1 // SPDX-License-Identifier: GPL-2.0-only 2 /****************************************************************************** 3 4 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved. 5 6 7 Contact Information: 8 Intel Linux Wireless <ilw@linux.intel.com> 9 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 10 11 Portions of this file are based on the sample_* files provided by Wireless 12 Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes 13 <jt@hpl.hp.com> 14 15 Portions of this file are based on the Host AP project, 16 Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen 17 <j@w1.fi> 18 Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi> 19 20 Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and 21 ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c 22 available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox 23 24 ******************************************************************************/ 25 /* 26 27 Initial driver on which this is based was developed by Janusz Gorycki, 28 Maciej Urbaniak, and Maciej Sosnowski. 29 30 Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak. 31 32 Theory of Operation 33 34 Tx - Commands and Data 35 36 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs) 37 Each TBD contains a pointer to the physical (dma_addr_t) address of data being 38 sent to the firmware as well as the length of the data. 39 40 The host writes to the TBD queue at the WRITE index. The WRITE index points 41 to the _next_ packet to be written and is advanced when after the TBD has been 42 filled. 43 44 The firmware pulls from the TBD queue at the READ index. The READ index points 45 to the currently being read entry, and is advanced once the firmware is 46 done with a packet. 47 48 When data is sent to the firmware, the first TBD is used to indicate to the 49 firmware if a Command or Data is being sent. If it is Command, all of the 50 command information is contained within the physical address referred to by the 51 TBD. If it is Data, the first TBD indicates the type of data packet, number 52 of fragments, etc. The next TBD then refers to the actual packet location. 53 54 The Tx flow cycle is as follows: 55 56 1) ipw2100_tx() is called by kernel with SKB to transmit 57 2) Packet is move from the tx_free_list and appended to the transmit pending 58 list (tx_pend_list) 59 3) work is scheduled to move pending packets into the shared circular queue. 60 4) when placing packet in the circular queue, the incoming SKB is DMA mapped 61 to a physical address. That address is entered into a TBD. Two TBDs are 62 filled out. The first indicating a data packet, the second referring to the 63 actual payload data. 64 5) the packet is removed from tx_pend_list and placed on the end of the 65 firmware pending list (fw_pend_list) 66 6) firmware is notified that the WRITE index has 67 7) Once the firmware has processed the TBD, INTA is triggered. 68 8) For each Tx interrupt received from the firmware, the READ index is checked 69 to see which TBDs are done being processed. 70 9) For each TBD that has been processed, the ISR pulls the oldest packet 71 from the fw_pend_list. 72 10)The packet structure contained in the fw_pend_list is then used 73 to unmap the DMA address and to free the SKB originally passed to the driver 74 from the kernel. 75 11)The packet structure is placed onto the tx_free_list 76 77 The above steps are the same for commands, only the msg_free_list/msg_pend_list 78 are used instead of tx_free_list/tx_pend_list 79 80 ... 81 82 Critical Sections / Locking : 83 84 There are two locks utilized. The first is the low level lock (priv->low_lock) 85 that protects the following: 86 87 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows: 88 89 tx_free_list : Holds pre-allocated Tx buffers. 90 TAIL modified in __ipw2100_tx_process() 91 HEAD modified in ipw2100_tx() 92 93 tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring 94 TAIL modified ipw2100_tx() 95 HEAD modified by ipw2100_tx_send_data() 96 97 msg_free_list : Holds pre-allocated Msg (Command) buffers 98 TAIL modified in __ipw2100_tx_process() 99 HEAD modified in ipw2100_hw_send_command() 100 101 msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring 102 TAIL modified in ipw2100_hw_send_command() 103 HEAD modified in ipw2100_tx_send_commands() 104 105 The flow of data on the TX side is as follows: 106 107 MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST 108 TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST 109 110 The methods that work on the TBD ring are protected via priv->low_lock. 111 112 - The internal data state of the device itself 113 - Access to the firmware read/write indexes for the BD queues 114 and associated logic 115 116 All external entry functions are locked with the priv->action_lock to ensure 117 that only one external action is invoked at a time. 118 119 120 */ 121 122 #include <linux/compiler.h> 123 #include <linux/errno.h> 124 #include <linux/if_arp.h> 125 #include <linux/in6.h> 126 #include <linux/in.h> 127 #include <linux/ip.h> 128 #include <linux/kernel.h> 129 #include <linux/kmod.h> 130 #include <linux/module.h> 131 #include <linux/netdevice.h> 132 #include <linux/ethtool.h> 133 #include <linux/pci.h> 134 #include <linux/dma-mapping.h> 135 #include <linux/proc_fs.h> 136 #include <linux/skbuff.h> 137 #include <linux/uaccess.h> 138 #include <asm/io.h> 139 #include <linux/fs.h> 140 #include <linux/mm.h> 141 #include <linux/slab.h> 142 #include <linux/unistd.h> 143 #include <linux/stringify.h> 144 #include <linux/tcp.h> 145 #include <linux/types.h> 146 #include <linux/time.h> 147 #include <linux/firmware.h> 148 #include <linux/acpi.h> 149 #include <linux/ctype.h> 150 #include <linux/pm_qos.h> 151 152 #include <net/lib80211.h> 153 154 #include "ipw2100.h" 155 #include "ipw.h" 156 157 #define IPW2100_VERSION "git-1.2.2" 158 159 #define DRV_NAME "ipw2100" 160 #define DRV_VERSION IPW2100_VERSION 161 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver" 162 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation" 163 164 static struct pm_qos_request ipw2100_pm_qos_req; 165 166 /* Debugging stuff */ 167 #ifdef CONFIG_IPW2100_DEBUG 168 #define IPW2100_RX_DEBUG /* Reception debugging */ 169 #endif 170 171 MODULE_DESCRIPTION(DRV_DESCRIPTION); 172 MODULE_VERSION(DRV_VERSION); 173 MODULE_AUTHOR(DRV_COPYRIGHT); 174 MODULE_LICENSE("GPL"); 175 176 static int debug = 0; 177 static int network_mode = 0; 178 static int channel = 0; 179 static int associate = 0; 180 static int disable = 0; 181 #ifdef CONFIG_PM 182 static struct ipw2100_fw ipw2100_firmware; 183 #endif 184 185 #include <linux/moduleparam.h> 186 module_param(debug, int, 0444); 187 module_param_named(mode, network_mode, int, 0444); 188 module_param(channel, int, 0444); 189 module_param(associate, int, 0444); 190 module_param(disable, int, 0444); 191 192 MODULE_PARM_DESC(debug, "debug level"); 193 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)"); 194 MODULE_PARM_DESC(channel, "channel"); 195 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)"); 196 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])"); 197 198 static u32 ipw2100_debug_level = IPW_DL_NONE; 199 200 #ifdef CONFIG_IPW2100_DEBUG 201 #define IPW_DEBUG(level, message...) \ 202 do { \ 203 if (ipw2100_debug_level & (level)) { \ 204 printk(KERN_DEBUG "ipw2100: %c %s ", \ 205 in_interrupt() ? 'I' : 'U', __func__); \ 206 printk(message); \ 207 } \ 208 } while (0) 209 #else 210 #define IPW_DEBUG(level, message...) do {} while (0) 211 #endif /* CONFIG_IPW2100_DEBUG */ 212 213 #ifdef CONFIG_IPW2100_DEBUG 214 static const char *command_types[] = { 215 "undefined", 216 "unused", /* HOST_ATTENTION */ 217 "HOST_COMPLETE", 218 "unused", /* SLEEP */ 219 "unused", /* HOST_POWER_DOWN */ 220 "unused", 221 "SYSTEM_CONFIG", 222 "unused", /* SET_IMR */ 223 "SSID", 224 "MANDATORY_BSSID", 225 "AUTHENTICATION_TYPE", 226 "ADAPTER_ADDRESS", 227 "PORT_TYPE", 228 "INTERNATIONAL_MODE", 229 "CHANNEL", 230 "RTS_THRESHOLD", 231 "FRAG_THRESHOLD", 232 "POWER_MODE", 233 "TX_RATES", 234 "BASIC_TX_RATES", 235 "WEP_KEY_INFO", 236 "unused", 237 "unused", 238 "unused", 239 "unused", 240 "WEP_KEY_INDEX", 241 "WEP_FLAGS", 242 "ADD_MULTICAST", 243 "CLEAR_ALL_MULTICAST", 244 "BEACON_INTERVAL", 245 "ATIM_WINDOW", 246 "CLEAR_STATISTICS", 247 "undefined", 248 "undefined", 249 "undefined", 250 "undefined", 251 "TX_POWER_INDEX", 252 "undefined", 253 "undefined", 254 "undefined", 255 "undefined", 256 "undefined", 257 "undefined", 258 "BROADCAST_SCAN", 259 "CARD_DISABLE", 260 "PREFERRED_BSSID", 261 "SET_SCAN_OPTIONS", 262 "SCAN_DWELL_TIME", 263 "SWEEP_TABLE", 264 "AP_OR_STATION_TABLE", 265 "GROUP_ORDINALS", 266 "SHORT_RETRY_LIMIT", 267 "LONG_RETRY_LIMIT", 268 "unused", /* SAVE_CALIBRATION */ 269 "unused", /* RESTORE_CALIBRATION */ 270 "undefined", 271 "undefined", 272 "undefined", 273 "HOST_PRE_POWER_DOWN", 274 "unused", /* HOST_INTERRUPT_COALESCING */ 275 "undefined", 276 "CARD_DISABLE_PHY_OFF", 277 "MSDU_TX_RATES", 278 "undefined", 279 "SET_STATION_STAT_BITS", 280 "CLEAR_STATIONS_STAT_BITS", 281 "LEAP_ROGUE_MODE", 282 "SET_SECURITY_INFORMATION", 283 "DISASSOCIATION_BSSID", 284 "SET_WPA_ASS_IE" 285 }; 286 #endif 287 288 static const long ipw2100_frequencies[] = { 289 2412, 2417, 2422, 2427, 290 2432, 2437, 2442, 2447, 291 2452, 2457, 2462, 2467, 292 2472, 2484 293 }; 294 295 #define FREQ_COUNT ARRAY_SIZE(ipw2100_frequencies) 296 297 static struct ieee80211_rate ipw2100_bg_rates[] = { 298 { .bitrate = 10 }, 299 { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 300 { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 301 { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 302 }; 303 304 #define RATE_COUNT ARRAY_SIZE(ipw2100_bg_rates) 305 306 /* Pre-decl until we get the code solid and then we can clean it up */ 307 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv); 308 static void ipw2100_tx_send_data(struct ipw2100_priv *priv); 309 static int ipw2100_adapter_setup(struct ipw2100_priv *priv); 310 311 static void ipw2100_queues_initialize(struct ipw2100_priv *priv); 312 static void ipw2100_queues_free(struct ipw2100_priv *priv); 313 static int ipw2100_queues_allocate(struct ipw2100_priv *priv); 314 315 static int ipw2100_fw_download(struct ipw2100_priv *priv, 316 struct ipw2100_fw *fw); 317 static int ipw2100_get_firmware(struct ipw2100_priv *priv, 318 struct ipw2100_fw *fw); 319 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf, 320 size_t max); 321 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf, 322 size_t max); 323 static void ipw2100_release_firmware(struct ipw2100_priv *priv, 324 struct ipw2100_fw *fw); 325 static int ipw2100_ucode_download(struct ipw2100_priv *priv, 326 struct ipw2100_fw *fw); 327 static void ipw2100_wx_event_work(struct work_struct *work); 328 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev); 329 static const struct iw_handler_def ipw2100_wx_handler_def; 330 331 static inline void read_register(struct net_device *dev, u32 reg, u32 * val) 332 { 333 struct ipw2100_priv *priv = libipw_priv(dev); 334 335 *val = ioread32(priv->ioaddr + reg); 336 IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val); 337 } 338 339 static inline void write_register(struct net_device *dev, u32 reg, u32 val) 340 { 341 struct ipw2100_priv *priv = libipw_priv(dev); 342 343 iowrite32(val, priv->ioaddr + reg); 344 IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val); 345 } 346 347 static inline void read_register_word(struct net_device *dev, u32 reg, 348 u16 * val) 349 { 350 struct ipw2100_priv *priv = libipw_priv(dev); 351 352 *val = ioread16(priv->ioaddr + reg); 353 IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val); 354 } 355 356 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val) 357 { 358 struct ipw2100_priv *priv = libipw_priv(dev); 359 360 *val = ioread8(priv->ioaddr + reg); 361 IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val); 362 } 363 364 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val) 365 { 366 struct ipw2100_priv *priv = libipw_priv(dev); 367 368 iowrite16(val, priv->ioaddr + reg); 369 IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val); 370 } 371 372 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val) 373 { 374 struct ipw2100_priv *priv = libipw_priv(dev); 375 376 iowrite8(val, priv->ioaddr + reg); 377 IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val); 378 } 379 380 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val) 381 { 382 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, 383 addr & IPW_REG_INDIRECT_ADDR_MASK); 384 read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val); 385 } 386 387 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val) 388 { 389 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, 390 addr & IPW_REG_INDIRECT_ADDR_MASK); 391 write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val); 392 } 393 394 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val) 395 { 396 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, 397 addr & IPW_REG_INDIRECT_ADDR_MASK); 398 read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val); 399 } 400 401 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val) 402 { 403 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, 404 addr & IPW_REG_INDIRECT_ADDR_MASK); 405 write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val); 406 } 407 408 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val) 409 { 410 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, 411 addr & IPW_REG_INDIRECT_ADDR_MASK); 412 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val); 413 } 414 415 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val) 416 { 417 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, 418 addr & IPW_REG_INDIRECT_ADDR_MASK); 419 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val); 420 } 421 422 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr) 423 { 424 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, 425 addr & IPW_REG_INDIRECT_ADDR_MASK); 426 } 427 428 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val) 429 { 430 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val); 431 } 432 433 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len, 434 const u8 * buf) 435 { 436 u32 aligned_addr; 437 u32 aligned_len; 438 u32 dif_len; 439 u32 i; 440 441 /* read first nibble byte by byte */ 442 aligned_addr = addr & (~0x3); 443 dif_len = addr - aligned_addr; 444 if (dif_len) { 445 /* Start reading at aligned_addr + dif_len */ 446 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, 447 aligned_addr); 448 for (i = dif_len; i < 4; i++, buf++) 449 write_register_byte(dev, 450 IPW_REG_INDIRECT_ACCESS_DATA + i, 451 *buf); 452 453 len -= dif_len; 454 aligned_addr += 4; 455 } 456 457 /* read DWs through autoincrement registers */ 458 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr); 459 aligned_len = len & (~0x3); 460 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4) 461 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf); 462 463 /* copy the last nibble */ 464 dif_len = len - aligned_len; 465 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr); 466 for (i = 0; i < dif_len; i++, buf++) 467 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, 468 *buf); 469 } 470 471 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len, 472 u8 * buf) 473 { 474 u32 aligned_addr; 475 u32 aligned_len; 476 u32 dif_len; 477 u32 i; 478 479 /* read first nibble byte by byte */ 480 aligned_addr = addr & (~0x3); 481 dif_len = addr - aligned_addr; 482 if (dif_len) { 483 /* Start reading at aligned_addr + dif_len */ 484 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, 485 aligned_addr); 486 for (i = dif_len; i < 4; i++, buf++) 487 read_register_byte(dev, 488 IPW_REG_INDIRECT_ACCESS_DATA + i, 489 buf); 490 491 len -= dif_len; 492 aligned_addr += 4; 493 } 494 495 /* read DWs through autoincrement registers */ 496 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr); 497 aligned_len = len & (~0x3); 498 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4) 499 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf); 500 501 /* copy the last nibble */ 502 dif_len = len - aligned_len; 503 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr); 504 for (i = 0; i < dif_len; i++, buf++) 505 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf); 506 } 507 508 static bool ipw2100_hw_is_adapter_in_system(struct net_device *dev) 509 { 510 u32 dbg; 511 512 read_register(dev, IPW_REG_DOA_DEBUG_AREA_START, &dbg); 513 514 return dbg == IPW_DATA_DOA_DEBUG_VALUE; 515 } 516 517 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord, 518 void *val, u32 * len) 519 { 520 struct ipw2100_ordinals *ordinals = &priv->ordinals; 521 u32 addr; 522 u32 field_info; 523 u16 field_len; 524 u16 field_count; 525 u32 total_length; 526 527 if (ordinals->table1_addr == 0) { 528 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals " 529 "before they have been loaded.\n"); 530 return -EINVAL; 531 } 532 533 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) { 534 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) { 535 *len = IPW_ORD_TAB_1_ENTRY_SIZE; 536 537 printk(KERN_WARNING DRV_NAME 538 ": ordinal buffer length too small, need %zd\n", 539 IPW_ORD_TAB_1_ENTRY_SIZE); 540 541 return -EINVAL; 542 } 543 544 read_nic_dword(priv->net_dev, 545 ordinals->table1_addr + (ord << 2), &addr); 546 read_nic_dword(priv->net_dev, addr, val); 547 548 *len = IPW_ORD_TAB_1_ENTRY_SIZE; 549 550 return 0; 551 } 552 553 if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) { 554 555 ord -= IPW_START_ORD_TAB_2; 556 557 /* get the address of statistic */ 558 read_nic_dword(priv->net_dev, 559 ordinals->table2_addr + (ord << 3), &addr); 560 561 /* get the second DW of statistics ; 562 * two 16-bit words - first is length, second is count */ 563 read_nic_dword(priv->net_dev, 564 ordinals->table2_addr + (ord << 3) + sizeof(u32), 565 &field_info); 566 567 /* get each entry length */ 568 field_len = *((u16 *) & field_info); 569 570 /* get number of entries */ 571 field_count = *(((u16 *) & field_info) + 1); 572 573 /* abort if no enough memory */ 574 total_length = field_len * field_count; 575 if (total_length > *len) { 576 *len = total_length; 577 return -EINVAL; 578 } 579 580 *len = total_length; 581 if (!total_length) 582 return 0; 583 584 /* read the ordinal data from the SRAM */ 585 read_nic_memory(priv->net_dev, addr, total_length, val); 586 587 return 0; 588 } 589 590 printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor " 591 "in table 2\n", ord); 592 593 return -EINVAL; 594 } 595 596 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val, 597 u32 * len) 598 { 599 struct ipw2100_ordinals *ordinals = &priv->ordinals; 600 u32 addr; 601 602 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) { 603 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) { 604 *len = IPW_ORD_TAB_1_ENTRY_SIZE; 605 IPW_DEBUG_INFO("wrong size\n"); 606 return -EINVAL; 607 } 608 609 read_nic_dword(priv->net_dev, 610 ordinals->table1_addr + (ord << 2), &addr); 611 612 write_nic_dword(priv->net_dev, addr, *val); 613 614 *len = IPW_ORD_TAB_1_ENTRY_SIZE; 615 616 return 0; 617 } 618 619 IPW_DEBUG_INFO("wrong table\n"); 620 if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) 621 return -EINVAL; 622 623 return -EINVAL; 624 } 625 626 static char *snprint_line(char *buf, size_t count, 627 const u8 * data, u32 len, u32 ofs) 628 { 629 int out, i, j, l; 630 char c; 631 632 out = scnprintf(buf, count, "%08X", ofs); 633 634 for (l = 0, i = 0; i < 2; i++) { 635 out += scnprintf(buf + out, count - out, " "); 636 for (j = 0; j < 8 && l < len; j++, l++) 637 out += scnprintf(buf + out, count - out, "%02X ", 638 data[(i * 8 + j)]); 639 for (; j < 8; j++) 640 out += scnprintf(buf + out, count - out, " "); 641 } 642 643 out += scnprintf(buf + out, count - out, " "); 644 for (l = 0, i = 0; i < 2; i++) { 645 out += scnprintf(buf + out, count - out, " "); 646 for (j = 0; j < 8 && l < len; j++, l++) { 647 c = data[(i * 8 + j)]; 648 if (!isascii(c) || !isprint(c)) 649 c = '.'; 650 651 out += scnprintf(buf + out, count - out, "%c", c); 652 } 653 654 for (; j < 8; j++) 655 out += scnprintf(buf + out, count - out, " "); 656 } 657 658 return buf; 659 } 660 661 static void printk_buf(int level, const u8 * data, u32 len) 662 { 663 char line[81]; 664 u32 ofs = 0; 665 if (!(ipw2100_debug_level & level)) 666 return; 667 668 while (len) { 669 printk(KERN_DEBUG "%s\n", 670 snprint_line(line, sizeof(line), &data[ofs], 671 min(len, 16U), ofs)); 672 ofs += 16; 673 len -= min(len, 16U); 674 } 675 } 676 677 #define MAX_RESET_BACKOFF 10 678 679 static void schedule_reset(struct ipw2100_priv *priv) 680 { 681 time64_t now = ktime_get_boottime_seconds(); 682 683 /* If we haven't received a reset request within the backoff period, 684 * then we can reset the backoff interval so this reset occurs 685 * immediately */ 686 if (priv->reset_backoff && 687 (now - priv->last_reset > priv->reset_backoff)) 688 priv->reset_backoff = 0; 689 690 priv->last_reset = now; 691 692 if (!(priv->status & STATUS_RESET_PENDING)) { 693 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%llds).\n", 694 priv->net_dev->name, priv->reset_backoff); 695 netif_carrier_off(priv->net_dev); 696 netif_stop_queue(priv->net_dev); 697 priv->status |= STATUS_RESET_PENDING; 698 if (priv->reset_backoff) 699 schedule_delayed_work(&priv->reset_work, 700 priv->reset_backoff * HZ); 701 else 702 schedule_delayed_work(&priv->reset_work, 0); 703 704 if (priv->reset_backoff < MAX_RESET_BACKOFF) 705 priv->reset_backoff++; 706 707 wake_up_interruptible(&priv->wait_command_queue); 708 } else 709 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n", 710 priv->net_dev->name); 711 712 } 713 714 #define HOST_COMPLETE_TIMEOUT (2 * HZ) 715 static int ipw2100_hw_send_command(struct ipw2100_priv *priv, 716 struct host_command *cmd) 717 { 718 struct list_head *element; 719 struct ipw2100_tx_packet *packet; 720 unsigned long flags; 721 int err = 0; 722 723 IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n", 724 command_types[cmd->host_command], cmd->host_command, 725 cmd->host_command_length); 726 printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters, 727 cmd->host_command_length); 728 729 spin_lock_irqsave(&priv->low_lock, flags); 730 731 if (priv->fatal_error) { 732 IPW_DEBUG_INFO 733 ("Attempt to send command while hardware in fatal error condition.\n"); 734 err = -EIO; 735 goto fail_unlock; 736 } 737 738 if (!(priv->status & STATUS_RUNNING)) { 739 IPW_DEBUG_INFO 740 ("Attempt to send command while hardware is not running.\n"); 741 err = -EIO; 742 goto fail_unlock; 743 } 744 745 if (priv->status & STATUS_CMD_ACTIVE) { 746 IPW_DEBUG_INFO 747 ("Attempt to send command while another command is pending.\n"); 748 err = -EBUSY; 749 goto fail_unlock; 750 } 751 752 if (list_empty(&priv->msg_free_list)) { 753 IPW_DEBUG_INFO("no available msg buffers\n"); 754 goto fail_unlock; 755 } 756 757 priv->status |= STATUS_CMD_ACTIVE; 758 priv->messages_sent++; 759 760 element = priv->msg_free_list.next; 761 762 packet = list_entry(element, struct ipw2100_tx_packet, list); 763 packet->jiffy_start = jiffies; 764 765 /* initialize the firmware command packet */ 766 packet->info.c_struct.cmd->host_command_reg = cmd->host_command; 767 packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1; 768 packet->info.c_struct.cmd->host_command_len_reg = 769 cmd->host_command_length; 770 packet->info.c_struct.cmd->sequence = cmd->host_command_sequence; 771 772 memcpy(packet->info.c_struct.cmd->host_command_params_reg, 773 cmd->host_command_parameters, 774 sizeof(packet->info.c_struct.cmd->host_command_params_reg)); 775 776 list_del(element); 777 DEC_STAT(&priv->msg_free_stat); 778 779 list_add_tail(element, &priv->msg_pend_list); 780 INC_STAT(&priv->msg_pend_stat); 781 782 ipw2100_tx_send_commands(priv); 783 ipw2100_tx_send_data(priv); 784 785 spin_unlock_irqrestore(&priv->low_lock, flags); 786 787 /* 788 * We must wait for this command to complete before another 789 * command can be sent... but if we wait more than 3 seconds 790 * then there is a problem. 791 */ 792 793 err = 794 wait_event_interruptible_timeout(priv->wait_command_queue, 795 !(priv-> 796 status & STATUS_CMD_ACTIVE), 797 HOST_COMPLETE_TIMEOUT); 798 799 if (err == 0) { 800 IPW_DEBUG_INFO("Command completion failed out after %dms.\n", 801 1000 * (HOST_COMPLETE_TIMEOUT / HZ)); 802 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT; 803 priv->status &= ~STATUS_CMD_ACTIVE; 804 schedule_reset(priv); 805 return -EIO; 806 } 807 808 if (priv->fatal_error) { 809 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n", 810 priv->net_dev->name); 811 return -EIO; 812 } 813 814 /* !!!!! HACK TEST !!!!! 815 * When lots of debug trace statements are enabled, the driver 816 * doesn't seem to have as many firmware restart cycles... 817 * 818 * As a test, we're sticking in a 1/100s delay here */ 819 schedule_timeout_uninterruptible(msecs_to_jiffies(10)); 820 821 return 0; 822 823 fail_unlock: 824 spin_unlock_irqrestore(&priv->low_lock, flags); 825 826 return err; 827 } 828 829 /* 830 * Verify the values and data access of the hardware 831 * No locks needed or used. No functions called. 832 */ 833 static int ipw2100_verify(struct ipw2100_priv *priv) 834 { 835 u32 data1, data2; 836 u32 address; 837 838 u32 val1 = 0x76543210; 839 u32 val2 = 0xFEDCBA98; 840 841 /* Domain 0 check - all values should be DOA_DEBUG */ 842 for (address = IPW_REG_DOA_DEBUG_AREA_START; 843 address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) { 844 read_register(priv->net_dev, address, &data1); 845 if (data1 != IPW_DATA_DOA_DEBUG_VALUE) 846 return -EIO; 847 } 848 849 /* Domain 1 check - use arbitrary read/write compare */ 850 for (address = 0; address < 5; address++) { 851 /* The memory area is not used now */ 852 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32, 853 val1); 854 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36, 855 val2); 856 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32, 857 &data1); 858 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36, 859 &data2); 860 if (val1 == data1 && val2 == data2) 861 return 0; 862 } 863 864 return -EIO; 865 } 866 867 /* 868 * 869 * Loop until the CARD_DISABLED bit is the same value as the 870 * supplied parameter 871 * 872 * TODO: See if it would be more efficient to do a wait/wake 873 * cycle and have the completion event trigger the wakeup 874 * 875 */ 876 #define IPW_CARD_DISABLE_COMPLETE_WAIT 100 // 100 milli 877 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state) 878 { 879 int i; 880 u32 card_state; 881 u32 len = sizeof(card_state); 882 int err; 883 884 for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) { 885 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED, 886 &card_state, &len); 887 if (err) { 888 IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal " 889 "failed.\n"); 890 return 0; 891 } 892 893 /* We'll break out if either the HW state says it is 894 * in the state we want, or if HOST_COMPLETE command 895 * finishes */ 896 if ((card_state == state) || 897 ((priv->status & STATUS_ENABLED) ? 898 IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) { 899 if (state == IPW_HW_STATE_ENABLED) 900 priv->status |= STATUS_ENABLED; 901 else 902 priv->status &= ~STATUS_ENABLED; 903 904 return 0; 905 } 906 907 udelay(50); 908 } 909 910 IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n", 911 state ? "DISABLED" : "ENABLED"); 912 return -EIO; 913 } 914 915 /********************************************************************* 916 Procedure : sw_reset_and_clock 917 Purpose : Asserts s/w reset, asserts clock initialization 918 and waits for clock stabilization 919 ********************************************************************/ 920 static int sw_reset_and_clock(struct ipw2100_priv *priv) 921 { 922 int i; 923 u32 r; 924 925 // assert s/w reset 926 write_register(priv->net_dev, IPW_REG_RESET_REG, 927 IPW_AUX_HOST_RESET_REG_SW_RESET); 928 929 // wait for clock stabilization 930 for (i = 0; i < 1000; i++) { 931 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY); 932 933 // check clock ready bit 934 read_register(priv->net_dev, IPW_REG_RESET_REG, &r); 935 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET) 936 break; 937 } 938 939 if (i == 1000) 940 return -EIO; // TODO: better error value 941 942 /* set "initialization complete" bit to move adapter to 943 * D0 state */ 944 write_register(priv->net_dev, IPW_REG_GP_CNTRL, 945 IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE); 946 947 /* wait for clock stabilization */ 948 for (i = 0; i < 10000; i++) { 949 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4); 950 951 /* check clock ready bit */ 952 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r); 953 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY) 954 break; 955 } 956 957 if (i == 10000) 958 return -EIO; /* TODO: better error value */ 959 960 /* set D0 standby bit */ 961 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r); 962 write_register(priv->net_dev, IPW_REG_GP_CNTRL, 963 r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY); 964 965 return 0; 966 } 967 968 /********************************************************************* 969 Procedure : ipw2100_download_firmware 970 Purpose : Initiaze adapter after power on. 971 The sequence is: 972 1. assert s/w reset first! 973 2. awake clocks & wait for clock stabilization 974 3. hold ARC (don't ask me why...) 975 4. load Dino ucode and reset/clock init again 976 5. zero-out shared mem 977 6. download f/w 978 *******************************************************************/ 979 static int ipw2100_download_firmware(struct ipw2100_priv *priv) 980 { 981 u32 address; 982 int err; 983 984 #ifndef CONFIG_PM 985 /* Fetch the firmware and microcode */ 986 struct ipw2100_fw ipw2100_firmware; 987 #endif 988 989 if (priv->fatal_error) { 990 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after " 991 "fatal error %d. Interface must be brought down.\n", 992 priv->net_dev->name, priv->fatal_error); 993 return -EINVAL; 994 } 995 #ifdef CONFIG_PM 996 if (!ipw2100_firmware.version) { 997 err = ipw2100_get_firmware(priv, &ipw2100_firmware); 998 if (err) { 999 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n", 1000 priv->net_dev->name, err); 1001 priv->fatal_error = IPW2100_ERR_FW_LOAD; 1002 goto fail; 1003 } 1004 } 1005 #else 1006 err = ipw2100_get_firmware(priv, &ipw2100_firmware); 1007 if (err) { 1008 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n", 1009 priv->net_dev->name, err); 1010 priv->fatal_error = IPW2100_ERR_FW_LOAD; 1011 goto fail; 1012 } 1013 #endif 1014 priv->firmware_version = ipw2100_firmware.version; 1015 1016 /* s/w reset and clock stabilization */ 1017 err = sw_reset_and_clock(priv); 1018 if (err) { 1019 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n", 1020 priv->net_dev->name, err); 1021 goto fail; 1022 } 1023 1024 err = ipw2100_verify(priv); 1025 if (err) { 1026 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n", 1027 priv->net_dev->name, err); 1028 goto fail; 1029 } 1030 1031 /* Hold ARC */ 1032 write_nic_dword(priv->net_dev, 1033 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000); 1034 1035 /* allow ARC to run */ 1036 write_register(priv->net_dev, IPW_REG_RESET_REG, 0); 1037 1038 /* load microcode */ 1039 err = ipw2100_ucode_download(priv, &ipw2100_firmware); 1040 if (err) { 1041 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n", 1042 priv->net_dev->name, err); 1043 goto fail; 1044 } 1045 1046 /* release ARC */ 1047 write_nic_dword(priv->net_dev, 1048 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000); 1049 1050 /* s/w reset and clock stabilization (again!!!) */ 1051 err = sw_reset_and_clock(priv); 1052 if (err) { 1053 printk(KERN_ERR DRV_NAME 1054 ": %s: sw_reset_and_clock failed: %d\n", 1055 priv->net_dev->name, err); 1056 goto fail; 1057 } 1058 1059 /* load f/w */ 1060 err = ipw2100_fw_download(priv, &ipw2100_firmware); 1061 if (err) { 1062 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n", 1063 priv->net_dev->name, err); 1064 goto fail; 1065 } 1066 #ifndef CONFIG_PM 1067 /* 1068 * When the .resume method of the driver is called, the other 1069 * part of the system, i.e. the ide driver could still stay in 1070 * the suspend stage. This prevents us from loading the firmware 1071 * from the disk. --YZ 1072 */ 1073 1074 /* free any storage allocated for firmware image */ 1075 ipw2100_release_firmware(priv, &ipw2100_firmware); 1076 #endif 1077 1078 /* zero out Domain 1 area indirectly (Si requirement) */ 1079 for (address = IPW_HOST_FW_SHARED_AREA0; 1080 address < IPW_HOST_FW_SHARED_AREA0_END; address += 4) 1081 write_nic_dword(priv->net_dev, address, 0); 1082 for (address = IPW_HOST_FW_SHARED_AREA1; 1083 address < IPW_HOST_FW_SHARED_AREA1_END; address += 4) 1084 write_nic_dword(priv->net_dev, address, 0); 1085 for (address = IPW_HOST_FW_SHARED_AREA2; 1086 address < IPW_HOST_FW_SHARED_AREA2_END; address += 4) 1087 write_nic_dword(priv->net_dev, address, 0); 1088 for (address = IPW_HOST_FW_SHARED_AREA3; 1089 address < IPW_HOST_FW_SHARED_AREA3_END; address += 4) 1090 write_nic_dword(priv->net_dev, address, 0); 1091 for (address = IPW_HOST_FW_INTERRUPT_AREA; 1092 address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4) 1093 write_nic_dword(priv->net_dev, address, 0); 1094 1095 return 0; 1096 1097 fail: 1098 ipw2100_release_firmware(priv, &ipw2100_firmware); 1099 return err; 1100 } 1101 1102 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv) 1103 { 1104 if (priv->status & STATUS_INT_ENABLED) 1105 return; 1106 priv->status |= STATUS_INT_ENABLED; 1107 write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK); 1108 } 1109 1110 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv) 1111 { 1112 if (!(priv->status & STATUS_INT_ENABLED)) 1113 return; 1114 priv->status &= ~STATUS_INT_ENABLED; 1115 write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0); 1116 } 1117 1118 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv) 1119 { 1120 struct ipw2100_ordinals *ord = &priv->ordinals; 1121 1122 IPW_DEBUG_INFO("enter\n"); 1123 1124 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1, 1125 &ord->table1_addr); 1126 1127 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2, 1128 &ord->table2_addr); 1129 1130 read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size); 1131 read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size); 1132 1133 ord->table2_size &= 0x0000FFFF; 1134 1135 IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size); 1136 IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size); 1137 IPW_DEBUG_INFO("exit\n"); 1138 } 1139 1140 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv) 1141 { 1142 u32 reg = 0; 1143 /* 1144 * Set GPIO 3 writable by FW; GPIO 1 writable 1145 * by driver and enable clock 1146 */ 1147 reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE | 1148 IPW_BIT_GPIO_LED_OFF); 1149 write_register(priv->net_dev, IPW_REG_GPIO, reg); 1150 } 1151 1152 static int rf_kill_active(struct ipw2100_priv *priv) 1153 { 1154 #define MAX_RF_KILL_CHECKS 5 1155 #define RF_KILL_CHECK_DELAY 40 1156 1157 unsigned short value = 0; 1158 u32 reg = 0; 1159 int i; 1160 1161 if (!(priv->hw_features & HW_FEATURE_RFKILL)) { 1162 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false); 1163 priv->status &= ~STATUS_RF_KILL_HW; 1164 return 0; 1165 } 1166 1167 for (i = 0; i < MAX_RF_KILL_CHECKS; i++) { 1168 udelay(RF_KILL_CHECK_DELAY); 1169 read_register(priv->net_dev, IPW_REG_GPIO, ®); 1170 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1); 1171 } 1172 1173 if (value == 0) { 1174 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true); 1175 priv->status |= STATUS_RF_KILL_HW; 1176 } else { 1177 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false); 1178 priv->status &= ~STATUS_RF_KILL_HW; 1179 } 1180 1181 return (value == 0); 1182 } 1183 1184 static int ipw2100_get_hw_features(struct ipw2100_priv *priv) 1185 { 1186 u32 addr, len; 1187 u32 val; 1188 1189 /* 1190 * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1 1191 */ 1192 len = sizeof(addr); 1193 if (ipw2100_get_ordinal 1194 (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) { 1195 IPW_DEBUG_INFO("failed querying ordinals at line %d\n", 1196 __LINE__); 1197 return -EIO; 1198 } 1199 1200 IPW_DEBUG_INFO("EEPROM address: %08X\n", addr); 1201 1202 /* 1203 * EEPROM version is the byte at offset 0xfd in firmware 1204 * We read 4 bytes, then shift out the byte we actually want */ 1205 read_nic_dword(priv->net_dev, addr + 0xFC, &val); 1206 priv->eeprom_version = (val >> 24) & 0xFF; 1207 IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version); 1208 1209 /* 1210 * HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware 1211 * 1212 * notice that the EEPROM bit is reverse polarity, i.e. 1213 * bit = 0 signifies HW RF kill switch is supported 1214 * bit = 1 signifies HW RF kill switch is NOT supported 1215 */ 1216 read_nic_dword(priv->net_dev, addr + 0x20, &val); 1217 if (!((val >> 24) & 0x01)) 1218 priv->hw_features |= HW_FEATURE_RFKILL; 1219 1220 IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n", 1221 (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not "); 1222 1223 return 0; 1224 } 1225 1226 /* 1227 * Start firmware execution after power on and initialization 1228 * The sequence is: 1229 * 1. Release ARC 1230 * 2. Wait for f/w initialization completes; 1231 */ 1232 static int ipw2100_start_adapter(struct ipw2100_priv *priv) 1233 { 1234 int i; 1235 u32 inta, inta_mask, gpio; 1236 1237 IPW_DEBUG_INFO("enter\n"); 1238 1239 if (priv->status & STATUS_RUNNING) 1240 return 0; 1241 1242 /* 1243 * Initialize the hw - drive adapter to DO state by setting 1244 * init_done bit. Wait for clk_ready bit and Download 1245 * fw & dino ucode 1246 */ 1247 if (ipw2100_download_firmware(priv)) { 1248 printk(KERN_ERR DRV_NAME 1249 ": %s: Failed to power on the adapter.\n", 1250 priv->net_dev->name); 1251 return -EIO; 1252 } 1253 1254 /* Clear the Tx, Rx and Msg queues and the r/w indexes 1255 * in the firmware RBD and TBD ring queue */ 1256 ipw2100_queues_initialize(priv); 1257 1258 ipw2100_hw_set_gpio(priv); 1259 1260 /* TODO -- Look at disabling interrupts here to make sure none 1261 * get fired during FW initialization */ 1262 1263 /* Release ARC - clear reset bit */ 1264 write_register(priv->net_dev, IPW_REG_RESET_REG, 0); 1265 1266 /* wait for f/w initialization complete */ 1267 IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n"); 1268 i = 5000; 1269 do { 1270 schedule_timeout_uninterruptible(msecs_to_jiffies(40)); 1271 /* Todo... wait for sync command ... */ 1272 1273 read_register(priv->net_dev, IPW_REG_INTA, &inta); 1274 1275 /* check "init done" bit */ 1276 if (inta & IPW2100_INTA_FW_INIT_DONE) { 1277 /* reset "init done" bit */ 1278 write_register(priv->net_dev, IPW_REG_INTA, 1279 IPW2100_INTA_FW_INIT_DONE); 1280 break; 1281 } 1282 1283 /* check error conditions : we check these after the firmware 1284 * check so that if there is an error, the interrupt handler 1285 * will see it and the adapter will be reset */ 1286 if (inta & 1287 (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) { 1288 /* clear error conditions */ 1289 write_register(priv->net_dev, IPW_REG_INTA, 1290 IPW2100_INTA_FATAL_ERROR | 1291 IPW2100_INTA_PARITY_ERROR); 1292 } 1293 } while (--i); 1294 1295 /* Clear out any pending INTAs since we aren't supposed to have 1296 * interrupts enabled at this point... */ 1297 read_register(priv->net_dev, IPW_REG_INTA, &inta); 1298 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask); 1299 inta &= IPW_INTERRUPT_MASK; 1300 /* Clear out any pending interrupts */ 1301 if (inta & inta_mask) 1302 write_register(priv->net_dev, IPW_REG_INTA, inta); 1303 1304 IPW_DEBUG_FW("f/w initialization complete: %s\n", 1305 i ? "SUCCESS" : "FAILED"); 1306 1307 if (!i) { 1308 printk(KERN_WARNING DRV_NAME 1309 ": %s: Firmware did not initialize.\n", 1310 priv->net_dev->name); 1311 return -EIO; 1312 } 1313 1314 /* allow firmware to write to GPIO1 & GPIO3 */ 1315 read_register(priv->net_dev, IPW_REG_GPIO, &gpio); 1316 1317 gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK); 1318 1319 write_register(priv->net_dev, IPW_REG_GPIO, gpio); 1320 1321 /* Ready to receive commands */ 1322 priv->status |= STATUS_RUNNING; 1323 1324 /* The adapter has been reset; we are not associated */ 1325 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED); 1326 1327 IPW_DEBUG_INFO("exit\n"); 1328 1329 return 0; 1330 } 1331 1332 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv) 1333 { 1334 if (!priv->fatal_error) 1335 return; 1336 1337 priv->fatal_errors[priv->fatal_index++] = priv->fatal_error; 1338 priv->fatal_index %= IPW2100_ERROR_QUEUE; 1339 priv->fatal_error = 0; 1340 } 1341 1342 /* NOTE: Our interrupt is disabled when this method is called */ 1343 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv) 1344 { 1345 u32 reg; 1346 int i; 1347 1348 IPW_DEBUG_INFO("Power cycling the hardware.\n"); 1349 1350 ipw2100_hw_set_gpio(priv); 1351 1352 /* Step 1. Stop Master Assert */ 1353 write_register(priv->net_dev, IPW_REG_RESET_REG, 1354 IPW_AUX_HOST_RESET_REG_STOP_MASTER); 1355 1356 /* Step 2. Wait for stop Master Assert 1357 * (not more than 50us, otherwise ret error */ 1358 i = 5; 1359 do { 1360 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY); 1361 read_register(priv->net_dev, IPW_REG_RESET_REG, ®); 1362 1363 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED) 1364 break; 1365 } while (--i); 1366 1367 priv->status &= ~STATUS_RESET_PENDING; 1368 1369 if (!i) { 1370 IPW_DEBUG_INFO 1371 ("exit - waited too long for master assert stop\n"); 1372 return -EIO; 1373 } 1374 1375 write_register(priv->net_dev, IPW_REG_RESET_REG, 1376 IPW_AUX_HOST_RESET_REG_SW_RESET); 1377 1378 /* Reset any fatal_error conditions */ 1379 ipw2100_reset_fatalerror(priv); 1380 1381 /* At this point, the adapter is now stopped and disabled */ 1382 priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING | 1383 STATUS_ASSOCIATED | STATUS_ENABLED); 1384 1385 return 0; 1386 } 1387 1388 /* 1389 * Send the CARD_DISABLE_PHY_OFF command to the card to disable it 1390 * 1391 * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent. 1392 * 1393 * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of 1394 * if STATUS_ASSN_LOST is sent. 1395 */ 1396 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv) 1397 { 1398 1399 #define HW_PHY_OFF_LOOP_DELAY (msecs_to_jiffies(50)) 1400 1401 struct host_command cmd = { 1402 .host_command = CARD_DISABLE_PHY_OFF, 1403 .host_command_sequence = 0, 1404 .host_command_length = 0, 1405 }; 1406 int err, i; 1407 u32 val1, val2; 1408 1409 IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n"); 1410 1411 /* Turn off the radio */ 1412 err = ipw2100_hw_send_command(priv, &cmd); 1413 if (err) 1414 return err; 1415 1416 for (i = 0; i < 2500; i++) { 1417 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1); 1418 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2); 1419 1420 if ((val1 & IPW2100_CONTROL_PHY_OFF) && 1421 (val2 & IPW2100_COMMAND_PHY_OFF)) 1422 return 0; 1423 1424 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY); 1425 } 1426 1427 return -EIO; 1428 } 1429 1430 static int ipw2100_enable_adapter(struct ipw2100_priv *priv) 1431 { 1432 struct host_command cmd = { 1433 .host_command = HOST_COMPLETE, 1434 .host_command_sequence = 0, 1435 .host_command_length = 0 1436 }; 1437 int err = 0; 1438 1439 IPW_DEBUG_HC("HOST_COMPLETE\n"); 1440 1441 if (priv->status & STATUS_ENABLED) 1442 return 0; 1443 1444 mutex_lock(&priv->adapter_mutex); 1445 1446 if (rf_kill_active(priv)) { 1447 IPW_DEBUG_HC("Command aborted due to RF kill active.\n"); 1448 goto fail_up; 1449 } 1450 1451 err = ipw2100_hw_send_command(priv, &cmd); 1452 if (err) { 1453 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n"); 1454 goto fail_up; 1455 } 1456 1457 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED); 1458 if (err) { 1459 IPW_DEBUG_INFO("%s: card not responding to init command.\n", 1460 priv->net_dev->name); 1461 goto fail_up; 1462 } 1463 1464 if (priv->stop_hang_check) { 1465 priv->stop_hang_check = 0; 1466 schedule_delayed_work(&priv->hang_check, HZ / 2); 1467 } 1468 1469 fail_up: 1470 mutex_unlock(&priv->adapter_mutex); 1471 return err; 1472 } 1473 1474 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv) 1475 { 1476 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100)) 1477 1478 struct host_command cmd = { 1479 .host_command = HOST_PRE_POWER_DOWN, 1480 .host_command_sequence = 0, 1481 .host_command_length = 0, 1482 }; 1483 int err, i; 1484 u32 reg; 1485 1486 if (!(priv->status & STATUS_RUNNING)) 1487 return 0; 1488 1489 priv->status |= STATUS_STOPPING; 1490 1491 /* We can only shut down the card if the firmware is operational. So, 1492 * if we haven't reset since a fatal_error, then we can not send the 1493 * shutdown commands. */ 1494 if (!priv->fatal_error) { 1495 /* First, make sure the adapter is enabled so that the PHY_OFF 1496 * command can shut it down */ 1497 ipw2100_enable_adapter(priv); 1498 1499 err = ipw2100_hw_phy_off(priv); 1500 if (err) 1501 printk(KERN_WARNING DRV_NAME 1502 ": Error disabling radio %d\n", err); 1503 1504 /* 1505 * If in D0-standby mode going directly to D3 may cause a 1506 * PCI bus violation. Therefore we must change out of the D0 1507 * state. 1508 * 1509 * Sending the PREPARE_FOR_POWER_DOWN will restrict the 1510 * hardware from going into standby mode and will transition 1511 * out of D0-standby if it is already in that state. 1512 * 1513 * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the 1514 * driver upon completion. Once received, the driver can 1515 * proceed to the D3 state. 1516 * 1517 * Prepare for power down command to fw. This command would 1518 * take HW out of D0-standby and prepare it for D3 state. 1519 * 1520 * Currently FW does not support event notification for this 1521 * event. Therefore, skip waiting for it. Just wait a fixed 1522 * 100ms 1523 */ 1524 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n"); 1525 1526 err = ipw2100_hw_send_command(priv, &cmd); 1527 if (err) 1528 printk(KERN_WARNING DRV_NAME ": " 1529 "%s: Power down command failed: Error %d\n", 1530 priv->net_dev->name, err); 1531 else 1532 schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY); 1533 } 1534 1535 priv->status &= ~STATUS_ENABLED; 1536 1537 /* 1538 * Set GPIO 3 writable by FW; GPIO 1 writable 1539 * by driver and enable clock 1540 */ 1541 ipw2100_hw_set_gpio(priv); 1542 1543 /* 1544 * Power down adapter. Sequence: 1545 * 1. Stop master assert (RESET_REG[9]=1) 1546 * 2. Wait for stop master (RESET_REG[8]==1) 1547 * 3. S/w reset assert (RESET_REG[7] = 1) 1548 */ 1549 1550 /* Stop master assert */ 1551 write_register(priv->net_dev, IPW_REG_RESET_REG, 1552 IPW_AUX_HOST_RESET_REG_STOP_MASTER); 1553 1554 /* wait stop master not more than 50 usec. 1555 * Otherwise return error. */ 1556 for (i = 5; i > 0; i--) { 1557 udelay(10); 1558 1559 /* Check master stop bit */ 1560 read_register(priv->net_dev, IPW_REG_RESET_REG, ®); 1561 1562 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED) 1563 break; 1564 } 1565 1566 if (i == 0) 1567 printk(KERN_WARNING DRV_NAME 1568 ": %s: Could now power down adapter.\n", 1569 priv->net_dev->name); 1570 1571 /* assert s/w reset */ 1572 write_register(priv->net_dev, IPW_REG_RESET_REG, 1573 IPW_AUX_HOST_RESET_REG_SW_RESET); 1574 1575 priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING); 1576 1577 return 0; 1578 } 1579 1580 static int ipw2100_disable_adapter(struct ipw2100_priv *priv) 1581 { 1582 struct host_command cmd = { 1583 .host_command = CARD_DISABLE, 1584 .host_command_sequence = 0, 1585 .host_command_length = 0 1586 }; 1587 int err = 0; 1588 1589 IPW_DEBUG_HC("CARD_DISABLE\n"); 1590 1591 if (!(priv->status & STATUS_ENABLED)) 1592 return 0; 1593 1594 /* Make sure we clear the associated state */ 1595 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING); 1596 1597 if (!priv->stop_hang_check) { 1598 priv->stop_hang_check = 1; 1599 cancel_delayed_work(&priv->hang_check); 1600 } 1601 1602 mutex_lock(&priv->adapter_mutex); 1603 1604 err = ipw2100_hw_send_command(priv, &cmd); 1605 if (err) { 1606 printk(KERN_WARNING DRV_NAME 1607 ": exit - failed to send CARD_DISABLE command\n"); 1608 goto fail_up; 1609 } 1610 1611 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED); 1612 if (err) { 1613 printk(KERN_WARNING DRV_NAME 1614 ": exit - card failed to change to DISABLED\n"); 1615 goto fail_up; 1616 } 1617 1618 IPW_DEBUG_INFO("TODO: implement scan state machine\n"); 1619 1620 fail_up: 1621 mutex_unlock(&priv->adapter_mutex); 1622 return err; 1623 } 1624 1625 static int ipw2100_set_scan_options(struct ipw2100_priv *priv) 1626 { 1627 struct host_command cmd = { 1628 .host_command = SET_SCAN_OPTIONS, 1629 .host_command_sequence = 0, 1630 .host_command_length = 8 1631 }; 1632 int err; 1633 1634 IPW_DEBUG_INFO("enter\n"); 1635 1636 IPW_DEBUG_SCAN("setting scan options\n"); 1637 1638 cmd.host_command_parameters[0] = 0; 1639 1640 if (!(priv->config & CFG_ASSOCIATE)) 1641 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE; 1642 if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled) 1643 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL; 1644 if (priv->config & CFG_PASSIVE_SCAN) 1645 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE; 1646 1647 cmd.host_command_parameters[1] = priv->channel_mask; 1648 1649 err = ipw2100_hw_send_command(priv, &cmd); 1650 1651 IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n", 1652 cmd.host_command_parameters[0]); 1653 1654 return err; 1655 } 1656 1657 static int ipw2100_start_scan(struct ipw2100_priv *priv) 1658 { 1659 struct host_command cmd = { 1660 .host_command = BROADCAST_SCAN, 1661 .host_command_sequence = 0, 1662 .host_command_length = 4 1663 }; 1664 int err; 1665 1666 IPW_DEBUG_HC("START_SCAN\n"); 1667 1668 cmd.host_command_parameters[0] = 0; 1669 1670 /* No scanning if in monitor mode */ 1671 if (priv->ieee->iw_mode == IW_MODE_MONITOR) 1672 return 1; 1673 1674 if (priv->status & STATUS_SCANNING) { 1675 IPW_DEBUG_SCAN("Scan requested while already in scan...\n"); 1676 return 0; 1677 } 1678 1679 IPW_DEBUG_INFO("enter\n"); 1680 1681 /* Not clearing here; doing so makes iwlist always return nothing... 1682 * 1683 * We should modify the table logic to use aging tables vs. clearing 1684 * the table on each scan start. 1685 */ 1686 IPW_DEBUG_SCAN("starting scan\n"); 1687 1688 priv->status |= STATUS_SCANNING; 1689 err = ipw2100_hw_send_command(priv, &cmd); 1690 if (err) 1691 priv->status &= ~STATUS_SCANNING; 1692 1693 IPW_DEBUG_INFO("exit\n"); 1694 1695 return err; 1696 } 1697 1698 static const struct libipw_geo ipw_geos[] = { 1699 { /* Restricted */ 1700 "---", 1701 .bg_channels = 14, 1702 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 1703 {2427, 4}, {2432, 5}, {2437, 6}, 1704 {2442, 7}, {2447, 8}, {2452, 9}, 1705 {2457, 10}, {2462, 11}, {2467, 12}, 1706 {2472, 13}, {2484, 14}}, 1707 }, 1708 }; 1709 1710 static int ipw2100_up(struct ipw2100_priv *priv, int deferred) 1711 { 1712 unsigned long flags; 1713 int err = 0; 1714 u32 lock; 1715 u32 ord_len = sizeof(lock); 1716 1717 /* Age scan list entries found before suspend */ 1718 if (priv->suspend_time) { 1719 libipw_networks_age(priv->ieee, priv->suspend_time); 1720 priv->suspend_time = 0; 1721 } 1722 1723 /* Quiet if manually disabled. */ 1724 if (priv->status & STATUS_RF_KILL_SW) { 1725 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable " 1726 "switch\n", priv->net_dev->name); 1727 return 0; 1728 } 1729 1730 /* the ipw2100 hardware really doesn't want power management delays 1731 * longer than 175usec 1732 */ 1733 cpu_latency_qos_update_request(&ipw2100_pm_qos_req, 175); 1734 1735 /* If the interrupt is enabled, turn it off... */ 1736 spin_lock_irqsave(&priv->low_lock, flags); 1737 ipw2100_disable_interrupts(priv); 1738 1739 /* Reset any fatal_error conditions */ 1740 ipw2100_reset_fatalerror(priv); 1741 spin_unlock_irqrestore(&priv->low_lock, flags); 1742 1743 if (priv->status & STATUS_POWERED || 1744 (priv->status & STATUS_RESET_PENDING)) { 1745 /* Power cycle the card ... */ 1746 err = ipw2100_power_cycle_adapter(priv); 1747 if (err) { 1748 printk(KERN_WARNING DRV_NAME 1749 ": %s: Could not cycle adapter.\n", 1750 priv->net_dev->name); 1751 goto exit; 1752 } 1753 } else 1754 priv->status |= STATUS_POWERED; 1755 1756 /* Load the firmware, start the clocks, etc. */ 1757 err = ipw2100_start_adapter(priv); 1758 if (err) { 1759 printk(KERN_ERR DRV_NAME 1760 ": %s: Failed to start the firmware.\n", 1761 priv->net_dev->name); 1762 goto exit; 1763 } 1764 1765 ipw2100_initialize_ordinals(priv); 1766 1767 /* Determine capabilities of this particular HW configuration */ 1768 err = ipw2100_get_hw_features(priv); 1769 if (err) { 1770 printk(KERN_ERR DRV_NAME 1771 ": %s: Failed to determine HW features.\n", 1772 priv->net_dev->name); 1773 goto exit; 1774 } 1775 1776 /* Initialize the geo */ 1777 libipw_set_geo(priv->ieee, &ipw_geos[0]); 1778 priv->ieee->freq_band = LIBIPW_24GHZ_BAND; 1779 1780 lock = LOCK_NONE; 1781 err = ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len); 1782 if (err) { 1783 printk(KERN_ERR DRV_NAME 1784 ": %s: Failed to clear ordinal lock.\n", 1785 priv->net_dev->name); 1786 goto exit; 1787 } 1788 1789 priv->status &= ~STATUS_SCANNING; 1790 1791 if (rf_kill_active(priv)) { 1792 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n", 1793 priv->net_dev->name); 1794 1795 if (priv->stop_rf_kill) { 1796 priv->stop_rf_kill = 0; 1797 schedule_delayed_work(&priv->rf_kill, 1798 round_jiffies_relative(HZ)); 1799 } 1800 1801 deferred = 1; 1802 } 1803 1804 /* Turn on the interrupt so that commands can be processed */ 1805 ipw2100_enable_interrupts(priv); 1806 1807 /* Send all of the commands that must be sent prior to 1808 * HOST_COMPLETE */ 1809 err = ipw2100_adapter_setup(priv); 1810 if (err) { 1811 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n", 1812 priv->net_dev->name); 1813 goto exit; 1814 } 1815 1816 if (!deferred) { 1817 /* Enable the adapter - sends HOST_COMPLETE */ 1818 err = ipw2100_enable_adapter(priv); 1819 if (err) { 1820 printk(KERN_ERR DRV_NAME ": " 1821 "%s: failed in call to enable adapter.\n", 1822 priv->net_dev->name); 1823 ipw2100_hw_stop_adapter(priv); 1824 goto exit; 1825 } 1826 1827 /* Start a scan . . . */ 1828 ipw2100_set_scan_options(priv); 1829 ipw2100_start_scan(priv); 1830 } 1831 1832 exit: 1833 return err; 1834 } 1835 1836 static void ipw2100_down(struct ipw2100_priv *priv) 1837 { 1838 unsigned long flags; 1839 union iwreq_data wrqu = { 1840 .ap_addr = { 1841 .sa_family = ARPHRD_ETHER} 1842 }; 1843 int associated = priv->status & STATUS_ASSOCIATED; 1844 1845 /* Kill the RF switch timer */ 1846 if (!priv->stop_rf_kill) { 1847 priv->stop_rf_kill = 1; 1848 cancel_delayed_work(&priv->rf_kill); 1849 } 1850 1851 /* Kill the firmware hang check timer */ 1852 if (!priv->stop_hang_check) { 1853 priv->stop_hang_check = 1; 1854 cancel_delayed_work(&priv->hang_check); 1855 } 1856 1857 /* Kill any pending resets */ 1858 if (priv->status & STATUS_RESET_PENDING) 1859 cancel_delayed_work(&priv->reset_work); 1860 1861 /* Make sure the interrupt is on so that FW commands will be 1862 * processed correctly */ 1863 spin_lock_irqsave(&priv->low_lock, flags); 1864 ipw2100_enable_interrupts(priv); 1865 spin_unlock_irqrestore(&priv->low_lock, flags); 1866 1867 if (ipw2100_hw_stop_adapter(priv)) 1868 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n", 1869 priv->net_dev->name); 1870 1871 /* Do not disable the interrupt until _after_ we disable 1872 * the adaptor. Otherwise the CARD_DISABLE command will never 1873 * be ack'd by the firmware */ 1874 spin_lock_irqsave(&priv->low_lock, flags); 1875 ipw2100_disable_interrupts(priv); 1876 spin_unlock_irqrestore(&priv->low_lock, flags); 1877 1878 cpu_latency_qos_update_request(&ipw2100_pm_qos_req, 1879 PM_QOS_DEFAULT_VALUE); 1880 1881 /* We have to signal any supplicant if we are disassociating */ 1882 if (associated) 1883 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL); 1884 1885 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING); 1886 netif_carrier_off(priv->net_dev); 1887 netif_stop_queue(priv->net_dev); 1888 } 1889 1890 static int ipw2100_wdev_init(struct net_device *dev) 1891 { 1892 struct ipw2100_priv *priv = libipw_priv(dev); 1893 const struct libipw_geo *geo = libipw_get_geo(priv->ieee); 1894 struct wireless_dev *wdev = &priv->ieee->wdev; 1895 int i; 1896 1897 memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN); 1898 1899 /* fill-out priv->ieee->bg_band */ 1900 if (geo->bg_channels) { 1901 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band; 1902 1903 bg_band->band = NL80211_BAND_2GHZ; 1904 bg_band->n_channels = geo->bg_channels; 1905 bg_band->channels = kcalloc(geo->bg_channels, 1906 sizeof(struct ieee80211_channel), 1907 GFP_KERNEL); 1908 if (!bg_band->channels) { 1909 ipw2100_down(priv); 1910 return -ENOMEM; 1911 } 1912 /* translate geo->bg to bg_band.channels */ 1913 for (i = 0; i < geo->bg_channels; i++) { 1914 bg_band->channels[i].band = NL80211_BAND_2GHZ; 1915 bg_band->channels[i].center_freq = geo->bg[i].freq; 1916 bg_band->channels[i].hw_value = geo->bg[i].channel; 1917 bg_band->channels[i].max_power = geo->bg[i].max_power; 1918 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY) 1919 bg_band->channels[i].flags |= 1920 IEEE80211_CHAN_NO_IR; 1921 if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS) 1922 bg_band->channels[i].flags |= 1923 IEEE80211_CHAN_NO_IR; 1924 if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT) 1925 bg_band->channels[i].flags |= 1926 IEEE80211_CHAN_RADAR; 1927 /* No equivalent for LIBIPW_CH_80211H_RULES, 1928 LIBIPW_CH_UNIFORM_SPREADING, or 1929 LIBIPW_CH_B_ONLY... */ 1930 } 1931 /* point at bitrate info */ 1932 bg_band->bitrates = ipw2100_bg_rates; 1933 bg_band->n_bitrates = RATE_COUNT; 1934 1935 wdev->wiphy->bands[NL80211_BAND_2GHZ] = bg_band; 1936 } 1937 1938 wdev->wiphy->cipher_suites = ipw_cipher_suites; 1939 wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites); 1940 1941 set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev); 1942 if (wiphy_register(wdev->wiphy)) 1943 return -EIO; 1944 return 0; 1945 } 1946 1947 static void ipw2100_reset_adapter(struct work_struct *work) 1948 { 1949 struct ipw2100_priv *priv = 1950 container_of(work, struct ipw2100_priv, reset_work.work); 1951 unsigned long flags; 1952 union iwreq_data wrqu = { 1953 .ap_addr = { 1954 .sa_family = ARPHRD_ETHER} 1955 }; 1956 int associated = priv->status & STATUS_ASSOCIATED; 1957 1958 spin_lock_irqsave(&priv->low_lock, flags); 1959 IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name); 1960 priv->resets++; 1961 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING); 1962 priv->status |= STATUS_SECURITY_UPDATED; 1963 1964 /* Force a power cycle even if interface hasn't been opened 1965 * yet */ 1966 cancel_delayed_work(&priv->reset_work); 1967 priv->status |= STATUS_RESET_PENDING; 1968 spin_unlock_irqrestore(&priv->low_lock, flags); 1969 1970 mutex_lock(&priv->action_mutex); 1971 /* stop timed checks so that they don't interfere with reset */ 1972 priv->stop_hang_check = 1; 1973 cancel_delayed_work(&priv->hang_check); 1974 1975 /* We have to signal any supplicant if we are disassociating */ 1976 if (associated) 1977 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL); 1978 1979 ipw2100_up(priv, 0); 1980 mutex_unlock(&priv->action_mutex); 1981 1982 } 1983 1984 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status) 1985 { 1986 1987 #define MAC_ASSOCIATION_READ_DELAY (HZ) 1988 int ret; 1989 unsigned int len, essid_len; 1990 char essid[IW_ESSID_MAX_SIZE]; 1991 u32 txrate; 1992 u32 chan; 1993 char *txratename; 1994 u8 bssid[ETH_ALEN]; 1995 1996 /* 1997 * TBD: BSSID is usually 00:00:00:00:00:00 here and not 1998 * an actual MAC of the AP. Seems like FW sets this 1999 * address too late. Read it later and expose through 2000 * /proc or schedule a later task to query and update 2001 */ 2002 2003 essid_len = IW_ESSID_MAX_SIZE; 2004 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, 2005 essid, &essid_len); 2006 if (ret) { 2007 IPW_DEBUG_INFO("failed querying ordinals at line %d\n", 2008 __LINE__); 2009 return; 2010 } 2011 2012 len = sizeof(u32); 2013 ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len); 2014 if (ret) { 2015 IPW_DEBUG_INFO("failed querying ordinals at line %d\n", 2016 __LINE__); 2017 return; 2018 } 2019 2020 len = sizeof(u32); 2021 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len); 2022 if (ret) { 2023 IPW_DEBUG_INFO("failed querying ordinals at line %d\n", 2024 __LINE__); 2025 return; 2026 } 2027 len = ETH_ALEN; 2028 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, bssid, 2029 &len); 2030 if (ret) { 2031 IPW_DEBUG_INFO("failed querying ordinals at line %d\n", 2032 __LINE__); 2033 return; 2034 } 2035 memcpy(priv->ieee->bssid, bssid, ETH_ALEN); 2036 2037 switch (txrate) { 2038 case TX_RATE_1_MBIT: 2039 txratename = "1Mbps"; 2040 break; 2041 case TX_RATE_2_MBIT: 2042 txratename = "2Mbsp"; 2043 break; 2044 case TX_RATE_5_5_MBIT: 2045 txratename = "5.5Mbps"; 2046 break; 2047 case TX_RATE_11_MBIT: 2048 txratename = "11Mbps"; 2049 break; 2050 default: 2051 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate); 2052 txratename = "unknown rate"; 2053 break; 2054 } 2055 2056 IPW_DEBUG_INFO("%s: Associated with '%*pE' at %s, channel %d (BSSID=%pM)\n", 2057 priv->net_dev->name, essid_len, essid, 2058 txratename, chan, bssid); 2059 2060 /* now we copy read ssid into dev */ 2061 if (!(priv->config & CFG_STATIC_ESSID)) { 2062 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE); 2063 memcpy(priv->essid, essid, priv->essid_len); 2064 } 2065 priv->channel = chan; 2066 memcpy(priv->bssid, bssid, ETH_ALEN); 2067 2068 priv->status |= STATUS_ASSOCIATING; 2069 priv->connect_start = ktime_get_boottime_seconds(); 2070 2071 schedule_delayed_work(&priv->wx_event_work, HZ / 10); 2072 } 2073 2074 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid, 2075 int length, int batch_mode) 2076 { 2077 int ssid_len = min(length, IW_ESSID_MAX_SIZE); 2078 struct host_command cmd = { 2079 .host_command = SSID, 2080 .host_command_sequence = 0, 2081 .host_command_length = ssid_len 2082 }; 2083 int err; 2084 2085 IPW_DEBUG_HC("SSID: '%*pE'\n", ssid_len, essid); 2086 2087 if (ssid_len) 2088 memcpy(cmd.host_command_parameters, essid, ssid_len); 2089 2090 if (!batch_mode) { 2091 err = ipw2100_disable_adapter(priv); 2092 if (err) 2093 return err; 2094 } 2095 2096 /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to 2097 * disable auto association -- so we cheat by setting a bogus SSID */ 2098 if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) { 2099 int i; 2100 u8 *bogus = (u8 *) cmd.host_command_parameters; 2101 for (i = 0; i < IW_ESSID_MAX_SIZE; i++) 2102 bogus[i] = 0x18 + i; 2103 cmd.host_command_length = IW_ESSID_MAX_SIZE; 2104 } 2105 2106 /* NOTE: We always send the SSID command even if the provided ESSID is 2107 * the same as what we currently think is set. */ 2108 2109 err = ipw2100_hw_send_command(priv, &cmd); 2110 if (!err) { 2111 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len); 2112 memcpy(priv->essid, essid, ssid_len); 2113 priv->essid_len = ssid_len; 2114 } 2115 2116 if (!batch_mode) { 2117 if (ipw2100_enable_adapter(priv)) 2118 err = -EIO; 2119 } 2120 2121 return err; 2122 } 2123 2124 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status) 2125 { 2126 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC, 2127 "disassociated: '%*pE' %pM\n", priv->essid_len, priv->essid, 2128 priv->bssid); 2129 2130 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING); 2131 2132 if (priv->status & STATUS_STOPPING) { 2133 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n"); 2134 return; 2135 } 2136 2137 eth_zero_addr(priv->bssid); 2138 eth_zero_addr(priv->ieee->bssid); 2139 2140 netif_carrier_off(priv->net_dev); 2141 netif_stop_queue(priv->net_dev); 2142 2143 if (!(priv->status & STATUS_RUNNING)) 2144 return; 2145 2146 if (priv->status & STATUS_SECURITY_UPDATED) 2147 schedule_delayed_work(&priv->security_work, 0); 2148 2149 schedule_delayed_work(&priv->wx_event_work, 0); 2150 } 2151 2152 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status) 2153 { 2154 IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n", 2155 priv->net_dev->name); 2156 2157 /* RF_KILL is now enabled (else we wouldn't be here) */ 2158 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true); 2159 priv->status |= STATUS_RF_KILL_HW; 2160 2161 /* Make sure the RF Kill check timer is running */ 2162 priv->stop_rf_kill = 0; 2163 mod_delayed_work(system_wq, &priv->rf_kill, round_jiffies_relative(HZ)); 2164 } 2165 2166 static void ipw2100_scan_event(struct work_struct *work) 2167 { 2168 struct ipw2100_priv *priv = container_of(work, struct ipw2100_priv, 2169 scan_event.work); 2170 union iwreq_data wrqu; 2171 2172 wrqu.data.length = 0; 2173 wrqu.data.flags = 0; 2174 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL); 2175 } 2176 2177 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status) 2178 { 2179 IPW_DEBUG_SCAN("scan complete\n"); 2180 /* Age the scan results... */ 2181 priv->ieee->scans++; 2182 priv->status &= ~STATUS_SCANNING; 2183 2184 /* Only userspace-requested scan completion events go out immediately */ 2185 if (!priv->user_requested_scan) { 2186 schedule_delayed_work(&priv->scan_event, 2187 round_jiffies_relative(msecs_to_jiffies(4000))); 2188 } else { 2189 priv->user_requested_scan = 0; 2190 mod_delayed_work(system_wq, &priv->scan_event, 0); 2191 } 2192 } 2193 2194 #ifdef CONFIG_IPW2100_DEBUG 2195 #define IPW2100_HANDLER(v, f) { v, f, # v } 2196 struct ipw2100_status_indicator { 2197 int status; 2198 void (*cb) (struct ipw2100_priv * priv, u32 status); 2199 char *name; 2200 }; 2201 #else 2202 #define IPW2100_HANDLER(v, f) { v, f } 2203 struct ipw2100_status_indicator { 2204 int status; 2205 void (*cb) (struct ipw2100_priv * priv, u32 status); 2206 }; 2207 #endif /* CONFIG_IPW2100_DEBUG */ 2208 2209 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status) 2210 { 2211 IPW_DEBUG_SCAN("Scanning...\n"); 2212 priv->status |= STATUS_SCANNING; 2213 } 2214 2215 static const struct ipw2100_status_indicator status_handlers[] = { 2216 IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL), 2217 IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL), 2218 IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated), 2219 IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost), 2220 IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL), 2221 IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete), 2222 IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL), 2223 IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL), 2224 IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill), 2225 IPW2100_HANDLER(IPW_STATE_DISABLED, NULL), 2226 IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL), 2227 IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning), 2228 IPW2100_HANDLER(-1, NULL) 2229 }; 2230 2231 static void isr_status_change(struct ipw2100_priv *priv, int status) 2232 { 2233 int i; 2234 2235 if (status == IPW_STATE_SCANNING && 2236 priv->status & STATUS_ASSOCIATED && 2237 !(priv->status & STATUS_SCANNING)) { 2238 IPW_DEBUG_INFO("Scan detected while associated, with " 2239 "no scan request. Restarting firmware.\n"); 2240 2241 /* Wake up any sleeping jobs */ 2242 schedule_reset(priv); 2243 } 2244 2245 for (i = 0; status_handlers[i].status != -1; i++) { 2246 if (status == status_handlers[i].status) { 2247 IPW_DEBUG_NOTIF("Status change: %s\n", 2248 status_handlers[i].name); 2249 if (status_handlers[i].cb) 2250 status_handlers[i].cb(priv, status); 2251 priv->wstats.status = status; 2252 return; 2253 } 2254 } 2255 2256 IPW_DEBUG_NOTIF("unknown status received: %04x\n", status); 2257 } 2258 2259 static void isr_rx_complete_command(struct ipw2100_priv *priv, 2260 struct ipw2100_cmd_header *cmd) 2261 { 2262 #ifdef CONFIG_IPW2100_DEBUG 2263 if (cmd->host_command_reg < ARRAY_SIZE(command_types)) { 2264 IPW_DEBUG_HC("Command completed '%s (%d)'\n", 2265 command_types[cmd->host_command_reg], 2266 cmd->host_command_reg); 2267 } 2268 #endif 2269 if (cmd->host_command_reg == HOST_COMPLETE) 2270 priv->status |= STATUS_ENABLED; 2271 2272 if (cmd->host_command_reg == CARD_DISABLE) 2273 priv->status &= ~STATUS_ENABLED; 2274 2275 priv->status &= ~STATUS_CMD_ACTIVE; 2276 2277 wake_up_interruptible(&priv->wait_command_queue); 2278 } 2279 2280 #ifdef CONFIG_IPW2100_DEBUG 2281 static const char *frame_types[] = { 2282 "COMMAND_STATUS_VAL", 2283 "STATUS_CHANGE_VAL", 2284 "P80211_DATA_VAL", 2285 "P8023_DATA_VAL", 2286 "HOST_NOTIFICATION_VAL" 2287 }; 2288 #endif 2289 2290 static int ipw2100_alloc_skb(struct ipw2100_priv *priv, 2291 struct ipw2100_rx_packet *packet) 2292 { 2293 packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx)); 2294 if (!packet->skb) 2295 return -ENOMEM; 2296 2297 packet->rxp = (struct ipw2100_rx *)packet->skb->data; 2298 packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data, 2299 sizeof(struct ipw2100_rx), 2300 PCI_DMA_FROMDEVICE); 2301 if (pci_dma_mapping_error(priv->pci_dev, packet->dma_addr)) { 2302 dev_kfree_skb(packet->skb); 2303 return -ENOMEM; 2304 } 2305 2306 return 0; 2307 } 2308 2309 #define SEARCH_ERROR 0xffffffff 2310 #define SEARCH_FAIL 0xfffffffe 2311 #define SEARCH_SUCCESS 0xfffffff0 2312 #define SEARCH_DISCARD 0 2313 #define SEARCH_SNAPSHOT 1 2314 2315 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff)) 2316 static void ipw2100_snapshot_free(struct ipw2100_priv *priv) 2317 { 2318 int i; 2319 if (!priv->snapshot[0]) 2320 return; 2321 for (i = 0; i < 0x30; i++) 2322 kfree(priv->snapshot[i]); 2323 priv->snapshot[0] = NULL; 2324 } 2325 2326 #ifdef IPW2100_DEBUG_C3 2327 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv) 2328 { 2329 int i; 2330 if (priv->snapshot[0]) 2331 return 1; 2332 for (i = 0; i < 0x30; i++) { 2333 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC); 2334 if (!priv->snapshot[i]) { 2335 IPW_DEBUG_INFO("%s: Error allocating snapshot " 2336 "buffer %d\n", priv->net_dev->name, i); 2337 while (i > 0) 2338 kfree(priv->snapshot[--i]); 2339 priv->snapshot[0] = NULL; 2340 return 0; 2341 } 2342 } 2343 2344 return 1; 2345 } 2346 2347 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf, 2348 size_t len, int mode) 2349 { 2350 u32 i, j; 2351 u32 tmp; 2352 u8 *s, *d; 2353 u32 ret; 2354 2355 s = in_buf; 2356 if (mode == SEARCH_SNAPSHOT) { 2357 if (!ipw2100_snapshot_alloc(priv)) 2358 mode = SEARCH_DISCARD; 2359 } 2360 2361 for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) { 2362 read_nic_dword(priv->net_dev, i, &tmp); 2363 if (mode == SEARCH_SNAPSHOT) 2364 *(u32 *) SNAPSHOT_ADDR(i) = tmp; 2365 if (ret == SEARCH_FAIL) { 2366 d = (u8 *) & tmp; 2367 for (j = 0; j < 4; j++) { 2368 if (*s != *d) { 2369 s = in_buf; 2370 continue; 2371 } 2372 2373 s++; 2374 d++; 2375 2376 if ((s - in_buf) == len) 2377 ret = (i + j) - len + 1; 2378 } 2379 } else if (mode == SEARCH_DISCARD) 2380 return ret; 2381 } 2382 2383 return ret; 2384 } 2385 #endif 2386 2387 /* 2388 * 2389 * 0) Disconnect the SKB from the firmware (just unmap) 2390 * 1) Pack the ETH header into the SKB 2391 * 2) Pass the SKB to the network stack 2392 * 2393 * When packet is provided by the firmware, it contains the following: 2394 * 2395 * . libipw_hdr 2396 * . libipw_snap_hdr 2397 * 2398 * The size of the constructed ethernet 2399 * 2400 */ 2401 #ifdef IPW2100_RX_DEBUG 2402 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH]; 2403 #endif 2404 2405 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i) 2406 { 2407 #ifdef IPW2100_DEBUG_C3 2408 struct ipw2100_status *status = &priv->status_queue.drv[i]; 2409 u32 match, reg; 2410 int j; 2411 #endif 2412 2413 IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n", 2414 i * sizeof(struct ipw2100_status)); 2415 2416 #ifdef IPW2100_DEBUG_C3 2417 /* Halt the firmware so we can get a good image */ 2418 write_register(priv->net_dev, IPW_REG_RESET_REG, 2419 IPW_AUX_HOST_RESET_REG_STOP_MASTER); 2420 j = 5; 2421 do { 2422 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY); 2423 read_register(priv->net_dev, IPW_REG_RESET_REG, ®); 2424 2425 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED) 2426 break; 2427 } while (j--); 2428 2429 match = ipw2100_match_buf(priv, (u8 *) status, 2430 sizeof(struct ipw2100_status), 2431 SEARCH_SNAPSHOT); 2432 if (match < SEARCH_SUCCESS) 2433 IPW_DEBUG_INFO("%s: DMA status match in Firmware at " 2434 "offset 0x%06X, length %d:\n", 2435 priv->net_dev->name, match, 2436 sizeof(struct ipw2100_status)); 2437 else 2438 IPW_DEBUG_INFO("%s: No DMA status match in " 2439 "Firmware.\n", priv->net_dev->name); 2440 2441 printk_buf((u8 *) priv->status_queue.drv, 2442 sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH); 2443 #endif 2444 2445 priv->fatal_error = IPW2100_ERR_C3_CORRUPTION; 2446 priv->net_dev->stats.rx_errors++; 2447 schedule_reset(priv); 2448 } 2449 2450 static void isr_rx(struct ipw2100_priv *priv, int i, 2451 struct libipw_rx_stats *stats) 2452 { 2453 struct net_device *dev = priv->net_dev; 2454 struct ipw2100_status *status = &priv->status_queue.drv[i]; 2455 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i]; 2456 2457 IPW_DEBUG_RX("Handler...\n"); 2458 2459 if (unlikely(status->frame_size > skb_tailroom(packet->skb))) { 2460 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!" 2461 " Dropping.\n", 2462 dev->name, 2463 status->frame_size, skb_tailroom(packet->skb)); 2464 dev->stats.rx_errors++; 2465 return; 2466 } 2467 2468 if (unlikely(!netif_running(dev))) { 2469 dev->stats.rx_errors++; 2470 priv->wstats.discard.misc++; 2471 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n"); 2472 return; 2473 } 2474 2475 if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR && 2476 !(priv->status & STATUS_ASSOCIATED))) { 2477 IPW_DEBUG_DROP("Dropping packet while not associated.\n"); 2478 priv->wstats.discard.misc++; 2479 return; 2480 } 2481 2482 pci_unmap_single(priv->pci_dev, 2483 packet->dma_addr, 2484 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE); 2485 2486 skb_put(packet->skb, status->frame_size); 2487 2488 #ifdef IPW2100_RX_DEBUG 2489 /* Make a copy of the frame so we can dump it to the logs if 2490 * libipw_rx fails */ 2491 skb_copy_from_linear_data(packet->skb, packet_data, 2492 min_t(u32, status->frame_size, 2493 IPW_RX_NIC_BUFFER_LENGTH)); 2494 #endif 2495 2496 if (!libipw_rx(priv->ieee, packet->skb, stats)) { 2497 #ifdef IPW2100_RX_DEBUG 2498 IPW_DEBUG_DROP("%s: Non consumed packet:\n", 2499 dev->name); 2500 printk_buf(IPW_DL_DROP, packet_data, status->frame_size); 2501 #endif 2502 dev->stats.rx_errors++; 2503 2504 /* libipw_rx failed, so it didn't free the SKB */ 2505 dev_kfree_skb_any(packet->skb); 2506 packet->skb = NULL; 2507 } 2508 2509 /* We need to allocate a new SKB and attach it to the RDB. */ 2510 if (unlikely(ipw2100_alloc_skb(priv, packet))) { 2511 printk(KERN_WARNING DRV_NAME ": " 2512 "%s: Unable to allocate SKB onto RBD ring - disabling " 2513 "adapter.\n", dev->name); 2514 /* TODO: schedule adapter shutdown */ 2515 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n"); 2516 } 2517 2518 /* Update the RDB entry */ 2519 priv->rx_queue.drv[i].host_addr = packet->dma_addr; 2520 } 2521 2522 #ifdef CONFIG_IPW2100_MONITOR 2523 2524 static void isr_rx_monitor(struct ipw2100_priv *priv, int i, 2525 struct libipw_rx_stats *stats) 2526 { 2527 struct net_device *dev = priv->net_dev; 2528 struct ipw2100_status *status = &priv->status_queue.drv[i]; 2529 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i]; 2530 2531 /* Magic struct that slots into the radiotap header -- no reason 2532 * to build this manually element by element, we can write it much 2533 * more efficiently than we can parse it. ORDER MATTERS HERE */ 2534 struct ipw_rt_hdr { 2535 struct ieee80211_radiotap_header rt_hdr; 2536 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */ 2537 } *ipw_rt; 2538 2539 IPW_DEBUG_RX("Handler...\n"); 2540 2541 if (unlikely(status->frame_size > skb_tailroom(packet->skb) - 2542 sizeof(struct ipw_rt_hdr))) { 2543 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!" 2544 " Dropping.\n", 2545 dev->name, 2546 status->frame_size, 2547 skb_tailroom(packet->skb)); 2548 dev->stats.rx_errors++; 2549 return; 2550 } 2551 2552 if (unlikely(!netif_running(dev))) { 2553 dev->stats.rx_errors++; 2554 priv->wstats.discard.misc++; 2555 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n"); 2556 return; 2557 } 2558 2559 if (unlikely(priv->config & CFG_CRC_CHECK && 2560 status->flags & IPW_STATUS_FLAG_CRC_ERROR)) { 2561 IPW_DEBUG_RX("CRC error in packet. Dropping.\n"); 2562 dev->stats.rx_errors++; 2563 return; 2564 } 2565 2566 pci_unmap_single(priv->pci_dev, packet->dma_addr, 2567 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE); 2568 memmove(packet->skb->data + sizeof(struct ipw_rt_hdr), 2569 packet->skb->data, status->frame_size); 2570 2571 ipw_rt = (struct ipw_rt_hdr *) packet->skb->data; 2572 2573 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION; 2574 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */ 2575 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */ 2576 2577 ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 2578 2579 ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM; 2580 2581 skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr)); 2582 2583 if (!libipw_rx(priv->ieee, packet->skb, stats)) { 2584 dev->stats.rx_errors++; 2585 2586 /* libipw_rx failed, so it didn't free the SKB */ 2587 dev_kfree_skb_any(packet->skb); 2588 packet->skb = NULL; 2589 } 2590 2591 /* We need to allocate a new SKB and attach it to the RDB. */ 2592 if (unlikely(ipw2100_alloc_skb(priv, packet))) { 2593 IPW_DEBUG_WARNING( 2594 "%s: Unable to allocate SKB onto RBD ring - disabling " 2595 "adapter.\n", dev->name); 2596 /* TODO: schedule adapter shutdown */ 2597 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n"); 2598 } 2599 2600 /* Update the RDB entry */ 2601 priv->rx_queue.drv[i].host_addr = packet->dma_addr; 2602 } 2603 2604 #endif 2605 2606 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i) 2607 { 2608 struct ipw2100_status *status = &priv->status_queue.drv[i]; 2609 struct ipw2100_rx *u = priv->rx_buffers[i].rxp; 2610 u16 frame_type = status->status_fields & STATUS_TYPE_MASK; 2611 2612 switch (frame_type) { 2613 case COMMAND_STATUS_VAL: 2614 return (status->frame_size != sizeof(u->rx_data.command)); 2615 case STATUS_CHANGE_VAL: 2616 return (status->frame_size != sizeof(u->rx_data.status)); 2617 case HOST_NOTIFICATION_VAL: 2618 return (status->frame_size < sizeof(u->rx_data.notification)); 2619 case P80211_DATA_VAL: 2620 case P8023_DATA_VAL: 2621 #ifdef CONFIG_IPW2100_MONITOR 2622 return 0; 2623 #else 2624 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) { 2625 case IEEE80211_FTYPE_MGMT: 2626 case IEEE80211_FTYPE_CTL: 2627 return 0; 2628 case IEEE80211_FTYPE_DATA: 2629 return (status->frame_size > 2630 IPW_MAX_802_11_PAYLOAD_LENGTH); 2631 } 2632 #endif 2633 } 2634 2635 return 1; 2636 } 2637 2638 /* 2639 * ipw2100 interrupts are disabled at this point, and the ISR 2640 * is the only code that calls this method. So, we do not need 2641 * to play with any locks. 2642 * 2643 * RX Queue works as follows: 2644 * 2645 * Read index - firmware places packet in entry identified by the 2646 * Read index and advances Read index. In this manner, 2647 * Read index will always point to the next packet to 2648 * be filled--but not yet valid. 2649 * 2650 * Write index - driver fills this entry with an unused RBD entry. 2651 * This entry has not filled by the firmware yet. 2652 * 2653 * In between the W and R indexes are the RBDs that have been received 2654 * but not yet processed. 2655 * 2656 * The process of handling packets will start at WRITE + 1 and advance 2657 * until it reaches the READ index. 2658 * 2659 * The WRITE index is cached in the variable 'priv->rx_queue.next'. 2660 * 2661 */ 2662 static void __ipw2100_rx_process(struct ipw2100_priv *priv) 2663 { 2664 struct ipw2100_bd_queue *rxq = &priv->rx_queue; 2665 struct ipw2100_status_queue *sq = &priv->status_queue; 2666 struct ipw2100_rx_packet *packet; 2667 u16 frame_type; 2668 u32 r, w, i, s; 2669 struct ipw2100_rx *u; 2670 struct libipw_rx_stats stats = { 2671 .mac_time = jiffies, 2672 }; 2673 2674 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r); 2675 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w); 2676 2677 if (r >= rxq->entries) { 2678 IPW_DEBUG_RX("exit - bad read index\n"); 2679 return; 2680 } 2681 2682 i = (rxq->next + 1) % rxq->entries; 2683 s = i; 2684 while (i != r) { 2685 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n", 2686 r, rxq->next, i); */ 2687 2688 packet = &priv->rx_buffers[i]; 2689 2690 /* Sync the DMA for the RX buffer so CPU is sure to get 2691 * the correct values */ 2692 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr, 2693 sizeof(struct ipw2100_rx), 2694 PCI_DMA_FROMDEVICE); 2695 2696 if (unlikely(ipw2100_corruption_check(priv, i))) { 2697 ipw2100_corruption_detected(priv, i); 2698 goto increment; 2699 } 2700 2701 u = packet->rxp; 2702 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK; 2703 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM; 2704 stats.len = sq->drv[i].frame_size; 2705 2706 stats.mask = 0; 2707 if (stats.rssi != 0) 2708 stats.mask |= LIBIPW_STATMASK_RSSI; 2709 stats.freq = LIBIPW_24GHZ_BAND; 2710 2711 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n", 2712 priv->net_dev->name, frame_types[frame_type], 2713 stats.len); 2714 2715 switch (frame_type) { 2716 case COMMAND_STATUS_VAL: 2717 /* Reset Rx watchdog */ 2718 isr_rx_complete_command(priv, &u->rx_data.command); 2719 break; 2720 2721 case STATUS_CHANGE_VAL: 2722 isr_status_change(priv, u->rx_data.status); 2723 break; 2724 2725 case P80211_DATA_VAL: 2726 case P8023_DATA_VAL: 2727 #ifdef CONFIG_IPW2100_MONITOR 2728 if (priv->ieee->iw_mode == IW_MODE_MONITOR) { 2729 isr_rx_monitor(priv, i, &stats); 2730 break; 2731 } 2732 #endif 2733 if (stats.len < sizeof(struct libipw_hdr_3addr)) 2734 break; 2735 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) { 2736 case IEEE80211_FTYPE_MGMT: 2737 libipw_rx_mgt(priv->ieee, 2738 &u->rx_data.header, &stats); 2739 break; 2740 2741 case IEEE80211_FTYPE_CTL: 2742 break; 2743 2744 case IEEE80211_FTYPE_DATA: 2745 isr_rx(priv, i, &stats); 2746 break; 2747 2748 } 2749 break; 2750 } 2751 2752 increment: 2753 /* clear status field associated with this RBD */ 2754 rxq->drv[i].status.info.field = 0; 2755 2756 i = (i + 1) % rxq->entries; 2757 } 2758 2759 if (i != s) { 2760 /* backtrack one entry, wrapping to end if at 0 */ 2761 rxq->next = (i ? i : rxq->entries) - 1; 2762 2763 write_register(priv->net_dev, 2764 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next); 2765 } 2766 } 2767 2768 /* 2769 * __ipw2100_tx_process 2770 * 2771 * This routine will determine whether the next packet on 2772 * the fw_pend_list has been processed by the firmware yet. 2773 * 2774 * If not, then it does nothing and returns. 2775 * 2776 * If so, then it removes the item from the fw_pend_list, frees 2777 * any associated storage, and places the item back on the 2778 * free list of its source (either msg_free_list or tx_free_list) 2779 * 2780 * TX Queue works as follows: 2781 * 2782 * Read index - points to the next TBD that the firmware will 2783 * process. The firmware will read the data, and once 2784 * done processing, it will advance the Read index. 2785 * 2786 * Write index - driver fills this entry with an constructed TBD 2787 * entry. The Write index is not advanced until the 2788 * packet has been configured. 2789 * 2790 * In between the W and R indexes are the TBDs that have NOT been 2791 * processed. Lagging behind the R index are packets that have 2792 * been processed but have not been freed by the driver. 2793 * 2794 * In order to free old storage, an internal index will be maintained 2795 * that points to the next packet to be freed. When all used 2796 * packets have been freed, the oldest index will be the same as the 2797 * firmware's read index. 2798 * 2799 * The OLDEST index is cached in the variable 'priv->tx_queue.oldest' 2800 * 2801 * Because the TBD structure can not contain arbitrary data, the 2802 * driver must keep an internal queue of cached allocations such that 2803 * it can put that data back into the tx_free_list and msg_free_list 2804 * for use by future command and data packets. 2805 * 2806 */ 2807 static int __ipw2100_tx_process(struct ipw2100_priv *priv) 2808 { 2809 struct ipw2100_bd_queue *txq = &priv->tx_queue; 2810 struct ipw2100_bd *tbd; 2811 struct list_head *element; 2812 struct ipw2100_tx_packet *packet; 2813 int descriptors_used; 2814 int e, i; 2815 u32 r, w, frag_num = 0; 2816 2817 if (list_empty(&priv->fw_pend_list)) 2818 return 0; 2819 2820 element = priv->fw_pend_list.next; 2821 2822 packet = list_entry(element, struct ipw2100_tx_packet, list); 2823 tbd = &txq->drv[packet->index]; 2824 2825 /* Determine how many TBD entries must be finished... */ 2826 switch (packet->type) { 2827 case COMMAND: 2828 /* COMMAND uses only one slot; don't advance */ 2829 descriptors_used = 1; 2830 e = txq->oldest; 2831 break; 2832 2833 case DATA: 2834 /* DATA uses two slots; advance and loop position. */ 2835 descriptors_used = tbd->num_fragments; 2836 frag_num = tbd->num_fragments - 1; 2837 e = txq->oldest + frag_num; 2838 e %= txq->entries; 2839 break; 2840 2841 default: 2842 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n", 2843 priv->net_dev->name); 2844 return 0; 2845 } 2846 2847 /* if the last TBD is not done by NIC yet, then packet is 2848 * not ready to be released. 2849 * 2850 */ 2851 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX, 2852 &r); 2853 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX, 2854 &w); 2855 if (w != txq->next) 2856 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n", 2857 priv->net_dev->name); 2858 2859 /* 2860 * txq->next is the index of the last packet written txq->oldest is 2861 * the index of the r is the index of the next packet to be read by 2862 * firmware 2863 */ 2864 2865 /* 2866 * Quick graphic to help you visualize the following 2867 * if / else statement 2868 * 2869 * ===>| s---->|=============== 2870 * e>| 2871 * | a | b | c | d | e | f | g | h | i | j | k | l 2872 * r---->| 2873 * w 2874 * 2875 * w - updated by driver 2876 * r - updated by firmware 2877 * s - start of oldest BD entry (txq->oldest) 2878 * e - end of oldest BD entry 2879 * 2880 */ 2881 if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) { 2882 IPW_DEBUG_TX("exit - no processed packets ready to release.\n"); 2883 return 0; 2884 } 2885 2886 list_del(element); 2887 DEC_STAT(&priv->fw_pend_stat); 2888 2889 #ifdef CONFIG_IPW2100_DEBUG 2890 { 2891 i = txq->oldest; 2892 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i, 2893 &txq->drv[i], 2894 (u32) (txq->nic + i * sizeof(struct ipw2100_bd)), 2895 txq->drv[i].host_addr, txq->drv[i].buf_length); 2896 2897 if (packet->type == DATA) { 2898 i = (i + 1) % txq->entries; 2899 2900 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i, 2901 &txq->drv[i], 2902 (u32) (txq->nic + i * 2903 sizeof(struct ipw2100_bd)), 2904 (u32) txq->drv[i].host_addr, 2905 txq->drv[i].buf_length); 2906 } 2907 } 2908 #endif 2909 2910 switch (packet->type) { 2911 case DATA: 2912 if (txq->drv[txq->oldest].status.info.fields.txType != 0) 2913 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. " 2914 "Expecting DATA TBD but pulled " 2915 "something else: ids %d=%d.\n", 2916 priv->net_dev->name, txq->oldest, packet->index); 2917 2918 /* DATA packet; we have to unmap and free the SKB */ 2919 for (i = 0; i < frag_num; i++) { 2920 tbd = &txq->drv[(packet->index + 1 + i) % txq->entries]; 2921 2922 IPW_DEBUG_TX("TX%d P=%08x L=%d\n", 2923 (packet->index + 1 + i) % txq->entries, 2924 tbd->host_addr, tbd->buf_length); 2925 2926 pci_unmap_single(priv->pci_dev, 2927 tbd->host_addr, 2928 tbd->buf_length, PCI_DMA_TODEVICE); 2929 } 2930 2931 libipw_txb_free(packet->info.d_struct.txb); 2932 packet->info.d_struct.txb = NULL; 2933 2934 list_add_tail(element, &priv->tx_free_list); 2935 INC_STAT(&priv->tx_free_stat); 2936 2937 /* We have a free slot in the Tx queue, so wake up the 2938 * transmit layer if it is stopped. */ 2939 if (priv->status & STATUS_ASSOCIATED) 2940 netif_wake_queue(priv->net_dev); 2941 2942 /* A packet was processed by the hardware, so update the 2943 * watchdog */ 2944 netif_trans_update(priv->net_dev); 2945 2946 break; 2947 2948 case COMMAND: 2949 if (txq->drv[txq->oldest].status.info.fields.txType != 1) 2950 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. " 2951 "Expecting COMMAND TBD but pulled " 2952 "something else: ids %d=%d.\n", 2953 priv->net_dev->name, txq->oldest, packet->index); 2954 2955 #ifdef CONFIG_IPW2100_DEBUG 2956 if (packet->info.c_struct.cmd->host_command_reg < 2957 ARRAY_SIZE(command_types)) 2958 IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n", 2959 command_types[packet->info.c_struct.cmd-> 2960 host_command_reg], 2961 packet->info.c_struct.cmd-> 2962 host_command_reg, 2963 packet->info.c_struct.cmd->cmd_status_reg); 2964 #endif 2965 2966 list_add_tail(element, &priv->msg_free_list); 2967 INC_STAT(&priv->msg_free_stat); 2968 break; 2969 } 2970 2971 /* advance oldest used TBD pointer to start of next entry */ 2972 txq->oldest = (e + 1) % txq->entries; 2973 /* increase available TBDs number */ 2974 txq->available += descriptors_used; 2975 SET_STAT(&priv->txq_stat, txq->available); 2976 2977 IPW_DEBUG_TX("packet latency (send to process) %ld jiffies\n", 2978 jiffies - packet->jiffy_start); 2979 2980 return (!list_empty(&priv->fw_pend_list)); 2981 } 2982 2983 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv) 2984 { 2985 int i = 0; 2986 2987 while (__ipw2100_tx_process(priv) && i < 200) 2988 i++; 2989 2990 if (i == 200) { 2991 printk(KERN_WARNING DRV_NAME ": " 2992 "%s: Driver is running slow (%d iters).\n", 2993 priv->net_dev->name, i); 2994 } 2995 } 2996 2997 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv) 2998 { 2999 struct list_head *element; 3000 struct ipw2100_tx_packet *packet; 3001 struct ipw2100_bd_queue *txq = &priv->tx_queue; 3002 struct ipw2100_bd *tbd; 3003 int next = txq->next; 3004 3005 while (!list_empty(&priv->msg_pend_list)) { 3006 /* if there isn't enough space in TBD queue, then 3007 * don't stuff a new one in. 3008 * NOTE: 3 are needed as a command will take one, 3009 * and there is a minimum of 2 that must be 3010 * maintained between the r and w indexes 3011 */ 3012 if (txq->available <= 3) { 3013 IPW_DEBUG_TX("no room in tx_queue\n"); 3014 break; 3015 } 3016 3017 element = priv->msg_pend_list.next; 3018 list_del(element); 3019 DEC_STAT(&priv->msg_pend_stat); 3020 3021 packet = list_entry(element, struct ipw2100_tx_packet, list); 3022 3023 IPW_DEBUG_TX("using TBD at virt=%p, phys=%04X\n", 3024 &txq->drv[txq->next], 3025 (u32) (txq->nic + txq->next * 3026 sizeof(struct ipw2100_bd))); 3027 3028 packet->index = txq->next; 3029 3030 tbd = &txq->drv[txq->next]; 3031 3032 /* initialize TBD */ 3033 tbd->host_addr = packet->info.c_struct.cmd_phys; 3034 tbd->buf_length = sizeof(struct ipw2100_cmd_header); 3035 /* not marking number of fragments causes problems 3036 * with f/w debug version */ 3037 tbd->num_fragments = 1; 3038 tbd->status.info.field = 3039 IPW_BD_STATUS_TX_FRAME_COMMAND | 3040 IPW_BD_STATUS_TX_INTERRUPT_ENABLE; 3041 3042 /* update TBD queue counters */ 3043 txq->next++; 3044 txq->next %= txq->entries; 3045 txq->available--; 3046 DEC_STAT(&priv->txq_stat); 3047 3048 list_add_tail(element, &priv->fw_pend_list); 3049 INC_STAT(&priv->fw_pend_stat); 3050 } 3051 3052 if (txq->next != next) { 3053 /* kick off the DMA by notifying firmware the 3054 * write index has moved; make sure TBD stores are sync'd */ 3055 wmb(); 3056 write_register(priv->net_dev, 3057 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX, 3058 txq->next); 3059 } 3060 } 3061 3062 /* 3063 * ipw2100_tx_send_data 3064 * 3065 */ 3066 static void ipw2100_tx_send_data(struct ipw2100_priv *priv) 3067 { 3068 struct list_head *element; 3069 struct ipw2100_tx_packet *packet; 3070 struct ipw2100_bd_queue *txq = &priv->tx_queue; 3071 struct ipw2100_bd *tbd; 3072 int next = txq->next; 3073 int i = 0; 3074 struct ipw2100_data_header *ipw_hdr; 3075 struct libipw_hdr_3addr *hdr; 3076 3077 while (!list_empty(&priv->tx_pend_list)) { 3078 /* if there isn't enough space in TBD queue, then 3079 * don't stuff a new one in. 3080 * NOTE: 4 are needed as a data will take two, 3081 * and there is a minimum of 2 that must be 3082 * maintained between the r and w indexes 3083 */ 3084 element = priv->tx_pend_list.next; 3085 packet = list_entry(element, struct ipw2100_tx_packet, list); 3086 3087 if (unlikely(1 + packet->info.d_struct.txb->nr_frags > 3088 IPW_MAX_BDS)) { 3089 /* TODO: Support merging buffers if more than 3090 * IPW_MAX_BDS are used */ 3091 IPW_DEBUG_INFO("%s: Maximum BD threshold exceeded. " 3092 "Increase fragmentation level.\n", 3093 priv->net_dev->name); 3094 } 3095 3096 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) { 3097 IPW_DEBUG_TX("no room in tx_queue\n"); 3098 break; 3099 } 3100 3101 list_del(element); 3102 DEC_STAT(&priv->tx_pend_stat); 3103 3104 tbd = &txq->drv[txq->next]; 3105 3106 packet->index = txq->next; 3107 3108 ipw_hdr = packet->info.d_struct.data; 3109 hdr = (struct libipw_hdr_3addr *)packet->info.d_struct.txb-> 3110 fragments[0]->data; 3111 3112 if (priv->ieee->iw_mode == IW_MODE_INFRA) { 3113 /* To DS: Addr1 = BSSID, Addr2 = SA, 3114 Addr3 = DA */ 3115 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN); 3116 memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN); 3117 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) { 3118 /* not From/To DS: Addr1 = DA, Addr2 = SA, 3119 Addr3 = BSSID */ 3120 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN); 3121 memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN); 3122 } 3123 3124 ipw_hdr->host_command_reg = SEND; 3125 ipw_hdr->host_command_reg1 = 0; 3126 3127 /* For now we only support host based encryption */ 3128 ipw_hdr->needs_encryption = 0; 3129 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted; 3130 if (packet->info.d_struct.txb->nr_frags > 1) 3131 ipw_hdr->fragment_size = 3132 packet->info.d_struct.txb->frag_size - 3133 LIBIPW_3ADDR_LEN; 3134 else 3135 ipw_hdr->fragment_size = 0; 3136 3137 tbd->host_addr = packet->info.d_struct.data_phys; 3138 tbd->buf_length = sizeof(struct ipw2100_data_header); 3139 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags; 3140 tbd->status.info.field = 3141 IPW_BD_STATUS_TX_FRAME_802_3 | 3142 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT; 3143 txq->next++; 3144 txq->next %= txq->entries; 3145 3146 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n", 3147 packet->index, tbd->host_addr, tbd->buf_length); 3148 #ifdef CONFIG_IPW2100_DEBUG 3149 if (packet->info.d_struct.txb->nr_frags > 1) 3150 IPW_DEBUG_FRAG("fragment Tx: %d frames\n", 3151 packet->info.d_struct.txb->nr_frags); 3152 #endif 3153 3154 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) { 3155 tbd = &txq->drv[txq->next]; 3156 if (i == packet->info.d_struct.txb->nr_frags - 1) 3157 tbd->status.info.field = 3158 IPW_BD_STATUS_TX_FRAME_802_3 | 3159 IPW_BD_STATUS_TX_INTERRUPT_ENABLE; 3160 else 3161 tbd->status.info.field = 3162 IPW_BD_STATUS_TX_FRAME_802_3 | 3163 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT; 3164 3165 tbd->buf_length = packet->info.d_struct.txb-> 3166 fragments[i]->len - LIBIPW_3ADDR_LEN; 3167 3168 tbd->host_addr = pci_map_single(priv->pci_dev, 3169 packet->info.d_struct. 3170 txb->fragments[i]-> 3171 data + 3172 LIBIPW_3ADDR_LEN, 3173 tbd->buf_length, 3174 PCI_DMA_TODEVICE); 3175 if (pci_dma_mapping_error(priv->pci_dev, 3176 tbd->host_addr)) { 3177 IPW_DEBUG_TX("dma mapping error\n"); 3178 break; 3179 } 3180 3181 IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n", 3182 txq->next, tbd->host_addr, 3183 tbd->buf_length); 3184 3185 pci_dma_sync_single_for_device(priv->pci_dev, 3186 tbd->host_addr, 3187 tbd->buf_length, 3188 PCI_DMA_TODEVICE); 3189 3190 txq->next++; 3191 txq->next %= txq->entries; 3192 } 3193 3194 txq->available -= 1 + packet->info.d_struct.txb->nr_frags; 3195 SET_STAT(&priv->txq_stat, txq->available); 3196 3197 list_add_tail(element, &priv->fw_pend_list); 3198 INC_STAT(&priv->fw_pend_stat); 3199 } 3200 3201 if (txq->next != next) { 3202 /* kick off the DMA by notifying firmware the 3203 * write index has moved; make sure TBD stores are sync'd */ 3204 write_register(priv->net_dev, 3205 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX, 3206 txq->next); 3207 } 3208 } 3209 3210 static void ipw2100_irq_tasklet(unsigned long data) 3211 { 3212 struct ipw2100_priv *priv = (struct ipw2100_priv *)data; 3213 struct net_device *dev = priv->net_dev; 3214 unsigned long flags; 3215 u32 inta, tmp; 3216 3217 spin_lock_irqsave(&priv->low_lock, flags); 3218 ipw2100_disable_interrupts(priv); 3219 3220 read_register(dev, IPW_REG_INTA, &inta); 3221 3222 IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n", 3223 (unsigned long)inta & IPW_INTERRUPT_MASK); 3224 3225 priv->in_isr++; 3226 priv->interrupts++; 3227 3228 /* We do not loop and keep polling for more interrupts as this 3229 * is frowned upon and doesn't play nicely with other potentially 3230 * chained IRQs */ 3231 IPW_DEBUG_ISR("INTA: 0x%08lX\n", 3232 (unsigned long)inta & IPW_INTERRUPT_MASK); 3233 3234 if (inta & IPW2100_INTA_FATAL_ERROR) { 3235 printk(KERN_WARNING DRV_NAME 3236 ": Fatal interrupt. Scheduling firmware restart.\n"); 3237 priv->inta_other++; 3238 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR); 3239 3240 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error); 3241 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n", 3242 priv->net_dev->name, priv->fatal_error); 3243 3244 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp); 3245 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n", 3246 priv->net_dev->name, tmp); 3247 3248 /* Wake up any sleeping jobs */ 3249 schedule_reset(priv); 3250 } 3251 3252 if (inta & IPW2100_INTA_PARITY_ERROR) { 3253 printk(KERN_ERR DRV_NAME 3254 ": ***** PARITY ERROR INTERRUPT !!!!\n"); 3255 priv->inta_other++; 3256 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR); 3257 } 3258 3259 if (inta & IPW2100_INTA_RX_TRANSFER) { 3260 IPW_DEBUG_ISR("RX interrupt\n"); 3261 3262 priv->rx_interrupts++; 3263 3264 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER); 3265 3266 __ipw2100_rx_process(priv); 3267 __ipw2100_tx_complete(priv); 3268 } 3269 3270 if (inta & IPW2100_INTA_TX_TRANSFER) { 3271 IPW_DEBUG_ISR("TX interrupt\n"); 3272 3273 priv->tx_interrupts++; 3274 3275 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER); 3276 3277 __ipw2100_tx_complete(priv); 3278 ipw2100_tx_send_commands(priv); 3279 ipw2100_tx_send_data(priv); 3280 } 3281 3282 if (inta & IPW2100_INTA_TX_COMPLETE) { 3283 IPW_DEBUG_ISR("TX complete\n"); 3284 priv->inta_other++; 3285 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE); 3286 3287 __ipw2100_tx_complete(priv); 3288 } 3289 3290 if (inta & IPW2100_INTA_EVENT_INTERRUPT) { 3291 /* ipw2100_handle_event(dev); */ 3292 priv->inta_other++; 3293 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT); 3294 } 3295 3296 if (inta & IPW2100_INTA_FW_INIT_DONE) { 3297 IPW_DEBUG_ISR("FW init done interrupt\n"); 3298 priv->inta_other++; 3299 3300 read_register(dev, IPW_REG_INTA, &tmp); 3301 if (tmp & (IPW2100_INTA_FATAL_ERROR | 3302 IPW2100_INTA_PARITY_ERROR)) { 3303 write_register(dev, IPW_REG_INTA, 3304 IPW2100_INTA_FATAL_ERROR | 3305 IPW2100_INTA_PARITY_ERROR); 3306 } 3307 3308 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE); 3309 } 3310 3311 if (inta & IPW2100_INTA_STATUS_CHANGE) { 3312 IPW_DEBUG_ISR("Status change interrupt\n"); 3313 priv->inta_other++; 3314 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE); 3315 } 3316 3317 if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) { 3318 IPW_DEBUG_ISR("slave host mode interrupt\n"); 3319 priv->inta_other++; 3320 write_register(dev, IPW_REG_INTA, 3321 IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE); 3322 } 3323 3324 priv->in_isr--; 3325 ipw2100_enable_interrupts(priv); 3326 3327 spin_unlock_irqrestore(&priv->low_lock, flags); 3328 3329 IPW_DEBUG_ISR("exit\n"); 3330 } 3331 3332 static irqreturn_t ipw2100_interrupt(int irq, void *data) 3333 { 3334 struct ipw2100_priv *priv = data; 3335 u32 inta, inta_mask; 3336 3337 if (!data) 3338 return IRQ_NONE; 3339 3340 spin_lock(&priv->low_lock); 3341 3342 /* We check to see if we should be ignoring interrupts before 3343 * we touch the hardware. During ucode load if we try and handle 3344 * an interrupt we can cause keyboard problems as well as cause 3345 * the ucode to fail to initialize */ 3346 if (!(priv->status & STATUS_INT_ENABLED)) { 3347 /* Shared IRQ */ 3348 goto none; 3349 } 3350 3351 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask); 3352 read_register(priv->net_dev, IPW_REG_INTA, &inta); 3353 3354 if (inta == 0xFFFFFFFF) { 3355 /* Hardware disappeared */ 3356 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n"); 3357 goto none; 3358 } 3359 3360 inta &= IPW_INTERRUPT_MASK; 3361 3362 if (!(inta & inta_mask)) { 3363 /* Shared interrupt */ 3364 goto none; 3365 } 3366 3367 /* We disable the hardware interrupt here just to prevent unneeded 3368 * calls to be made. We disable this again within the actual 3369 * work tasklet, so if another part of the code re-enables the 3370 * interrupt, that is fine */ 3371 ipw2100_disable_interrupts(priv); 3372 3373 tasklet_schedule(&priv->irq_tasklet); 3374 spin_unlock(&priv->low_lock); 3375 3376 return IRQ_HANDLED; 3377 none: 3378 spin_unlock(&priv->low_lock); 3379 return IRQ_NONE; 3380 } 3381 3382 static netdev_tx_t ipw2100_tx(struct libipw_txb *txb, 3383 struct net_device *dev, int pri) 3384 { 3385 struct ipw2100_priv *priv = libipw_priv(dev); 3386 struct list_head *element; 3387 struct ipw2100_tx_packet *packet; 3388 unsigned long flags; 3389 3390 spin_lock_irqsave(&priv->low_lock, flags); 3391 3392 if (!(priv->status & STATUS_ASSOCIATED)) { 3393 IPW_DEBUG_INFO("Can not transmit when not connected.\n"); 3394 priv->net_dev->stats.tx_carrier_errors++; 3395 netif_stop_queue(dev); 3396 goto fail_unlock; 3397 } 3398 3399 if (list_empty(&priv->tx_free_list)) 3400 goto fail_unlock; 3401 3402 element = priv->tx_free_list.next; 3403 packet = list_entry(element, struct ipw2100_tx_packet, list); 3404 3405 packet->info.d_struct.txb = txb; 3406 3407 IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len); 3408 printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len); 3409 3410 packet->jiffy_start = jiffies; 3411 3412 list_del(element); 3413 DEC_STAT(&priv->tx_free_stat); 3414 3415 list_add_tail(element, &priv->tx_pend_list); 3416 INC_STAT(&priv->tx_pend_stat); 3417 3418 ipw2100_tx_send_data(priv); 3419 3420 spin_unlock_irqrestore(&priv->low_lock, flags); 3421 return NETDEV_TX_OK; 3422 3423 fail_unlock: 3424 netif_stop_queue(dev); 3425 spin_unlock_irqrestore(&priv->low_lock, flags); 3426 return NETDEV_TX_BUSY; 3427 } 3428 3429 static int ipw2100_msg_allocate(struct ipw2100_priv *priv) 3430 { 3431 int i, j, err = -EINVAL; 3432 void *v; 3433 dma_addr_t p; 3434 3435 priv->msg_buffers = 3436 kmalloc_array(IPW_COMMAND_POOL_SIZE, 3437 sizeof(struct ipw2100_tx_packet), 3438 GFP_KERNEL); 3439 if (!priv->msg_buffers) 3440 return -ENOMEM; 3441 3442 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) { 3443 v = pci_zalloc_consistent(priv->pci_dev, 3444 sizeof(struct ipw2100_cmd_header), 3445 &p); 3446 if (!v) { 3447 printk(KERN_ERR DRV_NAME ": " 3448 "%s: PCI alloc failed for msg " 3449 "buffers.\n", priv->net_dev->name); 3450 err = -ENOMEM; 3451 break; 3452 } 3453 3454 priv->msg_buffers[i].type = COMMAND; 3455 priv->msg_buffers[i].info.c_struct.cmd = 3456 (struct ipw2100_cmd_header *)v; 3457 priv->msg_buffers[i].info.c_struct.cmd_phys = p; 3458 } 3459 3460 if (i == IPW_COMMAND_POOL_SIZE) 3461 return 0; 3462 3463 for (j = 0; j < i; j++) { 3464 pci_free_consistent(priv->pci_dev, 3465 sizeof(struct ipw2100_cmd_header), 3466 priv->msg_buffers[j].info.c_struct.cmd, 3467 priv->msg_buffers[j].info.c_struct. 3468 cmd_phys); 3469 } 3470 3471 kfree(priv->msg_buffers); 3472 priv->msg_buffers = NULL; 3473 3474 return err; 3475 } 3476 3477 static int ipw2100_msg_initialize(struct ipw2100_priv *priv) 3478 { 3479 int i; 3480 3481 INIT_LIST_HEAD(&priv->msg_free_list); 3482 INIT_LIST_HEAD(&priv->msg_pend_list); 3483 3484 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) 3485 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list); 3486 SET_STAT(&priv->msg_free_stat, i); 3487 3488 return 0; 3489 } 3490 3491 static void ipw2100_msg_free(struct ipw2100_priv *priv) 3492 { 3493 int i; 3494 3495 if (!priv->msg_buffers) 3496 return; 3497 3498 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) { 3499 pci_free_consistent(priv->pci_dev, 3500 sizeof(struct ipw2100_cmd_header), 3501 priv->msg_buffers[i].info.c_struct.cmd, 3502 priv->msg_buffers[i].info.c_struct. 3503 cmd_phys); 3504 } 3505 3506 kfree(priv->msg_buffers); 3507 priv->msg_buffers = NULL; 3508 } 3509 3510 static ssize_t show_pci(struct device *d, struct device_attribute *attr, 3511 char *buf) 3512 { 3513 struct pci_dev *pci_dev = to_pci_dev(d); 3514 char *out = buf; 3515 int i, j; 3516 u32 val; 3517 3518 for (i = 0; i < 16; i++) { 3519 out += sprintf(out, "[%08X] ", i * 16); 3520 for (j = 0; j < 16; j += 4) { 3521 pci_read_config_dword(pci_dev, i * 16 + j, &val); 3522 out += sprintf(out, "%08X ", val); 3523 } 3524 out += sprintf(out, "\n"); 3525 } 3526 3527 return out - buf; 3528 } 3529 3530 static DEVICE_ATTR(pci, 0444, show_pci, NULL); 3531 3532 static ssize_t show_cfg(struct device *d, struct device_attribute *attr, 3533 char *buf) 3534 { 3535 struct ipw2100_priv *p = dev_get_drvdata(d); 3536 return sprintf(buf, "0x%08x\n", (int)p->config); 3537 } 3538 3539 static DEVICE_ATTR(cfg, 0444, show_cfg, NULL); 3540 3541 static ssize_t show_status(struct device *d, struct device_attribute *attr, 3542 char *buf) 3543 { 3544 struct ipw2100_priv *p = dev_get_drvdata(d); 3545 return sprintf(buf, "0x%08x\n", (int)p->status); 3546 } 3547 3548 static DEVICE_ATTR(status, 0444, show_status, NULL); 3549 3550 static ssize_t show_capability(struct device *d, struct device_attribute *attr, 3551 char *buf) 3552 { 3553 struct ipw2100_priv *p = dev_get_drvdata(d); 3554 return sprintf(buf, "0x%08x\n", (int)p->capability); 3555 } 3556 3557 static DEVICE_ATTR(capability, 0444, show_capability, NULL); 3558 3559 #define IPW2100_REG(x) { IPW_ ##x, #x } 3560 static const struct { 3561 u32 addr; 3562 const char *name; 3563 } hw_data[] = { 3564 IPW2100_REG(REG_GP_CNTRL), 3565 IPW2100_REG(REG_GPIO), 3566 IPW2100_REG(REG_INTA), 3567 IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),}; 3568 #define IPW2100_NIC(x, s) { x, #x, s } 3569 static const struct { 3570 u32 addr; 3571 const char *name; 3572 size_t size; 3573 } nic_data[] = { 3574 IPW2100_NIC(IPW2100_CONTROL_REG, 2), 3575 IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),}; 3576 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d } 3577 static const struct { 3578 u8 index; 3579 const char *name; 3580 const char *desc; 3581 } ord_data[] = { 3582 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"), 3583 IPW2100_ORD(STAT_TX_HOST_COMPLETE, 3584 "successful Host Tx's (MSDU)"), 3585 IPW2100_ORD(STAT_TX_DIR_DATA, 3586 "successful Directed Tx's (MSDU)"), 3587 IPW2100_ORD(STAT_TX_DIR_DATA1, 3588 "successful Directed Tx's (MSDU) @ 1MB"), 3589 IPW2100_ORD(STAT_TX_DIR_DATA2, 3590 "successful Directed Tx's (MSDU) @ 2MB"), 3591 IPW2100_ORD(STAT_TX_DIR_DATA5_5, 3592 "successful Directed Tx's (MSDU) @ 5_5MB"), 3593 IPW2100_ORD(STAT_TX_DIR_DATA11, 3594 "successful Directed Tx's (MSDU) @ 11MB"), 3595 IPW2100_ORD(STAT_TX_NODIR_DATA1, 3596 "successful Non_Directed Tx's (MSDU) @ 1MB"), 3597 IPW2100_ORD(STAT_TX_NODIR_DATA2, 3598 "successful Non_Directed Tx's (MSDU) @ 2MB"), 3599 IPW2100_ORD(STAT_TX_NODIR_DATA5_5, 3600 "successful Non_Directed Tx's (MSDU) @ 5.5MB"), 3601 IPW2100_ORD(STAT_TX_NODIR_DATA11, 3602 "successful Non_Directed Tx's (MSDU) @ 11MB"), 3603 IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"), 3604 IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"), 3605 IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"), 3606 IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"), 3607 IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"), 3608 IPW2100_ORD(STAT_TX_ASSN_RESP, 3609 "successful Association response Tx's"), 3610 IPW2100_ORD(STAT_TX_REASSN, 3611 "successful Reassociation Tx's"), 3612 IPW2100_ORD(STAT_TX_REASSN_RESP, 3613 "successful Reassociation response Tx's"), 3614 IPW2100_ORD(STAT_TX_PROBE, 3615 "probes successfully transmitted"), 3616 IPW2100_ORD(STAT_TX_PROBE_RESP, 3617 "probe responses successfully transmitted"), 3618 IPW2100_ORD(STAT_TX_BEACON, "tx beacon"), 3619 IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"), 3620 IPW2100_ORD(STAT_TX_DISASSN, 3621 "successful Disassociation TX"), 3622 IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"), 3623 IPW2100_ORD(STAT_TX_DEAUTH, 3624 "successful Deauthentication TX"), 3625 IPW2100_ORD(STAT_TX_TOTAL_BYTES, 3626 "Total successful Tx data bytes"), 3627 IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"), 3628 IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"), 3629 IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"), 3630 IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"), 3631 IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"), 3632 IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"), 3633 IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP, 3634 "times max tries in a hop failed"), 3635 IPW2100_ORD(STAT_TX_DISASSN_FAIL, 3636 "times disassociation failed"), 3637 IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"), 3638 IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"), 3639 IPW2100_ORD(STAT_RX_HOST, "packets passed to host"), 3640 IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"), 3641 IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"), 3642 IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"), 3643 IPW2100_ORD(STAT_RX_DIR_DATA5_5, 3644 "directed packets at 5.5MB"), 3645 IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"), 3646 IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"), 3647 IPW2100_ORD(STAT_RX_NODIR_DATA1, 3648 "nondirected packets at 1MB"), 3649 IPW2100_ORD(STAT_RX_NODIR_DATA2, 3650 "nondirected packets at 2MB"), 3651 IPW2100_ORD(STAT_RX_NODIR_DATA5_5, 3652 "nondirected packets at 5.5MB"), 3653 IPW2100_ORD(STAT_RX_NODIR_DATA11, 3654 "nondirected packets at 11MB"), 3655 IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"), 3656 IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS, 3657 "Rx CTS"), 3658 IPW2100_ORD(STAT_RX_ACK, "Rx ACK"), 3659 IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"), 3660 IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"), 3661 IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"), 3662 IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"), 3663 IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"), 3664 IPW2100_ORD(STAT_RX_REASSN_RESP, 3665 "Reassociation response Rx's"), 3666 IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"), 3667 IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"), 3668 IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"), 3669 IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"), 3670 IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"), 3671 IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"), 3672 IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"), 3673 IPW2100_ORD(STAT_RX_TOTAL_BYTES, 3674 "Total rx data bytes received"), 3675 IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"), 3676 IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"), 3677 IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"), 3678 IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"), 3679 IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"), 3680 IPW2100_ORD(STAT_RX_DUPLICATE1, 3681 "duplicate rx packets at 1MB"), 3682 IPW2100_ORD(STAT_RX_DUPLICATE2, 3683 "duplicate rx packets at 2MB"), 3684 IPW2100_ORD(STAT_RX_DUPLICATE5_5, 3685 "duplicate rx packets at 5.5MB"), 3686 IPW2100_ORD(STAT_RX_DUPLICATE11, 3687 "duplicate rx packets at 11MB"), 3688 IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"), 3689 IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent db"), 3690 IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent db"), 3691 IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent db"), 3692 IPW2100_ORD(STAT_RX_INVALID_PROTOCOL, 3693 "rx frames with invalid protocol"), 3694 IPW2100_ORD(SYS_BOOT_TIME, "Boot time"), 3695 IPW2100_ORD(STAT_RX_NO_BUFFER, 3696 "rx frames rejected due to no buffer"), 3697 IPW2100_ORD(STAT_RX_MISSING_FRAG, 3698 "rx frames dropped due to missing fragment"), 3699 IPW2100_ORD(STAT_RX_ORPHAN_FRAG, 3700 "rx frames dropped due to non-sequential fragment"), 3701 IPW2100_ORD(STAT_RX_ORPHAN_FRAME, 3702 "rx frames dropped due to unmatched 1st frame"), 3703 IPW2100_ORD(STAT_RX_FRAG_AGEOUT, 3704 "rx frames dropped due to uncompleted frame"), 3705 IPW2100_ORD(STAT_RX_ICV_ERRORS, 3706 "ICV errors during decryption"), 3707 IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"), 3708 IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"), 3709 IPW2100_ORD(STAT_PSP_POLL_TIMEOUT, 3710 "poll response timeouts"), 3711 IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT, 3712 "timeouts waiting for last {broad,multi}cast pkt"), 3713 IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"), 3714 IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"), 3715 IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"), 3716 IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"), 3717 IPW2100_ORD(STAT_PERCENT_MISSED_BCNS, 3718 "current calculation of % missed beacons"), 3719 IPW2100_ORD(STAT_PERCENT_RETRIES, 3720 "current calculation of % missed tx retries"), 3721 IPW2100_ORD(ASSOCIATED_AP_PTR, 3722 "0 if not associated, else pointer to AP table entry"), 3723 IPW2100_ORD(AVAILABLE_AP_CNT, 3724 "AP's described in the AP table"), 3725 IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"), 3726 IPW2100_ORD(STAT_AP_ASSNS, "associations"), 3727 IPW2100_ORD(STAT_ASSN_FAIL, "association failures"), 3728 IPW2100_ORD(STAT_ASSN_RESP_FAIL, 3729 "failures due to response fail"), 3730 IPW2100_ORD(STAT_FULL_SCANS, "full scans"), 3731 IPW2100_ORD(CARD_DISABLED, "Card Disabled"), 3732 IPW2100_ORD(STAT_ROAM_INHIBIT, 3733 "times roaming was inhibited due to activity"), 3734 IPW2100_ORD(RSSI_AT_ASSN, 3735 "RSSI of associated AP at time of association"), 3736 IPW2100_ORD(STAT_ASSN_CAUSE1, 3737 "reassociation: no probe response or TX on hop"), 3738 IPW2100_ORD(STAT_ASSN_CAUSE2, 3739 "reassociation: poor tx/rx quality"), 3740 IPW2100_ORD(STAT_ASSN_CAUSE3, 3741 "reassociation: tx/rx quality (excessive AP load"), 3742 IPW2100_ORD(STAT_ASSN_CAUSE4, 3743 "reassociation: AP RSSI level"), 3744 IPW2100_ORD(STAT_ASSN_CAUSE5, 3745 "reassociations due to load leveling"), 3746 IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"), 3747 IPW2100_ORD(STAT_AUTH_RESP_FAIL, 3748 "times authentication response failed"), 3749 IPW2100_ORD(STATION_TABLE_CNT, 3750 "entries in association table"), 3751 IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"), 3752 IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"), 3753 IPW2100_ORD(COUNTRY_CODE, 3754 "IEEE country code as recv'd from beacon"), 3755 IPW2100_ORD(COUNTRY_CHANNELS, 3756 "channels supported by country"), 3757 IPW2100_ORD(RESET_CNT, "adapter resets (warm)"), 3758 IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"), 3759 IPW2100_ORD(ANTENNA_DIVERSITY, 3760 "TRUE if antenna diversity is disabled"), 3761 IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"), 3762 IPW2100_ORD(OUR_FREQ, 3763 "current radio freq lower digits - channel ID"), 3764 IPW2100_ORD(RTC_TIME, "current RTC time"), 3765 IPW2100_ORD(PORT_TYPE, "operating mode"), 3766 IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"), 3767 IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"), 3768 IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"), 3769 IPW2100_ORD(BASIC_RATES, "basic tx rates"), 3770 IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"), 3771 IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"), 3772 IPW2100_ORD(CAPABILITIES, 3773 "Management frame capability field"), 3774 IPW2100_ORD(AUTH_TYPE, "Type of authentication"), 3775 IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"), 3776 IPW2100_ORD(RTS_THRESHOLD, 3777 "Min packet length for RTS handshaking"), 3778 IPW2100_ORD(INT_MODE, "International mode"), 3779 IPW2100_ORD(FRAGMENTATION_THRESHOLD, 3780 "protocol frag threshold"), 3781 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS, 3782 "EEPROM offset in SRAM"), 3783 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE, 3784 "EEPROM size in SRAM"), 3785 IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"), 3786 IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS, 3787 "EEPROM IBSS 11b channel set"), 3788 IPW2100_ORD(MAC_VERSION, "MAC Version"), 3789 IPW2100_ORD(MAC_REVISION, "MAC Revision"), 3790 IPW2100_ORD(RADIO_VERSION, "Radio Version"), 3791 IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"), 3792 IPW2100_ORD(UCODE_VERSION, "Ucode Version"),}; 3793 3794 static ssize_t show_registers(struct device *d, struct device_attribute *attr, 3795 char *buf) 3796 { 3797 int i; 3798 struct ipw2100_priv *priv = dev_get_drvdata(d); 3799 struct net_device *dev = priv->net_dev; 3800 char *out = buf; 3801 u32 val = 0; 3802 3803 out += sprintf(out, "%30s [Address ] : Hex\n", "Register"); 3804 3805 for (i = 0; i < ARRAY_SIZE(hw_data); i++) { 3806 read_register(dev, hw_data[i].addr, &val); 3807 out += sprintf(out, "%30s [%08X] : %08X\n", 3808 hw_data[i].name, hw_data[i].addr, val); 3809 } 3810 3811 return out - buf; 3812 } 3813 3814 static DEVICE_ATTR(registers, 0444, show_registers, NULL); 3815 3816 static ssize_t show_hardware(struct device *d, struct device_attribute *attr, 3817 char *buf) 3818 { 3819 struct ipw2100_priv *priv = dev_get_drvdata(d); 3820 struct net_device *dev = priv->net_dev; 3821 char *out = buf; 3822 int i; 3823 3824 out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry"); 3825 3826 for (i = 0; i < ARRAY_SIZE(nic_data); i++) { 3827 u8 tmp8; 3828 u16 tmp16; 3829 u32 tmp32; 3830 3831 switch (nic_data[i].size) { 3832 case 1: 3833 read_nic_byte(dev, nic_data[i].addr, &tmp8); 3834 out += sprintf(out, "%30s [%08X] : %02X\n", 3835 nic_data[i].name, nic_data[i].addr, 3836 tmp8); 3837 break; 3838 case 2: 3839 read_nic_word(dev, nic_data[i].addr, &tmp16); 3840 out += sprintf(out, "%30s [%08X] : %04X\n", 3841 nic_data[i].name, nic_data[i].addr, 3842 tmp16); 3843 break; 3844 case 4: 3845 read_nic_dword(dev, nic_data[i].addr, &tmp32); 3846 out += sprintf(out, "%30s [%08X] : %08X\n", 3847 nic_data[i].name, nic_data[i].addr, 3848 tmp32); 3849 break; 3850 } 3851 } 3852 return out - buf; 3853 } 3854 3855 static DEVICE_ATTR(hardware, 0444, show_hardware, NULL); 3856 3857 static ssize_t show_memory(struct device *d, struct device_attribute *attr, 3858 char *buf) 3859 { 3860 struct ipw2100_priv *priv = dev_get_drvdata(d); 3861 struct net_device *dev = priv->net_dev; 3862 static unsigned long loop = 0; 3863 int len = 0; 3864 u32 buffer[4]; 3865 int i; 3866 char line[81]; 3867 3868 if (loop >= 0x30000) 3869 loop = 0; 3870 3871 /* sysfs provides us PAGE_SIZE buffer */ 3872 while (len < PAGE_SIZE - 128 && loop < 0x30000) { 3873 3874 if (priv->snapshot[0]) 3875 for (i = 0; i < 4; i++) 3876 buffer[i] = 3877 *(u32 *) SNAPSHOT_ADDR(loop + i * 4); 3878 else 3879 for (i = 0; i < 4; i++) 3880 read_nic_dword(dev, loop + i * 4, &buffer[i]); 3881 3882 if (priv->dump_raw) 3883 len += sprintf(buf + len, 3884 "%c%c%c%c" 3885 "%c%c%c%c" 3886 "%c%c%c%c" 3887 "%c%c%c%c", 3888 ((u8 *) buffer)[0x0], 3889 ((u8 *) buffer)[0x1], 3890 ((u8 *) buffer)[0x2], 3891 ((u8 *) buffer)[0x3], 3892 ((u8 *) buffer)[0x4], 3893 ((u8 *) buffer)[0x5], 3894 ((u8 *) buffer)[0x6], 3895 ((u8 *) buffer)[0x7], 3896 ((u8 *) buffer)[0x8], 3897 ((u8 *) buffer)[0x9], 3898 ((u8 *) buffer)[0xa], 3899 ((u8 *) buffer)[0xb], 3900 ((u8 *) buffer)[0xc], 3901 ((u8 *) buffer)[0xd], 3902 ((u8 *) buffer)[0xe], 3903 ((u8 *) buffer)[0xf]); 3904 else 3905 len += sprintf(buf + len, "%s\n", 3906 snprint_line(line, sizeof(line), 3907 (u8 *) buffer, 16, loop)); 3908 loop += 16; 3909 } 3910 3911 return len; 3912 } 3913 3914 static ssize_t store_memory(struct device *d, struct device_attribute *attr, 3915 const char *buf, size_t count) 3916 { 3917 struct ipw2100_priv *priv = dev_get_drvdata(d); 3918 struct net_device *dev = priv->net_dev; 3919 const char *p = buf; 3920 3921 (void)dev; /* kill unused-var warning for debug-only code */ 3922 3923 if (count < 1) 3924 return count; 3925 3926 if (p[0] == '1' || 3927 (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) { 3928 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n", 3929 dev->name); 3930 priv->dump_raw = 1; 3931 3932 } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' && 3933 tolower(p[1]) == 'f')) { 3934 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n", 3935 dev->name); 3936 priv->dump_raw = 0; 3937 3938 } else if (tolower(p[0]) == 'r') { 3939 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name); 3940 ipw2100_snapshot_free(priv); 3941 3942 } else 3943 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, " 3944 "reset = clear memory snapshot\n", dev->name); 3945 3946 return count; 3947 } 3948 3949 static DEVICE_ATTR(memory, 0644, show_memory, store_memory); 3950 3951 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr, 3952 char *buf) 3953 { 3954 struct ipw2100_priv *priv = dev_get_drvdata(d); 3955 u32 val = 0; 3956 int len = 0; 3957 u32 val_len; 3958 static int loop = 0; 3959 3960 if (priv->status & STATUS_RF_KILL_MASK) 3961 return 0; 3962 3963 if (loop >= ARRAY_SIZE(ord_data)) 3964 loop = 0; 3965 3966 /* sysfs provides us PAGE_SIZE buffer */ 3967 while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) { 3968 val_len = sizeof(u32); 3969 3970 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val, 3971 &val_len)) 3972 len += sprintf(buf + len, "[0x%02X] = ERROR %s\n", 3973 ord_data[loop].index, 3974 ord_data[loop].desc); 3975 else 3976 len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n", 3977 ord_data[loop].index, val, 3978 ord_data[loop].desc); 3979 loop++; 3980 } 3981 3982 return len; 3983 } 3984 3985 static DEVICE_ATTR(ordinals, 0444, show_ordinals, NULL); 3986 3987 static ssize_t show_stats(struct device *d, struct device_attribute *attr, 3988 char *buf) 3989 { 3990 struct ipw2100_priv *priv = dev_get_drvdata(d); 3991 char *out = buf; 3992 3993 out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n", 3994 priv->interrupts, priv->tx_interrupts, 3995 priv->rx_interrupts, priv->inta_other); 3996 out += sprintf(out, "firmware resets: %d\n", priv->resets); 3997 out += sprintf(out, "firmware hangs: %d\n", priv->hangs); 3998 #ifdef CONFIG_IPW2100_DEBUG 3999 out += sprintf(out, "packet mismatch image: %s\n", 4000 priv->snapshot[0] ? "YES" : "NO"); 4001 #endif 4002 4003 return out - buf; 4004 } 4005 4006 static DEVICE_ATTR(stats, 0444, show_stats, NULL); 4007 4008 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode) 4009 { 4010 int err; 4011 4012 if (mode == priv->ieee->iw_mode) 4013 return 0; 4014 4015 err = ipw2100_disable_adapter(priv); 4016 if (err) { 4017 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n", 4018 priv->net_dev->name, err); 4019 return err; 4020 } 4021 4022 switch (mode) { 4023 case IW_MODE_INFRA: 4024 priv->net_dev->type = ARPHRD_ETHER; 4025 break; 4026 case IW_MODE_ADHOC: 4027 priv->net_dev->type = ARPHRD_ETHER; 4028 break; 4029 #ifdef CONFIG_IPW2100_MONITOR 4030 case IW_MODE_MONITOR: 4031 priv->last_mode = priv->ieee->iw_mode; 4032 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP; 4033 break; 4034 #endif /* CONFIG_IPW2100_MONITOR */ 4035 } 4036 4037 priv->ieee->iw_mode = mode; 4038 4039 #ifdef CONFIG_PM 4040 /* Indicate ipw2100_download_firmware download firmware 4041 * from disk instead of memory. */ 4042 ipw2100_firmware.version = 0; 4043 #endif 4044 4045 printk(KERN_INFO "%s: Resetting on mode change.\n", priv->net_dev->name); 4046 priv->reset_backoff = 0; 4047 schedule_reset(priv); 4048 4049 return 0; 4050 } 4051 4052 static ssize_t show_internals(struct device *d, struct device_attribute *attr, 4053 char *buf) 4054 { 4055 struct ipw2100_priv *priv = dev_get_drvdata(d); 4056 int len = 0; 4057 4058 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x) 4059 4060 if (priv->status & STATUS_ASSOCIATED) 4061 len += sprintf(buf + len, "connected: %llu\n", 4062 ktime_get_boottime_seconds() - priv->connect_start); 4063 else 4064 len += sprintf(buf + len, "not connected\n"); 4065 4066 DUMP_VAR(ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx], "p"); 4067 DUMP_VAR(status, "08lx"); 4068 DUMP_VAR(config, "08lx"); 4069 DUMP_VAR(capability, "08lx"); 4070 4071 len += 4072 sprintf(buf + len, "last_rtc: %lu\n", 4073 (unsigned long)priv->last_rtc); 4074 4075 DUMP_VAR(fatal_error, "d"); 4076 DUMP_VAR(stop_hang_check, "d"); 4077 DUMP_VAR(stop_rf_kill, "d"); 4078 DUMP_VAR(messages_sent, "d"); 4079 4080 DUMP_VAR(tx_pend_stat.value, "d"); 4081 DUMP_VAR(tx_pend_stat.hi, "d"); 4082 4083 DUMP_VAR(tx_free_stat.value, "d"); 4084 DUMP_VAR(tx_free_stat.lo, "d"); 4085 4086 DUMP_VAR(msg_free_stat.value, "d"); 4087 DUMP_VAR(msg_free_stat.lo, "d"); 4088 4089 DUMP_VAR(msg_pend_stat.value, "d"); 4090 DUMP_VAR(msg_pend_stat.hi, "d"); 4091 4092 DUMP_VAR(fw_pend_stat.value, "d"); 4093 DUMP_VAR(fw_pend_stat.hi, "d"); 4094 4095 DUMP_VAR(txq_stat.value, "d"); 4096 DUMP_VAR(txq_stat.lo, "d"); 4097 4098 DUMP_VAR(ieee->scans, "d"); 4099 DUMP_VAR(reset_backoff, "lld"); 4100 4101 return len; 4102 } 4103 4104 static DEVICE_ATTR(internals, 0444, show_internals, NULL); 4105 4106 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr, 4107 char *buf) 4108 { 4109 struct ipw2100_priv *priv = dev_get_drvdata(d); 4110 char essid[IW_ESSID_MAX_SIZE + 1]; 4111 u8 bssid[ETH_ALEN]; 4112 u32 chan = 0; 4113 char *out = buf; 4114 unsigned int length; 4115 int ret; 4116 4117 if (priv->status & STATUS_RF_KILL_MASK) 4118 return 0; 4119 4120 memset(essid, 0, sizeof(essid)); 4121 memset(bssid, 0, sizeof(bssid)); 4122 4123 length = IW_ESSID_MAX_SIZE; 4124 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length); 4125 if (ret) 4126 IPW_DEBUG_INFO("failed querying ordinals at line %d\n", 4127 __LINE__); 4128 4129 length = sizeof(bssid); 4130 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, 4131 bssid, &length); 4132 if (ret) 4133 IPW_DEBUG_INFO("failed querying ordinals at line %d\n", 4134 __LINE__); 4135 4136 length = sizeof(u32); 4137 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length); 4138 if (ret) 4139 IPW_DEBUG_INFO("failed querying ordinals at line %d\n", 4140 __LINE__); 4141 4142 out += sprintf(out, "ESSID: %s\n", essid); 4143 out += sprintf(out, "BSSID: %pM\n", bssid); 4144 out += sprintf(out, "Channel: %d\n", chan); 4145 4146 return out - buf; 4147 } 4148 4149 static DEVICE_ATTR(bssinfo, 0444, show_bssinfo, NULL); 4150 4151 #ifdef CONFIG_IPW2100_DEBUG 4152 static ssize_t debug_level_show(struct device_driver *d, char *buf) 4153 { 4154 return sprintf(buf, "0x%08X\n", ipw2100_debug_level); 4155 } 4156 4157 static ssize_t debug_level_store(struct device_driver *d, 4158 const char *buf, size_t count) 4159 { 4160 u32 val; 4161 int ret; 4162 4163 ret = kstrtou32(buf, 0, &val); 4164 if (ret) 4165 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf); 4166 else 4167 ipw2100_debug_level = val; 4168 4169 return strnlen(buf, count); 4170 } 4171 static DRIVER_ATTR_RW(debug_level); 4172 #endif /* CONFIG_IPW2100_DEBUG */ 4173 4174 static ssize_t show_fatal_error(struct device *d, 4175 struct device_attribute *attr, char *buf) 4176 { 4177 struct ipw2100_priv *priv = dev_get_drvdata(d); 4178 char *out = buf; 4179 int i; 4180 4181 if (priv->fatal_error) 4182 out += sprintf(out, "0x%08X\n", priv->fatal_error); 4183 else 4184 out += sprintf(out, "0\n"); 4185 4186 for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) { 4187 if (!priv->fatal_errors[(priv->fatal_index - i) % 4188 IPW2100_ERROR_QUEUE]) 4189 continue; 4190 4191 out += sprintf(out, "%d. 0x%08X\n", i, 4192 priv->fatal_errors[(priv->fatal_index - i) % 4193 IPW2100_ERROR_QUEUE]); 4194 } 4195 4196 return out - buf; 4197 } 4198 4199 static ssize_t store_fatal_error(struct device *d, 4200 struct device_attribute *attr, const char *buf, 4201 size_t count) 4202 { 4203 struct ipw2100_priv *priv = dev_get_drvdata(d); 4204 schedule_reset(priv); 4205 return count; 4206 } 4207 4208 static DEVICE_ATTR(fatal_error, 0644, show_fatal_error, store_fatal_error); 4209 4210 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr, 4211 char *buf) 4212 { 4213 struct ipw2100_priv *priv = dev_get_drvdata(d); 4214 return sprintf(buf, "%d\n", priv->ieee->scan_age); 4215 } 4216 4217 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr, 4218 const char *buf, size_t count) 4219 { 4220 struct ipw2100_priv *priv = dev_get_drvdata(d); 4221 struct net_device *dev = priv->net_dev; 4222 unsigned long val; 4223 int ret; 4224 4225 (void)dev; /* kill unused-var warning for debug-only code */ 4226 4227 IPW_DEBUG_INFO("enter\n"); 4228 4229 ret = kstrtoul(buf, 0, &val); 4230 if (ret) { 4231 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name); 4232 } else { 4233 priv->ieee->scan_age = val; 4234 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age); 4235 } 4236 4237 IPW_DEBUG_INFO("exit\n"); 4238 return strnlen(buf, count); 4239 } 4240 4241 static DEVICE_ATTR(scan_age, 0644, show_scan_age, store_scan_age); 4242 4243 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr, 4244 char *buf) 4245 { 4246 /* 0 - RF kill not enabled 4247 1 - SW based RF kill active (sysfs) 4248 2 - HW based RF kill active 4249 3 - Both HW and SW baed RF kill active */ 4250 struct ipw2100_priv *priv = dev_get_drvdata(d); 4251 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) | 4252 (rf_kill_active(priv) ? 0x2 : 0x0); 4253 return sprintf(buf, "%i\n", val); 4254 } 4255 4256 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio) 4257 { 4258 if ((disable_radio ? 1 : 0) == 4259 (priv->status & STATUS_RF_KILL_SW ? 1 : 0)) 4260 return 0; 4261 4262 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n", 4263 disable_radio ? "OFF" : "ON"); 4264 4265 mutex_lock(&priv->action_mutex); 4266 4267 if (disable_radio) { 4268 priv->status |= STATUS_RF_KILL_SW; 4269 ipw2100_down(priv); 4270 } else { 4271 priv->status &= ~STATUS_RF_KILL_SW; 4272 if (rf_kill_active(priv)) { 4273 IPW_DEBUG_RF_KILL("Can not turn radio back on - " 4274 "disabled by HW switch\n"); 4275 /* Make sure the RF_KILL check timer is running */ 4276 priv->stop_rf_kill = 0; 4277 mod_delayed_work(system_wq, &priv->rf_kill, 4278 round_jiffies_relative(HZ)); 4279 } else 4280 schedule_reset(priv); 4281 } 4282 4283 mutex_unlock(&priv->action_mutex); 4284 return 1; 4285 } 4286 4287 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr, 4288 const char *buf, size_t count) 4289 { 4290 struct ipw2100_priv *priv = dev_get_drvdata(d); 4291 ipw_radio_kill_sw(priv, buf[0] == '1'); 4292 return count; 4293 } 4294 4295 static DEVICE_ATTR(rf_kill, 0644, show_rf_kill, store_rf_kill); 4296 4297 static struct attribute *ipw2100_sysfs_entries[] = { 4298 &dev_attr_hardware.attr, 4299 &dev_attr_registers.attr, 4300 &dev_attr_ordinals.attr, 4301 &dev_attr_pci.attr, 4302 &dev_attr_stats.attr, 4303 &dev_attr_internals.attr, 4304 &dev_attr_bssinfo.attr, 4305 &dev_attr_memory.attr, 4306 &dev_attr_scan_age.attr, 4307 &dev_attr_fatal_error.attr, 4308 &dev_attr_rf_kill.attr, 4309 &dev_attr_cfg.attr, 4310 &dev_attr_status.attr, 4311 &dev_attr_capability.attr, 4312 NULL, 4313 }; 4314 4315 static const struct attribute_group ipw2100_attribute_group = { 4316 .attrs = ipw2100_sysfs_entries, 4317 }; 4318 4319 static int status_queue_allocate(struct ipw2100_priv *priv, int entries) 4320 { 4321 struct ipw2100_status_queue *q = &priv->status_queue; 4322 4323 IPW_DEBUG_INFO("enter\n"); 4324 4325 q->size = entries * sizeof(struct ipw2100_status); 4326 q->drv = pci_zalloc_consistent(priv->pci_dev, q->size, &q->nic); 4327 if (!q->drv) { 4328 IPW_DEBUG_WARNING("Can not allocate status queue.\n"); 4329 return -ENOMEM; 4330 } 4331 4332 IPW_DEBUG_INFO("exit\n"); 4333 4334 return 0; 4335 } 4336 4337 static void status_queue_free(struct ipw2100_priv *priv) 4338 { 4339 IPW_DEBUG_INFO("enter\n"); 4340 4341 if (priv->status_queue.drv) { 4342 pci_free_consistent(priv->pci_dev, priv->status_queue.size, 4343 priv->status_queue.drv, 4344 priv->status_queue.nic); 4345 priv->status_queue.drv = NULL; 4346 } 4347 4348 IPW_DEBUG_INFO("exit\n"); 4349 } 4350 4351 static int bd_queue_allocate(struct ipw2100_priv *priv, 4352 struct ipw2100_bd_queue *q, int entries) 4353 { 4354 IPW_DEBUG_INFO("enter\n"); 4355 4356 memset(q, 0, sizeof(struct ipw2100_bd_queue)); 4357 4358 q->entries = entries; 4359 q->size = entries * sizeof(struct ipw2100_bd); 4360 q->drv = pci_zalloc_consistent(priv->pci_dev, q->size, &q->nic); 4361 if (!q->drv) { 4362 IPW_DEBUG_INFO 4363 ("can't allocate shared memory for buffer descriptors\n"); 4364 return -ENOMEM; 4365 } 4366 4367 IPW_DEBUG_INFO("exit\n"); 4368 4369 return 0; 4370 } 4371 4372 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q) 4373 { 4374 IPW_DEBUG_INFO("enter\n"); 4375 4376 if (!q) 4377 return; 4378 4379 if (q->drv) { 4380 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic); 4381 q->drv = NULL; 4382 } 4383 4384 IPW_DEBUG_INFO("exit\n"); 4385 } 4386 4387 static void bd_queue_initialize(struct ipw2100_priv *priv, 4388 struct ipw2100_bd_queue *q, u32 base, u32 size, 4389 u32 r, u32 w) 4390 { 4391 IPW_DEBUG_INFO("enter\n"); 4392 4393 IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv, 4394 (u32) q->nic); 4395 4396 write_register(priv->net_dev, base, q->nic); 4397 write_register(priv->net_dev, size, q->entries); 4398 write_register(priv->net_dev, r, q->oldest); 4399 write_register(priv->net_dev, w, q->next); 4400 4401 IPW_DEBUG_INFO("exit\n"); 4402 } 4403 4404 static void ipw2100_kill_works(struct ipw2100_priv *priv) 4405 { 4406 priv->stop_rf_kill = 1; 4407 priv->stop_hang_check = 1; 4408 cancel_delayed_work_sync(&priv->reset_work); 4409 cancel_delayed_work_sync(&priv->security_work); 4410 cancel_delayed_work_sync(&priv->wx_event_work); 4411 cancel_delayed_work_sync(&priv->hang_check); 4412 cancel_delayed_work_sync(&priv->rf_kill); 4413 cancel_delayed_work_sync(&priv->scan_event); 4414 } 4415 4416 static int ipw2100_tx_allocate(struct ipw2100_priv *priv) 4417 { 4418 int i, j, err; 4419 void *v; 4420 dma_addr_t p; 4421 4422 IPW_DEBUG_INFO("enter\n"); 4423 4424 err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH); 4425 if (err) { 4426 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n", 4427 priv->net_dev->name); 4428 return err; 4429 } 4430 4431 priv->tx_buffers = kmalloc_array(TX_PENDED_QUEUE_LENGTH, 4432 sizeof(struct ipw2100_tx_packet), 4433 GFP_ATOMIC); 4434 if (!priv->tx_buffers) { 4435 bd_queue_free(priv, &priv->tx_queue); 4436 return -ENOMEM; 4437 } 4438 4439 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) { 4440 v = pci_alloc_consistent(priv->pci_dev, 4441 sizeof(struct ipw2100_data_header), 4442 &p); 4443 if (!v) { 4444 printk(KERN_ERR DRV_NAME 4445 ": %s: PCI alloc failed for tx " "buffers.\n", 4446 priv->net_dev->name); 4447 err = -ENOMEM; 4448 break; 4449 } 4450 4451 priv->tx_buffers[i].type = DATA; 4452 priv->tx_buffers[i].info.d_struct.data = 4453 (struct ipw2100_data_header *)v; 4454 priv->tx_buffers[i].info.d_struct.data_phys = p; 4455 priv->tx_buffers[i].info.d_struct.txb = NULL; 4456 } 4457 4458 if (i == TX_PENDED_QUEUE_LENGTH) 4459 return 0; 4460 4461 for (j = 0; j < i; j++) { 4462 pci_free_consistent(priv->pci_dev, 4463 sizeof(struct ipw2100_data_header), 4464 priv->tx_buffers[j].info.d_struct.data, 4465 priv->tx_buffers[j].info.d_struct. 4466 data_phys); 4467 } 4468 4469 kfree(priv->tx_buffers); 4470 priv->tx_buffers = NULL; 4471 4472 return err; 4473 } 4474 4475 static void ipw2100_tx_initialize(struct ipw2100_priv *priv) 4476 { 4477 int i; 4478 4479 IPW_DEBUG_INFO("enter\n"); 4480 4481 /* 4482 * reinitialize packet info lists 4483 */ 4484 INIT_LIST_HEAD(&priv->fw_pend_list); 4485 INIT_STAT(&priv->fw_pend_stat); 4486 4487 /* 4488 * reinitialize lists 4489 */ 4490 INIT_LIST_HEAD(&priv->tx_pend_list); 4491 INIT_LIST_HEAD(&priv->tx_free_list); 4492 INIT_STAT(&priv->tx_pend_stat); 4493 INIT_STAT(&priv->tx_free_stat); 4494 4495 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) { 4496 /* We simply drop any SKBs that have been queued for 4497 * transmit */ 4498 if (priv->tx_buffers[i].info.d_struct.txb) { 4499 libipw_txb_free(priv->tx_buffers[i].info.d_struct. 4500 txb); 4501 priv->tx_buffers[i].info.d_struct.txb = NULL; 4502 } 4503 4504 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list); 4505 } 4506 4507 SET_STAT(&priv->tx_free_stat, i); 4508 4509 priv->tx_queue.oldest = 0; 4510 priv->tx_queue.available = priv->tx_queue.entries; 4511 priv->tx_queue.next = 0; 4512 INIT_STAT(&priv->txq_stat); 4513 SET_STAT(&priv->txq_stat, priv->tx_queue.available); 4514 4515 bd_queue_initialize(priv, &priv->tx_queue, 4516 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE, 4517 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE, 4518 IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX, 4519 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX); 4520 4521 IPW_DEBUG_INFO("exit\n"); 4522 4523 } 4524 4525 static void ipw2100_tx_free(struct ipw2100_priv *priv) 4526 { 4527 int i; 4528 4529 IPW_DEBUG_INFO("enter\n"); 4530 4531 bd_queue_free(priv, &priv->tx_queue); 4532 4533 if (!priv->tx_buffers) 4534 return; 4535 4536 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) { 4537 if (priv->tx_buffers[i].info.d_struct.txb) { 4538 libipw_txb_free(priv->tx_buffers[i].info.d_struct. 4539 txb); 4540 priv->tx_buffers[i].info.d_struct.txb = NULL; 4541 } 4542 if (priv->tx_buffers[i].info.d_struct.data) 4543 pci_free_consistent(priv->pci_dev, 4544 sizeof(struct ipw2100_data_header), 4545 priv->tx_buffers[i].info.d_struct. 4546 data, 4547 priv->tx_buffers[i].info.d_struct. 4548 data_phys); 4549 } 4550 4551 kfree(priv->tx_buffers); 4552 priv->tx_buffers = NULL; 4553 4554 IPW_DEBUG_INFO("exit\n"); 4555 } 4556 4557 static int ipw2100_rx_allocate(struct ipw2100_priv *priv) 4558 { 4559 int i, j, err = -EINVAL; 4560 4561 IPW_DEBUG_INFO("enter\n"); 4562 4563 err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH); 4564 if (err) { 4565 IPW_DEBUG_INFO("failed bd_queue_allocate\n"); 4566 return err; 4567 } 4568 4569 err = status_queue_allocate(priv, RX_QUEUE_LENGTH); 4570 if (err) { 4571 IPW_DEBUG_INFO("failed status_queue_allocate\n"); 4572 bd_queue_free(priv, &priv->rx_queue); 4573 return err; 4574 } 4575 4576 /* 4577 * allocate packets 4578 */ 4579 priv->rx_buffers = kmalloc_array(RX_QUEUE_LENGTH, 4580 sizeof(struct ipw2100_rx_packet), 4581 GFP_KERNEL); 4582 if (!priv->rx_buffers) { 4583 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n"); 4584 4585 bd_queue_free(priv, &priv->rx_queue); 4586 4587 status_queue_free(priv); 4588 4589 return -ENOMEM; 4590 } 4591 4592 for (i = 0; i < RX_QUEUE_LENGTH; i++) { 4593 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i]; 4594 4595 err = ipw2100_alloc_skb(priv, packet); 4596 if (unlikely(err)) { 4597 err = -ENOMEM; 4598 break; 4599 } 4600 4601 /* The BD holds the cache aligned address */ 4602 priv->rx_queue.drv[i].host_addr = packet->dma_addr; 4603 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH; 4604 priv->status_queue.drv[i].status_fields = 0; 4605 } 4606 4607 if (i == RX_QUEUE_LENGTH) 4608 return 0; 4609 4610 for (j = 0; j < i; j++) { 4611 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr, 4612 sizeof(struct ipw2100_rx_packet), 4613 PCI_DMA_FROMDEVICE); 4614 dev_kfree_skb(priv->rx_buffers[j].skb); 4615 } 4616 4617 kfree(priv->rx_buffers); 4618 priv->rx_buffers = NULL; 4619 4620 bd_queue_free(priv, &priv->rx_queue); 4621 4622 status_queue_free(priv); 4623 4624 return err; 4625 } 4626 4627 static void ipw2100_rx_initialize(struct ipw2100_priv *priv) 4628 { 4629 IPW_DEBUG_INFO("enter\n"); 4630 4631 priv->rx_queue.oldest = 0; 4632 priv->rx_queue.available = priv->rx_queue.entries - 1; 4633 priv->rx_queue.next = priv->rx_queue.entries - 1; 4634 4635 INIT_STAT(&priv->rxq_stat); 4636 SET_STAT(&priv->rxq_stat, priv->rx_queue.available); 4637 4638 bd_queue_initialize(priv, &priv->rx_queue, 4639 IPW_MEM_HOST_SHARED_RX_BD_BASE, 4640 IPW_MEM_HOST_SHARED_RX_BD_SIZE, 4641 IPW_MEM_HOST_SHARED_RX_READ_INDEX, 4642 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX); 4643 4644 /* set up the status queue */ 4645 write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE, 4646 priv->status_queue.nic); 4647 4648 IPW_DEBUG_INFO("exit\n"); 4649 } 4650 4651 static void ipw2100_rx_free(struct ipw2100_priv *priv) 4652 { 4653 int i; 4654 4655 IPW_DEBUG_INFO("enter\n"); 4656 4657 bd_queue_free(priv, &priv->rx_queue); 4658 status_queue_free(priv); 4659 4660 if (!priv->rx_buffers) 4661 return; 4662 4663 for (i = 0; i < RX_QUEUE_LENGTH; i++) { 4664 if (priv->rx_buffers[i].rxp) { 4665 pci_unmap_single(priv->pci_dev, 4666 priv->rx_buffers[i].dma_addr, 4667 sizeof(struct ipw2100_rx), 4668 PCI_DMA_FROMDEVICE); 4669 dev_kfree_skb(priv->rx_buffers[i].skb); 4670 } 4671 } 4672 4673 kfree(priv->rx_buffers); 4674 priv->rx_buffers = NULL; 4675 4676 IPW_DEBUG_INFO("exit\n"); 4677 } 4678 4679 static int ipw2100_read_mac_address(struct ipw2100_priv *priv) 4680 { 4681 u32 length = ETH_ALEN; 4682 u8 addr[ETH_ALEN]; 4683 4684 int err; 4685 4686 err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length); 4687 if (err) { 4688 IPW_DEBUG_INFO("MAC address read failed\n"); 4689 return -EIO; 4690 } 4691 4692 memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN); 4693 IPW_DEBUG_INFO("card MAC is %pM\n", priv->net_dev->dev_addr); 4694 4695 return 0; 4696 } 4697 4698 /******************************************************************** 4699 * 4700 * Firmware Commands 4701 * 4702 ********************************************************************/ 4703 4704 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode) 4705 { 4706 struct host_command cmd = { 4707 .host_command = ADAPTER_ADDRESS, 4708 .host_command_sequence = 0, 4709 .host_command_length = ETH_ALEN 4710 }; 4711 int err; 4712 4713 IPW_DEBUG_HC("SET_MAC_ADDRESS\n"); 4714 4715 IPW_DEBUG_INFO("enter\n"); 4716 4717 if (priv->config & CFG_CUSTOM_MAC) { 4718 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN); 4719 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN); 4720 } else 4721 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr, 4722 ETH_ALEN); 4723 4724 err = ipw2100_hw_send_command(priv, &cmd); 4725 4726 IPW_DEBUG_INFO("exit\n"); 4727 return err; 4728 } 4729 4730 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type, 4731 int batch_mode) 4732 { 4733 struct host_command cmd = { 4734 .host_command = PORT_TYPE, 4735 .host_command_sequence = 0, 4736 .host_command_length = sizeof(u32) 4737 }; 4738 int err; 4739 4740 switch (port_type) { 4741 case IW_MODE_INFRA: 4742 cmd.host_command_parameters[0] = IPW_BSS; 4743 break; 4744 case IW_MODE_ADHOC: 4745 cmd.host_command_parameters[0] = IPW_IBSS; 4746 break; 4747 } 4748 4749 IPW_DEBUG_HC("PORT_TYPE: %s\n", 4750 port_type == IPW_IBSS ? "Ad-Hoc" : "Managed"); 4751 4752 if (!batch_mode) { 4753 err = ipw2100_disable_adapter(priv); 4754 if (err) { 4755 printk(KERN_ERR DRV_NAME 4756 ": %s: Could not disable adapter %d\n", 4757 priv->net_dev->name, err); 4758 return err; 4759 } 4760 } 4761 4762 /* send cmd to firmware */ 4763 err = ipw2100_hw_send_command(priv, &cmd); 4764 4765 if (!batch_mode) 4766 ipw2100_enable_adapter(priv); 4767 4768 return err; 4769 } 4770 4771 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel, 4772 int batch_mode) 4773 { 4774 struct host_command cmd = { 4775 .host_command = CHANNEL, 4776 .host_command_sequence = 0, 4777 .host_command_length = sizeof(u32) 4778 }; 4779 int err; 4780 4781 cmd.host_command_parameters[0] = channel; 4782 4783 IPW_DEBUG_HC("CHANNEL: %d\n", channel); 4784 4785 /* If BSS then we don't support channel selection */ 4786 if (priv->ieee->iw_mode == IW_MODE_INFRA) 4787 return 0; 4788 4789 if ((channel != 0) && 4790 ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL))) 4791 return -EINVAL; 4792 4793 if (!batch_mode) { 4794 err = ipw2100_disable_adapter(priv); 4795 if (err) 4796 return err; 4797 } 4798 4799 err = ipw2100_hw_send_command(priv, &cmd); 4800 if (err) { 4801 IPW_DEBUG_INFO("Failed to set channel to %d", channel); 4802 return err; 4803 } 4804 4805 if (channel) 4806 priv->config |= CFG_STATIC_CHANNEL; 4807 else 4808 priv->config &= ~CFG_STATIC_CHANNEL; 4809 4810 priv->channel = channel; 4811 4812 if (!batch_mode) { 4813 err = ipw2100_enable_adapter(priv); 4814 if (err) 4815 return err; 4816 } 4817 4818 return 0; 4819 } 4820 4821 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode) 4822 { 4823 struct host_command cmd = { 4824 .host_command = SYSTEM_CONFIG, 4825 .host_command_sequence = 0, 4826 .host_command_length = 12, 4827 }; 4828 u32 ibss_mask, len = sizeof(u32); 4829 int err; 4830 4831 /* Set system configuration */ 4832 4833 if (!batch_mode) { 4834 err = ipw2100_disable_adapter(priv); 4835 if (err) 4836 return err; 4837 } 4838 4839 if (priv->ieee->iw_mode == IW_MODE_ADHOC) 4840 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START; 4841 4842 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK | 4843 IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE; 4844 4845 if (!(priv->config & CFG_LONG_PREAMBLE)) 4846 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO; 4847 4848 err = ipw2100_get_ordinal(priv, 4849 IPW_ORD_EEPROM_IBSS_11B_CHANNELS, 4850 &ibss_mask, &len); 4851 if (err) 4852 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK; 4853 4854 cmd.host_command_parameters[1] = REG_CHANNEL_MASK; 4855 cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask; 4856 4857 /* 11b only */ 4858 /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */ 4859 4860 err = ipw2100_hw_send_command(priv, &cmd); 4861 if (err) 4862 return err; 4863 4864 /* If IPv6 is configured in the kernel then we don't want to filter out all 4865 * of the multicast packets as IPv6 needs some. */ 4866 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE) 4867 cmd.host_command = ADD_MULTICAST; 4868 cmd.host_command_sequence = 0; 4869 cmd.host_command_length = 0; 4870 4871 ipw2100_hw_send_command(priv, &cmd); 4872 #endif 4873 if (!batch_mode) { 4874 err = ipw2100_enable_adapter(priv); 4875 if (err) 4876 return err; 4877 } 4878 4879 return 0; 4880 } 4881 4882 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate, 4883 int batch_mode) 4884 { 4885 struct host_command cmd = { 4886 .host_command = BASIC_TX_RATES, 4887 .host_command_sequence = 0, 4888 .host_command_length = 4 4889 }; 4890 int err; 4891 4892 cmd.host_command_parameters[0] = rate & TX_RATE_MASK; 4893 4894 if (!batch_mode) { 4895 err = ipw2100_disable_adapter(priv); 4896 if (err) 4897 return err; 4898 } 4899 4900 /* Set BASIC TX Rate first */ 4901 ipw2100_hw_send_command(priv, &cmd); 4902 4903 /* Set TX Rate */ 4904 cmd.host_command = TX_RATES; 4905 ipw2100_hw_send_command(priv, &cmd); 4906 4907 /* Set MSDU TX Rate */ 4908 cmd.host_command = MSDU_TX_RATES; 4909 ipw2100_hw_send_command(priv, &cmd); 4910 4911 if (!batch_mode) { 4912 err = ipw2100_enable_adapter(priv); 4913 if (err) 4914 return err; 4915 } 4916 4917 priv->tx_rates = rate; 4918 4919 return 0; 4920 } 4921 4922 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level) 4923 { 4924 struct host_command cmd = { 4925 .host_command = POWER_MODE, 4926 .host_command_sequence = 0, 4927 .host_command_length = 4 4928 }; 4929 int err; 4930 4931 cmd.host_command_parameters[0] = power_level; 4932 4933 err = ipw2100_hw_send_command(priv, &cmd); 4934 if (err) 4935 return err; 4936 4937 if (power_level == IPW_POWER_MODE_CAM) 4938 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode); 4939 else 4940 priv->power_mode = IPW_POWER_ENABLED | power_level; 4941 4942 #ifdef IPW2100_TX_POWER 4943 if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) { 4944 /* Set beacon interval */ 4945 cmd.host_command = TX_POWER_INDEX; 4946 cmd.host_command_parameters[0] = (u32) priv->adhoc_power; 4947 4948 err = ipw2100_hw_send_command(priv, &cmd); 4949 if (err) 4950 return err; 4951 } 4952 #endif 4953 4954 return 0; 4955 } 4956 4957 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold) 4958 { 4959 struct host_command cmd = { 4960 .host_command = RTS_THRESHOLD, 4961 .host_command_sequence = 0, 4962 .host_command_length = 4 4963 }; 4964 int err; 4965 4966 if (threshold & RTS_DISABLED) 4967 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD; 4968 else 4969 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED; 4970 4971 err = ipw2100_hw_send_command(priv, &cmd); 4972 if (err) 4973 return err; 4974 4975 priv->rts_threshold = threshold; 4976 4977 return 0; 4978 } 4979 4980 #if 0 4981 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv, 4982 u32 threshold, int batch_mode) 4983 { 4984 struct host_command cmd = { 4985 .host_command = FRAG_THRESHOLD, 4986 .host_command_sequence = 0, 4987 .host_command_length = 4, 4988 .host_command_parameters[0] = 0, 4989 }; 4990 int err; 4991 4992 if (!batch_mode) { 4993 err = ipw2100_disable_adapter(priv); 4994 if (err) 4995 return err; 4996 } 4997 4998 if (threshold == 0) 4999 threshold = DEFAULT_FRAG_THRESHOLD; 5000 else { 5001 threshold = max(threshold, MIN_FRAG_THRESHOLD); 5002 threshold = min(threshold, MAX_FRAG_THRESHOLD); 5003 } 5004 5005 cmd.host_command_parameters[0] = threshold; 5006 5007 IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold); 5008 5009 err = ipw2100_hw_send_command(priv, &cmd); 5010 5011 if (!batch_mode) 5012 ipw2100_enable_adapter(priv); 5013 5014 if (!err) 5015 priv->frag_threshold = threshold; 5016 5017 return err; 5018 } 5019 #endif 5020 5021 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry) 5022 { 5023 struct host_command cmd = { 5024 .host_command = SHORT_RETRY_LIMIT, 5025 .host_command_sequence = 0, 5026 .host_command_length = 4 5027 }; 5028 int err; 5029 5030 cmd.host_command_parameters[0] = retry; 5031 5032 err = ipw2100_hw_send_command(priv, &cmd); 5033 if (err) 5034 return err; 5035 5036 priv->short_retry_limit = retry; 5037 5038 return 0; 5039 } 5040 5041 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry) 5042 { 5043 struct host_command cmd = { 5044 .host_command = LONG_RETRY_LIMIT, 5045 .host_command_sequence = 0, 5046 .host_command_length = 4 5047 }; 5048 int err; 5049 5050 cmd.host_command_parameters[0] = retry; 5051 5052 err = ipw2100_hw_send_command(priv, &cmd); 5053 if (err) 5054 return err; 5055 5056 priv->long_retry_limit = retry; 5057 5058 return 0; 5059 } 5060 5061 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid, 5062 int batch_mode) 5063 { 5064 struct host_command cmd = { 5065 .host_command = MANDATORY_BSSID, 5066 .host_command_sequence = 0, 5067 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN 5068 }; 5069 int err; 5070 5071 #ifdef CONFIG_IPW2100_DEBUG 5072 if (bssid != NULL) 5073 IPW_DEBUG_HC("MANDATORY_BSSID: %pM\n", bssid); 5074 else 5075 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n"); 5076 #endif 5077 /* if BSSID is empty then we disable mandatory bssid mode */ 5078 if (bssid != NULL) 5079 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN); 5080 5081 if (!batch_mode) { 5082 err = ipw2100_disable_adapter(priv); 5083 if (err) 5084 return err; 5085 } 5086 5087 err = ipw2100_hw_send_command(priv, &cmd); 5088 5089 if (!batch_mode) 5090 ipw2100_enable_adapter(priv); 5091 5092 return err; 5093 } 5094 5095 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv) 5096 { 5097 struct host_command cmd = { 5098 .host_command = DISASSOCIATION_BSSID, 5099 .host_command_sequence = 0, 5100 .host_command_length = ETH_ALEN 5101 }; 5102 int err; 5103 5104 IPW_DEBUG_HC("DISASSOCIATION_BSSID\n"); 5105 5106 /* The Firmware currently ignores the BSSID and just disassociates from 5107 * the currently associated AP -- but in the off chance that a future 5108 * firmware does use the BSSID provided here, we go ahead and try and 5109 * set it to the currently associated AP's BSSID */ 5110 memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN); 5111 5112 err = ipw2100_hw_send_command(priv, &cmd); 5113 5114 return err; 5115 } 5116 5117 static int ipw2100_set_wpa_ie(struct ipw2100_priv *, 5118 struct ipw2100_wpa_assoc_frame *, int) 5119 __attribute__ ((unused)); 5120 5121 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv, 5122 struct ipw2100_wpa_assoc_frame *wpa_frame, 5123 int batch_mode) 5124 { 5125 struct host_command cmd = { 5126 .host_command = SET_WPA_IE, 5127 .host_command_sequence = 0, 5128 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame), 5129 }; 5130 int err; 5131 5132 IPW_DEBUG_HC("SET_WPA_IE\n"); 5133 5134 if (!batch_mode) { 5135 err = ipw2100_disable_adapter(priv); 5136 if (err) 5137 return err; 5138 } 5139 5140 memcpy(cmd.host_command_parameters, wpa_frame, 5141 sizeof(struct ipw2100_wpa_assoc_frame)); 5142 5143 err = ipw2100_hw_send_command(priv, &cmd); 5144 5145 if (!batch_mode) { 5146 if (ipw2100_enable_adapter(priv)) 5147 err = -EIO; 5148 } 5149 5150 return err; 5151 } 5152 5153 struct security_info_params { 5154 u32 allowed_ciphers; 5155 u16 version; 5156 u8 auth_mode; 5157 u8 replay_counters_number; 5158 u8 unicast_using_group; 5159 } __packed; 5160 5161 static int ipw2100_set_security_information(struct ipw2100_priv *priv, 5162 int auth_mode, 5163 int security_level, 5164 int unicast_using_group, 5165 int batch_mode) 5166 { 5167 struct host_command cmd = { 5168 .host_command = SET_SECURITY_INFORMATION, 5169 .host_command_sequence = 0, 5170 .host_command_length = sizeof(struct security_info_params) 5171 }; 5172 struct security_info_params *security = 5173 (struct security_info_params *)&cmd.host_command_parameters; 5174 int err; 5175 memset(security, 0, sizeof(*security)); 5176 5177 /* If shared key AP authentication is turned on, then we need to 5178 * configure the firmware to try and use it. 5179 * 5180 * Actual data encryption/decryption is handled by the host. */ 5181 security->auth_mode = auth_mode; 5182 security->unicast_using_group = unicast_using_group; 5183 5184 switch (security_level) { 5185 default: 5186 case SEC_LEVEL_0: 5187 security->allowed_ciphers = IPW_NONE_CIPHER; 5188 break; 5189 case SEC_LEVEL_1: 5190 security->allowed_ciphers = IPW_WEP40_CIPHER | 5191 IPW_WEP104_CIPHER; 5192 break; 5193 case SEC_LEVEL_2: 5194 security->allowed_ciphers = IPW_WEP40_CIPHER | 5195 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER; 5196 break; 5197 case SEC_LEVEL_2_CKIP: 5198 security->allowed_ciphers = IPW_WEP40_CIPHER | 5199 IPW_WEP104_CIPHER | IPW_CKIP_CIPHER; 5200 break; 5201 case SEC_LEVEL_3: 5202 security->allowed_ciphers = IPW_WEP40_CIPHER | 5203 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER; 5204 break; 5205 } 5206 5207 IPW_DEBUG_HC 5208 ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n", 5209 security->auth_mode, security->allowed_ciphers, security_level); 5210 5211 security->replay_counters_number = 0; 5212 5213 if (!batch_mode) { 5214 err = ipw2100_disable_adapter(priv); 5215 if (err) 5216 return err; 5217 } 5218 5219 err = ipw2100_hw_send_command(priv, &cmd); 5220 5221 if (!batch_mode) 5222 ipw2100_enable_adapter(priv); 5223 5224 return err; 5225 } 5226 5227 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power) 5228 { 5229 struct host_command cmd = { 5230 .host_command = TX_POWER_INDEX, 5231 .host_command_sequence = 0, 5232 .host_command_length = 4 5233 }; 5234 int err = 0; 5235 u32 tmp = tx_power; 5236 5237 if (tx_power != IPW_TX_POWER_DEFAULT) 5238 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 / 5239 (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM); 5240 5241 cmd.host_command_parameters[0] = tmp; 5242 5243 if (priv->ieee->iw_mode == IW_MODE_ADHOC) 5244 err = ipw2100_hw_send_command(priv, &cmd); 5245 if (!err) 5246 priv->tx_power = tx_power; 5247 5248 return 0; 5249 } 5250 5251 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv, 5252 u32 interval, int batch_mode) 5253 { 5254 struct host_command cmd = { 5255 .host_command = BEACON_INTERVAL, 5256 .host_command_sequence = 0, 5257 .host_command_length = 4 5258 }; 5259 int err; 5260 5261 cmd.host_command_parameters[0] = interval; 5262 5263 IPW_DEBUG_INFO("enter\n"); 5264 5265 if (priv->ieee->iw_mode == IW_MODE_ADHOC) { 5266 if (!batch_mode) { 5267 err = ipw2100_disable_adapter(priv); 5268 if (err) 5269 return err; 5270 } 5271 5272 ipw2100_hw_send_command(priv, &cmd); 5273 5274 if (!batch_mode) { 5275 err = ipw2100_enable_adapter(priv); 5276 if (err) 5277 return err; 5278 } 5279 } 5280 5281 IPW_DEBUG_INFO("exit\n"); 5282 5283 return 0; 5284 } 5285 5286 static void ipw2100_queues_initialize(struct ipw2100_priv *priv) 5287 { 5288 ipw2100_tx_initialize(priv); 5289 ipw2100_rx_initialize(priv); 5290 ipw2100_msg_initialize(priv); 5291 } 5292 5293 static void ipw2100_queues_free(struct ipw2100_priv *priv) 5294 { 5295 ipw2100_tx_free(priv); 5296 ipw2100_rx_free(priv); 5297 ipw2100_msg_free(priv); 5298 } 5299 5300 static int ipw2100_queues_allocate(struct ipw2100_priv *priv) 5301 { 5302 if (ipw2100_tx_allocate(priv) || 5303 ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv)) 5304 goto fail; 5305 5306 return 0; 5307 5308 fail: 5309 ipw2100_tx_free(priv); 5310 ipw2100_rx_free(priv); 5311 ipw2100_msg_free(priv); 5312 return -ENOMEM; 5313 } 5314 5315 #define IPW_PRIVACY_CAPABLE 0x0008 5316 5317 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags, 5318 int batch_mode) 5319 { 5320 struct host_command cmd = { 5321 .host_command = WEP_FLAGS, 5322 .host_command_sequence = 0, 5323 .host_command_length = 4 5324 }; 5325 int err; 5326 5327 cmd.host_command_parameters[0] = flags; 5328 5329 IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags); 5330 5331 if (!batch_mode) { 5332 err = ipw2100_disable_adapter(priv); 5333 if (err) { 5334 printk(KERN_ERR DRV_NAME 5335 ": %s: Could not disable adapter %d\n", 5336 priv->net_dev->name, err); 5337 return err; 5338 } 5339 } 5340 5341 /* send cmd to firmware */ 5342 err = ipw2100_hw_send_command(priv, &cmd); 5343 5344 if (!batch_mode) 5345 ipw2100_enable_adapter(priv); 5346 5347 return err; 5348 } 5349 5350 struct ipw2100_wep_key { 5351 u8 idx; 5352 u8 len; 5353 u8 key[13]; 5354 }; 5355 5356 /* Macros to ease up priting WEP keys */ 5357 #define WEP_FMT_64 "%02X%02X%02X%02X-%02X" 5358 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X" 5359 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4] 5360 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10] 5361 5362 /** 5363 * Set a the wep key 5364 * 5365 * @priv: struct to work on 5366 * @idx: index of the key we want to set 5367 * @key: ptr to the key data to set 5368 * @len: length of the buffer at @key 5369 * @batch_mode: FIXME perform the operation in batch mode, not 5370 * disabling the device. 5371 * 5372 * @returns 0 if OK, < 0 errno code on error. 5373 * 5374 * Fill out a command structure with the new wep key, length an 5375 * index and send it down the wire. 5376 */ 5377 static int ipw2100_set_key(struct ipw2100_priv *priv, 5378 int idx, char *key, int len, int batch_mode) 5379 { 5380 int keylen = len ? (len <= 5 ? 5 : 13) : 0; 5381 struct host_command cmd = { 5382 .host_command = WEP_KEY_INFO, 5383 .host_command_sequence = 0, 5384 .host_command_length = sizeof(struct ipw2100_wep_key), 5385 }; 5386 struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters; 5387 int err; 5388 5389 IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n", 5390 idx, keylen, len); 5391 5392 /* NOTE: We don't check cached values in case the firmware was reset 5393 * or some other problem is occurring. If the user is setting the key, 5394 * then we push the change */ 5395 5396 wep_key->idx = idx; 5397 wep_key->len = keylen; 5398 5399 if (keylen) { 5400 memcpy(wep_key->key, key, len); 5401 memset(wep_key->key + len, 0, keylen - len); 5402 } 5403 5404 /* Will be optimized out on debug not being configured in */ 5405 if (keylen == 0) 5406 IPW_DEBUG_WEP("%s: Clearing key %d\n", 5407 priv->net_dev->name, wep_key->idx); 5408 else if (keylen == 5) 5409 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n", 5410 priv->net_dev->name, wep_key->idx, wep_key->len, 5411 WEP_STR_64(wep_key->key)); 5412 else 5413 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128 5414 "\n", 5415 priv->net_dev->name, wep_key->idx, wep_key->len, 5416 WEP_STR_128(wep_key->key)); 5417 5418 if (!batch_mode) { 5419 err = ipw2100_disable_adapter(priv); 5420 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */ 5421 if (err) { 5422 printk(KERN_ERR DRV_NAME 5423 ": %s: Could not disable adapter %d\n", 5424 priv->net_dev->name, err); 5425 return err; 5426 } 5427 } 5428 5429 /* send cmd to firmware */ 5430 err = ipw2100_hw_send_command(priv, &cmd); 5431 5432 if (!batch_mode) { 5433 int err2 = ipw2100_enable_adapter(priv); 5434 if (err == 0) 5435 err = err2; 5436 } 5437 return err; 5438 } 5439 5440 static int ipw2100_set_key_index(struct ipw2100_priv *priv, 5441 int idx, int batch_mode) 5442 { 5443 struct host_command cmd = { 5444 .host_command = WEP_KEY_INDEX, 5445 .host_command_sequence = 0, 5446 .host_command_length = 4, 5447 .host_command_parameters = {idx}, 5448 }; 5449 int err; 5450 5451 IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx); 5452 5453 if (idx < 0 || idx > 3) 5454 return -EINVAL; 5455 5456 if (!batch_mode) { 5457 err = ipw2100_disable_adapter(priv); 5458 if (err) { 5459 printk(KERN_ERR DRV_NAME 5460 ": %s: Could not disable adapter %d\n", 5461 priv->net_dev->name, err); 5462 return err; 5463 } 5464 } 5465 5466 /* send cmd to firmware */ 5467 err = ipw2100_hw_send_command(priv, &cmd); 5468 5469 if (!batch_mode) 5470 ipw2100_enable_adapter(priv); 5471 5472 return err; 5473 } 5474 5475 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode) 5476 { 5477 int i, err, auth_mode, sec_level, use_group; 5478 5479 if (!(priv->status & STATUS_RUNNING)) 5480 return 0; 5481 5482 if (!batch_mode) { 5483 err = ipw2100_disable_adapter(priv); 5484 if (err) 5485 return err; 5486 } 5487 5488 if (!priv->ieee->sec.enabled) { 5489 err = 5490 ipw2100_set_security_information(priv, IPW_AUTH_OPEN, 5491 SEC_LEVEL_0, 0, 1); 5492 } else { 5493 auth_mode = IPW_AUTH_OPEN; 5494 if (priv->ieee->sec.flags & SEC_AUTH_MODE) { 5495 if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY) 5496 auth_mode = IPW_AUTH_SHARED; 5497 else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP) 5498 auth_mode = IPW_AUTH_LEAP_CISCO_ID; 5499 } 5500 5501 sec_level = SEC_LEVEL_0; 5502 if (priv->ieee->sec.flags & SEC_LEVEL) 5503 sec_level = priv->ieee->sec.level; 5504 5505 use_group = 0; 5506 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP) 5507 use_group = priv->ieee->sec.unicast_uses_group; 5508 5509 err = 5510 ipw2100_set_security_information(priv, auth_mode, sec_level, 5511 use_group, 1); 5512 } 5513 5514 if (err) 5515 goto exit; 5516 5517 if (priv->ieee->sec.enabled) { 5518 for (i = 0; i < 4; i++) { 5519 if (!(priv->ieee->sec.flags & (1 << i))) { 5520 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN); 5521 priv->ieee->sec.key_sizes[i] = 0; 5522 } else { 5523 err = ipw2100_set_key(priv, i, 5524 priv->ieee->sec.keys[i], 5525 priv->ieee->sec. 5526 key_sizes[i], 1); 5527 if (err) 5528 goto exit; 5529 } 5530 } 5531 5532 ipw2100_set_key_index(priv, priv->ieee->crypt_info.tx_keyidx, 1); 5533 } 5534 5535 /* Always enable privacy so the Host can filter WEP packets if 5536 * encrypted data is sent up */ 5537 err = 5538 ipw2100_set_wep_flags(priv, 5539 priv->ieee->sec. 5540 enabled ? IPW_PRIVACY_CAPABLE : 0, 1); 5541 if (err) 5542 goto exit; 5543 5544 priv->status &= ~STATUS_SECURITY_UPDATED; 5545 5546 exit: 5547 if (!batch_mode) 5548 ipw2100_enable_adapter(priv); 5549 5550 return err; 5551 } 5552 5553 static void ipw2100_security_work(struct work_struct *work) 5554 { 5555 struct ipw2100_priv *priv = 5556 container_of(work, struct ipw2100_priv, security_work.work); 5557 5558 /* If we happen to have reconnected before we get a chance to 5559 * process this, then update the security settings--which causes 5560 * a disassociation to occur */ 5561 if (!(priv->status & STATUS_ASSOCIATED) && 5562 priv->status & STATUS_SECURITY_UPDATED) 5563 ipw2100_configure_security(priv, 0); 5564 } 5565 5566 static void shim__set_security(struct net_device *dev, 5567 struct libipw_security *sec) 5568 { 5569 struct ipw2100_priv *priv = libipw_priv(dev); 5570 int i; 5571 5572 mutex_lock(&priv->action_mutex); 5573 if (!(priv->status & STATUS_INITIALIZED)) 5574 goto done; 5575 5576 for (i = 0; i < 4; i++) { 5577 if (sec->flags & (1 << i)) { 5578 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i]; 5579 if (sec->key_sizes[i] == 0) 5580 priv->ieee->sec.flags &= ~(1 << i); 5581 else 5582 memcpy(priv->ieee->sec.keys[i], sec->keys[i], 5583 sec->key_sizes[i]); 5584 if (sec->level == SEC_LEVEL_1) { 5585 priv->ieee->sec.flags |= (1 << i); 5586 priv->status |= STATUS_SECURITY_UPDATED; 5587 } else 5588 priv->ieee->sec.flags &= ~(1 << i); 5589 } 5590 } 5591 5592 if ((sec->flags & SEC_ACTIVE_KEY) && 5593 priv->ieee->sec.active_key != sec->active_key) { 5594 priv->ieee->sec.active_key = sec->active_key; 5595 priv->ieee->sec.flags |= SEC_ACTIVE_KEY; 5596 priv->status |= STATUS_SECURITY_UPDATED; 5597 } 5598 5599 if ((sec->flags & SEC_AUTH_MODE) && 5600 (priv->ieee->sec.auth_mode != sec->auth_mode)) { 5601 priv->ieee->sec.auth_mode = sec->auth_mode; 5602 priv->ieee->sec.flags |= SEC_AUTH_MODE; 5603 priv->status |= STATUS_SECURITY_UPDATED; 5604 } 5605 5606 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) { 5607 priv->ieee->sec.flags |= SEC_ENABLED; 5608 priv->ieee->sec.enabled = sec->enabled; 5609 priv->status |= STATUS_SECURITY_UPDATED; 5610 } 5611 5612 if (sec->flags & SEC_ENCRYPT) 5613 priv->ieee->sec.encrypt = sec->encrypt; 5614 5615 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) { 5616 priv->ieee->sec.level = sec->level; 5617 priv->ieee->sec.flags |= SEC_LEVEL; 5618 priv->status |= STATUS_SECURITY_UPDATED; 5619 } 5620 5621 IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n", 5622 priv->ieee->sec.flags & (1 << 8) ? '1' : '0', 5623 priv->ieee->sec.flags & (1 << 7) ? '1' : '0', 5624 priv->ieee->sec.flags & (1 << 6) ? '1' : '0', 5625 priv->ieee->sec.flags & (1 << 5) ? '1' : '0', 5626 priv->ieee->sec.flags & (1 << 4) ? '1' : '0', 5627 priv->ieee->sec.flags & (1 << 3) ? '1' : '0', 5628 priv->ieee->sec.flags & (1 << 2) ? '1' : '0', 5629 priv->ieee->sec.flags & (1 << 1) ? '1' : '0', 5630 priv->ieee->sec.flags & (1 << 0) ? '1' : '0'); 5631 5632 /* As a temporary work around to enable WPA until we figure out why 5633 * wpa_supplicant toggles the security capability of the driver, which 5634 * forces a disassociation with force_update... 5635 * 5636 * if (force_update || !(priv->status & STATUS_ASSOCIATED))*/ 5637 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) 5638 ipw2100_configure_security(priv, 0); 5639 done: 5640 mutex_unlock(&priv->action_mutex); 5641 } 5642 5643 static int ipw2100_adapter_setup(struct ipw2100_priv *priv) 5644 { 5645 int err; 5646 int batch_mode = 1; 5647 u8 *bssid; 5648 5649 IPW_DEBUG_INFO("enter\n"); 5650 5651 err = ipw2100_disable_adapter(priv); 5652 if (err) 5653 return err; 5654 #ifdef CONFIG_IPW2100_MONITOR 5655 if (priv->ieee->iw_mode == IW_MODE_MONITOR) { 5656 err = ipw2100_set_channel(priv, priv->channel, batch_mode); 5657 if (err) 5658 return err; 5659 5660 IPW_DEBUG_INFO("exit\n"); 5661 5662 return 0; 5663 } 5664 #endif /* CONFIG_IPW2100_MONITOR */ 5665 5666 err = ipw2100_read_mac_address(priv); 5667 if (err) 5668 return -EIO; 5669 5670 err = ipw2100_set_mac_address(priv, batch_mode); 5671 if (err) 5672 return err; 5673 5674 err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode); 5675 if (err) 5676 return err; 5677 5678 if (priv->ieee->iw_mode == IW_MODE_ADHOC) { 5679 err = ipw2100_set_channel(priv, priv->channel, batch_mode); 5680 if (err) 5681 return err; 5682 } 5683 5684 err = ipw2100_system_config(priv, batch_mode); 5685 if (err) 5686 return err; 5687 5688 err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode); 5689 if (err) 5690 return err; 5691 5692 /* Default to power mode OFF */ 5693 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM); 5694 if (err) 5695 return err; 5696 5697 err = ipw2100_set_rts_threshold(priv, priv->rts_threshold); 5698 if (err) 5699 return err; 5700 5701 if (priv->config & CFG_STATIC_BSSID) 5702 bssid = priv->bssid; 5703 else 5704 bssid = NULL; 5705 err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode); 5706 if (err) 5707 return err; 5708 5709 if (priv->config & CFG_STATIC_ESSID) 5710 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len, 5711 batch_mode); 5712 else 5713 err = ipw2100_set_essid(priv, NULL, 0, batch_mode); 5714 if (err) 5715 return err; 5716 5717 err = ipw2100_configure_security(priv, batch_mode); 5718 if (err) 5719 return err; 5720 5721 if (priv->ieee->iw_mode == IW_MODE_ADHOC) { 5722 err = 5723 ipw2100_set_ibss_beacon_interval(priv, 5724 priv->beacon_interval, 5725 batch_mode); 5726 if (err) 5727 return err; 5728 5729 err = ipw2100_set_tx_power(priv, priv->tx_power); 5730 if (err) 5731 return err; 5732 } 5733 5734 /* 5735 err = ipw2100_set_fragmentation_threshold( 5736 priv, priv->frag_threshold, batch_mode); 5737 if (err) 5738 return err; 5739 */ 5740 5741 IPW_DEBUG_INFO("exit\n"); 5742 5743 return 0; 5744 } 5745 5746 /************************************************************************* 5747 * 5748 * EXTERNALLY CALLED METHODS 5749 * 5750 *************************************************************************/ 5751 5752 /* This method is called by the network layer -- not to be confused with 5753 * ipw2100_set_mac_address() declared above called by this driver (and this 5754 * method as well) to talk to the firmware */ 5755 static int ipw2100_set_address(struct net_device *dev, void *p) 5756 { 5757 struct ipw2100_priv *priv = libipw_priv(dev); 5758 struct sockaddr *addr = p; 5759 int err = 0; 5760 5761 if (!is_valid_ether_addr(addr->sa_data)) 5762 return -EADDRNOTAVAIL; 5763 5764 mutex_lock(&priv->action_mutex); 5765 5766 priv->config |= CFG_CUSTOM_MAC; 5767 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN); 5768 5769 err = ipw2100_set_mac_address(priv, 0); 5770 if (err) 5771 goto done; 5772 5773 priv->reset_backoff = 0; 5774 mutex_unlock(&priv->action_mutex); 5775 ipw2100_reset_adapter(&priv->reset_work.work); 5776 return 0; 5777 5778 done: 5779 mutex_unlock(&priv->action_mutex); 5780 return err; 5781 } 5782 5783 static int ipw2100_open(struct net_device *dev) 5784 { 5785 struct ipw2100_priv *priv = libipw_priv(dev); 5786 unsigned long flags; 5787 IPW_DEBUG_INFO("dev->open\n"); 5788 5789 spin_lock_irqsave(&priv->low_lock, flags); 5790 if (priv->status & STATUS_ASSOCIATED) { 5791 netif_carrier_on(dev); 5792 netif_start_queue(dev); 5793 } 5794 spin_unlock_irqrestore(&priv->low_lock, flags); 5795 5796 return 0; 5797 } 5798 5799 static int ipw2100_close(struct net_device *dev) 5800 { 5801 struct ipw2100_priv *priv = libipw_priv(dev); 5802 unsigned long flags; 5803 struct list_head *element; 5804 struct ipw2100_tx_packet *packet; 5805 5806 IPW_DEBUG_INFO("enter\n"); 5807 5808 spin_lock_irqsave(&priv->low_lock, flags); 5809 5810 if (priv->status & STATUS_ASSOCIATED) 5811 netif_carrier_off(dev); 5812 netif_stop_queue(dev); 5813 5814 /* Flush the TX queue ... */ 5815 while (!list_empty(&priv->tx_pend_list)) { 5816 element = priv->tx_pend_list.next; 5817 packet = list_entry(element, struct ipw2100_tx_packet, list); 5818 5819 list_del(element); 5820 DEC_STAT(&priv->tx_pend_stat); 5821 5822 libipw_txb_free(packet->info.d_struct.txb); 5823 packet->info.d_struct.txb = NULL; 5824 5825 list_add_tail(element, &priv->tx_free_list); 5826 INC_STAT(&priv->tx_free_stat); 5827 } 5828 spin_unlock_irqrestore(&priv->low_lock, flags); 5829 5830 IPW_DEBUG_INFO("exit\n"); 5831 5832 return 0; 5833 } 5834 5835 /* 5836 * TODO: Fix this function... its just wrong 5837 */ 5838 static void ipw2100_tx_timeout(struct net_device *dev, unsigned int txqueue) 5839 { 5840 struct ipw2100_priv *priv = libipw_priv(dev); 5841 5842 dev->stats.tx_errors++; 5843 5844 #ifdef CONFIG_IPW2100_MONITOR 5845 if (priv->ieee->iw_mode == IW_MODE_MONITOR) 5846 return; 5847 #endif 5848 5849 IPW_DEBUG_INFO("%s: TX timed out. Scheduling firmware restart.\n", 5850 dev->name); 5851 schedule_reset(priv); 5852 } 5853 5854 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value) 5855 { 5856 /* This is called when wpa_supplicant loads and closes the driver 5857 * interface. */ 5858 priv->ieee->wpa_enabled = value; 5859 return 0; 5860 } 5861 5862 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value) 5863 { 5864 5865 struct libipw_device *ieee = priv->ieee; 5866 struct libipw_security sec = { 5867 .flags = SEC_AUTH_MODE, 5868 }; 5869 int ret = 0; 5870 5871 if (value & IW_AUTH_ALG_SHARED_KEY) { 5872 sec.auth_mode = WLAN_AUTH_SHARED_KEY; 5873 ieee->open_wep = 0; 5874 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) { 5875 sec.auth_mode = WLAN_AUTH_OPEN; 5876 ieee->open_wep = 1; 5877 } else if (value & IW_AUTH_ALG_LEAP) { 5878 sec.auth_mode = WLAN_AUTH_LEAP; 5879 ieee->open_wep = 1; 5880 } else 5881 return -EINVAL; 5882 5883 if (ieee->set_security) 5884 ieee->set_security(ieee->dev, &sec); 5885 else 5886 ret = -EOPNOTSUPP; 5887 5888 return ret; 5889 } 5890 5891 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv, 5892 char *wpa_ie, int wpa_ie_len) 5893 { 5894 5895 struct ipw2100_wpa_assoc_frame frame; 5896 5897 frame.fixed_ie_mask = 0; 5898 5899 /* copy WPA IE */ 5900 memcpy(frame.var_ie, wpa_ie, wpa_ie_len); 5901 frame.var_ie_len = wpa_ie_len; 5902 5903 /* make sure WPA is enabled */ 5904 ipw2100_wpa_enable(priv, 1); 5905 ipw2100_set_wpa_ie(priv, &frame, 0); 5906 } 5907 5908 static void ipw_ethtool_get_drvinfo(struct net_device *dev, 5909 struct ethtool_drvinfo *info) 5910 { 5911 struct ipw2100_priv *priv = libipw_priv(dev); 5912 char fw_ver[64], ucode_ver[64]; 5913 5914 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 5915 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 5916 5917 ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver)); 5918 ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver)); 5919 5920 snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s", 5921 fw_ver, priv->eeprom_version, ucode_ver); 5922 5923 strlcpy(info->bus_info, pci_name(priv->pci_dev), 5924 sizeof(info->bus_info)); 5925 } 5926 5927 static u32 ipw2100_ethtool_get_link(struct net_device *dev) 5928 { 5929 struct ipw2100_priv *priv = libipw_priv(dev); 5930 return (priv->status & STATUS_ASSOCIATED) ? 1 : 0; 5931 } 5932 5933 static const struct ethtool_ops ipw2100_ethtool_ops = { 5934 .get_link = ipw2100_ethtool_get_link, 5935 .get_drvinfo = ipw_ethtool_get_drvinfo, 5936 }; 5937 5938 static void ipw2100_hang_check(struct work_struct *work) 5939 { 5940 struct ipw2100_priv *priv = 5941 container_of(work, struct ipw2100_priv, hang_check.work); 5942 unsigned long flags; 5943 u32 rtc = 0xa5a5a5a5; 5944 u32 len = sizeof(rtc); 5945 int restart = 0; 5946 5947 spin_lock_irqsave(&priv->low_lock, flags); 5948 5949 if (priv->fatal_error != 0) { 5950 /* If fatal_error is set then we need to restart */ 5951 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n", 5952 priv->net_dev->name); 5953 5954 restart = 1; 5955 } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) || 5956 (rtc == priv->last_rtc)) { 5957 /* Check if firmware is hung */ 5958 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n", 5959 priv->net_dev->name); 5960 5961 restart = 1; 5962 } 5963 5964 if (restart) { 5965 /* Kill timer */ 5966 priv->stop_hang_check = 1; 5967 priv->hangs++; 5968 5969 /* Restart the NIC */ 5970 schedule_reset(priv); 5971 } 5972 5973 priv->last_rtc = rtc; 5974 5975 if (!priv->stop_hang_check) 5976 schedule_delayed_work(&priv->hang_check, HZ / 2); 5977 5978 spin_unlock_irqrestore(&priv->low_lock, flags); 5979 } 5980 5981 static void ipw2100_rf_kill(struct work_struct *work) 5982 { 5983 struct ipw2100_priv *priv = 5984 container_of(work, struct ipw2100_priv, rf_kill.work); 5985 unsigned long flags; 5986 5987 spin_lock_irqsave(&priv->low_lock, flags); 5988 5989 if (rf_kill_active(priv)) { 5990 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n"); 5991 if (!priv->stop_rf_kill) 5992 schedule_delayed_work(&priv->rf_kill, 5993 round_jiffies_relative(HZ)); 5994 goto exit_unlock; 5995 } 5996 5997 /* RF Kill is now disabled, so bring the device back up */ 5998 5999 if (!(priv->status & STATUS_RF_KILL_MASK)) { 6000 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting " 6001 "device\n"); 6002 schedule_reset(priv); 6003 } else 6004 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still " 6005 "enabled\n"); 6006 6007 exit_unlock: 6008 spin_unlock_irqrestore(&priv->low_lock, flags); 6009 } 6010 6011 static void ipw2100_irq_tasklet(unsigned long data); 6012 6013 static const struct net_device_ops ipw2100_netdev_ops = { 6014 .ndo_open = ipw2100_open, 6015 .ndo_stop = ipw2100_close, 6016 .ndo_start_xmit = libipw_xmit, 6017 .ndo_tx_timeout = ipw2100_tx_timeout, 6018 .ndo_set_mac_address = ipw2100_set_address, 6019 .ndo_validate_addr = eth_validate_addr, 6020 }; 6021 6022 /* Look into using netdev destructor to shutdown libipw? */ 6023 6024 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev, 6025 void __iomem * ioaddr) 6026 { 6027 struct ipw2100_priv *priv; 6028 struct net_device *dev; 6029 6030 dev = alloc_libipw(sizeof(struct ipw2100_priv), 0); 6031 if (!dev) 6032 return NULL; 6033 priv = libipw_priv(dev); 6034 priv->ieee = netdev_priv(dev); 6035 priv->pci_dev = pci_dev; 6036 priv->net_dev = dev; 6037 priv->ioaddr = ioaddr; 6038 6039 priv->ieee->hard_start_xmit = ipw2100_tx; 6040 priv->ieee->set_security = shim__set_security; 6041 6042 priv->ieee->perfect_rssi = -20; 6043 priv->ieee->worst_rssi = -85; 6044 6045 dev->netdev_ops = &ipw2100_netdev_ops; 6046 dev->ethtool_ops = &ipw2100_ethtool_ops; 6047 dev->wireless_handlers = &ipw2100_wx_handler_def; 6048 priv->wireless_data.libipw = priv->ieee; 6049 dev->wireless_data = &priv->wireless_data; 6050 dev->watchdog_timeo = 3 * HZ; 6051 dev->irq = 0; 6052 dev->min_mtu = 68; 6053 dev->max_mtu = LIBIPW_DATA_LEN; 6054 6055 /* NOTE: We don't use the wireless_handlers hook 6056 * in dev as the system will start throwing WX requests 6057 * to us before we're actually initialized and it just 6058 * ends up causing problems. So, we just handle 6059 * the WX extensions through the ipw2100_ioctl interface */ 6060 6061 /* memset() puts everything to 0, so we only have explicitly set 6062 * those values that need to be something else */ 6063 6064 /* If power management is turned on, default to AUTO mode */ 6065 priv->power_mode = IPW_POWER_AUTO; 6066 6067 #ifdef CONFIG_IPW2100_MONITOR 6068 priv->config |= CFG_CRC_CHECK; 6069 #endif 6070 priv->ieee->wpa_enabled = 0; 6071 priv->ieee->drop_unencrypted = 0; 6072 priv->ieee->privacy_invoked = 0; 6073 priv->ieee->ieee802_1x = 1; 6074 6075 /* Set module parameters */ 6076 switch (network_mode) { 6077 case 1: 6078 priv->ieee->iw_mode = IW_MODE_ADHOC; 6079 break; 6080 #ifdef CONFIG_IPW2100_MONITOR 6081 case 2: 6082 priv->ieee->iw_mode = IW_MODE_MONITOR; 6083 break; 6084 #endif 6085 default: 6086 case 0: 6087 priv->ieee->iw_mode = IW_MODE_INFRA; 6088 break; 6089 } 6090 6091 if (disable == 1) 6092 priv->status |= STATUS_RF_KILL_SW; 6093 6094 if (channel != 0 && 6095 ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) { 6096 priv->config |= CFG_STATIC_CHANNEL; 6097 priv->channel = channel; 6098 } 6099 6100 if (associate) 6101 priv->config |= CFG_ASSOCIATE; 6102 6103 priv->beacon_interval = DEFAULT_BEACON_INTERVAL; 6104 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT; 6105 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT; 6106 priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED; 6107 priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED; 6108 priv->tx_power = IPW_TX_POWER_DEFAULT; 6109 priv->tx_rates = DEFAULT_TX_RATES; 6110 6111 strcpy(priv->nick, "ipw2100"); 6112 6113 spin_lock_init(&priv->low_lock); 6114 mutex_init(&priv->action_mutex); 6115 mutex_init(&priv->adapter_mutex); 6116 6117 init_waitqueue_head(&priv->wait_command_queue); 6118 6119 netif_carrier_off(dev); 6120 6121 INIT_LIST_HEAD(&priv->msg_free_list); 6122 INIT_LIST_HEAD(&priv->msg_pend_list); 6123 INIT_STAT(&priv->msg_free_stat); 6124 INIT_STAT(&priv->msg_pend_stat); 6125 6126 INIT_LIST_HEAD(&priv->tx_free_list); 6127 INIT_LIST_HEAD(&priv->tx_pend_list); 6128 INIT_STAT(&priv->tx_free_stat); 6129 INIT_STAT(&priv->tx_pend_stat); 6130 6131 INIT_LIST_HEAD(&priv->fw_pend_list); 6132 INIT_STAT(&priv->fw_pend_stat); 6133 6134 INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter); 6135 INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work); 6136 INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work); 6137 INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check); 6138 INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill); 6139 INIT_DELAYED_WORK(&priv->scan_event, ipw2100_scan_event); 6140 6141 tasklet_init(&priv->irq_tasklet, 6142 ipw2100_irq_tasklet, (unsigned long)priv); 6143 6144 /* NOTE: We do not start the deferred work for status checks yet */ 6145 priv->stop_rf_kill = 1; 6146 priv->stop_hang_check = 1; 6147 6148 return dev; 6149 } 6150 6151 static int ipw2100_pci_init_one(struct pci_dev *pci_dev, 6152 const struct pci_device_id *ent) 6153 { 6154 void __iomem *ioaddr; 6155 struct net_device *dev = NULL; 6156 struct ipw2100_priv *priv = NULL; 6157 int err = 0; 6158 int registered = 0; 6159 u32 val; 6160 6161 IPW_DEBUG_INFO("enter\n"); 6162 6163 if (!(pci_resource_flags(pci_dev, 0) & IORESOURCE_MEM)) { 6164 IPW_DEBUG_INFO("weird - resource type is not memory\n"); 6165 err = -ENODEV; 6166 goto out; 6167 } 6168 6169 ioaddr = pci_iomap(pci_dev, 0, 0); 6170 if (!ioaddr) { 6171 printk(KERN_WARNING DRV_NAME 6172 "Error calling ioremap.\n"); 6173 err = -EIO; 6174 goto fail; 6175 } 6176 6177 /* allocate and initialize our net_device */ 6178 dev = ipw2100_alloc_device(pci_dev, ioaddr); 6179 if (!dev) { 6180 printk(KERN_WARNING DRV_NAME 6181 "Error calling ipw2100_alloc_device.\n"); 6182 err = -ENOMEM; 6183 goto fail; 6184 } 6185 6186 /* set up PCI mappings for device */ 6187 err = pci_enable_device(pci_dev); 6188 if (err) { 6189 printk(KERN_WARNING DRV_NAME 6190 "Error calling pci_enable_device.\n"); 6191 return err; 6192 } 6193 6194 priv = libipw_priv(dev); 6195 6196 pci_set_master(pci_dev); 6197 pci_set_drvdata(pci_dev, priv); 6198 6199 err = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32)); 6200 if (err) { 6201 printk(KERN_WARNING DRV_NAME 6202 "Error calling pci_set_dma_mask.\n"); 6203 pci_disable_device(pci_dev); 6204 return err; 6205 } 6206 6207 err = pci_request_regions(pci_dev, DRV_NAME); 6208 if (err) { 6209 printk(KERN_WARNING DRV_NAME 6210 "Error calling pci_request_regions.\n"); 6211 pci_disable_device(pci_dev); 6212 return err; 6213 } 6214 6215 /* We disable the RETRY_TIMEOUT register (0x41) to keep 6216 * PCI Tx retries from interfering with C3 CPU state */ 6217 pci_read_config_dword(pci_dev, 0x40, &val); 6218 if ((val & 0x0000ff00) != 0) 6219 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff); 6220 6221 if (!ipw2100_hw_is_adapter_in_system(dev)) { 6222 printk(KERN_WARNING DRV_NAME 6223 "Device not found via register read.\n"); 6224 err = -ENODEV; 6225 goto fail; 6226 } 6227 6228 SET_NETDEV_DEV(dev, &pci_dev->dev); 6229 6230 /* Force interrupts to be shut off on the device */ 6231 priv->status |= STATUS_INT_ENABLED; 6232 ipw2100_disable_interrupts(priv); 6233 6234 /* Allocate and initialize the Tx/Rx queues and lists */ 6235 if (ipw2100_queues_allocate(priv)) { 6236 printk(KERN_WARNING DRV_NAME 6237 "Error calling ipw2100_queues_allocate.\n"); 6238 err = -ENOMEM; 6239 goto fail; 6240 } 6241 ipw2100_queues_initialize(priv); 6242 6243 err = request_irq(pci_dev->irq, 6244 ipw2100_interrupt, IRQF_SHARED, dev->name, priv); 6245 if (err) { 6246 printk(KERN_WARNING DRV_NAME 6247 "Error calling request_irq: %d.\n", pci_dev->irq); 6248 goto fail; 6249 } 6250 dev->irq = pci_dev->irq; 6251 6252 IPW_DEBUG_INFO("Attempting to register device...\n"); 6253 6254 printk(KERN_INFO DRV_NAME 6255 ": Detected Intel PRO/Wireless 2100 Network Connection\n"); 6256 6257 err = ipw2100_up(priv, 1); 6258 if (err) 6259 goto fail; 6260 6261 err = ipw2100_wdev_init(dev); 6262 if (err) 6263 goto fail; 6264 registered = 1; 6265 6266 /* Bring up the interface. Pre 0.46, after we registered the 6267 * network device we would call ipw2100_up. This introduced a race 6268 * condition with newer hotplug configurations (network was coming 6269 * up and making calls before the device was initialized). 6270 */ 6271 err = register_netdev(dev); 6272 if (err) { 6273 printk(KERN_WARNING DRV_NAME 6274 "Error calling register_netdev.\n"); 6275 goto fail; 6276 } 6277 registered = 2; 6278 6279 mutex_lock(&priv->action_mutex); 6280 6281 IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev)); 6282 6283 /* perform this after register_netdev so that dev->name is set */ 6284 err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group); 6285 if (err) 6286 goto fail_unlock; 6287 6288 /* If the RF Kill switch is disabled, go ahead and complete the 6289 * startup sequence */ 6290 if (!(priv->status & STATUS_RF_KILL_MASK)) { 6291 /* Enable the adapter - sends HOST_COMPLETE */ 6292 if (ipw2100_enable_adapter(priv)) { 6293 printk(KERN_WARNING DRV_NAME 6294 ": %s: failed in call to enable adapter.\n", 6295 priv->net_dev->name); 6296 ipw2100_hw_stop_adapter(priv); 6297 err = -EIO; 6298 goto fail_unlock; 6299 } 6300 6301 /* Start a scan . . . */ 6302 ipw2100_set_scan_options(priv); 6303 ipw2100_start_scan(priv); 6304 } 6305 6306 IPW_DEBUG_INFO("exit\n"); 6307 6308 priv->status |= STATUS_INITIALIZED; 6309 6310 mutex_unlock(&priv->action_mutex); 6311 out: 6312 return err; 6313 6314 fail_unlock: 6315 mutex_unlock(&priv->action_mutex); 6316 fail: 6317 if (dev) { 6318 if (registered >= 2) 6319 unregister_netdev(dev); 6320 6321 if (registered) { 6322 wiphy_unregister(priv->ieee->wdev.wiphy); 6323 kfree(priv->ieee->bg_band.channels); 6324 } 6325 6326 ipw2100_hw_stop_adapter(priv); 6327 6328 ipw2100_disable_interrupts(priv); 6329 6330 if (dev->irq) 6331 free_irq(dev->irq, priv); 6332 6333 ipw2100_kill_works(priv); 6334 6335 /* These are safe to call even if they weren't allocated */ 6336 ipw2100_queues_free(priv); 6337 sysfs_remove_group(&pci_dev->dev.kobj, 6338 &ipw2100_attribute_group); 6339 6340 free_libipw(dev, 0); 6341 } 6342 6343 pci_iounmap(pci_dev, ioaddr); 6344 6345 pci_release_regions(pci_dev); 6346 pci_disable_device(pci_dev); 6347 goto out; 6348 } 6349 6350 static void ipw2100_pci_remove_one(struct pci_dev *pci_dev) 6351 { 6352 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev); 6353 struct net_device *dev = priv->net_dev; 6354 6355 mutex_lock(&priv->action_mutex); 6356 6357 priv->status &= ~STATUS_INITIALIZED; 6358 6359 sysfs_remove_group(&pci_dev->dev.kobj, &ipw2100_attribute_group); 6360 6361 #ifdef CONFIG_PM 6362 if (ipw2100_firmware.version) 6363 ipw2100_release_firmware(priv, &ipw2100_firmware); 6364 #endif 6365 /* Take down the hardware */ 6366 ipw2100_down(priv); 6367 6368 /* Release the mutex so that the network subsystem can 6369 * complete any needed calls into the driver... */ 6370 mutex_unlock(&priv->action_mutex); 6371 6372 /* Unregister the device first - this results in close() 6373 * being called if the device is open. If we free storage 6374 * first, then close() will crash. 6375 * FIXME: remove the comment above. */ 6376 unregister_netdev(dev); 6377 6378 ipw2100_kill_works(priv); 6379 6380 ipw2100_queues_free(priv); 6381 6382 /* Free potential debugging firmware snapshot */ 6383 ipw2100_snapshot_free(priv); 6384 6385 free_irq(dev->irq, priv); 6386 6387 pci_iounmap(pci_dev, priv->ioaddr); 6388 6389 /* wiphy_unregister needs to be here, before free_libipw */ 6390 wiphy_unregister(priv->ieee->wdev.wiphy); 6391 kfree(priv->ieee->bg_band.channels); 6392 free_libipw(dev, 0); 6393 6394 pci_release_regions(pci_dev); 6395 pci_disable_device(pci_dev); 6396 6397 IPW_DEBUG_INFO("exit\n"); 6398 } 6399 6400 #ifdef CONFIG_PM 6401 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state) 6402 { 6403 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev); 6404 struct net_device *dev = priv->net_dev; 6405 6406 IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name); 6407 6408 mutex_lock(&priv->action_mutex); 6409 if (priv->status & STATUS_INITIALIZED) { 6410 /* Take down the device; powers it off, etc. */ 6411 ipw2100_down(priv); 6412 } 6413 6414 /* Remove the PRESENT state of the device */ 6415 netif_device_detach(dev); 6416 6417 pci_save_state(pci_dev); 6418 pci_disable_device(pci_dev); 6419 pci_set_power_state(pci_dev, PCI_D3hot); 6420 6421 priv->suspend_at = ktime_get_boottime_seconds(); 6422 6423 mutex_unlock(&priv->action_mutex); 6424 6425 return 0; 6426 } 6427 6428 static int ipw2100_resume(struct pci_dev *pci_dev) 6429 { 6430 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev); 6431 struct net_device *dev = priv->net_dev; 6432 int err; 6433 u32 val; 6434 6435 if (IPW2100_PM_DISABLED) 6436 return 0; 6437 6438 mutex_lock(&priv->action_mutex); 6439 6440 IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name); 6441 6442 pci_set_power_state(pci_dev, PCI_D0); 6443 err = pci_enable_device(pci_dev); 6444 if (err) { 6445 printk(KERN_ERR "%s: pci_enable_device failed on resume\n", 6446 dev->name); 6447 mutex_unlock(&priv->action_mutex); 6448 return err; 6449 } 6450 pci_restore_state(pci_dev); 6451 6452 /* 6453 * Suspend/Resume resets the PCI configuration space, so we have to 6454 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries 6455 * from interfering with C3 CPU state. pci_restore_state won't help 6456 * here since it only restores the first 64 bytes pci config header. 6457 */ 6458 pci_read_config_dword(pci_dev, 0x40, &val); 6459 if ((val & 0x0000ff00) != 0) 6460 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff); 6461 6462 /* Set the device back into the PRESENT state; this will also wake 6463 * the queue of needed */ 6464 netif_device_attach(dev); 6465 6466 priv->suspend_time = ktime_get_boottime_seconds() - priv->suspend_at; 6467 6468 /* Bring the device back up */ 6469 if (!(priv->status & STATUS_RF_KILL_SW)) 6470 ipw2100_up(priv, 0); 6471 6472 mutex_unlock(&priv->action_mutex); 6473 6474 return 0; 6475 } 6476 #endif 6477 6478 static void ipw2100_shutdown(struct pci_dev *pci_dev) 6479 { 6480 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev); 6481 6482 /* Take down the device; powers it off, etc. */ 6483 ipw2100_down(priv); 6484 6485 pci_disable_device(pci_dev); 6486 } 6487 6488 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x } 6489 6490 static const struct pci_device_id ipw2100_pci_id_table[] = { 6491 IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */ 6492 IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */ 6493 IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */ 6494 IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */ 6495 IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */ 6496 IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */ 6497 IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */ 6498 IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */ 6499 IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */ 6500 IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */ 6501 IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */ 6502 IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */ 6503 IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */ 6504 6505 IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */ 6506 IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */ 6507 IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */ 6508 IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */ 6509 IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */ 6510 6511 IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */ 6512 IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */ 6513 IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */ 6514 IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */ 6515 IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */ 6516 IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */ 6517 IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */ 6518 6519 IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */ 6520 6521 IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */ 6522 IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */ 6523 IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */ 6524 IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */ 6525 IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */ 6526 IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */ 6527 IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */ 6528 6529 IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */ 6530 IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */ 6531 IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */ 6532 IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */ 6533 IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */ 6534 IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */ 6535 6536 IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */ 6537 {0,}, 6538 }; 6539 6540 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table); 6541 6542 static struct pci_driver ipw2100_pci_driver = { 6543 .name = DRV_NAME, 6544 .id_table = ipw2100_pci_id_table, 6545 .probe = ipw2100_pci_init_one, 6546 .remove = ipw2100_pci_remove_one, 6547 #ifdef CONFIG_PM 6548 .suspend = ipw2100_suspend, 6549 .resume = ipw2100_resume, 6550 #endif 6551 .shutdown = ipw2100_shutdown, 6552 }; 6553 6554 /** 6555 * Initialize the ipw2100 driver/module 6556 * 6557 * @returns 0 if ok, < 0 errno node con error. 6558 * 6559 * Note: we cannot init the /proc stuff until the PCI driver is there, 6560 * or we risk an unlikely race condition on someone accessing 6561 * uninitialized data in the PCI dev struct through /proc. 6562 */ 6563 static int __init ipw2100_init(void) 6564 { 6565 int ret; 6566 6567 printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION); 6568 printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT); 6569 6570 cpu_latency_qos_add_request(&ipw2100_pm_qos_req, PM_QOS_DEFAULT_VALUE); 6571 6572 ret = pci_register_driver(&ipw2100_pci_driver); 6573 if (ret) 6574 goto out; 6575 6576 #ifdef CONFIG_IPW2100_DEBUG 6577 ipw2100_debug_level = debug; 6578 ret = driver_create_file(&ipw2100_pci_driver.driver, 6579 &driver_attr_debug_level); 6580 #endif 6581 6582 out: 6583 return ret; 6584 } 6585 6586 /** 6587 * Cleanup ipw2100 driver registration 6588 */ 6589 static void __exit ipw2100_exit(void) 6590 { 6591 /* FIXME: IPG: check that we have no instances of the devices open */ 6592 #ifdef CONFIG_IPW2100_DEBUG 6593 driver_remove_file(&ipw2100_pci_driver.driver, 6594 &driver_attr_debug_level); 6595 #endif 6596 pci_unregister_driver(&ipw2100_pci_driver); 6597 cpu_latency_qos_remove_request(&ipw2100_pm_qos_req); 6598 } 6599 6600 module_init(ipw2100_init); 6601 module_exit(ipw2100_exit); 6602 6603 static int ipw2100_wx_get_name(struct net_device *dev, 6604 struct iw_request_info *info, 6605 union iwreq_data *wrqu, char *extra) 6606 { 6607 /* 6608 * This can be called at any time. No action lock required 6609 */ 6610 6611 struct ipw2100_priv *priv = libipw_priv(dev); 6612 if (!(priv->status & STATUS_ASSOCIATED)) 6613 strcpy(wrqu->name, "unassociated"); 6614 else 6615 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b"); 6616 6617 IPW_DEBUG_WX("Name: %s\n", wrqu->name); 6618 return 0; 6619 } 6620 6621 static int ipw2100_wx_set_freq(struct net_device *dev, 6622 struct iw_request_info *info, 6623 union iwreq_data *wrqu, char *extra) 6624 { 6625 struct ipw2100_priv *priv = libipw_priv(dev); 6626 struct iw_freq *fwrq = &wrqu->freq; 6627 int err = 0; 6628 6629 if (priv->ieee->iw_mode == IW_MODE_INFRA) 6630 return -EOPNOTSUPP; 6631 6632 mutex_lock(&priv->action_mutex); 6633 if (!(priv->status & STATUS_INITIALIZED)) { 6634 err = -EIO; 6635 goto done; 6636 } 6637 6638 /* if setting by freq convert to channel */ 6639 if (fwrq->e == 1) { 6640 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) { 6641 int f = fwrq->m / 100000; 6642 int c = 0; 6643 6644 while ((c < REG_MAX_CHANNEL) && 6645 (f != ipw2100_frequencies[c])) 6646 c++; 6647 6648 /* hack to fall through */ 6649 fwrq->e = 0; 6650 fwrq->m = c + 1; 6651 } 6652 } 6653 6654 if (fwrq->e > 0 || fwrq->m > 1000) { 6655 err = -EOPNOTSUPP; 6656 goto done; 6657 } else { /* Set the channel */ 6658 IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m); 6659 err = ipw2100_set_channel(priv, fwrq->m, 0); 6660 } 6661 6662 done: 6663 mutex_unlock(&priv->action_mutex); 6664 return err; 6665 } 6666 6667 static int ipw2100_wx_get_freq(struct net_device *dev, 6668 struct iw_request_info *info, 6669 union iwreq_data *wrqu, char *extra) 6670 { 6671 /* 6672 * This can be called at any time. No action lock required 6673 */ 6674 6675 struct ipw2100_priv *priv = libipw_priv(dev); 6676 6677 wrqu->freq.e = 0; 6678 6679 /* If we are associated, trying to associate, or have a statically 6680 * configured CHANNEL then return that; otherwise return ANY */ 6681 if (priv->config & CFG_STATIC_CHANNEL || 6682 priv->status & STATUS_ASSOCIATED) 6683 wrqu->freq.m = priv->channel; 6684 else 6685 wrqu->freq.m = 0; 6686 6687 IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel); 6688 return 0; 6689 6690 } 6691 6692 static int ipw2100_wx_set_mode(struct net_device *dev, 6693 struct iw_request_info *info, 6694 union iwreq_data *wrqu, char *extra) 6695 { 6696 struct ipw2100_priv *priv = libipw_priv(dev); 6697 int err = 0; 6698 6699 IPW_DEBUG_WX("SET Mode -> %d\n", wrqu->mode); 6700 6701 if (wrqu->mode == priv->ieee->iw_mode) 6702 return 0; 6703 6704 mutex_lock(&priv->action_mutex); 6705 if (!(priv->status & STATUS_INITIALIZED)) { 6706 err = -EIO; 6707 goto done; 6708 } 6709 6710 switch (wrqu->mode) { 6711 #ifdef CONFIG_IPW2100_MONITOR 6712 case IW_MODE_MONITOR: 6713 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR); 6714 break; 6715 #endif /* CONFIG_IPW2100_MONITOR */ 6716 case IW_MODE_ADHOC: 6717 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC); 6718 break; 6719 case IW_MODE_INFRA: 6720 case IW_MODE_AUTO: 6721 default: 6722 err = ipw2100_switch_mode(priv, IW_MODE_INFRA); 6723 break; 6724 } 6725 6726 done: 6727 mutex_unlock(&priv->action_mutex); 6728 return err; 6729 } 6730 6731 static int ipw2100_wx_get_mode(struct net_device *dev, 6732 struct iw_request_info *info, 6733 union iwreq_data *wrqu, char *extra) 6734 { 6735 /* 6736 * This can be called at any time. No action lock required 6737 */ 6738 6739 struct ipw2100_priv *priv = libipw_priv(dev); 6740 6741 wrqu->mode = priv->ieee->iw_mode; 6742 IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode); 6743 6744 return 0; 6745 } 6746 6747 #define POWER_MODES 5 6748 6749 /* Values are in microsecond */ 6750 static const s32 timeout_duration[POWER_MODES] = { 6751 350000, 6752 250000, 6753 75000, 6754 37000, 6755 25000, 6756 }; 6757 6758 static const s32 period_duration[POWER_MODES] = { 6759 400000, 6760 700000, 6761 1000000, 6762 1000000, 6763 1000000 6764 }; 6765 6766 static int ipw2100_wx_get_range(struct net_device *dev, 6767 struct iw_request_info *info, 6768 union iwreq_data *wrqu, char *extra) 6769 { 6770 /* 6771 * This can be called at any time. No action lock required 6772 */ 6773 6774 struct ipw2100_priv *priv = libipw_priv(dev); 6775 struct iw_range *range = (struct iw_range *)extra; 6776 u16 val; 6777 int i, level; 6778 6779 wrqu->data.length = sizeof(*range); 6780 memset(range, 0, sizeof(*range)); 6781 6782 /* Let's try to keep this struct in the same order as in 6783 * linux/include/wireless.h 6784 */ 6785 6786 /* TODO: See what values we can set, and remove the ones we can't 6787 * set, or fill them with some default data. 6788 */ 6789 6790 /* ~5 Mb/s real (802.11b) */ 6791 range->throughput = 5 * 1000 * 1000; 6792 6793 // range->sensitivity; /* signal level threshold range */ 6794 6795 range->max_qual.qual = 100; 6796 /* TODO: Find real max RSSI and stick here */ 6797 range->max_qual.level = 0; 6798 range->max_qual.noise = 0; 6799 range->max_qual.updated = 7; /* Updated all three */ 6800 6801 range->avg_qual.qual = 70; /* > 8% missed beacons is 'bad' */ 6802 /* TODO: Find real 'good' to 'bad' threshold value for RSSI */ 6803 range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM; 6804 range->avg_qual.noise = 0; 6805 range->avg_qual.updated = 7; /* Updated all three */ 6806 6807 range->num_bitrates = RATE_COUNT; 6808 6809 for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) { 6810 range->bitrate[i] = ipw2100_bg_rates[i].bitrate * 100 * 1000; 6811 } 6812 6813 range->min_rts = MIN_RTS_THRESHOLD; 6814 range->max_rts = MAX_RTS_THRESHOLD; 6815 range->min_frag = MIN_FRAG_THRESHOLD; 6816 range->max_frag = MAX_FRAG_THRESHOLD; 6817 6818 range->min_pmp = period_duration[0]; /* Minimal PM period */ 6819 range->max_pmp = period_duration[POWER_MODES - 1]; /* Maximal PM period */ 6820 range->min_pmt = timeout_duration[POWER_MODES - 1]; /* Minimal PM timeout */ 6821 range->max_pmt = timeout_duration[0]; /* Maximal PM timeout */ 6822 6823 /* How to decode max/min PM period */ 6824 range->pmp_flags = IW_POWER_PERIOD; 6825 /* How to decode max/min PM period */ 6826 range->pmt_flags = IW_POWER_TIMEOUT; 6827 /* What PM options are supported */ 6828 range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD; 6829 6830 range->encoding_size[0] = 5; 6831 range->encoding_size[1] = 13; /* Different token sizes */ 6832 range->num_encoding_sizes = 2; /* Number of entry in the list */ 6833 range->max_encoding_tokens = WEP_KEYS; /* Max number of tokens */ 6834 // range->encoding_login_index; /* token index for login token */ 6835 6836 if (priv->ieee->iw_mode == IW_MODE_ADHOC) { 6837 range->txpower_capa = IW_TXPOW_DBM; 6838 range->num_txpower = IW_MAX_TXPOWER; 6839 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16); 6840 i < IW_MAX_TXPOWER; 6841 i++, level -= 6842 ((IPW_TX_POWER_MAX_DBM - 6843 IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1)) 6844 range->txpower[i] = level / 16; 6845 } else { 6846 range->txpower_capa = 0; 6847 range->num_txpower = 0; 6848 } 6849 6850 /* Set the Wireless Extension versions */ 6851 range->we_version_compiled = WIRELESS_EXT; 6852 range->we_version_source = 18; 6853 6854 // range->retry_capa; /* What retry options are supported */ 6855 // range->retry_flags; /* How to decode max/min retry limit */ 6856 // range->r_time_flags; /* How to decode max/min retry life */ 6857 // range->min_retry; /* Minimal number of retries */ 6858 // range->max_retry; /* Maximal number of retries */ 6859 // range->min_r_time; /* Minimal retry lifetime */ 6860 // range->max_r_time; /* Maximal retry lifetime */ 6861 6862 range->num_channels = FREQ_COUNT; 6863 6864 val = 0; 6865 for (i = 0; i < FREQ_COUNT; i++) { 6866 // TODO: Include only legal frequencies for some countries 6867 // if (local->channel_mask & (1 << i)) { 6868 range->freq[val].i = i + 1; 6869 range->freq[val].m = ipw2100_frequencies[i] * 100000; 6870 range->freq[val].e = 1; 6871 val++; 6872 // } 6873 if (val == IW_MAX_FREQUENCIES) 6874 break; 6875 } 6876 range->num_frequency = val; 6877 6878 /* Event capability (kernel + driver) */ 6879 range->event_capa[0] = (IW_EVENT_CAPA_K_0 | 6880 IW_EVENT_CAPA_MASK(SIOCGIWAP)); 6881 range->event_capa[1] = IW_EVENT_CAPA_K_1; 6882 6883 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 | 6884 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP; 6885 6886 IPW_DEBUG_WX("GET Range\n"); 6887 6888 return 0; 6889 } 6890 6891 static int ipw2100_wx_set_wap(struct net_device *dev, 6892 struct iw_request_info *info, 6893 union iwreq_data *wrqu, char *extra) 6894 { 6895 struct ipw2100_priv *priv = libipw_priv(dev); 6896 int err = 0; 6897 6898 // sanity checks 6899 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER) 6900 return -EINVAL; 6901 6902 mutex_lock(&priv->action_mutex); 6903 if (!(priv->status & STATUS_INITIALIZED)) { 6904 err = -EIO; 6905 goto done; 6906 } 6907 6908 if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) || 6909 is_zero_ether_addr(wrqu->ap_addr.sa_data)) { 6910 /* we disable mandatory BSSID association */ 6911 IPW_DEBUG_WX("exit - disable mandatory BSSID\n"); 6912 priv->config &= ~CFG_STATIC_BSSID; 6913 err = ipw2100_set_mandatory_bssid(priv, NULL, 0); 6914 goto done; 6915 } 6916 6917 priv->config |= CFG_STATIC_BSSID; 6918 memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN); 6919 6920 err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0); 6921 6922 IPW_DEBUG_WX("SET BSSID -> %pM\n", wrqu->ap_addr.sa_data); 6923 6924 done: 6925 mutex_unlock(&priv->action_mutex); 6926 return err; 6927 } 6928 6929 static int ipw2100_wx_get_wap(struct net_device *dev, 6930 struct iw_request_info *info, 6931 union iwreq_data *wrqu, char *extra) 6932 { 6933 /* 6934 * This can be called at any time. No action lock required 6935 */ 6936 6937 struct ipw2100_priv *priv = libipw_priv(dev); 6938 6939 /* If we are associated, trying to associate, or have a statically 6940 * configured BSSID then return that; otherwise return ANY */ 6941 if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) { 6942 wrqu->ap_addr.sa_family = ARPHRD_ETHER; 6943 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN); 6944 } else 6945 eth_zero_addr(wrqu->ap_addr.sa_data); 6946 6947 IPW_DEBUG_WX("Getting WAP BSSID: %pM\n", wrqu->ap_addr.sa_data); 6948 return 0; 6949 } 6950 6951 static int ipw2100_wx_set_essid(struct net_device *dev, 6952 struct iw_request_info *info, 6953 union iwreq_data *wrqu, char *extra) 6954 { 6955 struct ipw2100_priv *priv = libipw_priv(dev); 6956 char *essid = ""; /* ANY */ 6957 int length = 0; 6958 int err = 0; 6959 6960 mutex_lock(&priv->action_mutex); 6961 if (!(priv->status & STATUS_INITIALIZED)) { 6962 err = -EIO; 6963 goto done; 6964 } 6965 6966 if (wrqu->essid.flags && wrqu->essid.length) { 6967 length = wrqu->essid.length; 6968 essid = extra; 6969 } 6970 6971 if (length == 0) { 6972 IPW_DEBUG_WX("Setting ESSID to ANY\n"); 6973 priv->config &= ~CFG_STATIC_ESSID; 6974 err = ipw2100_set_essid(priv, NULL, 0, 0); 6975 goto done; 6976 } 6977 6978 length = min(length, IW_ESSID_MAX_SIZE); 6979 6980 priv->config |= CFG_STATIC_ESSID; 6981 6982 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) { 6983 IPW_DEBUG_WX("ESSID set to current ESSID.\n"); 6984 err = 0; 6985 goto done; 6986 } 6987 6988 IPW_DEBUG_WX("Setting ESSID: '%*pE' (%d)\n", length, essid, length); 6989 6990 priv->essid_len = length; 6991 memcpy(priv->essid, essid, priv->essid_len); 6992 6993 err = ipw2100_set_essid(priv, essid, length, 0); 6994 6995 done: 6996 mutex_unlock(&priv->action_mutex); 6997 return err; 6998 } 6999 7000 static int ipw2100_wx_get_essid(struct net_device *dev, 7001 struct iw_request_info *info, 7002 union iwreq_data *wrqu, char *extra) 7003 { 7004 /* 7005 * This can be called at any time. No action lock required 7006 */ 7007 7008 struct ipw2100_priv *priv = libipw_priv(dev); 7009 7010 /* If we are associated, trying to associate, or have a statically 7011 * configured ESSID then return that; otherwise return ANY */ 7012 if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) { 7013 IPW_DEBUG_WX("Getting essid: '%*pE'\n", 7014 priv->essid_len, priv->essid); 7015 memcpy(extra, priv->essid, priv->essid_len); 7016 wrqu->essid.length = priv->essid_len; 7017 wrqu->essid.flags = 1; /* active */ 7018 } else { 7019 IPW_DEBUG_WX("Getting essid: ANY\n"); 7020 wrqu->essid.length = 0; 7021 wrqu->essid.flags = 0; /* active */ 7022 } 7023 7024 return 0; 7025 } 7026 7027 static int ipw2100_wx_set_nick(struct net_device *dev, 7028 struct iw_request_info *info, 7029 union iwreq_data *wrqu, char *extra) 7030 { 7031 /* 7032 * This can be called at any time. No action lock required 7033 */ 7034 7035 struct ipw2100_priv *priv = libipw_priv(dev); 7036 7037 if (wrqu->data.length > IW_ESSID_MAX_SIZE) 7038 return -E2BIG; 7039 7040 wrqu->data.length = min_t(size_t, wrqu->data.length, sizeof(priv->nick)); 7041 memset(priv->nick, 0, sizeof(priv->nick)); 7042 memcpy(priv->nick, extra, wrqu->data.length); 7043 7044 IPW_DEBUG_WX("SET Nickname -> %s\n", priv->nick); 7045 7046 return 0; 7047 } 7048 7049 static int ipw2100_wx_get_nick(struct net_device *dev, 7050 struct iw_request_info *info, 7051 union iwreq_data *wrqu, char *extra) 7052 { 7053 /* 7054 * This can be called at any time. No action lock required 7055 */ 7056 7057 struct ipw2100_priv *priv = libipw_priv(dev); 7058 7059 wrqu->data.length = strlen(priv->nick); 7060 memcpy(extra, priv->nick, wrqu->data.length); 7061 wrqu->data.flags = 1; /* active */ 7062 7063 IPW_DEBUG_WX("GET Nickname -> %s\n", extra); 7064 7065 return 0; 7066 } 7067 7068 static int ipw2100_wx_set_rate(struct net_device *dev, 7069 struct iw_request_info *info, 7070 union iwreq_data *wrqu, char *extra) 7071 { 7072 struct ipw2100_priv *priv = libipw_priv(dev); 7073 u32 target_rate = wrqu->bitrate.value; 7074 u32 rate; 7075 int err = 0; 7076 7077 mutex_lock(&priv->action_mutex); 7078 if (!(priv->status & STATUS_INITIALIZED)) { 7079 err = -EIO; 7080 goto done; 7081 } 7082 7083 rate = 0; 7084 7085 if (target_rate == 1000000 || 7086 (!wrqu->bitrate.fixed && target_rate > 1000000)) 7087 rate |= TX_RATE_1_MBIT; 7088 if (target_rate == 2000000 || 7089 (!wrqu->bitrate.fixed && target_rate > 2000000)) 7090 rate |= TX_RATE_2_MBIT; 7091 if (target_rate == 5500000 || 7092 (!wrqu->bitrate.fixed && target_rate > 5500000)) 7093 rate |= TX_RATE_5_5_MBIT; 7094 if (target_rate == 11000000 || 7095 (!wrqu->bitrate.fixed && target_rate > 11000000)) 7096 rate |= TX_RATE_11_MBIT; 7097 if (rate == 0) 7098 rate = DEFAULT_TX_RATES; 7099 7100 err = ipw2100_set_tx_rates(priv, rate, 0); 7101 7102 IPW_DEBUG_WX("SET Rate -> %04X\n", rate); 7103 done: 7104 mutex_unlock(&priv->action_mutex); 7105 return err; 7106 } 7107 7108 static int ipw2100_wx_get_rate(struct net_device *dev, 7109 struct iw_request_info *info, 7110 union iwreq_data *wrqu, char *extra) 7111 { 7112 struct ipw2100_priv *priv = libipw_priv(dev); 7113 int val; 7114 unsigned int len = sizeof(val); 7115 int err = 0; 7116 7117 if (!(priv->status & STATUS_ENABLED) || 7118 priv->status & STATUS_RF_KILL_MASK || 7119 !(priv->status & STATUS_ASSOCIATED)) { 7120 wrqu->bitrate.value = 0; 7121 return 0; 7122 } 7123 7124 mutex_lock(&priv->action_mutex); 7125 if (!(priv->status & STATUS_INITIALIZED)) { 7126 err = -EIO; 7127 goto done; 7128 } 7129 7130 err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len); 7131 if (err) { 7132 IPW_DEBUG_WX("failed querying ordinals.\n"); 7133 goto done; 7134 } 7135 7136 switch (val & TX_RATE_MASK) { 7137 case TX_RATE_1_MBIT: 7138 wrqu->bitrate.value = 1000000; 7139 break; 7140 case TX_RATE_2_MBIT: 7141 wrqu->bitrate.value = 2000000; 7142 break; 7143 case TX_RATE_5_5_MBIT: 7144 wrqu->bitrate.value = 5500000; 7145 break; 7146 case TX_RATE_11_MBIT: 7147 wrqu->bitrate.value = 11000000; 7148 break; 7149 default: 7150 wrqu->bitrate.value = 0; 7151 } 7152 7153 IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value); 7154 7155 done: 7156 mutex_unlock(&priv->action_mutex); 7157 return err; 7158 } 7159 7160 static int ipw2100_wx_set_rts(struct net_device *dev, 7161 struct iw_request_info *info, 7162 union iwreq_data *wrqu, char *extra) 7163 { 7164 struct ipw2100_priv *priv = libipw_priv(dev); 7165 int value, err; 7166 7167 /* Auto RTS not yet supported */ 7168 if (wrqu->rts.fixed == 0) 7169 return -EINVAL; 7170 7171 mutex_lock(&priv->action_mutex); 7172 if (!(priv->status & STATUS_INITIALIZED)) { 7173 err = -EIO; 7174 goto done; 7175 } 7176 7177 if (wrqu->rts.disabled) 7178 value = priv->rts_threshold | RTS_DISABLED; 7179 else { 7180 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) { 7181 err = -EINVAL; 7182 goto done; 7183 } 7184 value = wrqu->rts.value; 7185 } 7186 7187 err = ipw2100_set_rts_threshold(priv, value); 7188 7189 IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X\n", value); 7190 done: 7191 mutex_unlock(&priv->action_mutex); 7192 return err; 7193 } 7194 7195 static int ipw2100_wx_get_rts(struct net_device *dev, 7196 struct iw_request_info *info, 7197 union iwreq_data *wrqu, char *extra) 7198 { 7199 /* 7200 * This can be called at any time. No action lock required 7201 */ 7202 7203 struct ipw2100_priv *priv = libipw_priv(dev); 7204 7205 wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED; 7206 wrqu->rts.fixed = 1; /* no auto select */ 7207 7208 /* If RTS is set to the default value, then it is disabled */ 7209 wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0; 7210 7211 IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X\n", wrqu->rts.value); 7212 7213 return 0; 7214 } 7215 7216 static int ipw2100_wx_set_txpow(struct net_device *dev, 7217 struct iw_request_info *info, 7218 union iwreq_data *wrqu, char *extra) 7219 { 7220 struct ipw2100_priv *priv = libipw_priv(dev); 7221 int err = 0, value; 7222 7223 if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled)) 7224 return -EINPROGRESS; 7225 7226 if (priv->ieee->iw_mode != IW_MODE_ADHOC) 7227 return 0; 7228 7229 if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM) 7230 return -EINVAL; 7231 7232 if (wrqu->txpower.fixed == 0) 7233 value = IPW_TX_POWER_DEFAULT; 7234 else { 7235 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM || 7236 wrqu->txpower.value > IPW_TX_POWER_MAX_DBM) 7237 return -EINVAL; 7238 7239 value = wrqu->txpower.value; 7240 } 7241 7242 mutex_lock(&priv->action_mutex); 7243 if (!(priv->status & STATUS_INITIALIZED)) { 7244 err = -EIO; 7245 goto done; 7246 } 7247 7248 err = ipw2100_set_tx_power(priv, value); 7249 7250 IPW_DEBUG_WX("SET TX Power -> %d\n", value); 7251 7252 done: 7253 mutex_unlock(&priv->action_mutex); 7254 return err; 7255 } 7256 7257 static int ipw2100_wx_get_txpow(struct net_device *dev, 7258 struct iw_request_info *info, 7259 union iwreq_data *wrqu, char *extra) 7260 { 7261 /* 7262 * This can be called at any time. No action lock required 7263 */ 7264 7265 struct ipw2100_priv *priv = libipw_priv(dev); 7266 7267 wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0; 7268 7269 if (priv->tx_power == IPW_TX_POWER_DEFAULT) { 7270 wrqu->txpower.fixed = 0; 7271 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM; 7272 } else { 7273 wrqu->txpower.fixed = 1; 7274 wrqu->txpower.value = priv->tx_power; 7275 } 7276 7277 wrqu->txpower.flags = IW_TXPOW_DBM; 7278 7279 IPW_DEBUG_WX("GET TX Power -> %d\n", wrqu->txpower.value); 7280 7281 return 0; 7282 } 7283 7284 static int ipw2100_wx_set_frag(struct net_device *dev, 7285 struct iw_request_info *info, 7286 union iwreq_data *wrqu, char *extra) 7287 { 7288 /* 7289 * This can be called at any time. No action lock required 7290 */ 7291 7292 struct ipw2100_priv *priv = libipw_priv(dev); 7293 7294 if (!wrqu->frag.fixed) 7295 return -EINVAL; 7296 7297 if (wrqu->frag.disabled) { 7298 priv->frag_threshold |= FRAG_DISABLED; 7299 priv->ieee->fts = DEFAULT_FTS; 7300 } else { 7301 if (wrqu->frag.value < MIN_FRAG_THRESHOLD || 7302 wrqu->frag.value > MAX_FRAG_THRESHOLD) 7303 return -EINVAL; 7304 7305 priv->ieee->fts = wrqu->frag.value & ~0x1; 7306 priv->frag_threshold = priv->ieee->fts; 7307 } 7308 7309 IPW_DEBUG_WX("SET Frag Threshold -> %d\n", priv->ieee->fts); 7310 7311 return 0; 7312 } 7313 7314 static int ipw2100_wx_get_frag(struct net_device *dev, 7315 struct iw_request_info *info, 7316 union iwreq_data *wrqu, char *extra) 7317 { 7318 /* 7319 * This can be called at any time. No action lock required 7320 */ 7321 7322 struct ipw2100_priv *priv = libipw_priv(dev); 7323 wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED; 7324 wrqu->frag.fixed = 0; /* no auto select */ 7325 wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0; 7326 7327 IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value); 7328 7329 return 0; 7330 } 7331 7332 static int ipw2100_wx_set_retry(struct net_device *dev, 7333 struct iw_request_info *info, 7334 union iwreq_data *wrqu, char *extra) 7335 { 7336 struct ipw2100_priv *priv = libipw_priv(dev); 7337 int err = 0; 7338 7339 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled) 7340 return -EINVAL; 7341 7342 if (!(wrqu->retry.flags & IW_RETRY_LIMIT)) 7343 return 0; 7344 7345 mutex_lock(&priv->action_mutex); 7346 if (!(priv->status & STATUS_INITIALIZED)) { 7347 err = -EIO; 7348 goto done; 7349 } 7350 7351 if (wrqu->retry.flags & IW_RETRY_SHORT) { 7352 err = ipw2100_set_short_retry(priv, wrqu->retry.value); 7353 IPW_DEBUG_WX("SET Short Retry Limit -> %d\n", 7354 wrqu->retry.value); 7355 goto done; 7356 } 7357 7358 if (wrqu->retry.flags & IW_RETRY_LONG) { 7359 err = ipw2100_set_long_retry(priv, wrqu->retry.value); 7360 IPW_DEBUG_WX("SET Long Retry Limit -> %d\n", 7361 wrqu->retry.value); 7362 goto done; 7363 } 7364 7365 err = ipw2100_set_short_retry(priv, wrqu->retry.value); 7366 if (!err) 7367 err = ipw2100_set_long_retry(priv, wrqu->retry.value); 7368 7369 IPW_DEBUG_WX("SET Both Retry Limits -> %d\n", wrqu->retry.value); 7370 7371 done: 7372 mutex_unlock(&priv->action_mutex); 7373 return err; 7374 } 7375 7376 static int ipw2100_wx_get_retry(struct net_device *dev, 7377 struct iw_request_info *info, 7378 union iwreq_data *wrqu, char *extra) 7379 { 7380 /* 7381 * This can be called at any time. No action lock required 7382 */ 7383 7384 struct ipw2100_priv *priv = libipw_priv(dev); 7385 7386 wrqu->retry.disabled = 0; /* can't be disabled */ 7387 7388 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) 7389 return -EINVAL; 7390 7391 if (wrqu->retry.flags & IW_RETRY_LONG) { 7392 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG; 7393 wrqu->retry.value = priv->long_retry_limit; 7394 } else { 7395 wrqu->retry.flags = 7396 (priv->short_retry_limit != 7397 priv->long_retry_limit) ? 7398 IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT; 7399 7400 wrqu->retry.value = priv->short_retry_limit; 7401 } 7402 7403 IPW_DEBUG_WX("GET Retry -> %d\n", wrqu->retry.value); 7404 7405 return 0; 7406 } 7407 7408 static int ipw2100_wx_set_scan(struct net_device *dev, 7409 struct iw_request_info *info, 7410 union iwreq_data *wrqu, char *extra) 7411 { 7412 struct ipw2100_priv *priv = libipw_priv(dev); 7413 int err = 0; 7414 7415 mutex_lock(&priv->action_mutex); 7416 if (!(priv->status & STATUS_INITIALIZED)) { 7417 err = -EIO; 7418 goto done; 7419 } 7420 7421 IPW_DEBUG_WX("Initiating scan...\n"); 7422 7423 priv->user_requested_scan = 1; 7424 if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) { 7425 IPW_DEBUG_WX("Start scan failed.\n"); 7426 7427 /* TODO: Mark a scan as pending so when hardware initialized 7428 * a scan starts */ 7429 } 7430 7431 done: 7432 mutex_unlock(&priv->action_mutex); 7433 return err; 7434 } 7435 7436 static int ipw2100_wx_get_scan(struct net_device *dev, 7437 struct iw_request_info *info, 7438 union iwreq_data *wrqu, char *extra) 7439 { 7440 /* 7441 * This can be called at any time. No action lock required 7442 */ 7443 7444 struct ipw2100_priv *priv = libipw_priv(dev); 7445 return libipw_wx_get_scan(priv->ieee, info, wrqu, extra); 7446 } 7447 7448 /* 7449 * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c 7450 */ 7451 static int ipw2100_wx_set_encode(struct net_device *dev, 7452 struct iw_request_info *info, 7453 union iwreq_data *wrqu, char *key) 7454 { 7455 /* 7456 * No check of STATUS_INITIALIZED required 7457 */ 7458 7459 struct ipw2100_priv *priv = libipw_priv(dev); 7460 return libipw_wx_set_encode(priv->ieee, info, wrqu, key); 7461 } 7462 7463 static int ipw2100_wx_get_encode(struct net_device *dev, 7464 struct iw_request_info *info, 7465 union iwreq_data *wrqu, char *key) 7466 { 7467 /* 7468 * This can be called at any time. No action lock required 7469 */ 7470 7471 struct ipw2100_priv *priv = libipw_priv(dev); 7472 return libipw_wx_get_encode(priv->ieee, info, wrqu, key); 7473 } 7474 7475 static int ipw2100_wx_set_power(struct net_device *dev, 7476 struct iw_request_info *info, 7477 union iwreq_data *wrqu, char *extra) 7478 { 7479 struct ipw2100_priv *priv = libipw_priv(dev); 7480 int err = 0; 7481 7482 mutex_lock(&priv->action_mutex); 7483 if (!(priv->status & STATUS_INITIALIZED)) { 7484 err = -EIO; 7485 goto done; 7486 } 7487 7488 if (wrqu->power.disabled) { 7489 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode); 7490 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM); 7491 IPW_DEBUG_WX("SET Power Management Mode -> off\n"); 7492 goto done; 7493 } 7494 7495 switch (wrqu->power.flags & IW_POWER_MODE) { 7496 case IW_POWER_ON: /* If not specified */ 7497 case IW_POWER_MODE: /* If set all mask */ 7498 case IW_POWER_ALL_R: /* If explicitly state all */ 7499 break; 7500 default: /* Otherwise we don't support it */ 7501 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n", 7502 wrqu->power.flags); 7503 err = -EOPNOTSUPP; 7504 goto done; 7505 } 7506 7507 /* If the user hasn't specified a power management mode yet, default 7508 * to BATTERY */ 7509 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode; 7510 err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode)); 7511 7512 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode); 7513 7514 done: 7515 mutex_unlock(&priv->action_mutex); 7516 return err; 7517 7518 } 7519 7520 static int ipw2100_wx_get_power(struct net_device *dev, 7521 struct iw_request_info *info, 7522 union iwreq_data *wrqu, char *extra) 7523 { 7524 /* 7525 * This can be called at any time. No action lock required 7526 */ 7527 7528 struct ipw2100_priv *priv = libipw_priv(dev); 7529 7530 if (!(priv->power_mode & IPW_POWER_ENABLED)) 7531 wrqu->power.disabled = 1; 7532 else { 7533 wrqu->power.disabled = 0; 7534 wrqu->power.flags = 0; 7535 } 7536 7537 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode); 7538 7539 return 0; 7540 } 7541 7542 /* 7543 * WE-18 WPA support 7544 */ 7545 7546 /* SIOCSIWGENIE */ 7547 static int ipw2100_wx_set_genie(struct net_device *dev, 7548 struct iw_request_info *info, 7549 union iwreq_data *wrqu, char *extra) 7550 { 7551 7552 struct ipw2100_priv *priv = libipw_priv(dev); 7553 struct libipw_device *ieee = priv->ieee; 7554 u8 *buf; 7555 7556 if (!ieee->wpa_enabled) 7557 return -EOPNOTSUPP; 7558 7559 if (wrqu->data.length > MAX_WPA_IE_LEN || 7560 (wrqu->data.length && extra == NULL)) 7561 return -EINVAL; 7562 7563 if (wrqu->data.length) { 7564 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL); 7565 if (buf == NULL) 7566 return -ENOMEM; 7567 7568 kfree(ieee->wpa_ie); 7569 ieee->wpa_ie = buf; 7570 ieee->wpa_ie_len = wrqu->data.length; 7571 } else { 7572 kfree(ieee->wpa_ie); 7573 ieee->wpa_ie = NULL; 7574 ieee->wpa_ie_len = 0; 7575 } 7576 7577 ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len); 7578 7579 return 0; 7580 } 7581 7582 /* SIOCGIWGENIE */ 7583 static int ipw2100_wx_get_genie(struct net_device *dev, 7584 struct iw_request_info *info, 7585 union iwreq_data *wrqu, char *extra) 7586 { 7587 struct ipw2100_priv *priv = libipw_priv(dev); 7588 struct libipw_device *ieee = priv->ieee; 7589 7590 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) { 7591 wrqu->data.length = 0; 7592 return 0; 7593 } 7594 7595 if (wrqu->data.length < ieee->wpa_ie_len) 7596 return -E2BIG; 7597 7598 wrqu->data.length = ieee->wpa_ie_len; 7599 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len); 7600 7601 return 0; 7602 } 7603 7604 /* SIOCSIWAUTH */ 7605 static int ipw2100_wx_set_auth(struct net_device *dev, 7606 struct iw_request_info *info, 7607 union iwreq_data *wrqu, char *extra) 7608 { 7609 struct ipw2100_priv *priv = libipw_priv(dev); 7610 struct libipw_device *ieee = priv->ieee; 7611 struct iw_param *param = &wrqu->param; 7612 struct lib80211_crypt_data *crypt; 7613 unsigned long flags; 7614 int ret = 0; 7615 7616 switch (param->flags & IW_AUTH_INDEX) { 7617 case IW_AUTH_WPA_VERSION: 7618 case IW_AUTH_CIPHER_PAIRWISE: 7619 case IW_AUTH_CIPHER_GROUP: 7620 case IW_AUTH_KEY_MGMT: 7621 /* 7622 * ipw2200 does not use these parameters 7623 */ 7624 break; 7625 7626 case IW_AUTH_TKIP_COUNTERMEASURES: 7627 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx]; 7628 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags) 7629 break; 7630 7631 flags = crypt->ops->get_flags(crypt->priv); 7632 7633 if (param->value) 7634 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES; 7635 else 7636 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES; 7637 7638 crypt->ops->set_flags(flags, crypt->priv); 7639 7640 break; 7641 7642 case IW_AUTH_DROP_UNENCRYPTED:{ 7643 /* HACK: 7644 * 7645 * wpa_supplicant calls set_wpa_enabled when the driver 7646 * is loaded and unloaded, regardless of if WPA is being 7647 * used. No other calls are made which can be used to 7648 * determine if encryption will be used or not prior to 7649 * association being expected. If encryption is not being 7650 * used, drop_unencrypted is set to false, else true -- we 7651 * can use this to determine if the CAP_PRIVACY_ON bit should 7652 * be set. 7653 */ 7654 struct libipw_security sec = { 7655 .flags = SEC_ENABLED, 7656 .enabled = param->value, 7657 }; 7658 priv->ieee->drop_unencrypted = param->value; 7659 /* We only change SEC_LEVEL for open mode. Others 7660 * are set by ipw_wpa_set_encryption. 7661 */ 7662 if (!param->value) { 7663 sec.flags |= SEC_LEVEL; 7664 sec.level = SEC_LEVEL_0; 7665 } else { 7666 sec.flags |= SEC_LEVEL; 7667 sec.level = SEC_LEVEL_1; 7668 } 7669 if (priv->ieee->set_security) 7670 priv->ieee->set_security(priv->ieee->dev, &sec); 7671 break; 7672 } 7673 7674 case IW_AUTH_80211_AUTH_ALG: 7675 ret = ipw2100_wpa_set_auth_algs(priv, param->value); 7676 break; 7677 7678 case IW_AUTH_WPA_ENABLED: 7679 ret = ipw2100_wpa_enable(priv, param->value); 7680 break; 7681 7682 case IW_AUTH_RX_UNENCRYPTED_EAPOL: 7683 ieee->ieee802_1x = param->value; 7684 break; 7685 7686 //case IW_AUTH_ROAMING_CONTROL: 7687 case IW_AUTH_PRIVACY_INVOKED: 7688 ieee->privacy_invoked = param->value; 7689 break; 7690 7691 default: 7692 return -EOPNOTSUPP; 7693 } 7694 return ret; 7695 } 7696 7697 /* SIOCGIWAUTH */ 7698 static int ipw2100_wx_get_auth(struct net_device *dev, 7699 struct iw_request_info *info, 7700 union iwreq_data *wrqu, char *extra) 7701 { 7702 struct ipw2100_priv *priv = libipw_priv(dev); 7703 struct libipw_device *ieee = priv->ieee; 7704 struct lib80211_crypt_data *crypt; 7705 struct iw_param *param = &wrqu->param; 7706 7707 switch (param->flags & IW_AUTH_INDEX) { 7708 case IW_AUTH_WPA_VERSION: 7709 case IW_AUTH_CIPHER_PAIRWISE: 7710 case IW_AUTH_CIPHER_GROUP: 7711 case IW_AUTH_KEY_MGMT: 7712 /* 7713 * wpa_supplicant will control these internally 7714 */ 7715 break; 7716 7717 case IW_AUTH_TKIP_COUNTERMEASURES: 7718 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx]; 7719 if (!crypt || !crypt->ops->get_flags) { 7720 IPW_DEBUG_WARNING("Can't get TKIP countermeasures: " 7721 "crypt not set!\n"); 7722 break; 7723 } 7724 7725 param->value = (crypt->ops->get_flags(crypt->priv) & 7726 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0; 7727 7728 break; 7729 7730 case IW_AUTH_DROP_UNENCRYPTED: 7731 param->value = ieee->drop_unencrypted; 7732 break; 7733 7734 case IW_AUTH_80211_AUTH_ALG: 7735 param->value = priv->ieee->sec.auth_mode; 7736 break; 7737 7738 case IW_AUTH_WPA_ENABLED: 7739 param->value = ieee->wpa_enabled; 7740 break; 7741 7742 case IW_AUTH_RX_UNENCRYPTED_EAPOL: 7743 param->value = ieee->ieee802_1x; 7744 break; 7745 7746 case IW_AUTH_ROAMING_CONTROL: 7747 case IW_AUTH_PRIVACY_INVOKED: 7748 param->value = ieee->privacy_invoked; 7749 break; 7750 7751 default: 7752 return -EOPNOTSUPP; 7753 } 7754 return 0; 7755 } 7756 7757 /* SIOCSIWENCODEEXT */ 7758 static int ipw2100_wx_set_encodeext(struct net_device *dev, 7759 struct iw_request_info *info, 7760 union iwreq_data *wrqu, char *extra) 7761 { 7762 struct ipw2100_priv *priv = libipw_priv(dev); 7763 return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra); 7764 } 7765 7766 /* SIOCGIWENCODEEXT */ 7767 static int ipw2100_wx_get_encodeext(struct net_device *dev, 7768 struct iw_request_info *info, 7769 union iwreq_data *wrqu, char *extra) 7770 { 7771 struct ipw2100_priv *priv = libipw_priv(dev); 7772 return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra); 7773 } 7774 7775 /* SIOCSIWMLME */ 7776 static int ipw2100_wx_set_mlme(struct net_device *dev, 7777 struct iw_request_info *info, 7778 union iwreq_data *wrqu, char *extra) 7779 { 7780 struct ipw2100_priv *priv = libipw_priv(dev); 7781 struct iw_mlme *mlme = (struct iw_mlme *)extra; 7782 7783 switch (mlme->cmd) { 7784 case IW_MLME_DEAUTH: 7785 // silently ignore 7786 break; 7787 7788 case IW_MLME_DISASSOC: 7789 ipw2100_disassociate_bssid(priv); 7790 break; 7791 7792 default: 7793 return -EOPNOTSUPP; 7794 } 7795 return 0; 7796 } 7797 7798 /* 7799 * 7800 * IWPRIV handlers 7801 * 7802 */ 7803 #ifdef CONFIG_IPW2100_MONITOR 7804 static int ipw2100_wx_set_promisc(struct net_device *dev, 7805 struct iw_request_info *info, 7806 union iwreq_data *wrqu, char *extra) 7807 { 7808 struct ipw2100_priv *priv = libipw_priv(dev); 7809 int *parms = (int *)extra; 7810 int enable = (parms[0] > 0); 7811 int err = 0; 7812 7813 mutex_lock(&priv->action_mutex); 7814 if (!(priv->status & STATUS_INITIALIZED)) { 7815 err = -EIO; 7816 goto done; 7817 } 7818 7819 if (enable) { 7820 if (priv->ieee->iw_mode == IW_MODE_MONITOR) { 7821 err = ipw2100_set_channel(priv, parms[1], 0); 7822 goto done; 7823 } 7824 priv->channel = parms[1]; 7825 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR); 7826 } else { 7827 if (priv->ieee->iw_mode == IW_MODE_MONITOR) 7828 err = ipw2100_switch_mode(priv, priv->last_mode); 7829 } 7830 done: 7831 mutex_unlock(&priv->action_mutex); 7832 return err; 7833 } 7834 7835 static int ipw2100_wx_reset(struct net_device *dev, 7836 struct iw_request_info *info, 7837 union iwreq_data *wrqu, char *extra) 7838 { 7839 struct ipw2100_priv *priv = libipw_priv(dev); 7840 if (priv->status & STATUS_INITIALIZED) 7841 schedule_reset(priv); 7842 return 0; 7843 } 7844 7845 #endif 7846 7847 static int ipw2100_wx_set_powermode(struct net_device *dev, 7848 struct iw_request_info *info, 7849 union iwreq_data *wrqu, char *extra) 7850 { 7851 struct ipw2100_priv *priv = libipw_priv(dev); 7852 int err = 0, mode = *(int *)extra; 7853 7854 mutex_lock(&priv->action_mutex); 7855 if (!(priv->status & STATUS_INITIALIZED)) { 7856 err = -EIO; 7857 goto done; 7858 } 7859 7860 if ((mode < 0) || (mode > POWER_MODES)) 7861 mode = IPW_POWER_AUTO; 7862 7863 if (IPW_POWER_LEVEL(priv->power_mode) != mode) 7864 err = ipw2100_set_power_mode(priv, mode); 7865 done: 7866 mutex_unlock(&priv->action_mutex); 7867 return err; 7868 } 7869 7870 #define MAX_POWER_STRING 80 7871 static int ipw2100_wx_get_powermode(struct net_device *dev, 7872 struct iw_request_info *info, 7873 union iwreq_data *wrqu, char *extra) 7874 { 7875 /* 7876 * This can be called at any time. No action lock required 7877 */ 7878 7879 struct ipw2100_priv *priv = libipw_priv(dev); 7880 int level = IPW_POWER_LEVEL(priv->power_mode); 7881 s32 timeout, period; 7882 7883 if (!(priv->power_mode & IPW_POWER_ENABLED)) { 7884 snprintf(extra, MAX_POWER_STRING, 7885 "Power save level: %d (Off)", level); 7886 } else { 7887 switch (level) { 7888 case IPW_POWER_MODE_CAM: 7889 snprintf(extra, MAX_POWER_STRING, 7890 "Power save level: %d (None)", level); 7891 break; 7892 case IPW_POWER_AUTO: 7893 snprintf(extra, MAX_POWER_STRING, 7894 "Power save level: %d (Auto)", level); 7895 break; 7896 default: 7897 timeout = timeout_duration[level - 1] / 1000; 7898 period = period_duration[level - 1] / 1000; 7899 snprintf(extra, MAX_POWER_STRING, 7900 "Power save level: %d " 7901 "(Timeout %dms, Period %dms)", 7902 level, timeout, period); 7903 } 7904 } 7905 7906 wrqu->data.length = strlen(extra) + 1; 7907 7908 return 0; 7909 } 7910 7911 static int ipw2100_wx_set_preamble(struct net_device *dev, 7912 struct iw_request_info *info, 7913 union iwreq_data *wrqu, char *extra) 7914 { 7915 struct ipw2100_priv *priv = libipw_priv(dev); 7916 int err, mode = *(int *)extra; 7917 7918 mutex_lock(&priv->action_mutex); 7919 if (!(priv->status & STATUS_INITIALIZED)) { 7920 err = -EIO; 7921 goto done; 7922 } 7923 7924 if (mode == 1) 7925 priv->config |= CFG_LONG_PREAMBLE; 7926 else if (mode == 0) 7927 priv->config &= ~CFG_LONG_PREAMBLE; 7928 else { 7929 err = -EINVAL; 7930 goto done; 7931 } 7932 7933 err = ipw2100_system_config(priv, 0); 7934 7935 done: 7936 mutex_unlock(&priv->action_mutex); 7937 return err; 7938 } 7939 7940 static int ipw2100_wx_get_preamble(struct net_device *dev, 7941 struct iw_request_info *info, 7942 union iwreq_data *wrqu, char *extra) 7943 { 7944 /* 7945 * This can be called at any time. No action lock required 7946 */ 7947 7948 struct ipw2100_priv *priv = libipw_priv(dev); 7949 7950 if (priv->config & CFG_LONG_PREAMBLE) 7951 snprintf(wrqu->name, IFNAMSIZ, "long (1)"); 7952 else 7953 snprintf(wrqu->name, IFNAMSIZ, "auto (0)"); 7954 7955 return 0; 7956 } 7957 7958 #ifdef CONFIG_IPW2100_MONITOR 7959 static int ipw2100_wx_set_crc_check(struct net_device *dev, 7960 struct iw_request_info *info, 7961 union iwreq_data *wrqu, char *extra) 7962 { 7963 struct ipw2100_priv *priv = libipw_priv(dev); 7964 int err, mode = *(int *)extra; 7965 7966 mutex_lock(&priv->action_mutex); 7967 if (!(priv->status & STATUS_INITIALIZED)) { 7968 err = -EIO; 7969 goto done; 7970 } 7971 7972 if (mode == 1) 7973 priv->config |= CFG_CRC_CHECK; 7974 else if (mode == 0) 7975 priv->config &= ~CFG_CRC_CHECK; 7976 else { 7977 err = -EINVAL; 7978 goto done; 7979 } 7980 err = 0; 7981 7982 done: 7983 mutex_unlock(&priv->action_mutex); 7984 return err; 7985 } 7986 7987 static int ipw2100_wx_get_crc_check(struct net_device *dev, 7988 struct iw_request_info *info, 7989 union iwreq_data *wrqu, char *extra) 7990 { 7991 /* 7992 * This can be called at any time. No action lock required 7993 */ 7994 7995 struct ipw2100_priv *priv = libipw_priv(dev); 7996 7997 if (priv->config & CFG_CRC_CHECK) 7998 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)"); 7999 else 8000 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)"); 8001 8002 return 0; 8003 } 8004 #endif /* CONFIG_IPW2100_MONITOR */ 8005 8006 static iw_handler ipw2100_wx_handlers[] = { 8007 IW_HANDLER(SIOCGIWNAME, ipw2100_wx_get_name), 8008 IW_HANDLER(SIOCSIWFREQ, ipw2100_wx_set_freq), 8009 IW_HANDLER(SIOCGIWFREQ, ipw2100_wx_get_freq), 8010 IW_HANDLER(SIOCSIWMODE, ipw2100_wx_set_mode), 8011 IW_HANDLER(SIOCGIWMODE, ipw2100_wx_get_mode), 8012 IW_HANDLER(SIOCGIWRANGE, ipw2100_wx_get_range), 8013 IW_HANDLER(SIOCSIWAP, ipw2100_wx_set_wap), 8014 IW_HANDLER(SIOCGIWAP, ipw2100_wx_get_wap), 8015 IW_HANDLER(SIOCSIWMLME, ipw2100_wx_set_mlme), 8016 IW_HANDLER(SIOCSIWSCAN, ipw2100_wx_set_scan), 8017 IW_HANDLER(SIOCGIWSCAN, ipw2100_wx_get_scan), 8018 IW_HANDLER(SIOCSIWESSID, ipw2100_wx_set_essid), 8019 IW_HANDLER(SIOCGIWESSID, ipw2100_wx_get_essid), 8020 IW_HANDLER(SIOCSIWNICKN, ipw2100_wx_set_nick), 8021 IW_HANDLER(SIOCGIWNICKN, ipw2100_wx_get_nick), 8022 IW_HANDLER(SIOCSIWRATE, ipw2100_wx_set_rate), 8023 IW_HANDLER(SIOCGIWRATE, ipw2100_wx_get_rate), 8024 IW_HANDLER(SIOCSIWRTS, ipw2100_wx_set_rts), 8025 IW_HANDLER(SIOCGIWRTS, ipw2100_wx_get_rts), 8026 IW_HANDLER(SIOCSIWFRAG, ipw2100_wx_set_frag), 8027 IW_HANDLER(SIOCGIWFRAG, ipw2100_wx_get_frag), 8028 IW_HANDLER(SIOCSIWTXPOW, ipw2100_wx_set_txpow), 8029 IW_HANDLER(SIOCGIWTXPOW, ipw2100_wx_get_txpow), 8030 IW_HANDLER(SIOCSIWRETRY, ipw2100_wx_set_retry), 8031 IW_HANDLER(SIOCGIWRETRY, ipw2100_wx_get_retry), 8032 IW_HANDLER(SIOCSIWENCODE, ipw2100_wx_set_encode), 8033 IW_HANDLER(SIOCGIWENCODE, ipw2100_wx_get_encode), 8034 IW_HANDLER(SIOCSIWPOWER, ipw2100_wx_set_power), 8035 IW_HANDLER(SIOCGIWPOWER, ipw2100_wx_get_power), 8036 IW_HANDLER(SIOCSIWGENIE, ipw2100_wx_set_genie), 8037 IW_HANDLER(SIOCGIWGENIE, ipw2100_wx_get_genie), 8038 IW_HANDLER(SIOCSIWAUTH, ipw2100_wx_set_auth), 8039 IW_HANDLER(SIOCGIWAUTH, ipw2100_wx_get_auth), 8040 IW_HANDLER(SIOCSIWENCODEEXT, ipw2100_wx_set_encodeext), 8041 IW_HANDLER(SIOCGIWENCODEEXT, ipw2100_wx_get_encodeext), 8042 }; 8043 8044 #define IPW2100_PRIV_SET_MONITOR SIOCIWFIRSTPRIV 8045 #define IPW2100_PRIV_RESET SIOCIWFIRSTPRIV+1 8046 #define IPW2100_PRIV_SET_POWER SIOCIWFIRSTPRIV+2 8047 #define IPW2100_PRIV_GET_POWER SIOCIWFIRSTPRIV+3 8048 #define IPW2100_PRIV_SET_LONGPREAMBLE SIOCIWFIRSTPRIV+4 8049 #define IPW2100_PRIV_GET_LONGPREAMBLE SIOCIWFIRSTPRIV+5 8050 #define IPW2100_PRIV_SET_CRC_CHECK SIOCIWFIRSTPRIV+6 8051 #define IPW2100_PRIV_GET_CRC_CHECK SIOCIWFIRSTPRIV+7 8052 8053 static const struct iw_priv_args ipw2100_private_args[] = { 8054 8055 #ifdef CONFIG_IPW2100_MONITOR 8056 { 8057 IPW2100_PRIV_SET_MONITOR, 8058 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"}, 8059 { 8060 IPW2100_PRIV_RESET, 8061 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"}, 8062 #endif /* CONFIG_IPW2100_MONITOR */ 8063 8064 { 8065 IPW2100_PRIV_SET_POWER, 8066 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"}, 8067 { 8068 IPW2100_PRIV_GET_POWER, 8069 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING, 8070 "get_power"}, 8071 { 8072 IPW2100_PRIV_SET_LONGPREAMBLE, 8073 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"}, 8074 { 8075 IPW2100_PRIV_GET_LONGPREAMBLE, 8076 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"}, 8077 #ifdef CONFIG_IPW2100_MONITOR 8078 { 8079 IPW2100_PRIV_SET_CRC_CHECK, 8080 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"}, 8081 { 8082 IPW2100_PRIV_GET_CRC_CHECK, 8083 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"}, 8084 #endif /* CONFIG_IPW2100_MONITOR */ 8085 }; 8086 8087 static iw_handler ipw2100_private_handler[] = { 8088 #ifdef CONFIG_IPW2100_MONITOR 8089 ipw2100_wx_set_promisc, 8090 ipw2100_wx_reset, 8091 #else /* CONFIG_IPW2100_MONITOR */ 8092 NULL, 8093 NULL, 8094 #endif /* CONFIG_IPW2100_MONITOR */ 8095 ipw2100_wx_set_powermode, 8096 ipw2100_wx_get_powermode, 8097 ipw2100_wx_set_preamble, 8098 ipw2100_wx_get_preamble, 8099 #ifdef CONFIG_IPW2100_MONITOR 8100 ipw2100_wx_set_crc_check, 8101 ipw2100_wx_get_crc_check, 8102 #else /* CONFIG_IPW2100_MONITOR */ 8103 NULL, 8104 NULL, 8105 #endif /* CONFIG_IPW2100_MONITOR */ 8106 }; 8107 8108 /* 8109 * Get wireless statistics. 8110 * Called by /proc/net/wireless 8111 * Also called by SIOCGIWSTATS 8112 */ 8113 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev) 8114 { 8115 enum { 8116 POOR = 30, 8117 FAIR = 60, 8118 GOOD = 80, 8119 VERY_GOOD = 90, 8120 EXCELLENT = 95, 8121 PERFECT = 100 8122 }; 8123 int rssi_qual; 8124 int tx_qual; 8125 int beacon_qual; 8126 int quality; 8127 8128 struct ipw2100_priv *priv = libipw_priv(dev); 8129 struct iw_statistics *wstats; 8130 u32 rssi, tx_retries, missed_beacons, tx_failures; 8131 u32 ord_len = sizeof(u32); 8132 8133 if (!priv) 8134 return (struct iw_statistics *)NULL; 8135 8136 wstats = &priv->wstats; 8137 8138 /* if hw is disabled, then ipw2100_get_ordinal() can't be called. 8139 * ipw2100_wx_wireless_stats seems to be called before fw is 8140 * initialized. STATUS_ASSOCIATED will only be set if the hw is up 8141 * and associated; if not associcated, the values are all meaningless 8142 * anyway, so set them all to NULL and INVALID */ 8143 if (!(priv->status & STATUS_ASSOCIATED)) { 8144 wstats->miss.beacon = 0; 8145 wstats->discard.retries = 0; 8146 wstats->qual.qual = 0; 8147 wstats->qual.level = 0; 8148 wstats->qual.noise = 0; 8149 wstats->qual.updated = 7; 8150 wstats->qual.updated |= IW_QUAL_NOISE_INVALID | 8151 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID; 8152 return wstats; 8153 } 8154 8155 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS, 8156 &missed_beacons, &ord_len)) 8157 goto fail_get_ordinal; 8158 8159 /* If we don't have a connection the quality and level is 0 */ 8160 if (!(priv->status & STATUS_ASSOCIATED)) { 8161 wstats->qual.qual = 0; 8162 wstats->qual.level = 0; 8163 } else { 8164 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR, 8165 &rssi, &ord_len)) 8166 goto fail_get_ordinal; 8167 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM; 8168 if (rssi < 10) 8169 rssi_qual = rssi * POOR / 10; 8170 else if (rssi < 15) 8171 rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR; 8172 else if (rssi < 20) 8173 rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR; 8174 else if (rssi < 30) 8175 rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) / 8176 10 + GOOD; 8177 else 8178 rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) / 8179 10 + VERY_GOOD; 8180 8181 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES, 8182 &tx_retries, &ord_len)) 8183 goto fail_get_ordinal; 8184 8185 if (tx_retries > 75) 8186 tx_qual = (90 - tx_retries) * POOR / 15; 8187 else if (tx_retries > 70) 8188 tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR; 8189 else if (tx_retries > 65) 8190 tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR; 8191 else if (tx_retries > 50) 8192 tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) / 8193 15 + GOOD; 8194 else 8195 tx_qual = (50 - tx_retries) * 8196 (PERFECT - VERY_GOOD) / 50 + VERY_GOOD; 8197 8198 if (missed_beacons > 50) 8199 beacon_qual = (60 - missed_beacons) * POOR / 10; 8200 else if (missed_beacons > 40) 8201 beacon_qual = (50 - missed_beacons) * (FAIR - POOR) / 8202 10 + POOR; 8203 else if (missed_beacons > 32) 8204 beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) / 8205 18 + FAIR; 8206 else if (missed_beacons > 20) 8207 beacon_qual = (32 - missed_beacons) * 8208 (VERY_GOOD - GOOD) / 20 + GOOD; 8209 else 8210 beacon_qual = (20 - missed_beacons) * 8211 (PERFECT - VERY_GOOD) / 20 + VERY_GOOD; 8212 8213 quality = min(tx_qual, rssi_qual); 8214 quality = min(beacon_qual, quality); 8215 8216 #ifdef CONFIG_IPW2100_DEBUG 8217 if (beacon_qual == quality) 8218 IPW_DEBUG_WX("Quality clamped by Missed Beacons\n"); 8219 else if (tx_qual == quality) 8220 IPW_DEBUG_WX("Quality clamped by Tx Retries\n"); 8221 else if (quality != 100) 8222 IPW_DEBUG_WX("Quality clamped by Signal Strength\n"); 8223 else 8224 IPW_DEBUG_WX("Quality not clamped.\n"); 8225 #endif 8226 8227 wstats->qual.qual = quality; 8228 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM; 8229 } 8230 8231 wstats->qual.noise = 0; 8232 wstats->qual.updated = 7; 8233 wstats->qual.updated |= IW_QUAL_NOISE_INVALID; 8234 8235 /* FIXME: this is percent and not a # */ 8236 wstats->miss.beacon = missed_beacons; 8237 8238 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES, 8239 &tx_failures, &ord_len)) 8240 goto fail_get_ordinal; 8241 wstats->discard.retries = tx_failures; 8242 8243 return wstats; 8244 8245 fail_get_ordinal: 8246 IPW_DEBUG_WX("failed querying ordinals.\n"); 8247 8248 return (struct iw_statistics *)NULL; 8249 } 8250 8251 static const struct iw_handler_def ipw2100_wx_handler_def = { 8252 .standard = ipw2100_wx_handlers, 8253 .num_standard = ARRAY_SIZE(ipw2100_wx_handlers), 8254 .num_private = ARRAY_SIZE(ipw2100_private_handler), 8255 .num_private_args = ARRAY_SIZE(ipw2100_private_args), 8256 .private = (iw_handler *) ipw2100_private_handler, 8257 .private_args = (struct iw_priv_args *)ipw2100_private_args, 8258 .get_wireless_stats = ipw2100_wx_wireless_stats, 8259 }; 8260 8261 static void ipw2100_wx_event_work(struct work_struct *work) 8262 { 8263 struct ipw2100_priv *priv = 8264 container_of(work, struct ipw2100_priv, wx_event_work.work); 8265 union iwreq_data wrqu; 8266 unsigned int len = ETH_ALEN; 8267 8268 if (priv->status & STATUS_STOPPING) 8269 return; 8270 8271 mutex_lock(&priv->action_mutex); 8272 8273 IPW_DEBUG_WX("enter\n"); 8274 8275 mutex_unlock(&priv->action_mutex); 8276 8277 wrqu.ap_addr.sa_family = ARPHRD_ETHER; 8278 8279 /* Fetch BSSID from the hardware */ 8280 if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) || 8281 priv->status & STATUS_RF_KILL_MASK || 8282 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, 8283 &priv->bssid, &len)) { 8284 eth_zero_addr(wrqu.ap_addr.sa_data); 8285 } else { 8286 /* We now have the BSSID, so can finish setting to the full 8287 * associated state */ 8288 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN); 8289 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN); 8290 priv->status &= ~STATUS_ASSOCIATING; 8291 priv->status |= STATUS_ASSOCIATED; 8292 netif_carrier_on(priv->net_dev); 8293 netif_wake_queue(priv->net_dev); 8294 } 8295 8296 if (!(priv->status & STATUS_ASSOCIATED)) { 8297 IPW_DEBUG_WX("Configuring ESSID\n"); 8298 mutex_lock(&priv->action_mutex); 8299 /* This is a disassociation event, so kick the firmware to 8300 * look for another AP */ 8301 if (priv->config & CFG_STATIC_ESSID) 8302 ipw2100_set_essid(priv, priv->essid, priv->essid_len, 8303 0); 8304 else 8305 ipw2100_set_essid(priv, NULL, 0, 0); 8306 mutex_unlock(&priv->action_mutex); 8307 } 8308 8309 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL); 8310 } 8311 8312 #define IPW2100_FW_MAJOR_VERSION 1 8313 #define IPW2100_FW_MINOR_VERSION 3 8314 8315 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8) 8316 #define IPW2100_FW_MAJOR(x) (x & 0xff) 8317 8318 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \ 8319 IPW2100_FW_MAJOR_VERSION) 8320 8321 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \ 8322 "." __stringify(IPW2100_FW_MINOR_VERSION) 8323 8324 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw" 8325 8326 /* 8327 8328 BINARY FIRMWARE HEADER FORMAT 8329 8330 offset length desc 8331 0 2 version 8332 2 2 mode == 0:BSS,1:IBSS,2:MONITOR 8333 4 4 fw_len 8334 8 4 uc_len 8335 C fw_len firmware data 8336 12 + fw_len uc_len microcode data 8337 8338 */ 8339 8340 struct ipw2100_fw_header { 8341 short version; 8342 short mode; 8343 unsigned int fw_size; 8344 unsigned int uc_size; 8345 } __packed; 8346 8347 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw) 8348 { 8349 struct ipw2100_fw_header *h = 8350 (struct ipw2100_fw_header *)fw->fw_entry->data; 8351 8352 if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) { 8353 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible " 8354 "(detected version id of %u). " 8355 "See Documentation/networking/device_drivers/intel/ipw2100.rst\n", 8356 h->version); 8357 return 1; 8358 } 8359 8360 fw->version = h->version; 8361 fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header); 8362 fw->fw.size = h->fw_size; 8363 fw->uc.data = fw->fw.data + h->fw_size; 8364 fw->uc.size = h->uc_size; 8365 8366 return 0; 8367 } 8368 8369 static int ipw2100_get_firmware(struct ipw2100_priv *priv, 8370 struct ipw2100_fw *fw) 8371 { 8372 char *fw_name; 8373 int rc; 8374 8375 IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n", 8376 priv->net_dev->name); 8377 8378 switch (priv->ieee->iw_mode) { 8379 case IW_MODE_ADHOC: 8380 fw_name = IPW2100_FW_NAME("-i"); 8381 break; 8382 #ifdef CONFIG_IPW2100_MONITOR 8383 case IW_MODE_MONITOR: 8384 fw_name = IPW2100_FW_NAME("-p"); 8385 break; 8386 #endif 8387 case IW_MODE_INFRA: 8388 default: 8389 fw_name = IPW2100_FW_NAME(""); 8390 break; 8391 } 8392 8393 rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev); 8394 8395 if (rc < 0) { 8396 printk(KERN_ERR DRV_NAME ": " 8397 "%s: Firmware '%s' not available or load failed.\n", 8398 priv->net_dev->name, fw_name); 8399 return rc; 8400 } 8401 IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data, 8402 fw->fw_entry->size); 8403 8404 ipw2100_mod_firmware_load(fw); 8405 8406 return 0; 8407 } 8408 8409 MODULE_FIRMWARE(IPW2100_FW_NAME("-i")); 8410 #ifdef CONFIG_IPW2100_MONITOR 8411 MODULE_FIRMWARE(IPW2100_FW_NAME("-p")); 8412 #endif 8413 MODULE_FIRMWARE(IPW2100_FW_NAME("")); 8414 8415 static void ipw2100_release_firmware(struct ipw2100_priv *priv, 8416 struct ipw2100_fw *fw) 8417 { 8418 fw->version = 0; 8419 release_firmware(fw->fw_entry); 8420 fw->fw_entry = NULL; 8421 } 8422 8423 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf, 8424 size_t max) 8425 { 8426 char ver[MAX_FW_VERSION_LEN]; 8427 u32 len = MAX_FW_VERSION_LEN; 8428 u32 tmp; 8429 int i; 8430 /* firmware version is an ascii string (max len of 14) */ 8431 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len)) 8432 return -EIO; 8433 tmp = max; 8434 if (len >= max) 8435 len = max - 1; 8436 for (i = 0; i < len; i++) 8437 buf[i] = ver[i]; 8438 buf[i] = '\0'; 8439 return tmp; 8440 } 8441 8442 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf, 8443 size_t max) 8444 { 8445 u32 ver; 8446 u32 len = sizeof(ver); 8447 /* microcode version is a 32 bit integer */ 8448 if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len)) 8449 return -EIO; 8450 return snprintf(buf, max, "%08X", ver); 8451 } 8452 8453 /* 8454 * On exit, the firmware will have been freed from the fw list 8455 */ 8456 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw) 8457 { 8458 /* firmware is constructed of N contiguous entries, each entry is 8459 * structured as: 8460 * 8461 * offset sie desc 8462 * 0 4 address to write to 8463 * 4 2 length of data run 8464 * 6 length data 8465 */ 8466 unsigned int addr; 8467 unsigned short len; 8468 8469 const unsigned char *firmware_data = fw->fw.data; 8470 unsigned int firmware_data_left = fw->fw.size; 8471 8472 while (firmware_data_left > 0) { 8473 addr = *(u32 *) (firmware_data); 8474 firmware_data += 4; 8475 firmware_data_left -= 4; 8476 8477 len = *(u16 *) (firmware_data); 8478 firmware_data += 2; 8479 firmware_data_left -= 2; 8480 8481 if (len > 32) { 8482 printk(KERN_ERR DRV_NAME ": " 8483 "Invalid firmware run-length of %d bytes\n", 8484 len); 8485 return -EINVAL; 8486 } 8487 8488 write_nic_memory(priv->net_dev, addr, len, firmware_data); 8489 firmware_data += len; 8490 firmware_data_left -= len; 8491 } 8492 8493 return 0; 8494 } 8495 8496 struct symbol_alive_response { 8497 u8 cmd_id; 8498 u8 seq_num; 8499 u8 ucode_rev; 8500 u8 eeprom_valid; 8501 u16 valid_flags; 8502 u8 IEEE_addr[6]; 8503 u16 flags; 8504 u16 pcb_rev; 8505 u16 clock_settle_time; // 1us LSB 8506 u16 powerup_settle_time; // 1us LSB 8507 u16 hop_settle_time; // 1us LSB 8508 u8 date[3]; // month, day, year 8509 u8 time[2]; // hours, minutes 8510 u8 ucode_valid; 8511 }; 8512 8513 static int ipw2100_ucode_download(struct ipw2100_priv *priv, 8514 struct ipw2100_fw *fw) 8515 { 8516 struct net_device *dev = priv->net_dev; 8517 const unsigned char *microcode_data = fw->uc.data; 8518 unsigned int microcode_data_left = fw->uc.size; 8519 void __iomem *reg = priv->ioaddr; 8520 8521 struct symbol_alive_response response; 8522 int i, j; 8523 u8 data; 8524 8525 /* Symbol control */ 8526 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703); 8527 readl(reg); 8528 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707); 8529 readl(reg); 8530 8531 /* HW config */ 8532 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */ 8533 readl(reg); 8534 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */ 8535 readl(reg); 8536 8537 /* EN_CS_ACCESS bit to reset control store pointer */ 8538 write_nic_byte(dev, 0x210000, 0x40); 8539 readl(reg); 8540 write_nic_byte(dev, 0x210000, 0x0); 8541 readl(reg); 8542 write_nic_byte(dev, 0x210000, 0x40); 8543 readl(reg); 8544 8545 /* copy microcode from buffer into Symbol */ 8546 8547 while (microcode_data_left > 0) { 8548 write_nic_byte(dev, 0x210010, *microcode_data++); 8549 write_nic_byte(dev, 0x210010, *microcode_data++); 8550 microcode_data_left -= 2; 8551 } 8552 8553 /* EN_CS_ACCESS bit to reset the control store pointer */ 8554 write_nic_byte(dev, 0x210000, 0x0); 8555 readl(reg); 8556 8557 /* Enable System (Reg 0) 8558 * first enable causes garbage in RX FIFO */ 8559 write_nic_byte(dev, 0x210000, 0x0); 8560 readl(reg); 8561 write_nic_byte(dev, 0x210000, 0x80); 8562 readl(reg); 8563 8564 /* Reset External Baseband Reg */ 8565 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703); 8566 readl(reg); 8567 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707); 8568 readl(reg); 8569 8570 /* HW Config (Reg 5) */ 8571 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16 8572 readl(reg); 8573 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16 8574 readl(reg); 8575 8576 /* Enable System (Reg 0) 8577 * second enable should be OK */ 8578 write_nic_byte(dev, 0x210000, 0x00); // clear enable system 8579 readl(reg); 8580 write_nic_byte(dev, 0x210000, 0x80); // set enable system 8581 8582 /* check Symbol is enabled - upped this from 5 as it wasn't always 8583 * catching the update */ 8584 for (i = 0; i < 10; i++) { 8585 udelay(10); 8586 8587 /* check Dino is enabled bit */ 8588 read_nic_byte(dev, 0x210000, &data); 8589 if (data & 0x1) 8590 break; 8591 } 8592 8593 if (i == 10) { 8594 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n", 8595 dev->name); 8596 return -EIO; 8597 } 8598 8599 /* Get Symbol alive response */ 8600 for (i = 0; i < 30; i++) { 8601 /* Read alive response structure */ 8602 for (j = 0; 8603 j < (sizeof(struct symbol_alive_response) >> 1); j++) 8604 read_nic_word(dev, 0x210004, ((u16 *) & response) + j); 8605 8606 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1)) 8607 break; 8608 udelay(10); 8609 } 8610 8611 if (i == 30) { 8612 printk(KERN_ERR DRV_NAME 8613 ": %s: No response from Symbol - hw not alive\n", 8614 dev->name); 8615 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response)); 8616 return -EIO; 8617 } 8618 8619 return 0; 8620 } 8621