1 /* 2 * Copyright (c) 2010 Broadcom Corporation 3 * Copyright (c) 2013 Hauke Mehrtens <hauke@hauke-m.de> 4 * 5 * Permission to use, copy, modify, and/or distribute this software for any 6 * purpose with or without fee is hereby granted, provided that the above 7 * copyright notice and this permission notice appear in all copies. 8 * 9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY 12 * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION 14 * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN 15 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 16 */ 17 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/pci_ids.h> 21 #include <linux/if_ether.h> 22 #include <net/cfg80211.h> 23 #include <net/mac80211.h> 24 #include <brcm_hw_ids.h> 25 #include <aiutils.h> 26 #include <chipcommon.h> 27 #include "rate.h" 28 #include "scb.h" 29 #include "phy/phy_hal.h" 30 #include "channel.h" 31 #include "antsel.h" 32 #include "stf.h" 33 #include "ampdu.h" 34 #include "mac80211_if.h" 35 #include "ucode_loader.h" 36 #include "main.h" 37 #include "soc.h" 38 #include "dma.h" 39 #include "debug.h" 40 #include "brcms_trace_events.h" 41 42 /* watchdog timer, in unit of ms */ 43 #define TIMER_INTERVAL_WATCHDOG 1000 44 /* radio monitor timer, in unit of ms */ 45 #define TIMER_INTERVAL_RADIOCHK 800 46 47 /* beacon interval, in unit of 1024TU */ 48 #define BEACON_INTERVAL_DEFAULT 100 49 50 /* n-mode support capability */ 51 /* 2x2 includes both 1x1 & 2x2 devices 52 * reserved #define 2 for future when we want to separate 1x1 & 2x2 and 53 * control it independently 54 */ 55 #define WL_11N_2x2 1 56 #define WL_11N_3x3 3 57 #define WL_11N_4x4 4 58 59 #define EDCF_ACI_MASK 0x60 60 #define EDCF_ACI_SHIFT 5 61 #define EDCF_ECWMIN_MASK 0x0f 62 #define EDCF_ECWMAX_SHIFT 4 63 #define EDCF_AIFSN_MASK 0x0f 64 #define EDCF_AIFSN_MAX 15 65 #define EDCF_ECWMAX_MASK 0xf0 66 67 #define EDCF_AC_BE_TXOP_STA 0x0000 68 #define EDCF_AC_BK_TXOP_STA 0x0000 69 #define EDCF_AC_VO_ACI_STA 0x62 70 #define EDCF_AC_VO_ECW_STA 0x32 71 #define EDCF_AC_VI_ACI_STA 0x42 72 #define EDCF_AC_VI_ECW_STA 0x43 73 #define EDCF_AC_BK_ECW_STA 0xA4 74 #define EDCF_AC_VI_TXOP_STA 0x005e 75 #define EDCF_AC_VO_TXOP_STA 0x002f 76 #define EDCF_AC_BE_ACI_STA 0x03 77 #define EDCF_AC_BE_ECW_STA 0xA4 78 #define EDCF_AC_BK_ACI_STA 0x27 79 #define EDCF_AC_VO_TXOP_AP 0x002f 80 81 #define EDCF_TXOP2USEC(txop) ((txop) << 5) 82 #define EDCF_ECW2CW(exp) ((1 << (exp)) - 1) 83 84 #define APHY_SYMBOL_TIME 4 85 #define APHY_PREAMBLE_TIME 16 86 #define APHY_SIGNAL_TIME 4 87 #define APHY_SIFS_TIME 16 88 #define APHY_SERVICE_NBITS 16 89 #define APHY_TAIL_NBITS 6 90 #define BPHY_SIFS_TIME 10 91 #define BPHY_PLCP_SHORT_TIME 96 92 93 #define PREN_PREAMBLE 24 94 #define PREN_MM_EXT 12 95 #define PREN_PREAMBLE_EXT 4 96 97 #define DOT11_MAC_HDR_LEN 24 98 #define DOT11_ACK_LEN 10 99 #define DOT11_BA_LEN 4 100 #define DOT11_OFDM_SIGNAL_EXTENSION 6 101 #define DOT11_MIN_FRAG_LEN 256 102 #define DOT11_RTS_LEN 16 103 #define DOT11_CTS_LEN 10 104 #define DOT11_BA_BITMAP_LEN 128 105 #define DOT11_MAXNUMFRAGS 16 106 #define DOT11_MAX_FRAG_LEN 2346 107 108 #define BPHY_PLCP_TIME 192 109 #define RIFS_11N_TIME 2 110 111 /* length of the BCN template area */ 112 #define BCN_TMPL_LEN 512 113 114 /* brcms_bss_info flag bit values */ 115 #define BRCMS_BSS_HT 0x0020 /* BSS is HT (MIMO) capable */ 116 117 /* chip rx buffer offset */ 118 #define BRCMS_HWRXOFF 38 119 120 /* rfdisable delay timer 500 ms, runs of ALP clock */ 121 #define RFDISABLE_DEFAULT 10000000 122 123 #define BRCMS_TEMPSENSE_PERIOD 10 /* 10 second timeout */ 124 125 /* synthpu_dly times in us */ 126 #define SYNTHPU_DLY_APHY_US 3700 127 #define SYNTHPU_DLY_BPHY_US 1050 128 #define SYNTHPU_DLY_NPHY_US 2048 129 #define SYNTHPU_DLY_LPPHY_US 300 130 131 #define ANTCNT 10 /* vanilla M_MAX_ANTCNT val */ 132 133 /* Per-AC retry limit register definitions; uses defs.h bitfield macros */ 134 #define EDCF_SHORT_S 0 135 #define EDCF_SFB_S 4 136 #define EDCF_LONG_S 8 137 #define EDCF_LFB_S 12 138 #define EDCF_SHORT_M BITFIELD_MASK(4) 139 #define EDCF_SFB_M BITFIELD_MASK(4) 140 #define EDCF_LONG_M BITFIELD_MASK(4) 141 #define EDCF_LFB_M BITFIELD_MASK(4) 142 143 #define RETRY_SHORT_DEF 7 /* Default Short retry Limit */ 144 #define RETRY_SHORT_MAX 255 /* Maximum Short retry Limit */ 145 #define RETRY_LONG_DEF 4 /* Default Long retry count */ 146 #define RETRY_SHORT_FB 3 /* Short count for fb rate */ 147 #define RETRY_LONG_FB 2 /* Long count for fb rate */ 148 149 #define APHY_CWMIN 15 150 #define PHY_CWMAX 1023 151 152 #define EDCF_AIFSN_MIN 1 153 154 #define FRAGNUM_MASK 0xF 155 156 #define APHY_SLOT_TIME 9 157 #define BPHY_SLOT_TIME 20 158 159 #define WL_SPURAVOID_OFF 0 160 #define WL_SPURAVOID_ON1 1 161 #define WL_SPURAVOID_ON2 2 162 163 /* invalid core flags, use the saved coreflags */ 164 #define BRCMS_USE_COREFLAGS 0xffffffff 165 166 /* values for PLCPHdr_override */ 167 #define BRCMS_PLCP_AUTO -1 168 #define BRCMS_PLCP_SHORT 0 169 #define BRCMS_PLCP_LONG 1 170 171 /* values for g_protection_override and n_protection_override */ 172 #define BRCMS_PROTECTION_AUTO -1 173 #define BRCMS_PROTECTION_OFF 0 174 #define BRCMS_PROTECTION_ON 1 175 #define BRCMS_PROTECTION_MMHDR_ONLY 2 176 #define BRCMS_PROTECTION_CTS_ONLY 3 177 178 /* values for g_protection_control and n_protection_control */ 179 #define BRCMS_PROTECTION_CTL_OFF 0 180 #define BRCMS_PROTECTION_CTL_LOCAL 1 181 #define BRCMS_PROTECTION_CTL_OVERLAP 2 182 183 /* values for n_protection */ 184 #define BRCMS_N_PROTECTION_OFF 0 185 #define BRCMS_N_PROTECTION_OPTIONAL 1 186 #define BRCMS_N_PROTECTION_20IN40 2 187 #define BRCMS_N_PROTECTION_MIXEDMODE 3 188 189 /* values for band specific 40MHz capabilities */ 190 #define BRCMS_N_BW_20ALL 0 191 #define BRCMS_N_BW_40ALL 1 192 #define BRCMS_N_BW_20IN2G_40IN5G 2 193 194 /* bitflags for SGI support (sgi_rx iovar) */ 195 #define BRCMS_N_SGI_20 0x01 196 #define BRCMS_N_SGI_40 0x02 197 198 /* defines used by the nrate iovar */ 199 /* MSC in use,indicates b0-6 holds an mcs */ 200 #define NRATE_MCS_INUSE 0x00000080 201 /* rate/mcs value */ 202 #define NRATE_RATE_MASK 0x0000007f 203 /* stf mode mask: siso, cdd, stbc, sdm */ 204 #define NRATE_STF_MASK 0x0000ff00 205 /* stf mode shift */ 206 #define NRATE_STF_SHIFT 8 207 /* bit indicate to override mcs only */ 208 #define NRATE_OVERRIDE_MCS_ONLY 0x40000000 209 #define NRATE_SGI_MASK 0x00800000 /* sgi mode */ 210 #define NRATE_SGI_SHIFT 23 /* sgi mode */ 211 #define NRATE_LDPC_CODING 0x00400000 /* adv coding in use */ 212 #define NRATE_LDPC_SHIFT 22 /* ldpc shift */ 213 214 #define NRATE_STF_SISO 0 /* stf mode SISO */ 215 #define NRATE_STF_CDD 1 /* stf mode CDD */ 216 #define NRATE_STF_STBC 2 /* stf mode STBC */ 217 #define NRATE_STF_SDM 3 /* stf mode SDM */ 218 219 #define MAX_DMA_SEGS 4 220 221 /* # of entries in Tx FIFO */ 222 #define NTXD 64 223 /* Max # of entries in Rx FIFO based on 4kb page size */ 224 #define NRXD 256 225 226 /* Amount of headroom to leave in Tx FIFO */ 227 #define TX_HEADROOM 4 228 229 /* try to keep this # rbufs posted to the chip */ 230 #define NRXBUFPOST 32 231 232 /* max # frames to process in brcms_c_recv() */ 233 #define RXBND 8 234 /* max # tx status to process in wlc_txstatus() */ 235 #define TXSBND 8 236 237 /* brcmu_format_flags() bit description structure */ 238 struct brcms_c_bit_desc { 239 u32 bit; 240 const char *name; 241 }; 242 243 /* 244 * The following table lists the buffer memory allocated to xmt fifos in HW. 245 * the size is in units of 256bytes(one block), total size is HW dependent 246 * ucode has default fifo partition, sw can overwrite if necessary 247 * 248 * This is documented in twiki under the topic UcodeTxFifo. Please ensure 249 * the twiki is updated before making changes. 250 */ 251 252 /* Starting corerev for the fifo size table */ 253 #define XMTFIFOTBL_STARTREV 17 254 255 struct d11init { 256 __le16 addr; 257 __le16 size; 258 __le32 value; 259 }; 260 261 struct edcf_acparam { 262 u8 ACI; 263 u8 ECW; 264 u16 TXOP; 265 } __packed; 266 267 /* debug/trace */ 268 uint brcm_msg_level; 269 270 /* TX FIFO number to WME/802.1E Access Category */ 271 static const u8 wme_fifo2ac[] = { 272 IEEE80211_AC_BK, 273 IEEE80211_AC_BE, 274 IEEE80211_AC_VI, 275 IEEE80211_AC_VO, 276 IEEE80211_AC_BE, 277 IEEE80211_AC_BE 278 }; 279 280 /* ieee80211 Access Category to TX FIFO number */ 281 static const u8 wme_ac2fifo[] = { 282 TX_AC_VO_FIFO, 283 TX_AC_VI_FIFO, 284 TX_AC_BE_FIFO, 285 TX_AC_BK_FIFO 286 }; 287 288 static const u16 xmtfifo_sz[][NFIFO] = { 289 /* corerev 17: 5120, 49152, 49152, 5376, 4352, 1280 */ 290 {20, 192, 192, 21, 17, 5}, 291 /* corerev 18: */ 292 {0, 0, 0, 0, 0, 0}, 293 /* corerev 19: */ 294 {0, 0, 0, 0, 0, 0}, 295 /* corerev 20: 5120, 49152, 49152, 5376, 4352, 1280 */ 296 {20, 192, 192, 21, 17, 5}, 297 /* corerev 21: 2304, 14848, 5632, 3584, 3584, 1280 */ 298 {9, 58, 22, 14, 14, 5}, 299 /* corerev 22: 5120, 49152, 49152, 5376, 4352, 1280 */ 300 {20, 192, 192, 21, 17, 5}, 301 /* corerev 23: 5120, 49152, 49152, 5376, 4352, 1280 */ 302 {20, 192, 192, 21, 17, 5}, 303 /* corerev 24: 2304, 14848, 5632, 3584, 3584, 1280 */ 304 {9, 58, 22, 14, 14, 5}, 305 /* corerev 25: */ 306 {0, 0, 0, 0, 0, 0}, 307 /* corerev 26: */ 308 {0, 0, 0, 0, 0, 0}, 309 /* corerev 27: */ 310 {0, 0, 0, 0, 0, 0}, 311 /* corerev 28: 2304, 14848, 5632, 3584, 3584, 1280 */ 312 {9, 58, 22, 14, 14, 5}, 313 }; 314 315 #ifdef DEBUG 316 static const char * const fifo_names[] = { 317 "AC_BK", "AC_BE", "AC_VI", "AC_VO", "BCMC", "ATIM" }; 318 #else 319 static const char fifo_names[6][1]; 320 #endif 321 322 #ifdef DEBUG 323 /* pointer to most recently allocated wl/wlc */ 324 static struct brcms_c_info *wlc_info_dbg = (struct brcms_c_info *) (NULL); 325 #endif 326 327 /* Mapping of ieee80211 AC numbers to tx fifos */ 328 static const u8 ac_to_fifo_mapping[IEEE80211_NUM_ACS] = { 329 [IEEE80211_AC_VO] = TX_AC_VO_FIFO, 330 [IEEE80211_AC_VI] = TX_AC_VI_FIFO, 331 [IEEE80211_AC_BE] = TX_AC_BE_FIFO, 332 [IEEE80211_AC_BK] = TX_AC_BK_FIFO, 333 }; 334 335 /* Mapping of tx fifos to ieee80211 AC numbers */ 336 static const u8 fifo_to_ac_mapping[IEEE80211_NUM_ACS] = { 337 [TX_AC_BK_FIFO] = IEEE80211_AC_BK, 338 [TX_AC_BE_FIFO] = IEEE80211_AC_BE, 339 [TX_AC_VI_FIFO] = IEEE80211_AC_VI, 340 [TX_AC_VO_FIFO] = IEEE80211_AC_VO, 341 }; 342 343 static u8 brcms_ac_to_fifo(u8 ac) 344 { 345 if (ac >= ARRAY_SIZE(ac_to_fifo_mapping)) 346 return TX_AC_BE_FIFO; 347 return ac_to_fifo_mapping[ac]; 348 } 349 350 static u8 brcms_fifo_to_ac(u8 fifo) 351 { 352 if (fifo >= ARRAY_SIZE(fifo_to_ac_mapping)) 353 return IEEE80211_AC_BE; 354 return fifo_to_ac_mapping[fifo]; 355 } 356 357 /* Find basic rate for a given rate */ 358 static u8 brcms_basic_rate(struct brcms_c_info *wlc, u32 rspec) 359 { 360 if (is_mcs_rate(rspec)) 361 return wlc->band->basic_rate[mcs_table[rspec & RSPEC_RATE_MASK] 362 .leg_ofdm]; 363 return wlc->band->basic_rate[rspec & RSPEC_RATE_MASK]; 364 } 365 366 static u16 frametype(u32 rspec, u8 mimoframe) 367 { 368 if (is_mcs_rate(rspec)) 369 return mimoframe; 370 return is_cck_rate(rspec) ? FT_CCK : FT_OFDM; 371 } 372 373 /* currently the best mechanism for determining SIFS is the band in use */ 374 static u16 get_sifs(struct brcms_band *band) 375 { 376 return band->bandtype == BRCM_BAND_5G ? APHY_SIFS_TIME : 377 BPHY_SIFS_TIME; 378 } 379 380 /* 381 * Detect Card removed. 382 * Even checking an sbconfig register read will not false trigger when the core 383 * is in reset it breaks CF address mechanism. Accessing gphy phyversion will 384 * cause SB error if aphy is in reset on 4306B0-DB. Need a simple accessible 385 * reg with fixed 0/1 pattern (some platforms return all 0). 386 * If clocks are present, call the sb routine which will figure out if the 387 * device is removed. 388 */ 389 static bool brcms_deviceremoved(struct brcms_c_info *wlc) 390 { 391 u32 macctrl; 392 393 if (!wlc->hw->clk) 394 return ai_deviceremoved(wlc->hw->sih); 395 macctrl = bcma_read32(wlc->hw->d11core, 396 D11REGOFFS(maccontrol)); 397 return (macctrl & (MCTL_PSM_JMP_0 | MCTL_IHR_EN)) != MCTL_IHR_EN; 398 } 399 400 /* sum the individual fifo tx pending packet counts */ 401 static int brcms_txpktpendtot(struct brcms_c_info *wlc) 402 { 403 int i; 404 int pending = 0; 405 406 for (i = 0; i < ARRAY_SIZE(wlc->hw->di); i++) 407 if (wlc->hw->di[i]) 408 pending += dma_txpending(wlc->hw->di[i]); 409 return pending; 410 } 411 412 static bool brcms_is_mband_unlocked(struct brcms_c_info *wlc) 413 { 414 return wlc->pub->_nbands > 1 && !wlc->bandlocked; 415 } 416 417 static int brcms_chspec_bw(u16 chanspec) 418 { 419 if (CHSPEC_IS40(chanspec)) 420 return BRCMS_40_MHZ; 421 if (CHSPEC_IS20(chanspec)) 422 return BRCMS_20_MHZ; 423 424 return BRCMS_10_MHZ; 425 } 426 427 static void brcms_c_bsscfg_mfree(struct brcms_bss_cfg *cfg) 428 { 429 if (cfg == NULL) 430 return; 431 432 kfree(cfg->current_bss); 433 kfree(cfg); 434 } 435 436 static void brcms_c_detach_mfree(struct brcms_c_info *wlc) 437 { 438 if (wlc == NULL) 439 return; 440 441 brcms_c_bsscfg_mfree(wlc->bsscfg); 442 kfree(wlc->pub); 443 kfree(wlc->modulecb); 444 kfree(wlc->default_bss); 445 kfree(wlc->protection); 446 kfree(wlc->stf); 447 kfree(wlc->bandstate[0]); 448 if (wlc->corestate) 449 kfree(wlc->corestate->macstat_snapshot); 450 kfree(wlc->corestate); 451 if (wlc->hw) 452 kfree(wlc->hw->bandstate[0]); 453 kfree(wlc->hw); 454 if (wlc->beacon) 455 dev_kfree_skb_any(wlc->beacon); 456 if (wlc->probe_resp) 457 dev_kfree_skb_any(wlc->probe_resp); 458 459 kfree(wlc); 460 } 461 462 static struct brcms_bss_cfg *brcms_c_bsscfg_malloc(uint unit) 463 { 464 struct brcms_bss_cfg *cfg; 465 466 cfg = kzalloc(sizeof(struct brcms_bss_cfg), GFP_ATOMIC); 467 if (cfg == NULL) 468 goto fail; 469 470 cfg->current_bss = kzalloc(sizeof(struct brcms_bss_info), GFP_ATOMIC); 471 if (cfg->current_bss == NULL) 472 goto fail; 473 474 return cfg; 475 476 fail: 477 brcms_c_bsscfg_mfree(cfg); 478 return NULL; 479 } 480 481 static struct brcms_c_info * 482 brcms_c_attach_malloc(uint unit, uint *err, uint devid) 483 { 484 struct brcms_c_info *wlc; 485 486 wlc = kzalloc(sizeof(struct brcms_c_info), GFP_ATOMIC); 487 if (wlc == NULL) { 488 *err = 1002; 489 goto fail; 490 } 491 492 /* allocate struct brcms_c_pub state structure */ 493 wlc->pub = kzalloc(sizeof(struct brcms_pub), GFP_ATOMIC); 494 if (wlc->pub == NULL) { 495 *err = 1003; 496 goto fail; 497 } 498 wlc->pub->wlc = wlc; 499 500 /* allocate struct brcms_hardware state structure */ 501 502 wlc->hw = kzalloc(sizeof(struct brcms_hardware), GFP_ATOMIC); 503 if (wlc->hw == NULL) { 504 *err = 1005; 505 goto fail; 506 } 507 wlc->hw->wlc = wlc; 508 509 wlc->hw->bandstate[0] = 510 kcalloc(MAXBANDS, sizeof(struct brcms_hw_band), GFP_ATOMIC); 511 if (wlc->hw->bandstate[0] == NULL) { 512 *err = 1006; 513 goto fail; 514 } else { 515 int i; 516 517 for (i = 1; i < MAXBANDS; i++) 518 wlc->hw->bandstate[i] = (struct brcms_hw_band *) 519 ((unsigned long)wlc->hw->bandstate[0] + 520 (sizeof(struct brcms_hw_band) * i)); 521 } 522 523 wlc->modulecb = 524 kcalloc(BRCMS_MAXMODULES, sizeof(struct modulecb), 525 GFP_ATOMIC); 526 if (wlc->modulecb == NULL) { 527 *err = 1009; 528 goto fail; 529 } 530 531 wlc->default_bss = kzalloc(sizeof(struct brcms_bss_info), GFP_ATOMIC); 532 if (wlc->default_bss == NULL) { 533 *err = 1010; 534 goto fail; 535 } 536 537 wlc->bsscfg = brcms_c_bsscfg_malloc(unit); 538 if (wlc->bsscfg == NULL) { 539 *err = 1011; 540 goto fail; 541 } 542 543 wlc->protection = kzalloc(sizeof(struct brcms_protection), 544 GFP_ATOMIC); 545 if (wlc->protection == NULL) { 546 *err = 1016; 547 goto fail; 548 } 549 550 wlc->stf = kzalloc(sizeof(struct brcms_stf), GFP_ATOMIC); 551 if (wlc->stf == NULL) { 552 *err = 1017; 553 goto fail; 554 } 555 556 wlc->bandstate[0] = 557 kcalloc(MAXBANDS, sizeof(struct brcms_band), GFP_ATOMIC); 558 if (wlc->bandstate[0] == NULL) { 559 *err = 1025; 560 goto fail; 561 } else { 562 int i; 563 564 for (i = 1; i < MAXBANDS; i++) 565 wlc->bandstate[i] = (struct brcms_band *) 566 ((unsigned long)wlc->bandstate[0] 567 + (sizeof(struct brcms_band)*i)); 568 } 569 570 wlc->corestate = kzalloc(sizeof(struct brcms_core), GFP_ATOMIC); 571 if (wlc->corestate == NULL) { 572 *err = 1026; 573 goto fail; 574 } 575 576 wlc->corestate->macstat_snapshot = 577 kzalloc(sizeof(struct macstat), GFP_ATOMIC); 578 if (wlc->corestate->macstat_snapshot == NULL) { 579 *err = 1027; 580 goto fail; 581 } 582 583 return wlc; 584 585 fail: 586 brcms_c_detach_mfree(wlc); 587 return NULL; 588 } 589 590 /* 591 * Update the slot timing for standard 11b/g (20us slots) 592 * or shortslot 11g (9us slots) 593 * The PSM needs to be suspended for this call. 594 */ 595 static void brcms_b_update_slot_timing(struct brcms_hardware *wlc_hw, 596 bool shortslot) 597 { 598 struct bcma_device *core = wlc_hw->d11core; 599 600 if (shortslot) { 601 /* 11g short slot: 11a timing */ 602 bcma_write16(core, D11REGOFFS(ifs_slot), 0x0207); 603 brcms_b_write_shm(wlc_hw, M_DOT11_SLOT, APHY_SLOT_TIME); 604 } else { 605 /* 11g long slot: 11b timing */ 606 bcma_write16(core, D11REGOFFS(ifs_slot), 0x0212); 607 brcms_b_write_shm(wlc_hw, M_DOT11_SLOT, BPHY_SLOT_TIME); 608 } 609 } 610 611 /* 612 * calculate frame duration of a given rate and length, return 613 * time in usec unit 614 */ 615 static uint brcms_c_calc_frame_time(struct brcms_c_info *wlc, u32 ratespec, 616 u8 preamble_type, uint mac_len) 617 { 618 uint nsyms, dur = 0, Ndps, kNdps; 619 uint rate = rspec2rate(ratespec); 620 621 if (rate == 0) { 622 brcms_err(wlc->hw->d11core, "wl%d: WAR: using rate of 1 mbps\n", 623 wlc->pub->unit); 624 rate = BRCM_RATE_1M; 625 } 626 627 if (is_mcs_rate(ratespec)) { 628 uint mcs = ratespec & RSPEC_RATE_MASK; 629 int tot_streams = mcs_2_txstreams(mcs) + rspec_stc(ratespec); 630 631 dur = PREN_PREAMBLE + (tot_streams * PREN_PREAMBLE_EXT); 632 if (preamble_type == BRCMS_MM_PREAMBLE) 633 dur += PREN_MM_EXT; 634 /* 1000Ndbps = kbps * 4 */ 635 kNdps = mcs_2_rate(mcs, rspec_is40mhz(ratespec), 636 rspec_issgi(ratespec)) * 4; 637 638 if (rspec_stc(ratespec) == 0) 639 nsyms = 640 CEIL((APHY_SERVICE_NBITS + 8 * mac_len + 641 APHY_TAIL_NBITS) * 1000, kNdps); 642 else 643 /* STBC needs to have even number of symbols */ 644 nsyms = 645 2 * 646 CEIL((APHY_SERVICE_NBITS + 8 * mac_len + 647 APHY_TAIL_NBITS) * 1000, 2 * kNdps); 648 649 dur += APHY_SYMBOL_TIME * nsyms; 650 if (wlc->band->bandtype == BRCM_BAND_2G) 651 dur += DOT11_OFDM_SIGNAL_EXTENSION; 652 } else if (is_ofdm_rate(rate)) { 653 dur = APHY_PREAMBLE_TIME; 654 dur += APHY_SIGNAL_TIME; 655 /* Ndbps = Mbps * 4 = rate(500Kbps) * 2 */ 656 Ndps = rate * 2; 657 /* NSyms = CEILING((SERVICE + 8*NBytes + TAIL) / Ndbps) */ 658 nsyms = 659 CEIL((APHY_SERVICE_NBITS + 8 * mac_len + APHY_TAIL_NBITS), 660 Ndps); 661 dur += APHY_SYMBOL_TIME * nsyms; 662 if (wlc->band->bandtype == BRCM_BAND_2G) 663 dur += DOT11_OFDM_SIGNAL_EXTENSION; 664 } else { 665 /* 666 * calc # bits * 2 so factor of 2 in rate (1/2 mbps) 667 * will divide out 668 */ 669 mac_len = mac_len * 8 * 2; 670 /* calc ceiling of bits/rate = microseconds of air time */ 671 dur = (mac_len + rate - 1) / rate; 672 if (preamble_type & BRCMS_SHORT_PREAMBLE) 673 dur += BPHY_PLCP_SHORT_TIME; 674 else 675 dur += BPHY_PLCP_TIME; 676 } 677 return dur; 678 } 679 680 static void brcms_c_write_inits(struct brcms_hardware *wlc_hw, 681 const struct d11init *inits) 682 { 683 struct bcma_device *core = wlc_hw->d11core; 684 int i; 685 uint offset; 686 u16 size; 687 u32 value; 688 689 brcms_dbg_info(wlc_hw->d11core, "wl%d\n", wlc_hw->unit); 690 691 for (i = 0; inits[i].addr != cpu_to_le16(0xffff); i++) { 692 size = le16_to_cpu(inits[i].size); 693 offset = le16_to_cpu(inits[i].addr); 694 value = le32_to_cpu(inits[i].value); 695 if (size == 2) 696 bcma_write16(core, offset, value); 697 else if (size == 4) 698 bcma_write32(core, offset, value); 699 else 700 break; 701 } 702 } 703 704 static void brcms_c_write_mhf(struct brcms_hardware *wlc_hw, u16 *mhfs) 705 { 706 u8 idx; 707 static const u16 addr[] = { 708 M_HOST_FLAGS1, M_HOST_FLAGS2, M_HOST_FLAGS3, M_HOST_FLAGS4, 709 M_HOST_FLAGS5 710 }; 711 712 for (idx = 0; idx < MHFMAX; idx++) 713 brcms_b_write_shm(wlc_hw, addr[idx], mhfs[idx]); 714 } 715 716 static void brcms_c_ucode_bsinit(struct brcms_hardware *wlc_hw) 717 { 718 struct brcms_ucode *ucode = &wlc_hw->wlc->wl->ucode; 719 720 /* init microcode host flags */ 721 brcms_c_write_mhf(wlc_hw, wlc_hw->band->mhfs); 722 723 /* do band-specific ucode IHR, SHM, and SCR inits */ 724 if (D11REV_IS(wlc_hw->corerev, 17) || D11REV_IS(wlc_hw->corerev, 23)) { 725 if (BRCMS_ISNPHY(wlc_hw->band)) 726 brcms_c_write_inits(wlc_hw, ucode->d11n0bsinitvals16); 727 else 728 brcms_err(wlc_hw->d11core, 729 "%s: wl%d: unsupported phy in corerev %d\n", 730 __func__, wlc_hw->unit, 731 wlc_hw->corerev); 732 } else { 733 if (D11REV_IS(wlc_hw->corerev, 24)) { 734 if (BRCMS_ISLCNPHY(wlc_hw->band)) 735 brcms_c_write_inits(wlc_hw, 736 ucode->d11lcn0bsinitvals24); 737 else 738 brcms_err(wlc_hw->d11core, 739 "%s: wl%d: unsupported phy in core rev %d\n", 740 __func__, wlc_hw->unit, 741 wlc_hw->corerev); 742 } else { 743 brcms_err(wlc_hw->d11core, 744 "%s: wl%d: unsupported corerev %d\n", 745 __func__, wlc_hw->unit, wlc_hw->corerev); 746 } 747 } 748 } 749 750 static void brcms_b_core_ioctl(struct brcms_hardware *wlc_hw, u32 m, u32 v) 751 { 752 struct bcma_device *core = wlc_hw->d11core; 753 u32 ioctl = bcma_aread32(core, BCMA_IOCTL) & ~m; 754 755 bcma_awrite32(core, BCMA_IOCTL, ioctl | v); 756 } 757 758 static void brcms_b_core_phy_clk(struct brcms_hardware *wlc_hw, bool clk) 759 { 760 brcms_dbg_info(wlc_hw->d11core, "wl%d: clk %d\n", wlc_hw->unit, clk); 761 762 wlc_hw->phyclk = clk; 763 764 if (OFF == clk) { /* clear gmode bit, put phy into reset */ 765 766 brcms_b_core_ioctl(wlc_hw, (SICF_PRST | SICF_FGC | SICF_GMODE), 767 (SICF_PRST | SICF_FGC)); 768 udelay(1); 769 brcms_b_core_ioctl(wlc_hw, (SICF_PRST | SICF_FGC), SICF_PRST); 770 udelay(1); 771 772 } else { /* take phy out of reset */ 773 774 brcms_b_core_ioctl(wlc_hw, (SICF_PRST | SICF_FGC), SICF_FGC); 775 udelay(1); 776 brcms_b_core_ioctl(wlc_hw, SICF_FGC, 0); 777 udelay(1); 778 779 } 780 } 781 782 /* low-level band switch utility routine */ 783 static void brcms_c_setxband(struct brcms_hardware *wlc_hw, uint bandunit) 784 { 785 brcms_dbg_mac80211(wlc_hw->d11core, "wl%d: bandunit %d\n", wlc_hw->unit, 786 bandunit); 787 788 wlc_hw->band = wlc_hw->bandstate[bandunit]; 789 790 /* 791 * BMAC_NOTE: 792 * until we eliminate need for wlc->band refs in low level code 793 */ 794 wlc_hw->wlc->band = wlc_hw->wlc->bandstate[bandunit]; 795 796 /* set gmode core flag */ 797 if (wlc_hw->sbclk && !wlc_hw->noreset) { 798 u32 gmode = 0; 799 800 if (bandunit == 0) 801 gmode = SICF_GMODE; 802 803 brcms_b_core_ioctl(wlc_hw, SICF_GMODE, gmode); 804 } 805 } 806 807 /* switch to new band but leave it inactive */ 808 static u32 brcms_c_setband_inact(struct brcms_c_info *wlc, uint bandunit) 809 { 810 struct brcms_hardware *wlc_hw = wlc->hw; 811 u32 macintmask; 812 u32 macctrl; 813 814 brcms_dbg_mac80211(wlc_hw->d11core, "wl%d\n", wlc_hw->unit); 815 macctrl = bcma_read32(wlc_hw->d11core, 816 D11REGOFFS(maccontrol)); 817 WARN_ON((macctrl & MCTL_EN_MAC) != 0); 818 819 /* disable interrupts */ 820 macintmask = brcms_intrsoff(wlc->wl); 821 822 /* radio off */ 823 wlc_phy_switch_radio(wlc_hw->band->pi, OFF); 824 825 brcms_b_core_phy_clk(wlc_hw, OFF); 826 827 brcms_c_setxband(wlc_hw, bandunit); 828 829 return macintmask; 830 } 831 832 /* process an individual struct tx_status */ 833 static bool 834 brcms_c_dotxstatus(struct brcms_c_info *wlc, struct tx_status *txs) 835 { 836 struct sk_buff *p = NULL; 837 uint queue = NFIFO; 838 struct dma_pub *dma = NULL; 839 struct d11txh *txh = NULL; 840 struct scb *scb = NULL; 841 int tx_frame_count; 842 uint supr_status; 843 bool lastframe; 844 struct ieee80211_hdr *h; 845 struct ieee80211_tx_info *tx_info; 846 struct ieee80211_tx_rate *txrate; 847 int i; 848 bool fatal = true; 849 850 trace_brcms_txstatus(&wlc->hw->d11core->dev, txs->framelen, 851 txs->frameid, txs->status, txs->lasttxtime, 852 txs->sequence, txs->phyerr, txs->ackphyrxsh); 853 854 /* discard intermediate indications for ucode with one legitimate case: 855 * e.g. if "useRTS" is set. ucode did a successful rts/cts exchange, 856 * but the subsequent tx of DATA failed. so it will start rts/cts 857 * from the beginning (resetting the rts transmission count) 858 */ 859 if (!(txs->status & TX_STATUS_AMPDU) 860 && (txs->status & TX_STATUS_INTERMEDIATE)) { 861 brcms_dbg_tx(wlc->hw->d11core, "INTERMEDIATE but not AMPDU\n"); 862 fatal = false; 863 goto out; 864 } 865 866 queue = txs->frameid & TXFID_QUEUE_MASK; 867 if (queue >= NFIFO) { 868 brcms_err(wlc->hw->d11core, "queue %u >= NFIFO\n", queue); 869 goto out; 870 } 871 872 dma = wlc->hw->di[queue]; 873 874 p = dma_getnexttxp(wlc->hw->di[queue], DMA_RANGE_TRANSMITTED); 875 if (p == NULL) { 876 brcms_err(wlc->hw->d11core, "dma_getnexttxp returned null!\n"); 877 goto out; 878 } 879 880 txh = (struct d11txh *) (p->data); 881 882 if (txs->phyerr) 883 brcms_dbg_tx(wlc->hw->d11core, "phyerr 0x%x, rate 0x%x\n", 884 txs->phyerr, txh->MainRates); 885 886 if (txs->frameid != le16_to_cpu(txh->TxFrameID)) { 887 brcms_err(wlc->hw->d11core, "frameid != txh->TxFrameID\n"); 888 goto out; 889 } 890 tx_info = IEEE80211_SKB_CB(p); 891 h = (struct ieee80211_hdr *)((u8 *) (txh + 1) + D11_PHY_HDR_LEN); 892 893 if (tx_info->rate_driver_data[0]) 894 scb = &wlc->pri_scb; 895 896 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) { 897 brcms_c_ampdu_dotxstatus(wlc->ampdu, scb, p, txs); 898 fatal = false; 899 goto out; 900 } 901 902 /* 903 * brcms_c_ampdu_dotxstatus() will trace tx descriptors for AMPDU 904 * frames; this traces them for the rest. 905 */ 906 trace_brcms_txdesc(&wlc->hw->d11core->dev, txh, sizeof(*txh)); 907 908 supr_status = txs->status & TX_STATUS_SUPR_MASK; 909 if (supr_status == TX_STATUS_SUPR_BADCH) { 910 unsigned xfts = le16_to_cpu(txh->XtraFrameTypes); 911 brcms_dbg_tx(wlc->hw->d11core, 912 "Pkt tx suppressed, dest chan %u, current %d\n", 913 (xfts >> XFTS_CHANNEL_SHIFT) & 0xff, 914 CHSPEC_CHANNEL(wlc->default_bss->chanspec)); 915 } 916 917 tx_frame_count = 918 (txs->status & TX_STATUS_FRM_RTX_MASK) >> TX_STATUS_FRM_RTX_SHIFT; 919 920 lastframe = !ieee80211_has_morefrags(h->frame_control); 921 922 if (!lastframe) { 923 brcms_err(wlc->hw->d11core, "Not last frame!\n"); 924 } else { 925 /* 926 * Set information to be consumed by Minstrel ht. 927 * 928 * The "fallback limit" is the number of tx attempts a given 929 * MPDU is sent at the "primary" rate. Tx attempts beyond that 930 * limit are sent at the "secondary" rate. 931 * A 'short frame' does not exceed RTS treshold. 932 */ 933 u16 sfbl, /* Short Frame Rate Fallback Limit */ 934 lfbl, /* Long Frame Rate Fallback Limit */ 935 fbl; 936 937 if (queue < IEEE80211_NUM_ACS) { 938 sfbl = GFIELD(wlc->wme_retries[wme_fifo2ac[queue]], 939 EDCF_SFB); 940 lfbl = GFIELD(wlc->wme_retries[wme_fifo2ac[queue]], 941 EDCF_LFB); 942 } else { 943 sfbl = wlc->SFBL; 944 lfbl = wlc->LFBL; 945 } 946 947 txrate = tx_info->status.rates; 948 if (txrate[0].flags & IEEE80211_TX_RC_USE_RTS_CTS) 949 fbl = lfbl; 950 else 951 fbl = sfbl; 952 953 ieee80211_tx_info_clear_status(tx_info); 954 955 if ((tx_frame_count > fbl) && (txrate[1].idx >= 0)) { 956 /* 957 * rate selection requested a fallback rate 958 * and we used it 959 */ 960 txrate[0].count = fbl; 961 txrate[1].count = tx_frame_count - fbl; 962 } else { 963 /* 964 * rate selection did not request fallback rate, or 965 * we didn't need it 966 */ 967 txrate[0].count = tx_frame_count; 968 /* 969 * rc80211_minstrel.c:minstrel_tx_status() expects 970 * unused rates to be marked with idx = -1 971 */ 972 txrate[1].idx = -1; 973 txrate[1].count = 0; 974 } 975 976 /* clear the rest of the rates */ 977 for (i = 2; i < IEEE80211_TX_MAX_RATES; i++) { 978 txrate[i].idx = -1; 979 txrate[i].count = 0; 980 } 981 982 if (txs->status & TX_STATUS_ACK_RCV) 983 tx_info->flags |= IEEE80211_TX_STAT_ACK; 984 } 985 986 if (lastframe) { 987 /* remove PLCP & Broadcom tx descriptor header */ 988 skb_pull(p, D11_PHY_HDR_LEN); 989 skb_pull(p, D11_TXH_LEN); 990 ieee80211_tx_status_irqsafe(wlc->pub->ieee_hw, p); 991 } else { 992 brcms_err(wlc->hw->d11core, 993 "%s: Not last frame => not calling tx_status\n", 994 __func__); 995 } 996 997 fatal = false; 998 999 out: 1000 if (fatal) { 1001 if (txh) 1002 trace_brcms_txdesc(&wlc->hw->d11core->dev, txh, 1003 sizeof(*txh)); 1004 brcmu_pkt_buf_free_skb(p); 1005 } 1006 1007 if (dma && queue < NFIFO) { 1008 u16 ac_queue = brcms_fifo_to_ac(queue); 1009 if (dma->txavail > TX_HEADROOM && queue < TX_BCMC_FIFO && 1010 ieee80211_queue_stopped(wlc->pub->ieee_hw, ac_queue)) 1011 ieee80211_wake_queue(wlc->pub->ieee_hw, ac_queue); 1012 dma_kick_tx(dma); 1013 } 1014 1015 return fatal; 1016 } 1017 1018 /* process tx completion events in BMAC 1019 * Return true if more tx status need to be processed. false otherwise. 1020 */ 1021 static bool 1022 brcms_b_txstatus(struct brcms_hardware *wlc_hw, bool bound, bool *fatal) 1023 { 1024 struct bcma_device *core; 1025 struct tx_status txstatus, *txs; 1026 u32 s1, s2; 1027 uint n = 0; 1028 /* 1029 * Param 'max_tx_num' indicates max. # tx status to process before 1030 * break out. 1031 */ 1032 uint max_tx_num = bound ? TXSBND : -1; 1033 1034 txs = &txstatus; 1035 core = wlc_hw->d11core; 1036 *fatal = false; 1037 1038 while (n < max_tx_num) { 1039 s1 = bcma_read32(core, D11REGOFFS(frmtxstatus)); 1040 if (s1 == 0xffffffff) { 1041 brcms_err(core, "wl%d: %s: dead chip\n", wlc_hw->unit, 1042 __func__); 1043 *fatal = true; 1044 return false; 1045 } 1046 /* only process when valid */ 1047 if (!(s1 & TXS_V)) 1048 break; 1049 1050 s2 = bcma_read32(core, D11REGOFFS(frmtxstatus2)); 1051 txs->status = s1 & TXS_STATUS_MASK; 1052 txs->frameid = (s1 & TXS_FID_MASK) >> TXS_FID_SHIFT; 1053 txs->sequence = s2 & TXS_SEQ_MASK; 1054 txs->phyerr = (s2 & TXS_PTX_MASK) >> TXS_PTX_SHIFT; 1055 txs->lasttxtime = 0; 1056 1057 *fatal = brcms_c_dotxstatus(wlc_hw->wlc, txs); 1058 if (*fatal) 1059 return false; 1060 n++; 1061 } 1062 1063 return n >= max_tx_num; 1064 } 1065 1066 static void brcms_c_tbtt(struct brcms_c_info *wlc) 1067 { 1068 if (wlc->bsscfg->type == BRCMS_TYPE_ADHOC) 1069 /* 1070 * DirFrmQ is now valid...defer setting until end 1071 * of ATIM window 1072 */ 1073 wlc->qvalid |= MCMD_DIRFRMQVAL; 1074 } 1075 1076 /* set initial host flags value */ 1077 static void 1078 brcms_c_mhfdef(struct brcms_c_info *wlc, u16 *mhfs, u16 mhf2_init) 1079 { 1080 struct brcms_hardware *wlc_hw = wlc->hw; 1081 1082 memset(mhfs, 0, MHFMAX * sizeof(u16)); 1083 1084 mhfs[MHF2] |= mhf2_init; 1085 1086 /* prohibit use of slowclock on multifunction boards */ 1087 if (wlc_hw->boardflags & BFL_NOPLLDOWN) 1088 mhfs[MHF1] |= MHF1_FORCEFASTCLK; 1089 1090 if (BRCMS_ISNPHY(wlc_hw->band) && NREV_LT(wlc_hw->band->phyrev, 2)) { 1091 mhfs[MHF2] |= MHF2_NPHY40MHZ_WAR; 1092 mhfs[MHF1] |= MHF1_IQSWAP_WAR; 1093 } 1094 } 1095 1096 static uint 1097 dmareg(uint direction, uint fifonum) 1098 { 1099 if (direction == DMA_TX) 1100 return offsetof(struct d11regs, fifo64regs[fifonum].dmaxmt); 1101 return offsetof(struct d11regs, fifo64regs[fifonum].dmarcv); 1102 } 1103 1104 static bool brcms_b_attach_dmapio(struct brcms_c_info *wlc, uint j, bool wme) 1105 { 1106 uint i; 1107 char name[8]; 1108 /* 1109 * ucode host flag 2 needed for pio mode, independent of band and fifo 1110 */ 1111 u16 pio_mhf2 = 0; 1112 struct brcms_hardware *wlc_hw = wlc->hw; 1113 uint unit = wlc_hw->unit; 1114 1115 /* name and offsets for dma_attach */ 1116 snprintf(name, sizeof(name), "wl%d", unit); 1117 1118 if (wlc_hw->di[0] == NULL) { /* Init FIFOs */ 1119 int dma_attach_err = 0; 1120 1121 /* 1122 * FIFO 0 1123 * TX: TX_AC_BK_FIFO (TX AC Background data packets) 1124 * RX: RX_FIFO (RX data packets) 1125 */ 1126 wlc_hw->di[0] = dma_attach(name, wlc, 1127 (wme ? dmareg(DMA_TX, 0) : 0), 1128 dmareg(DMA_RX, 0), 1129 (wme ? NTXD : 0), NRXD, 1130 RXBUFSZ, -1, NRXBUFPOST, 1131 BRCMS_HWRXOFF); 1132 dma_attach_err |= (NULL == wlc_hw->di[0]); 1133 1134 /* 1135 * FIFO 1 1136 * TX: TX_AC_BE_FIFO (TX AC Best-Effort data packets) 1137 * (legacy) TX_DATA_FIFO (TX data packets) 1138 * RX: UNUSED 1139 */ 1140 wlc_hw->di[1] = dma_attach(name, wlc, 1141 dmareg(DMA_TX, 1), 0, 1142 NTXD, 0, 0, -1, 0, 0); 1143 dma_attach_err |= (NULL == wlc_hw->di[1]); 1144 1145 /* 1146 * FIFO 2 1147 * TX: TX_AC_VI_FIFO (TX AC Video data packets) 1148 * RX: UNUSED 1149 */ 1150 wlc_hw->di[2] = dma_attach(name, wlc, 1151 dmareg(DMA_TX, 2), 0, 1152 NTXD, 0, 0, -1, 0, 0); 1153 dma_attach_err |= (NULL == wlc_hw->di[2]); 1154 /* 1155 * FIFO 3 1156 * TX: TX_AC_VO_FIFO (TX AC Voice data packets) 1157 * (legacy) TX_CTL_FIFO (TX control & mgmt packets) 1158 */ 1159 wlc_hw->di[3] = dma_attach(name, wlc, 1160 dmareg(DMA_TX, 3), 1161 0, NTXD, 0, 0, -1, 1162 0, 0); 1163 dma_attach_err |= (NULL == wlc_hw->di[3]); 1164 /* Cleaner to leave this as if with AP defined */ 1165 1166 if (dma_attach_err) { 1167 brcms_err(wlc_hw->d11core, 1168 "wl%d: wlc_attach: dma_attach failed\n", 1169 unit); 1170 return false; 1171 } 1172 1173 /* get pointer to dma engine tx flow control variable */ 1174 for (i = 0; i < NFIFO; i++) 1175 if (wlc_hw->di[i]) 1176 wlc_hw->txavail[i] = 1177 (uint *) dma_getvar(wlc_hw->di[i], 1178 "&txavail"); 1179 } 1180 1181 /* initial ucode host flags */ 1182 brcms_c_mhfdef(wlc, wlc_hw->band->mhfs, pio_mhf2); 1183 1184 return true; 1185 } 1186 1187 static void brcms_b_detach_dmapio(struct brcms_hardware *wlc_hw) 1188 { 1189 uint j; 1190 1191 for (j = 0; j < NFIFO; j++) { 1192 if (wlc_hw->di[j]) { 1193 dma_detach(wlc_hw->di[j]); 1194 wlc_hw->di[j] = NULL; 1195 } 1196 } 1197 } 1198 1199 /* 1200 * Initialize brcms_c_info default values ... 1201 * may get overrides later in this function 1202 * BMAC_NOTES, move low out and resolve the dangling ones 1203 */ 1204 static void brcms_b_info_init(struct brcms_hardware *wlc_hw) 1205 { 1206 struct brcms_c_info *wlc = wlc_hw->wlc; 1207 1208 /* set default sw macintmask value */ 1209 wlc->defmacintmask = DEF_MACINTMASK; 1210 1211 /* various 802.11g modes */ 1212 wlc_hw->shortslot = false; 1213 1214 wlc_hw->SFBL = RETRY_SHORT_FB; 1215 wlc_hw->LFBL = RETRY_LONG_FB; 1216 1217 /* default mac retry limits */ 1218 wlc_hw->SRL = RETRY_SHORT_DEF; 1219 wlc_hw->LRL = RETRY_LONG_DEF; 1220 wlc_hw->chanspec = ch20mhz_chspec(1); 1221 } 1222 1223 static void brcms_b_wait_for_wake(struct brcms_hardware *wlc_hw) 1224 { 1225 /* delay before first read of ucode state */ 1226 udelay(40); 1227 1228 /* wait until ucode is no longer asleep */ 1229 SPINWAIT((brcms_b_read_shm(wlc_hw, M_UCODE_DBGST) == 1230 DBGST_ASLEEP), wlc_hw->wlc->fastpwrup_dly); 1231 } 1232 1233 /* control chip clock to save power, enable dynamic clock or force fast clock */ 1234 static void brcms_b_clkctl_clk(struct brcms_hardware *wlc_hw, enum bcma_clkmode mode) 1235 { 1236 if (ai_get_cccaps(wlc_hw->sih) & CC_CAP_PMU) { 1237 /* new chips with PMU, CCS_FORCEHT will distribute the HT clock 1238 * on backplane, but mac core will still run on ALP(not HT) when 1239 * it enters powersave mode, which means the FCA bit may not be 1240 * set. Should wakeup mac if driver wants it to run on HT. 1241 */ 1242 1243 if (wlc_hw->clk) { 1244 if (mode == BCMA_CLKMODE_FAST) { 1245 bcma_set32(wlc_hw->d11core, 1246 D11REGOFFS(clk_ctl_st), 1247 CCS_FORCEHT); 1248 1249 udelay(64); 1250 1251 SPINWAIT( 1252 ((bcma_read32(wlc_hw->d11core, 1253 D11REGOFFS(clk_ctl_st)) & 1254 CCS_HTAVAIL) == 0), 1255 PMU_MAX_TRANSITION_DLY); 1256 WARN_ON(!(bcma_read32(wlc_hw->d11core, 1257 D11REGOFFS(clk_ctl_st)) & 1258 CCS_HTAVAIL)); 1259 } else { 1260 if ((ai_get_pmurev(wlc_hw->sih) == 0) && 1261 (bcma_read32(wlc_hw->d11core, 1262 D11REGOFFS(clk_ctl_st)) & 1263 (CCS_FORCEHT | CCS_HTAREQ))) 1264 SPINWAIT( 1265 ((bcma_read32(wlc_hw->d11core, 1266 offsetof(struct d11regs, 1267 clk_ctl_st)) & 1268 CCS_HTAVAIL) == 0), 1269 PMU_MAX_TRANSITION_DLY); 1270 bcma_mask32(wlc_hw->d11core, 1271 D11REGOFFS(clk_ctl_st), 1272 ~CCS_FORCEHT); 1273 } 1274 } 1275 wlc_hw->forcefastclk = (mode == BCMA_CLKMODE_FAST); 1276 } else { 1277 1278 /* old chips w/o PMU, force HT through cc, 1279 * then use FCA to verify mac is running fast clock 1280 */ 1281 1282 wlc_hw->forcefastclk = ai_clkctl_cc(wlc_hw->sih, mode); 1283 1284 /* check fast clock is available (if core is not in reset) */ 1285 if (wlc_hw->forcefastclk && wlc_hw->clk) 1286 WARN_ON(!(bcma_aread32(wlc_hw->d11core, BCMA_IOST) & 1287 SISF_FCLKA)); 1288 1289 /* 1290 * keep the ucode wake bit on if forcefastclk is on since we 1291 * do not want ucode to put us back to slow clock when it dozes 1292 * for PM mode. Code below matches the wake override bit with 1293 * current forcefastclk state. Only setting bit in wake_override 1294 * instead of waking ucode immediately since old code had this 1295 * behavior. Older code set wlc->forcefastclk but only had the 1296 * wake happen if the wakup_ucode work (protected by an up 1297 * check) was executed just below. 1298 */ 1299 if (wlc_hw->forcefastclk) 1300 mboolset(wlc_hw->wake_override, 1301 BRCMS_WAKE_OVERRIDE_FORCEFAST); 1302 else 1303 mboolclr(wlc_hw->wake_override, 1304 BRCMS_WAKE_OVERRIDE_FORCEFAST); 1305 } 1306 } 1307 1308 /* set or clear ucode host flag bits 1309 * it has an optimization for no-change write 1310 * it only writes through shared memory when the core has clock; 1311 * pre-CLK changes should use wlc_write_mhf to get around the optimization 1312 * 1313 * 1314 * bands values are: BRCM_BAND_AUTO <--- Current band only 1315 * BRCM_BAND_5G <--- 5G band only 1316 * BRCM_BAND_2G <--- 2G band only 1317 * BRCM_BAND_ALL <--- All bands 1318 */ 1319 void 1320 brcms_b_mhf(struct brcms_hardware *wlc_hw, u8 idx, u16 mask, u16 val, 1321 int bands) 1322 { 1323 u16 save; 1324 u16 addr[MHFMAX] = { 1325 M_HOST_FLAGS1, M_HOST_FLAGS2, M_HOST_FLAGS3, M_HOST_FLAGS4, 1326 M_HOST_FLAGS5 1327 }; 1328 struct brcms_hw_band *band; 1329 1330 if ((val & ~mask) || idx >= MHFMAX) 1331 return; /* error condition */ 1332 1333 switch (bands) { 1334 /* Current band only or all bands, 1335 * then set the band to current band 1336 */ 1337 case BRCM_BAND_AUTO: 1338 case BRCM_BAND_ALL: 1339 band = wlc_hw->band; 1340 break; 1341 case BRCM_BAND_5G: 1342 band = wlc_hw->bandstate[BAND_5G_INDEX]; 1343 break; 1344 case BRCM_BAND_2G: 1345 band = wlc_hw->bandstate[BAND_2G_INDEX]; 1346 break; 1347 default: 1348 band = NULL; /* error condition */ 1349 } 1350 1351 if (band) { 1352 save = band->mhfs[idx]; 1353 band->mhfs[idx] = (band->mhfs[idx] & ~mask) | val; 1354 1355 /* optimization: only write through if changed, and 1356 * changed band is the current band 1357 */ 1358 if (wlc_hw->clk && (band->mhfs[idx] != save) 1359 && (band == wlc_hw->band)) 1360 brcms_b_write_shm(wlc_hw, addr[idx], 1361 (u16) band->mhfs[idx]); 1362 } 1363 1364 if (bands == BRCM_BAND_ALL) { 1365 wlc_hw->bandstate[0]->mhfs[idx] = 1366 (wlc_hw->bandstate[0]->mhfs[idx] & ~mask) | val; 1367 wlc_hw->bandstate[1]->mhfs[idx] = 1368 (wlc_hw->bandstate[1]->mhfs[idx] & ~mask) | val; 1369 } 1370 } 1371 1372 /* set the maccontrol register to desired reset state and 1373 * initialize the sw cache of the register 1374 */ 1375 static void brcms_c_mctrl_reset(struct brcms_hardware *wlc_hw) 1376 { 1377 /* IHR accesses are always enabled, PSM disabled, HPS off and WAKE on */ 1378 wlc_hw->maccontrol = 0; 1379 wlc_hw->suspended_fifos = 0; 1380 wlc_hw->wake_override = 0; 1381 wlc_hw->mute_override = 0; 1382 brcms_b_mctrl(wlc_hw, ~0, MCTL_IHR_EN | MCTL_WAKE); 1383 } 1384 1385 /* 1386 * write the software state of maccontrol and 1387 * overrides to the maccontrol register 1388 */ 1389 static void brcms_c_mctrl_write(struct brcms_hardware *wlc_hw) 1390 { 1391 u32 maccontrol = wlc_hw->maccontrol; 1392 1393 /* OR in the wake bit if overridden */ 1394 if (wlc_hw->wake_override) 1395 maccontrol |= MCTL_WAKE; 1396 1397 /* set AP and INFRA bits for mute if needed */ 1398 if (wlc_hw->mute_override) { 1399 maccontrol &= ~(MCTL_AP); 1400 maccontrol |= MCTL_INFRA; 1401 } 1402 1403 bcma_write32(wlc_hw->d11core, D11REGOFFS(maccontrol), 1404 maccontrol); 1405 } 1406 1407 /* set or clear maccontrol bits */ 1408 void brcms_b_mctrl(struct brcms_hardware *wlc_hw, u32 mask, u32 val) 1409 { 1410 u32 maccontrol; 1411 u32 new_maccontrol; 1412 1413 if (val & ~mask) 1414 return; /* error condition */ 1415 maccontrol = wlc_hw->maccontrol; 1416 new_maccontrol = (maccontrol & ~mask) | val; 1417 1418 /* if the new maccontrol value is the same as the old, nothing to do */ 1419 if (new_maccontrol == maccontrol) 1420 return; 1421 1422 /* something changed, cache the new value */ 1423 wlc_hw->maccontrol = new_maccontrol; 1424 1425 /* write the new values with overrides applied */ 1426 brcms_c_mctrl_write(wlc_hw); 1427 } 1428 1429 void brcms_c_ucode_wake_override_set(struct brcms_hardware *wlc_hw, 1430 u32 override_bit) 1431 { 1432 if (wlc_hw->wake_override || (wlc_hw->maccontrol & MCTL_WAKE)) { 1433 mboolset(wlc_hw->wake_override, override_bit); 1434 return; 1435 } 1436 1437 mboolset(wlc_hw->wake_override, override_bit); 1438 1439 brcms_c_mctrl_write(wlc_hw); 1440 brcms_b_wait_for_wake(wlc_hw); 1441 } 1442 1443 void brcms_c_ucode_wake_override_clear(struct brcms_hardware *wlc_hw, 1444 u32 override_bit) 1445 { 1446 mboolclr(wlc_hw->wake_override, override_bit); 1447 1448 if (wlc_hw->wake_override || (wlc_hw->maccontrol & MCTL_WAKE)) 1449 return; 1450 1451 brcms_c_mctrl_write(wlc_hw); 1452 } 1453 1454 /* When driver needs ucode to stop beaconing, it has to make sure that 1455 * MCTL_AP is clear and MCTL_INFRA is set 1456 * Mode MCTL_AP MCTL_INFRA 1457 * AP 1 1 1458 * STA 0 1 <--- This will ensure no beacons 1459 * IBSS 0 0 1460 */ 1461 static void brcms_c_ucode_mute_override_set(struct brcms_hardware *wlc_hw) 1462 { 1463 wlc_hw->mute_override = 1; 1464 1465 /* if maccontrol already has AP == 0 and INFRA == 1 without this 1466 * override, then there is no change to write 1467 */ 1468 if ((wlc_hw->maccontrol & (MCTL_AP | MCTL_INFRA)) == MCTL_INFRA) 1469 return; 1470 1471 brcms_c_mctrl_write(wlc_hw); 1472 } 1473 1474 /* Clear the override on AP and INFRA bits */ 1475 static void brcms_c_ucode_mute_override_clear(struct brcms_hardware *wlc_hw) 1476 { 1477 if (wlc_hw->mute_override == 0) 1478 return; 1479 1480 wlc_hw->mute_override = 0; 1481 1482 /* if maccontrol already has AP == 0 and INFRA == 1 without this 1483 * override, then there is no change to write 1484 */ 1485 if ((wlc_hw->maccontrol & (MCTL_AP | MCTL_INFRA)) == MCTL_INFRA) 1486 return; 1487 1488 brcms_c_mctrl_write(wlc_hw); 1489 } 1490 1491 /* 1492 * Write a MAC address to the given match reg offset in the RXE match engine. 1493 */ 1494 static void 1495 brcms_b_set_addrmatch(struct brcms_hardware *wlc_hw, int match_reg_offset, 1496 const u8 *addr) 1497 { 1498 struct bcma_device *core = wlc_hw->d11core; 1499 u16 mac_l; 1500 u16 mac_m; 1501 u16 mac_h; 1502 1503 brcms_dbg_rx(core, "wl%d: brcms_b_set_addrmatch\n", wlc_hw->unit); 1504 1505 mac_l = addr[0] | (addr[1] << 8); 1506 mac_m = addr[2] | (addr[3] << 8); 1507 mac_h = addr[4] | (addr[5] << 8); 1508 1509 /* enter the MAC addr into the RXE match registers */ 1510 bcma_write16(core, D11REGOFFS(rcm_ctl), 1511 RCM_INC_DATA | match_reg_offset); 1512 bcma_write16(core, D11REGOFFS(rcm_mat_data), mac_l); 1513 bcma_write16(core, D11REGOFFS(rcm_mat_data), mac_m); 1514 bcma_write16(core, D11REGOFFS(rcm_mat_data), mac_h); 1515 } 1516 1517 void 1518 brcms_b_write_template_ram(struct brcms_hardware *wlc_hw, int offset, int len, 1519 void *buf) 1520 { 1521 struct bcma_device *core = wlc_hw->d11core; 1522 u32 word; 1523 __le32 word_le; 1524 __be32 word_be; 1525 bool be_bit; 1526 brcms_dbg_info(core, "wl%d\n", wlc_hw->unit); 1527 1528 bcma_write32(core, D11REGOFFS(tplatewrptr), offset); 1529 1530 /* if MCTL_BIGEND bit set in mac control register, 1531 * the chip swaps data in fifo, as well as data in 1532 * template ram 1533 */ 1534 be_bit = (bcma_read32(core, D11REGOFFS(maccontrol)) & MCTL_BIGEND) != 0; 1535 1536 while (len > 0) { 1537 memcpy(&word, buf, sizeof(u32)); 1538 1539 if (be_bit) { 1540 word_be = cpu_to_be32(word); 1541 word = *(u32 *)&word_be; 1542 } else { 1543 word_le = cpu_to_le32(word); 1544 word = *(u32 *)&word_le; 1545 } 1546 1547 bcma_write32(core, D11REGOFFS(tplatewrdata), word); 1548 1549 buf = (u8 *) buf + sizeof(u32); 1550 len -= sizeof(u32); 1551 } 1552 } 1553 1554 static void brcms_b_set_cwmin(struct brcms_hardware *wlc_hw, u16 newmin) 1555 { 1556 wlc_hw->band->CWmin = newmin; 1557 1558 bcma_write32(wlc_hw->d11core, D11REGOFFS(objaddr), 1559 OBJADDR_SCR_SEL | S_DOT11_CWMIN); 1560 (void)bcma_read32(wlc_hw->d11core, D11REGOFFS(objaddr)); 1561 bcma_write32(wlc_hw->d11core, D11REGOFFS(objdata), newmin); 1562 } 1563 1564 static void brcms_b_set_cwmax(struct brcms_hardware *wlc_hw, u16 newmax) 1565 { 1566 wlc_hw->band->CWmax = newmax; 1567 1568 bcma_write32(wlc_hw->d11core, D11REGOFFS(objaddr), 1569 OBJADDR_SCR_SEL | S_DOT11_CWMAX); 1570 (void)bcma_read32(wlc_hw->d11core, D11REGOFFS(objaddr)); 1571 bcma_write32(wlc_hw->d11core, D11REGOFFS(objdata), newmax); 1572 } 1573 1574 void brcms_b_bw_set(struct brcms_hardware *wlc_hw, u16 bw) 1575 { 1576 bool fastclk; 1577 1578 /* request FAST clock if not on */ 1579 fastclk = wlc_hw->forcefastclk; 1580 if (!fastclk) 1581 brcms_b_clkctl_clk(wlc_hw, BCMA_CLKMODE_FAST); 1582 1583 wlc_phy_bw_state_set(wlc_hw->band->pi, bw); 1584 1585 brcms_b_phy_reset(wlc_hw); 1586 wlc_phy_init(wlc_hw->band->pi, wlc_phy_chanspec_get(wlc_hw->band->pi)); 1587 1588 /* restore the clk */ 1589 if (!fastclk) 1590 brcms_b_clkctl_clk(wlc_hw, BCMA_CLKMODE_DYNAMIC); 1591 } 1592 1593 static void brcms_b_upd_synthpu(struct brcms_hardware *wlc_hw) 1594 { 1595 u16 v; 1596 struct brcms_c_info *wlc = wlc_hw->wlc; 1597 /* update SYNTHPU_DLY */ 1598 1599 if (BRCMS_ISLCNPHY(wlc->band)) 1600 v = SYNTHPU_DLY_LPPHY_US; 1601 else if (BRCMS_ISNPHY(wlc->band) && (NREV_GE(wlc->band->phyrev, 3))) 1602 v = SYNTHPU_DLY_NPHY_US; 1603 else 1604 v = SYNTHPU_DLY_BPHY_US; 1605 1606 brcms_b_write_shm(wlc_hw, M_SYNTHPU_DLY, v); 1607 } 1608 1609 static void brcms_c_ucode_txant_set(struct brcms_hardware *wlc_hw) 1610 { 1611 u16 phyctl; 1612 u16 phytxant = wlc_hw->bmac_phytxant; 1613 u16 mask = PHY_TXC_ANT_MASK; 1614 1615 /* set the Probe Response frame phy control word */ 1616 phyctl = brcms_b_read_shm(wlc_hw, M_CTXPRS_BLK + C_CTX_PCTLWD_POS); 1617 phyctl = (phyctl & ~mask) | phytxant; 1618 brcms_b_write_shm(wlc_hw, M_CTXPRS_BLK + C_CTX_PCTLWD_POS, phyctl); 1619 1620 /* set the Response (ACK/CTS) frame phy control word */ 1621 phyctl = brcms_b_read_shm(wlc_hw, M_RSP_PCTLWD); 1622 phyctl = (phyctl & ~mask) | phytxant; 1623 brcms_b_write_shm(wlc_hw, M_RSP_PCTLWD, phyctl); 1624 } 1625 1626 static u16 brcms_b_ofdm_ratetable_offset(struct brcms_hardware *wlc_hw, 1627 u8 rate) 1628 { 1629 uint i; 1630 u8 plcp_rate = 0; 1631 struct plcp_signal_rate_lookup { 1632 u8 rate; 1633 u8 signal_rate; 1634 }; 1635 /* OFDM RATE sub-field of PLCP SIGNAL field, per 802.11 sec 17.3.4.1 */ 1636 const struct plcp_signal_rate_lookup rate_lookup[] = { 1637 {BRCM_RATE_6M, 0xB}, 1638 {BRCM_RATE_9M, 0xF}, 1639 {BRCM_RATE_12M, 0xA}, 1640 {BRCM_RATE_18M, 0xE}, 1641 {BRCM_RATE_24M, 0x9}, 1642 {BRCM_RATE_36M, 0xD}, 1643 {BRCM_RATE_48M, 0x8}, 1644 {BRCM_RATE_54M, 0xC} 1645 }; 1646 1647 for (i = 0; i < ARRAY_SIZE(rate_lookup); i++) { 1648 if (rate == rate_lookup[i].rate) { 1649 plcp_rate = rate_lookup[i].signal_rate; 1650 break; 1651 } 1652 } 1653 1654 /* Find the SHM pointer to the rate table entry by looking in the 1655 * Direct-map Table 1656 */ 1657 return 2 * brcms_b_read_shm(wlc_hw, M_RT_DIRMAP_A + (plcp_rate * 2)); 1658 } 1659 1660 static void brcms_upd_ofdm_pctl1_table(struct brcms_hardware *wlc_hw) 1661 { 1662 u8 rate; 1663 u8 rates[8] = { 1664 BRCM_RATE_6M, BRCM_RATE_9M, BRCM_RATE_12M, BRCM_RATE_18M, 1665 BRCM_RATE_24M, BRCM_RATE_36M, BRCM_RATE_48M, BRCM_RATE_54M 1666 }; 1667 u16 entry_ptr; 1668 u16 pctl1; 1669 uint i; 1670 1671 if (!BRCMS_PHY_11N_CAP(wlc_hw->band)) 1672 return; 1673 1674 /* walk the phy rate table and update the entries */ 1675 for (i = 0; i < ARRAY_SIZE(rates); i++) { 1676 rate = rates[i]; 1677 1678 entry_ptr = brcms_b_ofdm_ratetable_offset(wlc_hw, rate); 1679 1680 /* read the SHM Rate Table entry OFDM PCTL1 values */ 1681 pctl1 = 1682 brcms_b_read_shm(wlc_hw, entry_ptr + M_RT_OFDM_PCTL1_POS); 1683 1684 /* modify the value */ 1685 pctl1 &= ~PHY_TXC1_MODE_MASK; 1686 pctl1 |= (wlc_hw->hw_stf_ss_opmode << PHY_TXC1_MODE_SHIFT); 1687 1688 /* Update the SHM Rate Table entry OFDM PCTL1 values */ 1689 brcms_b_write_shm(wlc_hw, entry_ptr + M_RT_OFDM_PCTL1_POS, 1690 pctl1); 1691 } 1692 } 1693 1694 /* band-specific init */ 1695 static void brcms_b_bsinit(struct brcms_c_info *wlc, u16 chanspec) 1696 { 1697 struct brcms_hardware *wlc_hw = wlc->hw; 1698 1699 brcms_dbg_mac80211(wlc_hw->d11core, "wl%d: bandunit %d\n", wlc_hw->unit, 1700 wlc_hw->band->bandunit); 1701 1702 brcms_c_ucode_bsinit(wlc_hw); 1703 1704 wlc_phy_init(wlc_hw->band->pi, chanspec); 1705 1706 brcms_c_ucode_txant_set(wlc_hw); 1707 1708 /* 1709 * cwmin is band-specific, update hardware 1710 * with value for current band 1711 */ 1712 brcms_b_set_cwmin(wlc_hw, wlc_hw->band->CWmin); 1713 brcms_b_set_cwmax(wlc_hw, wlc_hw->band->CWmax); 1714 1715 brcms_b_update_slot_timing(wlc_hw, 1716 wlc_hw->band->bandtype == BRCM_BAND_5G ? 1717 true : wlc_hw->shortslot); 1718 1719 /* write phytype and phyvers */ 1720 brcms_b_write_shm(wlc_hw, M_PHYTYPE, (u16) wlc_hw->band->phytype); 1721 brcms_b_write_shm(wlc_hw, M_PHYVER, (u16) wlc_hw->band->phyrev); 1722 1723 /* 1724 * initialize the txphyctl1 rate table since 1725 * shmem is shared between bands 1726 */ 1727 brcms_upd_ofdm_pctl1_table(wlc_hw); 1728 1729 brcms_b_upd_synthpu(wlc_hw); 1730 } 1731 1732 /* Perform a soft reset of the PHY PLL */ 1733 void brcms_b_core_phypll_reset(struct brcms_hardware *wlc_hw) 1734 { 1735 ai_cc_reg(wlc_hw->sih, offsetof(struct chipcregs, chipcontrol_addr), 1736 ~0, 0); 1737 udelay(1); 1738 ai_cc_reg(wlc_hw->sih, offsetof(struct chipcregs, chipcontrol_data), 1739 0x4, 0); 1740 udelay(1); 1741 ai_cc_reg(wlc_hw->sih, offsetof(struct chipcregs, chipcontrol_data), 1742 0x4, 4); 1743 udelay(1); 1744 ai_cc_reg(wlc_hw->sih, offsetof(struct chipcregs, chipcontrol_data), 1745 0x4, 0); 1746 udelay(1); 1747 } 1748 1749 /* light way to turn on phy clock without reset for NPHY only 1750 * refer to brcms_b_core_phy_clk for full version 1751 */ 1752 void brcms_b_phyclk_fgc(struct brcms_hardware *wlc_hw, bool clk) 1753 { 1754 /* support(necessary for NPHY and HYPHY) only */ 1755 if (!BRCMS_ISNPHY(wlc_hw->band)) 1756 return; 1757 1758 if (ON == clk) 1759 brcms_b_core_ioctl(wlc_hw, SICF_FGC, SICF_FGC); 1760 else 1761 brcms_b_core_ioctl(wlc_hw, SICF_FGC, 0); 1762 1763 } 1764 1765 void brcms_b_macphyclk_set(struct brcms_hardware *wlc_hw, bool clk) 1766 { 1767 if (ON == clk) 1768 brcms_b_core_ioctl(wlc_hw, SICF_MPCLKE, SICF_MPCLKE); 1769 else 1770 brcms_b_core_ioctl(wlc_hw, SICF_MPCLKE, 0); 1771 } 1772 1773 void brcms_b_phy_reset(struct brcms_hardware *wlc_hw) 1774 { 1775 struct brcms_phy_pub *pih = wlc_hw->band->pi; 1776 u32 phy_bw_clkbits; 1777 1778 brcms_dbg_info(wlc_hw->d11core, "wl%d: reset phy\n", wlc_hw->unit); 1779 1780 if (pih == NULL) 1781 return; 1782 1783 phy_bw_clkbits = wlc_phy_clk_bwbits(wlc_hw->band->pi); 1784 1785 /* Specific reset sequence required for NPHY rev 3 and 4 */ 1786 if (BRCMS_ISNPHY(wlc_hw->band) && NREV_GE(wlc_hw->band->phyrev, 3) && 1787 NREV_LE(wlc_hw->band->phyrev, 4)) { 1788 /* Set the PHY bandwidth */ 1789 brcms_b_core_ioctl(wlc_hw, SICF_BWMASK, phy_bw_clkbits); 1790 1791 udelay(1); 1792 1793 /* Perform a soft reset of the PHY PLL */ 1794 brcms_b_core_phypll_reset(wlc_hw); 1795 1796 /* reset the PHY */ 1797 brcms_b_core_ioctl(wlc_hw, (SICF_PRST | SICF_PCLKE), 1798 (SICF_PRST | SICF_PCLKE)); 1799 } else { 1800 brcms_b_core_ioctl(wlc_hw, 1801 (SICF_PRST | SICF_PCLKE | SICF_BWMASK), 1802 (SICF_PRST | SICF_PCLKE | phy_bw_clkbits)); 1803 } 1804 1805 udelay(2); 1806 brcms_b_core_phy_clk(wlc_hw, ON); 1807 1808 wlc_phy_anacore(pih, ON); 1809 } 1810 1811 /* switch to and initialize new band */ 1812 static void brcms_b_setband(struct brcms_hardware *wlc_hw, uint bandunit, 1813 u16 chanspec) { 1814 struct brcms_c_info *wlc = wlc_hw->wlc; 1815 u32 macintmask; 1816 1817 /* Enable the d11 core before accessing it */ 1818 if (!bcma_core_is_enabled(wlc_hw->d11core)) { 1819 bcma_core_enable(wlc_hw->d11core, 0); 1820 brcms_c_mctrl_reset(wlc_hw); 1821 } 1822 1823 macintmask = brcms_c_setband_inact(wlc, bandunit); 1824 1825 if (!wlc_hw->up) 1826 return; 1827 1828 brcms_b_core_phy_clk(wlc_hw, ON); 1829 1830 /* band-specific initializations */ 1831 brcms_b_bsinit(wlc, chanspec); 1832 1833 /* 1834 * If there are any pending software interrupt bits, 1835 * then replace these with a harmless nonzero value 1836 * so brcms_c_dpc() will re-enable interrupts when done. 1837 */ 1838 if (wlc->macintstatus) 1839 wlc->macintstatus = MI_DMAINT; 1840 1841 /* restore macintmask */ 1842 brcms_intrsrestore(wlc->wl, macintmask); 1843 1844 /* ucode should still be suspended.. */ 1845 WARN_ON((bcma_read32(wlc_hw->d11core, D11REGOFFS(maccontrol)) & 1846 MCTL_EN_MAC) != 0); 1847 } 1848 1849 static bool brcms_c_isgoodchip(struct brcms_hardware *wlc_hw) 1850 { 1851 1852 /* reject unsupported corerev */ 1853 if (!CONF_HAS(D11CONF, wlc_hw->corerev)) { 1854 wiphy_err(wlc_hw->wlc->wiphy, "unsupported core rev %d\n", 1855 wlc_hw->corerev); 1856 return false; 1857 } 1858 1859 return true; 1860 } 1861 1862 /* Validate some board info parameters */ 1863 static bool brcms_c_validboardtype(struct brcms_hardware *wlc_hw) 1864 { 1865 uint boardrev = wlc_hw->boardrev; 1866 1867 /* 4 bits each for board type, major, minor, and tiny version */ 1868 uint brt = (boardrev & 0xf000) >> 12; 1869 uint b0 = (boardrev & 0xf00) >> 8; 1870 uint b1 = (boardrev & 0xf0) >> 4; 1871 uint b2 = boardrev & 0xf; 1872 1873 /* voards from other vendors are always considered valid */ 1874 if (ai_get_boardvendor(wlc_hw->sih) != PCI_VENDOR_ID_BROADCOM) 1875 return true; 1876 1877 /* do some boardrev sanity checks when boardvendor is Broadcom */ 1878 if (boardrev == 0) 1879 return false; 1880 1881 if (boardrev <= 0xff) 1882 return true; 1883 1884 if ((brt > 2) || (brt == 0) || (b0 > 9) || (b0 == 0) || (b1 > 9) 1885 || (b2 > 9)) 1886 return false; 1887 1888 return true; 1889 } 1890 1891 static void brcms_c_get_macaddr(struct brcms_hardware *wlc_hw, u8 etheraddr[ETH_ALEN]) 1892 { 1893 struct ssb_sprom *sprom = &wlc_hw->d11core->bus->sprom; 1894 1895 /* If macaddr exists, use it (Sromrev4, CIS, ...). */ 1896 if (!is_zero_ether_addr(sprom->il0mac)) { 1897 memcpy(etheraddr, sprom->il0mac, ETH_ALEN); 1898 return; 1899 } 1900 1901 if (wlc_hw->_nbands > 1) 1902 memcpy(etheraddr, sprom->et1mac, ETH_ALEN); 1903 else 1904 memcpy(etheraddr, sprom->il0mac, ETH_ALEN); 1905 } 1906 1907 /* power both the pll and external oscillator on/off */ 1908 static void brcms_b_xtal(struct brcms_hardware *wlc_hw, bool want) 1909 { 1910 brcms_dbg_info(wlc_hw->d11core, "wl%d: want %d\n", wlc_hw->unit, want); 1911 1912 /* 1913 * dont power down if plldown is false or 1914 * we must poll hw radio disable 1915 */ 1916 if (!want && wlc_hw->pllreq) 1917 return; 1918 1919 wlc_hw->sbclk = want; 1920 if (!wlc_hw->sbclk) { 1921 wlc_hw->clk = false; 1922 if (wlc_hw->band && wlc_hw->band->pi) 1923 wlc_phy_hw_clk_state_upd(wlc_hw->band->pi, false); 1924 } 1925 } 1926 1927 /* 1928 * Return true if radio is disabled, otherwise false. 1929 * hw radio disable signal is an external pin, users activate it asynchronously 1930 * this function could be called when driver is down and w/o clock 1931 * it operates on different registers depending on corerev and boardflag. 1932 */ 1933 static bool brcms_b_radio_read_hwdisabled(struct brcms_hardware *wlc_hw) 1934 { 1935 bool v, clk, xtal; 1936 u32 flags = 0; 1937 1938 xtal = wlc_hw->sbclk; 1939 if (!xtal) 1940 brcms_b_xtal(wlc_hw, ON); 1941 1942 /* may need to take core out of reset first */ 1943 clk = wlc_hw->clk; 1944 if (!clk) { 1945 /* 1946 * mac no longer enables phyclk automatically when driver 1947 * accesses phyreg throughput mac. This can be skipped since 1948 * only mac reg is accessed below 1949 */ 1950 if (D11REV_GE(wlc_hw->corerev, 18)) 1951 flags |= SICF_PCLKE; 1952 1953 /* 1954 * TODO: test suspend/resume 1955 * 1956 * AI chip doesn't restore bar0win2 on 1957 * hibernation/resume, need sw fixup 1958 */ 1959 1960 bcma_core_enable(wlc_hw->d11core, flags); 1961 brcms_c_mctrl_reset(wlc_hw); 1962 } 1963 1964 v = ((bcma_read32(wlc_hw->d11core, 1965 D11REGOFFS(phydebug)) & PDBG_RFD) != 0); 1966 1967 /* put core back into reset */ 1968 if (!clk) 1969 bcma_core_disable(wlc_hw->d11core, 0); 1970 1971 if (!xtal) 1972 brcms_b_xtal(wlc_hw, OFF); 1973 1974 return v; 1975 } 1976 1977 static bool wlc_dma_rxreset(struct brcms_hardware *wlc_hw, uint fifo) 1978 { 1979 struct dma_pub *di = wlc_hw->di[fifo]; 1980 return dma_rxreset(di); 1981 } 1982 1983 /* d11 core reset 1984 * ensure fask clock during reset 1985 * reset dma 1986 * reset d11(out of reset) 1987 * reset phy(out of reset) 1988 * clear software macintstatus for fresh new start 1989 * one testing hack wlc_hw->noreset will bypass the d11/phy reset 1990 */ 1991 void brcms_b_corereset(struct brcms_hardware *wlc_hw, u32 flags) 1992 { 1993 uint i; 1994 bool fastclk; 1995 1996 if (flags == BRCMS_USE_COREFLAGS) 1997 flags = (wlc_hw->band->pi ? wlc_hw->band->core_flags : 0); 1998 1999 brcms_dbg_info(wlc_hw->d11core, "wl%d: core reset\n", wlc_hw->unit); 2000 2001 /* request FAST clock if not on */ 2002 fastclk = wlc_hw->forcefastclk; 2003 if (!fastclk) 2004 brcms_b_clkctl_clk(wlc_hw, BCMA_CLKMODE_FAST); 2005 2006 /* reset the dma engines except first time thru */ 2007 if (bcma_core_is_enabled(wlc_hw->d11core)) { 2008 for (i = 0; i < NFIFO; i++) 2009 if ((wlc_hw->di[i]) && (!dma_txreset(wlc_hw->di[i]))) 2010 brcms_err(wlc_hw->d11core, "wl%d: %s: " 2011 "dma_txreset[%d]: cannot stop dma\n", 2012 wlc_hw->unit, __func__, i); 2013 2014 if ((wlc_hw->di[RX_FIFO]) 2015 && (!wlc_dma_rxreset(wlc_hw, RX_FIFO))) 2016 brcms_err(wlc_hw->d11core, "wl%d: %s: dma_rxreset" 2017 "[%d]: cannot stop dma\n", 2018 wlc_hw->unit, __func__, RX_FIFO); 2019 } 2020 /* if noreset, just stop the psm and return */ 2021 if (wlc_hw->noreset) { 2022 wlc_hw->wlc->macintstatus = 0; /* skip wl_dpc after down */ 2023 brcms_b_mctrl(wlc_hw, MCTL_PSM_RUN | MCTL_EN_MAC, 0); 2024 return; 2025 } 2026 2027 /* 2028 * mac no longer enables phyclk automatically when driver accesses 2029 * phyreg throughput mac, AND phy_reset is skipped at early stage when 2030 * band->pi is invalid. need to enable PHY CLK 2031 */ 2032 if (D11REV_GE(wlc_hw->corerev, 18)) 2033 flags |= SICF_PCLKE; 2034 2035 /* 2036 * reset the core 2037 * In chips with PMU, the fastclk request goes through d11 core 2038 * reg 0x1e0, which is cleared by the core_reset. have to re-request it. 2039 * 2040 * This adds some delay and we can optimize it by also requesting 2041 * fastclk through chipcommon during this period if necessary. But 2042 * that has to work coordinate with other driver like mips/arm since 2043 * they may touch chipcommon as well. 2044 */ 2045 wlc_hw->clk = false; 2046 bcma_core_enable(wlc_hw->d11core, flags); 2047 wlc_hw->clk = true; 2048 if (wlc_hw->band && wlc_hw->band->pi) 2049 wlc_phy_hw_clk_state_upd(wlc_hw->band->pi, true); 2050 2051 brcms_c_mctrl_reset(wlc_hw); 2052 2053 if (ai_get_cccaps(wlc_hw->sih) & CC_CAP_PMU) 2054 brcms_b_clkctl_clk(wlc_hw, BCMA_CLKMODE_FAST); 2055 2056 brcms_b_phy_reset(wlc_hw); 2057 2058 /* turn on PHY_PLL */ 2059 brcms_b_core_phypll_ctl(wlc_hw, true); 2060 2061 /* clear sw intstatus */ 2062 wlc_hw->wlc->macintstatus = 0; 2063 2064 /* restore the clk setting */ 2065 if (!fastclk) 2066 brcms_b_clkctl_clk(wlc_hw, BCMA_CLKMODE_DYNAMIC); 2067 } 2068 2069 /* txfifo sizes needs to be modified(increased) since the newer cores 2070 * have more memory. 2071 */ 2072 static void brcms_b_corerev_fifofixup(struct brcms_hardware *wlc_hw) 2073 { 2074 struct bcma_device *core = wlc_hw->d11core; 2075 u16 fifo_nu; 2076 u16 txfifo_startblk = TXFIFO_START_BLK, txfifo_endblk; 2077 u16 txfifo_def, txfifo_def1; 2078 u16 txfifo_cmd; 2079 2080 /* tx fifos start at TXFIFO_START_BLK from the Base address */ 2081 txfifo_startblk = TXFIFO_START_BLK; 2082 2083 /* sequence of operations: reset fifo, set fifo size, reset fifo */ 2084 for (fifo_nu = 0; fifo_nu < NFIFO; fifo_nu++) { 2085 2086 txfifo_endblk = txfifo_startblk + wlc_hw->xmtfifo_sz[fifo_nu]; 2087 txfifo_def = (txfifo_startblk & 0xff) | 2088 (((txfifo_endblk - 1) & 0xff) << TXFIFO_FIFOTOP_SHIFT); 2089 txfifo_def1 = ((txfifo_startblk >> 8) & 0x1) | 2090 ((((txfifo_endblk - 2091 1) >> 8) & 0x1) << TXFIFO_FIFOTOP_SHIFT); 2092 txfifo_cmd = 2093 TXFIFOCMD_RESET_MASK | (fifo_nu << TXFIFOCMD_FIFOSEL_SHIFT); 2094 2095 bcma_write16(core, D11REGOFFS(xmtfifocmd), txfifo_cmd); 2096 bcma_write16(core, D11REGOFFS(xmtfifodef), txfifo_def); 2097 bcma_write16(core, D11REGOFFS(xmtfifodef1), txfifo_def1); 2098 2099 bcma_write16(core, D11REGOFFS(xmtfifocmd), txfifo_cmd); 2100 2101 txfifo_startblk += wlc_hw->xmtfifo_sz[fifo_nu]; 2102 } 2103 /* 2104 * need to propagate to shm location to be in sync since ucode/hw won't 2105 * do this 2106 */ 2107 brcms_b_write_shm(wlc_hw, M_FIFOSIZE0, 2108 wlc_hw->xmtfifo_sz[TX_AC_BE_FIFO]); 2109 brcms_b_write_shm(wlc_hw, M_FIFOSIZE1, 2110 wlc_hw->xmtfifo_sz[TX_AC_VI_FIFO]); 2111 brcms_b_write_shm(wlc_hw, M_FIFOSIZE2, 2112 ((wlc_hw->xmtfifo_sz[TX_AC_VO_FIFO] << 8) | wlc_hw-> 2113 xmtfifo_sz[TX_AC_BK_FIFO])); 2114 brcms_b_write_shm(wlc_hw, M_FIFOSIZE3, 2115 ((wlc_hw->xmtfifo_sz[TX_ATIM_FIFO] << 8) | wlc_hw-> 2116 xmtfifo_sz[TX_BCMC_FIFO])); 2117 } 2118 2119 /* This function is used for changing the tsf frac register 2120 * If spur avoidance mode is off, the mac freq will be 80/120/160Mhz 2121 * If spur avoidance mode is on1, the mac freq will be 82/123/164Mhz 2122 * If spur avoidance mode is on2, the mac freq will be 84/126/168Mhz 2123 * HTPHY Formula is 2^26/freq(MHz) e.g. 2124 * For spuron2 - 126MHz -> 2^26/126 = 532610.0 2125 * - 532610 = 0x82082 => tsf_clk_frac_h = 0x8, tsf_clk_frac_l = 0x2082 2126 * For spuron: 123MHz -> 2^26/123 = 545600.5 2127 * - 545601 = 0x85341 => tsf_clk_frac_h = 0x8, tsf_clk_frac_l = 0x5341 2128 * For spur off: 120MHz -> 2^26/120 = 559240.5 2129 * - 559241 = 0x88889 => tsf_clk_frac_h = 0x8, tsf_clk_frac_l = 0x8889 2130 */ 2131 2132 void brcms_b_switch_macfreq(struct brcms_hardware *wlc_hw, u8 spurmode) 2133 { 2134 struct bcma_device *core = wlc_hw->d11core; 2135 2136 if ((ai_get_chip_id(wlc_hw->sih) == BCMA_CHIP_ID_BCM43224) || 2137 (ai_get_chip_id(wlc_hw->sih) == BCMA_CHIP_ID_BCM43225)) { 2138 if (spurmode == WL_SPURAVOID_ON2) { /* 126Mhz */ 2139 bcma_write16(core, D11REGOFFS(tsf_clk_frac_l), 0x2082); 2140 bcma_write16(core, D11REGOFFS(tsf_clk_frac_h), 0x8); 2141 } else if (spurmode == WL_SPURAVOID_ON1) { /* 123Mhz */ 2142 bcma_write16(core, D11REGOFFS(tsf_clk_frac_l), 0x5341); 2143 bcma_write16(core, D11REGOFFS(tsf_clk_frac_h), 0x8); 2144 } else { /* 120Mhz */ 2145 bcma_write16(core, D11REGOFFS(tsf_clk_frac_l), 0x8889); 2146 bcma_write16(core, D11REGOFFS(tsf_clk_frac_h), 0x8); 2147 } 2148 } else if (BRCMS_ISLCNPHY(wlc_hw->band)) { 2149 if (spurmode == WL_SPURAVOID_ON1) { /* 82Mhz */ 2150 bcma_write16(core, D11REGOFFS(tsf_clk_frac_l), 0x7CE0); 2151 bcma_write16(core, D11REGOFFS(tsf_clk_frac_h), 0xC); 2152 } else { /* 80Mhz */ 2153 bcma_write16(core, D11REGOFFS(tsf_clk_frac_l), 0xCCCD); 2154 bcma_write16(core, D11REGOFFS(tsf_clk_frac_h), 0xC); 2155 } 2156 } 2157 } 2158 2159 void brcms_c_start_station(struct brcms_c_info *wlc, u8 *addr) 2160 { 2161 memcpy(wlc->pub->cur_etheraddr, addr, sizeof(wlc->pub->cur_etheraddr)); 2162 wlc->bsscfg->type = BRCMS_TYPE_STATION; 2163 } 2164 2165 void brcms_c_start_ap(struct brcms_c_info *wlc, u8 *addr, const u8 *bssid, 2166 u8 *ssid, size_t ssid_len) 2167 { 2168 brcms_c_set_ssid(wlc, ssid, ssid_len); 2169 2170 memcpy(wlc->pub->cur_etheraddr, addr, sizeof(wlc->pub->cur_etheraddr)); 2171 memcpy(wlc->bsscfg->BSSID, bssid, sizeof(wlc->bsscfg->BSSID)); 2172 wlc->bsscfg->type = BRCMS_TYPE_AP; 2173 2174 brcms_b_mctrl(wlc->hw, MCTL_AP | MCTL_INFRA, MCTL_AP | MCTL_INFRA); 2175 } 2176 2177 void brcms_c_start_adhoc(struct brcms_c_info *wlc, u8 *addr) 2178 { 2179 memcpy(wlc->pub->cur_etheraddr, addr, sizeof(wlc->pub->cur_etheraddr)); 2180 wlc->bsscfg->type = BRCMS_TYPE_ADHOC; 2181 2182 brcms_b_mctrl(wlc->hw, MCTL_AP | MCTL_INFRA, 0); 2183 } 2184 2185 /* Initialize GPIOs that are controlled by D11 core */ 2186 static void brcms_c_gpio_init(struct brcms_c_info *wlc) 2187 { 2188 struct brcms_hardware *wlc_hw = wlc->hw; 2189 u32 gc, gm; 2190 2191 /* use GPIO select 0 to get all gpio signals from the gpio out reg */ 2192 brcms_b_mctrl(wlc_hw, MCTL_GPOUT_SEL_MASK, 0); 2193 2194 /* 2195 * Common GPIO setup: 2196 * G0 = LED 0 = WLAN Activity 2197 * G1 = LED 1 = WLAN 2.4 GHz Radio State 2198 * G2 = LED 2 = WLAN 5 GHz Radio State 2199 * G4 = radio disable input (HI enabled, LO disabled) 2200 */ 2201 2202 gc = gm = 0; 2203 2204 /* Allocate GPIOs for mimo antenna diversity feature */ 2205 if (wlc_hw->antsel_type == ANTSEL_2x3) { 2206 /* Enable antenna diversity, use 2x3 mode */ 2207 brcms_b_mhf(wlc_hw, MHF3, MHF3_ANTSEL_EN, 2208 MHF3_ANTSEL_EN, BRCM_BAND_ALL); 2209 brcms_b_mhf(wlc_hw, MHF3, MHF3_ANTSEL_MODE, 2210 MHF3_ANTSEL_MODE, BRCM_BAND_ALL); 2211 2212 /* init superswitch control */ 2213 wlc_phy_antsel_init(wlc_hw->band->pi, false); 2214 2215 } else if (wlc_hw->antsel_type == ANTSEL_2x4) { 2216 gm |= gc |= (BOARD_GPIO_12 | BOARD_GPIO_13); 2217 /* 2218 * The board itself is powered by these GPIOs 2219 * (when not sending pattern) so set them high 2220 */ 2221 bcma_set16(wlc_hw->d11core, D11REGOFFS(psm_gpio_oe), 2222 (BOARD_GPIO_12 | BOARD_GPIO_13)); 2223 bcma_set16(wlc_hw->d11core, D11REGOFFS(psm_gpio_out), 2224 (BOARD_GPIO_12 | BOARD_GPIO_13)); 2225 2226 /* Enable antenna diversity, use 2x4 mode */ 2227 brcms_b_mhf(wlc_hw, MHF3, MHF3_ANTSEL_EN, 2228 MHF3_ANTSEL_EN, BRCM_BAND_ALL); 2229 brcms_b_mhf(wlc_hw, MHF3, MHF3_ANTSEL_MODE, 0, 2230 BRCM_BAND_ALL); 2231 2232 /* Configure the desired clock to be 4Mhz */ 2233 brcms_b_write_shm(wlc_hw, M_ANTSEL_CLKDIV, 2234 ANTSEL_CLKDIV_4MHZ); 2235 } 2236 2237 /* 2238 * gpio 9 controls the PA. ucode is responsible 2239 * for wiggling out and oe 2240 */ 2241 if (wlc_hw->boardflags & BFL_PACTRL) 2242 gm |= gc |= BOARD_GPIO_PACTRL; 2243 2244 /* apply to gpiocontrol register */ 2245 bcma_chipco_gpio_control(&wlc_hw->d11core->bus->drv_cc, gm, gc); 2246 } 2247 2248 static void brcms_ucode_write(struct brcms_hardware *wlc_hw, 2249 const __le32 ucode[], const size_t nbytes) 2250 { 2251 struct bcma_device *core = wlc_hw->d11core; 2252 uint i; 2253 uint count; 2254 2255 brcms_dbg_info(wlc_hw->d11core, "wl%d\n", wlc_hw->unit); 2256 2257 count = (nbytes / sizeof(u32)); 2258 2259 bcma_write32(core, D11REGOFFS(objaddr), 2260 OBJADDR_AUTO_INC | OBJADDR_UCM_SEL); 2261 (void)bcma_read32(core, D11REGOFFS(objaddr)); 2262 for (i = 0; i < count; i++) 2263 bcma_write32(core, D11REGOFFS(objdata), le32_to_cpu(ucode[i])); 2264 2265 } 2266 2267 static void brcms_ucode_download(struct brcms_hardware *wlc_hw) 2268 { 2269 struct brcms_ucode *ucode = &wlc_hw->wlc->wl->ucode; 2270 2271 if (wlc_hw->ucode_loaded) 2272 return; 2273 2274 if (D11REV_IS(wlc_hw->corerev, 17) || D11REV_IS(wlc_hw->corerev, 23)) { 2275 if (BRCMS_ISNPHY(wlc_hw->band)) { 2276 brcms_ucode_write(wlc_hw, ucode->bcm43xx_16_mimo, 2277 ucode->bcm43xx_16_mimosz); 2278 wlc_hw->ucode_loaded = true; 2279 } else 2280 brcms_err(wlc_hw->d11core, 2281 "%s: wl%d: unsupported phy in corerev %d\n", 2282 __func__, wlc_hw->unit, wlc_hw->corerev); 2283 } else if (D11REV_IS(wlc_hw->corerev, 24)) { 2284 if (BRCMS_ISLCNPHY(wlc_hw->band)) { 2285 brcms_ucode_write(wlc_hw, ucode->bcm43xx_24_lcn, 2286 ucode->bcm43xx_24_lcnsz); 2287 wlc_hw->ucode_loaded = true; 2288 } else { 2289 brcms_err(wlc_hw->d11core, 2290 "%s: wl%d: unsupported phy in corerev %d\n", 2291 __func__, wlc_hw->unit, wlc_hw->corerev); 2292 } 2293 } 2294 } 2295 2296 void brcms_b_txant_set(struct brcms_hardware *wlc_hw, u16 phytxant) 2297 { 2298 /* update sw state */ 2299 wlc_hw->bmac_phytxant = phytxant; 2300 2301 /* push to ucode if up */ 2302 if (!wlc_hw->up) 2303 return; 2304 brcms_c_ucode_txant_set(wlc_hw); 2305 2306 } 2307 2308 u16 brcms_b_get_txant(struct brcms_hardware *wlc_hw) 2309 { 2310 return (u16) wlc_hw->wlc->stf->txant; 2311 } 2312 2313 void brcms_b_antsel_type_set(struct brcms_hardware *wlc_hw, u8 antsel_type) 2314 { 2315 wlc_hw->antsel_type = antsel_type; 2316 2317 /* Update the antsel type for phy module to use */ 2318 wlc_phy_antsel_type_set(wlc_hw->band->pi, antsel_type); 2319 } 2320 2321 static void brcms_b_fifoerrors(struct brcms_hardware *wlc_hw) 2322 { 2323 bool fatal = false; 2324 uint unit; 2325 uint intstatus, idx; 2326 struct bcma_device *core = wlc_hw->d11core; 2327 2328 unit = wlc_hw->unit; 2329 2330 for (idx = 0; idx < NFIFO; idx++) { 2331 /* read intstatus register and ignore any non-error bits */ 2332 intstatus = 2333 bcma_read32(core, 2334 D11REGOFFS(intctrlregs[idx].intstatus)) & 2335 I_ERRORS; 2336 if (!intstatus) 2337 continue; 2338 2339 brcms_dbg_int(core, "wl%d: intstatus%d 0x%x\n", 2340 unit, idx, intstatus); 2341 2342 if (intstatus & I_RO) { 2343 brcms_err(core, "wl%d: fifo %d: receive fifo " 2344 "overflow\n", unit, idx); 2345 fatal = true; 2346 } 2347 2348 if (intstatus & I_PC) { 2349 brcms_err(core, "wl%d: fifo %d: descriptor error\n", 2350 unit, idx); 2351 fatal = true; 2352 } 2353 2354 if (intstatus & I_PD) { 2355 brcms_err(core, "wl%d: fifo %d: data error\n", unit, 2356 idx); 2357 fatal = true; 2358 } 2359 2360 if (intstatus & I_DE) { 2361 brcms_err(core, "wl%d: fifo %d: descriptor protocol " 2362 "error\n", unit, idx); 2363 fatal = true; 2364 } 2365 2366 if (intstatus & I_RU) 2367 brcms_err(core, "wl%d: fifo %d: receive descriptor " 2368 "underflow\n", idx, unit); 2369 2370 if (intstatus & I_XU) { 2371 brcms_err(core, "wl%d: fifo %d: transmit fifo " 2372 "underflow\n", idx, unit); 2373 fatal = true; 2374 } 2375 2376 if (fatal) { 2377 brcms_fatal_error(wlc_hw->wlc->wl); /* big hammer */ 2378 break; 2379 } else 2380 bcma_write32(core, 2381 D11REGOFFS(intctrlregs[idx].intstatus), 2382 intstatus); 2383 } 2384 } 2385 2386 void brcms_c_intrson(struct brcms_c_info *wlc) 2387 { 2388 struct brcms_hardware *wlc_hw = wlc->hw; 2389 wlc->macintmask = wlc->defmacintmask; 2390 bcma_write32(wlc_hw->d11core, D11REGOFFS(macintmask), wlc->macintmask); 2391 } 2392 2393 u32 brcms_c_intrsoff(struct brcms_c_info *wlc) 2394 { 2395 struct brcms_hardware *wlc_hw = wlc->hw; 2396 u32 macintmask; 2397 2398 if (!wlc_hw->clk) 2399 return 0; 2400 2401 macintmask = wlc->macintmask; /* isr can still happen */ 2402 2403 bcma_write32(wlc_hw->d11core, D11REGOFFS(macintmask), 0); 2404 (void)bcma_read32(wlc_hw->d11core, D11REGOFFS(macintmask)); 2405 udelay(1); /* ensure int line is no longer driven */ 2406 wlc->macintmask = 0; 2407 2408 /* return previous macintmask; resolve race between us and our isr */ 2409 return wlc->macintstatus ? 0 : macintmask; 2410 } 2411 2412 void brcms_c_intrsrestore(struct brcms_c_info *wlc, u32 macintmask) 2413 { 2414 struct brcms_hardware *wlc_hw = wlc->hw; 2415 if (!wlc_hw->clk) 2416 return; 2417 2418 wlc->macintmask = macintmask; 2419 bcma_write32(wlc_hw->d11core, D11REGOFFS(macintmask), wlc->macintmask); 2420 } 2421 2422 /* assumes that the d11 MAC is enabled */ 2423 static void brcms_b_tx_fifo_suspend(struct brcms_hardware *wlc_hw, 2424 uint tx_fifo) 2425 { 2426 u8 fifo = 1 << tx_fifo; 2427 2428 /* Two clients of this code, 11h Quiet period and scanning. */ 2429 2430 /* only suspend if not already suspended */ 2431 if ((wlc_hw->suspended_fifos & fifo) == fifo) 2432 return; 2433 2434 /* force the core awake only if not already */ 2435 if (wlc_hw->suspended_fifos == 0) 2436 brcms_c_ucode_wake_override_set(wlc_hw, 2437 BRCMS_WAKE_OVERRIDE_TXFIFO); 2438 2439 wlc_hw->suspended_fifos |= fifo; 2440 2441 if (wlc_hw->di[tx_fifo]) { 2442 /* 2443 * Suspending AMPDU transmissions in the middle can cause 2444 * underflow which may result in mismatch between ucode and 2445 * driver so suspend the mac before suspending the FIFO 2446 */ 2447 if (BRCMS_PHY_11N_CAP(wlc_hw->band)) 2448 brcms_c_suspend_mac_and_wait(wlc_hw->wlc); 2449 2450 dma_txsuspend(wlc_hw->di[tx_fifo]); 2451 2452 if (BRCMS_PHY_11N_CAP(wlc_hw->band)) 2453 brcms_c_enable_mac(wlc_hw->wlc); 2454 } 2455 } 2456 2457 static void brcms_b_tx_fifo_resume(struct brcms_hardware *wlc_hw, 2458 uint tx_fifo) 2459 { 2460 /* BMAC_NOTE: BRCMS_TX_FIFO_ENAB is done in brcms_c_dpc() for DMA case 2461 * but need to be done here for PIO otherwise the watchdog will catch 2462 * the inconsistency and fire 2463 */ 2464 /* Two clients of this code, 11h Quiet period and scanning. */ 2465 if (wlc_hw->di[tx_fifo]) 2466 dma_txresume(wlc_hw->di[tx_fifo]); 2467 2468 /* allow core to sleep again */ 2469 if (wlc_hw->suspended_fifos == 0) 2470 return; 2471 else { 2472 wlc_hw->suspended_fifos &= ~(1 << tx_fifo); 2473 if (wlc_hw->suspended_fifos == 0) 2474 brcms_c_ucode_wake_override_clear(wlc_hw, 2475 BRCMS_WAKE_OVERRIDE_TXFIFO); 2476 } 2477 } 2478 2479 /* precondition: requires the mac core to be enabled */ 2480 static void brcms_b_mute(struct brcms_hardware *wlc_hw, bool mute_tx) 2481 { 2482 static const u8 null_ether_addr[ETH_ALEN] = {0, 0, 0, 0, 0, 0}; 2483 u8 *ethaddr = wlc_hw->wlc->pub->cur_etheraddr; 2484 2485 if (mute_tx) { 2486 /* suspend tx fifos */ 2487 brcms_b_tx_fifo_suspend(wlc_hw, TX_DATA_FIFO); 2488 brcms_b_tx_fifo_suspend(wlc_hw, TX_CTL_FIFO); 2489 brcms_b_tx_fifo_suspend(wlc_hw, TX_AC_BK_FIFO); 2490 brcms_b_tx_fifo_suspend(wlc_hw, TX_AC_VI_FIFO); 2491 2492 /* zero the address match register so we do not send ACKs */ 2493 brcms_b_set_addrmatch(wlc_hw, RCM_MAC_OFFSET, null_ether_addr); 2494 } else { 2495 /* resume tx fifos */ 2496 brcms_b_tx_fifo_resume(wlc_hw, TX_DATA_FIFO); 2497 brcms_b_tx_fifo_resume(wlc_hw, TX_CTL_FIFO); 2498 brcms_b_tx_fifo_resume(wlc_hw, TX_AC_BK_FIFO); 2499 brcms_b_tx_fifo_resume(wlc_hw, TX_AC_VI_FIFO); 2500 2501 /* Restore address */ 2502 brcms_b_set_addrmatch(wlc_hw, RCM_MAC_OFFSET, ethaddr); 2503 } 2504 2505 wlc_phy_mute_upd(wlc_hw->band->pi, mute_tx, 0); 2506 2507 if (mute_tx) 2508 brcms_c_ucode_mute_override_set(wlc_hw); 2509 else 2510 brcms_c_ucode_mute_override_clear(wlc_hw); 2511 } 2512 2513 void 2514 brcms_c_mute(struct brcms_c_info *wlc, bool mute_tx) 2515 { 2516 brcms_b_mute(wlc->hw, mute_tx); 2517 } 2518 2519 /* 2520 * Read and clear macintmask and macintstatus and intstatus registers. 2521 * This routine should be called with interrupts off 2522 * Return: 2523 * -1 if brcms_deviceremoved(wlc) evaluates to true; 2524 * 0 if the interrupt is not for us, or we are in some special cases; 2525 * device interrupt status bits otherwise. 2526 */ 2527 static inline u32 wlc_intstatus(struct brcms_c_info *wlc, bool in_isr) 2528 { 2529 struct brcms_hardware *wlc_hw = wlc->hw; 2530 struct bcma_device *core = wlc_hw->d11core; 2531 u32 macintstatus, mask; 2532 2533 /* macintstatus includes a DMA interrupt summary bit */ 2534 macintstatus = bcma_read32(core, D11REGOFFS(macintstatus)); 2535 mask = in_isr ? wlc->macintmask : wlc->defmacintmask; 2536 2537 trace_brcms_macintstatus(&core->dev, in_isr, macintstatus, mask); 2538 2539 /* detect cardbus removed, in power down(suspend) and in reset */ 2540 if (brcms_deviceremoved(wlc)) 2541 return -1; 2542 2543 /* brcms_deviceremoved() succeeds even when the core is still resetting, 2544 * handle that case here. 2545 */ 2546 if (macintstatus == 0xffffffff) 2547 return 0; 2548 2549 /* defer unsolicited interrupts */ 2550 macintstatus &= mask; 2551 2552 /* if not for us */ 2553 if (macintstatus == 0) 2554 return 0; 2555 2556 /* turn off the interrupts */ 2557 bcma_write32(core, D11REGOFFS(macintmask), 0); 2558 (void)bcma_read32(core, D11REGOFFS(macintmask)); 2559 wlc->macintmask = 0; 2560 2561 /* clear device interrupts */ 2562 bcma_write32(core, D11REGOFFS(macintstatus), macintstatus); 2563 2564 /* MI_DMAINT is indication of non-zero intstatus */ 2565 if (macintstatus & MI_DMAINT) 2566 /* 2567 * only fifo interrupt enabled is I_RI in 2568 * RX_FIFO. If MI_DMAINT is set, assume it 2569 * is set and clear the interrupt. 2570 */ 2571 bcma_write32(core, D11REGOFFS(intctrlregs[RX_FIFO].intstatus), 2572 DEF_RXINTMASK); 2573 2574 return macintstatus; 2575 } 2576 2577 /* Update wlc->macintstatus and wlc->intstatus[]. */ 2578 /* Return true if they are updated successfully. false otherwise */ 2579 bool brcms_c_intrsupd(struct brcms_c_info *wlc) 2580 { 2581 u32 macintstatus; 2582 2583 /* read and clear macintstatus and intstatus registers */ 2584 macintstatus = wlc_intstatus(wlc, false); 2585 2586 /* device is removed */ 2587 if (macintstatus == 0xffffffff) 2588 return false; 2589 2590 /* update interrupt status in software */ 2591 wlc->macintstatus |= macintstatus; 2592 2593 return true; 2594 } 2595 2596 /* 2597 * First-level interrupt processing. 2598 * Return true if this was our interrupt 2599 * and if further brcms_c_dpc() processing is required, 2600 * false otherwise. 2601 */ 2602 bool brcms_c_isr(struct brcms_c_info *wlc) 2603 { 2604 struct brcms_hardware *wlc_hw = wlc->hw; 2605 u32 macintstatus; 2606 2607 if (!wlc_hw->up || !wlc->macintmask) 2608 return false; 2609 2610 /* read and clear macintstatus and intstatus registers */ 2611 macintstatus = wlc_intstatus(wlc, true); 2612 2613 if (macintstatus == 0xffffffff) { 2614 brcms_err(wlc_hw->d11core, 2615 "DEVICEREMOVED detected in the ISR code path\n"); 2616 return false; 2617 } 2618 2619 /* it is not for us */ 2620 if (macintstatus == 0) 2621 return false; 2622 2623 /* save interrupt status bits */ 2624 wlc->macintstatus = macintstatus; 2625 2626 return true; 2627 2628 } 2629 2630 void brcms_c_suspend_mac_and_wait(struct brcms_c_info *wlc) 2631 { 2632 struct brcms_hardware *wlc_hw = wlc->hw; 2633 struct bcma_device *core = wlc_hw->d11core; 2634 u32 mc, mi; 2635 2636 brcms_dbg_mac80211(core, "wl%d: bandunit %d\n", wlc_hw->unit, 2637 wlc_hw->band->bandunit); 2638 2639 /* 2640 * Track overlapping suspend requests 2641 */ 2642 wlc_hw->mac_suspend_depth++; 2643 if (wlc_hw->mac_suspend_depth > 1) 2644 return; 2645 2646 /* force the core awake */ 2647 brcms_c_ucode_wake_override_set(wlc_hw, BRCMS_WAKE_OVERRIDE_MACSUSPEND); 2648 2649 mc = bcma_read32(core, D11REGOFFS(maccontrol)); 2650 2651 if (mc == 0xffffffff) { 2652 brcms_err(core, "wl%d: %s: dead chip\n", wlc_hw->unit, 2653 __func__); 2654 brcms_down(wlc->wl); 2655 return; 2656 } 2657 WARN_ON(mc & MCTL_PSM_JMP_0); 2658 WARN_ON(!(mc & MCTL_PSM_RUN)); 2659 WARN_ON(!(mc & MCTL_EN_MAC)); 2660 2661 mi = bcma_read32(core, D11REGOFFS(macintstatus)); 2662 if (mi == 0xffffffff) { 2663 brcms_err(core, "wl%d: %s: dead chip\n", wlc_hw->unit, 2664 __func__); 2665 brcms_down(wlc->wl); 2666 return; 2667 } 2668 WARN_ON(mi & MI_MACSSPNDD); 2669 2670 brcms_b_mctrl(wlc_hw, MCTL_EN_MAC, 0); 2671 2672 SPINWAIT(!(bcma_read32(core, D11REGOFFS(macintstatus)) & MI_MACSSPNDD), 2673 BRCMS_MAX_MAC_SUSPEND); 2674 2675 if (!(bcma_read32(core, D11REGOFFS(macintstatus)) & MI_MACSSPNDD)) { 2676 brcms_err(core, "wl%d: wlc_suspend_mac_and_wait: waited %d uS" 2677 " and MI_MACSSPNDD is still not on.\n", 2678 wlc_hw->unit, BRCMS_MAX_MAC_SUSPEND); 2679 brcms_err(core, "wl%d: psmdebug 0x%08x, phydebug 0x%08x, " 2680 "psm_brc 0x%04x\n", wlc_hw->unit, 2681 bcma_read32(core, D11REGOFFS(psmdebug)), 2682 bcma_read32(core, D11REGOFFS(phydebug)), 2683 bcma_read16(core, D11REGOFFS(psm_brc))); 2684 } 2685 2686 mc = bcma_read32(core, D11REGOFFS(maccontrol)); 2687 if (mc == 0xffffffff) { 2688 brcms_err(core, "wl%d: %s: dead chip\n", wlc_hw->unit, 2689 __func__); 2690 brcms_down(wlc->wl); 2691 return; 2692 } 2693 WARN_ON(mc & MCTL_PSM_JMP_0); 2694 WARN_ON(!(mc & MCTL_PSM_RUN)); 2695 WARN_ON(mc & MCTL_EN_MAC); 2696 } 2697 2698 void brcms_c_enable_mac(struct brcms_c_info *wlc) 2699 { 2700 struct brcms_hardware *wlc_hw = wlc->hw; 2701 struct bcma_device *core = wlc_hw->d11core; 2702 u32 mc, mi; 2703 2704 brcms_dbg_mac80211(core, "wl%d: bandunit %d\n", wlc_hw->unit, 2705 wlc->band->bandunit); 2706 2707 /* 2708 * Track overlapping suspend requests 2709 */ 2710 wlc_hw->mac_suspend_depth--; 2711 if (wlc_hw->mac_suspend_depth > 0) 2712 return; 2713 2714 mc = bcma_read32(core, D11REGOFFS(maccontrol)); 2715 WARN_ON(mc & MCTL_PSM_JMP_0); 2716 WARN_ON(mc & MCTL_EN_MAC); 2717 WARN_ON(!(mc & MCTL_PSM_RUN)); 2718 2719 brcms_b_mctrl(wlc_hw, MCTL_EN_MAC, MCTL_EN_MAC); 2720 bcma_write32(core, D11REGOFFS(macintstatus), MI_MACSSPNDD); 2721 2722 mc = bcma_read32(core, D11REGOFFS(maccontrol)); 2723 WARN_ON(mc & MCTL_PSM_JMP_0); 2724 WARN_ON(!(mc & MCTL_EN_MAC)); 2725 WARN_ON(!(mc & MCTL_PSM_RUN)); 2726 2727 mi = bcma_read32(core, D11REGOFFS(macintstatus)); 2728 WARN_ON(mi & MI_MACSSPNDD); 2729 2730 brcms_c_ucode_wake_override_clear(wlc_hw, 2731 BRCMS_WAKE_OVERRIDE_MACSUSPEND); 2732 } 2733 2734 void brcms_b_band_stf_ss_set(struct brcms_hardware *wlc_hw, u8 stf_mode) 2735 { 2736 wlc_hw->hw_stf_ss_opmode = stf_mode; 2737 2738 if (wlc_hw->clk) 2739 brcms_upd_ofdm_pctl1_table(wlc_hw); 2740 } 2741 2742 static bool brcms_b_validate_chip_access(struct brcms_hardware *wlc_hw) 2743 { 2744 struct bcma_device *core = wlc_hw->d11core; 2745 u32 w, val; 2746 struct wiphy *wiphy = wlc_hw->wlc->wiphy; 2747 2748 /* Validate dchip register access */ 2749 2750 bcma_write32(core, D11REGOFFS(objaddr), OBJADDR_SHM_SEL | 0); 2751 (void)bcma_read32(core, D11REGOFFS(objaddr)); 2752 w = bcma_read32(core, D11REGOFFS(objdata)); 2753 2754 /* Can we write and read back a 32bit register? */ 2755 bcma_write32(core, D11REGOFFS(objaddr), OBJADDR_SHM_SEL | 0); 2756 (void)bcma_read32(core, D11REGOFFS(objaddr)); 2757 bcma_write32(core, D11REGOFFS(objdata), (u32) 0xaa5555aa); 2758 2759 bcma_write32(core, D11REGOFFS(objaddr), OBJADDR_SHM_SEL | 0); 2760 (void)bcma_read32(core, D11REGOFFS(objaddr)); 2761 val = bcma_read32(core, D11REGOFFS(objdata)); 2762 if (val != (u32) 0xaa5555aa) { 2763 wiphy_err(wiphy, "wl%d: validate_chip_access: SHM = 0x%x, " 2764 "expected 0xaa5555aa\n", wlc_hw->unit, val); 2765 return false; 2766 } 2767 2768 bcma_write32(core, D11REGOFFS(objaddr), OBJADDR_SHM_SEL | 0); 2769 (void)bcma_read32(core, D11REGOFFS(objaddr)); 2770 bcma_write32(core, D11REGOFFS(objdata), (u32) 0x55aaaa55); 2771 2772 bcma_write32(core, D11REGOFFS(objaddr), OBJADDR_SHM_SEL | 0); 2773 (void)bcma_read32(core, D11REGOFFS(objaddr)); 2774 val = bcma_read32(core, D11REGOFFS(objdata)); 2775 if (val != (u32) 0x55aaaa55) { 2776 wiphy_err(wiphy, "wl%d: validate_chip_access: SHM = 0x%x, " 2777 "expected 0x55aaaa55\n", wlc_hw->unit, val); 2778 return false; 2779 } 2780 2781 bcma_write32(core, D11REGOFFS(objaddr), OBJADDR_SHM_SEL | 0); 2782 (void)bcma_read32(core, D11REGOFFS(objaddr)); 2783 bcma_write32(core, D11REGOFFS(objdata), w); 2784 2785 /* clear CFPStart */ 2786 bcma_write32(core, D11REGOFFS(tsf_cfpstart), 0); 2787 2788 w = bcma_read32(core, D11REGOFFS(maccontrol)); 2789 if ((w != (MCTL_IHR_EN | MCTL_WAKE)) && 2790 (w != (MCTL_IHR_EN | MCTL_GMODE | MCTL_WAKE))) { 2791 wiphy_err(wiphy, "wl%d: validate_chip_access: maccontrol = " 2792 "0x%x, expected 0x%x or 0x%x\n", wlc_hw->unit, w, 2793 (MCTL_IHR_EN | MCTL_WAKE), 2794 (MCTL_IHR_EN | MCTL_GMODE | MCTL_WAKE)); 2795 return false; 2796 } 2797 2798 return true; 2799 } 2800 2801 #define PHYPLL_WAIT_US 100000 2802 2803 void brcms_b_core_phypll_ctl(struct brcms_hardware *wlc_hw, bool on) 2804 { 2805 struct bcma_device *core = wlc_hw->d11core; 2806 u32 tmp; 2807 2808 brcms_dbg_info(core, "wl%d\n", wlc_hw->unit); 2809 2810 tmp = 0; 2811 2812 if (on) { 2813 if ((ai_get_chip_id(wlc_hw->sih) == BCMA_CHIP_ID_BCM4313)) { 2814 bcma_set32(core, D11REGOFFS(clk_ctl_st), 2815 CCS_ERSRC_REQ_HT | 2816 CCS_ERSRC_REQ_D11PLL | 2817 CCS_ERSRC_REQ_PHYPLL); 2818 SPINWAIT((bcma_read32(core, D11REGOFFS(clk_ctl_st)) & 2819 CCS_ERSRC_AVAIL_HT) != CCS_ERSRC_AVAIL_HT, 2820 PHYPLL_WAIT_US); 2821 2822 tmp = bcma_read32(core, D11REGOFFS(clk_ctl_st)); 2823 if ((tmp & CCS_ERSRC_AVAIL_HT) != CCS_ERSRC_AVAIL_HT) 2824 brcms_err(core, "%s: turn on PHY PLL failed\n", 2825 __func__); 2826 } else { 2827 bcma_set32(core, D11REGOFFS(clk_ctl_st), 2828 tmp | CCS_ERSRC_REQ_D11PLL | 2829 CCS_ERSRC_REQ_PHYPLL); 2830 SPINWAIT((bcma_read32(core, D11REGOFFS(clk_ctl_st)) & 2831 (CCS_ERSRC_AVAIL_D11PLL | 2832 CCS_ERSRC_AVAIL_PHYPLL)) != 2833 (CCS_ERSRC_AVAIL_D11PLL | 2834 CCS_ERSRC_AVAIL_PHYPLL), PHYPLL_WAIT_US); 2835 2836 tmp = bcma_read32(core, D11REGOFFS(clk_ctl_st)); 2837 if ((tmp & 2838 (CCS_ERSRC_AVAIL_D11PLL | CCS_ERSRC_AVAIL_PHYPLL)) 2839 != 2840 (CCS_ERSRC_AVAIL_D11PLL | CCS_ERSRC_AVAIL_PHYPLL)) 2841 brcms_err(core, "%s: turn on PHY PLL failed\n", 2842 __func__); 2843 } 2844 } else { 2845 /* 2846 * Since the PLL may be shared, other cores can still 2847 * be requesting it; so we'll deassert the request but 2848 * not wait for status to comply. 2849 */ 2850 bcma_mask32(core, D11REGOFFS(clk_ctl_st), 2851 ~CCS_ERSRC_REQ_PHYPLL); 2852 (void)bcma_read32(core, D11REGOFFS(clk_ctl_st)); 2853 } 2854 } 2855 2856 static void brcms_c_coredisable(struct brcms_hardware *wlc_hw) 2857 { 2858 bool dev_gone; 2859 2860 brcms_dbg_info(wlc_hw->d11core, "wl%d: disable core\n", wlc_hw->unit); 2861 2862 dev_gone = brcms_deviceremoved(wlc_hw->wlc); 2863 2864 if (dev_gone) 2865 return; 2866 2867 if (wlc_hw->noreset) 2868 return; 2869 2870 /* radio off */ 2871 wlc_phy_switch_radio(wlc_hw->band->pi, OFF); 2872 2873 /* turn off analog core */ 2874 wlc_phy_anacore(wlc_hw->band->pi, OFF); 2875 2876 /* turn off PHYPLL to save power */ 2877 brcms_b_core_phypll_ctl(wlc_hw, false); 2878 2879 wlc_hw->clk = false; 2880 bcma_core_disable(wlc_hw->d11core, 0); 2881 wlc_phy_hw_clk_state_upd(wlc_hw->band->pi, false); 2882 } 2883 2884 static void brcms_c_flushqueues(struct brcms_c_info *wlc) 2885 { 2886 struct brcms_hardware *wlc_hw = wlc->hw; 2887 uint i; 2888 2889 /* free any posted tx packets */ 2890 for (i = 0; i < NFIFO; i++) { 2891 if (wlc_hw->di[i]) { 2892 dma_txreclaim(wlc_hw->di[i], DMA_RANGE_ALL); 2893 if (i < TX_BCMC_FIFO) 2894 ieee80211_wake_queue(wlc->pub->ieee_hw, 2895 brcms_fifo_to_ac(i)); 2896 } 2897 } 2898 2899 /* free any posted rx packets */ 2900 dma_rxreclaim(wlc_hw->di[RX_FIFO]); 2901 } 2902 2903 static u16 2904 brcms_b_read_objmem(struct brcms_hardware *wlc_hw, uint offset, u32 sel) 2905 { 2906 struct bcma_device *core = wlc_hw->d11core; 2907 u16 objoff = D11REGOFFS(objdata); 2908 2909 bcma_write32(core, D11REGOFFS(objaddr), sel | (offset >> 2)); 2910 (void)bcma_read32(core, D11REGOFFS(objaddr)); 2911 if (offset & 2) 2912 objoff += 2; 2913 2914 return bcma_read16(core, objoff); 2915 } 2916 2917 static void 2918 brcms_b_write_objmem(struct brcms_hardware *wlc_hw, uint offset, u16 v, 2919 u32 sel) 2920 { 2921 struct bcma_device *core = wlc_hw->d11core; 2922 u16 objoff = D11REGOFFS(objdata); 2923 2924 bcma_write32(core, D11REGOFFS(objaddr), sel | (offset >> 2)); 2925 (void)bcma_read32(core, D11REGOFFS(objaddr)); 2926 if (offset & 2) 2927 objoff += 2; 2928 2929 bcma_wflush16(core, objoff, v); 2930 } 2931 2932 /* 2933 * Read a single u16 from shared memory. 2934 * SHM 'offset' needs to be an even address 2935 */ 2936 u16 brcms_b_read_shm(struct brcms_hardware *wlc_hw, uint offset) 2937 { 2938 return brcms_b_read_objmem(wlc_hw, offset, OBJADDR_SHM_SEL); 2939 } 2940 2941 /* 2942 * Write a single u16 to shared memory. 2943 * SHM 'offset' needs to be an even address 2944 */ 2945 void brcms_b_write_shm(struct brcms_hardware *wlc_hw, uint offset, u16 v) 2946 { 2947 brcms_b_write_objmem(wlc_hw, offset, v, OBJADDR_SHM_SEL); 2948 } 2949 2950 /* 2951 * Copy a buffer to shared memory of specified type . 2952 * SHM 'offset' needs to be an even address and 2953 * Buffer length 'len' must be an even number of bytes 2954 * 'sel' selects the type of memory 2955 */ 2956 void 2957 brcms_b_copyto_objmem(struct brcms_hardware *wlc_hw, uint offset, 2958 const void *buf, int len, u32 sel) 2959 { 2960 u16 v; 2961 const u8 *p = (const u8 *)buf; 2962 int i; 2963 2964 if (len <= 0 || (offset & 1) || (len & 1)) 2965 return; 2966 2967 for (i = 0; i < len; i += 2) { 2968 v = p[i] | (p[i + 1] << 8); 2969 brcms_b_write_objmem(wlc_hw, offset + i, v, sel); 2970 } 2971 } 2972 2973 /* 2974 * Copy a piece of shared memory of specified type to a buffer . 2975 * SHM 'offset' needs to be an even address and 2976 * Buffer length 'len' must be an even number of bytes 2977 * 'sel' selects the type of memory 2978 */ 2979 void 2980 brcms_b_copyfrom_objmem(struct brcms_hardware *wlc_hw, uint offset, void *buf, 2981 int len, u32 sel) 2982 { 2983 u16 v; 2984 u8 *p = (u8 *) buf; 2985 int i; 2986 2987 if (len <= 0 || (offset & 1) || (len & 1)) 2988 return; 2989 2990 for (i = 0; i < len; i += 2) { 2991 v = brcms_b_read_objmem(wlc_hw, offset + i, sel); 2992 p[i] = v & 0xFF; 2993 p[i + 1] = (v >> 8) & 0xFF; 2994 } 2995 } 2996 2997 /* Copy a buffer to shared memory. 2998 * SHM 'offset' needs to be an even address and 2999 * Buffer length 'len' must be an even number of bytes 3000 */ 3001 static void brcms_c_copyto_shm(struct brcms_c_info *wlc, uint offset, 3002 const void *buf, int len) 3003 { 3004 brcms_b_copyto_objmem(wlc->hw, offset, buf, len, OBJADDR_SHM_SEL); 3005 } 3006 3007 static void brcms_b_retrylimit_upd(struct brcms_hardware *wlc_hw, 3008 u16 SRL, u16 LRL) 3009 { 3010 wlc_hw->SRL = SRL; 3011 wlc_hw->LRL = LRL; 3012 3013 /* write retry limit to SCR, shouldn't need to suspend */ 3014 if (wlc_hw->up) { 3015 bcma_write32(wlc_hw->d11core, D11REGOFFS(objaddr), 3016 OBJADDR_SCR_SEL | S_DOT11_SRC_LMT); 3017 (void)bcma_read32(wlc_hw->d11core, D11REGOFFS(objaddr)); 3018 bcma_write32(wlc_hw->d11core, D11REGOFFS(objdata), wlc_hw->SRL); 3019 bcma_write32(wlc_hw->d11core, D11REGOFFS(objaddr), 3020 OBJADDR_SCR_SEL | S_DOT11_LRC_LMT); 3021 (void)bcma_read32(wlc_hw->d11core, D11REGOFFS(objaddr)); 3022 bcma_write32(wlc_hw->d11core, D11REGOFFS(objdata), wlc_hw->LRL); 3023 } 3024 } 3025 3026 static void brcms_b_pllreq(struct brcms_hardware *wlc_hw, bool set, u32 req_bit) 3027 { 3028 if (set) { 3029 if (mboolisset(wlc_hw->pllreq, req_bit)) 3030 return; 3031 3032 mboolset(wlc_hw->pllreq, req_bit); 3033 3034 if (mboolisset(wlc_hw->pllreq, BRCMS_PLLREQ_FLIP)) { 3035 if (!wlc_hw->sbclk) 3036 brcms_b_xtal(wlc_hw, ON); 3037 } 3038 } else { 3039 if (!mboolisset(wlc_hw->pllreq, req_bit)) 3040 return; 3041 3042 mboolclr(wlc_hw->pllreq, req_bit); 3043 3044 if (mboolisset(wlc_hw->pllreq, BRCMS_PLLREQ_FLIP)) { 3045 if (wlc_hw->sbclk) 3046 brcms_b_xtal(wlc_hw, OFF); 3047 } 3048 } 3049 } 3050 3051 static void brcms_b_antsel_set(struct brcms_hardware *wlc_hw, u32 antsel_avail) 3052 { 3053 wlc_hw->antsel_avail = antsel_avail; 3054 } 3055 3056 /* 3057 * conditions under which the PM bit should be set in outgoing frames 3058 * and STAY_AWAKE is meaningful 3059 */ 3060 static bool brcms_c_ps_allowed(struct brcms_c_info *wlc) 3061 { 3062 /* not supporting PS so always return false for now */ 3063 return false; 3064 } 3065 3066 static void brcms_c_statsupd(struct brcms_c_info *wlc) 3067 { 3068 int i; 3069 struct macstat *macstats; 3070 #ifdef DEBUG 3071 u16 delta; 3072 u16 rxf0ovfl; 3073 u16 txfunfl[NFIFO]; 3074 #endif /* DEBUG */ 3075 3076 /* if driver down, make no sense to update stats */ 3077 if (!wlc->pub->up) 3078 return; 3079 3080 macstats = wlc->core->macstat_snapshot; 3081 3082 #ifdef DEBUG 3083 /* save last rx fifo 0 overflow count */ 3084 rxf0ovfl = macstats->rxf0ovfl; 3085 3086 /* save last tx fifo underflow count */ 3087 for (i = 0; i < NFIFO; i++) 3088 txfunfl[i] = macstats->txfunfl[i]; 3089 #endif /* DEBUG */ 3090 3091 /* Read mac stats from contiguous shared memory */ 3092 brcms_b_copyfrom_objmem(wlc->hw, M_UCODE_MACSTAT, macstats, 3093 sizeof(*macstats), OBJADDR_SHM_SEL); 3094 3095 #ifdef DEBUG 3096 /* check for rx fifo 0 overflow */ 3097 delta = (u16)(macstats->rxf0ovfl - rxf0ovfl); 3098 if (delta) 3099 brcms_err(wlc->hw->d11core, "wl%d: %u rx fifo 0 overflows!\n", 3100 wlc->pub->unit, delta); 3101 3102 /* check for tx fifo underflows */ 3103 for (i = 0; i < NFIFO; i++) { 3104 delta = macstats->txfunfl[i] - txfunfl[i]; 3105 if (delta) 3106 brcms_err(wlc->hw->d11core, 3107 "wl%d: %u tx fifo %d underflows!\n", 3108 wlc->pub->unit, delta, i); 3109 } 3110 #endif /* DEBUG */ 3111 3112 /* merge counters from dma module */ 3113 for (i = 0; i < NFIFO; i++) { 3114 if (wlc->hw->di[i]) 3115 dma_counterreset(wlc->hw->di[i]); 3116 } 3117 } 3118 3119 static void brcms_b_reset(struct brcms_hardware *wlc_hw) 3120 { 3121 /* reset the core */ 3122 if (!brcms_deviceremoved(wlc_hw->wlc)) 3123 brcms_b_corereset(wlc_hw, BRCMS_USE_COREFLAGS); 3124 3125 /* purge the dma rings */ 3126 brcms_c_flushqueues(wlc_hw->wlc); 3127 } 3128 3129 void brcms_c_reset(struct brcms_c_info *wlc) 3130 { 3131 brcms_dbg_info(wlc->hw->d11core, "wl%d\n", wlc->pub->unit); 3132 3133 /* slurp up hw mac counters before core reset */ 3134 brcms_c_statsupd(wlc); 3135 3136 /* reset our snapshot of macstat counters */ 3137 memset(wlc->core->macstat_snapshot, 0, sizeof(struct macstat)); 3138 3139 brcms_b_reset(wlc->hw); 3140 } 3141 3142 void brcms_c_init_scb(struct scb *scb) 3143 { 3144 int i; 3145 3146 memset(scb, 0, sizeof(struct scb)); 3147 scb->flags = SCB_WMECAP | SCB_HTCAP; 3148 for (i = 0; i < NUMPRIO; i++) { 3149 scb->seqnum[i] = 0; 3150 scb->seqctl[i] = 0xFFFF; 3151 } 3152 3153 scb->seqctl_nonqos = 0xFFFF; 3154 scb->magic = SCB_MAGIC; 3155 } 3156 3157 /* d11 core init 3158 * reset PSM 3159 * download ucode/PCM 3160 * let ucode run to suspended 3161 * download ucode inits 3162 * config other core registers 3163 * init dma 3164 */ 3165 static void brcms_b_coreinit(struct brcms_c_info *wlc) 3166 { 3167 struct brcms_hardware *wlc_hw = wlc->hw; 3168 struct bcma_device *core = wlc_hw->d11core; 3169 u32 bcnint_us; 3170 uint i = 0; 3171 bool fifosz_fixup = false; 3172 int err = 0; 3173 u16 buf[NFIFO]; 3174 struct brcms_ucode *ucode = &wlc_hw->wlc->wl->ucode; 3175 3176 brcms_dbg_info(core, "wl%d: core init\n", wlc_hw->unit); 3177 3178 /* reset PSM */ 3179 brcms_b_mctrl(wlc_hw, ~0, (MCTL_IHR_EN | MCTL_PSM_JMP_0 | MCTL_WAKE)); 3180 3181 brcms_ucode_download(wlc_hw); 3182 /* 3183 * FIFOSZ fixup. driver wants to controls the fifo allocation. 3184 */ 3185 fifosz_fixup = true; 3186 3187 /* let the PSM run to the suspended state, set mode to BSS STA */ 3188 bcma_write32(core, D11REGOFFS(macintstatus), -1); 3189 brcms_b_mctrl(wlc_hw, ~0, 3190 (MCTL_IHR_EN | MCTL_INFRA | MCTL_PSM_RUN | MCTL_WAKE)); 3191 3192 /* wait for ucode to self-suspend after auto-init */ 3193 SPINWAIT(((bcma_read32(core, D11REGOFFS(macintstatus)) & 3194 MI_MACSSPNDD) == 0), 1000 * 1000); 3195 if ((bcma_read32(core, D11REGOFFS(macintstatus)) & MI_MACSSPNDD) == 0) 3196 brcms_err(core, "wl%d: wlc_coreinit: ucode did not self-" 3197 "suspend!\n", wlc_hw->unit); 3198 3199 brcms_c_gpio_init(wlc); 3200 3201 bcma_aread32(core, BCMA_IOST); 3202 3203 if (D11REV_IS(wlc_hw->corerev, 17) || D11REV_IS(wlc_hw->corerev, 23)) { 3204 if (BRCMS_ISNPHY(wlc_hw->band)) 3205 brcms_c_write_inits(wlc_hw, ucode->d11n0initvals16); 3206 else 3207 brcms_err(core, "%s: wl%d: unsupported phy in corerev" 3208 " %d\n", __func__, wlc_hw->unit, 3209 wlc_hw->corerev); 3210 } else if (D11REV_IS(wlc_hw->corerev, 24)) { 3211 if (BRCMS_ISLCNPHY(wlc_hw->band)) 3212 brcms_c_write_inits(wlc_hw, ucode->d11lcn0initvals24); 3213 else 3214 brcms_err(core, "%s: wl%d: unsupported phy in corerev" 3215 " %d\n", __func__, wlc_hw->unit, 3216 wlc_hw->corerev); 3217 } else { 3218 brcms_err(core, "%s: wl%d: unsupported corerev %d\n", 3219 __func__, wlc_hw->unit, wlc_hw->corerev); 3220 } 3221 3222 /* For old ucode, txfifo sizes needs to be modified(increased) */ 3223 if (fifosz_fixup) 3224 brcms_b_corerev_fifofixup(wlc_hw); 3225 3226 /* check txfifo allocations match between ucode and driver */ 3227 buf[TX_AC_BE_FIFO] = brcms_b_read_shm(wlc_hw, M_FIFOSIZE0); 3228 if (buf[TX_AC_BE_FIFO] != wlc_hw->xmtfifo_sz[TX_AC_BE_FIFO]) { 3229 i = TX_AC_BE_FIFO; 3230 err = -1; 3231 } 3232 buf[TX_AC_VI_FIFO] = brcms_b_read_shm(wlc_hw, M_FIFOSIZE1); 3233 if (buf[TX_AC_VI_FIFO] != wlc_hw->xmtfifo_sz[TX_AC_VI_FIFO]) { 3234 i = TX_AC_VI_FIFO; 3235 err = -1; 3236 } 3237 buf[TX_AC_BK_FIFO] = brcms_b_read_shm(wlc_hw, M_FIFOSIZE2); 3238 buf[TX_AC_VO_FIFO] = (buf[TX_AC_BK_FIFO] >> 8) & 0xff; 3239 buf[TX_AC_BK_FIFO] &= 0xff; 3240 if (buf[TX_AC_BK_FIFO] != wlc_hw->xmtfifo_sz[TX_AC_BK_FIFO]) { 3241 i = TX_AC_BK_FIFO; 3242 err = -1; 3243 } 3244 if (buf[TX_AC_VO_FIFO] != wlc_hw->xmtfifo_sz[TX_AC_VO_FIFO]) { 3245 i = TX_AC_VO_FIFO; 3246 err = -1; 3247 } 3248 buf[TX_BCMC_FIFO] = brcms_b_read_shm(wlc_hw, M_FIFOSIZE3); 3249 buf[TX_ATIM_FIFO] = (buf[TX_BCMC_FIFO] >> 8) & 0xff; 3250 buf[TX_BCMC_FIFO] &= 0xff; 3251 if (buf[TX_BCMC_FIFO] != wlc_hw->xmtfifo_sz[TX_BCMC_FIFO]) { 3252 i = TX_BCMC_FIFO; 3253 err = -1; 3254 } 3255 if (buf[TX_ATIM_FIFO] != wlc_hw->xmtfifo_sz[TX_ATIM_FIFO]) { 3256 i = TX_ATIM_FIFO; 3257 err = -1; 3258 } 3259 if (err != 0) 3260 brcms_err(core, "wlc_coreinit: txfifo mismatch: ucode size %d" 3261 " driver size %d index %d\n", buf[i], 3262 wlc_hw->xmtfifo_sz[i], i); 3263 3264 /* make sure we can still talk to the mac */ 3265 WARN_ON(bcma_read32(core, D11REGOFFS(maccontrol)) == 0xffffffff); 3266 3267 /* band-specific inits done by wlc_bsinit() */ 3268 3269 /* Set up frame burst size and antenna swap threshold init values */ 3270 brcms_b_write_shm(wlc_hw, M_MBURST_SIZE, MAXTXFRAMEBURST); 3271 brcms_b_write_shm(wlc_hw, M_MAX_ANTCNT, ANTCNT); 3272 3273 /* enable one rx interrupt per received frame */ 3274 bcma_write32(core, D11REGOFFS(intrcvlazy[0]), (1 << IRL_FC_SHIFT)); 3275 3276 /* set the station mode (BSS STA) */ 3277 brcms_b_mctrl(wlc_hw, 3278 (MCTL_INFRA | MCTL_DISCARD_PMQ | MCTL_AP), 3279 (MCTL_INFRA | MCTL_DISCARD_PMQ)); 3280 3281 /* set up Beacon interval */ 3282 bcnint_us = 0x8000 << 10; 3283 bcma_write32(core, D11REGOFFS(tsf_cfprep), 3284 (bcnint_us << CFPREP_CBI_SHIFT)); 3285 bcma_write32(core, D11REGOFFS(tsf_cfpstart), bcnint_us); 3286 bcma_write32(core, D11REGOFFS(macintstatus), MI_GP1); 3287 3288 /* write interrupt mask */ 3289 bcma_write32(core, D11REGOFFS(intctrlregs[RX_FIFO].intmask), 3290 DEF_RXINTMASK); 3291 3292 /* allow the MAC to control the PHY clock (dynamic on/off) */ 3293 brcms_b_macphyclk_set(wlc_hw, ON); 3294 3295 /* program dynamic clock control fast powerup delay register */ 3296 wlc->fastpwrup_dly = ai_clkctl_fast_pwrup_delay(wlc_hw->sih); 3297 bcma_write16(core, D11REGOFFS(scc_fastpwrup_dly), wlc->fastpwrup_dly); 3298 3299 /* tell the ucode the corerev */ 3300 brcms_b_write_shm(wlc_hw, M_MACHW_VER, (u16) wlc_hw->corerev); 3301 3302 /* tell the ucode MAC capabilities */ 3303 brcms_b_write_shm(wlc_hw, M_MACHW_CAP_L, 3304 (u16) (wlc_hw->machwcap & 0xffff)); 3305 brcms_b_write_shm(wlc_hw, M_MACHW_CAP_H, 3306 (u16) ((wlc_hw-> 3307 machwcap >> 16) & 0xffff)); 3308 3309 /* write retry limits to SCR, this done after PSM init */ 3310 bcma_write32(core, D11REGOFFS(objaddr), 3311 OBJADDR_SCR_SEL | S_DOT11_SRC_LMT); 3312 (void)bcma_read32(core, D11REGOFFS(objaddr)); 3313 bcma_write32(core, D11REGOFFS(objdata), wlc_hw->SRL); 3314 bcma_write32(core, D11REGOFFS(objaddr), 3315 OBJADDR_SCR_SEL | S_DOT11_LRC_LMT); 3316 (void)bcma_read32(core, D11REGOFFS(objaddr)); 3317 bcma_write32(core, D11REGOFFS(objdata), wlc_hw->LRL); 3318 3319 /* write rate fallback retry limits */ 3320 brcms_b_write_shm(wlc_hw, M_SFRMTXCNTFBRTHSD, wlc_hw->SFBL); 3321 brcms_b_write_shm(wlc_hw, M_LFRMTXCNTFBRTHSD, wlc_hw->LFBL); 3322 3323 bcma_mask16(core, D11REGOFFS(ifs_ctl), 0x0FFF); 3324 bcma_write16(core, D11REGOFFS(ifs_aifsn), EDCF_AIFSN_MIN); 3325 3326 /* init the tx dma engines */ 3327 for (i = 0; i < NFIFO; i++) { 3328 if (wlc_hw->di[i]) 3329 dma_txinit(wlc_hw->di[i]); 3330 } 3331 3332 /* init the rx dma engine(s) and post receive buffers */ 3333 dma_rxinit(wlc_hw->di[RX_FIFO]); 3334 dma_rxfill(wlc_hw->di[RX_FIFO]); 3335 } 3336 3337 static void brcms_b_init(struct brcms_hardware *wlc_hw, u16 chanspec) 3338 { 3339 u32 macintmask; 3340 bool fastclk; 3341 struct brcms_c_info *wlc = wlc_hw->wlc; 3342 3343 /* request FAST clock if not on */ 3344 fastclk = wlc_hw->forcefastclk; 3345 if (!fastclk) 3346 brcms_b_clkctl_clk(wlc_hw, BCMA_CLKMODE_FAST); 3347 3348 /* disable interrupts */ 3349 macintmask = brcms_intrsoff(wlc->wl); 3350 3351 /* set up the specified band and chanspec */ 3352 brcms_c_setxband(wlc_hw, chspec_bandunit(chanspec)); 3353 wlc_phy_chanspec_radio_set(wlc_hw->band->pi, chanspec); 3354 3355 /* do one-time phy inits and calibration */ 3356 wlc_phy_cal_init(wlc_hw->band->pi); 3357 3358 /* core-specific initialization */ 3359 brcms_b_coreinit(wlc); 3360 3361 /* band-specific inits */ 3362 brcms_b_bsinit(wlc, chanspec); 3363 3364 /* restore macintmask */ 3365 brcms_intrsrestore(wlc->wl, macintmask); 3366 3367 /* seed wake_override with BRCMS_WAKE_OVERRIDE_MACSUSPEND since the mac 3368 * is suspended and brcms_c_enable_mac() will clear this override bit. 3369 */ 3370 mboolset(wlc_hw->wake_override, BRCMS_WAKE_OVERRIDE_MACSUSPEND); 3371 3372 /* 3373 * initialize mac_suspend_depth to 1 to match ucode 3374 * initial suspended state 3375 */ 3376 wlc_hw->mac_suspend_depth = 1; 3377 3378 /* restore the clk */ 3379 if (!fastclk) 3380 brcms_b_clkctl_clk(wlc_hw, BCMA_CLKMODE_DYNAMIC); 3381 } 3382 3383 static void brcms_c_set_phy_chanspec(struct brcms_c_info *wlc, 3384 u16 chanspec) 3385 { 3386 /* Save our copy of the chanspec */ 3387 wlc->chanspec = chanspec; 3388 3389 /* Set the chanspec and power limits for this locale */ 3390 brcms_c_channel_set_chanspec(wlc->cmi, chanspec, BRCMS_TXPWR_MAX); 3391 3392 if (wlc->stf->ss_algosel_auto) 3393 brcms_c_stf_ss_algo_channel_get(wlc, &wlc->stf->ss_algo_channel, 3394 chanspec); 3395 3396 brcms_c_stf_ss_update(wlc, wlc->band); 3397 } 3398 3399 static void 3400 brcms_default_rateset(struct brcms_c_info *wlc, struct brcms_c_rateset *rs) 3401 { 3402 brcms_c_rateset_default(rs, NULL, wlc->band->phytype, 3403 wlc->band->bandtype, false, BRCMS_RATE_MASK_FULL, 3404 (bool) (wlc->pub->_n_enab & SUPPORT_11N), 3405 brcms_chspec_bw(wlc->default_bss->chanspec), 3406 wlc->stf->txstreams); 3407 } 3408 3409 /* derive wlc->band->basic_rate[] table from 'rateset' */ 3410 static void brcms_c_rate_lookup_init(struct brcms_c_info *wlc, 3411 struct brcms_c_rateset *rateset) 3412 { 3413 u8 rate; 3414 u8 mandatory; 3415 u8 cck_basic = 0; 3416 u8 ofdm_basic = 0; 3417 u8 *br = wlc->band->basic_rate; 3418 uint i; 3419 3420 /* incoming rates are in 500kbps units as in 802.11 Supported Rates */ 3421 memset(br, 0, BRCM_MAXRATE + 1); 3422 3423 /* For each basic rate in the rates list, make an entry in the 3424 * best basic lookup. 3425 */ 3426 for (i = 0; i < rateset->count; i++) { 3427 /* only make an entry for a basic rate */ 3428 if (!(rateset->rates[i] & BRCMS_RATE_FLAG)) 3429 continue; 3430 3431 /* mask off basic bit */ 3432 rate = (rateset->rates[i] & BRCMS_RATE_MASK); 3433 3434 if (rate > BRCM_MAXRATE) { 3435 brcms_err(wlc->hw->d11core, "brcms_c_rate_lookup_init: " 3436 "invalid rate 0x%X in rate set\n", 3437 rateset->rates[i]); 3438 continue; 3439 } 3440 3441 br[rate] = rate; 3442 } 3443 3444 /* The rate lookup table now has non-zero entries for each 3445 * basic rate, equal to the basic rate: br[basicN] = basicN 3446 * 3447 * To look up the best basic rate corresponding to any 3448 * particular rate, code can use the basic_rate table 3449 * like this 3450 * 3451 * basic_rate = wlc->band->basic_rate[tx_rate] 3452 * 3453 * Make sure there is a best basic rate entry for 3454 * every rate by walking up the table from low rates 3455 * to high, filling in holes in the lookup table 3456 */ 3457 3458 for (i = 0; i < wlc->band->hw_rateset.count; i++) { 3459 rate = wlc->band->hw_rateset.rates[i]; 3460 3461 if (br[rate] != 0) { 3462 /* This rate is a basic rate. 3463 * Keep track of the best basic rate so far by 3464 * modulation type. 3465 */ 3466 if (is_ofdm_rate(rate)) 3467 ofdm_basic = rate; 3468 else 3469 cck_basic = rate; 3470 3471 continue; 3472 } 3473 3474 /* This rate is not a basic rate so figure out the 3475 * best basic rate less than this rate and fill in 3476 * the hole in the table 3477 */ 3478 3479 br[rate] = is_ofdm_rate(rate) ? ofdm_basic : cck_basic; 3480 3481 if (br[rate] != 0) 3482 continue; 3483 3484 if (is_ofdm_rate(rate)) { 3485 /* 3486 * In 11g and 11a, the OFDM mandatory rates 3487 * are 6, 12, and 24 Mbps 3488 */ 3489 if (rate >= BRCM_RATE_24M) 3490 mandatory = BRCM_RATE_24M; 3491 else if (rate >= BRCM_RATE_12M) 3492 mandatory = BRCM_RATE_12M; 3493 else 3494 mandatory = BRCM_RATE_6M; 3495 } else { 3496 /* In 11b, all CCK rates are mandatory 1 - 11 Mbps */ 3497 mandatory = rate; 3498 } 3499 3500 br[rate] = mandatory; 3501 } 3502 } 3503 3504 static void brcms_c_bandinit_ordered(struct brcms_c_info *wlc, 3505 u16 chanspec) 3506 { 3507 struct brcms_c_rateset default_rateset; 3508 uint parkband; 3509 uint i, band_order[2]; 3510 3511 /* 3512 * We might have been bandlocked during down and the chip 3513 * power-cycled (hibernate). Figure out the right band to park on 3514 */ 3515 if (wlc->bandlocked || wlc->pub->_nbands == 1) { 3516 /* updated in brcms_c_bandlock() */ 3517 parkband = wlc->band->bandunit; 3518 band_order[0] = band_order[1] = parkband; 3519 } else { 3520 /* park on the band of the specified chanspec */ 3521 parkband = chspec_bandunit(chanspec); 3522 3523 /* order so that parkband initialize last */ 3524 band_order[0] = parkband ^ 1; 3525 band_order[1] = parkband; 3526 } 3527 3528 /* make each band operational, software state init */ 3529 for (i = 0; i < wlc->pub->_nbands; i++) { 3530 uint j = band_order[i]; 3531 3532 wlc->band = wlc->bandstate[j]; 3533 3534 brcms_default_rateset(wlc, &default_rateset); 3535 3536 /* fill in hw_rate */ 3537 brcms_c_rateset_filter(&default_rateset, &wlc->band->hw_rateset, 3538 false, BRCMS_RATES_CCK_OFDM, BRCMS_RATE_MASK, 3539 (bool) (wlc->pub->_n_enab & SUPPORT_11N)); 3540 3541 /* init basic rate lookup */ 3542 brcms_c_rate_lookup_init(wlc, &default_rateset); 3543 } 3544 3545 /* sync up phy/radio chanspec */ 3546 brcms_c_set_phy_chanspec(wlc, chanspec); 3547 } 3548 3549 /* 3550 * Set or clear filtering related maccontrol bits based on 3551 * specified filter flags 3552 */ 3553 void brcms_c_mac_promisc(struct brcms_c_info *wlc, uint filter_flags) 3554 { 3555 u32 promisc_bits = 0; 3556 3557 wlc->filter_flags = filter_flags; 3558 3559 if (filter_flags & FIF_OTHER_BSS) 3560 promisc_bits |= MCTL_PROMISC; 3561 3562 if (filter_flags & FIF_BCN_PRBRESP_PROMISC) 3563 promisc_bits |= MCTL_BCNS_PROMISC; 3564 3565 if (filter_flags & FIF_FCSFAIL) 3566 promisc_bits |= MCTL_KEEPBADFCS; 3567 3568 if (filter_flags & (FIF_CONTROL | FIF_PSPOLL)) 3569 promisc_bits |= MCTL_KEEPCONTROL; 3570 3571 brcms_b_mctrl(wlc->hw, 3572 MCTL_PROMISC | MCTL_BCNS_PROMISC | 3573 MCTL_KEEPCONTROL | MCTL_KEEPBADFCS, 3574 promisc_bits); 3575 } 3576 3577 /* 3578 * ucode, hwmac update 3579 * Channel dependent updates for ucode and hw 3580 */ 3581 static void brcms_c_ucode_mac_upd(struct brcms_c_info *wlc) 3582 { 3583 /* enable or disable any active IBSSs depending on whether or not 3584 * we are on the home channel 3585 */ 3586 if (wlc->home_chanspec == wlc_phy_chanspec_get(wlc->band->pi)) { 3587 if (wlc->pub->associated) { 3588 /* 3589 * BMAC_NOTE: This is something that should be fixed 3590 * in ucode inits. I think that the ucode inits set 3591 * up the bcn templates and shm values with a bogus 3592 * beacon. This should not be done in the inits. If 3593 * ucode needs to set up a beacon for testing, the 3594 * test routines should write it down, not expect the 3595 * inits to populate a bogus beacon. 3596 */ 3597 if (BRCMS_PHY_11N_CAP(wlc->band)) 3598 brcms_b_write_shm(wlc->hw, 3599 M_BCN_TXTSF_OFFSET, 0); 3600 } 3601 } else { 3602 /* disable an active IBSS if we are not on the home channel */ 3603 } 3604 } 3605 3606 static void brcms_c_write_rate_shm(struct brcms_c_info *wlc, u8 rate, 3607 u8 basic_rate) 3608 { 3609 u8 phy_rate, index; 3610 u8 basic_phy_rate, basic_index; 3611 u16 dir_table, basic_table; 3612 u16 basic_ptr; 3613 3614 /* Shared memory address for the table we are reading */ 3615 dir_table = is_ofdm_rate(basic_rate) ? M_RT_DIRMAP_A : M_RT_DIRMAP_B; 3616 3617 /* Shared memory address for the table we are writing */ 3618 basic_table = is_ofdm_rate(rate) ? M_RT_BBRSMAP_A : M_RT_BBRSMAP_B; 3619 3620 /* 3621 * for a given rate, the LS-nibble of the PLCP SIGNAL field is 3622 * the index into the rate table. 3623 */ 3624 phy_rate = rate_info[rate] & BRCMS_RATE_MASK; 3625 basic_phy_rate = rate_info[basic_rate] & BRCMS_RATE_MASK; 3626 index = phy_rate & 0xf; 3627 basic_index = basic_phy_rate & 0xf; 3628 3629 /* Find the SHM pointer to the ACK rate entry by looking in the 3630 * Direct-map Table 3631 */ 3632 basic_ptr = brcms_b_read_shm(wlc->hw, (dir_table + basic_index * 2)); 3633 3634 /* Update the SHM BSS-basic-rate-set mapping table with the pointer 3635 * to the correct basic rate for the given incoming rate 3636 */ 3637 brcms_b_write_shm(wlc->hw, (basic_table + index * 2), basic_ptr); 3638 } 3639 3640 static const struct brcms_c_rateset * 3641 brcms_c_rateset_get_hwrs(struct brcms_c_info *wlc) 3642 { 3643 const struct brcms_c_rateset *rs_dflt; 3644 3645 if (BRCMS_PHY_11N_CAP(wlc->band)) { 3646 if (wlc->band->bandtype == BRCM_BAND_5G) 3647 rs_dflt = &ofdm_mimo_rates; 3648 else 3649 rs_dflt = &cck_ofdm_mimo_rates; 3650 } else if (wlc->band->gmode) 3651 rs_dflt = &cck_ofdm_rates; 3652 else 3653 rs_dflt = &cck_rates; 3654 3655 return rs_dflt; 3656 } 3657 3658 static void brcms_c_set_ratetable(struct brcms_c_info *wlc) 3659 { 3660 const struct brcms_c_rateset *rs_dflt; 3661 struct brcms_c_rateset rs; 3662 u8 rate, basic_rate; 3663 uint i; 3664 3665 rs_dflt = brcms_c_rateset_get_hwrs(wlc); 3666 3667 brcms_c_rateset_copy(rs_dflt, &rs); 3668 brcms_c_rateset_mcs_upd(&rs, wlc->stf->txstreams); 3669 3670 /* walk the phy rate table and update SHM basic rate lookup table */ 3671 for (i = 0; i < rs.count; i++) { 3672 rate = rs.rates[i] & BRCMS_RATE_MASK; 3673 3674 /* for a given rate brcms_basic_rate returns the rate at 3675 * which a response ACK/CTS should be sent. 3676 */ 3677 basic_rate = brcms_basic_rate(wlc, rate); 3678 if (basic_rate == 0) 3679 /* This should only happen if we are using a 3680 * restricted rateset. 3681 */ 3682 basic_rate = rs.rates[0] & BRCMS_RATE_MASK; 3683 3684 brcms_c_write_rate_shm(wlc, rate, basic_rate); 3685 } 3686 } 3687 3688 /* band-specific init */ 3689 static void brcms_c_bsinit(struct brcms_c_info *wlc) 3690 { 3691 brcms_dbg_info(wlc->hw->d11core, "wl%d: bandunit %d\n", 3692 wlc->pub->unit, wlc->band->bandunit); 3693 3694 /* write ucode ACK/CTS rate table */ 3695 brcms_c_set_ratetable(wlc); 3696 3697 /* update some band specific mac configuration */ 3698 brcms_c_ucode_mac_upd(wlc); 3699 3700 /* init antenna selection */ 3701 brcms_c_antsel_init(wlc->asi); 3702 3703 } 3704 3705 /* formula: IDLE_BUSY_RATIO_X_16 = (100-duty_cycle)/duty_cycle*16 */ 3706 static int 3707 brcms_c_duty_cycle_set(struct brcms_c_info *wlc, int duty_cycle, bool isOFDM, 3708 bool writeToShm) 3709 { 3710 int idle_busy_ratio_x_16 = 0; 3711 uint offset = 3712 isOFDM ? M_TX_IDLE_BUSY_RATIO_X_16_OFDM : 3713 M_TX_IDLE_BUSY_RATIO_X_16_CCK; 3714 if (duty_cycle > 100 || duty_cycle < 0) { 3715 brcms_err(wlc->hw->d11core, 3716 "wl%d: duty cycle value off limit\n", 3717 wlc->pub->unit); 3718 return -EINVAL; 3719 } 3720 if (duty_cycle) 3721 idle_busy_ratio_x_16 = (100 - duty_cycle) * 16 / duty_cycle; 3722 /* Only write to shared memory when wl is up */ 3723 if (writeToShm) 3724 brcms_b_write_shm(wlc->hw, offset, (u16) idle_busy_ratio_x_16); 3725 3726 if (isOFDM) 3727 wlc->tx_duty_cycle_ofdm = (u16) duty_cycle; 3728 else 3729 wlc->tx_duty_cycle_cck = (u16) duty_cycle; 3730 3731 return 0; 3732 } 3733 3734 /* push sw hps and wake state through hardware */ 3735 static void brcms_c_set_ps_ctrl(struct brcms_c_info *wlc) 3736 { 3737 u32 v1, v2; 3738 bool hps; 3739 bool awake_before; 3740 3741 hps = brcms_c_ps_allowed(wlc); 3742 3743 brcms_dbg_mac80211(wlc->hw->d11core, "wl%d: hps %d\n", wlc->pub->unit, 3744 hps); 3745 3746 v1 = bcma_read32(wlc->hw->d11core, D11REGOFFS(maccontrol)); 3747 v2 = MCTL_WAKE; 3748 if (hps) 3749 v2 |= MCTL_HPS; 3750 3751 brcms_b_mctrl(wlc->hw, MCTL_WAKE | MCTL_HPS, v2); 3752 3753 awake_before = ((v1 & MCTL_WAKE) || ((v1 & MCTL_HPS) == 0)); 3754 3755 if (!awake_before) 3756 brcms_b_wait_for_wake(wlc->hw); 3757 } 3758 3759 /* 3760 * Write this BSS config's MAC address to core. 3761 * Updates RXE match engine. 3762 */ 3763 static void brcms_c_set_mac(struct brcms_bss_cfg *bsscfg) 3764 { 3765 struct brcms_c_info *wlc = bsscfg->wlc; 3766 3767 /* enter the MAC addr into the RXE match registers */ 3768 brcms_c_set_addrmatch(wlc, RCM_MAC_OFFSET, wlc->pub->cur_etheraddr); 3769 3770 brcms_c_ampdu_macaddr_upd(wlc); 3771 } 3772 3773 /* Write the BSS config's BSSID address to core (set_bssid in d11procs.tcl). 3774 * Updates RXE match engine. 3775 */ 3776 static void brcms_c_set_bssid(struct brcms_bss_cfg *bsscfg) 3777 { 3778 /* we need to update BSSID in RXE match registers */ 3779 brcms_c_set_addrmatch(bsscfg->wlc, RCM_BSSID_OFFSET, bsscfg->BSSID); 3780 } 3781 3782 void brcms_c_set_ssid(struct brcms_c_info *wlc, u8 *ssid, size_t ssid_len) 3783 { 3784 u8 len = min_t(u8, sizeof(wlc->bsscfg->SSID), ssid_len); 3785 memset(wlc->bsscfg->SSID, 0, sizeof(wlc->bsscfg->SSID)); 3786 3787 memcpy(wlc->bsscfg->SSID, ssid, len); 3788 wlc->bsscfg->SSID_len = len; 3789 } 3790 3791 static void brcms_b_set_shortslot(struct brcms_hardware *wlc_hw, bool shortslot) 3792 { 3793 wlc_hw->shortslot = shortslot; 3794 3795 if (wlc_hw->band->bandtype == BRCM_BAND_2G && wlc_hw->up) { 3796 brcms_c_suspend_mac_and_wait(wlc_hw->wlc); 3797 brcms_b_update_slot_timing(wlc_hw, shortslot); 3798 brcms_c_enable_mac(wlc_hw->wlc); 3799 } 3800 } 3801 3802 /* 3803 * Suspend the MAC and update the slot timing 3804 * for standard 11b/g (20us slots) or shortslot 11g (9us slots). 3805 */ 3806 static void brcms_c_switch_shortslot(struct brcms_c_info *wlc, bool shortslot) 3807 { 3808 /* use the override if it is set */ 3809 if (wlc->shortslot_override != BRCMS_SHORTSLOT_AUTO) 3810 shortslot = (wlc->shortslot_override == BRCMS_SHORTSLOT_ON); 3811 3812 if (wlc->shortslot == shortslot) 3813 return; 3814 3815 wlc->shortslot = shortslot; 3816 3817 brcms_b_set_shortslot(wlc->hw, shortslot); 3818 } 3819 3820 static void brcms_c_set_home_chanspec(struct brcms_c_info *wlc, u16 chanspec) 3821 { 3822 if (wlc->home_chanspec != chanspec) { 3823 wlc->home_chanspec = chanspec; 3824 3825 if (wlc->pub->associated) 3826 wlc->bsscfg->current_bss->chanspec = chanspec; 3827 } 3828 } 3829 3830 void 3831 brcms_b_set_chanspec(struct brcms_hardware *wlc_hw, u16 chanspec, 3832 bool mute_tx, struct txpwr_limits *txpwr) 3833 { 3834 uint bandunit; 3835 3836 brcms_dbg_mac80211(wlc_hw->d11core, "wl%d: 0x%x\n", wlc_hw->unit, 3837 chanspec); 3838 3839 wlc_hw->chanspec = chanspec; 3840 3841 /* Switch bands if necessary */ 3842 if (wlc_hw->_nbands > 1) { 3843 bandunit = chspec_bandunit(chanspec); 3844 if (wlc_hw->band->bandunit != bandunit) { 3845 /* brcms_b_setband disables other bandunit, 3846 * use light band switch if not up yet 3847 */ 3848 if (wlc_hw->up) { 3849 wlc_phy_chanspec_radio_set(wlc_hw-> 3850 bandstate[bandunit]-> 3851 pi, chanspec); 3852 brcms_b_setband(wlc_hw, bandunit, chanspec); 3853 } else { 3854 brcms_c_setxband(wlc_hw, bandunit); 3855 } 3856 } 3857 } 3858 3859 wlc_phy_initcal_enable(wlc_hw->band->pi, !mute_tx); 3860 3861 if (!wlc_hw->up) { 3862 if (wlc_hw->clk) 3863 wlc_phy_txpower_limit_set(wlc_hw->band->pi, txpwr, 3864 chanspec); 3865 wlc_phy_chanspec_radio_set(wlc_hw->band->pi, chanspec); 3866 } else { 3867 wlc_phy_chanspec_set(wlc_hw->band->pi, chanspec); 3868 wlc_phy_txpower_limit_set(wlc_hw->band->pi, txpwr, chanspec); 3869 3870 /* Update muting of the channel */ 3871 brcms_b_mute(wlc_hw, mute_tx); 3872 } 3873 } 3874 3875 /* switch to and initialize new band */ 3876 static void brcms_c_setband(struct brcms_c_info *wlc, 3877 uint bandunit) 3878 { 3879 wlc->band = wlc->bandstate[bandunit]; 3880 3881 if (!wlc->pub->up) 3882 return; 3883 3884 /* wait for at least one beacon before entering sleeping state */ 3885 brcms_c_set_ps_ctrl(wlc); 3886 3887 /* band-specific initializations */ 3888 brcms_c_bsinit(wlc); 3889 } 3890 3891 static void brcms_c_set_chanspec(struct brcms_c_info *wlc, u16 chanspec) 3892 { 3893 uint bandunit; 3894 u16 old_chanspec = wlc->chanspec; 3895 3896 if (!brcms_c_valid_chanspec_db(wlc->cmi, chanspec)) { 3897 brcms_err(wlc->hw->d11core, "wl%d: %s: Bad channel %d\n", 3898 wlc->pub->unit, __func__, CHSPEC_CHANNEL(chanspec)); 3899 return; 3900 } 3901 3902 /* Switch bands if necessary */ 3903 if (wlc->pub->_nbands > 1) { 3904 bandunit = chspec_bandunit(chanspec); 3905 if (wlc->band->bandunit != bandunit || wlc->bandinit_pending) { 3906 if (wlc->bandlocked) { 3907 brcms_err(wlc->hw->d11core, 3908 "wl%d: %s: chspec %d band is locked!\n", 3909 wlc->pub->unit, __func__, 3910 CHSPEC_CHANNEL(chanspec)); 3911 return; 3912 } 3913 /* 3914 * should the setband call come after the 3915 * brcms_b_chanspec() ? if the setband updates 3916 * (brcms_c_bsinit) use low level calls to inspect and 3917 * set state, the state inspected may be from the wrong 3918 * band, or the following brcms_b_set_chanspec() may 3919 * undo the work. 3920 */ 3921 brcms_c_setband(wlc, bandunit); 3922 } 3923 } 3924 3925 /* sync up phy/radio chanspec */ 3926 brcms_c_set_phy_chanspec(wlc, chanspec); 3927 3928 /* init antenna selection */ 3929 if (brcms_chspec_bw(old_chanspec) != brcms_chspec_bw(chanspec)) { 3930 brcms_c_antsel_init(wlc->asi); 3931 3932 /* Fix the hardware rateset based on bw. 3933 * Mainly add MCS32 for 40Mhz, remove MCS 32 for 20Mhz 3934 */ 3935 brcms_c_rateset_bw_mcs_filter(&wlc->band->hw_rateset, 3936 wlc->band->mimo_cap_40 ? brcms_chspec_bw(chanspec) : 0); 3937 } 3938 3939 /* update some mac configuration since chanspec changed */ 3940 brcms_c_ucode_mac_upd(wlc); 3941 } 3942 3943 /* 3944 * This function changes the phytxctl for beacon based on current 3945 * beacon ratespec AND txant setting as per this table: 3946 * ratespec CCK ant = wlc->stf->txant 3947 * OFDM ant = 3 3948 */ 3949 void brcms_c_beacon_phytxctl_txant_upd(struct brcms_c_info *wlc, 3950 u32 bcn_rspec) 3951 { 3952 u16 phyctl; 3953 u16 phytxant = wlc->stf->phytxant; 3954 u16 mask = PHY_TXC_ANT_MASK; 3955 3956 /* for non-siso rates or default setting, use the available chains */ 3957 if (BRCMS_PHY_11N_CAP(wlc->band)) 3958 phytxant = brcms_c_stf_phytxchain_sel(wlc, bcn_rspec); 3959 3960 phyctl = brcms_b_read_shm(wlc->hw, M_BCN_PCTLWD); 3961 phyctl = (phyctl & ~mask) | phytxant; 3962 brcms_b_write_shm(wlc->hw, M_BCN_PCTLWD, phyctl); 3963 } 3964 3965 /* 3966 * centralized protection config change function to simplify debugging, no 3967 * consistency checking this should be called only on changes to avoid overhead 3968 * in periodic function 3969 */ 3970 void brcms_c_protection_upd(struct brcms_c_info *wlc, uint idx, int val) 3971 { 3972 /* 3973 * Cannot use brcms_dbg_* here because this function is called 3974 * before wlc is sufficiently initialized. 3975 */ 3976 BCMMSG(wlc->wiphy, "idx %d, val %d\n", idx, val); 3977 3978 switch (idx) { 3979 case BRCMS_PROT_G_SPEC: 3980 wlc->protection->_g = (bool) val; 3981 break; 3982 case BRCMS_PROT_G_OVR: 3983 wlc->protection->g_override = (s8) val; 3984 break; 3985 case BRCMS_PROT_G_USER: 3986 wlc->protection->gmode_user = (u8) val; 3987 break; 3988 case BRCMS_PROT_OVERLAP: 3989 wlc->protection->overlap = (s8) val; 3990 break; 3991 case BRCMS_PROT_N_USER: 3992 wlc->protection->nmode_user = (s8) val; 3993 break; 3994 case BRCMS_PROT_N_CFG: 3995 wlc->protection->n_cfg = (s8) val; 3996 break; 3997 case BRCMS_PROT_N_CFG_OVR: 3998 wlc->protection->n_cfg_override = (s8) val; 3999 break; 4000 case BRCMS_PROT_N_NONGF: 4001 wlc->protection->nongf = (bool) val; 4002 break; 4003 case BRCMS_PROT_N_NONGF_OVR: 4004 wlc->protection->nongf_override = (s8) val; 4005 break; 4006 case BRCMS_PROT_N_PAM_OVR: 4007 wlc->protection->n_pam_override = (s8) val; 4008 break; 4009 case BRCMS_PROT_N_OBSS: 4010 wlc->protection->n_obss = (bool) val; 4011 break; 4012 4013 default: 4014 break; 4015 } 4016 4017 } 4018 4019 static void brcms_c_ht_update_sgi_rx(struct brcms_c_info *wlc, int val) 4020 { 4021 if (wlc->pub->up) { 4022 brcms_c_update_beacon(wlc); 4023 brcms_c_update_probe_resp(wlc, true); 4024 } 4025 } 4026 4027 static void brcms_c_ht_update_ldpc(struct brcms_c_info *wlc, s8 val) 4028 { 4029 wlc->stf->ldpc = val; 4030 4031 if (wlc->pub->up) { 4032 brcms_c_update_beacon(wlc); 4033 brcms_c_update_probe_resp(wlc, true); 4034 wlc_phy_ldpc_override_set(wlc->band->pi, (val ? true : false)); 4035 } 4036 } 4037 4038 void brcms_c_wme_setparams(struct brcms_c_info *wlc, u16 aci, 4039 const struct ieee80211_tx_queue_params *params, 4040 bool suspend) 4041 { 4042 int i; 4043 struct shm_acparams acp_shm; 4044 u16 *shm_entry; 4045 4046 /* Only apply params if the core is out of reset and has clocks */ 4047 if (!wlc->clk) { 4048 brcms_err(wlc->hw->d11core, "wl%d: %s : no-clock\n", 4049 wlc->pub->unit, __func__); 4050 return; 4051 } 4052 4053 memset(&acp_shm, 0, sizeof(struct shm_acparams)); 4054 /* fill in shm ac params struct */ 4055 acp_shm.txop = params->txop; 4056 /* convert from units of 32us to us for ucode */ 4057 wlc->edcf_txop[aci & 0x3] = acp_shm.txop = 4058 EDCF_TXOP2USEC(acp_shm.txop); 4059 acp_shm.aifs = (params->aifs & EDCF_AIFSN_MASK); 4060 4061 if (aci == IEEE80211_AC_VI && acp_shm.txop == 0 4062 && acp_shm.aifs < EDCF_AIFSN_MAX) 4063 acp_shm.aifs++; 4064 4065 if (acp_shm.aifs < EDCF_AIFSN_MIN 4066 || acp_shm.aifs > EDCF_AIFSN_MAX) { 4067 brcms_err(wlc->hw->d11core, "wl%d: edcf_setparams: bad " 4068 "aifs %d\n", wlc->pub->unit, acp_shm.aifs); 4069 } else { 4070 acp_shm.cwmin = params->cw_min; 4071 acp_shm.cwmax = params->cw_max; 4072 acp_shm.cwcur = acp_shm.cwmin; 4073 acp_shm.bslots = 4074 bcma_read16(wlc->hw->d11core, D11REGOFFS(tsf_random)) & 4075 acp_shm.cwcur; 4076 acp_shm.reggap = acp_shm.bslots + acp_shm.aifs; 4077 /* Indicate the new params to the ucode */ 4078 acp_shm.status = brcms_b_read_shm(wlc->hw, (M_EDCF_QINFO + 4079 wme_ac2fifo[aci] * 4080 M_EDCF_QLEN + 4081 M_EDCF_STATUS_OFF)); 4082 acp_shm.status |= WME_STATUS_NEWAC; 4083 4084 /* Fill in shm acparam table */ 4085 shm_entry = (u16 *) &acp_shm; 4086 for (i = 0; i < (int)sizeof(struct shm_acparams); i += 2) 4087 brcms_b_write_shm(wlc->hw, 4088 M_EDCF_QINFO + 4089 wme_ac2fifo[aci] * M_EDCF_QLEN + i, 4090 *shm_entry++); 4091 } 4092 4093 if (suspend) 4094 brcms_c_suspend_mac_and_wait(wlc); 4095 4096 brcms_c_update_beacon(wlc); 4097 brcms_c_update_probe_resp(wlc, false); 4098 4099 if (suspend) 4100 brcms_c_enable_mac(wlc); 4101 } 4102 4103 static void brcms_c_edcf_setparams(struct brcms_c_info *wlc, bool suspend) 4104 { 4105 u16 aci; 4106 int i_ac; 4107 struct ieee80211_tx_queue_params txq_pars; 4108 static const struct edcf_acparam default_edcf_acparams[] = { 4109 {EDCF_AC_BE_ACI_STA, EDCF_AC_BE_ECW_STA, EDCF_AC_BE_TXOP_STA}, 4110 {EDCF_AC_BK_ACI_STA, EDCF_AC_BK_ECW_STA, EDCF_AC_BK_TXOP_STA}, 4111 {EDCF_AC_VI_ACI_STA, EDCF_AC_VI_ECW_STA, EDCF_AC_VI_TXOP_STA}, 4112 {EDCF_AC_VO_ACI_STA, EDCF_AC_VO_ECW_STA, EDCF_AC_VO_TXOP_STA} 4113 }; /* ucode needs these parameters during its initialization */ 4114 const struct edcf_acparam *edcf_acp = &default_edcf_acparams[0]; 4115 4116 for (i_ac = 0; i_ac < IEEE80211_NUM_ACS; i_ac++, edcf_acp++) { 4117 /* find out which ac this set of params applies to */ 4118 aci = (edcf_acp->ACI & EDCF_ACI_MASK) >> EDCF_ACI_SHIFT; 4119 4120 /* fill in shm ac params struct */ 4121 txq_pars.txop = edcf_acp->TXOP; 4122 txq_pars.aifs = edcf_acp->ACI; 4123 4124 /* CWmin = 2^(ECWmin) - 1 */ 4125 txq_pars.cw_min = EDCF_ECW2CW(edcf_acp->ECW & EDCF_ECWMIN_MASK); 4126 /* CWmax = 2^(ECWmax) - 1 */ 4127 txq_pars.cw_max = EDCF_ECW2CW((edcf_acp->ECW & EDCF_ECWMAX_MASK) 4128 >> EDCF_ECWMAX_SHIFT); 4129 brcms_c_wme_setparams(wlc, aci, &txq_pars, suspend); 4130 } 4131 4132 if (suspend) { 4133 brcms_c_suspend_mac_and_wait(wlc); 4134 brcms_c_enable_mac(wlc); 4135 } 4136 } 4137 4138 static void brcms_c_radio_monitor_start(struct brcms_c_info *wlc) 4139 { 4140 /* Don't start the timer if HWRADIO feature is disabled */ 4141 if (wlc->radio_monitor) 4142 return; 4143 4144 wlc->radio_monitor = true; 4145 brcms_b_pllreq(wlc->hw, true, BRCMS_PLLREQ_RADIO_MON); 4146 brcms_add_timer(wlc->radio_timer, TIMER_INTERVAL_RADIOCHK, true); 4147 } 4148 4149 static bool brcms_c_radio_monitor_stop(struct brcms_c_info *wlc) 4150 { 4151 if (!wlc->radio_monitor) 4152 return true; 4153 4154 wlc->radio_monitor = false; 4155 brcms_b_pllreq(wlc->hw, false, BRCMS_PLLREQ_RADIO_MON); 4156 return brcms_del_timer(wlc->radio_timer); 4157 } 4158 4159 /* read hwdisable state and propagate to wlc flag */ 4160 static void brcms_c_radio_hwdisable_upd(struct brcms_c_info *wlc) 4161 { 4162 if (wlc->pub->hw_off) 4163 return; 4164 4165 if (brcms_b_radio_read_hwdisabled(wlc->hw)) 4166 mboolset(wlc->pub->radio_disabled, WL_RADIO_HW_DISABLE); 4167 else 4168 mboolclr(wlc->pub->radio_disabled, WL_RADIO_HW_DISABLE); 4169 } 4170 4171 /* update hwradio status and return it */ 4172 bool brcms_c_check_radio_disabled(struct brcms_c_info *wlc) 4173 { 4174 brcms_c_radio_hwdisable_upd(wlc); 4175 4176 return mboolisset(wlc->pub->radio_disabled, WL_RADIO_HW_DISABLE) ? 4177 true : false; 4178 } 4179 4180 /* periodical query hw radio button while driver is "down" */ 4181 static void brcms_c_radio_timer(void *arg) 4182 { 4183 struct brcms_c_info *wlc = (struct brcms_c_info *) arg; 4184 4185 if (brcms_deviceremoved(wlc)) { 4186 brcms_err(wlc->hw->d11core, "wl%d: %s: dead chip\n", 4187 wlc->pub->unit, __func__); 4188 brcms_down(wlc->wl); 4189 return; 4190 } 4191 4192 brcms_c_radio_hwdisable_upd(wlc); 4193 } 4194 4195 /* common low-level watchdog code */ 4196 static void brcms_b_watchdog(struct brcms_c_info *wlc) 4197 { 4198 struct brcms_hardware *wlc_hw = wlc->hw; 4199 4200 if (!wlc_hw->up) 4201 return; 4202 4203 /* increment second count */ 4204 wlc_hw->now++; 4205 4206 /* Check for FIFO error interrupts */ 4207 brcms_b_fifoerrors(wlc_hw); 4208 4209 /* make sure RX dma has buffers */ 4210 dma_rxfill(wlc->hw->di[RX_FIFO]); 4211 4212 wlc_phy_watchdog(wlc_hw->band->pi); 4213 } 4214 4215 /* common watchdog code */ 4216 static void brcms_c_watchdog(struct brcms_c_info *wlc) 4217 { 4218 brcms_dbg_info(wlc->hw->d11core, "wl%d\n", wlc->pub->unit); 4219 4220 if (!wlc->pub->up) 4221 return; 4222 4223 if (brcms_deviceremoved(wlc)) { 4224 brcms_err(wlc->hw->d11core, "wl%d: %s: dead chip\n", 4225 wlc->pub->unit, __func__); 4226 brcms_down(wlc->wl); 4227 return; 4228 } 4229 4230 /* increment second count */ 4231 wlc->pub->now++; 4232 4233 brcms_c_radio_hwdisable_upd(wlc); 4234 /* if radio is disable, driver may be down, quit here */ 4235 if (wlc->pub->radio_disabled) 4236 return; 4237 4238 brcms_b_watchdog(wlc); 4239 4240 /* 4241 * occasionally sample mac stat counters to 4242 * detect 16-bit counter wrap 4243 */ 4244 if ((wlc->pub->now % SW_TIMER_MAC_STAT_UPD) == 0) 4245 brcms_c_statsupd(wlc); 4246 4247 if (BRCMS_ISNPHY(wlc->band) && 4248 ((wlc->pub->now - wlc->tempsense_lasttime) >= 4249 BRCMS_TEMPSENSE_PERIOD)) { 4250 wlc->tempsense_lasttime = wlc->pub->now; 4251 brcms_c_tempsense_upd(wlc); 4252 } 4253 } 4254 4255 static void brcms_c_watchdog_by_timer(void *arg) 4256 { 4257 struct brcms_c_info *wlc = (struct brcms_c_info *) arg; 4258 4259 brcms_c_watchdog(wlc); 4260 } 4261 4262 static bool brcms_c_timers_init(struct brcms_c_info *wlc, int unit) 4263 { 4264 wlc->wdtimer = brcms_init_timer(wlc->wl, brcms_c_watchdog_by_timer, 4265 wlc, "watchdog"); 4266 if (!wlc->wdtimer) { 4267 wiphy_err(wlc->wiphy, "wl%d: wl_init_timer for wdtimer " 4268 "failed\n", unit); 4269 goto fail; 4270 } 4271 4272 wlc->radio_timer = brcms_init_timer(wlc->wl, brcms_c_radio_timer, 4273 wlc, "radio"); 4274 if (!wlc->radio_timer) { 4275 wiphy_err(wlc->wiphy, "wl%d: wl_init_timer for radio_timer " 4276 "failed\n", unit); 4277 goto fail; 4278 } 4279 4280 return true; 4281 4282 fail: 4283 return false; 4284 } 4285 4286 /* 4287 * Initialize brcms_c_info default values ... 4288 * may get overrides later in this function 4289 */ 4290 static void brcms_c_info_init(struct brcms_c_info *wlc, int unit) 4291 { 4292 int i; 4293 4294 /* Save our copy of the chanspec */ 4295 wlc->chanspec = ch20mhz_chspec(1); 4296 4297 /* various 802.11g modes */ 4298 wlc->shortslot = false; 4299 wlc->shortslot_override = BRCMS_SHORTSLOT_AUTO; 4300 4301 brcms_c_protection_upd(wlc, BRCMS_PROT_G_OVR, BRCMS_PROTECTION_AUTO); 4302 brcms_c_protection_upd(wlc, BRCMS_PROT_G_SPEC, false); 4303 4304 brcms_c_protection_upd(wlc, BRCMS_PROT_N_CFG_OVR, 4305 BRCMS_PROTECTION_AUTO); 4306 brcms_c_protection_upd(wlc, BRCMS_PROT_N_CFG, BRCMS_N_PROTECTION_OFF); 4307 brcms_c_protection_upd(wlc, BRCMS_PROT_N_NONGF_OVR, 4308 BRCMS_PROTECTION_AUTO); 4309 brcms_c_protection_upd(wlc, BRCMS_PROT_N_NONGF, false); 4310 brcms_c_protection_upd(wlc, BRCMS_PROT_N_PAM_OVR, AUTO); 4311 4312 brcms_c_protection_upd(wlc, BRCMS_PROT_OVERLAP, 4313 BRCMS_PROTECTION_CTL_OVERLAP); 4314 4315 /* 802.11g draft 4.0 NonERP elt advertisement */ 4316 wlc->include_legacy_erp = true; 4317 4318 wlc->stf->ant_rx_ovr = ANT_RX_DIV_DEF; 4319 wlc->stf->txant = ANT_TX_DEF; 4320 4321 wlc->prb_resp_timeout = BRCMS_PRB_RESP_TIMEOUT; 4322 4323 wlc->usr_fragthresh = DOT11_DEFAULT_FRAG_LEN; 4324 for (i = 0; i < NFIFO; i++) 4325 wlc->fragthresh[i] = DOT11_DEFAULT_FRAG_LEN; 4326 wlc->RTSThresh = DOT11_DEFAULT_RTS_LEN; 4327 4328 /* default rate fallback retry limits */ 4329 wlc->SFBL = RETRY_SHORT_FB; 4330 wlc->LFBL = RETRY_LONG_FB; 4331 4332 /* default mac retry limits */ 4333 wlc->SRL = RETRY_SHORT_DEF; 4334 wlc->LRL = RETRY_LONG_DEF; 4335 4336 /* WME QoS mode is Auto by default */ 4337 wlc->pub->_ampdu = AMPDU_AGG_HOST; 4338 } 4339 4340 static uint brcms_c_attach_module(struct brcms_c_info *wlc) 4341 { 4342 uint err = 0; 4343 uint unit; 4344 unit = wlc->pub->unit; 4345 4346 wlc->asi = brcms_c_antsel_attach(wlc); 4347 if (wlc->asi == NULL) { 4348 wiphy_err(wlc->wiphy, "wl%d: attach: antsel_attach " 4349 "failed\n", unit); 4350 err = 44; 4351 goto fail; 4352 } 4353 4354 wlc->ampdu = brcms_c_ampdu_attach(wlc); 4355 if (wlc->ampdu == NULL) { 4356 wiphy_err(wlc->wiphy, "wl%d: attach: ampdu_attach " 4357 "failed\n", unit); 4358 err = 50; 4359 goto fail; 4360 } 4361 4362 if ((brcms_c_stf_attach(wlc) != 0)) { 4363 wiphy_err(wlc->wiphy, "wl%d: attach: stf_attach " 4364 "failed\n", unit); 4365 err = 68; 4366 goto fail; 4367 } 4368 fail: 4369 return err; 4370 } 4371 4372 struct brcms_pub *brcms_c_pub(struct brcms_c_info *wlc) 4373 { 4374 return wlc->pub; 4375 } 4376 4377 /* low level attach 4378 * run backplane attach, init nvram 4379 * run phy attach 4380 * initialize software state for each core and band 4381 * put the whole chip in reset(driver down state), no clock 4382 */ 4383 static int brcms_b_attach(struct brcms_c_info *wlc, struct bcma_device *core, 4384 uint unit, bool piomode) 4385 { 4386 struct brcms_hardware *wlc_hw; 4387 uint err = 0; 4388 uint j; 4389 bool wme = false; 4390 struct shared_phy_params sha_params; 4391 struct wiphy *wiphy = wlc->wiphy; 4392 struct pci_dev *pcidev = core->bus->host_pci; 4393 struct ssb_sprom *sprom = &core->bus->sprom; 4394 4395 if (core->bus->hosttype == BCMA_HOSTTYPE_PCI) 4396 brcms_dbg_info(core, "wl%d: vendor 0x%x device 0x%x\n", unit, 4397 pcidev->vendor, 4398 pcidev->device); 4399 else 4400 brcms_dbg_info(core, "wl%d: vendor 0x%x device 0x%x\n", unit, 4401 core->bus->boardinfo.vendor, 4402 core->bus->boardinfo.type); 4403 4404 wme = true; 4405 4406 wlc_hw = wlc->hw; 4407 wlc_hw->wlc = wlc; 4408 wlc_hw->unit = unit; 4409 wlc_hw->band = wlc_hw->bandstate[0]; 4410 wlc_hw->_piomode = piomode; 4411 4412 /* populate struct brcms_hardware with default values */ 4413 brcms_b_info_init(wlc_hw); 4414 4415 /* 4416 * Do the hardware portion of the attach. Also initialize software 4417 * state that depends on the particular hardware we are running. 4418 */ 4419 wlc_hw->sih = ai_attach(core->bus); 4420 if (wlc_hw->sih == NULL) { 4421 wiphy_err(wiphy, "wl%d: brcms_b_attach: si_attach failed\n", 4422 unit); 4423 err = 11; 4424 goto fail; 4425 } 4426 4427 /* verify again the device is supported */ 4428 if (!brcms_c_chipmatch(core)) { 4429 wiphy_err(wiphy, "wl%d: brcms_b_attach: Unsupported device\n", 4430 unit); 4431 err = 12; 4432 goto fail; 4433 } 4434 4435 if (core->bus->hosttype == BCMA_HOSTTYPE_PCI) { 4436 wlc_hw->vendorid = pcidev->vendor; 4437 wlc_hw->deviceid = pcidev->device; 4438 } else { 4439 wlc_hw->vendorid = core->bus->boardinfo.vendor; 4440 wlc_hw->deviceid = core->bus->boardinfo.type; 4441 } 4442 4443 wlc_hw->d11core = core; 4444 wlc_hw->corerev = core->id.rev; 4445 4446 /* validate chip, chiprev and corerev */ 4447 if (!brcms_c_isgoodchip(wlc_hw)) { 4448 err = 13; 4449 goto fail; 4450 } 4451 4452 /* initialize power control registers */ 4453 ai_clkctl_init(wlc_hw->sih); 4454 4455 /* request fastclock and force fastclock for the rest of attach 4456 * bring the d11 core out of reset. 4457 * For PMU chips, the first wlc_clkctl_clk is no-op since core-clk 4458 * is still false; But it will be called again inside wlc_corereset, 4459 * after d11 is out of reset. 4460 */ 4461 brcms_b_clkctl_clk(wlc_hw, BCMA_CLKMODE_FAST); 4462 brcms_b_corereset(wlc_hw, BRCMS_USE_COREFLAGS); 4463 4464 if (!brcms_b_validate_chip_access(wlc_hw)) { 4465 wiphy_err(wiphy, "wl%d: brcms_b_attach: validate_chip_access " 4466 "failed\n", unit); 4467 err = 14; 4468 goto fail; 4469 } 4470 4471 /* get the board rev, used just below */ 4472 j = sprom->board_rev; 4473 /* promote srom boardrev of 0xFF to 1 */ 4474 if (j == BOARDREV_PROMOTABLE) 4475 j = BOARDREV_PROMOTED; 4476 wlc_hw->boardrev = (u16) j; 4477 if (!brcms_c_validboardtype(wlc_hw)) { 4478 wiphy_err(wiphy, "wl%d: brcms_b_attach: Unsupported Broadcom " 4479 "board type (0x%x)" " or revision level (0x%x)\n", 4480 unit, ai_get_boardtype(wlc_hw->sih), 4481 wlc_hw->boardrev); 4482 err = 15; 4483 goto fail; 4484 } 4485 wlc_hw->sromrev = sprom->revision; 4486 wlc_hw->boardflags = sprom->boardflags_lo + (sprom->boardflags_hi << 16); 4487 wlc_hw->boardflags2 = sprom->boardflags2_lo + (sprom->boardflags2_hi << 16); 4488 4489 if (wlc_hw->boardflags & BFL_NOPLLDOWN) 4490 brcms_b_pllreq(wlc_hw, true, BRCMS_PLLREQ_SHARED); 4491 4492 /* check device id(srom, nvram etc.) to set bands */ 4493 if (wlc_hw->deviceid == BCM43224_D11N_ID || 4494 wlc_hw->deviceid == BCM43224_D11N_ID_VEN1 || 4495 wlc_hw->deviceid == BCM43224_CHIP_ID) 4496 /* Dualband boards */ 4497 wlc_hw->_nbands = 2; 4498 else 4499 wlc_hw->_nbands = 1; 4500 4501 if ((ai_get_chip_id(wlc_hw->sih) == BCMA_CHIP_ID_BCM43225)) 4502 wlc_hw->_nbands = 1; 4503 4504 /* BMAC_NOTE: remove init of pub values when brcms_c_attach() 4505 * unconditionally does the init of these values 4506 */ 4507 wlc->vendorid = wlc_hw->vendorid; 4508 wlc->deviceid = wlc_hw->deviceid; 4509 wlc->pub->sih = wlc_hw->sih; 4510 wlc->pub->corerev = wlc_hw->corerev; 4511 wlc->pub->sromrev = wlc_hw->sromrev; 4512 wlc->pub->boardrev = wlc_hw->boardrev; 4513 wlc->pub->boardflags = wlc_hw->boardflags; 4514 wlc->pub->boardflags2 = wlc_hw->boardflags2; 4515 wlc->pub->_nbands = wlc_hw->_nbands; 4516 4517 wlc_hw->physhim = wlc_phy_shim_attach(wlc_hw, wlc->wl, wlc); 4518 4519 if (wlc_hw->physhim == NULL) { 4520 wiphy_err(wiphy, "wl%d: brcms_b_attach: wlc_phy_shim_attach " 4521 "failed\n", unit); 4522 err = 25; 4523 goto fail; 4524 } 4525 4526 /* pass all the parameters to wlc_phy_shared_attach in one struct */ 4527 sha_params.sih = wlc_hw->sih; 4528 sha_params.physhim = wlc_hw->physhim; 4529 sha_params.unit = unit; 4530 sha_params.corerev = wlc_hw->corerev; 4531 sha_params.vid = wlc_hw->vendorid; 4532 sha_params.did = wlc_hw->deviceid; 4533 sha_params.chip = ai_get_chip_id(wlc_hw->sih); 4534 sha_params.chiprev = ai_get_chiprev(wlc_hw->sih); 4535 sha_params.chippkg = ai_get_chippkg(wlc_hw->sih); 4536 sha_params.sromrev = wlc_hw->sromrev; 4537 sha_params.boardtype = ai_get_boardtype(wlc_hw->sih); 4538 sha_params.boardrev = wlc_hw->boardrev; 4539 sha_params.boardflags = wlc_hw->boardflags; 4540 sha_params.boardflags2 = wlc_hw->boardflags2; 4541 4542 /* alloc and save pointer to shared phy state area */ 4543 wlc_hw->phy_sh = wlc_phy_shared_attach(&sha_params); 4544 if (!wlc_hw->phy_sh) { 4545 err = 16; 4546 goto fail; 4547 } 4548 4549 /* initialize software state for each core and band */ 4550 for (j = 0; j < wlc_hw->_nbands; j++) { 4551 /* 4552 * band0 is always 2.4Ghz 4553 * band1, if present, is 5Ghz 4554 */ 4555 4556 brcms_c_setxband(wlc_hw, j); 4557 4558 wlc_hw->band->bandunit = j; 4559 wlc_hw->band->bandtype = j ? BRCM_BAND_5G : BRCM_BAND_2G; 4560 wlc->band->bandunit = j; 4561 wlc->band->bandtype = j ? BRCM_BAND_5G : BRCM_BAND_2G; 4562 wlc->core->coreidx = core->core_index; 4563 4564 wlc_hw->machwcap = bcma_read32(core, D11REGOFFS(machwcap)); 4565 wlc_hw->machwcap_backup = wlc_hw->machwcap; 4566 4567 /* init tx fifo size */ 4568 WARN_ON(wlc_hw->corerev < XMTFIFOTBL_STARTREV || 4569 (wlc_hw->corerev - XMTFIFOTBL_STARTREV) > 4570 ARRAY_SIZE(xmtfifo_sz)); 4571 wlc_hw->xmtfifo_sz = 4572 xmtfifo_sz[(wlc_hw->corerev - XMTFIFOTBL_STARTREV)]; 4573 WARN_ON(!wlc_hw->xmtfifo_sz[0]); 4574 4575 /* Get a phy for this band */ 4576 wlc_hw->band->pi = 4577 wlc_phy_attach(wlc_hw->phy_sh, core, 4578 wlc_hw->band->bandtype, 4579 wlc->wiphy); 4580 if (wlc_hw->band->pi == NULL) { 4581 wiphy_err(wiphy, "wl%d: brcms_b_attach: wlc_phy_" 4582 "attach failed\n", unit); 4583 err = 17; 4584 goto fail; 4585 } 4586 4587 wlc_phy_machwcap_set(wlc_hw->band->pi, wlc_hw->machwcap); 4588 4589 wlc_phy_get_phyversion(wlc_hw->band->pi, &wlc_hw->band->phytype, 4590 &wlc_hw->band->phyrev, 4591 &wlc_hw->band->radioid, 4592 &wlc_hw->band->radiorev); 4593 wlc_hw->band->abgphy_encore = 4594 wlc_phy_get_encore(wlc_hw->band->pi); 4595 wlc->band->abgphy_encore = wlc_phy_get_encore(wlc_hw->band->pi); 4596 wlc_hw->band->core_flags = 4597 wlc_phy_get_coreflags(wlc_hw->band->pi); 4598 4599 /* verify good phy_type & supported phy revision */ 4600 if (BRCMS_ISNPHY(wlc_hw->band)) { 4601 if (NCONF_HAS(wlc_hw->band->phyrev)) 4602 goto good_phy; 4603 else 4604 goto bad_phy; 4605 } else if (BRCMS_ISLCNPHY(wlc_hw->band)) { 4606 if (LCNCONF_HAS(wlc_hw->band->phyrev)) 4607 goto good_phy; 4608 else 4609 goto bad_phy; 4610 } else { 4611 bad_phy: 4612 wiphy_err(wiphy, "wl%d: brcms_b_attach: unsupported " 4613 "phy type/rev (%d/%d)\n", unit, 4614 wlc_hw->band->phytype, wlc_hw->band->phyrev); 4615 err = 18; 4616 goto fail; 4617 } 4618 4619 good_phy: 4620 /* 4621 * BMAC_NOTE: wlc->band->pi should not be set below and should 4622 * be done in the high level attach. However we can not make 4623 * that change until all low level access is changed to 4624 * wlc_hw->band->pi. Instead do the wlc->band->pi init below, 4625 * keeping wlc_hw->band->pi as well for incremental update of 4626 * low level fns, and cut over low only init when all fns 4627 * updated. 4628 */ 4629 wlc->band->pi = wlc_hw->band->pi; 4630 wlc->band->phytype = wlc_hw->band->phytype; 4631 wlc->band->phyrev = wlc_hw->band->phyrev; 4632 wlc->band->radioid = wlc_hw->band->radioid; 4633 wlc->band->radiorev = wlc_hw->band->radiorev; 4634 brcms_dbg_info(core, "wl%d: phy %u/%u radio %x/%u\n", unit, 4635 wlc->band->phytype, wlc->band->phyrev, 4636 wlc->band->radioid, wlc->band->radiorev); 4637 /* default contention windows size limits */ 4638 wlc_hw->band->CWmin = APHY_CWMIN; 4639 wlc_hw->band->CWmax = PHY_CWMAX; 4640 4641 if (!brcms_b_attach_dmapio(wlc, j, wme)) { 4642 err = 19; 4643 goto fail; 4644 } 4645 } 4646 4647 /* disable core to match driver "down" state */ 4648 brcms_c_coredisable(wlc_hw); 4649 4650 /* Match driver "down" state */ 4651 bcma_host_pci_down(wlc_hw->d11core->bus); 4652 4653 /* turn off pll and xtal to match driver "down" state */ 4654 brcms_b_xtal(wlc_hw, OFF); 4655 4656 /* ******************************************************************* 4657 * The hardware is in the DOWN state at this point. D11 core 4658 * or cores are in reset with clocks off, and the board PLLs 4659 * are off if possible. 4660 * 4661 * Beyond this point, wlc->sbclk == false and chip registers 4662 * should not be touched. 4663 ********************************************************************* 4664 */ 4665 4666 /* init etheraddr state variables */ 4667 brcms_c_get_macaddr(wlc_hw, wlc_hw->etheraddr); 4668 4669 if (is_broadcast_ether_addr(wlc_hw->etheraddr) || 4670 is_zero_ether_addr(wlc_hw->etheraddr)) { 4671 wiphy_err(wiphy, "wl%d: brcms_b_attach: bad macaddr\n", 4672 unit); 4673 err = 22; 4674 goto fail; 4675 } 4676 4677 brcms_dbg_info(wlc_hw->d11core, "deviceid 0x%x nbands %d board 0x%x\n", 4678 wlc_hw->deviceid, wlc_hw->_nbands, 4679 ai_get_boardtype(wlc_hw->sih)); 4680 4681 return err; 4682 4683 fail: 4684 wiphy_err(wiphy, "wl%d: brcms_b_attach: failed with err %d\n", unit, 4685 err); 4686 return err; 4687 } 4688 4689 static bool brcms_c_attach_stf_ant_init(struct brcms_c_info *wlc) 4690 { 4691 int aa; 4692 uint unit; 4693 int bandtype; 4694 struct ssb_sprom *sprom = &wlc->hw->d11core->bus->sprom; 4695 4696 unit = wlc->pub->unit; 4697 bandtype = wlc->band->bandtype; 4698 4699 /* get antennas available */ 4700 if (bandtype == BRCM_BAND_5G) 4701 aa = sprom->ant_available_a; 4702 else 4703 aa = sprom->ant_available_bg; 4704 4705 if ((aa < 1) || (aa > 15)) { 4706 wiphy_err(wlc->wiphy, "wl%d: %s: Invalid antennas available in" 4707 " srom (0x%x), using 3\n", unit, __func__, aa); 4708 aa = 3; 4709 } 4710 4711 /* reset the defaults if we have a single antenna */ 4712 if (aa == 1) { 4713 wlc->stf->ant_rx_ovr = ANT_RX_DIV_FORCE_0; 4714 wlc->stf->txant = ANT_TX_FORCE_0; 4715 } else if (aa == 2) { 4716 wlc->stf->ant_rx_ovr = ANT_RX_DIV_FORCE_1; 4717 wlc->stf->txant = ANT_TX_FORCE_1; 4718 } else { 4719 } 4720 4721 /* Compute Antenna Gain */ 4722 if (bandtype == BRCM_BAND_5G) 4723 wlc->band->antgain = sprom->antenna_gain.a1; 4724 else 4725 wlc->band->antgain = sprom->antenna_gain.a0; 4726 4727 return true; 4728 } 4729 4730 static void brcms_c_bss_default_init(struct brcms_c_info *wlc) 4731 { 4732 u16 chanspec; 4733 struct brcms_band *band; 4734 struct brcms_bss_info *bi = wlc->default_bss; 4735 4736 /* init default and target BSS with some sane initial values */ 4737 memset(bi, 0, sizeof(*bi)); 4738 bi->beacon_period = BEACON_INTERVAL_DEFAULT; 4739 4740 /* fill the default channel as the first valid channel 4741 * starting from the 2G channels 4742 */ 4743 chanspec = ch20mhz_chspec(1); 4744 wlc->home_chanspec = bi->chanspec = chanspec; 4745 4746 /* find the band of our default channel */ 4747 band = wlc->band; 4748 if (wlc->pub->_nbands > 1 && 4749 band->bandunit != chspec_bandunit(chanspec)) 4750 band = wlc->bandstate[OTHERBANDUNIT(wlc)]; 4751 4752 /* init bss rates to the band specific default rate set */ 4753 brcms_c_rateset_default(&bi->rateset, NULL, band->phytype, 4754 band->bandtype, false, BRCMS_RATE_MASK_FULL, 4755 (bool) (wlc->pub->_n_enab & SUPPORT_11N), 4756 brcms_chspec_bw(chanspec), wlc->stf->txstreams); 4757 4758 if (wlc->pub->_n_enab & SUPPORT_11N) 4759 bi->flags |= BRCMS_BSS_HT; 4760 } 4761 4762 static void brcms_c_update_mimo_band_bwcap(struct brcms_c_info *wlc, u8 bwcap) 4763 { 4764 uint i; 4765 struct brcms_band *band; 4766 4767 for (i = 0; i < wlc->pub->_nbands; i++) { 4768 band = wlc->bandstate[i]; 4769 if (band->bandtype == BRCM_BAND_5G) { 4770 if ((bwcap == BRCMS_N_BW_40ALL) 4771 || (bwcap == BRCMS_N_BW_20IN2G_40IN5G)) 4772 band->mimo_cap_40 = true; 4773 else 4774 band->mimo_cap_40 = false; 4775 } else { 4776 if (bwcap == BRCMS_N_BW_40ALL) 4777 band->mimo_cap_40 = true; 4778 else 4779 band->mimo_cap_40 = false; 4780 } 4781 } 4782 } 4783 4784 static void brcms_c_timers_deinit(struct brcms_c_info *wlc) 4785 { 4786 /* free timer state */ 4787 if (wlc->wdtimer) { 4788 brcms_free_timer(wlc->wdtimer); 4789 wlc->wdtimer = NULL; 4790 } 4791 if (wlc->radio_timer) { 4792 brcms_free_timer(wlc->radio_timer); 4793 wlc->radio_timer = NULL; 4794 } 4795 } 4796 4797 static void brcms_c_detach_module(struct brcms_c_info *wlc) 4798 { 4799 if (wlc->asi) { 4800 brcms_c_antsel_detach(wlc->asi); 4801 wlc->asi = NULL; 4802 } 4803 4804 if (wlc->ampdu) { 4805 brcms_c_ampdu_detach(wlc->ampdu); 4806 wlc->ampdu = NULL; 4807 } 4808 4809 brcms_c_stf_detach(wlc); 4810 } 4811 4812 /* 4813 * low level detach 4814 */ 4815 static void brcms_b_detach(struct brcms_c_info *wlc) 4816 { 4817 uint i; 4818 struct brcms_hw_band *band; 4819 struct brcms_hardware *wlc_hw = wlc->hw; 4820 4821 brcms_b_detach_dmapio(wlc_hw); 4822 4823 band = wlc_hw->band; 4824 for (i = 0; i < wlc_hw->_nbands; i++) { 4825 if (band->pi) { 4826 /* Detach this band's phy */ 4827 wlc_phy_detach(band->pi); 4828 band->pi = NULL; 4829 } 4830 band = wlc_hw->bandstate[OTHERBANDUNIT(wlc)]; 4831 } 4832 4833 /* Free shared phy state */ 4834 kfree(wlc_hw->phy_sh); 4835 4836 wlc_phy_shim_detach(wlc_hw->physhim); 4837 4838 if (wlc_hw->sih) { 4839 ai_detach(wlc_hw->sih); 4840 wlc_hw->sih = NULL; 4841 } 4842 } 4843 4844 /* 4845 * Return a count of the number of driver callbacks still pending. 4846 * 4847 * General policy is that brcms_c_detach can only dealloc/free software states. 4848 * It can NOT touch hardware registers since the d11core may be in reset and 4849 * clock may not be available. 4850 * One exception is sb register access, which is possible if crystal is turned 4851 * on after "down" state, driver should avoid software timer with the exception 4852 * of radio_monitor. 4853 */ 4854 uint brcms_c_detach(struct brcms_c_info *wlc) 4855 { 4856 uint callbacks; 4857 4858 if (wlc == NULL) 4859 return 0; 4860 4861 brcms_b_detach(wlc); 4862 4863 /* delete software timers */ 4864 callbacks = 0; 4865 if (!brcms_c_radio_monitor_stop(wlc)) 4866 callbacks++; 4867 4868 brcms_c_channel_mgr_detach(wlc->cmi); 4869 4870 brcms_c_timers_deinit(wlc); 4871 4872 brcms_c_detach_module(wlc); 4873 4874 brcms_c_detach_mfree(wlc); 4875 return callbacks; 4876 } 4877 4878 /* update state that depends on the current value of "ap" */ 4879 static void brcms_c_ap_upd(struct brcms_c_info *wlc) 4880 { 4881 /* STA-BSS; short capable */ 4882 wlc->PLCPHdr_override = BRCMS_PLCP_SHORT; 4883 } 4884 4885 /* Initialize just the hardware when coming out of POR or S3/S5 system states */ 4886 static void brcms_b_hw_up(struct brcms_hardware *wlc_hw) 4887 { 4888 if (wlc_hw->wlc->pub->hw_up) 4889 return; 4890 4891 brcms_dbg_info(wlc_hw->d11core, "wl%d\n", wlc_hw->unit); 4892 4893 /* 4894 * Enable pll and xtal, initialize the power control registers, 4895 * and force fastclock for the remainder of brcms_c_up(). 4896 */ 4897 brcms_b_xtal(wlc_hw, ON); 4898 ai_clkctl_init(wlc_hw->sih); 4899 brcms_b_clkctl_clk(wlc_hw, BCMA_CLKMODE_FAST); 4900 4901 /* 4902 * TODO: test suspend/resume 4903 * 4904 * AI chip doesn't restore bar0win2 on 4905 * hibernation/resume, need sw fixup 4906 */ 4907 4908 /* 4909 * Inform phy that a POR reset has occurred so 4910 * it does a complete phy init 4911 */ 4912 wlc_phy_por_inform(wlc_hw->band->pi); 4913 4914 wlc_hw->ucode_loaded = false; 4915 wlc_hw->wlc->pub->hw_up = true; 4916 4917 if ((wlc_hw->boardflags & BFL_FEM) 4918 && (ai_get_chip_id(wlc_hw->sih) == BCMA_CHIP_ID_BCM4313)) { 4919 if (! 4920 (wlc_hw->boardrev >= 0x1250 4921 && (wlc_hw->boardflags & BFL_FEM_BT))) 4922 ai_epa_4313war(wlc_hw->sih); 4923 } 4924 } 4925 4926 static int brcms_b_up_prep(struct brcms_hardware *wlc_hw) 4927 { 4928 brcms_dbg_info(wlc_hw->d11core, "wl%d\n", wlc_hw->unit); 4929 4930 /* 4931 * Enable pll and xtal, initialize the power control registers, 4932 * and force fastclock for the remainder of brcms_c_up(). 4933 */ 4934 brcms_b_xtal(wlc_hw, ON); 4935 ai_clkctl_init(wlc_hw->sih); 4936 brcms_b_clkctl_clk(wlc_hw, BCMA_CLKMODE_FAST); 4937 4938 /* 4939 * Configure pci/pcmcia here instead of in brcms_c_attach() 4940 * to allow mfg hotswap: down, hotswap (chip power cycle), up. 4941 */ 4942 bcma_host_pci_irq_ctl(wlc_hw->d11core->bus, wlc_hw->d11core, 4943 true); 4944 4945 /* 4946 * Need to read the hwradio status here to cover the case where the 4947 * system is loaded with the hw radio disabled. We do not want to 4948 * bring the driver up in this case. 4949 */ 4950 if (brcms_b_radio_read_hwdisabled(wlc_hw)) { 4951 /* put SB PCI in down state again */ 4952 bcma_host_pci_down(wlc_hw->d11core->bus); 4953 brcms_b_xtal(wlc_hw, OFF); 4954 return -ENOMEDIUM; 4955 } 4956 4957 bcma_host_pci_up(wlc_hw->d11core->bus); 4958 4959 /* reset the d11 core */ 4960 brcms_b_corereset(wlc_hw, BRCMS_USE_COREFLAGS); 4961 4962 return 0; 4963 } 4964 4965 static int brcms_b_up_finish(struct brcms_hardware *wlc_hw) 4966 { 4967 wlc_hw->up = true; 4968 wlc_phy_hw_state_upd(wlc_hw->band->pi, true); 4969 4970 /* FULLY enable dynamic power control and d11 core interrupt */ 4971 brcms_b_clkctl_clk(wlc_hw, BCMA_CLKMODE_DYNAMIC); 4972 brcms_intrson(wlc_hw->wlc->wl); 4973 return 0; 4974 } 4975 4976 /* 4977 * Write WME tunable parameters for retransmit/max rate 4978 * from wlc struct to ucode 4979 */ 4980 static void brcms_c_wme_retries_write(struct brcms_c_info *wlc) 4981 { 4982 int ac; 4983 4984 /* Need clock to do this */ 4985 if (!wlc->clk) 4986 return; 4987 4988 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 4989 brcms_b_write_shm(wlc->hw, M_AC_TXLMT_ADDR(ac), 4990 wlc->wme_retries[ac]); 4991 } 4992 4993 /* make interface operational */ 4994 int brcms_c_up(struct brcms_c_info *wlc) 4995 { 4996 struct ieee80211_channel *ch; 4997 4998 brcms_dbg_info(wlc->hw->d11core, "wl%d\n", wlc->pub->unit); 4999 5000 /* HW is turned off so don't try to access it */ 5001 if (wlc->pub->hw_off || brcms_deviceremoved(wlc)) 5002 return -ENOMEDIUM; 5003 5004 if (!wlc->pub->hw_up) { 5005 brcms_b_hw_up(wlc->hw); 5006 wlc->pub->hw_up = true; 5007 } 5008 5009 if ((wlc->pub->boardflags & BFL_FEM) 5010 && (ai_get_chip_id(wlc->hw->sih) == BCMA_CHIP_ID_BCM4313)) { 5011 if (wlc->pub->boardrev >= 0x1250 5012 && (wlc->pub->boardflags & BFL_FEM_BT)) 5013 brcms_b_mhf(wlc->hw, MHF5, MHF5_4313_GPIOCTRL, 5014 MHF5_4313_GPIOCTRL, BRCM_BAND_ALL); 5015 else 5016 brcms_b_mhf(wlc->hw, MHF4, MHF4_EXTPA_ENABLE, 5017 MHF4_EXTPA_ENABLE, BRCM_BAND_ALL); 5018 } 5019 5020 /* 5021 * Need to read the hwradio status here to cover the case where the 5022 * system is loaded with the hw radio disabled. We do not want to bring 5023 * the driver up in this case. If radio is disabled, abort up, lower 5024 * power, start radio timer and return 0(for NDIS) don't call 5025 * radio_update to avoid looping brcms_c_up. 5026 * 5027 * brcms_b_up_prep() returns either 0 or -BCME_RADIOOFF only 5028 */ 5029 if (!wlc->pub->radio_disabled) { 5030 int status = brcms_b_up_prep(wlc->hw); 5031 if (status == -ENOMEDIUM) { 5032 if (!mboolisset 5033 (wlc->pub->radio_disabled, WL_RADIO_HW_DISABLE)) { 5034 struct brcms_bss_cfg *bsscfg = wlc->bsscfg; 5035 mboolset(wlc->pub->radio_disabled, 5036 WL_RADIO_HW_DISABLE); 5037 if (bsscfg->type == BRCMS_TYPE_STATION || 5038 bsscfg->type == BRCMS_TYPE_ADHOC) 5039 brcms_err(wlc->hw->d11core, 5040 "wl%d: up: rfdisable -> " 5041 "bsscfg_disable()\n", 5042 wlc->pub->unit); 5043 } 5044 } 5045 } 5046 5047 if (wlc->pub->radio_disabled) { 5048 brcms_c_radio_monitor_start(wlc); 5049 return 0; 5050 } 5051 5052 /* brcms_b_up_prep has done brcms_c_corereset(). so clk is on, set it */ 5053 wlc->clk = true; 5054 5055 brcms_c_radio_monitor_stop(wlc); 5056 5057 /* Set EDCF hostflags */ 5058 brcms_b_mhf(wlc->hw, MHF1, MHF1_EDCF, MHF1_EDCF, BRCM_BAND_ALL); 5059 5060 brcms_init(wlc->wl); 5061 wlc->pub->up = true; 5062 5063 if (wlc->bandinit_pending) { 5064 ch = wlc->pub->ieee_hw->conf.chandef.chan; 5065 brcms_c_suspend_mac_and_wait(wlc); 5066 brcms_c_set_chanspec(wlc, ch20mhz_chspec(ch->hw_value)); 5067 wlc->bandinit_pending = false; 5068 brcms_c_enable_mac(wlc); 5069 } 5070 5071 brcms_b_up_finish(wlc->hw); 5072 5073 /* Program the TX wme params with the current settings */ 5074 brcms_c_wme_retries_write(wlc); 5075 5076 /* start one second watchdog timer */ 5077 brcms_add_timer(wlc->wdtimer, TIMER_INTERVAL_WATCHDOG, true); 5078 wlc->WDarmed = true; 5079 5080 /* ensure antenna config is up to date */ 5081 brcms_c_stf_phy_txant_upd(wlc); 5082 /* ensure LDPC config is in sync */ 5083 brcms_c_ht_update_ldpc(wlc, wlc->stf->ldpc); 5084 5085 return 0; 5086 } 5087 5088 static int brcms_b_bmac_down_prep(struct brcms_hardware *wlc_hw) 5089 { 5090 bool dev_gone; 5091 uint callbacks = 0; 5092 5093 if (!wlc_hw->up) 5094 return callbacks; 5095 5096 dev_gone = brcms_deviceremoved(wlc_hw->wlc); 5097 5098 /* disable interrupts */ 5099 if (dev_gone) 5100 wlc_hw->wlc->macintmask = 0; 5101 else { 5102 /* now disable interrupts */ 5103 brcms_intrsoff(wlc_hw->wlc->wl); 5104 5105 /* ensure we're running on the pll clock again */ 5106 brcms_b_clkctl_clk(wlc_hw, BCMA_CLKMODE_FAST); 5107 } 5108 /* down phy at the last of this stage */ 5109 callbacks += wlc_phy_down(wlc_hw->band->pi); 5110 5111 return callbacks; 5112 } 5113 5114 static int brcms_b_down_finish(struct brcms_hardware *wlc_hw) 5115 { 5116 uint callbacks = 0; 5117 bool dev_gone; 5118 5119 if (!wlc_hw->up) 5120 return callbacks; 5121 5122 wlc_hw->up = false; 5123 wlc_phy_hw_state_upd(wlc_hw->band->pi, false); 5124 5125 dev_gone = brcms_deviceremoved(wlc_hw->wlc); 5126 5127 if (dev_gone) { 5128 wlc_hw->sbclk = false; 5129 wlc_hw->clk = false; 5130 wlc_phy_hw_clk_state_upd(wlc_hw->band->pi, false); 5131 5132 /* reclaim any posted packets */ 5133 brcms_c_flushqueues(wlc_hw->wlc); 5134 } else { 5135 5136 /* Reset and disable the core */ 5137 if (bcma_core_is_enabled(wlc_hw->d11core)) { 5138 if (bcma_read32(wlc_hw->d11core, 5139 D11REGOFFS(maccontrol)) & MCTL_EN_MAC) 5140 brcms_c_suspend_mac_and_wait(wlc_hw->wlc); 5141 callbacks += brcms_reset(wlc_hw->wlc->wl); 5142 brcms_c_coredisable(wlc_hw); 5143 } 5144 5145 /* turn off primary xtal and pll */ 5146 if (!wlc_hw->noreset) { 5147 bcma_host_pci_down(wlc_hw->d11core->bus); 5148 brcms_b_xtal(wlc_hw, OFF); 5149 } 5150 } 5151 5152 return callbacks; 5153 } 5154 5155 /* 5156 * Mark the interface nonoperational, stop the software mechanisms, 5157 * disable the hardware, free any transient buffer state. 5158 * Return a count of the number of driver callbacks still pending. 5159 */ 5160 uint brcms_c_down(struct brcms_c_info *wlc) 5161 { 5162 5163 uint callbacks = 0; 5164 int i; 5165 5166 brcms_dbg_info(wlc->hw->d11core, "wl%d\n", wlc->pub->unit); 5167 5168 /* check if we are already in the going down path */ 5169 if (wlc->going_down) { 5170 brcms_err(wlc->hw->d11core, 5171 "wl%d: %s: Driver going down so return\n", 5172 wlc->pub->unit, __func__); 5173 return 0; 5174 } 5175 if (!wlc->pub->up) 5176 return callbacks; 5177 5178 wlc->going_down = true; 5179 5180 callbacks += brcms_b_bmac_down_prep(wlc->hw); 5181 5182 brcms_deviceremoved(wlc); 5183 5184 /* Call any registered down handlers */ 5185 for (i = 0; i < BRCMS_MAXMODULES; i++) { 5186 if (wlc->modulecb[i].down_fn) 5187 callbacks += 5188 wlc->modulecb[i].down_fn(wlc->modulecb[i].hdl); 5189 } 5190 5191 /* cancel the watchdog timer */ 5192 if (wlc->WDarmed) { 5193 if (!brcms_del_timer(wlc->wdtimer)) 5194 callbacks++; 5195 wlc->WDarmed = false; 5196 } 5197 5198 wlc->pub->up = false; 5199 5200 wlc_phy_mute_upd(wlc->band->pi, false, PHY_MUTE_ALL); 5201 5202 callbacks += brcms_b_down_finish(wlc->hw); 5203 5204 /* brcms_b_down_finish has done brcms_c_coredisable(). so clk is off */ 5205 wlc->clk = false; 5206 5207 wlc->going_down = false; 5208 return callbacks; 5209 } 5210 5211 /* Set the current gmode configuration */ 5212 int brcms_c_set_gmode(struct brcms_c_info *wlc, u8 gmode, bool config) 5213 { 5214 int ret = 0; 5215 uint i; 5216 struct brcms_c_rateset rs; 5217 /* Default to 54g Auto */ 5218 /* Advertise and use shortslot (-1/0/1 Auto/Off/On) */ 5219 s8 shortslot = BRCMS_SHORTSLOT_AUTO; 5220 bool ofdm_basic = false; /* Make 6, 12, and 24 basic rates */ 5221 struct brcms_band *band; 5222 5223 /* if N-support is enabled, allow Gmode set as long as requested 5224 * Gmode is not GMODE_LEGACY_B 5225 */ 5226 if ((wlc->pub->_n_enab & SUPPORT_11N) && gmode == GMODE_LEGACY_B) 5227 return -ENOTSUPP; 5228 5229 /* verify that we are dealing with 2G band and grab the band pointer */ 5230 if (wlc->band->bandtype == BRCM_BAND_2G) 5231 band = wlc->band; 5232 else if ((wlc->pub->_nbands > 1) && 5233 (wlc->bandstate[OTHERBANDUNIT(wlc)]->bandtype == BRCM_BAND_2G)) 5234 band = wlc->bandstate[OTHERBANDUNIT(wlc)]; 5235 else 5236 return -EINVAL; 5237 5238 /* update configuration value */ 5239 if (config) 5240 brcms_c_protection_upd(wlc, BRCMS_PROT_G_USER, gmode); 5241 5242 /* Clear rateset override */ 5243 memset(&rs, 0, sizeof(rs)); 5244 5245 switch (gmode) { 5246 case GMODE_LEGACY_B: 5247 shortslot = BRCMS_SHORTSLOT_OFF; 5248 brcms_c_rateset_copy(&gphy_legacy_rates, &rs); 5249 5250 break; 5251 5252 case GMODE_LRS: 5253 break; 5254 5255 case GMODE_AUTO: 5256 /* Accept defaults */ 5257 break; 5258 5259 case GMODE_ONLY: 5260 ofdm_basic = true; 5261 break; 5262 5263 case GMODE_PERFORMANCE: 5264 shortslot = BRCMS_SHORTSLOT_ON; 5265 ofdm_basic = true; 5266 break; 5267 5268 default: 5269 /* Error */ 5270 brcms_err(wlc->hw->d11core, "wl%d: %s: invalid gmode %d\n", 5271 wlc->pub->unit, __func__, gmode); 5272 return -ENOTSUPP; 5273 } 5274 5275 band->gmode = gmode; 5276 5277 wlc->shortslot_override = shortslot; 5278 5279 /* Use the default 11g rateset */ 5280 if (!rs.count) 5281 brcms_c_rateset_copy(&cck_ofdm_rates, &rs); 5282 5283 if (ofdm_basic) { 5284 for (i = 0; i < rs.count; i++) { 5285 if (rs.rates[i] == BRCM_RATE_6M 5286 || rs.rates[i] == BRCM_RATE_12M 5287 || rs.rates[i] == BRCM_RATE_24M) 5288 rs.rates[i] |= BRCMS_RATE_FLAG; 5289 } 5290 } 5291 5292 /* Set default bss rateset */ 5293 wlc->default_bss->rateset.count = rs.count; 5294 memcpy(wlc->default_bss->rateset.rates, rs.rates, 5295 sizeof(wlc->default_bss->rateset.rates)); 5296 5297 return ret; 5298 } 5299 5300 int brcms_c_set_nmode(struct brcms_c_info *wlc) 5301 { 5302 uint i; 5303 s32 nmode = AUTO; 5304 5305 if (wlc->stf->txstreams == WL_11N_3x3) 5306 nmode = WL_11N_3x3; 5307 else 5308 nmode = WL_11N_2x2; 5309 5310 /* force GMODE_AUTO if NMODE is ON */ 5311 brcms_c_set_gmode(wlc, GMODE_AUTO, true); 5312 if (nmode == WL_11N_3x3) 5313 wlc->pub->_n_enab = SUPPORT_HT; 5314 else 5315 wlc->pub->_n_enab = SUPPORT_11N; 5316 wlc->default_bss->flags |= BRCMS_BSS_HT; 5317 /* add the mcs rates to the default and hw ratesets */ 5318 brcms_c_rateset_mcs_build(&wlc->default_bss->rateset, 5319 wlc->stf->txstreams); 5320 for (i = 0; i < wlc->pub->_nbands; i++) 5321 memcpy(wlc->bandstate[i]->hw_rateset.mcs, 5322 wlc->default_bss->rateset.mcs, MCSSET_LEN); 5323 5324 return 0; 5325 } 5326 5327 static int 5328 brcms_c_set_internal_rateset(struct brcms_c_info *wlc, 5329 struct brcms_c_rateset *rs_arg) 5330 { 5331 struct brcms_c_rateset rs, new; 5332 uint bandunit; 5333 5334 memcpy(&rs, rs_arg, sizeof(struct brcms_c_rateset)); 5335 5336 /* check for bad count value */ 5337 if ((rs.count == 0) || (rs.count > BRCMS_NUMRATES)) 5338 return -EINVAL; 5339 5340 /* try the current band */ 5341 bandunit = wlc->band->bandunit; 5342 memcpy(&new, &rs, sizeof(struct brcms_c_rateset)); 5343 if (brcms_c_rate_hwrs_filter_sort_validate 5344 (&new, &wlc->bandstate[bandunit]->hw_rateset, true, 5345 wlc->stf->txstreams)) 5346 goto good; 5347 5348 /* try the other band */ 5349 if (brcms_is_mband_unlocked(wlc)) { 5350 bandunit = OTHERBANDUNIT(wlc); 5351 memcpy(&new, &rs, sizeof(struct brcms_c_rateset)); 5352 if (brcms_c_rate_hwrs_filter_sort_validate(&new, 5353 &wlc-> 5354 bandstate[bandunit]-> 5355 hw_rateset, true, 5356 wlc->stf->txstreams)) 5357 goto good; 5358 } 5359 5360 return -EBADE; 5361 5362 good: 5363 /* apply new rateset */ 5364 memcpy(&wlc->default_bss->rateset, &new, 5365 sizeof(struct brcms_c_rateset)); 5366 memcpy(&wlc->bandstate[bandunit]->defrateset, &new, 5367 sizeof(struct brcms_c_rateset)); 5368 return 0; 5369 } 5370 5371 static void brcms_c_ofdm_rateset_war(struct brcms_c_info *wlc) 5372 { 5373 wlc_phy_ofdm_rateset_war(wlc->band->pi, false); 5374 } 5375 5376 int brcms_c_set_channel(struct brcms_c_info *wlc, u16 channel) 5377 { 5378 u16 chspec = ch20mhz_chspec(channel); 5379 5380 if (channel > MAXCHANNEL) 5381 return -EINVAL; 5382 5383 if (!brcms_c_valid_chanspec_db(wlc->cmi, chspec)) 5384 return -EINVAL; 5385 5386 5387 if (!wlc->pub->up && brcms_is_mband_unlocked(wlc)) { 5388 if (wlc->band->bandunit != chspec_bandunit(chspec)) 5389 wlc->bandinit_pending = true; 5390 else 5391 wlc->bandinit_pending = false; 5392 } 5393 5394 wlc->default_bss->chanspec = chspec; 5395 /* brcms_c_BSSinit() will sanitize the rateset before 5396 * using it.. */ 5397 if (wlc->pub->up && (wlc_phy_chanspec_get(wlc->band->pi) != chspec)) { 5398 brcms_c_set_home_chanspec(wlc, chspec); 5399 brcms_c_suspend_mac_and_wait(wlc); 5400 brcms_c_set_chanspec(wlc, chspec); 5401 brcms_c_enable_mac(wlc); 5402 } 5403 return 0; 5404 } 5405 5406 int brcms_c_set_rate_limit(struct brcms_c_info *wlc, u16 srl, u16 lrl) 5407 { 5408 int ac; 5409 5410 if (srl < 1 || srl > RETRY_SHORT_MAX || 5411 lrl < 1 || lrl > RETRY_SHORT_MAX) 5412 return -EINVAL; 5413 5414 wlc->SRL = srl; 5415 wlc->LRL = lrl; 5416 5417 brcms_b_retrylimit_upd(wlc->hw, wlc->SRL, wlc->LRL); 5418 5419 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 5420 wlc->wme_retries[ac] = SFIELD(wlc->wme_retries[ac], 5421 EDCF_SHORT, wlc->SRL); 5422 wlc->wme_retries[ac] = SFIELD(wlc->wme_retries[ac], 5423 EDCF_LONG, wlc->LRL); 5424 } 5425 brcms_c_wme_retries_write(wlc); 5426 5427 return 0; 5428 } 5429 5430 void brcms_c_get_current_rateset(struct brcms_c_info *wlc, 5431 struct brcm_rateset *currs) 5432 { 5433 struct brcms_c_rateset *rs; 5434 5435 if (wlc->pub->associated) 5436 rs = &wlc->bsscfg->current_bss->rateset; 5437 else 5438 rs = &wlc->default_bss->rateset; 5439 5440 /* Copy only legacy rateset section */ 5441 currs->count = rs->count; 5442 memcpy(&currs->rates, &rs->rates, rs->count); 5443 } 5444 5445 int brcms_c_set_rateset(struct brcms_c_info *wlc, struct brcm_rateset *rs) 5446 { 5447 struct brcms_c_rateset internal_rs; 5448 int bcmerror; 5449 5450 if (rs->count > BRCMS_NUMRATES) 5451 return -ENOBUFS; 5452 5453 memset(&internal_rs, 0, sizeof(internal_rs)); 5454 5455 /* Copy only legacy rateset section */ 5456 internal_rs.count = rs->count; 5457 memcpy(&internal_rs.rates, &rs->rates, internal_rs.count); 5458 5459 /* merge rateset coming in with the current mcsset */ 5460 if (wlc->pub->_n_enab & SUPPORT_11N) { 5461 struct brcms_bss_info *mcsset_bss; 5462 if (wlc->pub->associated) 5463 mcsset_bss = wlc->bsscfg->current_bss; 5464 else 5465 mcsset_bss = wlc->default_bss; 5466 memcpy(internal_rs.mcs, &mcsset_bss->rateset.mcs[0], 5467 MCSSET_LEN); 5468 } 5469 5470 bcmerror = brcms_c_set_internal_rateset(wlc, &internal_rs); 5471 if (!bcmerror) 5472 brcms_c_ofdm_rateset_war(wlc); 5473 5474 return bcmerror; 5475 } 5476 5477 static void brcms_c_time_lock(struct brcms_c_info *wlc) 5478 { 5479 bcma_set32(wlc->hw->d11core, D11REGOFFS(maccontrol), MCTL_TBTTHOLD); 5480 /* Commit the write */ 5481 bcma_read32(wlc->hw->d11core, D11REGOFFS(maccontrol)); 5482 } 5483 5484 static void brcms_c_time_unlock(struct brcms_c_info *wlc) 5485 { 5486 bcma_mask32(wlc->hw->d11core, D11REGOFFS(maccontrol), ~MCTL_TBTTHOLD); 5487 /* Commit the write */ 5488 bcma_read32(wlc->hw->d11core, D11REGOFFS(maccontrol)); 5489 } 5490 5491 int brcms_c_set_beacon_period(struct brcms_c_info *wlc, u16 period) 5492 { 5493 u32 bcnint_us; 5494 5495 if (period == 0) 5496 return -EINVAL; 5497 5498 wlc->default_bss->beacon_period = period; 5499 5500 bcnint_us = period << 10; 5501 brcms_c_time_lock(wlc); 5502 bcma_write32(wlc->hw->d11core, D11REGOFFS(tsf_cfprep), 5503 (bcnint_us << CFPREP_CBI_SHIFT)); 5504 bcma_write32(wlc->hw->d11core, D11REGOFFS(tsf_cfpstart), bcnint_us); 5505 brcms_c_time_unlock(wlc); 5506 5507 return 0; 5508 } 5509 5510 u16 brcms_c_get_phy_type(struct brcms_c_info *wlc, int phyidx) 5511 { 5512 return wlc->band->phytype; 5513 } 5514 5515 void brcms_c_set_shortslot_override(struct brcms_c_info *wlc, s8 sslot_override) 5516 { 5517 wlc->shortslot_override = sslot_override; 5518 5519 /* 5520 * shortslot is an 11g feature, so no more work if we are 5521 * currently on the 5G band 5522 */ 5523 if (wlc->band->bandtype == BRCM_BAND_5G) 5524 return; 5525 5526 if (wlc->pub->up && wlc->pub->associated) { 5527 /* let watchdog or beacon processing update shortslot */ 5528 } else if (wlc->pub->up) { 5529 /* unassociated shortslot is off */ 5530 brcms_c_switch_shortslot(wlc, false); 5531 } else { 5532 /* driver is down, so just update the brcms_c_info 5533 * value */ 5534 if (wlc->shortslot_override == BRCMS_SHORTSLOT_AUTO) 5535 wlc->shortslot = false; 5536 else 5537 wlc->shortslot = 5538 (wlc->shortslot_override == 5539 BRCMS_SHORTSLOT_ON); 5540 } 5541 } 5542 5543 /* 5544 * register watchdog and down handlers. 5545 */ 5546 int brcms_c_module_register(struct brcms_pub *pub, 5547 const char *name, struct brcms_info *hdl, 5548 int (*d_fn)(void *handle)) 5549 { 5550 struct brcms_c_info *wlc = (struct brcms_c_info *) pub->wlc; 5551 int i; 5552 5553 /* find an empty entry and just add, no duplication check! */ 5554 for (i = 0; i < BRCMS_MAXMODULES; i++) { 5555 if (wlc->modulecb[i].name[0] == '\0') { 5556 strncpy(wlc->modulecb[i].name, name, 5557 sizeof(wlc->modulecb[i].name) - 1); 5558 wlc->modulecb[i].hdl = hdl; 5559 wlc->modulecb[i].down_fn = d_fn; 5560 return 0; 5561 } 5562 } 5563 5564 return -ENOSR; 5565 } 5566 5567 /* unregister module callbacks */ 5568 int brcms_c_module_unregister(struct brcms_pub *pub, const char *name, 5569 struct brcms_info *hdl) 5570 { 5571 struct brcms_c_info *wlc = (struct brcms_c_info *) pub->wlc; 5572 int i; 5573 5574 if (wlc == NULL) 5575 return -ENODATA; 5576 5577 for (i = 0; i < BRCMS_MAXMODULES; i++) { 5578 if (!strcmp(wlc->modulecb[i].name, name) && 5579 (wlc->modulecb[i].hdl == hdl)) { 5580 memset(&wlc->modulecb[i], 0, sizeof(wlc->modulecb[i])); 5581 return 0; 5582 } 5583 } 5584 5585 /* table not found! */ 5586 return -ENODATA; 5587 } 5588 5589 static bool brcms_c_chipmatch_pci(struct bcma_device *core) 5590 { 5591 struct pci_dev *pcidev = core->bus->host_pci; 5592 u16 vendor = pcidev->vendor; 5593 u16 device = pcidev->device; 5594 5595 if (vendor != PCI_VENDOR_ID_BROADCOM) { 5596 pr_err("unknown vendor id %04x\n", vendor); 5597 return false; 5598 } 5599 5600 if (device == BCM43224_D11N_ID_VEN1 || device == BCM43224_CHIP_ID) 5601 return true; 5602 if ((device == BCM43224_D11N_ID) || (device == BCM43225_D11N2G_ID)) 5603 return true; 5604 if (device == BCM4313_D11N2G_ID || device == BCM4313_CHIP_ID) 5605 return true; 5606 if ((device == BCM43236_D11N_ID) || (device == BCM43236_D11N2G_ID)) 5607 return true; 5608 5609 pr_err("unknown device id %04x\n", device); 5610 return false; 5611 } 5612 5613 static bool brcms_c_chipmatch_soc(struct bcma_device *core) 5614 { 5615 struct bcma_chipinfo *chipinfo = &core->bus->chipinfo; 5616 5617 if (chipinfo->id == BCMA_CHIP_ID_BCM4716) 5618 return true; 5619 5620 pr_err("unknown chip id %04x\n", chipinfo->id); 5621 return false; 5622 } 5623 5624 bool brcms_c_chipmatch(struct bcma_device *core) 5625 { 5626 switch (core->bus->hosttype) { 5627 case BCMA_HOSTTYPE_PCI: 5628 return brcms_c_chipmatch_pci(core); 5629 case BCMA_HOSTTYPE_SOC: 5630 return brcms_c_chipmatch_soc(core); 5631 default: 5632 pr_err("unknown host type: %i\n", core->bus->hosttype); 5633 return false; 5634 } 5635 } 5636 5637 u16 brcms_b_rate_shm_offset(struct brcms_hardware *wlc_hw, u8 rate) 5638 { 5639 u16 table_ptr; 5640 u8 phy_rate, index; 5641 5642 /* get the phy specific rate encoding for the PLCP SIGNAL field */ 5643 if (is_ofdm_rate(rate)) 5644 table_ptr = M_RT_DIRMAP_A; 5645 else 5646 table_ptr = M_RT_DIRMAP_B; 5647 5648 /* for a given rate, the LS-nibble of the PLCP SIGNAL field is 5649 * the index into the rate table. 5650 */ 5651 phy_rate = rate_info[rate] & BRCMS_RATE_MASK; 5652 index = phy_rate & 0xf; 5653 5654 /* Find the SHM pointer to the rate table entry by looking in the 5655 * Direct-map Table 5656 */ 5657 return 2 * brcms_b_read_shm(wlc_hw, table_ptr + (index * 2)); 5658 } 5659 5660 /* 5661 * bcmc_fid_generate: 5662 * Generate frame ID for a BCMC packet. The frag field is not used 5663 * for MC frames so is used as part of the sequence number. 5664 */ 5665 static inline u16 5666 bcmc_fid_generate(struct brcms_c_info *wlc, struct brcms_bss_cfg *bsscfg, 5667 struct d11txh *txh) 5668 { 5669 u16 frameid; 5670 5671 frameid = le16_to_cpu(txh->TxFrameID) & ~(TXFID_SEQ_MASK | 5672 TXFID_QUEUE_MASK); 5673 frameid |= 5674 (((wlc-> 5675 mc_fid_counter++) << TXFID_SEQ_SHIFT) & TXFID_SEQ_MASK) | 5676 TX_BCMC_FIFO; 5677 5678 return frameid; 5679 } 5680 5681 static uint 5682 brcms_c_calc_ack_time(struct brcms_c_info *wlc, u32 rspec, 5683 u8 preamble_type) 5684 { 5685 uint dur = 0; 5686 5687 /* 5688 * Spec 9.6: ack rate is the highest rate in BSSBasicRateSet that 5689 * is less than or equal to the rate of the immediately previous 5690 * frame in the FES 5691 */ 5692 rspec = brcms_basic_rate(wlc, rspec); 5693 /* ACK frame len == 14 == 2(fc) + 2(dur) + 6(ra) + 4(fcs) */ 5694 dur = 5695 brcms_c_calc_frame_time(wlc, rspec, preamble_type, 5696 (DOT11_ACK_LEN + FCS_LEN)); 5697 return dur; 5698 } 5699 5700 static uint 5701 brcms_c_calc_cts_time(struct brcms_c_info *wlc, u32 rspec, 5702 u8 preamble_type) 5703 { 5704 return brcms_c_calc_ack_time(wlc, rspec, preamble_type); 5705 } 5706 5707 static uint 5708 brcms_c_calc_ba_time(struct brcms_c_info *wlc, u32 rspec, 5709 u8 preamble_type) 5710 { 5711 /* 5712 * Spec 9.6: ack rate is the highest rate in BSSBasicRateSet that 5713 * is less than or equal to the rate of the immediately previous 5714 * frame in the FES 5715 */ 5716 rspec = brcms_basic_rate(wlc, rspec); 5717 /* BA len == 32 == 16(ctl hdr) + 4(ba len) + 8(bitmap) + 4(fcs) */ 5718 return brcms_c_calc_frame_time(wlc, rspec, preamble_type, 5719 (DOT11_BA_LEN + DOT11_BA_BITMAP_LEN + 5720 FCS_LEN)); 5721 } 5722 5723 /* brcms_c_compute_frame_dur() 5724 * 5725 * Calculate the 802.11 MAC header DUR field for MPDU 5726 * DUR for a single frame = 1 SIFS + 1 ACK 5727 * DUR for a frame with following frags = 3 SIFS + 2 ACK + next frag time 5728 * 5729 * rate MPDU rate in unit of 500kbps 5730 * next_frag_len next MPDU length in bytes 5731 * preamble_type use short/GF or long/MM PLCP header 5732 */ 5733 static u16 5734 brcms_c_compute_frame_dur(struct brcms_c_info *wlc, u32 rate, 5735 u8 preamble_type, uint next_frag_len) 5736 { 5737 u16 dur, sifs; 5738 5739 sifs = get_sifs(wlc->band); 5740 5741 dur = sifs; 5742 dur += (u16) brcms_c_calc_ack_time(wlc, rate, preamble_type); 5743 5744 if (next_frag_len) { 5745 /* Double the current DUR to get 2 SIFS + 2 ACKs */ 5746 dur *= 2; 5747 /* add another SIFS and the frag time */ 5748 dur += sifs; 5749 dur += 5750 (u16) brcms_c_calc_frame_time(wlc, rate, preamble_type, 5751 next_frag_len); 5752 } 5753 return dur; 5754 } 5755 5756 /* The opposite of brcms_c_calc_frame_time */ 5757 static uint 5758 brcms_c_calc_frame_len(struct brcms_c_info *wlc, u32 ratespec, 5759 u8 preamble_type, uint dur) 5760 { 5761 uint nsyms, mac_len, Ndps, kNdps; 5762 uint rate = rspec2rate(ratespec); 5763 5764 if (is_mcs_rate(ratespec)) { 5765 uint mcs = ratespec & RSPEC_RATE_MASK; 5766 int tot_streams = mcs_2_txstreams(mcs) + rspec_stc(ratespec); 5767 dur -= PREN_PREAMBLE + (tot_streams * PREN_PREAMBLE_EXT); 5768 /* payload calculation matches that of regular ofdm */ 5769 if (wlc->band->bandtype == BRCM_BAND_2G) 5770 dur -= DOT11_OFDM_SIGNAL_EXTENSION; 5771 /* kNdbps = kbps * 4 */ 5772 kNdps = mcs_2_rate(mcs, rspec_is40mhz(ratespec), 5773 rspec_issgi(ratespec)) * 4; 5774 nsyms = dur / APHY_SYMBOL_TIME; 5775 mac_len = 5776 ((nsyms * kNdps) - 5777 ((APHY_SERVICE_NBITS + APHY_TAIL_NBITS) * 1000)) / 8000; 5778 } else if (is_ofdm_rate(ratespec)) { 5779 dur -= APHY_PREAMBLE_TIME; 5780 dur -= APHY_SIGNAL_TIME; 5781 /* Ndbps = Mbps * 4 = rate(500Kbps) * 2 */ 5782 Ndps = rate * 2; 5783 nsyms = dur / APHY_SYMBOL_TIME; 5784 mac_len = 5785 ((nsyms * Ndps) - 5786 (APHY_SERVICE_NBITS + APHY_TAIL_NBITS)) / 8; 5787 } else { 5788 if (preamble_type & BRCMS_SHORT_PREAMBLE) 5789 dur -= BPHY_PLCP_SHORT_TIME; 5790 else 5791 dur -= BPHY_PLCP_TIME; 5792 mac_len = dur * rate; 5793 /* divide out factor of 2 in rate (1/2 mbps) */ 5794 mac_len = mac_len / 8 / 2; 5795 } 5796 return mac_len; 5797 } 5798 5799 /* 5800 * Return true if the specified rate is supported by the specified band. 5801 * BRCM_BAND_AUTO indicates the current band. 5802 */ 5803 static bool brcms_c_valid_rate(struct brcms_c_info *wlc, u32 rspec, int band, 5804 bool verbose) 5805 { 5806 struct brcms_c_rateset *hw_rateset; 5807 uint i; 5808 5809 if ((band == BRCM_BAND_AUTO) || (band == wlc->band->bandtype)) 5810 hw_rateset = &wlc->band->hw_rateset; 5811 else if (wlc->pub->_nbands > 1) 5812 hw_rateset = &wlc->bandstate[OTHERBANDUNIT(wlc)]->hw_rateset; 5813 else 5814 /* other band specified and we are a single band device */ 5815 return false; 5816 5817 /* check if this is a mimo rate */ 5818 if (is_mcs_rate(rspec)) { 5819 if ((rspec & RSPEC_RATE_MASK) >= MCS_TABLE_SIZE) 5820 goto error; 5821 5822 return isset(hw_rateset->mcs, (rspec & RSPEC_RATE_MASK)); 5823 } 5824 5825 for (i = 0; i < hw_rateset->count; i++) 5826 if (hw_rateset->rates[i] == rspec2rate(rspec)) 5827 return true; 5828 error: 5829 if (verbose) 5830 brcms_err(wlc->hw->d11core, "wl%d: valid_rate: rate spec 0x%x " 5831 "not in hw_rateset\n", wlc->pub->unit, rspec); 5832 5833 return false; 5834 } 5835 5836 static u32 5837 mac80211_wlc_set_nrate(struct brcms_c_info *wlc, struct brcms_band *cur_band, 5838 u32 int_val) 5839 { 5840 struct bcma_device *core = wlc->hw->d11core; 5841 u8 stf = (int_val & NRATE_STF_MASK) >> NRATE_STF_SHIFT; 5842 u8 rate = int_val & NRATE_RATE_MASK; 5843 u32 rspec; 5844 bool ismcs = ((int_val & NRATE_MCS_INUSE) == NRATE_MCS_INUSE); 5845 bool issgi = ((int_val & NRATE_SGI_MASK) >> NRATE_SGI_SHIFT); 5846 bool override_mcs_only = ((int_val & NRATE_OVERRIDE_MCS_ONLY) 5847 == NRATE_OVERRIDE_MCS_ONLY); 5848 5849 if (!ismcs) 5850 return (u32) rate; 5851 5852 /* validate the combination of rate/mcs/stf is allowed */ 5853 if ((wlc->pub->_n_enab & SUPPORT_11N) && ismcs) { 5854 /* mcs only allowed when nmode */ 5855 if (stf > PHY_TXC1_MODE_SDM) { 5856 brcms_err(core, "wl%d: %s: Invalid stf\n", 5857 wlc->pub->unit, __func__); 5858 goto done; 5859 } 5860 5861 /* mcs 32 is a special case, DUP mode 40 only */ 5862 if (rate == 32) { 5863 if (!CHSPEC_IS40(wlc->home_chanspec) || 5864 ((stf != PHY_TXC1_MODE_SISO) 5865 && (stf != PHY_TXC1_MODE_CDD))) { 5866 brcms_err(core, "wl%d: %s: Invalid mcs 32\n", 5867 wlc->pub->unit, __func__); 5868 goto done; 5869 } 5870 /* mcs > 7 must use stf SDM */ 5871 } else if (rate > HIGHEST_SINGLE_STREAM_MCS) { 5872 /* mcs > 7 must use stf SDM */ 5873 if (stf != PHY_TXC1_MODE_SDM) { 5874 brcms_dbg_mac80211(core, "wl%d: enabling " 5875 "SDM mode for mcs %d\n", 5876 wlc->pub->unit, rate); 5877 stf = PHY_TXC1_MODE_SDM; 5878 } 5879 } else { 5880 /* 5881 * MCS 0-7 may use SISO, CDD, and for 5882 * phy_rev >= 3 STBC 5883 */ 5884 if ((stf > PHY_TXC1_MODE_STBC) || 5885 (!BRCMS_STBC_CAP_PHY(wlc) 5886 && (stf == PHY_TXC1_MODE_STBC))) { 5887 brcms_err(core, "wl%d: %s: Invalid STBC\n", 5888 wlc->pub->unit, __func__); 5889 goto done; 5890 } 5891 } 5892 } else if (is_ofdm_rate(rate)) { 5893 if ((stf != PHY_TXC1_MODE_CDD) && (stf != PHY_TXC1_MODE_SISO)) { 5894 brcms_err(core, "wl%d: %s: Invalid OFDM\n", 5895 wlc->pub->unit, __func__); 5896 goto done; 5897 } 5898 } else if (is_cck_rate(rate)) { 5899 if ((cur_band->bandtype != BRCM_BAND_2G) 5900 || (stf != PHY_TXC1_MODE_SISO)) { 5901 brcms_err(core, "wl%d: %s: Invalid CCK\n", 5902 wlc->pub->unit, __func__); 5903 goto done; 5904 } 5905 } else { 5906 brcms_err(core, "wl%d: %s: Unknown rate type\n", 5907 wlc->pub->unit, __func__); 5908 goto done; 5909 } 5910 /* make sure multiple antennae are available for non-siso rates */ 5911 if ((stf != PHY_TXC1_MODE_SISO) && (wlc->stf->txstreams == 1)) { 5912 brcms_err(core, "wl%d: %s: SISO antenna but !SISO " 5913 "request\n", wlc->pub->unit, __func__); 5914 goto done; 5915 } 5916 5917 rspec = rate; 5918 if (ismcs) { 5919 rspec |= RSPEC_MIMORATE; 5920 /* For STBC populate the STC field of the ratespec */ 5921 if (stf == PHY_TXC1_MODE_STBC) { 5922 u8 stc; 5923 stc = 1; /* Nss for single stream is always 1 */ 5924 rspec |= (stc << RSPEC_STC_SHIFT); 5925 } 5926 } 5927 5928 rspec |= (stf << RSPEC_STF_SHIFT); 5929 5930 if (override_mcs_only) 5931 rspec |= RSPEC_OVERRIDE_MCS_ONLY; 5932 5933 if (issgi) 5934 rspec |= RSPEC_SHORT_GI; 5935 5936 if ((rate != 0) 5937 && !brcms_c_valid_rate(wlc, rspec, cur_band->bandtype, true)) 5938 return rate; 5939 5940 return rspec; 5941 done: 5942 return rate; 5943 } 5944 5945 /* 5946 * Compute PLCP, but only requires actual rate and length of pkt. 5947 * Rate is given in the driver standard multiple of 500 kbps. 5948 * le is set for 11 Mbps rate if necessary. 5949 * Broken out for PRQ. 5950 */ 5951 5952 static void brcms_c_cck_plcp_set(struct brcms_c_info *wlc, int rate_500, 5953 uint length, u8 *plcp) 5954 { 5955 u16 usec = 0; 5956 u8 le = 0; 5957 5958 switch (rate_500) { 5959 case BRCM_RATE_1M: 5960 usec = length << 3; 5961 break; 5962 case BRCM_RATE_2M: 5963 usec = length << 2; 5964 break; 5965 case BRCM_RATE_5M5: 5966 usec = (length << 4) / 11; 5967 if ((length << 4) - (usec * 11) > 0) 5968 usec++; 5969 break; 5970 case BRCM_RATE_11M: 5971 usec = (length << 3) / 11; 5972 if ((length << 3) - (usec * 11) > 0) { 5973 usec++; 5974 if ((usec * 11) - (length << 3) >= 8) 5975 le = D11B_PLCP_SIGNAL_LE; 5976 } 5977 break; 5978 5979 default: 5980 brcms_err(wlc->hw->d11core, 5981 "brcms_c_cck_plcp_set: unsupported rate %d\n", 5982 rate_500); 5983 rate_500 = BRCM_RATE_1M; 5984 usec = length << 3; 5985 break; 5986 } 5987 /* PLCP signal byte */ 5988 plcp[0] = rate_500 * 5; /* r (500kbps) * 5 == r (100kbps) */ 5989 /* PLCP service byte */ 5990 plcp[1] = (u8) (le | D11B_PLCP_SIGNAL_LOCKED); 5991 /* PLCP length u16, little endian */ 5992 plcp[2] = usec & 0xff; 5993 plcp[3] = (usec >> 8) & 0xff; 5994 /* PLCP CRC16 */ 5995 plcp[4] = 0; 5996 plcp[5] = 0; 5997 } 5998 5999 /* Rate: 802.11 rate code, length: PSDU length in octets */ 6000 static void brcms_c_compute_mimo_plcp(u32 rspec, uint length, u8 *plcp) 6001 { 6002 u8 mcs = (u8) (rspec & RSPEC_RATE_MASK); 6003 plcp[0] = mcs; 6004 if (rspec_is40mhz(rspec) || (mcs == 32)) 6005 plcp[0] |= MIMO_PLCP_40MHZ; 6006 BRCMS_SET_MIMO_PLCP_LEN(plcp, length); 6007 plcp[3] = rspec_mimoplcp3(rspec); /* rspec already holds this byte */ 6008 plcp[3] |= 0x7; /* set smoothing, not sounding ppdu & reserved */ 6009 plcp[4] = 0; /* number of extension spatial streams bit 0 & 1 */ 6010 plcp[5] = 0; 6011 } 6012 6013 /* Rate: 802.11 rate code, length: PSDU length in octets */ 6014 static void 6015 brcms_c_compute_ofdm_plcp(u32 rspec, u32 length, u8 *plcp) 6016 { 6017 u8 rate_signal; 6018 u32 tmp = 0; 6019 int rate = rspec2rate(rspec); 6020 6021 /* 6022 * encode rate per 802.11a-1999 sec 17.3.4.1, with lsb 6023 * transmitted first 6024 */ 6025 rate_signal = rate_info[rate] & BRCMS_RATE_MASK; 6026 memset(plcp, 0, D11_PHY_HDR_LEN); 6027 D11A_PHY_HDR_SRATE((struct ofdm_phy_hdr *) plcp, rate_signal); 6028 6029 tmp = (length & 0xfff) << 5; 6030 plcp[2] |= (tmp >> 16) & 0xff; 6031 plcp[1] |= (tmp >> 8) & 0xff; 6032 plcp[0] |= tmp & 0xff; 6033 } 6034 6035 /* Rate: 802.11 rate code, length: PSDU length in octets */ 6036 static void brcms_c_compute_cck_plcp(struct brcms_c_info *wlc, u32 rspec, 6037 uint length, u8 *plcp) 6038 { 6039 int rate = rspec2rate(rspec); 6040 6041 brcms_c_cck_plcp_set(wlc, rate, length, plcp); 6042 } 6043 6044 static void 6045 brcms_c_compute_plcp(struct brcms_c_info *wlc, u32 rspec, 6046 uint length, u8 *plcp) 6047 { 6048 if (is_mcs_rate(rspec)) 6049 brcms_c_compute_mimo_plcp(rspec, length, plcp); 6050 else if (is_ofdm_rate(rspec)) 6051 brcms_c_compute_ofdm_plcp(rspec, length, plcp); 6052 else 6053 brcms_c_compute_cck_plcp(wlc, rspec, length, plcp); 6054 } 6055 6056 /* brcms_c_compute_rtscts_dur() 6057 * 6058 * Calculate the 802.11 MAC header DUR field for an RTS or CTS frame 6059 * DUR for normal RTS/CTS w/ frame = 3 SIFS + 1 CTS + next frame time + 1 ACK 6060 * DUR for CTS-TO-SELF w/ frame = 2 SIFS + next frame time + 1 ACK 6061 * 6062 * cts cts-to-self or rts/cts 6063 * rts_rate rts or cts rate in unit of 500kbps 6064 * rate next MPDU rate in unit of 500kbps 6065 * frame_len next MPDU frame length in bytes 6066 */ 6067 u16 6068 brcms_c_compute_rtscts_dur(struct brcms_c_info *wlc, bool cts_only, 6069 u32 rts_rate, 6070 u32 frame_rate, u8 rts_preamble_type, 6071 u8 frame_preamble_type, uint frame_len, bool ba) 6072 { 6073 u16 dur, sifs; 6074 6075 sifs = get_sifs(wlc->band); 6076 6077 if (!cts_only) { 6078 /* RTS/CTS */ 6079 dur = 3 * sifs; 6080 dur += 6081 (u16) brcms_c_calc_cts_time(wlc, rts_rate, 6082 rts_preamble_type); 6083 } else { 6084 /* CTS-TO-SELF */ 6085 dur = 2 * sifs; 6086 } 6087 6088 dur += 6089 (u16) brcms_c_calc_frame_time(wlc, frame_rate, frame_preamble_type, 6090 frame_len); 6091 if (ba) 6092 dur += 6093 (u16) brcms_c_calc_ba_time(wlc, frame_rate, 6094 BRCMS_SHORT_PREAMBLE); 6095 else 6096 dur += 6097 (u16) brcms_c_calc_ack_time(wlc, frame_rate, 6098 frame_preamble_type); 6099 return dur; 6100 } 6101 6102 static u16 brcms_c_phytxctl1_calc(struct brcms_c_info *wlc, u32 rspec) 6103 { 6104 u16 phyctl1 = 0; 6105 u16 bw; 6106 6107 if (BRCMS_ISLCNPHY(wlc->band)) { 6108 bw = PHY_TXC1_BW_20MHZ; 6109 } else { 6110 bw = rspec_get_bw(rspec); 6111 /* 10Mhz is not supported yet */ 6112 if (bw < PHY_TXC1_BW_20MHZ) { 6113 brcms_err(wlc->hw->d11core, "phytxctl1_calc: bw %d is " 6114 "not supported yet, set to 20L\n", bw); 6115 bw = PHY_TXC1_BW_20MHZ; 6116 } 6117 } 6118 6119 if (is_mcs_rate(rspec)) { 6120 uint mcs = rspec & RSPEC_RATE_MASK; 6121 6122 /* bw, stf, coding-type is part of rspec_phytxbyte2 returns */ 6123 phyctl1 = rspec_phytxbyte2(rspec); 6124 /* set the upper byte of phyctl1 */ 6125 phyctl1 |= (mcs_table[mcs].tx_phy_ctl3 << 8); 6126 } else if (is_cck_rate(rspec) && !BRCMS_ISLCNPHY(wlc->band) 6127 && !BRCMS_ISSSLPNPHY(wlc->band)) { 6128 /* 6129 * In CCK mode LPPHY overloads OFDM Modulation bits with CCK 6130 * Data Rate. Eventually MIMOPHY would also be converted to 6131 * this format 6132 */ 6133 /* 0 = 1Mbps; 1 = 2Mbps; 2 = 5.5Mbps; 3 = 11Mbps */ 6134 phyctl1 = (bw | (rspec_stf(rspec) << PHY_TXC1_MODE_SHIFT)); 6135 } else { /* legacy OFDM/CCK */ 6136 s16 phycfg; 6137 /* get the phyctl byte from rate phycfg table */ 6138 phycfg = brcms_c_rate_legacy_phyctl(rspec2rate(rspec)); 6139 if (phycfg == -1) { 6140 brcms_err(wlc->hw->d11core, "phytxctl1_calc: wrong " 6141 "legacy OFDM/CCK rate\n"); 6142 phycfg = 0; 6143 } 6144 /* set the upper byte of phyctl1 */ 6145 phyctl1 = 6146 (bw | (phycfg << 8) | 6147 (rspec_stf(rspec) << PHY_TXC1_MODE_SHIFT)); 6148 } 6149 return phyctl1; 6150 } 6151 6152 /* 6153 * Add struct d11txh, struct cck_phy_hdr. 6154 * 6155 * 'p' data must start with 802.11 MAC header 6156 * 'p' must allow enough bytes of local headers to be "pushed" onto the packet 6157 * 6158 * headroom == D11_PHY_HDR_LEN + D11_TXH_LEN (D11_TXH_LEN is now 104 bytes) 6159 * 6160 */ 6161 static u16 6162 brcms_c_d11hdrs_mac80211(struct brcms_c_info *wlc, struct ieee80211_hw *hw, 6163 struct sk_buff *p, struct scb *scb, uint frag, 6164 uint nfrags, uint queue, uint next_frag_len) 6165 { 6166 struct ieee80211_hdr *h; 6167 struct d11txh *txh; 6168 u8 *plcp, plcp_fallback[D11_PHY_HDR_LEN]; 6169 int len, phylen, rts_phylen; 6170 u16 mch, phyctl, xfts, mainrates; 6171 u16 seq = 0, mcl = 0, status = 0, frameid = 0; 6172 u32 rspec[2] = { BRCM_RATE_1M, BRCM_RATE_1M }; 6173 u32 rts_rspec[2] = { BRCM_RATE_1M, BRCM_RATE_1M }; 6174 bool use_rts = false; 6175 bool use_cts = false; 6176 bool use_rifs = false; 6177 u8 preamble_type[2] = { BRCMS_LONG_PREAMBLE, BRCMS_LONG_PREAMBLE }; 6178 u8 rts_preamble_type[2] = { BRCMS_LONG_PREAMBLE, BRCMS_LONG_PREAMBLE }; 6179 u8 *rts_plcp, rts_plcp_fallback[D11_PHY_HDR_LEN]; 6180 struct ieee80211_rts *rts = NULL; 6181 bool qos; 6182 uint ac; 6183 bool hwtkmic = false; 6184 u16 mimo_ctlchbw = PHY_TXC1_BW_20MHZ; 6185 #define ANTCFG_NONE 0xFF 6186 u8 antcfg = ANTCFG_NONE; 6187 u8 fbantcfg = ANTCFG_NONE; 6188 uint phyctl1_stf = 0; 6189 u16 durid = 0; 6190 struct ieee80211_tx_rate *txrate[2]; 6191 int k; 6192 struct ieee80211_tx_info *tx_info; 6193 bool is_mcs; 6194 u16 mimo_txbw; 6195 u8 mimo_preamble_type; 6196 6197 /* locate 802.11 MAC header */ 6198 h = (struct ieee80211_hdr *)(p->data); 6199 qos = ieee80211_is_data_qos(h->frame_control); 6200 6201 /* compute length of frame in bytes for use in PLCP computations */ 6202 len = p->len; 6203 phylen = len + FCS_LEN; 6204 6205 /* Get tx_info */ 6206 tx_info = IEEE80211_SKB_CB(p); 6207 6208 /* add PLCP */ 6209 plcp = skb_push(p, D11_PHY_HDR_LEN); 6210 6211 /* add Broadcom tx descriptor header */ 6212 txh = (struct d11txh *) skb_push(p, D11_TXH_LEN); 6213 memset(txh, 0, D11_TXH_LEN); 6214 6215 /* setup frameid */ 6216 if (tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) { 6217 /* non-AP STA should never use BCMC queue */ 6218 if (queue == TX_BCMC_FIFO) { 6219 brcms_err(wlc->hw->d11core, 6220 "wl%d: %s: ASSERT queue == TX_BCMC!\n", 6221 wlc->pub->unit, __func__); 6222 frameid = bcmc_fid_generate(wlc, NULL, txh); 6223 } else { 6224 /* Increment the counter for first fragment */ 6225 if (tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) 6226 scb->seqnum[p->priority]++; 6227 6228 /* extract fragment number from frame first */ 6229 seq = le16_to_cpu(h->seq_ctrl) & FRAGNUM_MASK; 6230 seq |= (scb->seqnum[p->priority] << SEQNUM_SHIFT); 6231 h->seq_ctrl = cpu_to_le16(seq); 6232 6233 frameid = ((seq << TXFID_SEQ_SHIFT) & TXFID_SEQ_MASK) | 6234 (queue & TXFID_QUEUE_MASK); 6235 } 6236 } 6237 frameid |= queue & TXFID_QUEUE_MASK; 6238 6239 /* set the ignpmq bit for all pkts tx'd in PS mode and for beacons */ 6240 if (ieee80211_is_beacon(h->frame_control)) 6241 mcl |= TXC_IGNOREPMQ; 6242 6243 txrate[0] = tx_info->control.rates; 6244 txrate[1] = txrate[0] + 1; 6245 6246 /* 6247 * if rate control algorithm didn't give us a fallback 6248 * rate, use the primary rate 6249 */ 6250 if (txrate[1]->idx < 0) 6251 txrate[1] = txrate[0]; 6252 6253 for (k = 0; k < hw->max_rates; k++) { 6254 is_mcs = txrate[k]->flags & IEEE80211_TX_RC_MCS ? true : false; 6255 if (!is_mcs) { 6256 if ((txrate[k]->idx >= 0) 6257 && (txrate[k]->idx < 6258 hw->wiphy->bands[tx_info->band]->n_bitrates)) { 6259 rspec[k] = 6260 hw->wiphy->bands[tx_info->band]-> 6261 bitrates[txrate[k]->idx].hw_value; 6262 } else { 6263 rspec[k] = BRCM_RATE_1M; 6264 } 6265 } else { 6266 rspec[k] = mac80211_wlc_set_nrate(wlc, wlc->band, 6267 NRATE_MCS_INUSE | txrate[k]->idx); 6268 } 6269 6270 /* 6271 * Currently only support same setting for primay and 6272 * fallback rates. Unify flags for each rate into a 6273 * single value for the frame 6274 */ 6275 use_rts |= 6276 txrate[k]-> 6277 flags & IEEE80211_TX_RC_USE_RTS_CTS ? true : false; 6278 use_cts |= 6279 txrate[k]-> 6280 flags & IEEE80211_TX_RC_USE_CTS_PROTECT ? true : false; 6281 6282 6283 /* 6284 * (1) RATE: 6285 * determine and validate primary rate 6286 * and fallback rates 6287 */ 6288 if (!rspec_active(rspec[k])) { 6289 rspec[k] = BRCM_RATE_1M; 6290 } else { 6291 if (!is_multicast_ether_addr(h->addr1)) { 6292 /* set tx antenna config */ 6293 brcms_c_antsel_antcfg_get(wlc->asi, false, 6294 false, 0, 0, &antcfg, &fbantcfg); 6295 } 6296 } 6297 } 6298 6299 phyctl1_stf = wlc->stf->ss_opmode; 6300 6301 if (wlc->pub->_n_enab & SUPPORT_11N) { 6302 for (k = 0; k < hw->max_rates; k++) { 6303 /* 6304 * apply siso/cdd to single stream mcs's or ofdm 6305 * if rspec is auto selected 6306 */ 6307 if (((is_mcs_rate(rspec[k]) && 6308 is_single_stream(rspec[k] & RSPEC_RATE_MASK)) || 6309 is_ofdm_rate(rspec[k])) 6310 && ((rspec[k] & RSPEC_OVERRIDE_MCS_ONLY) 6311 || !(rspec[k] & RSPEC_OVERRIDE))) { 6312 rspec[k] &= ~(RSPEC_STF_MASK | RSPEC_STC_MASK); 6313 6314 /* For SISO MCS use STBC if possible */ 6315 if (is_mcs_rate(rspec[k]) 6316 && BRCMS_STF_SS_STBC_TX(wlc, scb)) { 6317 u8 stc; 6318 6319 /* Nss for single stream is always 1 */ 6320 stc = 1; 6321 rspec[k] |= (PHY_TXC1_MODE_STBC << 6322 RSPEC_STF_SHIFT) | 6323 (stc << RSPEC_STC_SHIFT); 6324 } else 6325 rspec[k] |= 6326 (phyctl1_stf << RSPEC_STF_SHIFT); 6327 } 6328 6329 /* 6330 * Is the phy configured to use 40MHZ frames? If 6331 * so then pick the desired txbw 6332 */ 6333 if (brcms_chspec_bw(wlc->chanspec) == BRCMS_40_MHZ) { 6334 /* default txbw is 20in40 SB */ 6335 mimo_ctlchbw = mimo_txbw = 6336 CHSPEC_SB_UPPER(wlc_phy_chanspec_get( 6337 wlc->band->pi)) 6338 ? PHY_TXC1_BW_20MHZ_UP : PHY_TXC1_BW_20MHZ; 6339 6340 if (is_mcs_rate(rspec[k])) { 6341 /* mcs 32 must be 40b/w DUP */ 6342 if ((rspec[k] & RSPEC_RATE_MASK) 6343 == 32) { 6344 mimo_txbw = 6345 PHY_TXC1_BW_40MHZ_DUP; 6346 /* use override */ 6347 } else if (wlc->mimo_40txbw != AUTO) 6348 mimo_txbw = wlc->mimo_40txbw; 6349 /* else check if dst is using 40 Mhz */ 6350 else if (scb->flags & SCB_IS40) 6351 mimo_txbw = PHY_TXC1_BW_40MHZ; 6352 } else if (is_ofdm_rate(rspec[k])) { 6353 if (wlc->ofdm_40txbw != AUTO) 6354 mimo_txbw = wlc->ofdm_40txbw; 6355 } else if (wlc->cck_40txbw != AUTO) { 6356 mimo_txbw = wlc->cck_40txbw; 6357 } 6358 } else { 6359 /* 6360 * mcs32 is 40 b/w only. 6361 * This is possible for probe packets on 6362 * a STA during SCAN 6363 */ 6364 if ((rspec[k] & RSPEC_RATE_MASK) == 32) 6365 /* mcs 0 */ 6366 rspec[k] = RSPEC_MIMORATE; 6367 6368 mimo_txbw = PHY_TXC1_BW_20MHZ; 6369 } 6370 6371 /* Set channel width */ 6372 rspec[k] &= ~RSPEC_BW_MASK; 6373 if ((k == 0) || ((k > 0) && is_mcs_rate(rspec[k]))) 6374 rspec[k] |= (mimo_txbw << RSPEC_BW_SHIFT); 6375 else 6376 rspec[k] |= (mimo_ctlchbw << RSPEC_BW_SHIFT); 6377 6378 /* Disable short GI, not supported yet */ 6379 rspec[k] &= ~RSPEC_SHORT_GI; 6380 6381 mimo_preamble_type = BRCMS_MM_PREAMBLE; 6382 if (txrate[k]->flags & IEEE80211_TX_RC_GREEN_FIELD) 6383 mimo_preamble_type = BRCMS_GF_PREAMBLE; 6384 6385 if ((txrate[k]->flags & IEEE80211_TX_RC_MCS) 6386 && (!is_mcs_rate(rspec[k]))) { 6387 brcms_warn(wlc->hw->d11core, 6388 "wl%d: %s: IEEE80211_TX_RC_MCS != is_mcs_rate(rspec)\n", 6389 wlc->pub->unit, __func__); 6390 } 6391 6392 if (is_mcs_rate(rspec[k])) { 6393 preamble_type[k] = mimo_preamble_type; 6394 6395 /* 6396 * if SGI is selected, then forced mm 6397 * for single stream 6398 */ 6399 if ((rspec[k] & RSPEC_SHORT_GI) 6400 && is_single_stream(rspec[k] & 6401 RSPEC_RATE_MASK)) 6402 preamble_type[k] = BRCMS_MM_PREAMBLE; 6403 } 6404 6405 /* should be better conditionalized */ 6406 if (!is_mcs_rate(rspec[0]) 6407 && (tx_info->control.rates[0]. 6408 flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)) 6409 preamble_type[k] = BRCMS_SHORT_PREAMBLE; 6410 } 6411 } else { 6412 for (k = 0; k < hw->max_rates; k++) { 6413 /* Set ctrlchbw as 20Mhz */ 6414 rspec[k] &= ~RSPEC_BW_MASK; 6415 rspec[k] |= (PHY_TXC1_BW_20MHZ << RSPEC_BW_SHIFT); 6416 6417 /* for nphy, stf of ofdm frames must follow policies */ 6418 if (BRCMS_ISNPHY(wlc->band) && is_ofdm_rate(rspec[k])) { 6419 rspec[k] &= ~RSPEC_STF_MASK; 6420 rspec[k] |= phyctl1_stf << RSPEC_STF_SHIFT; 6421 } 6422 } 6423 } 6424 6425 /* Reset these for use with AMPDU's */ 6426 txrate[0]->count = 0; 6427 txrate[1]->count = 0; 6428 6429 /* (2) PROTECTION, may change rspec */ 6430 if ((ieee80211_is_data(h->frame_control) || 6431 ieee80211_is_mgmt(h->frame_control)) && 6432 (phylen > wlc->RTSThresh) && !is_multicast_ether_addr(h->addr1)) 6433 use_rts = true; 6434 6435 /* (3) PLCP: determine PLCP header and MAC duration, 6436 * fill struct d11txh */ 6437 brcms_c_compute_plcp(wlc, rspec[0], phylen, plcp); 6438 brcms_c_compute_plcp(wlc, rspec[1], phylen, plcp_fallback); 6439 memcpy(&txh->FragPLCPFallback, 6440 plcp_fallback, sizeof(txh->FragPLCPFallback)); 6441 6442 /* Length field now put in CCK FBR CRC field */ 6443 if (is_cck_rate(rspec[1])) { 6444 txh->FragPLCPFallback[4] = phylen & 0xff; 6445 txh->FragPLCPFallback[5] = (phylen & 0xff00) >> 8; 6446 } 6447 6448 /* MIMO-RATE: need validation ?? */ 6449 mainrates = is_ofdm_rate(rspec[0]) ? 6450 D11A_PHY_HDR_GRATE((struct ofdm_phy_hdr *) plcp) : 6451 plcp[0]; 6452 6453 /* DUR field for main rate */ 6454 if (!ieee80211_is_pspoll(h->frame_control) && 6455 !is_multicast_ether_addr(h->addr1) && !use_rifs) { 6456 durid = 6457 brcms_c_compute_frame_dur(wlc, rspec[0], preamble_type[0], 6458 next_frag_len); 6459 h->duration_id = cpu_to_le16(durid); 6460 } else if (use_rifs) { 6461 /* NAV protect to end of next max packet size */ 6462 durid = 6463 (u16) brcms_c_calc_frame_time(wlc, rspec[0], 6464 preamble_type[0], 6465 DOT11_MAX_FRAG_LEN); 6466 durid += RIFS_11N_TIME; 6467 h->duration_id = cpu_to_le16(durid); 6468 } 6469 6470 /* DUR field for fallback rate */ 6471 if (ieee80211_is_pspoll(h->frame_control)) 6472 txh->FragDurFallback = h->duration_id; 6473 else if (is_multicast_ether_addr(h->addr1) || use_rifs) 6474 txh->FragDurFallback = 0; 6475 else { 6476 durid = brcms_c_compute_frame_dur(wlc, rspec[1], 6477 preamble_type[1], next_frag_len); 6478 txh->FragDurFallback = cpu_to_le16(durid); 6479 } 6480 6481 /* (4) MAC-HDR: MacTxControlLow */ 6482 if (frag == 0) 6483 mcl |= TXC_STARTMSDU; 6484 6485 if (!is_multicast_ether_addr(h->addr1)) 6486 mcl |= TXC_IMMEDACK; 6487 6488 if (wlc->band->bandtype == BRCM_BAND_5G) 6489 mcl |= TXC_FREQBAND_5G; 6490 6491 if (CHSPEC_IS40(wlc_phy_chanspec_get(wlc->band->pi))) 6492 mcl |= TXC_BW_40; 6493 6494 /* set AMIC bit if using hardware TKIP MIC */ 6495 if (hwtkmic) 6496 mcl |= TXC_AMIC; 6497 6498 txh->MacTxControlLow = cpu_to_le16(mcl); 6499 6500 /* MacTxControlHigh */ 6501 mch = 0; 6502 6503 /* Set fallback rate preamble type */ 6504 if ((preamble_type[1] == BRCMS_SHORT_PREAMBLE) || 6505 (preamble_type[1] == BRCMS_GF_PREAMBLE)) { 6506 if (rspec2rate(rspec[1]) != BRCM_RATE_1M) 6507 mch |= TXC_PREAMBLE_DATA_FB_SHORT; 6508 } 6509 6510 /* MacFrameControl */ 6511 memcpy(&txh->MacFrameControl, &h->frame_control, sizeof(u16)); 6512 txh->TxFesTimeNormal = cpu_to_le16(0); 6513 6514 txh->TxFesTimeFallback = cpu_to_le16(0); 6515 6516 /* TxFrameRA */ 6517 memcpy(&txh->TxFrameRA, &h->addr1, ETH_ALEN); 6518 6519 /* TxFrameID */ 6520 txh->TxFrameID = cpu_to_le16(frameid); 6521 6522 /* 6523 * TxStatus, Note the case of recreating the first frag of a suppressed 6524 * frame then we may need to reset the retry cnt's via the status reg 6525 */ 6526 txh->TxStatus = cpu_to_le16(status); 6527 6528 /* 6529 * extra fields for ucode AMPDU aggregation, the new fields are added to 6530 * the END of previous structure so that it's compatible in driver. 6531 */ 6532 txh->MaxNMpdus = cpu_to_le16(0); 6533 txh->MaxABytes_MRT = cpu_to_le16(0); 6534 txh->MaxABytes_FBR = cpu_to_le16(0); 6535 txh->MinMBytes = cpu_to_le16(0); 6536 6537 /* (5) RTS/CTS: determine RTS/CTS PLCP header and MAC duration, 6538 * furnish struct d11txh */ 6539 /* RTS PLCP header and RTS frame */ 6540 if (use_rts || use_cts) { 6541 if (use_rts && use_cts) 6542 use_cts = false; 6543 6544 for (k = 0; k < 2; k++) { 6545 rts_rspec[k] = brcms_c_rspec_to_rts_rspec(wlc, rspec[k], 6546 false, 6547 mimo_ctlchbw); 6548 } 6549 6550 if (!is_ofdm_rate(rts_rspec[0]) && 6551 !((rspec2rate(rts_rspec[0]) == BRCM_RATE_1M) || 6552 (wlc->PLCPHdr_override == BRCMS_PLCP_LONG))) { 6553 rts_preamble_type[0] = BRCMS_SHORT_PREAMBLE; 6554 mch |= TXC_PREAMBLE_RTS_MAIN_SHORT; 6555 } 6556 6557 if (!is_ofdm_rate(rts_rspec[1]) && 6558 !((rspec2rate(rts_rspec[1]) == BRCM_RATE_1M) || 6559 (wlc->PLCPHdr_override == BRCMS_PLCP_LONG))) { 6560 rts_preamble_type[1] = BRCMS_SHORT_PREAMBLE; 6561 mch |= TXC_PREAMBLE_RTS_FB_SHORT; 6562 } 6563 6564 /* RTS/CTS additions to MacTxControlLow */ 6565 if (use_cts) { 6566 txh->MacTxControlLow |= cpu_to_le16(TXC_SENDCTS); 6567 } else { 6568 txh->MacTxControlLow |= cpu_to_le16(TXC_SENDRTS); 6569 txh->MacTxControlLow |= cpu_to_le16(TXC_LONGFRAME); 6570 } 6571 6572 /* RTS PLCP header */ 6573 rts_plcp = txh->RTSPhyHeader; 6574 if (use_cts) 6575 rts_phylen = DOT11_CTS_LEN + FCS_LEN; 6576 else 6577 rts_phylen = DOT11_RTS_LEN + FCS_LEN; 6578 6579 brcms_c_compute_plcp(wlc, rts_rspec[0], rts_phylen, rts_plcp); 6580 6581 /* fallback rate version of RTS PLCP header */ 6582 brcms_c_compute_plcp(wlc, rts_rspec[1], rts_phylen, 6583 rts_plcp_fallback); 6584 memcpy(&txh->RTSPLCPFallback, rts_plcp_fallback, 6585 sizeof(txh->RTSPLCPFallback)); 6586 6587 /* RTS frame fields... */ 6588 rts = (struct ieee80211_rts *)&txh->rts_frame; 6589 6590 durid = brcms_c_compute_rtscts_dur(wlc, use_cts, rts_rspec[0], 6591 rspec[0], rts_preamble_type[0], 6592 preamble_type[0], phylen, false); 6593 rts->duration = cpu_to_le16(durid); 6594 /* fallback rate version of RTS DUR field */ 6595 durid = brcms_c_compute_rtscts_dur(wlc, use_cts, 6596 rts_rspec[1], rspec[1], 6597 rts_preamble_type[1], 6598 preamble_type[1], phylen, false); 6599 txh->RTSDurFallback = cpu_to_le16(durid); 6600 6601 if (use_cts) { 6602 rts->frame_control = cpu_to_le16(IEEE80211_FTYPE_CTL | 6603 IEEE80211_STYPE_CTS); 6604 6605 memcpy(&rts->ra, &h->addr2, ETH_ALEN); 6606 } else { 6607 rts->frame_control = cpu_to_le16(IEEE80211_FTYPE_CTL | 6608 IEEE80211_STYPE_RTS); 6609 6610 memcpy(&rts->ra, &h->addr1, ETH_ALEN); 6611 memcpy(&rts->ta, &h->addr2, ETH_ALEN); 6612 } 6613 6614 /* mainrate 6615 * low 8 bits: main frag rate/mcs, 6616 * high 8 bits: rts/cts rate/mcs 6617 */ 6618 mainrates |= (is_ofdm_rate(rts_rspec[0]) ? 6619 D11A_PHY_HDR_GRATE( 6620 (struct ofdm_phy_hdr *) rts_plcp) : 6621 rts_plcp[0]) << 8; 6622 } else { 6623 memset(txh->RTSPhyHeader, 0, D11_PHY_HDR_LEN); 6624 memset(&txh->rts_frame, 0, sizeof(struct ieee80211_rts)); 6625 memset(txh->RTSPLCPFallback, 0, sizeof(txh->RTSPLCPFallback)); 6626 txh->RTSDurFallback = 0; 6627 } 6628 6629 #ifdef SUPPORT_40MHZ 6630 /* add null delimiter count */ 6631 if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) && is_mcs_rate(rspec)) 6632 txh->RTSPLCPFallback[AMPDU_FBR_NULL_DELIM] = 6633 brcm_c_ampdu_null_delim_cnt(wlc->ampdu, scb, rspec, phylen); 6634 6635 #endif 6636 6637 /* 6638 * Now that RTS/RTS FB preamble types are updated, write 6639 * the final value 6640 */ 6641 txh->MacTxControlHigh = cpu_to_le16(mch); 6642 6643 /* 6644 * MainRates (both the rts and frag plcp rates have 6645 * been calculated now) 6646 */ 6647 txh->MainRates = cpu_to_le16(mainrates); 6648 6649 /* XtraFrameTypes */ 6650 xfts = frametype(rspec[1], wlc->mimoft); 6651 xfts |= (frametype(rts_rspec[0], wlc->mimoft) << XFTS_RTS_FT_SHIFT); 6652 xfts |= (frametype(rts_rspec[1], wlc->mimoft) << XFTS_FBRRTS_FT_SHIFT); 6653 xfts |= CHSPEC_CHANNEL(wlc_phy_chanspec_get(wlc->band->pi)) << 6654 XFTS_CHANNEL_SHIFT; 6655 txh->XtraFrameTypes = cpu_to_le16(xfts); 6656 6657 /* PhyTxControlWord */ 6658 phyctl = frametype(rspec[0], wlc->mimoft); 6659 if ((preamble_type[0] == BRCMS_SHORT_PREAMBLE) || 6660 (preamble_type[0] == BRCMS_GF_PREAMBLE)) { 6661 if (rspec2rate(rspec[0]) != BRCM_RATE_1M) 6662 phyctl |= PHY_TXC_SHORT_HDR; 6663 } 6664 6665 /* phytxant is properly bit shifted */ 6666 phyctl |= brcms_c_stf_d11hdrs_phyctl_txant(wlc, rspec[0]); 6667 txh->PhyTxControlWord = cpu_to_le16(phyctl); 6668 6669 /* PhyTxControlWord_1 */ 6670 if (BRCMS_PHY_11N_CAP(wlc->band)) { 6671 u16 phyctl1 = 0; 6672 6673 phyctl1 = brcms_c_phytxctl1_calc(wlc, rspec[0]); 6674 txh->PhyTxControlWord_1 = cpu_to_le16(phyctl1); 6675 phyctl1 = brcms_c_phytxctl1_calc(wlc, rspec[1]); 6676 txh->PhyTxControlWord_1_Fbr = cpu_to_le16(phyctl1); 6677 6678 if (use_rts || use_cts) { 6679 phyctl1 = brcms_c_phytxctl1_calc(wlc, rts_rspec[0]); 6680 txh->PhyTxControlWord_1_Rts = cpu_to_le16(phyctl1); 6681 phyctl1 = brcms_c_phytxctl1_calc(wlc, rts_rspec[1]); 6682 txh->PhyTxControlWord_1_FbrRts = cpu_to_le16(phyctl1); 6683 } 6684 6685 /* 6686 * For mcs frames, if mixedmode(overloaded with long preamble) 6687 * is going to be set, fill in non-zero MModeLen and/or 6688 * MModeFbrLen it will be unnecessary if they are separated 6689 */ 6690 if (is_mcs_rate(rspec[0]) && 6691 (preamble_type[0] == BRCMS_MM_PREAMBLE)) { 6692 u16 mmodelen = 6693 brcms_c_calc_lsig_len(wlc, rspec[0], phylen); 6694 txh->MModeLen = cpu_to_le16(mmodelen); 6695 } 6696 6697 if (is_mcs_rate(rspec[1]) && 6698 (preamble_type[1] == BRCMS_MM_PREAMBLE)) { 6699 u16 mmodefbrlen = 6700 brcms_c_calc_lsig_len(wlc, rspec[1], phylen); 6701 txh->MModeFbrLen = cpu_to_le16(mmodefbrlen); 6702 } 6703 } 6704 6705 ac = skb_get_queue_mapping(p); 6706 if ((scb->flags & SCB_WMECAP) && qos && wlc->edcf_txop[ac]) { 6707 uint frag_dur, dur, dur_fallback; 6708 6709 /* WME: Update TXOP threshold */ 6710 if (!(tx_info->flags & IEEE80211_TX_CTL_AMPDU) && frag == 0) { 6711 frag_dur = 6712 brcms_c_calc_frame_time(wlc, rspec[0], 6713 preamble_type[0], phylen); 6714 6715 if (rts) { 6716 /* 1 RTS or CTS-to-self frame */ 6717 dur = 6718 brcms_c_calc_cts_time(wlc, rts_rspec[0], 6719 rts_preamble_type[0]); 6720 dur_fallback = 6721 brcms_c_calc_cts_time(wlc, rts_rspec[1], 6722 rts_preamble_type[1]); 6723 /* (SIFS + CTS) + SIFS + frame + SIFS + ACK */ 6724 dur += le16_to_cpu(rts->duration); 6725 dur_fallback += 6726 le16_to_cpu(txh->RTSDurFallback); 6727 } else if (use_rifs) { 6728 dur = frag_dur; 6729 dur_fallback = 0; 6730 } else { 6731 /* frame + SIFS + ACK */ 6732 dur = frag_dur; 6733 dur += 6734 brcms_c_compute_frame_dur(wlc, rspec[0], 6735 preamble_type[0], 0); 6736 6737 dur_fallback = 6738 brcms_c_calc_frame_time(wlc, rspec[1], 6739 preamble_type[1], 6740 phylen); 6741 dur_fallback += 6742 brcms_c_compute_frame_dur(wlc, rspec[1], 6743 preamble_type[1], 0); 6744 } 6745 /* NEED to set TxFesTimeNormal (hard) */ 6746 txh->TxFesTimeNormal = cpu_to_le16((u16) dur); 6747 /* 6748 * NEED to set fallback rate version of 6749 * TxFesTimeNormal (hard) 6750 */ 6751 txh->TxFesTimeFallback = 6752 cpu_to_le16((u16) dur_fallback); 6753 6754 /* 6755 * update txop byte threshold (txop minus intraframe 6756 * overhead) 6757 */ 6758 if (wlc->edcf_txop[ac] >= (dur - frag_dur)) { 6759 uint newfragthresh; 6760 6761 newfragthresh = 6762 brcms_c_calc_frame_len(wlc, 6763 rspec[0], preamble_type[0], 6764 (wlc->edcf_txop[ac] - 6765 (dur - frag_dur))); 6766 /* range bound the fragthreshold */ 6767 if (newfragthresh < DOT11_MIN_FRAG_LEN) 6768 newfragthresh = 6769 DOT11_MIN_FRAG_LEN; 6770 else if (newfragthresh > 6771 wlc->usr_fragthresh) 6772 newfragthresh = 6773 wlc->usr_fragthresh; 6774 /* update the fragthresh and do txc update */ 6775 if (wlc->fragthresh[queue] != 6776 (u16) newfragthresh) 6777 wlc->fragthresh[queue] = 6778 (u16) newfragthresh; 6779 } else { 6780 brcms_warn(wlc->hw->d11core, 6781 "wl%d: %s txop invalid for rate %d\n", 6782 wlc->pub->unit, fifo_names[queue], 6783 rspec2rate(rspec[0])); 6784 } 6785 6786 if (dur > wlc->edcf_txop[ac]) 6787 brcms_warn(wlc->hw->d11core, 6788 "wl%d: %s: %s txop exceeded phylen %d/%d dur %d/%d\n", 6789 wlc->pub->unit, __func__, 6790 fifo_names[queue], 6791 phylen, wlc->fragthresh[queue], 6792 dur, wlc->edcf_txop[ac]); 6793 } 6794 } 6795 6796 return 0; 6797 } 6798 6799 static int brcms_c_tx(struct brcms_c_info *wlc, struct sk_buff *skb) 6800 { 6801 struct dma_pub *dma; 6802 int fifo, ret = -ENOSPC; 6803 struct d11txh *txh; 6804 u16 frameid = INVALIDFID; 6805 6806 fifo = brcms_ac_to_fifo(skb_get_queue_mapping(skb)); 6807 dma = wlc->hw->di[fifo]; 6808 txh = (struct d11txh *)(skb->data); 6809 6810 if (dma->txavail == 0) { 6811 /* 6812 * We sometimes get a frame from mac80211 after stopping 6813 * the queues. This only ever seems to be a single frame 6814 * and is seems likely to be a race. TX_HEADROOM should 6815 * ensure that we have enough space to handle these stray 6816 * packets, so warn if there isn't. If we're out of space 6817 * in the tx ring and the tx queue isn't stopped then 6818 * we've really got a bug; warn loudly if that happens. 6819 */ 6820 brcms_warn(wlc->hw->d11core, 6821 "Received frame for tx with no space in DMA ring\n"); 6822 WARN_ON(!ieee80211_queue_stopped(wlc->pub->ieee_hw, 6823 skb_get_queue_mapping(skb))); 6824 return -ENOSPC; 6825 } 6826 6827 /* When a BC/MC frame is being committed to the BCMC fifo 6828 * via DMA (NOT PIO), update ucode or BSS info as appropriate. 6829 */ 6830 if (fifo == TX_BCMC_FIFO) 6831 frameid = le16_to_cpu(txh->TxFrameID); 6832 6833 /* Commit BCMC sequence number in the SHM frame ID location */ 6834 if (frameid != INVALIDFID) { 6835 /* 6836 * To inform the ucode of the last mcast frame posted 6837 * so that it can clear moredata bit 6838 */ 6839 brcms_b_write_shm(wlc->hw, M_BCMC_FID, frameid); 6840 } 6841 6842 ret = brcms_c_txfifo(wlc, fifo, skb); 6843 /* 6844 * The only reason for brcms_c_txfifo to fail is because 6845 * there weren't any DMA descriptors, but we've already 6846 * checked for that. So if it does fail yell loudly. 6847 */ 6848 WARN_ON_ONCE(ret); 6849 6850 return ret; 6851 } 6852 6853 bool brcms_c_sendpkt_mac80211(struct brcms_c_info *wlc, struct sk_buff *sdu, 6854 struct ieee80211_hw *hw) 6855 { 6856 uint fifo; 6857 struct scb *scb = &wlc->pri_scb; 6858 6859 fifo = brcms_ac_to_fifo(skb_get_queue_mapping(sdu)); 6860 brcms_c_d11hdrs_mac80211(wlc, hw, sdu, scb, 0, 1, fifo, 0); 6861 if (!brcms_c_tx(wlc, sdu)) 6862 return true; 6863 6864 /* packet discarded */ 6865 dev_kfree_skb_any(sdu); 6866 return false; 6867 } 6868 6869 int 6870 brcms_c_txfifo(struct brcms_c_info *wlc, uint fifo, struct sk_buff *p) 6871 { 6872 struct dma_pub *dma = wlc->hw->di[fifo]; 6873 int ret; 6874 u16 queue; 6875 6876 ret = dma_txfast(wlc, dma, p); 6877 if (ret < 0) 6878 wiphy_err(wlc->wiphy, "txfifo: fatal, toss frames !!!\n"); 6879 6880 /* 6881 * Stop queue if DMA ring is full. Reserve some free descriptors, 6882 * as we sometimes receive a frame from mac80211 after the queues 6883 * are stopped. 6884 */ 6885 queue = skb_get_queue_mapping(p); 6886 if (dma->txavail <= TX_HEADROOM && fifo < TX_BCMC_FIFO && 6887 !ieee80211_queue_stopped(wlc->pub->ieee_hw, queue)) 6888 ieee80211_stop_queue(wlc->pub->ieee_hw, queue); 6889 6890 return ret; 6891 } 6892 6893 u32 6894 brcms_c_rspec_to_rts_rspec(struct brcms_c_info *wlc, u32 rspec, 6895 bool use_rspec, u16 mimo_ctlchbw) 6896 { 6897 u32 rts_rspec = 0; 6898 6899 if (use_rspec) 6900 /* use frame rate as rts rate */ 6901 rts_rspec = rspec; 6902 else if (wlc->band->gmode && wlc->protection->_g && !is_cck_rate(rspec)) 6903 /* Use 11Mbps as the g protection RTS target rate and fallback. 6904 * Use the brcms_basic_rate() lookup to find the best basic rate 6905 * under the target in case 11 Mbps is not Basic. 6906 * 6 and 9 Mbps are not usually selected by rate selection, but 6907 * even if the OFDM rate we are protecting is 6 or 9 Mbps, 11 6908 * is more robust. 6909 */ 6910 rts_rspec = brcms_basic_rate(wlc, BRCM_RATE_11M); 6911 else 6912 /* calculate RTS rate and fallback rate based on the frame rate 6913 * RTS must be sent at a basic rate since it is a 6914 * control frame, sec 9.6 of 802.11 spec 6915 */ 6916 rts_rspec = brcms_basic_rate(wlc, rspec); 6917 6918 if (BRCMS_PHY_11N_CAP(wlc->band)) { 6919 /* set rts txbw to correct side band */ 6920 rts_rspec &= ~RSPEC_BW_MASK; 6921 6922 /* 6923 * if rspec/rspec_fallback is 40MHz, then send RTS on both 6924 * 20MHz channel (DUP), otherwise send RTS on control channel 6925 */ 6926 if (rspec_is40mhz(rspec) && !is_cck_rate(rts_rspec)) 6927 rts_rspec |= (PHY_TXC1_BW_40MHZ_DUP << RSPEC_BW_SHIFT); 6928 else 6929 rts_rspec |= (mimo_ctlchbw << RSPEC_BW_SHIFT); 6930 6931 /* pick siso/cdd as default for ofdm */ 6932 if (is_ofdm_rate(rts_rspec)) { 6933 rts_rspec &= ~RSPEC_STF_MASK; 6934 rts_rspec |= (wlc->stf->ss_opmode << RSPEC_STF_SHIFT); 6935 } 6936 } 6937 return rts_rspec; 6938 } 6939 6940 /* Update beacon listen interval in shared memory */ 6941 static void brcms_c_bcn_li_upd(struct brcms_c_info *wlc) 6942 { 6943 /* wake up every DTIM is the default */ 6944 if (wlc->bcn_li_dtim == 1) 6945 brcms_b_write_shm(wlc->hw, M_BCN_LI, 0); 6946 else 6947 brcms_b_write_shm(wlc->hw, M_BCN_LI, 6948 (wlc->bcn_li_dtim << 8) | wlc->bcn_li_bcn); 6949 } 6950 6951 static void 6952 brcms_b_read_tsf(struct brcms_hardware *wlc_hw, u32 *tsf_l_ptr, 6953 u32 *tsf_h_ptr) 6954 { 6955 struct bcma_device *core = wlc_hw->d11core; 6956 6957 /* read the tsf timer low, then high to get an atomic read */ 6958 *tsf_l_ptr = bcma_read32(core, D11REGOFFS(tsf_timerlow)); 6959 *tsf_h_ptr = bcma_read32(core, D11REGOFFS(tsf_timerhigh)); 6960 } 6961 6962 /* 6963 * recover 64bit TSF value from the 16bit TSF value in the rx header 6964 * given the assumption that the TSF passed in header is within 65ms 6965 * of the current tsf. 6966 * 6967 * 6 5 4 4 3 2 1 6968 * 3.......6.......8.......0.......2.......4.......6.......8......0 6969 * |<---------- tsf_h ----------->||<--- tsf_l -->||<-RxTSFTime ->| 6970 * 6971 * The RxTSFTime are the lowest 16 bits and provided by the ucode. The 6972 * tsf_l is filled in by brcms_b_recv, which is done earlier in the 6973 * receive call sequence after rx interrupt. Only the higher 16 bits 6974 * are used. Finally, the tsf_h is read from the tsf register. 6975 */ 6976 static u64 brcms_c_recover_tsf64(struct brcms_c_info *wlc, 6977 struct d11rxhdr *rxh) 6978 { 6979 u32 tsf_h, tsf_l; 6980 u16 rx_tsf_0_15, rx_tsf_16_31; 6981 6982 brcms_b_read_tsf(wlc->hw, &tsf_l, &tsf_h); 6983 6984 rx_tsf_16_31 = (u16)(tsf_l >> 16); 6985 rx_tsf_0_15 = rxh->RxTSFTime; 6986 6987 /* 6988 * a greater tsf time indicates the low 16 bits of 6989 * tsf_l wrapped, so decrement the high 16 bits. 6990 */ 6991 if ((u16)tsf_l < rx_tsf_0_15) { 6992 rx_tsf_16_31 -= 1; 6993 if (rx_tsf_16_31 == 0xffff) 6994 tsf_h -= 1; 6995 } 6996 6997 return ((u64)tsf_h << 32) | (((u32)rx_tsf_16_31 << 16) + rx_tsf_0_15); 6998 } 6999 7000 static void 7001 prep_mac80211_status(struct brcms_c_info *wlc, struct d11rxhdr *rxh, 7002 struct sk_buff *p, 7003 struct ieee80211_rx_status *rx_status) 7004 { 7005 int channel; 7006 u32 rspec; 7007 unsigned char *plcp; 7008 7009 /* fill in TSF and flag its presence */ 7010 rx_status->mactime = brcms_c_recover_tsf64(wlc, rxh); 7011 rx_status->flag |= RX_FLAG_MACTIME_START; 7012 7013 channel = BRCMS_CHAN_CHANNEL(rxh->RxChan); 7014 7015 rx_status->band = 7016 channel > 14 ? NL80211_BAND_5GHZ : NL80211_BAND_2GHZ; 7017 rx_status->freq = 7018 ieee80211_channel_to_frequency(channel, rx_status->band); 7019 7020 rx_status->signal = wlc_phy_rssi_compute(wlc->hw->band->pi, rxh); 7021 7022 /* noise */ 7023 /* qual */ 7024 rx_status->antenna = 7025 (rxh->PhyRxStatus_0 & PRXS0_RXANT_UPSUBBAND) ? 1 : 0; 7026 7027 plcp = p->data; 7028 7029 rspec = brcms_c_compute_rspec(rxh, plcp); 7030 if (is_mcs_rate(rspec)) { 7031 rx_status->rate_idx = rspec & RSPEC_RATE_MASK; 7032 rx_status->encoding = RX_ENC_HT; 7033 if (rspec_is40mhz(rspec)) 7034 rx_status->bw = RATE_INFO_BW_40; 7035 } else { 7036 switch (rspec2rate(rspec)) { 7037 case BRCM_RATE_1M: 7038 rx_status->rate_idx = 0; 7039 break; 7040 case BRCM_RATE_2M: 7041 rx_status->rate_idx = 1; 7042 break; 7043 case BRCM_RATE_5M5: 7044 rx_status->rate_idx = 2; 7045 break; 7046 case BRCM_RATE_11M: 7047 rx_status->rate_idx = 3; 7048 break; 7049 case BRCM_RATE_6M: 7050 rx_status->rate_idx = 4; 7051 break; 7052 case BRCM_RATE_9M: 7053 rx_status->rate_idx = 5; 7054 break; 7055 case BRCM_RATE_12M: 7056 rx_status->rate_idx = 6; 7057 break; 7058 case BRCM_RATE_18M: 7059 rx_status->rate_idx = 7; 7060 break; 7061 case BRCM_RATE_24M: 7062 rx_status->rate_idx = 8; 7063 break; 7064 case BRCM_RATE_36M: 7065 rx_status->rate_idx = 9; 7066 break; 7067 case BRCM_RATE_48M: 7068 rx_status->rate_idx = 10; 7069 break; 7070 case BRCM_RATE_54M: 7071 rx_status->rate_idx = 11; 7072 break; 7073 default: 7074 brcms_err(wlc->hw->d11core, 7075 "%s: Unknown rate\n", __func__); 7076 } 7077 7078 /* 7079 * For 5GHz, we should decrease the index as it is 7080 * a subset of the 2.4G rates. See bitrates field 7081 * of brcms_band_5GHz_nphy (in mac80211_if.c). 7082 */ 7083 if (rx_status->band == NL80211_BAND_5GHZ) 7084 rx_status->rate_idx -= BRCMS_LEGACY_5G_RATE_OFFSET; 7085 7086 /* Determine short preamble and rate_idx */ 7087 if (is_cck_rate(rspec)) { 7088 if (rxh->PhyRxStatus_0 & PRXS0_SHORTH) 7089 rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE; 7090 } else if (is_ofdm_rate(rspec)) { 7091 rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE; 7092 } else { 7093 brcms_err(wlc->hw->d11core, "%s: Unknown modulation\n", 7094 __func__); 7095 } 7096 } 7097 7098 if (plcp3_issgi(plcp[3])) 7099 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI; 7100 7101 if (rxh->RxStatus1 & RXS_DECERR) { 7102 rx_status->flag |= RX_FLAG_FAILED_PLCP_CRC; 7103 brcms_err(wlc->hw->d11core, "%s: RX_FLAG_FAILED_PLCP_CRC\n", 7104 __func__); 7105 } 7106 if (rxh->RxStatus1 & RXS_FCSERR) { 7107 rx_status->flag |= RX_FLAG_FAILED_FCS_CRC; 7108 brcms_err(wlc->hw->d11core, "%s: RX_FLAG_FAILED_FCS_CRC\n", 7109 __func__); 7110 } 7111 } 7112 7113 static void 7114 brcms_c_recvctl(struct brcms_c_info *wlc, struct d11rxhdr *rxh, 7115 struct sk_buff *p) 7116 { 7117 int len_mpdu; 7118 struct ieee80211_rx_status rx_status; 7119 struct ieee80211_hdr *hdr; 7120 7121 memset(&rx_status, 0, sizeof(rx_status)); 7122 prep_mac80211_status(wlc, rxh, p, &rx_status); 7123 7124 /* mac header+body length, exclude CRC and plcp header */ 7125 len_mpdu = p->len - D11_PHY_HDR_LEN - FCS_LEN; 7126 skb_pull(p, D11_PHY_HDR_LEN); 7127 __skb_trim(p, len_mpdu); 7128 7129 /* unmute transmit */ 7130 if (wlc->hw->suspended_fifos) { 7131 hdr = (struct ieee80211_hdr *)p->data; 7132 if (ieee80211_is_beacon(hdr->frame_control)) 7133 brcms_b_mute(wlc->hw, false); 7134 } 7135 7136 memcpy(IEEE80211_SKB_RXCB(p), &rx_status, sizeof(rx_status)); 7137 ieee80211_rx_irqsafe(wlc->pub->ieee_hw, p); 7138 } 7139 7140 /* calculate frame duration for Mixed-mode L-SIG spoofing, return 7141 * number of bytes goes in the length field 7142 * 7143 * Formula given by HT PHY Spec v 1.13 7144 * len = 3(nsyms + nstream + 3) - 3 7145 */ 7146 u16 7147 brcms_c_calc_lsig_len(struct brcms_c_info *wlc, u32 ratespec, 7148 uint mac_len) 7149 { 7150 uint nsyms, len = 0, kNdps; 7151 7152 if (is_mcs_rate(ratespec)) { 7153 uint mcs = ratespec & RSPEC_RATE_MASK; 7154 int tot_streams = (mcs_2_txstreams(mcs) + 1) + 7155 rspec_stc(ratespec); 7156 7157 /* 7158 * the payload duration calculation matches that 7159 * of regular ofdm 7160 */ 7161 /* 1000Ndbps = kbps * 4 */ 7162 kNdps = mcs_2_rate(mcs, rspec_is40mhz(ratespec), 7163 rspec_issgi(ratespec)) * 4; 7164 7165 if (rspec_stc(ratespec) == 0) 7166 nsyms = 7167 CEIL((APHY_SERVICE_NBITS + 8 * mac_len + 7168 APHY_TAIL_NBITS) * 1000, kNdps); 7169 else 7170 /* STBC needs to have even number of symbols */ 7171 nsyms = 7172 2 * 7173 CEIL((APHY_SERVICE_NBITS + 8 * mac_len + 7174 APHY_TAIL_NBITS) * 1000, 2 * kNdps); 7175 7176 /* (+3) account for HT-SIG(2) and HT-STF(1) */ 7177 nsyms += (tot_streams + 3); 7178 /* 7179 * 3 bytes/symbol @ legacy 6Mbps rate 7180 * (-3) excluding service bits and tail bits 7181 */ 7182 len = (3 * nsyms) - 3; 7183 } 7184 7185 return (u16) len; 7186 } 7187 7188 static void 7189 brcms_c_mod_prb_rsp_rate_table(struct brcms_c_info *wlc, uint frame_len) 7190 { 7191 const struct brcms_c_rateset *rs_dflt; 7192 struct brcms_c_rateset rs; 7193 u8 rate; 7194 u16 entry_ptr; 7195 u8 plcp[D11_PHY_HDR_LEN]; 7196 u16 dur, sifs; 7197 uint i; 7198 7199 sifs = get_sifs(wlc->band); 7200 7201 rs_dflt = brcms_c_rateset_get_hwrs(wlc); 7202 7203 brcms_c_rateset_copy(rs_dflt, &rs); 7204 brcms_c_rateset_mcs_upd(&rs, wlc->stf->txstreams); 7205 7206 /* 7207 * walk the phy rate table and update MAC core SHM 7208 * basic rate table entries 7209 */ 7210 for (i = 0; i < rs.count; i++) { 7211 rate = rs.rates[i] & BRCMS_RATE_MASK; 7212 7213 entry_ptr = brcms_b_rate_shm_offset(wlc->hw, rate); 7214 7215 /* Calculate the Probe Response PLCP for the given rate */ 7216 brcms_c_compute_plcp(wlc, rate, frame_len, plcp); 7217 7218 /* 7219 * Calculate the duration of the Probe Response 7220 * frame plus SIFS for the MAC 7221 */ 7222 dur = (u16) brcms_c_calc_frame_time(wlc, rate, 7223 BRCMS_LONG_PREAMBLE, frame_len); 7224 dur += sifs; 7225 7226 /* Update the SHM Rate Table entry Probe Response values */ 7227 brcms_b_write_shm(wlc->hw, entry_ptr + M_RT_PRS_PLCP_POS, 7228 (u16) (plcp[0] + (plcp[1] << 8))); 7229 brcms_b_write_shm(wlc->hw, entry_ptr + M_RT_PRS_PLCP_POS + 2, 7230 (u16) (plcp[2] + (plcp[3] << 8))); 7231 brcms_b_write_shm(wlc->hw, entry_ptr + M_RT_PRS_DUR_POS, dur); 7232 } 7233 } 7234 7235 int brcms_c_get_header_len(void) 7236 { 7237 return TXOFF; 7238 } 7239 7240 static void brcms_c_beacon_write(struct brcms_c_info *wlc, 7241 struct sk_buff *beacon, u16 tim_offset, 7242 u16 dtim_period, bool bcn0, bool bcn1) 7243 { 7244 size_t len; 7245 struct ieee80211_tx_info *tx_info; 7246 struct brcms_hardware *wlc_hw = wlc->hw; 7247 struct ieee80211_hw *ieee_hw = brcms_c_pub(wlc)->ieee_hw; 7248 7249 /* Get tx_info */ 7250 tx_info = IEEE80211_SKB_CB(beacon); 7251 7252 len = min_t(size_t, beacon->len, BCN_TMPL_LEN); 7253 wlc->bcn_rspec = ieee80211_get_tx_rate(ieee_hw, tx_info)->hw_value; 7254 7255 brcms_c_compute_plcp(wlc, wlc->bcn_rspec, 7256 len + FCS_LEN - D11_PHY_HDR_LEN, beacon->data); 7257 7258 /* "Regular" and 16 MBSS but not for 4 MBSS */ 7259 /* Update the phytxctl for the beacon based on the rspec */ 7260 brcms_c_beacon_phytxctl_txant_upd(wlc, wlc->bcn_rspec); 7261 7262 if (bcn0) { 7263 /* write the probe response into the template region */ 7264 brcms_b_write_template_ram(wlc_hw, T_BCN0_TPL_BASE, 7265 (len + 3) & ~3, beacon->data); 7266 7267 /* write beacon length to SCR */ 7268 brcms_b_write_shm(wlc_hw, M_BCN0_FRM_BYTESZ, (u16) len); 7269 } 7270 if (bcn1) { 7271 /* write the probe response into the template region */ 7272 brcms_b_write_template_ram(wlc_hw, T_BCN1_TPL_BASE, 7273 (len + 3) & ~3, beacon->data); 7274 7275 /* write beacon length to SCR */ 7276 brcms_b_write_shm(wlc_hw, M_BCN1_FRM_BYTESZ, (u16) len); 7277 } 7278 7279 if (tim_offset != 0) { 7280 brcms_b_write_shm(wlc_hw, M_TIMBPOS_INBEACON, 7281 tim_offset + D11B_PHY_HDR_LEN); 7282 brcms_b_write_shm(wlc_hw, M_DOT11_DTIMPERIOD, dtim_period); 7283 } else { 7284 brcms_b_write_shm(wlc_hw, M_TIMBPOS_INBEACON, 7285 len + D11B_PHY_HDR_LEN); 7286 brcms_b_write_shm(wlc_hw, M_DOT11_DTIMPERIOD, 0); 7287 } 7288 } 7289 7290 static void brcms_c_update_beacon_hw(struct brcms_c_info *wlc, 7291 struct sk_buff *beacon, u16 tim_offset, 7292 u16 dtim_period) 7293 { 7294 struct brcms_hardware *wlc_hw = wlc->hw; 7295 struct bcma_device *core = wlc_hw->d11core; 7296 7297 /* Hardware beaconing for this config */ 7298 u32 both_valid = MCMD_BCN0VLD | MCMD_BCN1VLD; 7299 7300 /* Check if both templates are in use, if so sched. an interrupt 7301 * that will call back into this routine 7302 */ 7303 if ((bcma_read32(core, D11REGOFFS(maccommand)) & both_valid) == both_valid) 7304 /* clear any previous status */ 7305 bcma_write32(core, D11REGOFFS(macintstatus), MI_BCNTPL); 7306 7307 if (wlc->beacon_template_virgin) { 7308 wlc->beacon_template_virgin = false; 7309 brcms_c_beacon_write(wlc, beacon, tim_offset, dtim_period, true, 7310 true); 7311 /* mark beacon0 valid */ 7312 bcma_set32(core, D11REGOFFS(maccommand), MCMD_BCN0VLD); 7313 return; 7314 } 7315 7316 /* Check that after scheduling the interrupt both of the 7317 * templates are still busy. if not clear the int. & remask 7318 */ 7319 if ((bcma_read32(core, D11REGOFFS(maccommand)) & both_valid) == both_valid) { 7320 wlc->defmacintmask |= MI_BCNTPL; 7321 return; 7322 } 7323 7324 if (!(bcma_read32(core, D11REGOFFS(maccommand)) & MCMD_BCN0VLD)) { 7325 brcms_c_beacon_write(wlc, beacon, tim_offset, dtim_period, true, 7326 false); 7327 /* mark beacon0 valid */ 7328 bcma_set32(core, D11REGOFFS(maccommand), MCMD_BCN0VLD); 7329 return; 7330 } 7331 if (!(bcma_read32(core, D11REGOFFS(maccommand)) & MCMD_BCN1VLD)) { 7332 brcms_c_beacon_write(wlc, beacon, tim_offset, dtim_period, 7333 false, true); 7334 /* mark beacon0 valid */ 7335 bcma_set32(core, D11REGOFFS(maccommand), MCMD_BCN1VLD); 7336 } 7337 } 7338 7339 /* 7340 * Update all beacons for the system. 7341 */ 7342 void brcms_c_update_beacon(struct brcms_c_info *wlc) 7343 { 7344 struct brcms_bss_cfg *bsscfg = wlc->bsscfg; 7345 7346 if (wlc->pub->up && (bsscfg->type == BRCMS_TYPE_AP || 7347 bsscfg->type == BRCMS_TYPE_ADHOC)) { 7348 /* Clear the soft intmask */ 7349 wlc->defmacintmask &= ~MI_BCNTPL; 7350 if (!wlc->beacon) 7351 return; 7352 brcms_c_update_beacon_hw(wlc, wlc->beacon, 7353 wlc->beacon_tim_offset, 7354 wlc->beacon_dtim_period); 7355 } 7356 } 7357 7358 void brcms_c_set_new_beacon(struct brcms_c_info *wlc, struct sk_buff *beacon, 7359 u16 tim_offset, u16 dtim_period) 7360 { 7361 if (!beacon) 7362 return; 7363 if (wlc->beacon) 7364 dev_kfree_skb_any(wlc->beacon); 7365 wlc->beacon = beacon; 7366 7367 /* add PLCP */ 7368 skb_push(wlc->beacon, D11_PHY_HDR_LEN); 7369 wlc->beacon_tim_offset = tim_offset; 7370 wlc->beacon_dtim_period = dtim_period; 7371 brcms_c_update_beacon(wlc); 7372 } 7373 7374 void brcms_c_set_new_probe_resp(struct brcms_c_info *wlc, 7375 struct sk_buff *probe_resp) 7376 { 7377 if (!probe_resp) 7378 return; 7379 if (wlc->probe_resp) 7380 dev_kfree_skb_any(wlc->probe_resp); 7381 wlc->probe_resp = probe_resp; 7382 7383 /* add PLCP */ 7384 skb_push(wlc->probe_resp, D11_PHY_HDR_LEN); 7385 brcms_c_update_probe_resp(wlc, false); 7386 } 7387 7388 void brcms_c_enable_probe_resp(struct brcms_c_info *wlc, bool enable) 7389 { 7390 /* 7391 * prevent ucode from sending probe responses by setting the timeout 7392 * to 1, it can not send it in that time frame. 7393 */ 7394 wlc->prb_resp_timeout = enable ? BRCMS_PRB_RESP_TIMEOUT : 1; 7395 brcms_b_write_shm(wlc->hw, M_PRS_MAXTIME, wlc->prb_resp_timeout); 7396 /* TODO: if (enable) => also deactivate receiving of probe request */ 7397 } 7398 7399 /* Write ssid into shared memory */ 7400 static void 7401 brcms_c_shm_ssid_upd(struct brcms_c_info *wlc, struct brcms_bss_cfg *cfg) 7402 { 7403 u8 *ssidptr = cfg->SSID; 7404 u16 base = M_SSID; 7405 u8 ssidbuf[IEEE80211_MAX_SSID_LEN]; 7406 7407 /* padding the ssid with zero and copy it into shm */ 7408 memset(ssidbuf, 0, IEEE80211_MAX_SSID_LEN); 7409 memcpy(ssidbuf, ssidptr, cfg->SSID_len); 7410 7411 brcms_c_copyto_shm(wlc, base, ssidbuf, IEEE80211_MAX_SSID_LEN); 7412 brcms_b_write_shm(wlc->hw, M_SSIDLEN, (u16) cfg->SSID_len); 7413 } 7414 7415 static void 7416 brcms_c_bss_update_probe_resp(struct brcms_c_info *wlc, 7417 struct brcms_bss_cfg *cfg, 7418 struct sk_buff *probe_resp, 7419 bool suspend) 7420 { 7421 int len; 7422 7423 len = min_t(size_t, probe_resp->len, BCN_TMPL_LEN); 7424 7425 if (suspend) 7426 brcms_c_suspend_mac_and_wait(wlc); 7427 7428 /* write the probe response into the template region */ 7429 brcms_b_write_template_ram(wlc->hw, T_PRS_TPL_BASE, 7430 (len + 3) & ~3, probe_resp->data); 7431 7432 /* write the length of the probe response frame (+PLCP/-FCS) */ 7433 brcms_b_write_shm(wlc->hw, M_PRB_RESP_FRM_LEN, (u16) len); 7434 7435 /* write the SSID and SSID length */ 7436 brcms_c_shm_ssid_upd(wlc, cfg); 7437 7438 /* 7439 * Write PLCP headers and durations for probe response frames 7440 * at all rates. Use the actual frame length covered by the 7441 * PLCP header for the call to brcms_c_mod_prb_rsp_rate_table() 7442 * by subtracting the PLCP len and adding the FCS. 7443 */ 7444 brcms_c_mod_prb_rsp_rate_table(wlc, 7445 (u16)len + FCS_LEN - D11_PHY_HDR_LEN); 7446 7447 if (suspend) 7448 brcms_c_enable_mac(wlc); 7449 } 7450 7451 void brcms_c_update_probe_resp(struct brcms_c_info *wlc, bool suspend) 7452 { 7453 struct brcms_bss_cfg *bsscfg = wlc->bsscfg; 7454 7455 /* update AP or IBSS probe responses */ 7456 if (wlc->pub->up && (bsscfg->type == BRCMS_TYPE_AP || 7457 bsscfg->type == BRCMS_TYPE_ADHOC)) { 7458 if (!wlc->probe_resp) 7459 return; 7460 brcms_c_bss_update_probe_resp(wlc, bsscfg, wlc->probe_resp, 7461 suspend); 7462 } 7463 } 7464 7465 int brcms_b_xmtfifo_sz_get(struct brcms_hardware *wlc_hw, uint fifo, 7466 uint *blocks) 7467 { 7468 if (fifo >= NFIFO) 7469 return -EINVAL; 7470 7471 *blocks = wlc_hw->xmtfifo_sz[fifo]; 7472 7473 return 0; 7474 } 7475 7476 void 7477 brcms_c_set_addrmatch(struct brcms_c_info *wlc, int match_reg_offset, 7478 const u8 *addr) 7479 { 7480 brcms_b_set_addrmatch(wlc->hw, match_reg_offset, addr); 7481 if (match_reg_offset == RCM_BSSID_OFFSET) 7482 memcpy(wlc->bsscfg->BSSID, addr, ETH_ALEN); 7483 } 7484 7485 /* 7486 * Flag 'scan in progress' to withhold dynamic phy calibration 7487 */ 7488 void brcms_c_scan_start(struct brcms_c_info *wlc) 7489 { 7490 wlc_phy_hold_upd(wlc->band->pi, PHY_HOLD_FOR_SCAN, true); 7491 } 7492 7493 void brcms_c_scan_stop(struct brcms_c_info *wlc) 7494 { 7495 wlc_phy_hold_upd(wlc->band->pi, PHY_HOLD_FOR_SCAN, false); 7496 } 7497 7498 void brcms_c_associate_upd(struct brcms_c_info *wlc, bool state) 7499 { 7500 wlc->pub->associated = state; 7501 } 7502 7503 /* 7504 * When a remote STA/AP is removed by Mac80211, or when it can no longer accept 7505 * AMPDU traffic, packets pending in hardware have to be invalidated so that 7506 * when later on hardware releases them, they can be handled appropriately. 7507 */ 7508 void brcms_c_inval_dma_pkts(struct brcms_hardware *hw, 7509 struct ieee80211_sta *sta, 7510 void (*dma_callback_fn)) 7511 { 7512 struct dma_pub *dmah; 7513 int i; 7514 for (i = 0; i < NFIFO; i++) { 7515 dmah = hw->di[i]; 7516 if (dmah != NULL) 7517 dma_walk_packets(dmah, dma_callback_fn, sta); 7518 } 7519 } 7520 7521 int brcms_c_get_curband(struct brcms_c_info *wlc) 7522 { 7523 return wlc->band->bandunit; 7524 } 7525 7526 bool brcms_c_tx_flush_completed(struct brcms_c_info *wlc) 7527 { 7528 int i; 7529 7530 /* Kick DMA to send any pending AMPDU */ 7531 for (i = 0; i < ARRAY_SIZE(wlc->hw->di); i++) 7532 if (wlc->hw->di[i]) 7533 dma_kick_tx(wlc->hw->di[i]); 7534 7535 return !brcms_txpktpendtot(wlc); 7536 } 7537 7538 void brcms_c_set_beacon_listen_interval(struct brcms_c_info *wlc, u8 interval) 7539 { 7540 wlc->bcn_li_bcn = interval; 7541 if (wlc->pub->up) 7542 brcms_c_bcn_li_upd(wlc); 7543 } 7544 7545 u64 brcms_c_tsf_get(struct brcms_c_info *wlc) 7546 { 7547 u32 tsf_h, tsf_l; 7548 u64 tsf; 7549 7550 brcms_b_read_tsf(wlc->hw, &tsf_l, &tsf_h); 7551 7552 tsf = tsf_h; 7553 tsf <<= 32; 7554 tsf |= tsf_l; 7555 7556 return tsf; 7557 } 7558 7559 void brcms_c_tsf_set(struct brcms_c_info *wlc, u64 tsf) 7560 { 7561 u32 tsf_h, tsf_l; 7562 7563 brcms_c_time_lock(wlc); 7564 7565 tsf_l = tsf; 7566 tsf_h = (tsf >> 32); 7567 7568 /* read the tsf timer low, then high to get an atomic read */ 7569 bcma_write32(wlc->hw->d11core, D11REGOFFS(tsf_timerlow), tsf_l); 7570 bcma_write32(wlc->hw->d11core, D11REGOFFS(tsf_timerhigh), tsf_h); 7571 7572 brcms_c_time_unlock(wlc); 7573 } 7574 7575 int brcms_c_set_tx_power(struct brcms_c_info *wlc, int txpwr) 7576 { 7577 uint qdbm; 7578 7579 /* Remove override bit and clip to max qdbm value */ 7580 qdbm = min_t(uint, txpwr * BRCMS_TXPWR_DB_FACTOR, 0xff); 7581 return wlc_phy_txpower_set(wlc->band->pi, qdbm, false); 7582 } 7583 7584 int brcms_c_get_tx_power(struct brcms_c_info *wlc) 7585 { 7586 uint qdbm; 7587 bool override; 7588 7589 wlc_phy_txpower_get(wlc->band->pi, &qdbm, &override); 7590 7591 /* Return qdbm units */ 7592 return (int)(qdbm / BRCMS_TXPWR_DB_FACTOR); 7593 } 7594 7595 /* Process received frames */ 7596 /* 7597 * Return true if more frames need to be processed. false otherwise. 7598 * Param 'bound' indicates max. # frames to process before break out. 7599 */ 7600 static void brcms_c_recv(struct brcms_c_info *wlc, struct sk_buff *p) 7601 { 7602 struct d11rxhdr *rxh; 7603 struct ieee80211_hdr *h; 7604 uint len; 7605 bool is_amsdu; 7606 7607 /* frame starts with rxhdr */ 7608 rxh = (struct d11rxhdr *) (p->data); 7609 7610 /* strip off rxhdr */ 7611 skb_pull(p, BRCMS_HWRXOFF); 7612 7613 /* MAC inserts 2 pad bytes for a4 headers or QoS or A-MSDU subframes */ 7614 if (rxh->RxStatus1 & RXS_PBPRES) { 7615 if (p->len < 2) { 7616 brcms_err(wlc->hw->d11core, 7617 "wl%d: recv: rcvd runt of len %d\n", 7618 wlc->pub->unit, p->len); 7619 goto toss; 7620 } 7621 skb_pull(p, 2); 7622 } 7623 7624 h = (struct ieee80211_hdr *)(p->data + D11_PHY_HDR_LEN); 7625 len = p->len; 7626 7627 if (rxh->RxStatus1 & RXS_FCSERR) { 7628 if (!(wlc->filter_flags & FIF_FCSFAIL)) 7629 goto toss; 7630 } 7631 7632 /* check received pkt has at least frame control field */ 7633 if (len < D11_PHY_HDR_LEN + sizeof(h->frame_control)) 7634 goto toss; 7635 7636 /* not supporting A-MSDU */ 7637 is_amsdu = rxh->RxStatus2 & RXS_AMSDU_MASK; 7638 if (is_amsdu) 7639 goto toss; 7640 7641 brcms_c_recvctl(wlc, rxh, p); 7642 return; 7643 7644 toss: 7645 brcmu_pkt_buf_free_skb(p); 7646 } 7647 7648 /* Process received frames */ 7649 /* 7650 * Return true if more frames need to be processed. false otherwise. 7651 * Param 'bound' indicates max. # frames to process before break out. 7652 */ 7653 static bool 7654 brcms_b_recv(struct brcms_hardware *wlc_hw, uint fifo, bool bound) 7655 { 7656 struct sk_buff *p; 7657 struct sk_buff *next = NULL; 7658 struct sk_buff_head recv_frames; 7659 7660 uint n = 0; 7661 uint bound_limit = bound ? RXBND : -1; 7662 bool morepending = false; 7663 7664 skb_queue_head_init(&recv_frames); 7665 7666 /* gather received frames */ 7667 do { 7668 /* !give others some time to run! */ 7669 if (n >= bound_limit) 7670 break; 7671 7672 morepending = dma_rx(wlc_hw->di[fifo], &recv_frames); 7673 n++; 7674 } while (morepending); 7675 7676 /* post more rbufs */ 7677 dma_rxfill(wlc_hw->di[fifo]); 7678 7679 /* process each frame */ 7680 skb_queue_walk_safe(&recv_frames, p, next) { 7681 struct d11rxhdr_le *rxh_le; 7682 struct d11rxhdr *rxh; 7683 7684 skb_unlink(p, &recv_frames); 7685 rxh_le = (struct d11rxhdr_le *)p->data; 7686 rxh = (struct d11rxhdr *)p->data; 7687 7688 /* fixup rx header endianness */ 7689 rxh->RxFrameSize = le16_to_cpu(rxh_le->RxFrameSize); 7690 rxh->PhyRxStatus_0 = le16_to_cpu(rxh_le->PhyRxStatus_0); 7691 rxh->PhyRxStatus_1 = le16_to_cpu(rxh_le->PhyRxStatus_1); 7692 rxh->PhyRxStatus_2 = le16_to_cpu(rxh_le->PhyRxStatus_2); 7693 rxh->PhyRxStatus_3 = le16_to_cpu(rxh_le->PhyRxStatus_3); 7694 rxh->PhyRxStatus_4 = le16_to_cpu(rxh_le->PhyRxStatus_4); 7695 rxh->PhyRxStatus_5 = le16_to_cpu(rxh_le->PhyRxStatus_5); 7696 rxh->RxStatus1 = le16_to_cpu(rxh_le->RxStatus1); 7697 rxh->RxStatus2 = le16_to_cpu(rxh_le->RxStatus2); 7698 rxh->RxTSFTime = le16_to_cpu(rxh_le->RxTSFTime); 7699 rxh->RxChan = le16_to_cpu(rxh_le->RxChan); 7700 7701 brcms_c_recv(wlc_hw->wlc, p); 7702 } 7703 7704 return morepending; 7705 } 7706 7707 /* second-level interrupt processing 7708 * Return true if another dpc needs to be re-scheduled. false otherwise. 7709 * Param 'bounded' indicates if applicable loops should be bounded. 7710 */ 7711 bool brcms_c_dpc(struct brcms_c_info *wlc, bool bounded) 7712 { 7713 u32 macintstatus; 7714 struct brcms_hardware *wlc_hw = wlc->hw; 7715 struct bcma_device *core = wlc_hw->d11core; 7716 7717 if (brcms_deviceremoved(wlc)) { 7718 brcms_err(core, "wl%d: %s: dead chip\n", wlc_hw->unit, 7719 __func__); 7720 brcms_down(wlc->wl); 7721 return false; 7722 } 7723 7724 /* grab and clear the saved software intstatus bits */ 7725 macintstatus = wlc->macintstatus; 7726 wlc->macintstatus = 0; 7727 7728 brcms_dbg_int(core, "wl%d: macintstatus 0x%x\n", 7729 wlc_hw->unit, macintstatus); 7730 7731 WARN_ON(macintstatus & MI_PRQ); /* PRQ Interrupt in non-MBSS */ 7732 7733 /* tx status */ 7734 if (macintstatus & MI_TFS) { 7735 bool fatal; 7736 if (brcms_b_txstatus(wlc->hw, bounded, &fatal)) 7737 wlc->macintstatus |= MI_TFS; 7738 if (fatal) { 7739 brcms_err(core, "MI_TFS: fatal\n"); 7740 goto fatal; 7741 } 7742 } 7743 7744 if (macintstatus & (MI_TBTT | MI_DTIM_TBTT)) 7745 brcms_c_tbtt(wlc); 7746 7747 /* ATIM window end */ 7748 if (macintstatus & MI_ATIMWINEND) { 7749 brcms_dbg_info(core, "end of ATIM window\n"); 7750 bcma_set32(core, D11REGOFFS(maccommand), wlc->qvalid); 7751 wlc->qvalid = 0; 7752 } 7753 7754 /* 7755 * received data or control frame, MI_DMAINT is 7756 * indication of RX_FIFO interrupt 7757 */ 7758 if (macintstatus & MI_DMAINT) 7759 if (brcms_b_recv(wlc_hw, RX_FIFO, bounded)) 7760 wlc->macintstatus |= MI_DMAINT; 7761 7762 /* noise sample collected */ 7763 if (macintstatus & MI_BG_NOISE) 7764 wlc_phy_noise_sample_intr(wlc_hw->band->pi); 7765 7766 if (macintstatus & MI_GP0) { 7767 brcms_err(core, "wl%d: PSM microcode watchdog fired at %d " 7768 "(seconds). Resetting.\n", wlc_hw->unit, wlc_hw->now); 7769 7770 printk_once("%s : PSM Watchdog, chipid 0x%x, chiprev 0x%x\n", 7771 __func__, ai_get_chip_id(wlc_hw->sih), 7772 ai_get_chiprev(wlc_hw->sih)); 7773 brcms_fatal_error(wlc_hw->wlc->wl); 7774 } 7775 7776 /* gptimer timeout */ 7777 if (macintstatus & MI_TO) 7778 bcma_write32(core, D11REGOFFS(gptimer), 0); 7779 7780 if (macintstatus & MI_RFDISABLE) { 7781 brcms_dbg_info(core, "wl%d: BMAC Detected a change on the" 7782 " RF Disable Input\n", wlc_hw->unit); 7783 brcms_rfkill_set_hw_state(wlc->wl); 7784 } 7785 7786 /* BCN template is available */ 7787 if (macintstatus & MI_BCNTPL) 7788 brcms_c_update_beacon(wlc); 7789 7790 /* it isn't done and needs to be resched if macintstatus is non-zero */ 7791 return wlc->macintstatus != 0; 7792 7793 fatal: 7794 brcms_fatal_error(wlc_hw->wlc->wl); 7795 return wlc->macintstatus != 0; 7796 } 7797 7798 void brcms_c_init(struct brcms_c_info *wlc, bool mute_tx) 7799 { 7800 struct bcma_device *core = wlc->hw->d11core; 7801 struct ieee80211_channel *ch = wlc->pub->ieee_hw->conf.chandef.chan; 7802 u16 chanspec; 7803 7804 brcms_dbg_info(core, "wl%d\n", wlc->pub->unit); 7805 7806 chanspec = ch20mhz_chspec(ch->hw_value); 7807 7808 brcms_b_init(wlc->hw, chanspec); 7809 7810 /* update beacon listen interval */ 7811 brcms_c_bcn_li_upd(wlc); 7812 7813 /* write ethernet address to core */ 7814 brcms_c_set_mac(wlc->bsscfg); 7815 brcms_c_set_bssid(wlc->bsscfg); 7816 7817 /* Update tsf_cfprep if associated and up */ 7818 if (wlc->pub->associated && wlc->pub->up) { 7819 u32 bi; 7820 7821 /* get beacon period and convert to uS */ 7822 bi = wlc->bsscfg->current_bss->beacon_period << 10; 7823 /* 7824 * update since init path would reset 7825 * to default value 7826 */ 7827 bcma_write32(core, D11REGOFFS(tsf_cfprep), 7828 bi << CFPREP_CBI_SHIFT); 7829 7830 /* Update maccontrol PM related bits */ 7831 brcms_c_set_ps_ctrl(wlc); 7832 } 7833 7834 brcms_c_bandinit_ordered(wlc, chanspec); 7835 7836 /* init probe response timeout */ 7837 brcms_b_write_shm(wlc->hw, M_PRS_MAXTIME, wlc->prb_resp_timeout); 7838 7839 /* init max burst txop (framebursting) */ 7840 brcms_b_write_shm(wlc->hw, M_MBURST_TXOP, 7841 (wlc-> 7842 _rifs ? (EDCF_AC_VO_TXOP_AP << 5) : MAXFRAMEBURST_TXOP)); 7843 7844 /* initialize maximum allowed duty cycle */ 7845 brcms_c_duty_cycle_set(wlc, wlc->tx_duty_cycle_ofdm, true, true); 7846 brcms_c_duty_cycle_set(wlc, wlc->tx_duty_cycle_cck, false, true); 7847 7848 /* 7849 * Update some shared memory locations related to 7850 * max AMPDU size allowed to received 7851 */ 7852 brcms_c_ampdu_shm_upd(wlc->ampdu); 7853 7854 /* band-specific inits */ 7855 brcms_c_bsinit(wlc); 7856 7857 /* Enable EDCF mode (while the MAC is suspended) */ 7858 bcma_set16(core, D11REGOFFS(ifs_ctl), IFS_USEEDCF); 7859 brcms_c_edcf_setparams(wlc, false); 7860 7861 /* read the ucode version if we have not yet done so */ 7862 if (wlc->ucode_rev == 0) { 7863 u16 rev; 7864 u16 patch; 7865 7866 rev = brcms_b_read_shm(wlc->hw, M_BOM_REV_MAJOR); 7867 patch = brcms_b_read_shm(wlc->hw, M_BOM_REV_MINOR); 7868 wlc->ucode_rev = (rev << NBITS(u16)) | patch; 7869 snprintf(wlc->wiphy->fw_version, 7870 sizeof(wlc->wiphy->fw_version), "%u.%u", rev, patch); 7871 } 7872 7873 /* ..now really unleash hell (allow the MAC out of suspend) */ 7874 brcms_c_enable_mac(wlc); 7875 7876 /* suspend the tx fifos and mute the phy for preism cac time */ 7877 if (mute_tx) 7878 brcms_b_mute(wlc->hw, true); 7879 7880 /* enable the RF Disable Delay timer */ 7881 bcma_write32(core, D11REGOFFS(rfdisabledly), RFDISABLE_DEFAULT); 7882 7883 /* 7884 * Initialize WME parameters; if they haven't been set by some other 7885 * mechanism (IOVar, etc) then read them from the hardware. 7886 */ 7887 if (GFIELD(wlc->wme_retries[0], EDCF_SHORT) == 0) { 7888 /* Uninitialized; read from HW */ 7889 int ac; 7890 7891 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 7892 wlc->wme_retries[ac] = 7893 brcms_b_read_shm(wlc->hw, M_AC_TXLMT_ADDR(ac)); 7894 } 7895 } 7896 7897 /* 7898 * The common driver entry routine. Error codes should be unique 7899 */ 7900 struct brcms_c_info * 7901 brcms_c_attach(struct brcms_info *wl, struct bcma_device *core, uint unit, 7902 bool piomode, uint *perr) 7903 { 7904 struct brcms_c_info *wlc; 7905 uint err = 0; 7906 uint i, j; 7907 struct brcms_pub *pub; 7908 7909 /* allocate struct brcms_c_info state and its substructures */ 7910 wlc = brcms_c_attach_malloc(unit, &err, 0); 7911 if (wlc == NULL) 7912 goto fail; 7913 wlc->wiphy = wl->wiphy; 7914 pub = wlc->pub; 7915 7916 #if defined(DEBUG) 7917 wlc_info_dbg = wlc; 7918 #endif 7919 7920 wlc->band = wlc->bandstate[0]; 7921 wlc->core = wlc->corestate; 7922 wlc->wl = wl; 7923 pub->unit = unit; 7924 pub->_piomode = piomode; 7925 wlc->bandinit_pending = false; 7926 wlc->beacon_template_virgin = true; 7927 7928 /* populate struct brcms_c_info with default values */ 7929 brcms_c_info_init(wlc, unit); 7930 7931 /* update sta/ap related parameters */ 7932 brcms_c_ap_upd(wlc); 7933 7934 /* 7935 * low level attach steps(all hw accesses go 7936 * inside, no more in rest of the attach) 7937 */ 7938 err = brcms_b_attach(wlc, core, unit, piomode); 7939 if (err) 7940 goto fail; 7941 7942 brcms_c_protection_upd(wlc, BRCMS_PROT_N_PAM_OVR, OFF); 7943 7944 pub->phy_11ncapable = BRCMS_PHY_11N_CAP(wlc->band); 7945 7946 /* disable allowed duty cycle */ 7947 wlc->tx_duty_cycle_ofdm = 0; 7948 wlc->tx_duty_cycle_cck = 0; 7949 7950 brcms_c_stf_phy_chain_calc(wlc); 7951 7952 /* txchain 1: txant 0, txchain 2: txant 1 */ 7953 if (BRCMS_ISNPHY(wlc->band) && (wlc->stf->txstreams == 1)) 7954 wlc->stf->txant = wlc->stf->hw_txchain - 1; 7955 7956 /* push to BMAC driver */ 7957 wlc_phy_stf_chain_init(wlc->band->pi, wlc->stf->hw_txchain, 7958 wlc->stf->hw_rxchain); 7959 7960 /* pull up some info resulting from the low attach */ 7961 for (i = 0; i < NFIFO; i++) 7962 wlc->core->txavail[i] = wlc->hw->txavail[i]; 7963 7964 memcpy(&wlc->perm_etheraddr, &wlc->hw->etheraddr, ETH_ALEN); 7965 memcpy(&pub->cur_etheraddr, &wlc->hw->etheraddr, ETH_ALEN); 7966 7967 for (j = 0; j < wlc->pub->_nbands; j++) { 7968 wlc->band = wlc->bandstate[j]; 7969 7970 if (!brcms_c_attach_stf_ant_init(wlc)) { 7971 err = 24; 7972 goto fail; 7973 } 7974 7975 /* default contention windows size limits */ 7976 wlc->band->CWmin = APHY_CWMIN; 7977 wlc->band->CWmax = PHY_CWMAX; 7978 7979 /* init gmode value */ 7980 if (wlc->band->bandtype == BRCM_BAND_2G) { 7981 wlc->band->gmode = GMODE_AUTO; 7982 brcms_c_protection_upd(wlc, BRCMS_PROT_G_USER, 7983 wlc->band->gmode); 7984 } 7985 7986 /* init _n_enab supported mode */ 7987 if (BRCMS_PHY_11N_CAP(wlc->band)) { 7988 pub->_n_enab = SUPPORT_11N; 7989 brcms_c_protection_upd(wlc, BRCMS_PROT_N_USER, 7990 ((pub->_n_enab == 7991 SUPPORT_11N) ? WL_11N_2x2 : 7992 WL_11N_3x3)); 7993 } 7994 7995 /* init per-band default rateset, depend on band->gmode */ 7996 brcms_default_rateset(wlc, &wlc->band->defrateset); 7997 7998 /* fill in hw_rateset */ 7999 brcms_c_rateset_filter(&wlc->band->defrateset, 8000 &wlc->band->hw_rateset, false, 8001 BRCMS_RATES_CCK_OFDM, BRCMS_RATE_MASK, 8002 (bool) (wlc->pub->_n_enab & SUPPORT_11N)); 8003 } 8004 8005 /* 8006 * update antenna config due to 8007 * wlc->stf->txant/txchain/ant_rx_ovr change 8008 */ 8009 brcms_c_stf_phy_txant_upd(wlc); 8010 8011 /* attach each modules */ 8012 err = brcms_c_attach_module(wlc); 8013 if (err != 0) 8014 goto fail; 8015 8016 if (!brcms_c_timers_init(wlc, unit)) { 8017 wiphy_err(wl->wiphy, "wl%d: %s: init_timer failed\n", unit, 8018 __func__); 8019 err = 32; 8020 goto fail; 8021 } 8022 8023 /* depend on rateset, gmode */ 8024 wlc->cmi = brcms_c_channel_mgr_attach(wlc); 8025 if (!wlc->cmi) { 8026 wiphy_err(wl->wiphy, "wl%d: %s: channel_mgr_attach failed" 8027 "\n", unit, __func__); 8028 err = 33; 8029 goto fail; 8030 } 8031 8032 /* init default when all parameters are ready, i.e. ->rateset */ 8033 brcms_c_bss_default_init(wlc); 8034 8035 /* 8036 * Complete the wlc default state initializations.. 8037 */ 8038 8039 wlc->bsscfg->wlc = wlc; 8040 8041 wlc->mimoft = FT_HT; 8042 wlc->mimo_40txbw = AUTO; 8043 wlc->ofdm_40txbw = AUTO; 8044 wlc->cck_40txbw = AUTO; 8045 brcms_c_update_mimo_band_bwcap(wlc, BRCMS_N_BW_20IN2G_40IN5G); 8046 8047 /* Set default values of SGI */ 8048 if (BRCMS_SGI_CAP_PHY(wlc)) { 8049 brcms_c_ht_update_sgi_rx(wlc, (BRCMS_N_SGI_20 | 8050 BRCMS_N_SGI_40)); 8051 } else if (BRCMS_ISSSLPNPHY(wlc->band)) { 8052 brcms_c_ht_update_sgi_rx(wlc, (BRCMS_N_SGI_20 | 8053 BRCMS_N_SGI_40)); 8054 } else { 8055 brcms_c_ht_update_sgi_rx(wlc, 0); 8056 } 8057 8058 brcms_b_antsel_set(wlc->hw, wlc->asi->antsel_avail); 8059 8060 if (perr) 8061 *perr = 0; 8062 8063 return wlc; 8064 8065 fail: 8066 wiphy_err(wl->wiphy, "wl%d: %s: failed with err %d\n", 8067 unit, __func__, err); 8068 if (wlc) 8069 brcms_c_detach(wlc); 8070 8071 if (perr) 8072 *perr = err; 8073 return NULL; 8074 } 8075