 struct ipw2100_priv *priv = libipw_priv(dev); 389 390 iowrite8(val, priv->ioaddr + reg); 391 IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val); 392 } 393 394 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val) 395 { 396 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, 397 addr & IPW_REG_INDIRECT_ADDR_MASK); 398 read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val); 399 } 400 401 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val) 402 { 403 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, 404 addr & IPW_REG_INDIRECT_ADDR_MASK); 405 write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val); 406 } 407 408 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val) 409 { 410 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, 411 addr & IPW_REG_INDIRECT_ADDR_MASK); 412 read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val); 413 } 414 415 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val) 416 { 417 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, 418 addr & IPW_REG_INDIRECT_ADDR_MASK); 419 write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val); 420 } 421 422 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val) 423 { 424 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, 425 addr & IPW_REG_INDIRECT_ADDR_MASK); 426 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val); 427 } 428 429 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val) 430 { 431 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, 432 addr & IPW_REG_INDIRECT_ADDR_MASK); 433 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val); 434 } 435 436 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr) 437 { 438 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, 439 addr & IPW_REG_INDIRECT_ADDR_MASK); 440 } 441 442 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val) 443 { 444 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val); 445 } 446 447 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len, 448 const u8 * buf) 449 { 450 u32 aligned_addr; 451 u32 aligned_len; 452 u32 dif_len; 453 u32 i; 454 455 /* read first nibble byte by byte */ 456 aligned_addr = addr & (~0x3); 457 dif_len = addr - aligned_addr; 458 if (dif_len) { 459 /* Start reading at aligned_addr + dif_len */ 460 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, 461 aligned_addr); 462 for (i = dif_len; i < 4; i++, buf++) 463 write_register_byte(dev, 464 IPW_REG_INDIRECT_ACCESS_DATA + i, 465 *buf); 466 467 len -= dif_len; 468 aligned_addr += 4; 469 } 470 471 /* read DWs through autoincrement registers */ 472 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr); 473 aligned_len = len & (~0x3); 474 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4) 475 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf); 476 477 /* copy the last nibble */ 478 dif_len = len - aligned_len; 479 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr); 480 for (i = 0; i < dif_len; i++, buf++) 481 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, 482 *buf); 483 } 484 485 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len, 486 u8 * buf) 487 { 488 u32 aligned_addr; 489 u32 aligned_len; 490 u32 dif_len; 491 u32 i; 492 493 /* read first nibble byte by byte */ 494 aligned_addr = addr & (~0x3); 495 dif_len = addr - aligned_addr; 496 if (dif_len) { 497 /* Start reading at aligned_addr + dif_len */ 498 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, 499 aligned_addr); 500 for (i = dif_len; i < 4; i++, buf++) 501 read_register_byte(dev, 502 IPW_REG_INDIRECT_ACCESS_DATA + i, 503 buf); 504 505 len -= dif_len; 506 aligned_addr += 4; 507 } 508 509 /* read DWs through autoincrement registers */ 510 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr); 511 aligned_len = len & (~0x3); 512 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4) 513 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf); 514 515 /* copy the last nibble */ 516 dif_len = len - aligned_len; 517 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr); 518 for (i = 0; i < dif_len; i++, buf++) 519 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf); 520 } 521 522 static bool ipw2100_hw_is_adapter_in_system(struct net_device *dev) 523 { 524 u32 dbg; 525 526 read_register(dev, IPW_REG_DOA_DEBUG_AREA_START, &dbg); 527 528 return dbg == IPW_DATA_DOA_DEBUG_VALUE; 529 } 530 531 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord, 532 void *val, u32 * len) 533 { 534 struct ipw2100_ordinals *ordinals = &priv->ordinals; 535 u32 addr; 536 u32 field_info; 537 u16 field_len; 538 u16 field_count; 539 u32 total_length; 540 541 if (ordinals->table1_addr == 0) { 542 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals " 543 "before they have been loaded.\n"); 544 return -EINVAL; 545 } 546 547 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) { 548 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) { 549 *len = IPW_ORD_TAB_1_ENTRY_SIZE; 550 551 printk(KERN_WARNING DRV_NAME 552 ": ordinal buffer length too small, need %zd\n", 553 IPW_ORD_TAB_1_ENTRY_SIZE); 554 555 return -EINVAL; 556 } 557 558 read_nic_dword(priv->net_dev, 559 ordinals->table1_addr + (ord << 2), &addr); 560 read_nic_dword(priv->net_dev, addr, val); 561 562 *len = IPW_ORD_TAB_1_ENTRY_SIZE; 563 564 return 0; 565 } 566 567 if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) { 568 569 ord -= IPW_START_ORD_TAB_2; 570 571 /* get the address of statistic */ 572 read_nic_dword(priv->net_dev, 573 ordinals->table2_addr + (ord << 3), &addr); 574 575 /* get the second DW of statistics ; 576 * two 16-bit words - first is length, second is count */ 577 read_nic_dword(priv->net_dev, 578 ordinals->table2_addr + (ord << 3) + sizeof(u32), 579 &field_info); 580 581 /* get each entry length */ 582 field_len = *((u16 *) & field_info); 583 584 /* get number of entries */ 585 field_count = *(((u16 *) & field_info) + 1); 586 587 /* abort if no enough memory */ 588 total_length = field_len * field_count; 589 if (total_length > *len) { 590 *len = total_length; 591 return -EINVAL; 592 } 593 594 *len = total_length; 595 if (!total_length) 596 return 0; 597 598 /* read the ordinal data from the SRAM */ 599 read_nic_memory(priv->net_dev, addr, total_length, val); 600 601 return 0; 602 } 603 604 printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor " 605 "in table 2\n", ord); 606 607 return -EINVAL; 608 } 609 610 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val, 611 u32 * len) 612 { 613 struct ipw2100_ordinals *ordinals = &priv->ordinals; 614 u32 addr; 615 616 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) { 617 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) { 618 *len = IPW_ORD_TAB_1_ENTRY_SIZE; 619 IPW_DEBUG_INFO("wrong size\n"); 620 return -EINVAL; 621 } 622 623 read_nic_dword(priv->net_dev, 624 ordinals->table1_addr + (ord << 2), &addr); 625 626 write_nic_dword(priv->net_dev, addr, *val); 627 628 *len = IPW_ORD_TAB_1_ENTRY_SIZE; 629 630 return 0; 631 } 632 633 IPW_DEBUG_INFO("wrong table\n"); 634 if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) 635 return -EINVAL; 636 637 return -EINVAL; 638 } 639 640 static char *snprint_line(char *buf, size_t count, 641 const u8 * data, u32 len, u32 ofs) 642 { 643 int out, i, j, l; 644 char c; 645 646 out = snprintf(buf, count, "%08X", ofs); 647 648 for (l = 0, i = 0; i < 2; i++) { 649 out += snprintf(buf + out, count - out, " "); 650 for (j = 0; j < 8 && l < len; j++, l++) 651 out += snprintf(buf + out, count - out, "%02X ", 652 data[(i * 8 + j)]); 653 for (; j < 8; j++) 654 out += snprintf(buf + out, count - out, " "); 655 } 656 657 out += snprintf(buf + out, count - out, " "); 658 for (l = 0, i = 0; i < 2; i++) { 659 out += snprintf(buf + out, count - out, " "); 660 for (j = 0; j < 8 && l < len; j++, l++) { 661 c = data[(i * 8 + j)]; 662 if (!isascii(c) || !isprint(c)) 663 c = '.'; 664 665 out += snprintf(buf + out, count - out, "%c", c); 666 } 667 668 for (; j < 8; j++) 669 out += snprintf(buf + out, count - out, " "); 670 } 671 672 return buf; 673 } 674 675 static void printk_buf(int level, const u8 * data, u32 len) 676 { 677 char line[81]; 678 u32 ofs = 0; 679 if (!(ipw2100_debug_level & level)) 680 return; 681 682 while (len) { 683 printk(KERN_DEBUG "%s\n", 684 snprint_line(line, sizeof(line), &data[ofs], 685 min(len, 16U), ofs)); 686 ofs += 16; 687 len -= min(len, 16U); 688 } 689 } 690 691 #define MAX_RESET_BACKOFF 10 692 693 static void schedule_reset(struct ipw2100_priv *priv) 694 { 695 time64_t now = ktime_get_boottime_seconds(); 696 697 /* If we haven't received a reset request within the backoff period, 698 * then we can reset the backoff interval so this reset occurs 699 * immediately */ 700 if (priv->reset_backoff && 701 (now - priv->last_reset > priv->reset_backoff)) 702 priv->reset_backoff = 0; 703 704 priv->last_reset = now; 705 706 if (!(priv->status & STATUS_RESET_PENDING)) { 707 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%llds).\n", 708 priv->net_dev->name, priv->reset_backoff); 709 netif_carrier_off(priv->net_dev); 710 netif_stop_queue(priv->net_dev); 711 priv->status |= STATUS_RESET_PENDING; 712 if (priv->reset_backoff) 713 schedule_delayed_work(&priv->reset_work, 714 priv->reset_backoff * HZ); 715 else 716 schedule_delayed_work(&priv->reset_work, 0); 717 718 if (priv->reset_backoff < MAX_RESET_BACKOFF) 719 priv->reset_backoff++; 720 721 wake_up_interruptible(&priv->wait_command_queue); 722 } else 723 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n", 724 priv->net_dev->name); 725 726 } 727 728 #define HOST_COMPLETE_TIMEOUT (2 * HZ) 729 static int ipw2100_hw_send_command(struct ipw2100_priv *priv, 730 struct host_command *cmd) 731 { 732 struct list_head *element; 733 struct ipw2100_tx_packet *packet; 734 unsigned long flags; 735 int err = 0; 736 737 IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n", 738 command_types[cmd->host_command], cmd->host_command, 739 cmd->host_command_length); 740 printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters, 741 cmd->host_command_length); 742 743 spin_lock_irqsave(&priv->low_lock, flags); 744 745 if (priv->fatal_error) { 746 IPW_DEBUG_INFO 747 ("Attempt to send command while hardware in fatal error condition.\n"); 748 err = -EIO; 749 goto fail_unlock; 750 } 751 752 if (!(priv->status & STATUS_RUNNING)) { 753 IPW_DEBUG_INFO 754 ("Attempt to send command while hardware is not running.\n"); 755 err = -EIO; 756 goto fail_unlock; 757 } 758 759 if (priv->status & STATUS_CMD_ACTIVE) { 760 IPW_DEBUG_INFO 761 ("Attempt to send command while another command is pending.\n"); 762 err = -EBUSY; 763 goto fail_unlock; 764 } 765 766 if (list_empty(&priv->msg_free_list)) { 767 IPW_DEBUG_INFO("no available msg buffers\n"); 768 goto fail_unlock; 769 } 770 771 priv->status |= STATUS_CMD_ACTIVE; 772 priv->messages_sent++; 773 774 element = priv->msg_free_list.next; 775 776 packet = list_entry(element, struct ipw2100_tx_packet, list); 777 packet->jiffy_start = jiffies; 778 779 /* initialize the firmware command packet */ 780 packet->info.c_struct.cmd->host_command_reg = cmd->host_command; 781 packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1; 782 packet->info.c_struct.cmd->host_command_len_reg = 783 cmd->host_command_length; 784 packet->info.c_struct.cmd->sequence = cmd->host_command_sequence; 785 786 memcpy(packet->info.c_struct.cmd->host_command_params_reg, 787 cmd->host_command_parameters, 788 sizeof(packet->info.c_struct.cmd->host_command_params_reg)); 789 790 list_del(element); 791 DEC_STAT(&priv->msg_free_stat); 792 793 list_add_tail(element, &priv->msg_pend_list); 794 INC_STAT(&priv->msg_pend_stat); 795 796 ipw2100_tx_send_commands(priv); 797 ipw2100_tx_send_data(priv); 798 799 spin_unlock_irqrestore(&priv->low_lock, flags); 800 801 /* 802 * We must wait for this command to complete before another 803 * command can be sent... but if we wait more than 3 seconds 804 * then there is a problem. 805 */ 806 807 err = 808 wait_event_interruptible_timeout(priv->wait_command_queue, 809 !(priv-> 810 status & STATUS_CMD_ACTIVE), 811 HOST_COMPLETE_TIMEOUT); 812 813 if (err == 0) { 814 IPW_DEBUG_INFO("Command completion failed out after %dms.\n", 815 1000 * (HOST_COMPLETE_TIMEOUT / HZ)); 816 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT; 817 priv->status &= ~STATUS_CMD_ACTIVE; 818 schedule_reset(priv); 819 return -EIO; 820 } 821 822 if (priv->fatal_error) { 823 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n", 824 priv->net_dev->name); 825 return -EIO; 826 } 827 828 /* !!!!! HACK TEST !!!!! 829 * When lots of debug trace statements are enabled, the driver 830 * doesn't seem to have as many firmware restart cycles... 831 * 832 * As a test, we're sticking in a 1/100s delay here */ 833 schedule_timeout_uninterruptible(msecs_to_jiffies(10)); 834 835 return 0; 836 837 fail_unlock: 838 spin_unlock_irqrestore(&priv->low_lock, flags); 839 840 return err; 841 } 842 843 /* 844 * Verify the values and data access of the hardware 845 * No locks needed or used. No functions called. 846 */ 847 static int ipw2100_verify(struct ipw2100_priv *priv) 848 { 849 u32 data1, data2; 850 u32 address; 851 852 u32 val1 = 0x76543210; 853 u32 val2 = 0xFEDCBA98; 854 855 /* Domain 0 check - all values should be DOA_DEBUG */ 856 for (address = IPW_REG_DOA_DEBUG_AREA_START; 857 address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) { 858 read_register(priv->net_dev, address, &data1); 859 if (data1 != IPW_DATA_DOA_DEBUG_VALUE) 860 return -EIO; 861 } 862 863 /* Domain 1 check - use arbitrary read/write compare */ 864 for (address = 0; address < 5; address++) { 865 /* The memory area is not used now */ 866 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32, 867 val1); 868 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36, 869 val2); 870 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32, 871 &data1); 872 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36, 873 &data2); 874 if (val1 == data1 && val2 == data2) 875 return 0; 876 } 877 878 return -EIO; 879 } 880 881 /* 882 * 883 * Loop until the CARD_DISABLED bit is the same value as the 884 * supplied parameter 885 * 886 * TODO: See if it would be more efficient to do a wait/wake 887 * cycle and have the completion event trigger the wakeup 888 * 889 */ 890 #define IPW_CARD_DISABLE_COMPLETE_WAIT 100 // 100 milli 891 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state) 892 { 893 int i; 894 u32 card_state; 895 u32 len = sizeof(card_state); 896 int err; 897 898 for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) { 899 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED, 900 &card_state, &len); 901 if (err) { 902 IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal " 903 "failed.\n"); 904 return 0; 905 } 906 907 /* We'll break out if either the HW state says it is 908 * in the state we want, or if HOST_COMPLETE command 909 * finishes */ 910 if ((card_state == state) || 911 ((priv->status & STATUS_ENABLED) ? 912 IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) { 913 if (state == IPW_HW_STATE_ENABLED) 914 priv->status |= STATUS_ENABLED; 915 else 916 priv->status &= ~STATUS_ENABLED; 917 918 return 0; 919 } 920 921 udelay(50); 922 } 923 924 IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n", 925 state ? "DISABLED" : "ENABLED"); 926 return -EIO; 927 } 928 929 /********************************************************************* 930 Procedure : sw_reset_and_clock 931 Purpose : Asserts s/w reset, asserts clock initialization 932 and waits for clock stabilization 933 ********************************************************************/ 934 static int sw_reset_and_clock(struct ipw2100_priv *priv) 935 { 936 int i; 937 u32 r; 938 939 // assert s/w reset 940 write_register(priv->net_dev, IPW_REG_RESET_REG, 941 IPW_AUX_HOST_RESET_REG_SW_RESET); 942 943 // wait for clock stabilization 944 for (i = 0; i < 1000; i++) { 945 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY); 946 947 // check clock ready bit 948 read_register(priv->net_dev, IPW_REG_RESET_REG, &r); 949 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET) 950 break; 951 } 952 953 if (i == 1000) 954 return -EIO; // TODO: better error value 955 956 /* set "initialization complete" bit to move adapter to 957 * D0 state */ 958 write_register(priv->net_dev, IPW_REG_GP_CNTRL, 959 IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE); 960 961 /* wait for clock stabilization */ 962 for (i = 0; i < 10000; i++) { 963 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4); 964 965 /* check clock ready bit */ 966 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r); 967 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY) 968 break; 969 } 970 971 if (i == 10000) 972 return -EIO; /* TODO: better error value */ 973 974 /* set D0 standby bit */ 975 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r); 976 write_register(priv->net_dev, IPW_REG_GP_CNTRL, 977 r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY); 978 979 return 0; 980 } 981 982 /********************************************************************* 983 Procedure : ipw2100_download_firmware 984 Purpose : Initiaze adapter after power on. 985 The sequence is: 986 1. assert s/w reset first! 987 2. awake clocks & wait for clock stabilization 988 3. hold ARC (don't ask me why...) 989 4. load Dino ucode and reset/clock init again 990 5. zero-out shared mem 991 6. download f/w 992 *******************************************************************/ 993 static int ipw2100_download_firmware(struct ipw2100_priv *priv) 994 { 995 u32 address; 996 int err; 997 998 #ifndef CONFIG_PM 999 /* Fetch the firmware and microcode */ 1000 struct ipw2100_fw ipw2100_firmware; 1001 #endif 1002 1003 if (priv->fatal_error) { 1004 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after " 1005 "fatal error %d. Interface must be brought down.\n", 1006 priv->net_dev->name, priv->fatal_error); 1007 return -EINVAL; 1008 } 1009 #ifdef CONFIG_PM 1010 if (!ipw2100_firmware.version) { 1011 err = ipw2100_get_firmware(priv, &ipw2100_firmware); 1012 if (err) { 1013 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n", 1014 priv->net_dev->name, err); 1015 priv->fatal_error = IPW2100_ERR_FW_LOAD; 1016 goto fail; 1017 } 1018 } 1019 #else 1020 err = ipw2100_get_firmware(priv, &ipw2100_firmware); 1021 if (err) { 1022 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n", 1023 priv->net_dev->name, err); 1024 priv->fatal_error = IPW2100_ERR_FW_LOAD; 1025 goto fail; 1026 } 1027 #endif 1028 priv->firmware_version = ipw2100_firmware.version; 1029 1030 /* s/w reset and clock stabilization */ 1031 err = sw_reset_and_clock(priv); 1032 if (err) { 1033 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n", 1034 priv->net_dev->name, err); 1035 goto fail; 1036 } 1037 1038 err = ipw2100_verify(priv); 1039 if (err) { 1040 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n", 1041 priv->net_dev->name, err); 1042 goto fail; 1043 } 1044 1045 /* Hold ARC */ 1046 write_nic_dword(priv->net_dev, 1047 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000); 1048 1049 /* allow ARC to run */ 1050 write_register(priv->net_dev, IPW_REG_RESET_REG, 0); 1051 1052 /* load microcode */ 1053 err = ipw2100_ucode_download(priv, &ipw2100_firmware); 1054 if (err) { 1055 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n", 1056 priv->net_dev->name, err); 1057 goto fail; 1058 } 1059 1060 /* release ARC */ 1061 write_nic_dword(priv->net_dev, 1062 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000); 1063 1064 /* s/w reset and clock stabilization (again!!!) */ 1065 err = sw_reset_and_clock(priv); 1066 if (err) { 1067 printk(KERN_ERR DRV_NAME 1068 ": %s: sw_reset_and_clock failed: %d\n", 1069 priv->net_dev->name, err); 1070 goto fail; 1071 } 1072 1073 /* load f/w */ 1074 err = ipw2100_fw_download(priv, &ipw2100_firmware); 1075 if (err) { 1076 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n", 1077 priv->net_dev->name, err); 1078 goto fail; 1079 } 1080 #ifndef CONFIG_PM 1081 /* 1082 * When the .resume method of the driver is called, the other 1083 * part of the system, i.e. the ide driver could still stay in 1084 * the suspend stage. This prevents us from loading the firmware 1085 * from the disk. --YZ 1086 */ 1087 1088 /* free any storage allocated for firmware image */ 1089 ipw2100_release_firmware(priv, &ipw2100_firmware); 1090 #endif 1091 1092 /* zero out Domain 1 area indirectly (Si requirement) */ 1093 for (address = IPW_HOST_FW_SHARED_AREA0; 1094 address < IPW_HOST_FW_SHARED_AREA0_END; address += 4) 1095 write_nic_dword(priv->net_dev, address, 0); 1096 for (address = IPW_HOST_FW_SHARED_AREA1; 1097 address < IPW_HOST_FW_SHARED_AREA1_END; address += 4) 1098 write_nic_dword(priv->net_dev, address, 0); 1099 for (address = IPW_HOST_FW_SHARED_AREA2; 1100 address < IPW_HOST_FW_SHARED_AREA2_END; address += 4) 1101 write_nic_dword(priv->net_dev, address, 0); 1102 for (address = IPW_HOST_FW_SHARED_AREA3; 1103 address < IPW_HOST_FW_SHARED_AREA3_END; address += 4) 1104 write_nic_dword(priv->net_dev, address, 0); 1105 for (address = IPW_HOST_FW_INTERRUPT_AREA; 1106 address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4) 1107 write_nic_dword(priv->net_dev, address, 0); 1108 1109 return 0; 1110 1111 fail: 1112 ipw2100_release_firmware(priv, &ipw2100_firmware); 1113 return err; 1114 } 1115 1116 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv) 1117 { 1118 if (priv->status & STATUS_INT_ENABLED) 1119 return; 1120 priv->status |= STATUS_INT_ENABLED; 1121 write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK); 1122 } 1123 1124 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv) 1125 { 1126 if (!(priv->status & STATUS_INT_ENABLED)) 1127 return; 1128 priv->status &= ~STATUS_INT_ENABLED; 1129 write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0); 1130 } 1131 1132 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv) 1133 { 1134 struct ipw2100_ordinals *ord = &priv->ordinals; 1135 1136 IPW_DEBUG_INFO("enter\n"); 1137 1138 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1, 1139 &ord->table1_addr); 1140 1141 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2, 1142 &ord->table2_addr); 1143 1144 read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size); 1145 read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size); 1146 1147 ord->table2_size &= 0x0000FFFF; 1148 1149 IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size); 1150 IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size); 1151 IPW_DEBUG_INFO("exit\n"); 1152 } 1153 1154 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv) 1155 { 1156 u32 reg = 0; 1157 /* 1158 * Set GPIO 3 writable by FW; GPIO 1 writable 1159 * by driver and enable clock 1160 */ 1161 reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE | 1162 IPW_BIT_GPIO_LED_OFF); 1163 write_register(priv->net_dev, IPW_REG_GPIO, reg); 1164 } 1165 1166 static int rf_kill_active(struct ipw2100_priv *priv) 1167 { 1168 #define MAX_RF_KILL_CHECKS 5 1169 #define RF_KILL_CHECK_DELAY 40 1170 1171 unsigned short value = 0; 1172 u32 reg = 0; 1173 int i; 1174 1175 if (!(priv->hw_features & HW_FEATURE_RFKILL)) { 1176 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false); 1177 priv->status &= ~STATUS_RF_KILL_HW; 1178 return 0; 1179 } 1180 1181 for (i = 0; i < MAX_RF_KILL_CHECKS; i++) { 1182 udelay(RF_KILL_CHECK_DELAY); 1183 read_register(priv->net_dev, IPW_REG_GPIO, ®); 1184 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1); 1185 } 1186 1187 if (value == 0) { 1188 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true); 1189 priv->status |= STATUS_RF_KILL_HW; 1190 } else { 1191 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false); 1192 priv->status &= ~STATUS_RF_KILL_HW; 1193 } 1194 1195 return (value == 0); 1196 } 1197 1198 static int ipw2100_get_hw_features(struct ipw2100_priv *priv) 1199 { 1200 u32 addr, len; 1201 u32 val; 1202 1203 /* 1204 * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1 1205 */ 1206 len = sizeof(addr); 1207 if (ipw2100_get_ordinal 1208 (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) { 1209 IPW_DEBUG_INFO("failed querying ordinals at line %d\n", 1210 __LINE__); 1211 return -EIO; 1212 } 1213 1214 IPW_DEBUG_INFO("EEPROM address: %08X\n", addr); 1215 1216 /* 1217 * EEPROM version is the byte at offset 0xfd in firmware 1218 * We read 4 bytes, then shift out the byte we actually want */ 1219 read_nic_dword(priv->net_dev, addr + 0xFC, &val); 1220 priv->eeprom_version = (val >> 24) & 0xFF; 1221 IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version); 1222 1223 /* 1224 * HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware 1225 * 1226 * notice that the EEPROM bit is reverse polarity, i.e. 1227 * bit = 0 signifies HW RF kill switch is supported 1228 * bit = 1 signifies HW RF kill switch is NOT supported 1229 */ 1230 read_nic_dword(priv->net_dev, addr + 0x20, &val); 1231 if (!((val >> 24) & 0x01)) 1232 priv->hw_features |= HW_FEATURE_RFKILL; 1233 1234 IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n", 1235 (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not "); 1236 1237 return 0; 1238 } 1239 1240 /* 1241 * Start firmware execution after power on and initialization 1242 * The sequence is: 1243 * 1. Release ARC 1244 * 2. Wait for f/w initialization completes; 1245 */ 1246 static int ipw2100_start_adapter(struct ipw2100_priv *priv) 1247 { 1248 int i; 1249 u32 inta, inta_mask, gpio; 1250 1251 IPW_DEBUG_INFO("enter\n"); 1252 1253 if (priv->status & STATUS_RUNNING) 1254 return 0; 1255 1256 /* 1257 * Initialize the hw - drive adapter to DO state by setting 1258 * init_done bit. Wait for clk_ready bit and Download 1259 * fw & dino ucode 1260 */ 1261 if (ipw2100_download_firmware(priv)) { 1262 printk(KERN_ERR DRV_NAME 1263 ": %s: Failed to power on the adapter.\n", 1264 priv->net_dev->name); 1265 return -EIO; 1266 } 1267 1268 /* Clear the Tx, Rx and Msg queues and the r/w indexes 1269 * in the firmware RBD and TBD ring queue */ 1270 ipw2100_queues_initialize(priv); 1271 1272 ipw2100_hw_set_gpio(priv); 1273 1274 /* TODO -- Look at disabling interrupts here to make sure none 1275 * get fired during FW initialization */ 1276 1277 /* Release ARC - clear reset bit */ 1278 write_register(priv->net_dev, IPW_REG_RESET_REG, 0); 1279 1280 /* wait for f/w initialization complete */ 1281 IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n"); 1282 i = 5000; 1283 do { 1284 schedule_timeout_uninterruptible(msecs_to_jiffies(40)); 1285 /* Todo... wait for sync command ... */ 1286 1287 read_register(priv->net_dev, IPW_REG_INTA, &inta); 1288 1289 /* check "init done" bit */ 1290 if (inta & IPW2100_INTA_FW_INIT_DONE) { 1291 /* reset "init done" bit */ 1292 write_register(priv->net_dev, IPW_REG_INTA, 1293 IPW2100_INTA_FW_INIT_DONE); 1294 break; 1295 } 1296 1297 /* check error conditions : we check these after the firmware 1298 * check so that if there is an error, the interrupt handler 1299 * will see it and the adapter will be reset */ 1300 if (inta & 1301 (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) { 1302 /* clear error conditions */ 1303 write_register(priv->net_dev, IPW_REG_INTA, 1304 IPW2100_INTA_FATAL_ERROR | 1305 IPW2100_INTA_PARITY_ERROR); 1306 } 1307 } while (--i); 1308 1309 /* Clear out any pending INTAs since we aren't supposed to have 1310 * interrupts enabled at this point... */ 1311 read_register(priv->net_dev, IPW_REG_INTA, &inta); 1312 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask); 1313 inta &= IPW_INTERRUPT_MASK; 1314 /* Clear out any pending interrupts */ 1315 if (inta & inta_mask) 1316 write_register(priv->net_dev, IPW_REG_INTA, inta); 1317 1318 IPW_DEBUG_FW("f/w initialization complete: %s\n", 1319 i ? "SUCCESS" : "FAILED"); 1320 1321 if (!i) { 1322 printk(KERN_WARNING DRV_NAME 1323 ": %s: Firmware did not initialize.\n", 1324 priv->net_dev->name); 1325 return -EIO; 1326 } 1327 1328 /* allow firmware to write to GPIO1 & GPIO3 */ 1329 read_register(priv->net_dev, IPW_REG_GPIO, &gpio); 1330 1331 gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK); 1332 1333 write_register(priv->net_dev, IPW_REG_GPIO, gpio); 1334 1335 /* Ready to receive commands */ 1336 priv->status |= STATUS_RUNNING; 1337 1338 /* The adapter has been reset; we are not associated */ 1339 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED); 1340 1341 IPW_DEBUG_INFO("exit\n"); 1342 1343 return 0; 1344 } 1345 1346 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv) 1347 { 1348 if (!priv->fatal_error) 1349 return; 1350 1351 priv->fatal_errors[priv->fatal_index++] = priv->fatal_error; 1352 priv->fatal_index %= IPW2100_ERROR_QUEUE; 1353 priv->fatal_error = 0; 1354 } 1355 1356 /* NOTE: Our interrupt is disabled when this method is called */ 1357 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv) 1358 { 1359 u32 reg; 1360 int i; 1361 1362 IPW_DEBUG_INFO("Power cycling the hardware.\n"); 1363 1364 ipw2100_hw_set_gpio(priv); 1365 1366 /* Step 1. Stop Master Assert */ 1367 write_register(priv->net_dev, IPW_REG_RESET_REG, 1368 IPW_AUX_HOST_RESET_REG_STOP_MASTER); 1369 1370 /* Step 2. Wait for stop Master Assert 1371 * (not more than 50us, otherwise ret error */ 1372 i = 5; 1373 do { 1374 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY); 1375 read_register(priv->net_dev, IPW_REG_RESET_REG, ®); 1376 1377 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED) 1378 break; 1379 } while (--i); 1380 1381 priv->status &= ~STATUS_RESET_PENDING; 1382 1383 if (!i) { 1384 IPW_DEBUG_INFO 1385 ("exit - waited too long for master assert stop\n"); 1386 return -EIO; 1387 } 1388 1389 write_register(priv->net_dev, IPW_REG_RESET_REG, 1390 IPW_AUX_HOST_RESET_REG_SW_RESET); 1391 1392 /* Reset any fatal_error conditions */ 1393 ipw2100_reset_fatalerror(priv); 1394 1395 /* At this point, the adapter is now stopped and disabled */ 1396 priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING | 1397 STATUS_ASSOCIATED | STATUS_ENABLED); 1398 1399 return 0; 1400 } 1401 1402 /* 1403 * Send the CARD_DISABLE_PHY_OFF command to the card to disable it 1404 * 1405 * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent. 1406 * 1407 * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of 1408 * if STATUS_ASSN_LOST is sent. 1409 */ 1410 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv) 1411 { 1412 1413 #define HW_PHY_OFF_LOOP_DELAY (msecs_to_jiffies(50)) 1414 1415 struct host_command cmd = { 1416 .host_command = CARD_DISABLE_PHY_OFF, 1417 .host_command_sequence = 0, 1418 .host_command_length = 0, 1419 }; 1420 int err, i; 1421 u32 val1, val2; 1422 1423 IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n"); 1424 1425 /* Turn off the radio */ 1426 err = ipw2100_hw_send_command(priv, &cmd); 1427 if (err) 1428 return err; 1429 1430 for (i = 0; i < 2500; i++) { 1431 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1); 1432 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2); 1433 1434 if ((val1 & IPW2100_CONTROL_PHY_OFF) && 1435 (val2 & IPW2100_COMMAND_PHY_OFF)) 1436 return 0; 1437 1438 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY); 1439 } 1440 1441 return -EIO; 1442 } 1443 1444 static int ipw2100_enable_adapter(struct ipw2100_priv *priv) 1445 { 1446 struct host_command cmd = { 1447 .host_command = HOST_COMPLETE, 1448 .host_command_sequence = 0, 1449 .host_command_length = 0 1450 }; 1451 int err = 0; 1452 1453 IPW_DEBUG_HC("HOST_COMPLETE\n"); 1454 1455 if (priv->status & STATUS_ENABLED) 1456 return 0; 1457 1458 mutex_lock(&priv->adapter_mutex); 1459 1460 if (rf_kill_active(priv)) { 1461 IPW_DEBUG_HC("Command aborted due to RF kill active.\n"); 1462 goto fail_up; 1463 } 1464 1465 err = ipw2100_hw_send_command(priv, &cmd); 1466 if (err) { 1467 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n"); 1468 goto fail_up; 1469 } 1470 1471 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED); 1472 if (err) { 1473 IPW_DEBUG_INFO("%s: card not responding to init command.\n", 1474 priv->net_dev->name); 1475 goto fail_up; 1476 } 1477 1478 if (priv->stop_hang_check) { 1479 priv->stop_hang_check = 0; 1480 schedule_delayed_work(&priv->hang_check, HZ / 2); 1481 } 1482 1483 fail_up: 1484 mutex_unlock(&priv->adapter_mutex); 1485 return err; 1486 } 1487 1488 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv) 1489 { 1490 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100)) 1491 1492 struct host_command cmd = { 1493 .host_command = HOST_PRE_POWER_DOWN, 1494 .host_command_sequence = 0, 1495 .host_command_length = 0, 1496 }; 1497 int err, i; 1498 u32 reg; 1499 1500 if (!(priv->status & STATUS_RUNNING)) 1501 return 0; 1502 1503 priv->status |= STATUS_STOPPING; 1504 1505 /* We can only shut down the card if the firmware is operational. So, 1506 * if we haven't reset since a fatal_error, then we can not send the 1507 * shutdown commands. */ 1508 if (!priv->fatal_error) { 1509 /* First, make sure the adapter is enabled so that the PHY_OFF 1510 * command can shut it down */ 1511 ipw2100_enable_adapter(priv); 1512 1513 err = ipw2100_hw_phy_off(priv); 1514 if (err) 1515 printk(KERN_WARNING DRV_NAME 1516 ": Error disabling radio %d\n", err); 1517 1518 /* 1519 * If in D0-standby mode going directly to D3 may cause a 1520 * PCI bus violation. Therefore we must change out of the D0 1521 * state. 1522 * 1523 * Sending the PREPARE_FOR_POWER_DOWN will restrict the 1524 * hardware from going into standby mode and will transition 1525 * out of D0-standby if it is already in that state. 1526 * 1527 * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the 1528 * driver upon completion. Once received, the driver can 1529 * proceed to the D3 state. 1530 * 1531 * Prepare for power down command to fw. This command would 1532 * take HW out of D0-standby and prepare it for D3 state. 1533 * 1534 * Currently FW does not support event notification for this 1535 * event. Therefore, skip waiting for it. Just wait a fixed 1536 * 100ms 1537 */ 1538 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n"); 1539 1540 err = ipw2100_hw_send_command(priv, &cmd); 1541 if (err) 1542 printk(KERN_WARNING DRV_NAME ": " 1543 "%s: Power down command failed: Error %d\n", 1544 priv->net_dev->name, err); 1545 else 1546 schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY); 1547 } 1548 1549 priv->status &= ~STATUS_ENABLED; 1550 1551 /* 1552 * Set GPIO 3 writable by FW; GPIO 1 writable 1553 * by driver and enable clock 1554 */ 1555 ipw2100_hw_set_gpio(priv); 1556 1557 /* 1558 * Power down adapter. Sequence: 1559 * 1. Stop master assert (RESET_REG[9]=1) 1560 * 2. Wait for stop master (RESET_REG[8]==1) 1561 * 3. S/w reset assert (RESET_REG[7] = 1) 1562 */ 1563 1564 /* Stop master assert */ 1565 write_register(priv->net_dev, IPW_REG_RESET_REG, 1566 IPW_AUX_HOST_RESET_REG_STOP_MASTER); 1567 1568 /* wait stop master not more than 50 usec. 1569 * Otherwise return error. */ 1570 for (i = 5; i > 0; i--) { 1571 udelay(10); 1572 1573 /* Check master stop bit */ 1574 read_register(priv->net_dev, IPW_REG_RESET_REG, ®); 1575 1576 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED) 1577 break; 1578 } 1579 1580 if (i == 0) 1581 printk(KERN_WARNING DRV_NAME 1582 ": %s: Could now power down adapter.\n", 1583 priv->net_dev->name); 1584 1585 /* assert s/w reset */ 1586 write_register(priv->net_dev, IPW_REG_RESET_REG, 1587 IPW_AUX_HOST_RESET_REG_SW_RESET); 1588 1589 priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING); 1590 1591 return 0; 1592 } 1593 1594 static int ipw2100_disable_adapter(struct ipw2100_priv *priv) 1595 { 1596 struct host_command cmd = { 1597 .host_command = CARD_DISABLE, 1598 .host_command_sequence = 0, 1599 .host_command_length = 0 1600 }; 1601 int err = 0; 1602 1603 IPW_DEBUG_HC("CARD_DISABLE\n"); 1604 1605 if (!(priv->status & STATUS_ENABLED)) 1606 return 0; 1607 1608 /* Make sure we clear the associated state */ 1609 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING); 1610 1611 if (!priv->stop_hang_check) { 1612 priv->stop_hang_check = 1; 1613 cancel_delayed_work(&priv->hang_check); 1614 } 1615 1616 mutex_lock(&priv->adapter_mutex); 1617 1618 err = ipw2100_hw_send_command(priv, &cmd); 1619 if (err) { 1620 printk(KERN_WARNING DRV_NAME 1621 ": exit - failed to send CARD_DISABLE command\n"); 1622 goto fail_up; 1623 } 1624 1625 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED); 1626 if (err) { 1627 printk(KERN_WARNING DRV_NAME 1628 ": exit - card failed to change to DISABLED\n"); 1629 goto fail_up; 1630 } 1631 1632 IPW_DEBUG_INFO("TODO: implement scan state machine\n"); 1633 1634 fail_up: 1635 mutex_unlock(&priv->adapter_mutex); 1636 return err; 1637 } 1638 1639 static int ipw2100_set_scan_options(struct ipw2100_priv *priv) 1640 { 1641 struct host_command cmd = { 1642 .host_command = SET_SCAN_OPTIONS, 1643 .host_command_sequence = 0, 1644 .host_command_length = 8 1645 }; 1646 int err; 1647 1648 IPW_DEBUG_INFO("enter\n"); 1649 1650 IPW_DEBUG_SCAN("setting scan options\n"); 1651 1652 cmd.host_command_parameters[0] = 0; 1653 1654 if (!(priv->config & CFG_ASSOCIATE)) 1655 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE; 1656 if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled) 1657 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL; 1658 if (priv->config & CFG_PASSIVE_SCAN) 1659 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE; 1660 1661 cmd.host_command_parameters[1] = priv->channel_mask; 1662 1663 err = ipw2100_hw_send_command(priv, &cmd); 1664 1665 IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n", 1666 cmd.host_command_parameters[0]); 1667 1668 return err; 1669 } 1670 1671 static int ipw2100_start_scan(struct ipw2100_priv *priv) 1672 { 1673 struct host_command cmd = { 1674 .host_command = BROADCAST_SCAN, 1675 .host_command_sequence = 0, 1676 .host_command_length = 4 1677 }; 1678 int err; 1679 1680 IPW_DEBUG_HC("START_SCAN\n"); 1681 1682 cmd.host_command_parameters[0] = 0; 1683 1684 /* No scanning if in monitor mode */ 1685 if (priv->ieee->iw_mode == IW_MODE_MONITOR) 1686 return 1; 1687 1688 if (priv->status & STATUS_SCANNING) { 1689 IPW_DEBUG_SCAN("Scan requested while already in scan...\n"); 1690 return 0; 1691 } 1692 1693 IPW_DEBUG_INFO("enter\n"); 1694 1695 /* Not clearing here; doing so makes iwlist always return nothing... 1696 * 1697 * We should modify the table logic to use aging tables vs. clearing 1698 * the table on each scan start. 1699 */ 1700 IPW_DEBUG_SCAN("starting scan\n"); 1701 1702 priv->status |= STATUS_SCANNING; 1703 err = ipw2100_hw_send_command(priv, &cmd); 1704 if (err) 1705 priv->status &= ~STATUS_SCANNING; 1706 1707 IPW_DEBUG_INFO("exit\n"); 1708 1709 return err; 1710 } 1711 1712 static const struct libipw_geo ipw_geos[] = { 1713 { /* Restricted */ 1714 "---", 1715 .bg_channels = 14, 1716 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 1717 {2427, 4}, {2432, 5}, {2437, 6}, 1718 {2442, 7}, {2447, 8}, {2452, 9}, 1719 {2457, 10}, {2462, 11}, {2467, 12}, 1720 {2472, 13}, {2484, 14}}, 1721 }, 1722 }; 1723 1724 static int ipw2100_up(struct ipw2100_priv *priv, int deferred) 1725 { 1726 unsigned long flags; 1727 int err = 0; 1728 u32 lock; 1729 u32 ord_len = sizeof(lock); 1730 1731 /* Age scan list entries found before suspend */ 1732 if (priv->suspend_time) { 1733 libipw_networks_age(priv->ieee, priv->suspend_time); 1734 priv->suspend_time = 0; 1735 } 1736 1737 /* Quiet if manually disabled. */ 1738 if (priv->status & STATUS_RF_KILL_SW) { 1739 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable " 1740 "switch\n", priv->net_dev->name); 1741 return 0; 1742 } 1743 1744 /* the ipw2100 hardware really doesn't want power management delays 1745 * longer than 175usec 1746 */ 1747 pm_qos_update_request(&ipw2100_pm_qos_req, 175); 1748 1749 /* If the interrupt is enabled, turn it off... */ 1750 spin_lock_irqsave(&priv->low_lock, flags); 1751 ipw2100_disable_interrupts(priv); 1752 1753 /* Reset any fatal_error conditions */ 1754 ipw2100_reset_fatalerror(priv); 1755 spin_unlock_irqrestore(&priv->low_lock, flags); 1756 1757 if (priv->status & STATUS_POWERED || 1758 (priv->status & STATUS_RESET_PENDING)) { 1759 /* Power cycle the card ... */ 1760 err = ipw2100_power_cycle_adapter(priv); 1761 if (err) { 1762 printk(KERN_WARNING DRV_NAME 1763 ": %s: Could not cycle adapter.\n", 1764 priv->net_dev->name); 1765 goto exit; 1766 } 1767 } else 1768 priv->status |= STATUS_POWERED; 1769 1770 /* Load the firmware, start the clocks, etc. */ 1771 err = ipw2100_start_adapter(priv); 1772 if (err) { 1773 printk(KERN_ERR DRV_NAME 1774 ": %s: Failed to start the firmware.\n", 1775 priv->net_dev->name); 1776 goto exit; 1777 } 1778 1779 ipw2100_initialize_ordinals(priv); 1780 1781 /* Determine capabilities of this particular HW configuration */ 1782 err = ipw2100_get_hw_features(priv); 1783 if (err) { 1784 printk(KERN_ERR DRV_NAME 1785 ": %s: Failed to determine HW features.\n", 1786 priv->net_dev->name); 1787 goto exit; 1788 } 1789 1790 /* Initialize the geo */ 1791 libipw_set_geo(priv->ieee, &ipw_geos[0]); 1792 priv->ieee->freq_band = LIBIPW_24GHZ_BAND; 1793 1794 lock = LOCK_NONE; 1795 err = ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len); 1796 if (err) { 1797 printk(KERN_ERR DRV_NAME 1798 ": %s: Failed to clear ordinal lock.\n", 1799 priv->net_dev->name); 1800 goto exit; 1801 } 1802 1803 priv->status &= ~STATUS_SCANNING; 1804 1805 if (rf_kill_active(priv)) { 1806 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n", 1807 priv->net_dev->name); 1808 1809 if (priv->stop_rf_kill) { 1810 priv->stop_rf_kill = 0; 1811 schedule_delayed_work(&priv->rf_kill, 1812 round_jiffies_relative(HZ)); 1813 } 1814 1815 deferred = 1; 1816 } 1817 1818 /* Turn on the interrupt so that commands can be processed */ 1819 ipw2100_enable_interrupts(priv); 1820 1821 /* Send all of the commands that must be sent prior to 1822 * HOST_COMPLETE */ 1823 err = ipw2100_adapter_setup(priv); 1824 if (err) { 1825 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n", 1826 priv->net_dev->name); 1827 goto exit; 1828 } 1829 1830 if (!deferred) { 1831 /* Enable the adapter - sends HOST_COMPLETE */ 1832 err = ipw2100_enable_adapter(priv); 1833 if (err) { 1834 printk(KERN_ERR DRV_NAME ": " 1835 "%s: failed in call to enable adapter.\n", 1836 priv->net_dev->name); 1837 ipw2100_hw_stop_adapter(priv); 1838 goto exit; 1839 } 1840 1841 /* Start a scan . . . */ 1842 ipw2100_set_scan_options(priv); 1843 ipw2100_start_scan(priv); 1844 } 1845 1846 exit: 1847 return err; 1848 } 1849 1850 static void ipw2100_down(struct ipw2100_priv *priv) 1851 { 1852 unsigned long flags; 1853 union iwreq_data wrqu = { 1854 .ap_addr = { 1855 .sa_family = ARPHRD_ETHER} 1856 }; 1857 int associated = priv->status & STATUS_ASSOCIATED; 1858 1859 /* Kill the RF switch timer */ 1860 if (!priv->stop_rf_kill) { 1861 priv->stop_rf_kill = 1; 1862 cancel_delayed_work(&priv->rf_kill); 1863 } 1864 1865 /* Kill the firmware hang check timer */ 1866 if (!priv->stop_hang_check) { 1867 priv->stop_hang_check = 1; 1868 cancel_delayed_work(&priv->hang_check); 1869 } 1870 1871 /* Kill any pending resets */ 1872 if (priv->status & STATUS_RESET_PENDING) 1873 cancel_delayed_work(&priv->reset_work); 1874 1875 /* Make sure the interrupt is on so that FW commands will be 1876 * processed correctly */ 1877 spin_lock_irqsave(&priv->low_lock, flags); 1878 ipw2100_enable_interrupts(priv); 1879 spin_unlock_irqrestore(&priv->low_lock, flags); 1880 1881 if (ipw2100_hw_stop_adapter(priv)) 1882 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n", 1883 priv->net_dev->name); 1884 1885 /* Do not disable the interrupt until _after_ we disable 1886 * the adaptor. Otherwise the CARD_DISABLE command will never 1887 * be ack'd by the firmware */ 1888 spin_lock_irqsave(&priv->low_lock, flags); 1889 ipw2100_disable_interrupts(priv); 1890 spin_unlock_irqrestore(&priv->low_lock, flags); 1891 1892 pm_qos_update_request(&ipw2100_pm_qos_req, PM_QOS_DEFAULT_VALUE); 1893 1894 /* We have to signal any supplicant if we are disassociating */ 1895 if (associated) 1896 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL); 1897 1898 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING); 1899 netif_carrier_off(priv->net_dev); 1900 netif_stop_queue(priv->net_dev); 1901 } 1902 1903 static int ipw2100_wdev_init(struct net_device *dev) 1904 { 1905 struct ipw2100_priv *priv = libipw_priv(dev); 1906 const struct libipw_geo *geo = libipw_get_geo(priv->ieee); 1907 struct wireless_dev *wdev = &priv->ieee->wdev; 1908 int i; 1909 1910 memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN); 1911 1912 /* fill-out priv->ieee->bg_band */ 1913 if (geo->bg_channels) { 1914 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band; 1915 1916 bg_band->band = NL80211_BAND_2GHZ; 1917 bg_band->n_channels = geo->bg_channels; 1918 bg_band->channels = kcalloc(geo->bg_channels, 1919 sizeof(struct ieee80211_channel), 1920 GFP_KERNEL); 1921 if (!bg_band->channels) { 1922 ipw2100_down(priv); 1923 return -ENOMEM; 1924 } 1925 /* translate geo->bg to bg_band.channels */ 1926 for (i = 0; i < geo->bg_channels; i++) { 1927 bg_band->channels[i].band = NL80211_BAND_2GHZ; 1928 bg_band->channels[i].center_freq = geo->bg[i].freq; 1929 bg_band->channels[i].hw_value = geo->bg[i].channel; 1930 bg_band->channels[i].max_power = geo->bg[i].max_power; 1931 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY) 1932 bg_band->channels[i].flags |= 1933 IEEE80211_CHAN_NO_IR; 1934 if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS) 1935 bg_band->channels[i].flags |= 1936 IEEE80211_CHAN_NO_IR; 1937 if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT) 1938 bg_band->channels[i].flags |= 1939 IEEE80211_CHAN_RADAR; 1940 /* No equivalent for LIBIPW_CH_80211H_RULES, 1941 LIBIPW_CH_UNIFORM_SPREADING, or 1942 LIBIPW_CH_B_ONLY... */ 1943 } 1944 /* point at bitrate info */ 1945 bg_band->bitrates = ipw2100_bg_rates; 1946 bg_band->n_bitrates = RATE_COUNT; 1947 1948 wdev->wiphy->bands[NL80211_BAND_2GHZ] = bg_band; 1949 } 1950 1951 wdev->wiphy->cipher_suites = ipw_cipher_suites; 1952 wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites); 1953 1954 set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev); 1955 if (wiphy_register(wdev->wiphy)) 1956 return -EIO; 1957 return 0; 1958 } 1959 1960 static void ipw2100_reset_adapter(struct work_struct *work) 1961 { 1962 struct ipw2100_priv *priv = 1963 container_of(work, struct ipw2100_priv, reset_work.work); 1964 unsigned long flags; 1965 union iwreq_data wrqu = { 1966 .ap_addr = { 1967 .sa_family = ARPHRD_ETHER} 1968 }; 1969 int associated = priv->status & STATUS_ASSOCIATED; 1970 1971 spin_lock_irqsave(&priv->low_lock, flags); 1972 IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name); 1973 priv->resets++; 1974 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING); 1975 priv->status |= STATUS_SECURITY_UPDATED; 1976 1977 /* Force a power cycle even if interface hasn't been opened 1978 * yet */ 1979 cancel_delayed_work(&priv->reset_work); 1980 priv->status |= STATUS_RESET_PENDING; 1981 spin_unlock_irqrestore(&priv->low_lock, flags); 1982 1983 mutex_lock(&priv->action_mutex); 1984 /* stop timed checks so that they don't interfere with reset */ 1985 priv->stop_hang_check = 1; 1986 cancel_delayed_work(&priv->hang_check); 1987 1988 /* We have to signal any supplicant if we are disassociating */ 1989 if (associated) 1990 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL); 1991 1992 ipw2100_up(priv, 0); 1993 mutex_unlock(&priv->action_mutex); 1994 1995 } 1996 1997 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status) 1998 { 1999 2000 #define MAC_ASSOCIATION_READ_DELAY (HZ) 2001 int ret; 2002 unsigned int len, essid_len; 2003 char essid[IW_ESSID_MAX_SIZE]; 2004 u32 txrate; 2005 u32 chan; 2006 char *txratename; 2007 u8 bssid[ETH_ALEN]; 2008 2009 /* 2010 * TBD: BSSID is usually 00:00:00:00:00:00 here and not 2011 * an actual MAC of the AP. Seems like FW sets this 2012 * address too late. Read it later and expose through 2013 * /proc or schedule a later task to query and update 2014 */ 2015 2016 essid_len = IW_ESSID_MAX_SIZE; 2017 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, 2018 essid, &essid_len); 2019 if (ret) { 2020 IPW_DEBUG_INFO("failed querying ordinals at line %d\n", 2021 __LINE__); 2022 return; 2023 } 2024 2025 len = sizeof(u32); 2026 ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len); 2027 if (ret) { 2028 IPW_DEBUG_INFO("failed querying ordinals at line %d\n", 2029 __LINE__); 2030 return; 2031 } 2032 2033 len = sizeof(u32); 2034 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len); 2035 if (ret) { 2036 IPW_DEBUG_INFO("failed querying ordinals at line %d\n", 2037 __LINE__); 2038 return; 2039 } 2040 len = ETH_ALEN; 2041 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, bssid, 2042 &len); 2043 if (ret) { 2044 IPW_DEBUG_INFO("failed querying ordinals at line %d\n", 2045 __LINE__); 2046 return; 2047 } 2048 memcpy(priv->ieee->bssid, bssid, ETH_ALEN); 2049 2050 switch (txrate) { 2051 case TX_RATE_1_MBIT: 2052 txratename = "1Mbps"; 2053 break; 2054 case TX_RATE_2_MBIT: 2055 txratename = "2Mbsp"; 2056 break; 2057 case TX_RATE_5_5_MBIT: 2058 txratename = "5.5Mbps"; 2059 break; 2060 case TX_RATE_11_MBIT: 2061 txratename = "11Mbps"; 2062 break; 2063 default: 2064 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate); 2065 txratename = "unknown rate"; 2066 break; 2067 } 2068 2069 IPW_DEBUG_INFO("%s: Associated with '%*pE' at %s, channel %d (BSSID=%pM)\n", 2070 priv->net_dev->name, essid_len, essid, 2071 txratename, chan, bssid); 2072 2073 /* now we copy read ssid into dev */ 2074 if (!(priv->config & CFG_STATIC_ESSID)) { 2075 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE); 2076 memcpy(priv->essid, essid, priv->essid_len); 2077 } 2078 priv->channel = chan; 2079 memcpy(priv->bssid, bssid, ETH_ALEN); 2080 2081 priv->status |= STATUS_ASSOCIATING; 2082 priv->connect_start = ktime_get_boottime_seconds(); 2083 2084 schedule_delayed_work(&priv->wx_event_work, HZ / 10); 2085 } 2086 2087 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid, 2088 int length, int batch_mode) 2089 { 2090 int ssid_len = min(length, IW_ESSID_MAX_SIZE); 2091 struct host_command cmd = { 2092 .host_command = SSID, 2093 .host_command_sequence = 0, 2094 .host_command_length = ssid_len 2095 }; 2096 int err; 2097 2098 IPW_DEBUG_HC("SSID: '%*pE'\n", ssid_len, essid); 2099 2100 if (ssid_len) 2101 memcpy(cmd.host_command_parameters, essid, ssid_len); 2102 2103 if (!batch_mode) { 2104 err = ipw2100_disable_adapter(priv); 2105 if (err) 2106 return err; 2107 } 2108 2109 /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to 2110 * disable auto association -- so we cheat by setting a bogus SSID */ 2111 if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) { 2112 int i; 2113 u8 *bogus = (u8 *) cmd.host_command_parameters; 2114 for (i = 0; i < IW_ESSID_MAX_SIZE; i++) 2115 bogus[i] = 0x18 + i; 2116 cmd.host_command_length = IW_ESSID_MAX_SIZE; 2117 } 2118 2119 /* NOTE: We always send the SSID command even if the provided ESSID is 2120 * the same as what we currently think is set. */ 2121 2122 err = ipw2100_hw_send_command(priv, &cmd); 2123 if (!err) { 2124 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len); 2125 memcpy(priv->essid, essid, ssid_len); 2126 priv->essid_len = ssid_len; 2127 } 2128 2129 if (!batch_mode) { 2130 if (ipw2100_enable_adapter(priv)) 2131 err = -EIO; 2132 } 2133 2134 return err; 2135 } 2136 2137 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status) 2138 { 2139 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC, 2140 "disassociated: '%*pE' %pM\n", priv->essid_len, priv->essid, 2141 priv->bssid); 2142 2143 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING); 2144 2145 if (priv->status & STATUS_STOPPING) { 2146 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n"); 2147 return; 2148 } 2149 2150 eth_zero_addr(priv->bssid); 2151 eth_zero_addr(priv->ieee->bssid); 2152 2153 netif_carrier_off(priv->net_dev); 2154 netif_stop_queue(priv->net_dev); 2155 2156 if (!(priv->status & STATUS_RUNNING)) 2157 return; 2158 2159 if (priv->status & STATUS_SECURITY_UPDATED) 2160 schedule_delayed_work(&priv->security_work, 0); 2161 2162 schedule_delayed_work(&priv->wx_event_work, 0); 2163 } 2164 2165 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status) 2166 { 2167 IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n", 2168 priv->net_dev->name); 2169 2170 /* RF_KILL is now enabled (else we wouldn't be here) */ 2171 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true); 2172 priv->status |= STATUS_RF_KILL_HW; 2173 2174 /* Make sure the RF Kill check timer is running */ 2175 priv->stop_rf_kill = 0; 2176 mod_delayed_work(system_wq, &priv->rf_kill, round_jiffies_relative(HZ)); 2177 } 2178 2179 static void ipw2100_scan_event(struct work_struct *work) 2180 { 2181 struct ipw2100_priv *priv = container_of(work, struct ipw2100_priv, 2182 scan_event.work); 2183 union iwreq_data wrqu; 2184 2185 wrqu.data.length = 0; 2186 wrqu.data.flags = 0; 2187 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL); 2188 } 2189 2190 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status) 2191 { 2192 IPW_DEBUG_SCAN("scan complete\n"); 2193 /* Age the scan results... */ 2194 priv->ieee->scans++; 2195 priv->status &= ~STATUS_SCANNING; 2196 2197 /* Only userspace-requested scan completion events go out immediately */ 2198 if (!priv->user_requested_scan) { 2199 schedule_delayed_work(&priv->scan_event, 2200 round_jiffies_relative(msecs_to_jiffies(4000))); 2201 } else { 2202 priv->user_requested_scan = 0; 2203 mod_delayed_work(system_wq, &priv->scan_event, 0); 2204 } 2205 } 2206 2207 #ifdef CONFIG_IPW2100_DEBUG 2208 #define IPW2100_HANDLER(v, f) { v, f, # v } 2209 struct ipw2100_status_indicator { 2210 int status; 2211 void (*cb) (struct ipw2100_priv * priv, u32 status); 2212 char *name; 2213 }; 2214 #else 2215 #define IPW2100_HANDLER(v, f) { v, f } 2216 struct ipw2100_status_indicator { 2217 int status; 2218 void (*cb) (struct ipw2100_priv * priv, u32 status); 2219 }; 2220 #endif /* CONFIG_IPW2100_DEBUG */ 2221 2222 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status) 2223 { 2224 IPW_DEBUG_SCAN("Scanning...\n"); 2225 priv->status |= STATUS_SCANNING; 2226 } 2227 2228 static const struct ipw2100_status_indicator status_handlers[] = { 2229 IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL), 2230 IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL), 2231 IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated), 2232 IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost), 2233 IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL), 2234 IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete), 2235 IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL), 2236 IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL), 2237 IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill), 2238 IPW2100_HANDLER(IPW_STATE_DISABLED, NULL), 2239 IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL), 2240 IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning), 2241 IPW2100_HANDLER(-1, NULL) 2242 }; 2243 2244 static void isr_status_change(struct ipw2100_priv *priv, int status) 2245 { 2246 int i; 2247 2248 if (status == IPW_STATE_SCANNING && 2249 priv->status & STATUS_ASSOCIATED && 2250 !(priv->status & STATUS_SCANNING)) { 2251 IPW_DEBUG_INFO("Scan detected while associated, with " 2252 "no scan request. Restarting firmware.\n"); 2253 2254 /* Wake up any sleeping jobs */ 2255 schedule_reset(priv); 2256 } 2257 2258 for (i = 0; status_handlers[i].status != -1; i++) { 2259 if (status == status_handlers[i].status) { 2260 IPW_DEBUG_NOTIF("Status change: %s\n", 2261 status_handlers[i].name); 2262 if (status_handlers[i].cb) 2263 status_handlers[i].cb(priv, status); 2264 priv->wstats.status = status; 2265 return; 2266 } 2267 } 2268 2269 IPW_DEBUG_NOTIF("unknown status received: %04x\n", status); 2270 } 2271 2272 static void isr_rx_complete_command(struct ipw2100_priv *priv, 2273 struct ipw2100_cmd_header *cmd) 2274 { 2275 #ifdef CONFIG_IPW2100_DEBUG 2276 if (cmd->host_command_reg < ARRAY_SIZE(command_types)) { 2277 IPW_DEBUG_HC("Command completed '%s (%d)'\n", 2278 command_types[cmd->host_command_reg], 2279 cmd->host_command_reg); 2280 } 2281 #endif 2282 if (cmd->host_command_reg == HOST_COMPLETE) 2283 priv->status |= STATUS_ENABLED; 2284 2285 if (cmd->host_command_reg == CARD_DISABLE) 2286 priv->status &= ~STATUS_ENABLED; 2287 2288 priv->status &= ~STATUS_CMD_ACTIVE; 2289 2290 wake_up_interruptible(&priv->wait_command_queue); 2291 } 2292 2293 #ifdef CONFIG_IPW2100_DEBUG 2294 static const char *frame_types[] = { 2295 "COMMAND_STATUS_VAL", 2296 "STATUS_CHANGE_VAL", 2297 "P80211_DATA_VAL", 2298 "P8023_DATA_VAL", 2299 "HOST_NOTIFICATION_VAL" 2300 }; 2301 #endif 2302 2303 static int ipw2100_alloc_skb(struct ipw2100_priv *priv, 2304 struct ipw2100_rx_packet *packet) 2305 { 2306 packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx)); 2307 if (!packet->skb) 2308 return -ENOMEM; 2309 2310 packet->rxp = (struct ipw2100_rx *)packet->skb->data; 2311 packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data, 2312 sizeof(struct ipw2100_rx), 2313 PCI_DMA_FROMDEVICE); 2314 if (pci_dma_mapping_error(priv->pci_dev, packet->dma_addr)) { 2315 dev_kfree_skb(packet->skb); 2316 return -ENOMEM; 2317 } 2318 2319 return 0; 2320 } 2321 2322 #define SEARCH_ERROR 0xffffffff 2323 #define SEARCH_FAIL 0xfffffffe 2324 #define SEARCH_SUCCESS 0xfffffff0 2325 #define SEARCH_DISCARD 0 2326 #define SEARCH_SNAPSHOT 1 2327 2328 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff)) 2329 static void ipw2100_snapshot_free(struct ipw2100_priv *priv) 2330 { 2331 int i; 2332 if (!priv->snapshot[0]) 2333 return; 2334 for (i = 0; i < 0x30; i++) 2335 kfree(priv->snapshot[i]); 2336 priv->snapshot[0] = NULL; 2337 } 2338 2339 #ifdef IPW2100_DEBUG_C3 2340 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv) 2341 { 2342 int i; 2343 if (priv->snapshot[0]) 2344 return 1; 2345 for (i = 0; i < 0x30; i++) { 2346 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC); 2347 if (!priv->snapshot[i]) { 2348 IPW_DEBUG_INFO("%s: Error allocating snapshot " 2349 "buffer %d\n", priv->net_dev->name, i); 2350 while (i > 0) 2351 kfree(priv->snapshot[--i]); 2352 priv->snapshot[0] = NULL; 2353 return 0; 2354 } 2355 } 2356 2357 return 1; 2358 } 2359 2360 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf, 2361 size_t len, int mode) 2362 { 2363 u32 i, j; 2364 u32 tmp; 2365 u8 *s, *d; 2366 u32 ret; 2367 2368 s = in_buf; 2369 if (mode == SEARCH_SNAPSHOT) { 2370 if (!ipw2100_snapshot_alloc(priv)) 2371 mode = SEARCH_DISCARD; 2372 } 2373 2374 for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) { 2375 read_nic_dword(priv->net_dev, i, &tmp); 2376 if (mode == SEARCH_SNAPSHOT) 2377 *(u32 *) SNAPSHOT_ADDR(i) = tmp; 2378 if (ret == SEARCH_FAIL) { 2379 d = (u8 *) & tmp; 2380 for (j = 0; j < 4; j++) { 2381 if (*s != *d) { 2382 s = in_buf; 2383 continue; 2384 } 2385 2386 s++; 2387 d++; 2388 2389 if ((s - in_buf) == len) 2390 ret = (i + j) - len + 1; 2391 } 2392 } else if (mode == SEARCH_DISCARD) 2393 return ret; 2394 } 2395 2396 return ret; 2397 } 2398 #endif 2399 2400 /* 2401 * 2402 * 0) Disconnect the SKB from the firmware (just unmap) 2403 * 1) Pack the ETH header into the SKB 2404 * 2) Pass the SKB to the network stack 2405 * 2406 * When packet is provided by the firmware, it contains the following: 2407 * 2408 * . libipw_hdr 2409 * . libipw_snap_hdr 2410 * 2411 * The size of the constructed ethernet 2412 * 2413 */ 2414 #ifdef IPW2100_RX_DEBUG 2415 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH]; 2416 #endif 2417 2418 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i) 2419 { 2420 #ifdef IPW2100_DEBUG_C3 2421 struct ipw2100_status *status = &priv->status_queue.drv[i]; 2422 u32 match, reg; 2423 int j; 2424 #endif 2425 2426 IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n", 2427 i * sizeof(struct ipw2100_status)); 2428 2429 #ifdef IPW2100_DEBUG_C3 2430 /* Halt the firmware so we can get a good image */ 2431 write_register(priv->net_dev, IPW_REG_RESET_REG, 2432 IPW_AUX_HOST_RESET_REG_STOP_MASTER); 2433 j = 5; 2434 do { 2435 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY); 2436 read_register(priv->net_dev, IPW_REG_RESET_REG, ®); 2437 2438 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED) 2439 break; 2440 } while (j--); 2441 2442 match = ipw2100_match_buf(priv, (u8 *) status, 2443 sizeof(struct ipw2100_status), 2444 SEARCH_SNAPSHOT); 2445 if (match < SEARCH_SUCCESS) 2446 IPW_DEBUG_INFO("%s: DMA status match in Firmware at " 2447 "offset 0x%06X, length %d:\n", 2448 priv->net_dev->name, match, 2449 sizeof(struct ipw2100_status)); 2450 else 2451 IPW_DEBUG_INFO("%s: No DMA status match in " 2452 "Firmware.\n", priv->net_dev->name); 2453 2454 printk_buf((u8 *) priv->status_queue.drv, 2455 sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH); 2456 #endif 2457 2458 priv->fatal_error = IPW2100_ERR_C3_CORRUPTION; 2459 priv->net_dev->stats.rx_errors++; 2460 schedule_reset(priv); 2461 } 2462 2463 static void isr_rx(struct ipw2100_priv *priv, int i, 2464 struct libipw_rx_stats *stats) 2465 { 2466 struct net_device *dev = priv->net_dev; 2467 struct ipw2100_status *status = &priv->status_queue.drv[i]; 2468 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i]; 2469 2470 IPW_DEBUG_RX("Handler...\n"); 2471 2472 if (unlikely(status->frame_size > skb_tailroom(packet->skb))) { 2473 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!" 2474 " Dropping.\n", 2475 dev->name, 2476 status->frame_size, skb_tailroom(packet->skb)); 2477 dev->stats.rx_errors++; 2478 return; 2479 } 2480 2481 if (unlikely(!netif_running(dev))) { 2482 dev->stats.rx_errors++; 2483 priv->wstats.discard.misc++; 2484 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n"); 2485 return; 2486 } 2487 2488 if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR && 2489 !(priv->status & STATUS_ASSOCIATED))) { 2490 IPW_DEBUG_DROP("Dropping packet while not associated.\n"); 2491 priv->wstats.discard.misc++; 2492 return; 2493 } 2494 2495 pci_unmap_single(priv->pci_dev, 2496 packet->dma_addr, 2497 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE); 2498 2499 skb_put(packet->skb, status->frame_size); 2500 2501 #ifdef IPW2100_RX_DEBUG 2502 /* Make a copy of the frame so we can dump it to the logs if 2503 * libipw_rx fails */ 2504 skb_copy_from_linear_data(packet->skb, packet_data, 2505 min_t(u32, status->frame_size, 2506 IPW_RX_NIC_BUFFER_LENGTH)); 2507 #endif 2508 2509 if (!libipw_rx(priv->ieee, packet->skb, stats)) { 2510 #ifdef IPW2100_RX_DEBUG 2511 IPW_DEBUG_DROP("%s: Non consumed packet:\n", 2512 dev->name); 2513 printk_buf(IPW_DL_DROP, packet_data, status->frame_size); 2514 #endif 2515 dev->stats.rx_errors++; 2516 2517 /* libipw_rx failed, so it didn't free the SKB */ 2518 dev_kfree_skb_any(packet->skb); 2519 packet->skb = NULL; 2520 } 2521 2522 /* We need to allocate a new SKB and attach it to the RDB. */ 2523 if (unlikely(ipw2100_alloc_skb(priv, packet))) { 2524 printk(KERN_WARNING DRV_NAME ": " 2525 "%s: Unable to allocate SKB onto RBD ring - disabling " 2526 "adapter.\n", dev->name); 2527 /* TODO: schedule adapter shutdown */ 2528 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n"); 2529 } 2530 2531 /* Update the RDB entry */ 2532 priv->rx_queue.drv[i].host_addr = packet->dma_addr; 2533 } 2534 2535 #ifdef CONFIG_IPW2100_MONITOR 2536 2537 static void isr_rx_monitor(struct ipw2100_priv *priv, int i, 2538 struct libipw_rx_stats *stats) 2539 { 2540 struct net_device *dev = priv->net_dev; 2541 struct ipw2100_status *status = &priv->status_queue.drv[i]; 2542 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i]; 2543 2544 /* Magic struct that slots into the radiotap header -- no reason 2545 * to build this manually element by element, we can write it much 2546 * more efficiently than we can parse it. ORDER MATTERS HERE */ 2547 struct ipw_rt_hdr { 2548 struct ieee80211_radiotap_header rt_hdr; 2549 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */ 2550 } *ipw_rt; 2551 2552 IPW_DEBUG_RX("Handler...\n"); 2553 2554 if (unlikely(status->frame_size > skb_tailroom(packet->skb) - 2555 sizeof(struct ipw_rt_hdr))) { 2556 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!" 2557 " Dropping.\n", 2558 dev->name, 2559 status->frame_size, 2560 skb_tailroom(packet->skb)); 2561 dev->stats.rx_errors++; 2562 return; 2563 } 2564 2565 if (unlikely(!netif_running(dev))) { 2566 dev->stats.rx_errors++; 2567 priv->wstats.discard.misc++; 2568 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n"); 2569 return; 2570 } 2571 2572 if (unlikely(priv->config & CFG_CRC_CHECK && 2573 status->flags & IPW_STATUS_FLAG_CRC_ERROR)) { 2574 IPW_DEBUG_RX("CRC error in packet. Dropping.\n"); 2575 dev->stats.rx_errors++; 2576 return; 2577 } 2578 2579 pci_unmap_single(priv->pci_dev, packet->dma_addr, 2580 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE); 2581 memmove(packet->skb->data + sizeof(struct ipw_rt_hdr), 2582 packet->skb->data, status->frame_size); 2583 2584 ipw_rt = (struct ipw_rt_hdr *) packet->skb->data; 2585 2586 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION; 2587 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */ 2588 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */ 2589 2590 ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 2591 2592 ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM; 2593 2594 skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr)); 2595 2596 if (!libipw_rx(priv->ieee, packet->skb, stats)) { 2597 dev->stats.rx_errors++; 2598 2599 /* libipw_rx failed, so it didn't free the SKB */ 2600 dev_kfree_skb_any(packet->skb); 2601 packet->skb = NULL; 2602 } 2603 2604 /* We need to allocate a new SKB and attach it to the RDB. */ 2605 if (unlikely(ipw2100_alloc_skb(priv, packet))) { 2606 IPW_DEBUG_WARNING( 2607 "%s: Unable to allocate SKB onto RBD ring - disabling " 2608 "adapter.\n", dev->name); 2609 /* TODO: schedule adapter shutdown */ 2610 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n"); 2611 } 2612 2613 /* Update the RDB entry */ 2614 priv->rx_queue.drv[i].host_addr = packet->dma_addr; 2615 } 2616 2617 #endif 2618 2619 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i) 2620 { 2621 struct ipw2100_status *status = &priv->status_queue.drv[i]; 2622 struct ipw2100_rx *u = priv->rx_buffers[i].rxp; 2623 u16 frame_type = status->status_fields & STATUS_TYPE_MASK; 2624 2625 switch (frame_type) { 2626 case COMMAND_STATUS_VAL: 2627 return (status->frame_size != sizeof(u->rx_data.command)); 2628 case STATUS_CHANGE_VAL: 2629 return (status->frame_size != sizeof(u->rx_data.status)); 2630 case HOST_NOTIFICATION_VAL: 2631 return (status->frame_size < sizeof(u->rx_data.notification)); 2632 case P80211_DATA_VAL: 2633 case P8023_DATA_VAL: 2634 #ifdef CONFIG_IPW2100_MONITOR 2635 return 0; 2636 #else 2637 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) { 2638 case IEEE80211_FTYPE_MGMT: 2639 case IEEE80211_FTYPE_CTL: 2640 return 0; 2641 case IEEE80211_FTYPE_DATA: 2642 return (status->frame_size > 2643 IPW_MAX_802_11_PAYLOAD_LENGTH); 2644 } 2645 #endif 2646 } 2647 2648 return 1; 2649 } 2650 2651 /* 2652 * ipw2100 interrupts are disabled at this point, and the ISR 2653 * is the only code that calls this method. So, we do not need 2654 * to play with any locks. 2655 * 2656 * RX Queue works as follows: 2657 * 2658 * Read index - firmware places packet in entry identified by the 2659 * Read index and advances Read index. In this manner, 2660 * Read index will always point to the next packet to 2661 * be filled--but not yet valid. 2662 * 2663 * Write index - driver fills this entry with an unused RBD entry. 2664 * This entry has not filled by the firmware yet. 2665 * 2666 * In between the W and R indexes are the RBDs that have been received 2667 * but not yet processed. 2668 * 2669 * The process of handling packets will start at WRITE + 1 and advance 2670 * until it reaches the READ index. 2671 * 2672 * The WRITE index is cached in the variable 'priv->rx_queue.next'. 2673 * 2674 */ 2675 static void __ipw2100_rx_process(struct ipw2100_priv *priv) 2676 { 2677 struct ipw2100_bd_queue *rxq = &priv->rx_queue; 2678 struct ipw2100_status_queue *sq = &priv->status_queue; 2679 struct ipw2100_rx_packet *packet; 2680 u16 frame_type; 2681 u32 r, w, i, s; 2682 struct ipw2100_rx *u; 2683 struct libipw_rx_stats stats = { 2684 .mac_time = jiffies, 2685 }; 2686 2687 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r); 2688 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w); 2689 2690 if (r >= rxq->entries) { 2691 IPW_DEBUG_RX("exit - bad read index\n"); 2692 return; 2693 } 2694 2695 i = (rxq->next + 1) % rxq->entries; 2696 s = i; 2697 while (i != r) { 2698 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n", 2699 r, rxq->next, i); */ 2700 2701 packet = &priv->rx_buffers[i]; 2702 2703 /* Sync the DMA for the RX buffer so CPU is sure to get 2704 * the correct values */ 2705 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr, 2706 sizeof(struct ipw2100_rx), 2707 PCI_DMA_FROMDEVICE); 2708 2709 if (unlikely(ipw2100_corruption_check(priv, i))) { 2710 ipw2100_corruption_detected(priv, i); 2711 goto increment; 2712 } 2713 2714 u = packet->rxp; 2715 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK; 2716 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM; 2717 stats.len = sq->drv[i].frame_size; 2718 2719 stats.mask = 0; 2720 if (stats.rssi != 0) 2721 stats.mask |= LIBIPW_STATMASK_RSSI; 2722 stats.freq = LIBIPW_24GHZ_BAND; 2723 2724 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n", 2725 priv->net_dev->name, frame_types[frame_type], 2726 stats.len); 2727 2728 switch (frame_type) { 2729 case COMMAND_STATUS_VAL: 2730 /* Reset Rx watchdog */ 2731 isr_rx_complete_command(priv, &u->rx_data.command); 2732 break; 2733 2734 case STATUS_CHANGE_VAL: 2735 isr_status_change(priv, u->rx_data.status); 2736 break; 2737 2738 case P80211_DATA_VAL: 2739 case P8023_DATA_VAL: 2740 #ifdef CONFIG_IPW2100_MONITOR 2741 if (priv->ieee->iw_mode == IW_MODE_MONITOR) { 2742 isr_rx_monitor(priv, i, &stats); 2743 break; 2744 } 2745 #endif 2746 if (stats.len < sizeof(struct libipw_hdr_3addr)) 2747 break; 2748 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) { 2749 case IEEE80211_FTYPE_MGMT: 2750 libipw_rx_mgt(priv->ieee, 2751 &u->rx_data.header, &stats); 2752 break; 2753 2754 case IEEE80211_FTYPE_CTL: 2755 break; 2756 2757 case IEEE80211_FTYPE_DATA: 2758 isr_rx(priv, i, &stats); 2759 break; 2760 2761 } 2762 break; 2763 } 2764 2765 increment: 2766 /* clear status field associated with this RBD */ 2767 rxq->drv[i].status.info.field = 0; 2768 2769 i = (i + 1) % rxq->entries; 2770 } 2771 2772 if (i != s) { 2773 /* backtrack one entry, wrapping to end if at 0 */ 2774 rxq->next = (i ? i : rxq->entries) - 1; 2775 2776 write_register(priv->net_dev, 2777 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next); 2778 } 2779 } 2780 2781 /* 2782 * __ipw2100_tx_process 2783 * 2784 * This routine will determine whether the next packet on 2785 * the fw_pend_list has been processed by the firmware yet. 2786 * 2787 * If not, then it does nothing and returns. 2788 * 2789 * If so, then it removes the item from the fw_pend_list, frees 2790 * any associated storage, and places the item back on the 2791 * free list of its source (either msg_free_list or tx_free_list) 2792 * 2793 * TX Queue works as follows: 2794 * 2795 * Read index - points to the next TBD that the firmware will 2796 * process. The firmware will read the data, and once 2797 * done processing, it will advance the Read index. 2798 * 2799 * Write index - driver fills this entry with an constructed TBD 2800 * entry. The Write index is not advanced until the 2801 * packet has been configured. 2802 * 2803 * In between the W and R indexes are the TBDs that have NOT been 2804 * processed. Lagging behind the R index are packets that have 2805 * been processed but have not been freed by the driver. 2806 * 2807 * In order to free old storage, an internal index will be maintained 2808 * that points to the next packet to be freed. When all used 2809 * packets have been freed, the oldest index will be the same as the 2810 * firmware's read index. 2811 * 2812 * The OLDEST index is cached in the variable 'priv->tx_queue.oldest' 2813 * 2814 * Because the TBD structure can not contain arbitrary data, the 2815 * driver must keep an internal queue of cached allocations such that 2816 * it can put that data back into the tx_free_list and msg_free_list 2817 * for use by future command and data packets. 2818 * 2819 */ 2820 static int __ipw2100_tx_process(struct ipw2100_priv *priv) 2821 { 2822 struct ipw2100_bd_queue *txq = &priv->tx_queue; 2823 struct ipw2100_bd *tbd; 2824 struct list_head *element; 2825 struct ipw2100_tx_packet *packet; 2826 int descriptors_used; 2827 int e, i; 2828 u32 r, w, frag_num = 0; 2829 2830 if (list_empty(&priv->fw_pend_list)) 2831 return 0; 2832 2833 element = priv->fw_pend_list.next; 2834 2835 packet = list_entry(element, struct ipw2100_tx_packet, list); 2836 tbd = &txq->drv[packet->index]; 2837 2838 /* Determine how many TBD entries must be finished... */ 2839 switch (packet->type) { 2840 case COMMAND: 2841 /* COMMAND uses only one slot; don't advance */ 2842 descriptors_used = 1; 2843 e = txq->oldest; 2844 break; 2845 2846 case DATA: 2847 /* DATA uses two slots; advance and loop position. */ 2848 descriptors_used = tbd->num_fragments; 2849 frag_num = tbd->num_fragments - 1; 2850 e = txq->oldest + frag_num; 2851 e %= txq->entries; 2852 break; 2853 2854 default: 2855 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n", 2856 priv->net_dev->name); 2857 return 0; 2858 } 2859 2860 /* if the last TBD is not done by NIC yet, then packet is 2861 * not ready to be released. 2862 * 2863 */ 2864 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX, 2865 &r); 2866 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX, 2867 &w); 2868 if (w != txq->next) 2869 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n", 2870 priv->net_dev->name); 2871 2872 /* 2873 * txq->next is the index of the last packet written txq->oldest is 2874 * the index of the r is the index of the next packet to be read by 2875 * firmware 2876 */ 2877 2878 /* 2879 * Quick graphic to help you visualize the following 2880 * if / else statement 2881 * 2882 * ===>| s---->|=============== 2883 * e>| 2884 * | a | b | c | d | e | f | g | h | i | j | k | l 2885 * r---->| 2886 * w 2887 * 2888 * w - updated by driver 2889 * r - updated by firmware 2890 * s - start of oldest BD entry (txq->oldest) 2891 * e - end of oldest BD entry 2892 * 2893 */ 2894 if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) { 2895 IPW_DEBUG_TX("exit - no processed packets ready to release.\n"); 2896 return 0; 2897 } 2898 2899 list_del(element); 2900 DEC_STAT(&priv->fw_pend_stat); 2901 2902 #ifdef CONFIG_IPW2100_DEBUG 2903 { 2904 i = txq->oldest; 2905 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i, 2906 &txq->drv[i], 2907 (u32) (txq->nic + i * sizeof(struct ipw2100_bd)), 2908 txq->drv[i].host_addr, txq->drv[i].buf_length); 2909 2910 if (packet->type == DATA) { 2911 i = (i + 1) % txq->entries; 2912 2913 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i, 2914 &txq->drv[i], 2915 (u32) (txq->nic + i * 2916 sizeof(struct ipw2100_bd)), 2917 (u32) txq->drv[i].host_addr, 2918 txq->drv[i].buf_length); 2919 } 2920 } 2921 #endif 2922 2923 switch (packet->type) { 2924 case DATA: 2925 if (txq->drv[txq->oldest].status.info.fields.txType != 0) 2926 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. " 2927 "Expecting DATA TBD but pulled " 2928 "something else: ids %d=%d.\n", 2929 priv->net_dev->name, txq->oldest, packet->index); 2930 2931 /* DATA packet; we have to unmap and free the SKB */ 2932 for (i = 0; i < frag_num; i++) { 2933 tbd = &txq->drv[(packet->index + 1 + i) % txq->entries]; 2934 2935 IPW_DEBUG_TX("TX%d P=%08x L=%d\n", 2936 (packet->index + 1 + i) % txq->entries, 2937 tbd->host_addr, tbd->buf_length); 2938 2939 pci_unmap_single(priv->pci_dev, 2940 tbd->host_addr, 2941 tbd->buf_length, PCI_DMA_TODEVICE); 2942 } 2943 2944 libipw_txb_free(packet->info.d_struct.txb); 2945 packet->info.d_struct.txb = NULL; 2946 2947 list_add_tail(element, &priv->tx_free_list); 2948 INC_STAT(&priv->tx_free_stat); 2949 2950 /* We have a free slot in the Tx queue, so wake up the 2951 * transmit layer if it is stopped. */ 2952 if (priv->status & STATUS_ASSOCIATED) 2953 netif_wake_queue(priv->net_dev); 2954 2955 /* A packet was processed by the hardware, so update the 2956 * watchdog */ 2957 netif_trans_update(priv->net_dev); 2958 2959 break; 2960 2961 case COMMAND: 2962 if (txq->drv[txq->oldest].status.info.fields.txType != 1) 2963 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. " 2964 "Expecting COMMAND TBD but pulled " 2965 "something else: ids %d=%d.\n", 2966 priv->net_dev->name, txq->oldest, packet->index); 2967 2968 #ifdef CONFIG_IPW2100_DEBUG 2969 if (packet->info.c_struct.cmd->host_command_reg < 2970 ARRAY_SIZE(command_types)) 2971 IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n", 2972 command_types[packet->info.c_struct.cmd-> 2973 host_command_reg], 2974 packet->info.c_struct.cmd-> 2975 host_command_reg, 2976 packet->info.c_struct.cmd->cmd_status_reg); 2977 #endif 2978 2979 list_add_tail(element, &priv->msg_free_list); 2980 INC_STAT(&priv->msg_free_stat); 2981 break; 2982 } 2983 2984 /* advance oldest used TBD pointer to start of next entry */ 2985 txq->oldest = (e + 1) % txq->entries; 2986 /* increase available TBDs number */ 2987 txq->available += descriptors_used; 2988 SET_STAT(&priv->txq_stat, txq->available); 2989 2990 IPW_DEBUG_TX("packet latency (send to process) %ld jiffies\n", 2991 jiffies - packet->jiffy_start); 2992 2993 return (!list_empty(&priv->fw_pend_list)); 2994 } 2995 2996 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv) 2997 { 2998 int i = 0; 2999 3000 while (__ipw2100_tx_process(priv) && i < 200) 3001 i++; 3002 3003 if (i == 200) { 3004 printk(KERN_WARNING DRV_NAME ": " 3005 "%s: Driver is running slow (%d iters).\n", 3006 priv->net_dev->name, i); 3007 } 3008 } 3009 3010 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv) 3011 { 3012 struct list_head *element; 3013 struct ipw2100_tx_packet *packet; 3014 struct ipw2100_bd_queue *txq = &priv->tx_queue; 3015 struct ipw2100_bd *tbd; 3016 int next = txq->next; 3017 3018 while (!list_empty(&priv->msg_pend_list)) { 3019 /* if there isn't enough space in TBD queue, then 3020 * don't stuff a new one in. 3021 * NOTE: 3 are needed as a command will take one, 3022 * and there is a minimum of 2 that must be 3023 * maintained between the r and w indexes 3024 */ 3025 if (txq->available <= 3) { 3026 IPW_DEBUG_TX("no room in tx_queue\n"); 3027 break; 3028 } 3029 3030 element = priv->msg_pend_list.next; 3031 list_del(element); 3032 DEC_STAT(&priv->msg_pend_stat); 3033 3034 packet = list_entry(element, struct ipw2100_tx_packet, list); 3035 3036 IPW_DEBUG_TX("using TBD at virt=%p, phys=%04X\n", 3037 &txq->drv[txq->next], 3038 (u32) (txq->nic + txq->next * 3039 sizeof(struct ipw2100_bd))); 3040 3041 packet->index = txq->next; 3042 3043 tbd = &txq->drv[txq->next]; 3044 3045 /* initialize TBD */ 3046 tbd->host_addr = packet->info.c_struct.cmd_phys; 3047 tbd->buf_length = sizeof(struct ipw2100_cmd_header); 3048 /* not marking number of fragments causes problems 3049 * with f/w debug version */ 3050 tbd->num_fragments = 1; 3051 tbd->status.info.field = 3052 IPW_BD_STATUS_TX_FRAME_COMMAND | 3053 IPW_BD_STATUS_TX_INTERRUPT_ENABLE; 3054 3055 /* update TBD queue counters */ 3056 txq->next++; 3057 txq->next %= txq->entries; 3058 txq->available--; 3059 DEC_STAT(&priv->txq_stat); 3060 3061 list_add_tail(element, &priv->fw_pend_list); 3062 INC_STAT(&priv->fw_pend_stat); 3063 } 3064 3065 if (txq->next != next) { 3066 /* kick off the DMA by notifying firmware the 3067 * write index has moved; make sure TBD stores are sync'd */ 3068 wmb(); 3069 write_register(priv->net_dev, 3070 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX, 3071 txq->next); 3072 } 3073 } 3074 3075 /* 3076 * ipw2100_tx_send_data 3077 * 3078 */ 3079 static void ipw2100_tx_send_data(struct ipw2100_priv *priv) 3080 { 3081 struct list_head *element; 3082 struct ipw2100_tx_packet *packet; 3083 struct ipw2100_bd_queue *txq = &priv->tx_queue; 3084 struct ipw2100_bd *tbd; 3085 int next = txq->next; 3086 int i = 0; 3087 struct ipw2100_data_header *ipw_hdr; 3088 struct libipw_hdr_3addr *hdr; 3089 3090 while (!list_empty(&priv->tx_pend_list)) { 3091 /* if there isn't enough space in TBD queue, then 3092 * don't stuff a new one in. 3093 * NOTE: 4 are needed as a data will take two, 3094 * and there is a minimum of 2 that must be 3095 * maintained between the r and w indexes 3096 */ 3097 element = priv->tx_pend_list.next; 3098 packet = list_entry(element, struct ipw2100_tx_packet, list); 3099 3100 if (unlikely(1 + packet->info.d_struct.txb->nr_frags > 3101 IPW_MAX_BDS)) { 3102 /* TODO: Support merging buffers if more than 3103 * IPW_MAX_BDS are used */ 3104 IPW_DEBUG_INFO("%s: Maximum BD threshold exceeded. " 3105 "Increase fragmentation level.\n", 3106 priv->net_dev->name); 3107 } 3108 3109 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) { 3110 IPW_DEBUG_TX("no room in tx_queue\n"); 3111 break; 3112 } 3113 3114 list_del(element); 3115 DEC_STAT(&priv->tx_pend_stat); 3116 3117 tbd = &txq->drv[txq->next]; 3118 3119 packet->index = txq->next; 3120 3121 ipw_hdr = packet->info.d_struct.data; 3122 hdr = (struct libipw_hdr_3addr *)packet->info.d_struct.txb-> 3123 fragments[0]->data; 3124 3125 if (priv->ieee->iw_mode == IW_MODE_INFRA) { 3126 /* To DS: Addr1 = BSSID, Addr2 = SA, 3127 Addr3 = DA */ 3128 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN); 3129 memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN); 3130 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) { 3131 /* not From/To DS: Addr1 = DA, Addr2 = SA, 3132 Addr3 = BSSID */ 3133 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN); 3134 memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN); 3135 } 3136 3137 ipw_hdr->host_command_reg = SEND; 3138 ipw_hdr->host_command_reg1 = 0; 3139 3140 /* For now we only support host based encryption */ 3141 ipw_hdr->needs_encryption = 0; 3142 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted; 3143 if (packet->info.d_struct.txb->nr_frags > 1) 3144 ipw_hdr->fragment_size = 3145 packet->info.d_struct.txb->frag_size - 3146 LIBIPW_3ADDR_LEN; 3147 else 3148 ipw_hdr->fragment_size = 0; 3149 3150 tbd->host_addr = packet->info.d_struct.data_phys; 3151 tbd->buf_length = sizeof(struct ipw2100_data_header); 3152 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags; 3153 tbd->status.info.field = 3154 IPW_BD_STATUS_TX_FRAME_802_3 | 3155 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT; 3156 txq->next++; 3157 txq->next %= txq->entries; 3158 3159 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n", 3160 packet->index, tbd->host_addr, tbd->buf_length); 3161 #ifdef CONFIG_IPW2100_DEBUG 3162 if (packet->info.d_struct.txb->nr_frags > 1) 3163 IPW_DEBUG_FRAG("fragment Tx: %d frames\n", 3164 packet->info.d_struct.txb->nr_frags); 3165 #endif 3166 3167 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) { 3168 tbd = &txq->drv[txq->next]; 3169 if (i == packet->info.d_struct.txb->nr_frags - 1) 3170 tbd->status.info.field = 3171 IPW_BD_STATUS_TX_FRAME_802_3 | 3172 IPW_BD_STATUS_TX_INTERRUPT_ENABLE; 3173 else 3174 tbd->status.info.field = 3175 IPW_BD_STATUS_TX_FRAME_802_3 | 3176 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT; 3177 3178 tbd->buf_length = packet->info.d_struct.txb-> 3179 fragments[i]->len - LIBIPW_3ADDR_LEN; 3180 3181 tbd->host_addr = pci_map_single(priv->pci_dev, 3182 packet->info.d_struct. 3183 txb->fragments[i]-> 3184 data + 3185 LIBIPW_3ADDR_LEN, 3186 tbd->buf_length, 3187 PCI_DMA_TODEVICE); 3188 if (pci_dma_mapping_error(priv->pci_dev, 3189 tbd->host_addr)) { 3190 IPW_DEBUG_TX("dma mapping error\n"); 3191 break; 3192 } 3193 3194 IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n", 3195 txq->next, tbd->host_addr, 3196 tbd->buf_length); 3197 3198 pci_dma_sync_single_for_device(priv->pci_dev, 3199 tbd->host_addr, 3200 tbd->buf_length, 3201 PCI_DMA_TODEVICE); 3202 3203 txq->next++; 3204 txq->next %= txq->entries; 3205 } 3206 3207 txq->available -= 1 + packet->info.d_struct.txb->nr_frags; 3208 SET_STAT(&priv->txq_stat, txq->available); 3209 3210 list_add_tail(element, &priv->fw_pend_list); 3211 INC_STAT(&priv->fw_pend_stat); 3212 } 3213 3214 if (txq->next != next) { 3215 /* kick off the DMA by notifying firmware the 3216 * write index has moved; make sure TBD stores are sync'd */ 3217 write_register(priv->net_dev, 3218 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX, 3219 txq->next); 3220 } 3221 } 3222 3223 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv) 3224 { 3225 struct net_device *dev = priv->net_dev; 3226 unsigned long flags; 3227 u32 inta, tmp; 3228 3229 spin_lock_irqsave(&priv->low_lock, flags); 3230 ipw2100_disable_interrupts(priv); 3231 3232 read_register(dev, IPW_REG_INTA, &inta); 3233 3234 IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n", 3235 (unsigned long)inta & IPW_INTERRUPT_MASK); 3236 3237 priv->in_isr++; 3238 priv->interrupts++; 3239 3240 /* We do not loop and keep polling for more interrupts as this 3241 * is frowned upon and doesn't play nicely with other potentially 3242 * chained IRQs */ 3243 IPW_DEBUG_ISR("INTA: 0x%08lX\n", 3244 (unsigned long)inta & IPW_INTERRUPT_MASK); 3245 3246 if (inta & IPW2100_INTA_FATAL_ERROR) { 3247 printk(KERN_WARNING DRV_NAME 3248 ": Fatal interrupt. Scheduling firmware restart.\n"); 3249 priv->inta_other++; 3250 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR); 3251 3252 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error); 3253 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n", 3254 priv->net_dev->name, priv->fatal_error); 3255 3256 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp); 3257 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n", 3258 priv->net_dev->name, tmp); 3259 3260 /* Wake up any sleeping jobs */ 3261 schedule_reset(priv); 3262 } 3263 3264 if (inta & IPW2100_INTA_PARITY_ERROR) { 3265 printk(KERN_ERR DRV_NAME 3266 ": ***** PARITY ERROR INTERRUPT !!!!\n"); 3267 priv->inta_other++; 3268 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR); 3269 } 3270 3271 if (inta & IPW2100_INTA_RX_TRANSFER) { 3272 IPW_DEBUG_ISR("RX interrupt\n"); 3273 3274 priv->rx_interrupts++; 3275 3276 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER); 3277 3278 __ipw2100_rx_process(priv); 3279 __ipw2100_tx_complete(priv); 3280 } 3281 3282 if (inta & IPW2100_INTA_TX_TRANSFER) { 3283 IPW_DEBUG_ISR("TX interrupt\n"); 3284 3285 priv->tx_interrupts++; 3286 3287 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER); 3288 3289 __ipw2100_tx_complete(priv); 3290 ipw2100_tx_send_commands(priv); 3291 ipw2100_tx_send_data(priv); 3292 } 3293 3294 if (inta & IPW2100_INTA_TX_COMPLETE) { 3295 IPW_DEBUG_ISR("TX complete\n"); 3296 priv->inta_other++; 3297 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE); 3298 3299 __ipw2100_tx_complete(priv); 3300 } 3301 3302 if (inta & IPW2100_INTA_EVENT_INTERRUPT) { 3303 /* ipw2100_handle_event(dev); */ 3304 priv->inta_other++; 3305 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT); 3306 } 3307 3308 if (inta & IPW2100_INTA_FW_INIT_DONE) { 3309 IPW_DEBUG_ISR("FW init done interrupt\n"); 3310 priv->inta_other++; 3311 3312 read_register(dev, IPW_REG_INTA, &tmp); 3313 if (tmp & (IPW2100_INTA_FATAL_ERROR | 3314 IPW2100_INTA_PARITY_ERROR)) { 3315 write_register(dev, IPW_REG_INTA, 3316 IPW2100_INTA_FATAL_ERROR | 3317 IPW2100_INTA_PARITY_ERROR); 3318 } 3319 3320 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE); 3321 } 3322 3323 if (inta & IPW2100_INTA_STATUS_CHANGE) { 3324 IPW_DEBUG_ISR("Status change interrupt\n"); 3325 priv->inta_other++; 3326 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE); 3327 } 3328 3329 if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) { 3330 IPW_DEBUG_ISR("slave host mode interrupt\n"); 3331 priv->inta_other++; 3332 write_register(dev, IPW_REG_INTA, 3333 IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE); 3334 } 3335 3336 priv->in_isr--; 3337 ipw2100_enable_interrupts(priv); 3338 3339 spin_unlock_irqrestore(&priv->low_lock, flags); 3340 3341 IPW_DEBUG_ISR("exit\n"); 3342 } 3343 3344 static irqreturn_t ipw2100_interrupt(int irq, void *data) 3345 { 3346 struct ipw2100_priv *priv = data; 3347 u32 inta, inta_mask; 3348 3349 if (!data) 3350 return IRQ_NONE; 3351 3352 spin_lock(&priv->low_lock); 3353 3354 /* We check to see if we should be ignoring interrupts before 3355 * we touch the hardware. During ucode load if we try and handle 3356 * an interrupt we can cause keyboard problems as well as cause 3357 * the ucode to fail to initialize */ 3358 if (!(priv->status & STATUS_INT_ENABLED)) { 3359 /* Shared IRQ */ 3360 goto none; 3361 } 3362 3363 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask); 3364 read_register(priv->net_dev, IPW_REG_INTA, &inta); 3365 3366 if (inta == 0xFFFFFFFF) { 3367 /* Hardware disappeared */ 3368 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n"); 3369 goto none; 3370 } 3371 3372 inta &= IPW_INTERRUPT_MASK; 3373 3374 if (!(inta & inta_mask)) { 3375 /* Shared interrupt */ 3376 goto none; 3377 } 3378 3379 /* We disable the hardware interrupt here just to prevent unneeded 3380 * calls to be made. We disable this again within the actual 3381 * work tasklet, so if another part of the code re-enables the 3382 * interrupt, that is fine */ 3383 ipw2100_disable_interrupts(priv); 3384 3385 tasklet_schedule(&priv->irq_tasklet); 3386 spin_unlock(&priv->low_lock); 3387 3388 return IRQ_HANDLED; 3389 none: 3390 spin_unlock(&priv->low_lock); 3391 return IRQ_NONE; 3392 } 3393 3394 static netdev_tx_t ipw2100_tx(struct libipw_txb *txb, 3395 struct net_device *dev, int pri) 3396 { 3397 struct ipw2100_priv *priv = libipw_priv(dev); 3398 struct list_head *element; 3399 struct ipw2100_tx_packet *packet; 3400 unsigned long flags; 3401 3402 spin_lock_irqsave(&priv->low_lock, flags); 3403 3404 if (!(priv->status & STATUS_ASSOCIATED)) { 3405 IPW_DEBUG_INFO("Can not transmit when not connected.\n"); 3406 priv->net_dev->stats.tx_carrier_errors++; 3407 netif_stop_queue(dev); 3408 goto fail_unlock; 3409 } 3410 3411 if (list_empty(&priv->tx_free_list)) 3412 goto fail_unlock; 3413 3414 element = priv->tx_free_list.next; 3415 packet = list_entry(element, struct ipw2100_tx_packet, list); 3416 3417 packet->info.d_struct.txb = txb; 3418 3419 IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len); 3420 printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len); 3421 3422 packet->jiffy_start = jiffies; 3423 3424 list_del(element); 3425 DEC_STAT(&priv->tx_free_stat); 3426 3427 list_add_tail(element, &priv->tx_pend_list); 3428 INC_STAT(&priv->tx_pend_stat); 3429 3430 ipw2100_tx_send_data(priv); 3431 3432 spin_unlock_irqrestore(&priv->low_lock, flags); 3433 return NETDEV_TX_OK; 3434 3435 fail_unlock: 3436 netif_stop_queue(dev); 3437 spin_unlock_irqrestore(&priv->low_lock, flags); 3438 return NETDEV_TX_BUSY; 3439 } 3440 3441 static int ipw2100_msg_allocate(struct ipw2100_priv *priv) 3442 { 3443 int i, j, err = -EINVAL; 3444 void *v; 3445 dma_addr_t p; 3446 3447 priv->msg_buffers = 3448 kmalloc_array(IPW_COMMAND_POOL_SIZE, 3449 sizeof(struct ipw2100_tx_packet), 3450 GFP_KERNEL); 3451 if (!priv->msg_buffers) 3452 return -ENOMEM; 3453 3454 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) { 3455 v = pci_zalloc_consistent(priv->pci_dev, 3456 sizeof(struct ipw2100_cmd_header), 3457 &p); 3458 if (!v) { 3459 printk(KERN_ERR DRV_NAME ": " 3460 "%s: PCI alloc failed for msg " 3461 "buffers.\n", priv->net_dev->name); 3462 err = -ENOMEM; 3463 break; 3464 } 3465 3466 priv->msg_buffers[i].type = COMMAND; 3467 priv->msg_buffers[i].info.c_struct.cmd = 3468 (struct ipw2100_cmd_header *)v; 3469 priv->msg_buffers[i].info.c_struct.cmd_phys = p; 3470 } 3471 3472 if (i == IPW_COMMAND_POOL_SIZE) 3473 return 0; 3474 3475 for (j = 0; j < i; j++) { 3476 pci_free_consistent(priv->pci_dev, 3477 sizeof(struct ipw2100_cmd_header), 3478 priv->msg_buffers[j].info.c_struct.cmd, 3479 priv->msg_buffers[j].info.c_struct. 3480 cmd_phys); 3481 } 3482 3483 kfree(priv->msg_buffers); 3484 priv->msg_buffers = NULL; 3485 3486 return err; 3487 } 3488 3489 static int ipw2100_msg_initialize(struct ipw2100_priv *priv) 3490 { 3491 int i; 3492 3493 INIT_LIST_HEAD(&priv->msg_free_list); 3494 INIT_LIST_HEAD(&priv->msg_pend_list); 3495 3496 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) 3497 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list); 3498 SET_STAT(&priv->msg_free_stat, i); 3499 3500 return 0; 3501 } 3502 3503 static void ipw2100_msg_free(struct ipw2100_priv *priv) 3504 { 3505 int i; 3506 3507 if (!priv->msg_buffers) 3508 return; 3509 3510 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) { 3511 pci_free_consistent(priv->pci_dev, 3512 sizeof(struct ipw2100_cmd_header), 3513 priv->msg_buffers[i].info.c_struct.cmd, 3514 priv->msg_buffers[i].info.c_struct. 3515 cmd_phys); 3516 } 3517 3518 kfree(priv->msg_buffers); 3519 priv->msg_buffers = NULL; 3520 } 3521 3522 static ssize_t show_pci(struct device *d, struct device_attribute *attr, 3523 char *buf) 3524 { 3525 struct pci_dev *pci_dev = to_pci_dev(d); 3526 char *out = buf; 3527 int i, j; 3528 u32 val; 3529 3530 for (i = 0; i < 16; i++) { 3531 out += sprintf(out, "[%08X] ", i * 16); 3532 for (j = 0; j < 16; j += 4) { 3533 pci_read_config_dword(pci_dev, i * 16 + j, &val); 3534 out += sprintf(out, "%08X ", val); 3535 } 3536 out += sprintf(out, "\n"); 3537 } 3538 3539 return out - buf; 3540 } 3541 3542 static DEVICE_ATTR(pci, 0444, show_pci, NULL); 3543 3544 static ssize_t show_cfg(struct device *d, struct device_attribute *attr, 3545 char *buf) 3546 { 3547 struct ipw2100_priv *p = dev_get_drvdata(d); 3548 return sprintf(buf, "0x%08x\n", (int)p->config); 3549 } 3550 3551 static DEVICE_ATTR(cfg, 0444, show_cfg, NULL); 3552 3553 static ssize_t show_status(struct device *d, struct device_attribute *attr, 3554 char *buf) 3555 { 3556 struct ipw2100_priv *p = dev_get_drvdata(d); 3557 return sprintf(buf, "0x%08x\n", (int)p->status); 3558 } 3559 3560 static DEVICE_ATTR(status, 0444, show_status, NULL); 3561 3562 static ssize_t show_capability(struct device *d, struct device_attribute *attr, 3563 char *buf) 3564 { 3565 struct ipw2100_priv *p = dev_get_drvdata(d); 3566 return sprintf(buf, "0x%08x\n", (int)p->capability); 3567 } 3568 3569 static DEVICE_ATTR(capability, 0444, show_capability, NULL); 3570 3571 #define IPW2100_REG(x) { IPW_ ##x, #x } 3572 static const struct { 3573 u32 addr; 3574 const char *name; 3575 } hw_data[] = { 3576 IPW2100_REG(REG_GP_CNTRL), 3577 IPW2100_REG(REG_GPIO), 3578 IPW2100_REG(REG_INTA), 3579 IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),}; 3580 #define IPW2100_NIC(x, s) { x, #x, s } 3581 static const struct { 3582 u32 addr; 3583 const char *name; 3584 size_t size; 3585 } nic_data[] = { 3586 IPW2100_NIC(IPW2100_CONTROL_REG, 2), 3587 IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),}; 3588 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d } 3589 static const struct { 3590 u8 index; 3591 const char *name; 3592 const char *desc; 3593 } ord_data[] = { 3594 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"), 3595 IPW2100_ORD(STAT_TX_HOST_COMPLETE, 3596 "successful Host Tx's (MSDU)"), 3597 IPW2100_ORD(STAT_TX_DIR_DATA, 3598 "successful Directed Tx's (MSDU)"), 3599 IPW2100_ORD(STAT_TX_DIR_DATA1, 3600 "successful Directed Tx's (MSDU) @ 1MB"), 3601 IPW2100_ORD(STAT_TX_DIR_DATA2, 3602 "successful Directed Tx's (MSDU) @ 2MB"), 3603 IPW2100_ORD(STAT_TX_DIR_DATA5_5, 3604 "successful Directed Tx's (MSDU) @ 5_5MB"), 3605 IPW2100_ORD(STAT_TX_DIR_DATA11, 3606 "successful Directed Tx's (MSDU) @ 11MB"), 3607 IPW2100_ORD(STAT_TX_NODIR_DATA1, 3608 "successful Non_Directed Tx's (MSDU) @ 1MB"), 3609 IPW2100_ORD(STAT_TX_NODIR_DATA2, 3610 "successful Non_Directed Tx's (MSDU) @ 2MB"), 3611 IPW2100_ORD(STAT_TX_NODIR_DATA5_5, 3612 "successful Non_Directed Tx's (MSDU) @ 5.5MB"), 3613 IPW2100_ORD(STAT_TX_NODIR_DATA11, 3614 "successful Non_Directed Tx's (MSDU) @ 11MB"), 3615 IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"), 3616 IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"), 3617 IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"), 3618 IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"), 3619 IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"), 3620 IPW2100_ORD(STAT_TX_ASSN_RESP, 3621 "successful Association response Tx's"), 3622 IPW2100_ORD(STAT_TX_REASSN, 3623 "successful Reassociation Tx's"), 3624 IPW2100_ORD(STAT_TX_REASSN_RESP, 3625 "successful Reassociation response Tx's"), 3626 IPW2100_ORD(STAT_TX_PROBE, 3627 "probes successfully transmitted"), 3628 IPW2100_ORD(STAT_TX_PROBE_RESP, 3629 "probe responses successfully transmitted"), 3630 IPW2100_ORD(STAT_TX_BEACON, "tx beacon"), 3631 IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"), 3632 IPW2100_ORD(STAT_TX_DISASSN, 3633 "successful Disassociation TX"), 3634 IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"), 3635 IPW2100_ORD(STAT_TX_DEAUTH, 3636 "successful Deauthentication TX"), 3637 IPW2100_ORD(STAT_TX_TOTAL_BYTES, 3638 "Total successful Tx data bytes"), 3639 IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"), 3640 IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"), 3641 IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"), 3642 IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"), 3643 IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"), 3644 IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"), 3645 IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP, 3646 "times max tries in a hop failed"), 3647 IPW2100_ORD(STAT_TX_DISASSN_FAIL, 3648 "times disassociation failed"), 3649 IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"), 3650 IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"), 3651 IPW2100_ORD(STAT_RX_HOST, "packets passed to host"), 3652 IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"), 3653 IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"), 3654 IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"), 3655 IPW2100_ORD(STAT_RX_DIR_DATA5_5, 3656 "directed packets at 5.5MB"), 3657 IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"), 3658 IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"), 3659 IPW2100_ORD(STAT_RX_NODIR_DATA1, 3660 "nondirected packets at 1MB"), 3661 IPW2100_ORD(STAT_RX_NODIR_DATA2, 3662 "nondirected packets at 2MB"), 3663 IPW2100_ORD(STAT_RX_NODIR_DATA5_5, 3664 "nondirected packets at 5.5MB"), 3665 IPW2100_ORD(STAT_RX_NODIR_DATA11, 3666 "nondirected packets at 11MB"), 3667 IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"), 3668 IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS, 3669 "Rx CTS"), 3670 IPW2100_ORD(STAT_RX_ACK, "Rx ACK"), 3671 IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"), 3672 IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"), 3673 IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"), 3674 IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"), 3675 IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"), 3676 IPW2100_ORD(STAT_RX_REASSN_RESP, 3677 "Reassociation response Rx's"), 3678 IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"), 3679 IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"), 3680 IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"), 3681 IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"), 3682 IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"), 3683 IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"), 3684 IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"), 3685 IPW2100_ORD(STAT_RX_TOTAL_BYTES, 3686 "Total rx data bytes received"), 3687 IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"), 3688 IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"), 3689 IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"), 3690 IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"), 3691 IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"), 3692 IPW2100_ORD(STAT_RX_DUPLICATE1, 3693 "duplicate rx packets at 1MB"), 3694 IPW2100_ORD(STAT_RX_DUPLICATE2, 3695 "duplicate rx packets at 2MB"), 3696 IPW2100_ORD(STAT_RX_DUPLICATE5_5, 3697 "duplicate rx packets at 5.5MB"), 3698 IPW2100_ORD(STAT_RX_DUPLICATE11, 3699 "duplicate rx packets at 11MB"), 3700 IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"), 3701 IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent db"), 3702 IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent db"), 3703 IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent db"), 3704 IPW2100_ORD(STAT_RX_INVALID_PROTOCOL, 3705 "rx frames with invalid protocol"), 3706 IPW2100_ORD(SYS_BOOT_TIME, "Boot time"), 3707 IPW2100_ORD(STAT_RX_NO_BUFFER, 3708 "rx frames rejected due to no buffer"), 3709 IPW2100_ORD(STAT_RX_MISSING_FRAG, 3710 "rx frames dropped due to missing fragment"), 3711 IPW2100_ORD(STAT_RX_ORPHAN_FRAG, 3712 "rx frames dropped due to non-sequential fragment"), 3713 IPW2100_ORD(STAT_RX_ORPHAN_FRAME, 3714 "rx frames dropped due to unmatched 1st frame"), 3715 IPW2100_ORD(STAT_RX_FRAG_AGEOUT, 3716 "rx frames dropped due to uncompleted frame"), 3717 IPW2100_ORD(STAT_RX_ICV_ERRORS, 3718 "ICV errors during decryption"), 3719 IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"), 3720 IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"), 3721 IPW2100_ORD(STAT_PSP_POLL_TIMEOUT, 3722 "poll response timeouts"), 3723 IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT, 3724 "timeouts waiting for last {broad,multi}cast pkt"), 3725 IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"), 3726 IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"), 3727 IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"), 3728 IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"), 3729 IPW2100_ORD(STAT_PERCENT_MISSED_BCNS, 3730 "current calculation of % missed beacons"), 3731 IPW2100_ORD(STAT_PERCENT_RETRIES, 3732 "current calculation of % missed tx retries"), 3733 IPW2100_ORD(ASSOCIATED_AP_PTR, 3734 "0 if not associated, else pointer to AP table entry"), 3735 IPW2100_ORD(AVAILABLE_AP_CNT, 3736 "AP's described in the AP table"), 3737 IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"), 3738 IPW2100_ORD(STAT_AP_ASSNS, "associations"), 3739 IPW2100_ORD(STAT_ASSN_FAIL, "association failures"), 3740 IPW2100_ORD(STAT_ASSN_RESP_FAIL, 3741 "failures due to response fail"), 3742 IPW2100_ORD(STAT_FULL_SCANS, "full scans"), 3743 IPW2100_ORD(CARD_DISABLED, "Card Disabled"), 3744 IPW2100_ORD(STAT_ROAM_INHIBIT, 3745 "times roaming was inhibited due to activity"), 3746 IPW2100_ORD(RSSI_AT_ASSN, 3747 "RSSI of associated AP at time of association"), 3748 IPW2100_ORD(STAT_ASSN_CAUSE1, 3749 "reassociation: no probe response or TX on hop"), 3750 IPW2100_ORD(STAT_ASSN_CAUSE2, 3751 "reassociation: poor tx/rx quality"), 3752 IPW2100_ORD(STAT_ASSN_CAUSE3, 3753 "reassociation: tx/rx quality (excessive AP load"), 3754 IPW2100_ORD(STAT_ASSN_CAUSE4, 3755 "reassociation: AP RSSI level"), 3756 IPW2100_ORD(STAT_ASSN_CAUSE5, 3757 "reassociations due to load leveling"), 3758 IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"), 3759 IPW2100_ORD(STAT_AUTH_RESP_FAIL, 3760 "times authentication response failed"), 3761 IPW2100_ORD(STATION_TABLE_CNT, 3762 "entries in association table"), 3763 IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"), 3764 IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"), 3765 IPW2100_ORD(COUNTRY_CODE, 3766 "IEEE country code as recv'd from beacon"), 3767 IPW2100_ORD(COUNTRY_CHANNELS, 3768 "channels supported by country"), 3769 IPW2100_ORD(RESET_CNT, "adapter resets (warm)"), 3770 IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"), 3771 IPW2100_ORD(ANTENNA_DIVERSITY, 3772 "TRUE if antenna diversity is disabled"), 3773 IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"), 3774 IPW2100_ORD(OUR_FREQ, 3775 "current radio freq lower digits - channel ID"), 3776 IPW2100_ORD(RTC_TIME, "current RTC time"), 3777 IPW2100_ORD(PORT_TYPE, "operating mode"), 3778 IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"), 3779 IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"), 3780 IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"), 3781 IPW2100_ORD(BASIC_RATES, "basic tx rates"), 3782 IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"), 3783 IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"), 3784 IPW2100_ORD(CAPABILITIES, 3785 "Management frame capability field"), 3786 IPW2100_ORD(AUTH_TYPE, "Type of authentication"), 3787 IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"), 3788 IPW2100_ORD(RTS_THRESHOLD, 3789 "Min packet length for RTS handshaking"), 3790 IPW2100_ORD(INT_MODE, "International mode"), 3791 IPW2100_ORD(FRAGMENTATION_THRESHOLD, 3792 "protocol frag threshold"), 3793 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS, 3794 "EEPROM offset in SRAM"), 3795 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE, 3796 "EEPROM size in SRAM"), 3797 IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"), 3798 IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS, 3799 "EEPROM IBSS 11b channel set"), 3800 IPW2100_ORD(MAC_VERSION, "MAC Version"), 3801 IPW2100_ORD(MAC_REVISION, "MAC Revision"), 3802 IPW2100_ORD(RADIO_VERSION, "Radio Version"), 3803 IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"), 3804 IPW2100_ORD(UCODE_VERSION, "Ucode Version"),}; 3805 3806 static ssize_t show_registers(struct device *d, struct device_attribute *attr, 3807 char *buf) 3808 { 3809 int i; 3810 struct ipw2100_priv *priv = dev_get_drvdata(d); 3811 struct net_device *dev = priv->net_dev; 3812 char *out = buf; 3813 u32 val = 0; 3814 3815 out += sprintf(out, "%30s [Address ] : Hex\n", "Register"); 3816 3817 for (i = 0; i < ARRAY_SIZE(hw_data); i++) { 3818 read_register(dev, hw_data[i].addr, &val); 3819 out += sprintf(out, "%30s [%08X] : %08X\n", 3820 hw_data[i].name, hw_data[i].addr, val); 3821 } 3822 3823 return out - buf; 3824 } 3825 3826 static DEVICE_ATTR(registers, 0444, show_registers, NULL); 3827 3828 static ssize_t show_hardware(struct device *d, struct device_attribute *attr, 3829 char *buf) 3830 { 3831 struct ipw2100_priv *priv = dev_get_drvdata(d); 3832 struct net_device *dev = priv->net_dev; 3833 char *out = buf; 3834 int i; 3835 3836 out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry"); 3837 3838 for (i = 0; i < ARRAY_SIZE(nic_data); i++) { 3839 u8 tmp8; 3840 u16 tmp16; 3841 u32 tmp32; 3842 3843 switch (nic_data[i].size) { 3844 case 1: 3845 read_nic_byte(dev, nic_data[i].addr, &tmp8); 3846 out += sprintf(out, "%30s [%08X] : %02X\n", 3847 nic_data[i].name, nic_data[i].addr, 3848 tmp8); 3849 break; 3850 case 2: 3851 read_nic_word(dev, nic_data[i].addr, &tmp16); 3852 out += sprintf(out, "%30s [%08X] : %04X\n", 3853 nic_data[i].name, nic_data[i].addr, 3854 tmp16); 3855 break; 3856 case 4: 3857 read_nic_dword(dev, nic_data[i].addr, &tmp32); 3858 out += sprintf(out, "%30s [%08X] : %08X\n", 3859 nic_data[i].name, nic_data[i].addr, 3860 tmp32); 3861 break; 3862 } 3863 } 3864 return out - buf; 3865 } 3866 3867 static DEVICE_ATTR(hardware, 0444, show_hardware, NULL); 3868 3869 static ssize_t show_memory(struct device *d, struct device_attribute *attr, 3870 char *buf) 3871 { 3872 struct ipw2100_priv *priv = dev_get_drvdata(d); 3873 struct net_device *dev = priv->net_dev; 3874 static unsigned long loop = 0; 3875 int len = 0; 3876 u32 buffer[4]; 3877 int i; 3878 char line[81]; 3879 3880 if (loop >= 0x30000) 3881 loop = 0; 3882 3883 /* sysfs provides us PAGE_SIZE buffer */ 3884 while (len < PAGE_SIZE - 128 && loop < 0x30000) { 3885 3886 if (priv->snapshot[0]) 3887 for (i = 0; i < 4; i++) 3888 buffer[i] = 3889 *(u32 *) SNAPSHOT_ADDR(loop + i * 4); 3890 else 3891 for (i = 0; i < 4; i++) 3892 read_nic_dword(dev, loop + i * 4, &buffer[i]); 3893 3894 if (priv->dump_raw) 3895 len += sprintf(buf + len, 3896 "%c%c%c%c" 3897 "%c%c%c%c" 3898 "%c%c%c%c" 3899 "%c%c%c%c", 3900 ((u8 *) buffer)[0x0], 3901 ((u8 *) buffer)[0x1], 3902 ((u8 *) buffer)[0x2], 3903 ((u8 *) buffer)[0x3], 3904 ((u8 *) buffer)[0x4], 3905 ((u8 *) buffer)[0x5], 3906 ((u8 *) buffer)[0x6], 3907 ((u8 *) buffer)[0x7], 3908 ((u8 *) buffer)[0x8], 3909 ((u8 *) buffer)[0x9], 3910 ((u8 *) buffer)[0xa], 3911 ((u8 *) buffer)[0xb], 3912 ((u8 *) buffer)[0xc], 3913 ((u8 *) buffer)[0xd], 3914 ((u8 *) buffer)[0xe], 3915 ((u8 *) buffer)[0xf]); 3916 else 3917 len += sprintf(buf + len, "%s\n", 3918 snprint_line(line, sizeof(line), 3919 (u8 *) buffer, 16, loop)); 3920 loop += 16; 3921 } 3922 3923 return len; 3924 } 3925 3926 static ssize_t store_memory(struct device *d, struct device_attribute *attr, 3927 const char *buf, size_t count) 3928 { 3929 struct ipw2100_priv *priv = dev_get_drvdata(d); 3930 struct net_device *dev = priv->net_dev; 3931 const char *p = buf; 3932 3933 (void)dev; /* kill unused-var warning for debug-only code */ 3934 3935 if (count < 1) 3936 return count; 3937 3938 if (p[0] == '1' || 3939 (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) { 3940 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n", 3941 dev->name); 3942 priv->dump_raw = 1; 3943 3944 } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' && 3945 tolower(p[1]) == 'f')) { 3946 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n", 3947 dev->name); 3948 priv->dump_raw = 0; 3949 3950 } else if (tolower(p[0]) == 'r') { 3951 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name); 3952 ipw2100_snapshot_free(priv); 3953 3954 } else 3955 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, " 3956 "reset = clear memory snapshot\n", dev->name); 3957 3958 return count; 3959 } 3960 3961 static DEVICE_ATTR(memory, 0644, show_memory, store_memory); 3962 3963 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr, 3964 char *buf) 3965 { 3966 struct ipw2100_priv *priv = dev_get_drvdata(d); 3967 u32 val = 0; 3968 int len = 0; 3969 u32 val_len; 3970 static int loop = 0; 3971 3972 if (priv->status & STATUS_RF_KILL_MASK) 3973 return 0; 3974 3975 if (loop >= ARRAY_SIZE(ord_data)) 3976 loop = 0; 3977 3978 /* sysfs provides us PAGE_SIZE buffer */ 3979 while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) { 3980 val_len = sizeof(u32); 3981 3982 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val, 3983 &val_len)) 3984 len += sprintf(buf + len, "[0x%02X] = ERROR %s\n", 3985 ord_data[loop].index, 3986 ord_data[loop].desc); 3987 else 3988 len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n", 3989 ord_data[loop].index, val, 3990 ord_data[loop].desc); 3991 loop++; 3992 } 3993 3994 return len; 3995 } 3996 3997 static DEVICE_ATTR(ordinals, 0444, show_ordinals, NULL); 3998 3999 static ssize_t show_stats(struct device *d, struct device_attribute *attr, 4000 char *buf) 4001 { 4002 struct ipw2100_priv *priv = dev_get_drvdata(d); 4003 char *out = buf; 4004 4005 out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n", 4006 priv->interrupts, priv->tx_interrupts, 4007 priv->rx_interrupts, priv->inta_other); 4008 out += sprintf(out, "firmware resets: %d\n", priv->resets); 4009 out += sprintf(out, "firmware hangs: %d\n", priv->hangs); 4010 #ifdef CONFIG_IPW2100_DEBUG 4011 out += sprintf(out, "packet mismatch image: %s\n", 4012 priv->snapshot[0] ? "YES" : "NO"); 4013 #endif 4014 4015 return out - buf; 4016 } 4017 4018 static DEVICE_ATTR(stats, 0444, show_stats, NULL); 4019 4020 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode) 4021 { 4022 int err; 4023 4024 if (mode == priv->ieee->iw_mode) 4025 return 0; 4026 4027 err = ipw2100_disable_adapter(priv); 4028 if (err) { 4029 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n", 4030 priv->net_dev->name, err); 4031 return err; 4032 } 4033 4034 switch (mode) { 4035 case IW_MODE_INFRA: 4036 priv->net_dev->type = ARPHRD_ETHER; 4037 break; 4038 case IW_MODE_ADHOC: 4039 priv->net_dev->type = ARPHRD_ETHER; 4040 break; 4041 #ifdef CONFIG_IPW2100_MONITOR 4042 case IW_MODE_MONITOR: 4043 priv->last_mode = priv->ieee->iw_mode; 4044 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP; 4045 break; 4046 #endif /* CONFIG_IPW2100_MONITOR */ 4047 } 4048 4049 priv->ieee->iw_mode = mode; 4050 4051 #ifdef CONFIG_PM 4052 /* Indicate ipw2100_download_firmware download firmware 4053 * from disk instead of memory. */ 4054 ipw2100_firmware.version = 0; 4055 #endif 4056 4057 printk(KERN_INFO "%s: Resetting on mode change.\n", priv->net_dev->name); 4058 priv->reset_backoff = 0; 4059 schedule_reset(priv); 4060 4061 return 0; 4062 } 4063 4064 static ssize_t show_internals(struct device *d, struct device_attribute *attr, 4065 char *buf) 4066 { 4067 struct ipw2100_priv *priv = dev_get_drvdata(d); 4068 int len = 0; 4069 4070 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x) 4071 4072 if (priv->status & STATUS_ASSOCIATED) 4073 len += sprintf(buf + len, "connected: %llu\n", 4074 ktime_get_boottime_seconds() - priv->connect_start); 4075 else 4076 len += sprintf(buf + len, "not connected\n"); 4077 4078 DUMP_VAR(ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx], "p"); 4079 DUMP_VAR(status, "08lx"); 4080 DUMP_VAR(config, "08lx"); 4081 DUMP_VAR(capability, "08lx"); 4082 4083 len += 4084 sprintf(buf + len, "last_rtc: %lu\n", 4085 (unsigned long)priv->last_rtc); 4086 4087 DUMP_VAR(fatal_error, "d"); 4088 DUMP_VAR(stop_hang_check, "d"); 4089 DUMP_VAR(stop_rf_kill, "d"); 4090 DUMP_VAR(messages_sent, "d"); 4091 4092 DUMP_VAR(tx_pend_stat.value, "d"); 4093 DUMP_VAR(tx_pend_stat.hi, "d"); 4094 4095 DUMP_VAR(tx_free_stat.value, "d"); 4096 DUMP_VAR(tx_free_stat.lo, "d"); 4097 4098 DUMP_VAR(msg_free_stat.value, "d"); 4099 DUMP_VAR(msg_free_stat.lo, "d"); 4100 4101 DUMP_VAR(msg_pend_stat.value, "d"); 4102 DUMP_VAR(msg_pend_stat.hi, "d"); 4103 4104 DUMP_VAR(fw_pend_stat.value, "d"); 4105 DUMP_VAR(fw_pend_stat.hi, "d"); 4106 4107 DUMP_VAR(txq_stat.value, "d"); 4108 DUMP_VAR(txq_stat.lo, "d"); 4109 4110 DUMP_VAR(ieee->scans, "d"); 4111 DUMP_VAR(reset_backoff, "lld"); 4112 4113 return len; 4114 } 4115 4116 static DEVICE_ATTR(internals, 0444, show_internals, NULL); 4117 4118 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr, 4119 char *buf) 4120 { 4121 struct ipw2100_priv *priv = dev_get_drvdata(d); 4122 char essid[IW_ESSID_MAX_SIZE + 1]; 4123 u8 bssid[ETH_ALEN]; 4124 u32 chan = 0; 4125 char *out = buf; 4126 unsigned int length; 4127 int ret; 4128 4129 if (priv->status & STATUS_RF_KILL_MASK) 4130 return 0; 4131 4132 memset(essid, 0, sizeof(essid)); 4133 memset(bssid, 0, sizeof(bssid)); 4134 4135 length = IW_ESSID_MAX_SIZE; 4136 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length); 4137 if (ret) 4138 IPW_DEBUG_INFO("failed querying ordinals at line %d\n", 4139 __LINE__); 4140 4141 length = sizeof(bssid); 4142 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, 4143 bssid, &length); 4144 if (ret) 4145 IPW_DEBUG_INFO("failed querying ordinals at line %d\n", 4146 __LINE__); 4147 4148 length = sizeof(u32); 4149 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length); 4150 if (ret) 4151 IPW_DEBUG_INFO("failed querying ordinals at line %d\n", 4152 __LINE__); 4153 4154 out += sprintf(out, "ESSID: %s\n", essid); 4155 out += sprintf(out, "BSSID: %pM\n", bssid); 4156 out += sprintf(out, "Channel: %d\n", chan); 4157 4158 return out - buf; 4159 } 4160 4161 static DEVICE_ATTR(bssinfo, 0444, show_bssinfo, NULL); 4162 4163 #ifdef CONFIG_IPW2100_DEBUG 4164 static ssize_t debug_level_show(struct device_driver *d, char *buf) 4165 { 4166 return sprintf(buf, "0x%08X\n", ipw2100_debug_level); 4167 } 4168 4169 static ssize_t debug_level_store(struct device_driver *d, 4170 const char *buf, size_t count) 4171 { 4172 u32 val; 4173 int ret; 4174 4175 ret = kstrtou32(buf, 0, &val); 4176 if (ret) 4177 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf); 4178 else 4179 ipw2100_debug_level = val; 4180 4181 return strnlen(buf, count); 4182 } 4183 static DRIVER_ATTR_RW(debug_level); 4184 #endif /* CONFIG_IPW2100_DEBUG */ 4185 4186 static ssize_t show_fatal_error(struct device *d, 4187 struct device_attribute *attr, char *buf) 4188 { 4189 struct ipw2100_priv *priv = dev_get_drvdata(d); 4190 char *out = buf; 4191 int i; 4192 4193 if (priv->fatal_error) 4194 out += sprintf(out, "0x%08X\n", priv->fatal_error); 4195 else 4196 out += sprintf(out, "0\n"); 4197 4198 for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) { 4199 if (!priv->fatal_errors[(priv->fatal_index - i) % 4200 IPW2100_ERROR_QUEUE]) 4201 continue; 4202 4203 out += sprintf(out, "%d. 0x%08X\n", i, 4204 priv->fatal_errors[(priv->fatal_index - i) % 4205 IPW2100_ERROR_QUEUE]); 4206 } 4207 4208 return out - buf; 4209 } 4210 4211 static ssize_t store_fatal_error(struct device *d, 4212 struct device_attribute *attr, const char *buf, 4213 size_t count) 4214 { 4215 struct ipw2100_priv *priv = dev_get_drvdata(d); 4216 schedule_reset(priv); 4217 return count; 4218 } 4219 4220 static DEVICE_ATTR(fatal_error, 0644, show_fatal_error, store_fatal_error); 4221 4222 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr, 4223 char *buf) 4224 { 4225 struct ipw2100_priv *priv = dev_get_drvdata(d); 4226 return sprintf(buf, "%d\n", priv->ieee->scan_age); 4227 } 4228 4229 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr, 4230 const char *buf, size_t count) 4231 { 4232 struct ipw2100_priv *priv = dev_get_drvdata(d); 4233 struct net_device *dev = priv->net_dev; 4234 unsigned long val; 4235 int ret; 4236 4237 (void)dev; /* kill unused-var warning for debug-only code */ 4238 4239 IPW_DEBUG_INFO("enter\n"); 4240 4241 ret = kstrtoul(buf, 0, &val); 4242 if (ret) { 4243 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name); 4244 } else { 4245 priv->ieee->scan_age = val; 4246 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age); 4247 } 4248 4249 IPW_DEBUG_INFO("exit\n"); 4250 return strnlen(buf, count); 4251 } 4252 4253 static DEVICE_ATTR(scan_age, 0644, show_scan_age, store_scan_age); 4254 4255 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr, 4256 char *buf) 4257 { 4258 /* 0 - RF kill not enabled 4259 1 - SW based RF kill active (sysfs) 4260 2 - HW based RF kill active 4261 3 - Both HW and SW baed RF kill active */ 4262 struct ipw2100_priv *priv = dev_get_drvdata(d); 4263 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) | 4264 (rf_kill_active(priv) ? 0x2 : 0x0); 4265 return sprintf(buf, "%i\n", val); 4266 } 4267 4268 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio) 4269 { 4270 if ((disable_radio ? 1 : 0) == 4271 (priv->status & STATUS_RF_KILL_SW ? 1 : 0)) 4272 return 0; 4273 4274 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n", 4275 disable_radio ? "OFF" : "ON"); 4276 4277 mutex_lock(&priv->action_mutex); 4278 4279 if (disable_radio) { 4280 priv->status |= STATUS_RF_KILL_SW; 4281 ipw2100_down(priv); 4282 } else { 4283 priv->status &= ~STATUS_RF_KILL_SW; 4284 if (rf_kill_active(priv)) { 4285 IPW_DEBUG_RF_KILL("Can not turn radio back on - " 4286 "disabled by HW switch\n"); 4287 /* Make sure the RF_KILL check timer is running */ 4288 priv->stop_rf_kill = 0; 4289 mod_delayed_work(system_wq, &priv->rf_kill, 4290 round_jiffies_relative(HZ)); 4291 } else 4292 schedule_reset(priv); 4293 } 4294 4295 mutex_unlock(&priv->action_mutex); 4296 return 1; 4297 } 4298 4299 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr, 4300 const char *buf, size_t count) 4301 { 4302 struct ipw2100_priv *priv = dev_get_drvdata(d); 4303 ipw_radio_kill_sw(priv, buf[0] == '1'); 4304 return count; 4305 } 4306 4307 static DEVICE_ATTR(rf_kill, 0644, show_rf_kill, store_rf_kill); 4308 4309 static struct attribute *ipw2100_sysfs_entries[] = { 4310 &dev_attr_hardware.attr, 4311 &dev_attr_registers.attr, 4312 &dev_attr_ordinals.attr, 4313 &dev_attr_pci.attr, 4314 &dev_attr_stats.attr, 4315 &dev_attr_internals.attr, 4316 &dev_attr_bssinfo.attr, 4317 &dev_attr_memory.attr, 4318 &dev_attr_scan_age.attr, 4319 &dev_attr_fatal_error.attr, 4320 &dev_attr_rf_kill.attr, 4321 &dev_attr_cfg.attr, 4322 &dev_attr_status.attr, 4323 &dev_attr_capability.attr, 4324 NULL, 4325 }; 4326 4327 static const struct attribute_group ipw2100_attribute_group = { 4328 .attrs = ipw2100_sysfs_entries, 4329 }; 4330 4331 static int status_queue_allocate(struct ipw2100_priv *priv, int entries) 4332 { 4333 struct ipw2100_status_queue *q = &priv->status_queue; 4334 4335 IPW_DEBUG_INFO("enter\n"); 4336 4337 q->size = entries * sizeof(struct ipw2100_status); 4338 q->drv = pci_zalloc_consistent(priv->pci_dev, q->size, &q->nic); 4339 if (!q->drv) { 4340 IPW_DEBUG_WARNING("Can not allocate status queue.\n"); 4341 return -ENOMEM; 4342 } 4343 4344 IPW_DEBUG_INFO("exit\n"); 4345 4346 return 0; 4347 } 4348 4349 static void status_queue_free(struct ipw2100_priv *priv) 4350 { 4351 IPW_DEBUG_INFO("enter\n"); 4352 4353 if (priv->status_queue.drv) { 4354 pci_free_consistent(priv->pci_dev, priv->status_queue.size, 4355 priv->status_queue.drv, 4356 priv->status_queue.nic); 4357 priv->status_queue.drv = NULL; 4358 } 4359 4360 IPW_DEBUG_INFO("exit\n"); 4361 } 4362 4363 static int bd_queue_allocate(struct ipw2100_priv *priv, 4364 struct ipw2100_bd_queue *q, int entries) 4365 { 4366 IPW_DEBUG_INFO("enter\n"); 4367 4368 memset(q, 0, sizeof(struct ipw2100_bd_queue)); 4369 4370 q->entries = entries; 4371 q->size = entries * sizeof(struct ipw2100_bd); 4372 q->drv = pci_zalloc_consistent(priv->pci_dev, q->size, &q->nic); 4373 if (!q->drv) { 4374 IPW_DEBUG_INFO 4375 ("can't allocate shared memory for buffer descriptors\n"); 4376 return -ENOMEM; 4377 } 4378 4379 IPW_DEBUG_INFO("exit\n"); 4380 4381 return 0; 4382 } 4383 4384 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q) 4385 { 4386 IPW_DEBUG_INFO("enter\n"); 4387 4388 if (!q) 4389 return; 4390 4391 if (q->drv) { 4392 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic); 4393 q->drv = NULL; 4394 } 4395 4396 IPW_DEBUG_INFO("exit\n"); 4397 } 4398 4399 static void bd_queue_initialize(struct ipw2100_priv *priv, 4400 struct ipw2100_bd_queue *q, u32 base, u32 size, 4401 u32 r, u32 w) 4402 { 4403 IPW_DEBUG_INFO("enter\n"); 4404 4405 IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv, 4406 (u32) q->nic); 4407 4408 write_register(priv->net_dev, base, q->nic); 4409 write_register(priv->net_dev, size, q->entries); 4410 write_register(priv->net_dev, r, q->oldest); 4411 write_register(priv->net_dev, w, q->next); 4412 4413 IPW_DEBUG_INFO("exit\n"); 4414 } 4415 4416 static void ipw2100_kill_works(struct ipw2100_priv *priv) 4417 { 4418 priv->stop_rf_kill = 1; 4419 priv->stop_hang_check = 1; 4420 cancel_delayed_work_sync(&priv->reset_work); 4421 cancel_delayed_work_sync(&priv->security_work); 4422 cancel_delayed_work_sync(&priv->wx_event_work); 4423 cancel_delayed_work_sync(&priv->hang_check); 4424 cancel_delayed_work_sync(&priv->rf_kill); 4425 cancel_delayed_work_sync(&priv->scan_event); 4426 } 4427 4428 static int ipw2100_tx_allocate(struct ipw2100_priv *priv) 4429 { 4430 int i, j, err = -EINVAL; 4431 void *v; 4432 dma_addr_t p; 4433 4434 IPW_DEBUG_INFO("enter\n"); 4435 4436 err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH); 4437 if (err) { 4438 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n", 4439 priv->net_dev->name); 4440 return err; 4441 } 4442 4443 priv->tx_buffers = kmalloc_array(TX_PENDED_QUEUE_LENGTH, 4444 sizeof(struct ipw2100_tx_packet), 4445 GFP_ATOMIC); 4446 if (!priv->tx_buffers) { 4447 bd_queue_free(priv, &priv->tx_queue); 4448 return -ENOMEM; 4449 } 4450 4451 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) { 4452 v = pci_alloc_consistent(priv->pci_dev, 4453 sizeof(struct ipw2100_data_header), 4454 &p); 4455 if (!v) { 4456 printk(KERN_ERR DRV_NAME 4457 ": %s: PCI alloc failed for tx " "buffers.\n", 4458 priv->net_dev->name); 4459 err = -ENOMEM; 4460 break; 4461 } 4462 4463 priv->tx_buffers[i].type = DATA; 4464 priv->tx_buffers[i].info.d_struct.data = 4465 (struct ipw2100_data_header *)v; 4466 priv->tx_buffers[i].info.d_struct.data_phys = p; 4467 priv->tx_buffers[i].info.d_struct.txb = NULL; 4468 } 4469 4470 if (i == TX_PENDED_QUEUE_LENGTH) 4471 return 0; 4472 4473 for (j = 0; j < i; j++) { 4474 pci_free_consistent(priv->pci_dev, 4475 sizeof(struct ipw2100_data_header), 4476 priv->tx_buffers[j].info.d_struct.data, 4477 priv->tx_buffers[j].info.d_struct. 4478 data_phys); 4479 } 4480 4481 kfree(priv->tx_buffers); 4482 priv->tx_buffers = NULL; 4483 4484 return err; 4485 } 4486 4487 static void ipw2100_tx_initialize(struct ipw2100_priv *priv) 4488 { 4489 int i; 4490 4491 IPW_DEBUG_INFO("enter\n"); 4492 4493 /* 4494 * reinitialize packet info lists 4495 */ 4496 INIT_LIST_HEAD(&priv->fw_pend_list); 4497 INIT_STAT(&priv->fw_pend_stat); 4498 4499 /* 4500 * reinitialize lists 4501 */ 4502 INIT_LIST_HEAD(&priv->tx_pend_list); 4503 INIT_LIST_HEAD(&priv->tx_free_list); 4504 INIT_STAT(&priv->tx_pend_stat); 4505 INIT_STAT(&priv->tx_free_stat); 4506 4507 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) { 4508 /* We simply drop any SKBs that have been queued for 4509 * transmit */ 4510 if (priv->tx_buffers[i].info.d_struct.txb) { 4511 libipw_txb_free(priv->tx_buffers[i].info.d_struct. 4512 txb); 4513 priv->tx_buffers[i].info.d_struct.txb = NULL; 4514 } 4515 4516 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list); 4517 } 4518 4519 SET_STAT(&priv->tx_free_stat, i); 4520 4521 priv->tx_queue.oldest = 0; 4522 priv->tx_queue.available = priv->tx_queue.entries; 4523 priv->tx_queue.next = 0; 4524 INIT_STAT(&priv->txq_stat); 4525 SET_STAT(&priv->txq_stat, priv->tx_queue.available); 4526 4527 bd_queue_initialize(priv, &priv->tx_queue, 4528 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE, 4529 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE, 4530 IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX, 4531 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX); 4532 4533 IPW_DEBUG_INFO("exit\n"); 4534 4535 } 4536 4537 static void ipw2100_tx_free(struct ipw2100_priv *priv) 4538 { 4539 int i; 4540 4541 IPW_DEBUG_INFO("enter\n"); 4542 4543 bd_queue_free(priv, &priv->tx_queue); 4544 4545 if (!priv->tx_buffers) 4546 return; 4547 4548 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) { 4549 if (priv->tx_buffers[i].info.d_struct.txb) { 4550 libipw_txb_free(priv->tx_buffers[i].info.d_struct. 4551 txb); 4552 priv->tx_buffers[i].info.d_struct.txb = NULL; 4553 } 4554 if (priv->tx_buffers[i].info.d_struct.data) 4555 pci_free_consistent(priv->pci_dev, 4556 sizeof(struct ipw2100_data_header), 4557 priv->tx_buffers[i].info.d_struct. 4558 data, 4559 priv->tx_buffers[i].info.d_struct. 4560 data_phys); 4561 } 4562 4563 kfree(priv->tx_buffers); 4564 priv->tx_buffers = NULL; 4565 4566 IPW_DEBUG_INFO("exit\n"); 4567 } 4568 4569 static int ipw2100_rx_allocate(struct ipw2100_priv *priv) 4570 { 4571 int i, j, err = -EINVAL; 4572 4573 IPW_DEBUG_INFO("enter\n"); 4574 4575 err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH); 4576 if (err) { 4577 IPW_DEBUG_INFO("failed bd_queue_allocate\n"); 4578 return err; 4579 } 4580 4581 err = status_queue_allocate(priv, RX_QUEUE_LENGTH); 4582 if (err) { 4583 IPW_DEBUG_INFO("failed status_queue_allocate\n"); 4584 bd_queue_free(priv, &priv->rx_queue); 4585 return err; 4586 } 4587 4588 /* 4589 * allocate packets 4590 */ 4591 priv->rx_buffers = kmalloc_array(RX_QUEUE_LENGTH, 4592 sizeof(struct ipw2100_rx_packet), 4593 GFP_KERNEL); 4594 if (!priv->rx_buffers) { 4595 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n"); 4596 4597 bd_queue_free(priv, &priv->rx_queue); 4598 4599 status_queue_free(priv); 4600 4601 return -ENOMEM; 4602 } 4603 4604 for (i = 0; i < RX_QUEUE_LENGTH; i++) { 4605 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i]; 4606 4607 err = ipw2100_alloc_skb(priv, packet); 4608 if (unlikely(err)) { 4609 err = -ENOMEM; 4610 break; 4611 } 4612 4613 /* The BD holds the cache aligned address */ 4614 priv->rx_queue.drv[i].host_addr = packet->dma_addr; 4615 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH; 4616 priv->status_queue.drv[i].status_fields = 0; 4617 } 4618 4619 if (i == RX_QUEUE_LENGTH) 4620 return 0; 4621 4622 for (j = 0; j < i; j++) { 4623 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr, 4624 sizeof(struct ipw2100_rx_packet), 4625 PCI_DMA_FROMDEVICE); 4626 dev_kfree_skb(priv->rx_buffers[j].skb); 4627 } 4628 4629 kfree(priv->rx_buffers); 4630 priv->rx_buffers = NULL; 4631 4632 bd_queue_free(priv, &priv->rx_queue); 4633 4634 status_queue_free(priv); 4635 4636 return err; 4637 } 4638 4639 static void ipw2100_rx_initialize(struct ipw2100_priv *priv) 4640 { 4641 IPW_DEBUG_INFO("enter\n"); 4642 4643 priv->rx_queue.oldest = 0; 4644 priv->rx_queue.available = priv->rx_queue.entries - 1; 4645 priv->rx_queue.next = priv->rx_queue.entries - 1; 4646 4647 INIT_STAT(&priv->rxq_stat); 4648 SET_STAT(&priv->rxq_stat, priv->rx_queue.available); 4649 4650 bd_queue_initialize(priv, &priv->rx_queue, 4651 IPW_MEM_HOST_SHARED_RX_BD_BASE, 4652 IPW_MEM_HOST_SHARED_RX_BD_SIZE, 4653 IPW_MEM_HOST_SHARED_RX_READ_INDEX, 4654 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX); 4655 4656 /* set up the status queue */ 4657 write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE, 4658 priv->status_queue.nic); 4659 4660 IPW_DEBUG_INFO("exit\n"); 4661 } 4662 4663 static void ipw2100_rx_free(struct ipw2100_priv *priv) 4664 { 4665 int i; 4666 4667 IPW_DEBUG_INFO("enter\n"); 4668 4669 bd_queue_free(priv, &priv->rx_queue); 4670 status_queue_free(priv); 4671 4672 if (!priv->rx_buffers) 4673 return; 4674 4675 for (i = 0; i < RX_QUEUE_LENGTH; i++) { 4676 if (priv->rx_buffers[i].rxp) { 4677 pci_unmap_single(priv->pci_dev, 4678 priv->rx_buffers[i].dma_addr, 4679 sizeof(struct ipw2100_rx), 4680 PCI_DMA_FROMDEVICE); 4681 dev_kfree_skb(priv->rx_buffers[i].skb); 4682 } 4683 } 4684 4685 kfree(priv->rx_buffers); 4686 priv->rx_buffers = NULL; 4687 4688 IPW_DEBUG_INFO("exit\n"); 4689 } 4690 4691 static int ipw2100_read_mac_address(struct ipw2100_priv *priv) 4692 { 4693 u32 length = ETH_ALEN; 4694 u8 addr[ETH_ALEN]; 4695 4696 int err; 4697 4698 err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length); 4699 if (err) { 4700 IPW_DEBUG_INFO("MAC address read failed\n"); 4701 return -EIO; 4702 } 4703 4704 memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN); 4705 IPW_DEBUG_INFO("card MAC is %pM\n", priv->net_dev->dev_addr); 4706 4707 return 0; 4708 } 4709 4710 /******************************************************************** 4711 * 4712 * Firmware Commands 4713 * 4714 ********************************************************************/ 4715 4716 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode) 4717 { 4718 struct host_command cmd = { 4719 .host_command = ADAPTER_ADDRESS, 4720 .host_command_sequence = 0, 4721 .host_command_length = ETH_ALEN 4722 }; 4723 int err; 4724 4725 IPW_DEBUG_HC("SET_MAC_ADDRESS\n"); 4726 4727 IPW_DEBUG_INFO("enter\n"); 4728 4729 if (priv->config & CFG_CUSTOM_MAC) { 4730 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN); 4731 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN); 4732 } else 4733 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr, 4734 ETH_ALEN); 4735 4736 err = ipw2100_hw_send_command(priv, &cmd); 4737 4738 IPW_DEBUG_INFO("exit\n"); 4739 return err; 4740 } 4741 4742 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type, 4743 int batch_mode) 4744 { 4745 struct host_command cmd = { 4746 .host_command = PORT_TYPE, 4747 .host_command_sequence = 0, 4748 .host_command_length = sizeof(u32) 4749 }; 4750 int err; 4751 4752 switch (port_type) { 4753 case IW_MODE_INFRA: 4754 cmd.host_command_parameters[0] = IPW_BSS; 4755 break; 4756 case IW_MODE_ADHOC: 4757 cmd.host_command_parameters[0] = IPW_IBSS; 4758 break; 4759 } 4760 4761 IPW_DEBUG_HC("PORT_TYPE: %s\n", 4762 port_type == IPW_IBSS ? "Ad-Hoc" : "Managed"); 4763 4764 if (!batch_mode) { 4765 err = ipw2100_disable_adapter(priv); 4766 if (err) { 4767 printk(KERN_ERR DRV_NAME 4768 ": %s: Could not disable adapter %d\n", 4769 priv->net_dev->name, err); 4770 return err; 4771 } 4772 } 4773 4774 /* send cmd to firmware */ 4775 err = ipw2100_hw_send_command(priv, &cmd); 4776 4777 if (!batch_mode) 4778 ipw2100_enable_adapter(priv); 4779 4780 return err; 4781 } 4782 4783 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel, 4784 int batch_mode) 4785 { 4786 struct host_command cmd = { 4787 .host_command = CHANNEL, 4788 .host_command_sequence = 0, 4789 .host_command_length = sizeof(u32) 4790 }; 4791 int err; 4792 4793 cmd.host_command_parameters[0] = channel; 4794 4795 IPW_DEBUG_HC("CHANNEL: %d\n", channel); 4796 4797 /* If BSS then we don't support channel selection */ 4798 if (priv->ieee->iw_mode == IW_MODE_INFRA) 4799 return 0; 4800 4801 if ((channel != 0) && 4802 ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL))) 4803 return -EINVAL; 4804 4805 if (!batch_mode) { 4806 err = ipw2100_disable_adapter(priv); 4807 if (err) 4808 return err; 4809 } 4810 4811 err = ipw2100_hw_send_command(priv, &cmd); 4812 if (err) { 4813 IPW_DEBUG_INFO("Failed to set channel to %d", channel); 4814 return err; 4815 } 4816 4817 if (channel) 4818 priv->config |= CFG_STATIC_CHANNEL; 4819 else 4820 priv->config &= ~CFG_STATIC_CHANNEL; 4821 4822 priv->channel = channel; 4823 4824 if (!batch_mode) { 4825 err = ipw2100_enable_adapter(priv); 4826 if (err) 4827 return err; 4828 } 4829 4830 return 0; 4831 } 4832 4833 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode) 4834 { 4835 struct host_command cmd = { 4836 .host_command = SYSTEM_CONFIG, 4837 .host_command_sequence = 0, 4838 .host_command_length = 12, 4839 }; 4840 u32 ibss_mask, len = sizeof(u32); 4841 int err; 4842 4843 /* Set system configuration */ 4844 4845 if (!batch_mode) { 4846 err = ipw2100_disable_adapter(priv); 4847 if (err) 4848 return err; 4849 } 4850 4851 if (priv->ieee->iw_mode == IW_MODE_ADHOC) 4852 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START; 4853 4854 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK | 4855 IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE; 4856 4857 if (!(priv->config & CFG_LONG_PREAMBLE)) 4858 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO; 4859 4860 err = ipw2100_get_ordinal(priv, 4861 IPW_ORD_EEPROM_IBSS_11B_CHANNELS, 4862 &ibss_mask, &len); 4863 if (err) 4864 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK; 4865 4866 cmd.host_command_parameters[1] = REG_CHANNEL_MASK; 4867 cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask; 4868 4869 /* 11b only */ 4870 /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */ 4871 4872 err = ipw2100_hw_send_command(priv, &cmd); 4873 if (err) 4874 return err; 4875 4876 /* If IPv6 is configured in the kernel then we don't want to filter out all 4877 * of the multicast packets as IPv6 needs some. */ 4878 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE) 4879 cmd.host_command = ADD_MULTICAST; 4880 cmd.host_command_sequence = 0; 4881 cmd.host_command_length = 0; 4882 4883 ipw2100_hw_send_command(priv, &cmd); 4884 #endif 4885 if (!batch_mode) { 4886 err = ipw2100_enable_adapter(priv); 4887 if (err) 4888 return err; 4889 } 4890 4891 return 0; 4892 } 4893 4894 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate, 4895 int batch_mode) 4896 { 4897 struct host_command cmd = { 4898 .host_command = BASIC_TX_RATES, 4899 .host_command_sequence = 0, 4900 .host_command_length = 4 4901 }; 4902 int err; 4903 4904 cmd.host_command_parameters[0] = rate & TX_RATE_MASK; 4905 4906 if (!batch_mode) { 4907 err = ipw2100_disable_adapter(priv); 4908 if (err) 4909 return err; 4910 } 4911 4912 /* Set BASIC TX Rate first */ 4913 ipw2100_hw_send_command(priv, &cmd); 4914 4915 /* Set TX Rate */ 4916 cmd.host_command = TX_RATES; 4917 ipw2100_hw_send_command(priv, &cmd); 4918 4919 /* Set MSDU TX Rate */ 4920 cmd.host_command = MSDU_TX_RATES; 4921 ipw2100_hw_send_command(priv, &cmd); 4922 4923 if (!batch_mode) { 4924 err = ipw2100_enable_adapter(priv); 4925 if (err) 4926 return err; 4927 } 4928 4929 priv->tx_rates = rate; 4930 4931 return 0; 4932 } 4933 4934 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level) 4935 { 4936 struct host_command cmd = { 4937 .host_command = POWER_MODE, 4938 .host_command_sequence = 0, 4939 .host_command_length = 4 4940 }; 4941 int err; 4942 4943 cmd.host_command_parameters[0] = power_level; 4944 4945 err = ipw2100_hw_send_command(priv, &cmd); 4946 if (err) 4947 return err; 4948 4949 if (power_level == IPW_POWER_MODE_CAM) 4950 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode); 4951 else 4952 priv->power_mode = IPW_POWER_ENABLED | power_level; 4953 4954 #ifdef IPW2100_TX_POWER 4955 if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) { 4956 /* Set beacon interval */ 4957 cmd.host_command = TX_POWER_INDEX; 4958 cmd.host_command_parameters[0] = (u32) priv->adhoc_power; 4959 4960 err = ipw2100_hw_send_command(priv, &cmd); 4961 if (err) 4962 return err; 4963 } 4964 #endif 4965 4966 return 0; 4967 } 4968 4969 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold) 4970 { 4971 struct host_command cmd = { 4972 .host_command = RTS_THRESHOLD, 4973 .host_command_sequence = 0, 4974 .host_command_length = 4 4975 }; 4976 int err; 4977 4978 if (threshold & RTS_DISABLED) 4979 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD; 4980 else 4981 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED; 4982 4983 err = ipw2100_hw_send_command(priv, &cmd); 4984 if (err) 4985 return err; 4986 4987 priv->rts_threshold = threshold; 4988 4989 return 0; 4990 } 4991 4992 #if 0 4993 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv, 4994 u32 threshold, int batch_mode) 4995 { 4996 struct host_command cmd = { 4997 .host_command = FRAG_THRESHOLD, 4998 .host_command_sequence = 0, 4999 .host_command_length = 4, 5000 .host_command_parameters[0] = 0, 5001 }; 5002 int err; 5003 5004 if (!batch_mode) { 5005 err = ipw2100_disable_adapter(priv); 5006 if (err) 5007 return err; 5008 } 5009 5010 if (threshold == 0) 5011 threshold = DEFAULT_FRAG_THRESHOLD; 5012 else { 5013 threshold = max(threshold, MIN_FRAG_THRESHOLD); 5014 threshold = min(threshold, MAX_FRAG_THRESHOLD); 5015 } 5016 5017 cmd.host_command_parameters[0] = threshold; 5018 5019 IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold); 5020 5021 err = ipw2100_hw_send_command(priv, &cmd); 5022 5023 if (!batch_mode) 5024 ipw2100_enable_adapter(priv); 5025 5026 if (!err) 5027 priv->frag_threshold = threshold; 5028 5029 return err; 5030 } 5031 #endif 5032 5033 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry) 5034 { 5035 struct host_command cmd = { 5036 .host_command = SHORT_RETRY_LIMIT, 5037 .host_command_sequence = 0, 5038 .host_command_length = 4 5039 }; 5040 int err; 5041 5042 cmd.host_command_parameters[0] = retry; 5043 5044 err = ipw2100_hw_send_command(priv, &cmd); 5045 if (err) 5046 return err; 5047 5048 priv->short_retry_limit = retry; 5049 5050 return 0; 5051 } 5052 5053 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry) 5054 { 5055 struct host_command cmd = { 5056 .host_command = LONG_RETRY_LIMIT, 5057 .host_command_sequence = 0, 5058 .host_command_length = 4 5059 }; 5060 int err; 5061 5062 cmd.host_command_parameters[0] = retry; 5063 5064 err = ipw2100_hw_send_command(priv, &cmd); 5065 if (err) 5066 return err; 5067 5068 priv->long_retry_limit = retry; 5069 5070 return 0; 5071 } 5072 5073 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid, 5074 int batch_mode) 5075 { 5076 struct host_command cmd = { 5077 .host_command = MANDATORY_BSSID, 5078 .host_command_sequence = 0, 5079 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN 5080 }; 5081 int err; 5082 5083 #ifdef CONFIG_IPW2100_DEBUG 5084 if (bssid != NULL) 5085 IPW_DEBUG_HC("MANDATORY_BSSID: %pM\n", bssid); 5086 else 5087 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n"); 5088 #endif 5089 /* if BSSID is empty then we disable mandatory bssid mode */ 5090 if (bssid != NULL) 5091 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN); 5092 5093 if (!batch_mode) { 5094 err = ipw2100_disable_adapter(priv); 5095 if (err) 5096 return err; 5097 } 5098 5099 err = ipw2100_hw_send_command(priv, &cmd); 5100 5101 if (!batch_mode) 5102 ipw2100_enable_adapter(priv); 5103 5104 return err; 5105 } 5106 5107 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv) 5108 { 5109 struct host_command cmd = { 5110 .host_command = DISASSOCIATION_BSSID, 5111 .host_command_sequence = 0, 5112 .host_command_length = ETH_ALEN 5113 }; 5114 int err; 5115 5116 IPW_DEBUG_HC("DISASSOCIATION_BSSID\n"); 5117 5118 /* The Firmware currently ignores the BSSID and just disassociates from 5119 * the currently associated AP -- but in the off chance that a future 5120 * firmware does use the BSSID provided here, we go ahead and try and 5121 * set it to the currently associated AP's BSSID */ 5122 memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN); 5123 5124 err = ipw2100_hw_send_command(priv, &cmd); 5125 5126 return err; 5127 } 5128 5129 static int ipw2100_set_wpa_ie(struct ipw2100_priv *, 5130 struct ipw2100_wpa_assoc_frame *, int) 5131 __attribute__ ((unused)); 5132 5133 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv, 5134 struct ipw2100_wpa_assoc_frame *wpa_frame, 5135 int batch_mode) 5136 { 5137 struct host_command cmd = { 5138 .host_command = SET_WPA_IE, 5139 .host_command_sequence = 0, 5140 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame), 5141 }; 5142 int err; 5143 5144 IPW_DEBUG_HC("SET_WPA_IE\n"); 5145 5146 if (!batch_mode) { 5147 err = ipw2100_disable_adapter(priv); 5148 if (err) 5149 return err; 5150 } 5151 5152 memcpy(cmd.host_command_parameters, wpa_frame, 5153 sizeof(struct ipw2100_wpa_assoc_frame)); 5154 5155 err = ipw2100_hw_send_command(priv, &cmd); 5156 5157 if (!batch_mode) { 5158 if (ipw2100_enable_adapter(priv)) 5159 err = -EIO; 5160 } 5161 5162 return err; 5163 } 5164 5165 struct security_info_params { 5166 u32 allowed_ciphers; 5167 u16 version; 5168 u8 auth_mode; 5169 u8 replay_counters_number; 5170 u8 unicast_using_group; 5171 } __packed; 5172 5173 static int ipw2100_set_security_information(struct ipw2100_priv *priv, 5174 int auth_mode, 5175 int security_level, 5176 int unicast_using_group, 5177 int batch_mode) 5178 { 5179 struct host_command cmd = { 5180 .host_command = SET_SECURITY_INFORMATION, 5181 .host_command_sequence = 0, 5182 .host_command_length = sizeof(struct security_info_params) 5183 }; 5184 struct security_info_params *security = 5185 (struct security_info_params *)&cmd.host_command_parameters; 5186 int err; 5187 memset(security, 0, sizeof(*security)); 5188 5189 /* If shared key AP authentication is turned on, then we need to 5190 * configure the firmware to try and use it. 5191 * 5192 * Actual data encryption/decryption is handled by the host. */ 5193 security->auth_mode = auth_mode; 5194 security->unicast_using_group = unicast_using_group; 5195 5196 switch (security_level) { 5197 default: 5198 case SEC_LEVEL_0: 5199 security->allowed_ciphers = IPW_NONE_CIPHER; 5200 break; 5201 case SEC_LEVEL_1: 5202 security->allowed_ciphers = IPW_WEP40_CIPHER | 5203 IPW_WEP104_CIPHER; 5204 break; 5205 case SEC_LEVEL_2: 5206 security->allowed_ciphers = IPW_WEP40_CIPHER | 5207 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER; 5208 break; 5209 case SEC_LEVEL_2_CKIP: 5210 security->allowed_ciphers = IPW_WEP40_CIPHER | 5211 IPW_WEP104_CIPHER | IPW_CKIP_CIPHER; 5212 break; 5213 case SEC_LEVEL_3: 5214 security->allowed_ciphers = IPW_WEP40_CIPHER | 5215 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER; 5216 break; 5217 } 5218 5219 IPW_DEBUG_HC 5220 ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n", 5221 security->auth_mode, security->allowed_ciphers, security_level); 5222 5223 security->replay_counters_number = 0; 5224 5225 if (!batch_mode) { 5226 err = ipw2100_disable_adapter(priv); 5227 if (err) 5228 return err; 5229 } 5230 5231 err = ipw2100_hw_send_command(priv, &cmd); 5232 5233 if (!batch_mode) 5234 ipw2100_enable_adapter(priv); 5235 5236 return err; 5237 } 5238 5239 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power) 5240 { 5241 struct host_command cmd = { 5242 .host_command = TX_POWER_INDEX, 5243 .host_command_sequence = 0, 5244 .host_command_length = 4 5245 }; 5246 int err = 0; 5247 u32 tmp = tx_power; 5248 5249 if (tx_power != IPW_TX_POWER_DEFAULT) 5250 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 / 5251 (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM); 5252 5253 cmd.host_command_parameters[0] = tmp; 5254 5255 if (priv->ieee->iw_mode == IW_MODE_ADHOC) 5256 err = ipw2100_hw_send_command(priv, &cmd); 5257 if (!err) 5258 priv->tx_power = tx_power; 5259 5260 return 0; 5261 } 5262 5263 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv, 5264 u32 interval, int batch_mode) 5265 { 5266 struct host_command cmd = { 5267 .host_command = BEACON_INTERVAL, 5268 .host_command_sequence = 0, 5269 .host_command_length = 4 5270 }; 5271 int err; 5272 5273 cmd.host_command_parameters[0] = interval; 5274 5275 IPW_DEBUG_INFO("enter\n"); 5276 5277 if (priv->ieee->iw_mode == IW_MODE_ADHOC) { 5278 if (!batch_mode) { 5279 err = ipw2100_disable_adapter(priv); 5280 if (err) 5281 return err; 5282 } 5283 5284 ipw2100_hw_send_command(priv, &cmd); 5285 5286 if (!batch_mode) { 5287 err = ipw2100_enable_adapter(priv); 5288 if (err) 5289 return err; 5290 } 5291 } 5292 5293 IPW_DEBUG_INFO("exit\n"); 5294 5295 return 0; 5296 } 5297 5298 static void ipw2100_queues_initialize(struct ipw2100_priv *priv) 5299 { 5300 ipw2100_tx_initialize(priv); 5301 ipw2100_rx_initialize(priv); 5302 ipw2100_msg_initialize(priv); 5303 } 5304 5305 static void ipw2100_queues_free(struct ipw2100_priv *priv) 5306 { 5307 ipw2100_tx_free(priv); 5308 ipw2100_rx_free(priv); 5309 ipw2100_msg_free(priv); 5310 } 5311 5312 static int ipw2100_queues_allocate(struct ipw2100_priv *priv) 5313 { 5314 if (ipw2100_tx_allocate(priv) || 5315 ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv)) 5316 goto fail; 5317 5318 return 0; 5319 5320 fail: 5321 ipw2100_tx_free(priv); 5322 ipw2100_rx_free(priv); 5323 ipw2100_msg_free(priv); 5324 return -ENOMEM; 5325 } 5326 5327 #define IPW_PRIVACY_CAPABLE 0x0008 5328 5329 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags, 5330 int batch_mode) 5331 { 5332 struct host_command cmd = { 5333 .host_command = WEP_FLAGS, 5334 .host_command_sequence = 0, 5335 .host_command_length = 4 5336 }; 5337 int err; 5338 5339 cmd.host_command_parameters[0] = flags; 5340 5341 IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags); 5342 5343 if (!batch_mode) { 5344 err = ipw2100_disable_adapter(priv); 5345 if (err) { 5346 printk(KERN_ERR DRV_NAME 5347 ": %s: Could not disable adapter %d\n", 5348 priv->net_dev->name, err); 5349 return err; 5350 } 5351 } 5352 5353 /* send cmd to firmware */ 5354 err = ipw2100_hw_send_command(priv, &cmd); 5355 5356 if (!batch_mode) 5357 ipw2100_enable_adapter(priv); 5358 5359 return err; 5360 } 5361 5362 struct ipw2100_wep_key { 5363 u8 idx; 5364 u8 len; 5365 u8 key[13]; 5366 }; 5367 5368 /* Macros to ease up priting WEP keys */ 5369 #define WEP_FMT_64 "%02X%02X%02X%02X-%02X" 5370 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X" 5371 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4] 5372 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10] 5373 5374 /** 5375 * Set a the wep key 5376 * 5377 * @priv: struct to work on 5378 * @idx: index of the key we want to set 5379 * @key: ptr to the key data to set 5380 * @len: length of the buffer at @key 5381 * @batch_mode: FIXME perform the operation in batch mode, not 5382 * disabling the device. 5383 * 5384 * @returns 0 if OK, < 0 errno code on error. 5385 * 5386 * Fill out a command structure with the new wep key, length an 5387 * index and send it down the wire. 5388 */ 5389 static int ipw2100_set_key(struct ipw2100_priv *priv, 5390 int idx, char *key, int len, int batch_mode) 5391 { 5392 int keylen = len ? (len <= 5 ? 5 : 13) : 0; 5393 struct host_command cmd = { 5394 .host_command = WEP_KEY_INFO, 5395 .host_command_sequence = 0, 5396 .host_command_length = sizeof(struct ipw2100_wep_key), 5397 }; 5398 struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters; 5399 int err; 5400 5401 IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n", 5402 idx, keylen, len); 5403 5404 /* NOTE: We don't check cached values in case the firmware was reset 5405 * or some other problem is occurring. If the user is setting the key, 5406 * then we push the change */ 5407 5408 wep_key->idx = idx; 5409 wep_key->len = keylen; 5410 5411 if (keylen) { 5412 memcpy(wep_key->key, key, len); 5413 memset(wep_key->key + len, 0, keylen - len); 5414 } 5415 5416 /* Will be optimized out on debug not being configured in */ 5417 if (keylen == 0) 5418 IPW_DEBUG_WEP("%s: Clearing key %d\n", 5419 priv->net_dev->name, wep_key->idx); 5420 else if (keylen == 5) 5421 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n", 5422 priv->net_dev->name, wep_key->idx, wep_key->len, 5423 WEP_STR_64(wep_key->key)); 5424 else 5425 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128 5426 "\n", 5427 priv->net_dev->name, wep_key->idx, wep_key->len, 5428 WEP_STR_128(wep_key->key)); 5429 5430 if (!batch_mode) { 5431 err = ipw2100_disable_adapter(priv); 5432 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */ 5433 if (err) { 5434 printk(KERN_ERR DRV_NAME 5435 ": %s: Could not disable adapter %d\n", 5436 priv->net_dev->name, err); 5437 return err; 5438 } 5439 } 5440 5441 /* send cmd to firmware */ 5442 err = ipw2100_hw_send_command(priv, &cmd); 5443 5444 if (!batch_mode) { 5445 int err2 = ipw2100_enable_adapter(priv); 5446 if (err == 0) 5447 err = err2; 5448 } 5449 return err; 5450 } 5451 5452 static int ipw2100_set_key_index(struct ipw2100_priv *priv, 5453 int idx, int batch_mode) 5454 { 5455 struct host_command cmd = { 5456 .host_command = WEP_KEY_INDEX, 5457 .host_command_sequence = 0, 5458 .host_command_length = 4, 5459 .host_command_parameters = {idx}, 5460 }; 5461 int err; 5462 5463 IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx); 5464 5465 if (idx < 0 || idx > 3) 5466 return -EINVAL; 5467 5468 if (!batch_mode) { 5469 err = ipw2100_disable_adapter(priv); 5470 if (err) { 5471 printk(KERN_ERR DRV_NAME 5472 ": %s: Could not disable adapter %d\n", 5473 priv->net_dev->name, err); 5474 return err; 5475 } 5476 } 5477 5478 /* send cmd to firmware */ 5479 err = ipw2100_hw_send_command(priv, &cmd); 5480 5481 if (!batch_mode) 5482 ipw2100_enable_adapter(priv); 5483 5484 return err; 5485 } 5486 5487 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode) 5488 { 5489 int i, err, auth_mode, sec_level, use_group; 5490 5491 if (!(priv->status & STATUS_RUNNING)) 5492 return 0; 5493 5494 if (!batch_mode) { 5495 err = ipw2100_disable_adapter(priv); 5496 if (err) 5497 return err; 5498 } 5499 5500 if (!priv->ieee->sec.enabled) { 5501 err = 5502 ipw2100_set_security_information(priv, IPW_AUTH_OPEN, 5503 SEC_LEVEL_0, 0, 1); 5504 } else { 5505 auth_mode = IPW_AUTH_OPEN; 5506 if (priv->ieee->sec.flags & SEC_AUTH_MODE) { 5507 if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY) 5508 auth_mode = IPW_AUTH_SHARED; 5509 else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP) 5510 auth_mode = IPW_AUTH_LEAP_CISCO_ID; 5511 } 5512 5513 sec_level = SEC_LEVEL_0; 5514 if (priv->ieee->sec.flags & SEC_LEVEL) 5515 sec_level = priv->ieee->sec.level; 5516 5517 use_group = 0; 5518 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP) 5519 use_group = priv->ieee->sec.unicast_uses_group; 5520 5521 err = 5522 ipw2100_set_security_information(priv, auth_mode, sec_level, 5523 use_group, 1); 5524 } 5525 5526 if (err) 5527 goto exit; 5528 5529 if (priv->ieee->sec.enabled) { 5530 for (i = 0; i < 4; i++) { 5531 if (!(priv->ieee->sec.flags & (1 << i))) { 5532 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN); 5533 priv->ieee->sec.key_sizes[i] = 0; 5534 } else { 5535 err = ipw2100_set_key(priv, i, 5536 priv->ieee->sec.keys[i], 5537 priv->ieee->sec. 5538 key_sizes[i], 1); 5539 if (err) 5540 goto exit; 5541 } 5542 } 5543 5544 ipw2100_set_key_index(priv, priv->ieee->crypt_info.tx_keyidx, 1); 5545 } 5546 5547 /* Always enable privacy so the Host can filter WEP packets if 5548 * encrypted data is sent up */ 5549 err = 5550 ipw2100_set_wep_flags(priv, 5551 priv->ieee->sec. 5552 enabled ? IPW_PRIVACY_CAPABLE : 0, 1); 5553 if (err) 5554 goto exit; 5555 5556 priv->status &= ~STATUS_SECURITY_UPDATED; 5557 5558 exit: 5559 if (!batch_mode) 5560 ipw2100_enable_adapter(priv); 5561 5562 return err; 5563 } 5564 5565 static void ipw2100_security_work(struct work_struct *work) 5566 { 5567 struct ipw2100_priv *priv = 5568 container_of(work, struct ipw2100_priv, security_work.work); 5569 5570 /* If we happen to have reconnected before we get a chance to 5571 * process this, then update the security settings--which causes 5572 * a disassociation to occur */ 5573 if (!(priv->status & STATUS_ASSOCIATED) && 5574 priv->status & STATUS_SECURITY_UPDATED) 5575 ipw2100_configure_security(priv, 0); 5576 } 5577 5578 static void shim__set_security(struct net_device *dev, 5579 struct libipw_security *sec) 5580 { 5581 struct ipw2100_priv *priv = libipw_priv(dev); 5582 int i, force_update = 0; 5583 5584 mutex_lock(&priv->action_mutex); 5585 if (!(priv->status & STATUS_INITIALIZED)) 5586 goto done; 5587 5588 for (i = 0; i < 4; i++) { 5589 if (sec->flags & (1 << i)) { 5590 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i]; 5591 if (sec->key_sizes[i] == 0) 5592 priv->ieee->sec.flags &= ~(1 << i); 5593 else 5594 memcpy(priv->ieee->sec.keys[i], sec->keys[i], 5595 sec->key_sizes[i]); 5596 if (sec->level == SEC_LEVEL_1) { 5597 priv->ieee->sec.flags |= (1 << i); 5598 priv->status |= STATUS_SECURITY_UPDATED; 5599 } else 5600 priv->ieee->sec.flags &= ~(1 << i); 5601 } 5602 } 5603 5604 if ((sec->flags & SEC_ACTIVE_KEY) && 5605 priv->ieee->sec.active_key != sec->active_key) { 5606 priv->ieee->sec.active_key = sec->active_key; 5607 priv->ieee->sec.flags |= SEC_ACTIVE_KEY; 5608 priv->status |= STATUS_SECURITY_UPDATED; 5609 } 5610 5611 if ((sec->flags & SEC_AUTH_MODE) && 5612 (priv->ieee->sec.auth_mode != sec->auth_mode)) { 5613 priv->ieee->sec.auth_mode = sec->auth_mode; 5614 priv->ieee->sec.flags |= SEC_AUTH_MODE; 5615 priv->status |= STATUS_SECURITY_UPDATED; 5616 } 5617 5618 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) { 5619 priv->ieee->sec.flags |= SEC_ENABLED; 5620 priv->ieee->sec.enabled = sec->enabled; 5621 priv->status |= STATUS_SECURITY_UPDATED; 5622 force_update = 1; 5623 } 5624 5625 if (sec->flags & SEC_ENCRYPT) 5626 priv->ieee->sec.encrypt = sec->encrypt; 5627 5628 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) { 5629 priv->ieee->sec.level = sec->level; 5630 priv->ieee->sec.flags |= SEC_LEVEL; 5631 priv->status |= STATUS_SECURITY_UPDATED; 5632 } 5633 5634 IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n", 5635 priv->ieee->sec.flags & (1 << 8) ? '1' : '0', 5636 priv->ieee->sec.flags & (1 << 7) ? '1' : '0', 5637 priv->ieee->sec.flags & (1 << 6) ? '1' : '0', 5638 priv->ieee->sec.flags & (1 << 5) ? '1' : '0', 5639 priv->ieee->sec.flags & (1 << 4) ? '1' : '0', 5640 priv->ieee->sec.flags & (1 << 3) ? '1' : '0', 5641 priv->ieee->sec.flags & (1 << 2) ? '1' : '0', 5642 priv->ieee->sec.flags & (1 << 1) ? '1' : '0', 5643 priv->ieee->sec.flags & (1 << 0) ? '1' : '0'); 5644 5645 /* As a temporary work around to enable WPA until we figure out why 5646 * wpa_supplicant toggles the security capability of the driver, which 5647 * forces a disassociation with force_update... 5648 * 5649 * if (force_update || !(priv->status & STATUS_ASSOCIATED))*/ 5650 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) 5651 ipw2100_configure_security(priv, 0); 5652 done: 5653 mutex_unlock(&priv->action_mutex); 5654 } 5655 5656 static int ipw2100_adapter_setup(struct ipw2100_priv *priv) 5657 { 5658 int err; 5659 int batch_mode = 1; 5660 u8 *bssid; 5661 5662 IPW_DEBUG_INFO("enter\n"); 5663 5664 err = ipw2100_disable_adapter(priv); 5665 if (err) 5666 return err; 5667 #ifdef CONFIG_IPW2100_MONITOR 5668 if (priv->ieee->iw_mode == IW_MODE_MONITOR) { 5669 err = ipw2100_set_channel(priv, priv->channel, batch_mode); 5670 if (err) 5671 return err; 5672 5673 IPW_DEBUG_INFO("exit\n"); 5674 5675 return 0; 5676 } 5677 #endif /* CONFIG_IPW2100_MONITOR */ 5678 5679 err = ipw2100_read_mac_address(priv); 5680 if (err) 5681 return -EIO; 5682 5683 err = ipw2100_set_mac_address(priv, batch_mode); 5684 if (err) 5685 return err; 5686 5687 err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode); 5688 if (err) 5689 return err; 5690 5691 if (priv->ieee->iw_mode == IW_MODE_ADHOC) { 5692 err = ipw2100_set_channel(priv, priv->channel, batch_mode); 5693 if (err) 5694 return err; 5695 } 5696 5697 err = ipw2100_system_config(priv, batch_mode); 5698 if (err) 5699 return err; 5700 5701 err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode); 5702 if (err) 5703 return err; 5704 5705 /* Default to power mode OFF */ 5706 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM); 5707 if (err) 5708 return err; 5709 5710 err = ipw2100_set_rts_threshold(priv, priv->rts_threshold); 5711 if (err) 5712 return err; 5713 5714 if (priv->config & CFG_STATIC_BSSID) 5715 bssid = priv->bssid; 5716 else 5717 bssid = NULL; 5718 err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode); 5719 if (err) 5720 return err; 5721 5722 if (priv->config & CFG_STATIC_ESSID) 5723 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len, 5724 batch_mode); 5725 else 5726 err = ipw2100_set_essid(priv, NULL, 0, batch_mode); 5727 if (err) 5728 return err; 5729 5730 err = ipw2100_configure_security(priv, batch_mode); 5731 if (err) 5732 return err; 5733 5734 if (priv->ieee->iw_mode == IW_MODE_ADHOC) { 5735 err = 5736 ipw2100_set_ibss_beacon_interval(priv, 5737 priv->beacon_interval, 5738 batch_mode); 5739 if (err) 5740 return err; 5741 5742 err = ipw2100_set_tx_power(priv, priv->tx_power); 5743 if (err) 5744 return err; 5745 } 5746 5747 /* 5748 err = ipw2100_set_fragmentation_threshold( 5749 priv, priv->frag_threshold, batch_mode); 5750 if (err) 5751 return err; 5752 */ 5753 5754 IPW_DEBUG_INFO("exit\n"); 5755 5756 return 0; 5757 } 5758 5759 /************************************************************************* 5760 * 5761 * EXTERNALLY CALLED METHODS 5762 * 5763 *************************************************************************/ 5764 5765 /* This method is called by the network layer -- not to be confused with 5766 * ipw2100_set_mac_address() declared above called by this driver (and this 5767 * method as well) to talk to the firmware */ 5768 static int ipw2100_set_address(struct net_device *dev, void *p) 5769 { 5770 struct ipw2100_priv *priv = libipw_priv(dev); 5771 struct sockaddr *addr = p; 5772 int err = 0; 5773 5774 if (!is_valid_ether_addr(addr->sa_data)) 5775 return -EADDRNOTAVAIL; 5776 5777 mutex_lock(&priv->action_mutex); 5778 5779 priv->config |= CFG_CUSTOM_MAC; 5780 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN); 5781 5782 err = ipw2100_set_mac_address(priv, 0); 5783 if (err) 5784 goto done; 5785 5786 priv->reset_backoff = 0; 5787 mutex_unlock(&priv->action_mutex); 5788 ipw2100_reset_adapter(&priv->reset_work.work); 5789 return 0; 5790 5791 done: 5792 mutex_unlock(&priv->action_mutex); 5793 return err; 5794 } 5795 5796 static int ipw2100_open(struct net_device *dev) 5797 { 5798 struct ipw2100_priv *priv = libipw_priv(dev); 5799 unsigned long flags; 5800 IPW_DEBUG_INFO("dev->open\n"); 5801 5802 spin_lock_irqsave(&priv->low_lock, flags); 5803 if (priv->status & STATUS_ASSOCIATED) { 5804 netif_carrier_on(dev); 5805 netif_start_queue(dev); 5806 } 5807 spin_unlock_irqrestore(&priv->low_lock, flags); 5808 5809 return 0; 5810 } 5811 5812 static int ipw2100_close(struct net_device *dev) 5813 { 5814 struct ipw2100_priv *priv = libipw_priv(dev); 5815 unsigned long flags; 5816 struct list_head *element; 5817 struct ipw2100_tx_packet *packet; 5818 5819 IPW_DEBUG_INFO("enter\n"); 5820 5821 spin_lock_irqsave(&priv->low_lock, flags); 5822 5823 if (priv->status & STATUS_ASSOCIATED) 5824 netif_carrier_off(dev); 5825 netif_stop_queue(dev); 5826 5827 /* Flush the TX queue ... */ 5828 while (!list_empty(&priv->tx_pend_list)) { 5829 element = priv->tx_pend_list.next; 5830 packet = list_entry(element, struct ipw2100_tx_packet, list); 5831 5832 list_del(element); 5833 DEC_STAT(&priv->tx_pend_stat); 5834 5835 libipw_txb_free(packet->info.d_struct.txb); 5836 packet->info.d_struct.txb = NULL; 5837 5838 list_add_tail(element, &priv->tx_free_list); 5839 INC_STAT(&priv->tx_free_stat); 5840 } 5841 spin_unlock_irqrestore(&priv->low_lock, flags); 5842 5843 IPW_DEBUG_INFO("exit\n"); 5844 5845 return 0; 5846 } 5847 5848 /* 5849 * TODO: Fix this function... its just wrong 5850 */ 5851 static void ipw2100_tx_timeout(struct net_device *dev) 5852 { 5853 struct ipw2100_priv *priv = libipw_priv(dev); 5854 5855 dev->stats.tx_errors++; 5856 5857 #ifdef CONFIG_IPW2100_MONITOR 5858 if (priv->ieee->iw_mode == IW_MODE_MONITOR) 5859 return; 5860 #endif 5861 5862 IPW_DEBUG_INFO("%s: TX timed out. Scheduling firmware restart.\n", 5863 dev->name); 5864 schedule_reset(priv); 5865 } 5866 5867 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value) 5868 { 5869 /* This is called when wpa_supplicant loads and closes the driver 5870 * interface. */ 5871 priv->ieee->wpa_enabled = value; 5872 return 0; 5873 } 5874 5875 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value) 5876 { 5877 5878 struct libipw_device *ieee = priv->ieee; 5879 struct libipw_security sec = { 5880 .flags = SEC_AUTH_MODE, 5881 }; 5882 int ret = 0; 5883 5884 if (value & IW_AUTH_ALG_SHARED_KEY) { 5885 sec.auth_mode = WLAN_AUTH_SHARED_KEY; 5886 ieee->open_wep = 0; 5887 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) { 5888 sec.auth_mode = WLAN_AUTH_OPEN; 5889 ieee->open_wep = 1; 5890 } else if (value & IW_AUTH_ALG_LEAP) { 5891 sec.auth_mode = WLAN_AUTH_LEAP; 5892 ieee->open_wep = 1; 5893 } else 5894 return -EINVAL; 5895 5896 if (ieee->set_security) 5897 ieee->set_security(ieee->dev, &sec); 5898 else 5899 ret = -EOPNOTSUPP; 5900 5901 return ret; 5902 } 5903 5904 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv, 5905 char *wpa_ie, int wpa_ie_len) 5906 { 5907 5908 struct ipw2100_wpa_assoc_frame frame; 5909 5910 frame.fixed_ie_mask = 0; 5911 5912 /* copy WPA IE */ 5913 memcpy(frame.var_ie, wpa_ie, wpa_ie_len); 5914 frame.var_ie_len = wpa_ie_len; 5915 5916 /* make sure WPA is enabled */ 5917 ipw2100_wpa_enable(priv, 1); 5918 ipw2100_set_wpa_ie(priv, &frame, 0); 5919 } 5920 5921 static void ipw_ethtool_get_drvinfo(struct net_device *dev, 5922 struct ethtool_drvinfo *info) 5923 { 5924 struct ipw2100_priv *priv = libipw_priv(dev); 5925 char fw_ver[64], ucode_ver[64]; 5926 5927 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 5928 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 5929 5930 ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver)); 5931 ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver)); 5932 5933 snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s", 5934 fw_ver, priv->eeprom_version, ucode_ver); 5935 5936 strlcpy(info->bus_info, pci_name(priv->pci_dev), 5937 sizeof(info->bus_info)); 5938 } 5939 5940 static u32 ipw2100_ethtool_get_link(struct net_device *dev) 5941 { 5942 struct ipw2100_priv *priv = libipw_priv(dev); 5943 return (priv->status & STATUS_ASSOCIATED) ? 1 : 0; 5944 } 5945 5946 static const struct ethtool_ops ipw2100_ethtool_ops = { 5947 .get_link = ipw2100_ethtool_get_link, 5948 .get_drvinfo = ipw_ethtool_get_drvinfo, 5949 }; 5950 5951 static void ipw2100_hang_check(struct work_struct *work) 5952 { 5953 struct ipw2100_priv *priv = 5954 container_of(work, struct ipw2100_priv, hang_check.work); 5955 unsigned long flags; 5956 u32 rtc = 0xa5a5a5a5; 5957 u32 len = sizeof(rtc); 5958 int restart = 0; 5959 5960 spin_lock_irqsave(&priv->low_lock, flags); 5961 5962 if (priv->fatal_error != 0) { 5963 /* If fatal_error is set then we need to restart */ 5964 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n", 5965 priv->net_dev->name); 5966 5967 restart = 1; 5968 } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) || 5969 (rtc == priv->last_rtc)) { 5970 /* Check if firmware is hung */ 5971 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n", 5972 priv->net_dev->name); 5973 5974 restart = 1; 5975 } 5976 5977 if (restart) { 5978 /* Kill timer */ 5979 priv->stop_hang_check = 1; 5980 priv->hangs++; 5981 5982 /* Restart the NIC */ 5983 schedule_reset(priv); 5984 } 5985 5986 priv->last_rtc = rtc; 5987 5988 if (!priv->stop_hang_check) 5989 schedule_delayed_work(&priv->hang_check, HZ / 2); 5990 5991 spin_unlock_irqrestore(&priv->low_lock, flags); 5992 } 5993 5994 static void ipw2100_rf_kill(struct work_struct *work) 5995 { 5996 struct ipw2100_priv *priv = 5997 container_of(work, struct ipw2100_priv, rf_kill.work); 5998 unsigned long flags; 5999 6000 spin_lock_irqsave(&priv->low_lock, flags); 6001 6002 if (rf_kill_active(priv)) { 6003 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n"); 6004 if (!priv->stop_rf_kill) 6005 schedule_delayed_work(&priv->rf_kill, 6006 round_jiffies_relative(HZ)); 6007 goto exit_unlock; 6008 } 6009 6010 /* RF Kill is now disabled, so bring the device back up */ 6011 6012 if (!(priv->status & STATUS_RF_KILL_MASK)) { 6013 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting " 6014 "device\n"); 6015 schedule_reset(priv); 6016 } else 6017 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still " 6018 "enabled\n"); 6019 6020 exit_unlock: 6021 spin_unlock_irqrestore(&priv->low_lock, flags); 6022 } 6023 6024 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv); 6025 6026 static const struct net_device_ops ipw2100_netdev_ops = { 6027 .ndo_open = ipw2100_open, 6028 .ndo_stop = ipw2100_close, 6029 .ndo_start_xmit = libipw_xmit, 6030 .ndo_tx_timeout = ipw2100_tx_timeout, 6031 .ndo_set_mac_address = ipw2100_set_address, 6032 .ndo_validate_addr = eth_validate_addr, 6033 }; 6034 6035 /* Look into using netdev destructor to shutdown libipw? */ 6036 6037 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev, 6038 void __iomem * ioaddr) 6039 { 6040 struct ipw2100_priv *priv; 6041 struct net_device *dev; 6042 6043 dev = alloc_libipw(sizeof(struct ipw2100_priv), 0); 6044 if (!dev) 6045 return NULL; 6046 priv = libipw_priv(dev); 6047 priv->ieee = netdev_priv(dev); 6048 priv->pci_dev = pci_dev; 6049 priv->net_dev = dev; 6050 priv->ioaddr = ioaddr; 6051 6052 priv->ieee->hard_start_xmit = ipw2100_tx; 6053 priv->ieee->set_security = shim__set_security; 6054 6055 priv->ieee->perfect_rssi = -20; 6056 priv->ieee->worst_rssi = -85; 6057 6058 dev->netdev_ops = &ipw2100_netdev_ops; 6059 dev->ethtool_ops = &ipw2100_ethtool_ops; 6060 dev->wireless_handlers = &ipw2100_wx_handler_def; 6061 priv->wireless_data.libipw = priv->ieee; 6062 dev->wireless_data = &priv->wireless_data; 6063 dev->watchdog_timeo = 3 * HZ; 6064 dev->irq = 0; 6065 dev->min_mtu = 68; 6066 dev->max_mtu = LIBIPW_DATA_LEN; 6067 6068 /* NOTE: We don't use the wireless_handlers hook 6069 * in dev as the system will start throwing WX requests 6070 * to us before we're actually initialized and it just 6071 * ends up causing problems. So, we just handle 6072 * the WX extensions through the ipw2100_ioctl interface */ 6073 6074 /* memset() puts everything to 0, so we only have explicitly set 6075 * those values that need to be something else */ 6076 6077 /* If power management is turned on, default to AUTO mode */ 6078 priv->power_mode = IPW_POWER_AUTO; 6079 6080 #ifdef CONFIG_IPW2100_MONITOR 6081 priv->config |= CFG_CRC_CHECK; 6082 #endif 6083 priv->ieee->wpa_enabled = 0; 6084 priv->ieee->drop_unencrypted = 0; 6085 priv->ieee->privacy_invoked = 0; 6086 priv->ieee->ieee802_1x = 1; 6087 6088 /* Set module parameters */ 6089 switch (network_mode) { 6090 case 1: 6091 priv->ieee->iw_mode = IW_MODE_ADHOC; 6092 break; 6093 #ifdef CONFIG_IPW2100_MONITOR 6094 case 2: 6095 priv->ieee->iw_mode = IW_MODE_MONITOR; 6096 break; 6097 #endif 6098 default: 6099 case 0: 6100 priv->ieee->iw_mode = IW_MODE_INFRA; 6101 break; 6102 } 6103 6104 if (disable == 1) 6105 priv->status |= STATUS_RF_KILL_SW; 6106 6107 if (channel != 0 && 6108 ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) { 6109 priv->config |= CFG_STATIC_CHANNEL; 6110 priv->channel = channel; 6111 } 6112 6113 if (associate) 6114 priv->config |= CFG_ASSOCIATE; 6115 6116 priv->beacon_interval = DEFAULT_BEACON_INTERVAL; 6117 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT; 6118 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT; 6119 priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED; 6120 priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED; 6121 priv->tx_power = IPW_TX_POWER_DEFAULT; 6122 priv->tx_rates = DEFAULT_TX_RATES; 6123 6124 strcpy(priv->nick, "ipw2100"); 6125 6126 spin_lock_init(&priv->low_lock); 6127 mutex_init(&priv->action_mutex); 6128 mutex_init(&priv->adapter_mutex); 6129 6130 init_waitqueue_head(&priv->wait_command_queue); 6131 6132 netif_carrier_off(dev); 6133 6134 INIT_LIST_HEAD(&priv->msg_free_list); 6135 INIT_LIST_HEAD(&priv->msg_pend_list); 6136 INIT_STAT(&priv->msg_free_stat); 6137 INIT_STAT(&priv->msg_pend_stat); 6138 6139 INIT_LIST_HEAD(&priv->tx_free_list); 6140 INIT_LIST_HEAD(&priv->tx_pend_list); 6141 INIT_STAT(&priv->tx_free_stat); 6142 INIT_STAT(&priv->tx_pend_stat); 6143 6144 INIT_LIST_HEAD(&priv->fw_pend_list); 6145 INIT_STAT(&priv->fw_pend_stat); 6146 6147 INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter); 6148 INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work); 6149 INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work); 6150 INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check); 6151 INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill); 6152 INIT_DELAYED_WORK(&priv->scan_event, ipw2100_scan_event); 6153 6154 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long)) 6155 ipw2100_irq_tasklet, (unsigned long)priv); 6156 6157 /* NOTE: We do not start the deferred work for status checks yet */ 6158 priv->stop_rf_kill = 1; 6159 priv->stop_hang_check = 1; 6160 6161 return dev; 6162 } 6163 6164 static int ipw2100_pci_init_one(struct pci_dev *pci_dev, 6165 const struct pci_device_id *ent) 6166 { 6167 void __iomem *ioaddr; 6168 struct net_device *dev = NULL; 6169 struct ipw2100_priv *priv = NULL; 6170 int err = 0; 6171 int registered = 0; 6172 u32 val; 6173 6174 IPW_DEBUG_INFO("enter\n"); 6175 6176 if (!(pci_resource_flags(pci_dev, 0) & IORESOURCE_MEM)) { 6177 IPW_DEBUG_INFO("weird - resource type is not memory\n"); 6178 err = -ENODEV; 6179 goto out; 6180 } 6181 6182 ioaddr = pci_iomap(pci_dev, 0, 0); 6183 if (!ioaddr) { 6184 printk(KERN_WARNING DRV_NAME 6185 "Error calling ioremap_nocache.\n"); 6186 err = -EIO; 6187 goto fail; 6188 } 6189 6190 /* allocate and initialize our net_device */ 6191 dev = ipw2100_alloc_device(pci_dev, ioaddr); 6192 if (!dev) { 6193 printk(KERN_WARNING DRV_NAME 6194 "Error calling ipw2100_alloc_device.\n"); 6195 err = -ENOMEM; 6196 goto fail; 6197 } 6198 6199 /* set up PCI mappings for device */ 6200 err = pci_enable_device(pci_dev); 6201 if (err) { 6202 printk(KERN_WARNING DRV_NAME 6203 "Error calling pci_enable_device.\n"); 6204 return err; 6205 } 6206 6207 priv = libipw_priv(dev); 6208 6209 pci_set_master(pci_dev); 6210 pci_set_drvdata(pci_dev, priv); 6211 6212 err = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32)); 6213 if (err) { 6214 printk(KERN_WARNING DRV_NAME 6215 "Error calling pci_set_dma_mask.\n"); 6216 pci_disable_device(pci_dev); 6217 return err; 6218 } 6219 6220 err = pci_request_regions(pci_dev, DRV_NAME); 6221 if (err) { 6222 printk(KERN_WARNING DRV_NAME 6223 "Error calling pci_request_regions.\n"); 6224 pci_disable_device(pci_dev); 6225 return err; 6226 } 6227 6228 /* We disable the RETRY_TIMEOUT register (0x41) to keep 6229 * PCI Tx retries from interfering with C3 CPU state */ 6230 pci_read_config_dword(pci_dev, 0x40, &val); 6231 if ((val & 0x0000ff00) != 0) 6232 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff); 6233 6234 if (!ipw2100_hw_is_adapter_in_system(dev)) { 6235 printk(KERN_WARNING DRV_NAME 6236 "Device not found via register read.\n"); 6237 err = -ENODEV; 6238 goto fail; 6239 } 6240 6241 SET_NETDEV_DEV(dev, &pci_dev->dev); 6242 6243 /* Force interrupts to be shut off on the device */ 6244 priv->status |= STATUS_INT_ENABLED; 6245 ipw2100_disable_interrupts(priv); 6246 6247 /* Allocate and initialize the Tx/Rx queues and lists */ 6248 if (ipw2100_queues_allocate(priv)) { 6249 printk(KERN_WARNING DRV_NAME 6250 "Error calling ipw2100_queues_allocate.\n"); 6251 err = -ENOMEM; 6252 goto fail; 6253 } 6254 ipw2100_queues_initialize(priv); 6255 6256 err = request_irq(pci_dev->irq, 6257 ipw2100_interrupt, IRQF_SHARED, dev->name, priv); 6258 if (err) { 6259 printk(KERN_WARNING DRV_NAME 6260 "Error calling request_irq: %d.\n", pci_dev->irq); 6261 goto fail; 6262 } 6263 dev->irq = pci_dev->irq; 6264 6265 IPW_DEBUG_INFO("Attempting to register device...\n"); 6266 6267 printk(KERN_INFO DRV_NAME 6268 ": Detected Intel PRO/Wireless 2100 Network Connection\n"); 6269 6270 err = ipw2100_up(priv, 1); 6271 if (err) 6272 goto fail; 6273 6274 err = ipw2100_wdev_init(dev); 6275 if (err) 6276 goto fail; 6277 registered = 1; 6278 6279 /* Bring up the interface. Pre 0.46, after we registered the 6280 * network device we would call ipw2100_up. This introduced a race 6281 * condition with newer hotplug configurations (network was coming 6282 * up and making calls before the device was initialized). 6283 */ 6284 err = register_netdev(dev); 6285 if (err) { 6286 printk(KERN_WARNING DRV_NAME 6287 "Error calling register_netdev.\n"); 6288 goto fail; 6289 } 6290 registered = 2; 6291 6292 mutex_lock(&priv->action_mutex); 6293 6294 IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev)); 6295 6296 /* perform this after register_netdev so that dev->name is set */ 6297 err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group); 6298 if (err) 6299 goto fail_unlock; 6300 6301 /* If the RF Kill switch is disabled, go ahead and complete the 6302 * startup sequence */ 6303 if (!(priv->status & STATUS_RF_KILL_MASK)) { 6304 /* Enable the adapter - sends HOST_COMPLETE */ 6305 if (ipw2100_enable_adapter(priv)) { 6306 printk(KERN_WARNING DRV_NAME 6307 ": %s: failed in call to enable adapter.\n", 6308 priv->net_dev->name); 6309 ipw2100_hw_stop_adapter(priv); 6310 err = -EIO; 6311 goto fail_unlock; 6312 } 6313 6314 /* Start a scan . . . */ 6315 ipw2100_set_scan_options(priv); 6316 ipw2100_start_scan(priv); 6317 } 6318 6319 IPW_DEBUG_INFO("exit\n"); 6320 6321 priv->status |= STATUS_INITIALIZED; 6322 6323 mutex_unlock(&priv->action_mutex); 6324 out: 6325 return err; 6326 6327 fail_unlock: 6328 mutex_unlock(&priv->action_mutex); 6329 fail: 6330 if (dev) { 6331 if (registered >= 2) 6332 unregister_netdev(dev); 6333 6334 if (registered) { 6335 wiphy_unregister(priv->ieee->wdev.wiphy); 6336 kfree(priv->ieee->bg_band.channels); 6337 } 6338 6339 ipw2100_hw_stop_adapter(priv); 6340 6341 ipw2100_disable_interrupts(priv); 6342 6343 if (dev->irq) 6344 free_irq(dev->irq, priv); 6345 6346 ipw2100_kill_works(priv); 6347 6348 /* These are safe to call even if they weren't allocated */ 6349 ipw2100_queues_free(priv); 6350 sysfs_remove_group(&pci_dev->dev.kobj, 6351 &ipw2100_attribute_group); 6352 6353 free_libipw(dev, 0); 6354 } 6355 6356 pci_iounmap(pci_dev, ioaddr); 6357 6358 pci_release_regions(pci_dev); 6359 pci_disable_device(pci_dev); 6360 goto out; 6361 } 6362 6363 static void ipw2100_pci_remove_one(struct pci_dev *pci_dev) 6364 { 6365 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev); 6366 struct net_device *dev = priv->net_dev; 6367 6368 mutex_lock(&priv->action_mutex); 6369 6370 priv->status &= ~STATUS_INITIALIZED; 6371 6372 sysfs_remove_group(&pci_dev->dev.kobj, &ipw2100_attribute_group); 6373 6374 #ifdef CONFIG_PM 6375 if (ipw2100_firmware.version) 6376 ipw2100_release_firmware(priv, &ipw2100_firmware); 6377 #endif 6378 /* Take down the hardware */ 6379 ipw2100_down(priv); 6380 6381 /* Release the mutex so that the network subsystem can 6382 * complete any needed calls into the driver... */ 6383 mutex_unlock(&priv->action_mutex); 6384 6385 /* Unregister the device first - this results in close() 6386 * being called if the device is open. If we free storage 6387 * first, then close() will crash. 6388 * FIXME: remove the comment above. */ 6389 unregister_netdev(dev); 6390 6391 ipw2100_kill_works(priv); 6392 6393 ipw2100_queues_free(priv); 6394 6395 /* Free potential debugging firmware snapshot */ 6396 ipw2100_snapshot_free(priv); 6397 6398 free_irq(dev->irq, priv); 6399 6400 pci_iounmap(pci_dev, priv->ioaddr); 6401 6402 /* wiphy_unregister needs to be here, before free_libipw */ 6403 wiphy_unregister(priv->ieee->wdev.wiphy); 6404 kfree(priv->ieee->bg_band.channels); 6405 free_libipw(dev, 0); 6406 6407 pci_release_regions(pci_dev); 6408 pci_disable_device(pci_dev); 6409 6410 IPW_DEBUG_INFO("exit\n"); 6411 } 6412 6413 #ifdef CONFIG_PM 6414 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state) 6415 { 6416 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev); 6417 struct net_device *dev = priv->net_dev; 6418 6419 IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name); 6420 6421 mutex_lock(&priv->action_mutex); 6422 if (priv->status & STATUS_INITIALIZED) { 6423 /* Take down the device; powers it off, etc. */ 6424 ipw2100_down(priv); 6425 } 6426 6427 /* Remove the PRESENT state of the device */ 6428 netif_device_detach(dev); 6429 6430 pci_save_state(pci_dev); 6431 pci_disable_device(pci_dev); 6432 pci_set_power_state(pci_dev, PCI_D3hot); 6433 6434 priv->suspend_at = ktime_get_boottime_seconds(); 6435 6436 mutex_unlock(&priv->action_mutex); 6437 6438 return 0; 6439 } 6440 6441 static int ipw2100_resume(struct pci_dev *pci_dev) 6442 { 6443 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev); 6444 struct net_device *dev = priv->net_dev; 6445 int err; 6446 u32 val; 6447 6448 if (IPW2100_PM_DISABLED) 6449 return 0; 6450 6451 mutex_lock(&priv->action_mutex); 6452 6453 IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name); 6454 6455 pci_set_power_state(pci_dev, PCI_D0); 6456 err = pci_enable_device(pci_dev); 6457 if (err) { 6458 printk(KERN_ERR "%s: pci_enable_device failed on resume\n", 6459 dev->name); 6460 mutex_unlock(&priv->action_mutex); 6461 return err; 6462 } 6463 pci_restore_state(pci_dev); 6464 6465 /* 6466 * Suspend/Resume resets the PCI configuration space, so we have to 6467 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries 6468 * from interfering with C3 CPU state. pci_restore_state won't help 6469 * here since it only restores the first 64 bytes pci config header. 6470 */ 6471 pci_read_config_dword(pci_dev, 0x40, &val); 6472 if ((val & 0x0000ff00) != 0) 6473 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff); 6474 6475 /* Set the device back into the PRESENT state; this will also wake 6476 * the queue of needed */ 6477 netif_device_attach(dev); 6478 6479 priv->suspend_time = ktime_get_boottime_seconds() - priv->suspend_at; 6480 6481 /* Bring the device back up */ 6482 if (!(priv->status & STATUS_RF_KILL_SW)) 6483 ipw2100_up(priv, 0); 6484 6485 mutex_unlock(&priv->action_mutex); 6486 6487 return 0; 6488 } 6489 #endif 6490 6491 static void ipw2100_shutdown(struct pci_dev *pci_dev) 6492 { 6493 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev); 6494 6495 /* Take down the device; powers it off, etc. */ 6496 ipw2100_down(priv); 6497 6498 pci_disable_device(pci_dev); 6499 } 6500 6501 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x } 6502 6503 static const struct pci_device_id ipw2100_pci_id_table[] = { 6504 IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */ 6505 IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */ 6506 IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */ 6507 IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */ 6508 IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */ 6509 IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */ 6510 IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */ 6511 IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */ 6512 IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */ 6513 IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */ 6514 IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */ 6515 IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */ 6516 IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */ 6517 6518 IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */ 6519 IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */ 6520 IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */ 6521 IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */ 6522 IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */ 6523 6524 IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */ 6525 IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */ 6526 IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */ 6527 IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */ 6528 IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */ 6529 IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */ 6530 IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */ 6531 6532 IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */ 6533 6534 IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */ 6535 IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */ 6536 IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */ 6537 IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */ 6538 IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */ 6539 IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */ 6540 IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */ 6541 6542 IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */ 6543 IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */ 6544 IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */ 6545 IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */ 6546 IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */ 6547 IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */ 6548 6549 IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */ 6550 {0,}, 6551 }; 6552 6553 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table); 6554 6555 static struct pci_driver ipw2100_pci_driver = { 6556 .name = DRV_NAME, 6557 .id_table = ipw2100_pci_id_table, 6558 .probe = ipw2100_pci_init_one, 6559 .remove = ipw2100_pci_remove_one, 6560 #ifdef CONFIG_PM 6561 .suspend = ipw2100_suspend, 6562 .resume = ipw2100_resume, 6563 #endif 6564 .shutdown = ipw2100_shutdown, 6565 }; 6566 6567 /** 6568 * Initialize the ipw2100 driver/module 6569 * 6570 * @returns 0 if ok, < 0 errno node con error. 6571 * 6572 * Note: we cannot init the /proc stuff until the PCI driver is there, 6573 * or we risk an unlikely race condition on someone accessing 6574 * uninitialized data in the PCI dev struct through /proc. 6575 */ 6576 static int __init ipw2100_init(void) 6577 { 6578 int ret; 6579 6580 printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION); 6581 printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT); 6582 6583 pm_qos_add_request(&ipw2100_pm_qos_req, PM_QOS_CPU_DMA_LATENCY, 6584 PM_QOS_DEFAULT_VALUE); 6585 6586 ret = pci_register_driver(&ipw2100_pci_driver); 6587 if (ret) 6588 goto out; 6589 6590 #ifdef CONFIG_IPW2100_DEBUG 6591 ipw2100_debug_level = debug; 6592 ret = driver_create_file(&ipw2100_pci_driver.driver, 6593 &driver_attr_debug_level); 6594 #endif 6595 6596 out: 6597 return ret; 6598 } 6599 6600 /** 6601 * Cleanup ipw2100 driver registration 6602 */ 6603 static void __exit ipw2100_exit(void) 6604 { 6605 /* FIXME: IPG: check that we have no instances of the devices open */ 6606 #ifdef CONFIG_IPW2100_DEBUG 6607 driver_remove_file(&ipw2100_pci_driver.driver, 6608 &driver_attr_debug_level); 6609 #endif 6610 pci_unregister_driver(&ipw2100_pci_driver); 6611 pm_qos_remove_request(&ipw2100_pm_qos_req); 6612 } 6613 6614 module_init(ipw2100_init); 6615 module_exit(ipw2100_exit); 6616 6617 static int ipw2100_wx_get_name(struct net_device *dev, 6618 struct iw_request_info *info, 6619 union iwreq_data *wrqu, char *extra) 6620 { 6621 /* 6622 * This can be called at any time. No action lock required 6623 */ 6624 6625 struct ipw2100_priv *priv = libipw_priv(dev); 6626 if (!(priv->status & STATUS_ASSOCIATED)) 6627 strcpy(wrqu->name, "unassociated"); 6628 else 6629 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b"); 6630 6631 IPW_DEBUG_WX("Name: %s\n", wrqu->name); 6632 return 0; 6633 } 6634 6635 static int ipw2100_wx_set_freq(struct net_device *dev, 6636 struct iw_request_info *info, 6637 union iwreq_data *wrqu, char *extra) 6638 { 6639 struct ipw2100_priv *priv = libipw_priv(dev); 6640 struct iw_freq *fwrq = &wrqu->freq; 6641 int err = 0; 6642 6643 if (priv->ieee->iw_mode == IW_MODE_INFRA) 6644 return -EOPNOTSUPP; 6645 6646 mutex_lock(&priv->action_mutex); 6647 if (!(priv->status & STATUS_INITIALIZED)) { 6648 err = -EIO; 6649 goto done; 6650 } 6651 6652 /* if setting by freq convert to channel */ 6653 if (fwrq->e == 1) { 6654 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) { 6655 int f = fwrq->m / 100000; 6656 int c = 0; 6657 6658 while ((c < REG_MAX_CHANNEL) && 6659 (f != ipw2100_frequencies[c])) 6660 c++; 6661 6662 /* hack to fall through */ 6663 fwrq->e = 0; 6664 fwrq->m = c + 1; 6665 } 6666 } 6667 6668 if (fwrq->e > 0 || fwrq->m > 1000) { 6669 err = -EOPNOTSUPP; 6670 goto done; 6671 } else { /* Set the channel */ 6672 IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m); 6673 err = ipw2100_set_channel(priv, fwrq->m, 0); 6674 } 6675 6676 done: 6677 mutex_unlock(&priv->action_mutex); 6678 return err; 6679 } 6680 6681 static int ipw2100_wx_get_freq(struct net_device *dev, 6682 struct iw_request_info *info, 6683 union iwreq_data *wrqu, char *extra) 6684 { 6685 /* 6686 * This can be called at any time. No action lock required 6687 */ 6688 6689 struct ipw2100_priv *priv = libipw_priv(dev); 6690 6691 wrqu->freq.e = 0; 6692 6693 /* If we are associated, trying to associate, or have a statically 6694 * configured CHANNEL then return that; otherwise return ANY */ 6695 if (priv->config & CFG_STATIC_CHANNEL || 6696 priv->status & STATUS_ASSOCIATED) 6697 wrqu->freq.m = priv->channel; 6698 else 6699 wrqu->freq.m = 0; 6700 6701 IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel); 6702 return 0; 6703 6704 } 6705 6706 static int ipw2100_wx_set_mode(struct net_device *dev, 6707 struct iw_request_info *info, 6708 union iwreq_data *wrqu, char *extra) 6709 { 6710 struct ipw2100_priv *priv = libipw_priv(dev); 6711 int err = 0; 6712 6713 IPW_DEBUG_WX("SET Mode -> %d\n", wrqu->mode); 6714 6715 if (wrqu->mode == priv->ieee->iw_mode) 6716 return 0; 6717 6718 mutex_lock(&priv->action_mutex); 6719 if (!(priv->status & STATUS_INITIALIZED)) { 6720 err = -EIO; 6721 goto done; 6722 } 6723 6724 switch (wrqu->mode) { 6725 #ifdef CONFIG_IPW2100_MONITOR 6726 case IW_MODE_MONITOR: 6727 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR); 6728 break; 6729 #endif /* CONFIG_IPW2100_MONITOR */ 6730 case IW_MODE_ADHOC: 6731 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC); 6732 break; 6733 case IW_MODE_INFRA: 6734 case IW_MODE_AUTO: 6735 default: 6736 err = ipw2100_switch_mode(priv, IW_MODE_INFRA); 6737 break; 6738 } 6739 6740 done: 6741 mutex_unlock(&priv->action_mutex); 6742 return err; 6743 } 6744 6745 static int ipw2100_wx_get_mode(struct net_device *dev, 6746 struct iw_request_info *info, 6747 union iwreq_data *wrqu, char *extra) 6748 { 6749 /* 6750 * This can be called at any time. No action lock required 6751 */ 6752 6753 struct ipw2100_priv *priv = libipw_priv(dev); 6754 6755 wrqu->mode = priv->ieee->iw_mode; 6756 IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode); 6757 6758 return 0; 6759 } 6760 6761 #define POWER_MODES 5 6762 6763 /* Values are in microsecond */ 6764 static const s32 timeout_duration[POWER_MODES] = { 6765 350000, 6766 250000, 6767 75000, 6768 37000, 6769 25000, 6770 }; 6771 6772 static const s32 period_duration[POWER_MODES] = { 6773 400000, 6774 700000, 6775 1000000, 6776 1000000, 6777 1000000 6778 }; 6779 6780 static int ipw2100_wx_get_range(struct net_device *dev, 6781 struct iw_request_info *info, 6782 union iwreq_data *wrqu, char *extra) 6783 { 6784 /* 6785 * This can be called at any time. No action lock required 6786 */ 6787 6788 struct ipw2100_priv *priv = libipw_priv(dev); 6789 struct iw_range *range = (struct iw_range *)extra; 6790 u16 val; 6791 int i, level; 6792 6793 wrqu->data.length = sizeof(*range); 6794 memset(range, 0, sizeof(*range)); 6795 6796 /* Let's try to keep this struct in the same order as in 6797 * linux/include/wireless.h 6798 */ 6799 6800 /* TODO: See what values we can set, and remove the ones we can't 6801 * set, or fill them with some default data. 6802 */ 6803 6804 /* ~5 Mb/s real (802.11b) */ 6805 range->throughput = 5 * 1000 * 1000; 6806 6807 // range->sensitivity; /* signal level threshold range */ 6808 6809 range->max_qual.qual = 100; 6810 /* TODO: Find real max RSSI and stick here */ 6811 range->max_qual.level = 0; 6812 range->max_qual.noise = 0; 6813 range->max_qual.updated = 7; /* Updated all three */ 6814 6815 range->avg_qual.qual = 70; /* > 8% missed beacons is 'bad' */ 6816 /* TODO: Find real 'good' to 'bad' threshold value for RSSI */ 6817 range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM; 6818 range->avg_qual.noise = 0; 6819 range->avg_qual.updated = 7; /* Updated all three */ 6820 6821 range->num_bitrates = RATE_COUNT; 6822 6823 for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) { 6824 range->bitrate[i] = ipw2100_bg_rates[i].bitrate * 100 * 1000; 6825 } 6826 6827 range->min_rts = MIN_RTS_THRESHOLD; 6828 range->max_rts = MAX_RTS_THRESHOLD; 6829 range->min_frag = MIN_FRAG_THRESHOLD; 6830 range->max_frag = MAX_FRAG_THRESHOLD; 6831 6832 range->min_pmp = period_duration[0]; /* Minimal PM period */ 6833 range->max_pmp = period_duration[POWER_MODES - 1]; /* Maximal PM period */ 6834 range->min_pmt = timeout_duration[POWER_MODES - 1]; /* Minimal PM timeout */ 6835 range->max_pmt = timeout_duration[0]; /* Maximal PM timeout */ 6836 6837 /* How to decode max/min PM period */ 6838 range->pmp_flags = IW_POWER_PERIOD; 6839 /* How to decode max/min PM period */ 6840 range->pmt_flags = IW_POWER_TIMEOUT; 6841 /* What PM options are supported */ 6842 range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD; 6843 6844 range->encoding_size[0] = 5; 6845 range->encoding_size[1] = 13; /* Different token sizes */ 6846 range->num_encoding_sizes = 2; /* Number of entry in the list */ 6847 range->max_encoding_tokens = WEP_KEYS; /* Max number of tokens */ 6848 // range->encoding_login_index; /* token index for login token */ 6849 6850 if (priv->ieee->iw_mode == IW_MODE_ADHOC) { 6851 range->txpower_capa = IW_TXPOW_DBM; 6852 range->num_txpower = IW_MAX_TXPOWER; 6853 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16); 6854 i < IW_MAX_TXPOWER; 6855 i++, level -= 6856 ((IPW_TX_POWER_MAX_DBM - 6857 IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1)) 6858 range->txpower[i] = level / 16; 6859 } else { 6860 range->txpower_capa = 0; 6861 range->num_txpower = 0; 6862 } 6863 6864 /* Set the Wireless Extension versions */ 6865 range->we_version_compiled = WIRELESS_EXT; 6866 range->we_version_source = 18; 6867 6868 // range->retry_capa; /* What retry options are supported */ 6869 // range->retry_flags; /* How to decode max/min retry limit */ 6870 // range->r_time_flags; /* How to decode max/min retry life */ 6871 // range->min_retry; /* Minimal number of retries */ 6872 // range->max_retry; /* Maximal number of retries */ 6873 // range->min_r_time; /* Minimal retry lifetime */ 6874 // range->max_r_time; /* Maximal retry lifetime */ 6875 6876 range->num_channels = FREQ_COUNT; 6877 6878 val = 0; 6879 for (i = 0; i < FREQ_COUNT; i++) { 6880 // TODO: Include only legal frequencies for some countries 6881 // if (local->channel_mask & (1 << i)) { 6882 range->freq[val].i = i + 1; 6883 range->freq[val].m = ipw2100_frequencies[i] * 100000; 6884 range->freq[val].e = 1; 6885 val++; 6886 // } 6887 if (val == IW_MAX_FREQUENCIES) 6888 break; 6889 } 6890 range->num_frequency = val; 6891 6892 /* Event capability (kernel + driver) */ 6893 range->event_capa[0] = (IW_EVENT_CAPA_K_0 | 6894 IW_EVENT_CAPA_MASK(SIOCGIWAP)); 6895 range->event_capa[1] = IW_EVENT_CAPA_K_1; 6896 6897 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 | 6898 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP; 6899 6900 IPW_DEBUG_WX("GET Range\n"); 6901 6902 return 0; 6903 } 6904 6905 static int ipw2100_wx_set_wap(struct net_device *dev, 6906 struct iw_request_info *info, 6907 union iwreq_data *wrqu, char *extra) 6908 { 6909 struct ipw2100_priv *priv = libipw_priv(dev); 6910 int err = 0; 6911 6912 // sanity checks 6913 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER) 6914 return -EINVAL; 6915 6916 mutex_lock(&priv->action_mutex); 6917 if (!(priv->status & STATUS_INITIALIZED)) { 6918 err = -EIO; 6919 goto done; 6920 } 6921 6922 if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) || 6923 is_zero_ether_addr(wrqu->ap_addr.sa_data)) { 6924 /* we disable mandatory BSSID association */ 6925 IPW_DEBUG_WX("exit - disable mandatory BSSID\n"); 6926 priv->config &= ~CFG_STATIC_BSSID; 6927 err = ipw2100_set_mandatory_bssid(priv, NULL, 0); 6928 goto done; 6929 } 6930 6931 priv->config |= CFG_STATIC_BSSID; 6932 memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN); 6933 6934 err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0); 6935 6936 IPW_DEBUG_WX("SET BSSID -> %pM\n", wrqu->ap_addr.sa_data); 6937 6938 done: 6939 mutex_unlock(&priv->action_mutex); 6940 return err; 6941 } 6942 6943 static int ipw2100_wx_get_wap(struct net_device *dev, 6944 struct iw_request_info *info, 6945 union iwreq_data *wrqu, char *extra) 6946 { 6947 /* 6948 * This can be called at any time. No action lock required 6949 */ 6950 6951 struct ipw2100_priv *priv = libipw_priv(dev); 6952 6953 /* If we are associated, trying to associate, or have a statically 6954 * configured BSSID then return that; otherwise return ANY */ 6955 if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) { 6956 wrqu->ap_addr.sa_family = ARPHRD_ETHER; 6957 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN); 6958 } else 6959 eth_zero_addr(wrqu->ap_addr.sa_data); 6960 6961 IPW_DEBUG_WX("Getting WAP BSSID: %pM\n", wrqu->ap_addr.sa_data); 6962 return 0; 6963 } 6964 6965 static int ipw2100_wx_set_essid(struct net_device *dev, 6966 struct iw_request_info *info, 6967 union iwreq_data *wrqu, char *extra) 6968 { 6969 struct ipw2100_priv *priv = libipw_priv(dev); 6970 char *essid = ""; /* ANY */ 6971 int length = 0; 6972 int err = 0; 6973 6974 mutex_lock(&priv->action_mutex); 6975 if (!(priv->status & STATUS_INITIALIZED)) { 6976 err = -EIO; 6977 goto done; 6978 } 6979 6980 if (wrqu->essid.flags && wrqu->essid.length) { 6981 length = wrqu->essid.length; 6982 essid = extra; 6983 } 6984 6985 if (length == 0) { 6986 IPW_DEBUG_WX("Setting ESSID to ANY\n"); 6987 priv->config &= ~CFG_STATIC_ESSID; 6988 err = ipw2100_set_essid(priv, NULL, 0, 0); 6989 goto done; 6990 } 6991 6992 length = min(length, IW_ESSID_MAX_SIZE); 6993 6994 priv->config |= CFG_STATIC_ESSID; 6995 6996 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) { 6997 IPW_DEBUG_WX("ESSID set to current ESSID.\n"); 6998 err = 0; 6999 goto done; 7000 } 7001 7002 IPW_DEBUG_WX("Setting ESSID: '%*pE' (%d)\n", length, essid, length); 7003 7004 priv->essid_len = length; 7005 memcpy(priv->essid, essid, priv->essid_len); 7006 7007 err = ipw2100_set_essid(priv, essid, length, 0); 7008 7009 done: 7010 mutex_unlock(&priv->action_mutex); 7011 return err; 7012 } 7013 7014 static int ipw2100_wx_get_essid(struct net_device *dev, 7015 struct iw_request_info *info, 7016 union iwreq_data *wrqu, char *extra) 7017 { 7018 /* 7019 * This can be called at any time. No action lock required 7020 */ 7021 7022 struct ipw2100_priv *priv = libipw_priv(dev); 7023 7024 /* If we are associated, trying to associate, or have a statically 7025 * configured ESSID then return that; otherwise return ANY */ 7026 if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) { 7027 IPW_DEBUG_WX("Getting essid: '%*pE'\n", 7028 priv->essid_len, priv->essid); 7029 memcpy(extra, priv->essid, priv->essid_len); 7030 wrqu->essid.length = priv->essid_len; 7031 wrqu->essid.flags = 1; /* active */ 7032 } else { 7033 IPW_DEBUG_WX("Getting essid: ANY\n"); 7034 wrqu->essid.length = 0; 7035 wrqu->essid.flags = 0; /* active */ 7036 } 7037 7038 return 0; 7039 } 7040 7041 static int ipw2100_wx_set_nick(struct net_device *dev, 7042 struct iw_request_info *info, 7043 union iwreq_data *wrqu, char *extra) 7044 { 7045 /* 7046 * This can be called at any time. No action lock required 7047 */ 7048 7049 struct ipw2100_priv *priv = libipw_priv(dev); 7050 7051 if (wrqu->data.length > IW_ESSID_MAX_SIZE) 7052 return -E2BIG; 7053 7054 wrqu->data.length = min_t(size_t, wrqu->data.length, sizeof(priv->nick)); 7055 memset(priv->nick, 0, sizeof(priv->nick)); 7056 memcpy(priv->nick, extra, wrqu->data.length); 7057 7058 IPW_DEBUG_WX("SET Nickname -> %s\n", priv->nick); 7059 7060 return 0; 7061 } 7062 7063 static int ipw2100_wx_get_nick(struct net_device *dev, 7064 struct iw_request_info *info, 7065 union iwreq_data *wrqu, char *extra) 7066 { 7067 /* 7068 * This can be called at any time. No action lock required 7069 */ 7070 7071 struct ipw2100_priv *priv = libipw_priv(dev); 7072 7073 wrqu->data.length = strlen(priv->nick); 7074 memcpy(extra, priv->nick, wrqu->data.length); 7075 wrqu->data.flags = 1; /* active */ 7076 7077 IPW_DEBUG_WX("GET Nickname -> %s\n", extra); 7078 7079 return 0; 7080 } 7081 7082 static int ipw2100_wx_set_rate(struct net_device *dev, 7083 struct iw_request_info *info, 7084 union iwreq_data *wrqu, char *extra) 7085 { 7086 struct ipw2100_priv *priv = libipw_priv(dev); 7087 u32 target_rate = wrqu->bitrate.value; 7088 u32 rate; 7089 int err = 0; 7090 7091 mutex_lock(&priv->action_mutex); 7092 if (!(priv->status & STATUS_INITIALIZED)) { 7093 err = -EIO; 7094 goto done; 7095 } 7096 7097 rate = 0; 7098 7099 if (target_rate == 1000000 || 7100 (!wrqu->bitrate.fixed && target_rate > 1000000)) 7101 rate |= TX_RATE_1_MBIT; 7102 if (target_rate == 2000000 || 7103 (!wrqu->bitrate.fixed && target_rate > 2000000)) 7104 rate |= TX_RATE_2_MBIT; 7105 if (target_rate == 5500000 || 7106 (!wrqu->bitrate.fixed && target_rate > 5500000)) 7107 rate |= TX_RATE_5_5_MBIT; 7108 if (target_rate == 11000000 || 7109 (!wrqu->bitrate.fixed && target_rate > 11000000)) 7110 rate |= TX_RATE_11_MBIT; 7111 if (rate == 0) 7112 rate = DEFAULT_TX_RATES; 7113 7114 err = ipw2100_set_tx_rates(priv, rate, 0); 7115 7116 IPW_DEBUG_WX("SET Rate -> %04X\n", rate); 7117 done: 7118 mutex_unlock(&priv->action_mutex); 7119 return err; 7120 } 7121 7122 static int ipw2100_wx_get_rate(struct net_device *dev, 7123 struct iw_request_info *info, 7124 union iwreq_data *wrqu, char *extra) 7125 { 7126 struct ipw2100_priv *priv = libipw_priv(dev); 7127 int val; 7128 unsigned int len = sizeof(val); 7129 int err = 0; 7130 7131 if (!(priv->status & STATUS_ENABLED) || 7132 priv->status & STATUS_RF_KILL_MASK || 7133 !(priv->status & STATUS_ASSOCIATED)) { 7134 wrqu->bitrate.value = 0; 7135 return 0; 7136 } 7137 7138 mutex_lock(&priv->action_mutex); 7139 if (!(priv->status & STATUS_INITIALIZED)) { 7140 err = -EIO; 7141 goto done; 7142 } 7143 7144 err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len); 7145 if (err) { 7146 IPW_DEBUG_WX("failed querying ordinals.\n"); 7147 goto done; 7148 } 7149 7150 switch (val & TX_RATE_MASK) { 7151 case TX_RATE_1_MBIT: 7152 wrqu->bitrate.value = 1000000; 7153 break; 7154 case TX_RATE_2_MBIT: 7155 wrqu->bitrate.value = 2000000; 7156 break; 7157 case TX_RATE_5_5_MBIT: 7158 wrqu->bitrate.value = 5500000; 7159 break; 7160 case TX_RATE_11_MBIT: 7161 wrqu->bitrate.value = 11000000; 7162 break; 7163 default: 7164 wrqu->bitrate.value = 0; 7165 } 7166 7167 IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value); 7168 7169 done: 7170 mutex_unlock(&priv->action_mutex); 7171 return err; 7172 } 7173 7174 static int ipw2100_wx_set_rts(struct net_device *dev, 7175 struct iw_request_info *info, 7176 union iwreq_data *wrqu, char *extra) 7177 { 7178 struct ipw2100_priv *priv = libipw_priv(dev); 7179 int value, err; 7180 7181 /* Auto RTS not yet supported */ 7182 if (wrqu->rts.fixed == 0) 7183 return -EINVAL; 7184 7185 mutex_lock(&priv->action_mutex); 7186 if (!(priv->status & STATUS_INITIALIZED)) { 7187 err = -EIO; 7188 goto done; 7189 } 7190 7191 if (wrqu->rts.disabled) 7192 value = priv->rts_threshold | RTS_DISABLED; 7193 else { 7194 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) { 7195 err = -EINVAL; 7196 goto done; 7197 } 7198 value = wrqu->rts.value; 7199 } 7200 7201 err = ipw2100_set_rts_threshold(priv, value); 7202 7203 IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X\n", value); 7204 done: 7205 mutex_unlock(&priv->action_mutex); 7206 return err; 7207 } 7208 7209 static int ipw2100_wx_get_rts(struct net_device *dev, 7210 struct iw_request_info *info, 7211 union iwreq_data *wrqu, char *extra) 7212 { 7213 /* 7214 * This can be called at any time. No action lock required 7215 */ 7216 7217 struct ipw2100_priv *priv = libipw_priv(dev); 7218 7219 wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED; 7220 wrqu->rts.fixed = 1; /* no auto select */ 7221 7222 /* If RTS is set to the default value, then it is disabled */ 7223 wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0; 7224 7225 IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X\n", wrqu->rts.value); 7226 7227 return 0; 7228 } 7229 7230 static int ipw2100_wx_set_txpow(struct net_device *dev, 7231 struct iw_request_info *info, 7232 union iwreq_data *wrqu, char *extra) 7233 { 7234 struct ipw2100_priv *priv = libipw_priv(dev); 7235 int err = 0, value; 7236 7237 if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled)) 7238 return -EINPROGRESS; 7239 7240 if (priv->ieee->iw_mode != IW_MODE_ADHOC) 7241 return 0; 7242 7243 if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM) 7244 return -EINVAL; 7245 7246 if (wrqu->txpower.fixed == 0) 7247 value = IPW_TX_POWER_DEFAULT; 7248 else { 7249 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM || 7250 wrqu->txpower.value > IPW_TX_POWER_MAX_DBM) 7251 return -EINVAL; 7252 7253 value = wrqu->txpower.value; 7254 } 7255 7256 mutex_lock(&priv->action_mutex); 7257 if (!(priv->status & STATUS_INITIALIZED)) { 7258 err = -EIO; 7259 goto done; 7260 } 7261 7262 err = ipw2100_set_tx_power(priv, value); 7263 7264 IPW_DEBUG_WX("SET TX Power -> %d\n", value); 7265 7266 done: 7267 mutex_unlock(&priv->action_mutex); 7268 return err; 7269 } 7270 7271 static int ipw2100_wx_get_txpow(struct net_device *dev, 7272 struct iw_request_info *info, 7273 union iwreq_data *wrqu, char *extra) 7274 { 7275 /* 7276 * This can be called at any time. No action lock required 7277 */ 7278 7279 struct ipw2100_priv *priv = libipw_priv(dev); 7280 7281 wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0; 7282 7283 if (priv->tx_power == IPW_TX_POWER_DEFAULT) { 7284 wrqu->txpower.fixed = 0; 7285 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM; 7286 } else { 7287 wrqu->txpower.fixed = 1; 7288 wrqu->txpower.value = priv->tx_power; 7289 } 7290 7291 wrqu->txpower.flags = IW_TXPOW_DBM; 7292 7293 IPW_DEBUG_WX("GET TX Power -> %d\n", wrqu->txpower.value); 7294 7295 return 0; 7296 } 7297 7298 static int ipw2100_wx_set_frag(struct net_device *dev, 7299 struct iw_request_info *info, 7300 union iwreq_data *wrqu, char *extra) 7301 { 7302 /* 7303 * This can be called at any time. No action lock required 7304 */ 7305 7306 struct ipw2100_priv *priv = libipw_priv(dev); 7307 7308 if (!wrqu->frag.fixed) 7309 return -EINVAL; 7310 7311 if (wrqu->frag.disabled) { 7312 priv->frag_threshold |= FRAG_DISABLED; 7313 priv->ieee->fts = DEFAULT_FTS; 7314 } else { 7315 if (wrqu->frag.value < MIN_FRAG_THRESHOLD || 7316 wrqu->frag.value > MAX_FRAG_THRESHOLD) 7317 return -EINVAL; 7318 7319 priv->ieee->fts = wrqu->frag.value & ~0x1; 7320 priv->frag_threshold = priv->ieee->fts; 7321 } 7322 7323 IPW_DEBUG_WX("SET Frag Threshold -> %d\n", priv->ieee->fts); 7324 7325 return 0; 7326 } 7327 7328 static int ipw2100_wx_get_frag(struct net_device *dev, 7329 struct iw_request_info *info, 7330 union iwreq_data *wrqu, char *extra) 7331 { 7332 /* 7333 * This can be called at any time. No action lock required 7334 */ 7335 7336 struct ipw2100_priv *priv = libipw_priv(dev); 7337 wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED; 7338 wrqu->frag.fixed = 0; /* no auto select */ 7339 wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0; 7340 7341 IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value); 7342 7343 return 0; 7344 } 7345 7346 static int ipw2100_wx_set_retry(struct net_device *dev, 7347 struct iw_request_info *info, 7348 union iwreq_data *wrqu, char *extra) 7349 { 7350 struct ipw2100_priv *priv = libipw_priv(dev); 7351 int err = 0; 7352 7353 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled) 7354 return -EINVAL; 7355 7356 if (!(wrqu->retry.flags & IW_RETRY_LIMIT)) 7357 return 0; 7358 7359 mutex_lock(&priv->action_mutex); 7360 if (!(priv->status & STATUS_INITIALIZED)) { 7361 err = -EIO; 7362 goto done; 7363 } 7364 7365 if (wrqu->retry.flags & IW_RETRY_SHORT) { 7366 err = ipw2100_set_short_retry(priv, wrqu->retry.value); 7367 IPW_DEBUG_WX("SET Short Retry Limit -> %d\n", 7368 wrqu->retry.value); 7369 goto done; 7370 } 7371 7372 if (wrqu->retry.flags & IW_RETRY_LONG) { 7373 err = ipw2100_set_long_retry(priv, wrqu->retry.value); 7374 IPW_DEBUG_WX("SET Long Retry Limit -> %d\n", 7375 wrqu->retry.value); 7376 goto done; 7377 } 7378 7379 err = ipw2100_set_short_retry(priv, wrqu->retry.value); 7380 if (!err) 7381 err = ipw2100_set_long_retry(priv, wrqu->retry.value); 7382 7383 IPW_DEBUG_WX("SET Both Retry Limits -> %d\n", wrqu->retry.value); 7384 7385 done: 7386 mutex_unlock(&priv->action_mutex); 7387 return err; 7388 } 7389 7390 static int ipw2100_wx_get_retry(struct net_device *dev, 7391 struct iw_request_info *info, 7392 union iwreq_data *wrqu, char *extra) 7393 { 7394 /* 7395 * This can be called at any time. No action lock required 7396 */ 7397 7398 struct ipw2100_priv *priv = libipw_priv(dev); 7399 7400 wrqu->retry.disabled = 0; /* can't be disabled */ 7401 7402 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) 7403 return -EINVAL; 7404 7405 if (wrqu->retry.flags & IW_RETRY_LONG) { 7406 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG; 7407 wrqu->retry.value = priv->long_retry_limit; 7408 } else { 7409 wrqu->retry.flags = 7410 (priv->short_retry_limit != 7411 priv->long_retry_limit) ? 7412 IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT; 7413 7414 wrqu->retry.value = priv->short_retry_limit; 7415 } 7416 7417 IPW_DEBUG_WX("GET Retry -> %d\n", wrqu->retry.value); 7418 7419 return 0; 7420 } 7421 7422 static int ipw2100_wx_set_scan(struct net_device *dev, 7423 struct iw_request_info *info, 7424 union iwreq_data *wrqu, char *extra) 7425 { 7426 struct ipw2100_priv *priv = libipw_priv(dev); 7427 int err = 0; 7428 7429 mutex_lock(&priv->action_mutex); 7430 if (!(priv->status & STATUS_INITIALIZED)) { 7431 err = -EIO; 7432 goto done; 7433 } 7434 7435 IPW_DEBUG_WX("Initiating scan...\n"); 7436 7437 priv->user_requested_scan = 1; 7438 if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) { 7439 IPW_DEBUG_WX("Start scan failed.\n"); 7440 7441 /* TODO: Mark a scan as pending so when hardware initialized 7442 * a scan starts */ 7443 } 7444 7445 done: 7446 mutex_unlock(&priv->action_mutex); 7447 return err; 7448 } 7449 7450 static int ipw2100_wx_get_scan(struct net_device *dev, 7451 struct iw_request_info *info, 7452 union iwreq_data *wrqu, char *extra) 7453 { 7454 /* 7455 * This can be called at any time. No action lock required 7456 */ 7457 7458 struct ipw2100_priv *priv = libipw_priv(dev); 7459 return libipw_wx_get_scan(priv->ieee, info, wrqu, extra); 7460 } 7461 7462 /* 7463 * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c 7464 */ 7465 static int ipw2100_wx_set_encode(struct net_device *dev, 7466 struct iw_request_info *info, 7467 union iwreq_data *wrqu, char *key) 7468 { 7469 /* 7470 * No check of STATUS_INITIALIZED required 7471 */ 7472 7473 struct ipw2100_priv *priv = libipw_priv(dev); 7474 return libipw_wx_set_encode(priv->ieee, info, wrqu, key); 7475 } 7476 7477 static int ipw2100_wx_get_encode(struct net_device *dev, 7478 struct iw_request_info *info, 7479 union iwreq_data *wrqu, char *key) 7480 { 7481 /* 7482 * This can be called at any time. No action lock required 7483 */ 7484 7485 struct ipw2100_priv *priv = libipw_priv(dev); 7486 return libipw_wx_get_encode(priv->ieee, info, wrqu, key); 7487 } 7488 7489 static int ipw2100_wx_set_power(struct net_device *dev, 7490 struct iw_request_info *info, 7491 union iwreq_data *wrqu, char *extra) 7492 { 7493 struct ipw2100_priv *priv = libipw_priv(dev); 7494 int err = 0; 7495 7496 mutex_lock(&priv->action_mutex); 7497 if (!(priv->status & STATUS_INITIALIZED)) { 7498 err = -EIO; 7499 goto done; 7500 } 7501 7502 if (wrqu->power.disabled) { 7503 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode); 7504 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM); 7505 IPW_DEBUG_WX("SET Power Management Mode -> off\n"); 7506 goto done; 7507 } 7508 7509 switch (wrqu->power.flags & IW_POWER_MODE) { 7510 case IW_POWER_ON: /* If not specified */ 7511 case IW_POWER_MODE: /* If set all mask */ 7512 case IW_POWER_ALL_R: /* If explicitly state all */ 7513 break; 7514 default: /* Otherwise we don't support it */ 7515 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n", 7516 wrqu->power.flags); 7517 err = -EOPNOTSUPP; 7518 goto done; 7519 } 7520 7521 /* If the user hasn't specified a power management mode yet, default 7522 * to BATTERY */ 7523 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode; 7524 err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode)); 7525 7526 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode); 7527 7528 done: 7529 mutex_unlock(&priv->action_mutex); 7530 return err; 7531 7532 } 7533 7534 static int ipw2100_wx_get_power(struct net_device *dev, 7535 struct iw_request_info *info, 7536 union iwreq_data *wrqu, char *extra) 7537 { 7538 /* 7539 * This can be called at any time. No action lock required 7540 */ 7541 7542 struct ipw2100_priv *priv = libipw_priv(dev); 7543 7544 if (!(priv->power_mode & IPW_POWER_ENABLED)) 7545 wrqu->power.disabled = 1; 7546 else { 7547 wrqu->power.disabled = 0; 7548 wrqu->power.flags = 0; 7549 } 7550 7551 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode); 7552 7553 return 0; 7554 } 7555 7556 /* 7557 * WE-18 WPA support 7558 */ 7559 7560 /* SIOCSIWGENIE */ 7561 static int ipw2100_wx_set_genie(struct net_device *dev, 7562 struct iw_request_info *info, 7563 union iwreq_data *wrqu, char *extra) 7564 { 7565 7566 struct ipw2100_priv *priv = libipw_priv(dev); 7567 struct libipw_device *ieee = priv->ieee; 7568 u8 *buf; 7569 7570 if (!ieee->wpa_enabled) 7571 return -EOPNOTSUPP; 7572 7573 if (wrqu->data.length > MAX_WPA_IE_LEN || 7574 (wrqu->data.length && extra == NULL)) 7575 return -EINVAL; 7576 7577 if (wrqu->data.length) { 7578 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL); 7579 if (buf == NULL) 7580 return -ENOMEM; 7581 7582 kfree(ieee->wpa_ie); 7583 ieee->wpa_ie = buf; 7584 ieee->wpa_ie_len = wrqu->data.length; 7585 } else { 7586 kfree(ieee->wpa_ie); 7587 ieee->wpa_ie = NULL; 7588 ieee->wpa_ie_len = 0; 7589 } 7590 7591 ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len); 7592 7593 return 0; 7594 } 7595 7596 /* SIOCGIWGENIE */ 7597 static int ipw2100_wx_get_genie(struct net_device *dev, 7598 struct iw_request_info *info, 7599 union iwreq_data *wrqu, char *extra) 7600 { 7601 struct ipw2100_priv *priv = libipw_priv(dev); 7602 struct libipw_device *ieee = priv->ieee; 7603 7604 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) { 7605 wrqu->data.length = 0; 7606 return 0; 7607 } 7608 7609 if (wrqu->data.length < ieee->wpa_ie_len) 7610 return -E2BIG; 7611 7612 wrqu->data.length = ieee->wpa_ie_len; 7613 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len); 7614 7615 return 0; 7616 } 7617 7618 /* SIOCSIWAUTH */ 7619 static int ipw2100_wx_set_auth(struct net_device *dev, 7620 struct iw_request_info *info, 7621 union iwreq_data *wrqu, char *extra) 7622 { 7623 struct ipw2100_priv *priv = libipw_priv(dev); 7624 struct libipw_device *ieee = priv->ieee; 7625 struct iw_param *param = &wrqu->param; 7626 struct lib80211_crypt_data *crypt; 7627 unsigned long flags; 7628 int ret = 0; 7629 7630 switch (param->flags & IW_AUTH_INDEX) { 7631 case IW_AUTH_WPA_VERSION: 7632 case IW_AUTH_CIPHER_PAIRWISE: 7633 case IW_AUTH_CIPHER_GROUP: 7634 case IW_AUTH_KEY_MGMT: 7635 /* 7636 * ipw2200 does not use these parameters 7637 */ 7638 break; 7639 7640 case IW_AUTH_TKIP_COUNTERMEASURES: 7641 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx]; 7642 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags) 7643 break; 7644 7645 flags = crypt->ops->get_flags(crypt->priv); 7646 7647 if (param->value) 7648 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES; 7649 else 7650 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES; 7651 7652 crypt->ops->set_flags(flags, crypt->priv); 7653 7654 break; 7655 7656 case IW_AUTH_DROP_UNENCRYPTED:{ 7657 /* HACK: 7658 * 7659 * wpa_supplicant calls set_wpa_enabled when the driver 7660 * is loaded and unloaded, regardless of if WPA is being 7661 * used. No other calls are made which can be used to 7662 * determine if encryption will be used or not prior to 7663 * association being expected. If encryption is not being 7664 * used, drop_unencrypted is set to false, else true -- we 7665 * can use this to determine if the CAP_PRIVACY_ON bit should 7666 * be set. 7667 */ 7668 struct libipw_security sec = { 7669 .flags = SEC_ENABLED, 7670 .enabled = param->value, 7671 }; 7672 priv->ieee->drop_unencrypted = param->value; 7673 /* We only change SEC_LEVEL for open mode. Others 7674 * are set by ipw_wpa_set_encryption. 7675 */ 7676 if (!param->value) { 7677 sec.flags |= SEC_LEVEL; 7678 sec.level = SEC_LEVEL_0; 7679 } else { 7680 sec.flags |= SEC_LEVEL; 7681 sec.level = SEC_LEVEL_1; 7682 } 7683 if (priv->ieee->set_security) 7684 priv->ieee->set_security(priv->ieee->dev, &sec); 7685 break; 7686 } 7687 7688 case IW_AUTH_80211_AUTH_ALG: 7689 ret = ipw2100_wpa_set_auth_algs(priv, param->value); 7690 break; 7691 7692 case IW_AUTH_WPA_ENABLED: 7693 ret = ipw2100_wpa_enable(priv, param->value); 7694 break; 7695 7696 case IW_AUTH_RX_UNENCRYPTED_EAPOL: 7697 ieee->ieee802_1x = param->value; 7698 break; 7699 7700 //case IW_AUTH_ROAMING_CONTROL: 7701 case IW_AUTH_PRIVACY_INVOKED: 7702 ieee->privacy_invoked = param->value; 7703 break; 7704 7705 default: 7706 return -EOPNOTSUPP; 7707 } 7708 return ret; 7709 } 7710 7711 /* SIOCGIWAUTH */ 7712 static int ipw2100_wx_get_auth(struct net_device *dev, 7713 struct iw_request_info *info, 7714 union iwreq_data *wrqu, char *extra) 7715 { 7716 struct ipw2100_priv *priv = libipw_priv(dev); 7717 struct libipw_device *ieee = priv->ieee; 7718 struct lib80211_crypt_data *crypt; 7719 struct iw_param *param = &wrqu->param; 7720 7721 switch (param->flags & IW_AUTH_INDEX) { 7722 case IW_AUTH_WPA_VERSION: 7723 case IW_AUTH_CIPHER_PAIRWISE: 7724 case IW_AUTH_CIPHER_GROUP: 7725 case IW_AUTH_KEY_MGMT: 7726 /* 7727 * wpa_supplicant will control these internally 7728 */ 7729 break; 7730 7731 case IW_AUTH_TKIP_COUNTERMEASURES: 7732 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx]; 7733 if (!crypt || !crypt->ops->get_flags) { 7734 IPW_DEBUG_WARNING("Can't get TKIP countermeasures: " 7735 "crypt not set!\n"); 7736 break; 7737 } 7738 7739 param->value = (crypt->ops->get_flags(crypt->priv) & 7740 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0; 7741 7742 break; 7743 7744 case IW_AUTH_DROP_UNENCRYPTED: 7745 param->value = ieee->drop_unencrypted; 7746 break; 7747 7748 case IW_AUTH_80211_AUTH_ALG: 7749 param->value = priv->ieee->sec.auth_mode; 7750 break; 7751 7752 case IW_AUTH_WPA_ENABLED: 7753 param->value = ieee->wpa_enabled; 7754 break; 7755 7756 case IW_AUTH_RX_UNENCRYPTED_EAPOL: 7757 param->value = ieee->ieee802_1x; 7758 break; 7759 7760 case IW_AUTH_ROAMING_CONTROL: 7761 case IW_AUTH_PRIVACY_INVOKED: 7762 param->value = ieee->privacy_invoked; 7763 break; 7764 7765 default: 7766 return -EOPNOTSUPP; 7767 } 7768 return 0; 7769 } 7770 7771 /* SIOCSIWENCODEEXT */ 7772 static int ipw2100_wx_set_encodeext(struct net_device *dev, 7773 struct iw_request_info *info, 7774 union iwreq_data *wrqu, char *extra) 7775 { 7776 struct ipw2100_priv *priv = libipw_priv(dev); 7777 return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra); 7778 } 7779 7780 /* SIOCGIWENCODEEXT */ 7781 static int ipw2100_wx_get_encodeext(struct net_device *dev, 7782 struct iw_request_info *info, 7783 union iwreq_data *wrqu, char *extra) 7784 { 7785 struct ipw2100_priv *priv = libipw_priv(dev); 7786 return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra); 7787 } 7788 7789 /* SIOCSIWMLME */ 7790 static int ipw2100_wx_set_mlme(struct net_device *dev, 7791 struct iw_request_info *info, 7792 union iwreq_data *wrqu, char *extra) 7793 { 7794 struct ipw2100_priv *priv = libipw_priv(dev); 7795 struct iw_mlme *mlme = (struct iw_mlme *)extra; 7796 7797 switch (mlme->cmd) { 7798 case IW_MLME_DEAUTH: 7799 // silently ignore 7800 break; 7801 7802 case IW_MLME_DISASSOC: 7803 ipw2100_disassociate_bssid(priv); 7804 break; 7805 7806 default: 7807 return -EOPNOTSUPP; 7808 } 7809 return 0; 7810 } 7811 7812 /* 7813 * 7814 * IWPRIV handlers 7815 * 7816 */ 7817 #ifdef CONFIG_IPW2100_MONITOR 7818 static int ipw2100_wx_set_promisc(struct net_device *dev, 7819 struct iw_request_info *info, 7820 union iwreq_data *wrqu, char *extra) 7821 { 7822 struct ipw2100_priv *priv = libipw_priv(dev); 7823 int *parms = (int *)extra; 7824 int enable = (parms[0] > 0); 7825 int err = 0; 7826 7827 mutex_lock(&priv->action_mutex); 7828 if (!(priv->status & STATUS_INITIALIZED)) { 7829 err = -EIO; 7830 goto done; 7831 } 7832 7833 if (enable) { 7834 if (priv->ieee->iw_mode == IW_MODE_MONITOR) { 7835 err = ipw2100_set_channel(priv, parms[1], 0); 7836 goto done; 7837 } 7838 priv->channel = parms[1]; 7839 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR); 7840 } else { 7841 if (priv->ieee->iw_mode == IW_MODE_MONITOR) 7842 err = ipw2100_switch_mode(priv, priv->last_mode); 7843 } 7844 done: 7845 mutex_unlock(&priv->action_mutex); 7846 return err; 7847 } 7848 7849 static int ipw2100_wx_reset(struct net_device *dev, 7850 struct iw_request_info *info, 7851 union iwreq_data *wrqu, char *extra) 7852 { 7853 struct ipw2100_priv *priv = libipw_priv(dev); 7854 if (priv->status & STATUS_INITIALIZED) 7855 schedule_reset(priv); 7856 return 0; 7857 } 7858 7859 #endif 7860 7861 static int ipw2100_wx_set_powermode(struct net_device *dev, 7862 struct iw_request_info *info, 7863 union iwreq_data *wrqu, char *extra) 7864 { 7865 struct ipw2100_priv *priv = libipw_priv(dev); 7866 int err = 0, mode = *(int *)extra; 7867 7868 mutex_lock(&priv->action_mutex); 7869 if (!(priv->status & STATUS_INITIALIZED)) { 7870 err = -EIO; 7871 goto done; 7872 } 7873 7874 if ((mode < 0) || (mode > POWER_MODES)) 7875 mode = IPW_POWER_AUTO; 7876 7877 if (IPW_POWER_LEVEL(priv->power_mode) != mode) 7878 err = ipw2100_set_power_mode(priv, mode); 7879 done: 7880 mutex_unlock(&priv->action_mutex); 7881 return err; 7882 } 7883 7884 #define MAX_POWER_STRING 80 7885 static int ipw2100_wx_get_powermode(struct net_device *dev, 7886 struct iw_request_info *info, 7887 union iwreq_data *wrqu, char *extra) 7888 { 7889 /* 7890 * This can be called at any time. No action lock required 7891 */ 7892 7893 struct ipw2100_priv *priv = libipw_priv(dev); 7894 int level = IPW_POWER_LEVEL(priv->power_mode); 7895 s32 timeout, period; 7896 7897 if (!(priv->power_mode & IPW_POWER_ENABLED)) { 7898 snprintf(extra, MAX_POWER_STRING, 7899 "Power save level: %d (Off)", level); 7900 } else { 7901 switch (level) { 7902 case IPW_POWER_MODE_CAM: 7903 snprintf(extra, MAX_POWER_STRING, 7904 "Power save level: %d (None)", level); 7905 break; 7906 case IPW_POWER_AUTO: 7907 snprintf(extra, MAX_POWER_STRING, 7908 "Power save level: %d (Auto)", level); 7909 break; 7910 default: 7911 timeout = timeout_duration[level - 1] / 1000; 7912 period = period_duration[level - 1] / 1000; 7913 snprintf(extra, MAX_POWER_STRING, 7914 "Power save level: %d " 7915 "(Timeout %dms, Period %dms)", 7916 level, timeout, period); 7917 } 7918 } 7919 7920 wrqu->data.length = strlen(extra) + 1; 7921 7922 return 0; 7923 } 7924 7925 static int ipw2100_wx_set_preamble(struct net_device *dev, 7926 struct iw_request_info *info, 7927 union iwreq_data *wrqu, char *extra) 7928 { 7929 struct ipw2100_priv *priv = libipw_priv(dev); 7930 int err, mode = *(int *)extra; 7931 7932 mutex_lock(&priv->action_mutex); 7933 if (!(priv->status & STATUS_INITIALIZED)) { 7934 err = -EIO; 7935 goto done; 7936 } 7937 7938 if (mode == 1) 7939 priv->config |= CFG_LONG_PREAMBLE; 7940 else if (mode == 0) 7941 priv->config &= ~CFG_LONG_PREAMBLE; 7942 else { 7943 err = -EINVAL; 7944 goto done; 7945 } 7946 7947 err = ipw2100_system_config(priv, 0); 7948 7949 done: 7950 mutex_unlock(&priv->action_mutex); 7951 return err; 7952 } 7953 7954 static int ipw2100_wx_get_preamble(struct net_device *dev, 7955 struct iw_request_info *info, 7956 union iwreq_data *wrqu, char *extra) 7957 { 7958 /* 7959 * This can be called at any time. No action lock required 7960 */ 7961 7962 struct ipw2100_priv *priv = libipw_priv(dev); 7963 7964 if (priv->config & CFG_LONG_PREAMBLE) 7965 snprintf(wrqu->name, IFNAMSIZ, "long (1)"); 7966 else 7967 snprintf(wrqu->name, IFNAMSIZ, "auto (0)"); 7968 7969 return 0; 7970 } 7971 7972 #ifdef CONFIG_IPW2100_MONITOR 7973 static int ipw2100_wx_set_crc_check(struct net_device *dev, 7974 struct iw_request_info *info, 7975 union iwreq_data *wrqu, char *extra) 7976 { 7977 struct ipw2100_priv *priv = libipw_priv(dev); 7978 int err, mode = *(int *)extra; 7979 7980 mutex_lock(&priv->action_mutex); 7981 if (!(priv->status & STATUS_INITIALIZED)) { 7982 err = -EIO; 7983 goto done; 7984 } 7985 7986 if (mode == 1) 7987 priv->config |= CFG_CRC_CHECK; 7988 else if (mode == 0) 7989 priv->config &= ~CFG_CRC_CHECK; 7990 else { 7991 err = -EINVAL; 7992 goto done; 7993 } 7994 err = 0; 7995 7996 done: 7997 mutex_unlock(&priv->action_mutex); 7998 return err; 7999 } 8000 8001 static int ipw2100_wx_get_crc_check(struct net_device *dev, 8002 struct iw_request_info *info, 8003 union iwreq_data *wrqu, char *extra) 8004 { 8005 /* 8006 * This can be called at any time. No action lock required 8007 */ 8008 8009 struct ipw2100_priv *priv = libipw_priv(dev); 8010 8011 if (priv->config & CFG_CRC_CHECK) 8012 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)"); 8013 else 8014 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)"); 8015 8016 return 0; 8017 } 8018 #endif /* CONFIG_IPW2100_MONITOR */ 8019 8020 static iw_handler ipw2100_wx_handlers[] = { 8021 IW_HANDLER(SIOCGIWNAME, ipw2100_wx_get_name), 8022 IW_HANDLER(SIOCSIWFREQ, ipw2100_wx_set_freq), 8023 IW_HANDLER(SIOCGIWFREQ, ipw2100_wx_get_freq), 8024 IW_HANDLER(SIOCSIWMODE, ipw2100_wx_set_mode), 8025 IW_HANDLER(SIOCGIWMODE, ipw2100_wx_get_mode), 8026 IW_HANDLER(SIOCGIWRANGE, ipw2100_wx_get_range), 8027 IW_HANDLER(SIOCSIWAP, ipw2100_wx_set_wap), 8028 IW_HANDLER(SIOCGIWAP, ipw2100_wx_get_wap), 8029 IW_HANDLER(SIOCSIWMLME, ipw2100_wx_set_mlme), 8030 IW_HANDLER(SIOCSIWSCAN, ipw2100_wx_set_scan), 8031 IW_HANDLER(SIOCGIWSCAN, ipw2100_wx_get_scan), 8032 IW_HANDLER(SIOCSIWESSID, ipw2100_wx_set_essid), 8033 IW_HANDLER(SIOCGIWESSID, ipw2100_wx_get_essid), 8034 IW_HANDLER(SIOCSIWNICKN, ipw2100_wx_set_nick), 8035 IW_HANDLER(SIOCGIWNICKN, ipw2100_wx_get_nick), 8036 IW_HANDLER(SIOCSIWRATE, ipw2100_wx_set_rate), 8037 IW_HANDLER(SIOCGIWRATE, ipw2100_wx_get_rate), 8038 IW_HANDLER(SIOCSIWRTS, ipw2100_wx_set_rts), 8039 IW_HANDLER(SIOCGIWRTS, ipw2100_wx_get_rts), 8040 IW_HANDLER(SIOCSIWFRAG, ipw2100_wx_set_frag), 8041 IW_HANDLER(SIOCGIWFRAG, ipw2100_wx_get_frag), 8042 IW_HANDLER(SIOCSIWTXPOW, ipw2100_wx_set_txpow), 8043 IW_HANDLER(SIOCGIWTXPOW, ipw2100_wx_get_txpow), 8044 IW_HANDLER(SIOCSIWRETRY, ipw2100_wx_set_retry), 8045 IW_HANDLER(SIOCGIWRETRY, ipw2100_wx_get_retry), 8046 IW_HANDLER(SIOCSIWENCODE, ipw2100_wx_set_encode), 8047 IW_HANDLER(SIOCGIWENCODE, ipw2100_wx_get_encode), 8048 IW_HANDLER(SIOCSIWPOWER, ipw2100_wx_set_power), 8049 IW_HANDLER(SIOCGIWPOWER, ipw2100_wx_get_power), 8050 IW_HANDLER(SIOCSIWGENIE, ipw2100_wx_set_genie), 8051 IW_HANDLER(SIOCGIWGENIE, ipw2100_wx_get_genie), 8052 IW_HANDLER(SIOCSIWAUTH, ipw2100_wx_set_auth), 8053 IW_HANDLER(SIOCGIWAUTH, ipw2100_wx_get_auth), 8054 IW_HANDLER(SIOCSIWENCODEEXT, ipw2100_wx_set_encodeext), 8055 IW_HANDLER(SIOCGIWENCODEEXT, ipw2100_wx_get_encodeext), 8056 }; 8057 8058 #define IPW2100_PRIV_SET_MONITOR SIOCIWFIRSTPRIV 8059 #define IPW2100_PRIV_RESET SIOCIWFIRSTPRIV+1 8060 #define IPW2100_PRIV_SET_POWER SIOCIWFIRSTPRIV+2 8061 #define IPW2100_PRIV_GET_POWER SIOCIWFIRSTPRIV+3 8062 #define IPW2100_PRIV_SET_LONGPREAMBLE SIOCIWFIRSTPRIV+4 8063 #define IPW2100_PRIV_GET_LONGPREAMBLE SIOCIWFIRSTPRIV+5 8064 #define IPW2100_PRIV_SET_CRC_CHECK SIOCIWFIRSTPRIV+6 8065 #define IPW2100_PRIV_GET_CRC_CHECK SIOCIWFIRSTPRIV+7 8066 8067 static const struct iw_priv_args ipw2100_private_args[] = { 8068 8069 #ifdef CONFIG_IPW2100_MONITOR 8070 { 8071 IPW2100_PRIV_SET_MONITOR, 8072 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"}, 8073 { 8074 IPW2100_PRIV_RESET, 8075 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"}, 8076 #endif /* CONFIG_IPW2100_MONITOR */ 8077 8078 { 8079 IPW2100_PRIV_SET_POWER, 8080 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"}, 8081 { 8082 IPW2100_PRIV_GET_POWER, 8083 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING, 8084 "get_power"}, 8085 { 8086 IPW2100_PRIV_SET_LONGPREAMBLE, 8087 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"}, 8088 { 8089 IPW2100_PRIV_GET_LONGPREAMBLE, 8090 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"}, 8091 #ifdef CONFIG_IPW2100_MONITOR 8092 { 8093 IPW2100_PRIV_SET_CRC_CHECK, 8094 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"}, 8095 { 8096 IPW2100_PRIV_GET_CRC_CHECK, 8097 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"}, 8098 #endif /* CONFIG_IPW2100_MONITOR */ 8099 }; 8100 8101 static iw_handler ipw2100_private_handler[] = { 8102 #ifdef CONFIG_IPW2100_MONITOR 8103 ipw2100_wx_set_promisc, 8104 ipw2100_wx_reset, 8105 #else /* CONFIG_IPW2100_MONITOR */ 8106 NULL, 8107 NULL, 8108 #endif /* CONFIG_IPW2100_MONITOR */ 8109 ipw2100_wx_set_powermode, 8110 ipw2100_wx_get_powermode, 8111 ipw2100_wx_set_preamble, 8112 ipw2100_wx_get_preamble, 8113 #ifdef CONFIG_IPW2100_MONITOR 8114 ipw2100_wx_set_crc_check, 8115 ipw2100_wx_get_crc_check, 8116 #else /* CONFIG_IPW2100_MONITOR */ 8117 NULL, 8118 NULL, 8119 #endif /* CONFIG_IPW2100_MONITOR */ 8120 }; 8121 8122 /* 8123 * Get wireless statistics. 8124 * Called by /proc/net/wireless 8125 * Also called by SIOCGIWSTATS 8126 */ 8127 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev) 8128 { 8129 enum { 8130 POOR = 30, 8131 FAIR = 60, 8132 GOOD = 80, 8133 VERY_GOOD = 90, 8134 EXCELLENT = 95, 8135 PERFECT = 100 8136 }; 8137 int rssi_qual; 8138 int tx_qual; 8139 int beacon_qual; 8140 int quality; 8141 8142 struct ipw2100_priv *priv = libipw_priv(dev); 8143 struct iw_statistics *wstats; 8144 u32 rssi, tx_retries, missed_beacons, tx_failures; 8145 u32 ord_len = sizeof(u32); 8146 8147 if (!priv) 8148 return (struct iw_statistics *)NULL; 8149 8150 wstats = &priv->wstats; 8151 8152 /* if hw is disabled, then ipw2100_get_ordinal() can't be called. 8153 * ipw2100_wx_wireless_stats seems to be called before fw is 8154 * initialized. STATUS_ASSOCIATED will only be set if the hw is up 8155 * and associated; if not associcated, the values are all meaningless 8156 * anyway, so set them all to NULL and INVALID */ 8157 if (!(priv->status & STATUS_ASSOCIATED)) { 8158 wstats->miss.beacon = 0; 8159 wstats->discard.retries = 0; 8160 wstats->qual.qual = 0; 8161 wstats->qual.level = 0; 8162 wstats->qual.noise = 0; 8163 wstats->qual.updated = 7; 8164 wstats->qual.updated |= IW_QUAL_NOISE_INVALID | 8165 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID; 8166 return wstats; 8167 } 8168 8169 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS, 8170 &missed_beacons, &ord_len)) 8171 goto fail_get_ordinal; 8172 8173 /* If we don't have a connection the quality and level is 0 */ 8174 if (!(priv->status & STATUS_ASSOCIATED)) { 8175 wstats->qual.qual = 0; 8176 wstats->qual.level = 0; 8177 } else { 8178 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR, 8179 &rssi, &ord_len)) 8180 goto fail_get_ordinal; 8181 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM; 8182 if (rssi < 10) 8183 rssi_qual = rssi * POOR / 10; 8184 else if (rssi < 15) 8185 rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR; 8186 else if (rssi < 20) 8187 rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR; 8188 else if (rssi < 30) 8189 rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) / 8190 10 + GOOD; 8191 else 8192 rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) / 8193 10 + VERY_GOOD; 8194 8195 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES, 8196 &tx_retries, &ord_len)) 8197 goto fail_get_ordinal; 8198 8199 if (tx_retries > 75) 8200 tx_qual = (90 - tx_retries) * POOR / 15; 8201 else if (tx_retries > 70) 8202 tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR; 8203 else if (tx_retries > 65) 8204 tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR; 8205 else if (tx_retries > 50) 8206 tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) / 8207 15 + GOOD; 8208 else 8209 tx_qual = (50 - tx_retries) * 8210 (PERFECT - VERY_GOOD) / 50 + VERY_GOOD; 8211 8212 if (missed_beacons > 50) 8213 beacon_qual = (60 - missed_beacons) * POOR / 10; 8214 else if (missed_beacons > 40) 8215 beacon_qual = (50 - missed_beacons) * (FAIR - POOR) / 8216 10 + POOR; 8217 else if (missed_beacons > 32) 8218 beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) / 8219 18 + FAIR; 8220 else if (missed_beacons > 20) 8221 beacon_qual = (32 - missed_beacons) * 8222 (VERY_GOOD - GOOD) / 20 + GOOD; 8223 else 8224 beacon_qual = (20 - missed_beacons) * 8225 (PERFECT - VERY_GOOD) / 20 + VERY_GOOD; 8226 8227 quality = min(tx_qual, rssi_qual); 8228 quality = min(beacon_qual, quality); 8229 8230 #ifdef CONFIG_IPW2100_DEBUG 8231 if (beacon_qual == quality) 8232 IPW_DEBUG_WX("Quality clamped by Missed Beacons\n"); 8233 else if (tx_qual == quality) 8234 IPW_DEBUG_WX("Quality clamped by Tx Retries\n"); 8235 else if (quality != 100) 8236 IPW_DEBUG_WX("Quality clamped by Signal Strength\n"); 8237 else 8238 IPW_DEBUG_WX("Quality not clamped.\n"); 8239 #endif 8240 8241 wstats->qual.qual = quality; 8242 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM; 8243 } 8244 8245 wstats->qual.noise = 0; 8246 wstats->qual.updated = 7; 8247 wstats->qual.updated |= IW_QUAL_NOISE_INVALID; 8248 8249 /* FIXME: this is percent and not a # */ 8250 wstats->miss.beacon = missed_beacons; 8251 8252 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES, 8253 &tx_failures, &ord_len)) 8254 goto fail_get_ordinal; 8255 wstats->discard.retries = tx_failures; 8256 8257 return wstats; 8258 8259 fail_get_ordinal: 8260 IPW_DEBUG_WX("failed querying ordinals.\n"); 8261 8262 return (struct iw_statistics *)NULL; 8263 } 8264 8265 static const struct iw_handler_def ipw2100_wx_handler_def = { 8266 .standard = ipw2100_wx_handlers, 8267 .num_standard = ARRAY_SIZE(ipw2100_wx_handlers), 8268 .num_private = ARRAY_SIZE(ipw2100_private_handler), 8269 .num_private_args = ARRAY_SIZE(ipw2100_private_args), 8270 .private = (iw_handler *) ipw2100_private_handler, 8271 .private_args = (struct iw_priv_args *)ipw2100_private_args, 8272 .get_wireless_stats = ipw2100_wx_wireless_stats, 8273 }; 8274 8275 static void ipw2100_wx_event_work(struct work_struct *work) 8276 { 8277 struct ipw2100_priv *priv = 8278 container_of(work, struct ipw2100_priv, wx_event_work.work); 8279 union iwreq_data wrqu; 8280 unsigned int len = ETH_ALEN; 8281 8282 if (priv->status & STATUS_STOPPING) 8283 return; 8284 8285 mutex_lock(&priv->action_mutex); 8286 8287 IPW_DEBUG_WX("enter\n"); 8288 8289 mutex_unlock(&priv->action_mutex); 8290 8291 wrqu.ap_addr.sa_family = ARPHRD_ETHER; 8292 8293 /* Fetch BSSID from the hardware */ 8294 if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) || 8295 priv->status & STATUS_RF_KILL_MASK || 8296 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, 8297 &priv->bssid, &len)) { 8298 eth_zero_addr(wrqu.ap_addr.sa_data); 8299 } else { 8300 /* We now have the BSSID, so can finish setting to the full 8301 * associated state */ 8302 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN); 8303 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN); 8304 priv->status &= ~STATUS_ASSOCIATING; 8305 priv->status |= STATUS_ASSOCIATED; 8306 netif_carrier_on(priv->net_dev); 8307 netif_wake_queue(priv->net_dev); 8308 } 8309 8310 if (!(priv->status & STATUS_ASSOCIATED)) { 8311 IPW_DEBUG_WX("Configuring ESSID\n"); 8312 mutex_lock(&priv->action_mutex); 8313 /* This is a disassociation event, so kick the firmware to 8314 * look for another AP */ 8315 if (priv->config & CFG_STATIC_ESSID) 8316 ipw2100_set_essid(priv, priv->essid, priv->essid_len, 8317 0); 8318 else 8319 ipw2100_set_essid(priv, NULL, 0, 0); 8320 mutex_unlock(&priv->action_mutex); 8321 } 8322 8323 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL); 8324 } 8325 8326 #define IPW2100_FW_MAJOR_VERSION 1 8327 #define IPW2100_FW_MINOR_VERSION 3 8328 8329 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8) 8330 #define IPW2100_FW_MAJOR(x) (x & 0xff) 8331 8332 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \ 8333 IPW2100_FW_MAJOR_VERSION) 8334 8335 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \ 8336 "." __stringify(IPW2100_FW_MINOR_VERSION) 8337 8338 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw" 8339 8340 /* 8341 8342 BINARY FIRMWARE HEADER FORMAT 8343 8344 offset length desc 8345 0 2 version 8346 2 2 mode == 0:BSS,1:IBSS,2:MONITOR 8347 4 4 fw_len 8348 8 4 uc_len 8349 C fw_len firmware data 8350 12 + fw_len uc_len microcode data 8351 8352 */ 8353 8354 struct ipw2100_fw_header { 8355 short version; 8356 short mode; 8357 unsigned int fw_size; 8358 unsigned int uc_size; 8359 } __packed; 8360 8361 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw) 8362 { 8363 struct ipw2100_fw_header *h = 8364 (struct ipw2100_fw_header *)fw->fw_entry->data; 8365 8366 if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) { 8367 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible " 8368 "(detected version id of %u). " 8369 "See Documentation/networking/device_drivers/intel/ipw2100.txt\n", 8370 h->version); 8371 return 1; 8372 } 8373 8374 fw->version = h->version; 8375 fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header); 8376 fw->fw.size = h->fw_size; 8377 fw->uc.data = fw->fw.data + h->fw_size; 8378 fw->uc.size = h->uc_size; 8379 8380 return 0; 8381 } 8382 8383 static int ipw2100_get_firmware(struct ipw2100_priv *priv, 8384 struct ipw2100_fw *fw) 8385 { 8386 char *fw_name; 8387 int rc; 8388 8389 IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n", 8390 priv->net_dev->name); 8391 8392 switch (priv->ieee->iw_mode) { 8393 case IW_MODE_ADHOC: 8394 fw_name = IPW2100_FW_NAME("-i"); 8395 break; 8396 #ifdef CONFIG_IPW2100_MONITOR 8397 case IW_MODE_MONITOR: 8398 fw_name = IPW2100_FW_NAME("-p"); 8399 break; 8400 #endif 8401 case IW_MODE_INFRA: 8402 default: 8403 fw_name = IPW2100_FW_NAME(""); 8404 break; 8405 } 8406 8407 rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev); 8408 8409 if (rc < 0) { 8410 printk(KERN_ERR DRV_NAME ": " 8411 "%s: Firmware '%s' not available or load failed.\n", 8412 priv->net_dev->name, fw_name); 8413 return rc; 8414 } 8415 IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data, 8416 fw->fw_entry->size); 8417 8418 ipw2100_mod_firmware_load(fw); 8419 8420 return 0; 8421 } 8422 8423 MODULE_FIRMWARE(IPW2100_FW_NAME("-i")); 8424 #ifdef CONFIG_IPW2100_MONITOR 8425 MODULE_FIRMWARE(IPW2100_FW_NAME("-p")); 8426 #endif 8427 MODULE_FIRMWARE(IPW2100_FW_NAME("")); 8428 8429 static void ipw2100_release_firmware(struct ipw2100_priv *priv, 8430 struct ipw2100_fw *fw) 8431 { 8432 fw->version = 0; 8433 release_firmware(fw->fw_entry); 8434 fw->fw_entry = NULL; 8435 } 8436 8437 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf, 8438 size_t max) 8439 { 8440 char ver[MAX_FW_VERSION_LEN]; 8441 u32 len = MAX_FW_VERSION_LEN; 8442 u32 tmp; 8443 int i; 8444 /* firmware version is an ascii string (max len of 14) */ 8445 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len)) 8446 return -EIO; 8447 tmp = max; 8448 if (len >= max) 8449 len = max - 1; 8450 for (i = 0; i < len; i++) 8451 buf[i] = ver[i]; 8452 buf[i] = '\0'; 8453 return tmp; 8454 } 8455 8456 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf, 8457 size_t max) 8458 { 8459 u32 ver; 8460 u32 len = sizeof(ver); 8461 /* microcode version is a 32 bit integer */ 8462 if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len)) 8463 return -EIO; 8464 return snprintf(buf, max, "%08X", ver); 8465 } 8466 8467 /* 8468 * On exit, the firmware will have been freed from the fw list 8469 */ 8470 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw) 8471 { 8472 /* firmware is constructed of N contiguous entries, each entry is 8473 * structured as: 8474 * 8475 * offset sie desc 8476 * 0 4 address to write to 8477 * 4 2 length of data run 8478 * 6 length data 8479 */ 8480 unsigned int addr; 8481 unsigned short len; 8482 8483 const unsigned char *firmware_data = fw->fw.data; 8484 unsigned int firmware_data_left = fw->fw.size; 8485 8486 while (firmware_data_left > 0) { 8487 addr = *(u32 *) (firmware_data); 8488 firmware_data += 4; 8489 firmware_data_left -= 4; 8490 8491 len = *(u16 *) (firmware_data); 8492 firmware_data += 2; 8493 firmware_data_left -= 2; 8494 8495 if (len > 32) { 8496 printk(KERN_ERR DRV_NAME ": " 8497 "Invalid firmware run-length of %d bytes\n", 8498 len); 8499 return -EINVAL; 8500 } 8501 8502 write_nic_memory(priv->net_dev, addr, len, firmware_data); 8503 firmware_data += len; 8504 firmware_data_left -= len; 8505 } 8506 8507 return 0; 8508 } 8509 8510 struct symbol_alive_response { 8511 u8 cmd_id; 8512 u8 seq_num; 8513 u8 ucode_rev; 8514 u8 eeprom_valid; 8515 u16 valid_flags; 8516 u8 IEEE_addr[6]; 8517 u16 flags; 8518 u16 pcb_rev; 8519 u16 clock_settle_time; // 1us LSB 8520 u16 powerup_settle_time; // 1us LSB 8521 u16 hop_settle_time; // 1us LSB 8522 u8 date[3]; // month, day, year 8523 u8 time[2]; // hours, minutes 8524 u8 ucode_valid; 8525 }; 8526 8527 static int ipw2100_ucode_download(struct ipw2100_priv *priv, 8528 struct ipw2100_fw *fw) 8529 { 8530 struct net_device *dev = priv->net_dev; 8531 const unsigned char *microcode_data = fw->uc.data; 8532 unsigned int microcode_data_left = fw->uc.size; 8533 void __iomem *reg = priv->ioaddr; 8534 8535 struct symbol_alive_response response; 8536 int i, j; 8537 u8 data; 8538 8539 /* Symbol control */ 8540 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703); 8541 readl(reg); 8542 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707); 8543 readl(reg); 8544 8545 /* HW config */ 8546 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */ 8547 readl(reg); 8548 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */ 8549 readl(reg); 8550 8551 /* EN_CS_ACCESS bit to reset control store pointer */ 8552 write_nic_byte(dev, 0x210000, 0x40); 8553 readl(reg); 8554 write_nic_byte(dev, 0x210000, 0x0); 8555 readl(reg); 8556 write_nic_byte(dev, 0x210000, 0x40); 8557 readl(reg); 8558 8559 /* copy microcode from buffer into Symbol */ 8560 8561 while (microcode_data_left > 0) { 8562 write_nic_byte(dev, 0x210010, *microcode_data++); 8563 write_nic_byte(dev, 0x210010, *microcode_data++); 8564 microcode_data_left -= 2; 8565 } 8566 8567 /* EN_CS_ACCESS bit to reset the control store pointer */ 8568 write_nic_byte(dev, 0x210000, 0x0); 8569 readl(reg); 8570 8571 /* Enable System (Reg 0) 8572 * first enable causes garbage in RX FIFO */ 8573 write_nic_byte(dev, 0x210000, 0x0); 8574 readl(reg); 8575 write_nic_byte(dev, 0x210000, 0x80); 8576 readl(reg); 8577 8578 /* Reset External Baseband Reg */ 8579 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703); 8580 readl(reg); 8581 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707); 8582 readl(reg); 8583 8584 /* HW Config (Reg 5) */ 8585 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16 8586 readl(reg); 8587 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16 8588 readl(reg); 8589 8590 /* Enable System (Reg 0) 8591 * second enable should be OK */ 8592 write_nic_byte(dev, 0x210000, 0x00); // clear enable system 8593 readl(reg); 8594 write_nic_byte(dev, 0x210000, 0x80); // set enable system 8595 8596 /* check Symbol is enabled - upped this from 5 as it wasn't always 8597 * catching the update */ 8598 for (i = 0; i < 10; i++) { 8599 udelay(10); 8600 8601 /* check Dino is enabled bit */ 8602 read_nic_byte(dev, 0x210000, &data); 8603 if (data & 0x1) 8604 break; 8605 } 8606 8607 if (i == 10) { 8608 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n", 8609 dev->name); 8610 return -EIO; 8611 } 8612 8613 /* Get Symbol alive response */ 8614 for (i = 0; i < 30; i++) { 8615 /* Read alive response structure */ 8616 for (j = 0; 8617 j < (sizeof(struct symbol_alive_response) >> 1); j++) 8618 read_nic_word(dev, 0x210004, ((u16 *) & response) + j); 8619 8620 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1)) 8621 break; 8622 udelay(10); 8623 } 8624 8625 if (i == 30) { 8626 printk(KERN_ERR DRV_NAME 8627 ": %s: No response from Symbol - hw not alive\n", 8628 dev->name); 8629 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response)); 8630 return -EIO; 8631 } 8632 8633 return 0; 8634 } 8635