1 /* 2 * Copyright (c) 2010 Broadcom Corporation 3 * 4 * Permission to use, copy, modify, and/or distribute this software for any 5 * purpose with or without fee is hereby granted, provided that the above 6 * copyright notice and this permission notice appear in all copies. 7 * 8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY 11 * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION 13 * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN 14 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 15 */ 16 #include <net/mac80211.h> 17 18 #include "rate.h" 19 #include "scb.h" 20 #include "phy/phy_hal.h" 21 #include "antsel.h" 22 #include "main.h" 23 #include "ampdu.h" 24 #include "debug.h" 25 #include "brcms_trace_events.h" 26 27 /* max number of mpdus in an ampdu */ 28 #define AMPDU_MAX_MPDU 32 29 /* max number of mpdus in an ampdu to a legacy */ 30 #define AMPDU_NUM_MPDU_LEGACY 16 31 /* max Tx ba window size (in pdu) */ 32 #define AMPDU_TX_BA_MAX_WSIZE 64 33 /* default Tx ba window size (in pdu) */ 34 #define AMPDU_TX_BA_DEF_WSIZE 64 35 /* default Rx ba window size (in pdu) */ 36 #define AMPDU_RX_BA_DEF_WSIZE 64 37 /* max Rx ba window size (in pdu) */ 38 #define AMPDU_RX_BA_MAX_WSIZE 64 39 /* max dur of tx ampdu (in msec) */ 40 #define AMPDU_MAX_DUR 5 41 /* default tx retry limit */ 42 #define AMPDU_DEF_RETRY_LIMIT 5 43 /* default tx retry limit at reg rate */ 44 #define AMPDU_DEF_RR_RETRY_LIMIT 2 45 /* default ffpld reserved bytes */ 46 #define AMPDU_DEF_FFPLD_RSVD 2048 47 /* # of inis to be freed on detach */ 48 #define AMPDU_INI_FREE 10 49 /* max # of mpdus released at a time */ 50 #define AMPDU_SCB_MAX_RELEASE 20 51 52 #define NUM_FFPLD_FIFO 4 /* number of fifo concerned by pre-loading */ 53 #define FFPLD_TX_MAX_UNFL 200 /* default value of the average number of ampdu 54 * without underflows 55 */ 56 #define FFPLD_MPDU_SIZE 1800 /* estimate of maximum mpdu size */ 57 #define FFPLD_MAX_MCS 23 /* we don't deal with mcs 32 */ 58 #define FFPLD_PLD_INCR 1000 /* increments in bytes */ 59 #define FFPLD_MAX_AMPDU_CNT 5000 /* maximum number of ampdu we 60 * accumulate between resets. 61 */ 62 63 #define AMPDU_DELIMITER_LEN 4 64 65 /* max allowed number of mpdus in an ampdu (2 streams) */ 66 #define AMPDU_NUM_MPDU 16 67 68 #define TX_SEQ_TO_INDEX(seq) ((seq) % AMPDU_TX_BA_MAX_WSIZE) 69 70 /* max possible overhead per mpdu in the ampdu; 3 is for roundup if needed */ 71 #define AMPDU_MAX_MPDU_OVERHEAD (FCS_LEN + DOT11_ICV_AES_LEN +\ 72 AMPDU_DELIMITER_LEN + 3\ 73 + DOT11_A4_HDR_LEN + DOT11_QOS_LEN + DOT11_IV_MAX_LEN) 74 75 /* modulo add/sub, bound = 2^k */ 76 #define MODADD_POW2(x, y, bound) (((x) + (y)) & ((bound) - 1)) 77 #define MODSUB_POW2(x, y, bound) (((x) - (y)) & ((bound) - 1)) 78 79 /* structure to hold tx fifo information and pre-loading state 80 * counters specific to tx underflows of ampdus 81 * some counters might be redundant with the ones in wlc or ampdu structures. 82 * This allows to maintain a specific state independently of 83 * how often and/or when the wlc counters are updated. 84 * 85 * ampdu_pld_size: number of bytes to be pre-loaded 86 * mcs2ampdu_table: per-mcs max # of mpdus in an ampdu 87 * prev_txfunfl: num of underflows last read from the HW macstats counter 88 * accum_txfunfl: num of underflows since we modified pld params 89 * accum_txampdu: num of tx ampdu since we modified pld params 90 * prev_txampdu: previous reading of tx ampdu 91 * dmaxferrate: estimated dma avg xfer rate in kbits/sec 92 */ 93 struct brcms_fifo_info { 94 u16 ampdu_pld_size; 95 u8 mcs2ampdu_table[FFPLD_MAX_MCS + 1]; 96 u16 prev_txfunfl; 97 u32 accum_txfunfl; 98 u32 accum_txampdu; 99 u32 prev_txampdu; 100 u32 dmaxferrate; 101 }; 102 103 /* AMPDU module specific state 104 * 105 * wlc: pointer to main wlc structure 106 * scb_handle: scb cubby handle to retrieve data from scb 107 * ini_enable: per-tid initiator enable/disable of ampdu 108 * ba_tx_wsize: Tx ba window size (in pdu) 109 * ba_rx_wsize: Rx ba window size (in pdu) 110 * retry_limit: mpdu transmit retry limit 111 * rr_retry_limit: mpdu transmit retry limit at regular rate 112 * retry_limit_tid: per-tid mpdu transmit retry limit 113 * rr_retry_limit_tid: per-tid mpdu transmit retry limit at regular rate 114 * mpdu_density: min mpdu spacing (0-7) ==> 2^(x-1)/8 usec 115 * max_pdu: max pdus allowed in ampdu 116 * dur: max duration of an ampdu (in msec) 117 * rx_factor: maximum rx ampdu factor (0-3) ==> 2^(13+x) bytes 118 * ffpld_rsvd: number of bytes to reserve for preload 119 * max_txlen: max size of ampdu per mcs, bw and sgi 120 * mfbr: enable multiple fallback rate 121 * tx_max_funl: underflows should be kept such that 122 * (tx_max_funfl*underflows) < tx frames 123 * fifo_tb: table of fifo infos 124 */ 125 struct ampdu_info { 126 struct brcms_c_info *wlc; 127 int scb_handle; 128 u8 ini_enable[AMPDU_MAX_SCB_TID]; 129 u8 ba_tx_wsize; 130 u8 ba_rx_wsize; 131 u8 retry_limit; 132 u8 rr_retry_limit; 133 u8 retry_limit_tid[AMPDU_MAX_SCB_TID]; 134 u8 rr_retry_limit_tid[AMPDU_MAX_SCB_TID]; 135 u8 mpdu_density; 136 s8 max_pdu; 137 u8 dur; 138 u8 rx_factor; 139 u32 ffpld_rsvd; 140 u32 max_txlen[MCS_TABLE_SIZE][2][2]; 141 bool mfbr; 142 u32 tx_max_funl; 143 struct brcms_fifo_info fifo_tb[NUM_FFPLD_FIFO]; 144 }; 145 146 /* used for flushing ampdu packets */ 147 struct cb_del_ampdu_pars { 148 struct ieee80211_sta *sta; 149 u16 tid; 150 }; 151 152 static void brcms_c_scb_ampdu_update_max_txlen(struct ampdu_info *ampdu, u8 dur) 153 { 154 u32 rate, mcs; 155 156 for (mcs = 0; mcs < MCS_TABLE_SIZE; mcs++) { 157 /* rate is in Kbps; dur is in msec ==> len = (rate * dur) / 8 */ 158 /* 20MHz, No SGI */ 159 rate = mcs_2_rate(mcs, false, false); 160 ampdu->max_txlen[mcs][0][0] = (rate * dur) >> 3; 161 /* 40 MHz, No SGI */ 162 rate = mcs_2_rate(mcs, true, false); 163 ampdu->max_txlen[mcs][1][0] = (rate * dur) >> 3; 164 /* 20MHz, SGI */ 165 rate = mcs_2_rate(mcs, false, true); 166 ampdu->max_txlen[mcs][0][1] = (rate * dur) >> 3; 167 /* 40 MHz, SGI */ 168 rate = mcs_2_rate(mcs, true, true); 169 ampdu->max_txlen[mcs][1][1] = (rate * dur) >> 3; 170 } 171 } 172 173 static bool brcms_c_ampdu_cap(struct ampdu_info *ampdu) 174 { 175 if (BRCMS_PHY_11N_CAP(ampdu->wlc->band)) 176 return true; 177 else 178 return false; 179 } 180 181 static int brcms_c_ampdu_set(struct ampdu_info *ampdu, bool on) 182 { 183 struct brcms_c_info *wlc = ampdu->wlc; 184 struct bcma_device *core = wlc->hw->d11core; 185 186 wlc->pub->_ampdu = false; 187 188 if (on) { 189 if (!(wlc->pub->_n_enab & SUPPORT_11N)) { 190 brcms_err(core, "wl%d: driver not nmode enabled\n", 191 wlc->pub->unit); 192 return -ENOTSUPP; 193 } 194 if (!brcms_c_ampdu_cap(ampdu)) { 195 brcms_err(core, "wl%d: device not ampdu capable\n", 196 wlc->pub->unit); 197 return -ENOTSUPP; 198 } 199 wlc->pub->_ampdu = on; 200 } 201 202 return 0; 203 } 204 205 static void brcms_c_ffpld_init(struct ampdu_info *ampdu) 206 { 207 int i, j; 208 struct brcms_fifo_info *fifo; 209 210 for (j = 0; j < NUM_FFPLD_FIFO; j++) { 211 fifo = (ampdu->fifo_tb + j); 212 fifo->ampdu_pld_size = 0; 213 for (i = 0; i <= FFPLD_MAX_MCS; i++) 214 fifo->mcs2ampdu_table[i] = 255; 215 fifo->dmaxferrate = 0; 216 fifo->accum_txampdu = 0; 217 fifo->prev_txfunfl = 0; 218 fifo->accum_txfunfl = 0; 219 220 } 221 } 222 223 struct ampdu_info *brcms_c_ampdu_attach(struct brcms_c_info *wlc) 224 { 225 struct ampdu_info *ampdu; 226 int i; 227 228 ampdu = kzalloc(sizeof(struct ampdu_info), GFP_ATOMIC); 229 if (!ampdu) 230 return NULL; 231 232 ampdu->wlc = wlc; 233 234 for (i = 0; i < AMPDU_MAX_SCB_TID; i++) 235 ampdu->ini_enable[i] = true; 236 /* Disable ampdu for VO by default */ 237 ampdu->ini_enable[PRIO_8021D_VO] = false; 238 ampdu->ini_enable[PRIO_8021D_NC] = false; 239 240 /* Disable ampdu for BK by default since not enough fifo space */ 241 ampdu->ini_enable[PRIO_8021D_NONE] = false; 242 ampdu->ini_enable[PRIO_8021D_BK] = false; 243 244 ampdu->ba_tx_wsize = AMPDU_TX_BA_DEF_WSIZE; 245 ampdu->ba_rx_wsize = AMPDU_RX_BA_DEF_WSIZE; 246 ampdu->mpdu_density = AMPDU_DEF_MPDU_DENSITY; 247 ampdu->max_pdu = AUTO; 248 ampdu->dur = AMPDU_MAX_DUR; 249 250 ampdu->ffpld_rsvd = AMPDU_DEF_FFPLD_RSVD; 251 /* 252 * bump max ampdu rcv size to 64k for all 11n 253 * devices except 4321A0 and 4321A1 254 */ 255 if (BRCMS_ISNPHY(wlc->band) && NREV_LT(wlc->band->phyrev, 2)) 256 ampdu->rx_factor = IEEE80211_HT_MAX_AMPDU_32K; 257 else 258 ampdu->rx_factor = IEEE80211_HT_MAX_AMPDU_64K; 259 ampdu->retry_limit = AMPDU_DEF_RETRY_LIMIT; 260 ampdu->rr_retry_limit = AMPDU_DEF_RR_RETRY_LIMIT; 261 262 for (i = 0; i < AMPDU_MAX_SCB_TID; i++) { 263 ampdu->retry_limit_tid[i] = ampdu->retry_limit; 264 ampdu->rr_retry_limit_tid[i] = ampdu->rr_retry_limit; 265 } 266 267 brcms_c_scb_ampdu_update_max_txlen(ampdu, ampdu->dur); 268 ampdu->mfbr = false; 269 /* try to set ampdu to the default value */ 270 brcms_c_ampdu_set(ampdu, wlc->pub->_ampdu); 271 272 ampdu->tx_max_funl = FFPLD_TX_MAX_UNFL; 273 brcms_c_ffpld_init(ampdu); 274 275 return ampdu; 276 } 277 278 void brcms_c_ampdu_detach(struct ampdu_info *ampdu) 279 { 280 kfree(ampdu); 281 } 282 283 static void brcms_c_scb_ampdu_update_config(struct ampdu_info *ampdu, 284 struct scb *scb) 285 { 286 struct scb_ampdu *scb_ampdu = &scb->scb_ampdu; 287 int i; 288 289 scb_ampdu->max_pdu = AMPDU_NUM_MPDU; 290 291 /* go back to legacy size if some preloading is occurring */ 292 for (i = 0; i < NUM_FFPLD_FIFO; i++) { 293 if (ampdu->fifo_tb[i].ampdu_pld_size > FFPLD_PLD_INCR) 294 scb_ampdu->max_pdu = AMPDU_NUM_MPDU_LEGACY; 295 } 296 297 /* apply user override */ 298 if (ampdu->max_pdu != AUTO) 299 scb_ampdu->max_pdu = (u8) ampdu->max_pdu; 300 301 scb_ampdu->release = min_t(u8, scb_ampdu->max_pdu, 302 AMPDU_SCB_MAX_RELEASE); 303 304 if (scb_ampdu->max_rx_ampdu_bytes) 305 scb_ampdu->release = min_t(u8, scb_ampdu->release, 306 scb_ampdu->max_rx_ampdu_bytes / 1600); 307 308 scb_ampdu->release = min(scb_ampdu->release, 309 ampdu->fifo_tb[TX_AC_BE_FIFO]. 310 mcs2ampdu_table[FFPLD_MAX_MCS]); 311 } 312 313 static void brcms_c_scb_ampdu_update_config_all(struct ampdu_info *ampdu) 314 { 315 brcms_c_scb_ampdu_update_config(ampdu, &du->wlc->pri_scb); 316 } 317 318 static void brcms_c_ffpld_calc_mcs2ampdu_table(struct ampdu_info *ampdu, int f) 319 { 320 int i; 321 u32 phy_rate, dma_rate, tmp; 322 u8 max_mpdu; 323 struct brcms_fifo_info *fifo = (ampdu->fifo_tb + f); 324 325 /* recompute the dma rate */ 326 /* note : we divide/multiply by 100 to avoid integer overflows */ 327 max_mpdu = min_t(u8, fifo->mcs2ampdu_table[FFPLD_MAX_MCS], 328 AMPDU_NUM_MPDU_LEGACY); 329 phy_rate = mcs_2_rate(FFPLD_MAX_MCS, true, false); 330 dma_rate = 331 (((phy_rate / 100) * 332 (max_mpdu * FFPLD_MPDU_SIZE - fifo->ampdu_pld_size)) 333 / (max_mpdu * FFPLD_MPDU_SIZE)) * 100; 334 fifo->dmaxferrate = dma_rate; 335 336 /* fill up the mcs2ampdu table; do not recalc the last mcs */ 337 dma_rate = dma_rate >> 7; 338 for (i = 0; i < FFPLD_MAX_MCS; i++) { 339 /* shifting to keep it within integer range */ 340 phy_rate = mcs_2_rate(i, true, false) >> 7; 341 if (phy_rate > dma_rate) { 342 tmp = ((fifo->ampdu_pld_size * phy_rate) / 343 ((phy_rate - dma_rate) * FFPLD_MPDU_SIZE)) + 1; 344 tmp = min_t(u32, tmp, 255); 345 fifo->mcs2ampdu_table[i] = (u8) tmp; 346 } 347 } 348 } 349 350 /* evaluate the dma transfer rate using the tx underflows as feedback. 351 * If necessary, increase tx fifo preloading. If not enough, 352 * decrease maximum ampdu size for each mcs till underflows stop 353 * Return 1 if pre-loading not active, -1 if not an underflow event, 354 * 0 if pre-loading module took care of the event. 355 */ 356 static int brcms_c_ffpld_check_txfunfl(struct brcms_c_info *wlc, int fid) 357 { 358 struct ampdu_info *ampdu = wlc->ampdu; 359 u32 phy_rate = mcs_2_rate(FFPLD_MAX_MCS, true, false); 360 u32 txunfl_ratio; 361 u8 max_mpdu; 362 u32 current_ampdu_cnt = 0; 363 u16 max_pld_size; 364 u32 new_txunfl; 365 struct brcms_fifo_info *fifo = (ampdu->fifo_tb + fid); 366 uint xmtfifo_sz; 367 u16 cur_txunfl; 368 369 /* return if we got here for a different reason than underflows */ 370 cur_txunfl = brcms_b_read_shm(wlc->hw, 371 M_UCODE_MACSTAT + 372 offsetof(struct macstat, txfunfl[fid])); 373 new_txunfl = (u16) (cur_txunfl - fifo->prev_txfunfl); 374 if (new_txunfl == 0) { 375 brcms_dbg_ht(wlc->hw->d11core, 376 "TX status FRAG set but no tx underflows\n"); 377 return -1; 378 } 379 fifo->prev_txfunfl = cur_txunfl; 380 381 if (!ampdu->tx_max_funl) 382 return 1; 383 384 /* check if fifo is big enough */ 385 if (brcms_b_xmtfifo_sz_get(wlc->hw, fid, &xmtfifo_sz)) 386 return -1; 387 388 if ((TXFIFO_SIZE_UNIT * (u32) xmtfifo_sz) <= ampdu->ffpld_rsvd) 389 return 1; 390 391 max_pld_size = TXFIFO_SIZE_UNIT * xmtfifo_sz - ampdu->ffpld_rsvd; 392 fifo->accum_txfunfl += new_txunfl; 393 394 /* we need to wait for at least 10 underflows */ 395 if (fifo->accum_txfunfl < 10) 396 return 0; 397 398 brcms_dbg_ht(wlc->hw->d11core, "ampdu_count %d tx_underflows %d\n", 399 current_ampdu_cnt, fifo->accum_txfunfl); 400 401 /* 402 compute the current ratio of tx unfl per ampdu. 403 When the current ampdu count becomes too 404 big while the ratio remains small, we reset 405 the current count in order to not 406 introduce too big of a latency in detecting a 407 large amount of tx underflows later. 408 */ 409 410 txunfl_ratio = current_ampdu_cnt / fifo->accum_txfunfl; 411 412 if (txunfl_ratio > ampdu->tx_max_funl) { 413 if (current_ampdu_cnt >= FFPLD_MAX_AMPDU_CNT) 414 fifo->accum_txfunfl = 0; 415 416 return 0; 417 } 418 max_mpdu = min_t(u8, fifo->mcs2ampdu_table[FFPLD_MAX_MCS], 419 AMPDU_NUM_MPDU_LEGACY); 420 421 /* In case max value max_pdu is already lower than 422 the fifo depth, there is nothing more we can do. 423 */ 424 425 if (fifo->ampdu_pld_size >= max_mpdu * FFPLD_MPDU_SIZE) { 426 fifo->accum_txfunfl = 0; 427 return 0; 428 } 429 430 if (fifo->ampdu_pld_size < max_pld_size) { 431 432 /* increment by TX_FIFO_PLD_INC bytes */ 433 fifo->ampdu_pld_size += FFPLD_PLD_INCR; 434 if (fifo->ampdu_pld_size > max_pld_size) 435 fifo->ampdu_pld_size = max_pld_size; 436 437 /* update scb release size */ 438 brcms_c_scb_ampdu_update_config_all(ampdu); 439 440 /* 441 * compute a new dma xfer rate for max_mpdu @ max mcs. 442 * This is the minimum dma rate that can achieve no 443 * underflow condition for the current mpdu size. 444 * 445 * note : we divide/multiply by 100 to avoid integer overflows 446 */ 447 fifo->dmaxferrate = 448 (((phy_rate / 100) * 449 (max_mpdu * FFPLD_MPDU_SIZE - fifo->ampdu_pld_size)) 450 / (max_mpdu * FFPLD_MPDU_SIZE)) * 100; 451 452 brcms_dbg_ht(wlc->hw->d11core, 453 "DMA estimated transfer rate %d; " 454 "pre-load size %d\n", 455 fifo->dmaxferrate, fifo->ampdu_pld_size); 456 } else { 457 458 /* decrease ampdu size */ 459 if (fifo->mcs2ampdu_table[FFPLD_MAX_MCS] > 1) { 460 if (fifo->mcs2ampdu_table[FFPLD_MAX_MCS] == 255) 461 fifo->mcs2ampdu_table[FFPLD_MAX_MCS] = 462 AMPDU_NUM_MPDU_LEGACY - 1; 463 else 464 fifo->mcs2ampdu_table[FFPLD_MAX_MCS] -= 1; 465 466 /* recompute the table */ 467 brcms_c_ffpld_calc_mcs2ampdu_table(ampdu, fid); 468 469 /* update scb release size */ 470 brcms_c_scb_ampdu_update_config_all(ampdu); 471 } 472 } 473 fifo->accum_txfunfl = 0; 474 return 0; 475 } 476 477 void 478 brcms_c_ampdu_tx_operational(struct brcms_c_info *wlc, u8 tid, 479 u8 ba_wsize, /* negotiated ba window size (in pdu) */ 480 uint max_rx_ampdu_bytes) /* from ht_cap in beacon */ 481 { 482 struct scb_ampdu *scb_ampdu; 483 struct scb_ampdu_tid_ini *ini; 484 struct ampdu_info *ampdu = wlc->ampdu; 485 struct scb *scb = &wlc->pri_scb; 486 scb_ampdu = &scb->scb_ampdu; 487 488 if (!ampdu->ini_enable[tid]) { 489 brcms_err(wlc->hw->d11core, "%s: Rejecting tid %d\n", 490 __func__, tid); 491 return; 492 } 493 494 ini = &scb_ampdu->ini[tid]; 495 ini->tid = tid; 496 ini->scb = scb_ampdu->scb; 497 ini->ba_wsize = ba_wsize; 498 scb_ampdu->max_rx_ampdu_bytes = max_rx_ampdu_bytes; 499 } 500 501 void brcms_c_ampdu_reset_session(struct brcms_ampdu_session *session, 502 struct brcms_c_info *wlc) 503 { 504 session->wlc = wlc; 505 skb_queue_head_init(&session->skb_list); 506 session->max_ampdu_len = 0; /* determined from first MPDU */ 507 session->max_ampdu_frames = 0; /* determined from first MPDU */ 508 session->ampdu_len = 0; 509 session->dma_len = 0; 510 } 511 512 /* 513 * Preps the given packet for AMPDU based on the session data. If the 514 * frame cannot be accomodated in the current session, -ENOSPC is 515 * returned. 516 */ 517 int brcms_c_ampdu_add_frame(struct brcms_ampdu_session *session, 518 struct sk_buff *p) 519 { 520 struct brcms_c_info *wlc = session->wlc; 521 struct ampdu_info *ampdu = wlc->ampdu; 522 struct scb *scb = &wlc->pri_scb; 523 struct scb_ampdu *scb_ampdu = &scb->scb_ampdu; 524 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(p); 525 struct ieee80211_tx_rate *txrate = tx_info->status.rates; 526 struct d11txh *txh = (struct d11txh *)p->data; 527 unsigned ampdu_frames; 528 u8 ndelim, tid; 529 u8 *plcp; 530 uint len; 531 u16 mcl; 532 bool fbr_iscck; 533 bool rr; 534 535 ndelim = txh->RTSPLCPFallback[AMPDU_FBR_NULL_DELIM]; 536 plcp = (u8 *)(txh + 1); 537 fbr_iscck = !(le16_to_cpu(txh->XtraFrameTypes) & 0x03); 538 len = fbr_iscck ? BRCMS_GET_CCK_PLCP_LEN(txh->FragPLCPFallback) : 539 BRCMS_GET_MIMO_PLCP_LEN(txh->FragPLCPFallback); 540 len = roundup(len, 4) + (ndelim + 1) * AMPDU_DELIMITER_LEN; 541 542 ampdu_frames = skb_queue_len(&session->skb_list); 543 if (ampdu_frames != 0) { 544 struct sk_buff *first; 545 546 if (ampdu_frames + 1 > session->max_ampdu_frames || 547 session->ampdu_len + len > session->max_ampdu_len) 548 return -ENOSPC; 549 550 /* 551 * We aren't really out of space if the new frame is of 552 * a different priority, but we want the same behaviour 553 * so return -ENOSPC anyway. 554 * 555 * XXX: The old AMPDU code did this, but is it really 556 * necessary? 557 */ 558 first = skb_peek(&session->skb_list); 559 if (p->priority != first->priority) 560 return -ENOSPC; 561 } 562 563 /* 564 * Now that we're sure this frame can be accomodated, update the 565 * session information. 566 */ 567 session->ampdu_len += len; 568 session->dma_len += p->len; 569 570 tid = (u8)p->priority; 571 572 /* Handle retry limits */ 573 if (txrate[0].count <= ampdu->rr_retry_limit_tid[tid]) { 574 txrate[0].count++; 575 rr = true; 576 } else { 577 txrate[1].count++; 578 rr = false; 579 } 580 581 if (ampdu_frames == 0) { 582 u8 plcp0, plcp3, is40, sgi, mcs; 583 uint fifo = le16_to_cpu(txh->TxFrameID) & TXFID_QUEUE_MASK; 584 struct brcms_fifo_info *f = &du->fifo_tb[fifo]; 585 586 if (rr) { 587 plcp0 = plcp[0]; 588 plcp3 = plcp[3]; 589 } else { 590 plcp0 = txh->FragPLCPFallback[0]; 591 plcp3 = txh->FragPLCPFallback[3]; 592 593 } 594 595 /* Limit AMPDU size based on MCS */ 596 is40 = (plcp0 & MIMO_PLCP_40MHZ) ? 1 : 0; 597 sgi = plcp3_issgi(plcp3) ? 1 : 0; 598 mcs = plcp0 & ~MIMO_PLCP_40MHZ; 599 session->max_ampdu_len = min(scb_ampdu->max_rx_ampdu_bytes, 600 ampdu->max_txlen[mcs][is40][sgi]); 601 602 session->max_ampdu_frames = scb_ampdu->max_pdu; 603 if (mcs_2_rate(mcs, true, false) >= f->dmaxferrate) { 604 session->max_ampdu_frames = 605 min_t(u16, f->mcs2ampdu_table[mcs], 606 session->max_ampdu_frames); 607 } 608 } 609 610 /* 611 * Treat all frames as "middle" frames of AMPDU here. First and 612 * last frames must be fixed up after all MPDUs have been prepped. 613 */ 614 mcl = le16_to_cpu(txh->MacTxControlLow); 615 mcl &= ~TXC_AMPDU_MASK; 616 mcl |= (TXC_AMPDU_MIDDLE << TXC_AMPDU_SHIFT); 617 mcl &= ~(TXC_STARTMSDU | TXC_SENDRTS | TXC_SENDCTS); 618 txh->MacTxControlLow = cpu_to_le16(mcl); 619 txh->PreloadSize = 0; /* always default to 0 */ 620 621 skb_queue_tail(&session->skb_list, p); 622 623 return 0; 624 } 625 626 void brcms_c_ampdu_finalize(struct brcms_ampdu_session *session) 627 { 628 struct brcms_c_info *wlc = session->wlc; 629 struct ampdu_info *ampdu = wlc->ampdu; 630 struct sk_buff *first, *last; 631 struct d11txh *txh; 632 struct ieee80211_tx_info *tx_info; 633 struct ieee80211_tx_rate *txrate; 634 u8 ndelim; 635 u8 *plcp; 636 uint len; 637 uint fifo; 638 struct brcms_fifo_info *f; 639 u16 mcl; 640 bool fbr; 641 bool fbr_iscck; 642 struct ieee80211_rts *rts; 643 bool use_rts = false, use_cts = false; 644 u16 dma_len = session->dma_len; 645 u16 mimo_ctlchbw = PHY_TXC1_BW_20MHZ; 646 u32 rspec = 0, rspec_fallback = 0; 647 u32 rts_rspec = 0, rts_rspec_fallback = 0; 648 u8 plcp0, plcp3, is40, sgi, mcs; 649 u16 mch; 650 u8 preamble_type = BRCMS_GF_PREAMBLE; 651 u8 fbr_preamble_type = BRCMS_GF_PREAMBLE; 652 u8 rts_preamble_type = BRCMS_LONG_PREAMBLE; 653 u8 rts_fbr_preamble_type = BRCMS_LONG_PREAMBLE; 654 655 if (skb_queue_empty(&session->skb_list)) 656 return; 657 658 first = skb_peek(&session->skb_list); 659 last = skb_peek_tail(&session->skb_list); 660 661 /* Need to fix up last MPDU first to adjust AMPDU length */ 662 txh = (struct d11txh *)last->data; 663 fifo = le16_to_cpu(txh->TxFrameID) & TXFID_QUEUE_MASK; 664 f = &du->fifo_tb[fifo]; 665 666 mcl = le16_to_cpu(txh->MacTxControlLow); 667 mcl &= ~TXC_AMPDU_MASK; 668 mcl |= (TXC_AMPDU_LAST << TXC_AMPDU_SHIFT); 669 txh->MacTxControlLow = cpu_to_le16(mcl); 670 671 /* remove the null delimiter after last mpdu */ 672 ndelim = txh->RTSPLCPFallback[AMPDU_FBR_NULL_DELIM]; 673 txh->RTSPLCPFallback[AMPDU_FBR_NULL_DELIM] = 0; 674 session->ampdu_len -= ndelim * AMPDU_DELIMITER_LEN; 675 676 /* remove the pad len from last mpdu */ 677 fbr_iscck = ((le16_to_cpu(txh->XtraFrameTypes) & 0x3) == 0); 678 len = fbr_iscck ? BRCMS_GET_CCK_PLCP_LEN(txh->FragPLCPFallback) : 679 BRCMS_GET_MIMO_PLCP_LEN(txh->FragPLCPFallback); 680 session->ampdu_len -= roundup(len, 4) - len; 681 682 /* Now fix up the first MPDU */ 683 tx_info = IEEE80211_SKB_CB(first); 684 txrate = tx_info->status.rates; 685 txh = (struct d11txh *)first->data; 686 plcp = (u8 *)(txh + 1); 687 rts = (struct ieee80211_rts *)&txh->rts_frame; 688 689 mcl = le16_to_cpu(txh->MacTxControlLow); 690 /* If only one MPDU leave it marked as last */ 691 if (first != last) { 692 mcl &= ~TXC_AMPDU_MASK; 693 mcl |= (TXC_AMPDU_FIRST << TXC_AMPDU_SHIFT); 694 } 695 mcl |= TXC_STARTMSDU; 696 if (ieee80211_is_rts(rts->frame_control)) { 697 mcl |= TXC_SENDRTS; 698 use_rts = true; 699 } 700 if (ieee80211_is_cts(rts->frame_control)) { 701 mcl |= TXC_SENDCTS; 702 use_cts = true; 703 } 704 txh->MacTxControlLow = cpu_to_le16(mcl); 705 706 fbr = txrate[1].count > 0; 707 if (!fbr) { 708 plcp0 = plcp[0]; 709 plcp3 = plcp[3]; 710 } else { 711 plcp0 = txh->FragPLCPFallback[0]; 712 plcp3 = txh->FragPLCPFallback[3]; 713 } 714 is40 = (plcp0 & MIMO_PLCP_40MHZ) ? 1 : 0; 715 sgi = plcp3_issgi(plcp3) ? 1 : 0; 716 mcs = plcp0 & ~MIMO_PLCP_40MHZ; 717 718 if (is40) { 719 if (CHSPEC_SB_UPPER(wlc_phy_chanspec_get(wlc->band->pi))) 720 mimo_ctlchbw = PHY_TXC1_BW_20MHZ_UP; 721 else 722 mimo_ctlchbw = PHY_TXC1_BW_20MHZ; 723 } 724 725 /* rebuild the rspec and rspec_fallback */ 726 rspec = RSPEC_MIMORATE; 727 rspec |= plcp[0] & ~MIMO_PLCP_40MHZ; 728 if (plcp[0] & MIMO_PLCP_40MHZ) 729 rspec |= (PHY_TXC1_BW_40MHZ << RSPEC_BW_SHIFT); 730 731 fbr_iscck = !(le16_to_cpu(txh->XtraFrameTypes) & 0x03); 732 if (fbr_iscck) { 733 rspec_fallback = 734 cck_rspec(cck_phy2mac_rate(txh->FragPLCPFallback[0])); 735 } else { 736 rspec_fallback = RSPEC_MIMORATE; 737 rspec_fallback |= txh->FragPLCPFallback[0] & ~MIMO_PLCP_40MHZ; 738 if (txh->FragPLCPFallback[0] & MIMO_PLCP_40MHZ) 739 rspec_fallback |= PHY_TXC1_BW_40MHZ << RSPEC_BW_SHIFT; 740 } 741 742 if (use_rts || use_cts) { 743 rts_rspec = 744 brcms_c_rspec_to_rts_rspec(wlc, rspec, 745 false, mimo_ctlchbw); 746 rts_rspec_fallback = 747 brcms_c_rspec_to_rts_rspec(wlc, rspec_fallback, 748 false, mimo_ctlchbw); 749 } 750 751 BRCMS_SET_MIMO_PLCP_LEN(plcp, session->ampdu_len); 752 /* mark plcp to indicate ampdu */ 753 BRCMS_SET_MIMO_PLCP_AMPDU(plcp); 754 755 /* reset the mixed mode header durations */ 756 if (txh->MModeLen) { 757 u16 mmodelen = brcms_c_calc_lsig_len(wlc, rspec, 758 session->ampdu_len); 759 txh->MModeLen = cpu_to_le16(mmodelen); 760 preamble_type = BRCMS_MM_PREAMBLE; 761 } 762 if (txh->MModeFbrLen) { 763 u16 mmfbrlen = brcms_c_calc_lsig_len(wlc, rspec_fallback, 764 session->ampdu_len); 765 txh->MModeFbrLen = cpu_to_le16(mmfbrlen); 766 fbr_preamble_type = BRCMS_MM_PREAMBLE; 767 } 768 769 /* set the preload length */ 770 if (mcs_2_rate(mcs, true, false) >= f->dmaxferrate) { 771 dma_len = min(dma_len, f->ampdu_pld_size); 772 txh->PreloadSize = cpu_to_le16(dma_len); 773 } else { 774 txh->PreloadSize = 0; 775 } 776 777 mch = le16_to_cpu(txh->MacTxControlHigh); 778 779 /* update RTS dur fields */ 780 if (use_rts || use_cts) { 781 u16 durid; 782 if ((mch & TXC_PREAMBLE_RTS_MAIN_SHORT) == 783 TXC_PREAMBLE_RTS_MAIN_SHORT) 784 rts_preamble_type = BRCMS_SHORT_PREAMBLE; 785 786 if ((mch & TXC_PREAMBLE_RTS_FB_SHORT) == 787 TXC_PREAMBLE_RTS_FB_SHORT) 788 rts_fbr_preamble_type = BRCMS_SHORT_PREAMBLE; 789 790 durid = brcms_c_compute_rtscts_dur(wlc, use_cts, rts_rspec, 791 rspec, rts_preamble_type, 792 preamble_type, 793 session->ampdu_len, true); 794 rts->duration = cpu_to_le16(durid); 795 durid = brcms_c_compute_rtscts_dur(wlc, use_cts, 796 rts_rspec_fallback, 797 rspec_fallback, 798 rts_fbr_preamble_type, 799 fbr_preamble_type, 800 session->ampdu_len, true); 801 txh->RTSDurFallback = cpu_to_le16(durid); 802 /* set TxFesTimeNormal */ 803 txh->TxFesTimeNormal = rts->duration; 804 /* set fallback rate version of TxFesTimeNormal */ 805 txh->TxFesTimeFallback = txh->RTSDurFallback; 806 } 807 808 /* set flag and plcp for fallback rate */ 809 if (fbr) { 810 mch |= TXC_AMPDU_FBR; 811 txh->MacTxControlHigh = cpu_to_le16(mch); 812 BRCMS_SET_MIMO_PLCP_AMPDU(plcp); 813 BRCMS_SET_MIMO_PLCP_AMPDU(txh->FragPLCPFallback); 814 } 815 816 brcms_dbg_ht(wlc->hw->d11core, "wl%d: count %d ampdu_len %d\n", 817 wlc->pub->unit, skb_queue_len(&session->skb_list), 818 session->ampdu_len); 819 } 820 821 static void 822 brcms_c_ampdu_rate_status(struct brcms_c_info *wlc, 823 struct ieee80211_tx_info *tx_info, 824 struct tx_status *txs, u8 mcs) 825 { 826 struct ieee80211_tx_rate *txrate = tx_info->status.rates; 827 int i; 828 829 /* clear the rest of the rates */ 830 for (i = 2; i < IEEE80211_TX_MAX_RATES; i++) { 831 txrate[i].idx = -1; 832 txrate[i].count = 0; 833 } 834 } 835 836 static void 837 brcms_c_ampdu_dotxstatus_complete(struct ampdu_info *ampdu, struct scb *scb, 838 struct sk_buff *p, struct tx_status *txs, 839 u32 s1, u32 s2) 840 { 841 struct scb_ampdu *scb_ampdu; 842 struct brcms_c_info *wlc = ampdu->wlc; 843 struct scb_ampdu_tid_ini *ini; 844 u8 bitmap[8], queue, tid; 845 struct d11txh *txh; 846 u8 *plcp; 847 struct ieee80211_hdr *h; 848 u16 seq, start_seq = 0, bindex, index, mcl; 849 u8 mcs = 0; 850 bool ba_recd = false, ack_recd = false; 851 u8 suc_mpdu = 0, tot_mpdu = 0; 852 uint supr_status; 853 bool update_rate = true, retry = true, tx_error = false; 854 u16 mimoantsel = 0; 855 u8 antselid = 0; 856 u8 retry_limit, rr_retry_limit; 857 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(p); 858 859 #ifdef DEBUG 860 u8 hole[AMPDU_MAX_MPDU]; 861 memset(hole, 0, sizeof(hole)); 862 #endif 863 864 scb_ampdu = &scb->scb_ampdu; 865 tid = (u8) (p->priority); 866 867 ini = &scb_ampdu->ini[tid]; 868 retry_limit = ampdu->retry_limit_tid[tid]; 869 rr_retry_limit = ampdu->rr_retry_limit_tid[tid]; 870 memset(bitmap, 0, sizeof(bitmap)); 871 queue = txs->frameid & TXFID_QUEUE_MASK; 872 supr_status = txs->status & TX_STATUS_SUPR_MASK; 873 874 if (txs->status & TX_STATUS_ACK_RCV) { 875 if (TX_STATUS_SUPR_UF == supr_status) 876 update_rate = false; 877 878 WARN_ON(!(txs->status & TX_STATUS_INTERMEDIATE)); 879 start_seq = txs->sequence >> SEQNUM_SHIFT; 880 bitmap[0] = (txs->status & TX_STATUS_BA_BMAP03_MASK) >> 881 TX_STATUS_BA_BMAP03_SHIFT; 882 883 WARN_ON(s1 & TX_STATUS_INTERMEDIATE); 884 WARN_ON(!(s1 & TX_STATUS_AMPDU)); 885 886 bitmap[0] |= 887 (s1 & TX_STATUS_BA_BMAP47_MASK) << 888 TX_STATUS_BA_BMAP47_SHIFT; 889 bitmap[1] = (s1 >> 8) & 0xff; 890 bitmap[2] = (s1 >> 16) & 0xff; 891 bitmap[3] = (s1 >> 24) & 0xff; 892 893 bitmap[4] = s2 & 0xff; 894 bitmap[5] = (s2 >> 8) & 0xff; 895 bitmap[6] = (s2 >> 16) & 0xff; 896 bitmap[7] = (s2 >> 24) & 0xff; 897 898 ba_recd = true; 899 } else { 900 if (supr_status) { 901 update_rate = false; 902 if (supr_status == TX_STATUS_SUPR_BADCH) { 903 brcms_dbg_ht(wlc->hw->d11core, 904 "%s: Pkt tx suppressed, illegal channel possibly %d\n", 905 __func__, CHSPEC_CHANNEL( 906 wlc->default_bss->chanspec)); 907 } else { 908 if (supr_status != TX_STATUS_SUPR_FRAG) 909 brcms_err(wlc->hw->d11core, 910 "%s: supr_status 0x%x\n", 911 __func__, supr_status); 912 } 913 /* no need to retry for badch; will fail again */ 914 if (supr_status == TX_STATUS_SUPR_BADCH || 915 supr_status == TX_STATUS_SUPR_EXPTIME) { 916 retry = false; 917 } else if (supr_status == TX_STATUS_SUPR_EXPTIME) { 918 /* TX underflow: 919 * try tuning pre-loading or ampdu size 920 */ 921 } else if (supr_status == TX_STATUS_SUPR_FRAG) { 922 /* 923 * if there were underflows, but pre-loading 924 * is not active, notify rate adaptation. 925 */ 926 if (brcms_c_ffpld_check_txfunfl(wlc, queue) > 0) 927 tx_error = true; 928 } 929 } else if (txs->phyerr) { 930 update_rate = false; 931 brcms_dbg_ht(wlc->hw->d11core, 932 "%s: ampdu tx phy error (0x%x)\n", 933 __func__, txs->phyerr); 934 } 935 } 936 937 /* loop through all pkts and retry if not acked */ 938 while (p) { 939 tx_info = IEEE80211_SKB_CB(p); 940 txh = (struct d11txh *) p->data; 941 mcl = le16_to_cpu(txh->MacTxControlLow); 942 plcp = (u8 *) (txh + 1); 943 h = (struct ieee80211_hdr *)(plcp + D11_PHY_HDR_LEN); 944 seq = le16_to_cpu(h->seq_ctrl) >> SEQNUM_SHIFT; 945 946 trace_brcms_txdesc(&wlc->hw->d11core->dev, txh, sizeof(*txh)); 947 948 if (tot_mpdu == 0) { 949 mcs = plcp[0] & MIMO_PLCP_MCS_MASK; 950 mimoantsel = le16_to_cpu(txh->ABI_MimoAntSel); 951 } 952 953 index = TX_SEQ_TO_INDEX(seq); 954 ack_recd = false; 955 if (ba_recd) { 956 bindex = MODSUB_POW2(seq, start_seq, SEQNUM_MAX); 957 brcms_dbg_ht(wlc->hw->d11core, 958 "tid %d seq %d, start_seq %d, bindex %d set %d, index %d\n", 959 tid, seq, start_seq, bindex, 960 isset(bitmap, bindex), index); 961 /* if acked then clear bit and free packet */ 962 if ((bindex < AMPDU_TX_BA_MAX_WSIZE) 963 && isset(bitmap, bindex)) { 964 ini->txretry[index] = 0; 965 966 /* 967 * ampdu_ack_len: 968 * number of acked aggregated frames 969 */ 970 /* ampdu_len: number of aggregated frames */ 971 brcms_c_ampdu_rate_status(wlc, tx_info, txs, 972 mcs); 973 tx_info->flags |= IEEE80211_TX_STAT_ACK; 974 tx_info->flags |= IEEE80211_TX_STAT_AMPDU; 975 tx_info->status.ampdu_ack_len = 976 tx_info->status.ampdu_len = 1; 977 978 skb_pull(p, D11_PHY_HDR_LEN); 979 skb_pull(p, D11_TXH_LEN); 980 981 ieee80211_tx_status_irqsafe(wlc->pub->ieee_hw, 982 p); 983 ack_recd = true; 984 suc_mpdu++; 985 } 986 } 987 /* either retransmit or send bar if ack not recd */ 988 if (!ack_recd) { 989 if (retry && (ini->txretry[index] < (int)retry_limit)) { 990 int ret; 991 ini->txretry[index]++; 992 ret = brcms_c_txfifo(wlc, queue, p); 993 /* 994 * We shouldn't be out of space in the DMA 995 * ring here since we're reinserting a frame 996 * that was just pulled out. 997 */ 998 WARN_ONCE(ret, "queue %d out of txds\n", queue); 999 } else { 1000 /* Retry timeout */ 1001 ieee80211_tx_info_clear_status(tx_info); 1002 tx_info->status.ampdu_ack_len = 0; 1003 tx_info->status.ampdu_len = 1; 1004 tx_info->flags |= 1005 IEEE80211_TX_STAT_AMPDU_NO_BACK; 1006 skb_pull(p, D11_PHY_HDR_LEN); 1007 skb_pull(p, D11_TXH_LEN); 1008 brcms_dbg_ht(wlc->hw->d11core, 1009 "BA Timeout, seq %d\n", 1010 seq); 1011 ieee80211_tx_status_irqsafe(wlc->pub->ieee_hw, 1012 p); 1013 } 1014 } 1015 tot_mpdu++; 1016 1017 /* break out if last packet of ampdu */ 1018 if (((mcl & TXC_AMPDU_MASK) >> TXC_AMPDU_SHIFT) == 1019 TXC_AMPDU_LAST) 1020 break; 1021 1022 p = dma_getnexttxp(wlc->hw->di[queue], DMA_RANGE_TRANSMITTED); 1023 } 1024 1025 /* update rate state */ 1026 antselid = brcms_c_antsel_antsel2id(wlc->asi, mimoantsel); 1027 } 1028 1029 void 1030 brcms_c_ampdu_dotxstatus(struct ampdu_info *ampdu, struct scb *scb, 1031 struct sk_buff *p, struct tx_status *txs) 1032 { 1033 struct scb_ampdu *scb_ampdu; 1034 struct brcms_c_info *wlc = ampdu->wlc; 1035 struct scb_ampdu_tid_ini *ini; 1036 u32 s1 = 0, s2 = 0; 1037 struct ieee80211_tx_info *tx_info; 1038 1039 tx_info = IEEE80211_SKB_CB(p); 1040 1041 /* BMAC_NOTE: For the split driver, second level txstatus comes later 1042 * So if the ACK was received then wait for the second level else just 1043 * call the first one 1044 */ 1045 if (txs->status & TX_STATUS_ACK_RCV) { 1046 u8 status_delay = 0; 1047 1048 /* wait till the next 8 bytes of txstatus is available */ 1049 s1 = bcma_read32(wlc->hw->d11core, D11REGOFFS(frmtxstatus)); 1050 while ((s1 & TXS_V) == 0) { 1051 udelay(1); 1052 status_delay++; 1053 if (status_delay > 10) 1054 return; /* error condition */ 1055 s1 = bcma_read32(wlc->hw->d11core, 1056 D11REGOFFS(frmtxstatus)); 1057 } 1058 1059 s2 = bcma_read32(wlc->hw->d11core, D11REGOFFS(frmtxstatus2)); 1060 } 1061 1062 if (scb) { 1063 scb_ampdu = &scb->scb_ampdu; 1064 ini = &scb_ampdu->ini[p->priority]; 1065 brcms_c_ampdu_dotxstatus_complete(ampdu, scb, p, txs, s1, s2); 1066 } else { 1067 /* loop through all pkts and free */ 1068 u8 queue = txs->frameid & TXFID_QUEUE_MASK; 1069 struct d11txh *txh; 1070 u16 mcl; 1071 while (p) { 1072 tx_info = IEEE80211_SKB_CB(p); 1073 txh = (struct d11txh *) p->data; 1074 trace_brcms_txdesc(&wlc->hw->d11core->dev, txh, 1075 sizeof(*txh)); 1076 mcl = le16_to_cpu(txh->MacTxControlLow); 1077 brcmu_pkt_buf_free_skb(p); 1078 /* break out if last packet of ampdu */ 1079 if (((mcl & TXC_AMPDU_MASK) >> TXC_AMPDU_SHIFT) == 1080 TXC_AMPDU_LAST) 1081 break; 1082 p = dma_getnexttxp(wlc->hw->di[queue], 1083 DMA_RANGE_TRANSMITTED); 1084 } 1085 } 1086 } 1087 1088 void brcms_c_ampdu_macaddr_upd(struct brcms_c_info *wlc) 1089 { 1090 char template[T_RAM_ACCESS_SZ * 2]; 1091 1092 /* driver needs to write the ta in the template; ta is at offset 16 */ 1093 memset(template, 0, sizeof(template)); 1094 memcpy(template, wlc->pub->cur_etheraddr, ETH_ALEN); 1095 brcms_b_write_template_ram(wlc->hw, (T_BA_TPL_BASE + 16), 1096 (T_RAM_ACCESS_SZ * 2), 1097 template); 1098 } 1099 1100 bool brcms_c_aggregatable(struct brcms_c_info *wlc, u8 tid) 1101 { 1102 return wlc->ampdu->ini_enable[tid]; 1103 } 1104 1105 void brcms_c_ampdu_shm_upd(struct ampdu_info *ampdu) 1106 { 1107 struct brcms_c_info *wlc = ampdu->wlc; 1108 1109 /* 1110 * Extend ucode internal watchdog timer to 1111 * match larger received frames 1112 */ 1113 if ((ampdu->rx_factor & IEEE80211_HT_AMPDU_PARM_FACTOR) == 1114 IEEE80211_HT_MAX_AMPDU_64K) { 1115 brcms_b_write_shm(wlc->hw, M_MIMO_MAXSYM, MIMO_MAXSYM_MAX); 1116 brcms_b_write_shm(wlc->hw, M_WATCHDOG_8TU, WATCHDOG_8TU_MAX); 1117 } else { 1118 brcms_b_write_shm(wlc->hw, M_MIMO_MAXSYM, MIMO_MAXSYM_DEF); 1119 brcms_b_write_shm(wlc->hw, M_WATCHDOG_8TU, WATCHDOG_8TU_DEF); 1120 } 1121 } 1122 1123 /* 1124 * callback function that helps invalidating ampdu packets in a DMA queue 1125 */ 1126 static void dma_cb_fn_ampdu(void *txi, void *arg_a) 1127 { 1128 struct ieee80211_sta *sta = arg_a; 1129 struct ieee80211_tx_info *tx_info = (struct ieee80211_tx_info *)txi; 1130 1131 if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) && 1132 (tx_info->rate_driver_data[0] == sta || sta == NULL)) 1133 tx_info->rate_driver_data[0] = NULL; 1134 } 1135 1136 /* 1137 * When a remote party is no longer available for ampdu communication, any 1138 * pending tx ampdu packets in the driver have to be flushed. 1139 */ 1140 void brcms_c_ampdu_flush(struct brcms_c_info *wlc, 1141 struct ieee80211_sta *sta, u16 tid) 1142 { 1143 brcms_c_inval_dma_pkts(wlc->hw, sta, dma_cb_fn_ampdu); 1144 } 1145