1 // SPDX-License-Identifier: GPL-2.0-only 2 /****************************************************************************** 3 4 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved. 5 6 7 Contact Information: 8 Intel Linux Wireless <ilw@linux.intel.com> 9 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 10 11 Portions of this file are based on the sample_* files provided by Wireless 12 Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes 13 <jt@hpl.hp.com> 14 15 Portions of this file are based on the Host AP project, 16 Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen 17 <j@w1.fi> 18 Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi> 19 20 Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and 21 ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c 22 available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox 23 24 ******************************************************************************/ 25 /* 26 27 Initial driver on which this is based was developed by Janusz Gorycki, 28 Maciej Urbaniak, and Maciej Sosnowski. 29 30 Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak. 31 32 Theory of Operation 33 34 Tx - Commands and Data 35 36 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs) 37 Each TBD contains a pointer to the physical (dma_addr_t) address of data being 38 sent to the firmware as well as the length of the data. 39 40 The host writes to the TBD queue at the WRITE index. The WRITE index points 41 to the _next_ packet to be written and is advanced when after the TBD has been 42 filled. 43 44 The firmware pulls from the TBD queue at the READ index. The READ index points 45 to the currently being read entry, and is advanced once the firmware is 46 done with a packet. 47 48 When data is sent to the firmware, the first TBD is used to indicate to the 49 firmware if a Command or Data is being sent. If it is Command, all of the 50 command information is contained within the physical address referred to by the 51 TBD. If it is Data, the first TBD indicates the type of data packet, number 52 of fragments, etc. The next TBD then refers to the actual packet location. 53 54 The Tx flow cycle is as follows: 55 56 1) ipw2100_tx() is called by kernel with SKB to transmit 57 2) Packet is move from the tx_free_list and appended to the transmit pending 58 list (tx_pend_list) 59 3) work is scheduled to move pending packets into the shared circular queue. 60 4) when placing packet in the circular queue, the incoming SKB is DMA mapped 61 to a physical address. That address is entered into a TBD. Two TBDs are 62 filled out. The first indicating a data packet, the second referring to the 63 actual payload data. 64 5) the packet is removed from tx_pend_list and placed on the end of the 65 firmware pending list (fw_pend_list) 66 6) firmware is notified that the WRITE index has 67 7) Once the firmware has processed the TBD, INTA is triggered. 68 8) For each Tx interrupt received from the firmware, the READ index is checked 69 to see which TBDs are done being processed. 70 9) For each TBD that has been processed, the ISR pulls the oldest packet 71 from the fw_pend_list. 72 10)The packet structure contained in the fw_pend_list is then used 73 to unmap the DMA address and to free the SKB originally passed to the driver 74 from the kernel. 75 11)The packet structure is placed onto the tx_free_list 76 77 The above steps are the same for commands, only the msg_free_list/msg_pend_list 78 are used instead of tx_free_list/tx_pend_list 79 80 ... 81 82 Critical Sections / Locking : 83 84 There are two locks utilized. The first is the low level lock (priv->low_lock) 85 that protects the following: 86 87 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows: 88 89 tx_free_list : Holds pre-allocated Tx buffers. 90 TAIL modified in __ipw2100_tx_process() 91 HEAD modified in ipw2100_tx() 92 93 tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring 94 TAIL modified ipw2100_tx() 95 HEAD modified by ipw2100_tx_send_data() 96 97 msg_free_list : Holds pre-allocated Msg (Command) buffers 98 TAIL modified in __ipw2100_tx_process() 99 HEAD modified in ipw2100_hw_send_command() 100 101 msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring 102 TAIL modified in ipw2100_hw_send_command() 103 HEAD modified in ipw2100_tx_send_commands() 104 105 The flow of data on the TX side is as follows: 106 107 MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST 108 TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST 109 110 The methods that work on the TBD ring are protected via priv->low_lock. 111 112 - The internal data state of the device itself 113 - Access to the firmware read/write indexes for the BD queues 114 and associated logic 115 116 All external entry functions are locked with the priv->action_lock to ensure 117 that only one external action is invoked at a time. 118 119 120 */ 121 122 #include <linux/compiler.h> 123 #include <linux/errno.h> 124 #include <linux/if_arp.h> 125 #include <linux/in6.h> 126 #include <linux/in.h> 127 #include <linux/ip.h> 128 #include <linux/kernel.h> 129 #include <linux/kmod.h> 130 #include <linux/module.h> 131 #include <linux/netdevice.h> 132 #include <linux/ethtool.h> 133 #include <linux/pci.h> 134 #include <linux/dma-mapping.h> 135 #include <linux/proc_fs.h> 136 #include <linux/skbuff.h> 137 #include <linux/uaccess.h> 138 #include <asm/io.h> 139 #include <linux/fs.h> 140 #include <linux/mm.h> 141 #include <linux/slab.h> 142 #include <linux/unistd.h> 143 #include <linux/stringify.h> 144 #include <linux/tcp.h> 145 #include <linux/types.h> 146 #include <linux/time.h> 147 #include <linux/firmware.h> 148 #include <linux/acpi.h> 149 #include <linux/ctype.h> 150 #include <linux/pm_qos.h> 151 152 #include <net/lib80211.h> 153 154 #include "ipw2100.h" 155 #include "ipw.h" 156 157 #define IPW2100_VERSION "git-1.2.2" 158 159 #define DRV_NAME "ipw2100" 160 #define DRV_VERSION IPW2100_VERSION 161 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver" 162 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation" 163 164 static struct pm_qos_request ipw2100_pm_qos_req; 165 166 /* Debugging stuff */ 167 #ifdef CONFIG_IPW2100_DEBUG 168 #define IPW2100_RX_DEBUG /* Reception debugging */ 169 #endif 170 171 MODULE_DESCRIPTION(DRV_DESCRIPTION); 172 MODULE_VERSION(DRV_VERSION); 173 MODULE_AUTHOR(DRV_COPYRIGHT); 174 MODULE_LICENSE("GPL"); 175 176 static int debug = 0; 177 static int network_mode = 0; 178 static int channel = 0; 179 static int associate = 0; 180 static int disable = 0; 181 #ifdef CONFIG_PM 182 static struct ipw2100_fw ipw2100_firmware; 183 #endif 184 185 #include <linux/moduleparam.h> 186 module_param(debug, int, 0444); 187 module_param_named(mode, network_mode, int, 0444); 188 module_param(channel, int, 0444); 189 module_param(associate, int, 0444); 190 module_param(disable, int, 0444); 191 192 MODULE_PARM_DESC(debug, "debug level"); 193 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)"); 194 MODULE_PARM_DESC(channel, "channel"); 195 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)"); 196 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])"); 197 198 static u32 ipw2100_debug_level = IPW_DL_NONE; 199 200 #ifdef CONFIG_IPW2100_DEBUG 201 #define IPW_DEBUG(level, message...) \ 202 do { \ 203 if (ipw2100_debug_level & (level)) { \ 204 printk(KERN_DEBUG "ipw2100: %s ", __func__); \ 205 printk(message); \ 206 } \ 207 } while (0) 208 #else 209 #define IPW_DEBUG(level, message...) do {} while (0) 210 #endif /* CONFIG_IPW2100_DEBUG */ 211 212 #ifdef CONFIG_IPW2100_DEBUG 213 static const char *command_types[] = { 214 "undefined", 215 "unused", /* HOST_ATTENTION */ 216 "HOST_COMPLETE", 217 "unused", /* SLEEP */ 218 "unused", /* HOST_POWER_DOWN */ 219 "unused", 220 "SYSTEM_CONFIG", 221 "unused", /* SET_IMR */ 222 "SSID", 223 "MANDATORY_BSSID", 224 "AUTHENTICATION_TYPE", 225 "ADAPTER_ADDRESS", 226 "PORT_TYPE", 227 "INTERNATIONAL_MODE", 228 "CHANNEL", 229 "RTS_THRESHOLD", 230 "FRAG_THRESHOLD", 231 "POWER_MODE", 232 "TX_RATES", 233 "BASIC_TX_RATES", 234 "WEP_KEY_INFO", 235 "unused", 236 "unused", 237 "unused", 238 "unused", 239 "WEP_KEY_INDEX", 240 "WEP_FLAGS", 241 "ADD_MULTICAST", 242 "CLEAR_ALL_MULTICAST", 243 "BEACON_INTERVAL", 244 "ATIM_WINDOW", 245 "CLEAR_STATISTICS", 246 "undefined", 247 "undefined", 248 "undefined", 249 "undefined", 250 "TX_POWER_INDEX", 251 "undefined", 252 "undefined", 253 "undefined", 254 "undefined", 255 "undefined", 256 "undefined", 257 "BROADCAST_SCAN", 258 "CARD_DISABLE", 259 "PREFERRED_BSSID", 260 "SET_SCAN_OPTIONS", 261 "SCAN_DWELL_TIME", 262 "SWEEP_TABLE", 263 "AP_OR_STATION_TABLE", 264 "GROUP_ORDINALS", 265 "SHORT_RETRY_LIMIT", 266 "LONG_RETRY_LIMIT", 267 "unused", /* SAVE_CALIBRATION */ 268 "unused", /* RESTORE_CALIBRATION */ 269 "undefined", 270 "undefined", 271 "undefined", 272 "HOST_PRE_POWER_DOWN", 273 "unused", /* HOST_INTERRUPT_COALESCING */ 274 "undefined", 275 "CARD_DISABLE_PHY_OFF", 276 "MSDU_TX_RATES", 277 "undefined", 278 "SET_STATION_STAT_BITS", 279 "CLEAR_STATIONS_STAT_BITS", 280 "LEAP_ROGUE_MODE", 281 "SET_SECURITY_INFORMATION", 282 "DISASSOCIATION_BSSID", 283 "SET_WPA_ASS_IE" 284 }; 285 #endif 286 287 static const long ipw2100_frequencies[] = { 288 2412, 2417, 2422, 2427, 289 2432, 2437, 2442, 2447, 290 2452, 2457, 2462, 2467, 291 2472, 2484 292 }; 293 294 #define FREQ_COUNT ARRAY_SIZE(ipw2100_frequencies) 295 296 static struct ieee80211_rate ipw2100_bg_rates[] = { 297 { .bitrate = 10 }, 298 { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 299 { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 300 { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 301 }; 302 303 #define RATE_COUNT ARRAY_SIZE(ipw2100_bg_rates) 304 305 /* Pre-decl until we get the code solid and then we can clean it up */ 306 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv); 307 static void ipw2100_tx_send_data(struct ipw2100_priv *priv); 308 static int ipw2100_adapter_setup(struct ipw2100_priv *priv); 309 310 static void ipw2100_queues_initialize(struct ipw2100_priv *priv); 311 static void ipw2100_queues_free(struct ipw2100_priv *priv); 312 static int ipw2100_queues_allocate(struct ipw2100_priv *priv); 313 314 static int ipw2100_fw_download(struct ipw2100_priv *priv, 315 struct ipw2100_fw *fw); 316 static int ipw2100_get_firmware(struct ipw2100_priv *priv, 317 struct ipw2100_fw *fw); 318 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf, 319 size_t max); 320 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf, 321 size_t max); 322 static void ipw2100_release_firmware(struct ipw2100_priv *priv, 323 struct ipw2100_fw *fw); 324 static int ipw2100_ucode_download(struct ipw2100_priv *priv, 325 struct ipw2100_fw *fw); 326 static void ipw2100_wx_event_work(struct work_struct *work); 327 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev); 328 static const struct iw_handler_def ipw2100_wx_handler_def; 329 330 static inline void read_register(struct net_device *dev, u32 reg, u32 * val) 331 { 332 struct ipw2100_priv *priv = libipw_priv(dev); 333 334 *val = ioread32(priv->ioaddr + reg); 335 IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val); 336 } 337 338 static inline void write_register(struct net_device *dev, u32 reg, u32 val) 339 { 340 struct ipw2100_priv *priv = libipw_priv(dev); 341 342 iowrite32(val, priv->ioaddr + reg); 343 IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val); 344 } 345 346 static inline void read_register_word(struct net_device *dev, u32 reg, 347 u16 * val) 348 { 349 struct ipw2100_priv *priv = libipw_priv(dev); 350 351 *val = ioread16(priv->ioaddr + reg); 352 IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val); 353 } 354 355 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val) 356 { 357 struct ipw2100_priv *priv = libipw_priv(dev); 358 359 *val = ioread8(priv->ioaddr + reg); 360 IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val); 361 } 362 363 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val) 364 { 365 struct ipw2100_priv *priv = libipw_priv(dev); 366 367 iowrite16(val, priv->ioaddr + reg); 368 IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val); 369 } 370 371 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val) 372 { 373 struct ipw2100_priv *priv = libipw_priv(dev); 374 375 iowrite8(val, priv->ioaddr + reg); 376 IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val); 377 } 378 379 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val) 380 { 381 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, 382 addr & IPW_REG_INDIRECT_ADDR_MASK); 383 read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val); 384 } 385 386 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val) 387 { 388 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, 389 addr & IPW_REG_INDIRECT_ADDR_MASK); 390 write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val); 391 } 392 393 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val) 394 { 395 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, 396 addr & IPW_REG_INDIRECT_ADDR_MASK); 397 read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val); 398 } 399 400 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val) 401 { 402 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, 403 addr & IPW_REG_INDIRECT_ADDR_MASK); 404 write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val); 405 } 406 407 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val) 408 { 409 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, 410 addr & IPW_REG_INDIRECT_ADDR_MASK); 411 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val); 412 } 413 414 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val) 415 { 416 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, 417 addr & IPW_REG_INDIRECT_ADDR_MASK); 418 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val); 419 } 420 421 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr) 422 { 423 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, 424 addr & IPW_REG_INDIRECT_ADDR_MASK); 425 } 426 427 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val) 428 { 429 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val); 430 } 431 432 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len, 433 const u8 * buf) 434 { 435 u32 aligned_addr; 436 u32 aligned_len; 437 u32 dif_len; 438 u32 i; 439 440 /* read first nibble byte by byte */ 441 aligned_addr = addr & (~0x3); 442 dif_len = addr - aligned_addr; 443 if (dif_len) { 444 /* Start reading at aligned_addr + dif_len */ 445 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, 446 aligned_addr); 447 for (i = dif_len; i < 4; i++, buf++) 448 write_register_byte(dev, 449 IPW_REG_INDIRECT_ACCESS_DATA + i, 450 *buf); 451 452 len -= dif_len; 453 aligned_addr += 4; 454 } 455 456 /* read DWs through autoincrement registers */ 457 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr); 458 aligned_len = len & (~0x3); 459 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4) 460 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf); 461 462 /* copy the last nibble */ 463 dif_len = len - aligned_len; 464 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr); 465 for (i = 0; i < dif_len; i++, buf++) 466 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, 467 *buf); 468 } 469 470 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len, 471 u8 * buf) 472 { 473 u32 aligned_addr; 474 u32 aligned_len; 475 u32 dif_len; 476 u32 i; 477 478 /* read first nibble byte by byte */ 479 aligned_addr = addr & (~0x3); 480 dif_len = addr - aligned_addr; 481 if (dif_len) { 482 /* Start reading at aligned_addr + dif_len */ 483 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, 484 aligned_addr); 485 for (i = dif_len; i < 4; i++, buf++) 486 read_register_byte(dev, 487 IPW_REG_INDIRECT_ACCESS_DATA + i, 488 buf); 489 490 len -= dif_len; 491 aligned_addr += 4; 492 } 493 494 /* read DWs through autoincrement registers */ 495 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr); 496 aligned_len = len & (~0x3); 497 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4) 498 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf); 499 500 /* copy the last nibble */ 501 dif_len = len - aligned_len; 502 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr); 503 for (i = 0; i < dif_len; i++, buf++) 504 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf); 505 } 506 507 static bool ipw2100_hw_is_adapter_in_system(struct net_device *dev) 508 { 509 u32 dbg; 510 511 read_register(dev, IPW_REG_DOA_DEBUG_AREA_START, &dbg); 512 513 return dbg == IPW_DATA_DOA_DEBUG_VALUE; 514 } 515 516 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord, 517 void *val, u32 * len) 518 { 519 struct ipw2100_ordinals *ordinals = &priv->ordinals; 520 u32 addr; 521 u32 field_info; 522 u16 field_len; 523 u16 field_count; 524 u32 total_length; 525 526 if (ordinals->table1_addr == 0) { 527 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals " 528 "before they have been loaded.\n"); 529 return -EINVAL; 530 } 531 532 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) { 533 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) { 534 *len = IPW_ORD_TAB_1_ENTRY_SIZE; 535 536 printk(KERN_WARNING DRV_NAME 537 ": ordinal buffer length too small, need %zd\n", 538 IPW_ORD_TAB_1_ENTRY_SIZE); 539 540 return -EINVAL; 541 } 542 543 read_nic_dword(priv->net_dev, 544 ordinals->table1_addr + (ord << 2), &addr); 545 read_nic_dword(priv->net_dev, addr, val); 546 547 *len = IPW_ORD_TAB_1_ENTRY_SIZE; 548 549 return 0; 550 } 551 552 if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) { 553 554 ord -= IPW_START_ORD_TAB_2; 555 556 /* get the address of statistic */ 557 read_nic_dword(priv->net_dev, 558 ordinals->table2_addr + (ord << 3), &addr); 559 560 /* get the second DW of statistics ; 561 * two 16-bit words - first is length, second is count */ 562 read_nic_dword(priv->net_dev, 563 ordinals->table2_addr + (ord << 3) + sizeof(u32), 564 &field_info); 565 566 /* get each entry length */ 567 field_len = *((u16 *) & field_info); 568 569 /* get number of entries */ 570 field_count = *(((u16 *) & field_info) + 1); 571 572 /* abort if no enough memory */ 573 total_length = field_len * field_count; 574 if (total_length > *len) { 575 *len = total_length; 576 return -EINVAL; 577 } 578 579 *len = total_length; 580 if (!total_length) 581 return 0; 582 583 /* read the ordinal data from the SRAM */ 584 read_nic_memory(priv->net_dev, addr, total_length, val); 585 586 return 0; 587 } 588 589 printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor " 590 "in table 2\n", ord); 591 592 return -EINVAL; 593 } 594 595 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val, 596 u32 * len) 597 { 598 struct ipw2100_ordinals *ordinals = &priv->ordinals; 599 u32 addr; 600 601 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) { 602 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) { 603 *len = IPW_ORD_TAB_1_ENTRY_SIZE; 604 IPW_DEBUG_INFO("wrong size\n"); 605 return -EINVAL; 606 } 607 608 read_nic_dword(priv->net_dev, 609 ordinals->table1_addr + (ord << 2), &addr); 610 611 write_nic_dword(priv->net_dev, addr, *val); 612 613 *len = IPW_ORD_TAB_1_ENTRY_SIZE; 614 615 return 0; 616 } 617 618 IPW_DEBUG_INFO("wrong table\n"); 619 if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) 620 return -EINVAL; 621 622 return -EINVAL; 623 } 624 625 static char *snprint_line(char *buf, size_t count, 626 const u8 * data, u32 len, u32 ofs) 627 { 628 int out, i, j, l; 629 char c; 630 631 out = scnprintf(buf, count, "%08X", ofs); 632 633 for (l = 0, i = 0; i < 2; i++) { 634 out += scnprintf(buf + out, count - out, " "); 635 for (j = 0; j < 8 && l < len; j++, l++) 636 out += scnprintf(buf + out, count - out, "%02X ", 637 data[(i * 8 + j)]); 638 for (; j < 8; j++) 639 out += scnprintf(buf + out, count - out, " "); 640 } 641 642 out += scnprintf(buf + out, count - out, " "); 643 for (l = 0, i = 0; i < 2; i++) { 644 out += scnprintf(buf + out, count - out, " "); 645 for (j = 0; j < 8 && l < len; j++, l++) { 646 c = data[(i * 8 + j)]; 647 if (!isascii(c) || !isprint(c)) 648 c = '.'; 649 650 out += scnprintf(buf + out, count - out, "%c", c); 651 } 652 653 for (; j < 8; j++) 654 out += scnprintf(buf + out, count - out, " "); 655 } 656 657 return buf; 658 } 659 660 static void printk_buf(int level, const u8 * data, u32 len) 661 { 662 char line[81]; 663 u32 ofs = 0; 664 if (!(ipw2100_debug_level & level)) 665 return; 666 667 while (len) { 668 printk(KERN_DEBUG "%s\n", 669 snprint_line(line, sizeof(line), &data[ofs], 670 min(len, 16U), ofs)); 671 ofs += 16; 672 len -= min(len, 16U); 673 } 674 } 675 676 #define MAX_RESET_BACKOFF 10 677 678 static void schedule_reset(struct ipw2100_priv *priv) 679 { 680 time64_t now = ktime_get_boottime_seconds(); 681 682 /* If we haven't received a reset request within the backoff period, 683 * then we can reset the backoff interval so this reset occurs 684 * immediately */ 685 if (priv->reset_backoff && 686 (now - priv->last_reset > priv->reset_backoff)) 687 priv->reset_backoff = 0; 688 689 priv->last_reset = now; 690 691 if (!(priv->status & STATUS_RESET_PENDING)) { 692 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%llds).\n", 693 priv->net_dev->name, priv->reset_backoff); 694 netif_carrier_off(priv->net_dev); 695 netif_stop_queue(priv->net_dev); 696 priv->status |= STATUS_RESET_PENDING; 697 if (priv->reset_backoff) 698 schedule_delayed_work(&priv->reset_work, 699 priv->reset_backoff * HZ); 700 else 701 schedule_delayed_work(&priv->reset_work, 0); 702 703 if (priv->reset_backoff < MAX_RESET_BACKOFF) 704 priv->reset_backoff++; 705 706 wake_up_interruptible(&priv->wait_command_queue); 707 } else 708 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n", 709 priv->net_dev->name); 710 711 } 712 713 #define HOST_COMPLETE_TIMEOUT (2 * HZ) 714 static int ipw2100_hw_send_command(struct ipw2100_priv *priv, 715 struct host_command *cmd) 716 { 717 struct list_head *element; 718 struct ipw2100_tx_packet *packet; 719 unsigned long flags; 720 int err = 0; 721 722 IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n", 723 command_types[cmd->host_command], cmd->host_command, 724 cmd->host_command_length); 725 printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters, 726 cmd->host_command_length); 727 728 spin_lock_irqsave(&priv->low_lock, flags); 729 730 if (priv->fatal_error) { 731 IPW_DEBUG_INFO 732 ("Attempt to send command while hardware in fatal error condition.\n"); 733 err = -EIO; 734 goto fail_unlock; 735 } 736 737 if (!(priv->status & STATUS_RUNNING)) { 738 IPW_DEBUG_INFO 739 ("Attempt to send command while hardware is not running.\n"); 740 err = -EIO; 741 goto fail_unlock; 742 } 743 744 if (priv->status & STATUS_CMD_ACTIVE) { 745 IPW_DEBUG_INFO 746 ("Attempt to send command while another command is pending.\n"); 747 err = -EBUSY; 748 goto fail_unlock; 749 } 750 751 if (list_empty(&priv->msg_free_list)) { 752 IPW_DEBUG_INFO("no available msg buffers\n"); 753 goto fail_unlock; 754 } 755 756 priv->status |= STATUS_CMD_ACTIVE; 757 priv->messages_sent++; 758 759 element = priv->msg_free_list.next; 760 761 packet = list_entry(element, struct ipw2100_tx_packet, list); 762 packet->jiffy_start = jiffies; 763 764 /* initialize the firmware command packet */ 765 packet->info.c_struct.cmd->host_command_reg = cmd->host_command; 766 packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1; 767 packet->info.c_struct.cmd->host_command_len_reg = 768 cmd->host_command_length; 769 packet->info.c_struct.cmd->sequence = cmd->host_command_sequence; 770 771 memcpy(packet->info.c_struct.cmd->host_command_params_reg, 772 cmd->host_command_parameters, 773 sizeof(packet->info.c_struct.cmd->host_command_params_reg)); 774 775 list_del(element); 776 DEC_STAT(&priv->msg_free_stat); 777 778 list_add_tail(element, &priv->msg_pend_list); 779 INC_STAT(&priv->msg_pend_stat); 780 781 ipw2100_tx_send_commands(priv); 782 ipw2100_tx_send_data(priv); 783 784 spin_unlock_irqrestore(&priv->low_lock, flags); 785 786 /* 787 * We must wait for this command to complete before another 788 * command can be sent... but if we wait more than 3 seconds 789 * then there is a problem. 790 */ 791 792 err = 793 wait_event_interruptible_timeout(priv->wait_command_queue, 794 !(priv-> 795 status & STATUS_CMD_ACTIVE), 796 HOST_COMPLETE_TIMEOUT); 797 798 if (err == 0) { 799 IPW_DEBUG_INFO("Command completion failed out after %dms.\n", 800 1000 * (HOST_COMPLETE_TIMEOUT / HZ)); 801 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT; 802 priv->status &= ~STATUS_CMD_ACTIVE; 803 schedule_reset(priv); 804 return -EIO; 805 } 806 807 if (priv->fatal_error) { 808 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n", 809 priv->net_dev->name); 810 return -EIO; 811 } 812 813 /* !!!!! HACK TEST !!!!! 814 * When lots of debug trace statements are enabled, the driver 815 * doesn't seem to have as many firmware restart cycles... 816 * 817 * As a test, we're sticking in a 1/100s delay here */ 818 schedule_timeout_uninterruptible(msecs_to_jiffies(10)); 819 820 return 0; 821 822 fail_unlock: 823 spin_unlock_irqrestore(&priv->low_lock, flags); 824 825 return err; 826 } 827 828 /* 829 * Verify the values and data access of the hardware 830 * No locks needed or used. No functions called. 831 */ 832 static int ipw2100_verify(struct ipw2100_priv *priv) 833 { 834 u32 data1, data2; 835 u32 address; 836 837 u32 val1 = 0x76543210; 838 u32 val2 = 0xFEDCBA98; 839 840 /* Domain 0 check - all values should be DOA_DEBUG */ 841 for (address = IPW_REG_DOA_DEBUG_AREA_START; 842 address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) { 843 read_register(priv->net_dev, address, &data1); 844 if (data1 != IPW_DATA_DOA_DEBUG_VALUE) 845 return -EIO; 846 } 847 848 /* Domain 1 check - use arbitrary read/write compare */ 849 for (address = 0; address < 5; address++) { 850 /* The memory area is not used now */ 851 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32, 852 val1); 853 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36, 854 val2); 855 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32, 856 &data1); 857 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36, 858 &data2); 859 if (val1 == data1 && val2 == data2) 860 return 0; 861 } 862 863 return -EIO; 864 } 865 866 /* 867 * 868 * Loop until the CARD_DISABLED bit is the same value as the 869 * supplied parameter 870 * 871 * TODO: See if it would be more efficient to do a wait/wake 872 * cycle and have the completion event trigger the wakeup 873 * 874 */ 875 #define IPW_CARD_DISABLE_COMPLETE_WAIT 100 // 100 milli 876 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state) 877 { 878 int i; 879 u32 card_state; 880 u32 len = sizeof(card_state); 881 int err; 882 883 for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) { 884 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED, 885 &card_state, &len); 886 if (err) { 887 IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal " 888 "failed.\n"); 889 return 0; 890 } 891 892 /* We'll break out if either the HW state says it is 893 * in the state we want, or if HOST_COMPLETE command 894 * finishes */ 895 if ((card_state == state) || 896 ((priv->status & STATUS_ENABLED) ? 897 IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) { 898 if (state == IPW_HW_STATE_ENABLED) 899 priv->status |= STATUS_ENABLED; 900 else 901 priv->status &= ~STATUS_ENABLED; 902 903 return 0; 904 } 905 906 udelay(50); 907 } 908 909 IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n", 910 state ? "DISABLED" : "ENABLED"); 911 return -EIO; 912 } 913 914 /********************************************************************* 915 Procedure : sw_reset_and_clock 916 Purpose : Asserts s/w reset, asserts clock initialization 917 and waits for clock stabilization 918 ********************************************************************/ 919 static int sw_reset_and_clock(struct ipw2100_priv *priv) 920 { 921 int i; 922 u32 r; 923 924 // assert s/w reset 925 write_register(priv->net_dev, IPW_REG_RESET_REG, 926 IPW_AUX_HOST_RESET_REG_SW_RESET); 927 928 // wait for clock stabilization 929 for (i = 0; i < 1000; i++) { 930 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY); 931 932 // check clock ready bit 933 read_register(priv->net_dev, IPW_REG_RESET_REG, &r); 934 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET) 935 break; 936 } 937 938 if (i == 1000) 939 return -EIO; // TODO: better error value 940 941 /* set "initialization complete" bit to move adapter to 942 * D0 state */ 943 write_register(priv->net_dev, IPW_REG_GP_CNTRL, 944 IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE); 945 946 /* wait for clock stabilization */ 947 for (i = 0; i < 10000; i++) { 948 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4); 949 950 /* check clock ready bit */ 951 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r); 952 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY) 953 break; 954 } 955 956 if (i == 10000) 957 return -EIO; /* TODO: better error value */ 958 959 /* set D0 standby bit */ 960 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r); 961 write_register(priv->net_dev, IPW_REG_GP_CNTRL, 962 r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY); 963 964 return 0; 965 } 966 967 /********************************************************************* 968 Procedure : ipw2100_download_firmware 969 Purpose : Initiaze adapter after power on. 970 The sequence is: 971 1. assert s/w reset first! 972 2. awake clocks & wait for clock stabilization 973 3. hold ARC (don't ask me why...) 974 4. load Dino ucode and reset/clock init again 975 5. zero-out shared mem 976 6. download f/w 977 *******************************************************************/ 978 static int ipw2100_download_firmware(struct ipw2100_priv *priv) 979 { 980 u32 address; 981 int err; 982 983 #ifndef CONFIG_PM 984 /* Fetch the firmware and microcode */ 985 struct ipw2100_fw ipw2100_firmware; 986 #endif 987 988 if (priv->fatal_error) { 989 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after " 990 "fatal error %d. Interface must be brought down.\n", 991 priv->net_dev->name, priv->fatal_error); 992 return -EINVAL; 993 } 994 #ifdef CONFIG_PM 995 if (!ipw2100_firmware.version) { 996 err = ipw2100_get_firmware(priv, &ipw2100_firmware); 997 if (err) { 998 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n", 999 priv->net_dev->name, err); 1000 priv->fatal_error = IPW2100_ERR_FW_LOAD; 1001 goto fail; 1002 } 1003 } 1004 #else 1005 err = ipw2100_get_firmware(priv, &ipw2100_firmware); 1006 if (err) { 1007 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n", 1008 priv->net_dev->name, err); 1009 priv->fatal_error = IPW2100_ERR_FW_LOAD; 1010 goto fail; 1011 } 1012 #endif 1013 priv->firmware_version = ipw2100_firmware.version; 1014 1015 /* s/w reset and clock stabilization */ 1016 err = sw_reset_and_clock(priv); 1017 if (err) { 1018 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n", 1019 priv->net_dev->name, err); 1020 goto fail; 1021 } 1022 1023 err = ipw2100_verify(priv); 1024 if (err) { 1025 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n", 1026 priv->net_dev->name, err); 1027 goto fail; 1028 } 1029 1030 /* Hold ARC */ 1031 write_nic_dword(priv->net_dev, 1032 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000); 1033 1034 /* allow ARC to run */ 1035 write_register(priv->net_dev, IPW_REG_RESET_REG, 0); 1036 1037 /* load microcode */ 1038 err = ipw2100_ucode_download(priv, &ipw2100_firmware); 1039 if (err) { 1040 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n", 1041 priv->net_dev->name, err); 1042 goto fail; 1043 } 1044 1045 /* release ARC */ 1046 write_nic_dword(priv->net_dev, 1047 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000); 1048 1049 /* s/w reset and clock stabilization (again!!!) */ 1050 err = sw_reset_and_clock(priv); 1051 if (err) { 1052 printk(KERN_ERR DRV_NAME 1053 ": %s: sw_reset_and_clock failed: %d\n", 1054 priv->net_dev->name, err); 1055 goto fail; 1056 } 1057 1058 /* load f/w */ 1059 err = ipw2100_fw_download(priv, &ipw2100_firmware); 1060 if (err) { 1061 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n", 1062 priv->net_dev->name, err); 1063 goto fail; 1064 } 1065 #ifndef CONFIG_PM 1066 /* 1067 * When the .resume method of the driver is called, the other 1068 * part of the system, i.e. the ide driver could still stay in 1069 * the suspend stage. This prevents us from loading the firmware 1070 * from the disk. --YZ 1071 */ 1072 1073 /* free any storage allocated for firmware image */ 1074 ipw2100_release_firmware(priv, &ipw2100_firmware); 1075 #endif 1076 1077 /* zero out Domain 1 area indirectly (Si requirement) */ 1078 for (address = IPW_HOST_FW_SHARED_AREA0; 1079 address < IPW_HOST_FW_SHARED_AREA0_END; address += 4) 1080 write_nic_dword(priv->net_dev, address, 0); 1081 for (address = IPW_HOST_FW_SHARED_AREA1; 1082 address < IPW_HOST_FW_SHARED_AREA1_END; address += 4) 1083 write_nic_dword(priv->net_dev, address, 0); 1084 for (address = IPW_HOST_FW_SHARED_AREA2; 1085 address < IPW_HOST_FW_SHARED_AREA2_END; address += 4) 1086 write_nic_dword(priv->net_dev, address, 0); 1087 for (address = IPW_HOST_FW_SHARED_AREA3; 1088 address < IPW_HOST_FW_SHARED_AREA3_END; address += 4) 1089 write_nic_dword(priv->net_dev, address, 0); 1090 for (address = IPW_HOST_FW_INTERRUPT_AREA; 1091 address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4) 1092 write_nic_dword(priv->net_dev, address, 0); 1093 1094 return 0; 1095 1096 fail: 1097 ipw2100_release_firmware(priv, &ipw2100_firmware); 1098 return err; 1099 } 1100 1101 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv) 1102 { 1103 if (priv->status & STATUS_INT_ENABLED) 1104 return; 1105 priv->status |= STATUS_INT_ENABLED; 1106 write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK); 1107 } 1108 1109 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv) 1110 { 1111 if (!(priv->status & STATUS_INT_ENABLED)) 1112 return; 1113 priv->status &= ~STATUS_INT_ENABLED; 1114 write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0); 1115 } 1116 1117 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv) 1118 { 1119 struct ipw2100_ordinals *ord = &priv->ordinals; 1120 1121 IPW_DEBUG_INFO("enter\n"); 1122 1123 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1, 1124 &ord->table1_addr); 1125 1126 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2, 1127 &ord->table2_addr); 1128 1129 read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size); 1130 read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size); 1131 1132 ord->table2_size &= 0x0000FFFF; 1133 1134 IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size); 1135 IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size); 1136 IPW_DEBUG_INFO("exit\n"); 1137 } 1138 1139 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv) 1140 { 1141 u32 reg = 0; 1142 /* 1143 * Set GPIO 3 writable by FW; GPIO 1 writable 1144 * by driver and enable clock 1145 */ 1146 reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE | 1147 IPW_BIT_GPIO_LED_OFF); 1148 write_register(priv->net_dev, IPW_REG_GPIO, reg); 1149 } 1150 1151 static int rf_kill_active(struct ipw2100_priv *priv) 1152 { 1153 #define MAX_RF_KILL_CHECKS 5 1154 #define RF_KILL_CHECK_DELAY 40 1155 1156 unsigned short value = 0; 1157 u32 reg = 0; 1158 int i; 1159 1160 if (!(priv->hw_features & HW_FEATURE_RFKILL)) { 1161 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false); 1162 priv->status &= ~STATUS_RF_KILL_HW; 1163 return 0; 1164 } 1165 1166 for (i = 0; i < MAX_RF_KILL_CHECKS; i++) { 1167 udelay(RF_KILL_CHECK_DELAY); 1168 read_register(priv->net_dev, IPW_REG_GPIO, ®); 1169 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1); 1170 } 1171 1172 if (value == 0) { 1173 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true); 1174 priv->status |= STATUS_RF_KILL_HW; 1175 } else { 1176 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false); 1177 priv->status &= ~STATUS_RF_KILL_HW; 1178 } 1179 1180 return (value == 0); 1181 } 1182 1183 static int ipw2100_get_hw_features(struct ipw2100_priv *priv) 1184 { 1185 u32 addr, len; 1186 u32 val; 1187 1188 /* 1189 * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1 1190 */ 1191 len = sizeof(addr); 1192 if (ipw2100_get_ordinal 1193 (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) { 1194 IPW_DEBUG_INFO("failed querying ordinals at line %d\n", 1195 __LINE__); 1196 return -EIO; 1197 } 1198 1199 IPW_DEBUG_INFO("EEPROM address: %08X\n", addr); 1200 1201 /* 1202 * EEPROM version is the byte at offset 0xfd in firmware 1203 * We read 4 bytes, then shift out the byte we actually want */ 1204 read_nic_dword(priv->net_dev, addr + 0xFC, &val); 1205 priv->eeprom_version = (val >> 24) & 0xFF; 1206 IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version); 1207 1208 /* 1209 * HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware 1210 * 1211 * notice that the EEPROM bit is reverse polarity, i.e. 1212 * bit = 0 signifies HW RF kill switch is supported 1213 * bit = 1 signifies HW RF kill switch is NOT supported 1214 */ 1215 read_nic_dword(priv->net_dev, addr + 0x20, &val); 1216 if (!((val >> 24) & 0x01)) 1217 priv->hw_features |= HW_FEATURE_RFKILL; 1218 1219 IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n", 1220 (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not "); 1221 1222 return 0; 1223 } 1224 1225 /* 1226 * Start firmware execution after power on and initialization 1227 * The sequence is: 1228 * 1. Release ARC 1229 * 2. Wait for f/w initialization completes; 1230 */ 1231 static int ipw2100_start_adapter(struct ipw2100_priv *priv) 1232 { 1233 int i; 1234 u32 inta, inta_mask, gpio; 1235 1236 IPW_DEBUG_INFO("enter\n"); 1237 1238 if (priv->status & STATUS_RUNNING) 1239 return 0; 1240 1241 /* 1242 * Initialize the hw - drive adapter to DO state by setting 1243 * init_done bit. Wait for clk_ready bit and Download 1244 * fw & dino ucode 1245 */ 1246 if (ipw2100_download_firmware(priv)) { 1247 printk(KERN_ERR DRV_NAME 1248 ": %s: Failed to power on the adapter.\n", 1249 priv->net_dev->name); 1250 return -EIO; 1251 } 1252 1253 /* Clear the Tx, Rx and Msg queues and the r/w indexes 1254 * in the firmware RBD and TBD ring queue */ 1255 ipw2100_queues_initialize(priv); 1256 1257 ipw2100_hw_set_gpio(priv); 1258 1259 /* TODO -- Look at disabling interrupts here to make sure none 1260 * get fired during FW initialization */ 1261 1262 /* Release ARC - clear reset bit */ 1263 write_register(priv->net_dev, IPW_REG_RESET_REG, 0); 1264 1265 /* wait for f/w initialization complete */ 1266 IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n"); 1267 i = 5000; 1268 do { 1269 schedule_timeout_uninterruptible(msecs_to_jiffies(40)); 1270 /* Todo... wait for sync command ... */ 1271 1272 read_register(priv->net_dev, IPW_REG_INTA, &inta); 1273 1274 /* check "init done" bit */ 1275 if (inta & IPW2100_INTA_FW_INIT_DONE) { 1276 /* reset "init done" bit */ 1277 write_register(priv->net_dev, IPW_REG_INTA, 1278 IPW2100_INTA_FW_INIT_DONE); 1279 break; 1280 } 1281 1282 /* check error conditions : we check these after the firmware 1283 * check so that if there is an error, the interrupt handler 1284 * will see it and the adapter will be reset */ 1285 if (inta & 1286 (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) { 1287 /* clear error conditions */ 1288 write_register(priv->net_dev, IPW_REG_INTA, 1289 IPW2100_INTA_FATAL_ERROR | 1290 IPW2100_INTA_PARITY_ERROR); 1291 } 1292 } while (--i); 1293 1294 /* Clear out any pending INTAs since we aren't supposed to have 1295 * interrupts enabled at this point... */ 1296 read_register(priv->net_dev, IPW_REG_INTA, &inta); 1297 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask); 1298 inta &= IPW_INTERRUPT_MASK; 1299 /* Clear out any pending interrupts */ 1300 if (inta & inta_mask) 1301 write_register(priv->net_dev, IPW_REG_INTA, inta); 1302 1303 IPW_DEBUG_FW("f/w initialization complete: %s\n", 1304 i ? "SUCCESS" : "FAILED"); 1305 1306 if (!i) { 1307 printk(KERN_WARNING DRV_NAME 1308 ": %s: Firmware did not initialize.\n", 1309 priv->net_dev->name); 1310 return -EIO; 1311 } 1312 1313 /* allow firmware to write to GPIO1 & GPIO3 */ 1314 read_register(priv->net_dev, IPW_REG_GPIO, &gpio); 1315 1316 gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK); 1317 1318 write_register(priv->net_dev, IPW_REG_GPIO, gpio); 1319 1320 /* Ready to receive commands */ 1321 priv->status |= STATUS_RUNNING; 1322 1323 /* The adapter has been reset; we are not associated */ 1324 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED); 1325 1326 IPW_DEBUG_INFO("exit\n"); 1327 1328 return 0; 1329 } 1330 1331 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv) 1332 { 1333 if (!priv->fatal_error) 1334 return; 1335 1336 priv->fatal_errors[priv->fatal_index++] = priv->fatal_error; 1337 priv->fatal_index %= IPW2100_ERROR_QUEUE; 1338 priv->fatal_error = 0; 1339 } 1340 1341 /* NOTE: Our interrupt is disabled when this method is called */ 1342 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv) 1343 { 1344 u32 reg; 1345 int i; 1346 1347 IPW_DEBUG_INFO("Power cycling the hardware.\n"); 1348 1349 ipw2100_hw_set_gpio(priv); 1350 1351 /* Step 1. Stop Master Assert */ 1352 write_register(priv->net_dev, IPW_REG_RESET_REG, 1353 IPW_AUX_HOST_RESET_REG_STOP_MASTER); 1354 1355 /* Step 2. Wait for stop Master Assert 1356 * (not more than 50us, otherwise ret error */ 1357 i = 5; 1358 do { 1359 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY); 1360 read_register(priv->net_dev, IPW_REG_RESET_REG, ®); 1361 1362 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED) 1363 break; 1364 } while (--i); 1365 1366 priv->status &= ~STATUS_RESET_PENDING; 1367 1368 if (!i) { 1369 IPW_DEBUG_INFO 1370 ("exit - waited too long for master assert stop\n"); 1371 return -EIO; 1372 } 1373 1374 write_register(priv->net_dev, IPW_REG_RESET_REG, 1375 IPW_AUX_HOST_RESET_REG_SW_RESET); 1376 1377 /* Reset any fatal_error conditions */ 1378 ipw2100_reset_fatalerror(priv); 1379 1380 /* At this point, the adapter is now stopped and disabled */ 1381 priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING | 1382 STATUS_ASSOCIATED | STATUS_ENABLED); 1383 1384 return 0; 1385 } 1386 1387 /* 1388 * Send the CARD_DISABLE_PHY_OFF command to the card to disable it 1389 * 1390 * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent. 1391 * 1392 * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of 1393 * if STATUS_ASSN_LOST is sent. 1394 */ 1395 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv) 1396 { 1397 1398 #define HW_PHY_OFF_LOOP_DELAY (msecs_to_jiffies(50)) 1399 1400 struct host_command cmd = { 1401 .host_command = CARD_DISABLE_PHY_OFF, 1402 .host_command_sequence = 0, 1403 .host_command_length = 0, 1404 }; 1405 int err, i; 1406 u32 val1, val2; 1407 1408 IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n"); 1409 1410 /* Turn off the radio */ 1411 err = ipw2100_hw_send_command(priv, &cmd); 1412 if (err) 1413 return err; 1414 1415 for (i = 0; i < 2500; i++) { 1416 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1); 1417 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2); 1418 1419 if ((val1 & IPW2100_CONTROL_PHY_OFF) && 1420 (val2 & IPW2100_COMMAND_PHY_OFF)) 1421 return 0; 1422 1423 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY); 1424 } 1425 1426 return -EIO; 1427 } 1428 1429 static int ipw2100_enable_adapter(struct ipw2100_priv *priv) 1430 { 1431 struct host_command cmd = { 1432 .host_command = HOST_COMPLETE, 1433 .host_command_sequence = 0, 1434 .host_command_length = 0 1435 }; 1436 int err = 0; 1437 1438 IPW_DEBUG_HC("HOST_COMPLETE\n"); 1439 1440 if (priv->status & STATUS_ENABLED) 1441 return 0; 1442 1443 mutex_lock(&priv->adapter_mutex); 1444 1445 if (rf_kill_active(priv)) { 1446 IPW_DEBUG_HC("Command aborted due to RF kill active.\n"); 1447 goto fail_up; 1448 } 1449 1450 err = ipw2100_hw_send_command(priv, &cmd); 1451 if (err) { 1452 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n"); 1453 goto fail_up; 1454 } 1455 1456 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED); 1457 if (err) { 1458 IPW_DEBUG_INFO("%s: card not responding to init command.\n", 1459 priv->net_dev->name); 1460 goto fail_up; 1461 } 1462 1463 if (priv->stop_hang_check) { 1464 priv->stop_hang_check = 0; 1465 schedule_delayed_work(&priv->hang_check, HZ / 2); 1466 } 1467 1468 fail_up: 1469 mutex_unlock(&priv->adapter_mutex); 1470 return err; 1471 } 1472 1473 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv) 1474 { 1475 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100)) 1476 1477 struct host_command cmd = { 1478 .host_command = HOST_PRE_POWER_DOWN, 1479 .host_command_sequence = 0, 1480 .host_command_length = 0, 1481 }; 1482 int err, i; 1483 u32 reg; 1484 1485 if (!(priv->status & STATUS_RUNNING)) 1486 return 0; 1487 1488 priv->status |= STATUS_STOPPING; 1489 1490 /* We can only shut down the card if the firmware is operational. So, 1491 * if we haven't reset since a fatal_error, then we can not send the 1492 * shutdown commands. */ 1493 if (!priv->fatal_error) { 1494 /* First, make sure the adapter is enabled so that the PHY_OFF 1495 * command can shut it down */ 1496 ipw2100_enable_adapter(priv); 1497 1498 err = ipw2100_hw_phy_off(priv); 1499 if (err) 1500 printk(KERN_WARNING DRV_NAME 1501 ": Error disabling radio %d\n", err); 1502 1503 /* 1504 * If in D0-standby mode going directly to D3 may cause a 1505 * PCI bus violation. Therefore we must change out of the D0 1506 * state. 1507 * 1508 * Sending the PREPARE_FOR_POWER_DOWN will restrict the 1509 * hardware from going into standby mode and will transition 1510 * out of D0-standby if it is already in that state. 1511 * 1512 * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the 1513 * driver upon completion. Once received, the driver can 1514 * proceed to the D3 state. 1515 * 1516 * Prepare for power down command to fw. This command would 1517 * take HW out of D0-standby and prepare it for D3 state. 1518 * 1519 * Currently FW does not support event notification for this 1520 * event. Therefore, skip waiting for it. Just wait a fixed 1521 * 100ms 1522 */ 1523 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n"); 1524 1525 err = ipw2100_hw_send_command(priv, &cmd); 1526 if (err) 1527 printk(KERN_WARNING DRV_NAME ": " 1528 "%s: Power down command failed: Error %d\n", 1529 priv->net_dev->name, err); 1530 else 1531 schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY); 1532 } 1533 1534 priv->status &= ~STATUS_ENABLED; 1535 1536 /* 1537 * Set GPIO 3 writable by FW; GPIO 1 writable 1538 * by driver and enable clock 1539 */ 1540 ipw2100_hw_set_gpio(priv); 1541 1542 /* 1543 * Power down adapter. Sequence: 1544 * 1. Stop master assert (RESET_REG[9]=1) 1545 * 2. Wait for stop master (RESET_REG[8]==1) 1546 * 3. S/w reset assert (RESET_REG[7] = 1) 1547 */ 1548 1549 /* Stop master assert */ 1550 write_register(priv->net_dev, IPW_REG_RESET_REG, 1551 IPW_AUX_HOST_RESET_REG_STOP_MASTER); 1552 1553 /* wait stop master not more than 50 usec. 1554 * Otherwise return error. */ 1555 for (i = 5; i > 0; i--) { 1556 udelay(10); 1557 1558 /* Check master stop bit */ 1559 read_register(priv->net_dev, IPW_REG_RESET_REG, ®); 1560 1561 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED) 1562 break; 1563 } 1564 1565 if (i == 0) 1566 printk(KERN_WARNING DRV_NAME 1567 ": %s: Could now power down adapter.\n", 1568 priv->net_dev->name); 1569 1570 /* assert s/w reset */ 1571 write_register(priv->net_dev, IPW_REG_RESET_REG, 1572 IPW_AUX_HOST_RESET_REG_SW_RESET); 1573 1574 priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING); 1575 1576 return 0; 1577 } 1578 1579 static int ipw2100_disable_adapter(struct ipw2100_priv *priv) 1580 { 1581 struct host_command cmd = { 1582 .host_command = CARD_DISABLE, 1583 .host_command_sequence = 0, 1584 .host_command_length = 0 1585 }; 1586 int err = 0; 1587 1588 IPW_DEBUG_HC("CARD_DISABLE\n"); 1589 1590 if (!(priv->status & STATUS_ENABLED)) 1591 return 0; 1592 1593 /* Make sure we clear the associated state */ 1594 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING); 1595 1596 if (!priv->stop_hang_check) { 1597 priv->stop_hang_check = 1; 1598 cancel_delayed_work(&priv->hang_check); 1599 } 1600 1601 mutex_lock(&priv->adapter_mutex); 1602 1603 err = ipw2100_hw_send_command(priv, &cmd); 1604 if (err) { 1605 printk(KERN_WARNING DRV_NAME 1606 ": exit - failed to send CARD_DISABLE command\n"); 1607 goto fail_up; 1608 } 1609 1610 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED); 1611 if (err) { 1612 printk(KERN_WARNING DRV_NAME 1613 ": exit - card failed to change to DISABLED\n"); 1614 goto fail_up; 1615 } 1616 1617 IPW_DEBUG_INFO("TODO: implement scan state machine\n"); 1618 1619 fail_up: 1620 mutex_unlock(&priv->adapter_mutex); 1621 return err; 1622 } 1623 1624 static int ipw2100_set_scan_options(struct ipw2100_priv *priv) 1625 { 1626 struct host_command cmd = { 1627 .host_command = SET_SCAN_OPTIONS, 1628 .host_command_sequence = 0, 1629 .host_command_length = 8 1630 }; 1631 int err; 1632 1633 IPW_DEBUG_INFO("enter\n"); 1634 1635 IPW_DEBUG_SCAN("setting scan options\n"); 1636 1637 cmd.host_command_parameters[0] = 0; 1638 1639 if (!(priv->config & CFG_ASSOCIATE)) 1640 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE; 1641 if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled) 1642 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL; 1643 if (priv->config & CFG_PASSIVE_SCAN) 1644 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE; 1645 1646 cmd.host_command_parameters[1] = priv->channel_mask; 1647 1648 err = ipw2100_hw_send_command(priv, &cmd); 1649 1650 IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n", 1651 cmd.host_command_parameters[0]); 1652 1653 return err; 1654 } 1655 1656 static int ipw2100_start_scan(struct ipw2100_priv *priv) 1657 { 1658 struct host_command cmd = { 1659 .host_command = BROADCAST_SCAN, 1660 .host_command_sequence = 0, 1661 .host_command_length = 4 1662 }; 1663 int err; 1664 1665 IPW_DEBUG_HC("START_SCAN\n"); 1666 1667 cmd.host_command_parameters[0] = 0; 1668 1669 /* No scanning if in monitor mode */ 1670 if (priv->ieee->iw_mode == IW_MODE_MONITOR) 1671 return 1; 1672 1673 if (priv->status & STATUS_SCANNING) { 1674 IPW_DEBUG_SCAN("Scan requested while already in scan...\n"); 1675 return 0; 1676 } 1677 1678 IPW_DEBUG_INFO("enter\n"); 1679 1680 /* Not clearing here; doing so makes iwlist always return nothing... 1681 * 1682 * We should modify the table logic to use aging tables vs. clearing 1683 * the table on each scan start. 1684 */ 1685 IPW_DEBUG_SCAN("starting scan\n"); 1686 1687 priv->status |= STATUS_SCANNING; 1688 err = ipw2100_hw_send_command(priv, &cmd); 1689 if (err) 1690 priv->status &= ~STATUS_SCANNING; 1691 1692 IPW_DEBUG_INFO("exit\n"); 1693 1694 return err; 1695 } 1696 1697 static const struct libipw_geo ipw_geos[] = { 1698 { /* Restricted */ 1699 "---", 1700 .bg_channels = 14, 1701 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 1702 {2427, 4}, {2432, 5}, {2437, 6}, 1703 {2442, 7}, {2447, 8}, {2452, 9}, 1704 {2457, 10}, {2462, 11}, {2467, 12}, 1705 {2472, 13}, {2484, 14}}, 1706 }, 1707 }; 1708 1709 static int ipw2100_up(struct ipw2100_priv *priv, int deferred) 1710 { 1711 unsigned long flags; 1712 int err = 0; 1713 u32 lock; 1714 u32 ord_len = sizeof(lock); 1715 1716 /* Age scan list entries found before suspend */ 1717 if (priv->suspend_time) { 1718 libipw_networks_age(priv->ieee, priv->suspend_time); 1719 priv->suspend_time = 0; 1720 } 1721 1722 /* Quiet if manually disabled. */ 1723 if (priv->status & STATUS_RF_KILL_SW) { 1724 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable " 1725 "switch\n", priv->net_dev->name); 1726 return 0; 1727 } 1728 1729 /* the ipw2100 hardware really doesn't want power management delays 1730 * longer than 175usec 1731 */ 1732 cpu_latency_qos_update_request(&ipw2100_pm_qos_req, 175); 1733 1734 /* If the interrupt is enabled, turn it off... */ 1735 spin_lock_irqsave(&priv->low_lock, flags); 1736 ipw2100_disable_interrupts(priv); 1737 1738 /* Reset any fatal_error conditions */ 1739 ipw2100_reset_fatalerror(priv); 1740 spin_unlock_irqrestore(&priv->low_lock, flags); 1741 1742 if (priv->status & STATUS_POWERED || 1743 (priv->status & STATUS_RESET_PENDING)) { 1744 /* Power cycle the card ... */ 1745 err = ipw2100_power_cycle_adapter(priv); 1746 if (err) { 1747 printk(KERN_WARNING DRV_NAME 1748 ": %s: Could not cycle adapter.\n", 1749 priv->net_dev->name); 1750 goto exit; 1751 } 1752 } else 1753 priv->status |= STATUS_POWERED; 1754 1755 /* Load the firmware, start the clocks, etc. */ 1756 err = ipw2100_start_adapter(priv); 1757 if (err) { 1758 printk(KERN_ERR DRV_NAME 1759 ": %s: Failed to start the firmware.\n", 1760 priv->net_dev->name); 1761 goto exit; 1762 } 1763 1764 ipw2100_initialize_ordinals(priv); 1765 1766 /* Determine capabilities of this particular HW configuration */ 1767 err = ipw2100_get_hw_features(priv); 1768 if (err) { 1769 printk(KERN_ERR DRV_NAME 1770 ": %s: Failed to determine HW features.\n", 1771 priv->net_dev->name); 1772 goto exit; 1773 } 1774 1775 /* Initialize the geo */ 1776 libipw_set_geo(priv->ieee, &ipw_geos[0]); 1777 priv->ieee->freq_band = LIBIPW_24GHZ_BAND; 1778 1779 lock = LOCK_NONE; 1780 err = ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len); 1781 if (err) { 1782 printk(KERN_ERR DRV_NAME 1783 ": %s: Failed to clear ordinal lock.\n", 1784 priv->net_dev->name); 1785 goto exit; 1786 } 1787 1788 priv->status &= ~STATUS_SCANNING; 1789 1790 if (rf_kill_active(priv)) { 1791 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n", 1792 priv->net_dev->name); 1793 1794 if (priv->stop_rf_kill) { 1795 priv->stop_rf_kill = 0; 1796 schedule_delayed_work(&priv->rf_kill, 1797 round_jiffies_relative(HZ)); 1798 } 1799 1800 deferred = 1; 1801 } 1802 1803 /* Turn on the interrupt so that commands can be processed */ 1804 ipw2100_enable_interrupts(priv); 1805 1806 /* Send all of the commands that must be sent prior to 1807 * HOST_COMPLETE */ 1808 err = ipw2100_adapter_setup(priv); 1809 if (err) { 1810 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n", 1811 priv->net_dev->name); 1812 goto exit; 1813 } 1814 1815 if (!deferred) { 1816 /* Enable the adapter - sends HOST_COMPLETE */ 1817 err = ipw2100_enable_adapter(priv); 1818 if (err) { 1819 printk(KERN_ERR DRV_NAME ": " 1820 "%s: failed in call to enable adapter.\n", 1821 priv->net_dev->name); 1822 ipw2100_hw_stop_adapter(priv); 1823 goto exit; 1824 } 1825 1826 /* Start a scan . . . */ 1827 ipw2100_set_scan_options(priv); 1828 ipw2100_start_scan(priv); 1829 } 1830 1831 exit: 1832 return err; 1833 } 1834 1835 static void ipw2100_down(struct ipw2100_priv *priv) 1836 { 1837 unsigned long flags; 1838 union iwreq_data wrqu = { 1839 .ap_addr = { 1840 .sa_family = ARPHRD_ETHER} 1841 }; 1842 int associated = priv->status & STATUS_ASSOCIATED; 1843 1844 /* Kill the RF switch timer */ 1845 if (!priv->stop_rf_kill) { 1846 priv->stop_rf_kill = 1; 1847 cancel_delayed_work(&priv->rf_kill); 1848 } 1849 1850 /* Kill the firmware hang check timer */ 1851 if (!priv->stop_hang_check) { 1852 priv->stop_hang_check = 1; 1853 cancel_delayed_work(&priv->hang_check); 1854 } 1855 1856 /* Kill any pending resets */ 1857 if (priv->status & STATUS_RESET_PENDING) 1858 cancel_delayed_work(&priv->reset_work); 1859 1860 /* Make sure the interrupt is on so that FW commands will be 1861 * processed correctly */ 1862 spin_lock_irqsave(&priv->low_lock, flags); 1863 ipw2100_enable_interrupts(priv); 1864 spin_unlock_irqrestore(&priv->low_lock, flags); 1865 1866 if (ipw2100_hw_stop_adapter(priv)) 1867 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n", 1868 priv->net_dev->name); 1869 1870 /* Do not disable the interrupt until _after_ we disable 1871 * the adaptor. Otherwise the CARD_DISABLE command will never 1872 * be ack'd by the firmware */ 1873 spin_lock_irqsave(&priv->low_lock, flags); 1874 ipw2100_disable_interrupts(priv); 1875 spin_unlock_irqrestore(&priv->low_lock, flags); 1876 1877 cpu_latency_qos_update_request(&ipw2100_pm_qos_req, 1878 PM_QOS_DEFAULT_VALUE); 1879 1880 /* We have to signal any supplicant if we are disassociating */ 1881 if (associated) 1882 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL); 1883 1884 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING); 1885 netif_carrier_off(priv->net_dev); 1886 netif_stop_queue(priv->net_dev); 1887 } 1888 1889 static int ipw2100_wdev_init(struct net_device *dev) 1890 { 1891 struct ipw2100_priv *priv = libipw_priv(dev); 1892 const struct libipw_geo *geo = libipw_get_geo(priv->ieee); 1893 struct wireless_dev *wdev = &priv->ieee->wdev; 1894 int i; 1895 1896 memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN); 1897 1898 /* fill-out priv->ieee->bg_band */ 1899 if (geo->bg_channels) { 1900 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band; 1901 1902 bg_band->band = NL80211_BAND_2GHZ; 1903 bg_band->n_channels = geo->bg_channels; 1904 bg_band->channels = kcalloc(geo->bg_channels, 1905 sizeof(struct ieee80211_channel), 1906 GFP_KERNEL); 1907 if (!bg_band->channels) { 1908 ipw2100_down(priv); 1909 return -ENOMEM; 1910 } 1911 /* translate geo->bg to bg_band.channels */ 1912 for (i = 0; i < geo->bg_channels; i++) { 1913 bg_band->channels[i].band = NL80211_BAND_2GHZ; 1914 bg_band->channels[i].center_freq = geo->bg[i].freq; 1915 bg_band->channels[i].hw_value = geo->bg[i].channel; 1916 bg_band->channels[i].max_power = geo->bg[i].max_power; 1917 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY) 1918 bg_band->channels[i].flags |= 1919 IEEE80211_CHAN_NO_IR; 1920 if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS) 1921 bg_band->channels[i].flags |= 1922 IEEE80211_CHAN_NO_IR; 1923 if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT) 1924 bg_band->channels[i].flags |= 1925 IEEE80211_CHAN_RADAR; 1926 /* No equivalent for LIBIPW_CH_80211H_RULES, 1927 LIBIPW_CH_UNIFORM_SPREADING, or 1928 LIBIPW_CH_B_ONLY... */ 1929 } 1930 /* point at bitrate info */ 1931 bg_band->bitrates = ipw2100_bg_rates; 1932 bg_band->n_bitrates = RATE_COUNT; 1933 1934 wdev->wiphy->bands[NL80211_BAND_2GHZ] = bg_band; 1935 } 1936 1937 wdev->wiphy->cipher_suites = ipw_cipher_suites; 1938 wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites); 1939 1940 set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev); 1941 if (wiphy_register(wdev->wiphy)) 1942 return -EIO; 1943 return 0; 1944 } 1945 1946 static void ipw2100_reset_adapter(struct work_struct *work) 1947 { 1948 struct ipw2100_priv *priv = 1949 container_of(work, struct ipw2100_priv, reset_work.work); 1950 unsigned long flags; 1951 union iwreq_data wrqu = { 1952 .ap_addr = { 1953 .sa_family = ARPHRD_ETHER} 1954 }; 1955 int associated = priv->status & STATUS_ASSOCIATED; 1956 1957 spin_lock_irqsave(&priv->low_lock, flags); 1958 IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name); 1959 priv->resets++; 1960 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING); 1961 priv->status |= STATUS_SECURITY_UPDATED; 1962 1963 /* Force a power cycle even if interface hasn't been opened 1964 * yet */ 1965 cancel_delayed_work(&priv->reset_work); 1966 priv->status |= STATUS_RESET_PENDING; 1967 spin_unlock_irqrestore(&priv->low_lock, flags); 1968 1969 mutex_lock(&priv->action_mutex); 1970 /* stop timed checks so that they don't interfere with reset */ 1971 priv->stop_hang_check = 1; 1972 cancel_delayed_work(&priv->hang_check); 1973 1974 /* We have to signal any supplicant if we are disassociating */ 1975 if (associated) 1976 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL); 1977 1978 ipw2100_up(priv, 0); 1979 mutex_unlock(&priv->action_mutex); 1980 1981 } 1982 1983 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status) 1984 { 1985 1986 #define MAC_ASSOCIATION_READ_DELAY (HZ) 1987 int ret; 1988 unsigned int len, essid_len; 1989 char essid[IW_ESSID_MAX_SIZE]; 1990 u32 txrate; 1991 u32 chan; 1992 char *txratename; 1993 u8 bssid[ETH_ALEN]; 1994 1995 /* 1996 * TBD: BSSID is usually 00:00:00:00:00:00 here and not 1997 * an actual MAC of the AP. Seems like FW sets this 1998 * address too late. Read it later and expose through 1999 * /proc or schedule a later task to query and update 2000 */ 2001 2002 essid_len = IW_ESSID_MAX_SIZE; 2003 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, 2004 essid, &essid_len); 2005 if (ret) { 2006 IPW_DEBUG_INFO("failed querying ordinals at line %d\n", 2007 __LINE__); 2008 return; 2009 } 2010 2011 len = sizeof(u32); 2012 ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len); 2013 if (ret) { 2014 IPW_DEBUG_INFO("failed querying ordinals at line %d\n", 2015 __LINE__); 2016 return; 2017 } 2018 2019 len = sizeof(u32); 2020 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len); 2021 if (ret) { 2022 IPW_DEBUG_INFO("failed querying ordinals at line %d\n", 2023 __LINE__); 2024 return; 2025 } 2026 len = ETH_ALEN; 2027 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, bssid, 2028 &len); 2029 if (ret) { 2030 IPW_DEBUG_INFO("failed querying ordinals at line %d\n", 2031 __LINE__); 2032 return; 2033 } 2034 memcpy(priv->ieee->bssid, bssid, ETH_ALEN); 2035 2036 switch (txrate) { 2037 case TX_RATE_1_MBIT: 2038 txratename = "1Mbps"; 2039 break; 2040 case TX_RATE_2_MBIT: 2041 txratename = "2Mbsp"; 2042 break; 2043 case TX_RATE_5_5_MBIT: 2044 txratename = "5.5Mbps"; 2045 break; 2046 case TX_RATE_11_MBIT: 2047 txratename = "11Mbps"; 2048 break; 2049 default: 2050 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate); 2051 txratename = "unknown rate"; 2052 break; 2053 } 2054 2055 IPW_DEBUG_INFO("%s: Associated with '%*pE' at %s, channel %d (BSSID=%pM)\n", 2056 priv->net_dev->name, essid_len, essid, 2057 txratename, chan, bssid); 2058 2059 /* now we copy read ssid into dev */ 2060 if (!(priv->config & CFG_STATIC_ESSID)) { 2061 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE); 2062 memcpy(priv->essid, essid, priv->essid_len); 2063 } 2064 priv->channel = chan; 2065 memcpy(priv->bssid, bssid, ETH_ALEN); 2066 2067 priv->status |= STATUS_ASSOCIATING; 2068 priv->connect_start = ktime_get_boottime_seconds(); 2069 2070 schedule_delayed_work(&priv->wx_event_work, HZ / 10); 2071 } 2072 2073 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid, 2074 int length, int batch_mode) 2075 { 2076 int ssid_len = min(length, IW_ESSID_MAX_SIZE); 2077 struct host_command cmd = { 2078 .host_command = SSID, 2079 .host_command_sequence = 0, 2080 .host_command_length = ssid_len 2081 }; 2082 int err; 2083 2084 IPW_DEBUG_HC("SSID: '%*pE'\n", ssid_len, essid); 2085 2086 if (ssid_len) 2087 memcpy(cmd.host_command_parameters, essid, ssid_len); 2088 2089 if (!batch_mode) { 2090 err = ipw2100_disable_adapter(priv); 2091 if (err) 2092 return err; 2093 } 2094 2095 /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to 2096 * disable auto association -- so we cheat by setting a bogus SSID */ 2097 if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) { 2098 int i; 2099 u8 *bogus = (u8 *) cmd.host_command_parameters; 2100 for (i = 0; i < IW_ESSID_MAX_SIZE; i++) 2101 bogus[i] = 0x18 + i; 2102 cmd.host_command_length = IW_ESSID_MAX_SIZE; 2103 } 2104 2105 /* NOTE: We always send the SSID command even if the provided ESSID is 2106 * the same as what we currently think is set. */ 2107 2108 err = ipw2100_hw_send_command(priv, &cmd); 2109 if (!err) { 2110 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len); 2111 memcpy(priv->essid, essid, ssid_len); 2112 priv->essid_len = ssid_len; 2113 } 2114 2115 if (!batch_mode) { 2116 if (ipw2100_enable_adapter(priv)) 2117 err = -EIO; 2118 } 2119 2120 return err; 2121 } 2122 2123 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status) 2124 { 2125 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC, 2126 "disassociated: '%*pE' %pM\n", priv->essid_len, priv->essid, 2127 priv->bssid); 2128 2129 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING); 2130 2131 if (priv->status & STATUS_STOPPING) { 2132 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n"); 2133 return; 2134 } 2135 2136 eth_zero_addr(priv->bssid); 2137 eth_zero_addr(priv->ieee->bssid); 2138 2139 netif_carrier_off(priv->net_dev); 2140 netif_stop_queue(priv->net_dev); 2141 2142 if (!(priv->status & STATUS_RUNNING)) 2143 return; 2144 2145 if (priv->status & STATUS_SECURITY_UPDATED) 2146 schedule_delayed_work(&priv->security_work, 0); 2147 2148 schedule_delayed_work(&priv->wx_event_work, 0); 2149 } 2150 2151 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status) 2152 { 2153 IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n", 2154 priv->net_dev->name); 2155 2156 /* RF_KILL is now enabled (else we wouldn't be here) */ 2157 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true); 2158 priv->status |= STATUS_RF_KILL_HW; 2159 2160 /* Make sure the RF Kill check timer is running */ 2161 priv->stop_rf_kill = 0; 2162 mod_delayed_work(system_wq, &priv->rf_kill, round_jiffies_relative(HZ)); 2163 } 2164 2165 static void ipw2100_scan_event(struct work_struct *work) 2166 { 2167 struct ipw2100_priv *priv = container_of(work, struct ipw2100_priv, 2168 scan_event.work); 2169 union iwreq_data wrqu; 2170 2171 wrqu.data.length = 0; 2172 wrqu.data.flags = 0; 2173 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL); 2174 } 2175 2176 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status) 2177 { 2178 IPW_DEBUG_SCAN("scan complete\n"); 2179 /* Age the scan results... */ 2180 priv->ieee->scans++; 2181 priv->status &= ~STATUS_SCANNING; 2182 2183 /* Only userspace-requested scan completion events go out immediately */ 2184 if (!priv->user_requested_scan) { 2185 schedule_delayed_work(&priv->scan_event, 2186 round_jiffies_relative(msecs_to_jiffies(4000))); 2187 } else { 2188 priv->user_requested_scan = 0; 2189 mod_delayed_work(system_wq, &priv->scan_event, 0); 2190 } 2191 } 2192 2193 #ifdef CONFIG_IPW2100_DEBUG 2194 #define IPW2100_HANDLER(v, f) { v, f, # v } 2195 struct ipw2100_status_indicator { 2196 int status; 2197 void (*cb) (struct ipw2100_priv * priv, u32 status); 2198 char *name; 2199 }; 2200 #else 2201 #define IPW2100_HANDLER(v, f) { v, f } 2202 struct ipw2100_status_indicator { 2203 int status; 2204 void (*cb) (struct ipw2100_priv * priv, u32 status); 2205 }; 2206 #endif /* CONFIG_IPW2100_DEBUG */ 2207 2208 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status) 2209 { 2210 IPW_DEBUG_SCAN("Scanning...\n"); 2211 priv->status |= STATUS_SCANNING; 2212 } 2213 2214 static const struct ipw2100_status_indicator status_handlers[] = { 2215 IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL), 2216 IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL), 2217 IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated), 2218 IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost), 2219 IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL), 2220 IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete), 2221 IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL), 2222 IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL), 2223 IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill), 2224 IPW2100_HANDLER(IPW_STATE_DISABLED, NULL), 2225 IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL), 2226 IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning), 2227 IPW2100_HANDLER(-1, NULL) 2228 }; 2229 2230 static void isr_status_change(struct ipw2100_priv *priv, int status) 2231 { 2232 int i; 2233 2234 if (status == IPW_STATE_SCANNING && 2235 priv->status & STATUS_ASSOCIATED && 2236 !(priv->status & STATUS_SCANNING)) { 2237 IPW_DEBUG_INFO("Scan detected while associated, with " 2238 "no scan request. Restarting firmware.\n"); 2239 2240 /* Wake up any sleeping jobs */ 2241 schedule_reset(priv); 2242 } 2243 2244 for (i = 0; status_handlers[i].status != -1; i++) { 2245 if (status == status_handlers[i].status) { 2246 IPW_DEBUG_NOTIF("Status change: %s\n", 2247 status_handlers[i].name); 2248 if (status_handlers[i].cb) 2249 status_handlers[i].cb(priv, status); 2250 priv->wstats.status = status; 2251 return; 2252 } 2253 } 2254 2255 IPW_DEBUG_NOTIF("unknown status received: %04x\n", status); 2256 } 2257 2258 static void isr_rx_complete_command(struct ipw2100_priv *priv, 2259 struct ipw2100_cmd_header *cmd) 2260 { 2261 #ifdef CONFIG_IPW2100_DEBUG 2262 if (cmd->host_command_reg < ARRAY_SIZE(command_types)) { 2263 IPW_DEBUG_HC("Command completed '%s (%d)'\n", 2264 command_types[cmd->host_command_reg], 2265 cmd->host_command_reg); 2266 } 2267 #endif 2268 if (cmd->host_command_reg == HOST_COMPLETE) 2269 priv->status |= STATUS_ENABLED; 2270 2271 if (cmd->host_command_reg == CARD_DISABLE) 2272 priv->status &= ~STATUS_ENABLED; 2273 2274 priv->status &= ~STATUS_CMD_ACTIVE; 2275 2276 wake_up_interruptible(&priv->wait_command_queue); 2277 } 2278 2279 #ifdef CONFIG_IPW2100_DEBUG 2280 static const char *frame_types[] = { 2281 "COMMAND_STATUS_VAL", 2282 "STATUS_CHANGE_VAL", 2283 "P80211_DATA_VAL", 2284 "P8023_DATA_VAL", 2285 "HOST_NOTIFICATION_VAL" 2286 }; 2287 #endif 2288 2289 static int ipw2100_alloc_skb(struct ipw2100_priv *priv, 2290 struct ipw2100_rx_packet *packet) 2291 { 2292 packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx)); 2293 if (!packet->skb) 2294 return -ENOMEM; 2295 2296 packet->rxp = (struct ipw2100_rx *)packet->skb->data; 2297 packet->dma_addr = dma_map_single(&priv->pci_dev->dev, 2298 packet->skb->data, 2299 sizeof(struct ipw2100_rx), 2300 DMA_FROM_DEVICE); 2301 if (dma_mapping_error(&priv->pci_dev->dev, packet->dma_addr)) { 2302 dev_kfree_skb(packet->skb); 2303 return -ENOMEM; 2304 } 2305 2306 return 0; 2307 } 2308 2309 #define SEARCH_ERROR 0xffffffff 2310 #define SEARCH_FAIL 0xfffffffe 2311 #define SEARCH_SUCCESS 0xfffffff0 2312 #define SEARCH_DISCARD 0 2313 #define SEARCH_SNAPSHOT 1 2314 2315 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff)) 2316 static void ipw2100_snapshot_free(struct ipw2100_priv *priv) 2317 { 2318 int i; 2319 if (!priv->snapshot[0]) 2320 return; 2321 for (i = 0; i < 0x30; i++) 2322 kfree(priv->snapshot[i]); 2323 priv->snapshot[0] = NULL; 2324 } 2325 2326 #ifdef IPW2100_DEBUG_C3 2327 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv) 2328 { 2329 int i; 2330 if (priv->snapshot[0]) 2331 return 1; 2332 for (i = 0; i < 0x30; i++) { 2333 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC); 2334 if (!priv->snapshot[i]) { 2335 IPW_DEBUG_INFO("%s: Error allocating snapshot " 2336 "buffer %d\n", priv->net_dev->name, i); 2337 while (i > 0) 2338 kfree(priv->snapshot[--i]); 2339 priv->snapshot[0] = NULL; 2340 return 0; 2341 } 2342 } 2343 2344 return 1; 2345 } 2346 2347 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf, 2348 size_t len, int mode) 2349 { 2350 u32 i, j; 2351 u32 tmp; 2352 u8 *s, *d; 2353 u32 ret; 2354 2355 s = in_buf; 2356 if (mode == SEARCH_SNAPSHOT) { 2357 if (!ipw2100_snapshot_alloc(priv)) 2358 mode = SEARCH_DISCARD; 2359 } 2360 2361 for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) { 2362 read_nic_dword(priv->net_dev, i, &tmp); 2363 if (mode == SEARCH_SNAPSHOT) 2364 *(u32 *) SNAPSHOT_ADDR(i) = tmp; 2365 if (ret == SEARCH_FAIL) { 2366 d = (u8 *) & tmp; 2367 for (j = 0; j < 4; j++) { 2368 if (*s != *d) { 2369 s = in_buf; 2370 continue; 2371 } 2372 2373 s++; 2374 d++; 2375 2376 if ((s - in_buf) == len) 2377 ret = (i + j) - len + 1; 2378 } 2379 } else if (mode == SEARCH_DISCARD) 2380 return ret; 2381 } 2382 2383 return ret; 2384 } 2385 #endif 2386 2387 /* 2388 * 2389 * 0) Disconnect the SKB from the firmware (just unmap) 2390 * 1) Pack the ETH header into the SKB 2391 * 2) Pass the SKB to the network stack 2392 * 2393 * When packet is provided by the firmware, it contains the following: 2394 * 2395 * . libipw_hdr 2396 * . libipw_snap_hdr 2397 * 2398 * The size of the constructed ethernet 2399 * 2400 */ 2401 #ifdef IPW2100_RX_DEBUG 2402 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH]; 2403 #endif 2404 2405 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i) 2406 { 2407 #ifdef IPW2100_DEBUG_C3 2408 struct ipw2100_status *status = &priv->status_queue.drv[i]; 2409 u32 match, reg; 2410 int j; 2411 #endif 2412 2413 IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n", 2414 i * sizeof(struct ipw2100_status)); 2415 2416 #ifdef IPW2100_DEBUG_C3 2417 /* Halt the firmware so we can get a good image */ 2418 write_register(priv->net_dev, IPW_REG_RESET_REG, 2419 IPW_AUX_HOST_RESET_REG_STOP_MASTER); 2420 j = 5; 2421 do { 2422 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY); 2423 read_register(priv->net_dev, IPW_REG_RESET_REG, ®); 2424 2425 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED) 2426 break; 2427 } while (j--); 2428 2429 match = ipw2100_match_buf(priv, (u8 *) status, 2430 sizeof(struct ipw2100_status), 2431 SEARCH_SNAPSHOT); 2432 if (match < SEARCH_SUCCESS) 2433 IPW_DEBUG_INFO("%s: DMA status match in Firmware at " 2434 "offset 0x%06X, length %d:\n", 2435 priv->net_dev->name, match, 2436 sizeof(struct ipw2100_status)); 2437 else 2438 IPW_DEBUG_INFO("%s: No DMA status match in " 2439 "Firmware.\n", priv->net_dev->name); 2440 2441 printk_buf((u8 *) priv->status_queue.drv, 2442 sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH); 2443 #endif 2444 2445 priv->fatal_error = IPW2100_ERR_C3_CORRUPTION; 2446 priv->net_dev->stats.rx_errors++; 2447 schedule_reset(priv); 2448 } 2449 2450 static void isr_rx(struct ipw2100_priv *priv, int i, 2451 struct libipw_rx_stats *stats) 2452 { 2453 struct net_device *dev = priv->net_dev; 2454 struct ipw2100_status *status = &priv->status_queue.drv[i]; 2455 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i]; 2456 2457 IPW_DEBUG_RX("Handler...\n"); 2458 2459 if (unlikely(status->frame_size > skb_tailroom(packet->skb))) { 2460 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!" 2461 " Dropping.\n", 2462 dev->name, 2463 status->frame_size, skb_tailroom(packet->skb)); 2464 dev->stats.rx_errors++; 2465 return; 2466 } 2467 2468 if (unlikely(!netif_running(dev))) { 2469 dev->stats.rx_errors++; 2470 priv->wstats.discard.misc++; 2471 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n"); 2472 return; 2473 } 2474 2475 if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR && 2476 !(priv->status & STATUS_ASSOCIATED))) { 2477 IPW_DEBUG_DROP("Dropping packet while not associated.\n"); 2478 priv->wstats.discard.misc++; 2479 return; 2480 } 2481 2482 dma_unmap_single(&priv->pci_dev->dev, packet->dma_addr, 2483 sizeof(struct ipw2100_rx), DMA_FROM_DEVICE); 2484 2485 skb_put(packet->skb, status->frame_size); 2486 2487 #ifdef IPW2100_RX_DEBUG 2488 /* Make a copy of the frame so we can dump it to the logs if 2489 * libipw_rx fails */ 2490 skb_copy_from_linear_data(packet->skb, packet_data, 2491 min_t(u32, status->frame_size, 2492 IPW_RX_NIC_BUFFER_LENGTH)); 2493 #endif 2494 2495 if (!libipw_rx(priv->ieee, packet->skb, stats)) { 2496 #ifdef IPW2100_RX_DEBUG 2497 IPW_DEBUG_DROP("%s: Non consumed packet:\n", 2498 dev->name); 2499 printk_buf(IPW_DL_DROP, packet_data, status->frame_size); 2500 #endif 2501 dev->stats.rx_errors++; 2502 2503 /* libipw_rx failed, so it didn't free the SKB */ 2504 dev_kfree_skb_any(packet->skb); 2505 packet->skb = NULL; 2506 } 2507 2508 /* We need to allocate a new SKB and attach it to the RDB. */ 2509 if (unlikely(ipw2100_alloc_skb(priv, packet))) { 2510 printk(KERN_WARNING DRV_NAME ": " 2511 "%s: Unable to allocate SKB onto RBD ring - disabling " 2512 "adapter.\n", dev->name); 2513 /* TODO: schedule adapter shutdown */ 2514 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n"); 2515 } 2516 2517 /* Update the RDB entry */ 2518 priv->rx_queue.drv[i].host_addr = packet->dma_addr; 2519 } 2520 2521 #ifdef CONFIG_IPW2100_MONITOR 2522 2523 static void isr_rx_monitor(struct ipw2100_priv *priv, int i, 2524 struct libipw_rx_stats *stats) 2525 { 2526 struct net_device *dev = priv->net_dev; 2527 struct ipw2100_status *status = &priv->status_queue.drv[i]; 2528 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i]; 2529 2530 /* Magic struct that slots into the radiotap header -- no reason 2531 * to build this manually element by element, we can write it much 2532 * more efficiently than we can parse it. ORDER MATTERS HERE */ 2533 struct ipw_rt_hdr { 2534 struct ieee80211_radiotap_header rt_hdr; 2535 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */ 2536 } *ipw_rt; 2537 2538 IPW_DEBUG_RX("Handler...\n"); 2539 2540 if (unlikely(status->frame_size > skb_tailroom(packet->skb) - 2541 sizeof(struct ipw_rt_hdr))) { 2542 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!" 2543 " Dropping.\n", 2544 dev->name, 2545 status->frame_size, 2546 skb_tailroom(packet->skb)); 2547 dev->stats.rx_errors++; 2548 return; 2549 } 2550 2551 if (unlikely(!netif_running(dev))) { 2552 dev->stats.rx_errors++; 2553 priv->wstats.discard.misc++; 2554 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n"); 2555 return; 2556 } 2557 2558 if (unlikely(priv->config & CFG_CRC_CHECK && 2559 status->flags & IPW_STATUS_FLAG_CRC_ERROR)) { 2560 IPW_DEBUG_RX("CRC error in packet. Dropping.\n"); 2561 dev->stats.rx_errors++; 2562 return; 2563 } 2564 2565 dma_unmap_single(&priv->pci_dev->dev, packet->dma_addr, 2566 sizeof(struct ipw2100_rx), DMA_FROM_DEVICE); 2567 memmove(packet->skb->data + sizeof(struct ipw_rt_hdr), 2568 packet->skb->data, status->frame_size); 2569 2570 ipw_rt = (struct ipw_rt_hdr *) packet->skb->data; 2571 2572 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION; 2573 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */ 2574 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */ 2575 2576 ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 2577 2578 ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM; 2579 2580 skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr)); 2581 2582 if (!libipw_rx(priv->ieee, packet->skb, stats)) { 2583 dev->stats.rx_errors++; 2584 2585 /* libipw_rx failed, so it didn't free the SKB */ 2586 dev_kfree_skb_any(packet->skb); 2587 packet->skb = NULL; 2588 } 2589 2590 /* We need to allocate a new SKB and attach it to the RDB. */ 2591 if (unlikely(ipw2100_alloc_skb(priv, packet))) { 2592 IPW_DEBUG_WARNING( 2593 "%s: Unable to allocate SKB onto RBD ring - disabling " 2594 "adapter.\n", dev->name); 2595 /* TODO: schedule adapter shutdown */ 2596 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n"); 2597 } 2598 2599 /* Update the RDB entry */ 2600 priv->rx_queue.drv[i].host_addr = packet->dma_addr; 2601 } 2602 2603 #endif 2604 2605 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i) 2606 { 2607 struct ipw2100_status *status = &priv->status_queue.drv[i]; 2608 struct ipw2100_rx *u = priv->rx_buffers[i].rxp; 2609 u16 frame_type = status->status_fields & STATUS_TYPE_MASK; 2610 2611 switch (frame_type) { 2612 case COMMAND_STATUS_VAL: 2613 return (status->frame_size != sizeof(u->rx_data.command)); 2614 case STATUS_CHANGE_VAL: 2615 return (status->frame_size != sizeof(u->rx_data.status)); 2616 case HOST_NOTIFICATION_VAL: 2617 return (status->frame_size < sizeof(u->rx_data.notification)); 2618 case P80211_DATA_VAL: 2619 case P8023_DATA_VAL: 2620 #ifdef CONFIG_IPW2100_MONITOR 2621 return 0; 2622 #else 2623 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) { 2624 case IEEE80211_FTYPE_MGMT: 2625 case IEEE80211_FTYPE_CTL: 2626 return 0; 2627 case IEEE80211_FTYPE_DATA: 2628 return (status->frame_size > 2629 IPW_MAX_802_11_PAYLOAD_LENGTH); 2630 } 2631 #endif 2632 } 2633 2634 return 1; 2635 } 2636 2637 /* 2638 * ipw2100 interrupts are disabled at this point, and the ISR 2639 * is the only code that calls this method. So, we do not need 2640 * to play with any locks. 2641 * 2642 * RX Queue works as follows: 2643 * 2644 * Read index - firmware places packet in entry identified by the 2645 * Read index and advances Read index. In this manner, 2646 * Read index will always point to the next packet to 2647 * be filled--but not yet valid. 2648 * 2649 * Write index - driver fills this entry with an unused RBD entry. 2650 * This entry has not filled by the firmware yet. 2651 * 2652 * In between the W and R indexes are the RBDs that have been received 2653 * but not yet processed. 2654 * 2655 * The process of handling packets will start at WRITE + 1 and advance 2656 * until it reaches the READ index. 2657 * 2658 * The WRITE index is cached in the variable 'priv->rx_queue.next'. 2659 * 2660 */ 2661 static void __ipw2100_rx_process(struct ipw2100_priv *priv) 2662 { 2663 struct ipw2100_bd_queue *rxq = &priv->rx_queue; 2664 struct ipw2100_status_queue *sq = &priv->status_queue; 2665 struct ipw2100_rx_packet *packet; 2666 u16 frame_type; 2667 u32 r, w, i, s; 2668 struct ipw2100_rx *u; 2669 struct libipw_rx_stats stats = { 2670 .mac_time = jiffies, 2671 }; 2672 2673 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r); 2674 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w); 2675 2676 if (r >= rxq->entries) { 2677 IPW_DEBUG_RX("exit - bad read index\n"); 2678 return; 2679 } 2680 2681 i = (rxq->next + 1) % rxq->entries; 2682 s = i; 2683 while (i != r) { 2684 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n", 2685 r, rxq->next, i); */ 2686 2687 packet = &priv->rx_buffers[i]; 2688 2689 /* Sync the DMA for the RX buffer so CPU is sure to get 2690 * the correct values */ 2691 dma_sync_single_for_cpu(&priv->pci_dev->dev, packet->dma_addr, 2692 sizeof(struct ipw2100_rx), 2693 DMA_FROM_DEVICE); 2694 2695 if (unlikely(ipw2100_corruption_check(priv, i))) { 2696 ipw2100_corruption_detected(priv, i); 2697 goto increment; 2698 } 2699 2700 u = packet->rxp; 2701 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK; 2702 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM; 2703 stats.len = sq->drv[i].frame_size; 2704 2705 stats.mask = 0; 2706 if (stats.rssi != 0) 2707 stats.mask |= LIBIPW_STATMASK_RSSI; 2708 stats.freq = LIBIPW_24GHZ_BAND; 2709 2710 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n", 2711 priv->net_dev->name, frame_types[frame_type], 2712 stats.len); 2713 2714 switch (frame_type) { 2715 case COMMAND_STATUS_VAL: 2716 /* Reset Rx watchdog */ 2717 isr_rx_complete_command(priv, &u->rx_data.command); 2718 break; 2719 2720 case STATUS_CHANGE_VAL: 2721 isr_status_change(priv, u->rx_data.status); 2722 break; 2723 2724 case P80211_DATA_VAL: 2725 case P8023_DATA_VAL: 2726 #ifdef CONFIG_IPW2100_MONITOR 2727 if (priv->ieee->iw_mode == IW_MODE_MONITOR) { 2728 isr_rx_monitor(priv, i, &stats); 2729 break; 2730 } 2731 #endif 2732 if (stats.len < sizeof(struct libipw_hdr_3addr)) 2733 break; 2734 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) { 2735 case IEEE80211_FTYPE_MGMT: 2736 libipw_rx_mgt(priv->ieee, 2737 &u->rx_data.header, &stats); 2738 break; 2739 2740 case IEEE80211_FTYPE_CTL: 2741 break; 2742 2743 case IEEE80211_FTYPE_DATA: 2744 isr_rx(priv, i, &stats); 2745 break; 2746 2747 } 2748 break; 2749 } 2750 2751 increment: 2752 /* clear status field associated with this RBD */ 2753 rxq->drv[i].status.info.field = 0; 2754 2755 i = (i + 1) % rxq->entries; 2756 } 2757 2758 if (i != s) { 2759 /* backtrack one entry, wrapping to end if at 0 */ 2760 rxq->next = (i ? i : rxq->entries) - 1; 2761 2762 write_register(priv->net_dev, 2763 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next); 2764 } 2765 } 2766 2767 /* 2768 * __ipw2100_tx_process 2769 * 2770 * This routine will determine whether the next packet on 2771 * the fw_pend_list has been processed by the firmware yet. 2772 * 2773 * If not, then it does nothing and returns. 2774 * 2775 * If so, then it removes the item from the fw_pend_list, frees 2776 * any associated storage, and places the item back on the 2777 * free list of its source (either msg_free_list or tx_free_list) 2778 * 2779 * TX Queue works as follows: 2780 * 2781 * Read index - points to the next TBD that the firmware will 2782 * process. The firmware will read the data, and once 2783 * done processing, it will advance the Read index. 2784 * 2785 * Write index - driver fills this entry with an constructed TBD 2786 * entry. The Write index is not advanced until the 2787 * packet has been configured. 2788 * 2789 * In between the W and R indexes are the TBDs that have NOT been 2790 * processed. Lagging behind the R index are packets that have 2791 * been processed but have not been freed by the driver. 2792 * 2793 * In order to free old storage, an internal index will be maintained 2794 * that points to the next packet to be freed. When all used 2795 * packets have been freed, the oldest index will be the same as the 2796 * firmware's read index. 2797 * 2798 * The OLDEST index is cached in the variable 'priv->tx_queue.oldest' 2799 * 2800 * Because the TBD structure can not contain arbitrary data, the 2801 * driver must keep an internal queue of cached allocations such that 2802 * it can put that data back into the tx_free_list and msg_free_list 2803 * for use by future command and data packets. 2804 * 2805 */ 2806 static int __ipw2100_tx_process(struct ipw2100_priv *priv) 2807 { 2808 struct ipw2100_bd_queue *txq = &priv->tx_queue; 2809 struct ipw2100_bd *tbd; 2810 struct list_head *element; 2811 struct ipw2100_tx_packet *packet; 2812 int descriptors_used; 2813 int e, i; 2814 u32 r, w, frag_num = 0; 2815 2816 if (list_empty(&priv->fw_pend_list)) 2817 return 0; 2818 2819 element = priv->fw_pend_list.next; 2820 2821 packet = list_entry(element, struct ipw2100_tx_packet, list); 2822 tbd = &txq->drv[packet->index]; 2823 2824 /* Determine how many TBD entries must be finished... */ 2825 switch (packet->type) { 2826 case COMMAND: 2827 /* COMMAND uses only one slot; don't advance */ 2828 descriptors_used = 1; 2829 e = txq->oldest; 2830 break; 2831 2832 case DATA: 2833 /* DATA uses two slots; advance and loop position. */ 2834 descriptors_used = tbd->num_fragments; 2835 frag_num = tbd->num_fragments - 1; 2836 e = txq->oldest + frag_num; 2837 e %= txq->entries; 2838 break; 2839 2840 default: 2841 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n", 2842 priv->net_dev->name); 2843 return 0; 2844 } 2845 2846 /* if the last TBD is not done by NIC yet, then packet is 2847 * not ready to be released. 2848 * 2849 */ 2850 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX, 2851 &r); 2852 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX, 2853 &w); 2854 if (w != txq->next) 2855 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n", 2856 priv->net_dev->name); 2857 2858 /* 2859 * txq->next is the index of the last packet written txq->oldest is 2860 * the index of the r is the index of the next packet to be read by 2861 * firmware 2862 */ 2863 2864 /* 2865 * Quick graphic to help you visualize the following 2866 * if / else statement 2867 * 2868 * ===>| s---->|=============== 2869 * e>| 2870 * | a | b | c | d | e | f | g | h | i | j | k | l 2871 * r---->| 2872 * w 2873 * 2874 * w - updated by driver 2875 * r - updated by firmware 2876 * s - start of oldest BD entry (txq->oldest) 2877 * e - end of oldest BD entry 2878 * 2879 */ 2880 if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) { 2881 IPW_DEBUG_TX("exit - no processed packets ready to release.\n"); 2882 return 0; 2883 } 2884 2885 list_del(element); 2886 DEC_STAT(&priv->fw_pend_stat); 2887 2888 #ifdef CONFIG_IPW2100_DEBUG 2889 { 2890 i = txq->oldest; 2891 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i, 2892 &txq->drv[i], 2893 (u32) (txq->nic + i * sizeof(struct ipw2100_bd)), 2894 txq->drv[i].host_addr, txq->drv[i].buf_length); 2895 2896 if (packet->type == DATA) { 2897 i = (i + 1) % txq->entries; 2898 2899 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i, 2900 &txq->drv[i], 2901 (u32) (txq->nic + i * 2902 sizeof(struct ipw2100_bd)), 2903 (u32) txq->drv[i].host_addr, 2904 txq->drv[i].buf_length); 2905 } 2906 } 2907 #endif 2908 2909 switch (packet->type) { 2910 case DATA: 2911 if (txq->drv[txq->oldest].status.info.fields.txType != 0) 2912 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. " 2913 "Expecting DATA TBD but pulled " 2914 "something else: ids %d=%d.\n", 2915 priv->net_dev->name, txq->oldest, packet->index); 2916 2917 /* DATA packet; we have to unmap and free the SKB */ 2918 for (i = 0; i < frag_num; i++) { 2919 tbd = &txq->drv[(packet->index + 1 + i) % txq->entries]; 2920 2921 IPW_DEBUG_TX("TX%d P=%08x L=%d\n", 2922 (packet->index + 1 + i) % txq->entries, 2923 tbd->host_addr, tbd->buf_length); 2924 2925 dma_unmap_single(&priv->pci_dev->dev, tbd->host_addr, 2926 tbd->buf_length, DMA_TO_DEVICE); 2927 } 2928 2929 libipw_txb_free(packet->info.d_struct.txb); 2930 packet->info.d_struct.txb = NULL; 2931 2932 list_add_tail(element, &priv->tx_free_list); 2933 INC_STAT(&priv->tx_free_stat); 2934 2935 /* We have a free slot in the Tx queue, so wake up the 2936 * transmit layer if it is stopped. */ 2937 if (priv->status & STATUS_ASSOCIATED) 2938 netif_wake_queue(priv->net_dev); 2939 2940 /* A packet was processed by the hardware, so update the 2941 * watchdog */ 2942 netif_trans_update(priv->net_dev); 2943 2944 break; 2945 2946 case COMMAND: 2947 if (txq->drv[txq->oldest].status.info.fields.txType != 1) 2948 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. " 2949 "Expecting COMMAND TBD but pulled " 2950 "something else: ids %d=%d.\n", 2951 priv->net_dev->name, txq->oldest, packet->index); 2952 2953 #ifdef CONFIG_IPW2100_DEBUG 2954 if (packet->info.c_struct.cmd->host_command_reg < 2955 ARRAY_SIZE(command_types)) 2956 IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n", 2957 command_types[packet->info.c_struct.cmd-> 2958 host_command_reg], 2959 packet->info.c_struct.cmd-> 2960 host_command_reg, 2961 packet->info.c_struct.cmd->cmd_status_reg); 2962 #endif 2963 2964 list_add_tail(element, &priv->msg_free_list); 2965 INC_STAT(&priv->msg_free_stat); 2966 break; 2967 } 2968 2969 /* advance oldest used TBD pointer to start of next entry */ 2970 txq->oldest = (e + 1) % txq->entries; 2971 /* increase available TBDs number */ 2972 txq->available += descriptors_used; 2973 SET_STAT(&priv->txq_stat, txq->available); 2974 2975 IPW_DEBUG_TX("packet latency (send to process) %ld jiffies\n", 2976 jiffies - packet->jiffy_start); 2977 2978 return (!list_empty(&priv->fw_pend_list)); 2979 } 2980 2981 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv) 2982 { 2983 int i = 0; 2984 2985 while (__ipw2100_tx_process(priv) && i < 200) 2986 i++; 2987 2988 if (i == 200) { 2989 printk(KERN_WARNING DRV_NAME ": " 2990 "%s: Driver is running slow (%d iters).\n", 2991 priv->net_dev->name, i); 2992 } 2993 } 2994 2995 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv) 2996 { 2997 struct list_head *element; 2998 struct ipw2100_tx_packet *packet; 2999 struct ipw2100_bd_queue *txq = &priv->tx_queue; 3000 struct ipw2100_bd *tbd; 3001 int next = txq->next; 3002 3003 while (!list_empty(&priv->msg_pend_list)) { 3004 /* if there isn't enough space in TBD queue, then 3005 * don't stuff a new one in. 3006 * NOTE: 3 are needed as a command will take one, 3007 * and there is a minimum of 2 that must be 3008 * maintained between the r and w indexes 3009 */ 3010 if (txq->available <= 3) { 3011 IPW_DEBUG_TX("no room in tx_queue\n"); 3012 break; 3013 } 3014 3015 element = priv->msg_pend_list.next; 3016 list_del(element); 3017 DEC_STAT(&priv->msg_pend_stat); 3018 3019 packet = list_entry(element, struct ipw2100_tx_packet, list); 3020 3021 IPW_DEBUG_TX("using TBD at virt=%p, phys=%04X\n", 3022 &txq->drv[txq->next], 3023 (u32) (txq->nic + txq->next * 3024 sizeof(struct ipw2100_bd))); 3025 3026 packet->index = txq->next; 3027 3028 tbd = &txq->drv[txq->next]; 3029 3030 /* initialize TBD */ 3031 tbd->host_addr = packet->info.c_struct.cmd_phys; 3032 tbd->buf_length = sizeof(struct ipw2100_cmd_header); 3033 /* not marking number of fragments causes problems 3034 * with f/w debug version */ 3035 tbd->num_fragments = 1; 3036 tbd->status.info.field = 3037 IPW_BD_STATUS_TX_FRAME_COMMAND | 3038 IPW_BD_STATUS_TX_INTERRUPT_ENABLE; 3039 3040 /* update TBD queue counters */ 3041 txq->next++; 3042 txq->next %= txq->entries; 3043 txq->available--; 3044 DEC_STAT(&priv->txq_stat); 3045 3046 list_add_tail(element, &priv->fw_pend_list); 3047 INC_STAT(&priv->fw_pend_stat); 3048 } 3049 3050 if (txq->next != next) { 3051 /* kick off the DMA by notifying firmware the 3052 * write index has moved; make sure TBD stores are sync'd */ 3053 wmb(); 3054 write_register(priv->net_dev, 3055 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX, 3056 txq->next); 3057 } 3058 } 3059 3060 /* 3061 * ipw2100_tx_send_data 3062 * 3063 */ 3064 static void ipw2100_tx_send_data(struct ipw2100_priv *priv) 3065 { 3066 struct list_head *element; 3067 struct ipw2100_tx_packet *packet; 3068 struct ipw2100_bd_queue *txq = &priv->tx_queue; 3069 struct ipw2100_bd *tbd; 3070 int next = txq->next; 3071 int i = 0; 3072 struct ipw2100_data_header *ipw_hdr; 3073 struct libipw_hdr_3addr *hdr; 3074 3075 while (!list_empty(&priv->tx_pend_list)) { 3076 /* if there isn't enough space in TBD queue, then 3077 * don't stuff a new one in. 3078 * NOTE: 4 are needed as a data will take two, 3079 * and there is a minimum of 2 that must be 3080 * maintained between the r and w indexes 3081 */ 3082 element = priv->tx_pend_list.next; 3083 packet = list_entry(element, struct ipw2100_tx_packet, list); 3084 3085 if (unlikely(1 + packet->info.d_struct.txb->nr_frags > 3086 IPW_MAX_BDS)) { 3087 /* TODO: Support merging buffers if more than 3088 * IPW_MAX_BDS are used */ 3089 IPW_DEBUG_INFO("%s: Maximum BD threshold exceeded. " 3090 "Increase fragmentation level.\n", 3091 priv->net_dev->name); 3092 } 3093 3094 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) { 3095 IPW_DEBUG_TX("no room in tx_queue\n"); 3096 break; 3097 } 3098 3099 list_del(element); 3100 DEC_STAT(&priv->tx_pend_stat); 3101 3102 tbd = &txq->drv[txq->next]; 3103 3104 packet->index = txq->next; 3105 3106 ipw_hdr = packet->info.d_struct.data; 3107 hdr = (struct libipw_hdr_3addr *)packet->info.d_struct.txb-> 3108 fragments[0]->data; 3109 3110 if (priv->ieee->iw_mode == IW_MODE_INFRA) { 3111 /* To DS: Addr1 = BSSID, Addr2 = SA, 3112 Addr3 = DA */ 3113 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN); 3114 memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN); 3115 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) { 3116 /* not From/To DS: Addr1 = DA, Addr2 = SA, 3117 Addr3 = BSSID */ 3118 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN); 3119 memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN); 3120 } 3121 3122 ipw_hdr->host_command_reg = SEND; 3123 ipw_hdr->host_command_reg1 = 0; 3124 3125 /* For now we only support host based encryption */ 3126 ipw_hdr->needs_encryption = 0; 3127 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted; 3128 if (packet->info.d_struct.txb->nr_frags > 1) 3129 ipw_hdr->fragment_size = 3130 packet->info.d_struct.txb->frag_size - 3131 LIBIPW_3ADDR_LEN; 3132 else 3133 ipw_hdr->fragment_size = 0; 3134 3135 tbd->host_addr = packet->info.d_struct.data_phys; 3136 tbd->buf_length = sizeof(struct ipw2100_data_header); 3137 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags; 3138 tbd->status.info.field = 3139 IPW_BD_STATUS_TX_FRAME_802_3 | 3140 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT; 3141 txq->next++; 3142 txq->next %= txq->entries; 3143 3144 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n", 3145 packet->index, tbd->host_addr, tbd->buf_length); 3146 #ifdef CONFIG_IPW2100_DEBUG 3147 if (packet->info.d_struct.txb->nr_frags > 1) 3148 IPW_DEBUG_FRAG("fragment Tx: %d frames\n", 3149 packet->info.d_struct.txb->nr_frags); 3150 #endif 3151 3152 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) { 3153 tbd = &txq->drv[txq->next]; 3154 if (i == packet->info.d_struct.txb->nr_frags - 1) 3155 tbd->status.info.field = 3156 IPW_BD_STATUS_TX_FRAME_802_3 | 3157 IPW_BD_STATUS_TX_INTERRUPT_ENABLE; 3158 else 3159 tbd->status.info.field = 3160 IPW_BD_STATUS_TX_FRAME_802_3 | 3161 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT; 3162 3163 tbd->buf_length = packet->info.d_struct.txb-> 3164 fragments[i]->len - LIBIPW_3ADDR_LEN; 3165 3166 tbd->host_addr = dma_map_single(&priv->pci_dev->dev, 3167 packet->info.d_struct. 3168 txb->fragments[i]->data + 3169 LIBIPW_3ADDR_LEN, 3170 tbd->buf_length, 3171 DMA_TO_DEVICE); 3172 if (dma_mapping_error(&priv->pci_dev->dev, tbd->host_addr)) { 3173 IPW_DEBUG_TX("dma mapping error\n"); 3174 break; 3175 } 3176 3177 IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n", 3178 txq->next, tbd->host_addr, 3179 tbd->buf_length); 3180 3181 dma_sync_single_for_device(&priv->pci_dev->dev, 3182 tbd->host_addr, 3183 tbd->buf_length, 3184 DMA_TO_DEVICE); 3185 3186 txq->next++; 3187 txq->next %= txq->entries; 3188 } 3189 3190 txq->available -= 1 + packet->info.d_struct.txb->nr_frags; 3191 SET_STAT(&priv->txq_stat, txq->available); 3192 3193 list_add_tail(element, &priv->fw_pend_list); 3194 INC_STAT(&priv->fw_pend_stat); 3195 } 3196 3197 if (txq->next != next) { 3198 /* kick off the DMA by notifying firmware the 3199 * write index has moved; make sure TBD stores are sync'd */ 3200 write_register(priv->net_dev, 3201 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX, 3202 txq->next); 3203 } 3204 } 3205 3206 static void ipw2100_irq_tasklet(struct tasklet_struct *t) 3207 { 3208 struct ipw2100_priv *priv = from_tasklet(priv, t, irq_tasklet); 3209 struct net_device *dev = priv->net_dev; 3210 unsigned long flags; 3211 u32 inta, tmp; 3212 3213 spin_lock_irqsave(&priv->low_lock, flags); 3214 ipw2100_disable_interrupts(priv); 3215 3216 read_register(dev, IPW_REG_INTA, &inta); 3217 3218 IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n", 3219 (unsigned long)inta & IPW_INTERRUPT_MASK); 3220 3221 priv->in_isr++; 3222 priv->interrupts++; 3223 3224 /* We do not loop and keep polling for more interrupts as this 3225 * is frowned upon and doesn't play nicely with other potentially 3226 * chained IRQs */ 3227 IPW_DEBUG_ISR("INTA: 0x%08lX\n", 3228 (unsigned long)inta & IPW_INTERRUPT_MASK); 3229 3230 if (inta & IPW2100_INTA_FATAL_ERROR) { 3231 printk(KERN_WARNING DRV_NAME 3232 ": Fatal interrupt. Scheduling firmware restart.\n"); 3233 priv->inta_other++; 3234 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR); 3235 3236 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error); 3237 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n", 3238 priv->net_dev->name, priv->fatal_error); 3239 3240 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp); 3241 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n", 3242 priv->net_dev->name, tmp); 3243 3244 /* Wake up any sleeping jobs */ 3245 schedule_reset(priv); 3246 } 3247 3248 if (inta & IPW2100_INTA_PARITY_ERROR) { 3249 printk(KERN_ERR DRV_NAME 3250 ": ***** PARITY ERROR INTERRUPT !!!!\n"); 3251 priv->inta_other++; 3252 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR); 3253 } 3254 3255 if (inta & IPW2100_INTA_RX_TRANSFER) { 3256 IPW_DEBUG_ISR("RX interrupt\n"); 3257 3258 priv->rx_interrupts++; 3259 3260 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER); 3261 3262 __ipw2100_rx_process(priv); 3263 __ipw2100_tx_complete(priv); 3264 } 3265 3266 if (inta & IPW2100_INTA_TX_TRANSFER) { 3267 IPW_DEBUG_ISR("TX interrupt\n"); 3268 3269 priv->tx_interrupts++; 3270 3271 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER); 3272 3273 __ipw2100_tx_complete(priv); 3274 ipw2100_tx_send_commands(priv); 3275 ipw2100_tx_send_data(priv); 3276 } 3277 3278 if (inta & IPW2100_INTA_TX_COMPLETE) { 3279 IPW_DEBUG_ISR("TX complete\n"); 3280 priv->inta_other++; 3281 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE); 3282 3283 __ipw2100_tx_complete(priv); 3284 } 3285 3286 if (inta & IPW2100_INTA_EVENT_INTERRUPT) { 3287 /* ipw2100_handle_event(dev); */ 3288 priv->inta_other++; 3289 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT); 3290 } 3291 3292 if (inta & IPW2100_INTA_FW_INIT_DONE) { 3293 IPW_DEBUG_ISR("FW init done interrupt\n"); 3294 priv->inta_other++; 3295 3296 read_register(dev, IPW_REG_INTA, &tmp); 3297 if (tmp & (IPW2100_INTA_FATAL_ERROR | 3298 IPW2100_INTA_PARITY_ERROR)) { 3299 write_register(dev, IPW_REG_INTA, 3300 IPW2100_INTA_FATAL_ERROR | 3301 IPW2100_INTA_PARITY_ERROR); 3302 } 3303 3304 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE); 3305 } 3306 3307 if (inta & IPW2100_INTA_STATUS_CHANGE) { 3308 IPW_DEBUG_ISR("Status change interrupt\n"); 3309 priv->inta_other++; 3310 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE); 3311 } 3312 3313 if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) { 3314 IPW_DEBUG_ISR("slave host mode interrupt\n"); 3315 priv->inta_other++; 3316 write_register(dev, IPW_REG_INTA, 3317 IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE); 3318 } 3319 3320 priv->in_isr--; 3321 ipw2100_enable_interrupts(priv); 3322 3323 spin_unlock_irqrestore(&priv->low_lock, flags); 3324 3325 IPW_DEBUG_ISR("exit\n"); 3326 } 3327 3328 static irqreturn_t ipw2100_interrupt(int irq, void *data) 3329 { 3330 struct ipw2100_priv *priv = data; 3331 u32 inta, inta_mask; 3332 3333 if (!data) 3334 return IRQ_NONE; 3335 3336 spin_lock(&priv->low_lock); 3337 3338 /* We check to see if we should be ignoring interrupts before 3339 * we touch the hardware. During ucode load if we try and handle 3340 * an interrupt we can cause keyboard problems as well as cause 3341 * the ucode to fail to initialize */ 3342 if (!(priv->status & STATUS_INT_ENABLED)) { 3343 /* Shared IRQ */ 3344 goto none; 3345 } 3346 3347 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask); 3348 read_register(priv->net_dev, IPW_REG_INTA, &inta); 3349 3350 if (inta == 0xFFFFFFFF) { 3351 /* Hardware disappeared */ 3352 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n"); 3353 goto none; 3354 } 3355 3356 inta &= IPW_INTERRUPT_MASK; 3357 3358 if (!(inta & inta_mask)) { 3359 /* Shared interrupt */ 3360 goto none; 3361 } 3362 3363 /* We disable the hardware interrupt here just to prevent unneeded 3364 * calls to be made. We disable this again within the actual 3365 * work tasklet, so if another part of the code re-enables the 3366 * interrupt, that is fine */ 3367 ipw2100_disable_interrupts(priv); 3368 3369 tasklet_schedule(&priv->irq_tasklet); 3370 spin_unlock(&priv->low_lock); 3371 3372 return IRQ_HANDLED; 3373 none: 3374 spin_unlock(&priv->low_lock); 3375 return IRQ_NONE; 3376 } 3377 3378 static netdev_tx_t ipw2100_tx(struct libipw_txb *txb, 3379 struct net_device *dev, int pri) 3380 { 3381 struct ipw2100_priv *priv = libipw_priv(dev); 3382 struct list_head *element; 3383 struct ipw2100_tx_packet *packet; 3384 unsigned long flags; 3385 3386 spin_lock_irqsave(&priv->low_lock, flags); 3387 3388 if (!(priv->status & STATUS_ASSOCIATED)) { 3389 IPW_DEBUG_INFO("Can not transmit when not connected.\n"); 3390 priv->net_dev->stats.tx_carrier_errors++; 3391 netif_stop_queue(dev); 3392 goto fail_unlock; 3393 } 3394 3395 if (list_empty(&priv->tx_free_list)) 3396 goto fail_unlock; 3397 3398 element = priv->tx_free_list.next; 3399 packet = list_entry(element, struct ipw2100_tx_packet, list); 3400 3401 packet->info.d_struct.txb = txb; 3402 3403 IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len); 3404 printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len); 3405 3406 packet->jiffy_start = jiffies; 3407 3408 list_del(element); 3409 DEC_STAT(&priv->tx_free_stat); 3410 3411 list_add_tail(element, &priv->tx_pend_list); 3412 INC_STAT(&priv->tx_pend_stat); 3413 3414 ipw2100_tx_send_data(priv); 3415 3416 spin_unlock_irqrestore(&priv->low_lock, flags); 3417 return NETDEV_TX_OK; 3418 3419 fail_unlock: 3420 netif_stop_queue(dev); 3421 spin_unlock_irqrestore(&priv->low_lock, flags); 3422 return NETDEV_TX_BUSY; 3423 } 3424 3425 static int ipw2100_msg_allocate(struct ipw2100_priv *priv) 3426 { 3427 int i, j, err = -EINVAL; 3428 void *v; 3429 dma_addr_t p; 3430 3431 priv->msg_buffers = 3432 kmalloc_array(IPW_COMMAND_POOL_SIZE, 3433 sizeof(struct ipw2100_tx_packet), 3434 GFP_KERNEL); 3435 if (!priv->msg_buffers) 3436 return -ENOMEM; 3437 3438 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) { 3439 v = dma_alloc_coherent(&priv->pci_dev->dev, 3440 sizeof(struct ipw2100_cmd_header), &p, 3441 GFP_KERNEL); 3442 if (!v) { 3443 printk(KERN_ERR DRV_NAME ": " 3444 "%s: PCI alloc failed for msg " 3445 "buffers.\n", priv->net_dev->name); 3446 err = -ENOMEM; 3447 break; 3448 } 3449 3450 priv->msg_buffers[i].type = COMMAND; 3451 priv->msg_buffers[i].info.c_struct.cmd = 3452 (struct ipw2100_cmd_header *)v; 3453 priv->msg_buffers[i].info.c_struct.cmd_phys = p; 3454 } 3455 3456 if (i == IPW_COMMAND_POOL_SIZE) 3457 return 0; 3458 3459 for (j = 0; j < i; j++) { 3460 dma_free_coherent(&priv->pci_dev->dev, 3461 sizeof(struct ipw2100_cmd_header), 3462 priv->msg_buffers[j].info.c_struct.cmd, 3463 priv->msg_buffers[j].info.c_struct.cmd_phys); 3464 } 3465 3466 kfree(priv->msg_buffers); 3467 priv->msg_buffers = NULL; 3468 3469 return err; 3470 } 3471 3472 static int ipw2100_msg_initialize(struct ipw2100_priv *priv) 3473 { 3474 int i; 3475 3476 INIT_LIST_HEAD(&priv->msg_free_list); 3477 INIT_LIST_HEAD(&priv->msg_pend_list); 3478 3479 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) 3480 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list); 3481 SET_STAT(&priv->msg_free_stat, i); 3482 3483 return 0; 3484 } 3485 3486 static void ipw2100_msg_free(struct ipw2100_priv *priv) 3487 { 3488 int i; 3489 3490 if (!priv->msg_buffers) 3491 return; 3492 3493 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) { 3494 dma_free_coherent(&priv->pci_dev->dev, 3495 sizeof(struct ipw2100_cmd_header), 3496 priv->msg_buffers[i].info.c_struct.cmd, 3497 priv->msg_buffers[i].info.c_struct.cmd_phys); 3498 } 3499 3500 kfree(priv->msg_buffers); 3501 priv->msg_buffers = NULL; 3502 } 3503 3504 static ssize_t show_pci(struct device *d, struct device_attribute *attr, 3505 char *buf) 3506 { 3507 struct pci_dev *pci_dev = to_pci_dev(d); 3508 char *out = buf; 3509 int i, j; 3510 u32 val; 3511 3512 for (i = 0; i < 16; i++) { 3513 out += sprintf(out, "[%08X] ", i * 16); 3514 for (j = 0; j < 16; j += 4) { 3515 pci_read_config_dword(pci_dev, i * 16 + j, &val); 3516 out += sprintf(out, "%08X ", val); 3517 } 3518 out += sprintf(out, "\n"); 3519 } 3520 3521 return out - buf; 3522 } 3523 3524 static DEVICE_ATTR(pci, 0444, show_pci, NULL); 3525 3526 static ssize_t show_cfg(struct device *d, struct device_attribute *attr, 3527 char *buf) 3528 { 3529 struct ipw2100_priv *p = dev_get_drvdata(d); 3530 return sprintf(buf, "0x%08x\n", (int)p->config); 3531 } 3532 3533 static DEVICE_ATTR(cfg, 0444, show_cfg, NULL); 3534 3535 static ssize_t show_status(struct device *d, struct device_attribute *attr, 3536 char *buf) 3537 { 3538 struct ipw2100_priv *p = dev_get_drvdata(d); 3539 return sprintf(buf, "0x%08x\n", (int)p->status); 3540 } 3541 3542 static DEVICE_ATTR(status, 0444, show_status, NULL); 3543 3544 static ssize_t show_capability(struct device *d, struct device_attribute *attr, 3545 char *buf) 3546 { 3547 struct ipw2100_priv *p = dev_get_drvdata(d); 3548 return sprintf(buf, "0x%08x\n", (int)p->capability); 3549 } 3550 3551 static DEVICE_ATTR(capability, 0444, show_capability, NULL); 3552 3553 #define IPW2100_REG(x) { IPW_ ##x, #x } 3554 static const struct { 3555 u32 addr; 3556 const char *name; 3557 } hw_data[] = { 3558 IPW2100_REG(REG_GP_CNTRL), 3559 IPW2100_REG(REG_GPIO), 3560 IPW2100_REG(REG_INTA), 3561 IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),}; 3562 #define IPW2100_NIC(x, s) { x, #x, s } 3563 static const struct { 3564 u32 addr; 3565 const char *name; 3566 size_t size; 3567 } nic_data[] = { 3568 IPW2100_NIC(IPW2100_CONTROL_REG, 2), 3569 IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),}; 3570 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d } 3571 static const struct { 3572 u8 index; 3573 const char *name; 3574 const char *desc; 3575 } ord_data[] = { 3576 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"), 3577 IPW2100_ORD(STAT_TX_HOST_COMPLETE, 3578 "successful Host Tx's (MSDU)"), 3579 IPW2100_ORD(STAT_TX_DIR_DATA, 3580 "successful Directed Tx's (MSDU)"), 3581 IPW2100_ORD(STAT_TX_DIR_DATA1, 3582 "successful Directed Tx's (MSDU) @ 1MB"), 3583 IPW2100_ORD(STAT_TX_DIR_DATA2, 3584 "successful Directed Tx's (MSDU) @ 2MB"), 3585 IPW2100_ORD(STAT_TX_DIR_DATA5_5, 3586 "successful Directed Tx's (MSDU) @ 5_5MB"), 3587 IPW2100_ORD(STAT_TX_DIR_DATA11, 3588 "successful Directed Tx's (MSDU) @ 11MB"), 3589 IPW2100_ORD(STAT_TX_NODIR_DATA1, 3590 "successful Non_Directed Tx's (MSDU) @ 1MB"), 3591 IPW2100_ORD(STAT_TX_NODIR_DATA2, 3592 "successful Non_Directed Tx's (MSDU) @ 2MB"), 3593 IPW2100_ORD(STAT_TX_NODIR_DATA5_5, 3594 "successful Non_Directed Tx's (MSDU) @ 5.5MB"), 3595 IPW2100_ORD(STAT_TX_NODIR_DATA11, 3596 "successful Non_Directed Tx's (MSDU) @ 11MB"), 3597 IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"), 3598 IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"), 3599 IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"), 3600 IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"), 3601 IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"), 3602 IPW2100_ORD(STAT_TX_ASSN_RESP, 3603 "successful Association response Tx's"), 3604 IPW2100_ORD(STAT_TX_REASSN, 3605 "successful Reassociation Tx's"), 3606 IPW2100_ORD(STAT_TX_REASSN_RESP, 3607 "successful Reassociation response Tx's"), 3608 IPW2100_ORD(STAT_TX_PROBE, 3609 "probes successfully transmitted"), 3610 IPW2100_ORD(STAT_TX_PROBE_RESP, 3611 "probe responses successfully transmitted"), 3612 IPW2100_ORD(STAT_TX_BEACON, "tx beacon"), 3613 IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"), 3614 IPW2100_ORD(STAT_TX_DISASSN, 3615 "successful Disassociation TX"), 3616 IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"), 3617 IPW2100_ORD(STAT_TX_DEAUTH, 3618 "successful Deauthentication TX"), 3619 IPW2100_ORD(STAT_TX_TOTAL_BYTES, 3620 "Total successful Tx data bytes"), 3621 IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"), 3622 IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"), 3623 IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"), 3624 IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"), 3625 IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"), 3626 IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"), 3627 IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP, 3628 "times max tries in a hop failed"), 3629 IPW2100_ORD(STAT_TX_DISASSN_FAIL, 3630 "times disassociation failed"), 3631 IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"), 3632 IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"), 3633 IPW2100_ORD(STAT_RX_HOST, "packets passed to host"), 3634 IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"), 3635 IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"), 3636 IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"), 3637 IPW2100_ORD(STAT_RX_DIR_DATA5_5, 3638 "directed packets at 5.5MB"), 3639 IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"), 3640 IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"), 3641 IPW2100_ORD(STAT_RX_NODIR_DATA1, 3642 "nondirected packets at 1MB"), 3643 IPW2100_ORD(STAT_RX_NODIR_DATA2, 3644 "nondirected packets at 2MB"), 3645 IPW2100_ORD(STAT_RX_NODIR_DATA5_5, 3646 "nondirected packets at 5.5MB"), 3647 IPW2100_ORD(STAT_RX_NODIR_DATA11, 3648 "nondirected packets at 11MB"), 3649 IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"), 3650 IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS, 3651 "Rx CTS"), 3652 IPW2100_ORD(STAT_RX_ACK, "Rx ACK"), 3653 IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"), 3654 IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"), 3655 IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"), 3656 IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"), 3657 IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"), 3658 IPW2100_ORD(STAT_RX_REASSN_RESP, 3659 "Reassociation response Rx's"), 3660 IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"), 3661 IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"), 3662 IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"), 3663 IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"), 3664 IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"), 3665 IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"), 3666 IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"), 3667 IPW2100_ORD(STAT_RX_TOTAL_BYTES, 3668 "Total rx data bytes received"), 3669 IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"), 3670 IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"), 3671 IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"), 3672 IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"), 3673 IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"), 3674 IPW2100_ORD(STAT_RX_DUPLICATE1, 3675 "duplicate rx packets at 1MB"), 3676 IPW2100_ORD(STAT_RX_DUPLICATE2, 3677 "duplicate rx packets at 2MB"), 3678 IPW2100_ORD(STAT_RX_DUPLICATE5_5, 3679 "duplicate rx packets at 5.5MB"), 3680 IPW2100_ORD(STAT_RX_DUPLICATE11, 3681 "duplicate rx packets at 11MB"), 3682 IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"), 3683 IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent db"), 3684 IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent db"), 3685 IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent db"), 3686 IPW2100_ORD(STAT_RX_INVALID_PROTOCOL, 3687 "rx frames with invalid protocol"), 3688 IPW2100_ORD(SYS_BOOT_TIME, "Boot time"), 3689 IPW2100_ORD(STAT_RX_NO_BUFFER, 3690 "rx frames rejected due to no buffer"), 3691 IPW2100_ORD(STAT_RX_MISSING_FRAG, 3692 "rx frames dropped due to missing fragment"), 3693 IPW2100_ORD(STAT_RX_ORPHAN_FRAG, 3694 "rx frames dropped due to non-sequential fragment"), 3695 IPW2100_ORD(STAT_RX_ORPHAN_FRAME, 3696 "rx frames dropped due to unmatched 1st frame"), 3697 IPW2100_ORD(STAT_RX_FRAG_AGEOUT, 3698 "rx frames dropped due to uncompleted frame"), 3699 IPW2100_ORD(STAT_RX_ICV_ERRORS, 3700 "ICV errors during decryption"), 3701 IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"), 3702 IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"), 3703 IPW2100_ORD(STAT_PSP_POLL_TIMEOUT, 3704 "poll response timeouts"), 3705 IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT, 3706 "timeouts waiting for last {broad,multi}cast pkt"), 3707 IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"), 3708 IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"), 3709 IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"), 3710 IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"), 3711 IPW2100_ORD(STAT_PERCENT_MISSED_BCNS, 3712 "current calculation of % missed beacons"), 3713 IPW2100_ORD(STAT_PERCENT_RETRIES, 3714 "current calculation of % missed tx retries"), 3715 IPW2100_ORD(ASSOCIATED_AP_PTR, 3716 "0 if not associated, else pointer to AP table entry"), 3717 IPW2100_ORD(AVAILABLE_AP_CNT, 3718 "AP's described in the AP table"), 3719 IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"), 3720 IPW2100_ORD(STAT_AP_ASSNS, "associations"), 3721 IPW2100_ORD(STAT_ASSN_FAIL, "association failures"), 3722 IPW2100_ORD(STAT_ASSN_RESP_FAIL, 3723 "failures due to response fail"), 3724 IPW2100_ORD(STAT_FULL_SCANS, "full scans"), 3725 IPW2100_ORD(CARD_DISABLED, "Card Disabled"), 3726 IPW2100_ORD(STAT_ROAM_INHIBIT, 3727 "times roaming was inhibited due to activity"), 3728 IPW2100_ORD(RSSI_AT_ASSN, 3729 "RSSI of associated AP at time of association"), 3730 IPW2100_ORD(STAT_ASSN_CAUSE1, 3731 "reassociation: no probe response or TX on hop"), 3732 IPW2100_ORD(STAT_ASSN_CAUSE2, 3733 "reassociation: poor tx/rx quality"), 3734 IPW2100_ORD(STAT_ASSN_CAUSE3, 3735 "reassociation: tx/rx quality (excessive AP load"), 3736 IPW2100_ORD(STAT_ASSN_CAUSE4, 3737 "reassociation: AP RSSI level"), 3738 IPW2100_ORD(STAT_ASSN_CAUSE5, 3739 "reassociations due to load leveling"), 3740 IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"), 3741 IPW2100_ORD(STAT_AUTH_RESP_FAIL, 3742 "times authentication response failed"), 3743 IPW2100_ORD(STATION_TABLE_CNT, 3744 "entries in association table"), 3745 IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"), 3746 IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"), 3747 IPW2100_ORD(COUNTRY_CODE, 3748 "IEEE country code as recv'd from beacon"), 3749 IPW2100_ORD(COUNTRY_CHANNELS, 3750 "channels supported by country"), 3751 IPW2100_ORD(RESET_CNT, "adapter resets (warm)"), 3752 IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"), 3753 IPW2100_ORD(ANTENNA_DIVERSITY, 3754 "TRUE if antenna diversity is disabled"), 3755 IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"), 3756 IPW2100_ORD(OUR_FREQ, 3757 "current radio freq lower digits - channel ID"), 3758 IPW2100_ORD(RTC_TIME, "current RTC time"), 3759 IPW2100_ORD(PORT_TYPE, "operating mode"), 3760 IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"), 3761 IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"), 3762 IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"), 3763 IPW2100_ORD(BASIC_RATES, "basic tx rates"), 3764 IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"), 3765 IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"), 3766 IPW2100_ORD(CAPABILITIES, 3767 "Management frame capability field"), 3768 IPW2100_ORD(AUTH_TYPE, "Type of authentication"), 3769 IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"), 3770 IPW2100_ORD(RTS_THRESHOLD, 3771 "Min packet length for RTS handshaking"), 3772 IPW2100_ORD(INT_MODE, "International mode"), 3773 IPW2100_ORD(FRAGMENTATION_THRESHOLD, 3774 "protocol frag threshold"), 3775 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS, 3776 "EEPROM offset in SRAM"), 3777 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE, 3778 "EEPROM size in SRAM"), 3779 IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"), 3780 IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS, 3781 "EEPROM IBSS 11b channel set"), 3782 IPW2100_ORD(MAC_VERSION, "MAC Version"), 3783 IPW2100_ORD(MAC_REVISION, "MAC Revision"), 3784 IPW2100_ORD(RADIO_VERSION, "Radio Version"), 3785 IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"), 3786 IPW2100_ORD(UCODE_VERSION, "Ucode Version"),}; 3787 3788 static ssize_t show_registers(struct device *d, struct device_attribute *attr, 3789 char *buf) 3790 { 3791 int i; 3792 struct ipw2100_priv *priv = dev_get_drvdata(d); 3793 struct net_device *dev = priv->net_dev; 3794 char *out = buf; 3795 u32 val = 0; 3796 3797 out += sprintf(out, "%30s [Address ] : Hex\n", "Register"); 3798 3799 for (i = 0; i < ARRAY_SIZE(hw_data); i++) { 3800 read_register(dev, hw_data[i].addr, &val); 3801 out += sprintf(out, "%30s [%08X] : %08X\n", 3802 hw_data[i].name, hw_data[i].addr, val); 3803 } 3804 3805 return out - buf; 3806 } 3807 3808 static DEVICE_ATTR(registers, 0444, show_registers, NULL); 3809 3810 static ssize_t show_hardware(struct device *d, struct device_attribute *attr, 3811 char *buf) 3812 { 3813 struct ipw2100_priv *priv = dev_get_drvdata(d); 3814 struct net_device *dev = priv->net_dev; 3815 char *out = buf; 3816 int i; 3817 3818 out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry"); 3819 3820 for (i = 0; i < ARRAY_SIZE(nic_data); i++) { 3821 u8 tmp8; 3822 u16 tmp16; 3823 u32 tmp32; 3824 3825 switch (nic_data[i].size) { 3826 case 1: 3827 read_nic_byte(dev, nic_data[i].addr, &tmp8); 3828 out += sprintf(out, "%30s [%08X] : %02X\n", 3829 nic_data[i].name, nic_data[i].addr, 3830 tmp8); 3831 break; 3832 case 2: 3833 read_nic_word(dev, nic_data[i].addr, &tmp16); 3834 out += sprintf(out, "%30s [%08X] : %04X\n", 3835 nic_data[i].name, nic_data[i].addr, 3836 tmp16); 3837 break; 3838 case 4: 3839 read_nic_dword(dev, nic_data[i].addr, &tmp32); 3840 out += sprintf(out, "%30s [%08X] : %08X\n", 3841 nic_data[i].name, nic_data[i].addr, 3842 tmp32); 3843 break; 3844 } 3845 } 3846 return out - buf; 3847 } 3848 3849 static DEVICE_ATTR(hardware, 0444, show_hardware, NULL); 3850 3851 static ssize_t show_memory(struct device *d, struct device_attribute *attr, 3852 char *buf) 3853 { 3854 struct ipw2100_priv *priv = dev_get_drvdata(d); 3855 struct net_device *dev = priv->net_dev; 3856 static unsigned long loop = 0; 3857 int len = 0; 3858 u32 buffer[4]; 3859 int i; 3860 char line[81]; 3861 3862 if (loop >= 0x30000) 3863 loop = 0; 3864 3865 /* sysfs provides us PAGE_SIZE buffer */ 3866 while (len < PAGE_SIZE - 128 && loop < 0x30000) { 3867 3868 if (priv->snapshot[0]) 3869 for (i = 0; i < 4; i++) 3870 buffer[i] = 3871 *(u32 *) SNAPSHOT_ADDR(loop + i * 4); 3872 else 3873 for (i = 0; i < 4; i++) 3874 read_nic_dword(dev, loop + i * 4, &buffer[i]); 3875 3876 if (priv->dump_raw) 3877 len += sprintf(buf + len, 3878 "%c%c%c%c" 3879 "%c%c%c%c" 3880 "%c%c%c%c" 3881 "%c%c%c%c", 3882 ((u8 *) buffer)[0x0], 3883 ((u8 *) buffer)[0x1], 3884 ((u8 *) buffer)[0x2], 3885 ((u8 *) buffer)[0x3], 3886 ((u8 *) buffer)[0x4], 3887 ((u8 *) buffer)[0x5], 3888 ((u8 *) buffer)[0x6], 3889 ((u8 *) buffer)[0x7], 3890 ((u8 *) buffer)[0x8], 3891 ((u8 *) buffer)[0x9], 3892 ((u8 *) buffer)[0xa], 3893 ((u8 *) buffer)[0xb], 3894 ((u8 *) buffer)[0xc], 3895 ((u8 *) buffer)[0xd], 3896 ((u8 *) buffer)[0xe], 3897 ((u8 *) buffer)[0xf]); 3898 else 3899 len += sprintf(buf + len, "%s\n", 3900 snprint_line(line, sizeof(line), 3901 (u8 *) buffer, 16, loop)); 3902 loop += 16; 3903 } 3904 3905 return len; 3906 } 3907 3908 static ssize_t store_memory(struct device *d, struct device_attribute *attr, 3909 const char *buf, size_t count) 3910 { 3911 struct ipw2100_priv *priv = dev_get_drvdata(d); 3912 struct net_device *dev = priv->net_dev; 3913 const char *p = buf; 3914 3915 (void)dev; /* kill unused-var warning for debug-only code */ 3916 3917 if (count < 1) 3918 return count; 3919 3920 if (p[0] == '1' || 3921 (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) { 3922 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n", 3923 dev->name); 3924 priv->dump_raw = 1; 3925 3926 } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' && 3927 tolower(p[1]) == 'f')) { 3928 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n", 3929 dev->name); 3930 priv->dump_raw = 0; 3931 3932 } else if (tolower(p[0]) == 'r') { 3933 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name); 3934 ipw2100_snapshot_free(priv); 3935 3936 } else 3937 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, " 3938 "reset = clear memory snapshot\n", dev->name); 3939 3940 return count; 3941 } 3942 3943 static DEVICE_ATTR(memory, 0644, show_memory, store_memory); 3944 3945 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr, 3946 char *buf) 3947 { 3948 struct ipw2100_priv *priv = dev_get_drvdata(d); 3949 u32 val = 0; 3950 int len = 0; 3951 u32 val_len; 3952 static int loop = 0; 3953 3954 if (priv->status & STATUS_RF_KILL_MASK) 3955 return 0; 3956 3957 if (loop >= ARRAY_SIZE(ord_data)) 3958 loop = 0; 3959 3960 /* sysfs provides us PAGE_SIZE buffer */ 3961 while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) { 3962 val_len = sizeof(u32); 3963 3964 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val, 3965 &val_len)) 3966 len += sprintf(buf + len, "[0x%02X] = ERROR %s\n", 3967 ord_data[loop].index, 3968 ord_data[loop].desc); 3969 else 3970 len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n", 3971 ord_data[loop].index, val, 3972 ord_data[loop].desc); 3973 loop++; 3974 } 3975 3976 return len; 3977 } 3978 3979 static DEVICE_ATTR(ordinals, 0444, show_ordinals, NULL); 3980 3981 static ssize_t show_stats(struct device *d, struct device_attribute *attr, 3982 char *buf) 3983 { 3984 struct ipw2100_priv *priv = dev_get_drvdata(d); 3985 char *out = buf; 3986 3987 out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n", 3988 priv->interrupts, priv->tx_interrupts, 3989 priv->rx_interrupts, priv->inta_other); 3990 out += sprintf(out, "firmware resets: %d\n", priv->resets); 3991 out += sprintf(out, "firmware hangs: %d\n", priv->hangs); 3992 #ifdef CONFIG_IPW2100_DEBUG 3993 out += sprintf(out, "packet mismatch image: %s\n", 3994 priv->snapshot[0] ? "YES" : "NO"); 3995 #endif 3996 3997 return out - buf; 3998 } 3999 4000 static DEVICE_ATTR(stats, 0444, show_stats, NULL); 4001 4002 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode) 4003 { 4004 int err; 4005 4006 if (mode == priv->ieee->iw_mode) 4007 return 0; 4008 4009 err = ipw2100_disable_adapter(priv); 4010 if (err) { 4011 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n", 4012 priv->net_dev->name, err); 4013 return err; 4014 } 4015 4016 switch (mode) { 4017 case IW_MODE_INFRA: 4018 priv->net_dev->type = ARPHRD_ETHER; 4019 break; 4020 case IW_MODE_ADHOC: 4021 priv->net_dev->type = ARPHRD_ETHER; 4022 break; 4023 #ifdef CONFIG_IPW2100_MONITOR 4024 case IW_MODE_MONITOR: 4025 priv->last_mode = priv->ieee->iw_mode; 4026 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP; 4027 break; 4028 #endif /* CONFIG_IPW2100_MONITOR */ 4029 } 4030 4031 priv->ieee->iw_mode = mode; 4032 4033 #ifdef CONFIG_PM 4034 /* Indicate ipw2100_download_firmware download firmware 4035 * from disk instead of memory. */ 4036 ipw2100_firmware.version = 0; 4037 #endif 4038 4039 printk(KERN_INFO "%s: Resetting on mode change.\n", priv->net_dev->name); 4040 priv->reset_backoff = 0; 4041 schedule_reset(priv); 4042 4043 return 0; 4044 } 4045 4046 static ssize_t show_internals(struct device *d, struct device_attribute *attr, 4047 char *buf) 4048 { 4049 struct ipw2100_priv *priv = dev_get_drvdata(d); 4050 int len = 0; 4051 4052 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x) 4053 4054 if (priv->status & STATUS_ASSOCIATED) 4055 len += sprintf(buf + len, "connected: %llu\n", 4056 ktime_get_boottime_seconds() - priv->connect_start); 4057 else 4058 len += sprintf(buf + len, "not connected\n"); 4059 4060 DUMP_VAR(ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx], "p"); 4061 DUMP_VAR(status, "08lx"); 4062 DUMP_VAR(config, "08lx"); 4063 DUMP_VAR(capability, "08lx"); 4064 4065 len += 4066 sprintf(buf + len, "last_rtc: %lu\n", 4067 (unsigned long)priv->last_rtc); 4068 4069 DUMP_VAR(fatal_error, "d"); 4070 DUMP_VAR(stop_hang_check, "d"); 4071 DUMP_VAR(stop_rf_kill, "d"); 4072 DUMP_VAR(messages_sent, "d"); 4073 4074 DUMP_VAR(tx_pend_stat.value, "d"); 4075 DUMP_VAR(tx_pend_stat.hi, "d"); 4076 4077 DUMP_VAR(tx_free_stat.value, "d"); 4078 DUMP_VAR(tx_free_stat.lo, "d"); 4079 4080 DUMP_VAR(msg_free_stat.value, "d"); 4081 DUMP_VAR(msg_free_stat.lo, "d"); 4082 4083 DUMP_VAR(msg_pend_stat.value, "d"); 4084 DUMP_VAR(msg_pend_stat.hi, "d"); 4085 4086 DUMP_VAR(fw_pend_stat.value, "d"); 4087 DUMP_VAR(fw_pend_stat.hi, "d"); 4088 4089 DUMP_VAR(txq_stat.value, "d"); 4090 DUMP_VAR(txq_stat.lo, "d"); 4091 4092 DUMP_VAR(ieee->scans, "d"); 4093 DUMP_VAR(reset_backoff, "lld"); 4094 4095 return len; 4096 } 4097 4098 static DEVICE_ATTR(internals, 0444, show_internals, NULL); 4099 4100 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr, 4101 char *buf) 4102 { 4103 struct ipw2100_priv *priv = dev_get_drvdata(d); 4104 char essid[IW_ESSID_MAX_SIZE + 1]; 4105 u8 bssid[ETH_ALEN]; 4106 u32 chan = 0; 4107 char *out = buf; 4108 unsigned int length; 4109 int ret; 4110 4111 if (priv->status & STATUS_RF_KILL_MASK) 4112 return 0; 4113 4114 memset(essid, 0, sizeof(essid)); 4115 memset(bssid, 0, sizeof(bssid)); 4116 4117 length = IW_ESSID_MAX_SIZE; 4118 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length); 4119 if (ret) 4120 IPW_DEBUG_INFO("failed querying ordinals at line %d\n", 4121 __LINE__); 4122 4123 length = sizeof(bssid); 4124 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, 4125 bssid, &length); 4126 if (ret) 4127 IPW_DEBUG_INFO("failed querying ordinals at line %d\n", 4128 __LINE__); 4129 4130 length = sizeof(u32); 4131 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length); 4132 if (ret) 4133 IPW_DEBUG_INFO("failed querying ordinals at line %d\n", 4134 __LINE__); 4135 4136 out += sprintf(out, "ESSID: %s\n", essid); 4137 out += sprintf(out, "BSSID: %pM\n", bssid); 4138 out += sprintf(out, "Channel: %d\n", chan); 4139 4140 return out - buf; 4141 } 4142 4143 static DEVICE_ATTR(bssinfo, 0444, show_bssinfo, NULL); 4144 4145 #ifdef CONFIG_IPW2100_DEBUG 4146 static ssize_t debug_level_show(struct device_driver *d, char *buf) 4147 { 4148 return sprintf(buf, "0x%08X\n", ipw2100_debug_level); 4149 } 4150 4151 static ssize_t debug_level_store(struct device_driver *d, 4152 const char *buf, size_t count) 4153 { 4154 u32 val; 4155 int ret; 4156 4157 ret = kstrtou32(buf, 0, &val); 4158 if (ret) 4159 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf); 4160 else 4161 ipw2100_debug_level = val; 4162 4163 return strnlen(buf, count); 4164 } 4165 static DRIVER_ATTR_RW(debug_level); 4166 #endif /* CONFIG_IPW2100_DEBUG */ 4167 4168 static ssize_t show_fatal_error(struct device *d, 4169 struct device_attribute *attr, char *buf) 4170 { 4171 struct ipw2100_priv *priv = dev_get_drvdata(d); 4172 char *out = buf; 4173 int i; 4174 4175 if (priv->fatal_error) 4176 out += sprintf(out, "0x%08X\n", priv->fatal_error); 4177 else 4178 out += sprintf(out, "0\n"); 4179 4180 for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) { 4181 if (!priv->fatal_errors[(priv->fatal_index - i) % 4182 IPW2100_ERROR_QUEUE]) 4183 continue; 4184 4185 out += sprintf(out, "%d. 0x%08X\n", i, 4186 priv->fatal_errors[(priv->fatal_index - i) % 4187 IPW2100_ERROR_QUEUE]); 4188 } 4189 4190 return out - buf; 4191 } 4192 4193 static ssize_t store_fatal_error(struct device *d, 4194 struct device_attribute *attr, const char *buf, 4195 size_t count) 4196 { 4197 struct ipw2100_priv *priv = dev_get_drvdata(d); 4198 schedule_reset(priv); 4199 return count; 4200 } 4201 4202 static DEVICE_ATTR(fatal_error, 0644, show_fatal_error, store_fatal_error); 4203 4204 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr, 4205 char *buf) 4206 { 4207 struct ipw2100_priv *priv = dev_get_drvdata(d); 4208 return sprintf(buf, "%d\n", priv->ieee->scan_age); 4209 } 4210 4211 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr, 4212 const char *buf, size_t count) 4213 { 4214 struct ipw2100_priv *priv = dev_get_drvdata(d); 4215 struct net_device *dev = priv->net_dev; 4216 unsigned long val; 4217 int ret; 4218 4219 (void)dev; /* kill unused-var warning for debug-only code */ 4220 4221 IPW_DEBUG_INFO("enter\n"); 4222 4223 ret = kstrtoul(buf, 0, &val); 4224 if (ret) { 4225 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name); 4226 } else { 4227 priv->ieee->scan_age = val; 4228 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age); 4229 } 4230 4231 IPW_DEBUG_INFO("exit\n"); 4232 return strnlen(buf, count); 4233 } 4234 4235 static DEVICE_ATTR(scan_age, 0644, show_scan_age, store_scan_age); 4236 4237 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr, 4238 char *buf) 4239 { 4240 /* 0 - RF kill not enabled 4241 1 - SW based RF kill active (sysfs) 4242 2 - HW based RF kill active 4243 3 - Both HW and SW baed RF kill active */ 4244 struct ipw2100_priv *priv = dev_get_drvdata(d); 4245 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) | 4246 (rf_kill_active(priv) ? 0x2 : 0x0); 4247 return sprintf(buf, "%i\n", val); 4248 } 4249 4250 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio) 4251 { 4252 if ((disable_radio ? 1 : 0) == 4253 (priv->status & STATUS_RF_KILL_SW ? 1 : 0)) 4254 return 0; 4255 4256 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n", 4257 disable_radio ? "OFF" : "ON"); 4258 4259 mutex_lock(&priv->action_mutex); 4260 4261 if (disable_radio) { 4262 priv->status |= STATUS_RF_KILL_SW; 4263 ipw2100_down(priv); 4264 } else { 4265 priv->status &= ~STATUS_RF_KILL_SW; 4266 if (rf_kill_active(priv)) { 4267 IPW_DEBUG_RF_KILL("Can not turn radio back on - " 4268 "disabled by HW switch\n"); 4269 /* Make sure the RF_KILL check timer is running */ 4270 priv->stop_rf_kill = 0; 4271 mod_delayed_work(system_wq, &priv->rf_kill, 4272 round_jiffies_relative(HZ)); 4273 } else 4274 schedule_reset(priv); 4275 } 4276 4277 mutex_unlock(&priv->action_mutex); 4278 return 1; 4279 } 4280 4281 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr, 4282 const char *buf, size_t count) 4283 { 4284 struct ipw2100_priv *priv = dev_get_drvdata(d); 4285 ipw_radio_kill_sw(priv, buf[0] == '1'); 4286 return count; 4287 } 4288 4289 static DEVICE_ATTR(rf_kill, 0644, show_rf_kill, store_rf_kill); 4290 4291 static struct attribute *ipw2100_sysfs_entries[] = { 4292 &dev_attr_hardware.attr, 4293 &dev_attr_registers.attr, 4294 &dev_attr_ordinals.attr, 4295 &dev_attr_pci.attr, 4296 &dev_attr_stats.attr, 4297 &dev_attr_internals.attr, 4298 &dev_attr_bssinfo.attr, 4299 &dev_attr_memory.attr, 4300 &dev_attr_scan_age.attr, 4301 &dev_attr_fatal_error.attr, 4302 &dev_attr_rf_kill.attr, 4303 &dev_attr_cfg.attr, 4304 &dev_attr_status.attr, 4305 &dev_attr_capability.attr, 4306 NULL, 4307 }; 4308 4309 static const struct attribute_group ipw2100_attribute_group = { 4310 .attrs = ipw2100_sysfs_entries, 4311 }; 4312 4313 static int status_queue_allocate(struct ipw2100_priv *priv, int entries) 4314 { 4315 struct ipw2100_status_queue *q = &priv->status_queue; 4316 4317 IPW_DEBUG_INFO("enter\n"); 4318 4319 q->size = entries * sizeof(struct ipw2100_status); 4320 q->drv = dma_alloc_coherent(&priv->pci_dev->dev, q->size, &q->nic, 4321 GFP_KERNEL); 4322 if (!q->drv) { 4323 IPW_DEBUG_WARNING("Can not allocate status queue.\n"); 4324 return -ENOMEM; 4325 } 4326 4327 IPW_DEBUG_INFO("exit\n"); 4328 4329 return 0; 4330 } 4331 4332 static void status_queue_free(struct ipw2100_priv *priv) 4333 { 4334 IPW_DEBUG_INFO("enter\n"); 4335 4336 if (priv->status_queue.drv) { 4337 dma_free_coherent(&priv->pci_dev->dev, 4338 priv->status_queue.size, 4339 priv->status_queue.drv, 4340 priv->status_queue.nic); 4341 priv->status_queue.drv = NULL; 4342 } 4343 4344 IPW_DEBUG_INFO("exit\n"); 4345 } 4346 4347 static int bd_queue_allocate(struct ipw2100_priv *priv, 4348 struct ipw2100_bd_queue *q, int entries) 4349 { 4350 IPW_DEBUG_INFO("enter\n"); 4351 4352 memset(q, 0, sizeof(struct ipw2100_bd_queue)); 4353 4354 q->entries = entries; 4355 q->size = entries * sizeof(struct ipw2100_bd); 4356 q->drv = dma_alloc_coherent(&priv->pci_dev->dev, q->size, &q->nic, 4357 GFP_KERNEL); 4358 if (!q->drv) { 4359 IPW_DEBUG_INFO 4360 ("can't allocate shared memory for buffer descriptors\n"); 4361 return -ENOMEM; 4362 } 4363 4364 IPW_DEBUG_INFO("exit\n"); 4365 4366 return 0; 4367 } 4368 4369 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q) 4370 { 4371 IPW_DEBUG_INFO("enter\n"); 4372 4373 if (!q) 4374 return; 4375 4376 if (q->drv) { 4377 dma_free_coherent(&priv->pci_dev->dev, q->size, q->drv, 4378 q->nic); 4379 q->drv = NULL; 4380 } 4381 4382 IPW_DEBUG_INFO("exit\n"); 4383 } 4384 4385 static void bd_queue_initialize(struct ipw2100_priv *priv, 4386 struct ipw2100_bd_queue *q, u32 base, u32 size, 4387 u32 r, u32 w) 4388 { 4389 IPW_DEBUG_INFO("enter\n"); 4390 4391 IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv, 4392 (u32) q->nic); 4393 4394 write_register(priv->net_dev, base, q->nic); 4395 write_register(priv->net_dev, size, q->entries); 4396 write_register(priv->net_dev, r, q->oldest); 4397 write_register(priv->net_dev, w, q->next); 4398 4399 IPW_DEBUG_INFO("exit\n"); 4400 } 4401 4402 static void ipw2100_kill_works(struct ipw2100_priv *priv) 4403 { 4404 priv->stop_rf_kill = 1; 4405 priv->stop_hang_check = 1; 4406 cancel_delayed_work_sync(&priv->reset_work); 4407 cancel_delayed_work_sync(&priv->security_work); 4408 cancel_delayed_work_sync(&priv->wx_event_work); 4409 cancel_delayed_work_sync(&priv->hang_check); 4410 cancel_delayed_work_sync(&priv->rf_kill); 4411 cancel_delayed_work_sync(&priv->scan_event); 4412 } 4413 4414 static int ipw2100_tx_allocate(struct ipw2100_priv *priv) 4415 { 4416 int i, j, err; 4417 void *v; 4418 dma_addr_t p; 4419 4420 IPW_DEBUG_INFO("enter\n"); 4421 4422 err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH); 4423 if (err) { 4424 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n", 4425 priv->net_dev->name); 4426 return err; 4427 } 4428 4429 priv->tx_buffers = kmalloc_array(TX_PENDED_QUEUE_LENGTH, 4430 sizeof(struct ipw2100_tx_packet), 4431 GFP_KERNEL); 4432 if (!priv->tx_buffers) { 4433 bd_queue_free(priv, &priv->tx_queue); 4434 return -ENOMEM; 4435 } 4436 4437 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) { 4438 v = dma_alloc_coherent(&priv->pci_dev->dev, 4439 sizeof(struct ipw2100_data_header), &p, 4440 GFP_KERNEL); 4441 if (!v) { 4442 printk(KERN_ERR DRV_NAME 4443 ": %s: PCI alloc failed for tx " "buffers.\n", 4444 priv->net_dev->name); 4445 err = -ENOMEM; 4446 break; 4447 } 4448 4449 priv->tx_buffers[i].type = DATA; 4450 priv->tx_buffers[i].info.d_struct.data = 4451 (struct ipw2100_data_header *)v; 4452 priv->tx_buffers[i].info.d_struct.data_phys = p; 4453 priv->tx_buffers[i].info.d_struct.txb = NULL; 4454 } 4455 4456 if (i == TX_PENDED_QUEUE_LENGTH) 4457 return 0; 4458 4459 for (j = 0; j < i; j++) { 4460 dma_free_coherent(&priv->pci_dev->dev, 4461 sizeof(struct ipw2100_data_header), 4462 priv->tx_buffers[j].info.d_struct.data, 4463 priv->tx_buffers[j].info.d_struct.data_phys); 4464 } 4465 4466 kfree(priv->tx_buffers); 4467 priv->tx_buffers = NULL; 4468 4469 return err; 4470 } 4471 4472 static void ipw2100_tx_initialize(struct ipw2100_priv *priv) 4473 { 4474 int i; 4475 4476 IPW_DEBUG_INFO("enter\n"); 4477 4478 /* 4479 * reinitialize packet info lists 4480 */ 4481 INIT_LIST_HEAD(&priv->fw_pend_list); 4482 INIT_STAT(&priv->fw_pend_stat); 4483 4484 /* 4485 * reinitialize lists 4486 */ 4487 INIT_LIST_HEAD(&priv->tx_pend_list); 4488 INIT_LIST_HEAD(&priv->tx_free_list); 4489 INIT_STAT(&priv->tx_pend_stat); 4490 INIT_STAT(&priv->tx_free_stat); 4491 4492 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) { 4493 /* We simply drop any SKBs that have been queued for 4494 * transmit */ 4495 if (priv->tx_buffers[i].info.d_struct.txb) { 4496 libipw_txb_free(priv->tx_buffers[i].info.d_struct. 4497 txb); 4498 priv->tx_buffers[i].info.d_struct.txb = NULL; 4499 } 4500 4501 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list); 4502 } 4503 4504 SET_STAT(&priv->tx_free_stat, i); 4505 4506 priv->tx_queue.oldest = 0; 4507 priv->tx_queue.available = priv->tx_queue.entries; 4508 priv->tx_queue.next = 0; 4509 INIT_STAT(&priv->txq_stat); 4510 SET_STAT(&priv->txq_stat, priv->tx_queue.available); 4511 4512 bd_queue_initialize(priv, &priv->tx_queue, 4513 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE, 4514 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE, 4515 IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX, 4516 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX); 4517 4518 IPW_DEBUG_INFO("exit\n"); 4519 4520 } 4521 4522 static void ipw2100_tx_free(struct ipw2100_priv *priv) 4523 { 4524 int i; 4525 4526 IPW_DEBUG_INFO("enter\n"); 4527 4528 bd_queue_free(priv, &priv->tx_queue); 4529 4530 if (!priv->tx_buffers) 4531 return; 4532 4533 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) { 4534 if (priv->tx_buffers[i].info.d_struct.txb) { 4535 libipw_txb_free(priv->tx_buffers[i].info.d_struct. 4536 txb); 4537 priv->tx_buffers[i].info.d_struct.txb = NULL; 4538 } 4539 if (priv->tx_buffers[i].info.d_struct.data) 4540 dma_free_coherent(&priv->pci_dev->dev, 4541 sizeof(struct ipw2100_data_header), 4542 priv->tx_buffers[i].info.d_struct.data, 4543 priv->tx_buffers[i].info.d_struct.data_phys); 4544 } 4545 4546 kfree(priv->tx_buffers); 4547 priv->tx_buffers = NULL; 4548 4549 IPW_DEBUG_INFO("exit\n"); 4550 } 4551 4552 static int ipw2100_rx_allocate(struct ipw2100_priv *priv) 4553 { 4554 int i, j, err = -EINVAL; 4555 4556 IPW_DEBUG_INFO("enter\n"); 4557 4558 err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH); 4559 if (err) { 4560 IPW_DEBUG_INFO("failed bd_queue_allocate\n"); 4561 return err; 4562 } 4563 4564 err = status_queue_allocate(priv, RX_QUEUE_LENGTH); 4565 if (err) { 4566 IPW_DEBUG_INFO("failed status_queue_allocate\n"); 4567 bd_queue_free(priv, &priv->rx_queue); 4568 return err; 4569 } 4570 4571 /* 4572 * allocate packets 4573 */ 4574 priv->rx_buffers = kmalloc_array(RX_QUEUE_LENGTH, 4575 sizeof(struct ipw2100_rx_packet), 4576 GFP_KERNEL); 4577 if (!priv->rx_buffers) { 4578 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n"); 4579 4580 bd_queue_free(priv, &priv->rx_queue); 4581 4582 status_queue_free(priv); 4583 4584 return -ENOMEM; 4585 } 4586 4587 for (i = 0; i < RX_QUEUE_LENGTH; i++) { 4588 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i]; 4589 4590 err = ipw2100_alloc_skb(priv, packet); 4591 if (unlikely(err)) { 4592 err = -ENOMEM; 4593 break; 4594 } 4595 4596 /* The BD holds the cache aligned address */ 4597 priv->rx_queue.drv[i].host_addr = packet->dma_addr; 4598 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH; 4599 priv->status_queue.drv[i].status_fields = 0; 4600 } 4601 4602 if (i == RX_QUEUE_LENGTH) 4603 return 0; 4604 4605 for (j = 0; j < i; j++) { 4606 dma_unmap_single(&priv->pci_dev->dev, 4607 priv->rx_buffers[j].dma_addr, 4608 sizeof(struct ipw2100_rx_packet), 4609 DMA_FROM_DEVICE); 4610 dev_kfree_skb(priv->rx_buffers[j].skb); 4611 } 4612 4613 kfree(priv->rx_buffers); 4614 priv->rx_buffers = NULL; 4615 4616 bd_queue_free(priv, &priv->rx_queue); 4617 4618 status_queue_free(priv); 4619 4620 return err; 4621 } 4622 4623 static void ipw2100_rx_initialize(struct ipw2100_priv *priv) 4624 { 4625 IPW_DEBUG_INFO("enter\n"); 4626 4627 priv->rx_queue.oldest = 0; 4628 priv->rx_queue.available = priv->rx_queue.entries - 1; 4629 priv->rx_queue.next = priv->rx_queue.entries - 1; 4630 4631 INIT_STAT(&priv->rxq_stat); 4632 SET_STAT(&priv->rxq_stat, priv->rx_queue.available); 4633 4634 bd_queue_initialize(priv, &priv->rx_queue, 4635 IPW_MEM_HOST_SHARED_RX_BD_BASE, 4636 IPW_MEM_HOST_SHARED_RX_BD_SIZE, 4637 IPW_MEM_HOST_SHARED_RX_READ_INDEX, 4638 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX); 4639 4640 /* set up the status queue */ 4641 write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE, 4642 priv->status_queue.nic); 4643 4644 IPW_DEBUG_INFO("exit\n"); 4645 } 4646 4647 static void ipw2100_rx_free(struct ipw2100_priv *priv) 4648 { 4649 int i; 4650 4651 IPW_DEBUG_INFO("enter\n"); 4652 4653 bd_queue_free(priv, &priv->rx_queue); 4654 status_queue_free(priv); 4655 4656 if (!priv->rx_buffers) 4657 return; 4658 4659 for (i = 0; i < RX_QUEUE_LENGTH; i++) { 4660 if (priv->rx_buffers[i].rxp) { 4661 dma_unmap_single(&priv->pci_dev->dev, 4662 priv->rx_buffers[i].dma_addr, 4663 sizeof(struct ipw2100_rx), 4664 DMA_FROM_DEVICE); 4665 dev_kfree_skb(priv->rx_buffers[i].skb); 4666 } 4667 } 4668 4669 kfree(priv->rx_buffers); 4670 priv->rx_buffers = NULL; 4671 4672 IPW_DEBUG_INFO("exit\n"); 4673 } 4674 4675 static int ipw2100_read_mac_address(struct ipw2100_priv *priv) 4676 { 4677 u32 length = ETH_ALEN; 4678 u8 addr[ETH_ALEN]; 4679 4680 int err; 4681 4682 err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length); 4683 if (err) { 4684 IPW_DEBUG_INFO("MAC address read failed\n"); 4685 return -EIO; 4686 } 4687 4688 eth_hw_addr_set(priv->net_dev, addr); 4689 IPW_DEBUG_INFO("card MAC is %pM\n", priv->net_dev->dev_addr); 4690 4691 return 0; 4692 } 4693 4694 /******************************************************************** 4695 * 4696 * Firmware Commands 4697 * 4698 ********************************************************************/ 4699 4700 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode) 4701 { 4702 struct host_command cmd = { 4703 .host_command = ADAPTER_ADDRESS, 4704 .host_command_sequence = 0, 4705 .host_command_length = ETH_ALEN 4706 }; 4707 int err; 4708 4709 IPW_DEBUG_HC("SET_MAC_ADDRESS\n"); 4710 4711 IPW_DEBUG_INFO("enter\n"); 4712 4713 if (priv->config & CFG_CUSTOM_MAC) { 4714 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN); 4715 eth_hw_addr_set(priv->net_dev, priv->mac_addr); 4716 } else 4717 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr, 4718 ETH_ALEN); 4719 4720 err = ipw2100_hw_send_command(priv, &cmd); 4721 4722 IPW_DEBUG_INFO("exit\n"); 4723 return err; 4724 } 4725 4726 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type, 4727 int batch_mode) 4728 { 4729 struct host_command cmd = { 4730 .host_command = PORT_TYPE, 4731 .host_command_sequence = 0, 4732 .host_command_length = sizeof(u32) 4733 }; 4734 int err; 4735 4736 switch (port_type) { 4737 case IW_MODE_INFRA: 4738 cmd.host_command_parameters[0] = IPW_BSS; 4739 break; 4740 case IW_MODE_ADHOC: 4741 cmd.host_command_parameters[0] = IPW_IBSS; 4742 break; 4743 } 4744 4745 IPW_DEBUG_HC("PORT_TYPE: %s\n", 4746 port_type == IPW_IBSS ? "Ad-Hoc" : "Managed"); 4747 4748 if (!batch_mode) { 4749 err = ipw2100_disable_adapter(priv); 4750 if (err) { 4751 printk(KERN_ERR DRV_NAME 4752 ": %s: Could not disable adapter %d\n", 4753 priv->net_dev->name, err); 4754 return err; 4755 } 4756 } 4757 4758 /* send cmd to firmware */ 4759 err = ipw2100_hw_send_command(priv, &cmd); 4760 4761 if (!batch_mode) 4762 ipw2100_enable_adapter(priv); 4763 4764 return err; 4765 } 4766 4767 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel, 4768 int batch_mode) 4769 { 4770 struct host_command cmd = { 4771 .host_command = CHANNEL, 4772 .host_command_sequence = 0, 4773 .host_command_length = sizeof(u32) 4774 }; 4775 int err; 4776 4777 cmd.host_command_parameters[0] = channel; 4778 4779 IPW_DEBUG_HC("CHANNEL: %d\n", channel); 4780 4781 /* If BSS then we don't support channel selection */ 4782 if (priv->ieee->iw_mode == IW_MODE_INFRA) 4783 return 0; 4784 4785 if ((channel != 0) && 4786 ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL))) 4787 return -EINVAL; 4788 4789 if (!batch_mode) { 4790 err = ipw2100_disable_adapter(priv); 4791 if (err) 4792 return err; 4793 } 4794 4795 err = ipw2100_hw_send_command(priv, &cmd); 4796 if (err) { 4797 IPW_DEBUG_INFO("Failed to set channel to %d", channel); 4798 return err; 4799 } 4800 4801 if (channel) 4802 priv->config |= CFG_STATIC_CHANNEL; 4803 else 4804 priv->config &= ~CFG_STATIC_CHANNEL; 4805 4806 priv->channel = channel; 4807 4808 if (!batch_mode) { 4809 err = ipw2100_enable_adapter(priv); 4810 if (err) 4811 return err; 4812 } 4813 4814 return 0; 4815 } 4816 4817 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode) 4818 { 4819 struct host_command cmd = { 4820 .host_command = SYSTEM_CONFIG, 4821 .host_command_sequence = 0, 4822 .host_command_length = 12, 4823 }; 4824 u32 ibss_mask, len = sizeof(u32); 4825 int err; 4826 4827 /* Set system configuration */ 4828 4829 if (!batch_mode) { 4830 err = ipw2100_disable_adapter(priv); 4831 if (err) 4832 return err; 4833 } 4834 4835 if (priv->ieee->iw_mode == IW_MODE_ADHOC) 4836 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START; 4837 4838 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK | 4839 IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE; 4840 4841 if (!(priv->config & CFG_LONG_PREAMBLE)) 4842 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO; 4843 4844 err = ipw2100_get_ordinal(priv, 4845 IPW_ORD_EEPROM_IBSS_11B_CHANNELS, 4846 &ibss_mask, &len); 4847 if (err) 4848 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK; 4849 4850 cmd.host_command_parameters[1] = REG_CHANNEL_MASK; 4851 cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask; 4852 4853 /* 11b only */ 4854 /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */ 4855 4856 err = ipw2100_hw_send_command(priv, &cmd); 4857 if (err) 4858 return err; 4859 4860 /* If IPv6 is configured in the kernel then we don't want to filter out all 4861 * of the multicast packets as IPv6 needs some. */ 4862 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE) 4863 cmd.host_command = ADD_MULTICAST; 4864 cmd.host_command_sequence = 0; 4865 cmd.host_command_length = 0; 4866 4867 ipw2100_hw_send_command(priv, &cmd); 4868 #endif 4869 if (!batch_mode) { 4870 err = ipw2100_enable_adapter(priv); 4871 if (err) 4872 return err; 4873 } 4874 4875 return 0; 4876 } 4877 4878 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate, 4879 int batch_mode) 4880 { 4881 struct host_command cmd = { 4882 .host_command = BASIC_TX_RATES, 4883 .host_command_sequence = 0, 4884 .host_command_length = 4 4885 }; 4886 int err; 4887 4888 cmd.host_command_parameters[0] = rate & TX_RATE_MASK; 4889 4890 if (!batch_mode) { 4891 err = ipw2100_disable_adapter(priv); 4892 if (err) 4893 return err; 4894 } 4895 4896 /* Set BASIC TX Rate first */ 4897 ipw2100_hw_send_command(priv, &cmd); 4898 4899 /* Set TX Rate */ 4900 cmd.host_command = TX_RATES; 4901 ipw2100_hw_send_command(priv, &cmd); 4902 4903 /* Set MSDU TX Rate */ 4904 cmd.host_command = MSDU_TX_RATES; 4905 ipw2100_hw_send_command(priv, &cmd); 4906 4907 if (!batch_mode) { 4908 err = ipw2100_enable_adapter(priv); 4909 if (err) 4910 return err; 4911 } 4912 4913 priv->tx_rates = rate; 4914 4915 return 0; 4916 } 4917 4918 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level) 4919 { 4920 struct host_command cmd = { 4921 .host_command = POWER_MODE, 4922 .host_command_sequence = 0, 4923 .host_command_length = 4 4924 }; 4925 int err; 4926 4927 cmd.host_command_parameters[0] = power_level; 4928 4929 err = ipw2100_hw_send_command(priv, &cmd); 4930 if (err) 4931 return err; 4932 4933 if (power_level == IPW_POWER_MODE_CAM) 4934 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode); 4935 else 4936 priv->power_mode = IPW_POWER_ENABLED | power_level; 4937 4938 #ifdef IPW2100_TX_POWER 4939 if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) { 4940 /* Set beacon interval */ 4941 cmd.host_command = TX_POWER_INDEX; 4942 cmd.host_command_parameters[0] = (u32) priv->adhoc_power; 4943 4944 err = ipw2100_hw_send_command(priv, &cmd); 4945 if (err) 4946 return err; 4947 } 4948 #endif 4949 4950 return 0; 4951 } 4952 4953 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold) 4954 { 4955 struct host_command cmd = { 4956 .host_command = RTS_THRESHOLD, 4957 .host_command_sequence = 0, 4958 .host_command_length = 4 4959 }; 4960 int err; 4961 4962 if (threshold & RTS_DISABLED) 4963 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD; 4964 else 4965 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED; 4966 4967 err = ipw2100_hw_send_command(priv, &cmd); 4968 if (err) 4969 return err; 4970 4971 priv->rts_threshold = threshold; 4972 4973 return 0; 4974 } 4975 4976 #if 0 4977 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv, 4978 u32 threshold, int batch_mode) 4979 { 4980 struct host_command cmd = { 4981 .host_command = FRAG_THRESHOLD, 4982 .host_command_sequence = 0, 4983 .host_command_length = 4, 4984 .host_command_parameters[0] = 0, 4985 }; 4986 int err; 4987 4988 if (!batch_mode) { 4989 err = ipw2100_disable_adapter(priv); 4990 if (err) 4991 return err; 4992 } 4993 4994 if (threshold == 0) 4995 threshold = DEFAULT_FRAG_THRESHOLD; 4996 else { 4997 threshold = max(threshold, MIN_FRAG_THRESHOLD); 4998 threshold = min(threshold, MAX_FRAG_THRESHOLD); 4999 } 5000 5001 cmd.host_command_parameters[0] = threshold; 5002 5003 IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold); 5004 5005 err = ipw2100_hw_send_command(priv, &cmd); 5006 5007 if (!batch_mode) 5008 ipw2100_enable_adapter(priv); 5009 5010 if (!err) 5011 priv->frag_threshold = threshold; 5012 5013 return err; 5014 } 5015 #endif 5016 5017 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry) 5018 { 5019 struct host_command cmd = { 5020 .host_command = SHORT_RETRY_LIMIT, 5021 .host_command_sequence = 0, 5022 .host_command_length = 4 5023 }; 5024 int err; 5025 5026 cmd.host_command_parameters[0] = retry; 5027 5028 err = ipw2100_hw_send_command(priv, &cmd); 5029 if (err) 5030 return err; 5031 5032 priv->short_retry_limit = retry; 5033 5034 return 0; 5035 } 5036 5037 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry) 5038 { 5039 struct host_command cmd = { 5040 .host_command = LONG_RETRY_LIMIT, 5041 .host_command_sequence = 0, 5042 .host_command_length = 4 5043 }; 5044 int err; 5045 5046 cmd.host_command_parameters[0] = retry; 5047 5048 err = ipw2100_hw_send_command(priv, &cmd); 5049 if (err) 5050 return err; 5051 5052 priv->long_retry_limit = retry; 5053 5054 return 0; 5055 } 5056 5057 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid, 5058 int batch_mode) 5059 { 5060 struct host_command cmd = { 5061 .host_command = MANDATORY_BSSID, 5062 .host_command_sequence = 0, 5063 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN 5064 }; 5065 int err; 5066 5067 #ifdef CONFIG_IPW2100_DEBUG 5068 if (bssid != NULL) 5069 IPW_DEBUG_HC("MANDATORY_BSSID: %pM\n", bssid); 5070 else 5071 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n"); 5072 #endif 5073 /* if BSSID is empty then we disable mandatory bssid mode */ 5074 if (bssid != NULL) 5075 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN); 5076 5077 if (!batch_mode) { 5078 err = ipw2100_disable_adapter(priv); 5079 if (err) 5080 return err; 5081 } 5082 5083 err = ipw2100_hw_send_command(priv, &cmd); 5084 5085 if (!batch_mode) 5086 ipw2100_enable_adapter(priv); 5087 5088 return err; 5089 } 5090 5091 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv) 5092 { 5093 struct host_command cmd = { 5094 .host_command = DISASSOCIATION_BSSID, 5095 .host_command_sequence = 0, 5096 .host_command_length = ETH_ALEN 5097 }; 5098 int err; 5099 5100 IPW_DEBUG_HC("DISASSOCIATION_BSSID\n"); 5101 5102 /* The Firmware currently ignores the BSSID and just disassociates from 5103 * the currently associated AP -- but in the off chance that a future 5104 * firmware does use the BSSID provided here, we go ahead and try and 5105 * set it to the currently associated AP's BSSID */ 5106 memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN); 5107 5108 err = ipw2100_hw_send_command(priv, &cmd); 5109 5110 return err; 5111 } 5112 5113 static int ipw2100_set_wpa_ie(struct ipw2100_priv *, 5114 struct ipw2100_wpa_assoc_frame *, int) 5115 __attribute__ ((unused)); 5116 5117 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv, 5118 struct ipw2100_wpa_assoc_frame *wpa_frame, 5119 int batch_mode) 5120 { 5121 struct host_command cmd = { 5122 .host_command = SET_WPA_IE, 5123 .host_command_sequence = 0, 5124 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame), 5125 }; 5126 int err; 5127 5128 IPW_DEBUG_HC("SET_WPA_IE\n"); 5129 5130 if (!batch_mode) { 5131 err = ipw2100_disable_adapter(priv); 5132 if (err) 5133 return err; 5134 } 5135 5136 memcpy(cmd.host_command_parameters, wpa_frame, 5137 sizeof(struct ipw2100_wpa_assoc_frame)); 5138 5139 err = ipw2100_hw_send_command(priv, &cmd); 5140 5141 if (!batch_mode) { 5142 if (ipw2100_enable_adapter(priv)) 5143 err = -EIO; 5144 } 5145 5146 return err; 5147 } 5148 5149 struct security_info_params { 5150 u32 allowed_ciphers; 5151 u16 version; 5152 u8 auth_mode; 5153 u8 replay_counters_number; 5154 u8 unicast_using_group; 5155 } __packed; 5156 5157 static int ipw2100_set_security_information(struct ipw2100_priv *priv, 5158 int auth_mode, 5159 int security_level, 5160 int unicast_using_group, 5161 int batch_mode) 5162 { 5163 struct host_command cmd = { 5164 .host_command = SET_SECURITY_INFORMATION, 5165 .host_command_sequence = 0, 5166 .host_command_length = sizeof(struct security_info_params) 5167 }; 5168 struct security_info_params *security = 5169 (struct security_info_params *)&cmd.host_command_parameters; 5170 int err; 5171 memset(security, 0, sizeof(*security)); 5172 5173 /* If shared key AP authentication is turned on, then we need to 5174 * configure the firmware to try and use it. 5175 * 5176 * Actual data encryption/decryption is handled by the host. */ 5177 security->auth_mode = auth_mode; 5178 security->unicast_using_group = unicast_using_group; 5179 5180 switch (security_level) { 5181 default: 5182 case SEC_LEVEL_0: 5183 security->allowed_ciphers = IPW_NONE_CIPHER; 5184 break; 5185 case SEC_LEVEL_1: 5186 security->allowed_ciphers = IPW_WEP40_CIPHER | 5187 IPW_WEP104_CIPHER; 5188 break; 5189 case SEC_LEVEL_2: 5190 security->allowed_ciphers = IPW_WEP40_CIPHER | 5191 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER; 5192 break; 5193 case SEC_LEVEL_2_CKIP: 5194 security->allowed_ciphers = IPW_WEP40_CIPHER | 5195 IPW_WEP104_CIPHER | IPW_CKIP_CIPHER; 5196 break; 5197 case SEC_LEVEL_3: 5198 security->allowed_ciphers = IPW_WEP40_CIPHER | 5199 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER; 5200 break; 5201 } 5202 5203 IPW_DEBUG_HC 5204 ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n", 5205 security->auth_mode, security->allowed_ciphers, security_level); 5206 5207 security->replay_counters_number = 0; 5208 5209 if (!batch_mode) { 5210 err = ipw2100_disable_adapter(priv); 5211 if (err) 5212 return err; 5213 } 5214 5215 err = ipw2100_hw_send_command(priv, &cmd); 5216 5217 if (!batch_mode) 5218 ipw2100_enable_adapter(priv); 5219 5220 return err; 5221 } 5222 5223 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power) 5224 { 5225 struct host_command cmd = { 5226 .host_command = TX_POWER_INDEX, 5227 .host_command_sequence = 0, 5228 .host_command_length = 4 5229 }; 5230 int err = 0; 5231 u32 tmp = tx_power; 5232 5233 if (tx_power != IPW_TX_POWER_DEFAULT) 5234 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 / 5235 (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM); 5236 5237 cmd.host_command_parameters[0] = tmp; 5238 5239 if (priv->ieee->iw_mode == IW_MODE_ADHOC) 5240 err = ipw2100_hw_send_command(priv, &cmd); 5241 if (!err) 5242 priv->tx_power = tx_power; 5243 5244 return 0; 5245 } 5246 5247 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv, 5248 u32 interval, int batch_mode) 5249 { 5250 struct host_command cmd = { 5251 .host_command = BEACON_INTERVAL, 5252 .host_command_sequence = 0, 5253 .host_command_length = 4 5254 }; 5255 int err; 5256 5257 cmd.host_command_parameters[0] = interval; 5258 5259 IPW_DEBUG_INFO("enter\n"); 5260 5261 if (priv->ieee->iw_mode == IW_MODE_ADHOC) { 5262 if (!batch_mode) { 5263 err = ipw2100_disable_adapter(priv); 5264 if (err) 5265 return err; 5266 } 5267 5268 ipw2100_hw_send_command(priv, &cmd); 5269 5270 if (!batch_mode) { 5271 err = ipw2100_enable_adapter(priv); 5272 if (err) 5273 return err; 5274 } 5275 } 5276 5277 IPW_DEBUG_INFO("exit\n"); 5278 5279 return 0; 5280 } 5281 5282 static void ipw2100_queues_initialize(struct ipw2100_priv *priv) 5283 { 5284 ipw2100_tx_initialize(priv); 5285 ipw2100_rx_initialize(priv); 5286 ipw2100_msg_initialize(priv); 5287 } 5288 5289 static void ipw2100_queues_free(struct ipw2100_priv *priv) 5290 { 5291 ipw2100_tx_free(priv); 5292 ipw2100_rx_free(priv); 5293 ipw2100_msg_free(priv); 5294 } 5295 5296 static int ipw2100_queues_allocate(struct ipw2100_priv *priv) 5297 { 5298 if (ipw2100_tx_allocate(priv) || 5299 ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv)) 5300 goto fail; 5301 5302 return 0; 5303 5304 fail: 5305 ipw2100_tx_free(priv); 5306 ipw2100_rx_free(priv); 5307 ipw2100_msg_free(priv); 5308 return -ENOMEM; 5309 } 5310 5311 #define IPW_PRIVACY_CAPABLE 0x0008 5312 5313 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags, 5314 int batch_mode) 5315 { 5316 struct host_command cmd = { 5317 .host_command = WEP_FLAGS, 5318 .host_command_sequence = 0, 5319 .host_command_length = 4 5320 }; 5321 int err; 5322 5323 cmd.host_command_parameters[0] = flags; 5324 5325 IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags); 5326 5327 if (!batch_mode) { 5328 err = ipw2100_disable_adapter(priv); 5329 if (err) { 5330 printk(KERN_ERR DRV_NAME 5331 ": %s: Could not disable adapter %d\n", 5332 priv->net_dev->name, err); 5333 return err; 5334 } 5335 } 5336 5337 /* send cmd to firmware */ 5338 err = ipw2100_hw_send_command(priv, &cmd); 5339 5340 if (!batch_mode) 5341 ipw2100_enable_adapter(priv); 5342 5343 return err; 5344 } 5345 5346 struct ipw2100_wep_key { 5347 u8 idx; 5348 u8 len; 5349 u8 key[13]; 5350 }; 5351 5352 /* Macros to ease up priting WEP keys */ 5353 #define WEP_FMT_64 "%02X%02X%02X%02X-%02X" 5354 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X" 5355 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4] 5356 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10] 5357 5358 /** 5359 * ipw2100_set_key() - Set a the wep key 5360 * 5361 * @priv: struct to work on 5362 * @idx: index of the key we want to set 5363 * @key: ptr to the key data to set 5364 * @len: length of the buffer at @key 5365 * @batch_mode: FIXME perform the operation in batch mode, not 5366 * disabling the device. 5367 * 5368 * @returns 0 if OK, < 0 errno code on error. 5369 * 5370 * Fill out a command structure with the new wep key, length an 5371 * index and send it down the wire. 5372 */ 5373 static int ipw2100_set_key(struct ipw2100_priv *priv, 5374 int idx, char *key, int len, int batch_mode) 5375 { 5376 int keylen = len ? (len <= 5 ? 5 : 13) : 0; 5377 struct host_command cmd = { 5378 .host_command = WEP_KEY_INFO, 5379 .host_command_sequence = 0, 5380 .host_command_length = sizeof(struct ipw2100_wep_key), 5381 }; 5382 struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters; 5383 int err; 5384 5385 IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n", 5386 idx, keylen, len); 5387 5388 /* NOTE: We don't check cached values in case the firmware was reset 5389 * or some other problem is occurring. If the user is setting the key, 5390 * then we push the change */ 5391 5392 wep_key->idx = idx; 5393 wep_key->len = keylen; 5394 5395 if (keylen) { 5396 memcpy(wep_key->key, key, len); 5397 memset(wep_key->key + len, 0, keylen - len); 5398 } 5399 5400 /* Will be optimized out on debug not being configured in */ 5401 if (keylen == 0) 5402 IPW_DEBUG_WEP("%s: Clearing key %d\n", 5403 priv->net_dev->name, wep_key->idx); 5404 else if (keylen == 5) 5405 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n", 5406 priv->net_dev->name, wep_key->idx, wep_key->len, 5407 WEP_STR_64(wep_key->key)); 5408 else 5409 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128 5410 "\n", 5411 priv->net_dev->name, wep_key->idx, wep_key->len, 5412 WEP_STR_128(wep_key->key)); 5413 5414 if (!batch_mode) { 5415 err = ipw2100_disable_adapter(priv); 5416 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */ 5417 if (err) { 5418 printk(KERN_ERR DRV_NAME 5419 ": %s: Could not disable adapter %d\n", 5420 priv->net_dev->name, err); 5421 return err; 5422 } 5423 } 5424 5425 /* send cmd to firmware */ 5426 err = ipw2100_hw_send_command(priv, &cmd); 5427 5428 if (!batch_mode) { 5429 int err2 = ipw2100_enable_adapter(priv); 5430 if (err == 0) 5431 err = err2; 5432 } 5433 return err; 5434 } 5435 5436 static int ipw2100_set_key_index(struct ipw2100_priv *priv, 5437 int idx, int batch_mode) 5438 { 5439 struct host_command cmd = { 5440 .host_command = WEP_KEY_INDEX, 5441 .host_command_sequence = 0, 5442 .host_command_length = 4, 5443 .host_command_parameters = {idx}, 5444 }; 5445 int err; 5446 5447 IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx); 5448 5449 if (idx < 0 || idx > 3) 5450 return -EINVAL; 5451 5452 if (!batch_mode) { 5453 err = ipw2100_disable_adapter(priv); 5454 if (err) { 5455 printk(KERN_ERR DRV_NAME 5456 ": %s: Could not disable adapter %d\n", 5457 priv->net_dev->name, err); 5458 return err; 5459 } 5460 } 5461 5462 /* send cmd to firmware */ 5463 err = ipw2100_hw_send_command(priv, &cmd); 5464 5465 if (!batch_mode) 5466 ipw2100_enable_adapter(priv); 5467 5468 return err; 5469 } 5470 5471 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode) 5472 { 5473 int i, err, auth_mode, sec_level, use_group; 5474 5475 if (!(priv->status & STATUS_RUNNING)) 5476 return 0; 5477 5478 if (!batch_mode) { 5479 err = ipw2100_disable_adapter(priv); 5480 if (err) 5481 return err; 5482 } 5483 5484 if (!priv->ieee->sec.enabled) { 5485 err = 5486 ipw2100_set_security_information(priv, IPW_AUTH_OPEN, 5487 SEC_LEVEL_0, 0, 1); 5488 } else { 5489 auth_mode = IPW_AUTH_OPEN; 5490 if (priv->ieee->sec.flags & SEC_AUTH_MODE) { 5491 if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY) 5492 auth_mode = IPW_AUTH_SHARED; 5493 else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP) 5494 auth_mode = IPW_AUTH_LEAP_CISCO_ID; 5495 } 5496 5497 sec_level = SEC_LEVEL_0; 5498 if (priv->ieee->sec.flags & SEC_LEVEL) 5499 sec_level = priv->ieee->sec.level; 5500 5501 use_group = 0; 5502 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP) 5503 use_group = priv->ieee->sec.unicast_uses_group; 5504 5505 err = 5506 ipw2100_set_security_information(priv, auth_mode, sec_level, 5507 use_group, 1); 5508 } 5509 5510 if (err) 5511 goto exit; 5512 5513 if (priv->ieee->sec.enabled) { 5514 for (i = 0; i < 4; i++) { 5515 if (!(priv->ieee->sec.flags & (1 << i))) { 5516 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN); 5517 priv->ieee->sec.key_sizes[i] = 0; 5518 } else { 5519 err = ipw2100_set_key(priv, i, 5520 priv->ieee->sec.keys[i], 5521 priv->ieee->sec. 5522 key_sizes[i], 1); 5523 if (err) 5524 goto exit; 5525 } 5526 } 5527 5528 ipw2100_set_key_index(priv, priv->ieee->crypt_info.tx_keyidx, 1); 5529 } 5530 5531 /* Always enable privacy so the Host can filter WEP packets if 5532 * encrypted data is sent up */ 5533 err = 5534 ipw2100_set_wep_flags(priv, 5535 priv->ieee->sec. 5536 enabled ? IPW_PRIVACY_CAPABLE : 0, 1); 5537 if (err) 5538 goto exit; 5539 5540 priv->status &= ~STATUS_SECURITY_UPDATED; 5541 5542 exit: 5543 if (!batch_mode) 5544 ipw2100_enable_adapter(priv); 5545 5546 return err; 5547 } 5548 5549 static void ipw2100_security_work(struct work_struct *work) 5550 { 5551 struct ipw2100_priv *priv = 5552 container_of(work, struct ipw2100_priv, security_work.work); 5553 5554 /* If we happen to have reconnected before we get a chance to 5555 * process this, then update the security settings--which causes 5556 * a disassociation to occur */ 5557 if (!(priv->status & STATUS_ASSOCIATED) && 5558 priv->status & STATUS_SECURITY_UPDATED) 5559 ipw2100_configure_security(priv, 0); 5560 } 5561 5562 static void shim__set_security(struct net_device *dev, 5563 struct libipw_security *sec) 5564 { 5565 struct ipw2100_priv *priv = libipw_priv(dev); 5566 int i; 5567 5568 mutex_lock(&priv->action_mutex); 5569 if (!(priv->status & STATUS_INITIALIZED)) 5570 goto done; 5571 5572 for (i = 0; i < 4; i++) { 5573 if (sec->flags & (1 << i)) { 5574 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i]; 5575 if (sec->key_sizes[i] == 0) 5576 priv->ieee->sec.flags &= ~(1 << i); 5577 else 5578 memcpy(priv->ieee->sec.keys[i], sec->keys[i], 5579 sec->key_sizes[i]); 5580 if (sec->level == SEC_LEVEL_1) { 5581 priv->ieee->sec.flags |= (1 << i); 5582 priv->status |= STATUS_SECURITY_UPDATED; 5583 } else 5584 priv->ieee->sec.flags &= ~(1 << i); 5585 } 5586 } 5587 5588 if ((sec->flags & SEC_ACTIVE_KEY) && 5589 priv->ieee->sec.active_key != sec->active_key) { 5590 priv->ieee->sec.active_key = sec->active_key; 5591 priv->ieee->sec.flags |= SEC_ACTIVE_KEY; 5592 priv->status |= STATUS_SECURITY_UPDATED; 5593 } 5594 5595 if ((sec->flags & SEC_AUTH_MODE) && 5596 (priv->ieee->sec.auth_mode != sec->auth_mode)) { 5597 priv->ieee->sec.auth_mode = sec->auth_mode; 5598 priv->ieee->sec.flags |= SEC_AUTH_MODE; 5599 priv->status |= STATUS_SECURITY_UPDATED; 5600 } 5601 5602 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) { 5603 priv->ieee->sec.flags |= SEC_ENABLED; 5604 priv->ieee->sec.enabled = sec->enabled; 5605 priv->status |= STATUS_SECURITY_UPDATED; 5606 } 5607 5608 if (sec->flags & SEC_ENCRYPT) 5609 priv->ieee->sec.encrypt = sec->encrypt; 5610 5611 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) { 5612 priv->ieee->sec.level = sec->level; 5613 priv->ieee->sec.flags |= SEC_LEVEL; 5614 priv->status |= STATUS_SECURITY_UPDATED; 5615 } 5616 5617 IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n", 5618 priv->ieee->sec.flags & (1 << 8) ? '1' : '0', 5619 priv->ieee->sec.flags & (1 << 7) ? '1' : '0', 5620 priv->ieee->sec.flags & (1 << 6) ? '1' : '0', 5621 priv->ieee->sec.flags & (1 << 5) ? '1' : '0', 5622 priv->ieee->sec.flags & (1 << 4) ? '1' : '0', 5623 priv->ieee->sec.flags & (1 << 3) ? '1' : '0', 5624 priv->ieee->sec.flags & (1 << 2) ? '1' : '0', 5625 priv->ieee->sec.flags & (1 << 1) ? '1' : '0', 5626 priv->ieee->sec.flags & (1 << 0) ? '1' : '0'); 5627 5628 /* As a temporary work around to enable WPA until we figure out why 5629 * wpa_supplicant toggles the security capability of the driver, which 5630 * forces a disassociation with force_update... 5631 * 5632 * if (force_update || !(priv->status & STATUS_ASSOCIATED))*/ 5633 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) 5634 ipw2100_configure_security(priv, 0); 5635 done: 5636 mutex_unlock(&priv->action_mutex); 5637 } 5638 5639 static int ipw2100_adapter_setup(struct ipw2100_priv *priv) 5640 { 5641 int err; 5642 int batch_mode = 1; 5643 u8 *bssid; 5644 5645 IPW_DEBUG_INFO("enter\n"); 5646 5647 err = ipw2100_disable_adapter(priv); 5648 if (err) 5649 return err; 5650 #ifdef CONFIG_IPW2100_MONITOR 5651 if (priv->ieee->iw_mode == IW_MODE_MONITOR) { 5652 err = ipw2100_set_channel(priv, priv->channel, batch_mode); 5653 if (err) 5654 return err; 5655 5656 IPW_DEBUG_INFO("exit\n"); 5657 5658 return 0; 5659 } 5660 #endif /* CONFIG_IPW2100_MONITOR */ 5661 5662 err = ipw2100_read_mac_address(priv); 5663 if (err) 5664 return -EIO; 5665 5666 err = ipw2100_set_mac_address(priv, batch_mode); 5667 if (err) 5668 return err; 5669 5670 err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode); 5671 if (err) 5672 return err; 5673 5674 if (priv->ieee->iw_mode == IW_MODE_ADHOC) { 5675 err = ipw2100_set_channel(priv, priv->channel, batch_mode); 5676 if (err) 5677 return err; 5678 } 5679 5680 err = ipw2100_system_config(priv, batch_mode); 5681 if (err) 5682 return err; 5683 5684 err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode); 5685 if (err) 5686 return err; 5687 5688 /* Default to power mode OFF */ 5689 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM); 5690 if (err) 5691 return err; 5692 5693 err = ipw2100_set_rts_threshold(priv, priv->rts_threshold); 5694 if (err) 5695 return err; 5696 5697 if (priv->config & CFG_STATIC_BSSID) 5698 bssid = priv->bssid; 5699 else 5700 bssid = NULL; 5701 err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode); 5702 if (err) 5703 return err; 5704 5705 if (priv->config & CFG_STATIC_ESSID) 5706 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len, 5707 batch_mode); 5708 else 5709 err = ipw2100_set_essid(priv, NULL, 0, batch_mode); 5710 if (err) 5711 return err; 5712 5713 err = ipw2100_configure_security(priv, batch_mode); 5714 if (err) 5715 return err; 5716 5717 if (priv->ieee->iw_mode == IW_MODE_ADHOC) { 5718 err = 5719 ipw2100_set_ibss_beacon_interval(priv, 5720 priv->beacon_interval, 5721 batch_mode); 5722 if (err) 5723 return err; 5724 5725 err = ipw2100_set_tx_power(priv, priv->tx_power); 5726 if (err) 5727 return err; 5728 } 5729 5730 /* 5731 err = ipw2100_set_fragmentation_threshold( 5732 priv, priv->frag_threshold, batch_mode); 5733 if (err) 5734 return err; 5735 */ 5736 5737 IPW_DEBUG_INFO("exit\n"); 5738 5739 return 0; 5740 } 5741 5742 /************************************************************************* 5743 * 5744 * EXTERNALLY CALLED METHODS 5745 * 5746 *************************************************************************/ 5747 5748 /* This method is called by the network layer -- not to be confused with 5749 * ipw2100_set_mac_address() declared above called by this driver (and this 5750 * method as well) to talk to the firmware */ 5751 static int ipw2100_set_address(struct net_device *dev, void *p) 5752 { 5753 struct ipw2100_priv *priv = libipw_priv(dev); 5754 struct sockaddr *addr = p; 5755 int err = 0; 5756 5757 if (!is_valid_ether_addr(addr->sa_data)) 5758 return -EADDRNOTAVAIL; 5759 5760 mutex_lock(&priv->action_mutex); 5761 5762 priv->config |= CFG_CUSTOM_MAC; 5763 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN); 5764 5765 err = ipw2100_set_mac_address(priv, 0); 5766 if (err) 5767 goto done; 5768 5769 priv->reset_backoff = 0; 5770 mutex_unlock(&priv->action_mutex); 5771 ipw2100_reset_adapter(&priv->reset_work.work); 5772 return 0; 5773 5774 done: 5775 mutex_unlock(&priv->action_mutex); 5776 return err; 5777 } 5778 5779 static int ipw2100_open(struct net_device *dev) 5780 { 5781 struct ipw2100_priv *priv = libipw_priv(dev); 5782 unsigned long flags; 5783 IPW_DEBUG_INFO("dev->open\n"); 5784 5785 spin_lock_irqsave(&priv->low_lock, flags); 5786 if (priv->status & STATUS_ASSOCIATED) { 5787 netif_carrier_on(dev); 5788 netif_start_queue(dev); 5789 } 5790 spin_unlock_irqrestore(&priv->low_lock, flags); 5791 5792 return 0; 5793 } 5794 5795 static int ipw2100_close(struct net_device *dev) 5796 { 5797 struct ipw2100_priv *priv = libipw_priv(dev); 5798 unsigned long flags; 5799 struct list_head *element; 5800 struct ipw2100_tx_packet *packet; 5801 5802 IPW_DEBUG_INFO("enter\n"); 5803 5804 spin_lock_irqsave(&priv->low_lock, flags); 5805 5806 if (priv->status & STATUS_ASSOCIATED) 5807 netif_carrier_off(dev); 5808 netif_stop_queue(dev); 5809 5810 /* Flush the TX queue ... */ 5811 while (!list_empty(&priv->tx_pend_list)) { 5812 element = priv->tx_pend_list.next; 5813 packet = list_entry(element, struct ipw2100_tx_packet, list); 5814 5815 list_del(element); 5816 DEC_STAT(&priv->tx_pend_stat); 5817 5818 libipw_txb_free(packet->info.d_struct.txb); 5819 packet->info.d_struct.txb = NULL; 5820 5821 list_add_tail(element, &priv->tx_free_list); 5822 INC_STAT(&priv->tx_free_stat); 5823 } 5824 spin_unlock_irqrestore(&priv->low_lock, flags); 5825 5826 IPW_DEBUG_INFO("exit\n"); 5827 5828 return 0; 5829 } 5830 5831 /* 5832 * TODO: Fix this function... its just wrong 5833 */ 5834 static void ipw2100_tx_timeout(struct net_device *dev, unsigned int txqueue) 5835 { 5836 struct ipw2100_priv *priv = libipw_priv(dev); 5837 5838 dev->stats.tx_errors++; 5839 5840 #ifdef CONFIG_IPW2100_MONITOR 5841 if (priv->ieee->iw_mode == IW_MODE_MONITOR) 5842 return; 5843 #endif 5844 5845 IPW_DEBUG_INFO("%s: TX timed out. Scheduling firmware restart.\n", 5846 dev->name); 5847 schedule_reset(priv); 5848 } 5849 5850 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value) 5851 { 5852 /* This is called when wpa_supplicant loads and closes the driver 5853 * interface. */ 5854 priv->ieee->wpa_enabled = value; 5855 return 0; 5856 } 5857 5858 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value) 5859 { 5860 5861 struct libipw_device *ieee = priv->ieee; 5862 struct libipw_security sec = { 5863 .flags = SEC_AUTH_MODE, 5864 }; 5865 int ret = 0; 5866 5867 if (value & IW_AUTH_ALG_SHARED_KEY) { 5868 sec.auth_mode = WLAN_AUTH_SHARED_KEY; 5869 ieee->open_wep = 0; 5870 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) { 5871 sec.auth_mode = WLAN_AUTH_OPEN; 5872 ieee->open_wep = 1; 5873 } else if (value & IW_AUTH_ALG_LEAP) { 5874 sec.auth_mode = WLAN_AUTH_LEAP; 5875 ieee->open_wep = 1; 5876 } else 5877 return -EINVAL; 5878 5879 if (ieee->set_security) 5880 ieee->set_security(ieee->dev, &sec); 5881 else 5882 ret = -EOPNOTSUPP; 5883 5884 return ret; 5885 } 5886 5887 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv, 5888 char *wpa_ie, int wpa_ie_len) 5889 { 5890 5891 struct ipw2100_wpa_assoc_frame frame; 5892 5893 frame.fixed_ie_mask = 0; 5894 5895 /* copy WPA IE */ 5896 memcpy(frame.var_ie, wpa_ie, wpa_ie_len); 5897 frame.var_ie_len = wpa_ie_len; 5898 5899 /* make sure WPA is enabled */ 5900 ipw2100_wpa_enable(priv, 1); 5901 ipw2100_set_wpa_ie(priv, &frame, 0); 5902 } 5903 5904 static void ipw_ethtool_get_drvinfo(struct net_device *dev, 5905 struct ethtool_drvinfo *info) 5906 { 5907 struct ipw2100_priv *priv = libipw_priv(dev); 5908 char fw_ver[64], ucode_ver[64]; 5909 5910 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 5911 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 5912 5913 ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver)); 5914 ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver)); 5915 5916 snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s", 5917 fw_ver, priv->eeprom_version, ucode_ver); 5918 5919 strlcpy(info->bus_info, pci_name(priv->pci_dev), 5920 sizeof(info->bus_info)); 5921 } 5922 5923 static u32 ipw2100_ethtool_get_link(struct net_device *dev) 5924 { 5925 struct ipw2100_priv *priv = libipw_priv(dev); 5926 return (priv->status & STATUS_ASSOCIATED) ? 1 : 0; 5927 } 5928 5929 static const struct ethtool_ops ipw2100_ethtool_ops = { 5930 .get_link = ipw2100_ethtool_get_link, 5931 .get_drvinfo = ipw_ethtool_get_drvinfo, 5932 }; 5933 5934 static void ipw2100_hang_check(struct work_struct *work) 5935 { 5936 struct ipw2100_priv *priv = 5937 container_of(work, struct ipw2100_priv, hang_check.work); 5938 unsigned long flags; 5939 u32 rtc = 0xa5a5a5a5; 5940 u32 len = sizeof(rtc); 5941 int restart = 0; 5942 5943 spin_lock_irqsave(&priv->low_lock, flags); 5944 5945 if (priv->fatal_error != 0) { 5946 /* If fatal_error is set then we need to restart */ 5947 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n", 5948 priv->net_dev->name); 5949 5950 restart = 1; 5951 } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) || 5952 (rtc == priv->last_rtc)) { 5953 /* Check if firmware is hung */ 5954 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n", 5955 priv->net_dev->name); 5956 5957 restart = 1; 5958 } 5959 5960 if (restart) { 5961 /* Kill timer */ 5962 priv->stop_hang_check = 1; 5963 priv->hangs++; 5964 5965 /* Restart the NIC */ 5966 schedule_reset(priv); 5967 } 5968 5969 priv->last_rtc = rtc; 5970 5971 if (!priv->stop_hang_check) 5972 schedule_delayed_work(&priv->hang_check, HZ / 2); 5973 5974 spin_unlock_irqrestore(&priv->low_lock, flags); 5975 } 5976 5977 static void ipw2100_rf_kill(struct work_struct *work) 5978 { 5979 struct ipw2100_priv *priv = 5980 container_of(work, struct ipw2100_priv, rf_kill.work); 5981 unsigned long flags; 5982 5983 spin_lock_irqsave(&priv->low_lock, flags); 5984 5985 if (rf_kill_active(priv)) { 5986 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n"); 5987 if (!priv->stop_rf_kill) 5988 schedule_delayed_work(&priv->rf_kill, 5989 round_jiffies_relative(HZ)); 5990 goto exit_unlock; 5991 } 5992 5993 /* RF Kill is now disabled, so bring the device back up */ 5994 5995 if (!(priv->status & STATUS_RF_KILL_MASK)) { 5996 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting " 5997 "device\n"); 5998 schedule_reset(priv); 5999 } else 6000 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still " 6001 "enabled\n"); 6002 6003 exit_unlock: 6004 spin_unlock_irqrestore(&priv->low_lock, flags); 6005 } 6006 6007 static void ipw2100_irq_tasklet(struct tasklet_struct *t); 6008 6009 static const struct net_device_ops ipw2100_netdev_ops = { 6010 .ndo_open = ipw2100_open, 6011 .ndo_stop = ipw2100_close, 6012 .ndo_start_xmit = libipw_xmit, 6013 .ndo_tx_timeout = ipw2100_tx_timeout, 6014 .ndo_set_mac_address = ipw2100_set_address, 6015 .ndo_validate_addr = eth_validate_addr, 6016 }; 6017 6018 /* Look into using netdev destructor to shutdown libipw? */ 6019 6020 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev, 6021 void __iomem * ioaddr) 6022 { 6023 struct ipw2100_priv *priv; 6024 struct net_device *dev; 6025 6026 dev = alloc_libipw(sizeof(struct ipw2100_priv), 0); 6027 if (!dev) 6028 return NULL; 6029 priv = libipw_priv(dev); 6030 priv->ieee = netdev_priv(dev); 6031 priv->pci_dev = pci_dev; 6032 priv->net_dev = dev; 6033 priv->ioaddr = ioaddr; 6034 6035 priv->ieee->hard_start_xmit = ipw2100_tx; 6036 priv->ieee->set_security = shim__set_security; 6037 6038 priv->ieee->perfect_rssi = -20; 6039 priv->ieee->worst_rssi = -85; 6040 6041 dev->netdev_ops = &ipw2100_netdev_ops; 6042 dev->ethtool_ops = &ipw2100_ethtool_ops; 6043 dev->wireless_handlers = &ipw2100_wx_handler_def; 6044 priv->wireless_data.libipw = priv->ieee; 6045 dev->wireless_data = &priv->wireless_data; 6046 dev->watchdog_timeo = 3 * HZ; 6047 dev->irq = 0; 6048 dev->min_mtu = 68; 6049 dev->max_mtu = LIBIPW_DATA_LEN; 6050 6051 /* NOTE: We don't use the wireless_handlers hook 6052 * in dev as the system will start throwing WX requests 6053 * to us before we're actually initialized and it just 6054 * ends up causing problems. So, we just handle 6055 * the WX extensions through the ipw2100_ioctl interface */ 6056 6057 /* memset() puts everything to 0, so we only have explicitly set 6058 * those values that need to be something else */ 6059 6060 /* If power management is turned on, default to AUTO mode */ 6061 priv->power_mode = IPW_POWER_AUTO; 6062 6063 #ifdef CONFIG_IPW2100_MONITOR 6064 priv->config |= CFG_CRC_CHECK; 6065 #endif 6066 priv->ieee->wpa_enabled = 0; 6067 priv->ieee->drop_unencrypted = 0; 6068 priv->ieee->privacy_invoked = 0; 6069 priv->ieee->ieee802_1x = 1; 6070 6071 /* Set module parameters */ 6072 switch (network_mode) { 6073 case 1: 6074 priv->ieee->iw_mode = IW_MODE_ADHOC; 6075 break; 6076 #ifdef CONFIG_IPW2100_MONITOR 6077 case 2: 6078 priv->ieee->iw_mode = IW_MODE_MONITOR; 6079 break; 6080 #endif 6081 default: 6082 case 0: 6083 priv->ieee->iw_mode = IW_MODE_INFRA; 6084 break; 6085 } 6086 6087 if (disable == 1) 6088 priv->status |= STATUS_RF_KILL_SW; 6089 6090 if (channel != 0 && 6091 ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) { 6092 priv->config |= CFG_STATIC_CHANNEL; 6093 priv->channel = channel; 6094 } 6095 6096 if (associate) 6097 priv->config |= CFG_ASSOCIATE; 6098 6099 priv->beacon_interval = DEFAULT_BEACON_INTERVAL; 6100 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT; 6101 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT; 6102 priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED; 6103 priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED; 6104 priv->tx_power = IPW_TX_POWER_DEFAULT; 6105 priv->tx_rates = DEFAULT_TX_RATES; 6106 6107 strcpy(priv->nick, "ipw2100"); 6108 6109 spin_lock_init(&priv->low_lock); 6110 mutex_init(&priv->action_mutex); 6111 mutex_init(&priv->adapter_mutex); 6112 6113 init_waitqueue_head(&priv->wait_command_queue); 6114 6115 netif_carrier_off(dev); 6116 6117 INIT_LIST_HEAD(&priv->msg_free_list); 6118 INIT_LIST_HEAD(&priv->msg_pend_list); 6119 INIT_STAT(&priv->msg_free_stat); 6120 INIT_STAT(&priv->msg_pend_stat); 6121 6122 INIT_LIST_HEAD(&priv->tx_free_list); 6123 INIT_LIST_HEAD(&priv->tx_pend_list); 6124 INIT_STAT(&priv->tx_free_stat); 6125 INIT_STAT(&priv->tx_pend_stat); 6126 6127 INIT_LIST_HEAD(&priv->fw_pend_list); 6128 INIT_STAT(&priv->fw_pend_stat); 6129 6130 INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter); 6131 INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work); 6132 INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work); 6133 INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check); 6134 INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill); 6135 INIT_DELAYED_WORK(&priv->scan_event, ipw2100_scan_event); 6136 6137 tasklet_setup(&priv->irq_tasklet, ipw2100_irq_tasklet); 6138 6139 /* NOTE: We do not start the deferred work for status checks yet */ 6140 priv->stop_rf_kill = 1; 6141 priv->stop_hang_check = 1; 6142 6143 return dev; 6144 } 6145 6146 static int ipw2100_pci_init_one(struct pci_dev *pci_dev, 6147 const struct pci_device_id *ent) 6148 { 6149 void __iomem *ioaddr; 6150 struct net_device *dev = NULL; 6151 struct ipw2100_priv *priv = NULL; 6152 int err = 0; 6153 int registered = 0; 6154 u32 val; 6155 6156 IPW_DEBUG_INFO("enter\n"); 6157 6158 if (!(pci_resource_flags(pci_dev, 0) & IORESOURCE_MEM)) { 6159 IPW_DEBUG_INFO("weird - resource type is not memory\n"); 6160 err = -ENODEV; 6161 goto out; 6162 } 6163 6164 ioaddr = pci_iomap(pci_dev, 0, 0); 6165 if (!ioaddr) { 6166 printk(KERN_WARNING DRV_NAME 6167 "Error calling ioremap.\n"); 6168 err = -EIO; 6169 goto fail; 6170 } 6171 6172 /* allocate and initialize our net_device */ 6173 dev = ipw2100_alloc_device(pci_dev, ioaddr); 6174 if (!dev) { 6175 printk(KERN_WARNING DRV_NAME 6176 "Error calling ipw2100_alloc_device.\n"); 6177 err = -ENOMEM; 6178 goto fail; 6179 } 6180 6181 /* set up PCI mappings for device */ 6182 err = pci_enable_device(pci_dev); 6183 if (err) { 6184 printk(KERN_WARNING DRV_NAME 6185 "Error calling pci_enable_device.\n"); 6186 return err; 6187 } 6188 6189 priv = libipw_priv(dev); 6190 6191 pci_set_master(pci_dev); 6192 pci_set_drvdata(pci_dev, priv); 6193 6194 err = dma_set_mask(&pci_dev->dev, DMA_BIT_MASK(32)); 6195 if (err) { 6196 printk(KERN_WARNING DRV_NAME 6197 "Error calling pci_set_dma_mask.\n"); 6198 pci_disable_device(pci_dev); 6199 return err; 6200 } 6201 6202 err = pci_request_regions(pci_dev, DRV_NAME); 6203 if (err) { 6204 printk(KERN_WARNING DRV_NAME 6205 "Error calling pci_request_regions.\n"); 6206 pci_disable_device(pci_dev); 6207 return err; 6208 } 6209 6210 /* We disable the RETRY_TIMEOUT register (0x41) to keep 6211 * PCI Tx retries from interfering with C3 CPU state */ 6212 pci_read_config_dword(pci_dev, 0x40, &val); 6213 if ((val & 0x0000ff00) != 0) 6214 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff); 6215 6216 if (!ipw2100_hw_is_adapter_in_system(dev)) { 6217 printk(KERN_WARNING DRV_NAME 6218 "Device not found via register read.\n"); 6219 err = -ENODEV; 6220 goto fail; 6221 } 6222 6223 SET_NETDEV_DEV(dev, &pci_dev->dev); 6224 6225 /* Force interrupts to be shut off on the device */ 6226 priv->status |= STATUS_INT_ENABLED; 6227 ipw2100_disable_interrupts(priv); 6228 6229 /* Allocate and initialize the Tx/Rx queues and lists */ 6230 if (ipw2100_queues_allocate(priv)) { 6231 printk(KERN_WARNING DRV_NAME 6232 "Error calling ipw2100_queues_allocate.\n"); 6233 err = -ENOMEM; 6234 goto fail; 6235 } 6236 ipw2100_queues_initialize(priv); 6237 6238 err = request_irq(pci_dev->irq, 6239 ipw2100_interrupt, IRQF_SHARED, dev->name, priv); 6240 if (err) { 6241 printk(KERN_WARNING DRV_NAME 6242 "Error calling request_irq: %d.\n", pci_dev->irq); 6243 goto fail; 6244 } 6245 dev->irq = pci_dev->irq; 6246 6247 IPW_DEBUG_INFO("Attempting to register device...\n"); 6248 6249 printk(KERN_INFO DRV_NAME 6250 ": Detected Intel PRO/Wireless 2100 Network Connection\n"); 6251 6252 err = ipw2100_up(priv, 1); 6253 if (err) 6254 goto fail; 6255 6256 err = ipw2100_wdev_init(dev); 6257 if (err) 6258 goto fail; 6259 registered = 1; 6260 6261 /* Bring up the interface. Pre 0.46, after we registered the 6262 * network device we would call ipw2100_up. This introduced a race 6263 * condition with newer hotplug configurations (network was coming 6264 * up and making calls before the device was initialized). 6265 */ 6266 err = register_netdev(dev); 6267 if (err) { 6268 printk(KERN_WARNING DRV_NAME 6269 "Error calling register_netdev.\n"); 6270 goto fail; 6271 } 6272 registered = 2; 6273 6274 mutex_lock(&priv->action_mutex); 6275 6276 IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev)); 6277 6278 /* perform this after register_netdev so that dev->name is set */ 6279 err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group); 6280 if (err) 6281 goto fail_unlock; 6282 6283 /* If the RF Kill switch is disabled, go ahead and complete the 6284 * startup sequence */ 6285 if (!(priv->status & STATUS_RF_KILL_MASK)) { 6286 /* Enable the adapter - sends HOST_COMPLETE */ 6287 if (ipw2100_enable_adapter(priv)) { 6288 printk(KERN_WARNING DRV_NAME 6289 ": %s: failed in call to enable adapter.\n", 6290 priv->net_dev->name); 6291 ipw2100_hw_stop_adapter(priv); 6292 err = -EIO; 6293 goto fail_unlock; 6294 } 6295 6296 /* Start a scan . . . */ 6297 ipw2100_set_scan_options(priv); 6298 ipw2100_start_scan(priv); 6299 } 6300 6301 IPW_DEBUG_INFO("exit\n"); 6302 6303 priv->status |= STATUS_INITIALIZED; 6304 6305 mutex_unlock(&priv->action_mutex); 6306 out: 6307 return err; 6308 6309 fail_unlock: 6310 mutex_unlock(&priv->action_mutex); 6311 fail: 6312 if (dev) { 6313 if (registered >= 2) 6314 unregister_netdev(dev); 6315 6316 if (registered) { 6317 wiphy_unregister(priv->ieee->wdev.wiphy); 6318 kfree(priv->ieee->bg_band.channels); 6319 } 6320 6321 ipw2100_hw_stop_adapter(priv); 6322 6323 ipw2100_disable_interrupts(priv); 6324 6325 if (dev->irq) 6326 free_irq(dev->irq, priv); 6327 6328 ipw2100_kill_works(priv); 6329 6330 /* These are safe to call even if they weren't allocated */ 6331 ipw2100_queues_free(priv); 6332 sysfs_remove_group(&pci_dev->dev.kobj, 6333 &ipw2100_attribute_group); 6334 6335 free_libipw(dev, 0); 6336 } 6337 6338 pci_iounmap(pci_dev, ioaddr); 6339 6340 pci_release_regions(pci_dev); 6341 pci_disable_device(pci_dev); 6342 goto out; 6343 } 6344 6345 static void ipw2100_pci_remove_one(struct pci_dev *pci_dev) 6346 { 6347 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev); 6348 struct net_device *dev = priv->net_dev; 6349 6350 mutex_lock(&priv->action_mutex); 6351 6352 priv->status &= ~STATUS_INITIALIZED; 6353 6354 sysfs_remove_group(&pci_dev->dev.kobj, &ipw2100_attribute_group); 6355 6356 #ifdef CONFIG_PM 6357 if (ipw2100_firmware.version) 6358 ipw2100_release_firmware(priv, &ipw2100_firmware); 6359 #endif 6360 /* Take down the hardware */ 6361 ipw2100_down(priv); 6362 6363 /* Release the mutex so that the network subsystem can 6364 * complete any needed calls into the driver... */ 6365 mutex_unlock(&priv->action_mutex); 6366 6367 /* Unregister the device first - this results in close() 6368 * being called if the device is open. If we free storage 6369 * first, then close() will crash. 6370 * FIXME: remove the comment above. */ 6371 unregister_netdev(dev); 6372 6373 ipw2100_kill_works(priv); 6374 6375 ipw2100_queues_free(priv); 6376 6377 /* Free potential debugging firmware snapshot */ 6378 ipw2100_snapshot_free(priv); 6379 6380 free_irq(dev->irq, priv); 6381 6382 pci_iounmap(pci_dev, priv->ioaddr); 6383 6384 /* wiphy_unregister needs to be here, before free_libipw */ 6385 wiphy_unregister(priv->ieee->wdev.wiphy); 6386 kfree(priv->ieee->bg_band.channels); 6387 free_libipw(dev, 0); 6388 6389 pci_release_regions(pci_dev); 6390 pci_disable_device(pci_dev); 6391 6392 IPW_DEBUG_INFO("exit\n"); 6393 } 6394 6395 static int __maybe_unused ipw2100_suspend(struct device *dev_d) 6396 { 6397 struct ipw2100_priv *priv = dev_get_drvdata(dev_d); 6398 struct net_device *dev = priv->net_dev; 6399 6400 IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name); 6401 6402 mutex_lock(&priv->action_mutex); 6403 if (priv->status & STATUS_INITIALIZED) { 6404 /* Take down the device; powers it off, etc. */ 6405 ipw2100_down(priv); 6406 } 6407 6408 /* Remove the PRESENT state of the device */ 6409 netif_device_detach(dev); 6410 6411 priv->suspend_at = ktime_get_boottime_seconds(); 6412 6413 mutex_unlock(&priv->action_mutex); 6414 6415 return 0; 6416 } 6417 6418 static int __maybe_unused ipw2100_resume(struct device *dev_d) 6419 { 6420 struct pci_dev *pci_dev = to_pci_dev(dev_d); 6421 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev); 6422 struct net_device *dev = priv->net_dev; 6423 u32 val; 6424 6425 if (IPW2100_PM_DISABLED) 6426 return 0; 6427 6428 mutex_lock(&priv->action_mutex); 6429 6430 IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name); 6431 6432 /* 6433 * Suspend/Resume resets the PCI configuration space, so we have to 6434 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries 6435 * from interfering with C3 CPU state. pci_restore_state won't help 6436 * here since it only restores the first 64 bytes pci config header. 6437 */ 6438 pci_read_config_dword(pci_dev, 0x40, &val); 6439 if ((val & 0x0000ff00) != 0) 6440 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff); 6441 6442 /* Set the device back into the PRESENT state; this will also wake 6443 * the queue of needed */ 6444 netif_device_attach(dev); 6445 6446 priv->suspend_time = ktime_get_boottime_seconds() - priv->suspend_at; 6447 6448 /* Bring the device back up */ 6449 if (!(priv->status & STATUS_RF_KILL_SW)) 6450 ipw2100_up(priv, 0); 6451 6452 mutex_unlock(&priv->action_mutex); 6453 6454 return 0; 6455 } 6456 6457 static void ipw2100_shutdown(struct pci_dev *pci_dev) 6458 { 6459 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev); 6460 6461 /* Take down the device; powers it off, etc. */ 6462 ipw2100_down(priv); 6463 6464 pci_disable_device(pci_dev); 6465 } 6466 6467 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x } 6468 6469 static const struct pci_device_id ipw2100_pci_id_table[] = { 6470 IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */ 6471 IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */ 6472 IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */ 6473 IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */ 6474 IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */ 6475 IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */ 6476 IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */ 6477 IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */ 6478 IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */ 6479 IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */ 6480 IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */ 6481 IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */ 6482 IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */ 6483 6484 IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */ 6485 IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */ 6486 IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */ 6487 IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */ 6488 IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */ 6489 6490 IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */ 6491 IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */ 6492 IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */ 6493 IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */ 6494 IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */ 6495 IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */ 6496 IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */ 6497 6498 IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */ 6499 6500 IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */ 6501 IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */ 6502 IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */ 6503 IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */ 6504 IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */ 6505 IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */ 6506 IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */ 6507 6508 IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */ 6509 IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */ 6510 IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */ 6511 IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */ 6512 IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */ 6513 IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */ 6514 6515 IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */ 6516 {0,}, 6517 }; 6518 6519 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table); 6520 6521 static SIMPLE_DEV_PM_OPS(ipw2100_pm_ops, ipw2100_suspend, ipw2100_resume); 6522 6523 static struct pci_driver ipw2100_pci_driver = { 6524 .name = DRV_NAME, 6525 .id_table = ipw2100_pci_id_table, 6526 .probe = ipw2100_pci_init_one, 6527 .remove = ipw2100_pci_remove_one, 6528 .driver.pm = &ipw2100_pm_ops, 6529 .shutdown = ipw2100_shutdown, 6530 }; 6531 6532 /** 6533 * Initialize the ipw2100 driver/module 6534 * 6535 * @returns 0 if ok, < 0 errno node con error. 6536 * 6537 * Note: we cannot init the /proc stuff until the PCI driver is there, 6538 * or we risk an unlikely race condition on someone accessing 6539 * uninitialized data in the PCI dev struct through /proc. 6540 */ 6541 static int __init ipw2100_init(void) 6542 { 6543 int ret; 6544 6545 printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION); 6546 printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT); 6547 6548 cpu_latency_qos_add_request(&ipw2100_pm_qos_req, PM_QOS_DEFAULT_VALUE); 6549 6550 ret = pci_register_driver(&ipw2100_pci_driver); 6551 if (ret) 6552 goto out; 6553 6554 #ifdef CONFIG_IPW2100_DEBUG 6555 ipw2100_debug_level = debug; 6556 ret = driver_create_file(&ipw2100_pci_driver.driver, 6557 &driver_attr_debug_level); 6558 #endif 6559 6560 out: 6561 return ret; 6562 } 6563 6564 /** 6565 * Cleanup ipw2100 driver registration 6566 */ 6567 static void __exit ipw2100_exit(void) 6568 { 6569 /* FIXME: IPG: check that we have no instances of the devices open */ 6570 #ifdef CONFIG_IPW2100_DEBUG 6571 driver_remove_file(&ipw2100_pci_driver.driver, 6572 &driver_attr_debug_level); 6573 #endif 6574 pci_unregister_driver(&ipw2100_pci_driver); 6575 cpu_latency_qos_remove_request(&ipw2100_pm_qos_req); 6576 } 6577 6578 module_init(ipw2100_init); 6579 module_exit(ipw2100_exit); 6580 6581 static int ipw2100_wx_get_name(struct net_device *dev, 6582 struct iw_request_info *info, 6583 union iwreq_data *wrqu, char *extra) 6584 { 6585 /* 6586 * This can be called at any time. No action lock required 6587 */ 6588 6589 struct ipw2100_priv *priv = libipw_priv(dev); 6590 if (!(priv->status & STATUS_ASSOCIATED)) 6591 strcpy(wrqu->name, "unassociated"); 6592 else 6593 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b"); 6594 6595 IPW_DEBUG_WX("Name: %s\n", wrqu->name); 6596 return 0; 6597 } 6598 6599 static int ipw2100_wx_set_freq(struct net_device *dev, 6600 struct iw_request_info *info, 6601 union iwreq_data *wrqu, char *extra) 6602 { 6603 struct ipw2100_priv *priv = libipw_priv(dev); 6604 struct iw_freq *fwrq = &wrqu->freq; 6605 int err = 0; 6606 6607 if (priv->ieee->iw_mode == IW_MODE_INFRA) 6608 return -EOPNOTSUPP; 6609 6610 mutex_lock(&priv->action_mutex); 6611 if (!(priv->status & STATUS_INITIALIZED)) { 6612 err = -EIO; 6613 goto done; 6614 } 6615 6616 /* if setting by freq convert to channel */ 6617 if (fwrq->e == 1) { 6618 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) { 6619 int f = fwrq->m / 100000; 6620 int c = 0; 6621 6622 while ((c < REG_MAX_CHANNEL) && 6623 (f != ipw2100_frequencies[c])) 6624 c++; 6625 6626 /* hack to fall through */ 6627 fwrq->e = 0; 6628 fwrq->m = c + 1; 6629 } 6630 } 6631 6632 if (fwrq->e > 0 || fwrq->m > 1000) { 6633 err = -EOPNOTSUPP; 6634 goto done; 6635 } else { /* Set the channel */ 6636 IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m); 6637 err = ipw2100_set_channel(priv, fwrq->m, 0); 6638 } 6639 6640 done: 6641 mutex_unlock(&priv->action_mutex); 6642 return err; 6643 } 6644 6645 static int ipw2100_wx_get_freq(struct net_device *dev, 6646 struct iw_request_info *info, 6647 union iwreq_data *wrqu, char *extra) 6648 { 6649 /* 6650 * This can be called at any time. No action lock required 6651 */ 6652 6653 struct ipw2100_priv *priv = libipw_priv(dev); 6654 6655 wrqu->freq.e = 0; 6656 6657 /* If we are associated, trying to associate, or have a statically 6658 * configured CHANNEL then return that; otherwise return ANY */ 6659 if (priv->config & CFG_STATIC_CHANNEL || 6660 priv->status & STATUS_ASSOCIATED) 6661 wrqu->freq.m = priv->channel; 6662 else 6663 wrqu->freq.m = 0; 6664 6665 IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel); 6666 return 0; 6667 6668 } 6669 6670 static int ipw2100_wx_set_mode(struct net_device *dev, 6671 struct iw_request_info *info, 6672 union iwreq_data *wrqu, char *extra) 6673 { 6674 struct ipw2100_priv *priv = libipw_priv(dev); 6675 int err = 0; 6676 6677 IPW_DEBUG_WX("SET Mode -> %d\n", wrqu->mode); 6678 6679 if (wrqu->mode == priv->ieee->iw_mode) 6680 return 0; 6681 6682 mutex_lock(&priv->action_mutex); 6683 if (!(priv->status & STATUS_INITIALIZED)) { 6684 err = -EIO; 6685 goto done; 6686 } 6687 6688 switch (wrqu->mode) { 6689 #ifdef CONFIG_IPW2100_MONITOR 6690 case IW_MODE_MONITOR: 6691 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR); 6692 break; 6693 #endif /* CONFIG_IPW2100_MONITOR */ 6694 case IW_MODE_ADHOC: 6695 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC); 6696 break; 6697 case IW_MODE_INFRA: 6698 case IW_MODE_AUTO: 6699 default: 6700 err = ipw2100_switch_mode(priv, IW_MODE_INFRA); 6701 break; 6702 } 6703 6704 done: 6705 mutex_unlock(&priv->action_mutex); 6706 return err; 6707 } 6708 6709 static int ipw2100_wx_get_mode(struct net_device *dev, 6710 struct iw_request_info *info, 6711 union iwreq_data *wrqu, char *extra) 6712 { 6713 /* 6714 * This can be called at any time. No action lock required 6715 */ 6716 6717 struct ipw2100_priv *priv = libipw_priv(dev); 6718 6719 wrqu->mode = priv->ieee->iw_mode; 6720 IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode); 6721 6722 return 0; 6723 } 6724 6725 #define POWER_MODES 5 6726 6727 /* Values are in microsecond */ 6728 static const s32 timeout_duration[POWER_MODES] = { 6729 350000, 6730 250000, 6731 75000, 6732 37000, 6733 25000, 6734 }; 6735 6736 static const s32 period_duration[POWER_MODES] = { 6737 400000, 6738 700000, 6739 1000000, 6740 1000000, 6741 1000000 6742 }; 6743 6744 static int ipw2100_wx_get_range(struct net_device *dev, 6745 struct iw_request_info *info, 6746 union iwreq_data *wrqu, char *extra) 6747 { 6748 /* 6749 * This can be called at any time. No action lock required 6750 */ 6751 6752 struct ipw2100_priv *priv = libipw_priv(dev); 6753 struct iw_range *range = (struct iw_range *)extra; 6754 u16 val; 6755 int i, level; 6756 6757 wrqu->data.length = sizeof(*range); 6758 memset(range, 0, sizeof(*range)); 6759 6760 /* Let's try to keep this struct in the same order as in 6761 * linux/include/wireless.h 6762 */ 6763 6764 /* TODO: See what values we can set, and remove the ones we can't 6765 * set, or fill them with some default data. 6766 */ 6767 6768 /* ~5 Mb/s real (802.11b) */ 6769 range->throughput = 5 * 1000 * 1000; 6770 6771 // range->sensitivity; /* signal level threshold range */ 6772 6773 range->max_qual.qual = 100; 6774 /* TODO: Find real max RSSI and stick here */ 6775 range->max_qual.level = 0; 6776 range->max_qual.noise = 0; 6777 range->max_qual.updated = 7; /* Updated all three */ 6778 6779 range->avg_qual.qual = 70; /* > 8% missed beacons is 'bad' */ 6780 /* TODO: Find real 'good' to 'bad' threshold value for RSSI */ 6781 range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM; 6782 range->avg_qual.noise = 0; 6783 range->avg_qual.updated = 7; /* Updated all three */ 6784 6785 range->num_bitrates = RATE_COUNT; 6786 6787 for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) { 6788 range->bitrate[i] = ipw2100_bg_rates[i].bitrate * 100 * 1000; 6789 } 6790 6791 range->min_rts = MIN_RTS_THRESHOLD; 6792 range->max_rts = MAX_RTS_THRESHOLD; 6793 range->min_frag = MIN_FRAG_THRESHOLD; 6794 range->max_frag = MAX_FRAG_THRESHOLD; 6795 6796 range->min_pmp = period_duration[0]; /* Minimal PM period */ 6797 range->max_pmp = period_duration[POWER_MODES - 1]; /* Maximal PM period */ 6798 range->min_pmt = timeout_duration[POWER_MODES - 1]; /* Minimal PM timeout */ 6799 range->max_pmt = timeout_duration[0]; /* Maximal PM timeout */ 6800 6801 /* How to decode max/min PM period */ 6802 range->pmp_flags = IW_POWER_PERIOD; 6803 /* How to decode max/min PM period */ 6804 range->pmt_flags = IW_POWER_TIMEOUT; 6805 /* What PM options are supported */ 6806 range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD; 6807 6808 range->encoding_size[0] = 5; 6809 range->encoding_size[1] = 13; /* Different token sizes */ 6810 range->num_encoding_sizes = 2; /* Number of entry in the list */ 6811 range->max_encoding_tokens = WEP_KEYS; /* Max number of tokens */ 6812 // range->encoding_login_index; /* token index for login token */ 6813 6814 if (priv->ieee->iw_mode == IW_MODE_ADHOC) { 6815 range->txpower_capa = IW_TXPOW_DBM; 6816 range->num_txpower = IW_MAX_TXPOWER; 6817 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16); 6818 i < IW_MAX_TXPOWER; 6819 i++, level -= 6820 ((IPW_TX_POWER_MAX_DBM - 6821 IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1)) 6822 range->txpower[i] = level / 16; 6823 } else { 6824 range->txpower_capa = 0; 6825 range->num_txpower = 0; 6826 } 6827 6828 /* Set the Wireless Extension versions */ 6829 range->we_version_compiled = WIRELESS_EXT; 6830 range->we_version_source = 18; 6831 6832 // range->retry_capa; /* What retry options are supported */ 6833 // range->retry_flags; /* How to decode max/min retry limit */ 6834 // range->r_time_flags; /* How to decode max/min retry life */ 6835 // range->min_retry; /* Minimal number of retries */ 6836 // range->max_retry; /* Maximal number of retries */ 6837 // range->min_r_time; /* Minimal retry lifetime */ 6838 // range->max_r_time; /* Maximal retry lifetime */ 6839 6840 range->num_channels = FREQ_COUNT; 6841 6842 val = 0; 6843 for (i = 0; i < FREQ_COUNT; i++) { 6844 // TODO: Include only legal frequencies for some countries 6845 // if (local->channel_mask & (1 << i)) { 6846 range->freq[val].i = i + 1; 6847 range->freq[val].m = ipw2100_frequencies[i] * 100000; 6848 range->freq[val].e = 1; 6849 val++; 6850 // } 6851 if (val == IW_MAX_FREQUENCIES) 6852 break; 6853 } 6854 range->num_frequency = val; 6855 6856 /* Event capability (kernel + driver) */ 6857 range->event_capa[0] = (IW_EVENT_CAPA_K_0 | 6858 IW_EVENT_CAPA_MASK(SIOCGIWAP)); 6859 range->event_capa[1] = IW_EVENT_CAPA_K_1; 6860 6861 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 | 6862 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP; 6863 6864 IPW_DEBUG_WX("GET Range\n"); 6865 6866 return 0; 6867 } 6868 6869 static int ipw2100_wx_set_wap(struct net_device *dev, 6870 struct iw_request_info *info, 6871 union iwreq_data *wrqu, char *extra) 6872 { 6873 struct ipw2100_priv *priv = libipw_priv(dev); 6874 int err = 0; 6875 6876 // sanity checks 6877 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER) 6878 return -EINVAL; 6879 6880 mutex_lock(&priv->action_mutex); 6881 if (!(priv->status & STATUS_INITIALIZED)) { 6882 err = -EIO; 6883 goto done; 6884 } 6885 6886 if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) || 6887 is_zero_ether_addr(wrqu->ap_addr.sa_data)) { 6888 /* we disable mandatory BSSID association */ 6889 IPW_DEBUG_WX("exit - disable mandatory BSSID\n"); 6890 priv->config &= ~CFG_STATIC_BSSID; 6891 err = ipw2100_set_mandatory_bssid(priv, NULL, 0); 6892 goto done; 6893 } 6894 6895 priv->config |= CFG_STATIC_BSSID; 6896 memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN); 6897 6898 err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0); 6899 6900 IPW_DEBUG_WX("SET BSSID -> %pM\n", wrqu->ap_addr.sa_data); 6901 6902 done: 6903 mutex_unlock(&priv->action_mutex); 6904 return err; 6905 } 6906 6907 static int ipw2100_wx_get_wap(struct net_device *dev, 6908 struct iw_request_info *info, 6909 union iwreq_data *wrqu, char *extra) 6910 { 6911 /* 6912 * This can be called at any time. No action lock required 6913 */ 6914 6915 struct ipw2100_priv *priv = libipw_priv(dev); 6916 6917 /* If we are associated, trying to associate, or have a statically 6918 * configured BSSID then return that; otherwise return ANY */ 6919 if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) { 6920 wrqu->ap_addr.sa_family = ARPHRD_ETHER; 6921 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN); 6922 } else 6923 eth_zero_addr(wrqu->ap_addr.sa_data); 6924 6925 IPW_DEBUG_WX("Getting WAP BSSID: %pM\n", wrqu->ap_addr.sa_data); 6926 return 0; 6927 } 6928 6929 static int ipw2100_wx_set_essid(struct net_device *dev, 6930 struct iw_request_info *info, 6931 union iwreq_data *wrqu, char *extra) 6932 { 6933 struct ipw2100_priv *priv = libipw_priv(dev); 6934 char *essid = ""; /* ANY */ 6935 int length = 0; 6936 int err = 0; 6937 6938 mutex_lock(&priv->action_mutex); 6939 if (!(priv->status & STATUS_INITIALIZED)) { 6940 err = -EIO; 6941 goto done; 6942 } 6943 6944 if (wrqu->essid.flags && wrqu->essid.length) { 6945 length = wrqu->essid.length; 6946 essid = extra; 6947 } 6948 6949 if (length == 0) { 6950 IPW_DEBUG_WX("Setting ESSID to ANY\n"); 6951 priv->config &= ~CFG_STATIC_ESSID; 6952 err = ipw2100_set_essid(priv, NULL, 0, 0); 6953 goto done; 6954 } 6955 6956 length = min(length, IW_ESSID_MAX_SIZE); 6957 6958 priv->config |= CFG_STATIC_ESSID; 6959 6960 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) { 6961 IPW_DEBUG_WX("ESSID set to current ESSID.\n"); 6962 err = 0; 6963 goto done; 6964 } 6965 6966 IPW_DEBUG_WX("Setting ESSID: '%*pE' (%d)\n", length, essid, length); 6967 6968 priv->essid_len = length; 6969 memcpy(priv->essid, essid, priv->essid_len); 6970 6971 err = ipw2100_set_essid(priv, essid, length, 0); 6972 6973 done: 6974 mutex_unlock(&priv->action_mutex); 6975 return err; 6976 } 6977 6978 static int ipw2100_wx_get_essid(struct net_device *dev, 6979 struct iw_request_info *info, 6980 union iwreq_data *wrqu, char *extra) 6981 { 6982 /* 6983 * This can be called at any time. No action lock required 6984 */ 6985 6986 struct ipw2100_priv *priv = libipw_priv(dev); 6987 6988 /* If we are associated, trying to associate, or have a statically 6989 * configured ESSID then return that; otherwise return ANY */ 6990 if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) { 6991 IPW_DEBUG_WX("Getting essid: '%*pE'\n", 6992 priv->essid_len, priv->essid); 6993 memcpy(extra, priv->essid, priv->essid_len); 6994 wrqu->essid.length = priv->essid_len; 6995 wrqu->essid.flags = 1; /* active */ 6996 } else { 6997 IPW_DEBUG_WX("Getting essid: ANY\n"); 6998 wrqu->essid.length = 0; 6999 wrqu->essid.flags = 0; /* active */ 7000 } 7001 7002 return 0; 7003 } 7004 7005 static int ipw2100_wx_set_nick(struct net_device *dev, 7006 struct iw_request_info *info, 7007 union iwreq_data *wrqu, char *extra) 7008 { 7009 /* 7010 * This can be called at any time. No action lock required 7011 */ 7012 7013 struct ipw2100_priv *priv = libipw_priv(dev); 7014 7015 if (wrqu->data.length > IW_ESSID_MAX_SIZE) 7016 return -E2BIG; 7017 7018 wrqu->data.length = min_t(size_t, wrqu->data.length, sizeof(priv->nick)); 7019 memset(priv->nick, 0, sizeof(priv->nick)); 7020 memcpy(priv->nick, extra, wrqu->data.length); 7021 7022 IPW_DEBUG_WX("SET Nickname -> %s\n", priv->nick); 7023 7024 return 0; 7025 } 7026 7027 static int ipw2100_wx_get_nick(struct net_device *dev, 7028 struct iw_request_info *info, 7029 union iwreq_data *wrqu, char *extra) 7030 { 7031 /* 7032 * This can be called at any time. No action lock required 7033 */ 7034 7035 struct ipw2100_priv *priv = libipw_priv(dev); 7036 7037 wrqu->data.length = strlen(priv->nick); 7038 memcpy(extra, priv->nick, wrqu->data.length); 7039 wrqu->data.flags = 1; /* active */ 7040 7041 IPW_DEBUG_WX("GET Nickname -> %s\n", extra); 7042 7043 return 0; 7044 } 7045 7046 static int ipw2100_wx_set_rate(struct net_device *dev, 7047 struct iw_request_info *info, 7048 union iwreq_data *wrqu, char *extra) 7049 { 7050 struct ipw2100_priv *priv = libipw_priv(dev); 7051 u32 target_rate = wrqu->bitrate.value; 7052 u32 rate; 7053 int err = 0; 7054 7055 mutex_lock(&priv->action_mutex); 7056 if (!(priv->status & STATUS_INITIALIZED)) { 7057 err = -EIO; 7058 goto done; 7059 } 7060 7061 rate = 0; 7062 7063 if (target_rate == 1000000 || 7064 (!wrqu->bitrate.fixed && target_rate > 1000000)) 7065 rate |= TX_RATE_1_MBIT; 7066 if (target_rate == 2000000 || 7067 (!wrqu->bitrate.fixed && target_rate > 2000000)) 7068 rate |= TX_RATE_2_MBIT; 7069 if (target_rate == 5500000 || 7070 (!wrqu->bitrate.fixed && target_rate > 5500000)) 7071 rate |= TX_RATE_5_5_MBIT; 7072 if (target_rate == 11000000 || 7073 (!wrqu->bitrate.fixed && target_rate > 11000000)) 7074 rate |= TX_RATE_11_MBIT; 7075 if (rate == 0) 7076 rate = DEFAULT_TX_RATES; 7077 7078 err = ipw2100_set_tx_rates(priv, rate, 0); 7079 7080 IPW_DEBUG_WX("SET Rate -> %04X\n", rate); 7081 done: 7082 mutex_unlock(&priv->action_mutex); 7083 return err; 7084 } 7085 7086 static int ipw2100_wx_get_rate(struct net_device *dev, 7087 struct iw_request_info *info, 7088 union iwreq_data *wrqu, char *extra) 7089 { 7090 struct ipw2100_priv *priv = libipw_priv(dev); 7091 int val; 7092 unsigned int len = sizeof(val); 7093 int err = 0; 7094 7095 if (!(priv->status & STATUS_ENABLED) || 7096 priv->status & STATUS_RF_KILL_MASK || 7097 !(priv->status & STATUS_ASSOCIATED)) { 7098 wrqu->bitrate.value = 0; 7099 return 0; 7100 } 7101 7102 mutex_lock(&priv->action_mutex); 7103 if (!(priv->status & STATUS_INITIALIZED)) { 7104 err = -EIO; 7105 goto done; 7106 } 7107 7108 err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len); 7109 if (err) { 7110 IPW_DEBUG_WX("failed querying ordinals.\n"); 7111 goto done; 7112 } 7113 7114 switch (val & TX_RATE_MASK) { 7115 case TX_RATE_1_MBIT: 7116 wrqu->bitrate.value = 1000000; 7117 break; 7118 case TX_RATE_2_MBIT: 7119 wrqu->bitrate.value = 2000000; 7120 break; 7121 case TX_RATE_5_5_MBIT: 7122 wrqu->bitrate.value = 5500000; 7123 break; 7124 case TX_RATE_11_MBIT: 7125 wrqu->bitrate.value = 11000000; 7126 break; 7127 default: 7128 wrqu->bitrate.value = 0; 7129 } 7130 7131 IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value); 7132 7133 done: 7134 mutex_unlock(&priv->action_mutex); 7135 return err; 7136 } 7137 7138 static int ipw2100_wx_set_rts(struct net_device *dev, 7139 struct iw_request_info *info, 7140 union iwreq_data *wrqu, char *extra) 7141 { 7142 struct ipw2100_priv *priv = libipw_priv(dev); 7143 int value, err; 7144 7145 /* Auto RTS not yet supported */ 7146 if (wrqu->rts.fixed == 0) 7147 return -EINVAL; 7148 7149 mutex_lock(&priv->action_mutex); 7150 if (!(priv->status & STATUS_INITIALIZED)) { 7151 err = -EIO; 7152 goto done; 7153 } 7154 7155 if (wrqu->rts.disabled) 7156 value = priv->rts_threshold | RTS_DISABLED; 7157 else { 7158 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) { 7159 err = -EINVAL; 7160 goto done; 7161 } 7162 value = wrqu->rts.value; 7163 } 7164 7165 err = ipw2100_set_rts_threshold(priv, value); 7166 7167 IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X\n", value); 7168 done: 7169 mutex_unlock(&priv->action_mutex); 7170 return err; 7171 } 7172 7173 static int ipw2100_wx_get_rts(struct net_device *dev, 7174 struct iw_request_info *info, 7175 union iwreq_data *wrqu, char *extra) 7176 { 7177 /* 7178 * This can be called at any time. No action lock required 7179 */ 7180 7181 struct ipw2100_priv *priv = libipw_priv(dev); 7182 7183 wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED; 7184 wrqu->rts.fixed = 1; /* no auto select */ 7185 7186 /* If RTS is set to the default value, then it is disabled */ 7187 wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0; 7188 7189 IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X\n", wrqu->rts.value); 7190 7191 return 0; 7192 } 7193 7194 static int ipw2100_wx_set_txpow(struct net_device *dev, 7195 struct iw_request_info *info, 7196 union iwreq_data *wrqu, char *extra) 7197 { 7198 struct ipw2100_priv *priv = libipw_priv(dev); 7199 int err = 0, value; 7200 7201 if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled)) 7202 return -EINPROGRESS; 7203 7204 if (priv->ieee->iw_mode != IW_MODE_ADHOC) 7205 return 0; 7206 7207 if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM) 7208 return -EINVAL; 7209 7210 if (wrqu->txpower.fixed == 0) 7211 value = IPW_TX_POWER_DEFAULT; 7212 else { 7213 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM || 7214 wrqu->txpower.value > IPW_TX_POWER_MAX_DBM) 7215 return -EINVAL; 7216 7217 value = wrqu->txpower.value; 7218 } 7219 7220 mutex_lock(&priv->action_mutex); 7221 if (!(priv->status & STATUS_INITIALIZED)) { 7222 err = -EIO; 7223 goto done; 7224 } 7225 7226 err = ipw2100_set_tx_power(priv, value); 7227 7228 IPW_DEBUG_WX("SET TX Power -> %d\n", value); 7229 7230 done: 7231 mutex_unlock(&priv->action_mutex); 7232 return err; 7233 } 7234 7235 static int ipw2100_wx_get_txpow(struct net_device *dev, 7236 struct iw_request_info *info, 7237 union iwreq_data *wrqu, char *extra) 7238 { 7239 /* 7240 * This can be called at any time. No action lock required 7241 */ 7242 7243 struct ipw2100_priv *priv = libipw_priv(dev); 7244 7245 wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0; 7246 7247 if (priv->tx_power == IPW_TX_POWER_DEFAULT) { 7248 wrqu->txpower.fixed = 0; 7249 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM; 7250 } else { 7251 wrqu->txpower.fixed = 1; 7252 wrqu->txpower.value = priv->tx_power; 7253 } 7254 7255 wrqu->txpower.flags = IW_TXPOW_DBM; 7256 7257 IPW_DEBUG_WX("GET TX Power -> %d\n", wrqu->txpower.value); 7258 7259 return 0; 7260 } 7261 7262 static int ipw2100_wx_set_frag(struct net_device *dev, 7263 struct iw_request_info *info, 7264 union iwreq_data *wrqu, char *extra) 7265 { 7266 /* 7267 * This can be called at any time. No action lock required 7268 */ 7269 7270 struct ipw2100_priv *priv = libipw_priv(dev); 7271 7272 if (!wrqu->frag.fixed) 7273 return -EINVAL; 7274 7275 if (wrqu->frag.disabled) { 7276 priv->frag_threshold |= FRAG_DISABLED; 7277 priv->ieee->fts = DEFAULT_FTS; 7278 } else { 7279 if (wrqu->frag.value < MIN_FRAG_THRESHOLD || 7280 wrqu->frag.value > MAX_FRAG_THRESHOLD) 7281 return -EINVAL; 7282 7283 priv->ieee->fts = wrqu->frag.value & ~0x1; 7284 priv->frag_threshold = priv->ieee->fts; 7285 } 7286 7287 IPW_DEBUG_WX("SET Frag Threshold -> %d\n", priv->ieee->fts); 7288 7289 return 0; 7290 } 7291 7292 static int ipw2100_wx_get_frag(struct net_device *dev, 7293 struct iw_request_info *info, 7294 union iwreq_data *wrqu, char *extra) 7295 { 7296 /* 7297 * This can be called at any time. No action lock required 7298 */ 7299 7300 struct ipw2100_priv *priv = libipw_priv(dev); 7301 wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED; 7302 wrqu->frag.fixed = 0; /* no auto select */ 7303 wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0; 7304 7305 IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value); 7306 7307 return 0; 7308 } 7309 7310 static int ipw2100_wx_set_retry(struct net_device *dev, 7311 struct iw_request_info *info, 7312 union iwreq_data *wrqu, char *extra) 7313 { 7314 struct ipw2100_priv *priv = libipw_priv(dev); 7315 int err = 0; 7316 7317 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled) 7318 return -EINVAL; 7319 7320 if (!(wrqu->retry.flags & IW_RETRY_LIMIT)) 7321 return 0; 7322 7323 mutex_lock(&priv->action_mutex); 7324 if (!(priv->status & STATUS_INITIALIZED)) { 7325 err = -EIO; 7326 goto done; 7327 } 7328 7329 if (wrqu->retry.flags & IW_RETRY_SHORT) { 7330 err = ipw2100_set_short_retry(priv, wrqu->retry.value); 7331 IPW_DEBUG_WX("SET Short Retry Limit -> %d\n", 7332 wrqu->retry.value); 7333 goto done; 7334 } 7335 7336 if (wrqu->retry.flags & IW_RETRY_LONG) { 7337 err = ipw2100_set_long_retry(priv, wrqu->retry.value); 7338 IPW_DEBUG_WX("SET Long Retry Limit -> %d\n", 7339 wrqu->retry.value); 7340 goto done; 7341 } 7342 7343 err = ipw2100_set_short_retry(priv, wrqu->retry.value); 7344 if (!err) 7345 err = ipw2100_set_long_retry(priv, wrqu->retry.value); 7346 7347 IPW_DEBUG_WX("SET Both Retry Limits -> %d\n", wrqu->retry.value); 7348 7349 done: 7350 mutex_unlock(&priv->action_mutex); 7351 return err; 7352 } 7353 7354 static int ipw2100_wx_get_retry(struct net_device *dev, 7355 struct iw_request_info *info, 7356 union iwreq_data *wrqu, char *extra) 7357 { 7358 /* 7359 * This can be called at any time. No action lock required 7360 */ 7361 7362 struct ipw2100_priv *priv = libipw_priv(dev); 7363 7364 wrqu->retry.disabled = 0; /* can't be disabled */ 7365 7366 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) 7367 return -EINVAL; 7368 7369 if (wrqu->retry.flags & IW_RETRY_LONG) { 7370 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG; 7371 wrqu->retry.value = priv->long_retry_limit; 7372 } else { 7373 wrqu->retry.flags = 7374 (priv->short_retry_limit != 7375 priv->long_retry_limit) ? 7376 IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT; 7377 7378 wrqu->retry.value = priv->short_retry_limit; 7379 } 7380 7381 IPW_DEBUG_WX("GET Retry -> %d\n", wrqu->retry.value); 7382 7383 return 0; 7384 } 7385 7386 static int ipw2100_wx_set_scan(struct net_device *dev, 7387 struct iw_request_info *info, 7388 union iwreq_data *wrqu, char *extra) 7389 { 7390 struct ipw2100_priv *priv = libipw_priv(dev); 7391 int err = 0; 7392 7393 mutex_lock(&priv->action_mutex); 7394 if (!(priv->status & STATUS_INITIALIZED)) { 7395 err = -EIO; 7396 goto done; 7397 } 7398 7399 IPW_DEBUG_WX("Initiating scan...\n"); 7400 7401 priv->user_requested_scan = 1; 7402 if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) { 7403 IPW_DEBUG_WX("Start scan failed.\n"); 7404 7405 /* TODO: Mark a scan as pending so when hardware initialized 7406 * a scan starts */ 7407 } 7408 7409 done: 7410 mutex_unlock(&priv->action_mutex); 7411 return err; 7412 } 7413 7414 static int ipw2100_wx_get_scan(struct net_device *dev, 7415 struct iw_request_info *info, 7416 union iwreq_data *wrqu, char *extra) 7417 { 7418 /* 7419 * This can be called at any time. No action lock required 7420 */ 7421 7422 struct ipw2100_priv *priv = libipw_priv(dev); 7423 return libipw_wx_get_scan(priv->ieee, info, wrqu, extra); 7424 } 7425 7426 /* 7427 * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c 7428 */ 7429 static int ipw2100_wx_set_encode(struct net_device *dev, 7430 struct iw_request_info *info, 7431 union iwreq_data *wrqu, char *key) 7432 { 7433 /* 7434 * No check of STATUS_INITIALIZED required 7435 */ 7436 7437 struct ipw2100_priv *priv = libipw_priv(dev); 7438 return libipw_wx_set_encode(priv->ieee, info, wrqu, key); 7439 } 7440 7441 static int ipw2100_wx_get_encode(struct net_device *dev, 7442 struct iw_request_info *info, 7443 union iwreq_data *wrqu, char *key) 7444 { 7445 /* 7446 * This can be called at any time. No action lock required 7447 */ 7448 7449 struct ipw2100_priv *priv = libipw_priv(dev); 7450 return libipw_wx_get_encode(priv->ieee, info, wrqu, key); 7451 } 7452 7453 static int ipw2100_wx_set_power(struct net_device *dev, 7454 struct iw_request_info *info, 7455 union iwreq_data *wrqu, char *extra) 7456 { 7457 struct ipw2100_priv *priv = libipw_priv(dev); 7458 int err = 0; 7459 7460 mutex_lock(&priv->action_mutex); 7461 if (!(priv->status & STATUS_INITIALIZED)) { 7462 err = -EIO; 7463 goto done; 7464 } 7465 7466 if (wrqu->power.disabled) { 7467 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode); 7468 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM); 7469 IPW_DEBUG_WX("SET Power Management Mode -> off\n"); 7470 goto done; 7471 } 7472 7473 switch (wrqu->power.flags & IW_POWER_MODE) { 7474 case IW_POWER_ON: /* If not specified */ 7475 case IW_POWER_MODE: /* If set all mask */ 7476 case IW_POWER_ALL_R: /* If explicitly state all */ 7477 break; 7478 default: /* Otherwise we don't support it */ 7479 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n", 7480 wrqu->power.flags); 7481 err = -EOPNOTSUPP; 7482 goto done; 7483 } 7484 7485 /* If the user hasn't specified a power management mode yet, default 7486 * to BATTERY */ 7487 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode; 7488 err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode)); 7489 7490 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode); 7491 7492 done: 7493 mutex_unlock(&priv->action_mutex); 7494 return err; 7495 7496 } 7497 7498 static int ipw2100_wx_get_power(struct net_device *dev, 7499 struct iw_request_info *info, 7500 union iwreq_data *wrqu, char *extra) 7501 { 7502 /* 7503 * This can be called at any time. No action lock required 7504 */ 7505 7506 struct ipw2100_priv *priv = libipw_priv(dev); 7507 7508 if (!(priv->power_mode & IPW_POWER_ENABLED)) 7509 wrqu->power.disabled = 1; 7510 else { 7511 wrqu->power.disabled = 0; 7512 wrqu->power.flags = 0; 7513 } 7514 7515 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode); 7516 7517 return 0; 7518 } 7519 7520 /* 7521 * WE-18 WPA support 7522 */ 7523 7524 /* SIOCSIWGENIE */ 7525 static int ipw2100_wx_set_genie(struct net_device *dev, 7526 struct iw_request_info *info, 7527 union iwreq_data *wrqu, char *extra) 7528 { 7529 7530 struct ipw2100_priv *priv = libipw_priv(dev); 7531 struct libipw_device *ieee = priv->ieee; 7532 u8 *buf; 7533 7534 if (!ieee->wpa_enabled) 7535 return -EOPNOTSUPP; 7536 7537 if (wrqu->data.length > MAX_WPA_IE_LEN || 7538 (wrqu->data.length && extra == NULL)) 7539 return -EINVAL; 7540 7541 if (wrqu->data.length) { 7542 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL); 7543 if (buf == NULL) 7544 return -ENOMEM; 7545 7546 kfree(ieee->wpa_ie); 7547 ieee->wpa_ie = buf; 7548 ieee->wpa_ie_len = wrqu->data.length; 7549 } else { 7550 kfree(ieee->wpa_ie); 7551 ieee->wpa_ie = NULL; 7552 ieee->wpa_ie_len = 0; 7553 } 7554 7555 ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len); 7556 7557 return 0; 7558 } 7559 7560 /* SIOCGIWGENIE */ 7561 static int ipw2100_wx_get_genie(struct net_device *dev, 7562 struct iw_request_info *info, 7563 union iwreq_data *wrqu, char *extra) 7564 { 7565 struct ipw2100_priv *priv = libipw_priv(dev); 7566 struct libipw_device *ieee = priv->ieee; 7567 7568 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) { 7569 wrqu->data.length = 0; 7570 return 0; 7571 } 7572 7573 if (wrqu->data.length < ieee->wpa_ie_len) 7574 return -E2BIG; 7575 7576 wrqu->data.length = ieee->wpa_ie_len; 7577 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len); 7578 7579 return 0; 7580 } 7581 7582 /* SIOCSIWAUTH */ 7583 static int ipw2100_wx_set_auth(struct net_device *dev, 7584 struct iw_request_info *info, 7585 union iwreq_data *wrqu, char *extra) 7586 { 7587 struct ipw2100_priv *priv = libipw_priv(dev); 7588 struct libipw_device *ieee = priv->ieee; 7589 struct iw_param *param = &wrqu->param; 7590 struct lib80211_crypt_data *crypt; 7591 unsigned long flags; 7592 int ret = 0; 7593 7594 switch (param->flags & IW_AUTH_INDEX) { 7595 case IW_AUTH_WPA_VERSION: 7596 case IW_AUTH_CIPHER_PAIRWISE: 7597 case IW_AUTH_CIPHER_GROUP: 7598 case IW_AUTH_KEY_MGMT: 7599 /* 7600 * ipw2200 does not use these parameters 7601 */ 7602 break; 7603 7604 case IW_AUTH_TKIP_COUNTERMEASURES: 7605 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx]; 7606 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags) 7607 break; 7608 7609 flags = crypt->ops->get_flags(crypt->priv); 7610 7611 if (param->value) 7612 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES; 7613 else 7614 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES; 7615 7616 crypt->ops->set_flags(flags, crypt->priv); 7617 7618 break; 7619 7620 case IW_AUTH_DROP_UNENCRYPTED:{ 7621 /* HACK: 7622 * 7623 * wpa_supplicant calls set_wpa_enabled when the driver 7624 * is loaded and unloaded, regardless of if WPA is being 7625 * used. No other calls are made which can be used to 7626 * determine if encryption will be used or not prior to 7627 * association being expected. If encryption is not being 7628 * used, drop_unencrypted is set to false, else true -- we 7629 * can use this to determine if the CAP_PRIVACY_ON bit should 7630 * be set. 7631 */ 7632 struct libipw_security sec = { 7633 .flags = SEC_ENABLED, 7634 .enabled = param->value, 7635 }; 7636 priv->ieee->drop_unencrypted = param->value; 7637 /* We only change SEC_LEVEL for open mode. Others 7638 * are set by ipw_wpa_set_encryption. 7639 */ 7640 if (!param->value) { 7641 sec.flags |= SEC_LEVEL; 7642 sec.level = SEC_LEVEL_0; 7643 } else { 7644 sec.flags |= SEC_LEVEL; 7645 sec.level = SEC_LEVEL_1; 7646 } 7647 if (priv->ieee->set_security) 7648 priv->ieee->set_security(priv->ieee->dev, &sec); 7649 break; 7650 } 7651 7652 case IW_AUTH_80211_AUTH_ALG: 7653 ret = ipw2100_wpa_set_auth_algs(priv, param->value); 7654 break; 7655 7656 case IW_AUTH_WPA_ENABLED: 7657 ret = ipw2100_wpa_enable(priv, param->value); 7658 break; 7659 7660 case IW_AUTH_RX_UNENCRYPTED_EAPOL: 7661 ieee->ieee802_1x = param->value; 7662 break; 7663 7664 //case IW_AUTH_ROAMING_CONTROL: 7665 case IW_AUTH_PRIVACY_INVOKED: 7666 ieee->privacy_invoked = param->value; 7667 break; 7668 7669 default: 7670 return -EOPNOTSUPP; 7671 } 7672 return ret; 7673 } 7674 7675 /* SIOCGIWAUTH */ 7676 static int ipw2100_wx_get_auth(struct net_device *dev, 7677 struct iw_request_info *info, 7678 union iwreq_data *wrqu, char *extra) 7679 { 7680 struct ipw2100_priv *priv = libipw_priv(dev); 7681 struct libipw_device *ieee = priv->ieee; 7682 struct lib80211_crypt_data *crypt; 7683 struct iw_param *param = &wrqu->param; 7684 7685 switch (param->flags & IW_AUTH_INDEX) { 7686 case IW_AUTH_WPA_VERSION: 7687 case IW_AUTH_CIPHER_PAIRWISE: 7688 case IW_AUTH_CIPHER_GROUP: 7689 case IW_AUTH_KEY_MGMT: 7690 /* 7691 * wpa_supplicant will control these internally 7692 */ 7693 break; 7694 7695 case IW_AUTH_TKIP_COUNTERMEASURES: 7696 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx]; 7697 if (!crypt || !crypt->ops->get_flags) { 7698 IPW_DEBUG_WARNING("Can't get TKIP countermeasures: " 7699 "crypt not set!\n"); 7700 break; 7701 } 7702 7703 param->value = (crypt->ops->get_flags(crypt->priv) & 7704 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0; 7705 7706 break; 7707 7708 case IW_AUTH_DROP_UNENCRYPTED: 7709 param->value = ieee->drop_unencrypted; 7710 break; 7711 7712 case IW_AUTH_80211_AUTH_ALG: 7713 param->value = priv->ieee->sec.auth_mode; 7714 break; 7715 7716 case IW_AUTH_WPA_ENABLED: 7717 param->value = ieee->wpa_enabled; 7718 break; 7719 7720 case IW_AUTH_RX_UNENCRYPTED_EAPOL: 7721 param->value = ieee->ieee802_1x; 7722 break; 7723 7724 case IW_AUTH_ROAMING_CONTROL: 7725 case IW_AUTH_PRIVACY_INVOKED: 7726 param->value = ieee->privacy_invoked; 7727 break; 7728 7729 default: 7730 return -EOPNOTSUPP; 7731 } 7732 return 0; 7733 } 7734 7735 /* SIOCSIWENCODEEXT */ 7736 static int ipw2100_wx_set_encodeext(struct net_device *dev, 7737 struct iw_request_info *info, 7738 union iwreq_data *wrqu, char *extra) 7739 { 7740 struct ipw2100_priv *priv = libipw_priv(dev); 7741 return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra); 7742 } 7743 7744 /* SIOCGIWENCODEEXT */ 7745 static int ipw2100_wx_get_encodeext(struct net_device *dev, 7746 struct iw_request_info *info, 7747 union iwreq_data *wrqu, char *extra) 7748 { 7749 struct ipw2100_priv *priv = libipw_priv(dev); 7750 return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra); 7751 } 7752 7753 /* SIOCSIWMLME */ 7754 static int ipw2100_wx_set_mlme(struct net_device *dev, 7755 struct iw_request_info *info, 7756 union iwreq_data *wrqu, char *extra) 7757 { 7758 struct ipw2100_priv *priv = libipw_priv(dev); 7759 struct iw_mlme *mlme = (struct iw_mlme *)extra; 7760 7761 switch (mlme->cmd) { 7762 case IW_MLME_DEAUTH: 7763 // silently ignore 7764 break; 7765 7766 case IW_MLME_DISASSOC: 7767 ipw2100_disassociate_bssid(priv); 7768 break; 7769 7770 default: 7771 return -EOPNOTSUPP; 7772 } 7773 return 0; 7774 } 7775 7776 /* 7777 * 7778 * IWPRIV handlers 7779 * 7780 */ 7781 #ifdef CONFIG_IPW2100_MONITOR 7782 static int ipw2100_wx_set_promisc(struct net_device *dev, 7783 struct iw_request_info *info, 7784 union iwreq_data *wrqu, char *extra) 7785 { 7786 struct ipw2100_priv *priv = libipw_priv(dev); 7787 int *parms = (int *)extra; 7788 int enable = (parms[0] > 0); 7789 int err = 0; 7790 7791 mutex_lock(&priv->action_mutex); 7792 if (!(priv->status & STATUS_INITIALIZED)) { 7793 err = -EIO; 7794 goto done; 7795 } 7796 7797 if (enable) { 7798 if (priv->ieee->iw_mode == IW_MODE_MONITOR) { 7799 err = ipw2100_set_channel(priv, parms[1], 0); 7800 goto done; 7801 } 7802 priv->channel = parms[1]; 7803 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR); 7804 } else { 7805 if (priv->ieee->iw_mode == IW_MODE_MONITOR) 7806 err = ipw2100_switch_mode(priv, priv->last_mode); 7807 } 7808 done: 7809 mutex_unlock(&priv->action_mutex); 7810 return err; 7811 } 7812 7813 static int ipw2100_wx_reset(struct net_device *dev, 7814 struct iw_request_info *info, 7815 union iwreq_data *wrqu, char *extra) 7816 { 7817 struct ipw2100_priv *priv = libipw_priv(dev); 7818 if (priv->status & STATUS_INITIALIZED) 7819 schedule_reset(priv); 7820 return 0; 7821 } 7822 7823 #endif 7824 7825 static int ipw2100_wx_set_powermode(struct net_device *dev, 7826 struct iw_request_info *info, 7827 union iwreq_data *wrqu, char *extra) 7828 { 7829 struct ipw2100_priv *priv = libipw_priv(dev); 7830 int err = 0, mode = *(int *)extra; 7831 7832 mutex_lock(&priv->action_mutex); 7833 if (!(priv->status & STATUS_INITIALIZED)) { 7834 err = -EIO; 7835 goto done; 7836 } 7837 7838 if ((mode < 0) || (mode > POWER_MODES)) 7839 mode = IPW_POWER_AUTO; 7840 7841 if (IPW_POWER_LEVEL(priv->power_mode) != mode) 7842 err = ipw2100_set_power_mode(priv, mode); 7843 done: 7844 mutex_unlock(&priv->action_mutex); 7845 return err; 7846 } 7847 7848 #define MAX_POWER_STRING 80 7849 static int ipw2100_wx_get_powermode(struct net_device *dev, 7850 struct iw_request_info *info, 7851 union iwreq_data *wrqu, char *extra) 7852 { 7853 /* 7854 * This can be called at any time. No action lock required 7855 */ 7856 7857 struct ipw2100_priv *priv = libipw_priv(dev); 7858 int level = IPW_POWER_LEVEL(priv->power_mode); 7859 s32 timeout, period; 7860 7861 if (!(priv->power_mode & IPW_POWER_ENABLED)) { 7862 snprintf(extra, MAX_POWER_STRING, 7863 "Power save level: %d (Off)", level); 7864 } else { 7865 switch (level) { 7866 case IPW_POWER_MODE_CAM: 7867 snprintf(extra, MAX_POWER_STRING, 7868 "Power save level: %d (None)", level); 7869 break; 7870 case IPW_POWER_AUTO: 7871 snprintf(extra, MAX_POWER_STRING, 7872 "Power save level: %d (Auto)", level); 7873 break; 7874 default: 7875 timeout = timeout_duration[level - 1] / 1000; 7876 period = period_duration[level - 1] / 1000; 7877 snprintf(extra, MAX_POWER_STRING, 7878 "Power save level: %d " 7879 "(Timeout %dms, Period %dms)", 7880 level, timeout, period); 7881 } 7882 } 7883 7884 wrqu->data.length = strlen(extra) + 1; 7885 7886 return 0; 7887 } 7888 7889 static int ipw2100_wx_set_preamble(struct net_device *dev, 7890 struct iw_request_info *info, 7891 union iwreq_data *wrqu, char *extra) 7892 { 7893 struct ipw2100_priv *priv = libipw_priv(dev); 7894 int err, mode = *(int *)extra; 7895 7896 mutex_lock(&priv->action_mutex); 7897 if (!(priv->status & STATUS_INITIALIZED)) { 7898 err = -EIO; 7899 goto done; 7900 } 7901 7902 if (mode == 1) 7903 priv->config |= CFG_LONG_PREAMBLE; 7904 else if (mode == 0) 7905 priv->config &= ~CFG_LONG_PREAMBLE; 7906 else { 7907 err = -EINVAL; 7908 goto done; 7909 } 7910 7911 err = ipw2100_system_config(priv, 0); 7912 7913 done: 7914 mutex_unlock(&priv->action_mutex); 7915 return err; 7916 } 7917 7918 static int ipw2100_wx_get_preamble(struct net_device *dev, 7919 struct iw_request_info *info, 7920 union iwreq_data *wrqu, char *extra) 7921 { 7922 /* 7923 * This can be called at any time. No action lock required 7924 */ 7925 7926 struct ipw2100_priv *priv = libipw_priv(dev); 7927 7928 if (priv->config & CFG_LONG_PREAMBLE) 7929 snprintf(wrqu->name, IFNAMSIZ, "long (1)"); 7930 else 7931 snprintf(wrqu->name, IFNAMSIZ, "auto (0)"); 7932 7933 return 0; 7934 } 7935 7936 #ifdef CONFIG_IPW2100_MONITOR 7937 static int ipw2100_wx_set_crc_check(struct net_device *dev, 7938 struct iw_request_info *info, 7939 union iwreq_data *wrqu, char *extra) 7940 { 7941 struct ipw2100_priv *priv = libipw_priv(dev); 7942 int err, mode = *(int *)extra; 7943 7944 mutex_lock(&priv->action_mutex); 7945 if (!(priv->status & STATUS_INITIALIZED)) { 7946 err = -EIO; 7947 goto done; 7948 } 7949 7950 if (mode == 1) 7951 priv->config |= CFG_CRC_CHECK; 7952 else if (mode == 0) 7953 priv->config &= ~CFG_CRC_CHECK; 7954 else { 7955 err = -EINVAL; 7956 goto done; 7957 } 7958 err = 0; 7959 7960 done: 7961 mutex_unlock(&priv->action_mutex); 7962 return err; 7963 } 7964 7965 static int ipw2100_wx_get_crc_check(struct net_device *dev, 7966 struct iw_request_info *info, 7967 union iwreq_data *wrqu, char *extra) 7968 { 7969 /* 7970 * This can be called at any time. No action lock required 7971 */ 7972 7973 struct ipw2100_priv *priv = libipw_priv(dev); 7974 7975 if (priv->config & CFG_CRC_CHECK) 7976 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)"); 7977 else 7978 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)"); 7979 7980 return 0; 7981 } 7982 #endif /* CONFIG_IPW2100_MONITOR */ 7983 7984 static iw_handler ipw2100_wx_handlers[] = { 7985 IW_HANDLER(SIOCGIWNAME, ipw2100_wx_get_name), 7986 IW_HANDLER(SIOCSIWFREQ, ipw2100_wx_set_freq), 7987 IW_HANDLER(SIOCGIWFREQ, ipw2100_wx_get_freq), 7988 IW_HANDLER(SIOCSIWMODE, ipw2100_wx_set_mode), 7989 IW_HANDLER(SIOCGIWMODE, ipw2100_wx_get_mode), 7990 IW_HANDLER(SIOCGIWRANGE, ipw2100_wx_get_range), 7991 IW_HANDLER(SIOCSIWAP, ipw2100_wx_set_wap), 7992 IW_HANDLER(SIOCGIWAP, ipw2100_wx_get_wap), 7993 IW_HANDLER(SIOCSIWMLME, ipw2100_wx_set_mlme), 7994 IW_HANDLER(SIOCSIWSCAN, ipw2100_wx_set_scan), 7995 IW_HANDLER(SIOCGIWSCAN, ipw2100_wx_get_scan), 7996 IW_HANDLER(SIOCSIWESSID, ipw2100_wx_set_essid), 7997 IW_HANDLER(SIOCGIWESSID, ipw2100_wx_get_essid), 7998 IW_HANDLER(SIOCSIWNICKN, ipw2100_wx_set_nick), 7999 IW_HANDLER(SIOCGIWNICKN, ipw2100_wx_get_nick), 8000 IW_HANDLER(SIOCSIWRATE, ipw2100_wx_set_rate), 8001 IW_HANDLER(SIOCGIWRATE, ipw2100_wx_get_rate), 8002 IW_HANDLER(SIOCSIWRTS, ipw2100_wx_set_rts), 8003 IW_HANDLER(SIOCGIWRTS, ipw2100_wx_get_rts), 8004 IW_HANDLER(SIOCSIWFRAG, ipw2100_wx_set_frag), 8005 IW_HANDLER(SIOCGIWFRAG, ipw2100_wx_get_frag), 8006 IW_HANDLER(SIOCSIWTXPOW, ipw2100_wx_set_txpow), 8007 IW_HANDLER(SIOCGIWTXPOW, ipw2100_wx_get_txpow), 8008 IW_HANDLER(SIOCSIWRETRY, ipw2100_wx_set_retry), 8009 IW_HANDLER(SIOCGIWRETRY, ipw2100_wx_get_retry), 8010 IW_HANDLER(SIOCSIWENCODE, ipw2100_wx_set_encode), 8011 IW_HANDLER(SIOCGIWENCODE, ipw2100_wx_get_encode), 8012 IW_HANDLER(SIOCSIWPOWER, ipw2100_wx_set_power), 8013 IW_HANDLER(SIOCGIWPOWER, ipw2100_wx_get_power), 8014 IW_HANDLER(SIOCSIWGENIE, ipw2100_wx_set_genie), 8015 IW_HANDLER(SIOCGIWGENIE, ipw2100_wx_get_genie), 8016 IW_HANDLER(SIOCSIWAUTH, ipw2100_wx_set_auth), 8017 IW_HANDLER(SIOCGIWAUTH, ipw2100_wx_get_auth), 8018 IW_HANDLER(SIOCSIWENCODEEXT, ipw2100_wx_set_encodeext), 8019 IW_HANDLER(SIOCGIWENCODEEXT, ipw2100_wx_get_encodeext), 8020 }; 8021 8022 #define IPW2100_PRIV_SET_MONITOR SIOCIWFIRSTPRIV 8023 #define IPW2100_PRIV_RESET SIOCIWFIRSTPRIV+1 8024 #define IPW2100_PRIV_SET_POWER SIOCIWFIRSTPRIV+2 8025 #define IPW2100_PRIV_GET_POWER SIOCIWFIRSTPRIV+3 8026 #define IPW2100_PRIV_SET_LONGPREAMBLE SIOCIWFIRSTPRIV+4 8027 #define IPW2100_PRIV_GET_LONGPREAMBLE SIOCIWFIRSTPRIV+5 8028 #define IPW2100_PRIV_SET_CRC_CHECK SIOCIWFIRSTPRIV+6 8029 #define IPW2100_PRIV_GET_CRC_CHECK SIOCIWFIRSTPRIV+7 8030 8031 static const struct iw_priv_args ipw2100_private_args[] = { 8032 8033 #ifdef CONFIG_IPW2100_MONITOR 8034 { 8035 IPW2100_PRIV_SET_MONITOR, 8036 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"}, 8037 { 8038 IPW2100_PRIV_RESET, 8039 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"}, 8040 #endif /* CONFIG_IPW2100_MONITOR */ 8041 8042 { 8043 IPW2100_PRIV_SET_POWER, 8044 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"}, 8045 { 8046 IPW2100_PRIV_GET_POWER, 8047 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING, 8048 "get_power"}, 8049 { 8050 IPW2100_PRIV_SET_LONGPREAMBLE, 8051 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"}, 8052 { 8053 IPW2100_PRIV_GET_LONGPREAMBLE, 8054 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"}, 8055 #ifdef CONFIG_IPW2100_MONITOR 8056 { 8057 IPW2100_PRIV_SET_CRC_CHECK, 8058 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"}, 8059 { 8060 IPW2100_PRIV_GET_CRC_CHECK, 8061 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"}, 8062 #endif /* CONFIG_IPW2100_MONITOR */ 8063 }; 8064 8065 static iw_handler ipw2100_private_handler[] = { 8066 #ifdef CONFIG_IPW2100_MONITOR 8067 ipw2100_wx_set_promisc, 8068 ipw2100_wx_reset, 8069 #else /* CONFIG_IPW2100_MONITOR */ 8070 NULL, 8071 NULL, 8072 #endif /* CONFIG_IPW2100_MONITOR */ 8073 ipw2100_wx_set_powermode, 8074 ipw2100_wx_get_powermode, 8075 ipw2100_wx_set_preamble, 8076 ipw2100_wx_get_preamble, 8077 #ifdef CONFIG_IPW2100_MONITOR 8078 ipw2100_wx_set_crc_check, 8079 ipw2100_wx_get_crc_check, 8080 #else /* CONFIG_IPW2100_MONITOR */ 8081 NULL, 8082 NULL, 8083 #endif /* CONFIG_IPW2100_MONITOR */ 8084 }; 8085 8086 /* 8087 * Get wireless statistics. 8088 * Called by /proc/net/wireless 8089 * Also called by SIOCGIWSTATS 8090 */ 8091 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev) 8092 { 8093 enum { 8094 POOR = 30, 8095 FAIR = 60, 8096 GOOD = 80, 8097 VERY_GOOD = 90, 8098 EXCELLENT = 95, 8099 PERFECT = 100 8100 }; 8101 int rssi_qual; 8102 int tx_qual; 8103 int beacon_qual; 8104 int quality; 8105 8106 struct ipw2100_priv *priv = libipw_priv(dev); 8107 struct iw_statistics *wstats; 8108 u32 rssi, tx_retries, missed_beacons, tx_failures; 8109 u32 ord_len = sizeof(u32); 8110 8111 if (!priv) 8112 return (struct iw_statistics *)NULL; 8113 8114 wstats = &priv->wstats; 8115 8116 /* if hw is disabled, then ipw2100_get_ordinal() can't be called. 8117 * ipw2100_wx_wireless_stats seems to be called before fw is 8118 * initialized. STATUS_ASSOCIATED will only be set if the hw is up 8119 * and associated; if not associcated, the values are all meaningless 8120 * anyway, so set them all to NULL and INVALID */ 8121 if (!(priv->status & STATUS_ASSOCIATED)) { 8122 wstats->miss.beacon = 0; 8123 wstats->discard.retries = 0; 8124 wstats->qual.qual = 0; 8125 wstats->qual.level = 0; 8126 wstats->qual.noise = 0; 8127 wstats->qual.updated = 7; 8128 wstats->qual.updated |= IW_QUAL_NOISE_INVALID | 8129 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID; 8130 return wstats; 8131 } 8132 8133 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS, 8134 &missed_beacons, &ord_len)) 8135 goto fail_get_ordinal; 8136 8137 /* If we don't have a connection the quality and level is 0 */ 8138 if (!(priv->status & STATUS_ASSOCIATED)) { 8139 wstats->qual.qual = 0; 8140 wstats->qual.level = 0; 8141 } else { 8142 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR, 8143 &rssi, &ord_len)) 8144 goto fail_get_ordinal; 8145 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM; 8146 if (rssi < 10) 8147 rssi_qual = rssi * POOR / 10; 8148 else if (rssi < 15) 8149 rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR; 8150 else if (rssi < 20) 8151 rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR; 8152 else if (rssi < 30) 8153 rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) / 8154 10 + GOOD; 8155 else 8156 rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) / 8157 10 + VERY_GOOD; 8158 8159 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES, 8160 &tx_retries, &ord_len)) 8161 goto fail_get_ordinal; 8162 8163 if (tx_retries > 75) 8164 tx_qual = (90 - tx_retries) * POOR / 15; 8165 else if (tx_retries > 70) 8166 tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR; 8167 else if (tx_retries > 65) 8168 tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR; 8169 else if (tx_retries > 50) 8170 tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) / 8171 15 + GOOD; 8172 else 8173 tx_qual = (50 - tx_retries) * 8174 (PERFECT - VERY_GOOD) / 50 + VERY_GOOD; 8175 8176 if (missed_beacons > 50) 8177 beacon_qual = (60 - missed_beacons) * POOR / 10; 8178 else if (missed_beacons > 40) 8179 beacon_qual = (50 - missed_beacons) * (FAIR - POOR) / 8180 10 + POOR; 8181 else if (missed_beacons > 32) 8182 beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) / 8183 18 + FAIR; 8184 else if (missed_beacons > 20) 8185 beacon_qual = (32 - missed_beacons) * 8186 (VERY_GOOD - GOOD) / 20 + GOOD; 8187 else 8188 beacon_qual = (20 - missed_beacons) * 8189 (PERFECT - VERY_GOOD) / 20 + VERY_GOOD; 8190 8191 quality = min(tx_qual, rssi_qual); 8192 quality = min(beacon_qual, quality); 8193 8194 #ifdef CONFIG_IPW2100_DEBUG 8195 if (beacon_qual == quality) 8196 IPW_DEBUG_WX("Quality clamped by Missed Beacons\n"); 8197 else if (tx_qual == quality) 8198 IPW_DEBUG_WX("Quality clamped by Tx Retries\n"); 8199 else if (quality != 100) 8200 IPW_DEBUG_WX("Quality clamped by Signal Strength\n"); 8201 else 8202 IPW_DEBUG_WX("Quality not clamped.\n"); 8203 #endif 8204 8205 wstats->qual.qual = quality; 8206 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM; 8207 } 8208 8209 wstats->qual.noise = 0; 8210 wstats->qual.updated = 7; 8211 wstats->qual.updated |= IW_QUAL_NOISE_INVALID; 8212 8213 /* FIXME: this is percent and not a # */ 8214 wstats->miss.beacon = missed_beacons; 8215 8216 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES, 8217 &tx_failures, &ord_len)) 8218 goto fail_get_ordinal; 8219 wstats->discard.retries = tx_failures; 8220 8221 return wstats; 8222 8223 fail_get_ordinal: 8224 IPW_DEBUG_WX("failed querying ordinals.\n"); 8225 8226 return (struct iw_statistics *)NULL; 8227 } 8228 8229 static const struct iw_handler_def ipw2100_wx_handler_def = { 8230 .standard = ipw2100_wx_handlers, 8231 .num_standard = ARRAY_SIZE(ipw2100_wx_handlers), 8232 .num_private = ARRAY_SIZE(ipw2100_private_handler), 8233 .num_private_args = ARRAY_SIZE(ipw2100_private_args), 8234 .private = (iw_handler *) ipw2100_private_handler, 8235 .private_args = (struct iw_priv_args *)ipw2100_private_args, 8236 .get_wireless_stats = ipw2100_wx_wireless_stats, 8237 }; 8238 8239 static void ipw2100_wx_event_work(struct work_struct *work) 8240 { 8241 struct ipw2100_priv *priv = 8242 container_of(work, struct ipw2100_priv, wx_event_work.work); 8243 union iwreq_data wrqu; 8244 unsigned int len = ETH_ALEN; 8245 8246 if (priv->status & STATUS_STOPPING) 8247 return; 8248 8249 mutex_lock(&priv->action_mutex); 8250 8251 IPW_DEBUG_WX("enter\n"); 8252 8253 mutex_unlock(&priv->action_mutex); 8254 8255 wrqu.ap_addr.sa_family = ARPHRD_ETHER; 8256 8257 /* Fetch BSSID from the hardware */ 8258 if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) || 8259 priv->status & STATUS_RF_KILL_MASK || 8260 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, 8261 &priv->bssid, &len)) { 8262 eth_zero_addr(wrqu.ap_addr.sa_data); 8263 } else { 8264 /* We now have the BSSID, so can finish setting to the full 8265 * associated state */ 8266 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN); 8267 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN); 8268 priv->status &= ~STATUS_ASSOCIATING; 8269 priv->status |= STATUS_ASSOCIATED; 8270 netif_carrier_on(priv->net_dev); 8271 netif_wake_queue(priv->net_dev); 8272 } 8273 8274 if (!(priv->status & STATUS_ASSOCIATED)) { 8275 IPW_DEBUG_WX("Configuring ESSID\n"); 8276 mutex_lock(&priv->action_mutex); 8277 /* This is a disassociation event, so kick the firmware to 8278 * look for another AP */ 8279 if (priv->config & CFG_STATIC_ESSID) 8280 ipw2100_set_essid(priv, priv->essid, priv->essid_len, 8281 0); 8282 else 8283 ipw2100_set_essid(priv, NULL, 0, 0); 8284 mutex_unlock(&priv->action_mutex); 8285 } 8286 8287 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL); 8288 } 8289 8290 #define IPW2100_FW_MAJOR_VERSION 1 8291 #define IPW2100_FW_MINOR_VERSION 3 8292 8293 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8) 8294 #define IPW2100_FW_MAJOR(x) (x & 0xff) 8295 8296 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \ 8297 IPW2100_FW_MAJOR_VERSION) 8298 8299 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \ 8300 "." __stringify(IPW2100_FW_MINOR_VERSION) 8301 8302 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw" 8303 8304 /* 8305 8306 BINARY FIRMWARE HEADER FORMAT 8307 8308 offset length desc 8309 0 2 version 8310 2 2 mode == 0:BSS,1:IBSS,2:MONITOR 8311 4 4 fw_len 8312 8 4 uc_len 8313 C fw_len firmware data 8314 12 + fw_len uc_len microcode data 8315 8316 */ 8317 8318 struct ipw2100_fw_header { 8319 short version; 8320 short mode; 8321 unsigned int fw_size; 8322 unsigned int uc_size; 8323 } __packed; 8324 8325 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw) 8326 { 8327 struct ipw2100_fw_header *h = 8328 (struct ipw2100_fw_header *)fw->fw_entry->data; 8329 8330 if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) { 8331 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible " 8332 "(detected version id of %u). " 8333 "See Documentation/networking/device_drivers/wifi/intel/ipw2100.rst\n", 8334 h->version); 8335 return 1; 8336 } 8337 8338 fw->version = h->version; 8339 fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header); 8340 fw->fw.size = h->fw_size; 8341 fw->uc.data = fw->fw.data + h->fw_size; 8342 fw->uc.size = h->uc_size; 8343 8344 return 0; 8345 } 8346 8347 static int ipw2100_get_firmware(struct ipw2100_priv *priv, 8348 struct ipw2100_fw *fw) 8349 { 8350 char *fw_name; 8351 int rc; 8352 8353 IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n", 8354 priv->net_dev->name); 8355 8356 switch (priv->ieee->iw_mode) { 8357 case IW_MODE_ADHOC: 8358 fw_name = IPW2100_FW_NAME("-i"); 8359 break; 8360 #ifdef CONFIG_IPW2100_MONITOR 8361 case IW_MODE_MONITOR: 8362 fw_name = IPW2100_FW_NAME("-p"); 8363 break; 8364 #endif 8365 case IW_MODE_INFRA: 8366 default: 8367 fw_name = IPW2100_FW_NAME(""); 8368 break; 8369 } 8370 8371 rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev); 8372 8373 if (rc < 0) { 8374 printk(KERN_ERR DRV_NAME ": " 8375 "%s: Firmware '%s' not available or load failed.\n", 8376 priv->net_dev->name, fw_name); 8377 return rc; 8378 } 8379 IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data, 8380 fw->fw_entry->size); 8381 8382 ipw2100_mod_firmware_load(fw); 8383 8384 return 0; 8385 } 8386 8387 MODULE_FIRMWARE(IPW2100_FW_NAME("-i")); 8388 #ifdef CONFIG_IPW2100_MONITOR 8389 MODULE_FIRMWARE(IPW2100_FW_NAME("-p")); 8390 #endif 8391 MODULE_FIRMWARE(IPW2100_FW_NAME("")); 8392 8393 static void ipw2100_release_firmware(struct ipw2100_priv *priv, 8394 struct ipw2100_fw *fw) 8395 { 8396 fw->version = 0; 8397 release_firmware(fw->fw_entry); 8398 fw->fw_entry = NULL; 8399 } 8400 8401 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf, 8402 size_t max) 8403 { 8404 char ver[MAX_FW_VERSION_LEN]; 8405 u32 len = MAX_FW_VERSION_LEN; 8406 u32 tmp; 8407 int i; 8408 /* firmware version is an ascii string (max len of 14) */ 8409 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len)) 8410 return -EIO; 8411 tmp = max; 8412 if (len >= max) 8413 len = max - 1; 8414 for (i = 0; i < len; i++) 8415 buf[i] = ver[i]; 8416 buf[i] = '\0'; 8417 return tmp; 8418 } 8419 8420 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf, 8421 size_t max) 8422 { 8423 u32 ver; 8424 u32 len = sizeof(ver); 8425 /* microcode version is a 32 bit integer */ 8426 if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len)) 8427 return -EIO; 8428 return snprintf(buf, max, "%08X", ver); 8429 } 8430 8431 /* 8432 * On exit, the firmware will have been freed from the fw list 8433 */ 8434 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw) 8435 { 8436 /* firmware is constructed of N contiguous entries, each entry is 8437 * structured as: 8438 * 8439 * offset sie desc 8440 * 0 4 address to write to 8441 * 4 2 length of data run 8442 * 6 length data 8443 */ 8444 unsigned int addr; 8445 unsigned short len; 8446 8447 const unsigned char *firmware_data = fw->fw.data; 8448 unsigned int firmware_data_left = fw->fw.size; 8449 8450 while (firmware_data_left > 0) { 8451 addr = *(u32 *) (firmware_data); 8452 firmware_data += 4; 8453 firmware_data_left -= 4; 8454 8455 len = *(u16 *) (firmware_data); 8456 firmware_data += 2; 8457 firmware_data_left -= 2; 8458 8459 if (len > 32) { 8460 printk(KERN_ERR DRV_NAME ": " 8461 "Invalid firmware run-length of %d bytes\n", 8462 len); 8463 return -EINVAL; 8464 } 8465 8466 write_nic_memory(priv->net_dev, addr, len, firmware_data); 8467 firmware_data += len; 8468 firmware_data_left -= len; 8469 } 8470 8471 return 0; 8472 } 8473 8474 struct symbol_alive_response { 8475 u8 cmd_id; 8476 u8 seq_num; 8477 u8 ucode_rev; 8478 u8 eeprom_valid; 8479 u16 valid_flags; 8480 u8 IEEE_addr[6]; 8481 u16 flags; 8482 u16 pcb_rev; 8483 u16 clock_settle_time; // 1us LSB 8484 u16 powerup_settle_time; // 1us LSB 8485 u16 hop_settle_time; // 1us LSB 8486 u8 date[3]; // month, day, year 8487 u8 time[2]; // hours, minutes 8488 u8 ucode_valid; 8489 }; 8490 8491 static int ipw2100_ucode_download(struct ipw2100_priv *priv, 8492 struct ipw2100_fw *fw) 8493 { 8494 struct net_device *dev = priv->net_dev; 8495 const unsigned char *microcode_data = fw->uc.data; 8496 unsigned int microcode_data_left = fw->uc.size; 8497 void __iomem *reg = priv->ioaddr; 8498 8499 struct symbol_alive_response response; 8500 int i, j; 8501 u8 data; 8502 8503 /* Symbol control */ 8504 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703); 8505 readl(reg); 8506 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707); 8507 readl(reg); 8508 8509 /* HW config */ 8510 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */ 8511 readl(reg); 8512 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */ 8513 readl(reg); 8514 8515 /* EN_CS_ACCESS bit to reset control store pointer */ 8516 write_nic_byte(dev, 0x210000, 0x40); 8517 readl(reg); 8518 write_nic_byte(dev, 0x210000, 0x0); 8519 readl(reg); 8520 write_nic_byte(dev, 0x210000, 0x40); 8521 readl(reg); 8522 8523 /* copy microcode from buffer into Symbol */ 8524 8525 while (microcode_data_left > 0) { 8526 write_nic_byte(dev, 0x210010, *microcode_data++); 8527 write_nic_byte(dev, 0x210010, *microcode_data++); 8528 microcode_data_left -= 2; 8529 } 8530 8531 /* EN_CS_ACCESS bit to reset the control store pointer */ 8532 write_nic_byte(dev, 0x210000, 0x0); 8533 readl(reg); 8534 8535 /* Enable System (Reg 0) 8536 * first enable causes garbage in RX FIFO */ 8537 write_nic_byte(dev, 0x210000, 0x0); 8538 readl(reg); 8539 write_nic_byte(dev, 0x210000, 0x80); 8540 readl(reg); 8541 8542 /* Reset External Baseband Reg */ 8543 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703); 8544 readl(reg); 8545 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707); 8546 readl(reg); 8547 8548 /* HW Config (Reg 5) */ 8549 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16 8550 readl(reg); 8551 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16 8552 readl(reg); 8553 8554 /* Enable System (Reg 0) 8555 * second enable should be OK */ 8556 write_nic_byte(dev, 0x210000, 0x00); // clear enable system 8557 readl(reg); 8558 write_nic_byte(dev, 0x210000, 0x80); // set enable system 8559 8560 /* check Symbol is enabled - upped this from 5 as it wasn't always 8561 * catching the update */ 8562 for (i = 0; i < 10; i++) { 8563 udelay(10); 8564 8565 /* check Dino is enabled bit */ 8566 read_nic_byte(dev, 0x210000, &data); 8567 if (data & 0x1) 8568 break; 8569 } 8570 8571 if (i == 10) { 8572 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n", 8573 dev->name); 8574 return -EIO; 8575 } 8576 8577 /* Get Symbol alive response */ 8578 for (i = 0; i < 30; i++) { 8579 /* Read alive response structure */ 8580 for (j = 0; 8581 j < (sizeof(struct symbol_alive_response) >> 1); j++) 8582 read_nic_word(dev, 0x210004, ((u16 *) & response) + j); 8583 8584 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1)) 8585 break; 8586 udelay(10); 8587 } 8588 8589 if (i == 30) { 8590 printk(KERN_ERR DRV_NAME 8591 ": %s: No response from Symbol - hw not alive\n", 8592 dev->name); 8593 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response)); 8594 return -EIO; 8595 } 8596 8597 return 0; 8598 } 8599