1 /*
2 * Copyright (c) 2010 Broadcom Corporation
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
11 * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
13 * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
14 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <linux/slab.h>
18 #include <linux/delay.h>
19 #include <linux/pci.h>
20 #include <net/cfg80211.h>
21 #include <net/mac80211.h>
22
23 #include <brcmu_utils.h>
24 #include <aiutils.h>
25 #include "types.h"
26 #include "main.h"
27 #include "dma.h"
28 #include "soc.h"
29 #include "scb.h"
30 #include "ampdu.h"
31 #include "debug.h"
32 #include "brcms_trace_events.h"
33
34 /*
35 * dma register field offset calculation
36 */
37 #define DMA64REGOFFS(field) offsetof(struct dma64regs, field)
38 #define DMA64TXREGOFFS(di, field) (di->d64txregbase + DMA64REGOFFS(field))
39 #define DMA64RXREGOFFS(di, field) (di->d64rxregbase + DMA64REGOFFS(field))
40
41 /*
42 * DMA hardware requires each descriptor ring to be 8kB aligned, and fit within
43 * a contiguous 8kB physical address.
44 */
45 #define D64RINGALIGN_BITS 13
46 #define D64MAXRINGSZ (1 << D64RINGALIGN_BITS)
47 #define D64RINGALIGN (1 << D64RINGALIGN_BITS)
48
49 #define D64MAXDD (D64MAXRINGSZ / sizeof(struct dma64desc))
50
51 /* transmit channel control */
52 #define D64_XC_XE 0x00000001 /* transmit enable */
53 #define D64_XC_SE 0x00000002 /* transmit suspend request */
54 #define D64_XC_LE 0x00000004 /* loopback enable */
55 #define D64_XC_FL 0x00000010 /* flush request */
56 #define D64_XC_PD 0x00000800 /* parity check disable */
57 #define D64_XC_AE 0x00030000 /* address extension bits */
58 #define D64_XC_AE_SHIFT 16
59
60 /* transmit descriptor table pointer */
61 #define D64_XP_LD_MASK 0x00000fff /* last valid descriptor */
62
63 /* transmit channel status */
64 #define D64_XS0_CD_MASK 0x00001fff /* current descriptor pointer */
65 #define D64_XS0_XS_MASK 0xf0000000 /* transmit state */
66 #define D64_XS0_XS_SHIFT 28
67 #define D64_XS0_XS_DISABLED 0x00000000 /* disabled */
68 #define D64_XS0_XS_ACTIVE 0x10000000 /* active */
69 #define D64_XS0_XS_IDLE 0x20000000 /* idle wait */
70 #define D64_XS0_XS_STOPPED 0x30000000 /* stopped */
71 #define D64_XS0_XS_SUSP 0x40000000 /* suspend pending */
72
73 #define D64_XS1_AD_MASK 0x00001fff /* active descriptor */
74 #define D64_XS1_XE_MASK 0xf0000000 /* transmit errors */
75 #define D64_XS1_XE_SHIFT 28
76 #define D64_XS1_XE_NOERR 0x00000000 /* no error */
77 #define D64_XS1_XE_DPE 0x10000000 /* descriptor protocol error */
78 #define D64_XS1_XE_DFU 0x20000000 /* data fifo underrun */
79 #define D64_XS1_XE_DTE 0x30000000 /* data transfer error */
80 #define D64_XS1_XE_DESRE 0x40000000 /* descriptor read error */
81 #define D64_XS1_XE_COREE 0x50000000 /* core error */
82
83 /* receive channel control */
84 /* receive enable */
85 #define D64_RC_RE 0x00000001
86 /* receive frame offset */
87 #define D64_RC_RO_MASK 0x000000fe
88 #define D64_RC_RO_SHIFT 1
89 /* direct fifo receive (pio) mode */
90 #define D64_RC_FM 0x00000100
91 /* separate rx header descriptor enable */
92 #define D64_RC_SH 0x00000200
93 /* overflow continue */
94 #define D64_RC_OC 0x00000400
95 /* parity check disable */
96 #define D64_RC_PD 0x00000800
97 /* address extension bits */
98 #define D64_RC_AE 0x00030000
99 #define D64_RC_AE_SHIFT 16
100
101 /* flags for dma controller */
102 /* partity enable */
103 #define DMA_CTRL_PEN (1 << 0)
104 /* rx overflow continue */
105 #define DMA_CTRL_ROC (1 << 1)
106 /* allow rx scatter to multiple descriptors */
107 #define DMA_CTRL_RXMULTI (1 << 2)
108 /* Unframed Rx/Tx data */
109 #define DMA_CTRL_UNFRAMED (1 << 3)
110
111 /* receive descriptor table pointer */
112 #define D64_RP_LD_MASK 0x00000fff /* last valid descriptor */
113
114 /* receive channel status */
115 #define D64_RS0_CD_MASK 0x00001fff /* current descriptor pointer */
116 #define D64_RS0_RS_MASK 0xf0000000 /* receive state */
117 #define D64_RS0_RS_SHIFT 28
118 #define D64_RS0_RS_DISABLED 0x00000000 /* disabled */
119 #define D64_RS0_RS_ACTIVE 0x10000000 /* active */
120 #define D64_RS0_RS_IDLE 0x20000000 /* idle wait */
121 #define D64_RS0_RS_STOPPED 0x30000000 /* stopped */
122 #define D64_RS0_RS_SUSP 0x40000000 /* suspend pending */
123
124 #define D64_RS1_AD_MASK 0x0001ffff /* active descriptor */
125 #define D64_RS1_RE_MASK 0xf0000000 /* receive errors */
126 #define D64_RS1_RE_SHIFT 28
127 #define D64_RS1_RE_NOERR 0x00000000 /* no error */
128 #define D64_RS1_RE_DPO 0x10000000 /* descriptor protocol error */
129 #define D64_RS1_RE_DFU 0x20000000 /* data fifo overflow */
130 #define D64_RS1_RE_DTE 0x30000000 /* data transfer error */
131 #define D64_RS1_RE_DESRE 0x40000000 /* descriptor read error */
132 #define D64_RS1_RE_COREE 0x50000000 /* core error */
133
134 /* fifoaddr */
135 #define D64_FA_OFF_MASK 0xffff /* offset */
136 #define D64_FA_SEL_MASK 0xf0000 /* select */
137 #define D64_FA_SEL_SHIFT 16
138 #define D64_FA_SEL_XDD 0x00000 /* transmit dma data */
139 #define D64_FA_SEL_XDP 0x10000 /* transmit dma pointers */
140 #define D64_FA_SEL_RDD 0x40000 /* receive dma data */
141 #define D64_FA_SEL_RDP 0x50000 /* receive dma pointers */
142 #define D64_FA_SEL_XFD 0x80000 /* transmit fifo data */
143 #define D64_FA_SEL_XFP 0x90000 /* transmit fifo pointers */
144 #define D64_FA_SEL_RFD 0xc0000 /* receive fifo data */
145 #define D64_FA_SEL_RFP 0xd0000 /* receive fifo pointers */
146 #define D64_FA_SEL_RSD 0xe0000 /* receive frame status data */
147 #define D64_FA_SEL_RSP 0xf0000 /* receive frame status pointers */
148
149 /* descriptor control flags 1 */
150 #define D64_CTRL_COREFLAGS 0x0ff00000 /* core specific flags */
151 #define D64_CTRL1_EOT ((u32)1 << 28) /* end of descriptor table */
152 #define D64_CTRL1_IOC ((u32)1 << 29) /* interrupt on completion */
153 #define D64_CTRL1_EOF ((u32)1 << 30) /* end of frame */
154 #define D64_CTRL1_SOF ((u32)1 << 31) /* start of frame */
155
156 /* descriptor control flags 2 */
157 /* buffer byte count. real data len must <= 16KB */
158 #define D64_CTRL2_BC_MASK 0x00007fff
159 /* address extension bits */
160 #define D64_CTRL2_AE 0x00030000
161 #define D64_CTRL2_AE_SHIFT 16
162 /* parity bit */
163 #define D64_CTRL2_PARITY 0x00040000
164
165 /* control flags in the range [27:20] are core-specific and not defined here */
166 #define D64_CTRL_CORE_MASK 0x0ff00000
167
168 #define D64_RX_FRM_STS_LEN 0x0000ffff /* frame length mask */
169 #define D64_RX_FRM_STS_OVFL 0x00800000 /* RxOverFlow */
170 #define D64_RX_FRM_STS_DSCRCNT 0x0f000000 /* no. of descriptors used - 1 */
171 #define D64_RX_FRM_STS_DATATYPE 0xf0000000 /* core-dependent data type */
172
173 /*
174 * packet headroom necessary to accommodate the largest header
175 * in the system, (i.e TXOFF). By doing, we avoid the need to
176 * allocate an extra buffer for the header when bridging to WL.
177 * There is a compile time check in wlc.c which ensure that this
178 * value is at least as big as TXOFF. This value is used in
179 * dma_rxfill().
180 */
181
182 #define BCMEXTRAHDROOM 172
183
184 #define MAXNAMEL 8 /* 8 char names */
185
186 /* macros to convert between byte offsets and indexes */
187 #define B2I(bytes, type) ((bytes) / sizeof(type))
188 #define I2B(index, type) ((index) * sizeof(type))
189
190 #define PCI32ADDR_HIGH 0xc0000000 /* address[31:30] */
191 #define PCI32ADDR_HIGH_SHIFT 30 /* address[31:30] */
192
193 #define PCI64ADDR_HIGH 0x80000000 /* address[63] */
194 #define PCI64ADDR_HIGH_SHIFT 31 /* address[63] */
195
196 /*
197 * DMA Descriptor
198 * Descriptors are only read by the hardware, never written back.
199 */
200 struct dma64desc {
201 __le32 ctrl1; /* misc control bits & bufcount */
202 __le32 ctrl2; /* buffer count and address extension */
203 __le32 addrlow; /* memory address of the date buffer, bits 31:0 */
204 __le32 addrhigh; /* memory address of the date buffer, bits 63:32 */
205 };
206
207 /* dma engine software state */
208 struct dma_info {
209 struct dma_pub dma; /* exported structure */
210 char name[MAXNAMEL]; /* callers name for diag msgs */
211
212 struct bcma_device *core;
213 struct device *dmadev;
214
215 /* session information for AMPDU */
216 struct brcms_ampdu_session ampdu_session;
217
218 bool dma64; /* this dma engine is operating in 64-bit mode */
219 bool addrext; /* this dma engine supports DmaExtendedAddrChanges */
220
221 /* 64-bit dma tx engine registers */
222 uint d64txregbase;
223 /* 64-bit dma rx engine registers */
224 uint d64rxregbase;
225 /* pointer to dma64 tx descriptor ring */
226 struct dma64desc *txd64;
227 /* pointer to dma64 rx descriptor ring */
228 struct dma64desc *rxd64;
229
230 u16 dmadesc_align; /* alignment requirement for dma descriptors */
231
232 u16 ntxd; /* # tx descriptors tunable */
233 u16 txin; /* index of next descriptor to reclaim */
234 u16 txout; /* index of next descriptor to post */
235 /* pointer to parallel array of pointers to packets */
236 struct sk_buff **txp;
237 /* Aligned physical address of descriptor ring */
238 dma_addr_t txdpa;
239 /* Original physical address of descriptor ring */
240 dma_addr_t txdpaorig;
241 u16 txdalign; /* #bytes added to alloc'd mem to align txd */
242 u32 txdalloc; /* #bytes allocated for the ring */
243 u32 xmtptrbase; /* When using unaligned descriptors, the ptr register
244 * is not just an index, it needs all 13 bits to be
245 * an offset from the addr register.
246 */
247
248 u16 nrxd; /* # rx descriptors tunable */
249 u16 rxin; /* index of next descriptor to reclaim */
250 u16 rxout; /* index of next descriptor to post */
251 /* pointer to parallel array of pointers to packets */
252 struct sk_buff **rxp;
253 /* Aligned physical address of descriptor ring */
254 dma_addr_t rxdpa;
255 /* Original physical address of descriptor ring */
256 dma_addr_t rxdpaorig;
257 u16 rxdalign; /* #bytes added to alloc'd mem to align rxd */
258 u32 rxdalloc; /* #bytes allocated for the ring */
259 u32 rcvptrbase; /* Base for ptr reg when using unaligned descriptors */
260
261 /* tunables */
262 unsigned int rxbufsize; /* rx buffer size in bytes, not including
263 * the extra headroom
264 */
265 uint rxextrahdrroom; /* extra rx headroom, reverseved to assist upper
266 * stack, e.g. some rx pkt buffers will be
267 * bridged to tx side without byte copying.
268 * The extra headroom needs to be large enough
269 * to fit txheader needs. Some dongle driver may
270 * not need it.
271 */
272 uint nrxpost; /* # rx buffers to keep posted */
273 unsigned int rxoffset; /* rxcontrol offset */
274 /* add to get dma address of descriptor ring, low 32 bits */
275 uint ddoffsetlow;
276 /* high 32 bits */
277 uint ddoffsethigh;
278 /* add to get dma address of data buffer, low 32 bits */
279 uint dataoffsetlow;
280 /* high 32 bits */
281 uint dataoffsethigh;
282 /* descriptor base need to be aligned or not */
283 bool aligndesc_4k;
284 };
285
286 /* Check for odd number of 1's */
parity32(__le32 data)287 static u32 parity32(__le32 data)
288 {
289 /* no swap needed for counting 1's */
290 u32 par_data = *(u32 *)&data;
291
292 par_data ^= par_data >> 16;
293 par_data ^= par_data >> 8;
294 par_data ^= par_data >> 4;
295 par_data ^= par_data >> 2;
296 par_data ^= par_data >> 1;
297
298 return par_data & 1;
299 }
300
dma64_dd_parity(struct dma64desc * dd)301 static bool dma64_dd_parity(struct dma64desc *dd)
302 {
303 return parity32(dd->addrlow ^ dd->addrhigh ^ dd->ctrl1 ^ dd->ctrl2);
304 }
305
306 /* descriptor bumping functions */
307
xxd(uint x,uint n)308 static uint xxd(uint x, uint n)
309 {
310 return x & (n - 1); /* faster than %, but n must be power of 2 */
311 }
312
txd(struct dma_info * di,uint x)313 static uint txd(struct dma_info *di, uint x)
314 {
315 return xxd(x, di->ntxd);
316 }
317
rxd(struct dma_info * di,uint x)318 static uint rxd(struct dma_info *di, uint x)
319 {
320 return xxd(x, di->nrxd);
321 }
322
nexttxd(struct dma_info * di,uint i)323 static uint nexttxd(struct dma_info *di, uint i)
324 {
325 return txd(di, i + 1);
326 }
327
prevtxd(struct dma_info * di,uint i)328 static uint prevtxd(struct dma_info *di, uint i)
329 {
330 return txd(di, i - 1);
331 }
332
nextrxd(struct dma_info * di,uint i)333 static uint nextrxd(struct dma_info *di, uint i)
334 {
335 return rxd(di, i + 1);
336 }
337
ntxdactive(struct dma_info * di,uint h,uint t)338 static uint ntxdactive(struct dma_info *di, uint h, uint t)
339 {
340 return txd(di, t-h);
341 }
342
nrxdactive(struct dma_info * di,uint h,uint t)343 static uint nrxdactive(struct dma_info *di, uint h, uint t)
344 {
345 return rxd(di, t-h);
346 }
347
_dma_ctrlflags(struct dma_info * di,uint mask,uint flags)348 static uint _dma_ctrlflags(struct dma_info *di, uint mask, uint flags)
349 {
350 uint dmactrlflags;
351
352 if (di == NULL)
353 return 0;
354
355 dmactrlflags = di->dma.dmactrlflags;
356 dmactrlflags &= ~mask;
357 dmactrlflags |= flags;
358
359 /* If trying to enable parity, check if parity is actually supported */
360 if (dmactrlflags & DMA_CTRL_PEN) {
361 u32 control;
362
363 control = bcma_read32(di->core, DMA64TXREGOFFS(di, control));
364 bcma_write32(di->core, DMA64TXREGOFFS(di, control),
365 control | D64_XC_PD);
366 if (bcma_read32(di->core, DMA64TXREGOFFS(di, control)) &
367 D64_XC_PD)
368 /* We *can* disable it so it is supported,
369 * restore control register
370 */
371 bcma_write32(di->core, DMA64TXREGOFFS(di, control),
372 control);
373 else
374 /* Not supported, don't allow it to be enabled */
375 dmactrlflags &= ~DMA_CTRL_PEN;
376 }
377
378 di->dma.dmactrlflags = dmactrlflags;
379
380 return dmactrlflags;
381 }
382
_dma64_addrext(struct dma_info * di,uint ctrl_offset)383 static bool _dma64_addrext(struct dma_info *di, uint ctrl_offset)
384 {
385 u32 w;
386 bcma_set32(di->core, ctrl_offset, D64_XC_AE);
387 w = bcma_read32(di->core, ctrl_offset);
388 bcma_mask32(di->core, ctrl_offset, ~D64_XC_AE);
389 return (w & D64_XC_AE) == D64_XC_AE;
390 }
391
392 /*
393 * return true if this dma engine supports DmaExtendedAddrChanges,
394 * otherwise false
395 */
_dma_isaddrext(struct dma_info * di)396 static bool _dma_isaddrext(struct dma_info *di)
397 {
398 /* DMA64 supports full 32- or 64-bit operation. AE is always valid */
399
400 /* not all tx or rx channel are available */
401 if (di->d64txregbase != 0) {
402 if (!_dma64_addrext(di, DMA64TXREGOFFS(di, control)))
403 brcms_dbg_dma(di->core,
404 "%s: DMA64 tx doesn't have AE set\n",
405 di->name);
406 return true;
407 } else if (di->d64rxregbase != 0) {
408 if (!_dma64_addrext(di, DMA64RXREGOFFS(di, control)))
409 brcms_dbg_dma(di->core,
410 "%s: DMA64 rx doesn't have AE set\n",
411 di->name);
412 return true;
413 }
414
415 return false;
416 }
417
_dma_descriptor_align(struct dma_info * di)418 static bool _dma_descriptor_align(struct dma_info *di)
419 {
420 u32 addrl;
421
422 /* Check to see if the descriptors need to be aligned on 4K/8K or not */
423 if (di->d64txregbase != 0) {
424 bcma_write32(di->core, DMA64TXREGOFFS(di, addrlow), 0xff0);
425 addrl = bcma_read32(di->core, DMA64TXREGOFFS(di, addrlow));
426 if (addrl != 0)
427 return false;
428 } else if (di->d64rxregbase != 0) {
429 bcma_write32(di->core, DMA64RXREGOFFS(di, addrlow), 0xff0);
430 addrl = bcma_read32(di->core, DMA64RXREGOFFS(di, addrlow));
431 if (addrl != 0)
432 return false;
433 }
434 return true;
435 }
436
437 /*
438 * Descriptor table must start at the DMA hardware dictated alignment, so
439 * allocated memory must be large enough to support this requirement.
440 */
dma_alloc_consistent(struct dma_info * di,uint size,u16 align_bits,uint * alloced,dma_addr_t * pap)441 static void *dma_alloc_consistent(struct dma_info *di, uint size,
442 u16 align_bits, uint *alloced,
443 dma_addr_t *pap)
444 {
445 if (align_bits) {
446 u16 align = (1 << align_bits);
447 if (!IS_ALIGNED(PAGE_SIZE, align))
448 size += align;
449 *alloced = size;
450 }
451 return dma_alloc_coherent(di->dmadev, size, pap, GFP_ATOMIC);
452 }
453
454 static
dma_align_sizetobits(uint size)455 u8 dma_align_sizetobits(uint size)
456 {
457 u8 bitpos = 0;
458 while (size >>= 1)
459 bitpos++;
460 return bitpos;
461 }
462
463 /* This function ensures that the DMA descriptor ring will not get allocated
464 * across Page boundary. If the allocation is done across the page boundary
465 * at the first time, then it is freed and the allocation is done at
466 * descriptor ring size aligned location. This will ensure that the ring will
467 * not cross page boundary
468 */
dma_ringalloc(struct dma_info * di,u32 boundary,uint size,u16 * alignbits,uint * alloced,dma_addr_t * descpa)469 static void *dma_ringalloc(struct dma_info *di, u32 boundary, uint size,
470 u16 *alignbits, uint *alloced,
471 dma_addr_t *descpa)
472 {
473 void *va;
474 u32 desc_strtaddr;
475 u32 alignbytes = 1 << *alignbits;
476
477 va = dma_alloc_consistent(di, size, *alignbits, alloced, descpa);
478
479 if (NULL == va)
480 return NULL;
481
482 desc_strtaddr = (u32) roundup((unsigned long)va, alignbytes);
483 if (((desc_strtaddr + size - 1) & boundary) != (desc_strtaddr
484 & boundary)) {
485 *alignbits = dma_align_sizetobits(size);
486 dma_free_coherent(di->dmadev, size, va, *descpa);
487 va = dma_alloc_consistent(di, size, *alignbits,
488 alloced, descpa);
489 }
490 return va;
491 }
492
dma64_alloc(struct dma_info * di,uint direction)493 static bool dma64_alloc(struct dma_info *di, uint direction)
494 {
495 u16 size;
496 uint ddlen;
497 void *va;
498 uint alloced = 0;
499 u16 align;
500 u16 align_bits;
501
502 ddlen = sizeof(struct dma64desc);
503
504 size = (direction == DMA_TX) ? (di->ntxd * ddlen) : (di->nrxd * ddlen);
505 align_bits = di->dmadesc_align;
506 align = (1 << align_bits);
507
508 if (direction == DMA_TX) {
509 va = dma_ringalloc(di, D64RINGALIGN, size, &align_bits,
510 &alloced, &di->txdpaorig);
511 if (va == NULL) {
512 brcms_dbg_dma(di->core,
513 "%s: DMA_ALLOC_CONSISTENT(ntxd) failed\n",
514 di->name);
515 return false;
516 }
517 align = (1 << align_bits);
518 di->txd64 = (struct dma64desc *)
519 roundup((unsigned long)va, align);
520 di->txdalign = (uint) ((s8 *)di->txd64 - (s8 *) va);
521 di->txdpa = di->txdpaorig + di->txdalign;
522 di->txdalloc = alloced;
523 } else {
524 va = dma_ringalloc(di, D64RINGALIGN, size, &align_bits,
525 &alloced, &di->rxdpaorig);
526 if (va == NULL) {
527 brcms_dbg_dma(di->core,
528 "%s: DMA_ALLOC_CONSISTENT(nrxd) failed\n",
529 di->name);
530 return false;
531 }
532 align = (1 << align_bits);
533 di->rxd64 = (struct dma64desc *)
534 roundup((unsigned long)va, align);
535 di->rxdalign = (uint) ((s8 *)di->rxd64 - (s8 *) va);
536 di->rxdpa = di->rxdpaorig + di->rxdalign;
537 di->rxdalloc = alloced;
538 }
539
540 return true;
541 }
542
_dma_alloc(struct dma_info * di,uint direction)543 static bool _dma_alloc(struct dma_info *di, uint direction)
544 {
545 return dma64_alloc(di, direction);
546 }
547
dma_attach(char * name,struct brcms_c_info * wlc,uint txregbase,uint rxregbase,uint ntxd,uint nrxd,uint rxbufsize,int rxextheadroom,uint nrxpost,uint rxoffset)548 struct dma_pub *dma_attach(char *name, struct brcms_c_info *wlc,
549 uint txregbase, uint rxregbase, uint ntxd, uint nrxd,
550 uint rxbufsize, int rxextheadroom,
551 uint nrxpost, uint rxoffset)
552 {
553 struct si_pub *sih = wlc->hw->sih;
554 struct bcma_device *core = wlc->hw->d11core;
555 struct dma_info *di;
556 u8 rev = core->id.rev;
557 uint size;
558 struct si_info *sii = container_of(sih, struct si_info, pub);
559
560 /* allocate private info structure */
561 di = kzalloc(sizeof(struct dma_info), GFP_ATOMIC);
562 if (di == NULL)
563 return NULL;
564
565 di->dma64 =
566 ((bcma_aread32(core, BCMA_IOST) & SISF_DMA64) == SISF_DMA64);
567
568 /* init dma reg info */
569 di->core = core;
570 di->d64txregbase = txregbase;
571 di->d64rxregbase = rxregbase;
572
573 /*
574 * Default flags (which can be changed by the driver calling
575 * dma_ctrlflags before enable): For backwards compatibility
576 * both Rx Overflow Continue and Parity are DISABLED.
577 */
578 _dma_ctrlflags(di, DMA_CTRL_ROC | DMA_CTRL_PEN, 0);
579
580 brcms_dbg_dma(di->core, "%s: %s flags 0x%x ntxd %d nrxd %d "
581 "rxbufsize %d rxextheadroom %d nrxpost %d rxoffset %d "
582 "txregbase %u rxregbase %u\n", name, "DMA64",
583 di->dma.dmactrlflags, ntxd, nrxd, rxbufsize,
584 rxextheadroom, nrxpost, rxoffset, txregbase, rxregbase);
585
586 /* make a private copy of our callers name */
587 strncpy(di->name, name, MAXNAMEL);
588 di->name[MAXNAMEL - 1] = '\0';
589
590 di->dmadev = core->dma_dev;
591
592 /* save tunables */
593 di->ntxd = (u16) ntxd;
594 di->nrxd = (u16) nrxd;
595
596 /* the actual dma size doesn't include the extra headroom */
597 di->rxextrahdrroom =
598 (rxextheadroom == -1) ? BCMEXTRAHDROOM : rxextheadroom;
599 if (rxbufsize > BCMEXTRAHDROOM)
600 di->rxbufsize = (u16) (rxbufsize - di->rxextrahdrroom);
601 else
602 di->rxbufsize = (u16) rxbufsize;
603
604 di->nrxpost = (u16) nrxpost;
605 di->rxoffset = (u8) rxoffset;
606
607 /*
608 * figure out the DMA physical address offset for dd and data
609 * PCI/PCIE: they map silicon backplace address to zero
610 * based memory, need offset
611 * Other bus: use zero SI_BUS BIGENDIAN kludge: use sdram
612 * swapped region for data buffer, not descriptor
613 */
614 di->ddoffsetlow = 0;
615 di->dataoffsetlow = 0;
616 /* for pci bus, add offset */
617 if (sii->icbus->hosttype == BCMA_HOSTTYPE_PCI) {
618 /* add offset for pcie with DMA64 bus */
619 di->ddoffsetlow = 0;
620 di->ddoffsethigh = SI_PCIE_DMA_H32;
621 }
622 di->dataoffsetlow = di->ddoffsetlow;
623 di->dataoffsethigh = di->ddoffsethigh;
624
625 /* WAR64450 : DMACtl.Addr ext fields are not supported in SDIOD core. */
626 if ((core->id.id == BCMA_CORE_SDIO_DEV)
627 && ((rev > 0) && (rev <= 2)))
628 di->addrext = false;
629 else if ((core->id.id == BCMA_CORE_I2S) &&
630 ((rev == 0) || (rev == 1)))
631 di->addrext = false;
632 else
633 di->addrext = _dma_isaddrext(di);
634
635 /* does the descriptor need to be aligned and if yes, on 4K/8K or not */
636 di->aligndesc_4k = _dma_descriptor_align(di);
637 if (di->aligndesc_4k) {
638 di->dmadesc_align = D64RINGALIGN_BITS;
639 if ((ntxd < D64MAXDD / 2) && (nrxd < D64MAXDD / 2))
640 /* for smaller dd table, HW relax alignment reqmnt */
641 di->dmadesc_align = D64RINGALIGN_BITS - 1;
642 } else {
643 di->dmadesc_align = 4; /* 16 byte alignment */
644 }
645
646 brcms_dbg_dma(di->core, "DMA descriptor align_needed %d, align %d\n",
647 di->aligndesc_4k, di->dmadesc_align);
648
649 /* allocate tx packet pointer vector */
650 if (ntxd) {
651 size = ntxd * sizeof(void *);
652 di->txp = kzalloc(size, GFP_ATOMIC);
653 if (di->txp == NULL)
654 goto fail;
655 }
656
657 /* allocate rx packet pointer vector */
658 if (nrxd) {
659 size = nrxd * sizeof(void *);
660 di->rxp = kzalloc(size, GFP_ATOMIC);
661 if (di->rxp == NULL)
662 goto fail;
663 }
664
665 /*
666 * allocate transmit descriptor ring, only need ntxd descriptors
667 * but it must be aligned
668 */
669 if (ntxd) {
670 if (!_dma_alloc(di, DMA_TX))
671 goto fail;
672 }
673
674 /*
675 * allocate receive descriptor ring, only need nrxd descriptors
676 * but it must be aligned
677 */
678 if (nrxd) {
679 if (!_dma_alloc(di, DMA_RX))
680 goto fail;
681 }
682
683 if ((di->ddoffsetlow != 0) && !di->addrext) {
684 if (di->txdpa > SI_PCI_DMA_SZ) {
685 brcms_dbg_dma(di->core,
686 "%s: txdpa 0x%x: addrext not supported\n",
687 di->name, (u32)di->txdpa);
688 goto fail;
689 }
690 if (di->rxdpa > SI_PCI_DMA_SZ) {
691 brcms_dbg_dma(di->core,
692 "%s: rxdpa 0x%x: addrext not supported\n",
693 di->name, (u32)di->rxdpa);
694 goto fail;
695 }
696 }
697
698 /* Initialize AMPDU session */
699 brcms_c_ampdu_reset_session(&di->ampdu_session, wlc);
700
701 brcms_dbg_dma(di->core,
702 "ddoffsetlow 0x%x ddoffsethigh 0x%x dataoffsetlow 0x%x dataoffsethigh 0x%x addrext %d\n",
703 di->ddoffsetlow, di->ddoffsethigh,
704 di->dataoffsetlow, di->dataoffsethigh,
705 di->addrext);
706
707 return (struct dma_pub *) di;
708
709 fail:
710 dma_detach((struct dma_pub *)di);
711 return NULL;
712 }
713
714 static inline void
dma64_dd_upd(struct dma_info * di,struct dma64desc * ddring,dma_addr_t pa,uint outidx,u32 * flags,u32 bufcount)715 dma64_dd_upd(struct dma_info *di, struct dma64desc *ddring,
716 dma_addr_t pa, uint outidx, u32 *flags, u32 bufcount)
717 {
718 u32 ctrl2 = bufcount & D64_CTRL2_BC_MASK;
719
720 /* PCI bus with big(>1G) physical address, use address extension */
721 if ((di->dataoffsetlow == 0) || !(pa & PCI32ADDR_HIGH)) {
722 ddring[outidx].addrlow = cpu_to_le32(pa + di->dataoffsetlow);
723 ddring[outidx].addrhigh = cpu_to_le32(di->dataoffsethigh);
724 ddring[outidx].ctrl1 = cpu_to_le32(*flags);
725 ddring[outidx].ctrl2 = cpu_to_le32(ctrl2);
726 } else {
727 /* address extension for 32-bit PCI */
728 u32 ae;
729
730 ae = (pa & PCI32ADDR_HIGH) >> PCI32ADDR_HIGH_SHIFT;
731 pa &= ~PCI32ADDR_HIGH;
732
733 ctrl2 |= (ae << D64_CTRL2_AE_SHIFT) & D64_CTRL2_AE;
734 ddring[outidx].addrlow = cpu_to_le32(pa + di->dataoffsetlow);
735 ddring[outidx].addrhigh = cpu_to_le32(di->dataoffsethigh);
736 ddring[outidx].ctrl1 = cpu_to_le32(*flags);
737 ddring[outidx].ctrl2 = cpu_to_le32(ctrl2);
738 }
739 if (di->dma.dmactrlflags & DMA_CTRL_PEN) {
740 if (dma64_dd_parity(&ddring[outidx]))
741 ddring[outidx].ctrl2 =
742 cpu_to_le32(ctrl2 | D64_CTRL2_PARITY);
743 }
744 }
745
746 /* !! may be called with core in reset */
dma_detach(struct dma_pub * pub)747 void dma_detach(struct dma_pub *pub)
748 {
749 struct dma_info *di = container_of(pub, struct dma_info, dma);
750
751 brcms_dbg_dma(di->core, "%s:\n", di->name);
752
753 /* free dma descriptor rings */
754 if (di->txd64)
755 dma_free_coherent(di->dmadev, di->txdalloc,
756 ((s8 *)di->txd64 - di->txdalign),
757 (di->txdpaorig));
758 if (di->rxd64)
759 dma_free_coherent(di->dmadev, di->rxdalloc,
760 ((s8 *)di->rxd64 - di->rxdalign),
761 (di->rxdpaorig));
762
763 /* free packet pointer vectors */
764 kfree(di->txp);
765 kfree(di->rxp);
766
767 /* free our private info structure */
768 kfree(di);
769
770 }
771
772 /* initialize descriptor table base address */
773 static void
_dma_ddtable_init(struct dma_info * di,uint direction,dma_addr_t pa)774 _dma_ddtable_init(struct dma_info *di, uint direction, dma_addr_t pa)
775 {
776 if (!di->aligndesc_4k) {
777 if (direction == DMA_TX)
778 di->xmtptrbase = pa;
779 else
780 di->rcvptrbase = pa;
781 }
782
783 if ((di->ddoffsetlow == 0)
784 || !(pa & PCI32ADDR_HIGH)) {
785 if (direction == DMA_TX) {
786 bcma_write32(di->core, DMA64TXREGOFFS(di, addrlow),
787 pa + di->ddoffsetlow);
788 bcma_write32(di->core, DMA64TXREGOFFS(di, addrhigh),
789 di->ddoffsethigh);
790 } else {
791 bcma_write32(di->core, DMA64RXREGOFFS(di, addrlow),
792 pa + di->ddoffsetlow);
793 bcma_write32(di->core, DMA64RXREGOFFS(di, addrhigh),
794 di->ddoffsethigh);
795 }
796 } else {
797 /* DMA64 32bits address extension */
798 u32 ae;
799
800 /* shift the high bit(s) from pa to ae */
801 ae = (pa & PCI32ADDR_HIGH) >> PCI32ADDR_HIGH_SHIFT;
802 pa &= ~PCI32ADDR_HIGH;
803
804 if (direction == DMA_TX) {
805 bcma_write32(di->core, DMA64TXREGOFFS(di, addrlow),
806 pa + di->ddoffsetlow);
807 bcma_write32(di->core, DMA64TXREGOFFS(di, addrhigh),
808 di->ddoffsethigh);
809 bcma_maskset32(di->core, DMA64TXREGOFFS(di, control),
810 D64_XC_AE, (ae << D64_XC_AE_SHIFT));
811 } else {
812 bcma_write32(di->core, DMA64RXREGOFFS(di, addrlow),
813 pa + di->ddoffsetlow);
814 bcma_write32(di->core, DMA64RXREGOFFS(di, addrhigh),
815 di->ddoffsethigh);
816 bcma_maskset32(di->core, DMA64RXREGOFFS(di, control),
817 D64_RC_AE, (ae << D64_RC_AE_SHIFT));
818 }
819 }
820 }
821
_dma_rxenable(struct dma_info * di)822 static void _dma_rxenable(struct dma_info *di)
823 {
824 uint dmactrlflags = di->dma.dmactrlflags;
825 u32 control;
826
827 brcms_dbg_dma(di->core, "%s:\n", di->name);
828
829 control = D64_RC_RE | (bcma_read32(di->core,
830 DMA64RXREGOFFS(di, control)) &
831 D64_RC_AE);
832
833 if ((dmactrlflags & DMA_CTRL_PEN) == 0)
834 control |= D64_RC_PD;
835
836 if (dmactrlflags & DMA_CTRL_ROC)
837 control |= D64_RC_OC;
838
839 bcma_write32(di->core, DMA64RXREGOFFS(di, control),
840 ((di->rxoffset << D64_RC_RO_SHIFT) | control));
841 }
842
dma_rxinit(struct dma_pub * pub)843 void dma_rxinit(struct dma_pub *pub)
844 {
845 struct dma_info *di = container_of(pub, struct dma_info, dma);
846
847 brcms_dbg_dma(di->core, "%s:\n", di->name);
848
849 if (di->nrxd == 0)
850 return;
851
852 di->rxin = di->rxout = 0;
853
854 /* clear rx descriptor ring */
855 memset(di->rxd64, '\0', di->nrxd * sizeof(struct dma64desc));
856
857 /* DMA engine with out alignment requirement requires table to be inited
858 * before enabling the engine
859 */
860 if (!di->aligndesc_4k)
861 _dma_ddtable_init(di, DMA_RX, di->rxdpa);
862
863 _dma_rxenable(di);
864
865 if (di->aligndesc_4k)
866 _dma_ddtable_init(di, DMA_RX, di->rxdpa);
867 }
868
dma64_getnextrxp(struct dma_info * di,bool forceall)869 static struct sk_buff *dma64_getnextrxp(struct dma_info *di, bool forceall)
870 {
871 uint i, curr;
872 struct sk_buff *rxp;
873 dma_addr_t pa;
874
875 i = di->rxin;
876
877 /* return if no packets posted */
878 if (i == di->rxout)
879 return NULL;
880
881 curr =
882 B2I(((bcma_read32(di->core,
883 DMA64RXREGOFFS(di, status0)) & D64_RS0_CD_MASK) -
884 di->rcvptrbase) & D64_RS0_CD_MASK, struct dma64desc);
885
886 /* ignore curr if forceall */
887 if (!forceall && (i == curr))
888 return NULL;
889
890 /* get the packet pointer that corresponds to the rx descriptor */
891 rxp = di->rxp[i];
892 di->rxp[i] = NULL;
893
894 pa = le32_to_cpu(di->rxd64[i].addrlow) - di->dataoffsetlow;
895
896 /* clear this packet from the descriptor ring */
897 dma_unmap_single(di->dmadev, pa, di->rxbufsize, DMA_FROM_DEVICE);
898
899 di->rxd64[i].addrlow = cpu_to_le32(0xdeadbeef);
900 di->rxd64[i].addrhigh = cpu_to_le32(0xdeadbeef);
901
902 di->rxin = nextrxd(di, i);
903
904 return rxp;
905 }
906
_dma_getnextrxp(struct dma_info * di,bool forceall)907 static struct sk_buff *_dma_getnextrxp(struct dma_info *di, bool forceall)
908 {
909 if (di->nrxd == 0)
910 return NULL;
911
912 return dma64_getnextrxp(di, forceall);
913 }
914
915 /*
916 * !! rx entry routine
917 * returns the number packages in the next frame, or 0 if there are no more
918 * if DMA_CTRL_RXMULTI is defined, DMA scattering(multiple buffers) is
919 * supported with pkts chain
920 * otherwise, it's treated as giant pkt and will be tossed.
921 * The DMA scattering starts with normal DMA header, followed by first
922 * buffer data. After it reaches the max size of buffer, the data continues
923 * in next DMA descriptor buffer WITHOUT DMA header
924 */
dma_rx(struct dma_pub * pub,struct sk_buff_head * skb_list)925 int dma_rx(struct dma_pub *pub, struct sk_buff_head *skb_list)
926 {
927 struct dma_info *di = container_of(pub, struct dma_info, dma);
928 struct sk_buff_head dma_frames;
929 struct sk_buff *p, *next;
930 uint len;
931 uint pkt_len;
932 int resid = 0;
933 int pktcnt = 1;
934
935 skb_queue_head_init(&dma_frames);
936 next_frame:
937 p = _dma_getnextrxp(di, false);
938 if (p == NULL)
939 return 0;
940
941 len = le16_to_cpu(*(__le16 *) (p->data));
942 brcms_dbg_dma(di->core, "%s: dma_rx len %d\n", di->name, len);
943 dma_spin_for_len(len, p);
944
945 /* set actual length */
946 pkt_len = min((di->rxoffset + len), di->rxbufsize);
947 __skb_trim(p, pkt_len);
948 skb_queue_tail(&dma_frames, p);
949 resid = len - (di->rxbufsize - di->rxoffset);
950
951 /* check for single or multi-buffer rx */
952 if (resid > 0) {
953 while ((resid > 0) && (p = _dma_getnextrxp(di, false))) {
954 pkt_len = min_t(uint, resid, di->rxbufsize);
955 __skb_trim(p, pkt_len);
956 skb_queue_tail(&dma_frames, p);
957 resid -= di->rxbufsize;
958 pktcnt++;
959 }
960
961 #ifdef DEBUG
962 if (resid > 0) {
963 uint cur;
964 cur =
965 B2I(((bcma_read32(di->core,
966 DMA64RXREGOFFS(di, status0)) &
967 D64_RS0_CD_MASK) - di->rcvptrbase) &
968 D64_RS0_CD_MASK, struct dma64desc);
969 brcms_dbg_dma(di->core,
970 "rxin %d rxout %d, hw_curr %d\n",
971 di->rxin, di->rxout, cur);
972 }
973 #endif /* DEBUG */
974
975 if ((di->dma.dmactrlflags & DMA_CTRL_RXMULTI) == 0) {
976 brcms_dbg_dma(di->core, "%s: bad frame length (%d)\n",
977 di->name, len);
978 skb_queue_walk_safe(&dma_frames, p, next) {
979 skb_unlink(p, &dma_frames);
980 brcmu_pkt_buf_free_skb(p);
981 }
982 di->dma.rxgiants++;
983 pktcnt = 1;
984 goto next_frame;
985 }
986 }
987
988 skb_queue_splice_tail(&dma_frames, skb_list);
989 return pktcnt;
990 }
991
dma64_rxidle(struct dma_info * di)992 static bool dma64_rxidle(struct dma_info *di)
993 {
994 brcms_dbg_dma(di->core, "%s:\n", di->name);
995
996 if (di->nrxd == 0)
997 return true;
998
999 return ((bcma_read32(di->core,
1000 DMA64RXREGOFFS(di, status0)) & D64_RS0_CD_MASK) ==
1001 (bcma_read32(di->core, DMA64RXREGOFFS(di, ptr)) &
1002 D64_RS0_CD_MASK));
1003 }
1004
dma64_txidle(struct dma_info * di)1005 static bool dma64_txidle(struct dma_info *di)
1006 {
1007 if (di->ntxd == 0)
1008 return true;
1009
1010 return ((bcma_read32(di->core,
1011 DMA64TXREGOFFS(di, status0)) & D64_XS0_CD_MASK) ==
1012 (bcma_read32(di->core, DMA64TXREGOFFS(di, ptr)) &
1013 D64_XS0_CD_MASK));
1014 }
1015
1016 /*
1017 * post receive buffers
1018 * Return false if refill failed completely or dma mapping failed. The ring
1019 * is empty, which will stall the rx dma and user might want to call rxfill
1020 * again asap. This is unlikely to happen on a memory-rich NIC, but often on
1021 * memory-constrained dongle.
1022 */
dma_rxfill(struct dma_pub * pub)1023 bool dma_rxfill(struct dma_pub *pub)
1024 {
1025 struct dma_info *di = container_of(pub, struct dma_info, dma);
1026 struct sk_buff *p;
1027 u16 rxin, rxout;
1028 u32 flags = 0;
1029 uint n;
1030 uint i;
1031 dma_addr_t pa;
1032 uint extra_offset = 0;
1033 bool ring_empty;
1034
1035 ring_empty = false;
1036
1037 /*
1038 * Determine how many receive buffers we're lacking
1039 * from the full complement, allocate, initialize,
1040 * and post them, then update the chip rx lastdscr.
1041 */
1042
1043 rxin = di->rxin;
1044 rxout = di->rxout;
1045
1046 n = di->nrxpost - nrxdactive(di, rxin, rxout);
1047
1048 brcms_dbg_dma(di->core, "%s: post %d\n", di->name, n);
1049
1050 if (di->rxbufsize > BCMEXTRAHDROOM)
1051 extra_offset = di->rxextrahdrroom;
1052
1053 for (i = 0; i < n; i++) {
1054 /*
1055 * the di->rxbufsize doesn't include the extra headroom,
1056 * we need to add it to the size to be allocated
1057 */
1058 p = brcmu_pkt_buf_get_skb(di->rxbufsize + extra_offset);
1059
1060 if (p == NULL) {
1061 brcms_dbg_dma(di->core, "%s: out of rxbufs\n",
1062 di->name);
1063 if (i == 0 && dma64_rxidle(di)) {
1064 brcms_dbg_dma(di->core, "%s: ring is empty !\n",
1065 di->name);
1066 ring_empty = true;
1067 }
1068 di->dma.rxnobuf++;
1069 break;
1070 }
1071 /* reserve an extra headroom, if applicable */
1072 if (extra_offset)
1073 skb_pull(p, extra_offset);
1074
1075 /* Do a cached write instead of uncached write since DMA_MAP
1076 * will flush the cache.
1077 */
1078 *(u32 *) (p->data) = 0;
1079
1080 pa = dma_map_single(di->dmadev, p->data, di->rxbufsize,
1081 DMA_FROM_DEVICE);
1082 if (dma_mapping_error(di->dmadev, pa)) {
1083 brcmu_pkt_buf_free_skb(p);
1084 return false;
1085 }
1086
1087 /* save the free packet pointer */
1088 di->rxp[rxout] = p;
1089
1090 /* reset flags for each descriptor */
1091 flags = 0;
1092 if (rxout == (di->nrxd - 1))
1093 flags = D64_CTRL1_EOT;
1094
1095 dma64_dd_upd(di, di->rxd64, pa, rxout, &flags,
1096 di->rxbufsize);
1097 rxout = nextrxd(di, rxout);
1098 }
1099
1100 di->rxout = rxout;
1101
1102 /* update the chip lastdscr pointer */
1103 bcma_write32(di->core, DMA64RXREGOFFS(di, ptr),
1104 di->rcvptrbase + I2B(rxout, struct dma64desc));
1105
1106 return ring_empty;
1107 }
1108
dma_rxreclaim(struct dma_pub * pub)1109 void dma_rxreclaim(struct dma_pub *pub)
1110 {
1111 struct dma_info *di = container_of(pub, struct dma_info, dma);
1112 struct sk_buff *p;
1113
1114 brcms_dbg_dma(di->core, "%s:\n", di->name);
1115
1116 while ((p = _dma_getnextrxp(di, true)))
1117 brcmu_pkt_buf_free_skb(p);
1118 }
1119
dma_counterreset(struct dma_pub * pub)1120 void dma_counterreset(struct dma_pub *pub)
1121 {
1122 /* reset all software counters */
1123 pub->rxgiants = 0;
1124 pub->rxnobuf = 0;
1125 pub->txnobuf = 0;
1126 }
1127
1128 /* get the address of the var in order to change later */
dma_getvar(struct dma_pub * pub,const char * name)1129 unsigned long dma_getvar(struct dma_pub *pub, const char *name)
1130 {
1131 struct dma_info *di = container_of(pub, struct dma_info, dma);
1132
1133 if (!strcmp(name, "&txavail"))
1134 return (unsigned long)&(di->dma.txavail);
1135 return 0;
1136 }
1137
1138 /* 64-bit DMA functions */
1139
dma_txinit(struct dma_pub * pub)1140 void dma_txinit(struct dma_pub *pub)
1141 {
1142 struct dma_info *di = container_of(pub, struct dma_info, dma);
1143 u32 control = D64_XC_XE;
1144
1145 brcms_dbg_dma(di->core, "%s:\n", di->name);
1146
1147 if (di->ntxd == 0)
1148 return;
1149
1150 di->txin = di->txout = 0;
1151 di->dma.txavail = di->ntxd - 1;
1152
1153 /* clear tx descriptor ring */
1154 memset(di->txd64, '\0', (di->ntxd * sizeof(struct dma64desc)));
1155
1156 /* DMA engine with out alignment requirement requires table to be inited
1157 * before enabling the engine
1158 */
1159 if (!di->aligndesc_4k)
1160 _dma_ddtable_init(di, DMA_TX, di->txdpa);
1161
1162 if ((di->dma.dmactrlflags & DMA_CTRL_PEN) == 0)
1163 control |= D64_XC_PD;
1164 bcma_set32(di->core, DMA64TXREGOFFS(di, control), control);
1165
1166 /* DMA engine with alignment requirement requires table to be inited
1167 * before enabling the engine
1168 */
1169 if (di->aligndesc_4k)
1170 _dma_ddtable_init(di, DMA_TX, di->txdpa);
1171 }
1172
dma_txsuspend(struct dma_pub * pub)1173 void dma_txsuspend(struct dma_pub *pub)
1174 {
1175 struct dma_info *di = container_of(pub, struct dma_info, dma);
1176
1177 brcms_dbg_dma(di->core, "%s:\n", di->name);
1178
1179 if (di->ntxd == 0)
1180 return;
1181
1182 bcma_set32(di->core, DMA64TXREGOFFS(di, control), D64_XC_SE);
1183 }
1184
dma_txresume(struct dma_pub * pub)1185 void dma_txresume(struct dma_pub *pub)
1186 {
1187 struct dma_info *di = container_of(pub, struct dma_info, dma);
1188
1189 brcms_dbg_dma(di->core, "%s:\n", di->name);
1190
1191 if (di->ntxd == 0)
1192 return;
1193
1194 bcma_mask32(di->core, DMA64TXREGOFFS(di, control), ~D64_XC_SE);
1195 }
1196
dma_txsuspended(struct dma_pub * pub)1197 bool dma_txsuspended(struct dma_pub *pub)
1198 {
1199 struct dma_info *di = container_of(pub, struct dma_info, dma);
1200
1201 return (di->ntxd == 0) ||
1202 ((bcma_read32(di->core,
1203 DMA64TXREGOFFS(di, control)) & D64_XC_SE) ==
1204 D64_XC_SE);
1205 }
1206
dma_txreclaim(struct dma_pub * pub,enum txd_range range)1207 void dma_txreclaim(struct dma_pub *pub, enum txd_range range)
1208 {
1209 struct dma_info *di = container_of(pub, struct dma_info, dma);
1210 struct sk_buff *p;
1211
1212 brcms_dbg_dma(di->core, "%s: %s\n",
1213 di->name,
1214 range == DMA_RANGE_ALL ? "all" :
1215 range == DMA_RANGE_TRANSMITTED ? "transmitted" :
1216 "transferred");
1217
1218 if (di->txin == di->txout)
1219 return;
1220
1221 while ((p = dma_getnexttxp(pub, range))) {
1222 /* For unframed data, we don't have any packets to free */
1223 if (!(di->dma.dmactrlflags & DMA_CTRL_UNFRAMED))
1224 brcmu_pkt_buf_free_skb(p);
1225 }
1226 }
1227
dma_txreset(struct dma_pub * pub)1228 bool dma_txreset(struct dma_pub *pub)
1229 {
1230 struct dma_info *di = container_of(pub, struct dma_info, dma);
1231 u32 status;
1232
1233 if (di->ntxd == 0)
1234 return true;
1235
1236 /* suspend tx DMA first */
1237 bcma_write32(di->core, DMA64TXREGOFFS(di, control), D64_XC_SE);
1238 SPINWAIT(((status =
1239 (bcma_read32(di->core, DMA64TXREGOFFS(di, status0)) &
1240 D64_XS0_XS_MASK)) != D64_XS0_XS_DISABLED) &&
1241 (status != D64_XS0_XS_IDLE) && (status != D64_XS0_XS_STOPPED),
1242 10000);
1243
1244 bcma_write32(di->core, DMA64TXREGOFFS(di, control), 0);
1245 SPINWAIT(((status =
1246 (bcma_read32(di->core, DMA64TXREGOFFS(di, status0)) &
1247 D64_XS0_XS_MASK)) != D64_XS0_XS_DISABLED), 10000);
1248
1249 /* wait for the last transaction to complete */
1250 udelay(300);
1251
1252 return status == D64_XS0_XS_DISABLED;
1253 }
1254
dma_rxreset(struct dma_pub * pub)1255 bool dma_rxreset(struct dma_pub *pub)
1256 {
1257 struct dma_info *di = container_of(pub, struct dma_info, dma);
1258 u32 status;
1259
1260 if (di->nrxd == 0)
1261 return true;
1262
1263 bcma_write32(di->core, DMA64RXREGOFFS(di, control), 0);
1264 SPINWAIT(((status =
1265 (bcma_read32(di->core, DMA64RXREGOFFS(di, status0)) &
1266 D64_RS0_RS_MASK)) != D64_RS0_RS_DISABLED), 10000);
1267
1268 return status == D64_RS0_RS_DISABLED;
1269 }
1270
dma_txenq(struct dma_info * di,struct sk_buff * p)1271 static void dma_txenq(struct dma_info *di, struct sk_buff *p)
1272 {
1273 unsigned char *data;
1274 uint len;
1275 u16 txout;
1276 u32 flags = 0;
1277 dma_addr_t pa;
1278
1279 txout = di->txout;
1280
1281 if (WARN_ON(nexttxd(di, txout) == di->txin))
1282 return;
1283
1284 /*
1285 * obtain and initialize transmit descriptor entry.
1286 */
1287 data = p->data;
1288 len = p->len;
1289
1290 /* get physical address of buffer start */
1291 pa = dma_map_single(di->dmadev, data, len, DMA_TO_DEVICE);
1292 /* if mapping failed, free skb */
1293 if (dma_mapping_error(di->dmadev, pa)) {
1294 brcmu_pkt_buf_free_skb(p);
1295 return;
1296 }
1297 /* With a DMA segment list, Descriptor table is filled
1298 * using the segment list instead of looping over
1299 * buffers in multi-chain DMA. Therefore, EOF for SGLIST
1300 * is when end of segment list is reached.
1301 */
1302 flags = D64_CTRL1_SOF | D64_CTRL1_IOC | D64_CTRL1_EOF;
1303 if (txout == (di->ntxd - 1))
1304 flags |= D64_CTRL1_EOT;
1305
1306 dma64_dd_upd(di, di->txd64, pa, txout, &flags, len);
1307
1308 txout = nexttxd(di, txout);
1309
1310 /* save the packet */
1311 di->txp[prevtxd(di, txout)] = p;
1312
1313 /* bump the tx descriptor index */
1314 di->txout = txout;
1315 }
1316
ampdu_finalize(struct dma_info * di)1317 static void ampdu_finalize(struct dma_info *di)
1318 {
1319 struct brcms_ampdu_session *session = &di->ampdu_session;
1320 struct sk_buff *p;
1321
1322 trace_brcms_ampdu_session(&session->wlc->hw->d11core->dev,
1323 session->max_ampdu_len,
1324 session->max_ampdu_frames,
1325 session->ampdu_len,
1326 skb_queue_len(&session->skb_list),
1327 session->dma_len);
1328
1329 if (WARN_ON(skb_queue_empty(&session->skb_list)))
1330 return;
1331
1332 brcms_c_ampdu_finalize(session);
1333
1334 while (!skb_queue_empty(&session->skb_list)) {
1335 p = skb_dequeue(&session->skb_list);
1336 dma_txenq(di, p);
1337 }
1338
1339 bcma_write32(di->core, DMA64TXREGOFFS(di, ptr),
1340 di->xmtptrbase + I2B(di->txout, struct dma64desc));
1341 brcms_c_ampdu_reset_session(session, session->wlc);
1342 }
1343
prep_ampdu_frame(struct dma_info * di,struct sk_buff * p)1344 static void prep_ampdu_frame(struct dma_info *di, struct sk_buff *p)
1345 {
1346 struct brcms_ampdu_session *session = &di->ampdu_session;
1347 int ret;
1348
1349 ret = brcms_c_ampdu_add_frame(session, p);
1350 if (ret == -ENOSPC) {
1351 /*
1352 * AMPDU cannot accomodate this frame. Close out the in-
1353 * progress AMPDU session and start a new one.
1354 */
1355 ampdu_finalize(di);
1356 ret = brcms_c_ampdu_add_frame(session, p);
1357 }
1358
1359 WARN_ON(ret);
1360 }
1361
1362 /* Update count of available tx descriptors based on current DMA state */
dma_update_txavail(struct dma_info * di)1363 static void dma_update_txavail(struct dma_info *di)
1364 {
1365 /*
1366 * Available space is number of descriptors less the number of
1367 * active descriptors and the number of queued AMPDU frames.
1368 */
1369 di->dma.txavail = di->ntxd - ntxdactive(di, di->txin, di->txout) -
1370 skb_queue_len(&di->ampdu_session.skb_list) - 1;
1371 }
1372
1373 /*
1374 * !! tx entry routine
1375 * WARNING: call must check the return value for error.
1376 * the error(toss frames) could be fatal and cause many subsequent hard
1377 * to debug problems
1378 */
dma_txfast(struct brcms_c_info * wlc,struct dma_pub * pub,struct sk_buff * p)1379 int dma_txfast(struct brcms_c_info *wlc, struct dma_pub *pub,
1380 struct sk_buff *p)
1381 {
1382 struct dma_info *di = container_of(pub, struct dma_info, dma);
1383 struct brcms_ampdu_session *session = &di->ampdu_session;
1384 struct ieee80211_tx_info *tx_info;
1385 bool is_ampdu;
1386
1387 /* no use to transmit a zero length packet */
1388 if (p->len == 0)
1389 return 0;
1390
1391 /* return nonzero if out of tx descriptors */
1392 if (di->dma.txavail == 0 || nexttxd(di, di->txout) == di->txin)
1393 goto outoftxd;
1394
1395 tx_info = IEEE80211_SKB_CB(p);
1396 is_ampdu = tx_info->flags & IEEE80211_TX_CTL_AMPDU;
1397 if (is_ampdu)
1398 prep_ampdu_frame(di, p);
1399 else
1400 dma_txenq(di, p);
1401
1402 /* tx flow control */
1403 dma_update_txavail(di);
1404
1405 /* kick the chip */
1406 if (is_ampdu) {
1407 /*
1408 * Start sending data if we've got a full AMPDU, there's
1409 * no more space in the DMA ring, or the ring isn't
1410 * currently transmitting.
1411 */
1412 if (skb_queue_len(&session->skb_list) == session->max_ampdu_frames ||
1413 di->dma.txavail == 0 || dma64_txidle(di))
1414 ampdu_finalize(di);
1415 } else {
1416 bcma_write32(di->core, DMA64TXREGOFFS(di, ptr),
1417 di->xmtptrbase + I2B(di->txout, struct dma64desc));
1418 }
1419
1420 return 0;
1421
1422 outoftxd:
1423 brcms_dbg_dma(di->core, "%s: out of txds !!!\n", di->name);
1424 brcmu_pkt_buf_free_skb(p);
1425 di->dma.txavail = 0;
1426 di->dma.txnobuf++;
1427 return -ENOSPC;
1428 }
1429
dma_txflush(struct dma_pub * pub)1430 void dma_txflush(struct dma_pub *pub)
1431 {
1432 struct dma_info *di = container_of(pub, struct dma_info, dma);
1433 struct brcms_ampdu_session *session = &di->ampdu_session;
1434
1435 if (!skb_queue_empty(&session->skb_list))
1436 ampdu_finalize(di);
1437 }
1438
dma_txpending(struct dma_pub * pub)1439 int dma_txpending(struct dma_pub *pub)
1440 {
1441 struct dma_info *di = container_of(pub, struct dma_info, dma);
1442 return ntxdactive(di, di->txin, di->txout);
1443 }
1444
1445 /*
1446 * If we have an active AMPDU session and are not transmitting,
1447 * this function will force tx to start.
1448 */
dma_kick_tx(struct dma_pub * pub)1449 void dma_kick_tx(struct dma_pub *pub)
1450 {
1451 struct dma_info *di = container_of(pub, struct dma_info, dma);
1452 struct brcms_ampdu_session *session = &di->ampdu_session;
1453
1454 if (!skb_queue_empty(&session->skb_list) && dma64_txidle(di))
1455 ampdu_finalize(di);
1456 }
1457
1458 /*
1459 * Reclaim next completed txd (txds if using chained buffers) in the range
1460 * specified and return associated packet.
1461 * If range is DMA_RANGE_TRANSMITTED, reclaim descriptors that have be
1462 * transmitted as noted by the hardware "CurrDescr" pointer.
1463 * If range is DMA_RANGE_TRANSFERED, reclaim descriptors that have be
1464 * transferred by the DMA as noted by the hardware "ActiveDescr" pointer.
1465 * If range is DMA_RANGE_ALL, reclaim all txd(s) posted to the ring and
1466 * return associated packet regardless of the value of hardware pointers.
1467 */
dma_getnexttxp(struct dma_pub * pub,enum txd_range range)1468 struct sk_buff *dma_getnexttxp(struct dma_pub *pub, enum txd_range range)
1469 {
1470 struct dma_info *di = container_of(pub, struct dma_info, dma);
1471 u16 start, end, i;
1472 u16 active_desc;
1473 struct sk_buff *txp;
1474
1475 brcms_dbg_dma(di->core, "%s: %s\n",
1476 di->name,
1477 range == DMA_RANGE_ALL ? "all" :
1478 range == DMA_RANGE_TRANSMITTED ? "transmitted" :
1479 "transferred");
1480
1481 if (di->ntxd == 0)
1482 return NULL;
1483
1484 txp = NULL;
1485
1486 start = di->txin;
1487 if (range == DMA_RANGE_ALL)
1488 end = di->txout;
1489 else {
1490 end = (u16) (B2I(((bcma_read32(di->core,
1491 DMA64TXREGOFFS(di, status0)) &
1492 D64_XS0_CD_MASK) - di->xmtptrbase) &
1493 D64_XS0_CD_MASK, struct dma64desc));
1494
1495 if (range == DMA_RANGE_TRANSFERED) {
1496 active_desc =
1497 (u16)(bcma_read32(di->core,
1498 DMA64TXREGOFFS(di, status1)) &
1499 D64_XS1_AD_MASK);
1500 active_desc =
1501 (active_desc - di->xmtptrbase) & D64_XS0_CD_MASK;
1502 active_desc = B2I(active_desc, struct dma64desc);
1503 if (end != active_desc)
1504 end = prevtxd(di, active_desc);
1505 }
1506 }
1507
1508 if ((start == 0) && (end > di->txout))
1509 goto bogus;
1510
1511 for (i = start; i != end && !txp; i = nexttxd(di, i)) {
1512 dma_addr_t pa;
1513 uint size;
1514
1515 pa = le32_to_cpu(di->txd64[i].addrlow) - di->dataoffsetlow;
1516
1517 size =
1518 (le32_to_cpu(di->txd64[i].ctrl2) &
1519 D64_CTRL2_BC_MASK);
1520
1521 di->txd64[i].addrlow = cpu_to_le32(0xdeadbeef);
1522 di->txd64[i].addrhigh = cpu_to_le32(0xdeadbeef);
1523
1524 txp = di->txp[i];
1525 di->txp[i] = NULL;
1526
1527 dma_unmap_single(di->dmadev, pa, size, DMA_TO_DEVICE);
1528 }
1529
1530 di->txin = i;
1531
1532 /* tx flow control */
1533 dma_update_txavail(di);
1534
1535 return txp;
1536
1537 bogus:
1538 brcms_dbg_dma(di->core, "bogus curr: start %d end %d txout %d\n",
1539 start, end, di->txout);
1540 return NULL;
1541 }
1542
1543 /*
1544 * Mac80211 initiated actions sometimes require packets in the DMA queue to be
1545 * modified. The modified portion of the packet is not under control of the DMA
1546 * engine. This function calls a caller-supplied function for each packet in
1547 * the caller specified dma chain.
1548 */
dma_walk_packets(struct dma_pub * dmah,void (* callback_fnc)(void * pkt,void * arg_a),void * arg_a)1549 void dma_walk_packets(struct dma_pub *dmah, void (*callback_fnc)
1550 (void *pkt, void *arg_a), void *arg_a)
1551 {
1552 struct dma_info *di = container_of(dmah, struct dma_info, dma);
1553 uint i = di->txin;
1554 uint end = di->txout;
1555 struct sk_buff *skb;
1556 struct ieee80211_tx_info *tx_info;
1557
1558 while (i != end) {
1559 skb = di->txp[i];
1560 if (skb != NULL) {
1561 tx_info = (struct ieee80211_tx_info *)skb->cb;
1562 (callback_fnc)(tx_info, arg_a);
1563 }
1564 i = nexttxd(di, i);
1565 }
1566 }
1567