1 /* 2 * Copyright (c) 2010 Broadcom Corporation 3 * 4 * Permission to use, copy, modify, and/or distribute this software for any 5 * purpose with or without fee is hereby granted, provided that the above 6 * copyright notice and this permission notice appear in all copies. 7 * 8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY 11 * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION 13 * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN 14 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 15 */ 16 17 #include <linux/slab.h> 18 #include <linux/delay.h> 19 #include <linux/pci.h> 20 #include <net/cfg80211.h> 21 #include <net/mac80211.h> 22 23 #include <brcmu_utils.h> 24 #include <aiutils.h> 25 #include "types.h" 26 #include "main.h" 27 #include "dma.h" 28 #include "soc.h" 29 #include "scb.h" 30 #include "ampdu.h" 31 #include "debug.h" 32 #include "brcms_trace_events.h" 33 34 /* 35 * dma register field offset calculation 36 */ 37 #define DMA64REGOFFS(field) offsetof(struct dma64regs, field) 38 #define DMA64TXREGOFFS(di, field) (di->d64txregbase + DMA64REGOFFS(field)) 39 #define DMA64RXREGOFFS(di, field) (di->d64rxregbase + DMA64REGOFFS(field)) 40 41 /* 42 * DMA hardware requires each descriptor ring to be 8kB aligned, and fit within 43 * a contiguous 8kB physical address. 44 */ 45 #define D64RINGALIGN_BITS 13 46 #define D64MAXRINGSZ (1 << D64RINGALIGN_BITS) 47 #define D64RINGALIGN (1 << D64RINGALIGN_BITS) 48 49 #define D64MAXDD (D64MAXRINGSZ / sizeof(struct dma64desc)) 50 51 /* transmit channel control */ 52 #define D64_XC_XE 0x00000001 /* transmit enable */ 53 #define D64_XC_SE 0x00000002 /* transmit suspend request */ 54 #define D64_XC_LE 0x00000004 /* loopback enable */ 55 #define D64_XC_FL 0x00000010 /* flush request */ 56 #define D64_XC_PD 0x00000800 /* parity check disable */ 57 #define D64_XC_AE 0x00030000 /* address extension bits */ 58 #define D64_XC_AE_SHIFT 16 59 60 /* transmit descriptor table pointer */ 61 #define D64_XP_LD_MASK 0x00000fff /* last valid descriptor */ 62 63 /* transmit channel status */ 64 #define D64_XS0_CD_MASK 0x00001fff /* current descriptor pointer */ 65 #define D64_XS0_XS_MASK 0xf0000000 /* transmit state */ 66 #define D64_XS0_XS_SHIFT 28 67 #define D64_XS0_XS_DISABLED 0x00000000 /* disabled */ 68 #define D64_XS0_XS_ACTIVE 0x10000000 /* active */ 69 #define D64_XS0_XS_IDLE 0x20000000 /* idle wait */ 70 #define D64_XS0_XS_STOPPED 0x30000000 /* stopped */ 71 #define D64_XS0_XS_SUSP 0x40000000 /* suspend pending */ 72 73 #define D64_XS1_AD_MASK 0x00001fff /* active descriptor */ 74 #define D64_XS1_XE_MASK 0xf0000000 /* transmit errors */ 75 #define D64_XS1_XE_SHIFT 28 76 #define D64_XS1_XE_NOERR 0x00000000 /* no error */ 77 #define D64_XS1_XE_DPE 0x10000000 /* descriptor protocol error */ 78 #define D64_XS1_XE_DFU 0x20000000 /* data fifo underrun */ 79 #define D64_XS1_XE_DTE 0x30000000 /* data transfer error */ 80 #define D64_XS1_XE_DESRE 0x40000000 /* descriptor read error */ 81 #define D64_XS1_XE_COREE 0x50000000 /* core error */ 82 83 /* receive channel control */ 84 /* receive enable */ 85 #define D64_RC_RE 0x00000001 86 /* receive frame offset */ 87 #define D64_RC_RO_MASK 0x000000fe 88 #define D64_RC_RO_SHIFT 1 89 /* direct fifo receive (pio) mode */ 90 #define D64_RC_FM 0x00000100 91 /* separate rx header descriptor enable */ 92 #define D64_RC_SH 0x00000200 93 /* overflow continue */ 94 #define D64_RC_OC 0x00000400 95 /* parity check disable */ 96 #define D64_RC_PD 0x00000800 97 /* address extension bits */ 98 #define D64_RC_AE 0x00030000 99 #define D64_RC_AE_SHIFT 16 100 101 /* flags for dma controller */ 102 /* partity enable */ 103 #define DMA_CTRL_PEN (1 << 0) 104 /* rx overflow continue */ 105 #define DMA_CTRL_ROC (1 << 1) 106 /* allow rx scatter to multiple descriptors */ 107 #define DMA_CTRL_RXMULTI (1 << 2) 108 /* Unframed Rx/Tx data */ 109 #define DMA_CTRL_UNFRAMED (1 << 3) 110 111 /* receive descriptor table pointer */ 112 #define D64_RP_LD_MASK 0x00000fff /* last valid descriptor */ 113 114 /* receive channel status */ 115 #define D64_RS0_CD_MASK 0x00001fff /* current descriptor pointer */ 116 #define D64_RS0_RS_MASK 0xf0000000 /* receive state */ 117 #define D64_RS0_RS_SHIFT 28 118 #define D64_RS0_RS_DISABLED 0x00000000 /* disabled */ 119 #define D64_RS0_RS_ACTIVE 0x10000000 /* active */ 120 #define D64_RS0_RS_IDLE 0x20000000 /* idle wait */ 121 #define D64_RS0_RS_STOPPED 0x30000000 /* stopped */ 122 #define D64_RS0_RS_SUSP 0x40000000 /* suspend pending */ 123 124 #define D64_RS1_AD_MASK 0x0001ffff /* active descriptor */ 125 #define D64_RS1_RE_MASK 0xf0000000 /* receive errors */ 126 #define D64_RS1_RE_SHIFT 28 127 #define D64_RS1_RE_NOERR 0x00000000 /* no error */ 128 #define D64_RS1_RE_DPO 0x10000000 /* descriptor protocol error */ 129 #define D64_RS1_RE_DFU 0x20000000 /* data fifo overflow */ 130 #define D64_RS1_RE_DTE 0x30000000 /* data transfer error */ 131 #define D64_RS1_RE_DESRE 0x40000000 /* descriptor read error */ 132 #define D64_RS1_RE_COREE 0x50000000 /* core error */ 133 134 /* fifoaddr */ 135 #define D64_FA_OFF_MASK 0xffff /* offset */ 136 #define D64_FA_SEL_MASK 0xf0000 /* select */ 137 #define D64_FA_SEL_SHIFT 16 138 #define D64_FA_SEL_XDD 0x00000 /* transmit dma data */ 139 #define D64_FA_SEL_XDP 0x10000 /* transmit dma pointers */ 140 #define D64_FA_SEL_RDD 0x40000 /* receive dma data */ 141 #define D64_FA_SEL_RDP 0x50000 /* receive dma pointers */ 142 #define D64_FA_SEL_XFD 0x80000 /* transmit fifo data */ 143 #define D64_FA_SEL_XFP 0x90000 /* transmit fifo pointers */ 144 #define D64_FA_SEL_RFD 0xc0000 /* receive fifo data */ 145 #define D64_FA_SEL_RFP 0xd0000 /* receive fifo pointers */ 146 #define D64_FA_SEL_RSD 0xe0000 /* receive frame status data */ 147 #define D64_FA_SEL_RSP 0xf0000 /* receive frame status pointers */ 148 149 /* descriptor control flags 1 */ 150 #define D64_CTRL_COREFLAGS 0x0ff00000 /* core specific flags */ 151 #define D64_CTRL1_EOT ((u32)1 << 28) /* end of descriptor table */ 152 #define D64_CTRL1_IOC ((u32)1 << 29) /* interrupt on completion */ 153 #define D64_CTRL1_EOF ((u32)1 << 30) /* end of frame */ 154 #define D64_CTRL1_SOF ((u32)1 << 31) /* start of frame */ 155 156 /* descriptor control flags 2 */ 157 /* buffer byte count. real data len must <= 16KB */ 158 #define D64_CTRL2_BC_MASK 0x00007fff 159 /* address extension bits */ 160 #define D64_CTRL2_AE 0x00030000 161 #define D64_CTRL2_AE_SHIFT 16 162 /* parity bit */ 163 #define D64_CTRL2_PARITY 0x00040000 164 165 /* control flags in the range [27:20] are core-specific and not defined here */ 166 #define D64_CTRL_CORE_MASK 0x0ff00000 167 168 #define D64_RX_FRM_STS_LEN 0x0000ffff /* frame length mask */ 169 #define D64_RX_FRM_STS_OVFL 0x00800000 /* RxOverFlow */ 170 #define D64_RX_FRM_STS_DSCRCNT 0x0f000000 /* no. of descriptors used - 1 */ 171 #define D64_RX_FRM_STS_DATATYPE 0xf0000000 /* core-dependent data type */ 172 173 /* 174 * packet headroom necessary to accommodate the largest header 175 * in the system, (i.e TXOFF). By doing, we avoid the need to 176 * allocate an extra buffer for the header when bridging to WL. 177 * There is a compile time check in wlc.c which ensure that this 178 * value is at least as big as TXOFF. This value is used in 179 * dma_rxfill(). 180 */ 181 182 #define BCMEXTRAHDROOM 172 183 184 #define MAXNAMEL 8 /* 8 char names */ 185 186 /* macros to convert between byte offsets and indexes */ 187 #define B2I(bytes, type) ((bytes) / sizeof(type)) 188 #define I2B(index, type) ((index) * sizeof(type)) 189 190 #define PCI32ADDR_HIGH 0xc0000000 /* address[31:30] */ 191 #define PCI32ADDR_HIGH_SHIFT 30 /* address[31:30] */ 192 193 #define PCI64ADDR_HIGH 0x80000000 /* address[63] */ 194 #define PCI64ADDR_HIGH_SHIFT 31 /* address[63] */ 195 196 /* 197 * DMA Descriptor 198 * Descriptors are only read by the hardware, never written back. 199 */ 200 struct dma64desc { 201 __le32 ctrl1; /* misc control bits & bufcount */ 202 __le32 ctrl2; /* buffer count and address extension */ 203 __le32 addrlow; /* memory address of the date buffer, bits 31:0 */ 204 __le32 addrhigh; /* memory address of the date buffer, bits 63:32 */ 205 }; 206 207 /* dma engine software state */ 208 struct dma_info { 209 struct dma_pub dma; /* exported structure */ 210 char name[MAXNAMEL]; /* callers name for diag msgs */ 211 212 struct bcma_device *core; 213 struct device *dmadev; 214 215 /* session information for AMPDU */ 216 struct brcms_ampdu_session ampdu_session; 217 218 bool dma64; /* this dma engine is operating in 64-bit mode */ 219 bool addrext; /* this dma engine supports DmaExtendedAddrChanges */ 220 221 /* 64-bit dma tx engine registers */ 222 uint d64txregbase; 223 /* 64-bit dma rx engine registers */ 224 uint d64rxregbase; 225 /* pointer to dma64 tx descriptor ring */ 226 struct dma64desc *txd64; 227 /* pointer to dma64 rx descriptor ring */ 228 struct dma64desc *rxd64; 229 230 u16 dmadesc_align; /* alignment requirement for dma descriptors */ 231 232 u16 ntxd; /* # tx descriptors tunable */ 233 u16 txin; /* index of next descriptor to reclaim */ 234 u16 txout; /* index of next descriptor to post */ 235 /* pointer to parallel array of pointers to packets */ 236 struct sk_buff **txp; 237 /* Aligned physical address of descriptor ring */ 238 dma_addr_t txdpa; 239 /* Original physical address of descriptor ring */ 240 dma_addr_t txdpaorig; 241 u16 txdalign; /* #bytes added to alloc'd mem to align txd */ 242 u32 txdalloc; /* #bytes allocated for the ring */ 243 u32 xmtptrbase; /* When using unaligned descriptors, the ptr register 244 * is not just an index, it needs all 13 bits to be 245 * an offset from the addr register. 246 */ 247 248 u16 nrxd; /* # rx descriptors tunable */ 249 u16 rxin; /* index of next descriptor to reclaim */ 250 u16 rxout; /* index of next descriptor to post */ 251 /* pointer to parallel array of pointers to packets */ 252 struct sk_buff **rxp; 253 /* Aligned physical address of descriptor ring */ 254 dma_addr_t rxdpa; 255 /* Original physical address of descriptor ring */ 256 dma_addr_t rxdpaorig; 257 u16 rxdalign; /* #bytes added to alloc'd mem to align rxd */ 258 u32 rxdalloc; /* #bytes allocated for the ring */ 259 u32 rcvptrbase; /* Base for ptr reg when using unaligned descriptors */ 260 261 /* tunables */ 262 unsigned int rxbufsize; /* rx buffer size in bytes, not including 263 * the extra headroom 264 */ 265 uint rxextrahdrroom; /* extra rx headroom, reverseved to assist upper 266 * stack, e.g. some rx pkt buffers will be 267 * bridged to tx side without byte copying. 268 * The extra headroom needs to be large enough 269 * to fit txheader needs. Some dongle driver may 270 * not need it. 271 */ 272 uint nrxpost; /* # rx buffers to keep posted */ 273 unsigned int rxoffset; /* rxcontrol offset */ 274 /* add to get dma address of descriptor ring, low 32 bits */ 275 uint ddoffsetlow; 276 /* high 32 bits */ 277 uint ddoffsethigh; 278 /* add to get dma address of data buffer, low 32 bits */ 279 uint dataoffsetlow; 280 /* high 32 bits */ 281 uint dataoffsethigh; 282 /* descriptor base need to be aligned or not */ 283 bool aligndesc_4k; 284 }; 285 286 /* Check for odd number of 1's */ 287 static u32 parity32(__le32 data) 288 { 289 /* no swap needed for counting 1's */ 290 u32 par_data = *(u32 *)&data; 291 292 par_data ^= par_data >> 16; 293 par_data ^= par_data >> 8; 294 par_data ^= par_data >> 4; 295 par_data ^= par_data >> 2; 296 par_data ^= par_data >> 1; 297 298 return par_data & 1; 299 } 300 301 static bool dma64_dd_parity(struct dma64desc *dd) 302 { 303 return parity32(dd->addrlow ^ dd->addrhigh ^ dd->ctrl1 ^ dd->ctrl2); 304 } 305 306 /* descriptor bumping functions */ 307 308 static uint xxd(uint x, uint n) 309 { 310 return x & (n - 1); /* faster than %, but n must be power of 2 */ 311 } 312 313 static uint txd(struct dma_info *di, uint x) 314 { 315 return xxd(x, di->ntxd); 316 } 317 318 static uint rxd(struct dma_info *di, uint x) 319 { 320 return xxd(x, di->nrxd); 321 } 322 323 static uint nexttxd(struct dma_info *di, uint i) 324 { 325 return txd(di, i + 1); 326 } 327 328 static uint prevtxd(struct dma_info *di, uint i) 329 { 330 return txd(di, i - 1); 331 } 332 333 static uint nextrxd(struct dma_info *di, uint i) 334 { 335 return rxd(di, i + 1); 336 } 337 338 static uint ntxdactive(struct dma_info *di, uint h, uint t) 339 { 340 return txd(di, t-h); 341 } 342 343 static uint nrxdactive(struct dma_info *di, uint h, uint t) 344 { 345 return rxd(di, t-h); 346 } 347 348 static uint _dma_ctrlflags(struct dma_info *di, uint mask, uint flags) 349 { 350 uint dmactrlflags; 351 352 if (di == NULL) 353 return 0; 354 355 dmactrlflags = di->dma.dmactrlflags; 356 dmactrlflags &= ~mask; 357 dmactrlflags |= flags; 358 359 /* If trying to enable parity, check if parity is actually supported */ 360 if (dmactrlflags & DMA_CTRL_PEN) { 361 u32 control; 362 363 control = bcma_read32(di->core, DMA64TXREGOFFS(di, control)); 364 bcma_write32(di->core, DMA64TXREGOFFS(di, control), 365 control | D64_XC_PD); 366 if (bcma_read32(di->core, DMA64TXREGOFFS(di, control)) & 367 D64_XC_PD) 368 /* We *can* disable it so it is supported, 369 * restore control register 370 */ 371 bcma_write32(di->core, DMA64TXREGOFFS(di, control), 372 control); 373 else 374 /* Not supported, don't allow it to be enabled */ 375 dmactrlflags &= ~DMA_CTRL_PEN; 376 } 377 378 di->dma.dmactrlflags = dmactrlflags; 379 380 return dmactrlflags; 381 } 382 383 static bool _dma64_addrext(struct dma_info *di, uint ctrl_offset) 384 { 385 u32 w; 386 bcma_set32(di->core, ctrl_offset, D64_XC_AE); 387 w = bcma_read32(di->core, ctrl_offset); 388 bcma_mask32(di->core, ctrl_offset, ~D64_XC_AE); 389 return (w & D64_XC_AE) == D64_XC_AE; 390 } 391 392 /* 393 * return true if this dma engine supports DmaExtendedAddrChanges, 394 * otherwise false 395 */ 396 static bool _dma_isaddrext(struct dma_info *di) 397 { 398 /* DMA64 supports full 32- or 64-bit operation. AE is always valid */ 399 400 /* not all tx or rx channel are available */ 401 if (di->d64txregbase != 0) { 402 if (!_dma64_addrext(di, DMA64TXREGOFFS(di, control))) 403 brcms_dbg_dma(di->core, 404 "%s: DMA64 tx doesn't have AE set\n", 405 di->name); 406 return true; 407 } else if (di->d64rxregbase != 0) { 408 if (!_dma64_addrext(di, DMA64RXREGOFFS(di, control))) 409 brcms_dbg_dma(di->core, 410 "%s: DMA64 rx doesn't have AE set\n", 411 di->name); 412 return true; 413 } 414 415 return false; 416 } 417 418 static bool _dma_descriptor_align(struct dma_info *di) 419 { 420 u32 addrl; 421 422 /* Check to see if the descriptors need to be aligned on 4K/8K or not */ 423 if (di->d64txregbase != 0) { 424 bcma_write32(di->core, DMA64TXREGOFFS(di, addrlow), 0xff0); 425 addrl = bcma_read32(di->core, DMA64TXREGOFFS(di, addrlow)); 426 if (addrl != 0) 427 return false; 428 } else if (di->d64rxregbase != 0) { 429 bcma_write32(di->core, DMA64RXREGOFFS(di, addrlow), 0xff0); 430 addrl = bcma_read32(di->core, DMA64RXREGOFFS(di, addrlow)); 431 if (addrl != 0) 432 return false; 433 } 434 return true; 435 } 436 437 /* 438 * Descriptor table must start at the DMA hardware dictated alignment, so 439 * allocated memory must be large enough to support this requirement. 440 */ 441 static void *dma_alloc_consistent(struct dma_info *di, uint size, 442 u16 align_bits, uint *alloced, 443 dma_addr_t *pap) 444 { 445 if (align_bits) { 446 u16 align = (1 << align_bits); 447 if (!IS_ALIGNED(PAGE_SIZE, align)) 448 size += align; 449 *alloced = size; 450 } 451 return dma_alloc_coherent(di->dmadev, size, pap, GFP_ATOMIC); 452 } 453 454 static 455 u8 dma_align_sizetobits(uint size) 456 { 457 u8 bitpos = 0; 458 while (size >>= 1) 459 bitpos++; 460 return bitpos; 461 } 462 463 /* This function ensures that the DMA descriptor ring will not get allocated 464 * across Page boundary. If the allocation is done across the page boundary 465 * at the first time, then it is freed and the allocation is done at 466 * descriptor ring size aligned location. This will ensure that the ring will 467 * not cross page boundary 468 */ 469 static void *dma_ringalloc(struct dma_info *di, u32 boundary, uint size, 470 u16 *alignbits, uint *alloced, 471 dma_addr_t *descpa) 472 { 473 void *va; 474 u32 desc_strtaddr; 475 u32 alignbytes = 1 << *alignbits; 476 477 va = dma_alloc_consistent(di, size, *alignbits, alloced, descpa); 478 479 if (NULL == va) 480 return NULL; 481 482 desc_strtaddr = (u32) roundup((unsigned long)va, alignbytes); 483 if (((desc_strtaddr + size - 1) & boundary) != (desc_strtaddr 484 & boundary)) { 485 *alignbits = dma_align_sizetobits(size); 486 dma_free_coherent(di->dmadev, size, va, *descpa); 487 va = dma_alloc_consistent(di, size, *alignbits, 488 alloced, descpa); 489 } 490 return va; 491 } 492 493 static bool dma64_alloc(struct dma_info *di, uint direction) 494 { 495 u16 size; 496 uint ddlen; 497 void *va; 498 uint alloced = 0; 499 u16 align; 500 u16 align_bits; 501 502 ddlen = sizeof(struct dma64desc); 503 504 size = (direction == DMA_TX) ? (di->ntxd * ddlen) : (di->nrxd * ddlen); 505 align_bits = di->dmadesc_align; 506 align = (1 << align_bits); 507 508 if (direction == DMA_TX) { 509 va = dma_ringalloc(di, D64RINGALIGN, size, &align_bits, 510 &alloced, &di->txdpaorig); 511 if (va == NULL) { 512 brcms_dbg_dma(di->core, 513 "%s: DMA_ALLOC_CONSISTENT(ntxd) failed\n", 514 di->name); 515 return false; 516 } 517 align = (1 << align_bits); 518 di->txd64 = (struct dma64desc *) 519 roundup((unsigned long)va, align); 520 di->txdalign = (uint) ((s8 *)di->txd64 - (s8 *) va); 521 di->txdpa = di->txdpaorig + di->txdalign; 522 di->txdalloc = alloced; 523 } else { 524 va = dma_ringalloc(di, D64RINGALIGN, size, &align_bits, 525 &alloced, &di->rxdpaorig); 526 if (va == NULL) { 527 brcms_dbg_dma(di->core, 528 "%s: DMA_ALLOC_CONSISTENT(nrxd) failed\n", 529 di->name); 530 return false; 531 } 532 align = (1 << align_bits); 533 di->rxd64 = (struct dma64desc *) 534 roundup((unsigned long)va, align); 535 di->rxdalign = (uint) ((s8 *)di->rxd64 - (s8 *) va); 536 di->rxdpa = di->rxdpaorig + di->rxdalign; 537 di->rxdalloc = alloced; 538 } 539 540 return true; 541 } 542 543 static bool _dma_alloc(struct dma_info *di, uint direction) 544 { 545 return dma64_alloc(di, direction); 546 } 547 548 struct dma_pub *dma_attach(char *name, struct brcms_c_info *wlc, 549 uint txregbase, uint rxregbase, uint ntxd, uint nrxd, 550 uint rxbufsize, int rxextheadroom, 551 uint nrxpost, uint rxoffset) 552 { 553 struct si_pub *sih = wlc->hw->sih; 554 struct bcma_device *core = wlc->hw->d11core; 555 struct dma_info *di; 556 u8 rev = core->id.rev; 557 uint size; 558 struct si_info *sii = container_of(sih, struct si_info, pub); 559 560 /* allocate private info structure */ 561 di = kzalloc(sizeof(struct dma_info), GFP_ATOMIC); 562 if (di == NULL) 563 return NULL; 564 565 di->dma64 = 566 ((bcma_aread32(core, BCMA_IOST) & SISF_DMA64) == SISF_DMA64); 567 568 /* init dma reg info */ 569 di->core = core; 570 di->d64txregbase = txregbase; 571 di->d64rxregbase = rxregbase; 572 573 /* 574 * Default flags (which can be changed by the driver calling 575 * dma_ctrlflags before enable): For backwards compatibility 576 * both Rx Overflow Continue and Parity are DISABLED. 577 */ 578 _dma_ctrlflags(di, DMA_CTRL_ROC | DMA_CTRL_PEN, 0); 579 580 brcms_dbg_dma(di->core, "%s: %s flags 0x%x ntxd %d nrxd %d " 581 "rxbufsize %d rxextheadroom %d nrxpost %d rxoffset %d " 582 "txregbase %u rxregbase %u\n", name, "DMA64", 583 di->dma.dmactrlflags, ntxd, nrxd, rxbufsize, 584 rxextheadroom, nrxpost, rxoffset, txregbase, rxregbase); 585 586 /* make a private copy of our callers name */ 587 strncpy(di->name, name, MAXNAMEL); 588 di->name[MAXNAMEL - 1] = '\0'; 589 590 di->dmadev = core->dma_dev; 591 592 /* save tunables */ 593 di->ntxd = (u16) ntxd; 594 di->nrxd = (u16) nrxd; 595 596 /* the actual dma size doesn't include the extra headroom */ 597 di->rxextrahdrroom = 598 (rxextheadroom == -1) ? BCMEXTRAHDROOM : rxextheadroom; 599 if (rxbufsize > BCMEXTRAHDROOM) 600 di->rxbufsize = (u16) (rxbufsize - di->rxextrahdrroom); 601 else 602 di->rxbufsize = (u16) rxbufsize; 603 604 di->nrxpost = (u16) nrxpost; 605 di->rxoffset = (u8) rxoffset; 606 607 /* 608 * figure out the DMA physical address offset for dd and data 609 * PCI/PCIE: they map silicon backplace address to zero 610 * based memory, need offset 611 * Other bus: use zero SI_BUS BIGENDIAN kludge: use sdram 612 * swapped region for data buffer, not descriptor 613 */ 614 di->ddoffsetlow = 0; 615 di->dataoffsetlow = 0; 616 /* for pci bus, add offset */ 617 if (sii->icbus->hosttype == BCMA_HOSTTYPE_PCI) { 618 /* add offset for pcie with DMA64 bus */ 619 di->ddoffsetlow = 0; 620 di->ddoffsethigh = SI_PCIE_DMA_H32; 621 } 622 di->dataoffsetlow = di->ddoffsetlow; 623 di->dataoffsethigh = di->ddoffsethigh; 624 625 /* WAR64450 : DMACtl.Addr ext fields are not supported in SDIOD core. */ 626 if ((core->id.id == BCMA_CORE_SDIO_DEV) 627 && ((rev > 0) && (rev <= 2))) 628 di->addrext = false; 629 else if ((core->id.id == BCMA_CORE_I2S) && 630 ((rev == 0) || (rev == 1))) 631 di->addrext = false; 632 else 633 di->addrext = _dma_isaddrext(di); 634 635 /* does the descriptor need to be aligned and if yes, on 4K/8K or not */ 636 di->aligndesc_4k = _dma_descriptor_align(di); 637 if (di->aligndesc_4k) { 638 di->dmadesc_align = D64RINGALIGN_BITS; 639 if ((ntxd < D64MAXDD / 2) && (nrxd < D64MAXDD / 2)) 640 /* for smaller dd table, HW relax alignment reqmnt */ 641 di->dmadesc_align = D64RINGALIGN_BITS - 1; 642 } else { 643 di->dmadesc_align = 4; /* 16 byte alignment */ 644 } 645 646 brcms_dbg_dma(di->core, "DMA descriptor align_needed %d, align %d\n", 647 di->aligndesc_4k, di->dmadesc_align); 648 649 /* allocate tx packet pointer vector */ 650 if (ntxd) { 651 size = ntxd * sizeof(void *); 652 di->txp = kzalloc(size, GFP_ATOMIC); 653 if (di->txp == NULL) 654 goto fail; 655 } 656 657 /* allocate rx packet pointer vector */ 658 if (nrxd) { 659 size = nrxd * sizeof(void *); 660 di->rxp = kzalloc(size, GFP_ATOMIC); 661 if (di->rxp == NULL) 662 goto fail; 663 } 664 665 /* 666 * allocate transmit descriptor ring, only need ntxd descriptors 667 * but it must be aligned 668 */ 669 if (ntxd) { 670 if (!_dma_alloc(di, DMA_TX)) 671 goto fail; 672 } 673 674 /* 675 * allocate receive descriptor ring, only need nrxd descriptors 676 * but it must be aligned 677 */ 678 if (nrxd) { 679 if (!_dma_alloc(di, DMA_RX)) 680 goto fail; 681 } 682 683 if ((di->ddoffsetlow != 0) && !di->addrext) { 684 if (di->txdpa > SI_PCI_DMA_SZ) { 685 brcms_dbg_dma(di->core, 686 "%s: txdpa 0x%x: addrext not supported\n", 687 di->name, (u32)di->txdpa); 688 goto fail; 689 } 690 if (di->rxdpa > SI_PCI_DMA_SZ) { 691 brcms_dbg_dma(di->core, 692 "%s: rxdpa 0x%x: addrext not supported\n", 693 di->name, (u32)di->rxdpa); 694 goto fail; 695 } 696 } 697 698 /* Initialize AMPDU session */ 699 brcms_c_ampdu_reset_session(&di->ampdu_session, wlc); 700 701 brcms_dbg_dma(di->core, 702 "ddoffsetlow 0x%x ddoffsethigh 0x%x dataoffsetlow 0x%x dataoffsethigh 0x%x addrext %d\n", 703 di->ddoffsetlow, di->ddoffsethigh, 704 di->dataoffsetlow, di->dataoffsethigh, 705 di->addrext); 706 707 return (struct dma_pub *) di; 708 709 fail: 710 dma_detach((struct dma_pub *)di); 711 return NULL; 712 } 713 714 static inline void 715 dma64_dd_upd(struct dma_info *di, struct dma64desc *ddring, 716 dma_addr_t pa, uint outidx, u32 *flags, u32 bufcount) 717 { 718 u32 ctrl2 = bufcount & D64_CTRL2_BC_MASK; 719 720 /* PCI bus with big(>1G) physical address, use address extension */ 721 if ((di->dataoffsetlow == 0) || !(pa & PCI32ADDR_HIGH)) { 722 ddring[outidx].addrlow = cpu_to_le32(pa + di->dataoffsetlow); 723 ddring[outidx].addrhigh = cpu_to_le32(di->dataoffsethigh); 724 ddring[outidx].ctrl1 = cpu_to_le32(*flags); 725 ddring[outidx].ctrl2 = cpu_to_le32(ctrl2); 726 } else { 727 /* address extension for 32-bit PCI */ 728 u32 ae; 729 730 ae = (pa & PCI32ADDR_HIGH) >> PCI32ADDR_HIGH_SHIFT; 731 pa &= ~PCI32ADDR_HIGH; 732 733 ctrl2 |= (ae << D64_CTRL2_AE_SHIFT) & D64_CTRL2_AE; 734 ddring[outidx].addrlow = cpu_to_le32(pa + di->dataoffsetlow); 735 ddring[outidx].addrhigh = cpu_to_le32(di->dataoffsethigh); 736 ddring[outidx].ctrl1 = cpu_to_le32(*flags); 737 ddring[outidx].ctrl2 = cpu_to_le32(ctrl2); 738 } 739 if (di->dma.dmactrlflags & DMA_CTRL_PEN) { 740 if (dma64_dd_parity(&ddring[outidx])) 741 ddring[outidx].ctrl2 = 742 cpu_to_le32(ctrl2 | D64_CTRL2_PARITY); 743 } 744 } 745 746 /* !! may be called with core in reset */ 747 void dma_detach(struct dma_pub *pub) 748 { 749 struct dma_info *di = container_of(pub, struct dma_info, dma); 750 751 brcms_dbg_dma(di->core, "%s:\n", di->name); 752 753 /* free dma descriptor rings */ 754 if (di->txd64) 755 dma_free_coherent(di->dmadev, di->txdalloc, 756 ((s8 *)di->txd64 - di->txdalign), 757 (di->txdpaorig)); 758 if (di->rxd64) 759 dma_free_coherent(di->dmadev, di->rxdalloc, 760 ((s8 *)di->rxd64 - di->rxdalign), 761 (di->rxdpaorig)); 762 763 /* free packet pointer vectors */ 764 kfree(di->txp); 765 kfree(di->rxp); 766 767 /* free our private info structure */ 768 kfree(di); 769 770 } 771 772 /* initialize descriptor table base address */ 773 static void 774 _dma_ddtable_init(struct dma_info *di, uint direction, dma_addr_t pa) 775 { 776 if (!di->aligndesc_4k) { 777 if (direction == DMA_TX) 778 di->xmtptrbase = pa; 779 else 780 di->rcvptrbase = pa; 781 } 782 783 if ((di->ddoffsetlow == 0) 784 || !(pa & PCI32ADDR_HIGH)) { 785 if (direction == DMA_TX) { 786 bcma_write32(di->core, DMA64TXREGOFFS(di, addrlow), 787 pa + di->ddoffsetlow); 788 bcma_write32(di->core, DMA64TXREGOFFS(di, addrhigh), 789 di->ddoffsethigh); 790 } else { 791 bcma_write32(di->core, DMA64RXREGOFFS(di, addrlow), 792 pa + di->ddoffsetlow); 793 bcma_write32(di->core, DMA64RXREGOFFS(di, addrhigh), 794 di->ddoffsethigh); 795 } 796 } else { 797 /* DMA64 32bits address extension */ 798 u32 ae; 799 800 /* shift the high bit(s) from pa to ae */ 801 ae = (pa & PCI32ADDR_HIGH) >> PCI32ADDR_HIGH_SHIFT; 802 pa &= ~PCI32ADDR_HIGH; 803 804 if (direction == DMA_TX) { 805 bcma_write32(di->core, DMA64TXREGOFFS(di, addrlow), 806 pa + di->ddoffsetlow); 807 bcma_write32(di->core, DMA64TXREGOFFS(di, addrhigh), 808 di->ddoffsethigh); 809 bcma_maskset32(di->core, DMA64TXREGOFFS(di, control), 810 D64_XC_AE, (ae << D64_XC_AE_SHIFT)); 811 } else { 812 bcma_write32(di->core, DMA64RXREGOFFS(di, addrlow), 813 pa + di->ddoffsetlow); 814 bcma_write32(di->core, DMA64RXREGOFFS(di, addrhigh), 815 di->ddoffsethigh); 816 bcma_maskset32(di->core, DMA64RXREGOFFS(di, control), 817 D64_RC_AE, (ae << D64_RC_AE_SHIFT)); 818 } 819 } 820 } 821 822 static void _dma_rxenable(struct dma_info *di) 823 { 824 uint dmactrlflags = di->dma.dmactrlflags; 825 u32 control; 826 827 brcms_dbg_dma(di->core, "%s:\n", di->name); 828 829 control = D64_RC_RE | (bcma_read32(di->core, 830 DMA64RXREGOFFS(di, control)) & 831 D64_RC_AE); 832 833 if ((dmactrlflags & DMA_CTRL_PEN) == 0) 834 control |= D64_RC_PD; 835 836 if (dmactrlflags & DMA_CTRL_ROC) 837 control |= D64_RC_OC; 838 839 bcma_write32(di->core, DMA64RXREGOFFS(di, control), 840 ((di->rxoffset << D64_RC_RO_SHIFT) | control)); 841 } 842 843 void dma_rxinit(struct dma_pub *pub) 844 { 845 struct dma_info *di = container_of(pub, struct dma_info, dma); 846 847 brcms_dbg_dma(di->core, "%s:\n", di->name); 848 849 if (di->nrxd == 0) 850 return; 851 852 di->rxin = di->rxout = 0; 853 854 /* clear rx descriptor ring */ 855 memset(di->rxd64, '\0', di->nrxd * sizeof(struct dma64desc)); 856 857 /* DMA engine with out alignment requirement requires table to be inited 858 * before enabling the engine 859 */ 860 if (!di->aligndesc_4k) 861 _dma_ddtable_init(di, DMA_RX, di->rxdpa); 862 863 _dma_rxenable(di); 864 865 if (di->aligndesc_4k) 866 _dma_ddtable_init(di, DMA_RX, di->rxdpa); 867 } 868 869 static struct sk_buff *dma64_getnextrxp(struct dma_info *di, bool forceall) 870 { 871 uint i, curr; 872 struct sk_buff *rxp; 873 dma_addr_t pa; 874 875 i = di->rxin; 876 877 /* return if no packets posted */ 878 if (i == di->rxout) 879 return NULL; 880 881 curr = 882 B2I(((bcma_read32(di->core, 883 DMA64RXREGOFFS(di, status0)) & D64_RS0_CD_MASK) - 884 di->rcvptrbase) & D64_RS0_CD_MASK, struct dma64desc); 885 886 /* ignore curr if forceall */ 887 if (!forceall && (i == curr)) 888 return NULL; 889 890 /* get the packet pointer that corresponds to the rx descriptor */ 891 rxp = di->rxp[i]; 892 di->rxp[i] = NULL; 893 894 pa = le32_to_cpu(di->rxd64[i].addrlow) - di->dataoffsetlow; 895 896 /* clear this packet from the descriptor ring */ 897 dma_unmap_single(di->dmadev, pa, di->rxbufsize, DMA_FROM_DEVICE); 898 899 di->rxd64[i].addrlow = cpu_to_le32(0xdeadbeef); 900 di->rxd64[i].addrhigh = cpu_to_le32(0xdeadbeef); 901 902 di->rxin = nextrxd(di, i); 903 904 return rxp; 905 } 906 907 static struct sk_buff *_dma_getnextrxp(struct dma_info *di, bool forceall) 908 { 909 if (di->nrxd == 0) 910 return NULL; 911 912 return dma64_getnextrxp(di, forceall); 913 } 914 915 /* 916 * !! rx entry routine 917 * returns the number packages in the next frame, or 0 if there are no more 918 * if DMA_CTRL_RXMULTI is defined, DMA scattering(multiple buffers) is 919 * supported with pkts chain 920 * otherwise, it's treated as giant pkt and will be tossed. 921 * The DMA scattering starts with normal DMA header, followed by first 922 * buffer data. After it reaches the max size of buffer, the data continues 923 * in next DMA descriptor buffer WITHOUT DMA header 924 */ 925 int dma_rx(struct dma_pub *pub, struct sk_buff_head *skb_list) 926 { 927 struct dma_info *di = container_of(pub, struct dma_info, dma); 928 struct sk_buff_head dma_frames; 929 struct sk_buff *p, *next; 930 uint len; 931 uint pkt_len; 932 int resid = 0; 933 int pktcnt = 1; 934 935 skb_queue_head_init(&dma_frames); 936 next_frame: 937 p = _dma_getnextrxp(di, false); 938 if (p == NULL) 939 return 0; 940 941 len = le16_to_cpu(*(__le16 *) (p->data)); 942 brcms_dbg_dma(di->core, "%s: dma_rx len %d\n", di->name, len); 943 dma_spin_for_len(len, p); 944 945 /* set actual length */ 946 pkt_len = min((di->rxoffset + len), di->rxbufsize); 947 __skb_trim(p, pkt_len); 948 skb_queue_tail(&dma_frames, p); 949 resid = len - (di->rxbufsize - di->rxoffset); 950 951 /* check for single or multi-buffer rx */ 952 if (resid > 0) { 953 while ((resid > 0) && (p = _dma_getnextrxp(di, false))) { 954 pkt_len = min_t(uint, resid, di->rxbufsize); 955 __skb_trim(p, pkt_len); 956 skb_queue_tail(&dma_frames, p); 957 resid -= di->rxbufsize; 958 pktcnt++; 959 } 960 961 #ifdef DEBUG 962 if (resid > 0) { 963 uint cur; 964 cur = 965 B2I(((bcma_read32(di->core, 966 DMA64RXREGOFFS(di, status0)) & 967 D64_RS0_CD_MASK) - di->rcvptrbase) & 968 D64_RS0_CD_MASK, struct dma64desc); 969 brcms_dbg_dma(di->core, 970 "rxin %d rxout %d, hw_curr %d\n", 971 di->rxin, di->rxout, cur); 972 } 973 #endif /* DEBUG */ 974 975 if ((di->dma.dmactrlflags & DMA_CTRL_RXMULTI) == 0) { 976 brcms_dbg_dma(di->core, "%s: bad frame length (%d)\n", 977 di->name, len); 978 skb_queue_walk_safe(&dma_frames, p, next) { 979 skb_unlink(p, &dma_frames); 980 brcmu_pkt_buf_free_skb(p); 981 } 982 di->dma.rxgiants++; 983 pktcnt = 1; 984 goto next_frame; 985 } 986 } 987 988 skb_queue_splice_tail(&dma_frames, skb_list); 989 return pktcnt; 990 } 991 992 static bool dma64_rxidle(struct dma_info *di) 993 { 994 brcms_dbg_dma(di->core, "%s:\n", di->name); 995 996 if (di->nrxd == 0) 997 return true; 998 999 return ((bcma_read32(di->core, 1000 DMA64RXREGOFFS(di, status0)) & D64_RS0_CD_MASK) == 1001 (bcma_read32(di->core, DMA64RXREGOFFS(di, ptr)) & 1002 D64_RS0_CD_MASK)); 1003 } 1004 1005 static bool dma64_txidle(struct dma_info *di) 1006 { 1007 if (di->ntxd == 0) 1008 return true; 1009 1010 return ((bcma_read32(di->core, 1011 DMA64TXREGOFFS(di, status0)) & D64_XS0_CD_MASK) == 1012 (bcma_read32(di->core, DMA64TXREGOFFS(di, ptr)) & 1013 D64_XS0_CD_MASK)); 1014 } 1015 1016 /* 1017 * post receive buffers 1018 * Return false if refill failed completely or dma mapping failed. The ring 1019 * is empty, which will stall the rx dma and user might want to call rxfill 1020 * again asap. This is unlikely to happen on a memory-rich NIC, but often on 1021 * memory-constrained dongle. 1022 */ 1023 bool dma_rxfill(struct dma_pub *pub) 1024 { 1025 struct dma_info *di = container_of(pub, struct dma_info, dma); 1026 struct sk_buff *p; 1027 u16 rxin, rxout; 1028 u32 flags = 0; 1029 uint n; 1030 uint i; 1031 dma_addr_t pa; 1032 uint extra_offset = 0; 1033 bool ring_empty; 1034 1035 ring_empty = false; 1036 1037 /* 1038 * Determine how many receive buffers we're lacking 1039 * from the full complement, allocate, initialize, 1040 * and post them, then update the chip rx lastdscr. 1041 */ 1042 1043 rxin = di->rxin; 1044 rxout = di->rxout; 1045 1046 n = di->nrxpost - nrxdactive(di, rxin, rxout); 1047 1048 brcms_dbg_dma(di->core, "%s: post %d\n", di->name, n); 1049 1050 if (di->rxbufsize > BCMEXTRAHDROOM) 1051 extra_offset = di->rxextrahdrroom; 1052 1053 for (i = 0; i < n; i++) { 1054 /* 1055 * the di->rxbufsize doesn't include the extra headroom, 1056 * we need to add it to the size to be allocated 1057 */ 1058 p = brcmu_pkt_buf_get_skb(di->rxbufsize + extra_offset); 1059 1060 if (p == NULL) { 1061 brcms_dbg_dma(di->core, "%s: out of rxbufs\n", 1062 di->name); 1063 if (i == 0 && dma64_rxidle(di)) { 1064 brcms_dbg_dma(di->core, "%s: ring is empty !\n", 1065 di->name); 1066 ring_empty = true; 1067 } 1068 di->dma.rxnobuf++; 1069 break; 1070 } 1071 /* reserve an extra headroom, if applicable */ 1072 if (extra_offset) 1073 skb_pull(p, extra_offset); 1074 1075 /* Do a cached write instead of uncached write since DMA_MAP 1076 * will flush the cache. 1077 */ 1078 *(u32 *) (p->data) = 0; 1079 1080 pa = dma_map_single(di->dmadev, p->data, di->rxbufsize, 1081 DMA_FROM_DEVICE); 1082 if (dma_mapping_error(di->dmadev, pa)) { 1083 brcmu_pkt_buf_free_skb(p); 1084 return false; 1085 } 1086 1087 /* save the free packet pointer */ 1088 di->rxp[rxout] = p; 1089 1090 /* reset flags for each descriptor */ 1091 flags = 0; 1092 if (rxout == (di->nrxd - 1)) 1093 flags = D64_CTRL1_EOT; 1094 1095 dma64_dd_upd(di, di->rxd64, pa, rxout, &flags, 1096 di->rxbufsize); 1097 rxout = nextrxd(di, rxout); 1098 } 1099 1100 di->rxout = rxout; 1101 1102 /* update the chip lastdscr pointer */ 1103 bcma_write32(di->core, DMA64RXREGOFFS(di, ptr), 1104 di->rcvptrbase + I2B(rxout, struct dma64desc)); 1105 1106 return ring_empty; 1107 } 1108 1109 void dma_rxreclaim(struct dma_pub *pub) 1110 { 1111 struct dma_info *di = container_of(pub, struct dma_info, dma); 1112 struct sk_buff *p; 1113 1114 brcms_dbg_dma(di->core, "%s:\n", di->name); 1115 1116 while ((p = _dma_getnextrxp(di, true))) 1117 brcmu_pkt_buf_free_skb(p); 1118 } 1119 1120 void dma_counterreset(struct dma_pub *pub) 1121 { 1122 /* reset all software counters */ 1123 pub->rxgiants = 0; 1124 pub->rxnobuf = 0; 1125 pub->txnobuf = 0; 1126 } 1127 1128 /* get the address of the var in order to change later */ 1129 unsigned long dma_getvar(struct dma_pub *pub, const char *name) 1130 { 1131 struct dma_info *di = container_of(pub, struct dma_info, dma); 1132 1133 if (!strcmp(name, "&txavail")) 1134 return (unsigned long)&(di->dma.txavail); 1135 return 0; 1136 } 1137 1138 /* 64-bit DMA functions */ 1139 1140 void dma_txinit(struct dma_pub *pub) 1141 { 1142 struct dma_info *di = container_of(pub, struct dma_info, dma); 1143 u32 control = D64_XC_XE; 1144 1145 brcms_dbg_dma(di->core, "%s:\n", di->name); 1146 1147 if (di->ntxd == 0) 1148 return; 1149 1150 di->txin = di->txout = 0; 1151 di->dma.txavail = di->ntxd - 1; 1152 1153 /* clear tx descriptor ring */ 1154 memset(di->txd64, '\0', (di->ntxd * sizeof(struct dma64desc))); 1155 1156 /* DMA engine with out alignment requirement requires table to be inited 1157 * before enabling the engine 1158 */ 1159 if (!di->aligndesc_4k) 1160 _dma_ddtable_init(di, DMA_TX, di->txdpa); 1161 1162 if ((di->dma.dmactrlflags & DMA_CTRL_PEN) == 0) 1163 control |= D64_XC_PD; 1164 bcma_set32(di->core, DMA64TXREGOFFS(di, control), control); 1165 1166 /* DMA engine with alignment requirement requires table to be inited 1167 * before enabling the engine 1168 */ 1169 if (di->aligndesc_4k) 1170 _dma_ddtable_init(di, DMA_TX, di->txdpa); 1171 } 1172 1173 void dma_txsuspend(struct dma_pub *pub) 1174 { 1175 struct dma_info *di = container_of(pub, struct dma_info, dma); 1176 1177 brcms_dbg_dma(di->core, "%s:\n", di->name); 1178 1179 if (di->ntxd == 0) 1180 return; 1181 1182 bcma_set32(di->core, DMA64TXREGOFFS(di, control), D64_XC_SE); 1183 } 1184 1185 void dma_txresume(struct dma_pub *pub) 1186 { 1187 struct dma_info *di = container_of(pub, struct dma_info, dma); 1188 1189 brcms_dbg_dma(di->core, "%s:\n", di->name); 1190 1191 if (di->ntxd == 0) 1192 return; 1193 1194 bcma_mask32(di->core, DMA64TXREGOFFS(di, control), ~D64_XC_SE); 1195 } 1196 1197 bool dma_txsuspended(struct dma_pub *pub) 1198 { 1199 struct dma_info *di = container_of(pub, struct dma_info, dma); 1200 1201 return (di->ntxd == 0) || 1202 ((bcma_read32(di->core, 1203 DMA64TXREGOFFS(di, control)) & D64_XC_SE) == 1204 D64_XC_SE); 1205 } 1206 1207 void dma_txreclaim(struct dma_pub *pub, enum txd_range range) 1208 { 1209 struct dma_info *di = container_of(pub, struct dma_info, dma); 1210 struct sk_buff *p; 1211 1212 brcms_dbg_dma(di->core, "%s: %s\n", 1213 di->name, 1214 range == DMA_RANGE_ALL ? "all" : 1215 range == DMA_RANGE_TRANSMITTED ? "transmitted" : 1216 "transferred"); 1217 1218 if (di->txin == di->txout) 1219 return; 1220 1221 while ((p = dma_getnexttxp(pub, range))) { 1222 /* For unframed data, we don't have any packets to free */ 1223 if (!(di->dma.dmactrlflags & DMA_CTRL_UNFRAMED)) 1224 brcmu_pkt_buf_free_skb(p); 1225 } 1226 } 1227 1228 bool dma_txreset(struct dma_pub *pub) 1229 { 1230 struct dma_info *di = container_of(pub, struct dma_info, dma); 1231 u32 status; 1232 1233 if (di->ntxd == 0) 1234 return true; 1235 1236 /* suspend tx DMA first */ 1237 bcma_write32(di->core, DMA64TXREGOFFS(di, control), D64_XC_SE); 1238 SPINWAIT(((status = 1239 (bcma_read32(di->core, DMA64TXREGOFFS(di, status0)) & 1240 D64_XS0_XS_MASK)) != D64_XS0_XS_DISABLED) && 1241 (status != D64_XS0_XS_IDLE) && (status != D64_XS0_XS_STOPPED), 1242 10000); 1243 1244 bcma_write32(di->core, DMA64TXREGOFFS(di, control), 0); 1245 SPINWAIT(((status = 1246 (bcma_read32(di->core, DMA64TXREGOFFS(di, status0)) & 1247 D64_XS0_XS_MASK)) != D64_XS0_XS_DISABLED), 10000); 1248 1249 /* wait for the last transaction to complete */ 1250 udelay(300); 1251 1252 return status == D64_XS0_XS_DISABLED; 1253 } 1254 1255 bool dma_rxreset(struct dma_pub *pub) 1256 { 1257 struct dma_info *di = container_of(pub, struct dma_info, dma); 1258 u32 status; 1259 1260 if (di->nrxd == 0) 1261 return true; 1262 1263 bcma_write32(di->core, DMA64RXREGOFFS(di, control), 0); 1264 SPINWAIT(((status = 1265 (bcma_read32(di->core, DMA64RXREGOFFS(di, status0)) & 1266 D64_RS0_RS_MASK)) != D64_RS0_RS_DISABLED), 10000); 1267 1268 return status == D64_RS0_RS_DISABLED; 1269 } 1270 1271 static void dma_txenq(struct dma_info *di, struct sk_buff *p) 1272 { 1273 unsigned char *data; 1274 uint len; 1275 u16 txout; 1276 u32 flags = 0; 1277 dma_addr_t pa; 1278 1279 txout = di->txout; 1280 1281 if (WARN_ON(nexttxd(di, txout) == di->txin)) 1282 return; 1283 1284 /* 1285 * obtain and initialize transmit descriptor entry. 1286 */ 1287 data = p->data; 1288 len = p->len; 1289 1290 /* get physical address of buffer start */ 1291 pa = dma_map_single(di->dmadev, data, len, DMA_TO_DEVICE); 1292 /* if mapping failed, free skb */ 1293 if (dma_mapping_error(di->dmadev, pa)) { 1294 brcmu_pkt_buf_free_skb(p); 1295 return; 1296 } 1297 /* With a DMA segment list, Descriptor table is filled 1298 * using the segment list instead of looping over 1299 * buffers in multi-chain DMA. Therefore, EOF for SGLIST 1300 * is when end of segment list is reached. 1301 */ 1302 flags = D64_CTRL1_SOF | D64_CTRL1_IOC | D64_CTRL1_EOF; 1303 if (txout == (di->ntxd - 1)) 1304 flags |= D64_CTRL1_EOT; 1305 1306 dma64_dd_upd(di, di->txd64, pa, txout, &flags, len); 1307 1308 txout = nexttxd(di, txout); 1309 1310 /* save the packet */ 1311 di->txp[prevtxd(di, txout)] = p; 1312 1313 /* bump the tx descriptor index */ 1314 di->txout = txout; 1315 } 1316 1317 static void ampdu_finalize(struct dma_info *di) 1318 { 1319 struct brcms_ampdu_session *session = &di->ampdu_session; 1320 struct sk_buff *p; 1321 1322 trace_brcms_ampdu_session(&session->wlc->hw->d11core->dev, 1323 session->max_ampdu_len, 1324 session->max_ampdu_frames, 1325 session->ampdu_len, 1326 skb_queue_len(&session->skb_list), 1327 session->dma_len); 1328 1329 if (WARN_ON(skb_queue_empty(&session->skb_list))) 1330 return; 1331 1332 brcms_c_ampdu_finalize(session); 1333 1334 while (!skb_queue_empty(&session->skb_list)) { 1335 p = skb_dequeue(&session->skb_list); 1336 dma_txenq(di, p); 1337 } 1338 1339 bcma_write32(di->core, DMA64TXREGOFFS(di, ptr), 1340 di->xmtptrbase + I2B(di->txout, struct dma64desc)); 1341 brcms_c_ampdu_reset_session(session, session->wlc); 1342 } 1343 1344 static void prep_ampdu_frame(struct dma_info *di, struct sk_buff *p) 1345 { 1346 struct brcms_ampdu_session *session = &di->ampdu_session; 1347 int ret; 1348 1349 ret = brcms_c_ampdu_add_frame(session, p); 1350 if (ret == -ENOSPC) { 1351 /* 1352 * AMPDU cannot accomodate this frame. Close out the in- 1353 * progress AMPDU session and start a new one. 1354 */ 1355 ampdu_finalize(di); 1356 ret = brcms_c_ampdu_add_frame(session, p); 1357 } 1358 1359 WARN_ON(ret); 1360 } 1361 1362 /* Update count of available tx descriptors based on current DMA state */ 1363 static void dma_update_txavail(struct dma_info *di) 1364 { 1365 /* 1366 * Available space is number of descriptors less the number of 1367 * active descriptors and the number of queued AMPDU frames. 1368 */ 1369 di->dma.txavail = di->ntxd - ntxdactive(di, di->txin, di->txout) - 1370 skb_queue_len(&di->ampdu_session.skb_list) - 1; 1371 } 1372 1373 /* 1374 * !! tx entry routine 1375 * WARNING: call must check the return value for error. 1376 * the error(toss frames) could be fatal and cause many subsequent hard 1377 * to debug problems 1378 */ 1379 int dma_txfast(struct brcms_c_info *wlc, struct dma_pub *pub, 1380 struct sk_buff *p) 1381 { 1382 struct dma_info *di = container_of(pub, struct dma_info, dma); 1383 struct brcms_ampdu_session *session = &di->ampdu_session; 1384 struct ieee80211_tx_info *tx_info; 1385 bool is_ampdu; 1386 1387 /* no use to transmit a zero length packet */ 1388 if (p->len == 0) 1389 return 0; 1390 1391 /* return nonzero if out of tx descriptors */ 1392 if (di->dma.txavail == 0 || nexttxd(di, di->txout) == di->txin) 1393 goto outoftxd; 1394 1395 tx_info = IEEE80211_SKB_CB(p); 1396 is_ampdu = tx_info->flags & IEEE80211_TX_CTL_AMPDU; 1397 if (is_ampdu) 1398 prep_ampdu_frame(di, p); 1399 else 1400 dma_txenq(di, p); 1401 1402 /* tx flow control */ 1403 dma_update_txavail(di); 1404 1405 /* kick the chip */ 1406 if (is_ampdu) { 1407 /* 1408 * Start sending data if we've got a full AMPDU, there's 1409 * no more space in the DMA ring, or the ring isn't 1410 * currently transmitting. 1411 */ 1412 if (skb_queue_len(&session->skb_list) == session->max_ampdu_frames || 1413 di->dma.txavail == 0 || dma64_txidle(di)) 1414 ampdu_finalize(di); 1415 } else { 1416 bcma_write32(di->core, DMA64TXREGOFFS(di, ptr), 1417 di->xmtptrbase + I2B(di->txout, struct dma64desc)); 1418 } 1419 1420 return 0; 1421 1422 outoftxd: 1423 brcms_dbg_dma(di->core, "%s: out of txds !!!\n", di->name); 1424 brcmu_pkt_buf_free_skb(p); 1425 di->dma.txavail = 0; 1426 di->dma.txnobuf++; 1427 return -ENOSPC; 1428 } 1429 1430 void dma_txflush(struct dma_pub *pub) 1431 { 1432 struct dma_info *di = container_of(pub, struct dma_info, dma); 1433 struct brcms_ampdu_session *session = &di->ampdu_session; 1434 1435 if (!skb_queue_empty(&session->skb_list)) 1436 ampdu_finalize(di); 1437 } 1438 1439 int dma_txpending(struct dma_pub *pub) 1440 { 1441 struct dma_info *di = container_of(pub, struct dma_info, dma); 1442 return ntxdactive(di, di->txin, di->txout); 1443 } 1444 1445 /* 1446 * If we have an active AMPDU session and are not transmitting, 1447 * this function will force tx to start. 1448 */ 1449 void dma_kick_tx(struct dma_pub *pub) 1450 { 1451 struct dma_info *di = container_of(pub, struct dma_info, dma); 1452 struct brcms_ampdu_session *session = &di->ampdu_session; 1453 1454 if (!skb_queue_empty(&session->skb_list) && dma64_txidle(di)) 1455 ampdu_finalize(di); 1456 } 1457 1458 /* 1459 * Reclaim next completed txd (txds if using chained buffers) in the range 1460 * specified and return associated packet. 1461 * If range is DMA_RANGE_TRANSMITTED, reclaim descriptors that have be 1462 * transmitted as noted by the hardware "CurrDescr" pointer. 1463 * If range is DMA_RANGE_TRANSFERED, reclaim descriptors that have be 1464 * transferred by the DMA as noted by the hardware "ActiveDescr" pointer. 1465 * If range is DMA_RANGE_ALL, reclaim all txd(s) posted to the ring and 1466 * return associated packet regardless of the value of hardware pointers. 1467 */ 1468 struct sk_buff *dma_getnexttxp(struct dma_pub *pub, enum txd_range range) 1469 { 1470 struct dma_info *di = container_of(pub, struct dma_info, dma); 1471 u16 start, end, i; 1472 u16 active_desc; 1473 struct sk_buff *txp; 1474 1475 brcms_dbg_dma(di->core, "%s: %s\n", 1476 di->name, 1477 range == DMA_RANGE_ALL ? "all" : 1478 range == DMA_RANGE_TRANSMITTED ? "transmitted" : 1479 "transferred"); 1480 1481 if (di->ntxd == 0) 1482 return NULL; 1483 1484 txp = NULL; 1485 1486 start = di->txin; 1487 if (range == DMA_RANGE_ALL) 1488 end = di->txout; 1489 else { 1490 end = (u16) (B2I(((bcma_read32(di->core, 1491 DMA64TXREGOFFS(di, status0)) & 1492 D64_XS0_CD_MASK) - di->xmtptrbase) & 1493 D64_XS0_CD_MASK, struct dma64desc)); 1494 1495 if (range == DMA_RANGE_TRANSFERED) { 1496 active_desc = 1497 (u16)(bcma_read32(di->core, 1498 DMA64TXREGOFFS(di, status1)) & 1499 D64_XS1_AD_MASK); 1500 active_desc = 1501 (active_desc - di->xmtptrbase) & D64_XS0_CD_MASK; 1502 active_desc = B2I(active_desc, struct dma64desc); 1503 if (end != active_desc) 1504 end = prevtxd(di, active_desc); 1505 } 1506 } 1507 1508 if ((start == 0) && (end > di->txout)) 1509 goto bogus; 1510 1511 for (i = start; i != end && !txp; i = nexttxd(di, i)) { 1512 dma_addr_t pa; 1513 uint size; 1514 1515 pa = le32_to_cpu(di->txd64[i].addrlow) - di->dataoffsetlow; 1516 1517 size = 1518 (le32_to_cpu(di->txd64[i].ctrl2) & 1519 D64_CTRL2_BC_MASK); 1520 1521 di->txd64[i].addrlow = cpu_to_le32(0xdeadbeef); 1522 di->txd64[i].addrhigh = cpu_to_le32(0xdeadbeef); 1523 1524 txp = di->txp[i]; 1525 di->txp[i] = NULL; 1526 1527 dma_unmap_single(di->dmadev, pa, size, DMA_TO_DEVICE); 1528 } 1529 1530 di->txin = i; 1531 1532 /* tx flow control */ 1533 dma_update_txavail(di); 1534 1535 return txp; 1536 1537 bogus: 1538 brcms_dbg_dma(di->core, "bogus curr: start %d end %d txout %d\n", 1539 start, end, di->txout); 1540 return NULL; 1541 } 1542 1543 /* 1544 * Mac80211 initiated actions sometimes require packets in the DMA queue to be 1545 * modified. The modified portion of the packet is not under control of the DMA 1546 * engine. This function calls a caller-supplied function for each packet in 1547 * the caller specified dma chain. 1548 */ 1549 void dma_walk_packets(struct dma_pub *dmah, void (*callback_fnc) 1550 (void *pkt, void *arg_a), void *arg_a) 1551 { 1552 struct dma_info *di = container_of(dmah, struct dma_info, dma); 1553 uint i = di->txin; 1554 uint end = di->txout; 1555 struct sk_buff *skb; 1556 struct ieee80211_tx_info *tx_info; 1557 1558 while (i != end) { 1559 skb = di->txp[i]; 1560 if (skb != NULL) { 1561 tx_info = (struct ieee80211_tx_info *)skb->cb; 1562 (callback_fnc)(tx_info, arg_a); 1563 } 1564 i = nexttxd(di, i); 1565 } 1566 } 1567