1 // SPDX-License-Identifier: GPL-2.0-only 2 /****************************************************************************** 3 4 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved. 5 6 7 Contact Information: 8 Intel Linux Wireless <ilw@linux.intel.com> 9 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 10 11 Portions of this file are based on the sample_* files provided by Wireless 12 Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes 13 <jt@hpl.hp.com> 14 15 Portions of this file are based on the Host AP project, 16 Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen 17 <j@w1.fi> 18 Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi> 19 20 Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and 21 ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c 22 available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox 23 24 ******************************************************************************/ 25 /* 26 27 Initial driver on which this is based was developed by Janusz Gorycki, 28 Maciej Urbaniak, and Maciej Sosnowski. 29 30 Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak. 31 32 Theory of Operation 33 34 Tx - Commands and Data 35 36 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs) 37 Each TBD contains a pointer to the physical (dma_addr_t) address of data being 38 sent to the firmware as well as the length of the data. 39 40 The host writes to the TBD queue at the WRITE index. The WRITE index points 41 to the _next_ packet to be written and is advanced when after the TBD has been 42 filled. 43 44 The firmware pulls from the TBD queue at the READ index. The READ index points 45 to the currently being read entry, and is advanced once the firmware is 46 done with a packet. 47 48 When data is sent to the firmware, the first TBD is used to indicate to the 49 firmware if a Command or Data is being sent. If it is Command, all of the 50 command information is contained within the physical address referred to by the 51 TBD. If it is Data, the first TBD indicates the type of data packet, number 52 of fragments, etc. The next TBD then refers to the actual packet location. 53 54 The Tx flow cycle is as follows: 55 56 1) ipw2100_tx() is called by kernel with SKB to transmit 57 2) Packet is move from the tx_free_list and appended to the transmit pending 58 list (tx_pend_list) 59 3) work is scheduled to move pending packets into the shared circular queue. 60 4) when placing packet in the circular queue, the incoming SKB is DMA mapped 61 to a physical address. That address is entered into a TBD. Two TBDs are 62 filled out. The first indicating a data packet, the second referring to the 63 actual payload data. 64 5) the packet is removed from tx_pend_list and placed on the end of the 65 firmware pending list (fw_pend_list) 66 6) firmware is notified that the WRITE index has 67 7) Once the firmware has processed the TBD, INTA is triggered. 68 8) For each Tx interrupt received from the firmware, the READ index is checked 69 to see which TBDs are done being processed. 70 9) For each TBD that has been processed, the ISR pulls the oldest packet 71 from the fw_pend_list. 72 10)The packet structure contained in the fw_pend_list is then used 73 to unmap the DMA address and to free the SKB originally passed to the driver 74 from the kernel. 75 11)The packet structure is placed onto the tx_free_list 76 77 The above steps are the same for commands, only the msg_free_list/msg_pend_list 78 are used instead of tx_free_list/tx_pend_list 79 80 ... 81 82 Critical Sections / Locking : 83 84 There are two locks utilized. The first is the low level lock (priv->low_lock) 85 that protects the following: 86 87 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows: 88 89 tx_free_list : Holds pre-allocated Tx buffers. 90 TAIL modified in __ipw2100_tx_process() 91 HEAD modified in ipw2100_tx() 92 93 tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring 94 TAIL modified ipw2100_tx() 95 HEAD modified by ipw2100_tx_send_data() 96 97 msg_free_list : Holds pre-allocated Msg (Command) buffers 98 TAIL modified in __ipw2100_tx_process() 99 HEAD modified in ipw2100_hw_send_command() 100 101 msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring 102 TAIL modified in ipw2100_hw_send_command() 103 HEAD modified in ipw2100_tx_send_commands() 104 105 The flow of data on the TX side is as follows: 106 107 MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST 108 TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST 109 110 The methods that work on the TBD ring are protected via priv->low_lock. 111 112 - The internal data state of the device itself 113 - Access to the firmware read/write indexes for the BD queues 114 and associated logic 115 116 All external entry functions are locked with the priv->action_lock to ensure 117 that only one external action is invoked at a time. 118 119 120 */ 121 122 #include <linux/compiler.h> 123 #include <linux/errno.h> 124 #include <linux/if_arp.h> 125 #include <linux/in6.h> 126 #include <linux/in.h> 127 #include <linux/ip.h> 128 #include <linux/kernel.h> 129 #include <linux/kmod.h> 130 #include <linux/module.h> 131 #include <linux/netdevice.h> 132 #include <linux/ethtool.h> 133 #include <linux/pci.h> 134 #include <linux/dma-mapping.h> 135 #include <linux/proc_fs.h> 136 #include <linux/skbuff.h> 137 #include <linux/uaccess.h> 138 #include <asm/io.h> 139 #include <linux/fs.h> 140 #include <linux/mm.h> 141 #include <linux/slab.h> 142 #include <linux/unistd.h> 143 #include <linux/stringify.h> 144 #include <linux/tcp.h> 145 #include <linux/types.h> 146 #include <linux/time.h> 147 #include <linux/firmware.h> 148 #include <linux/acpi.h> 149 #include <linux/ctype.h> 150 #include <linux/pm_qos.h> 151 152 #include <net/lib80211.h> 153 154 #include "ipw2100.h" 155 #include "ipw.h" 156 157 #define IPW2100_VERSION "git-1.2.2" 158 159 #define DRV_NAME "ipw2100" 160 #define DRV_VERSION IPW2100_VERSION 161 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver" 162 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation" 163 164 static struct pm_qos_request ipw2100_pm_qos_req; 165 166 /* Debugging stuff */ 167 #ifdef CONFIG_IPW2100_DEBUG 168 #define IPW2100_RX_DEBUG /* Reception debugging */ 169 #endif 170 171 MODULE_DESCRIPTION(DRV_DESCRIPTION); 172 MODULE_VERSION(DRV_VERSION); 173 MODULE_AUTHOR(DRV_COPYRIGHT); 174 MODULE_LICENSE("GPL"); 175 176 static int debug = 0; 177 static int network_mode = 0; 178 static int channel = 0; 179 static int associate = 0; 180 static int disable = 0; 181 #ifdef CONFIG_PM 182 static struct ipw2100_fw ipw2100_firmware; 183 #endif 184 185 #include <linux/moduleparam.h> 186 module_param(debug, int, 0444); 187 module_param_named(mode, network_mode, int, 0444); 188 module_param(channel, int, 0444); 189 module_param(associate, int, 0444); 190 module_param(disable, int, 0444); 191 192 MODULE_PARM_DESC(debug, "debug level"); 193 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)"); 194 MODULE_PARM_DESC(channel, "channel"); 195 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)"); 196 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])"); 197 198 static u32 ipw2100_debug_level = IPW_DL_NONE; 199 200 #ifdef CONFIG_IPW2100_DEBUG 201 #define IPW_DEBUG(level, message...) \ 202 do { \ 203 if (ipw2100_debug_level & (level)) { \ 204 printk(KERN_DEBUG "ipw2100: %c %s ", \ 205 in_interrupt() ? 'I' : 'U', __func__); \ 206 printk(message); \ 207 } \ 208 } while (0) 209 #else 210 #define IPW_DEBUG(level, message...) do {} while (0) 211 #endif /* CONFIG_IPW2100_DEBUG */ 212 213 #ifdef CONFIG_IPW2100_DEBUG 214 static const char *command_types[] = { 215 "undefined", 216 "unused", /* HOST_ATTENTION */ 217 "HOST_COMPLETE", 218 "unused", /* SLEEP */ 219 "unused", /* HOST_POWER_DOWN */ 220 "unused", 221 "SYSTEM_CONFIG", 222 "unused", /* SET_IMR */ 223 "SSID", 224 "MANDATORY_BSSID", 225 "AUTHENTICATION_TYPE", 226 "ADAPTER_ADDRESS", 227 "PORT_TYPE", 228 "INTERNATIONAL_MODE", 229 "CHANNEL", 230 "RTS_THRESHOLD", 231 "FRAG_THRESHOLD", 232 "POWER_MODE", 233 "TX_RATES", 234 "BASIC_TX_RATES", 235 "WEP_KEY_INFO", 236 "unused", 237 "unused", 238 "unused", 239 "unused", 240 "WEP_KEY_INDEX", 241 "WEP_FLAGS", 242 "ADD_MULTICAST", 243 "CLEAR_ALL_MULTICAST", 244 "BEACON_INTERVAL", 245 "ATIM_WINDOW", 246 "CLEAR_STATISTICS", 247 "undefined", 248 "undefined", 249 "undefined", 250 "undefined", 251 "TX_POWER_INDEX", 252 "undefined", 253 "undefined", 254 "undefined", 255 "undefined", 256 "undefined", 257 "undefined", 258 "BROADCAST_SCAN", 259 "CARD_DISABLE", 260 "PREFERRED_BSSID", 261 "SET_SCAN_OPTIONS", 262 "SCAN_DWELL_TIME", 263 "SWEEP_TABLE", 264 "AP_OR_STATION_TABLE", 265 "GROUP_ORDINALS", 266 "SHORT_RETRY_LIMIT", 267 "LONG_RETRY_LIMIT", 268 "unused", /* SAVE_CALIBRATION */ 269 "unused", /* RESTORE_CALIBRATION */ 270 "undefined", 271 "undefined", 272 "undefined", 273 "HOST_PRE_POWER_DOWN", 274 "unused", /* HOST_INTERRUPT_COALESCING */ 275 "undefined", 276 "CARD_DISABLE_PHY_OFF", 277 "MSDU_TX_RATES", 278 "undefined", 279 "SET_STATION_STAT_BITS", 280 "CLEAR_STATIONS_STAT_BITS", 281 "LEAP_ROGUE_MODE", 282 "SET_SECURITY_INFORMATION", 283 "DISASSOCIATION_BSSID", 284 "SET_WPA_ASS_IE" 285 }; 286 #endif 287 288 static const long ipw2100_frequencies[] = { 289 2412, 2417, 2422, 2427, 290 2432, 2437, 2442, 2447, 291 2452, 2457, 2462, 2467, 292 2472, 2484 293 }; 294 295 #define FREQ_COUNT ARRAY_SIZE(ipw2100_frequencies) 296 297 static struct ieee80211_rate ipw2100_bg_rates[] = { 298 { .bitrate = 10 }, 299 { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 300 { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 301 { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 302 }; 303 304 #define RATE_COUNT ARRAY_SIZE(ipw2100_bg_rates) 305 306 /* Pre-decl until we get the code solid and then we can clean it up */ 307 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv); 308 static void ipw2100_tx_send_data(struct ipw2100_priv *priv); 309 static int ipw2100_adapter_setup(struct ipw2100_priv *priv); 310 311 static void ipw2100_queues_initialize(struct ipw2100_priv *priv); 312 static void ipw2100_queues_free(struct ipw2100_priv *priv); 313 static int ipw2100_queues_allocate(struct ipw2100_priv *priv); 314 315 static int ipw2100_fw_download(struct ipw2100_priv *priv, 316 struct ipw2100_fw *fw); 317 static int ipw2100_get_firmware(struct ipw2100_priv *priv, 318 struct ipw2100_fw *fw); 319 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf, 320 size_t max); 321 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf, 322 size_t max); 323 static void ipw2100_release_firmware(struct ipw2100_priv *priv, 324 struct ipw2100_fw *fw); 325 static int ipw2100_ucode_download(struct ipw2100_priv *priv, 326 struct ipw2100_fw *fw); 327 static void ipw2100_wx_event_work(struct work_struct *work); 328 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev); 329 static const struct iw_handler_def ipw2100_wx_handler_def; 330 331 static inline void read_register(struct net_device *dev, u32 reg, u32 * val) 332 { 333 struct ipw2100_priv *priv = libipw_priv(dev); 334 335 *val = ioread32(priv->ioaddr + reg); 336 IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val); 337 } 338 339 static inline void write_register(struct net_device *dev, u32 reg, u32 val) 340 { 341 struct ipw2100_priv *priv = libipw_priv(dev); 342 343 iowrite32(val, priv->ioaddr + reg); 344 IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val); 345 } 346 347 static inline void read_register_word(struct net_device *dev, u32 reg, 348 u16 * val) 349 { 350 struct ipw2100_priv *priv = libipw_priv(dev); 351 352 *val = ioread16(priv->ioaddr + reg); 353 IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val); 354 } 355 356 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val) 357 { 358 struct ipw2100_priv *priv = libipw_priv(dev); 359 360 *val = ioread8(priv->ioaddr + reg); 361 IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val); 362 } 363 364 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val) 365 { 366 struct ipw2100_priv *priv = libipw_priv(dev); 367 368 iowrite16(val, priv->ioaddr + reg); 369 IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val); 370 } 371 372 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val) 373 { 374 struct ipw2100_priv *priv = libipw_priv(dev); 375 376 iowrite8(val, priv->ioaddr + reg); 377 IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val); 378 } 379 380 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val) 381 { 382 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, 383 addr & IPW_REG_INDIRECT_ADDR_MASK); 384 read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val); 385 } 386 387 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val) 388 { 389 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, 390 addr & IPW_REG_INDIRECT_ADDR_MASK); 391 write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val); 392 } 393 394 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val) 395 { 396 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, 397 addr & IPW_REG_INDIRECT_ADDR_MASK); 398 read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val); 399 } 400 401 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val) 402 { 403 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, 404 addr & IPW_REG_INDIRECT_ADDR_MASK); 405 write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val); 406 } 407 408 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val) 409 { 410 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, 411 addr & IPW_REG_INDIRECT_ADDR_MASK); 412 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val); 413 } 414 415 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val) 416 { 417 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, 418 addr & IPW_REG_INDIRECT_ADDR_MASK); 419 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val); 420 } 421 422 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr) 423 { 424 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, 425 addr & IPW_REG_INDIRECT_ADDR_MASK); 426 } 427 428 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val) 429 { 430 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val); 431 } 432 433 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len, 434 const u8 * buf) 435 { 436 u32 aligned_addr; 437 u32 aligned_len; 438 u32 dif_len; 439 u32 i; 440 441 /* read first nibble byte by byte */ 442 aligned_addr = addr & (~0x3); 443 dif_len = addr - aligned_addr; 444 if (dif_len) { 445 /* Start reading at aligned_addr + dif_len */ 446 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, 447 aligned_addr); 448 for (i = dif_len; i < 4; i++, buf++) 449 write_register_byte(dev, 450 IPW_REG_INDIRECT_ACCESS_DATA + i, 451 *buf); 452 453 len -= dif_len; 454 aligned_addr += 4; 455 } 456 457 /* read DWs through autoincrement registers */ 458 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr); 459 aligned_len = len & (~0x3); 460 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4) 461 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf); 462 463 /* copy the last nibble */ 464 dif_len = len - aligned_len; 465 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr); 466 for (i = 0; i < dif_len; i++, buf++) 467 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, 468 *buf); 469 } 470 471 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len, 472 u8 * buf) 473 { 474 u32 aligned_addr; 475 u32 aligned_len; 476 u32 dif_len; 477 u32 i; 478 479 /* read first nibble byte by byte */ 480 aligned_addr = addr & (~0x3); 481 dif_len = addr - aligned_addr; 482 if (dif_len) { 483 /* Start reading at aligned_addr + dif_len */ 484 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, 485 aligned_addr); 486 for (i = dif_len; i < 4; i++, buf++) 487 read_register_byte(dev, 488 IPW_REG_INDIRECT_ACCESS_DATA + i, 489 buf); 490 491 len -= dif_len; 492 aligned_addr += 4; 493 } 494 495 /* read DWs through autoincrement registers */ 496 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr); 497 aligned_len = len & (~0x3); 498 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4) 499 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf); 500 501 /* copy the last nibble */ 502 dif_len = len - aligned_len; 503 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr); 504 for (i = 0; i < dif_len; i++, buf++) 505 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf); 506 } 507 508 static bool ipw2100_hw_is_adapter_in_system(struct net_device *dev) 509 { 510 u32 dbg; 511 512 read_register(dev, IPW_REG_DOA_DEBUG_AREA_START, &dbg); 513 514 return dbg == IPW_DATA_DOA_DEBUG_VALUE; 515 } 516 517 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord, 518 void *val, u32 * len) 519 { 520 struct ipw2100_ordinals *ordinals = &priv->ordinals; 521 u32 addr; 522 u32 field_info; 523 u16 field_len; 524 u16 field_count; 525 u32 total_length; 526 527 if (ordinals->table1_addr == 0) { 528 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals " 529 "before they have been loaded.\n"); 530 return -EINVAL; 531 } 532 533 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) { 534 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) { 535 *len = IPW_ORD_TAB_1_ENTRY_SIZE; 536 537 printk(KERN_WARNING DRV_NAME 538 ": ordinal buffer length too small, need %zd\n", 539 IPW_ORD_TAB_1_ENTRY_SIZE); 540 541 return -EINVAL; 542 } 543 544 read_nic_dword(priv->net_dev, 545 ordinals->table1_addr + (ord << 2), &addr); 546 read_nic_dword(priv->net_dev, addr, val); 547 548 *len = IPW_ORD_TAB_1_ENTRY_SIZE; 549 550 return 0; 551 } 552 553 if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) { 554 555 ord -= IPW_START_ORD_TAB_2; 556 557 /* get the address of statistic */ 558 read_nic_dword(priv->net_dev, 559 ordinals->table2_addr + (ord << 3), &addr); 560 561 /* get the second DW of statistics ; 562 * two 16-bit words - first is length, second is count */ 563 read_nic_dword(priv->net_dev, 564 ordinals->table2_addr + (ord << 3) + sizeof(u32), 565 &field_info); 566 567 /* get each entry length */ 568 field_len = *((u16 *) & field_info); 569 570 /* get number of entries */ 571 field_count = *(((u16 *) & field_info) + 1); 572 573 /* abort if no enough memory */ 574 total_length = field_len * field_count; 575 if (total_length > *len) { 576 *len = total_length; 577 return -EINVAL; 578 } 579 580 *len = total_length; 581 if (!total_length) 582 return 0; 583 584 /* read the ordinal data from the SRAM */ 585 read_nic_memory(priv->net_dev, addr, total_length, val); 586 587 return 0; 588 } 589 590 printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor " 591 "in table 2\n", ord); 592 593 return -EINVAL; 594 } 595 596 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val, 597 u32 * len) 598 { 599 struct ipw2100_ordinals *ordinals = &priv->ordinals; 600 u32 addr; 601 602 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) { 603 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) { 604 *len = IPW_ORD_TAB_1_ENTRY_SIZE; 605 IPW_DEBUG_INFO("wrong size\n"); 606 return -EINVAL; 607 } 608 609 read_nic_dword(priv->net_dev, 610 ordinals->table1_addr + (ord << 2), &addr); 611 612 write_nic_dword(priv->net_dev, addr, *val); 613 614 *len = IPW_ORD_TAB_1_ENTRY_SIZE; 615 616 return 0; 617 } 618 619 IPW_DEBUG_INFO("wrong table\n"); 620 if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) 621 return -EINVAL; 622 623 return -EINVAL; 624 } 625 626 static char *snprint_line(char *buf, size_t count, 627 const u8 * data, u32 len, u32 ofs) 628 { 629 int out, i, j, l; 630 char c; 631 632 out = scnprintf(buf, count, "%08X", ofs); 633 634 for (l = 0, i = 0; i < 2; i++) { 635 out += scnprintf(buf + out, count - out, " "); 636 for (j = 0; j < 8 && l < len; j++, l++) 637 out += scnprintf(buf + out, count - out, "%02X ", 638 data[(i * 8 + j)]); 639 for (; j < 8; j++) 640 out += scnprintf(buf + out, count - out, " "); 641 } 642 643 out += scnprintf(buf + out, count - out, " "); 644 for (l = 0, i = 0; i < 2; i++) { 645 out += scnprintf(buf + out, count - out, " "); 646 for (j = 0; j < 8 && l < len; j++, l++) { 647 c = data[(i * 8 + j)]; 648 if (!isascii(c) || !isprint(c)) 649 c = '.'; 650 651 out += scnprintf(buf + out, count - out, "%c", c); 652 } 653 654 for (; j < 8; j++) 655 out += scnprintf(buf + out, count - out, " "); 656 } 657 658 return buf; 659 } 660 661 static void printk_buf(int level, const u8 * data, u32 len) 662 { 663 char line[81]; 664 u32 ofs = 0; 665 if (!(ipw2100_debug_level & level)) 666 return; 667 668 while (len) { 669 printk(KERN_DEBUG "%s\n", 670 snprint_line(line, sizeof(line), &data[ofs], 671 min(len, 16U), ofs)); 672 ofs += 16; 673 len -= min(len, 16U); 674 } 675 } 676 677 #define MAX_RESET_BACKOFF 10 678 679 static void schedule_reset(struct ipw2100_priv *priv) 680 { 681 time64_t now = ktime_get_boottime_seconds(); 682 683 /* If we haven't received a reset request within the backoff period, 684 * then we can reset the backoff interval so this reset occurs 685 * immediately */ 686 if (priv->reset_backoff && 687 (now - priv->last_reset > priv->reset_backoff)) 688 priv->reset_backoff = 0; 689 690 priv->last_reset = now; 691 692 if (!(priv->status & STATUS_RESET_PENDING)) { 693 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%llds).\n", 694 priv->net_dev->name, priv->reset_backoff); 695 netif_carrier_off(priv->net_dev); 696 netif_stop_queue(priv->net_dev); 697 priv->status |= STATUS_RESET_PENDING; 698 if (priv->reset_backoff) 699 schedule_delayed_work(&priv->reset_work, 700 priv->reset_backoff * HZ); 701 else 702 schedule_delayed_work(&priv->reset_work, 0); 703 704 if (priv->reset_backoff < MAX_RESET_BACKOFF) 705 priv->reset_backoff++; 706 707 wake_up_interruptible(&priv->wait_command_queue); 708 } else 709 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n", 710 priv->net_dev->name); 711 712 } 713 714 #define HOST_COMPLETE_TIMEOUT (2 * HZ) 715 static int ipw2100_hw_send_command(struct ipw2100_priv *priv, 716 struct host_command *cmd) 717 { 718 struct list_head *element; 719 struct ipw2100_tx_packet *packet; 720 unsigned long flags; 721 int err = 0; 722 723 IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n", 724 command_types[cmd->host_command], cmd->host_command, 725 cmd->host_command_length); 726 printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters, 727 cmd->host_command_length); 728 729 spin_lock_irqsave(&priv->low_lock, flags); 730 731 if (priv->fatal_error) { 732 IPW_DEBUG_INFO 733 ("Attempt to send command while hardware in fatal error condition.\n"); 734 err = -EIO; 735 goto fail_unlock; 736 } 737 738 if (!(priv->status & STATUS_RUNNING)) { 739 IPW_DEBUG_INFO 740 ("Attempt to send command while hardware is not running.\n"); 741 err = -EIO; 742 goto fail_unlock; 743 } 744 745 if (priv->status & STATUS_CMD_ACTIVE) { 746 IPW_DEBUG_INFO 747 ("Attempt to send command while another command is pending.\n"); 748 err = -EBUSY; 749 goto fail_unlock; 750 } 751 752 if (list_empty(&priv->msg_free_list)) { 753 IPW_DEBUG_INFO("no available msg buffers\n"); 754 goto fail_unlock; 755 } 756 757 priv->status |= STATUS_CMD_ACTIVE; 758 priv->messages_sent++; 759 760 element = priv->msg_free_list.next; 761 762 packet = list_entry(element, struct ipw2100_tx_packet, list); 763 packet->jiffy_start = jiffies; 764 765 /* initialize the firmware command packet */ 766 packet->info.c_struct.cmd->host_command_reg = cmd->host_command; 767 packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1; 768 packet->info.c_struct.cmd->host_command_len_reg = 769 cmd->host_command_length; 770 packet->info.c_struct.cmd->sequence = cmd->host_command_sequence; 771 772 memcpy(packet->info.c_struct.cmd->host_command_params_reg, 773 cmd->host_command_parameters, 774 sizeof(packet->info.c_struct.cmd->host_command_params_reg)); 775 776 list_del(element); 777 DEC_STAT(&priv->msg_free_stat); 778 779 list_add_tail(element, &priv->msg_pend_list); 780 INC_STAT(&priv->msg_pend_stat); 781 782 ipw2100_tx_send_commands(priv); 783 ipw2100_tx_send_data(priv); 784 785 spin_unlock_irqrestore(&priv->low_lock, flags); 786 787 /* 788 * We must wait for this command to complete before another 789 * command can be sent... but if we wait more than 3 seconds 790 * then there is a problem. 791 */ 792 793 err = 794 wait_event_interruptible_timeout(priv->wait_command_queue, 795 !(priv-> 796 status & STATUS_CMD_ACTIVE), 797 HOST_COMPLETE_TIMEOUT); 798 799 if (err == 0) { 800 IPW_DEBUG_INFO("Command completion failed out after %dms.\n", 801 1000 * (HOST_COMPLETE_TIMEOUT / HZ)); 802 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT; 803 priv->status &= ~STATUS_CMD_ACTIVE; 804 schedule_reset(priv); 805 return -EIO; 806 } 807 808 if (priv->fatal_error) { 809 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n", 810 priv->net_dev->name); 811 return -EIO; 812 } 813 814 /* !!!!! HACK TEST !!!!! 815 * When lots of debug trace statements are enabled, the driver 816 * doesn't seem to have as many firmware restart cycles... 817 * 818 * As a test, we're sticking in a 1/100s delay here */ 819 schedule_timeout_uninterruptible(msecs_to_jiffies(10)); 820 821 return 0; 822 823 fail_unlock: 824 spin_unlock_irqrestore(&priv->low_lock, flags); 825 826 return err; 827 } 828 829 /* 830 * Verify the values and data access of the hardware 831 * No locks needed or used. No functions called. 832 */ 833 static int ipw2100_verify(struct ipw2100_priv *priv) 834 { 835 u32 data1, data2; 836 u32 address; 837 838 u32 val1 = 0x76543210; 839 u32 val2 = 0xFEDCBA98; 840 841 /* Domain 0 check - all values should be DOA_DEBUG */ 842 for (address = IPW_REG_DOA_DEBUG_AREA_START; 843 address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) { 844 read_register(priv->net_dev, address, &data1); 845 if (data1 != IPW_DATA_DOA_DEBUG_VALUE) 846 return -EIO; 847 } 848 849 /* Domain 1 check - use arbitrary read/write compare */ 850 for (address = 0; address < 5; address++) { 851 /* The memory area is not used now */ 852 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32, 853 val1); 854 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36, 855 val2); 856 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32, 857 &data1); 858 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36, 859 &data2); 860 if (val1 == data1 && val2 == data2) 861 return 0; 862 } 863 864 return -EIO; 865 } 866 867 /* 868 * 869 * Loop until the CARD_DISABLED bit is the same value as the 870 * supplied parameter 871 * 872 * TODO: See if it would be more efficient to do a wait/wake 873 * cycle and have the completion event trigger the wakeup 874 * 875 */ 876 #define IPW_CARD_DISABLE_COMPLETE_WAIT 100 // 100 milli 877 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state) 878 { 879 int i; 880 u32 card_state; 881 u32 len = sizeof(card_state); 882 int err; 883 884 for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) { 885 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED, 886 &card_state, &len); 887 if (err) { 888 IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal " 889 "failed.\n"); 890 return 0; 891 } 892 893 /* We'll break out if either the HW state says it is 894 * in the state we want, or if HOST_COMPLETE command 895 * finishes */ 896 if ((card_state == state) || 897 ((priv->status & STATUS_ENABLED) ? 898 IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) { 899 if (state == IPW_HW_STATE_ENABLED) 900 priv->status |= STATUS_ENABLED; 901 else 902 priv->status &= ~STATUS_ENABLED; 903 904 return 0; 905 } 906 907 udelay(50); 908 } 909 910 IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n", 911 state ? "DISABLED" : "ENABLED"); 912 return -EIO; 913 } 914 915 /********************************************************************* 916 Procedure : sw_reset_and_clock 917 Purpose : Asserts s/w reset, asserts clock initialization 918 and waits for clock stabilization 919 ********************************************************************/ 920 static int sw_reset_and_clock(struct ipw2100_priv *priv) 921 { 922 int i; 923 u32 r; 924 925 // assert s/w reset 926 write_register(priv->net_dev, IPW_REG_RESET_REG, 927 IPW_AUX_HOST_RESET_REG_SW_RESET); 928 929 // wait for clock stabilization 930 for (i = 0; i < 1000; i++) { 931 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY); 932 933 // check clock ready bit 934 read_register(priv->net_dev, IPW_REG_RESET_REG, &r); 935 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET) 936 break; 937 } 938 939 if (i == 1000) 940 return -EIO; // TODO: better error value 941 942 /* set "initialization complete" bit to move adapter to 943 * D0 state */ 944 write_register(priv->net_dev, IPW_REG_GP_CNTRL, 945 IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE); 946 947 /* wait for clock stabilization */ 948 for (i = 0; i < 10000; i++) { 949 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4); 950 951 /* check clock ready bit */ 952 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r); 953 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY) 954 break; 955 } 956 957 if (i == 10000) 958 return -EIO; /* TODO: better error value */ 959 960 /* set D0 standby bit */ 961 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r); 962 write_register(priv->net_dev, IPW_REG_GP_CNTRL, 963 r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY); 964 965 return 0; 966 } 967 968 /********************************************************************* 969 Procedure : ipw2100_download_firmware 970 Purpose : Initiaze adapter after power on. 971 The sequence is: 972 1. assert s/w reset first! 973 2. awake clocks & wait for clock stabilization 974 3. hold ARC (don't ask me why...) 975 4. load Dino ucode and reset/clock init again 976 5. zero-out shared mem 977 6. download f/w 978 *******************************************************************/ 979 static int ipw2100_download_firmware(struct ipw2100_priv *priv) 980 { 981 u32 address; 982 int err; 983 984 #ifndef CONFIG_PM 985 /* Fetch the firmware and microcode */ 986 struct ipw2100_fw ipw2100_firmware; 987 #endif 988 989 if (priv->fatal_error) { 990 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after " 991 "fatal error %d. Interface must be brought down.\n", 992 priv->net_dev->name, priv->fatal_error); 993 return -EINVAL; 994 } 995 #ifdef CONFIG_PM 996 if (!ipw2100_firmware.version) { 997 err = ipw2100_get_firmware(priv, &ipw2100_firmware); 998 if (err) { 999 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n", 1000 priv->net_dev->name, err); 1001 priv->fatal_error = IPW2100_ERR_FW_LOAD; 1002 goto fail; 1003 } 1004 } 1005 #else 1006 err = ipw2100_get_firmware(priv, &ipw2100_firmware); 1007 if (err) { 1008 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n", 1009 priv->net_dev->name, err); 1010 priv->fatal_error = IPW2100_ERR_FW_LOAD; 1011 goto fail; 1012 } 1013 #endif 1014 priv->firmware_version = ipw2100_firmware.version; 1015 1016 /* s/w reset and clock stabilization */ 1017 err = sw_reset_and_clock(priv); 1018 if (err) { 1019 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n", 1020 priv->net_dev->name, err); 1021 goto fail; 1022 } 1023 1024 err = ipw2100_verify(priv); 1025 if (err) { 1026 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n", 1027 priv->net_dev->name, err); 1028 goto fail; 1029 } 1030 1031 /* Hold ARC */ 1032 write_nic_dword(priv->net_dev, 1033 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000); 1034 1035 /* allow ARC to run */ 1036 write_register(priv->net_dev, IPW_REG_RESET_REG, 0); 1037 1038 /* load microcode */ 1039 err = ipw2100_ucode_download(priv, &ipw2100_firmware); 1040 if (err) { 1041 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n", 1042 priv->net_dev->name, err); 1043 goto fail; 1044 } 1045 1046 /* release ARC */ 1047 write_nic_dword(priv->net_dev, 1048 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000); 1049 1050 /* s/w reset and clock stabilization (again!!!) */ 1051 err = sw_reset_and_clock(priv); 1052 if (err) { 1053 printk(KERN_ERR DRV_NAME 1054 ": %s: sw_reset_and_clock failed: %d\n", 1055 priv->net_dev->name, err); 1056 goto fail; 1057 } 1058 1059 /* load f/w */ 1060 err = ipw2100_fw_download(priv, &ipw2100_firmware); 1061 if (err) { 1062 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n", 1063 priv->net_dev->name, err); 1064 goto fail; 1065 } 1066 #ifndef CONFIG_PM 1067 /* 1068 * When the .resume method of the driver is called, the other 1069 * part of the system, i.e. the ide driver could still stay in 1070 * the suspend stage. This prevents us from loading the firmware 1071 * from the disk. --YZ 1072 */ 1073 1074 /* free any storage allocated for firmware image */ 1075 ipw2100_release_firmware(priv, &ipw2100_firmware); 1076 #endif 1077 1078 /* zero out Domain 1 area indirectly (Si requirement) */ 1079 for (address = IPW_HOST_FW_SHARED_AREA0; 1080 address < IPW_HOST_FW_SHARED_AREA0_END; address += 4) 1081 write_nic_dword(priv->net_dev, address, 0); 1082 for (address = IPW_HOST_FW_SHARED_AREA1; 1083 address < IPW_HOST_FW_SHARED_AREA1_END; address += 4) 1084 write_nic_dword(priv->net_dev, address, 0); 1085 for (address = IPW_HOST_FW_SHARED_AREA2; 1086 address < IPW_HOST_FW_SHARED_AREA2_END; address += 4) 1087 write_nic_dword(priv->net_dev, address, 0); 1088 for (address = IPW_HOST_FW_SHARED_AREA3; 1089 address < IPW_HOST_FW_SHARED_AREA3_END; address += 4) 1090 write_nic_dword(priv->net_dev, address, 0); 1091 for (address = IPW_HOST_FW_INTERRUPT_AREA; 1092 address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4) 1093 write_nic_dword(priv->net_dev, address, 0); 1094 1095 return 0; 1096 1097 fail: 1098 ipw2100_release_firmware(priv, &ipw2100_firmware); 1099 return err; 1100 } 1101 1102 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv) 1103 { 1104 if (priv->status & STATUS_INT_ENABLED) 1105 return; 1106 priv->status |= STATUS_INT_ENABLED; 1107 write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK); 1108 } 1109 1110 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv) 1111 { 1112 if (!(priv->status & STATUS_INT_ENABLED)) 1113 return; 1114 priv->status &= ~STATUS_INT_ENABLED; 1115 write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0); 1116 } 1117 1118 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv) 1119 { 1120 struct ipw2100_ordinals *ord = &priv->ordinals; 1121 1122 IPW_DEBUG_INFO("enter\n"); 1123 1124 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1, 1125 &ord->table1_addr); 1126 1127 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2, 1128 &ord->table2_addr); 1129 1130 read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size); 1131 read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size); 1132 1133 ord->table2_size &= 0x0000FFFF; 1134 1135 IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size); 1136 IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size); 1137 IPW_DEBUG_INFO("exit\n"); 1138 } 1139 1140 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv) 1141 { 1142 u32 reg = 0; 1143 /* 1144 * Set GPIO 3 writable by FW; GPIO 1 writable 1145 * by driver and enable clock 1146 */ 1147 reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE | 1148 IPW_BIT_GPIO_LED_OFF); 1149 write_register(priv->net_dev, IPW_REG_GPIO, reg); 1150 } 1151 1152 static int rf_kill_active(struct ipw2100_priv *priv) 1153 { 1154 #define MAX_RF_KILL_CHECKS 5 1155 #define RF_KILL_CHECK_DELAY 40 1156 1157 unsigned short value = 0; 1158 u32 reg = 0; 1159 int i; 1160 1161 if (!(priv->hw_features & HW_FEATURE_RFKILL)) { 1162 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false); 1163 priv->status &= ~STATUS_RF_KILL_HW; 1164 return 0; 1165 } 1166 1167 for (i = 0; i < MAX_RF_KILL_CHECKS; i++) { 1168 udelay(RF_KILL_CHECK_DELAY); 1169 read_register(priv->net_dev, IPW_REG_GPIO, ®); 1170 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1); 1171 } 1172 1173 if (value == 0) { 1174 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true); 1175 priv->status |= STATUS_RF_KILL_HW; 1176 } else { 1177 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false); 1178 priv->status &= ~STATUS_RF_KILL_HW; 1179 } 1180 1181 return (value == 0); 1182 } 1183 1184 static int ipw2100_get_hw_features(struct ipw2100_priv *priv) 1185 { 1186 u32 addr, len; 1187 u32 val; 1188 1189 /* 1190 * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1 1191 */ 1192 len = sizeof(addr); 1193 if (ipw2100_get_ordinal 1194 (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) { 1195 IPW_DEBUG_INFO("failed querying ordinals at line %d\n", 1196 __LINE__); 1197 return -EIO; 1198 } 1199 1200 IPW_DEBUG_INFO("EEPROM address: %08X\n", addr); 1201 1202 /* 1203 * EEPROM version is the byte at offset 0xfd in firmware 1204 * We read 4 bytes, then shift out the byte we actually want */ 1205 read_nic_dword(priv->net_dev, addr + 0xFC, &val); 1206 priv->eeprom_version = (val >> 24) & 0xFF; 1207 IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version); 1208 1209 /* 1210 * HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware 1211 * 1212 * notice that the EEPROM bit is reverse polarity, i.e. 1213 * bit = 0 signifies HW RF kill switch is supported 1214 * bit = 1 signifies HW RF kill switch is NOT supported 1215 */ 1216 read_nic_dword(priv->net_dev, addr + 0x20, &val); 1217 if (!((val >> 24) & 0x01)) 1218 priv->hw_features |= HW_FEATURE_RFKILL; 1219 1220 IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n", 1221 (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not "); 1222 1223 return 0; 1224 } 1225 1226 /* 1227 * Start firmware execution after power on and initialization 1228 * The sequence is: 1229 * 1. Release ARC 1230 * 2. Wait for f/w initialization completes; 1231 */ 1232 static int ipw2100_start_adapter(struct ipw2100_priv *priv) 1233 { 1234 int i; 1235 u32 inta, inta_mask, gpio; 1236 1237 IPW_DEBUG_INFO("enter\n"); 1238 1239 if (priv->status & STATUS_RUNNING) 1240 return 0; 1241 1242 /* 1243 * Initialize the hw - drive adapter to DO state by setting 1244 * init_done bit. Wait for clk_ready bit and Download 1245 * fw & dino ucode 1246 */ 1247 if (ipw2100_download_firmware(priv)) { 1248 printk(KERN_ERR DRV_NAME 1249 ": %s: Failed to power on the adapter.\n", 1250 priv->net_dev->name); 1251 return -EIO; 1252 } 1253 1254 /* Clear the Tx, Rx and Msg queues and the r/w indexes 1255 * in the firmware RBD and TBD ring queue */ 1256 ipw2100_queues_initialize(priv); 1257 1258 ipw2100_hw_set_gpio(priv); 1259 1260 /* TODO -- Look at disabling interrupts here to make sure none 1261 * get fired during FW initialization */ 1262 1263 /* Release ARC - clear reset bit */ 1264 write_register(priv->net_dev, IPW_REG_RESET_REG, 0); 1265 1266 /* wait for f/w initialization complete */ 1267 IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n"); 1268 i = 5000; 1269 do { 1270 schedule_timeout_uninterruptible(msecs_to_jiffies(40)); 1271 /* Todo... wait for sync command ... */ 1272 1273 read_register(priv->net_dev, IPW_REG_INTA, &inta); 1274 1275 /* check "init done" bit */ 1276 if (inta & IPW2100_INTA_FW_INIT_DONE) { 1277 /* reset "init done" bit */ 1278 write_register(priv->net_dev, IPW_REG_INTA, 1279 IPW2100_INTA_FW_INIT_DONE); 1280 break; 1281 } 1282 1283 /* check error conditions : we check these after the firmware 1284 * check so that if there is an error, the interrupt handler 1285 * will see it and the adapter will be reset */ 1286 if (inta & 1287 (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) { 1288 /* clear error conditions */ 1289 write_register(priv->net_dev, IPW_REG_INTA, 1290 IPW2100_INTA_FATAL_ERROR | 1291 IPW2100_INTA_PARITY_ERROR); 1292 } 1293 } while (--i); 1294 1295 /* Clear out any pending INTAs since we aren't supposed to have 1296 * interrupts enabled at this point... */ 1297 read_register(priv->net_dev, IPW_REG_INTA, &inta); 1298 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask); 1299 inta &= IPW_INTERRUPT_MASK; 1300 /* Clear out any pending interrupts */ 1301 if (inta & inta_mask) 1302 write_register(priv->net_dev, IPW_REG_INTA, inta); 1303 1304 IPW_DEBUG_FW("f/w initialization complete: %s\n", 1305 i ? "SUCCESS" : "FAILED"); 1306 1307 if (!i) { 1308 printk(KERN_WARNING DRV_NAME 1309 ": %s: Firmware did not initialize.\n", 1310 priv->net_dev->name); 1311 return -EIO; 1312 } 1313 1314 /* allow firmware to write to GPIO1 & GPIO3 */ 1315 read_register(priv->net_dev, IPW_REG_GPIO, &gpio); 1316 1317 gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK); 1318 1319 write_register(priv->net_dev, IPW_REG_GPIO, gpio); 1320 1321 /* Ready to receive commands */ 1322 priv->status |= STATUS_RUNNING; 1323 1324 /* The adapter has been reset; we are not associated */ 1325 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED); 1326 1327 IPW_DEBUG_INFO("exit\n"); 1328 1329 return 0; 1330 } 1331 1332 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv) 1333 { 1334 if (!priv->fatal_error) 1335 return; 1336 1337 priv->fatal_errors[priv->fatal_index++] = priv->fatal_error; 1338 priv->fatal_index %= IPW2100_ERROR_QUEUE; 1339 priv->fatal_error = 0; 1340 } 1341 1342 /* NOTE: Our interrupt is disabled when this method is called */ 1343 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv) 1344 { 1345 u32 reg; 1346 int i; 1347 1348 IPW_DEBUG_INFO("Power cycling the hardware.\n"); 1349 1350 ipw2100_hw_set_gpio(priv); 1351 1352 /* Step 1. Stop Master Assert */ 1353 write_register(priv->net_dev, IPW_REG_RESET_REG, 1354 IPW_AUX_HOST_RESET_REG_STOP_MASTER); 1355 1356 /* Step 2. Wait for stop Master Assert 1357 * (not more than 50us, otherwise ret error */ 1358 i = 5; 1359 do { 1360 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY); 1361 read_register(priv->net_dev, IPW_REG_RESET_REG, ®); 1362 1363 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED) 1364 break; 1365 } while (--i); 1366 1367 priv->status &= ~STATUS_RESET_PENDING; 1368 1369 if (!i) { 1370 IPW_DEBUG_INFO 1371 ("exit - waited too long for master assert stop\n"); 1372 return -EIO; 1373 } 1374 1375 write_register(priv->net_dev, IPW_REG_RESET_REG, 1376 IPW_AUX_HOST_RESET_REG_SW_RESET); 1377 1378 /* Reset any fatal_error conditions */ 1379 ipw2100_reset_fatalerror(priv); 1380 1381 /* At this point, the adapter is now stopped and disabled */ 1382 priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING | 1383 STATUS_ASSOCIATED | STATUS_ENABLED); 1384 1385 return 0; 1386 } 1387 1388 /* 1389 * Send the CARD_DISABLE_PHY_OFF command to the card to disable it 1390 * 1391 * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent. 1392 * 1393 * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of 1394 * if STATUS_ASSN_LOST is sent. 1395 */ 1396 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv) 1397 { 1398 1399 #define HW_PHY_OFF_LOOP_DELAY (msecs_to_jiffies(50)) 1400 1401 struct host_command cmd = { 1402 .host_command = CARD_DISABLE_PHY_OFF, 1403 .host_command_sequence = 0, 1404 .host_command_length = 0, 1405 }; 1406 int err, i; 1407 u32 val1, val2; 1408 1409 IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n"); 1410 1411 /* Turn off the radio */ 1412 err = ipw2100_hw_send_command(priv, &cmd); 1413 if (err) 1414 return err; 1415 1416 for (i = 0; i < 2500; i++) { 1417 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1); 1418 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2); 1419 1420 if ((val1 & IPW2100_CONTROL_PHY_OFF) && 1421 (val2 & IPW2100_COMMAND_PHY_OFF)) 1422 return 0; 1423 1424 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY); 1425 } 1426 1427 return -EIO; 1428 } 1429 1430 static int ipw2100_enable_adapter(struct ipw2100_priv *priv) 1431 { 1432 struct host_command cmd = { 1433 .host_command = HOST_COMPLETE, 1434 .host_command_sequence = 0, 1435 .host_command_length = 0 1436 }; 1437 int err = 0; 1438 1439 IPW_DEBUG_HC("HOST_COMPLETE\n"); 1440 1441 if (priv->status & STATUS_ENABLED) 1442 return 0; 1443 1444 mutex_lock(&priv->adapter_mutex); 1445 1446 if (rf_kill_active(priv)) { 1447 IPW_DEBUG_HC("Command aborted due to RF kill active.\n"); 1448 goto fail_up; 1449 } 1450 1451 err = ipw2100_hw_send_command(priv, &cmd); 1452 if (err) { 1453 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n"); 1454 goto fail_up; 1455 } 1456 1457 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED); 1458 if (err) { 1459 IPW_DEBUG_INFO("%s: card not responding to init command.\n", 1460 priv->net_dev->name); 1461 goto fail_up; 1462 } 1463 1464 if (priv->stop_hang_check) { 1465 priv->stop_hang_check = 0; 1466 schedule_delayed_work(&priv->hang_check, HZ / 2); 1467 } 1468 1469 fail_up: 1470 mutex_unlock(&priv->adapter_mutex); 1471 return err; 1472 } 1473 1474 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv) 1475 { 1476 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100)) 1477 1478 struct host_command cmd = { 1479 .host_command = HOST_PRE_POWER_DOWN, 1480 .host_command_sequence = 0, 1481 .host_command_length = 0, 1482 }; 1483 int err, i; 1484 u32 reg; 1485 1486 if (!(priv->status & STATUS_RUNNING)) 1487 return 0; 1488 1489 priv->status |= STATUS_STOPPING; 1490 1491 /* We can only shut down the card if the firmware is operational. So, 1492 * if we haven't reset since a fatal_error, then we can not send the 1493 * shutdown commands. */ 1494 if (!priv->fatal_error) { 1495 /* First, make sure the adapter is enabled so that the PHY_OFF 1496 * command can shut it down */ 1497 ipw2100_enable_adapter(priv); 1498 1499 err = ipw2100_hw_phy_off(priv); 1500 if (err) 1501 printk(KERN_WARNING DRV_NAME 1502 ": Error disabling radio %d\n", err); 1503 1504 /* 1505 * If in D0-standby mode going directly to D3 may cause a 1506 * PCI bus violation. Therefore we must change out of the D0 1507 * state. 1508 * 1509 * Sending the PREPARE_FOR_POWER_DOWN will restrict the 1510 * hardware from going into standby mode and will transition 1511 * out of D0-standby if it is already in that state. 1512 * 1513 * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the 1514 * driver upon completion. Once received, the driver can 1515 * proceed to the D3 state. 1516 * 1517 * Prepare for power down command to fw. This command would 1518 * take HW out of D0-standby and prepare it for D3 state. 1519 * 1520 * Currently FW does not support event notification for this 1521 * event. Therefore, skip waiting for it. Just wait a fixed 1522 * 100ms 1523 */ 1524 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n"); 1525 1526 err = ipw2100_hw_send_command(priv, &cmd); 1527 if (err) 1528 printk(KERN_WARNING DRV_NAME ": " 1529 "%s: Power down command failed: Error %d\n", 1530 priv->net_dev->name, err); 1531 else 1532 schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY); 1533 } 1534 1535 priv->status &= ~STATUS_ENABLED; 1536 1537 /* 1538 * Set GPIO 3 writable by FW; GPIO 1 writable 1539 * by driver and enable clock 1540 */ 1541 ipw2100_hw_set_gpio(priv); 1542 1543 /* 1544 * Power down adapter. Sequence: 1545 * 1. Stop master assert (RESET_REG[9]=1) 1546 * 2. Wait for stop master (RESET_REG[8]==1) 1547 * 3. S/w reset assert (RESET_REG[7] = 1) 1548 */ 1549 1550 /* Stop master assert */ 1551 write_register(priv->net_dev, IPW_REG_RESET_REG, 1552 IPW_AUX_HOST_RESET_REG_STOP_MASTER); 1553 1554 /* wait stop master not more than 50 usec. 1555 * Otherwise return error. */ 1556 for (i = 5; i > 0; i--) { 1557 udelay(10); 1558 1559 /* Check master stop bit */ 1560 read_register(priv->net_dev, IPW_REG_RESET_REG, ®); 1561 1562 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED) 1563 break; 1564 } 1565 1566 if (i == 0) 1567 printk(KERN_WARNING DRV_NAME 1568 ": %s: Could now power down adapter.\n", 1569 priv->net_dev->name); 1570 1571 /* assert s/w reset */ 1572 write_register(priv->net_dev, IPW_REG_RESET_REG, 1573 IPW_AUX_HOST_RESET_REG_SW_RESET); 1574 1575 priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING); 1576 1577 return 0; 1578 } 1579 1580 static int ipw2100_disable_adapter(struct ipw2100_priv *priv) 1581 { 1582 struct host_command cmd = { 1583 .host_command = CARD_DISABLE, 1584 .host_command_sequence = 0, 1585 .host_command_length = 0 1586 }; 1587 int err = 0; 1588 1589 IPW_DEBUG_HC("CARD_DISABLE\n"); 1590 1591 if (!(priv->status & STATUS_ENABLED)) 1592 return 0; 1593 1594 /* Make sure we clear the associated state */ 1595 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING); 1596 1597 if (!priv->stop_hang_check) { 1598 priv->stop_hang_check = 1; 1599 cancel_delayed_work(&priv->hang_check); 1600 } 1601 1602 mutex_lock(&priv->adapter_mutex); 1603 1604 err = ipw2100_hw_send_command(priv, &cmd); 1605 if (err) { 1606 printk(KERN_WARNING DRV_NAME 1607 ": exit - failed to send CARD_DISABLE command\n"); 1608 goto fail_up; 1609 } 1610 1611 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED); 1612 if (err) { 1613 printk(KERN_WARNING DRV_NAME 1614 ": exit - card failed to change to DISABLED\n"); 1615 goto fail_up; 1616 } 1617 1618 IPW_DEBUG_INFO("TODO: implement scan state machine\n"); 1619 1620 fail_up: 1621 mutex_unlock(&priv->adapter_mutex); 1622 return err; 1623 } 1624 1625 static int ipw2100_set_scan_options(struct ipw2100_priv *priv) 1626 { 1627 struct host_command cmd = { 1628 .host_command = SET_SCAN_OPTIONS, 1629 .host_command_sequence = 0, 1630 .host_command_length = 8 1631 }; 1632 int err; 1633 1634 IPW_DEBUG_INFO("enter\n"); 1635 1636 IPW_DEBUG_SCAN("setting scan options\n"); 1637 1638 cmd.host_command_parameters[0] = 0; 1639 1640 if (!(priv->config & CFG_ASSOCIATE)) 1641 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE; 1642 if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled) 1643 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL; 1644 if (priv->config & CFG_PASSIVE_SCAN) 1645 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE; 1646 1647 cmd.host_command_parameters[1] = priv->channel_mask; 1648 1649 err = ipw2100_hw_send_command(priv, &cmd); 1650 1651 IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n", 1652 cmd.host_command_parameters[0]); 1653 1654 return err; 1655 } 1656 1657 static int ipw2100_start_scan(struct ipw2100_priv *priv) 1658 { 1659 struct host_command cmd = { 1660 .host_command = BROADCAST_SCAN, 1661 .host_command_sequence = 0, 1662 .host_command_length = 4 1663 }; 1664 int err; 1665 1666 IPW_DEBUG_HC("START_SCAN\n"); 1667 1668 cmd.host_command_parameters[0] = 0; 1669 1670 /* No scanning if in monitor mode */ 1671 if (priv->ieee->iw_mode == IW_MODE_MONITOR) 1672 return 1; 1673 1674 if (priv->status & STATUS_SCANNING) { 1675 IPW_DEBUG_SCAN("Scan requested while already in scan...\n"); 1676 return 0; 1677 } 1678 1679 IPW_DEBUG_INFO("enter\n"); 1680 1681 /* Not clearing here; doing so makes iwlist always return nothing... 1682 * 1683 * We should modify the table logic to use aging tables vs. clearing 1684 * the table on each scan start. 1685 */ 1686 IPW_DEBUG_SCAN("starting scan\n"); 1687 1688 priv->status |= STATUS_SCANNING; 1689 err = ipw2100_hw_send_command(priv, &cmd); 1690 if (err) 1691 priv->status &= ~STATUS_SCANNING; 1692 1693 IPW_DEBUG_INFO("exit\n"); 1694 1695 return err; 1696 } 1697 1698 static const struct libipw_geo ipw_geos[] = { 1699 { /* Restricted */ 1700 "---", 1701 .bg_channels = 14, 1702 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 1703 {2427, 4}, {2432, 5}, {2437, 6}, 1704 {2442, 7}, {2447, 8}, {2452, 9}, 1705 {2457, 10}, {2462, 11}, {2467, 12}, 1706 {2472, 13}, {2484, 14}}, 1707 }, 1708 }; 1709 1710 static int ipw2100_up(struct ipw2100_priv *priv, int deferred) 1711 { 1712 unsigned long flags; 1713 int err = 0; 1714 u32 lock; 1715 u32 ord_len = sizeof(lock); 1716 1717 /* Age scan list entries found before suspend */ 1718 if (priv->suspend_time) { 1719 libipw_networks_age(priv->ieee, priv->suspend_time); 1720 priv->suspend_time = 0; 1721 } 1722 1723 /* Quiet if manually disabled. */ 1724 if (priv->status & STATUS_RF_KILL_SW) { 1725 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable " 1726 "switch\n", priv->net_dev->name); 1727 return 0; 1728 } 1729 1730 /* the ipw2100 hardware really doesn't want power management delays 1731 * longer than 175usec 1732 */ 1733 cpu_latency_qos_update_request(&ipw2100_pm_qos_req, 175); 1734 1735 /* If the interrupt is enabled, turn it off... */ 1736 spin_lock_irqsave(&priv->low_lock, flags); 1737 ipw2100_disable_interrupts(priv); 1738 1739 /* Reset any fatal_error conditions */ 1740 ipw2100_reset_fatalerror(priv); 1741 spin_unlock_irqrestore(&priv->low_lock, flags); 1742 1743 if (priv->status & STATUS_POWERED || 1744 (priv->status & STATUS_RESET_PENDING)) { 1745 /* Power cycle the card ... */ 1746 err = ipw2100_power_cycle_adapter(priv); 1747 if (err) { 1748 printk(KERN_WARNING DRV_NAME 1749 ": %s: Could not cycle adapter.\n", 1750 priv->net_dev->name); 1751 goto exit; 1752 } 1753 } else 1754 priv->status |= STATUS_POWERED; 1755 1756 /* Load the firmware, start the clocks, etc. */ 1757 err = ipw2100_start_adapter(priv); 1758 if (err) { 1759 printk(KERN_ERR DRV_NAME 1760 ": %s: Failed to start the firmware.\n", 1761 priv->net_dev->name); 1762 goto exit; 1763 } 1764 1765 ipw2100_initialize_ordinals(priv); 1766 1767 /* Determine capabilities of this particular HW configuration */ 1768 err = ipw2100_get_hw_features(priv); 1769 if (err) { 1770 printk(KERN_ERR DRV_NAME 1771 ": %s: Failed to determine HW features.\n", 1772 priv->net_dev->name); 1773 goto exit; 1774 } 1775 1776 /* Initialize the geo */ 1777 libipw_set_geo(priv->ieee, &ipw_geos[0]); 1778 priv->ieee->freq_band = LIBIPW_24GHZ_BAND; 1779 1780 lock = LOCK_NONE; 1781 err = ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len); 1782 if (err) { 1783 printk(KERN_ERR DRV_NAME 1784 ": %s: Failed to clear ordinal lock.\n", 1785 priv->net_dev->name); 1786 goto exit; 1787 } 1788 1789 priv->status &= ~STATUS_SCANNING; 1790 1791 if (rf_kill_active(priv)) { 1792 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n", 1793 priv->net_dev->name); 1794 1795 if (priv->stop_rf_kill) { 1796 priv->stop_rf_kill = 0; 1797 schedule_delayed_work(&priv->rf_kill, 1798 round_jiffies_relative(HZ)); 1799 } 1800 1801 deferred = 1; 1802 } 1803 1804 /* Turn on the interrupt so that commands can be processed */ 1805 ipw2100_enable_interrupts(priv); 1806 1807 /* Send all of the commands that must be sent prior to 1808 * HOST_COMPLETE */ 1809 err = ipw2100_adapter_setup(priv); 1810 if (err) { 1811 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n", 1812 priv->net_dev->name); 1813 goto exit; 1814 } 1815 1816 if (!deferred) { 1817 /* Enable the adapter - sends HOST_COMPLETE */ 1818 err = ipw2100_enable_adapter(priv); 1819 if (err) { 1820 printk(KERN_ERR DRV_NAME ": " 1821 "%s: failed in call to enable adapter.\n", 1822 priv->net_dev->name); 1823 ipw2100_hw_stop_adapter(priv); 1824 goto exit; 1825 } 1826 1827 /* Start a scan . . . */ 1828 ipw2100_set_scan_options(priv); 1829 ipw2100_start_scan(priv); 1830 } 1831 1832 exit: 1833 return err; 1834 } 1835 1836 static void ipw2100_down(struct ipw2100_priv *priv) 1837 { 1838 unsigned long flags; 1839 union iwreq_data wrqu = { 1840 .ap_addr = { 1841 .sa_family = ARPHRD_ETHER} 1842 }; 1843 int associated = priv->status & STATUS_ASSOCIATED; 1844 1845 /* Kill the RF switch timer */ 1846 if (!priv->stop_rf_kill) { 1847 priv->stop_rf_kill = 1; 1848 cancel_delayed_work(&priv->rf_kill); 1849 } 1850 1851 /* Kill the firmware hang check timer */ 1852 if (!priv->stop_hang_check) { 1853 priv->stop_hang_check = 1; 1854 cancel_delayed_work(&priv->hang_check); 1855 } 1856 1857 /* Kill any pending resets */ 1858 if (priv->status & STATUS_RESET_PENDING) 1859 cancel_delayed_work(&priv->reset_work); 1860 1861 /* Make sure the interrupt is on so that FW commands will be 1862 * processed correctly */ 1863 spin_lock_irqsave(&priv->low_lock, flags); 1864 ipw2100_enable_interrupts(priv); 1865 spin_unlock_irqrestore(&priv->low_lock, flags); 1866 1867 if (ipw2100_hw_stop_adapter(priv)) 1868 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n", 1869 priv->net_dev->name); 1870 1871 /* Do not disable the interrupt until _after_ we disable 1872 * the adaptor. Otherwise the CARD_DISABLE command will never 1873 * be ack'd by the firmware */ 1874 spin_lock_irqsave(&priv->low_lock, flags); 1875 ipw2100_disable_interrupts(priv); 1876 spin_unlock_irqrestore(&priv->low_lock, flags); 1877 1878 cpu_latency_qos_update_request(&ipw2100_pm_qos_req, 1879 PM_QOS_DEFAULT_VALUE); 1880 1881 /* We have to signal any supplicant if we are disassociating */ 1882 if (associated) 1883 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL); 1884 1885 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING); 1886 netif_carrier_off(priv->net_dev); 1887 netif_stop_queue(priv->net_dev); 1888 } 1889 1890 static int ipw2100_wdev_init(struct net_device *dev) 1891 { 1892 struct ipw2100_priv *priv = libipw_priv(dev); 1893 const struct libipw_geo *geo = libipw_get_geo(priv->ieee); 1894 struct wireless_dev *wdev = &priv->ieee->wdev; 1895 int i; 1896 1897 memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN); 1898 1899 /* fill-out priv->ieee->bg_band */ 1900 if (geo->bg_channels) { 1901 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band; 1902 1903 bg_band->band = NL80211_BAND_2GHZ; 1904 bg_band->n_channels = geo->bg_channels; 1905 bg_band->channels = kcalloc(geo->bg_channels, 1906 sizeof(struct ieee80211_channel), 1907 GFP_KERNEL); 1908 if (!bg_band->channels) { 1909 ipw2100_down(priv); 1910 return -ENOMEM; 1911 } 1912 /* translate geo->bg to bg_band.channels */ 1913 for (i = 0; i < geo->bg_channels; i++) { 1914 bg_band->channels[i].band = NL80211_BAND_2GHZ; 1915 bg_band->channels[i].center_freq = geo->bg[i].freq; 1916 bg_band->channels[i].hw_value = geo->bg[i].channel; 1917 bg_band->channels[i].max_power = geo->bg[i].max_power; 1918 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY) 1919 bg_band->channels[i].flags |= 1920 IEEE80211_CHAN_NO_IR; 1921 if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS) 1922 bg_band->channels[i].flags |= 1923 IEEE80211_CHAN_NO_IR; 1924 if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT) 1925 bg_band->channels[i].flags |= 1926 IEEE80211_CHAN_RADAR; 1927 /* No equivalent for LIBIPW_CH_80211H_RULES, 1928 LIBIPW_CH_UNIFORM_SPREADING, or 1929 LIBIPW_CH_B_ONLY... */ 1930 } 1931 /* point at bitrate info */ 1932 bg_band->bitrates = ipw2100_bg_rates; 1933 bg_band->n_bitrates = RATE_COUNT; 1934 1935 wdev->wiphy->bands[NL80211_BAND_2GHZ] = bg_band; 1936 } 1937 1938 wdev->wiphy->cipher_suites = ipw_cipher_suites; 1939 wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites); 1940 1941 set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev); 1942 if (wiphy_register(wdev->wiphy)) 1943 return -EIO; 1944 return 0; 1945 } 1946 1947 static void ipw2100_reset_adapter(struct work_struct *work) 1948 { 1949 struct ipw2100_priv *priv = 1950 container_of(work, struct ipw2100_priv, reset_work.work); 1951 unsigned long flags; 1952 union iwreq_data wrqu = { 1953 .ap_addr = { 1954 .sa_family = ARPHRD_ETHER} 1955 }; 1956 int associated = priv->status & STATUS_ASSOCIATED; 1957 1958 spin_lock_irqsave(&priv->low_lock, flags); 1959 IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name); 1960 priv->resets++; 1961 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING); 1962 priv->status |= STATUS_SECURITY_UPDATED; 1963 1964 /* Force a power cycle even if interface hasn't been opened 1965 * yet */ 1966 cancel_delayed_work(&priv->reset_work); 1967 priv->status |= STATUS_RESET_PENDING; 1968 spin_unlock_irqrestore(&priv->low_lock, flags); 1969 1970 mutex_lock(&priv->action_mutex); 1971 /* stop timed checks so that they don't interfere with reset */ 1972 priv->stop_hang_check = 1; 1973 cancel_delayed_work(&priv->hang_check); 1974 1975 /* We have to signal any supplicant if we are disassociating */ 1976 if (associated) 1977 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL); 1978 1979 ipw2100_up(priv, 0); 1980 mutex_unlock(&priv->action_mutex); 1981 1982 } 1983 1984 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status) 1985 { 1986 1987 #define MAC_ASSOCIATION_READ_DELAY (HZ) 1988 int ret; 1989 unsigned int len, essid_len; 1990 char essid[IW_ESSID_MAX_SIZE]; 1991 u32 txrate; 1992 u32 chan; 1993 char *txratename; 1994 u8 bssid[ETH_ALEN]; 1995 1996 /* 1997 * TBD: BSSID is usually 00:00:00:00:00:00 here and not 1998 * an actual MAC of the AP. Seems like FW sets this 1999 * address too late. Read it later and expose through 2000 * /proc or schedule a later task to query and update 2001 */ 2002 2003 essid_len = IW_ESSID_MAX_SIZE; 2004 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, 2005 essid, &essid_len); 2006 if (ret) { 2007 IPW_DEBUG_INFO("failed querying ordinals at line %d\n", 2008 __LINE__); 2009 return; 2010 } 2011 2012 len = sizeof(u32); 2013 ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len); 2014 if (ret) { 2015 IPW_DEBUG_INFO("failed querying ordinals at line %d\n", 2016 __LINE__); 2017 return; 2018 } 2019 2020 len = sizeof(u32); 2021 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len); 2022 if (ret) { 2023 IPW_DEBUG_INFO("failed querying ordinals at line %d\n", 2024 __LINE__); 2025 return; 2026 } 2027 len = ETH_ALEN; 2028 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, bssid, 2029 &len); 2030 if (ret) { 2031 IPW_DEBUG_INFO("failed querying ordinals at line %d\n", 2032 __LINE__); 2033 return; 2034 } 2035 memcpy(priv->ieee->bssid, bssid, ETH_ALEN); 2036 2037 switch (txrate) { 2038 case TX_RATE_1_MBIT: 2039 txratename = "1Mbps"; 2040 break; 2041 case TX_RATE_2_MBIT: 2042 txratename = "2Mbsp"; 2043 break; 2044 case TX_RATE_5_5_MBIT: 2045 txratename = "5.5Mbps"; 2046 break; 2047 case TX_RATE_11_MBIT: 2048 txratename = "11Mbps"; 2049 break; 2050 default: 2051 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate); 2052 txratename = "unknown rate"; 2053 break; 2054 } 2055 2056 IPW_DEBUG_INFO("%s: Associated with '%*pE' at %s, channel %d (BSSID=%pM)\n", 2057 priv->net_dev->name, essid_len, essid, 2058 txratename, chan, bssid); 2059 2060 /* now we copy read ssid into dev */ 2061 if (!(priv->config & CFG_STATIC_ESSID)) { 2062 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE); 2063 memcpy(priv->essid, essid, priv->essid_len); 2064 } 2065 priv->channel = chan; 2066 memcpy(priv->bssid, bssid, ETH_ALEN); 2067 2068 priv->status |= STATUS_ASSOCIATING; 2069 priv->connect_start = ktime_get_boottime_seconds(); 2070 2071 schedule_delayed_work(&priv->wx_event_work, HZ / 10); 2072 } 2073 2074 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid, 2075 int length, int batch_mode) 2076 { 2077 int ssid_len = min(length, IW_ESSID_MAX_SIZE); 2078 struct host_command cmd = { 2079 .host_command = SSID, 2080 .host_command_sequence = 0, 2081 .host_command_length = ssid_len 2082 }; 2083 int err; 2084 2085 IPW_DEBUG_HC("SSID: '%*pE'\n", ssid_len, essid); 2086 2087 if (ssid_len) 2088 memcpy(cmd.host_command_parameters, essid, ssid_len); 2089 2090 if (!batch_mode) { 2091 err = ipw2100_disable_adapter(priv); 2092 if (err) 2093 return err; 2094 } 2095 2096 /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to 2097 * disable auto association -- so we cheat by setting a bogus SSID */ 2098 if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) { 2099 int i; 2100 u8 *bogus = (u8 *) cmd.host_command_parameters; 2101 for (i = 0; i < IW_ESSID_MAX_SIZE; i++) 2102 bogus[i] = 0x18 + i; 2103 cmd.host_command_length = IW_ESSID_MAX_SIZE; 2104 } 2105 2106 /* NOTE: We always send the SSID command even if the provided ESSID is 2107 * the same as what we currently think is set. */ 2108 2109 err = ipw2100_hw_send_command(priv, &cmd); 2110 if (!err) { 2111 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len); 2112 memcpy(priv->essid, essid, ssid_len); 2113 priv->essid_len = ssid_len; 2114 } 2115 2116 if (!batch_mode) { 2117 if (ipw2100_enable_adapter(priv)) 2118 err = -EIO; 2119 } 2120 2121 return err; 2122 } 2123 2124 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status) 2125 { 2126 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC, 2127 "disassociated: '%*pE' %pM\n", priv->essid_len, priv->essid, 2128 priv->bssid); 2129 2130 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING); 2131 2132 if (priv->status & STATUS_STOPPING) { 2133 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n"); 2134 return; 2135 } 2136 2137 eth_zero_addr(priv->bssid); 2138 eth_zero_addr(priv->ieee->bssid); 2139 2140 netif_carrier_off(priv->net_dev); 2141 netif_stop_queue(priv->net_dev); 2142 2143 if (!(priv->status & STATUS_RUNNING)) 2144 return; 2145 2146 if (priv->status & STATUS_SECURITY_UPDATED) 2147 schedule_delayed_work(&priv->security_work, 0); 2148 2149 schedule_delayed_work(&priv->wx_event_work, 0); 2150 } 2151 2152 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status) 2153 { 2154 IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n", 2155 priv->net_dev->name); 2156 2157 /* RF_KILL is now enabled (else we wouldn't be here) */ 2158 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true); 2159 priv->status |= STATUS_RF_KILL_HW; 2160 2161 /* Make sure the RF Kill check timer is running */ 2162 priv->stop_rf_kill = 0; 2163 mod_delayed_work(system_wq, &priv->rf_kill, round_jiffies_relative(HZ)); 2164 } 2165 2166 static void ipw2100_scan_event(struct work_struct *work) 2167 { 2168 struct ipw2100_priv *priv = container_of(work, struct ipw2100_priv, 2169 scan_event.work); 2170 union iwreq_data wrqu; 2171 2172 wrqu.data.length = 0; 2173 wrqu.data.flags = 0; 2174 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL); 2175 } 2176 2177 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status) 2178 { 2179 IPW_DEBUG_SCAN("scan complete\n"); 2180 /* Age the scan results... */ 2181 priv->ieee->scans++; 2182 priv->status &= ~STATUS_SCANNING; 2183 2184 /* Only userspace-requested scan completion events go out immediately */ 2185 if (!priv->user_requested_scan) { 2186 schedule_delayed_work(&priv->scan_event, 2187 round_jiffies_relative(msecs_to_jiffies(4000))); 2188 } else { 2189 priv->user_requested_scan = 0; 2190 mod_delayed_work(system_wq, &priv->scan_event, 0); 2191 } 2192 } 2193 2194 #ifdef CONFIG_IPW2100_DEBUG 2195 #define IPW2100_HANDLER(v, f) { v, f, # v } 2196 struct ipw2100_status_indicator { 2197 int status; 2198 void (*cb) (struct ipw2100_priv * priv, u32 status); 2199 char *name; 2200 }; 2201 #else 2202 #define IPW2100_HANDLER(v, f) { v, f } 2203 struct ipw2100_status_indicator { 2204 int status; 2205 void (*cb) (struct ipw2100_priv * priv, u32 status); 2206 }; 2207 #endif /* CONFIG_IPW2100_DEBUG */ 2208 2209 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status) 2210 { 2211 IPW_DEBUG_SCAN("Scanning...\n"); 2212 priv->status |= STATUS_SCANNING; 2213 } 2214 2215 static const struct ipw2100_status_indicator status_handlers[] = { 2216 IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL), 2217 IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL), 2218 IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated), 2219 IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost), 2220 IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL), 2221 IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete), 2222 IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL), 2223 IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL), 2224 IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill), 2225 IPW2100_HANDLER(IPW_STATE_DISABLED, NULL), 2226 IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL), 2227 IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning), 2228 IPW2100_HANDLER(-1, NULL) 2229 }; 2230 2231 static void isr_status_change(struct ipw2100_priv *priv, int status) 2232 { 2233 int i; 2234 2235 if (status == IPW_STATE_SCANNING && 2236 priv->status & STATUS_ASSOCIATED && 2237 !(priv->status & STATUS_SCANNING)) { 2238 IPW_DEBUG_INFO("Scan detected while associated, with " 2239 "no scan request. Restarting firmware.\n"); 2240 2241 /* Wake up any sleeping jobs */ 2242 schedule_reset(priv); 2243 } 2244 2245 for (i = 0; status_handlers[i].status != -1; i++) { 2246 if (status == status_handlers[i].status) { 2247 IPW_DEBUG_NOTIF("Status change: %s\n", 2248 status_handlers[i].name); 2249 if (status_handlers[i].cb) 2250 status_handlers[i].cb(priv, status); 2251 priv->wstats.status = status; 2252 return; 2253 } 2254 } 2255 2256 IPW_DEBUG_NOTIF("unknown status received: %04x\n", status); 2257 } 2258 2259 static void isr_rx_complete_command(struct ipw2100_priv *priv, 2260 struct ipw2100_cmd_header *cmd) 2261 { 2262 #ifdef CONFIG_IPW2100_DEBUG 2263 if (cmd->host_command_reg < ARRAY_SIZE(command_types)) { 2264 IPW_DEBUG_HC("Command completed '%s (%d)'\n", 2265 command_types[cmd->host_command_reg], 2266 cmd->host_command_reg); 2267 } 2268 #endif 2269 if (cmd->host_command_reg == HOST_COMPLETE) 2270 priv->status |= STATUS_ENABLED; 2271 2272 if (cmd->host_command_reg == CARD_DISABLE) 2273 priv->status &= ~STATUS_ENABLED; 2274 2275 priv->status &= ~STATUS_CMD_ACTIVE; 2276 2277 wake_up_interruptible(&priv->wait_command_queue); 2278 } 2279 2280 #ifdef CONFIG_IPW2100_DEBUG 2281 static const char *frame_types[] = { 2282 "COMMAND_STATUS_VAL", 2283 "STATUS_CHANGE_VAL", 2284 "P80211_DATA_VAL", 2285 "P8023_DATA_VAL", 2286 "HOST_NOTIFICATION_VAL" 2287 }; 2288 #endif 2289 2290 static int ipw2100_alloc_skb(struct ipw2100_priv *priv, 2291 struct ipw2100_rx_packet *packet) 2292 { 2293 packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx)); 2294 if (!packet->skb) 2295 return -ENOMEM; 2296 2297 packet->rxp = (struct ipw2100_rx *)packet->skb->data; 2298 packet->dma_addr = dma_map_single(&priv->pci_dev->dev, 2299 packet->skb->data, 2300 sizeof(struct ipw2100_rx), 2301 DMA_FROM_DEVICE); 2302 if (dma_mapping_error(&priv->pci_dev->dev, packet->dma_addr)) { 2303 dev_kfree_skb(packet->skb); 2304 return -ENOMEM; 2305 } 2306 2307 return 0; 2308 } 2309 2310 #define SEARCH_ERROR 0xffffffff 2311 #define SEARCH_FAIL 0xfffffffe 2312 #define SEARCH_SUCCESS 0xfffffff0 2313 #define SEARCH_DISCARD 0 2314 #define SEARCH_SNAPSHOT 1 2315 2316 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff)) 2317 static void ipw2100_snapshot_free(struct ipw2100_priv *priv) 2318 { 2319 int i; 2320 if (!priv->snapshot[0]) 2321 return; 2322 for (i = 0; i < 0x30; i++) 2323 kfree(priv->snapshot[i]); 2324 priv->snapshot[0] = NULL; 2325 } 2326 2327 #ifdef IPW2100_DEBUG_C3 2328 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv) 2329 { 2330 int i; 2331 if (priv->snapshot[0]) 2332 return 1; 2333 for (i = 0; i < 0x30; i++) { 2334 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC); 2335 if (!priv->snapshot[i]) { 2336 IPW_DEBUG_INFO("%s: Error allocating snapshot " 2337 "buffer %d\n", priv->net_dev->name, i); 2338 while (i > 0) 2339 kfree(priv->snapshot[--i]); 2340 priv->snapshot[0] = NULL; 2341 return 0; 2342 } 2343 } 2344 2345 return 1; 2346 } 2347 2348 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf, 2349 size_t len, int mode) 2350 { 2351 u32 i, j; 2352 u32 tmp; 2353 u8 *s, *d; 2354 u32 ret; 2355 2356 s = in_buf; 2357 if (mode == SEARCH_SNAPSHOT) { 2358 if (!ipw2100_snapshot_alloc(priv)) 2359 mode = SEARCH_DISCARD; 2360 } 2361 2362 for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) { 2363 read_nic_dword(priv->net_dev, i, &tmp); 2364 if (mode == SEARCH_SNAPSHOT) 2365 *(u32 *) SNAPSHOT_ADDR(i) = tmp; 2366 if (ret == SEARCH_FAIL) { 2367 d = (u8 *) & tmp; 2368 for (j = 0; j < 4; j++) { 2369 if (*s != *d) { 2370 s = in_buf; 2371 continue; 2372 } 2373 2374 s++; 2375 d++; 2376 2377 if ((s - in_buf) == len) 2378 ret = (i + j) - len + 1; 2379 } 2380 } else if (mode == SEARCH_DISCARD) 2381 return ret; 2382 } 2383 2384 return ret; 2385 } 2386 #endif 2387 2388 /* 2389 * 2390 * 0) Disconnect the SKB from the firmware (just unmap) 2391 * 1) Pack the ETH header into the SKB 2392 * 2) Pass the SKB to the network stack 2393 * 2394 * When packet is provided by the firmware, it contains the following: 2395 * 2396 * . libipw_hdr 2397 * . libipw_snap_hdr 2398 * 2399 * The size of the constructed ethernet 2400 * 2401 */ 2402 #ifdef IPW2100_RX_DEBUG 2403 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH]; 2404 #endif 2405 2406 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i) 2407 { 2408 #ifdef IPW2100_DEBUG_C3 2409 struct ipw2100_status *status = &priv->status_queue.drv[i]; 2410 u32 match, reg; 2411 int j; 2412 #endif 2413 2414 IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n", 2415 i * sizeof(struct ipw2100_status)); 2416 2417 #ifdef IPW2100_DEBUG_C3 2418 /* Halt the firmware so we can get a good image */ 2419 write_register(priv->net_dev, IPW_REG_RESET_REG, 2420 IPW_AUX_HOST_RESET_REG_STOP_MASTER); 2421 j = 5; 2422 do { 2423 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY); 2424 read_register(priv->net_dev, IPW_REG_RESET_REG, ®); 2425 2426 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED) 2427 break; 2428 } while (j--); 2429 2430 match = ipw2100_match_buf(priv, (u8 *) status, 2431 sizeof(struct ipw2100_status), 2432 SEARCH_SNAPSHOT); 2433 if (match < SEARCH_SUCCESS) 2434 IPW_DEBUG_INFO("%s: DMA status match in Firmware at " 2435 "offset 0x%06X, length %d:\n", 2436 priv->net_dev->name, match, 2437 sizeof(struct ipw2100_status)); 2438 else 2439 IPW_DEBUG_INFO("%s: No DMA status match in " 2440 "Firmware.\n", priv->net_dev->name); 2441 2442 printk_buf((u8 *) priv->status_queue.drv, 2443 sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH); 2444 #endif 2445 2446 priv->fatal_error = IPW2100_ERR_C3_CORRUPTION; 2447 priv->net_dev->stats.rx_errors++; 2448 schedule_reset(priv); 2449 } 2450 2451 static void isr_rx(struct ipw2100_priv *priv, int i, 2452 struct libipw_rx_stats *stats) 2453 { 2454 struct net_device *dev = priv->net_dev; 2455 struct ipw2100_status *status = &priv->status_queue.drv[i]; 2456 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i]; 2457 2458 IPW_DEBUG_RX("Handler...\n"); 2459 2460 if (unlikely(status->frame_size > skb_tailroom(packet->skb))) { 2461 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!" 2462 " Dropping.\n", 2463 dev->name, 2464 status->frame_size, skb_tailroom(packet->skb)); 2465 dev->stats.rx_errors++; 2466 return; 2467 } 2468 2469 if (unlikely(!netif_running(dev))) { 2470 dev->stats.rx_errors++; 2471 priv->wstats.discard.misc++; 2472 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n"); 2473 return; 2474 } 2475 2476 if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR && 2477 !(priv->status & STATUS_ASSOCIATED))) { 2478 IPW_DEBUG_DROP("Dropping packet while not associated.\n"); 2479 priv->wstats.discard.misc++; 2480 return; 2481 } 2482 2483 dma_unmap_single(&priv->pci_dev->dev, packet->dma_addr, 2484 sizeof(struct ipw2100_rx), DMA_FROM_DEVICE); 2485 2486 skb_put(packet->skb, status->frame_size); 2487 2488 #ifdef IPW2100_RX_DEBUG 2489 /* Make a copy of the frame so we can dump it to the logs if 2490 * libipw_rx fails */ 2491 skb_copy_from_linear_data(packet->skb, packet_data, 2492 min_t(u32, status->frame_size, 2493 IPW_RX_NIC_BUFFER_LENGTH)); 2494 #endif 2495 2496 if (!libipw_rx(priv->ieee, packet->skb, stats)) { 2497 #ifdef IPW2100_RX_DEBUG 2498 IPW_DEBUG_DROP("%s: Non consumed packet:\n", 2499 dev->name); 2500 printk_buf(IPW_DL_DROP, packet_data, status->frame_size); 2501 #endif 2502 dev->stats.rx_errors++; 2503 2504 /* libipw_rx failed, so it didn't free the SKB */ 2505 dev_kfree_skb_any(packet->skb); 2506 packet->skb = NULL; 2507 } 2508 2509 /* We need to allocate a new SKB and attach it to the RDB. */ 2510 if (unlikely(ipw2100_alloc_skb(priv, packet))) { 2511 printk(KERN_WARNING DRV_NAME ": " 2512 "%s: Unable to allocate SKB onto RBD ring - disabling " 2513 "adapter.\n", dev->name); 2514 /* TODO: schedule adapter shutdown */ 2515 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n"); 2516 } 2517 2518 /* Update the RDB entry */ 2519 priv->rx_queue.drv[i].host_addr = packet->dma_addr; 2520 } 2521 2522 #ifdef CONFIG_IPW2100_MONITOR 2523 2524 static void isr_rx_monitor(struct ipw2100_priv *priv, int i, 2525 struct libipw_rx_stats *stats) 2526 { 2527 struct net_device *dev = priv->net_dev; 2528 struct ipw2100_status *status = &priv->status_queue.drv[i]; 2529 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i]; 2530 2531 /* Magic struct that slots into the radiotap header -- no reason 2532 * to build this manually element by element, we can write it much 2533 * more efficiently than we can parse it. ORDER MATTERS HERE */ 2534 struct ipw_rt_hdr { 2535 struct ieee80211_radiotap_header rt_hdr; 2536 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */ 2537 } *ipw_rt; 2538 2539 IPW_DEBUG_RX("Handler...\n"); 2540 2541 if (unlikely(status->frame_size > skb_tailroom(packet->skb) - 2542 sizeof(struct ipw_rt_hdr))) { 2543 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!" 2544 " Dropping.\n", 2545 dev->name, 2546 status->frame_size, 2547 skb_tailroom(packet->skb)); 2548 dev->stats.rx_errors++; 2549 return; 2550 } 2551 2552 if (unlikely(!netif_running(dev))) { 2553 dev->stats.rx_errors++; 2554 priv->wstats.discard.misc++; 2555 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n"); 2556 return; 2557 } 2558 2559 if (unlikely(priv->config & CFG_CRC_CHECK && 2560 status->flags & IPW_STATUS_FLAG_CRC_ERROR)) { 2561 IPW_DEBUG_RX("CRC error in packet. Dropping.\n"); 2562 dev->stats.rx_errors++; 2563 return; 2564 } 2565 2566 dma_unmap_single(&priv->pci_dev->dev, packet->dma_addr, 2567 sizeof(struct ipw2100_rx), DMA_FROM_DEVICE); 2568 memmove(packet->skb->data + sizeof(struct ipw_rt_hdr), 2569 packet->skb->data, status->frame_size); 2570 2571 ipw_rt = (struct ipw_rt_hdr *) packet->skb->data; 2572 2573 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION; 2574 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */ 2575 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */ 2576 2577 ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 2578 2579 ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM; 2580 2581 skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr)); 2582 2583 if (!libipw_rx(priv->ieee, packet->skb, stats)) { 2584 dev->stats.rx_errors++; 2585 2586 /* libipw_rx failed, so it didn't free the SKB */ 2587 dev_kfree_skb_any(packet->skb); 2588 packet->skb = NULL; 2589 } 2590 2591 /* We need to allocate a new SKB and attach it to the RDB. */ 2592 if (unlikely(ipw2100_alloc_skb(priv, packet))) { 2593 IPW_DEBUG_WARNING( 2594 "%s: Unable to allocate SKB onto RBD ring - disabling " 2595 "adapter.\n", dev->name); 2596 /* TODO: schedule adapter shutdown */ 2597 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n"); 2598 } 2599 2600 /* Update the RDB entry */ 2601 priv->rx_queue.drv[i].host_addr = packet->dma_addr; 2602 } 2603 2604 #endif 2605 2606 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i) 2607 { 2608 struct ipw2100_status *status = &priv->status_queue.drv[i]; 2609 struct ipw2100_rx *u = priv->rx_buffers[i].rxp; 2610 u16 frame_type = status->status_fields & STATUS_TYPE_MASK; 2611 2612 switch (frame_type) { 2613 case COMMAND_STATUS_VAL: 2614 return (status->frame_size != sizeof(u->rx_data.command)); 2615 case STATUS_CHANGE_VAL: 2616 return (status->frame_size != sizeof(u->rx_data.status)); 2617 case HOST_NOTIFICATION_VAL: 2618 return (status->frame_size < sizeof(u->rx_data.notification)); 2619 case P80211_DATA_VAL: 2620 case P8023_DATA_VAL: 2621 #ifdef CONFIG_IPW2100_MONITOR 2622 return 0; 2623 #else 2624 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) { 2625 case IEEE80211_FTYPE_MGMT: 2626 case IEEE80211_FTYPE_CTL: 2627 return 0; 2628 case IEEE80211_FTYPE_DATA: 2629 return (status->frame_size > 2630 IPW_MAX_802_11_PAYLOAD_LENGTH); 2631 } 2632 #endif 2633 } 2634 2635 return 1; 2636 } 2637 2638 /* 2639 * ipw2100 interrupts are disabled at this point, and the ISR 2640 * is the only code that calls this method. So, we do not need 2641 * to play with any locks. 2642 * 2643 * RX Queue works as follows: 2644 * 2645 * Read index - firmware places packet in entry identified by the 2646 * Read index and advances Read index. In this manner, 2647 * Read index will always point to the next packet to 2648 * be filled--but not yet valid. 2649 * 2650 * Write index - driver fills this entry with an unused RBD entry. 2651 * This entry has not filled by the firmware yet. 2652 * 2653 * In between the W and R indexes are the RBDs that have been received 2654 * but not yet processed. 2655 * 2656 * The process of handling packets will start at WRITE + 1 and advance 2657 * until it reaches the READ index. 2658 * 2659 * The WRITE index is cached in the variable 'priv->rx_queue.next'. 2660 * 2661 */ 2662 static void __ipw2100_rx_process(struct ipw2100_priv *priv) 2663 { 2664 struct ipw2100_bd_queue *rxq = &priv->rx_queue; 2665 struct ipw2100_status_queue *sq = &priv->status_queue; 2666 struct ipw2100_rx_packet *packet; 2667 u16 frame_type; 2668 u32 r, w, i, s; 2669 struct ipw2100_rx *u; 2670 struct libipw_rx_stats stats = { 2671 .mac_time = jiffies, 2672 }; 2673 2674 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r); 2675 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w); 2676 2677 if (r >= rxq->entries) { 2678 IPW_DEBUG_RX("exit - bad read index\n"); 2679 return; 2680 } 2681 2682 i = (rxq->next + 1) % rxq->entries; 2683 s = i; 2684 while (i != r) { 2685 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n", 2686 r, rxq->next, i); */ 2687 2688 packet = &priv->rx_buffers[i]; 2689 2690 /* Sync the DMA for the RX buffer so CPU is sure to get 2691 * the correct values */ 2692 dma_sync_single_for_cpu(&priv->pci_dev->dev, packet->dma_addr, 2693 sizeof(struct ipw2100_rx), 2694 DMA_FROM_DEVICE); 2695 2696 if (unlikely(ipw2100_corruption_check(priv, i))) { 2697 ipw2100_corruption_detected(priv, i); 2698 goto increment; 2699 } 2700 2701 u = packet->rxp; 2702 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK; 2703 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM; 2704 stats.len = sq->drv[i].frame_size; 2705 2706 stats.mask = 0; 2707 if (stats.rssi != 0) 2708 stats.mask |= LIBIPW_STATMASK_RSSI; 2709 stats.freq = LIBIPW_24GHZ_BAND; 2710 2711 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n", 2712 priv->net_dev->name, frame_types[frame_type], 2713 stats.len); 2714 2715 switch (frame_type) { 2716 case COMMAND_STATUS_VAL: 2717 /* Reset Rx watchdog */ 2718 isr_rx_complete_command(priv, &u->rx_data.command); 2719 break; 2720 2721 case STATUS_CHANGE_VAL: 2722 isr_status_change(priv, u->rx_data.status); 2723 break; 2724 2725 case P80211_DATA_VAL: 2726 case P8023_DATA_VAL: 2727 #ifdef CONFIG_IPW2100_MONITOR 2728 if (priv->ieee->iw_mode == IW_MODE_MONITOR) { 2729 isr_rx_monitor(priv, i, &stats); 2730 break; 2731 } 2732 #endif 2733 if (stats.len < sizeof(struct libipw_hdr_3addr)) 2734 break; 2735 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) { 2736 case IEEE80211_FTYPE_MGMT: 2737 libipw_rx_mgt(priv->ieee, 2738 &u->rx_data.header, &stats); 2739 break; 2740 2741 case IEEE80211_FTYPE_CTL: 2742 break; 2743 2744 case IEEE80211_FTYPE_DATA: 2745 isr_rx(priv, i, &stats); 2746 break; 2747 2748 } 2749 break; 2750 } 2751 2752 increment: 2753 /* clear status field associated with this RBD */ 2754 rxq->drv[i].status.info.field = 0; 2755 2756 i = (i + 1) % rxq->entries; 2757 } 2758 2759 if (i != s) { 2760 /* backtrack one entry, wrapping to end if at 0 */ 2761 rxq->next = (i ? i : rxq->entries) - 1; 2762 2763 write_register(priv->net_dev, 2764 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next); 2765 } 2766 } 2767 2768 /* 2769 * __ipw2100_tx_process 2770 * 2771 * This routine will determine whether the next packet on 2772 * the fw_pend_list has been processed by the firmware yet. 2773 * 2774 * If not, then it does nothing and returns. 2775 * 2776 * If so, then it removes the item from the fw_pend_list, frees 2777 * any associated storage, and places the item back on the 2778 * free list of its source (either msg_free_list or tx_free_list) 2779 * 2780 * TX Queue works as follows: 2781 * 2782 * Read index - points to the next TBD that the firmware will 2783 * process. The firmware will read the data, and once 2784 * done processing, it will advance the Read index. 2785 * 2786 * Write index - driver fills this entry with an constructed TBD 2787 * entry. The Write index is not advanced until the 2788 * packet has been configured. 2789 * 2790 * In between the W and R indexes are the TBDs that have NOT been 2791 * processed. Lagging behind the R index are packets that have 2792 * been processed but have not been freed by the driver. 2793 * 2794 * In order to free old storage, an internal index will be maintained 2795 * that points to the next packet to be freed. When all used 2796 * packets have been freed, the oldest index will be the same as the 2797 * firmware's read index. 2798 * 2799 * The OLDEST index is cached in the variable 'priv->tx_queue.oldest' 2800 * 2801 * Because the TBD structure can not contain arbitrary data, the 2802 * driver must keep an internal queue of cached allocations such that 2803 * it can put that data back into the tx_free_list and msg_free_list 2804 * for use by future command and data packets. 2805 * 2806 */ 2807 static int __ipw2100_tx_process(struct ipw2100_priv *priv) 2808 { 2809 struct ipw2100_bd_queue *txq = &priv->tx_queue; 2810 struct ipw2100_bd *tbd; 2811 struct list_head *element; 2812 struct ipw2100_tx_packet *packet; 2813 int descriptors_used; 2814 int e, i; 2815 u32 r, w, frag_num = 0; 2816 2817 if (list_empty(&priv->fw_pend_list)) 2818 return 0; 2819 2820 element = priv->fw_pend_list.next; 2821 2822 packet = list_entry(element, struct ipw2100_tx_packet, list); 2823 tbd = &txq->drv[packet->index]; 2824 2825 /* Determine how many TBD entries must be finished... */ 2826 switch (packet->type) { 2827 case COMMAND: 2828 /* COMMAND uses only one slot; don't advance */ 2829 descriptors_used = 1; 2830 e = txq->oldest; 2831 break; 2832 2833 case DATA: 2834 /* DATA uses two slots; advance and loop position. */ 2835 descriptors_used = tbd->num_fragments; 2836 frag_num = tbd->num_fragments - 1; 2837 e = txq->oldest + frag_num; 2838 e %= txq->entries; 2839 break; 2840 2841 default: 2842 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n", 2843 priv->net_dev->name); 2844 return 0; 2845 } 2846 2847 /* if the last TBD is not done by NIC yet, then packet is 2848 * not ready to be released. 2849 * 2850 */ 2851 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX, 2852 &r); 2853 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX, 2854 &w); 2855 if (w != txq->next) 2856 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n", 2857 priv->net_dev->name); 2858 2859 /* 2860 * txq->next is the index of the last packet written txq->oldest is 2861 * the index of the r is the index of the next packet to be read by 2862 * firmware 2863 */ 2864 2865 /* 2866 * Quick graphic to help you visualize the following 2867 * if / else statement 2868 * 2869 * ===>| s---->|=============== 2870 * e>| 2871 * | a | b | c | d | e | f | g | h | i | j | k | l 2872 * r---->| 2873 * w 2874 * 2875 * w - updated by driver 2876 * r - updated by firmware 2877 * s - start of oldest BD entry (txq->oldest) 2878 * e - end of oldest BD entry 2879 * 2880 */ 2881 if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) { 2882 IPW_DEBUG_TX("exit - no processed packets ready to release.\n"); 2883 return 0; 2884 } 2885 2886 list_del(element); 2887 DEC_STAT(&priv->fw_pend_stat); 2888 2889 #ifdef CONFIG_IPW2100_DEBUG 2890 { 2891 i = txq->oldest; 2892 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i, 2893 &txq->drv[i], 2894 (u32) (txq->nic + i * sizeof(struct ipw2100_bd)), 2895 txq->drv[i].host_addr, txq->drv[i].buf_length); 2896 2897 if (packet->type == DATA) { 2898 i = (i + 1) % txq->entries; 2899 2900 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i, 2901 &txq->drv[i], 2902 (u32) (txq->nic + i * 2903 sizeof(struct ipw2100_bd)), 2904 (u32) txq->drv[i].host_addr, 2905 txq->drv[i].buf_length); 2906 } 2907 } 2908 #endif 2909 2910 switch (packet->type) { 2911 case DATA: 2912 if (txq->drv[txq->oldest].status.info.fields.txType != 0) 2913 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. " 2914 "Expecting DATA TBD but pulled " 2915 "something else: ids %d=%d.\n", 2916 priv->net_dev->name, txq->oldest, packet->index); 2917 2918 /* DATA packet; we have to unmap and free the SKB */ 2919 for (i = 0; i < frag_num; i++) { 2920 tbd = &txq->drv[(packet->index + 1 + i) % txq->entries]; 2921 2922 IPW_DEBUG_TX("TX%d P=%08x L=%d\n", 2923 (packet->index + 1 + i) % txq->entries, 2924 tbd->host_addr, tbd->buf_length); 2925 2926 dma_unmap_single(&priv->pci_dev->dev, tbd->host_addr, 2927 tbd->buf_length, DMA_TO_DEVICE); 2928 } 2929 2930 libipw_txb_free(packet->info.d_struct.txb); 2931 packet->info.d_struct.txb = NULL; 2932 2933 list_add_tail(element, &priv->tx_free_list); 2934 INC_STAT(&priv->tx_free_stat); 2935 2936 /* We have a free slot in the Tx queue, so wake up the 2937 * transmit layer if it is stopped. */ 2938 if (priv->status & STATUS_ASSOCIATED) 2939 netif_wake_queue(priv->net_dev); 2940 2941 /* A packet was processed by the hardware, so update the 2942 * watchdog */ 2943 netif_trans_update(priv->net_dev); 2944 2945 break; 2946 2947 case COMMAND: 2948 if (txq->drv[txq->oldest].status.info.fields.txType != 1) 2949 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. " 2950 "Expecting COMMAND TBD but pulled " 2951 "something else: ids %d=%d.\n", 2952 priv->net_dev->name, txq->oldest, packet->index); 2953 2954 #ifdef CONFIG_IPW2100_DEBUG 2955 if (packet->info.c_struct.cmd->host_command_reg < 2956 ARRAY_SIZE(command_types)) 2957 IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n", 2958 command_types[packet->info.c_struct.cmd-> 2959 host_command_reg], 2960 packet->info.c_struct.cmd-> 2961 host_command_reg, 2962 packet->info.c_struct.cmd->cmd_status_reg); 2963 #endif 2964 2965 list_add_tail(element, &priv->msg_free_list); 2966 INC_STAT(&priv->msg_free_stat); 2967 break; 2968 } 2969 2970 /* advance oldest used TBD pointer to start of next entry */ 2971 txq->oldest = (e + 1) % txq->entries; 2972 /* increase available TBDs number */ 2973 txq->available += descriptors_used; 2974 SET_STAT(&priv->txq_stat, txq->available); 2975 2976 IPW_DEBUG_TX("packet latency (send to process) %ld jiffies\n", 2977 jiffies - packet->jiffy_start); 2978 2979 return (!list_empty(&priv->fw_pend_list)); 2980 } 2981 2982 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv) 2983 { 2984 int i = 0; 2985 2986 while (__ipw2100_tx_process(priv) && i < 200) 2987 i++; 2988 2989 if (i == 200) { 2990 printk(KERN_WARNING DRV_NAME ": " 2991 "%s: Driver is running slow (%d iters).\n", 2992 priv->net_dev->name, i); 2993 } 2994 } 2995 2996 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv) 2997 { 2998 struct list_head *element; 2999 struct ipw2100_tx_packet *packet; 3000 struct ipw2100_bd_queue *txq = &priv->tx_queue; 3001 struct ipw2100_bd *tbd; 3002 int next = txq->next; 3003 3004 while (!list_empty(&priv->msg_pend_list)) { 3005 /* if there isn't enough space in TBD queue, then 3006 * don't stuff a new one in. 3007 * NOTE: 3 are needed as a command will take one, 3008 * and there is a minimum of 2 that must be 3009 * maintained between the r and w indexes 3010 */ 3011 if (txq->available <= 3) { 3012 IPW_DEBUG_TX("no room in tx_queue\n"); 3013 break; 3014 } 3015 3016 element = priv->msg_pend_list.next; 3017 list_del(element); 3018 DEC_STAT(&priv->msg_pend_stat); 3019 3020 packet = list_entry(element, struct ipw2100_tx_packet, list); 3021 3022 IPW_DEBUG_TX("using TBD at virt=%p, phys=%04X\n", 3023 &txq->drv[txq->next], 3024 (u32) (txq->nic + txq->next * 3025 sizeof(struct ipw2100_bd))); 3026 3027 packet->index = txq->next; 3028 3029 tbd = &txq->drv[txq->next]; 3030 3031 /* initialize TBD */ 3032 tbd->host_addr = packet->info.c_struct.cmd_phys; 3033 tbd->buf_length = sizeof(struct ipw2100_cmd_header); 3034 /* not marking number of fragments causes problems 3035 * with f/w debug version */ 3036 tbd->num_fragments = 1; 3037 tbd->status.info.field = 3038 IPW_BD_STATUS_TX_FRAME_COMMAND | 3039 IPW_BD_STATUS_TX_INTERRUPT_ENABLE; 3040 3041 /* update TBD queue counters */ 3042 txq->next++; 3043 txq->next %= txq->entries; 3044 txq->available--; 3045 DEC_STAT(&priv->txq_stat); 3046 3047 list_add_tail(element, &priv->fw_pend_list); 3048 INC_STAT(&priv->fw_pend_stat); 3049 } 3050 3051 if (txq->next != next) { 3052 /* kick off the DMA by notifying firmware the 3053 * write index has moved; make sure TBD stores are sync'd */ 3054 wmb(); 3055 write_register(priv->net_dev, 3056 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX, 3057 txq->next); 3058 } 3059 } 3060 3061 /* 3062 * ipw2100_tx_send_data 3063 * 3064 */ 3065 static void ipw2100_tx_send_data(struct ipw2100_priv *priv) 3066 { 3067 struct list_head *element; 3068 struct ipw2100_tx_packet *packet; 3069 struct ipw2100_bd_queue *txq = &priv->tx_queue; 3070 struct ipw2100_bd *tbd; 3071 int next = txq->next; 3072 int i = 0; 3073 struct ipw2100_data_header *ipw_hdr; 3074 struct libipw_hdr_3addr *hdr; 3075 3076 while (!list_empty(&priv->tx_pend_list)) { 3077 /* if there isn't enough space in TBD queue, then 3078 * don't stuff a new one in. 3079 * NOTE: 4 are needed as a data will take two, 3080 * and there is a minimum of 2 that must be 3081 * maintained between the r and w indexes 3082 */ 3083 element = priv->tx_pend_list.next; 3084 packet = list_entry(element, struct ipw2100_tx_packet, list); 3085 3086 if (unlikely(1 + packet->info.d_struct.txb->nr_frags > 3087 IPW_MAX_BDS)) { 3088 /* TODO: Support merging buffers if more than 3089 * IPW_MAX_BDS are used */ 3090 IPW_DEBUG_INFO("%s: Maximum BD threshold exceeded. " 3091 "Increase fragmentation level.\n", 3092 priv->net_dev->name); 3093 } 3094 3095 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) { 3096 IPW_DEBUG_TX("no room in tx_queue\n"); 3097 break; 3098 } 3099 3100 list_del(element); 3101 DEC_STAT(&priv->tx_pend_stat); 3102 3103 tbd = &txq->drv[txq->next]; 3104 3105 packet->index = txq->next; 3106 3107 ipw_hdr = packet->info.d_struct.data; 3108 hdr = (struct libipw_hdr_3addr *)packet->info.d_struct.txb-> 3109 fragments[0]->data; 3110 3111 if (priv->ieee->iw_mode == IW_MODE_INFRA) { 3112 /* To DS: Addr1 = BSSID, Addr2 = SA, 3113 Addr3 = DA */ 3114 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN); 3115 memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN); 3116 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) { 3117 /* not From/To DS: Addr1 = DA, Addr2 = SA, 3118 Addr3 = BSSID */ 3119 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN); 3120 memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN); 3121 } 3122 3123 ipw_hdr->host_command_reg = SEND; 3124 ipw_hdr->host_command_reg1 = 0; 3125 3126 /* For now we only support host based encryption */ 3127 ipw_hdr->needs_encryption = 0; 3128 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted; 3129 if (packet->info.d_struct.txb->nr_frags > 1) 3130 ipw_hdr->fragment_size = 3131 packet->info.d_struct.txb->frag_size - 3132 LIBIPW_3ADDR_LEN; 3133 else 3134 ipw_hdr->fragment_size = 0; 3135 3136 tbd->host_addr = packet->info.d_struct.data_phys; 3137 tbd->buf_length = sizeof(struct ipw2100_data_header); 3138 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags; 3139 tbd->status.info.field = 3140 IPW_BD_STATUS_TX_FRAME_802_3 | 3141 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT; 3142 txq->next++; 3143 txq->next %= txq->entries; 3144 3145 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n", 3146 packet->index, tbd->host_addr, tbd->buf_length); 3147 #ifdef CONFIG_IPW2100_DEBUG 3148 if (packet->info.d_struct.txb->nr_frags > 1) 3149 IPW_DEBUG_FRAG("fragment Tx: %d frames\n", 3150 packet->info.d_struct.txb->nr_frags); 3151 #endif 3152 3153 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) { 3154 tbd = &txq->drv[txq->next]; 3155 if (i == packet->info.d_struct.txb->nr_frags - 1) 3156 tbd->status.info.field = 3157 IPW_BD_STATUS_TX_FRAME_802_3 | 3158 IPW_BD_STATUS_TX_INTERRUPT_ENABLE; 3159 else 3160 tbd->status.info.field = 3161 IPW_BD_STATUS_TX_FRAME_802_3 | 3162 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT; 3163 3164 tbd->buf_length = packet->info.d_struct.txb-> 3165 fragments[i]->len - LIBIPW_3ADDR_LEN; 3166 3167 tbd->host_addr = dma_map_single(&priv->pci_dev->dev, 3168 packet->info.d_struct. 3169 txb->fragments[i]->data + 3170 LIBIPW_3ADDR_LEN, 3171 tbd->buf_length, 3172 DMA_TO_DEVICE); 3173 if (dma_mapping_error(&priv->pci_dev->dev, tbd->host_addr)) { 3174 IPW_DEBUG_TX("dma mapping error\n"); 3175 break; 3176 } 3177 3178 IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n", 3179 txq->next, tbd->host_addr, 3180 tbd->buf_length); 3181 3182 dma_sync_single_for_device(&priv->pci_dev->dev, 3183 tbd->host_addr, 3184 tbd->buf_length, 3185 DMA_TO_DEVICE); 3186 3187 txq->next++; 3188 txq->next %= txq->entries; 3189 } 3190 3191 txq->available -= 1 + packet->info.d_struct.txb->nr_frags; 3192 SET_STAT(&priv->txq_stat, txq->available); 3193 3194 list_add_tail(element, &priv->fw_pend_list); 3195 INC_STAT(&priv->fw_pend_stat); 3196 } 3197 3198 if (txq->next != next) { 3199 /* kick off the DMA by notifying firmware the 3200 * write index has moved; make sure TBD stores are sync'd */ 3201 write_register(priv->net_dev, 3202 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX, 3203 txq->next); 3204 } 3205 } 3206 3207 static void ipw2100_irq_tasklet(unsigned long data) 3208 { 3209 struct ipw2100_priv *priv = (struct ipw2100_priv *)data; 3210 struct net_device *dev = priv->net_dev; 3211 unsigned long flags; 3212 u32 inta, tmp; 3213 3214 spin_lock_irqsave(&priv->low_lock, flags); 3215 ipw2100_disable_interrupts(priv); 3216 3217 read_register(dev, IPW_REG_INTA, &inta); 3218 3219 IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n", 3220 (unsigned long)inta & IPW_INTERRUPT_MASK); 3221 3222 priv->in_isr++; 3223 priv->interrupts++; 3224 3225 /* We do not loop and keep polling for more interrupts as this 3226 * is frowned upon and doesn't play nicely with other potentially 3227 * chained IRQs */ 3228 IPW_DEBUG_ISR("INTA: 0x%08lX\n", 3229 (unsigned long)inta & IPW_INTERRUPT_MASK); 3230 3231 if (inta & IPW2100_INTA_FATAL_ERROR) { 3232 printk(KERN_WARNING DRV_NAME 3233 ": Fatal interrupt. Scheduling firmware restart.\n"); 3234 priv->inta_other++; 3235 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR); 3236 3237 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error); 3238 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n", 3239 priv->net_dev->name, priv->fatal_error); 3240 3241 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp); 3242 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n", 3243 priv->net_dev->name, tmp); 3244 3245 /* Wake up any sleeping jobs */ 3246 schedule_reset(priv); 3247 } 3248 3249 if (inta & IPW2100_INTA_PARITY_ERROR) { 3250 printk(KERN_ERR DRV_NAME 3251 ": ***** PARITY ERROR INTERRUPT !!!!\n"); 3252 priv->inta_other++; 3253 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR); 3254 } 3255 3256 if (inta & IPW2100_INTA_RX_TRANSFER) { 3257 IPW_DEBUG_ISR("RX interrupt\n"); 3258 3259 priv->rx_interrupts++; 3260 3261 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER); 3262 3263 __ipw2100_rx_process(priv); 3264 __ipw2100_tx_complete(priv); 3265 } 3266 3267 if (inta & IPW2100_INTA_TX_TRANSFER) { 3268 IPW_DEBUG_ISR("TX interrupt\n"); 3269 3270 priv->tx_interrupts++; 3271 3272 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER); 3273 3274 __ipw2100_tx_complete(priv); 3275 ipw2100_tx_send_commands(priv); 3276 ipw2100_tx_send_data(priv); 3277 } 3278 3279 if (inta & IPW2100_INTA_TX_COMPLETE) { 3280 IPW_DEBUG_ISR("TX complete\n"); 3281 priv->inta_other++; 3282 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE); 3283 3284 __ipw2100_tx_complete(priv); 3285 } 3286 3287 if (inta & IPW2100_INTA_EVENT_INTERRUPT) { 3288 /* ipw2100_handle_event(dev); */ 3289 priv->inta_other++; 3290 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT); 3291 } 3292 3293 if (inta & IPW2100_INTA_FW_INIT_DONE) { 3294 IPW_DEBUG_ISR("FW init done interrupt\n"); 3295 priv->inta_other++; 3296 3297 read_register(dev, IPW_REG_INTA, &tmp); 3298 if (tmp & (IPW2100_INTA_FATAL_ERROR | 3299 IPW2100_INTA_PARITY_ERROR)) { 3300 write_register(dev, IPW_REG_INTA, 3301 IPW2100_INTA_FATAL_ERROR | 3302 IPW2100_INTA_PARITY_ERROR); 3303 } 3304 3305 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE); 3306 } 3307 3308 if (inta & IPW2100_INTA_STATUS_CHANGE) { 3309 IPW_DEBUG_ISR("Status change interrupt\n"); 3310 priv->inta_other++; 3311 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE); 3312 } 3313 3314 if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) { 3315 IPW_DEBUG_ISR("slave host mode interrupt\n"); 3316 priv->inta_other++; 3317 write_register(dev, IPW_REG_INTA, 3318 IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE); 3319 } 3320 3321 priv->in_isr--; 3322 ipw2100_enable_interrupts(priv); 3323 3324 spin_unlock_irqrestore(&priv->low_lock, flags); 3325 3326 IPW_DEBUG_ISR("exit\n"); 3327 } 3328 3329 static irqreturn_t ipw2100_interrupt(int irq, void *data) 3330 { 3331 struct ipw2100_priv *priv = data; 3332 u32 inta, inta_mask; 3333 3334 if (!data) 3335 return IRQ_NONE; 3336 3337 spin_lock(&priv->low_lock); 3338 3339 /* We check to see if we should be ignoring interrupts before 3340 * we touch the hardware. During ucode load if we try and handle 3341 * an interrupt we can cause keyboard problems as well as cause 3342 * the ucode to fail to initialize */ 3343 if (!(priv->status & STATUS_INT_ENABLED)) { 3344 /* Shared IRQ */ 3345 goto none; 3346 } 3347 3348 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask); 3349 read_register(priv->net_dev, IPW_REG_INTA, &inta); 3350 3351 if (inta == 0xFFFFFFFF) { 3352 /* Hardware disappeared */ 3353 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n"); 3354 goto none; 3355 } 3356 3357 inta &= IPW_INTERRUPT_MASK; 3358 3359 if (!(inta & inta_mask)) { 3360 /* Shared interrupt */ 3361 goto none; 3362 } 3363 3364 /* We disable the hardware interrupt here just to prevent unneeded 3365 * calls to be made. We disable this again within the actual 3366 * work tasklet, so if another part of the code re-enables the 3367 * interrupt, that is fine */ 3368 ipw2100_disable_interrupts(priv); 3369 3370 tasklet_schedule(&priv->irq_tasklet); 3371 spin_unlock(&priv->low_lock); 3372 3373 return IRQ_HANDLED; 3374 none: 3375 spin_unlock(&priv->low_lock); 3376 return IRQ_NONE; 3377 } 3378 3379 static netdev_tx_t ipw2100_tx(struct libipw_txb *txb, 3380 struct net_device *dev, int pri) 3381 { 3382 struct ipw2100_priv *priv = libipw_priv(dev); 3383 struct list_head *element; 3384 struct ipw2100_tx_packet *packet; 3385 unsigned long flags; 3386 3387 spin_lock_irqsave(&priv->low_lock, flags); 3388 3389 if (!(priv->status & STATUS_ASSOCIATED)) { 3390 IPW_DEBUG_INFO("Can not transmit when not connected.\n"); 3391 priv->net_dev->stats.tx_carrier_errors++; 3392 netif_stop_queue(dev); 3393 goto fail_unlock; 3394 } 3395 3396 if (list_empty(&priv->tx_free_list)) 3397 goto fail_unlock; 3398 3399 element = priv->tx_free_list.next; 3400 packet = list_entry(element, struct ipw2100_tx_packet, list); 3401 3402 packet->info.d_struct.txb = txb; 3403 3404 IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len); 3405 printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len); 3406 3407 packet->jiffy_start = jiffies; 3408 3409 list_del(element); 3410 DEC_STAT(&priv->tx_free_stat); 3411 3412 list_add_tail(element, &priv->tx_pend_list); 3413 INC_STAT(&priv->tx_pend_stat); 3414 3415 ipw2100_tx_send_data(priv); 3416 3417 spin_unlock_irqrestore(&priv->low_lock, flags); 3418 return NETDEV_TX_OK; 3419 3420 fail_unlock: 3421 netif_stop_queue(dev); 3422 spin_unlock_irqrestore(&priv->low_lock, flags); 3423 return NETDEV_TX_BUSY; 3424 } 3425 3426 static int ipw2100_msg_allocate(struct ipw2100_priv *priv) 3427 { 3428 int i, j, err = -EINVAL; 3429 void *v; 3430 dma_addr_t p; 3431 3432 priv->msg_buffers = 3433 kmalloc_array(IPW_COMMAND_POOL_SIZE, 3434 sizeof(struct ipw2100_tx_packet), 3435 GFP_KERNEL); 3436 if (!priv->msg_buffers) 3437 return -ENOMEM; 3438 3439 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) { 3440 v = dma_alloc_coherent(&priv->pci_dev->dev, 3441 sizeof(struct ipw2100_cmd_header), &p, 3442 GFP_KERNEL); 3443 if (!v) { 3444 printk(KERN_ERR DRV_NAME ": " 3445 "%s: PCI alloc failed for msg " 3446 "buffers.\n", priv->net_dev->name); 3447 err = -ENOMEM; 3448 break; 3449 } 3450 3451 priv->msg_buffers[i].type = COMMAND; 3452 priv->msg_buffers[i].info.c_struct.cmd = 3453 (struct ipw2100_cmd_header *)v; 3454 priv->msg_buffers[i].info.c_struct.cmd_phys = p; 3455 } 3456 3457 if (i == IPW_COMMAND_POOL_SIZE) 3458 return 0; 3459 3460 for (j = 0; j < i; j++) { 3461 dma_free_coherent(&priv->pci_dev->dev, 3462 sizeof(struct ipw2100_cmd_header), 3463 priv->msg_buffers[j].info.c_struct.cmd, 3464 priv->msg_buffers[j].info.c_struct.cmd_phys); 3465 } 3466 3467 kfree(priv->msg_buffers); 3468 priv->msg_buffers = NULL; 3469 3470 return err; 3471 } 3472 3473 static int ipw2100_msg_initialize(struct ipw2100_priv *priv) 3474 { 3475 int i; 3476 3477 INIT_LIST_HEAD(&priv->msg_free_list); 3478 INIT_LIST_HEAD(&priv->msg_pend_list); 3479 3480 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) 3481 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list); 3482 SET_STAT(&priv->msg_free_stat, i); 3483 3484 return 0; 3485 } 3486 3487 static void ipw2100_msg_free(struct ipw2100_priv *priv) 3488 { 3489 int i; 3490 3491 if (!priv->msg_buffers) 3492 return; 3493 3494 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) { 3495 dma_free_coherent(&priv->pci_dev->dev, 3496 sizeof(struct ipw2100_cmd_header), 3497 priv->msg_buffers[i].info.c_struct.cmd, 3498 priv->msg_buffers[i].info.c_struct.cmd_phys); 3499 } 3500 3501 kfree(priv->msg_buffers); 3502 priv->msg_buffers = NULL; 3503 } 3504 3505 static ssize_t show_pci(struct device *d, struct device_attribute *attr, 3506 char *buf) 3507 { 3508 struct pci_dev *pci_dev = to_pci_dev(d); 3509 char *out = buf; 3510 int i, j; 3511 u32 val; 3512 3513 for (i = 0; i < 16; i++) { 3514 out += sprintf(out, "[%08X] ", i * 16); 3515 for (j = 0; j < 16; j += 4) { 3516 pci_read_config_dword(pci_dev, i * 16 + j, &val); 3517 out += sprintf(out, "%08X ", val); 3518 } 3519 out += sprintf(out, "\n"); 3520 } 3521 3522 return out - buf; 3523 } 3524 3525 static DEVICE_ATTR(pci, 0444, show_pci, NULL); 3526 3527 static ssize_t show_cfg(struct device *d, struct device_attribute *attr, 3528 char *buf) 3529 { 3530 struct ipw2100_priv *p = dev_get_drvdata(d); 3531 return sprintf(buf, "0x%08x\n", (int)p->config); 3532 } 3533 3534 static DEVICE_ATTR(cfg, 0444, show_cfg, NULL); 3535 3536 static ssize_t show_status(struct device *d, struct device_attribute *attr, 3537 char *buf) 3538 { 3539 struct ipw2100_priv *p = dev_get_drvdata(d); 3540 return sprintf(buf, "0x%08x\n", (int)p->status); 3541 } 3542 3543 static DEVICE_ATTR(status, 0444, show_status, NULL); 3544 3545 static ssize_t show_capability(struct device *d, struct device_attribute *attr, 3546 char *buf) 3547 { 3548 struct ipw2100_priv *p = dev_get_drvdata(d); 3549 return sprintf(buf, "0x%08x\n", (int)p->capability); 3550 } 3551 3552 static DEVICE_ATTR(capability, 0444, show_capability, NULL); 3553 3554 #define IPW2100_REG(x) { IPW_ ##x, #x } 3555 static const struct { 3556 u32 addr; 3557 const char *name; 3558 } hw_data[] = { 3559 IPW2100_REG(REG_GP_CNTRL), 3560 IPW2100_REG(REG_GPIO), 3561 IPW2100_REG(REG_INTA), 3562 IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),}; 3563 #define IPW2100_NIC(x, s) { x, #x, s } 3564 static const struct { 3565 u32 addr; 3566 const char *name; 3567 size_t size; 3568 } nic_data[] = { 3569 IPW2100_NIC(IPW2100_CONTROL_REG, 2), 3570 IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),}; 3571 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d } 3572 static const struct { 3573 u8 index; 3574 const char *name; 3575 const char *desc; 3576 } ord_data[] = { 3577 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"), 3578 IPW2100_ORD(STAT_TX_HOST_COMPLETE, 3579 "successful Host Tx's (MSDU)"), 3580 IPW2100_ORD(STAT_TX_DIR_DATA, 3581 "successful Directed Tx's (MSDU)"), 3582 IPW2100_ORD(STAT_TX_DIR_DATA1, 3583 "successful Directed Tx's (MSDU) @ 1MB"), 3584 IPW2100_ORD(STAT_TX_DIR_DATA2, 3585 "successful Directed Tx's (MSDU) @ 2MB"), 3586 IPW2100_ORD(STAT_TX_DIR_DATA5_5, 3587 "successful Directed Tx's (MSDU) @ 5_5MB"), 3588 IPW2100_ORD(STAT_TX_DIR_DATA11, 3589 "successful Directed Tx's (MSDU) @ 11MB"), 3590 IPW2100_ORD(STAT_TX_NODIR_DATA1, 3591 "successful Non_Directed Tx's (MSDU) @ 1MB"), 3592 IPW2100_ORD(STAT_TX_NODIR_DATA2, 3593 "successful Non_Directed Tx's (MSDU) @ 2MB"), 3594 IPW2100_ORD(STAT_TX_NODIR_DATA5_5, 3595 "successful Non_Directed Tx's (MSDU) @ 5.5MB"), 3596 IPW2100_ORD(STAT_TX_NODIR_DATA11, 3597 "successful Non_Directed Tx's (MSDU) @ 11MB"), 3598 IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"), 3599 IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"), 3600 IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"), 3601 IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"), 3602 IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"), 3603 IPW2100_ORD(STAT_TX_ASSN_RESP, 3604 "successful Association response Tx's"), 3605 IPW2100_ORD(STAT_TX_REASSN, 3606 "successful Reassociation Tx's"), 3607 IPW2100_ORD(STAT_TX_REASSN_RESP, 3608 "successful Reassociation response Tx's"), 3609 IPW2100_ORD(STAT_TX_PROBE, 3610 "probes successfully transmitted"), 3611 IPW2100_ORD(STAT_TX_PROBE_RESP, 3612 "probe responses successfully transmitted"), 3613 IPW2100_ORD(STAT_TX_BEACON, "tx beacon"), 3614 IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"), 3615 IPW2100_ORD(STAT_TX_DISASSN, 3616 "successful Disassociation TX"), 3617 IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"), 3618 IPW2100_ORD(STAT_TX_DEAUTH, 3619 "successful Deauthentication TX"), 3620 IPW2100_ORD(STAT_TX_TOTAL_BYTES, 3621 "Total successful Tx data bytes"), 3622 IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"), 3623 IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"), 3624 IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"), 3625 IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"), 3626 IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"), 3627 IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"), 3628 IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP, 3629 "times max tries in a hop failed"), 3630 IPW2100_ORD(STAT_TX_DISASSN_FAIL, 3631 "times disassociation failed"), 3632 IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"), 3633 IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"), 3634 IPW2100_ORD(STAT_RX_HOST, "packets passed to host"), 3635 IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"), 3636 IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"), 3637 IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"), 3638 IPW2100_ORD(STAT_RX_DIR_DATA5_5, 3639 "directed packets at 5.5MB"), 3640 IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"), 3641 IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"), 3642 IPW2100_ORD(STAT_RX_NODIR_DATA1, 3643 "nondirected packets at 1MB"), 3644 IPW2100_ORD(STAT_RX_NODIR_DATA2, 3645 "nondirected packets at 2MB"), 3646 IPW2100_ORD(STAT_RX_NODIR_DATA5_5, 3647 "nondirected packets at 5.5MB"), 3648 IPW2100_ORD(STAT_RX_NODIR_DATA11, 3649 "nondirected packets at 11MB"), 3650 IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"), 3651 IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS, 3652 "Rx CTS"), 3653 IPW2100_ORD(STAT_RX_ACK, "Rx ACK"), 3654 IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"), 3655 IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"), 3656 IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"), 3657 IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"), 3658 IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"), 3659 IPW2100_ORD(STAT_RX_REASSN_RESP, 3660 "Reassociation response Rx's"), 3661 IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"), 3662 IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"), 3663 IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"), 3664 IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"), 3665 IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"), 3666 IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"), 3667 IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"), 3668 IPW2100_ORD(STAT_RX_TOTAL_BYTES, 3669 "Total rx data bytes received"), 3670 IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"), 3671 IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"), 3672 IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"), 3673 IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"), 3674 IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"), 3675 IPW2100_ORD(STAT_RX_DUPLICATE1, 3676 "duplicate rx packets at 1MB"), 3677 IPW2100_ORD(STAT_RX_DUPLICATE2, 3678 "duplicate rx packets at 2MB"), 3679 IPW2100_ORD(STAT_RX_DUPLICATE5_5, 3680 "duplicate rx packets at 5.5MB"), 3681 IPW2100_ORD(STAT_RX_DUPLICATE11, 3682 "duplicate rx packets at 11MB"), 3683 IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"), 3684 IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent db"), 3685 IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent db"), 3686 IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent db"), 3687 IPW2100_ORD(STAT_RX_INVALID_PROTOCOL, 3688 "rx frames with invalid protocol"), 3689 IPW2100_ORD(SYS_BOOT_TIME, "Boot time"), 3690 IPW2100_ORD(STAT_RX_NO_BUFFER, 3691 "rx frames rejected due to no buffer"), 3692 IPW2100_ORD(STAT_RX_MISSING_FRAG, 3693 "rx frames dropped due to missing fragment"), 3694 IPW2100_ORD(STAT_RX_ORPHAN_FRAG, 3695 "rx frames dropped due to non-sequential fragment"), 3696 IPW2100_ORD(STAT_RX_ORPHAN_FRAME, 3697 "rx frames dropped due to unmatched 1st frame"), 3698 IPW2100_ORD(STAT_RX_FRAG_AGEOUT, 3699 "rx frames dropped due to uncompleted frame"), 3700 IPW2100_ORD(STAT_RX_ICV_ERRORS, 3701 "ICV errors during decryption"), 3702 IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"), 3703 IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"), 3704 IPW2100_ORD(STAT_PSP_POLL_TIMEOUT, 3705 "poll response timeouts"), 3706 IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT, 3707 "timeouts waiting for last {broad,multi}cast pkt"), 3708 IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"), 3709 IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"), 3710 IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"), 3711 IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"), 3712 IPW2100_ORD(STAT_PERCENT_MISSED_BCNS, 3713 "current calculation of % missed beacons"), 3714 IPW2100_ORD(STAT_PERCENT_RETRIES, 3715 "current calculation of % missed tx retries"), 3716 IPW2100_ORD(ASSOCIATED_AP_PTR, 3717 "0 if not associated, else pointer to AP table entry"), 3718 IPW2100_ORD(AVAILABLE_AP_CNT, 3719 "AP's described in the AP table"), 3720 IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"), 3721 IPW2100_ORD(STAT_AP_ASSNS, "associations"), 3722 IPW2100_ORD(STAT_ASSN_FAIL, "association failures"), 3723 IPW2100_ORD(STAT_ASSN_RESP_FAIL, 3724 "failures due to response fail"), 3725 IPW2100_ORD(STAT_FULL_SCANS, "full scans"), 3726 IPW2100_ORD(CARD_DISABLED, "Card Disabled"), 3727 IPW2100_ORD(STAT_ROAM_INHIBIT, 3728 "times roaming was inhibited due to activity"), 3729 IPW2100_ORD(RSSI_AT_ASSN, 3730 "RSSI of associated AP at time of association"), 3731 IPW2100_ORD(STAT_ASSN_CAUSE1, 3732 "reassociation: no probe response or TX on hop"), 3733 IPW2100_ORD(STAT_ASSN_CAUSE2, 3734 "reassociation: poor tx/rx quality"), 3735 IPW2100_ORD(STAT_ASSN_CAUSE3, 3736 "reassociation: tx/rx quality (excessive AP load"), 3737 IPW2100_ORD(STAT_ASSN_CAUSE4, 3738 "reassociation: AP RSSI level"), 3739 IPW2100_ORD(STAT_ASSN_CAUSE5, 3740 "reassociations due to load leveling"), 3741 IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"), 3742 IPW2100_ORD(STAT_AUTH_RESP_FAIL, 3743 "times authentication response failed"), 3744 IPW2100_ORD(STATION_TABLE_CNT, 3745 "entries in association table"), 3746 IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"), 3747 IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"), 3748 IPW2100_ORD(COUNTRY_CODE, 3749 "IEEE country code as recv'd from beacon"), 3750 IPW2100_ORD(COUNTRY_CHANNELS, 3751 "channels supported by country"), 3752 IPW2100_ORD(RESET_CNT, "adapter resets (warm)"), 3753 IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"), 3754 IPW2100_ORD(ANTENNA_DIVERSITY, 3755 "TRUE if antenna diversity is disabled"), 3756 IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"), 3757 IPW2100_ORD(OUR_FREQ, 3758 "current radio freq lower digits - channel ID"), 3759 IPW2100_ORD(RTC_TIME, "current RTC time"), 3760 IPW2100_ORD(PORT_TYPE, "operating mode"), 3761 IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"), 3762 IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"), 3763 IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"), 3764 IPW2100_ORD(BASIC_RATES, "basic tx rates"), 3765 IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"), 3766 IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"), 3767 IPW2100_ORD(CAPABILITIES, 3768 "Management frame capability field"), 3769 IPW2100_ORD(AUTH_TYPE, "Type of authentication"), 3770 IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"), 3771 IPW2100_ORD(RTS_THRESHOLD, 3772 "Min packet length for RTS handshaking"), 3773 IPW2100_ORD(INT_MODE, "International mode"), 3774 IPW2100_ORD(FRAGMENTATION_THRESHOLD, 3775 "protocol frag threshold"), 3776 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS, 3777 "EEPROM offset in SRAM"), 3778 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE, 3779 "EEPROM size in SRAM"), 3780 IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"), 3781 IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS, 3782 "EEPROM IBSS 11b channel set"), 3783 IPW2100_ORD(MAC_VERSION, "MAC Version"), 3784 IPW2100_ORD(MAC_REVISION, "MAC Revision"), 3785 IPW2100_ORD(RADIO_VERSION, "Radio Version"), 3786 IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"), 3787 IPW2100_ORD(UCODE_VERSION, "Ucode Version"),}; 3788 3789 static ssize_t show_registers(struct device *d, struct device_attribute *attr, 3790 char *buf) 3791 { 3792 int i; 3793 struct ipw2100_priv *priv = dev_get_drvdata(d); 3794 struct net_device *dev = priv->net_dev; 3795 char *out = buf; 3796 u32 val = 0; 3797 3798 out += sprintf(out, "%30s [Address ] : Hex\n", "Register"); 3799 3800 for (i = 0; i < ARRAY_SIZE(hw_data); i++) { 3801 read_register(dev, hw_data[i].addr, &val); 3802 out += sprintf(out, "%30s [%08X] : %08X\n", 3803 hw_data[i].name, hw_data[i].addr, val); 3804 } 3805 3806 return out - buf; 3807 } 3808 3809 static DEVICE_ATTR(registers, 0444, show_registers, NULL); 3810 3811 static ssize_t show_hardware(struct device *d, struct device_attribute *attr, 3812 char *buf) 3813 { 3814 struct ipw2100_priv *priv = dev_get_drvdata(d); 3815 struct net_device *dev = priv->net_dev; 3816 char *out = buf; 3817 int i; 3818 3819 out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry"); 3820 3821 for (i = 0; i < ARRAY_SIZE(nic_data); i++) { 3822 u8 tmp8; 3823 u16 tmp16; 3824 u32 tmp32; 3825 3826 switch (nic_data[i].size) { 3827 case 1: 3828 read_nic_byte(dev, nic_data[i].addr, &tmp8); 3829 out += sprintf(out, "%30s [%08X] : %02X\n", 3830 nic_data[i].name, nic_data[i].addr, 3831 tmp8); 3832 break; 3833 case 2: 3834 read_nic_word(dev, nic_data[i].addr, &tmp16); 3835 out += sprintf(out, "%30s [%08X] : %04X\n", 3836 nic_data[i].name, nic_data[i].addr, 3837 tmp16); 3838 break; 3839 case 4: 3840 read_nic_dword(dev, nic_data[i].addr, &tmp32); 3841 out += sprintf(out, "%30s [%08X] : %08X\n", 3842 nic_data[i].name, nic_data[i].addr, 3843 tmp32); 3844 break; 3845 } 3846 } 3847 return out - buf; 3848 } 3849 3850 static DEVICE_ATTR(hardware, 0444, show_hardware, NULL); 3851 3852 static ssize_t show_memory(struct device *d, struct device_attribute *attr, 3853 char *buf) 3854 { 3855 struct ipw2100_priv *priv = dev_get_drvdata(d); 3856 struct net_device *dev = priv->net_dev; 3857 static unsigned long loop = 0; 3858 int len = 0; 3859 u32 buffer[4]; 3860 int i; 3861 char line[81]; 3862 3863 if (loop >= 0x30000) 3864 loop = 0; 3865 3866 /* sysfs provides us PAGE_SIZE buffer */ 3867 while (len < PAGE_SIZE - 128 && loop < 0x30000) { 3868 3869 if (priv->snapshot[0]) 3870 for (i = 0; i < 4; i++) 3871 buffer[i] = 3872 *(u32 *) SNAPSHOT_ADDR(loop + i * 4); 3873 else 3874 for (i = 0; i < 4; i++) 3875 read_nic_dword(dev, loop + i * 4, &buffer[i]); 3876 3877 if (priv->dump_raw) 3878 len += sprintf(buf + len, 3879 "%c%c%c%c" 3880 "%c%c%c%c" 3881 "%c%c%c%c" 3882 "%c%c%c%c", 3883 ((u8 *) buffer)[0x0], 3884 ((u8 *) buffer)[0x1], 3885 ((u8 *) buffer)[0x2], 3886 ((u8 *) buffer)[0x3], 3887 ((u8 *) buffer)[0x4], 3888 ((u8 *) buffer)[0x5], 3889 ((u8 *) buffer)[0x6], 3890 ((u8 *) buffer)[0x7], 3891 ((u8 *) buffer)[0x8], 3892 ((u8 *) buffer)[0x9], 3893 ((u8 *) buffer)[0xa], 3894 ((u8 *) buffer)[0xb], 3895 ((u8 *) buffer)[0xc], 3896 ((u8 *) buffer)[0xd], 3897 ((u8 *) buffer)[0xe], 3898 ((u8 *) buffer)[0xf]); 3899 else 3900 len += sprintf(buf + len, "%s\n", 3901 snprint_line(line, sizeof(line), 3902 (u8 *) buffer, 16, loop)); 3903 loop += 16; 3904 } 3905 3906 return len; 3907 } 3908 3909 static ssize_t store_memory(struct device *d, struct device_attribute *attr, 3910 const char *buf, size_t count) 3911 { 3912 struct ipw2100_priv *priv = dev_get_drvdata(d); 3913 struct net_device *dev = priv->net_dev; 3914 const char *p = buf; 3915 3916 (void)dev; /* kill unused-var warning for debug-only code */ 3917 3918 if (count < 1) 3919 return count; 3920 3921 if (p[0] == '1' || 3922 (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) { 3923 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n", 3924 dev->name); 3925 priv->dump_raw = 1; 3926 3927 } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' && 3928 tolower(p[1]) == 'f')) { 3929 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n", 3930 dev->name); 3931 priv->dump_raw = 0; 3932 3933 } else if (tolower(p[0]) == 'r') { 3934 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name); 3935 ipw2100_snapshot_free(priv); 3936 3937 } else 3938 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, " 3939 "reset = clear memory snapshot\n", dev->name); 3940 3941 return count; 3942 } 3943 3944 static DEVICE_ATTR(memory, 0644, show_memory, store_memory); 3945 3946 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr, 3947 char *buf) 3948 { 3949 struct ipw2100_priv *priv = dev_get_drvdata(d); 3950 u32 val = 0; 3951 int len = 0; 3952 u32 val_len; 3953 static int loop = 0; 3954 3955 if (priv->status & STATUS_RF_KILL_MASK) 3956 return 0; 3957 3958 if (loop >= ARRAY_SIZE(ord_data)) 3959 loop = 0; 3960 3961 /* sysfs provides us PAGE_SIZE buffer */ 3962 while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) { 3963 val_len = sizeof(u32); 3964 3965 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val, 3966 &val_len)) 3967 len += sprintf(buf + len, "[0x%02X] = ERROR %s\n", 3968 ord_data[loop].index, 3969 ord_data[loop].desc); 3970 else 3971 len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n", 3972 ord_data[loop].index, val, 3973 ord_data[loop].desc); 3974 loop++; 3975 } 3976 3977 return len; 3978 } 3979 3980 static DEVICE_ATTR(ordinals, 0444, show_ordinals, NULL); 3981 3982 static ssize_t show_stats(struct device *d, struct device_attribute *attr, 3983 char *buf) 3984 { 3985 struct ipw2100_priv *priv = dev_get_drvdata(d); 3986 char *out = buf; 3987 3988 out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n", 3989 priv->interrupts, priv->tx_interrupts, 3990 priv->rx_interrupts, priv->inta_other); 3991 out += sprintf(out, "firmware resets: %d\n", priv->resets); 3992 out += sprintf(out, "firmware hangs: %d\n", priv->hangs); 3993 #ifdef CONFIG_IPW2100_DEBUG 3994 out += sprintf(out, "packet mismatch image: %s\n", 3995 priv->snapshot[0] ? "YES" : "NO"); 3996 #endif 3997 3998 return out - buf; 3999 } 4000 4001 static DEVICE_ATTR(stats, 0444, show_stats, NULL); 4002 4003 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode) 4004 { 4005 int err; 4006 4007 if (mode == priv->ieee->iw_mode) 4008 return 0; 4009 4010 err = ipw2100_disable_adapter(priv); 4011 if (err) { 4012 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n", 4013 priv->net_dev->name, err); 4014 return err; 4015 } 4016 4017 switch (mode) { 4018 case IW_MODE_INFRA: 4019 priv->net_dev->type = ARPHRD_ETHER; 4020 break; 4021 case IW_MODE_ADHOC: 4022 priv->net_dev->type = ARPHRD_ETHER; 4023 break; 4024 #ifdef CONFIG_IPW2100_MONITOR 4025 case IW_MODE_MONITOR: 4026 priv->last_mode = priv->ieee->iw_mode; 4027 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP; 4028 break; 4029 #endif /* CONFIG_IPW2100_MONITOR */ 4030 } 4031 4032 priv->ieee->iw_mode = mode; 4033 4034 #ifdef CONFIG_PM 4035 /* Indicate ipw2100_download_firmware download firmware 4036 * from disk instead of memory. */ 4037 ipw2100_firmware.version = 0; 4038 #endif 4039 4040 printk(KERN_INFO "%s: Resetting on mode change.\n", priv->net_dev->name); 4041 priv->reset_backoff = 0; 4042 schedule_reset(priv); 4043 4044 return 0; 4045 } 4046 4047 static ssize_t show_internals(struct device *d, struct device_attribute *attr, 4048 char *buf) 4049 { 4050 struct ipw2100_priv *priv = dev_get_drvdata(d); 4051 int len = 0; 4052 4053 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x) 4054 4055 if (priv->status & STATUS_ASSOCIATED) 4056 len += sprintf(buf + len, "connected: %llu\n", 4057 ktime_get_boottime_seconds() - priv->connect_start); 4058 else 4059 len += sprintf(buf + len, "not connected\n"); 4060 4061 DUMP_VAR(ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx], "p"); 4062 DUMP_VAR(status, "08lx"); 4063 DUMP_VAR(config, "08lx"); 4064 DUMP_VAR(capability, "08lx"); 4065 4066 len += 4067 sprintf(buf + len, "last_rtc: %lu\n", 4068 (unsigned long)priv->last_rtc); 4069 4070 DUMP_VAR(fatal_error, "d"); 4071 DUMP_VAR(stop_hang_check, "d"); 4072 DUMP_VAR(stop_rf_kill, "d"); 4073 DUMP_VAR(messages_sent, "d"); 4074 4075 DUMP_VAR(tx_pend_stat.value, "d"); 4076 DUMP_VAR(tx_pend_stat.hi, "d"); 4077 4078 DUMP_VAR(tx_free_stat.value, "d"); 4079 DUMP_VAR(tx_free_stat.lo, "d"); 4080 4081 DUMP_VAR(msg_free_stat.value, "d"); 4082 DUMP_VAR(msg_free_stat.lo, "d"); 4083 4084 DUMP_VAR(msg_pend_stat.value, "d"); 4085 DUMP_VAR(msg_pend_stat.hi, "d"); 4086 4087 DUMP_VAR(fw_pend_stat.value, "d"); 4088 DUMP_VAR(fw_pend_stat.hi, "d"); 4089 4090 DUMP_VAR(txq_stat.value, "d"); 4091 DUMP_VAR(txq_stat.lo, "d"); 4092 4093 DUMP_VAR(ieee->scans, "d"); 4094 DUMP_VAR(reset_backoff, "lld"); 4095 4096 return len; 4097 } 4098 4099 static DEVICE_ATTR(internals, 0444, show_internals, NULL); 4100 4101 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr, 4102 char *buf) 4103 { 4104 struct ipw2100_priv *priv = dev_get_drvdata(d); 4105 char essid[IW_ESSID_MAX_SIZE + 1]; 4106 u8 bssid[ETH_ALEN]; 4107 u32 chan = 0; 4108 char *out = buf; 4109 unsigned int length; 4110 int ret; 4111 4112 if (priv->status & STATUS_RF_KILL_MASK) 4113 return 0; 4114 4115 memset(essid, 0, sizeof(essid)); 4116 memset(bssid, 0, sizeof(bssid)); 4117 4118 length = IW_ESSID_MAX_SIZE; 4119 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length); 4120 if (ret) 4121 IPW_DEBUG_INFO("failed querying ordinals at line %d\n", 4122 __LINE__); 4123 4124 length = sizeof(bssid); 4125 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, 4126 bssid, &length); 4127 if (ret) 4128 IPW_DEBUG_INFO("failed querying ordinals at line %d\n", 4129 __LINE__); 4130 4131 length = sizeof(u32); 4132 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length); 4133 if (ret) 4134 IPW_DEBUG_INFO("failed querying ordinals at line %d\n", 4135 __LINE__); 4136 4137 out += sprintf(out, "ESSID: %s\n", essid); 4138 out += sprintf(out, "BSSID: %pM\n", bssid); 4139 out += sprintf(out, "Channel: %d\n", chan); 4140 4141 return out - buf; 4142 } 4143 4144 static DEVICE_ATTR(bssinfo, 0444, show_bssinfo, NULL); 4145 4146 #ifdef CONFIG_IPW2100_DEBUG 4147 static ssize_t debug_level_show(struct device_driver *d, char *buf) 4148 { 4149 return sprintf(buf, "0x%08X\n", ipw2100_debug_level); 4150 } 4151 4152 static ssize_t debug_level_store(struct device_driver *d, 4153 const char *buf, size_t count) 4154 { 4155 u32 val; 4156 int ret; 4157 4158 ret = kstrtou32(buf, 0, &val); 4159 if (ret) 4160 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf); 4161 else 4162 ipw2100_debug_level = val; 4163 4164 return strnlen(buf, count); 4165 } 4166 static DRIVER_ATTR_RW(debug_level); 4167 #endif /* CONFIG_IPW2100_DEBUG */ 4168 4169 static ssize_t show_fatal_error(struct device *d, 4170 struct device_attribute *attr, char *buf) 4171 { 4172 struct ipw2100_priv *priv = dev_get_drvdata(d); 4173 char *out = buf; 4174 int i; 4175 4176 if (priv->fatal_error) 4177 out += sprintf(out, "0x%08X\n", priv->fatal_error); 4178 else 4179 out += sprintf(out, "0\n"); 4180 4181 for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) { 4182 if (!priv->fatal_errors[(priv->fatal_index - i) % 4183 IPW2100_ERROR_QUEUE]) 4184 continue; 4185 4186 out += sprintf(out, "%d. 0x%08X\n", i, 4187 priv->fatal_errors[(priv->fatal_index - i) % 4188 IPW2100_ERROR_QUEUE]); 4189 } 4190 4191 return out - buf; 4192 } 4193 4194 static ssize_t store_fatal_error(struct device *d, 4195 struct device_attribute *attr, const char *buf, 4196 size_t count) 4197 { 4198 struct ipw2100_priv *priv = dev_get_drvdata(d); 4199 schedule_reset(priv); 4200 return count; 4201 } 4202 4203 static DEVICE_ATTR(fatal_error, 0644, show_fatal_error, store_fatal_error); 4204 4205 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr, 4206 char *buf) 4207 { 4208 struct ipw2100_priv *priv = dev_get_drvdata(d); 4209 return sprintf(buf, "%d\n", priv->ieee->scan_age); 4210 } 4211 4212 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr, 4213 const char *buf, size_t count) 4214 { 4215 struct ipw2100_priv *priv = dev_get_drvdata(d); 4216 struct net_device *dev = priv->net_dev; 4217 unsigned long val; 4218 int ret; 4219 4220 (void)dev; /* kill unused-var warning for debug-only code */ 4221 4222 IPW_DEBUG_INFO("enter\n"); 4223 4224 ret = kstrtoul(buf, 0, &val); 4225 if (ret) { 4226 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name); 4227 } else { 4228 priv->ieee->scan_age = val; 4229 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age); 4230 } 4231 4232 IPW_DEBUG_INFO("exit\n"); 4233 return strnlen(buf, count); 4234 } 4235 4236 static DEVICE_ATTR(scan_age, 0644, show_scan_age, store_scan_age); 4237 4238 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr, 4239 char *buf) 4240 { 4241 /* 0 - RF kill not enabled 4242 1 - SW based RF kill active (sysfs) 4243 2 - HW based RF kill active 4244 3 - Both HW and SW baed RF kill active */ 4245 struct ipw2100_priv *priv = dev_get_drvdata(d); 4246 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) | 4247 (rf_kill_active(priv) ? 0x2 : 0x0); 4248 return sprintf(buf, "%i\n", val); 4249 } 4250 4251 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio) 4252 { 4253 if ((disable_radio ? 1 : 0) == 4254 (priv->status & STATUS_RF_KILL_SW ? 1 : 0)) 4255 return 0; 4256 4257 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n", 4258 disable_radio ? "OFF" : "ON"); 4259 4260 mutex_lock(&priv->action_mutex); 4261 4262 if (disable_radio) { 4263 priv->status |= STATUS_RF_KILL_SW; 4264 ipw2100_down(priv); 4265 } else { 4266 priv->status &= ~STATUS_RF_KILL_SW; 4267 if (rf_kill_active(priv)) { 4268 IPW_DEBUG_RF_KILL("Can not turn radio back on - " 4269 "disabled by HW switch\n"); 4270 /* Make sure the RF_KILL check timer is running */ 4271 priv->stop_rf_kill = 0; 4272 mod_delayed_work(system_wq, &priv->rf_kill, 4273 round_jiffies_relative(HZ)); 4274 } else 4275 schedule_reset(priv); 4276 } 4277 4278 mutex_unlock(&priv->action_mutex); 4279 return 1; 4280 } 4281 4282 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr, 4283 const char *buf, size_t count) 4284 { 4285 struct ipw2100_priv *priv = dev_get_drvdata(d); 4286 ipw_radio_kill_sw(priv, buf[0] == '1'); 4287 return count; 4288 } 4289 4290 static DEVICE_ATTR(rf_kill, 0644, show_rf_kill, store_rf_kill); 4291 4292 static struct attribute *ipw2100_sysfs_entries[] = { 4293 &dev_attr_hardware.attr, 4294 &dev_attr_registers.attr, 4295 &dev_attr_ordinals.attr, 4296 &dev_attr_pci.attr, 4297 &dev_attr_stats.attr, 4298 &dev_attr_internals.attr, 4299 &dev_attr_bssinfo.attr, 4300 &dev_attr_memory.attr, 4301 &dev_attr_scan_age.attr, 4302 &dev_attr_fatal_error.attr, 4303 &dev_attr_rf_kill.attr, 4304 &dev_attr_cfg.attr, 4305 &dev_attr_status.attr, 4306 &dev_attr_capability.attr, 4307 NULL, 4308 }; 4309 4310 static const struct attribute_group ipw2100_attribute_group = { 4311 .attrs = ipw2100_sysfs_entries, 4312 }; 4313 4314 static int status_queue_allocate(struct ipw2100_priv *priv, int entries) 4315 { 4316 struct ipw2100_status_queue *q = &priv->status_queue; 4317 4318 IPW_DEBUG_INFO("enter\n"); 4319 4320 q->size = entries * sizeof(struct ipw2100_status); 4321 q->drv = dma_alloc_coherent(&priv->pci_dev->dev, q->size, &q->nic, 4322 GFP_KERNEL); 4323 if (!q->drv) { 4324 IPW_DEBUG_WARNING("Can not allocate status queue.\n"); 4325 return -ENOMEM; 4326 } 4327 4328 IPW_DEBUG_INFO("exit\n"); 4329 4330 return 0; 4331 } 4332 4333 static void status_queue_free(struct ipw2100_priv *priv) 4334 { 4335 IPW_DEBUG_INFO("enter\n"); 4336 4337 if (priv->status_queue.drv) { 4338 dma_free_coherent(&priv->pci_dev->dev, 4339 priv->status_queue.size, 4340 priv->status_queue.drv, 4341 priv->status_queue.nic); 4342 priv->status_queue.drv = NULL; 4343 } 4344 4345 IPW_DEBUG_INFO("exit\n"); 4346 } 4347 4348 static int bd_queue_allocate(struct ipw2100_priv *priv, 4349 struct ipw2100_bd_queue *q, int entries) 4350 { 4351 IPW_DEBUG_INFO("enter\n"); 4352 4353 memset(q, 0, sizeof(struct ipw2100_bd_queue)); 4354 4355 q->entries = entries; 4356 q->size = entries * sizeof(struct ipw2100_bd); 4357 q->drv = dma_alloc_coherent(&priv->pci_dev->dev, q->size, &q->nic, 4358 GFP_KERNEL); 4359 if (!q->drv) { 4360 IPW_DEBUG_INFO 4361 ("can't allocate shared memory for buffer descriptors\n"); 4362 return -ENOMEM; 4363 } 4364 4365 IPW_DEBUG_INFO("exit\n"); 4366 4367 return 0; 4368 } 4369 4370 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q) 4371 { 4372 IPW_DEBUG_INFO("enter\n"); 4373 4374 if (!q) 4375 return; 4376 4377 if (q->drv) { 4378 dma_free_coherent(&priv->pci_dev->dev, q->size, q->drv, 4379 q->nic); 4380 q->drv = NULL; 4381 } 4382 4383 IPW_DEBUG_INFO("exit\n"); 4384 } 4385 4386 static void bd_queue_initialize(struct ipw2100_priv *priv, 4387 struct ipw2100_bd_queue *q, u32 base, u32 size, 4388 u32 r, u32 w) 4389 { 4390 IPW_DEBUG_INFO("enter\n"); 4391 4392 IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv, 4393 (u32) q->nic); 4394 4395 write_register(priv->net_dev, base, q->nic); 4396 write_register(priv->net_dev, size, q->entries); 4397 write_register(priv->net_dev, r, q->oldest); 4398 write_register(priv->net_dev, w, q->next); 4399 4400 IPW_DEBUG_INFO("exit\n"); 4401 } 4402 4403 static void ipw2100_kill_works(struct ipw2100_priv *priv) 4404 { 4405 priv->stop_rf_kill = 1; 4406 priv->stop_hang_check = 1; 4407 cancel_delayed_work_sync(&priv->reset_work); 4408 cancel_delayed_work_sync(&priv->security_work); 4409 cancel_delayed_work_sync(&priv->wx_event_work); 4410 cancel_delayed_work_sync(&priv->hang_check); 4411 cancel_delayed_work_sync(&priv->rf_kill); 4412 cancel_delayed_work_sync(&priv->scan_event); 4413 } 4414 4415 static int ipw2100_tx_allocate(struct ipw2100_priv *priv) 4416 { 4417 int i, j, err; 4418 void *v; 4419 dma_addr_t p; 4420 4421 IPW_DEBUG_INFO("enter\n"); 4422 4423 err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH); 4424 if (err) { 4425 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n", 4426 priv->net_dev->name); 4427 return err; 4428 } 4429 4430 priv->tx_buffers = kmalloc_array(TX_PENDED_QUEUE_LENGTH, 4431 sizeof(struct ipw2100_tx_packet), 4432 GFP_KERNEL); 4433 if (!priv->tx_buffers) { 4434 bd_queue_free(priv, &priv->tx_queue); 4435 return -ENOMEM; 4436 } 4437 4438 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) { 4439 v = dma_alloc_coherent(&priv->pci_dev->dev, 4440 sizeof(struct ipw2100_data_header), &p, 4441 GFP_KERNEL); 4442 if (!v) { 4443 printk(KERN_ERR DRV_NAME 4444 ": %s: PCI alloc failed for tx " "buffers.\n", 4445 priv->net_dev->name); 4446 err = -ENOMEM; 4447 break; 4448 } 4449 4450 priv->tx_buffers[i].type = DATA; 4451 priv->tx_buffers[i].info.d_struct.data = 4452 (struct ipw2100_data_header *)v; 4453 priv->tx_buffers[i].info.d_struct.data_phys = p; 4454 priv->tx_buffers[i].info.d_struct.txb = NULL; 4455 } 4456 4457 if (i == TX_PENDED_QUEUE_LENGTH) 4458 return 0; 4459 4460 for (j = 0; j < i; j++) { 4461 dma_free_coherent(&priv->pci_dev->dev, 4462 sizeof(struct ipw2100_data_header), 4463 priv->tx_buffers[j].info.d_struct.data, 4464 priv->tx_buffers[j].info.d_struct.data_phys); 4465 } 4466 4467 kfree(priv->tx_buffers); 4468 priv->tx_buffers = NULL; 4469 4470 return err; 4471 } 4472 4473 static void ipw2100_tx_initialize(struct ipw2100_priv *priv) 4474 { 4475 int i; 4476 4477 IPW_DEBUG_INFO("enter\n"); 4478 4479 /* 4480 * reinitialize packet info lists 4481 */ 4482 INIT_LIST_HEAD(&priv->fw_pend_list); 4483 INIT_STAT(&priv->fw_pend_stat); 4484 4485 /* 4486 * reinitialize lists 4487 */ 4488 INIT_LIST_HEAD(&priv->tx_pend_list); 4489 INIT_LIST_HEAD(&priv->tx_free_list); 4490 INIT_STAT(&priv->tx_pend_stat); 4491 INIT_STAT(&priv->tx_free_stat); 4492 4493 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) { 4494 /* We simply drop any SKBs that have been queued for 4495 * transmit */ 4496 if (priv->tx_buffers[i].info.d_struct.txb) { 4497 libipw_txb_free(priv->tx_buffers[i].info.d_struct. 4498 txb); 4499 priv->tx_buffers[i].info.d_struct.txb = NULL; 4500 } 4501 4502 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list); 4503 } 4504 4505 SET_STAT(&priv->tx_free_stat, i); 4506 4507 priv->tx_queue.oldest = 0; 4508 priv->tx_queue.available = priv->tx_queue.entries; 4509 priv->tx_queue.next = 0; 4510 INIT_STAT(&priv->txq_stat); 4511 SET_STAT(&priv->txq_stat, priv->tx_queue.available); 4512 4513 bd_queue_initialize(priv, &priv->tx_queue, 4514 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE, 4515 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE, 4516 IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX, 4517 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX); 4518 4519 IPW_DEBUG_INFO("exit\n"); 4520 4521 } 4522 4523 static void ipw2100_tx_free(struct ipw2100_priv *priv) 4524 { 4525 int i; 4526 4527 IPW_DEBUG_INFO("enter\n"); 4528 4529 bd_queue_free(priv, &priv->tx_queue); 4530 4531 if (!priv->tx_buffers) 4532 return; 4533 4534 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) { 4535 if (priv->tx_buffers[i].info.d_struct.txb) { 4536 libipw_txb_free(priv->tx_buffers[i].info.d_struct. 4537 txb); 4538 priv->tx_buffers[i].info.d_struct.txb = NULL; 4539 } 4540 if (priv->tx_buffers[i].info.d_struct.data) 4541 dma_free_coherent(&priv->pci_dev->dev, 4542 sizeof(struct ipw2100_data_header), 4543 priv->tx_buffers[i].info.d_struct.data, 4544 priv->tx_buffers[i].info.d_struct.data_phys); 4545 } 4546 4547 kfree(priv->tx_buffers); 4548 priv->tx_buffers = NULL; 4549 4550 IPW_DEBUG_INFO("exit\n"); 4551 } 4552 4553 static int ipw2100_rx_allocate(struct ipw2100_priv *priv) 4554 { 4555 int i, j, err = -EINVAL; 4556 4557 IPW_DEBUG_INFO("enter\n"); 4558 4559 err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH); 4560 if (err) { 4561 IPW_DEBUG_INFO("failed bd_queue_allocate\n"); 4562 return err; 4563 } 4564 4565 err = status_queue_allocate(priv, RX_QUEUE_LENGTH); 4566 if (err) { 4567 IPW_DEBUG_INFO("failed status_queue_allocate\n"); 4568 bd_queue_free(priv, &priv->rx_queue); 4569 return err; 4570 } 4571 4572 /* 4573 * allocate packets 4574 */ 4575 priv->rx_buffers = kmalloc_array(RX_QUEUE_LENGTH, 4576 sizeof(struct ipw2100_rx_packet), 4577 GFP_KERNEL); 4578 if (!priv->rx_buffers) { 4579 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n"); 4580 4581 bd_queue_free(priv, &priv->rx_queue); 4582 4583 status_queue_free(priv); 4584 4585 return -ENOMEM; 4586 } 4587 4588 for (i = 0; i < RX_QUEUE_LENGTH; i++) { 4589 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i]; 4590 4591 err = ipw2100_alloc_skb(priv, packet); 4592 if (unlikely(err)) { 4593 err = -ENOMEM; 4594 break; 4595 } 4596 4597 /* The BD holds the cache aligned address */ 4598 priv->rx_queue.drv[i].host_addr = packet->dma_addr; 4599 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH; 4600 priv->status_queue.drv[i].status_fields = 0; 4601 } 4602 4603 if (i == RX_QUEUE_LENGTH) 4604 return 0; 4605 4606 for (j = 0; j < i; j++) { 4607 dma_unmap_single(&priv->pci_dev->dev, 4608 priv->rx_buffers[j].dma_addr, 4609 sizeof(struct ipw2100_rx_packet), 4610 DMA_FROM_DEVICE); 4611 dev_kfree_skb(priv->rx_buffers[j].skb); 4612 } 4613 4614 kfree(priv->rx_buffers); 4615 priv->rx_buffers = NULL; 4616 4617 bd_queue_free(priv, &priv->rx_queue); 4618 4619 status_queue_free(priv); 4620 4621 return err; 4622 } 4623 4624 static void ipw2100_rx_initialize(struct ipw2100_priv *priv) 4625 { 4626 IPW_DEBUG_INFO("enter\n"); 4627 4628 priv->rx_queue.oldest = 0; 4629 priv->rx_queue.available = priv->rx_queue.entries - 1; 4630 priv->rx_queue.next = priv->rx_queue.entries - 1; 4631 4632 INIT_STAT(&priv->rxq_stat); 4633 SET_STAT(&priv->rxq_stat, priv->rx_queue.available); 4634 4635 bd_queue_initialize(priv, &priv->rx_queue, 4636 IPW_MEM_HOST_SHARED_RX_BD_BASE, 4637 IPW_MEM_HOST_SHARED_RX_BD_SIZE, 4638 IPW_MEM_HOST_SHARED_RX_READ_INDEX, 4639 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX); 4640 4641 /* set up the status queue */ 4642 write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE, 4643 priv->status_queue.nic); 4644 4645 IPW_DEBUG_INFO("exit\n"); 4646 } 4647 4648 static void ipw2100_rx_free(struct ipw2100_priv *priv) 4649 { 4650 int i; 4651 4652 IPW_DEBUG_INFO("enter\n"); 4653 4654 bd_queue_free(priv, &priv->rx_queue); 4655 status_queue_free(priv); 4656 4657 if (!priv->rx_buffers) 4658 return; 4659 4660 for (i = 0; i < RX_QUEUE_LENGTH; i++) { 4661 if (priv->rx_buffers[i].rxp) { 4662 dma_unmap_single(&priv->pci_dev->dev, 4663 priv->rx_buffers[i].dma_addr, 4664 sizeof(struct ipw2100_rx), 4665 DMA_FROM_DEVICE); 4666 dev_kfree_skb(priv->rx_buffers[i].skb); 4667 } 4668 } 4669 4670 kfree(priv->rx_buffers); 4671 priv->rx_buffers = NULL; 4672 4673 IPW_DEBUG_INFO("exit\n"); 4674 } 4675 4676 static int ipw2100_read_mac_address(struct ipw2100_priv *priv) 4677 { 4678 u32 length = ETH_ALEN; 4679 u8 addr[ETH_ALEN]; 4680 4681 int err; 4682 4683 err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length); 4684 if (err) { 4685 IPW_DEBUG_INFO("MAC address read failed\n"); 4686 return -EIO; 4687 } 4688 4689 memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN); 4690 IPW_DEBUG_INFO("card MAC is %pM\n", priv->net_dev->dev_addr); 4691 4692 return 0; 4693 } 4694 4695 /******************************************************************** 4696 * 4697 * Firmware Commands 4698 * 4699 ********************************************************************/ 4700 4701 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode) 4702 { 4703 struct host_command cmd = { 4704 .host_command = ADAPTER_ADDRESS, 4705 .host_command_sequence = 0, 4706 .host_command_length = ETH_ALEN 4707 }; 4708 int err; 4709 4710 IPW_DEBUG_HC("SET_MAC_ADDRESS\n"); 4711 4712 IPW_DEBUG_INFO("enter\n"); 4713 4714 if (priv->config & CFG_CUSTOM_MAC) { 4715 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN); 4716 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN); 4717 } else 4718 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr, 4719 ETH_ALEN); 4720 4721 err = ipw2100_hw_send_command(priv, &cmd); 4722 4723 IPW_DEBUG_INFO("exit\n"); 4724 return err; 4725 } 4726 4727 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type, 4728 int batch_mode) 4729 { 4730 struct host_command cmd = { 4731 .host_command = PORT_TYPE, 4732 .host_command_sequence = 0, 4733 .host_command_length = sizeof(u32) 4734 }; 4735 int err; 4736 4737 switch (port_type) { 4738 case IW_MODE_INFRA: 4739 cmd.host_command_parameters[0] = IPW_BSS; 4740 break; 4741 case IW_MODE_ADHOC: 4742 cmd.host_command_parameters[0] = IPW_IBSS; 4743 break; 4744 } 4745 4746 IPW_DEBUG_HC("PORT_TYPE: %s\n", 4747 port_type == IPW_IBSS ? "Ad-Hoc" : "Managed"); 4748 4749 if (!batch_mode) { 4750 err = ipw2100_disable_adapter(priv); 4751 if (err) { 4752 printk(KERN_ERR DRV_NAME 4753 ": %s: Could not disable adapter %d\n", 4754 priv->net_dev->name, err); 4755 return err; 4756 } 4757 } 4758 4759 /* send cmd to firmware */ 4760 err = ipw2100_hw_send_command(priv, &cmd); 4761 4762 if (!batch_mode) 4763 ipw2100_enable_adapter(priv); 4764 4765 return err; 4766 } 4767 4768 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel, 4769 int batch_mode) 4770 { 4771 struct host_command cmd = { 4772 .host_command = CHANNEL, 4773 .host_command_sequence = 0, 4774 .host_command_length = sizeof(u32) 4775 }; 4776 int err; 4777 4778 cmd.host_command_parameters[0] = channel; 4779 4780 IPW_DEBUG_HC("CHANNEL: %d\n", channel); 4781 4782 /* If BSS then we don't support channel selection */ 4783 if (priv->ieee->iw_mode == IW_MODE_INFRA) 4784 return 0; 4785 4786 if ((channel != 0) && 4787 ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL))) 4788 return -EINVAL; 4789 4790 if (!batch_mode) { 4791 err = ipw2100_disable_adapter(priv); 4792 if (err) 4793 return err; 4794 } 4795 4796 err = ipw2100_hw_send_command(priv, &cmd); 4797 if (err) { 4798 IPW_DEBUG_INFO("Failed to set channel to %d", channel); 4799 return err; 4800 } 4801 4802 if (channel) 4803 priv->config |= CFG_STATIC_CHANNEL; 4804 else 4805 priv->config &= ~CFG_STATIC_CHANNEL; 4806 4807 priv->channel = channel; 4808 4809 if (!batch_mode) { 4810 err = ipw2100_enable_adapter(priv); 4811 if (err) 4812 return err; 4813 } 4814 4815 return 0; 4816 } 4817 4818 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode) 4819 { 4820 struct host_command cmd = { 4821 .host_command = SYSTEM_CONFIG, 4822 .host_command_sequence = 0, 4823 .host_command_length = 12, 4824 }; 4825 u32 ibss_mask, len = sizeof(u32); 4826 int err; 4827 4828 /* Set system configuration */ 4829 4830 if (!batch_mode) { 4831 err = ipw2100_disable_adapter(priv); 4832 if (err) 4833 return err; 4834 } 4835 4836 if (priv->ieee->iw_mode == IW_MODE_ADHOC) 4837 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START; 4838 4839 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK | 4840 IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE; 4841 4842 if (!(priv->config & CFG_LONG_PREAMBLE)) 4843 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO; 4844 4845 err = ipw2100_get_ordinal(priv, 4846 IPW_ORD_EEPROM_IBSS_11B_CHANNELS, 4847 &ibss_mask, &len); 4848 if (err) 4849 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK; 4850 4851 cmd.host_command_parameters[1] = REG_CHANNEL_MASK; 4852 cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask; 4853 4854 /* 11b only */ 4855 /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */ 4856 4857 err = ipw2100_hw_send_command(priv, &cmd); 4858 if (err) 4859 return err; 4860 4861 /* If IPv6 is configured in the kernel then we don't want to filter out all 4862 * of the multicast packets as IPv6 needs some. */ 4863 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE) 4864 cmd.host_command = ADD_MULTICAST; 4865 cmd.host_command_sequence = 0; 4866 cmd.host_command_length = 0; 4867 4868 ipw2100_hw_send_command(priv, &cmd); 4869 #endif 4870 if (!batch_mode) { 4871 err = ipw2100_enable_adapter(priv); 4872 if (err) 4873 return err; 4874 } 4875 4876 return 0; 4877 } 4878 4879 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate, 4880 int batch_mode) 4881 { 4882 struct host_command cmd = { 4883 .host_command = BASIC_TX_RATES, 4884 .host_command_sequence = 0, 4885 .host_command_length = 4 4886 }; 4887 int err; 4888 4889 cmd.host_command_parameters[0] = rate & TX_RATE_MASK; 4890 4891 if (!batch_mode) { 4892 err = ipw2100_disable_adapter(priv); 4893 if (err) 4894 return err; 4895 } 4896 4897 /* Set BASIC TX Rate first */ 4898 ipw2100_hw_send_command(priv, &cmd); 4899 4900 /* Set TX Rate */ 4901 cmd.host_command = TX_RATES; 4902 ipw2100_hw_send_command(priv, &cmd); 4903 4904 /* Set MSDU TX Rate */ 4905 cmd.host_command = MSDU_TX_RATES; 4906 ipw2100_hw_send_command(priv, &cmd); 4907 4908 if (!batch_mode) { 4909 err = ipw2100_enable_adapter(priv); 4910 if (err) 4911 return err; 4912 } 4913 4914 priv->tx_rates = rate; 4915 4916 return 0; 4917 } 4918 4919 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level) 4920 { 4921 struct host_command cmd = { 4922 .host_command = POWER_MODE, 4923 .host_command_sequence = 0, 4924 .host_command_length = 4 4925 }; 4926 int err; 4927 4928 cmd.host_command_parameters[0] = power_level; 4929 4930 err = ipw2100_hw_send_command(priv, &cmd); 4931 if (err) 4932 return err; 4933 4934 if (power_level == IPW_POWER_MODE_CAM) 4935 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode); 4936 else 4937 priv->power_mode = IPW_POWER_ENABLED | power_level; 4938 4939 #ifdef IPW2100_TX_POWER 4940 if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) { 4941 /* Set beacon interval */ 4942 cmd.host_command = TX_POWER_INDEX; 4943 cmd.host_command_parameters[0] = (u32) priv->adhoc_power; 4944 4945 err = ipw2100_hw_send_command(priv, &cmd); 4946 if (err) 4947 return err; 4948 } 4949 #endif 4950 4951 return 0; 4952 } 4953 4954 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold) 4955 { 4956 struct host_command cmd = { 4957 .host_command = RTS_THRESHOLD, 4958 .host_command_sequence = 0, 4959 .host_command_length = 4 4960 }; 4961 int err; 4962 4963 if (threshold & RTS_DISABLED) 4964 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD; 4965 else 4966 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED; 4967 4968 err = ipw2100_hw_send_command(priv, &cmd); 4969 if (err) 4970 return err; 4971 4972 priv->rts_threshold = threshold; 4973 4974 return 0; 4975 } 4976 4977 #if 0 4978 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv, 4979 u32 threshold, int batch_mode) 4980 { 4981 struct host_command cmd = { 4982 .host_command = FRAG_THRESHOLD, 4983 .host_command_sequence = 0, 4984 .host_command_length = 4, 4985 .host_command_parameters[0] = 0, 4986 }; 4987 int err; 4988 4989 if (!batch_mode) { 4990 err = ipw2100_disable_adapter(priv); 4991 if (err) 4992 return err; 4993 } 4994 4995 if (threshold == 0) 4996 threshold = DEFAULT_FRAG_THRESHOLD; 4997 else { 4998 threshold = max(threshold, MIN_FRAG_THRESHOLD); 4999 threshold = min(threshold, MAX_FRAG_THRESHOLD); 5000 } 5001 5002 cmd.host_command_parameters[0] = threshold; 5003 5004 IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold); 5005 5006 err = ipw2100_hw_send_command(priv, &cmd); 5007 5008 if (!batch_mode) 5009 ipw2100_enable_adapter(priv); 5010 5011 if (!err) 5012 priv->frag_threshold = threshold; 5013 5014 return err; 5015 } 5016 #endif 5017 5018 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry) 5019 { 5020 struct host_command cmd = { 5021 .host_command = SHORT_RETRY_LIMIT, 5022 .host_command_sequence = 0, 5023 .host_command_length = 4 5024 }; 5025 int err; 5026 5027 cmd.host_command_parameters[0] = retry; 5028 5029 err = ipw2100_hw_send_command(priv, &cmd); 5030 if (err) 5031 return err; 5032 5033 priv->short_retry_limit = retry; 5034 5035 return 0; 5036 } 5037 5038 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry) 5039 { 5040 struct host_command cmd = { 5041 .host_command = LONG_RETRY_LIMIT, 5042 .host_command_sequence = 0, 5043 .host_command_length = 4 5044 }; 5045 int err; 5046 5047 cmd.host_command_parameters[0] = retry; 5048 5049 err = ipw2100_hw_send_command(priv, &cmd); 5050 if (err) 5051 return err; 5052 5053 priv->long_retry_limit = retry; 5054 5055 return 0; 5056 } 5057 5058 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid, 5059 int batch_mode) 5060 { 5061 struct host_command cmd = { 5062 .host_command = MANDATORY_BSSID, 5063 .host_command_sequence = 0, 5064 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN 5065 }; 5066 int err; 5067 5068 #ifdef CONFIG_IPW2100_DEBUG 5069 if (bssid != NULL) 5070 IPW_DEBUG_HC("MANDATORY_BSSID: %pM\n", bssid); 5071 else 5072 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n"); 5073 #endif 5074 /* if BSSID is empty then we disable mandatory bssid mode */ 5075 if (bssid != NULL) 5076 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN); 5077 5078 if (!batch_mode) { 5079 err = ipw2100_disable_adapter(priv); 5080 if (err) 5081 return err; 5082 } 5083 5084 err = ipw2100_hw_send_command(priv, &cmd); 5085 5086 if (!batch_mode) 5087 ipw2100_enable_adapter(priv); 5088 5089 return err; 5090 } 5091 5092 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv) 5093 { 5094 struct host_command cmd = { 5095 .host_command = DISASSOCIATION_BSSID, 5096 .host_command_sequence = 0, 5097 .host_command_length = ETH_ALEN 5098 }; 5099 int err; 5100 5101 IPW_DEBUG_HC("DISASSOCIATION_BSSID\n"); 5102 5103 /* The Firmware currently ignores the BSSID and just disassociates from 5104 * the currently associated AP -- but in the off chance that a future 5105 * firmware does use the BSSID provided here, we go ahead and try and 5106 * set it to the currently associated AP's BSSID */ 5107 memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN); 5108 5109 err = ipw2100_hw_send_command(priv, &cmd); 5110 5111 return err; 5112 } 5113 5114 static int ipw2100_set_wpa_ie(struct ipw2100_priv *, 5115 struct ipw2100_wpa_assoc_frame *, int) 5116 __attribute__ ((unused)); 5117 5118 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv, 5119 struct ipw2100_wpa_assoc_frame *wpa_frame, 5120 int batch_mode) 5121 { 5122 struct host_command cmd = { 5123 .host_command = SET_WPA_IE, 5124 .host_command_sequence = 0, 5125 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame), 5126 }; 5127 int err; 5128 5129 IPW_DEBUG_HC("SET_WPA_IE\n"); 5130 5131 if (!batch_mode) { 5132 err = ipw2100_disable_adapter(priv); 5133 if (err) 5134 return err; 5135 } 5136 5137 memcpy(cmd.host_command_parameters, wpa_frame, 5138 sizeof(struct ipw2100_wpa_assoc_frame)); 5139 5140 err = ipw2100_hw_send_command(priv, &cmd); 5141 5142 if (!batch_mode) { 5143 if (ipw2100_enable_adapter(priv)) 5144 err = -EIO; 5145 } 5146 5147 return err; 5148 } 5149 5150 struct security_info_params { 5151 u32 allowed_ciphers; 5152 u16 version; 5153 u8 auth_mode; 5154 u8 replay_counters_number; 5155 u8 unicast_using_group; 5156 } __packed; 5157 5158 static int ipw2100_set_security_information(struct ipw2100_priv *priv, 5159 int auth_mode, 5160 int security_level, 5161 int unicast_using_group, 5162 int batch_mode) 5163 { 5164 struct host_command cmd = { 5165 .host_command = SET_SECURITY_INFORMATION, 5166 .host_command_sequence = 0, 5167 .host_command_length = sizeof(struct security_info_params) 5168 }; 5169 struct security_info_params *security = 5170 (struct security_info_params *)&cmd.host_command_parameters; 5171 int err; 5172 memset(security, 0, sizeof(*security)); 5173 5174 /* If shared key AP authentication is turned on, then we need to 5175 * configure the firmware to try and use it. 5176 * 5177 * Actual data encryption/decryption is handled by the host. */ 5178 security->auth_mode = auth_mode; 5179 security->unicast_using_group = unicast_using_group; 5180 5181 switch (security_level) { 5182 default: 5183 case SEC_LEVEL_0: 5184 security->allowed_ciphers = IPW_NONE_CIPHER; 5185 break; 5186 case SEC_LEVEL_1: 5187 security->allowed_ciphers = IPW_WEP40_CIPHER | 5188 IPW_WEP104_CIPHER; 5189 break; 5190 case SEC_LEVEL_2: 5191 security->allowed_ciphers = IPW_WEP40_CIPHER | 5192 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER; 5193 break; 5194 case SEC_LEVEL_2_CKIP: 5195 security->allowed_ciphers = IPW_WEP40_CIPHER | 5196 IPW_WEP104_CIPHER | IPW_CKIP_CIPHER; 5197 break; 5198 case SEC_LEVEL_3: 5199 security->allowed_ciphers = IPW_WEP40_CIPHER | 5200 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER; 5201 break; 5202 } 5203 5204 IPW_DEBUG_HC 5205 ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n", 5206 security->auth_mode, security->allowed_ciphers, security_level); 5207 5208 security->replay_counters_number = 0; 5209 5210 if (!batch_mode) { 5211 err = ipw2100_disable_adapter(priv); 5212 if (err) 5213 return err; 5214 } 5215 5216 err = ipw2100_hw_send_command(priv, &cmd); 5217 5218 if (!batch_mode) 5219 ipw2100_enable_adapter(priv); 5220 5221 return err; 5222 } 5223 5224 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power) 5225 { 5226 struct host_command cmd = { 5227 .host_command = TX_POWER_INDEX, 5228 .host_command_sequence = 0, 5229 .host_command_length = 4 5230 }; 5231 int err = 0; 5232 u32 tmp = tx_power; 5233 5234 if (tx_power != IPW_TX_POWER_DEFAULT) 5235 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 / 5236 (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM); 5237 5238 cmd.host_command_parameters[0] = tmp; 5239 5240 if (priv->ieee->iw_mode == IW_MODE_ADHOC) 5241 err = ipw2100_hw_send_command(priv, &cmd); 5242 if (!err) 5243 priv->tx_power = tx_power; 5244 5245 return 0; 5246 } 5247 5248 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv, 5249 u32 interval, int batch_mode) 5250 { 5251 struct host_command cmd = { 5252 .host_command = BEACON_INTERVAL, 5253 .host_command_sequence = 0, 5254 .host_command_length = 4 5255 }; 5256 int err; 5257 5258 cmd.host_command_parameters[0] = interval; 5259 5260 IPW_DEBUG_INFO("enter\n"); 5261 5262 if (priv->ieee->iw_mode == IW_MODE_ADHOC) { 5263 if (!batch_mode) { 5264 err = ipw2100_disable_adapter(priv); 5265 if (err) 5266 return err; 5267 } 5268 5269 ipw2100_hw_send_command(priv, &cmd); 5270 5271 if (!batch_mode) { 5272 err = ipw2100_enable_adapter(priv); 5273 if (err) 5274 return err; 5275 } 5276 } 5277 5278 IPW_DEBUG_INFO("exit\n"); 5279 5280 return 0; 5281 } 5282 5283 static void ipw2100_queues_initialize(struct ipw2100_priv *priv) 5284 { 5285 ipw2100_tx_initialize(priv); 5286 ipw2100_rx_initialize(priv); 5287 ipw2100_msg_initialize(priv); 5288 } 5289 5290 static void ipw2100_queues_free(struct ipw2100_priv *priv) 5291 { 5292 ipw2100_tx_free(priv); 5293 ipw2100_rx_free(priv); 5294 ipw2100_msg_free(priv); 5295 } 5296 5297 static int ipw2100_queues_allocate(struct ipw2100_priv *priv) 5298 { 5299 if (ipw2100_tx_allocate(priv) || 5300 ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv)) 5301 goto fail; 5302 5303 return 0; 5304 5305 fail: 5306 ipw2100_tx_free(priv); 5307 ipw2100_rx_free(priv); 5308 ipw2100_msg_free(priv); 5309 return -ENOMEM; 5310 } 5311 5312 #define IPW_PRIVACY_CAPABLE 0x0008 5313 5314 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags, 5315 int batch_mode) 5316 { 5317 struct host_command cmd = { 5318 .host_command = WEP_FLAGS, 5319 .host_command_sequence = 0, 5320 .host_command_length = 4 5321 }; 5322 int err; 5323 5324 cmd.host_command_parameters[0] = flags; 5325 5326 IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags); 5327 5328 if (!batch_mode) { 5329 err = ipw2100_disable_adapter(priv); 5330 if (err) { 5331 printk(KERN_ERR DRV_NAME 5332 ": %s: Could not disable adapter %d\n", 5333 priv->net_dev->name, err); 5334 return err; 5335 } 5336 } 5337 5338 /* send cmd to firmware */ 5339 err = ipw2100_hw_send_command(priv, &cmd); 5340 5341 if (!batch_mode) 5342 ipw2100_enable_adapter(priv); 5343 5344 return err; 5345 } 5346 5347 struct ipw2100_wep_key { 5348 u8 idx; 5349 u8 len; 5350 u8 key[13]; 5351 }; 5352 5353 /* Macros to ease up priting WEP keys */ 5354 #define WEP_FMT_64 "%02X%02X%02X%02X-%02X" 5355 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X" 5356 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4] 5357 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10] 5358 5359 /** 5360 * Set a the wep key 5361 * 5362 * @priv: struct to work on 5363 * @idx: index of the key we want to set 5364 * @key: ptr to the key data to set 5365 * @len: length of the buffer at @key 5366 * @batch_mode: FIXME perform the operation in batch mode, not 5367 * disabling the device. 5368 * 5369 * @returns 0 if OK, < 0 errno code on error. 5370 * 5371 * Fill out a command structure with the new wep key, length an 5372 * index and send it down the wire. 5373 */ 5374 static int ipw2100_set_key(struct ipw2100_priv *priv, 5375 int idx, char *key, int len, int batch_mode) 5376 { 5377 int keylen = len ? (len <= 5 ? 5 : 13) : 0; 5378 struct host_command cmd = { 5379 .host_command = WEP_KEY_INFO, 5380 .host_command_sequence = 0, 5381 .host_command_length = sizeof(struct ipw2100_wep_key), 5382 }; 5383 struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters; 5384 int err; 5385 5386 IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n", 5387 idx, keylen, len); 5388 5389 /* NOTE: We don't check cached values in case the firmware was reset 5390 * or some other problem is occurring. If the user is setting the key, 5391 * then we push the change */ 5392 5393 wep_key->idx = idx; 5394 wep_key->len = keylen; 5395 5396 if (keylen) { 5397 memcpy(wep_key->key, key, len); 5398 memset(wep_key->key + len, 0, keylen - len); 5399 } 5400 5401 /* Will be optimized out on debug not being configured in */ 5402 if (keylen == 0) 5403 IPW_DEBUG_WEP("%s: Clearing key %d\n", 5404 priv->net_dev->name, wep_key->idx); 5405 else if (keylen == 5) 5406 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n", 5407 priv->net_dev->name, wep_key->idx, wep_key->len, 5408 WEP_STR_64(wep_key->key)); 5409 else 5410 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128 5411 "\n", 5412 priv->net_dev->name, wep_key->idx, wep_key->len, 5413 WEP_STR_128(wep_key->key)); 5414 5415 if (!batch_mode) { 5416 err = ipw2100_disable_adapter(priv); 5417 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */ 5418 if (err) { 5419 printk(KERN_ERR DRV_NAME 5420 ": %s: Could not disable adapter %d\n", 5421 priv->net_dev->name, err); 5422 return err; 5423 } 5424 } 5425 5426 /* send cmd to firmware */ 5427 err = ipw2100_hw_send_command(priv, &cmd); 5428 5429 if (!batch_mode) { 5430 int err2 = ipw2100_enable_adapter(priv); 5431 if (err == 0) 5432 err = err2; 5433 } 5434 return err; 5435 } 5436 5437 static int ipw2100_set_key_index(struct ipw2100_priv *priv, 5438 int idx, int batch_mode) 5439 { 5440 struct host_command cmd = { 5441 .host_command = WEP_KEY_INDEX, 5442 .host_command_sequence = 0, 5443 .host_command_length = 4, 5444 .host_command_parameters = {idx}, 5445 }; 5446 int err; 5447 5448 IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx); 5449 5450 if (idx < 0 || idx > 3) 5451 return -EINVAL; 5452 5453 if (!batch_mode) { 5454 err = ipw2100_disable_adapter(priv); 5455 if (err) { 5456 printk(KERN_ERR DRV_NAME 5457 ": %s: Could not disable adapter %d\n", 5458 priv->net_dev->name, err); 5459 return err; 5460 } 5461 } 5462 5463 /* send cmd to firmware */ 5464 err = ipw2100_hw_send_command(priv, &cmd); 5465 5466 if (!batch_mode) 5467 ipw2100_enable_adapter(priv); 5468 5469 return err; 5470 } 5471 5472 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode) 5473 { 5474 int i, err, auth_mode, sec_level, use_group; 5475 5476 if (!(priv->status & STATUS_RUNNING)) 5477 return 0; 5478 5479 if (!batch_mode) { 5480 err = ipw2100_disable_adapter(priv); 5481 if (err) 5482 return err; 5483 } 5484 5485 if (!priv->ieee->sec.enabled) { 5486 err = 5487 ipw2100_set_security_information(priv, IPW_AUTH_OPEN, 5488 SEC_LEVEL_0, 0, 1); 5489 } else { 5490 auth_mode = IPW_AUTH_OPEN; 5491 if (priv->ieee->sec.flags & SEC_AUTH_MODE) { 5492 if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY) 5493 auth_mode = IPW_AUTH_SHARED; 5494 else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP) 5495 auth_mode = IPW_AUTH_LEAP_CISCO_ID; 5496 } 5497 5498 sec_level = SEC_LEVEL_0; 5499 if (priv->ieee->sec.flags & SEC_LEVEL) 5500 sec_level = priv->ieee->sec.level; 5501 5502 use_group = 0; 5503 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP) 5504 use_group = priv->ieee->sec.unicast_uses_group; 5505 5506 err = 5507 ipw2100_set_security_information(priv, auth_mode, sec_level, 5508 use_group, 1); 5509 } 5510 5511 if (err) 5512 goto exit; 5513 5514 if (priv->ieee->sec.enabled) { 5515 for (i = 0; i < 4; i++) { 5516 if (!(priv->ieee->sec.flags & (1 << i))) { 5517 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN); 5518 priv->ieee->sec.key_sizes[i] = 0; 5519 } else { 5520 err = ipw2100_set_key(priv, i, 5521 priv->ieee->sec.keys[i], 5522 priv->ieee->sec. 5523 key_sizes[i], 1); 5524 if (err) 5525 goto exit; 5526 } 5527 } 5528 5529 ipw2100_set_key_index(priv, priv->ieee->crypt_info.tx_keyidx, 1); 5530 } 5531 5532 /* Always enable privacy so the Host can filter WEP packets if 5533 * encrypted data is sent up */ 5534 err = 5535 ipw2100_set_wep_flags(priv, 5536 priv->ieee->sec. 5537 enabled ? IPW_PRIVACY_CAPABLE : 0, 1); 5538 if (err) 5539 goto exit; 5540 5541 priv->status &= ~STATUS_SECURITY_UPDATED; 5542 5543 exit: 5544 if (!batch_mode) 5545 ipw2100_enable_adapter(priv); 5546 5547 return err; 5548 } 5549 5550 static void ipw2100_security_work(struct work_struct *work) 5551 { 5552 struct ipw2100_priv *priv = 5553 container_of(work, struct ipw2100_priv, security_work.work); 5554 5555 /* If we happen to have reconnected before we get a chance to 5556 * process this, then update the security settings--which causes 5557 * a disassociation to occur */ 5558 if (!(priv->status & STATUS_ASSOCIATED) && 5559 priv->status & STATUS_SECURITY_UPDATED) 5560 ipw2100_configure_security(priv, 0); 5561 } 5562 5563 static void shim__set_security(struct net_device *dev, 5564 struct libipw_security *sec) 5565 { 5566 struct ipw2100_priv *priv = libipw_priv(dev); 5567 int i; 5568 5569 mutex_lock(&priv->action_mutex); 5570 if (!(priv->status & STATUS_INITIALIZED)) 5571 goto done; 5572 5573 for (i = 0; i < 4; i++) { 5574 if (sec->flags & (1 << i)) { 5575 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i]; 5576 if (sec->key_sizes[i] == 0) 5577 priv->ieee->sec.flags &= ~(1 << i); 5578 else 5579 memcpy(priv->ieee->sec.keys[i], sec->keys[i], 5580 sec->key_sizes[i]); 5581 if (sec->level == SEC_LEVEL_1) { 5582 priv->ieee->sec.flags |= (1 << i); 5583 priv->status |= STATUS_SECURITY_UPDATED; 5584 } else 5585 priv->ieee->sec.flags &= ~(1 << i); 5586 } 5587 } 5588 5589 if ((sec->flags & SEC_ACTIVE_KEY) && 5590 priv->ieee->sec.active_key != sec->active_key) { 5591 priv->ieee->sec.active_key = sec->active_key; 5592 priv->ieee->sec.flags |= SEC_ACTIVE_KEY; 5593 priv->status |= STATUS_SECURITY_UPDATED; 5594 } 5595 5596 if ((sec->flags & SEC_AUTH_MODE) && 5597 (priv->ieee->sec.auth_mode != sec->auth_mode)) { 5598 priv->ieee->sec.auth_mode = sec->auth_mode; 5599 priv->ieee->sec.flags |= SEC_AUTH_MODE; 5600 priv->status |= STATUS_SECURITY_UPDATED; 5601 } 5602 5603 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) { 5604 priv->ieee->sec.flags |= SEC_ENABLED; 5605 priv->ieee->sec.enabled = sec->enabled; 5606 priv->status |= STATUS_SECURITY_UPDATED; 5607 } 5608 5609 if (sec->flags & SEC_ENCRYPT) 5610 priv->ieee->sec.encrypt = sec->encrypt; 5611 5612 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) { 5613 priv->ieee->sec.level = sec->level; 5614 priv->ieee->sec.flags |= SEC_LEVEL; 5615 priv->status |= STATUS_SECURITY_UPDATED; 5616 } 5617 5618 IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n", 5619 priv->ieee->sec.flags & (1 << 8) ? '1' : '0', 5620 priv->ieee->sec.flags & (1 << 7) ? '1' : '0', 5621 priv->ieee->sec.flags & (1 << 6) ? '1' : '0', 5622 priv->ieee->sec.flags & (1 << 5) ? '1' : '0', 5623 priv->ieee->sec.flags & (1 << 4) ? '1' : '0', 5624 priv->ieee->sec.flags & (1 << 3) ? '1' : '0', 5625 priv->ieee->sec.flags & (1 << 2) ? '1' : '0', 5626 priv->ieee->sec.flags & (1 << 1) ? '1' : '0', 5627 priv->ieee->sec.flags & (1 << 0) ? '1' : '0'); 5628 5629 /* As a temporary work around to enable WPA until we figure out why 5630 * wpa_supplicant toggles the security capability of the driver, which 5631 * forces a disassociation with force_update... 5632 * 5633 * if (force_update || !(priv->status & STATUS_ASSOCIATED))*/ 5634 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) 5635 ipw2100_configure_security(priv, 0); 5636 done: 5637 mutex_unlock(&priv->action_mutex); 5638 } 5639 5640 static int ipw2100_adapter_setup(struct ipw2100_priv *priv) 5641 { 5642 int err; 5643 int batch_mode = 1; 5644 u8 *bssid; 5645 5646 IPW_DEBUG_INFO("enter\n"); 5647 5648 err = ipw2100_disable_adapter(priv); 5649 if (err) 5650 return err; 5651 #ifdef CONFIG_IPW2100_MONITOR 5652 if (priv->ieee->iw_mode == IW_MODE_MONITOR) { 5653 err = ipw2100_set_channel(priv, priv->channel, batch_mode); 5654 if (err) 5655 return err; 5656 5657 IPW_DEBUG_INFO("exit\n"); 5658 5659 return 0; 5660 } 5661 #endif /* CONFIG_IPW2100_MONITOR */ 5662 5663 err = ipw2100_read_mac_address(priv); 5664 if (err) 5665 return -EIO; 5666 5667 err = ipw2100_set_mac_address(priv, batch_mode); 5668 if (err) 5669 return err; 5670 5671 err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode); 5672 if (err) 5673 return err; 5674 5675 if (priv->ieee->iw_mode == IW_MODE_ADHOC) { 5676 err = ipw2100_set_channel(priv, priv->channel, batch_mode); 5677 if (err) 5678 return err; 5679 } 5680 5681 err = ipw2100_system_config(priv, batch_mode); 5682 if (err) 5683 return err; 5684 5685 err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode); 5686 if (err) 5687 return err; 5688 5689 /* Default to power mode OFF */ 5690 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM); 5691 if (err) 5692 return err; 5693 5694 err = ipw2100_set_rts_threshold(priv, priv->rts_threshold); 5695 if (err) 5696 return err; 5697 5698 if (priv->config & CFG_STATIC_BSSID) 5699 bssid = priv->bssid; 5700 else 5701 bssid = NULL; 5702 err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode); 5703 if (err) 5704 return err; 5705 5706 if (priv->config & CFG_STATIC_ESSID) 5707 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len, 5708 batch_mode); 5709 else 5710 err = ipw2100_set_essid(priv, NULL, 0, batch_mode); 5711 if (err) 5712 return err; 5713 5714 err = ipw2100_configure_security(priv, batch_mode); 5715 if (err) 5716 return err; 5717 5718 if (priv->ieee->iw_mode == IW_MODE_ADHOC) { 5719 err = 5720 ipw2100_set_ibss_beacon_interval(priv, 5721 priv->beacon_interval, 5722 batch_mode); 5723 if (err) 5724 return err; 5725 5726 err = ipw2100_set_tx_power(priv, priv->tx_power); 5727 if (err) 5728 return err; 5729 } 5730 5731 /* 5732 err = ipw2100_set_fragmentation_threshold( 5733 priv, priv->frag_threshold, batch_mode); 5734 if (err) 5735 return err; 5736 */ 5737 5738 IPW_DEBUG_INFO("exit\n"); 5739 5740 return 0; 5741 } 5742 5743 /************************************************************************* 5744 * 5745 * EXTERNALLY CALLED METHODS 5746 * 5747 *************************************************************************/ 5748 5749 /* This method is called by the network layer -- not to be confused with 5750 * ipw2100_set_mac_address() declared above called by this driver (and this 5751 * method as well) to talk to the firmware */ 5752 static int ipw2100_set_address(struct net_device *dev, void *p) 5753 { 5754 struct ipw2100_priv *priv = libipw_priv(dev); 5755 struct sockaddr *addr = p; 5756 int err = 0; 5757 5758 if (!is_valid_ether_addr(addr->sa_data)) 5759 return -EADDRNOTAVAIL; 5760 5761 mutex_lock(&priv->action_mutex); 5762 5763 priv->config |= CFG_CUSTOM_MAC; 5764 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN); 5765 5766 err = ipw2100_set_mac_address(priv, 0); 5767 if (err) 5768 goto done; 5769 5770 priv->reset_backoff = 0; 5771 mutex_unlock(&priv->action_mutex); 5772 ipw2100_reset_adapter(&priv->reset_work.work); 5773 return 0; 5774 5775 done: 5776 mutex_unlock(&priv->action_mutex); 5777 return err; 5778 } 5779 5780 static int ipw2100_open(struct net_device *dev) 5781 { 5782 struct ipw2100_priv *priv = libipw_priv(dev); 5783 unsigned long flags; 5784 IPW_DEBUG_INFO("dev->open\n"); 5785 5786 spin_lock_irqsave(&priv->low_lock, flags); 5787 if (priv->status & STATUS_ASSOCIATED) { 5788 netif_carrier_on(dev); 5789 netif_start_queue(dev); 5790 } 5791 spin_unlock_irqrestore(&priv->low_lock, flags); 5792 5793 return 0; 5794 } 5795 5796 static int ipw2100_close(struct net_device *dev) 5797 { 5798 struct ipw2100_priv *priv = libipw_priv(dev); 5799 unsigned long flags; 5800 struct list_head *element; 5801 struct ipw2100_tx_packet *packet; 5802 5803 IPW_DEBUG_INFO("enter\n"); 5804 5805 spin_lock_irqsave(&priv->low_lock, flags); 5806 5807 if (priv->status & STATUS_ASSOCIATED) 5808 netif_carrier_off(dev); 5809 netif_stop_queue(dev); 5810 5811 /* Flush the TX queue ... */ 5812 while (!list_empty(&priv->tx_pend_list)) { 5813 element = priv->tx_pend_list.next; 5814 packet = list_entry(element, struct ipw2100_tx_packet, list); 5815 5816 list_del(element); 5817 DEC_STAT(&priv->tx_pend_stat); 5818 5819 libipw_txb_free(packet->info.d_struct.txb); 5820 packet->info.d_struct.txb = NULL; 5821 5822 list_add_tail(element, &priv->tx_free_list); 5823 INC_STAT(&priv->tx_free_stat); 5824 } 5825 spin_unlock_irqrestore(&priv->low_lock, flags); 5826 5827 IPW_DEBUG_INFO("exit\n"); 5828 5829 return 0; 5830 } 5831 5832 /* 5833 * TODO: Fix this function... its just wrong 5834 */ 5835 static void ipw2100_tx_timeout(struct net_device *dev, unsigned int txqueue) 5836 { 5837 struct ipw2100_priv *priv = libipw_priv(dev); 5838 5839 dev->stats.tx_errors++; 5840 5841 #ifdef CONFIG_IPW2100_MONITOR 5842 if (priv->ieee->iw_mode == IW_MODE_MONITOR) 5843 return; 5844 #endif 5845 5846 IPW_DEBUG_INFO("%s: TX timed out. Scheduling firmware restart.\n", 5847 dev->name); 5848 schedule_reset(priv); 5849 } 5850 5851 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value) 5852 { 5853 /* This is called when wpa_supplicant loads and closes the driver 5854 * interface. */ 5855 priv->ieee->wpa_enabled = value; 5856 return 0; 5857 } 5858 5859 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value) 5860 { 5861 5862 struct libipw_device *ieee = priv->ieee; 5863 struct libipw_security sec = { 5864 .flags = SEC_AUTH_MODE, 5865 }; 5866 int ret = 0; 5867 5868 if (value & IW_AUTH_ALG_SHARED_KEY) { 5869 sec.auth_mode = WLAN_AUTH_SHARED_KEY; 5870 ieee->open_wep = 0; 5871 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) { 5872 sec.auth_mode = WLAN_AUTH_OPEN; 5873 ieee->open_wep = 1; 5874 } else if (value & IW_AUTH_ALG_LEAP) { 5875 sec.auth_mode = WLAN_AUTH_LEAP; 5876 ieee->open_wep = 1; 5877 } else 5878 return -EINVAL; 5879 5880 if (ieee->set_security) 5881 ieee->set_security(ieee->dev, &sec); 5882 else 5883 ret = -EOPNOTSUPP; 5884 5885 return ret; 5886 } 5887 5888 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv, 5889 char *wpa_ie, int wpa_ie_len) 5890 { 5891 5892 struct ipw2100_wpa_assoc_frame frame; 5893 5894 frame.fixed_ie_mask = 0; 5895 5896 /* copy WPA IE */ 5897 memcpy(frame.var_ie, wpa_ie, wpa_ie_len); 5898 frame.var_ie_len = wpa_ie_len; 5899 5900 /* make sure WPA is enabled */ 5901 ipw2100_wpa_enable(priv, 1); 5902 ipw2100_set_wpa_ie(priv, &frame, 0); 5903 } 5904 5905 static void ipw_ethtool_get_drvinfo(struct net_device *dev, 5906 struct ethtool_drvinfo *info) 5907 { 5908 struct ipw2100_priv *priv = libipw_priv(dev); 5909 char fw_ver[64], ucode_ver[64]; 5910 5911 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 5912 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 5913 5914 ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver)); 5915 ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver)); 5916 5917 snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s", 5918 fw_ver, priv->eeprom_version, ucode_ver); 5919 5920 strlcpy(info->bus_info, pci_name(priv->pci_dev), 5921 sizeof(info->bus_info)); 5922 } 5923 5924 static u32 ipw2100_ethtool_get_link(struct net_device *dev) 5925 { 5926 struct ipw2100_priv *priv = libipw_priv(dev); 5927 return (priv->status & STATUS_ASSOCIATED) ? 1 : 0; 5928 } 5929 5930 static const struct ethtool_ops ipw2100_ethtool_ops = { 5931 .get_link = ipw2100_ethtool_get_link, 5932 .get_drvinfo = ipw_ethtool_get_drvinfo, 5933 }; 5934 5935 static void ipw2100_hang_check(struct work_struct *work) 5936 { 5937 struct ipw2100_priv *priv = 5938 container_of(work, struct ipw2100_priv, hang_check.work); 5939 unsigned long flags; 5940 u32 rtc = 0xa5a5a5a5; 5941 u32 len = sizeof(rtc); 5942 int restart = 0; 5943 5944 spin_lock_irqsave(&priv->low_lock, flags); 5945 5946 if (priv->fatal_error != 0) { 5947 /* If fatal_error is set then we need to restart */ 5948 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n", 5949 priv->net_dev->name); 5950 5951 restart = 1; 5952 } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) || 5953 (rtc == priv->last_rtc)) { 5954 /* Check if firmware is hung */ 5955 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n", 5956 priv->net_dev->name); 5957 5958 restart = 1; 5959 } 5960 5961 if (restart) { 5962 /* Kill timer */ 5963 priv->stop_hang_check = 1; 5964 priv->hangs++; 5965 5966 /* Restart the NIC */ 5967 schedule_reset(priv); 5968 } 5969 5970 priv->last_rtc = rtc; 5971 5972 if (!priv->stop_hang_check) 5973 schedule_delayed_work(&priv->hang_check, HZ / 2); 5974 5975 spin_unlock_irqrestore(&priv->low_lock, flags); 5976 } 5977 5978 static void ipw2100_rf_kill(struct work_struct *work) 5979 { 5980 struct ipw2100_priv *priv = 5981 container_of(work, struct ipw2100_priv, rf_kill.work); 5982 unsigned long flags; 5983 5984 spin_lock_irqsave(&priv->low_lock, flags); 5985 5986 if (rf_kill_active(priv)) { 5987 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n"); 5988 if (!priv->stop_rf_kill) 5989 schedule_delayed_work(&priv->rf_kill, 5990 round_jiffies_relative(HZ)); 5991 goto exit_unlock; 5992 } 5993 5994 /* RF Kill is now disabled, so bring the device back up */ 5995 5996 if (!(priv->status & STATUS_RF_KILL_MASK)) { 5997 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting " 5998 "device\n"); 5999 schedule_reset(priv); 6000 } else 6001 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still " 6002 "enabled\n"); 6003 6004 exit_unlock: 6005 spin_unlock_irqrestore(&priv->low_lock, flags); 6006 } 6007 6008 static void ipw2100_irq_tasklet(unsigned long data); 6009 6010 static const struct net_device_ops ipw2100_netdev_ops = { 6011 .ndo_open = ipw2100_open, 6012 .ndo_stop = ipw2100_close, 6013 .ndo_start_xmit = libipw_xmit, 6014 .ndo_tx_timeout = ipw2100_tx_timeout, 6015 .ndo_set_mac_address = ipw2100_set_address, 6016 .ndo_validate_addr = eth_validate_addr, 6017 }; 6018 6019 /* Look into using netdev destructor to shutdown libipw? */ 6020 6021 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev, 6022 void __iomem * ioaddr) 6023 { 6024 struct ipw2100_priv *priv; 6025 struct net_device *dev; 6026 6027 dev = alloc_libipw(sizeof(struct ipw2100_priv), 0); 6028 if (!dev) 6029 return NULL; 6030 priv = libipw_priv(dev); 6031 priv->ieee = netdev_priv(dev); 6032 priv->pci_dev = pci_dev; 6033 priv->net_dev = dev; 6034 priv->ioaddr = ioaddr; 6035 6036 priv->ieee->hard_start_xmit = ipw2100_tx; 6037 priv->ieee->set_security = shim__set_security; 6038 6039 priv->ieee->perfect_rssi = -20; 6040 priv->ieee->worst_rssi = -85; 6041 6042 dev->netdev_ops = &ipw2100_netdev_ops; 6043 dev->ethtool_ops = &ipw2100_ethtool_ops; 6044 dev->wireless_handlers = &ipw2100_wx_handler_def; 6045 priv->wireless_data.libipw = priv->ieee; 6046 dev->wireless_data = &priv->wireless_data; 6047 dev->watchdog_timeo = 3 * HZ; 6048 dev->irq = 0; 6049 dev->min_mtu = 68; 6050 dev->max_mtu = LIBIPW_DATA_LEN; 6051 6052 /* NOTE: We don't use the wireless_handlers hook 6053 * in dev as the system will start throwing WX requests 6054 * to us before we're actually initialized and it just 6055 * ends up causing problems. So, we just handle 6056 * the WX extensions through the ipw2100_ioctl interface */ 6057 6058 /* memset() puts everything to 0, so we only have explicitly set 6059 * those values that need to be something else */ 6060 6061 /* If power management is turned on, default to AUTO mode */ 6062 priv->power_mode = IPW_POWER_AUTO; 6063 6064 #ifdef CONFIG_IPW2100_MONITOR 6065 priv->config |= CFG_CRC_CHECK; 6066 #endif 6067 priv->ieee->wpa_enabled = 0; 6068 priv->ieee->drop_unencrypted = 0; 6069 priv->ieee->privacy_invoked = 0; 6070 priv->ieee->ieee802_1x = 1; 6071 6072 /* Set module parameters */ 6073 switch (network_mode) { 6074 case 1: 6075 priv->ieee->iw_mode = IW_MODE_ADHOC; 6076 break; 6077 #ifdef CONFIG_IPW2100_MONITOR 6078 case 2: 6079 priv->ieee->iw_mode = IW_MODE_MONITOR; 6080 break; 6081 #endif 6082 default: 6083 case 0: 6084 priv->ieee->iw_mode = IW_MODE_INFRA; 6085 break; 6086 } 6087 6088 if (disable == 1) 6089 priv->status |= STATUS_RF_KILL_SW; 6090 6091 if (channel != 0 && 6092 ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) { 6093 priv->config |= CFG_STATIC_CHANNEL; 6094 priv->channel = channel; 6095 } 6096 6097 if (associate) 6098 priv->config |= CFG_ASSOCIATE; 6099 6100 priv->beacon_interval = DEFAULT_BEACON_INTERVAL; 6101 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT; 6102 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT; 6103 priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED; 6104 priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED; 6105 priv->tx_power = IPW_TX_POWER_DEFAULT; 6106 priv->tx_rates = DEFAULT_TX_RATES; 6107 6108 strcpy(priv->nick, "ipw2100"); 6109 6110 spin_lock_init(&priv->low_lock); 6111 mutex_init(&priv->action_mutex); 6112 mutex_init(&priv->adapter_mutex); 6113 6114 init_waitqueue_head(&priv->wait_command_queue); 6115 6116 netif_carrier_off(dev); 6117 6118 INIT_LIST_HEAD(&priv->msg_free_list); 6119 INIT_LIST_HEAD(&priv->msg_pend_list); 6120 INIT_STAT(&priv->msg_free_stat); 6121 INIT_STAT(&priv->msg_pend_stat); 6122 6123 INIT_LIST_HEAD(&priv->tx_free_list); 6124 INIT_LIST_HEAD(&priv->tx_pend_list); 6125 INIT_STAT(&priv->tx_free_stat); 6126 INIT_STAT(&priv->tx_pend_stat); 6127 6128 INIT_LIST_HEAD(&priv->fw_pend_list); 6129 INIT_STAT(&priv->fw_pend_stat); 6130 6131 INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter); 6132 INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work); 6133 INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work); 6134 INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check); 6135 INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill); 6136 INIT_DELAYED_WORK(&priv->scan_event, ipw2100_scan_event); 6137 6138 tasklet_init(&priv->irq_tasklet, 6139 ipw2100_irq_tasklet, (unsigned long)priv); 6140 6141 /* NOTE: We do not start the deferred work for status checks yet */ 6142 priv->stop_rf_kill = 1; 6143 priv->stop_hang_check = 1; 6144 6145 return dev; 6146 } 6147 6148 static int ipw2100_pci_init_one(struct pci_dev *pci_dev, 6149 const struct pci_device_id *ent) 6150 { 6151 void __iomem *ioaddr; 6152 struct net_device *dev = NULL; 6153 struct ipw2100_priv *priv = NULL; 6154 int err = 0; 6155 int registered = 0; 6156 u32 val; 6157 6158 IPW_DEBUG_INFO("enter\n"); 6159 6160 if (!(pci_resource_flags(pci_dev, 0) & IORESOURCE_MEM)) { 6161 IPW_DEBUG_INFO("weird - resource type is not memory\n"); 6162 err = -ENODEV; 6163 goto out; 6164 } 6165 6166 ioaddr = pci_iomap(pci_dev, 0, 0); 6167 if (!ioaddr) { 6168 printk(KERN_WARNING DRV_NAME 6169 "Error calling ioremap.\n"); 6170 err = -EIO; 6171 goto fail; 6172 } 6173 6174 /* allocate and initialize our net_device */ 6175 dev = ipw2100_alloc_device(pci_dev, ioaddr); 6176 if (!dev) { 6177 printk(KERN_WARNING DRV_NAME 6178 "Error calling ipw2100_alloc_device.\n"); 6179 err = -ENOMEM; 6180 goto fail; 6181 } 6182 6183 /* set up PCI mappings for device */ 6184 err = pci_enable_device(pci_dev); 6185 if (err) { 6186 printk(KERN_WARNING DRV_NAME 6187 "Error calling pci_enable_device.\n"); 6188 return err; 6189 } 6190 6191 priv = libipw_priv(dev); 6192 6193 pci_set_master(pci_dev); 6194 pci_set_drvdata(pci_dev, priv); 6195 6196 err = dma_set_mask(&pci_dev->dev, DMA_BIT_MASK(32)); 6197 if (err) { 6198 printk(KERN_WARNING DRV_NAME 6199 "Error calling pci_set_dma_mask.\n"); 6200 pci_disable_device(pci_dev); 6201 return err; 6202 } 6203 6204 err = pci_request_regions(pci_dev, DRV_NAME); 6205 if (err) { 6206 printk(KERN_WARNING DRV_NAME 6207 "Error calling pci_request_regions.\n"); 6208 pci_disable_device(pci_dev); 6209 return err; 6210 } 6211 6212 /* We disable the RETRY_TIMEOUT register (0x41) to keep 6213 * PCI Tx retries from interfering with C3 CPU state */ 6214 pci_read_config_dword(pci_dev, 0x40, &val); 6215 if ((val & 0x0000ff00) != 0) 6216 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff); 6217 6218 if (!ipw2100_hw_is_adapter_in_system(dev)) { 6219 printk(KERN_WARNING DRV_NAME 6220 "Device not found via register read.\n"); 6221 err = -ENODEV; 6222 goto fail; 6223 } 6224 6225 SET_NETDEV_DEV(dev, &pci_dev->dev); 6226 6227 /* Force interrupts to be shut off on the device */ 6228 priv->status |= STATUS_INT_ENABLED; 6229 ipw2100_disable_interrupts(priv); 6230 6231 /* Allocate and initialize the Tx/Rx queues and lists */ 6232 if (ipw2100_queues_allocate(priv)) { 6233 printk(KERN_WARNING DRV_NAME 6234 "Error calling ipw2100_queues_allocate.\n"); 6235 err = -ENOMEM; 6236 goto fail; 6237 } 6238 ipw2100_queues_initialize(priv); 6239 6240 err = request_irq(pci_dev->irq, 6241 ipw2100_interrupt, IRQF_SHARED, dev->name, priv); 6242 if (err) { 6243 printk(KERN_WARNING DRV_NAME 6244 "Error calling request_irq: %d.\n", pci_dev->irq); 6245 goto fail; 6246 } 6247 dev->irq = pci_dev->irq; 6248 6249 IPW_DEBUG_INFO("Attempting to register device...\n"); 6250 6251 printk(KERN_INFO DRV_NAME 6252 ": Detected Intel PRO/Wireless 2100 Network Connection\n"); 6253 6254 err = ipw2100_up(priv, 1); 6255 if (err) 6256 goto fail; 6257 6258 err = ipw2100_wdev_init(dev); 6259 if (err) 6260 goto fail; 6261 registered = 1; 6262 6263 /* Bring up the interface. Pre 0.46, after we registered the 6264 * network device we would call ipw2100_up. This introduced a race 6265 * condition with newer hotplug configurations (network was coming 6266 * up and making calls before the device was initialized). 6267 */ 6268 err = register_netdev(dev); 6269 if (err) { 6270 printk(KERN_WARNING DRV_NAME 6271 "Error calling register_netdev.\n"); 6272 goto fail; 6273 } 6274 registered = 2; 6275 6276 mutex_lock(&priv->action_mutex); 6277 6278 IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev)); 6279 6280 /* perform this after register_netdev so that dev->name is set */ 6281 err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group); 6282 if (err) 6283 goto fail_unlock; 6284 6285 /* If the RF Kill switch is disabled, go ahead and complete the 6286 * startup sequence */ 6287 if (!(priv->status & STATUS_RF_KILL_MASK)) { 6288 /* Enable the adapter - sends HOST_COMPLETE */ 6289 if (ipw2100_enable_adapter(priv)) { 6290 printk(KERN_WARNING DRV_NAME 6291 ": %s: failed in call to enable adapter.\n", 6292 priv->net_dev->name); 6293 ipw2100_hw_stop_adapter(priv); 6294 err = -EIO; 6295 goto fail_unlock; 6296 } 6297 6298 /* Start a scan . . . */ 6299 ipw2100_set_scan_options(priv); 6300 ipw2100_start_scan(priv); 6301 } 6302 6303 IPW_DEBUG_INFO("exit\n"); 6304 6305 priv->status |= STATUS_INITIALIZED; 6306 6307 mutex_unlock(&priv->action_mutex); 6308 out: 6309 return err; 6310 6311 fail_unlock: 6312 mutex_unlock(&priv->action_mutex); 6313 fail: 6314 if (dev) { 6315 if (registered >= 2) 6316 unregister_netdev(dev); 6317 6318 if (registered) { 6319 wiphy_unregister(priv->ieee->wdev.wiphy); 6320 kfree(priv->ieee->bg_band.channels); 6321 } 6322 6323 ipw2100_hw_stop_adapter(priv); 6324 6325 ipw2100_disable_interrupts(priv); 6326 6327 if (dev->irq) 6328 free_irq(dev->irq, priv); 6329 6330 ipw2100_kill_works(priv); 6331 6332 /* These are safe to call even if they weren't allocated */ 6333 ipw2100_queues_free(priv); 6334 sysfs_remove_group(&pci_dev->dev.kobj, 6335 &ipw2100_attribute_group); 6336 6337 free_libipw(dev, 0); 6338 } 6339 6340 pci_iounmap(pci_dev, ioaddr); 6341 6342 pci_release_regions(pci_dev); 6343 pci_disable_device(pci_dev); 6344 goto out; 6345 } 6346 6347 static void ipw2100_pci_remove_one(struct pci_dev *pci_dev) 6348 { 6349 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev); 6350 struct net_device *dev = priv->net_dev; 6351 6352 mutex_lock(&priv->action_mutex); 6353 6354 priv->status &= ~STATUS_INITIALIZED; 6355 6356 sysfs_remove_group(&pci_dev->dev.kobj, &ipw2100_attribute_group); 6357 6358 #ifdef CONFIG_PM 6359 if (ipw2100_firmware.version) 6360 ipw2100_release_firmware(priv, &ipw2100_firmware); 6361 #endif 6362 /* Take down the hardware */ 6363 ipw2100_down(priv); 6364 6365 /* Release the mutex so that the network subsystem can 6366 * complete any needed calls into the driver... */ 6367 mutex_unlock(&priv->action_mutex); 6368 6369 /* Unregister the device first - this results in close() 6370 * being called if the device is open. If we free storage 6371 * first, then close() will crash. 6372 * FIXME: remove the comment above. */ 6373 unregister_netdev(dev); 6374 6375 ipw2100_kill_works(priv); 6376 6377 ipw2100_queues_free(priv); 6378 6379 /* Free potential debugging firmware snapshot */ 6380 ipw2100_snapshot_free(priv); 6381 6382 free_irq(dev->irq, priv); 6383 6384 pci_iounmap(pci_dev, priv->ioaddr); 6385 6386 /* wiphy_unregister needs to be here, before free_libipw */ 6387 wiphy_unregister(priv->ieee->wdev.wiphy); 6388 kfree(priv->ieee->bg_band.channels); 6389 free_libipw(dev, 0); 6390 6391 pci_release_regions(pci_dev); 6392 pci_disable_device(pci_dev); 6393 6394 IPW_DEBUG_INFO("exit\n"); 6395 } 6396 6397 static int __maybe_unused ipw2100_suspend(struct device *dev_d) 6398 { 6399 struct ipw2100_priv *priv = dev_get_drvdata(dev_d); 6400 struct net_device *dev = priv->net_dev; 6401 6402 IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name); 6403 6404 mutex_lock(&priv->action_mutex); 6405 if (priv->status & STATUS_INITIALIZED) { 6406 /* Take down the device; powers it off, etc. */ 6407 ipw2100_down(priv); 6408 } 6409 6410 /* Remove the PRESENT state of the device */ 6411 netif_device_detach(dev); 6412 6413 priv->suspend_at = ktime_get_boottime_seconds(); 6414 6415 mutex_unlock(&priv->action_mutex); 6416 6417 return 0; 6418 } 6419 6420 static int __maybe_unused ipw2100_resume(struct device *dev_d) 6421 { 6422 struct pci_dev *pci_dev = to_pci_dev(dev_d); 6423 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev); 6424 struct net_device *dev = priv->net_dev; 6425 u32 val; 6426 6427 if (IPW2100_PM_DISABLED) 6428 return 0; 6429 6430 mutex_lock(&priv->action_mutex); 6431 6432 IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name); 6433 6434 /* 6435 * Suspend/Resume resets the PCI configuration space, so we have to 6436 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries 6437 * from interfering with C3 CPU state. pci_restore_state won't help 6438 * here since it only restores the first 64 bytes pci config header. 6439 */ 6440 pci_read_config_dword(pci_dev, 0x40, &val); 6441 if ((val & 0x0000ff00) != 0) 6442 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff); 6443 6444 /* Set the device back into the PRESENT state; this will also wake 6445 * the queue of needed */ 6446 netif_device_attach(dev); 6447 6448 priv->suspend_time = ktime_get_boottime_seconds() - priv->suspend_at; 6449 6450 /* Bring the device back up */ 6451 if (!(priv->status & STATUS_RF_KILL_SW)) 6452 ipw2100_up(priv, 0); 6453 6454 mutex_unlock(&priv->action_mutex); 6455 6456 return 0; 6457 } 6458 6459 static void ipw2100_shutdown(struct pci_dev *pci_dev) 6460 { 6461 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev); 6462 6463 /* Take down the device; powers it off, etc. */ 6464 ipw2100_down(priv); 6465 6466 pci_disable_device(pci_dev); 6467 } 6468 6469 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x } 6470 6471 static const struct pci_device_id ipw2100_pci_id_table[] = { 6472 IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */ 6473 IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */ 6474 IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */ 6475 IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */ 6476 IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */ 6477 IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */ 6478 IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */ 6479 IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */ 6480 IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */ 6481 IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */ 6482 IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */ 6483 IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */ 6484 IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */ 6485 6486 IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */ 6487 IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */ 6488 IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */ 6489 IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */ 6490 IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */ 6491 6492 IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */ 6493 IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */ 6494 IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */ 6495 IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */ 6496 IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */ 6497 IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */ 6498 IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */ 6499 6500 IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */ 6501 6502 IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */ 6503 IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */ 6504 IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */ 6505 IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */ 6506 IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */ 6507 IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */ 6508 IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */ 6509 6510 IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */ 6511 IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */ 6512 IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */ 6513 IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */ 6514 IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */ 6515 IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */ 6516 6517 IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */ 6518 {0,}, 6519 }; 6520 6521 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table); 6522 6523 static SIMPLE_DEV_PM_OPS(ipw2100_pm_ops, ipw2100_suspend, ipw2100_resume); 6524 6525 static struct pci_driver ipw2100_pci_driver = { 6526 .name = DRV_NAME, 6527 .id_table = ipw2100_pci_id_table, 6528 .probe = ipw2100_pci_init_one, 6529 .remove = ipw2100_pci_remove_one, 6530 .driver.pm = &ipw2100_pm_ops, 6531 .shutdown = ipw2100_shutdown, 6532 }; 6533 6534 /** 6535 * Initialize the ipw2100 driver/module 6536 * 6537 * @returns 0 if ok, < 0 errno node con error. 6538 * 6539 * Note: we cannot init the /proc stuff until the PCI driver is there, 6540 * or we risk an unlikely race condition on someone accessing 6541 * uninitialized data in the PCI dev struct through /proc. 6542 */ 6543 static int __init ipw2100_init(void) 6544 { 6545 int ret; 6546 6547 printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION); 6548 printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT); 6549 6550 cpu_latency_qos_add_request(&ipw2100_pm_qos_req, PM_QOS_DEFAULT_VALUE); 6551 6552 ret = pci_register_driver(&ipw2100_pci_driver); 6553 if (ret) 6554 goto out; 6555 6556 #ifdef CONFIG_IPW2100_DEBUG 6557 ipw2100_debug_level = debug; 6558 ret = driver_create_file(&ipw2100_pci_driver.driver, 6559 &driver_attr_debug_level); 6560 #endif 6561 6562 out: 6563 return ret; 6564 } 6565 6566 /** 6567 * Cleanup ipw2100 driver registration 6568 */ 6569 static void __exit ipw2100_exit(void) 6570 { 6571 /* FIXME: IPG: check that we have no instances of the devices open */ 6572 #ifdef CONFIG_IPW2100_DEBUG 6573 driver_remove_file(&ipw2100_pci_driver.driver, 6574 &driver_attr_debug_level); 6575 #endif 6576 pci_unregister_driver(&ipw2100_pci_driver); 6577 cpu_latency_qos_remove_request(&ipw2100_pm_qos_req); 6578 } 6579 6580 module_init(ipw2100_init); 6581 module_exit(ipw2100_exit); 6582 6583 static int ipw2100_wx_get_name(struct net_device *dev, 6584 struct iw_request_info *info, 6585 union iwreq_data *wrqu, char *extra) 6586 { 6587 /* 6588 * This can be called at any time. No action lock required 6589 */ 6590 6591 struct ipw2100_priv *priv = libipw_priv(dev); 6592 if (!(priv->status & STATUS_ASSOCIATED)) 6593 strcpy(wrqu->name, "unassociated"); 6594 else 6595 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b"); 6596 6597 IPW_DEBUG_WX("Name: %s\n", wrqu->name); 6598 return 0; 6599 } 6600 6601 static int ipw2100_wx_set_freq(struct net_device *dev, 6602 struct iw_request_info *info, 6603 union iwreq_data *wrqu, char *extra) 6604 { 6605 struct ipw2100_priv *priv = libipw_priv(dev); 6606 struct iw_freq *fwrq = &wrqu->freq; 6607 int err = 0; 6608 6609 if (priv->ieee->iw_mode == IW_MODE_INFRA) 6610 return -EOPNOTSUPP; 6611 6612 mutex_lock(&priv->action_mutex); 6613 if (!(priv->status & STATUS_INITIALIZED)) { 6614 err = -EIO; 6615 goto done; 6616 } 6617 6618 /* if setting by freq convert to channel */ 6619 if (fwrq->e == 1) { 6620 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) { 6621 int f = fwrq->m / 100000; 6622 int c = 0; 6623 6624 while ((c < REG_MAX_CHANNEL) && 6625 (f != ipw2100_frequencies[c])) 6626 c++; 6627 6628 /* hack to fall through */ 6629 fwrq->e = 0; 6630 fwrq->m = c + 1; 6631 } 6632 } 6633 6634 if (fwrq->e > 0 || fwrq->m > 1000) { 6635 err = -EOPNOTSUPP; 6636 goto done; 6637 } else { /* Set the channel */ 6638 IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m); 6639 err = ipw2100_set_channel(priv, fwrq->m, 0); 6640 } 6641 6642 done: 6643 mutex_unlock(&priv->action_mutex); 6644 return err; 6645 } 6646 6647 static int ipw2100_wx_get_freq(struct net_device *dev, 6648 struct iw_request_info *info, 6649 union iwreq_data *wrqu, char *extra) 6650 { 6651 /* 6652 * This can be called at any time. No action lock required 6653 */ 6654 6655 struct ipw2100_priv *priv = libipw_priv(dev); 6656 6657 wrqu->freq.e = 0; 6658 6659 /* If we are associated, trying to associate, or have a statically 6660 * configured CHANNEL then return that; otherwise return ANY */ 6661 if (priv->config & CFG_STATIC_CHANNEL || 6662 priv->status & STATUS_ASSOCIATED) 6663 wrqu->freq.m = priv->channel; 6664 else 6665 wrqu->freq.m = 0; 6666 6667 IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel); 6668 return 0; 6669 6670 } 6671 6672 static int ipw2100_wx_set_mode(struct net_device *dev, 6673 struct iw_request_info *info, 6674 union iwreq_data *wrqu, char *extra) 6675 { 6676 struct ipw2100_priv *priv = libipw_priv(dev); 6677 int err = 0; 6678 6679 IPW_DEBUG_WX("SET Mode -> %d\n", wrqu->mode); 6680 6681 if (wrqu->mode == priv->ieee->iw_mode) 6682 return 0; 6683 6684 mutex_lock(&priv->action_mutex); 6685 if (!(priv->status & STATUS_INITIALIZED)) { 6686 err = -EIO; 6687 goto done; 6688 } 6689 6690 switch (wrqu->mode) { 6691 #ifdef CONFIG_IPW2100_MONITOR 6692 case IW_MODE_MONITOR: 6693 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR); 6694 break; 6695 #endif /* CONFIG_IPW2100_MONITOR */ 6696 case IW_MODE_ADHOC: 6697 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC); 6698 break; 6699 case IW_MODE_INFRA: 6700 case IW_MODE_AUTO: 6701 default: 6702 err = ipw2100_switch_mode(priv, IW_MODE_INFRA); 6703 break; 6704 } 6705 6706 done: 6707 mutex_unlock(&priv->action_mutex); 6708 return err; 6709 } 6710 6711 static int ipw2100_wx_get_mode(struct net_device *dev, 6712 struct iw_request_info *info, 6713 union iwreq_data *wrqu, char *extra) 6714 { 6715 /* 6716 * This can be called at any time. No action lock required 6717 */ 6718 6719 struct ipw2100_priv *priv = libipw_priv(dev); 6720 6721 wrqu->mode = priv->ieee->iw_mode; 6722 IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode); 6723 6724 return 0; 6725 } 6726 6727 #define POWER_MODES 5 6728 6729 /* Values are in microsecond */ 6730 static const s32 timeout_duration[POWER_MODES] = { 6731 350000, 6732 250000, 6733 75000, 6734 37000, 6735 25000, 6736 }; 6737 6738 static const s32 period_duration[POWER_MODES] = { 6739 400000, 6740 700000, 6741 1000000, 6742 1000000, 6743 1000000 6744 }; 6745 6746 static int ipw2100_wx_get_range(struct net_device *dev, 6747 struct iw_request_info *info, 6748 union iwreq_data *wrqu, char *extra) 6749 { 6750 /* 6751 * This can be called at any time. No action lock required 6752 */ 6753 6754 struct ipw2100_priv *priv = libipw_priv(dev); 6755 struct iw_range *range = (struct iw_range *)extra; 6756 u16 val; 6757 int i, level; 6758 6759 wrqu->data.length = sizeof(*range); 6760 memset(range, 0, sizeof(*range)); 6761 6762 /* Let's try to keep this struct in the same order as in 6763 * linux/include/wireless.h 6764 */ 6765 6766 /* TODO: See what values we can set, and remove the ones we can't 6767 * set, or fill them with some default data. 6768 */ 6769 6770 /* ~5 Mb/s real (802.11b) */ 6771 range->throughput = 5 * 1000 * 1000; 6772 6773 // range->sensitivity; /* signal level threshold range */ 6774 6775 range->max_qual.qual = 100; 6776 /* TODO: Find real max RSSI and stick here */ 6777 range->max_qual.level = 0; 6778 range->max_qual.noise = 0; 6779 range->max_qual.updated = 7; /* Updated all three */ 6780 6781 range->avg_qual.qual = 70; /* > 8% missed beacons is 'bad' */ 6782 /* TODO: Find real 'good' to 'bad' threshold value for RSSI */ 6783 range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM; 6784 range->avg_qual.noise = 0; 6785 range->avg_qual.updated = 7; /* Updated all three */ 6786 6787 range->num_bitrates = RATE_COUNT; 6788 6789 for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) { 6790 range->bitrate[i] = ipw2100_bg_rates[i].bitrate * 100 * 1000; 6791 } 6792 6793 range->min_rts = MIN_RTS_THRESHOLD; 6794 range->max_rts = MAX_RTS_THRESHOLD; 6795 range->min_frag = MIN_FRAG_THRESHOLD; 6796 range->max_frag = MAX_FRAG_THRESHOLD; 6797 6798 range->min_pmp = period_duration[0]; /* Minimal PM period */ 6799 range->max_pmp = period_duration[POWER_MODES - 1]; /* Maximal PM period */ 6800 range->min_pmt = timeout_duration[POWER_MODES - 1]; /* Minimal PM timeout */ 6801 range->max_pmt = timeout_duration[0]; /* Maximal PM timeout */ 6802 6803 /* How to decode max/min PM period */ 6804 range->pmp_flags = IW_POWER_PERIOD; 6805 /* How to decode max/min PM period */ 6806 range->pmt_flags = IW_POWER_TIMEOUT; 6807 /* What PM options are supported */ 6808 range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD; 6809 6810 range->encoding_size[0] = 5; 6811 range->encoding_size[1] = 13; /* Different token sizes */ 6812 range->num_encoding_sizes = 2; /* Number of entry in the list */ 6813 range->max_encoding_tokens = WEP_KEYS; /* Max number of tokens */ 6814 // range->encoding_login_index; /* token index for login token */ 6815 6816 if (priv->ieee->iw_mode == IW_MODE_ADHOC) { 6817 range->txpower_capa = IW_TXPOW_DBM; 6818 range->num_txpower = IW_MAX_TXPOWER; 6819 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16); 6820 i < IW_MAX_TXPOWER; 6821 i++, level -= 6822 ((IPW_TX_POWER_MAX_DBM - 6823 IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1)) 6824 range->txpower[i] = level / 16; 6825 } else { 6826 range->txpower_capa = 0; 6827 range->num_txpower = 0; 6828 } 6829 6830 /* Set the Wireless Extension versions */ 6831 range->we_version_compiled = WIRELESS_EXT; 6832 range->we_version_source = 18; 6833 6834 // range->retry_capa; /* What retry options are supported */ 6835 // range->retry_flags; /* How to decode max/min retry limit */ 6836 // range->r_time_flags; /* How to decode max/min retry life */ 6837 // range->min_retry; /* Minimal number of retries */ 6838 // range->max_retry; /* Maximal number of retries */ 6839 // range->min_r_time; /* Minimal retry lifetime */ 6840 // range->max_r_time; /* Maximal retry lifetime */ 6841 6842 range->num_channels = FREQ_COUNT; 6843 6844 val = 0; 6845 for (i = 0; i < FREQ_COUNT; i++) { 6846 // TODO: Include only legal frequencies for some countries 6847 // if (local->channel_mask & (1 << i)) { 6848 range->freq[val].i = i + 1; 6849 range->freq[val].m = ipw2100_frequencies[i] * 100000; 6850 range->freq[val].e = 1; 6851 val++; 6852 // } 6853 if (val == IW_MAX_FREQUENCIES) 6854 break; 6855 } 6856 range->num_frequency = val; 6857 6858 /* Event capability (kernel + driver) */ 6859 range->event_capa[0] = (IW_EVENT_CAPA_K_0 | 6860 IW_EVENT_CAPA_MASK(SIOCGIWAP)); 6861 range->event_capa[1] = IW_EVENT_CAPA_K_1; 6862 6863 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 | 6864 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP; 6865 6866 IPW_DEBUG_WX("GET Range\n"); 6867 6868 return 0; 6869 } 6870 6871 static int ipw2100_wx_set_wap(struct net_device *dev, 6872 struct iw_request_info *info, 6873 union iwreq_data *wrqu, char *extra) 6874 { 6875 struct ipw2100_priv *priv = libipw_priv(dev); 6876 int err = 0; 6877 6878 // sanity checks 6879 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER) 6880 return -EINVAL; 6881 6882 mutex_lock(&priv->action_mutex); 6883 if (!(priv->status & STATUS_INITIALIZED)) { 6884 err = -EIO; 6885 goto done; 6886 } 6887 6888 if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) || 6889 is_zero_ether_addr(wrqu->ap_addr.sa_data)) { 6890 /* we disable mandatory BSSID association */ 6891 IPW_DEBUG_WX("exit - disable mandatory BSSID\n"); 6892 priv->config &= ~CFG_STATIC_BSSID; 6893 err = ipw2100_set_mandatory_bssid(priv, NULL, 0); 6894 goto done; 6895 } 6896 6897 priv->config |= CFG_STATIC_BSSID; 6898 memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN); 6899 6900 err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0); 6901 6902 IPW_DEBUG_WX("SET BSSID -> %pM\n", wrqu->ap_addr.sa_data); 6903 6904 done: 6905 mutex_unlock(&priv->action_mutex); 6906 return err; 6907 } 6908 6909 static int ipw2100_wx_get_wap(struct net_device *dev, 6910 struct iw_request_info *info, 6911 union iwreq_data *wrqu, char *extra) 6912 { 6913 /* 6914 * This can be called at any time. No action lock required 6915 */ 6916 6917 struct ipw2100_priv *priv = libipw_priv(dev); 6918 6919 /* If we are associated, trying to associate, or have a statically 6920 * configured BSSID then return that; otherwise return ANY */ 6921 if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) { 6922 wrqu->ap_addr.sa_family = ARPHRD_ETHER; 6923 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN); 6924 } else 6925 eth_zero_addr(wrqu->ap_addr.sa_data); 6926 6927 IPW_DEBUG_WX("Getting WAP BSSID: %pM\n", wrqu->ap_addr.sa_data); 6928 return 0; 6929 } 6930 6931 static int ipw2100_wx_set_essid(struct net_device *dev, 6932 struct iw_request_info *info, 6933 union iwreq_data *wrqu, char *extra) 6934 { 6935 struct ipw2100_priv *priv = libipw_priv(dev); 6936 char *essid = ""; /* ANY */ 6937 int length = 0; 6938 int err = 0; 6939 6940 mutex_lock(&priv->action_mutex); 6941 if (!(priv->status & STATUS_INITIALIZED)) { 6942 err = -EIO; 6943 goto done; 6944 } 6945 6946 if (wrqu->essid.flags && wrqu->essid.length) { 6947 length = wrqu->essid.length; 6948 essid = extra; 6949 } 6950 6951 if (length == 0) { 6952 IPW_DEBUG_WX("Setting ESSID to ANY\n"); 6953 priv->config &= ~CFG_STATIC_ESSID; 6954 err = ipw2100_set_essid(priv, NULL, 0, 0); 6955 goto done; 6956 } 6957 6958 length = min(length, IW_ESSID_MAX_SIZE); 6959 6960 priv->config |= CFG_STATIC_ESSID; 6961 6962 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) { 6963 IPW_DEBUG_WX("ESSID set to current ESSID.\n"); 6964 err = 0; 6965 goto done; 6966 } 6967 6968 IPW_DEBUG_WX("Setting ESSID: '%*pE' (%d)\n", length, essid, length); 6969 6970 priv->essid_len = length; 6971 memcpy(priv->essid, essid, priv->essid_len); 6972 6973 err = ipw2100_set_essid(priv, essid, length, 0); 6974 6975 done: 6976 mutex_unlock(&priv->action_mutex); 6977 return err; 6978 } 6979 6980 static int ipw2100_wx_get_essid(struct net_device *dev, 6981 struct iw_request_info *info, 6982 union iwreq_data *wrqu, char *extra) 6983 { 6984 /* 6985 * This can be called at any time. No action lock required 6986 */ 6987 6988 struct ipw2100_priv *priv = libipw_priv(dev); 6989 6990 /* If we are associated, trying to associate, or have a statically 6991 * configured ESSID then return that; otherwise return ANY */ 6992 if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) { 6993 IPW_DEBUG_WX("Getting essid: '%*pE'\n", 6994 priv->essid_len, priv->essid); 6995 memcpy(extra, priv->essid, priv->essid_len); 6996 wrqu->essid.length = priv->essid_len; 6997 wrqu->essid.flags = 1; /* active */ 6998 } else { 6999 IPW_DEBUG_WX("Getting essid: ANY\n"); 7000 wrqu->essid.length = 0; 7001 wrqu->essid.flags = 0; /* active */ 7002 } 7003 7004 return 0; 7005 } 7006 7007 static int ipw2100_wx_set_nick(struct net_device *dev, 7008 struct iw_request_info *info, 7009 union iwreq_data *wrqu, char *extra) 7010 { 7011 /* 7012 * This can be called at any time. No action lock required 7013 */ 7014 7015 struct ipw2100_priv *priv = libipw_priv(dev); 7016 7017 if (wrqu->data.length > IW_ESSID_MAX_SIZE) 7018 return -E2BIG; 7019 7020 wrqu->data.length = min_t(size_t, wrqu->data.length, sizeof(priv->nick)); 7021 memset(priv->nick, 0, sizeof(priv->nick)); 7022 memcpy(priv->nick, extra, wrqu->data.length); 7023 7024 IPW_DEBUG_WX("SET Nickname -> %s\n", priv->nick); 7025 7026 return 0; 7027 } 7028 7029 static int ipw2100_wx_get_nick(struct net_device *dev, 7030 struct iw_request_info *info, 7031 union iwreq_data *wrqu, char *extra) 7032 { 7033 /* 7034 * This can be called at any time. No action lock required 7035 */ 7036 7037 struct ipw2100_priv *priv = libipw_priv(dev); 7038 7039 wrqu->data.length = strlen(priv->nick); 7040 memcpy(extra, priv->nick, wrqu->data.length); 7041 wrqu->data.flags = 1; /* active */ 7042 7043 IPW_DEBUG_WX("GET Nickname -> %s\n", extra); 7044 7045 return 0; 7046 } 7047 7048 static int ipw2100_wx_set_rate(struct net_device *dev, 7049 struct iw_request_info *info, 7050 union iwreq_data *wrqu, char *extra) 7051 { 7052 struct ipw2100_priv *priv = libipw_priv(dev); 7053 u32 target_rate = wrqu->bitrate.value; 7054 u32 rate; 7055 int err = 0; 7056 7057 mutex_lock(&priv->action_mutex); 7058 if (!(priv->status & STATUS_INITIALIZED)) { 7059 err = -EIO; 7060 goto done; 7061 } 7062 7063 rate = 0; 7064 7065 if (target_rate == 1000000 || 7066 (!wrqu->bitrate.fixed && target_rate > 1000000)) 7067 rate |= TX_RATE_1_MBIT; 7068 if (target_rate == 2000000 || 7069 (!wrqu->bitrate.fixed && target_rate > 2000000)) 7070 rate |= TX_RATE_2_MBIT; 7071 if (target_rate == 5500000 || 7072 (!wrqu->bitrate.fixed && target_rate > 5500000)) 7073 rate |= TX_RATE_5_5_MBIT; 7074 if (target_rate == 11000000 || 7075 (!wrqu->bitrate.fixed && target_rate > 11000000)) 7076 rate |= TX_RATE_11_MBIT; 7077 if (rate == 0) 7078 rate = DEFAULT_TX_RATES; 7079 7080 err = ipw2100_set_tx_rates(priv, rate, 0); 7081 7082 IPW_DEBUG_WX("SET Rate -> %04X\n", rate); 7083 done: 7084 mutex_unlock(&priv->action_mutex); 7085 return err; 7086 } 7087 7088 static int ipw2100_wx_get_rate(struct net_device *dev, 7089 struct iw_request_info *info, 7090 union iwreq_data *wrqu, char *extra) 7091 { 7092 struct ipw2100_priv *priv = libipw_priv(dev); 7093 int val; 7094 unsigned int len = sizeof(val); 7095 int err = 0; 7096 7097 if (!(priv->status & STATUS_ENABLED) || 7098 priv->status & STATUS_RF_KILL_MASK || 7099 !(priv->status & STATUS_ASSOCIATED)) { 7100 wrqu->bitrate.value = 0; 7101 return 0; 7102 } 7103 7104 mutex_lock(&priv->action_mutex); 7105 if (!(priv->status & STATUS_INITIALIZED)) { 7106 err = -EIO; 7107 goto done; 7108 } 7109 7110 err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len); 7111 if (err) { 7112 IPW_DEBUG_WX("failed querying ordinals.\n"); 7113 goto done; 7114 } 7115 7116 switch (val & TX_RATE_MASK) { 7117 case TX_RATE_1_MBIT: 7118 wrqu->bitrate.value = 1000000; 7119 break; 7120 case TX_RATE_2_MBIT: 7121 wrqu->bitrate.value = 2000000; 7122 break; 7123 case TX_RATE_5_5_MBIT: 7124 wrqu->bitrate.value = 5500000; 7125 break; 7126 case TX_RATE_11_MBIT: 7127 wrqu->bitrate.value = 11000000; 7128 break; 7129 default: 7130 wrqu->bitrate.value = 0; 7131 } 7132 7133 IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value); 7134 7135 done: 7136 mutex_unlock(&priv->action_mutex); 7137 return err; 7138 } 7139 7140 static int ipw2100_wx_set_rts(struct net_device *dev, 7141 struct iw_request_info *info, 7142 union iwreq_data *wrqu, char *extra) 7143 { 7144 struct ipw2100_priv *priv = libipw_priv(dev); 7145 int value, err; 7146 7147 /* Auto RTS not yet supported */ 7148 if (wrqu->rts.fixed == 0) 7149 return -EINVAL; 7150 7151 mutex_lock(&priv->action_mutex); 7152 if (!(priv->status & STATUS_INITIALIZED)) { 7153 err = -EIO; 7154 goto done; 7155 } 7156 7157 if (wrqu->rts.disabled) 7158 value = priv->rts_threshold | RTS_DISABLED; 7159 else { 7160 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) { 7161 err = -EINVAL; 7162 goto done; 7163 } 7164 value = wrqu->rts.value; 7165 } 7166 7167 err = ipw2100_set_rts_threshold(priv, value); 7168 7169 IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X\n", value); 7170 done: 7171 mutex_unlock(&priv->action_mutex); 7172 return err; 7173 } 7174 7175 static int ipw2100_wx_get_rts(struct net_device *dev, 7176 struct iw_request_info *info, 7177 union iwreq_data *wrqu, char *extra) 7178 { 7179 /* 7180 * This can be called at any time. No action lock required 7181 */ 7182 7183 struct ipw2100_priv *priv = libipw_priv(dev); 7184 7185 wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED; 7186 wrqu->rts.fixed = 1; /* no auto select */ 7187 7188 /* If RTS is set to the default value, then it is disabled */ 7189 wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0; 7190 7191 IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X\n", wrqu->rts.value); 7192 7193 return 0; 7194 } 7195 7196 static int ipw2100_wx_set_txpow(struct net_device *dev, 7197 struct iw_request_info *info, 7198 union iwreq_data *wrqu, char *extra) 7199 { 7200 struct ipw2100_priv *priv = libipw_priv(dev); 7201 int err = 0, value; 7202 7203 if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled)) 7204 return -EINPROGRESS; 7205 7206 if (priv->ieee->iw_mode != IW_MODE_ADHOC) 7207 return 0; 7208 7209 if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM) 7210 return -EINVAL; 7211 7212 if (wrqu->txpower.fixed == 0) 7213 value = IPW_TX_POWER_DEFAULT; 7214 else { 7215 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM || 7216 wrqu->txpower.value > IPW_TX_POWER_MAX_DBM) 7217 return -EINVAL; 7218 7219 value = wrqu->txpower.value; 7220 } 7221 7222 mutex_lock(&priv->action_mutex); 7223 if (!(priv->status & STATUS_INITIALIZED)) { 7224 err = -EIO; 7225 goto done; 7226 } 7227 7228 err = ipw2100_set_tx_power(priv, value); 7229 7230 IPW_DEBUG_WX("SET TX Power -> %d\n", value); 7231 7232 done: 7233 mutex_unlock(&priv->action_mutex); 7234 return err; 7235 } 7236 7237 static int ipw2100_wx_get_txpow(struct net_device *dev, 7238 struct iw_request_info *info, 7239 union iwreq_data *wrqu, char *extra) 7240 { 7241 /* 7242 * This can be called at any time. No action lock required 7243 */ 7244 7245 struct ipw2100_priv *priv = libipw_priv(dev); 7246 7247 wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0; 7248 7249 if (priv->tx_power == IPW_TX_POWER_DEFAULT) { 7250 wrqu->txpower.fixed = 0; 7251 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM; 7252 } else { 7253 wrqu->txpower.fixed = 1; 7254 wrqu->txpower.value = priv->tx_power; 7255 } 7256 7257 wrqu->txpower.flags = IW_TXPOW_DBM; 7258 7259 IPW_DEBUG_WX("GET TX Power -> %d\n", wrqu->txpower.value); 7260 7261 return 0; 7262 } 7263 7264 static int ipw2100_wx_set_frag(struct net_device *dev, 7265 struct iw_request_info *info, 7266 union iwreq_data *wrqu, char *extra) 7267 { 7268 /* 7269 * This can be called at any time. No action lock required 7270 */ 7271 7272 struct ipw2100_priv *priv = libipw_priv(dev); 7273 7274 if (!wrqu->frag.fixed) 7275 return -EINVAL; 7276 7277 if (wrqu->frag.disabled) { 7278 priv->frag_threshold |= FRAG_DISABLED; 7279 priv->ieee->fts = DEFAULT_FTS; 7280 } else { 7281 if (wrqu->frag.value < MIN_FRAG_THRESHOLD || 7282 wrqu->frag.value > MAX_FRAG_THRESHOLD) 7283 return -EINVAL; 7284 7285 priv->ieee->fts = wrqu->frag.value & ~0x1; 7286 priv->frag_threshold = priv->ieee->fts; 7287 } 7288 7289 IPW_DEBUG_WX("SET Frag Threshold -> %d\n", priv->ieee->fts); 7290 7291 return 0; 7292 } 7293 7294 static int ipw2100_wx_get_frag(struct net_device *dev, 7295 struct iw_request_info *info, 7296 union iwreq_data *wrqu, char *extra) 7297 { 7298 /* 7299 * This can be called at any time. No action lock required 7300 */ 7301 7302 struct ipw2100_priv *priv = libipw_priv(dev); 7303 wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED; 7304 wrqu->frag.fixed = 0; /* no auto select */ 7305 wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0; 7306 7307 IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value); 7308 7309 return 0; 7310 } 7311 7312 static int ipw2100_wx_set_retry(struct net_device *dev, 7313 struct iw_request_info *info, 7314 union iwreq_data *wrqu, char *extra) 7315 { 7316 struct ipw2100_priv *priv = libipw_priv(dev); 7317 int err = 0; 7318 7319 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled) 7320 return -EINVAL; 7321 7322 if (!(wrqu->retry.flags & IW_RETRY_LIMIT)) 7323 return 0; 7324 7325 mutex_lock(&priv->action_mutex); 7326 if (!(priv->status & STATUS_INITIALIZED)) { 7327 err = -EIO; 7328 goto done; 7329 } 7330 7331 if (wrqu->retry.flags & IW_RETRY_SHORT) { 7332 err = ipw2100_set_short_retry(priv, wrqu->retry.value); 7333 IPW_DEBUG_WX("SET Short Retry Limit -> %d\n", 7334 wrqu->retry.value); 7335 goto done; 7336 } 7337 7338 if (wrqu->retry.flags & IW_RETRY_LONG) { 7339 err = ipw2100_set_long_retry(priv, wrqu->retry.value); 7340 IPW_DEBUG_WX("SET Long Retry Limit -> %d\n", 7341 wrqu->retry.value); 7342 goto done; 7343 } 7344 7345 err = ipw2100_set_short_retry(priv, wrqu->retry.value); 7346 if (!err) 7347 err = ipw2100_set_long_retry(priv, wrqu->retry.value); 7348 7349 IPW_DEBUG_WX("SET Both Retry Limits -> %d\n", wrqu->retry.value); 7350 7351 done: 7352 mutex_unlock(&priv->action_mutex); 7353 return err; 7354 } 7355 7356 static int ipw2100_wx_get_retry(struct net_device *dev, 7357 struct iw_request_info *info, 7358 union iwreq_data *wrqu, char *extra) 7359 { 7360 /* 7361 * This can be called at any time. No action lock required 7362 */ 7363 7364 struct ipw2100_priv *priv = libipw_priv(dev); 7365 7366 wrqu->retry.disabled = 0; /* can't be disabled */ 7367 7368 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) 7369 return -EINVAL; 7370 7371 if (wrqu->retry.flags & IW_RETRY_LONG) { 7372 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG; 7373 wrqu->retry.value = priv->long_retry_limit; 7374 } else { 7375 wrqu->retry.flags = 7376 (priv->short_retry_limit != 7377 priv->long_retry_limit) ? 7378 IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT; 7379 7380 wrqu->retry.value = priv->short_retry_limit; 7381 } 7382 7383 IPW_DEBUG_WX("GET Retry -> %d\n", wrqu->retry.value); 7384 7385 return 0; 7386 } 7387 7388 static int ipw2100_wx_set_scan(struct net_device *dev, 7389 struct iw_request_info *info, 7390 union iwreq_data *wrqu, char *extra) 7391 { 7392 struct ipw2100_priv *priv = libipw_priv(dev); 7393 int err = 0; 7394 7395 mutex_lock(&priv->action_mutex); 7396 if (!(priv->status & STATUS_INITIALIZED)) { 7397 err = -EIO; 7398 goto done; 7399 } 7400 7401 IPW_DEBUG_WX("Initiating scan...\n"); 7402 7403 priv->user_requested_scan = 1; 7404 if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) { 7405 IPW_DEBUG_WX("Start scan failed.\n"); 7406 7407 /* TODO: Mark a scan as pending so when hardware initialized 7408 * a scan starts */ 7409 } 7410 7411 done: 7412 mutex_unlock(&priv->action_mutex); 7413 return err; 7414 } 7415 7416 static int ipw2100_wx_get_scan(struct net_device *dev, 7417 struct iw_request_info *info, 7418 union iwreq_data *wrqu, char *extra) 7419 { 7420 /* 7421 * This can be called at any time. No action lock required 7422 */ 7423 7424 struct ipw2100_priv *priv = libipw_priv(dev); 7425 return libipw_wx_get_scan(priv->ieee, info, wrqu, extra); 7426 } 7427 7428 /* 7429 * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c 7430 */ 7431 static int ipw2100_wx_set_encode(struct net_device *dev, 7432 struct iw_request_info *info, 7433 union iwreq_data *wrqu, char *key) 7434 { 7435 /* 7436 * No check of STATUS_INITIALIZED required 7437 */ 7438 7439 struct ipw2100_priv *priv = libipw_priv(dev); 7440 return libipw_wx_set_encode(priv->ieee, info, wrqu, key); 7441 } 7442 7443 static int ipw2100_wx_get_encode(struct net_device *dev, 7444 struct iw_request_info *info, 7445 union iwreq_data *wrqu, char *key) 7446 { 7447 /* 7448 * This can be called at any time. No action lock required 7449 */ 7450 7451 struct ipw2100_priv *priv = libipw_priv(dev); 7452 return libipw_wx_get_encode(priv->ieee, info, wrqu, key); 7453 } 7454 7455 static int ipw2100_wx_set_power(struct net_device *dev, 7456 struct iw_request_info *info, 7457 union iwreq_data *wrqu, char *extra) 7458 { 7459 struct ipw2100_priv *priv = libipw_priv(dev); 7460 int err = 0; 7461 7462 mutex_lock(&priv->action_mutex); 7463 if (!(priv->status & STATUS_INITIALIZED)) { 7464 err = -EIO; 7465 goto done; 7466 } 7467 7468 if (wrqu->power.disabled) { 7469 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode); 7470 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM); 7471 IPW_DEBUG_WX("SET Power Management Mode -> off\n"); 7472 goto done; 7473 } 7474 7475 switch (wrqu->power.flags & IW_POWER_MODE) { 7476 case IW_POWER_ON: /* If not specified */ 7477 case IW_POWER_MODE: /* If set all mask */ 7478 case IW_POWER_ALL_R: /* If explicitly state all */ 7479 break; 7480 default: /* Otherwise we don't support it */ 7481 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n", 7482 wrqu->power.flags); 7483 err = -EOPNOTSUPP; 7484 goto done; 7485 } 7486 7487 /* If the user hasn't specified a power management mode yet, default 7488 * to BATTERY */ 7489 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode; 7490 err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode)); 7491 7492 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode); 7493 7494 done: 7495 mutex_unlock(&priv->action_mutex); 7496 return err; 7497 7498 } 7499 7500 static int ipw2100_wx_get_power(struct net_device *dev, 7501 struct iw_request_info *info, 7502 union iwreq_data *wrqu, char *extra) 7503 { 7504 /* 7505 * This can be called at any time. No action lock required 7506 */ 7507 7508 struct ipw2100_priv *priv = libipw_priv(dev); 7509 7510 if (!(priv->power_mode & IPW_POWER_ENABLED)) 7511 wrqu->power.disabled = 1; 7512 else { 7513 wrqu->power.disabled = 0; 7514 wrqu->power.flags = 0; 7515 } 7516 7517 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode); 7518 7519 return 0; 7520 } 7521 7522 /* 7523 * WE-18 WPA support 7524 */ 7525 7526 /* SIOCSIWGENIE */ 7527 static int ipw2100_wx_set_genie(struct net_device *dev, 7528 struct iw_request_info *info, 7529 union iwreq_data *wrqu, char *extra) 7530 { 7531 7532 struct ipw2100_priv *priv = libipw_priv(dev); 7533 struct libipw_device *ieee = priv->ieee; 7534 u8 *buf; 7535 7536 if (!ieee->wpa_enabled) 7537 return -EOPNOTSUPP; 7538 7539 if (wrqu->data.length > MAX_WPA_IE_LEN || 7540 (wrqu->data.length && extra == NULL)) 7541 return -EINVAL; 7542 7543 if (wrqu->data.length) { 7544 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL); 7545 if (buf == NULL) 7546 return -ENOMEM; 7547 7548 kfree(ieee->wpa_ie); 7549 ieee->wpa_ie = buf; 7550 ieee->wpa_ie_len = wrqu->data.length; 7551 } else { 7552 kfree(ieee->wpa_ie); 7553 ieee->wpa_ie = NULL; 7554 ieee->wpa_ie_len = 0; 7555 } 7556 7557 ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len); 7558 7559 return 0; 7560 } 7561 7562 /* SIOCGIWGENIE */ 7563 static int ipw2100_wx_get_genie(struct net_device *dev, 7564 struct iw_request_info *info, 7565 union iwreq_data *wrqu, char *extra) 7566 { 7567 struct ipw2100_priv *priv = libipw_priv(dev); 7568 struct libipw_device *ieee = priv->ieee; 7569 7570 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) { 7571 wrqu->data.length = 0; 7572 return 0; 7573 } 7574 7575 if (wrqu->data.length < ieee->wpa_ie_len) 7576 return -E2BIG; 7577 7578 wrqu->data.length = ieee->wpa_ie_len; 7579 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len); 7580 7581 return 0; 7582 } 7583 7584 /* SIOCSIWAUTH */ 7585 static int ipw2100_wx_set_auth(struct net_device *dev, 7586 struct iw_request_info *info, 7587 union iwreq_data *wrqu, char *extra) 7588 { 7589 struct ipw2100_priv *priv = libipw_priv(dev); 7590 struct libipw_device *ieee = priv->ieee; 7591 struct iw_param *param = &wrqu->param; 7592 struct lib80211_crypt_data *crypt; 7593 unsigned long flags; 7594 int ret = 0; 7595 7596 switch (param->flags & IW_AUTH_INDEX) { 7597 case IW_AUTH_WPA_VERSION: 7598 case IW_AUTH_CIPHER_PAIRWISE: 7599 case IW_AUTH_CIPHER_GROUP: 7600 case IW_AUTH_KEY_MGMT: 7601 /* 7602 * ipw2200 does not use these parameters 7603 */ 7604 break; 7605 7606 case IW_AUTH_TKIP_COUNTERMEASURES: 7607 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx]; 7608 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags) 7609 break; 7610 7611 flags = crypt->ops->get_flags(crypt->priv); 7612 7613 if (param->value) 7614 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES; 7615 else 7616 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES; 7617 7618 crypt->ops->set_flags(flags, crypt->priv); 7619 7620 break; 7621 7622 case IW_AUTH_DROP_UNENCRYPTED:{ 7623 /* HACK: 7624 * 7625 * wpa_supplicant calls set_wpa_enabled when the driver 7626 * is loaded and unloaded, regardless of if WPA is being 7627 * used. No other calls are made which can be used to 7628 * determine if encryption will be used or not prior to 7629 * association being expected. If encryption is not being 7630 * used, drop_unencrypted is set to false, else true -- we 7631 * can use this to determine if the CAP_PRIVACY_ON bit should 7632 * be set. 7633 */ 7634 struct libipw_security sec = { 7635 .flags = SEC_ENABLED, 7636 .enabled = param->value, 7637 }; 7638 priv->ieee->drop_unencrypted = param->value; 7639 /* We only change SEC_LEVEL for open mode. Others 7640 * are set by ipw_wpa_set_encryption. 7641 */ 7642 if (!param->value) { 7643 sec.flags |= SEC_LEVEL; 7644 sec.level = SEC_LEVEL_0; 7645 } else { 7646 sec.flags |= SEC_LEVEL; 7647 sec.level = SEC_LEVEL_1; 7648 } 7649 if (priv->ieee->set_security) 7650 priv->ieee->set_security(priv->ieee->dev, &sec); 7651 break; 7652 } 7653 7654 case IW_AUTH_80211_AUTH_ALG: 7655 ret = ipw2100_wpa_set_auth_algs(priv, param->value); 7656 break; 7657 7658 case IW_AUTH_WPA_ENABLED: 7659 ret = ipw2100_wpa_enable(priv, param->value); 7660 break; 7661 7662 case IW_AUTH_RX_UNENCRYPTED_EAPOL: 7663 ieee->ieee802_1x = param->value; 7664 break; 7665 7666 //case IW_AUTH_ROAMING_CONTROL: 7667 case IW_AUTH_PRIVACY_INVOKED: 7668 ieee->privacy_invoked = param->value; 7669 break; 7670 7671 default: 7672 return -EOPNOTSUPP; 7673 } 7674 return ret; 7675 } 7676 7677 /* SIOCGIWAUTH */ 7678 static int ipw2100_wx_get_auth(struct net_device *dev, 7679 struct iw_request_info *info, 7680 union iwreq_data *wrqu, char *extra) 7681 { 7682 struct ipw2100_priv *priv = libipw_priv(dev); 7683 struct libipw_device *ieee = priv->ieee; 7684 struct lib80211_crypt_data *crypt; 7685 struct iw_param *param = &wrqu->param; 7686 7687 switch (param->flags & IW_AUTH_INDEX) { 7688 case IW_AUTH_WPA_VERSION: 7689 case IW_AUTH_CIPHER_PAIRWISE: 7690 case IW_AUTH_CIPHER_GROUP: 7691 case IW_AUTH_KEY_MGMT: 7692 /* 7693 * wpa_supplicant will control these internally 7694 */ 7695 break; 7696 7697 case IW_AUTH_TKIP_COUNTERMEASURES: 7698 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx]; 7699 if (!crypt || !crypt->ops->get_flags) { 7700 IPW_DEBUG_WARNING("Can't get TKIP countermeasures: " 7701 "crypt not set!\n"); 7702 break; 7703 } 7704 7705 param->value = (crypt->ops->get_flags(crypt->priv) & 7706 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0; 7707 7708 break; 7709 7710 case IW_AUTH_DROP_UNENCRYPTED: 7711 param->value = ieee->drop_unencrypted; 7712 break; 7713 7714 case IW_AUTH_80211_AUTH_ALG: 7715 param->value = priv->ieee->sec.auth_mode; 7716 break; 7717 7718 case IW_AUTH_WPA_ENABLED: 7719 param->value = ieee->wpa_enabled; 7720 break; 7721 7722 case IW_AUTH_RX_UNENCRYPTED_EAPOL: 7723 param->value = ieee->ieee802_1x; 7724 break; 7725 7726 case IW_AUTH_ROAMING_CONTROL: 7727 case IW_AUTH_PRIVACY_INVOKED: 7728 param->value = ieee->privacy_invoked; 7729 break; 7730 7731 default: 7732 return -EOPNOTSUPP; 7733 } 7734 return 0; 7735 } 7736 7737 /* SIOCSIWENCODEEXT */ 7738 static int ipw2100_wx_set_encodeext(struct net_device *dev, 7739 struct iw_request_info *info, 7740 union iwreq_data *wrqu, char *extra) 7741 { 7742 struct ipw2100_priv *priv = libipw_priv(dev); 7743 return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra); 7744 } 7745 7746 /* SIOCGIWENCODEEXT */ 7747 static int ipw2100_wx_get_encodeext(struct net_device *dev, 7748 struct iw_request_info *info, 7749 union iwreq_data *wrqu, char *extra) 7750 { 7751 struct ipw2100_priv *priv = libipw_priv(dev); 7752 return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra); 7753 } 7754 7755 /* SIOCSIWMLME */ 7756 static int ipw2100_wx_set_mlme(struct net_device *dev, 7757 struct iw_request_info *info, 7758 union iwreq_data *wrqu, char *extra) 7759 { 7760 struct ipw2100_priv *priv = libipw_priv(dev); 7761 struct iw_mlme *mlme = (struct iw_mlme *)extra; 7762 7763 switch (mlme->cmd) { 7764 case IW_MLME_DEAUTH: 7765 // silently ignore 7766 break; 7767 7768 case IW_MLME_DISASSOC: 7769 ipw2100_disassociate_bssid(priv); 7770 break; 7771 7772 default: 7773 return -EOPNOTSUPP; 7774 } 7775 return 0; 7776 } 7777 7778 /* 7779 * 7780 * IWPRIV handlers 7781 * 7782 */ 7783 #ifdef CONFIG_IPW2100_MONITOR 7784 static int ipw2100_wx_set_promisc(struct net_device *dev, 7785 struct iw_request_info *info, 7786 union iwreq_data *wrqu, char *extra) 7787 { 7788 struct ipw2100_priv *priv = libipw_priv(dev); 7789 int *parms = (int *)extra; 7790 int enable = (parms[0] > 0); 7791 int err = 0; 7792 7793 mutex_lock(&priv->action_mutex); 7794 if (!(priv->status & STATUS_INITIALIZED)) { 7795 err = -EIO; 7796 goto done; 7797 } 7798 7799 if (enable) { 7800 if (priv->ieee->iw_mode == IW_MODE_MONITOR) { 7801 err = ipw2100_set_channel(priv, parms[1], 0); 7802 goto done; 7803 } 7804 priv->channel = parms[1]; 7805 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR); 7806 } else { 7807 if (priv->ieee->iw_mode == IW_MODE_MONITOR) 7808 err = ipw2100_switch_mode(priv, priv->last_mode); 7809 } 7810 done: 7811 mutex_unlock(&priv->action_mutex); 7812 return err; 7813 } 7814 7815 static int ipw2100_wx_reset(struct net_device *dev, 7816 struct iw_request_info *info, 7817 union iwreq_data *wrqu, char *extra) 7818 { 7819 struct ipw2100_priv *priv = libipw_priv(dev); 7820 if (priv->status & STATUS_INITIALIZED) 7821 schedule_reset(priv); 7822 return 0; 7823 } 7824 7825 #endif 7826 7827 static int ipw2100_wx_set_powermode(struct net_device *dev, 7828 struct iw_request_info *info, 7829 union iwreq_data *wrqu, char *extra) 7830 { 7831 struct ipw2100_priv *priv = libipw_priv(dev); 7832 int err = 0, mode = *(int *)extra; 7833 7834 mutex_lock(&priv->action_mutex); 7835 if (!(priv->status & STATUS_INITIALIZED)) { 7836 err = -EIO; 7837 goto done; 7838 } 7839 7840 if ((mode < 0) || (mode > POWER_MODES)) 7841 mode = IPW_POWER_AUTO; 7842 7843 if (IPW_POWER_LEVEL(priv->power_mode) != mode) 7844 err = ipw2100_set_power_mode(priv, mode); 7845 done: 7846 mutex_unlock(&priv->action_mutex); 7847 return err; 7848 } 7849 7850 #define MAX_POWER_STRING 80 7851 static int ipw2100_wx_get_powermode(struct net_device *dev, 7852 struct iw_request_info *info, 7853 union iwreq_data *wrqu, char *extra) 7854 { 7855 /* 7856 * This can be called at any time. No action lock required 7857 */ 7858 7859 struct ipw2100_priv *priv = libipw_priv(dev); 7860 int level = IPW_POWER_LEVEL(priv->power_mode); 7861 s32 timeout, period; 7862 7863 if (!(priv->power_mode & IPW_POWER_ENABLED)) { 7864 snprintf(extra, MAX_POWER_STRING, 7865 "Power save level: %d (Off)", level); 7866 } else { 7867 switch (level) { 7868 case IPW_POWER_MODE_CAM: 7869 snprintf(extra, MAX_POWER_STRING, 7870 "Power save level: %d (None)", level); 7871 break; 7872 case IPW_POWER_AUTO: 7873 snprintf(extra, MAX_POWER_STRING, 7874 "Power save level: %d (Auto)", level); 7875 break; 7876 default: 7877 timeout = timeout_duration[level - 1] / 1000; 7878 period = period_duration[level - 1] / 1000; 7879 snprintf(extra, MAX_POWER_STRING, 7880 "Power save level: %d " 7881 "(Timeout %dms, Period %dms)", 7882 level, timeout, period); 7883 } 7884 } 7885 7886 wrqu->data.length = strlen(extra) + 1; 7887 7888 return 0; 7889 } 7890 7891 static int ipw2100_wx_set_preamble(struct net_device *dev, 7892 struct iw_request_info *info, 7893 union iwreq_data *wrqu, char *extra) 7894 { 7895 struct ipw2100_priv *priv = libipw_priv(dev); 7896 int err, mode = *(int *)extra; 7897 7898 mutex_lock(&priv->action_mutex); 7899 if (!(priv->status & STATUS_INITIALIZED)) { 7900 err = -EIO; 7901 goto done; 7902 } 7903 7904 if (mode == 1) 7905 priv->config |= CFG_LONG_PREAMBLE; 7906 else if (mode == 0) 7907 priv->config &= ~CFG_LONG_PREAMBLE; 7908 else { 7909 err = -EINVAL; 7910 goto done; 7911 } 7912 7913 err = ipw2100_system_config(priv, 0); 7914 7915 done: 7916 mutex_unlock(&priv->action_mutex); 7917 return err; 7918 } 7919 7920 static int ipw2100_wx_get_preamble(struct net_device *dev, 7921 struct iw_request_info *info, 7922 union iwreq_data *wrqu, char *extra) 7923 { 7924 /* 7925 * This can be called at any time. No action lock required 7926 */ 7927 7928 struct ipw2100_priv *priv = libipw_priv(dev); 7929 7930 if (priv->config & CFG_LONG_PREAMBLE) 7931 snprintf(wrqu->name, IFNAMSIZ, "long (1)"); 7932 else 7933 snprintf(wrqu->name, IFNAMSIZ, "auto (0)"); 7934 7935 return 0; 7936 } 7937 7938 #ifdef CONFIG_IPW2100_MONITOR 7939 static int ipw2100_wx_set_crc_check(struct net_device *dev, 7940 struct iw_request_info *info, 7941 union iwreq_data *wrqu, char *extra) 7942 { 7943 struct ipw2100_priv *priv = libipw_priv(dev); 7944 int err, mode = *(int *)extra; 7945 7946 mutex_lock(&priv->action_mutex); 7947 if (!(priv->status & STATUS_INITIALIZED)) { 7948 err = -EIO; 7949 goto done; 7950 } 7951 7952 if (mode == 1) 7953 priv->config |= CFG_CRC_CHECK; 7954 else if (mode == 0) 7955 priv->config &= ~CFG_CRC_CHECK; 7956 else { 7957 err = -EINVAL; 7958 goto done; 7959 } 7960 err = 0; 7961 7962 done: 7963 mutex_unlock(&priv->action_mutex); 7964 return err; 7965 } 7966 7967 static int ipw2100_wx_get_crc_check(struct net_device *dev, 7968 struct iw_request_info *info, 7969 union iwreq_data *wrqu, char *extra) 7970 { 7971 /* 7972 * This can be called at any time. No action lock required 7973 */ 7974 7975 struct ipw2100_priv *priv = libipw_priv(dev); 7976 7977 if (priv->config & CFG_CRC_CHECK) 7978 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)"); 7979 else 7980 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)"); 7981 7982 return 0; 7983 } 7984 #endif /* CONFIG_IPW2100_MONITOR */ 7985 7986 static iw_handler ipw2100_wx_handlers[] = { 7987 IW_HANDLER(SIOCGIWNAME, ipw2100_wx_get_name), 7988 IW_HANDLER(SIOCSIWFREQ, ipw2100_wx_set_freq), 7989 IW_HANDLER(SIOCGIWFREQ, ipw2100_wx_get_freq), 7990 IW_HANDLER(SIOCSIWMODE, ipw2100_wx_set_mode), 7991 IW_HANDLER(SIOCGIWMODE, ipw2100_wx_get_mode), 7992 IW_HANDLER(SIOCGIWRANGE, ipw2100_wx_get_range), 7993 IW_HANDLER(SIOCSIWAP, ipw2100_wx_set_wap), 7994 IW_HANDLER(SIOCGIWAP, ipw2100_wx_get_wap), 7995 IW_HANDLER(SIOCSIWMLME, ipw2100_wx_set_mlme), 7996 IW_HANDLER(SIOCSIWSCAN, ipw2100_wx_set_scan), 7997 IW_HANDLER(SIOCGIWSCAN, ipw2100_wx_get_scan), 7998 IW_HANDLER(SIOCSIWESSID, ipw2100_wx_set_essid), 7999 IW_HANDLER(SIOCGIWESSID, ipw2100_wx_get_essid), 8000 IW_HANDLER(SIOCSIWNICKN, ipw2100_wx_set_nick), 8001 IW_HANDLER(SIOCGIWNICKN, ipw2100_wx_get_nick), 8002 IW_HANDLER(SIOCSIWRATE, ipw2100_wx_set_rate), 8003 IW_HANDLER(SIOCGIWRATE, ipw2100_wx_get_rate), 8004 IW_HANDLER(SIOCSIWRTS, ipw2100_wx_set_rts), 8005 IW_HANDLER(SIOCGIWRTS, ipw2100_wx_get_rts), 8006 IW_HANDLER(SIOCSIWFRAG, ipw2100_wx_set_frag), 8007 IW_HANDLER(SIOCGIWFRAG, ipw2100_wx_get_frag), 8008 IW_HANDLER(SIOCSIWTXPOW, ipw2100_wx_set_txpow), 8009 IW_HANDLER(SIOCGIWTXPOW, ipw2100_wx_get_txpow), 8010 IW_HANDLER(SIOCSIWRETRY, ipw2100_wx_set_retry), 8011 IW_HANDLER(SIOCGIWRETRY, ipw2100_wx_get_retry), 8012 IW_HANDLER(SIOCSIWENCODE, ipw2100_wx_set_encode), 8013 IW_HANDLER(SIOCGIWENCODE, ipw2100_wx_get_encode), 8014 IW_HANDLER(SIOCSIWPOWER, ipw2100_wx_set_power), 8015 IW_HANDLER(SIOCGIWPOWER, ipw2100_wx_get_power), 8016 IW_HANDLER(SIOCSIWGENIE, ipw2100_wx_set_genie), 8017 IW_HANDLER(SIOCGIWGENIE, ipw2100_wx_get_genie), 8018 IW_HANDLER(SIOCSIWAUTH, ipw2100_wx_set_auth), 8019 IW_HANDLER(SIOCGIWAUTH, ipw2100_wx_get_auth), 8020 IW_HANDLER(SIOCSIWENCODEEXT, ipw2100_wx_set_encodeext), 8021 IW_HANDLER(SIOCGIWENCODEEXT, ipw2100_wx_get_encodeext), 8022 }; 8023 8024 #define IPW2100_PRIV_SET_MONITOR SIOCIWFIRSTPRIV 8025 #define IPW2100_PRIV_RESET SIOCIWFIRSTPRIV+1 8026 #define IPW2100_PRIV_SET_POWER SIOCIWFIRSTPRIV+2 8027 #define IPW2100_PRIV_GET_POWER SIOCIWFIRSTPRIV+3 8028 #define IPW2100_PRIV_SET_LONGPREAMBLE SIOCIWFIRSTPRIV+4 8029 #define IPW2100_PRIV_GET_LONGPREAMBLE SIOCIWFIRSTPRIV+5 8030 #define IPW2100_PRIV_SET_CRC_CHECK SIOCIWFIRSTPRIV+6 8031 #define IPW2100_PRIV_GET_CRC_CHECK SIOCIWFIRSTPRIV+7 8032 8033 static const struct iw_priv_args ipw2100_private_args[] = { 8034 8035 #ifdef CONFIG_IPW2100_MONITOR 8036 { 8037 IPW2100_PRIV_SET_MONITOR, 8038 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"}, 8039 { 8040 IPW2100_PRIV_RESET, 8041 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"}, 8042 #endif /* CONFIG_IPW2100_MONITOR */ 8043 8044 { 8045 IPW2100_PRIV_SET_POWER, 8046 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"}, 8047 { 8048 IPW2100_PRIV_GET_POWER, 8049 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING, 8050 "get_power"}, 8051 { 8052 IPW2100_PRIV_SET_LONGPREAMBLE, 8053 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"}, 8054 { 8055 IPW2100_PRIV_GET_LONGPREAMBLE, 8056 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"}, 8057 #ifdef CONFIG_IPW2100_MONITOR 8058 { 8059 IPW2100_PRIV_SET_CRC_CHECK, 8060 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"}, 8061 { 8062 IPW2100_PRIV_GET_CRC_CHECK, 8063 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"}, 8064 #endif /* CONFIG_IPW2100_MONITOR */ 8065 }; 8066 8067 static iw_handler ipw2100_private_handler[] = { 8068 #ifdef CONFIG_IPW2100_MONITOR 8069 ipw2100_wx_set_promisc, 8070 ipw2100_wx_reset, 8071 #else /* CONFIG_IPW2100_MONITOR */ 8072 NULL, 8073 NULL, 8074 #endif /* CONFIG_IPW2100_MONITOR */ 8075 ipw2100_wx_set_powermode, 8076 ipw2100_wx_get_powermode, 8077 ipw2100_wx_set_preamble, 8078 ipw2100_wx_get_preamble, 8079 #ifdef CONFIG_IPW2100_MONITOR 8080 ipw2100_wx_set_crc_check, 8081 ipw2100_wx_get_crc_check, 8082 #else /* CONFIG_IPW2100_MONITOR */ 8083 NULL, 8084 NULL, 8085 #endif /* CONFIG_IPW2100_MONITOR */ 8086 }; 8087 8088 /* 8089 * Get wireless statistics. 8090 * Called by /proc/net/wireless 8091 * Also called by SIOCGIWSTATS 8092 */ 8093 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev) 8094 { 8095 enum { 8096 POOR = 30, 8097 FAIR = 60, 8098 GOOD = 80, 8099 VERY_GOOD = 90, 8100 EXCELLENT = 95, 8101 PERFECT = 100 8102 }; 8103 int rssi_qual; 8104 int tx_qual; 8105 int beacon_qual; 8106 int quality; 8107 8108 struct ipw2100_priv *priv = libipw_priv(dev); 8109 struct iw_statistics *wstats; 8110 u32 rssi, tx_retries, missed_beacons, tx_failures; 8111 u32 ord_len = sizeof(u32); 8112 8113 if (!priv) 8114 return (struct iw_statistics *)NULL; 8115 8116 wstats = &priv->wstats; 8117 8118 /* if hw is disabled, then ipw2100_get_ordinal() can't be called. 8119 * ipw2100_wx_wireless_stats seems to be called before fw is 8120 * initialized. STATUS_ASSOCIATED will only be set if the hw is up 8121 * and associated; if not associcated, the values are all meaningless 8122 * anyway, so set them all to NULL and INVALID */ 8123 if (!(priv->status & STATUS_ASSOCIATED)) { 8124 wstats->miss.beacon = 0; 8125 wstats->discard.retries = 0; 8126 wstats->qual.qual = 0; 8127 wstats->qual.level = 0; 8128 wstats->qual.noise = 0; 8129 wstats->qual.updated = 7; 8130 wstats->qual.updated |= IW_QUAL_NOISE_INVALID | 8131 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID; 8132 return wstats; 8133 } 8134 8135 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS, 8136 &missed_beacons, &ord_len)) 8137 goto fail_get_ordinal; 8138 8139 /* If we don't have a connection the quality and level is 0 */ 8140 if (!(priv->status & STATUS_ASSOCIATED)) { 8141 wstats->qual.qual = 0; 8142 wstats->qual.level = 0; 8143 } else { 8144 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR, 8145 &rssi, &ord_len)) 8146 goto fail_get_ordinal; 8147 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM; 8148 if (rssi < 10) 8149 rssi_qual = rssi * POOR / 10; 8150 else if (rssi < 15) 8151 rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR; 8152 else if (rssi < 20) 8153 rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR; 8154 else if (rssi < 30) 8155 rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) / 8156 10 + GOOD; 8157 else 8158 rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) / 8159 10 + VERY_GOOD; 8160 8161 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES, 8162 &tx_retries, &ord_len)) 8163 goto fail_get_ordinal; 8164 8165 if (tx_retries > 75) 8166 tx_qual = (90 - tx_retries) * POOR / 15; 8167 else if (tx_retries > 70) 8168 tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR; 8169 else if (tx_retries > 65) 8170 tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR; 8171 else if (tx_retries > 50) 8172 tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) / 8173 15 + GOOD; 8174 else 8175 tx_qual = (50 - tx_retries) * 8176 (PERFECT - VERY_GOOD) / 50 + VERY_GOOD; 8177 8178 if (missed_beacons > 50) 8179 beacon_qual = (60 - missed_beacons) * POOR / 10; 8180 else if (missed_beacons > 40) 8181 beacon_qual = (50 - missed_beacons) * (FAIR - POOR) / 8182 10 + POOR; 8183 else if (missed_beacons > 32) 8184 beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) / 8185 18 + FAIR; 8186 else if (missed_beacons > 20) 8187 beacon_qual = (32 - missed_beacons) * 8188 (VERY_GOOD - GOOD) / 20 + GOOD; 8189 else 8190 beacon_qual = (20 - missed_beacons) * 8191 (PERFECT - VERY_GOOD) / 20 + VERY_GOOD; 8192 8193 quality = min(tx_qual, rssi_qual); 8194 quality = min(beacon_qual, quality); 8195 8196 #ifdef CONFIG_IPW2100_DEBUG 8197 if (beacon_qual == quality) 8198 IPW_DEBUG_WX("Quality clamped by Missed Beacons\n"); 8199 else if (tx_qual == quality) 8200 IPW_DEBUG_WX("Quality clamped by Tx Retries\n"); 8201 else if (quality != 100) 8202 IPW_DEBUG_WX("Quality clamped by Signal Strength\n"); 8203 else 8204 IPW_DEBUG_WX("Quality not clamped.\n"); 8205 #endif 8206 8207 wstats->qual.qual = quality; 8208 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM; 8209 } 8210 8211 wstats->qual.noise = 0; 8212 wstats->qual.updated = 7; 8213 wstats->qual.updated |= IW_QUAL_NOISE_INVALID; 8214 8215 /* FIXME: this is percent and not a # */ 8216 wstats->miss.beacon = missed_beacons; 8217 8218 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES, 8219 &tx_failures, &ord_len)) 8220 goto fail_get_ordinal; 8221 wstats->discard.retries = tx_failures; 8222 8223 return wstats; 8224 8225 fail_get_ordinal: 8226 IPW_DEBUG_WX("failed querying ordinals.\n"); 8227 8228 return (struct iw_statistics *)NULL; 8229 } 8230 8231 static const struct iw_handler_def ipw2100_wx_handler_def = { 8232 .standard = ipw2100_wx_handlers, 8233 .num_standard = ARRAY_SIZE(ipw2100_wx_handlers), 8234 .num_private = ARRAY_SIZE(ipw2100_private_handler), 8235 .num_private_args = ARRAY_SIZE(ipw2100_private_args), 8236 .private = (iw_handler *) ipw2100_private_handler, 8237 .private_args = (struct iw_priv_args *)ipw2100_private_args, 8238 .get_wireless_stats = ipw2100_wx_wireless_stats, 8239 }; 8240 8241 static void ipw2100_wx_event_work(struct work_struct *work) 8242 { 8243 struct ipw2100_priv *priv = 8244 container_of(work, struct ipw2100_priv, wx_event_work.work); 8245 union iwreq_data wrqu; 8246 unsigned int len = ETH_ALEN; 8247 8248 if (priv->status & STATUS_STOPPING) 8249 return; 8250 8251 mutex_lock(&priv->action_mutex); 8252 8253 IPW_DEBUG_WX("enter\n"); 8254 8255 mutex_unlock(&priv->action_mutex); 8256 8257 wrqu.ap_addr.sa_family = ARPHRD_ETHER; 8258 8259 /* Fetch BSSID from the hardware */ 8260 if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) || 8261 priv->status & STATUS_RF_KILL_MASK || 8262 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, 8263 &priv->bssid, &len)) { 8264 eth_zero_addr(wrqu.ap_addr.sa_data); 8265 } else { 8266 /* We now have the BSSID, so can finish setting to the full 8267 * associated state */ 8268 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN); 8269 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN); 8270 priv->status &= ~STATUS_ASSOCIATING; 8271 priv->status |= STATUS_ASSOCIATED; 8272 netif_carrier_on(priv->net_dev); 8273 netif_wake_queue(priv->net_dev); 8274 } 8275 8276 if (!(priv->status & STATUS_ASSOCIATED)) { 8277 IPW_DEBUG_WX("Configuring ESSID\n"); 8278 mutex_lock(&priv->action_mutex); 8279 /* This is a disassociation event, so kick the firmware to 8280 * look for another AP */ 8281 if (priv->config & CFG_STATIC_ESSID) 8282 ipw2100_set_essid(priv, priv->essid, priv->essid_len, 8283 0); 8284 else 8285 ipw2100_set_essid(priv, NULL, 0, 0); 8286 mutex_unlock(&priv->action_mutex); 8287 } 8288 8289 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL); 8290 } 8291 8292 #define IPW2100_FW_MAJOR_VERSION 1 8293 #define IPW2100_FW_MINOR_VERSION 3 8294 8295 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8) 8296 #define IPW2100_FW_MAJOR(x) (x & 0xff) 8297 8298 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \ 8299 IPW2100_FW_MAJOR_VERSION) 8300 8301 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \ 8302 "." __stringify(IPW2100_FW_MINOR_VERSION) 8303 8304 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw" 8305 8306 /* 8307 8308 BINARY FIRMWARE HEADER FORMAT 8309 8310 offset length desc 8311 0 2 version 8312 2 2 mode == 0:BSS,1:IBSS,2:MONITOR 8313 4 4 fw_len 8314 8 4 uc_len 8315 C fw_len firmware data 8316 12 + fw_len uc_len microcode data 8317 8318 */ 8319 8320 struct ipw2100_fw_header { 8321 short version; 8322 short mode; 8323 unsigned int fw_size; 8324 unsigned int uc_size; 8325 } __packed; 8326 8327 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw) 8328 { 8329 struct ipw2100_fw_header *h = 8330 (struct ipw2100_fw_header *)fw->fw_entry->data; 8331 8332 if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) { 8333 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible " 8334 "(detected version id of %u). " 8335 "See Documentation/networking/device_drivers/wifi/intel/ipw2100.rst\n", 8336 h->version); 8337 return 1; 8338 } 8339 8340 fw->version = h->version; 8341 fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header); 8342 fw->fw.size = h->fw_size; 8343 fw->uc.data = fw->fw.data + h->fw_size; 8344 fw->uc.size = h->uc_size; 8345 8346 return 0; 8347 } 8348 8349 static int ipw2100_get_firmware(struct ipw2100_priv *priv, 8350 struct ipw2100_fw *fw) 8351 { 8352 char *fw_name; 8353 int rc; 8354 8355 IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n", 8356 priv->net_dev->name); 8357 8358 switch (priv->ieee->iw_mode) { 8359 case IW_MODE_ADHOC: 8360 fw_name = IPW2100_FW_NAME("-i"); 8361 break; 8362 #ifdef CONFIG_IPW2100_MONITOR 8363 case IW_MODE_MONITOR: 8364 fw_name = IPW2100_FW_NAME("-p"); 8365 break; 8366 #endif 8367 case IW_MODE_INFRA: 8368 default: 8369 fw_name = IPW2100_FW_NAME(""); 8370 break; 8371 } 8372 8373 rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev); 8374 8375 if (rc < 0) { 8376 printk(KERN_ERR DRV_NAME ": " 8377 "%s: Firmware '%s' not available or load failed.\n", 8378 priv->net_dev->name, fw_name); 8379 return rc; 8380 } 8381 IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data, 8382 fw->fw_entry->size); 8383 8384 ipw2100_mod_firmware_load(fw); 8385 8386 return 0; 8387 } 8388 8389 MODULE_FIRMWARE(IPW2100_FW_NAME("-i")); 8390 #ifdef CONFIG_IPW2100_MONITOR 8391 MODULE_FIRMWARE(IPW2100_FW_NAME("-p")); 8392 #endif 8393 MODULE_FIRMWARE(IPW2100_FW_NAME("")); 8394 8395 static void ipw2100_release_firmware(struct ipw2100_priv *priv, 8396 struct ipw2100_fw *fw) 8397 { 8398 fw->version = 0; 8399 release_firmware(fw->fw_entry); 8400 fw->fw_entry = NULL; 8401 } 8402 8403 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf, 8404 size_t max) 8405 { 8406 char ver[MAX_FW_VERSION_LEN]; 8407 u32 len = MAX_FW_VERSION_LEN; 8408 u32 tmp; 8409 int i; 8410 /* firmware version is an ascii string (max len of 14) */ 8411 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len)) 8412 return -EIO; 8413 tmp = max; 8414 if (len >= max) 8415 len = max - 1; 8416 for (i = 0; i < len; i++) 8417 buf[i] = ver[i]; 8418 buf[i] = '\0'; 8419 return tmp; 8420 } 8421 8422 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf, 8423 size_t max) 8424 { 8425 u32 ver; 8426 u32 len = sizeof(ver); 8427 /* microcode version is a 32 bit integer */ 8428 if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len)) 8429 return -EIO; 8430 return snprintf(buf, max, "%08X", ver); 8431 } 8432 8433 /* 8434 * On exit, the firmware will have been freed from the fw list 8435 */ 8436 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw) 8437 { 8438 /* firmware is constructed of N contiguous entries, each entry is 8439 * structured as: 8440 * 8441 * offset sie desc 8442 * 0 4 address to write to 8443 * 4 2 length of data run 8444 * 6 length data 8445 */ 8446 unsigned int addr; 8447 unsigned short len; 8448 8449 const unsigned char *firmware_data = fw->fw.data; 8450 unsigned int firmware_data_left = fw->fw.size; 8451 8452 while (firmware_data_left > 0) { 8453 addr = *(u32 *) (firmware_data); 8454 firmware_data += 4; 8455 firmware_data_left -= 4; 8456 8457 len = *(u16 *) (firmware_data); 8458 firmware_data += 2; 8459 firmware_data_left -= 2; 8460 8461 if (len > 32) { 8462 printk(KERN_ERR DRV_NAME ": " 8463 "Invalid firmware run-length of %d bytes\n", 8464 len); 8465 return -EINVAL; 8466 } 8467 8468 write_nic_memory(priv->net_dev, addr, len, firmware_data); 8469 firmware_data += len; 8470 firmware_data_left -= len; 8471 } 8472 8473 return 0; 8474 } 8475 8476 struct symbol_alive_response { 8477 u8 cmd_id; 8478 u8 seq_num; 8479 u8 ucode_rev; 8480 u8 eeprom_valid; 8481 u16 valid_flags; 8482 u8 IEEE_addr[6]; 8483 u16 flags; 8484 u16 pcb_rev; 8485 u16 clock_settle_time; // 1us LSB 8486 u16 powerup_settle_time; // 1us LSB 8487 u16 hop_settle_time; // 1us LSB 8488 u8 date[3]; // month, day, year 8489 u8 time[2]; // hours, minutes 8490 u8 ucode_valid; 8491 }; 8492 8493 static int ipw2100_ucode_download(struct ipw2100_priv *priv, 8494 struct ipw2100_fw *fw) 8495 { 8496 struct net_device *dev = priv->net_dev; 8497 const unsigned char *microcode_data = fw->uc.data; 8498 unsigned int microcode_data_left = fw->uc.size; 8499 void __iomem *reg = priv->ioaddr; 8500 8501 struct symbol_alive_response response; 8502 int i, j; 8503 u8 data; 8504 8505 /* Symbol control */ 8506 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703); 8507 readl(reg); 8508 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707); 8509 readl(reg); 8510 8511 /* HW config */ 8512 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */ 8513 readl(reg); 8514 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */ 8515 readl(reg); 8516 8517 /* EN_CS_ACCESS bit to reset control store pointer */ 8518 write_nic_byte(dev, 0x210000, 0x40); 8519 readl(reg); 8520 write_nic_byte(dev, 0x210000, 0x0); 8521 readl(reg); 8522 write_nic_byte(dev, 0x210000, 0x40); 8523 readl(reg); 8524 8525 /* copy microcode from buffer into Symbol */ 8526 8527 while (microcode_data_left > 0) { 8528 write_nic_byte(dev, 0x210010, *microcode_data++); 8529 write_nic_byte(dev, 0x210010, *microcode_data++); 8530 microcode_data_left -= 2; 8531 } 8532 8533 /* EN_CS_ACCESS bit to reset the control store pointer */ 8534 write_nic_byte(dev, 0x210000, 0x0); 8535 readl(reg); 8536 8537 /* Enable System (Reg 0) 8538 * first enable causes garbage in RX FIFO */ 8539 write_nic_byte(dev, 0x210000, 0x0); 8540 readl(reg); 8541 write_nic_byte(dev, 0x210000, 0x80); 8542 readl(reg); 8543 8544 /* Reset External Baseband Reg */ 8545 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703); 8546 readl(reg); 8547 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707); 8548 readl(reg); 8549 8550 /* HW Config (Reg 5) */ 8551 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16 8552 readl(reg); 8553 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16 8554 readl(reg); 8555 8556 /* Enable System (Reg 0) 8557 * second enable should be OK */ 8558 write_nic_byte(dev, 0x210000, 0x00); // clear enable system 8559 readl(reg); 8560 write_nic_byte(dev, 0x210000, 0x80); // set enable system 8561 8562 /* check Symbol is enabled - upped this from 5 as it wasn't always 8563 * catching the update */ 8564 for (i = 0; i < 10; i++) { 8565 udelay(10); 8566 8567 /* check Dino is enabled bit */ 8568 read_nic_byte(dev, 0x210000, &data); 8569 if (data & 0x1) 8570 break; 8571 } 8572 8573 if (i == 10) { 8574 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n", 8575 dev->name); 8576 return -EIO; 8577 } 8578 8579 /* Get Symbol alive response */ 8580 for (i = 0; i < 30; i++) { 8581 /* Read alive response structure */ 8582 for (j = 0; 8583 j < (sizeof(struct symbol_alive_response) >> 1); j++) 8584 read_nic_word(dev, 0x210004, ((u16 *) & response) + j); 8585 8586 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1)) 8587 break; 8588 udelay(10); 8589 } 8590 8591 if (i == 30) { 8592 printk(KERN_ERR DRV_NAME 8593 ": %s: No response from Symbol - hw not alive\n", 8594 dev->name); 8595 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response)); 8596 return -EIO; 8597 } 8598 8599 return 0; 8600 } 8601