xref: /openbmc/linux/drivers/net/wireless/broadcom/brcm80211/brcmsmac/dma.c (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 /*
2  * Copyright (c) 2010 Broadcom Corporation
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
11  * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
13  * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
14  * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/slab.h>
18 #include <linux/delay.h>
19 #include <linux/pci.h>
20 #include <net/cfg80211.h>
21 #include <net/mac80211.h>
22 
23 #include <brcmu_utils.h>
24 #include <aiutils.h>
25 #include "types.h"
26 #include "main.h"
27 #include "dma.h"
28 #include "soc.h"
29 #include "scb.h"
30 #include "ampdu.h"
31 #include "debug.h"
32 #include "brcms_trace_events.h"
33 
34 /*
35  * dma register field offset calculation
36  */
37 #define DMA64REGOFFS(field)		offsetof(struct dma64regs, field)
38 #define DMA64TXREGOFFS(di, field)	(di->d64txregbase + DMA64REGOFFS(field))
39 #define DMA64RXREGOFFS(di, field)	(di->d64rxregbase + DMA64REGOFFS(field))
40 
41 /*
42  * DMA hardware requires each descriptor ring to be 8kB aligned, and fit within
43  * a contiguous 8kB physical address.
44  */
45 #define D64RINGALIGN_BITS	13
46 #define	D64MAXRINGSZ		(1 << D64RINGALIGN_BITS)
47 #define	D64RINGALIGN		(1 << D64RINGALIGN_BITS)
48 
49 #define	D64MAXDD	(D64MAXRINGSZ / sizeof(struct dma64desc))
50 
51 /* transmit channel control */
52 #define	D64_XC_XE		0x00000001	/* transmit enable */
53 #define	D64_XC_SE		0x00000002	/* transmit suspend request */
54 #define	D64_XC_LE		0x00000004	/* loopback enable */
55 #define	D64_XC_FL		0x00000010	/* flush request */
56 #define	D64_XC_PD		0x00000800	/* parity check disable */
57 #define	D64_XC_AE		0x00030000	/* address extension bits */
58 #define	D64_XC_AE_SHIFT		16
59 
60 /* transmit descriptor table pointer */
61 #define	D64_XP_LD_MASK		0x00000fff	/* last valid descriptor */
62 
63 /* transmit channel status */
64 #define	D64_XS0_CD_MASK		0x00001fff	/* current descriptor pointer */
65 #define	D64_XS0_XS_MASK		0xf0000000	/* transmit state */
66 #define	D64_XS0_XS_SHIFT		28
67 #define	D64_XS0_XS_DISABLED	0x00000000	/* disabled */
68 #define	D64_XS0_XS_ACTIVE	0x10000000	/* active */
69 #define	D64_XS0_XS_IDLE		0x20000000	/* idle wait */
70 #define	D64_XS0_XS_STOPPED	0x30000000	/* stopped */
71 #define	D64_XS0_XS_SUSP		0x40000000	/* suspend pending */
72 
73 #define	D64_XS1_AD_MASK		0x00001fff	/* active descriptor */
74 #define	D64_XS1_XE_MASK		0xf0000000	/* transmit errors */
75 #define	D64_XS1_XE_SHIFT		28
76 #define	D64_XS1_XE_NOERR	0x00000000	/* no error */
77 #define	D64_XS1_XE_DPE		0x10000000	/* descriptor protocol error */
78 #define	D64_XS1_XE_DFU		0x20000000	/* data fifo underrun */
79 #define	D64_XS1_XE_DTE		0x30000000	/* data transfer error */
80 #define	D64_XS1_XE_DESRE	0x40000000	/* descriptor read error */
81 #define	D64_XS1_XE_COREE	0x50000000	/* core error */
82 
83 /* receive channel control */
84 /* receive enable */
85 #define	D64_RC_RE		0x00000001
86 /* receive frame offset */
87 #define	D64_RC_RO_MASK		0x000000fe
88 #define	D64_RC_RO_SHIFT		1
89 /* direct fifo receive (pio) mode */
90 #define	D64_RC_FM		0x00000100
91 /* separate rx header descriptor enable */
92 #define	D64_RC_SH		0x00000200
93 /* overflow continue */
94 #define	D64_RC_OC		0x00000400
95 /* parity check disable */
96 #define	D64_RC_PD		0x00000800
97 /* address extension bits */
98 #define	D64_RC_AE		0x00030000
99 #define	D64_RC_AE_SHIFT		16
100 
101 /* flags for dma controller */
102 /* partity enable */
103 #define DMA_CTRL_PEN		(1 << 0)
104 /* rx overflow continue */
105 #define DMA_CTRL_ROC		(1 << 1)
106 /* allow rx scatter to multiple descriptors */
107 #define DMA_CTRL_RXMULTI	(1 << 2)
108 /* Unframed Rx/Tx data */
109 #define DMA_CTRL_UNFRAMED	(1 << 3)
110 
111 /* receive descriptor table pointer */
112 #define	D64_RP_LD_MASK		0x00000fff	/* last valid descriptor */
113 
114 /* receive channel status */
115 #define	D64_RS0_CD_MASK		0x00001fff	/* current descriptor pointer */
116 #define	D64_RS0_RS_MASK		0xf0000000	/* receive state */
117 #define	D64_RS0_RS_SHIFT		28
118 #define	D64_RS0_RS_DISABLED	0x00000000	/* disabled */
119 #define	D64_RS0_RS_ACTIVE	0x10000000	/* active */
120 #define	D64_RS0_RS_IDLE		0x20000000	/* idle wait */
121 #define	D64_RS0_RS_STOPPED	0x30000000	/* stopped */
122 #define	D64_RS0_RS_SUSP		0x40000000	/* suspend pending */
123 
124 #define	D64_RS1_AD_MASK		0x0001ffff	/* active descriptor */
125 #define	D64_RS1_RE_MASK		0xf0000000	/* receive errors */
126 #define	D64_RS1_RE_SHIFT		28
127 #define	D64_RS1_RE_NOERR	0x00000000	/* no error */
128 #define	D64_RS1_RE_DPO		0x10000000	/* descriptor protocol error */
129 #define	D64_RS1_RE_DFU		0x20000000	/* data fifo overflow */
130 #define	D64_RS1_RE_DTE		0x30000000	/* data transfer error */
131 #define	D64_RS1_RE_DESRE	0x40000000	/* descriptor read error */
132 #define	D64_RS1_RE_COREE	0x50000000	/* core error */
133 
134 /* fifoaddr */
135 #define	D64_FA_OFF_MASK		0xffff	/* offset */
136 #define	D64_FA_SEL_MASK		0xf0000	/* select */
137 #define	D64_FA_SEL_SHIFT	16
138 #define	D64_FA_SEL_XDD		0x00000	/* transmit dma data */
139 #define	D64_FA_SEL_XDP		0x10000	/* transmit dma pointers */
140 #define	D64_FA_SEL_RDD		0x40000	/* receive dma data */
141 #define	D64_FA_SEL_RDP		0x50000	/* receive dma pointers */
142 #define	D64_FA_SEL_XFD		0x80000	/* transmit fifo data */
143 #define	D64_FA_SEL_XFP		0x90000	/* transmit fifo pointers */
144 #define	D64_FA_SEL_RFD		0xc0000	/* receive fifo data */
145 #define	D64_FA_SEL_RFP		0xd0000	/* receive fifo pointers */
146 #define	D64_FA_SEL_RSD		0xe0000	/* receive frame status data */
147 #define	D64_FA_SEL_RSP		0xf0000	/* receive frame status pointers */
148 
149 /* descriptor control flags 1 */
150 #define D64_CTRL_COREFLAGS	0x0ff00000	/* core specific flags */
151 #define	D64_CTRL1_EOT		((u32)1 << 28)	/* end of descriptor table */
152 #define	D64_CTRL1_IOC		((u32)1 << 29)	/* interrupt on completion */
153 #define	D64_CTRL1_EOF		((u32)1 << 30)	/* end of frame */
154 #define	D64_CTRL1_SOF		((u32)1 << 31)	/* start of frame */
155 
156 /* descriptor control flags 2 */
157 /* buffer byte count. real data len must <= 16KB */
158 #define	D64_CTRL2_BC_MASK	0x00007fff
159 /* address extension bits */
160 #define	D64_CTRL2_AE		0x00030000
161 #define	D64_CTRL2_AE_SHIFT	16
162 /* parity bit */
163 #define D64_CTRL2_PARITY	0x00040000
164 
165 /* control flags in the range [27:20] are core-specific and not defined here */
166 #define	D64_CTRL_CORE_MASK	0x0ff00000
167 
168 #define D64_RX_FRM_STS_LEN	0x0000ffff	/* frame length mask */
169 #define D64_RX_FRM_STS_OVFL	0x00800000	/* RxOverFlow */
170 #define D64_RX_FRM_STS_DSCRCNT	0x0f000000  /* no. of descriptors used - 1 */
171 #define D64_RX_FRM_STS_DATATYPE	0xf0000000	/* core-dependent data type */
172 
173 /*
174  * packet headroom necessary to accommodate the largest header
175  * in the system, (i.e TXOFF). By doing, we avoid the need to
176  * allocate an extra buffer for the header when bridging to WL.
177  * There is a compile time check in wlc.c which ensure that this
178  * value is at least as big as TXOFF. This value is used in
179  * dma_rxfill().
180  */
181 
182 #define BCMEXTRAHDROOM 172
183 
184 #define	MAXNAMEL	8	/* 8 char names */
185 
186 /* macros to convert between byte offsets and indexes */
187 #define	B2I(bytes, type)	((bytes) / sizeof(type))
188 #define	I2B(index, type)	((index) * sizeof(type))
189 
190 #define	PCI32ADDR_HIGH		0xc0000000	/* address[31:30] */
191 #define	PCI32ADDR_HIGH_SHIFT	30	/* address[31:30] */
192 
193 #define	PCI64ADDR_HIGH		0x80000000	/* address[63] */
194 #define	PCI64ADDR_HIGH_SHIFT	31	/* address[63] */
195 
196 /*
197  * DMA Descriptor
198  * Descriptors are only read by the hardware, never written back.
199  */
200 struct dma64desc {
201 	__le32 ctrl1;	/* misc control bits & bufcount */
202 	__le32 ctrl2;	/* buffer count and address extension */
203 	__le32 addrlow;	/* memory address of the date buffer, bits 31:0 */
204 	__le32 addrhigh; /* memory address of the date buffer, bits 63:32 */
205 };
206 
207 /* dma engine software state */
208 struct dma_info {
209 	struct dma_pub dma; /* exported structure */
210 	char name[MAXNAMEL];	/* callers name for diag msgs */
211 
212 	struct bcma_device *core;
213 	struct device *dmadev;
214 
215 	/* session information for AMPDU */
216 	struct brcms_ampdu_session ampdu_session;
217 
218 	bool dma64;	/* this dma engine is operating in 64-bit mode */
219 	bool addrext;	/* this dma engine supports DmaExtendedAddrChanges */
220 
221 	/* 64-bit dma tx engine registers */
222 	uint d64txregbase;
223 	/* 64-bit dma rx engine registers */
224 	uint d64rxregbase;
225 	/* pointer to dma64 tx descriptor ring */
226 	struct dma64desc *txd64;
227 	/* pointer to dma64 rx descriptor ring */
228 	struct dma64desc *rxd64;
229 
230 	u16 dmadesc_align;	/* alignment requirement for dma descriptors */
231 
232 	u16 ntxd;		/* # tx descriptors tunable */
233 	u16 txin;		/* index of next descriptor to reclaim */
234 	u16 txout;		/* index of next descriptor to post */
235 	/* pointer to parallel array of pointers to packets */
236 	struct sk_buff **txp;
237 	/* Aligned physical address of descriptor ring */
238 	dma_addr_t txdpa;
239 	/* Original physical address of descriptor ring */
240 	dma_addr_t txdpaorig;
241 	u16 txdalign;	/* #bytes added to alloc'd mem to align txd */
242 	u32 txdalloc;	/* #bytes allocated for the ring */
243 	u32 xmtptrbase;	/* When using unaligned descriptors, the ptr register
244 			 * is not just an index, it needs all 13 bits to be
245 			 * an offset from the addr register.
246 			 */
247 
248 	u16 nrxd;	/* # rx descriptors tunable */
249 	u16 rxin;	/* index of next descriptor to reclaim */
250 	u16 rxout;	/* index of next descriptor to post */
251 	/* pointer to parallel array of pointers to packets */
252 	struct sk_buff **rxp;
253 	/* Aligned physical address of descriptor ring */
254 	dma_addr_t rxdpa;
255 	/* Original physical address of descriptor ring */
256 	dma_addr_t rxdpaorig;
257 	u16 rxdalign;	/* #bytes added to alloc'd mem to align rxd */
258 	u32 rxdalloc;	/* #bytes allocated for the ring */
259 	u32 rcvptrbase;	/* Base for ptr reg when using unaligned descriptors */
260 
261 	/* tunables */
262 	unsigned int rxbufsize;	/* rx buffer size in bytes, not including
263 				 * the extra headroom
264 				 */
265 	uint rxextrahdrroom;	/* extra rx headroom, reverseved to assist upper
266 				 * stack, e.g. some rx pkt buffers will be
267 				 * bridged to tx side without byte copying.
268 				 * The extra headroom needs to be large enough
269 				 * to fit txheader needs. Some dongle driver may
270 				 * not need it.
271 				 */
272 	uint nrxpost;		/* # rx buffers to keep posted */
273 	unsigned int rxoffset;	/* rxcontrol offset */
274 	/* add to get dma address of descriptor ring, low 32 bits */
275 	uint ddoffsetlow;
276 	/*   high 32 bits */
277 	uint ddoffsethigh;
278 	/* add to get dma address of data buffer, low 32 bits */
279 	uint dataoffsetlow;
280 	/*   high 32 bits */
281 	uint dataoffsethigh;
282 	/* descriptor base need to be aligned or not */
283 	bool aligndesc_4k;
284 };
285 
286 /* Check for odd number of 1's */
287 static u32 parity32(__le32 data)
288 {
289 	/* no swap needed for counting 1's */
290 	u32 par_data = *(u32 *)&data;
291 
292 	par_data ^= par_data >> 16;
293 	par_data ^= par_data >> 8;
294 	par_data ^= par_data >> 4;
295 	par_data ^= par_data >> 2;
296 	par_data ^= par_data >> 1;
297 
298 	return par_data & 1;
299 }
300 
301 static bool dma64_dd_parity(struct dma64desc *dd)
302 {
303 	return parity32(dd->addrlow ^ dd->addrhigh ^ dd->ctrl1 ^ dd->ctrl2);
304 }
305 
306 /* descriptor bumping functions */
307 
308 static uint xxd(uint x, uint n)
309 {
310 	return x & (n - 1); /* faster than %, but n must be power of 2 */
311 }
312 
313 static uint txd(struct dma_info *di, uint x)
314 {
315 	return xxd(x, di->ntxd);
316 }
317 
318 static uint rxd(struct dma_info *di, uint x)
319 {
320 	return xxd(x, di->nrxd);
321 }
322 
323 static uint nexttxd(struct dma_info *di, uint i)
324 {
325 	return txd(di, i + 1);
326 }
327 
328 static uint prevtxd(struct dma_info *di, uint i)
329 {
330 	return txd(di, i - 1);
331 }
332 
333 static uint nextrxd(struct dma_info *di, uint i)
334 {
335 	return rxd(di, i + 1);
336 }
337 
338 static uint ntxdactive(struct dma_info *di, uint h, uint t)
339 {
340 	return txd(di, t-h);
341 }
342 
343 static uint nrxdactive(struct dma_info *di, uint h, uint t)
344 {
345 	return rxd(di, t-h);
346 }
347 
348 static uint _dma_ctrlflags(struct dma_info *di, uint mask, uint flags)
349 {
350 	uint dmactrlflags;
351 
352 	if (di == NULL)
353 		return 0;
354 
355 	dmactrlflags = di->dma.dmactrlflags;
356 	dmactrlflags &= ~mask;
357 	dmactrlflags |= flags;
358 
359 	/* If trying to enable parity, check if parity is actually supported */
360 	if (dmactrlflags & DMA_CTRL_PEN) {
361 		u32 control;
362 
363 		control = bcma_read32(di->core, DMA64TXREGOFFS(di, control));
364 		bcma_write32(di->core, DMA64TXREGOFFS(di, control),
365 		      control | D64_XC_PD);
366 		if (bcma_read32(di->core, DMA64TXREGOFFS(di, control)) &
367 		    D64_XC_PD)
368 			/* We *can* disable it so it is supported,
369 			 * restore control register
370 			 */
371 			bcma_write32(di->core, DMA64TXREGOFFS(di, control),
372 				     control);
373 		else
374 			/* Not supported, don't allow it to be enabled */
375 			dmactrlflags &= ~DMA_CTRL_PEN;
376 	}
377 
378 	di->dma.dmactrlflags = dmactrlflags;
379 
380 	return dmactrlflags;
381 }
382 
383 static bool _dma64_addrext(struct dma_info *di, uint ctrl_offset)
384 {
385 	u32 w;
386 	bcma_set32(di->core, ctrl_offset, D64_XC_AE);
387 	w = bcma_read32(di->core, ctrl_offset);
388 	bcma_mask32(di->core, ctrl_offset, ~D64_XC_AE);
389 	return (w & D64_XC_AE) == D64_XC_AE;
390 }
391 
392 /*
393  * return true if this dma engine supports DmaExtendedAddrChanges,
394  * otherwise false
395  */
396 static bool _dma_isaddrext(struct dma_info *di)
397 {
398 	/* DMA64 supports full 32- or 64-bit operation. AE is always valid */
399 
400 	/* not all tx or rx channel are available */
401 	if (di->d64txregbase != 0) {
402 		if (!_dma64_addrext(di, DMA64TXREGOFFS(di, control)))
403 			brcms_dbg_dma(di->core,
404 				      "%s: DMA64 tx doesn't have AE set\n",
405 				      di->name);
406 		return true;
407 	} else if (di->d64rxregbase != 0) {
408 		if (!_dma64_addrext(di, DMA64RXREGOFFS(di, control)))
409 			brcms_dbg_dma(di->core,
410 				      "%s: DMA64 rx doesn't have AE set\n",
411 				      di->name);
412 		return true;
413 	}
414 
415 	return false;
416 }
417 
418 static bool _dma_descriptor_align(struct dma_info *di)
419 {
420 	u32 addrl;
421 
422 	/* Check to see if the descriptors need to be aligned on 4K/8K or not */
423 	if (di->d64txregbase != 0) {
424 		bcma_write32(di->core, DMA64TXREGOFFS(di, addrlow), 0xff0);
425 		addrl = bcma_read32(di->core, DMA64TXREGOFFS(di, addrlow));
426 		if (addrl != 0)
427 			return false;
428 	} else if (di->d64rxregbase != 0) {
429 		bcma_write32(di->core, DMA64RXREGOFFS(di, addrlow), 0xff0);
430 		addrl = bcma_read32(di->core, DMA64RXREGOFFS(di, addrlow));
431 		if (addrl != 0)
432 			return false;
433 	}
434 	return true;
435 }
436 
437 /*
438  * Descriptor table must start at the DMA hardware dictated alignment, so
439  * allocated memory must be large enough to support this requirement.
440  */
441 static void *dma_alloc_consistent(struct dma_info *di, uint size,
442 				  u16 align_bits, uint *alloced,
443 				  dma_addr_t *pap)
444 {
445 	if (align_bits) {
446 		u16 align = (1 << align_bits);
447 		if (!IS_ALIGNED(PAGE_SIZE, align))
448 			size += align;
449 		*alloced = size;
450 	}
451 	return dma_alloc_coherent(di->dmadev, size, pap, GFP_ATOMIC);
452 }
453 
454 static
455 u8 dma_align_sizetobits(uint size)
456 {
457 	u8 bitpos = 0;
458 	while (size >>= 1)
459 		bitpos++;
460 	return bitpos;
461 }
462 
463 /* This function ensures that the DMA descriptor ring will not get allocated
464  * across Page boundary. If the allocation is done across the page boundary
465  * at the first time, then it is freed and the allocation is done at
466  * descriptor ring size aligned location. This will ensure that the ring will
467  * not cross page boundary
468  */
469 static void *dma_ringalloc(struct dma_info *di, u32 boundary, uint size,
470 			   u16 *alignbits, uint *alloced,
471 			   dma_addr_t *descpa)
472 {
473 	void *va;
474 	u32 desc_strtaddr;
475 	u32 alignbytes = 1 << *alignbits;
476 
477 	va = dma_alloc_consistent(di, size, *alignbits, alloced, descpa);
478 
479 	if (NULL == va)
480 		return NULL;
481 
482 	desc_strtaddr = (u32) roundup((unsigned long)va, alignbytes);
483 	if (((desc_strtaddr + size - 1) & boundary) != (desc_strtaddr
484 							& boundary)) {
485 		*alignbits = dma_align_sizetobits(size);
486 		dma_free_coherent(di->dmadev, size, va, *descpa);
487 		va = dma_alloc_consistent(di, size, *alignbits,
488 			alloced, descpa);
489 	}
490 	return va;
491 }
492 
493 static bool dma64_alloc(struct dma_info *di, uint direction)
494 {
495 	u16 size;
496 	uint ddlen;
497 	void *va;
498 	uint alloced = 0;
499 	u16 align;
500 	u16 align_bits;
501 
502 	ddlen = sizeof(struct dma64desc);
503 
504 	size = (direction == DMA_TX) ? (di->ntxd * ddlen) : (di->nrxd * ddlen);
505 	align_bits = di->dmadesc_align;
506 	align = (1 << align_bits);
507 
508 	if (direction == DMA_TX) {
509 		va = dma_ringalloc(di, D64RINGALIGN, size, &align_bits,
510 			&alloced, &di->txdpaorig);
511 		if (va == NULL) {
512 			brcms_dbg_dma(di->core,
513 				      "%s: DMA_ALLOC_CONSISTENT(ntxd) failed\n",
514 				      di->name);
515 			return false;
516 		}
517 		align = (1 << align_bits);
518 		di->txd64 = (struct dma64desc *)
519 					roundup((unsigned long)va, align);
520 		di->txdalign = (uint) ((s8 *)di->txd64 - (s8 *) va);
521 		di->txdpa = di->txdpaorig + di->txdalign;
522 		di->txdalloc = alloced;
523 	} else {
524 		va = dma_ringalloc(di, D64RINGALIGN, size, &align_bits,
525 			&alloced, &di->rxdpaorig);
526 		if (va == NULL) {
527 			brcms_dbg_dma(di->core,
528 				      "%s: DMA_ALLOC_CONSISTENT(nrxd) failed\n",
529 				      di->name);
530 			return false;
531 		}
532 		align = (1 << align_bits);
533 		di->rxd64 = (struct dma64desc *)
534 					roundup((unsigned long)va, align);
535 		di->rxdalign = (uint) ((s8 *)di->rxd64 - (s8 *) va);
536 		di->rxdpa = di->rxdpaorig + di->rxdalign;
537 		di->rxdalloc = alloced;
538 	}
539 
540 	return true;
541 }
542 
543 static bool _dma_alloc(struct dma_info *di, uint direction)
544 {
545 	return dma64_alloc(di, direction);
546 }
547 
548 struct dma_pub *dma_attach(char *name, struct brcms_c_info *wlc,
549 			   uint txregbase, uint rxregbase, uint ntxd, uint nrxd,
550 			   uint rxbufsize, int rxextheadroom,
551 			   uint nrxpost, uint rxoffset)
552 {
553 	struct si_pub *sih = wlc->hw->sih;
554 	struct bcma_device *core = wlc->hw->d11core;
555 	struct dma_info *di;
556 	u8 rev = core->id.rev;
557 	uint size;
558 	struct si_info *sii = container_of(sih, struct si_info, pub);
559 
560 	/* allocate private info structure */
561 	di = kzalloc(sizeof(struct dma_info), GFP_ATOMIC);
562 	if (di == NULL)
563 		return NULL;
564 
565 	di->dma64 =
566 		((bcma_aread32(core, BCMA_IOST) & SISF_DMA64) == SISF_DMA64);
567 
568 	/* init dma reg info */
569 	di->core = core;
570 	di->d64txregbase = txregbase;
571 	di->d64rxregbase = rxregbase;
572 
573 	/*
574 	 * Default flags (which can be changed by the driver calling
575 	 * dma_ctrlflags before enable): For backwards compatibility
576 	 * both Rx Overflow Continue and Parity are DISABLED.
577 	 */
578 	_dma_ctrlflags(di, DMA_CTRL_ROC | DMA_CTRL_PEN, 0);
579 
580 	brcms_dbg_dma(di->core, "%s: %s flags 0x%x ntxd %d nrxd %d "
581 		      "rxbufsize %d rxextheadroom %d nrxpost %d rxoffset %d "
582 		      "txregbase %u rxregbase %u\n", name, "DMA64",
583 		      di->dma.dmactrlflags, ntxd, nrxd, rxbufsize,
584 		      rxextheadroom, nrxpost, rxoffset, txregbase, rxregbase);
585 
586 	/* make a private copy of our callers name */
587 	strncpy(di->name, name, MAXNAMEL);
588 	di->name[MAXNAMEL - 1] = '\0';
589 
590 	di->dmadev = core->dma_dev;
591 
592 	/* save tunables */
593 	di->ntxd = (u16) ntxd;
594 	di->nrxd = (u16) nrxd;
595 
596 	/* the actual dma size doesn't include the extra headroom */
597 	di->rxextrahdrroom =
598 	    (rxextheadroom == -1) ? BCMEXTRAHDROOM : rxextheadroom;
599 	if (rxbufsize > BCMEXTRAHDROOM)
600 		di->rxbufsize = (u16) (rxbufsize - di->rxextrahdrroom);
601 	else
602 		di->rxbufsize = (u16) rxbufsize;
603 
604 	di->nrxpost = (u16) nrxpost;
605 	di->rxoffset = (u8) rxoffset;
606 
607 	/*
608 	 * figure out the DMA physical address offset for dd and data
609 	 *     PCI/PCIE: they map silicon backplace address to zero
610 	 *     based memory, need offset
611 	 *     Other bus: use zero SI_BUS BIGENDIAN kludge: use sdram
612 	 *     swapped region for data buffer, not descriptor
613 	 */
614 	di->ddoffsetlow = 0;
615 	di->dataoffsetlow = 0;
616 	/* for pci bus, add offset */
617 	if (sii->icbus->hosttype == BCMA_HOSTTYPE_PCI) {
618 		/* add offset for pcie with DMA64 bus */
619 		di->ddoffsetlow = 0;
620 		di->ddoffsethigh = SI_PCIE_DMA_H32;
621 	}
622 	di->dataoffsetlow = di->ddoffsetlow;
623 	di->dataoffsethigh = di->ddoffsethigh;
624 
625 	/* WAR64450 : DMACtl.Addr ext fields are not supported in SDIOD core. */
626 	if ((core->id.id == BCMA_CORE_SDIO_DEV)
627 	    && ((rev > 0) && (rev <= 2)))
628 		di->addrext = false;
629 	else if ((core->id.id == BCMA_CORE_I2S) &&
630 		 ((rev == 0) || (rev == 1)))
631 		di->addrext = false;
632 	else
633 		di->addrext = _dma_isaddrext(di);
634 
635 	/* does the descriptor need to be aligned and if yes, on 4K/8K or not */
636 	di->aligndesc_4k = _dma_descriptor_align(di);
637 	if (di->aligndesc_4k) {
638 		di->dmadesc_align = D64RINGALIGN_BITS;
639 		if ((ntxd < D64MAXDD / 2) && (nrxd < D64MAXDD / 2))
640 			/* for smaller dd table, HW relax alignment reqmnt */
641 			di->dmadesc_align = D64RINGALIGN_BITS - 1;
642 	} else {
643 		di->dmadesc_align = 4;	/* 16 byte alignment */
644 	}
645 
646 	brcms_dbg_dma(di->core, "DMA descriptor align_needed %d, align %d\n",
647 		      di->aligndesc_4k, di->dmadesc_align);
648 
649 	/* allocate tx packet pointer vector */
650 	if (ntxd) {
651 		size = ntxd * sizeof(void *);
652 		di->txp = kzalloc(size, GFP_ATOMIC);
653 		if (di->txp == NULL)
654 			goto fail;
655 	}
656 
657 	/* allocate rx packet pointer vector */
658 	if (nrxd) {
659 		size = nrxd * sizeof(void *);
660 		di->rxp = kzalloc(size, GFP_ATOMIC);
661 		if (di->rxp == NULL)
662 			goto fail;
663 	}
664 
665 	/*
666 	 * allocate transmit descriptor ring, only need ntxd descriptors
667 	 * but it must be aligned
668 	 */
669 	if (ntxd) {
670 		if (!_dma_alloc(di, DMA_TX))
671 			goto fail;
672 	}
673 
674 	/*
675 	 * allocate receive descriptor ring, only need nrxd descriptors
676 	 * but it must be aligned
677 	 */
678 	if (nrxd) {
679 		if (!_dma_alloc(di, DMA_RX))
680 			goto fail;
681 	}
682 
683 	if ((di->ddoffsetlow != 0) && !di->addrext) {
684 		if (di->txdpa > SI_PCI_DMA_SZ) {
685 			brcms_dbg_dma(di->core,
686 				      "%s: txdpa 0x%x: addrext not supported\n",
687 				      di->name, (u32)di->txdpa);
688 			goto fail;
689 		}
690 		if (di->rxdpa > SI_PCI_DMA_SZ) {
691 			brcms_dbg_dma(di->core,
692 				      "%s: rxdpa 0x%x: addrext not supported\n",
693 				      di->name, (u32)di->rxdpa);
694 			goto fail;
695 		}
696 	}
697 
698 	/* Initialize AMPDU session */
699 	brcms_c_ampdu_reset_session(&di->ampdu_session, wlc);
700 
701 	brcms_dbg_dma(di->core,
702 		      "ddoffsetlow 0x%x ddoffsethigh 0x%x dataoffsetlow 0x%x dataoffsethigh 0x%x addrext %d\n",
703 		      di->ddoffsetlow, di->ddoffsethigh,
704 		      di->dataoffsetlow, di->dataoffsethigh,
705 		      di->addrext);
706 
707 	return (struct dma_pub *) di;
708 
709  fail:
710 	dma_detach((struct dma_pub *)di);
711 	return NULL;
712 }
713 
714 static inline void
715 dma64_dd_upd(struct dma_info *di, struct dma64desc *ddring,
716 	     dma_addr_t pa, uint outidx, u32 *flags, u32 bufcount)
717 {
718 	u32 ctrl2 = bufcount & D64_CTRL2_BC_MASK;
719 
720 	/* PCI bus with big(>1G) physical address, use address extension */
721 	if ((di->dataoffsetlow == 0) || !(pa & PCI32ADDR_HIGH)) {
722 		ddring[outidx].addrlow = cpu_to_le32(pa + di->dataoffsetlow);
723 		ddring[outidx].addrhigh = cpu_to_le32(di->dataoffsethigh);
724 		ddring[outidx].ctrl1 = cpu_to_le32(*flags);
725 		ddring[outidx].ctrl2 = cpu_to_le32(ctrl2);
726 	} else {
727 		/* address extension for 32-bit PCI */
728 		u32 ae;
729 
730 		ae = (pa & PCI32ADDR_HIGH) >> PCI32ADDR_HIGH_SHIFT;
731 		pa &= ~PCI32ADDR_HIGH;
732 
733 		ctrl2 |= (ae << D64_CTRL2_AE_SHIFT) & D64_CTRL2_AE;
734 		ddring[outidx].addrlow = cpu_to_le32(pa + di->dataoffsetlow);
735 		ddring[outidx].addrhigh = cpu_to_le32(di->dataoffsethigh);
736 		ddring[outidx].ctrl1 = cpu_to_le32(*flags);
737 		ddring[outidx].ctrl2 = cpu_to_le32(ctrl2);
738 	}
739 	if (di->dma.dmactrlflags & DMA_CTRL_PEN) {
740 		if (dma64_dd_parity(&ddring[outidx]))
741 			ddring[outidx].ctrl2 =
742 			     cpu_to_le32(ctrl2 | D64_CTRL2_PARITY);
743 	}
744 }
745 
746 /* !! may be called with core in reset */
747 void dma_detach(struct dma_pub *pub)
748 {
749 	struct dma_info *di = container_of(pub, struct dma_info, dma);
750 
751 	brcms_dbg_dma(di->core, "%s:\n", di->name);
752 
753 	/* free dma descriptor rings */
754 	if (di->txd64)
755 		dma_free_coherent(di->dmadev, di->txdalloc,
756 				  ((s8 *)di->txd64 - di->txdalign),
757 				  (di->txdpaorig));
758 	if (di->rxd64)
759 		dma_free_coherent(di->dmadev, di->rxdalloc,
760 				  ((s8 *)di->rxd64 - di->rxdalign),
761 				  (di->rxdpaorig));
762 
763 	/* free packet pointer vectors */
764 	kfree(di->txp);
765 	kfree(di->rxp);
766 
767 	/* free our private info structure */
768 	kfree(di);
769 
770 }
771 
772 /* initialize descriptor table base address */
773 static void
774 _dma_ddtable_init(struct dma_info *di, uint direction, dma_addr_t pa)
775 {
776 	if (!di->aligndesc_4k) {
777 		if (direction == DMA_TX)
778 			di->xmtptrbase = pa;
779 		else
780 			di->rcvptrbase = pa;
781 	}
782 
783 	if ((di->ddoffsetlow == 0)
784 	    || !(pa & PCI32ADDR_HIGH)) {
785 		if (direction == DMA_TX) {
786 			bcma_write32(di->core, DMA64TXREGOFFS(di, addrlow),
787 				     pa + di->ddoffsetlow);
788 			bcma_write32(di->core, DMA64TXREGOFFS(di, addrhigh),
789 				     di->ddoffsethigh);
790 		} else {
791 			bcma_write32(di->core, DMA64RXREGOFFS(di, addrlow),
792 				     pa + di->ddoffsetlow);
793 			bcma_write32(di->core, DMA64RXREGOFFS(di, addrhigh),
794 				     di->ddoffsethigh);
795 		}
796 	} else {
797 		/* DMA64 32bits address extension */
798 		u32 ae;
799 
800 		/* shift the high bit(s) from pa to ae */
801 		ae = (pa & PCI32ADDR_HIGH) >> PCI32ADDR_HIGH_SHIFT;
802 		pa &= ~PCI32ADDR_HIGH;
803 
804 		if (direction == DMA_TX) {
805 			bcma_write32(di->core, DMA64TXREGOFFS(di, addrlow),
806 				     pa + di->ddoffsetlow);
807 			bcma_write32(di->core, DMA64TXREGOFFS(di, addrhigh),
808 				     di->ddoffsethigh);
809 			bcma_maskset32(di->core, DMA64TXREGOFFS(di, control),
810 				       D64_XC_AE, (ae << D64_XC_AE_SHIFT));
811 		} else {
812 			bcma_write32(di->core, DMA64RXREGOFFS(di, addrlow),
813 				     pa + di->ddoffsetlow);
814 			bcma_write32(di->core, DMA64RXREGOFFS(di, addrhigh),
815 				     di->ddoffsethigh);
816 			bcma_maskset32(di->core, DMA64RXREGOFFS(di, control),
817 				       D64_RC_AE, (ae << D64_RC_AE_SHIFT));
818 		}
819 	}
820 }
821 
822 static void _dma_rxenable(struct dma_info *di)
823 {
824 	uint dmactrlflags = di->dma.dmactrlflags;
825 	u32 control;
826 
827 	brcms_dbg_dma(di->core, "%s:\n", di->name);
828 
829 	control = D64_RC_RE | (bcma_read32(di->core,
830 					   DMA64RXREGOFFS(di, control)) &
831 			       D64_RC_AE);
832 
833 	if ((dmactrlflags & DMA_CTRL_PEN) == 0)
834 		control |= D64_RC_PD;
835 
836 	if (dmactrlflags & DMA_CTRL_ROC)
837 		control |= D64_RC_OC;
838 
839 	bcma_write32(di->core, DMA64RXREGOFFS(di, control),
840 		((di->rxoffset << D64_RC_RO_SHIFT) | control));
841 }
842 
843 void dma_rxinit(struct dma_pub *pub)
844 {
845 	struct dma_info *di = container_of(pub, struct dma_info, dma);
846 
847 	brcms_dbg_dma(di->core, "%s:\n", di->name);
848 
849 	if (di->nrxd == 0)
850 		return;
851 
852 	di->rxin = di->rxout = 0;
853 
854 	/* clear rx descriptor ring */
855 	memset(di->rxd64, '\0', di->nrxd * sizeof(struct dma64desc));
856 
857 	/* DMA engine with out alignment requirement requires table to be inited
858 	 * before enabling the engine
859 	 */
860 	if (!di->aligndesc_4k)
861 		_dma_ddtable_init(di, DMA_RX, di->rxdpa);
862 
863 	_dma_rxenable(di);
864 
865 	if (di->aligndesc_4k)
866 		_dma_ddtable_init(di, DMA_RX, di->rxdpa);
867 }
868 
869 static struct sk_buff *dma64_getnextrxp(struct dma_info *di, bool forceall)
870 {
871 	uint i, curr;
872 	struct sk_buff *rxp;
873 	dma_addr_t pa;
874 
875 	i = di->rxin;
876 
877 	/* return if no packets posted */
878 	if (i == di->rxout)
879 		return NULL;
880 
881 	curr =
882 	    B2I(((bcma_read32(di->core,
883 			      DMA64RXREGOFFS(di, status0)) & D64_RS0_CD_MASK) -
884 		 di->rcvptrbase) & D64_RS0_CD_MASK, struct dma64desc);
885 
886 	/* ignore curr if forceall */
887 	if (!forceall && (i == curr))
888 		return NULL;
889 
890 	/* get the packet pointer that corresponds to the rx descriptor */
891 	rxp = di->rxp[i];
892 	di->rxp[i] = NULL;
893 
894 	pa = le32_to_cpu(di->rxd64[i].addrlow) - di->dataoffsetlow;
895 
896 	/* clear this packet from the descriptor ring */
897 	dma_unmap_single(di->dmadev, pa, di->rxbufsize, DMA_FROM_DEVICE);
898 
899 	di->rxd64[i].addrlow = cpu_to_le32(0xdeadbeef);
900 	di->rxd64[i].addrhigh = cpu_to_le32(0xdeadbeef);
901 
902 	di->rxin = nextrxd(di, i);
903 
904 	return rxp;
905 }
906 
907 static struct sk_buff *_dma_getnextrxp(struct dma_info *di, bool forceall)
908 {
909 	if (di->nrxd == 0)
910 		return NULL;
911 
912 	return dma64_getnextrxp(di, forceall);
913 }
914 
915 /*
916  * !! rx entry routine
917  * returns the number packages in the next frame, or 0 if there are no more
918  *   if DMA_CTRL_RXMULTI is defined, DMA scattering(multiple buffers) is
919  *   supported with pkts chain
920  *   otherwise, it's treated as giant pkt and will be tossed.
921  *   The DMA scattering starts with normal DMA header, followed by first
922  *   buffer data. After it reaches the max size of buffer, the data continues
923  *   in next DMA descriptor buffer WITHOUT DMA header
924  */
925 int dma_rx(struct dma_pub *pub, struct sk_buff_head *skb_list)
926 {
927 	struct dma_info *di = container_of(pub, struct dma_info, dma);
928 	struct sk_buff_head dma_frames;
929 	struct sk_buff *p, *next;
930 	uint len;
931 	uint pkt_len;
932 	int resid = 0;
933 	int pktcnt = 1;
934 
935 	skb_queue_head_init(&dma_frames);
936  next_frame:
937 	p = _dma_getnextrxp(di, false);
938 	if (p == NULL)
939 		return 0;
940 
941 	len = le16_to_cpu(*(__le16 *) (p->data));
942 	brcms_dbg_dma(di->core, "%s: dma_rx len %d\n", di->name, len);
943 	dma_spin_for_len(len, p);
944 
945 	/* set actual length */
946 	pkt_len = min((di->rxoffset + len), di->rxbufsize);
947 	__skb_trim(p, pkt_len);
948 	skb_queue_tail(&dma_frames, p);
949 	resid = len - (di->rxbufsize - di->rxoffset);
950 
951 	/* check for single or multi-buffer rx */
952 	if (resid > 0) {
953 		while ((resid > 0) && (p = _dma_getnextrxp(di, false))) {
954 			pkt_len = min_t(uint, resid, di->rxbufsize);
955 			__skb_trim(p, pkt_len);
956 			skb_queue_tail(&dma_frames, p);
957 			resid -= di->rxbufsize;
958 			pktcnt++;
959 		}
960 
961 #ifdef DEBUG
962 		if (resid > 0) {
963 			uint cur;
964 			cur =
965 			    B2I(((bcma_read32(di->core,
966 					      DMA64RXREGOFFS(di, status0)) &
967 				  D64_RS0_CD_MASK) - di->rcvptrbase) &
968 				D64_RS0_CD_MASK, struct dma64desc);
969 			brcms_dbg_dma(di->core,
970 				      "rxin %d rxout %d, hw_curr %d\n",
971 				      di->rxin, di->rxout, cur);
972 		}
973 #endif				/* DEBUG */
974 
975 		if ((di->dma.dmactrlflags & DMA_CTRL_RXMULTI) == 0) {
976 			brcms_dbg_dma(di->core, "%s: bad frame length (%d)\n",
977 				      di->name, len);
978 			skb_queue_walk_safe(&dma_frames, p, next) {
979 				skb_unlink(p, &dma_frames);
980 				brcmu_pkt_buf_free_skb(p);
981 			}
982 			di->dma.rxgiants++;
983 			pktcnt = 1;
984 			goto next_frame;
985 		}
986 	}
987 
988 	skb_queue_splice_tail(&dma_frames, skb_list);
989 	return pktcnt;
990 }
991 
992 static bool dma64_rxidle(struct dma_info *di)
993 {
994 	brcms_dbg_dma(di->core, "%s:\n", di->name);
995 
996 	if (di->nrxd == 0)
997 		return true;
998 
999 	return ((bcma_read32(di->core,
1000 			     DMA64RXREGOFFS(di, status0)) & D64_RS0_CD_MASK) ==
1001 		(bcma_read32(di->core, DMA64RXREGOFFS(di, ptr)) &
1002 		 D64_RS0_CD_MASK));
1003 }
1004 
1005 static bool dma64_txidle(struct dma_info *di)
1006 {
1007 	if (di->ntxd == 0)
1008 		return true;
1009 
1010 	return ((bcma_read32(di->core,
1011 			     DMA64TXREGOFFS(di, status0)) & D64_XS0_CD_MASK) ==
1012 		(bcma_read32(di->core, DMA64TXREGOFFS(di, ptr)) &
1013 		 D64_XS0_CD_MASK));
1014 }
1015 
1016 /*
1017  * post receive buffers
1018  *  Return false if refill failed completely or dma mapping failed. The ring
1019  *  is empty, which will stall the rx dma and user might want to call rxfill
1020  *  again asap. This is unlikely to happen on a memory-rich NIC, but often on
1021  *  memory-constrained dongle.
1022  */
1023 bool dma_rxfill(struct dma_pub *pub)
1024 {
1025 	struct dma_info *di = container_of(pub, struct dma_info, dma);
1026 	struct sk_buff *p;
1027 	u16 rxin, rxout;
1028 	u32 flags = 0;
1029 	uint n;
1030 	uint i;
1031 	dma_addr_t pa;
1032 	uint extra_offset = 0;
1033 	bool ring_empty;
1034 
1035 	ring_empty = false;
1036 
1037 	/*
1038 	 * Determine how many receive buffers we're lacking
1039 	 * from the full complement, allocate, initialize,
1040 	 * and post them, then update the chip rx lastdscr.
1041 	 */
1042 
1043 	rxin = di->rxin;
1044 	rxout = di->rxout;
1045 
1046 	n = di->nrxpost - nrxdactive(di, rxin, rxout);
1047 
1048 	brcms_dbg_dma(di->core, "%s: post %d\n", di->name, n);
1049 
1050 	if (di->rxbufsize > BCMEXTRAHDROOM)
1051 		extra_offset = di->rxextrahdrroom;
1052 
1053 	for (i = 0; i < n; i++) {
1054 		/*
1055 		 * the di->rxbufsize doesn't include the extra headroom,
1056 		 * we need to add it to the size to be allocated
1057 		 */
1058 		p = brcmu_pkt_buf_get_skb(di->rxbufsize + extra_offset);
1059 
1060 		if (p == NULL) {
1061 			brcms_dbg_dma(di->core, "%s: out of rxbufs\n",
1062 				      di->name);
1063 			if (i == 0 && dma64_rxidle(di)) {
1064 				brcms_dbg_dma(di->core, "%s: ring is empty !\n",
1065 					      di->name);
1066 				ring_empty = true;
1067 			}
1068 			di->dma.rxnobuf++;
1069 			break;
1070 		}
1071 		/* reserve an extra headroom, if applicable */
1072 		if (extra_offset)
1073 			skb_pull(p, extra_offset);
1074 
1075 		/* Do a cached write instead of uncached write since DMA_MAP
1076 		 * will flush the cache.
1077 		 */
1078 		*(u32 *) (p->data) = 0;
1079 
1080 		pa = dma_map_single(di->dmadev, p->data, di->rxbufsize,
1081 				    DMA_FROM_DEVICE);
1082 		if (dma_mapping_error(di->dmadev, pa)) {
1083 			brcmu_pkt_buf_free_skb(p);
1084 			return false;
1085 		}
1086 
1087 		/* save the free packet pointer */
1088 		di->rxp[rxout] = p;
1089 
1090 		/* reset flags for each descriptor */
1091 		flags = 0;
1092 		if (rxout == (di->nrxd - 1))
1093 			flags = D64_CTRL1_EOT;
1094 
1095 		dma64_dd_upd(di, di->rxd64, pa, rxout, &flags,
1096 			     di->rxbufsize);
1097 		rxout = nextrxd(di, rxout);
1098 	}
1099 
1100 	di->rxout = rxout;
1101 
1102 	/* update the chip lastdscr pointer */
1103 	bcma_write32(di->core, DMA64RXREGOFFS(di, ptr),
1104 	      di->rcvptrbase + I2B(rxout, struct dma64desc));
1105 
1106 	return ring_empty;
1107 }
1108 
1109 void dma_rxreclaim(struct dma_pub *pub)
1110 {
1111 	struct dma_info *di = container_of(pub, struct dma_info, dma);
1112 	struct sk_buff *p;
1113 
1114 	brcms_dbg_dma(di->core, "%s:\n", di->name);
1115 
1116 	while ((p = _dma_getnextrxp(di, true)))
1117 		brcmu_pkt_buf_free_skb(p);
1118 }
1119 
1120 void dma_counterreset(struct dma_pub *pub)
1121 {
1122 	/* reset all software counters */
1123 	pub->rxgiants = 0;
1124 	pub->rxnobuf = 0;
1125 	pub->txnobuf = 0;
1126 }
1127 
1128 /* get the address of the var in order to change later */
1129 unsigned long dma_getvar(struct dma_pub *pub, const char *name)
1130 {
1131 	struct dma_info *di = container_of(pub, struct dma_info, dma);
1132 
1133 	if (!strcmp(name, "&txavail"))
1134 		return (unsigned long)&(di->dma.txavail);
1135 	return 0;
1136 }
1137 
1138 /* 64-bit DMA functions */
1139 
1140 void dma_txinit(struct dma_pub *pub)
1141 {
1142 	struct dma_info *di = container_of(pub, struct dma_info, dma);
1143 	u32 control = D64_XC_XE;
1144 
1145 	brcms_dbg_dma(di->core, "%s:\n", di->name);
1146 
1147 	if (di->ntxd == 0)
1148 		return;
1149 
1150 	di->txin = di->txout = 0;
1151 	di->dma.txavail = di->ntxd - 1;
1152 
1153 	/* clear tx descriptor ring */
1154 	memset(di->txd64, '\0', (di->ntxd * sizeof(struct dma64desc)));
1155 
1156 	/* DMA engine with out alignment requirement requires table to be inited
1157 	 * before enabling the engine
1158 	 */
1159 	if (!di->aligndesc_4k)
1160 		_dma_ddtable_init(di, DMA_TX, di->txdpa);
1161 
1162 	if ((di->dma.dmactrlflags & DMA_CTRL_PEN) == 0)
1163 		control |= D64_XC_PD;
1164 	bcma_set32(di->core, DMA64TXREGOFFS(di, control), control);
1165 
1166 	/* DMA engine with alignment requirement requires table to be inited
1167 	 * before enabling the engine
1168 	 */
1169 	if (di->aligndesc_4k)
1170 		_dma_ddtable_init(di, DMA_TX, di->txdpa);
1171 }
1172 
1173 void dma_txsuspend(struct dma_pub *pub)
1174 {
1175 	struct dma_info *di = container_of(pub, struct dma_info, dma);
1176 
1177 	brcms_dbg_dma(di->core, "%s:\n", di->name);
1178 
1179 	if (di->ntxd == 0)
1180 		return;
1181 
1182 	bcma_set32(di->core, DMA64TXREGOFFS(di, control), D64_XC_SE);
1183 }
1184 
1185 void dma_txresume(struct dma_pub *pub)
1186 {
1187 	struct dma_info *di = container_of(pub, struct dma_info, dma);
1188 
1189 	brcms_dbg_dma(di->core, "%s:\n", di->name);
1190 
1191 	if (di->ntxd == 0)
1192 		return;
1193 
1194 	bcma_mask32(di->core, DMA64TXREGOFFS(di, control), ~D64_XC_SE);
1195 }
1196 
1197 bool dma_txsuspended(struct dma_pub *pub)
1198 {
1199 	struct dma_info *di = container_of(pub, struct dma_info, dma);
1200 
1201 	return (di->ntxd == 0) ||
1202 	       ((bcma_read32(di->core,
1203 			     DMA64TXREGOFFS(di, control)) & D64_XC_SE) ==
1204 		D64_XC_SE);
1205 }
1206 
1207 void dma_txreclaim(struct dma_pub *pub, enum txd_range range)
1208 {
1209 	struct dma_info *di = container_of(pub, struct dma_info, dma);
1210 	struct sk_buff *p;
1211 
1212 	brcms_dbg_dma(di->core, "%s: %s\n",
1213 		      di->name,
1214 		      range == DMA_RANGE_ALL ? "all" :
1215 		      range == DMA_RANGE_TRANSMITTED ? "transmitted" :
1216 		      "transferred");
1217 
1218 	if (di->txin == di->txout)
1219 		return;
1220 
1221 	while ((p = dma_getnexttxp(pub, range))) {
1222 		/* For unframed data, we don't have any packets to free */
1223 		if (!(di->dma.dmactrlflags & DMA_CTRL_UNFRAMED))
1224 			brcmu_pkt_buf_free_skb(p);
1225 	}
1226 }
1227 
1228 bool dma_txreset(struct dma_pub *pub)
1229 {
1230 	struct dma_info *di = container_of(pub, struct dma_info, dma);
1231 	u32 status;
1232 
1233 	if (di->ntxd == 0)
1234 		return true;
1235 
1236 	/* suspend tx DMA first */
1237 	bcma_write32(di->core, DMA64TXREGOFFS(di, control), D64_XC_SE);
1238 	SPINWAIT(((status =
1239 		   (bcma_read32(di->core, DMA64TXREGOFFS(di, status0)) &
1240 		    D64_XS0_XS_MASK)) != D64_XS0_XS_DISABLED) &&
1241 		  (status != D64_XS0_XS_IDLE) && (status != D64_XS0_XS_STOPPED),
1242 		 10000);
1243 
1244 	bcma_write32(di->core, DMA64TXREGOFFS(di, control), 0);
1245 	SPINWAIT(((status =
1246 		   (bcma_read32(di->core, DMA64TXREGOFFS(di, status0)) &
1247 		    D64_XS0_XS_MASK)) != D64_XS0_XS_DISABLED), 10000);
1248 
1249 	/* wait for the last transaction to complete */
1250 	udelay(300);
1251 
1252 	return status == D64_XS0_XS_DISABLED;
1253 }
1254 
1255 bool dma_rxreset(struct dma_pub *pub)
1256 {
1257 	struct dma_info *di = container_of(pub, struct dma_info, dma);
1258 	u32 status;
1259 
1260 	if (di->nrxd == 0)
1261 		return true;
1262 
1263 	bcma_write32(di->core, DMA64RXREGOFFS(di, control), 0);
1264 	SPINWAIT(((status =
1265 		   (bcma_read32(di->core, DMA64RXREGOFFS(di, status0)) &
1266 		    D64_RS0_RS_MASK)) != D64_RS0_RS_DISABLED), 10000);
1267 
1268 	return status == D64_RS0_RS_DISABLED;
1269 }
1270 
1271 static void dma_txenq(struct dma_info *di, struct sk_buff *p)
1272 {
1273 	unsigned char *data;
1274 	uint len;
1275 	u16 txout;
1276 	u32 flags = 0;
1277 	dma_addr_t pa;
1278 
1279 	txout = di->txout;
1280 
1281 	if (WARN_ON(nexttxd(di, txout) == di->txin))
1282 		return;
1283 
1284 	/*
1285 	 * obtain and initialize transmit descriptor entry.
1286 	 */
1287 	data = p->data;
1288 	len = p->len;
1289 
1290 	/* get physical address of buffer start */
1291 	pa = dma_map_single(di->dmadev, data, len, DMA_TO_DEVICE);
1292 	/* if mapping failed, free skb */
1293 	if (dma_mapping_error(di->dmadev, pa)) {
1294 		brcmu_pkt_buf_free_skb(p);
1295 		return;
1296 	}
1297 	/* With a DMA segment list, Descriptor table is filled
1298 	 * using the segment list instead of looping over
1299 	 * buffers in multi-chain DMA. Therefore, EOF for SGLIST
1300 	 * is when end of segment list is reached.
1301 	 */
1302 	flags = D64_CTRL1_SOF | D64_CTRL1_IOC | D64_CTRL1_EOF;
1303 	if (txout == (di->ntxd - 1))
1304 		flags |= D64_CTRL1_EOT;
1305 
1306 	dma64_dd_upd(di, di->txd64, pa, txout, &flags, len);
1307 
1308 	txout = nexttxd(di, txout);
1309 
1310 	/* save the packet */
1311 	di->txp[prevtxd(di, txout)] = p;
1312 
1313 	/* bump the tx descriptor index */
1314 	di->txout = txout;
1315 }
1316 
1317 static void ampdu_finalize(struct dma_info *di)
1318 {
1319 	struct brcms_ampdu_session *session = &di->ampdu_session;
1320 	struct sk_buff *p;
1321 
1322 	trace_brcms_ampdu_session(&session->wlc->hw->d11core->dev,
1323 				  session->max_ampdu_len,
1324 				  session->max_ampdu_frames,
1325 				  session->ampdu_len,
1326 				  skb_queue_len(&session->skb_list),
1327 				  session->dma_len);
1328 
1329 	if (WARN_ON(skb_queue_empty(&session->skb_list)))
1330 		return;
1331 
1332 	brcms_c_ampdu_finalize(session);
1333 
1334 	while (!skb_queue_empty(&session->skb_list)) {
1335 		p = skb_dequeue(&session->skb_list);
1336 		dma_txenq(di, p);
1337 	}
1338 
1339 	bcma_write32(di->core, DMA64TXREGOFFS(di, ptr),
1340 		     di->xmtptrbase + I2B(di->txout, struct dma64desc));
1341 	brcms_c_ampdu_reset_session(session, session->wlc);
1342 }
1343 
1344 static void prep_ampdu_frame(struct dma_info *di, struct sk_buff *p)
1345 {
1346 	struct brcms_ampdu_session *session = &di->ampdu_session;
1347 	int ret;
1348 
1349 	ret = brcms_c_ampdu_add_frame(session, p);
1350 	if (ret == -ENOSPC) {
1351 		/*
1352 		 * AMPDU cannot accomodate this frame. Close out the in-
1353 		 * progress AMPDU session and start a new one.
1354 		 */
1355 		ampdu_finalize(di);
1356 		ret = brcms_c_ampdu_add_frame(session, p);
1357 	}
1358 
1359 	WARN_ON(ret);
1360 }
1361 
1362 /* Update count of available tx descriptors based on current DMA state */
1363 static void dma_update_txavail(struct dma_info *di)
1364 {
1365 	/*
1366 	 * Available space is number of descriptors less the number of
1367 	 * active descriptors and the number of queued AMPDU frames.
1368 	 */
1369 	di->dma.txavail = di->ntxd - ntxdactive(di, di->txin, di->txout) -
1370 			  skb_queue_len(&di->ampdu_session.skb_list) - 1;
1371 }
1372 
1373 /*
1374  * !! tx entry routine
1375  * WARNING: call must check the return value for error.
1376  *   the error(toss frames) could be fatal and cause many subsequent hard
1377  *   to debug problems
1378  */
1379 int dma_txfast(struct brcms_c_info *wlc, struct dma_pub *pub,
1380 	       struct sk_buff *p)
1381 {
1382 	struct dma_info *di = container_of(pub, struct dma_info, dma);
1383 	struct brcms_ampdu_session *session = &di->ampdu_session;
1384 	struct ieee80211_tx_info *tx_info;
1385 	bool is_ampdu;
1386 
1387 	/* no use to transmit a zero length packet */
1388 	if (p->len == 0)
1389 		return 0;
1390 
1391 	/* return nonzero if out of tx descriptors */
1392 	if (di->dma.txavail == 0 || nexttxd(di, di->txout) == di->txin)
1393 		goto outoftxd;
1394 
1395 	tx_info = IEEE80211_SKB_CB(p);
1396 	is_ampdu = tx_info->flags & IEEE80211_TX_CTL_AMPDU;
1397 	if (is_ampdu)
1398 		prep_ampdu_frame(di, p);
1399 	else
1400 		dma_txenq(di, p);
1401 
1402 	/* tx flow control */
1403 	dma_update_txavail(di);
1404 
1405 	/* kick the chip */
1406 	if (is_ampdu) {
1407 		/*
1408 		 * Start sending data if we've got a full AMPDU, there's
1409 		 * no more space in the DMA ring, or the ring isn't
1410 		 * currently transmitting.
1411 		 */
1412 		if (skb_queue_len(&session->skb_list) == session->max_ampdu_frames ||
1413 		    di->dma.txavail == 0 || dma64_txidle(di))
1414 			ampdu_finalize(di);
1415 	} else {
1416 		bcma_write32(di->core, DMA64TXREGOFFS(di, ptr),
1417 			     di->xmtptrbase + I2B(di->txout, struct dma64desc));
1418 	}
1419 
1420 	return 0;
1421 
1422  outoftxd:
1423 	brcms_dbg_dma(di->core, "%s: out of txds !!!\n", di->name);
1424 	brcmu_pkt_buf_free_skb(p);
1425 	di->dma.txavail = 0;
1426 	di->dma.txnobuf++;
1427 	return -ENOSPC;
1428 }
1429 
1430 void dma_txflush(struct dma_pub *pub)
1431 {
1432 	struct dma_info *di = container_of(pub, struct dma_info, dma);
1433 	struct brcms_ampdu_session *session = &di->ampdu_session;
1434 
1435 	if (!skb_queue_empty(&session->skb_list))
1436 		ampdu_finalize(di);
1437 }
1438 
1439 int dma_txpending(struct dma_pub *pub)
1440 {
1441 	struct dma_info *di = container_of(pub, struct dma_info, dma);
1442 	return ntxdactive(di, di->txin, di->txout);
1443 }
1444 
1445 /*
1446  * If we have an active AMPDU session and are not transmitting,
1447  * this function will force tx to start.
1448  */
1449 void dma_kick_tx(struct dma_pub *pub)
1450 {
1451 	struct dma_info *di = container_of(pub, struct dma_info, dma);
1452 	struct brcms_ampdu_session *session = &di->ampdu_session;
1453 
1454 	if (!skb_queue_empty(&session->skb_list) && dma64_txidle(di))
1455 		ampdu_finalize(di);
1456 }
1457 
1458 /*
1459  * Reclaim next completed txd (txds if using chained buffers) in the range
1460  * specified and return associated packet.
1461  * If range is DMA_RANGE_TRANSMITTED, reclaim descriptors that have be
1462  * transmitted as noted by the hardware "CurrDescr" pointer.
1463  * If range is DMA_RANGE_TRANSFERED, reclaim descriptors that have be
1464  * transferred by the DMA as noted by the hardware "ActiveDescr" pointer.
1465  * If range is DMA_RANGE_ALL, reclaim all txd(s) posted to the ring and
1466  * return associated packet regardless of the value of hardware pointers.
1467  */
1468 struct sk_buff *dma_getnexttxp(struct dma_pub *pub, enum txd_range range)
1469 {
1470 	struct dma_info *di = container_of(pub, struct dma_info, dma);
1471 	u16 start, end, i;
1472 	u16 active_desc;
1473 	struct sk_buff *txp;
1474 
1475 	brcms_dbg_dma(di->core, "%s: %s\n",
1476 		      di->name,
1477 		      range == DMA_RANGE_ALL ? "all" :
1478 		      range == DMA_RANGE_TRANSMITTED ? "transmitted" :
1479 		      "transferred");
1480 
1481 	if (di->ntxd == 0)
1482 		return NULL;
1483 
1484 	txp = NULL;
1485 
1486 	start = di->txin;
1487 	if (range == DMA_RANGE_ALL)
1488 		end = di->txout;
1489 	else {
1490 		end = (u16) (B2I(((bcma_read32(di->core,
1491 					       DMA64TXREGOFFS(di, status0)) &
1492 				   D64_XS0_CD_MASK) - di->xmtptrbase) &
1493 				 D64_XS0_CD_MASK, struct dma64desc));
1494 
1495 		if (range == DMA_RANGE_TRANSFERED) {
1496 			active_desc =
1497 				(u16)(bcma_read32(di->core,
1498 						  DMA64TXREGOFFS(di, status1)) &
1499 				      D64_XS1_AD_MASK);
1500 			active_desc =
1501 			    (active_desc - di->xmtptrbase) & D64_XS0_CD_MASK;
1502 			active_desc = B2I(active_desc, struct dma64desc);
1503 			if (end != active_desc)
1504 				end = prevtxd(di, active_desc);
1505 		}
1506 	}
1507 
1508 	if ((start == 0) && (end > di->txout))
1509 		goto bogus;
1510 
1511 	for (i = start; i != end && !txp; i = nexttxd(di, i)) {
1512 		dma_addr_t pa;
1513 		uint size;
1514 
1515 		pa = le32_to_cpu(di->txd64[i].addrlow) - di->dataoffsetlow;
1516 
1517 		size =
1518 		    (le32_to_cpu(di->txd64[i].ctrl2) &
1519 		     D64_CTRL2_BC_MASK);
1520 
1521 		di->txd64[i].addrlow = cpu_to_le32(0xdeadbeef);
1522 		di->txd64[i].addrhigh = cpu_to_le32(0xdeadbeef);
1523 
1524 		txp = di->txp[i];
1525 		di->txp[i] = NULL;
1526 
1527 		dma_unmap_single(di->dmadev, pa, size, DMA_TO_DEVICE);
1528 	}
1529 
1530 	di->txin = i;
1531 
1532 	/* tx flow control */
1533 	dma_update_txavail(di);
1534 
1535 	return txp;
1536 
1537  bogus:
1538 	brcms_dbg_dma(di->core, "bogus curr: start %d end %d txout %d\n",
1539 		      start, end, di->txout);
1540 	return NULL;
1541 }
1542 
1543 /*
1544  * Mac80211 initiated actions sometimes require packets in the DMA queue to be
1545  * modified. The modified portion of the packet is not under control of the DMA
1546  * engine. This function calls a caller-supplied function for each packet in
1547  * the caller specified dma chain.
1548  */
1549 void dma_walk_packets(struct dma_pub *dmah, void (*callback_fnc)
1550 		      (void *pkt, void *arg_a), void *arg_a)
1551 {
1552 	struct dma_info *di = container_of(dmah, struct dma_info, dma);
1553 	uint i =   di->txin;
1554 	uint end = di->txout;
1555 	struct sk_buff *skb;
1556 	struct ieee80211_tx_info *tx_info;
1557 
1558 	while (i != end) {
1559 		skb = di->txp[i];
1560 		if (skb != NULL) {
1561 			tx_info = (struct ieee80211_tx_info *)skb->cb;
1562 			(callback_fnc)(tx_info, arg_a);
1563 		}
1564 		i = nexttxd(di, i);
1565 	}
1566 }
1567