1 // SPDX-License-Identifier: ISC
2 /*
3  * Copyright (c) 2014 Broadcom Corporation
4  */
5 #include <linux/kernel.h>
6 #include <linux/delay.h>
7 #include <linux/list.h>
8 #include <linux/ssb/ssb_regs.h>
9 #include <linux/bcma/bcma.h>
10 #include <linux/bcma/bcma_regs.h>
11 
12 #include <defs.h>
13 #include <soc.h>
14 #include <brcm_hw_ids.h>
15 #include <brcmu_utils.h>
16 #include <chipcommon.h>
17 #include "debug.h"
18 #include "chip.h"
19 
20 /* SOC Interconnect types (aka chip types) */
21 #define SOCI_SB		0
22 #define SOCI_AI		1
23 
24 /* PL-368 DMP definitions */
25 #define DMP_DESC_TYPE_MSK	0x0000000F
26 #define  DMP_DESC_EMPTY		0x00000000
27 #define  DMP_DESC_VALID		0x00000001
28 #define  DMP_DESC_COMPONENT	0x00000001
29 #define  DMP_DESC_MASTER_PORT	0x00000003
30 #define  DMP_DESC_ADDRESS	0x00000005
31 #define  DMP_DESC_ADDRSIZE_GT32	0x00000008
32 #define  DMP_DESC_EOT		0x0000000F
33 
34 #define DMP_COMP_DESIGNER	0xFFF00000
35 #define DMP_COMP_DESIGNER_S	20
36 #define DMP_COMP_PARTNUM	0x000FFF00
37 #define DMP_COMP_PARTNUM_S	8
38 #define DMP_COMP_CLASS		0x000000F0
39 #define DMP_COMP_CLASS_S	4
40 #define DMP_COMP_REVISION	0xFF000000
41 #define DMP_COMP_REVISION_S	24
42 #define DMP_COMP_NUM_SWRAP	0x00F80000
43 #define DMP_COMP_NUM_SWRAP_S	19
44 #define DMP_COMP_NUM_MWRAP	0x0007C000
45 #define DMP_COMP_NUM_MWRAP_S	14
46 #define DMP_COMP_NUM_SPORT	0x00003E00
47 #define DMP_COMP_NUM_SPORT_S	9
48 #define DMP_COMP_NUM_MPORT	0x000001F0
49 #define DMP_COMP_NUM_MPORT_S	4
50 
51 #define DMP_MASTER_PORT_UID	0x0000FF00
52 #define DMP_MASTER_PORT_UID_S	8
53 #define DMP_MASTER_PORT_NUM	0x000000F0
54 #define DMP_MASTER_PORT_NUM_S	4
55 
56 #define DMP_SLAVE_ADDR_BASE	0xFFFFF000
57 #define DMP_SLAVE_ADDR_BASE_S	12
58 #define DMP_SLAVE_PORT_NUM	0x00000F00
59 #define DMP_SLAVE_PORT_NUM_S	8
60 #define DMP_SLAVE_TYPE		0x000000C0
61 #define DMP_SLAVE_TYPE_S	6
62 #define  DMP_SLAVE_TYPE_SLAVE	0
63 #define  DMP_SLAVE_TYPE_BRIDGE	1
64 #define  DMP_SLAVE_TYPE_SWRAP	2
65 #define  DMP_SLAVE_TYPE_MWRAP	3
66 #define DMP_SLAVE_SIZE_TYPE	0x00000030
67 #define DMP_SLAVE_SIZE_TYPE_S	4
68 #define  DMP_SLAVE_SIZE_4K	0
69 #define  DMP_SLAVE_SIZE_8K	1
70 #define  DMP_SLAVE_SIZE_16K	2
71 #define  DMP_SLAVE_SIZE_DESC	3
72 
73 /* EROM CompIdentB */
74 #define CIB_REV_MASK		0xff000000
75 #define CIB_REV_SHIFT		24
76 
77 /* ARM CR4 core specific control flag bits */
78 #define ARMCR4_BCMA_IOCTL_CPUHALT	0x0020
79 
80 /* D11 core specific control flag bits */
81 #define D11_BCMA_IOCTL_PHYCLOCKEN	0x0004
82 #define D11_BCMA_IOCTL_PHYRESET		0x0008
83 
84 /* chip core base & ramsize */
85 /* bcm4329 */
86 /* SDIO device core, ID 0x829 */
87 #define BCM4329_CORE_BUS_BASE		0x18011000
88 /* internal memory core, ID 0x80e */
89 #define BCM4329_CORE_SOCRAM_BASE	0x18003000
90 /* ARM Cortex M3 core, ID 0x82a */
91 #define BCM4329_CORE_ARM_BASE		0x18002000
92 
93 /* Max possibly supported memory size (limited by IO mapped memory) */
94 #define BRCMF_CHIP_MAX_MEMSIZE		(4 * 1024 * 1024)
95 
96 #define CORE_SB(base, field) \
97 		(base + SBCONFIGOFF + offsetof(struct sbconfig, field))
98 #define	SBCOREREV(sbidh) \
99 	((((sbidh) & SSB_IDHIGH_RCHI) >> SSB_IDHIGH_RCHI_SHIFT) | \
100 	  ((sbidh) & SSB_IDHIGH_RCLO))
101 
102 struct sbconfig {
103 	u32 PAD[2];
104 	u32 sbipsflag;	/* initiator port ocp slave flag */
105 	u32 PAD[3];
106 	u32 sbtpsflag;	/* target port ocp slave flag */
107 	u32 PAD[11];
108 	u32 sbtmerrloga;	/* (sonics >= 2.3) */
109 	u32 PAD;
110 	u32 sbtmerrlog;	/* (sonics >= 2.3) */
111 	u32 PAD[3];
112 	u32 sbadmatch3;	/* address match3 */
113 	u32 PAD;
114 	u32 sbadmatch2;	/* address match2 */
115 	u32 PAD;
116 	u32 sbadmatch1;	/* address match1 */
117 	u32 PAD[7];
118 	u32 sbimstate;	/* initiator agent state */
119 	u32 sbintvec;	/* interrupt mask */
120 	u32 sbtmstatelow;	/* target state */
121 	u32 sbtmstatehigh;	/* target state */
122 	u32 sbbwa0;		/* bandwidth allocation table0 */
123 	u32 PAD;
124 	u32 sbimconfiglow;	/* initiator configuration */
125 	u32 sbimconfighigh;	/* initiator configuration */
126 	u32 sbadmatch0;	/* address match0 */
127 	u32 PAD;
128 	u32 sbtmconfiglow;	/* target configuration */
129 	u32 sbtmconfighigh;	/* target configuration */
130 	u32 sbbconfig;	/* broadcast configuration */
131 	u32 PAD;
132 	u32 sbbstate;	/* broadcast state */
133 	u32 PAD[3];
134 	u32 sbactcnfg;	/* activate configuration */
135 	u32 PAD[3];
136 	u32 sbflagst;	/* current sbflags */
137 	u32 PAD[3];
138 	u32 sbidlow;		/* identification */
139 	u32 sbidhigh;	/* identification */
140 };
141 
142 /* bankidx and bankinfo reg defines corerev >= 8 */
143 #define SOCRAM_BANKINFO_RETNTRAM_MASK	0x00010000
144 #define SOCRAM_BANKINFO_SZMASK		0x0000007f
145 #define SOCRAM_BANKIDX_ROM_MASK		0x00000100
146 
147 #define SOCRAM_BANKIDX_MEMTYPE_SHIFT	8
148 /* socram bankinfo memtype */
149 #define SOCRAM_MEMTYPE_RAM		0
150 #define SOCRAM_MEMTYPE_R0M		1
151 #define SOCRAM_MEMTYPE_DEVRAM		2
152 
153 #define SOCRAM_BANKINFO_SZBASE		8192
154 #define SRCI_LSS_MASK		0x00f00000
155 #define SRCI_LSS_SHIFT		20
156 #define	SRCI_SRNB_MASK		0xf0
157 #define	SRCI_SRNB_MASK_EXT	0x100
158 #define	SRCI_SRNB_SHIFT		4
159 #define	SRCI_SRBSZ_MASK		0xf
160 #define	SRCI_SRBSZ_SHIFT	0
161 #define SR_BSZ_BASE		14
162 
163 struct sbsocramregs {
164 	u32 coreinfo;
165 	u32 bwalloc;
166 	u32 extracoreinfo;
167 	u32 biststat;
168 	u32 bankidx;
169 	u32 standbyctrl;
170 
171 	u32 errlogstatus;	/* rev 6 */
172 	u32 errlogaddr;	/* rev 6 */
173 	/* used for patching rev 3 & 5 */
174 	u32 cambankidx;
175 	u32 cambankstandbyctrl;
176 	u32 cambankpatchctrl;
177 	u32 cambankpatchtblbaseaddr;
178 	u32 cambankcmdreg;
179 	u32 cambankdatareg;
180 	u32 cambankmaskreg;
181 	u32 PAD[1];
182 	u32 bankinfo;	/* corev 8 */
183 	u32 bankpda;
184 	u32 PAD[14];
185 	u32 extmemconfig;
186 	u32 extmemparitycsr;
187 	u32 extmemparityerrdata;
188 	u32 extmemparityerrcnt;
189 	u32 extmemwrctrlandsize;
190 	u32 PAD[84];
191 	u32 workaround;
192 	u32 pwrctl;		/* corerev >= 2 */
193 	u32 PAD[133];
194 	u32 sr_control;     /* corerev >= 15 */
195 	u32 sr_status;      /* corerev >= 15 */
196 	u32 sr_address;     /* corerev >= 15 */
197 	u32 sr_data;        /* corerev >= 15 */
198 };
199 
200 #define SOCRAMREGOFFS(_f)	offsetof(struct sbsocramregs, _f)
201 #define SYSMEMREGOFFS(_f)	offsetof(struct sbsocramregs, _f)
202 
203 #define ARMCR4_CAP		(0x04)
204 #define ARMCR4_BANKIDX		(0x40)
205 #define ARMCR4_BANKINFO		(0x44)
206 #define ARMCR4_BANKPDA		(0x4C)
207 
208 #define	ARMCR4_TCBBNB_MASK	0xf0
209 #define	ARMCR4_TCBBNB_SHIFT	4
210 #define	ARMCR4_TCBANB_MASK	0xf
211 #define	ARMCR4_TCBANB_SHIFT	0
212 
213 #define	ARMCR4_BSZ_MASK		0x3f
214 #define	ARMCR4_BSZ_MULT		8192
215 
216 struct brcmf_core_priv {
217 	struct brcmf_core pub;
218 	u32 wrapbase;
219 	struct list_head list;
220 	struct brcmf_chip_priv *chip;
221 };
222 
223 struct brcmf_chip_priv {
224 	struct brcmf_chip pub;
225 	const struct brcmf_buscore_ops *ops;
226 	void *ctx;
227 	/* assured first core is chipcommon, second core is buscore */
228 	struct list_head cores;
229 	u16 num_cores;
230 
231 	bool (*iscoreup)(struct brcmf_core_priv *core);
232 	void (*coredisable)(struct brcmf_core_priv *core, u32 prereset,
233 			    u32 reset);
234 	void (*resetcore)(struct brcmf_core_priv *core, u32 prereset, u32 reset,
235 			  u32 postreset);
236 };
237 
238 static void brcmf_chip_sb_corerev(struct brcmf_chip_priv *ci,
239 				  struct brcmf_core *core)
240 {
241 	u32 regdata;
242 
243 	regdata = ci->ops->read32(ci->ctx, CORE_SB(core->base, sbidhigh));
244 	core->rev = SBCOREREV(regdata);
245 }
246 
247 static bool brcmf_chip_sb_iscoreup(struct brcmf_core_priv *core)
248 {
249 	struct brcmf_chip_priv *ci;
250 	u32 regdata;
251 	u32 address;
252 
253 	ci = core->chip;
254 	address = CORE_SB(core->pub.base, sbtmstatelow);
255 	regdata = ci->ops->read32(ci->ctx, address);
256 	regdata &= (SSB_TMSLOW_RESET | SSB_TMSLOW_REJECT |
257 		    SSB_IMSTATE_REJECT | SSB_TMSLOW_CLOCK);
258 	return SSB_TMSLOW_CLOCK == regdata;
259 }
260 
261 static bool brcmf_chip_ai_iscoreup(struct brcmf_core_priv *core)
262 {
263 	struct brcmf_chip_priv *ci;
264 	u32 regdata;
265 	bool ret;
266 
267 	ci = core->chip;
268 	regdata = ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL);
269 	ret = (regdata & (BCMA_IOCTL_FGC | BCMA_IOCTL_CLK)) == BCMA_IOCTL_CLK;
270 
271 	regdata = ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL);
272 	ret = ret && ((regdata & BCMA_RESET_CTL_RESET) == 0);
273 
274 	return ret;
275 }
276 
277 static void brcmf_chip_sb_coredisable(struct brcmf_core_priv *core,
278 				      u32 prereset, u32 reset)
279 {
280 	struct brcmf_chip_priv *ci;
281 	u32 val, base;
282 
283 	ci = core->chip;
284 	base = core->pub.base;
285 	val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
286 	if (val & SSB_TMSLOW_RESET)
287 		return;
288 
289 	val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
290 	if ((val & SSB_TMSLOW_CLOCK) != 0) {
291 		/*
292 		 * set target reject and spin until busy is clear
293 		 * (preserve core-specific bits)
294 		 */
295 		val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
296 		ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
297 					 val | SSB_TMSLOW_REJECT);
298 
299 		val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
300 		udelay(1);
301 		SPINWAIT((ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatehigh))
302 			  & SSB_TMSHIGH_BUSY), 100000);
303 
304 		val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatehigh));
305 		if (val & SSB_TMSHIGH_BUSY)
306 			brcmf_err("core state still busy\n");
307 
308 		val = ci->ops->read32(ci->ctx, CORE_SB(base, sbidlow));
309 		if (val & SSB_IDLOW_INITIATOR) {
310 			val = ci->ops->read32(ci->ctx,
311 					      CORE_SB(base, sbimstate));
312 			val |= SSB_IMSTATE_REJECT;
313 			ci->ops->write32(ci->ctx,
314 					 CORE_SB(base, sbimstate), val);
315 			val = ci->ops->read32(ci->ctx,
316 					      CORE_SB(base, sbimstate));
317 			udelay(1);
318 			SPINWAIT((ci->ops->read32(ci->ctx,
319 						  CORE_SB(base, sbimstate)) &
320 				  SSB_IMSTATE_BUSY), 100000);
321 		}
322 
323 		/* set reset and reject while enabling the clocks */
324 		val = SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK |
325 		      SSB_TMSLOW_REJECT | SSB_TMSLOW_RESET;
326 		ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow), val);
327 		val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
328 		udelay(10);
329 
330 		/* clear the initiator reject bit */
331 		val = ci->ops->read32(ci->ctx, CORE_SB(base, sbidlow));
332 		if (val & SSB_IDLOW_INITIATOR) {
333 			val = ci->ops->read32(ci->ctx,
334 					      CORE_SB(base, sbimstate));
335 			val &= ~SSB_IMSTATE_REJECT;
336 			ci->ops->write32(ci->ctx,
337 					 CORE_SB(base, sbimstate), val);
338 		}
339 	}
340 
341 	/* leave reset and reject asserted */
342 	ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
343 			 (SSB_TMSLOW_REJECT | SSB_TMSLOW_RESET));
344 	udelay(1);
345 }
346 
347 static void brcmf_chip_ai_coredisable(struct brcmf_core_priv *core,
348 				      u32 prereset, u32 reset)
349 {
350 	struct brcmf_chip_priv *ci;
351 	u32 regdata;
352 
353 	ci = core->chip;
354 
355 	/* if core is already in reset, skip reset */
356 	regdata = ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL);
357 	if ((regdata & BCMA_RESET_CTL_RESET) != 0)
358 		goto in_reset_configure;
359 
360 	/* configure reset */
361 	ci->ops->write32(ci->ctx, core->wrapbase + BCMA_IOCTL,
362 			 prereset | BCMA_IOCTL_FGC | BCMA_IOCTL_CLK);
363 	ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL);
364 
365 	/* put in reset */
366 	ci->ops->write32(ci->ctx, core->wrapbase + BCMA_RESET_CTL,
367 			 BCMA_RESET_CTL_RESET);
368 	usleep_range(10, 20);
369 
370 	/* wait till reset is 1 */
371 	SPINWAIT(ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL) !=
372 		 BCMA_RESET_CTL_RESET, 300);
373 
374 in_reset_configure:
375 	/* in-reset configure */
376 	ci->ops->write32(ci->ctx, core->wrapbase + BCMA_IOCTL,
377 			 reset | BCMA_IOCTL_FGC | BCMA_IOCTL_CLK);
378 	ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL);
379 }
380 
381 static void brcmf_chip_sb_resetcore(struct brcmf_core_priv *core, u32 prereset,
382 				    u32 reset, u32 postreset)
383 {
384 	struct brcmf_chip_priv *ci;
385 	u32 regdata;
386 	u32 base;
387 
388 	ci = core->chip;
389 	base = core->pub.base;
390 	/*
391 	 * Must do the disable sequence first to work for
392 	 * arbitrary current core state.
393 	 */
394 	brcmf_chip_sb_coredisable(core, 0, 0);
395 
396 	/*
397 	 * Now do the initialization sequence.
398 	 * set reset while enabling the clock and
399 	 * forcing them on throughout the core
400 	 */
401 	ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
402 			 SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK |
403 			 SSB_TMSLOW_RESET);
404 	regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
405 	udelay(1);
406 
407 	/* clear any serror */
408 	regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatehigh));
409 	if (regdata & SSB_TMSHIGH_SERR)
410 		ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatehigh), 0);
411 
412 	regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbimstate));
413 	if (regdata & (SSB_IMSTATE_IBE | SSB_IMSTATE_TO)) {
414 		regdata &= ~(SSB_IMSTATE_IBE | SSB_IMSTATE_TO);
415 		ci->ops->write32(ci->ctx, CORE_SB(base, sbimstate), regdata);
416 	}
417 
418 	/* clear reset and allow it to propagate throughout the core */
419 	ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
420 			 SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK);
421 	regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
422 	udelay(1);
423 
424 	/* leave clock enabled */
425 	ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
426 			 SSB_TMSLOW_CLOCK);
427 	regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
428 	udelay(1);
429 }
430 
431 static void brcmf_chip_ai_resetcore(struct brcmf_core_priv *core, u32 prereset,
432 				    u32 reset, u32 postreset)
433 {
434 	struct brcmf_chip_priv *ci;
435 	int count;
436 	struct brcmf_core *d11core2 = NULL;
437 	struct brcmf_core_priv *d11priv2 = NULL;
438 
439 	ci = core->chip;
440 
441 	/* special handle two D11 cores reset */
442 	if (core->pub.id == BCMA_CORE_80211) {
443 		d11core2 = brcmf_chip_get_d11core(&ci->pub, 1);
444 		if (d11core2) {
445 			brcmf_dbg(INFO, "found two d11 cores, reset both\n");
446 			d11priv2 = container_of(d11core2,
447 						struct brcmf_core_priv, pub);
448 		}
449 	}
450 
451 	/* must disable first to work for arbitrary current core state */
452 	brcmf_chip_ai_coredisable(core, prereset, reset);
453 	if (d11priv2)
454 		brcmf_chip_ai_coredisable(d11priv2, prereset, reset);
455 
456 	count = 0;
457 	while (ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL) &
458 	       BCMA_RESET_CTL_RESET) {
459 		ci->ops->write32(ci->ctx, core->wrapbase + BCMA_RESET_CTL, 0);
460 		count++;
461 		if (count > 50)
462 			break;
463 		usleep_range(40, 60);
464 	}
465 
466 	if (d11priv2) {
467 		count = 0;
468 		while (ci->ops->read32(ci->ctx,
469 				       d11priv2->wrapbase + BCMA_RESET_CTL) &
470 				       BCMA_RESET_CTL_RESET) {
471 			ci->ops->write32(ci->ctx,
472 					 d11priv2->wrapbase + BCMA_RESET_CTL,
473 					 0);
474 			count++;
475 			if (count > 50)
476 				break;
477 			usleep_range(40, 60);
478 		}
479 	}
480 
481 	ci->ops->write32(ci->ctx, core->wrapbase + BCMA_IOCTL,
482 			 postreset | BCMA_IOCTL_CLK);
483 	ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL);
484 
485 	if (d11priv2) {
486 		ci->ops->write32(ci->ctx, d11priv2->wrapbase + BCMA_IOCTL,
487 				 postreset | BCMA_IOCTL_CLK);
488 		ci->ops->read32(ci->ctx, d11priv2->wrapbase + BCMA_IOCTL);
489 	}
490 }
491 
492 char *brcmf_chip_name(u32 id, u32 rev, char *buf, uint len)
493 {
494 	const char *fmt;
495 
496 	fmt = ((id > 0xa000) || (id < 0x4000)) ? "BCM%d/%u" : "BCM%x/%u";
497 	snprintf(buf, len, fmt, id, rev);
498 	return buf;
499 }
500 
501 static struct brcmf_core *brcmf_chip_add_core(struct brcmf_chip_priv *ci,
502 					      u16 coreid, u32 base,
503 					      u32 wrapbase)
504 {
505 	struct brcmf_core_priv *core;
506 
507 	core = kzalloc(sizeof(*core), GFP_KERNEL);
508 	if (!core)
509 		return ERR_PTR(-ENOMEM);
510 
511 	core->pub.id = coreid;
512 	core->pub.base = base;
513 	core->chip = ci;
514 	core->wrapbase = wrapbase;
515 
516 	list_add_tail(&core->list, &ci->cores);
517 	return &core->pub;
518 }
519 
520 /* safety check for chipinfo */
521 static int brcmf_chip_cores_check(struct brcmf_chip_priv *ci)
522 {
523 	struct brcmf_core_priv *core;
524 	bool need_socram = false;
525 	bool has_socram = false;
526 	bool cpu_found = false;
527 	int idx = 1;
528 
529 	list_for_each_entry(core, &ci->cores, list) {
530 		brcmf_dbg(INFO, " [%-2d] core 0x%x:%-2d base 0x%08x wrap 0x%08x\n",
531 			  idx++, core->pub.id, core->pub.rev, core->pub.base,
532 			  core->wrapbase);
533 
534 		switch (core->pub.id) {
535 		case BCMA_CORE_ARM_CM3:
536 			cpu_found = true;
537 			need_socram = true;
538 			break;
539 		case BCMA_CORE_INTERNAL_MEM:
540 			has_socram = true;
541 			break;
542 		case BCMA_CORE_ARM_CR4:
543 			cpu_found = true;
544 			break;
545 		case BCMA_CORE_ARM_CA7:
546 			cpu_found = true;
547 			break;
548 		default:
549 			break;
550 		}
551 	}
552 
553 	if (!cpu_found) {
554 		brcmf_err("CPU core not detected\n");
555 		return -ENXIO;
556 	}
557 	/* check RAM core presence for ARM CM3 core */
558 	if (need_socram && !has_socram) {
559 		brcmf_err("RAM core not provided with ARM CM3 core\n");
560 		return -ENODEV;
561 	}
562 	return 0;
563 }
564 
565 static u32 brcmf_chip_core_read32(struct brcmf_core_priv *core, u16 reg)
566 {
567 	return core->chip->ops->read32(core->chip->ctx, core->pub.base + reg);
568 }
569 
570 static void brcmf_chip_core_write32(struct brcmf_core_priv *core,
571 				    u16 reg, u32 val)
572 {
573 	core->chip->ops->write32(core->chip->ctx, core->pub.base + reg, val);
574 }
575 
576 static bool brcmf_chip_socram_banksize(struct brcmf_core_priv *core, u8 idx,
577 				       u32 *banksize)
578 {
579 	u32 bankinfo;
580 	u32 bankidx = (SOCRAM_MEMTYPE_RAM << SOCRAM_BANKIDX_MEMTYPE_SHIFT);
581 
582 	bankidx |= idx;
583 	brcmf_chip_core_write32(core, SOCRAMREGOFFS(bankidx), bankidx);
584 	bankinfo = brcmf_chip_core_read32(core, SOCRAMREGOFFS(bankinfo));
585 	*banksize = (bankinfo & SOCRAM_BANKINFO_SZMASK) + 1;
586 	*banksize *= SOCRAM_BANKINFO_SZBASE;
587 	return !!(bankinfo & SOCRAM_BANKINFO_RETNTRAM_MASK);
588 }
589 
590 static void brcmf_chip_socram_ramsize(struct brcmf_core_priv *sr, u32 *ramsize,
591 				      u32 *srsize)
592 {
593 	u32 coreinfo;
594 	uint nb, banksize, lss;
595 	bool retent;
596 	int i;
597 
598 	*ramsize = 0;
599 	*srsize = 0;
600 
601 	if (WARN_ON(sr->pub.rev < 4))
602 		return;
603 
604 	if (!brcmf_chip_iscoreup(&sr->pub))
605 		brcmf_chip_resetcore(&sr->pub, 0, 0, 0);
606 
607 	/* Get info for determining size */
608 	coreinfo = brcmf_chip_core_read32(sr, SOCRAMREGOFFS(coreinfo));
609 	nb = (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT;
610 
611 	if ((sr->pub.rev <= 7) || (sr->pub.rev == 12)) {
612 		banksize = (coreinfo & SRCI_SRBSZ_MASK);
613 		lss = (coreinfo & SRCI_LSS_MASK) >> SRCI_LSS_SHIFT;
614 		if (lss != 0)
615 			nb--;
616 		*ramsize = nb * (1 << (banksize + SR_BSZ_BASE));
617 		if (lss != 0)
618 			*ramsize += (1 << ((lss - 1) + SR_BSZ_BASE));
619 	} else {
620 		/* length of SRAM Banks increased for corerev greater than 23 */
621 		if (sr->pub.rev >= 23) {
622 			nb = (coreinfo & (SRCI_SRNB_MASK | SRCI_SRNB_MASK_EXT))
623 				>> SRCI_SRNB_SHIFT;
624 		} else {
625 			nb = (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT;
626 		}
627 		for (i = 0; i < nb; i++) {
628 			retent = brcmf_chip_socram_banksize(sr, i, &banksize);
629 			*ramsize += banksize;
630 			if (retent)
631 				*srsize += banksize;
632 		}
633 	}
634 
635 	/* hardcoded save&restore memory sizes */
636 	switch (sr->chip->pub.chip) {
637 	case BRCM_CC_4334_CHIP_ID:
638 		if (sr->chip->pub.chiprev < 2)
639 			*srsize = (32 * 1024);
640 		break;
641 	case BRCM_CC_43430_CHIP_ID:
642 		/* assume sr for now as we can not check
643 		 * firmware sr capability at this point.
644 		 */
645 		*srsize = (64 * 1024);
646 		break;
647 	default:
648 		break;
649 	}
650 }
651 
652 /** Return the SYS MEM size */
653 static u32 brcmf_chip_sysmem_ramsize(struct brcmf_core_priv *sysmem)
654 {
655 	u32 memsize = 0;
656 	u32 coreinfo;
657 	u32 idx;
658 	u32 nb;
659 	u32 banksize;
660 
661 	if (!brcmf_chip_iscoreup(&sysmem->pub))
662 		brcmf_chip_resetcore(&sysmem->pub, 0, 0, 0);
663 
664 	coreinfo = brcmf_chip_core_read32(sysmem, SYSMEMREGOFFS(coreinfo));
665 	nb = (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT;
666 
667 	for (idx = 0; idx < nb; idx++) {
668 		brcmf_chip_socram_banksize(sysmem, idx, &banksize);
669 		memsize += banksize;
670 	}
671 
672 	return memsize;
673 }
674 
675 /** Return the TCM-RAM size of the ARMCR4 core. */
676 static u32 brcmf_chip_tcm_ramsize(struct brcmf_core_priv *cr4)
677 {
678 	u32 corecap;
679 	u32 memsize = 0;
680 	u32 nab;
681 	u32 nbb;
682 	u32 totb;
683 	u32 bxinfo;
684 	u32 idx;
685 
686 	corecap = brcmf_chip_core_read32(cr4, ARMCR4_CAP);
687 
688 	nab = (corecap & ARMCR4_TCBANB_MASK) >> ARMCR4_TCBANB_SHIFT;
689 	nbb = (corecap & ARMCR4_TCBBNB_MASK) >> ARMCR4_TCBBNB_SHIFT;
690 	totb = nab + nbb;
691 
692 	for (idx = 0; idx < totb; idx++) {
693 		brcmf_chip_core_write32(cr4, ARMCR4_BANKIDX, idx);
694 		bxinfo = brcmf_chip_core_read32(cr4, ARMCR4_BANKINFO);
695 		memsize += ((bxinfo & ARMCR4_BSZ_MASK) + 1) * ARMCR4_BSZ_MULT;
696 	}
697 
698 	return memsize;
699 }
700 
701 static u32 brcmf_chip_tcm_rambase(struct brcmf_chip_priv *ci)
702 {
703 	switch (ci->pub.chip) {
704 	case BRCM_CC_4345_CHIP_ID:
705 		return 0x198000;
706 	case BRCM_CC_4335_CHIP_ID:
707 	case BRCM_CC_4339_CHIP_ID:
708 	case BRCM_CC_4350_CHIP_ID:
709 	case BRCM_CC_4354_CHIP_ID:
710 	case BRCM_CC_4356_CHIP_ID:
711 	case BRCM_CC_43567_CHIP_ID:
712 	case BRCM_CC_43569_CHIP_ID:
713 	case BRCM_CC_43570_CHIP_ID:
714 	case BRCM_CC_4358_CHIP_ID:
715 	case BRCM_CC_43602_CHIP_ID:
716 	case BRCM_CC_4371_CHIP_ID:
717 		return 0x180000;
718 	case BRCM_CC_43465_CHIP_ID:
719 	case BRCM_CC_43525_CHIP_ID:
720 	case BRCM_CC_4365_CHIP_ID:
721 	case BRCM_CC_4366_CHIP_ID:
722 	case BRCM_CC_43664_CHIP_ID:
723 		return 0x200000;
724 	case BRCM_CC_4359_CHIP_ID:
725 		return (ci->pub.chiprev < 9) ? 0x180000 : 0x160000;
726 	case CY_CC_4373_CHIP_ID:
727 		return 0x160000;
728 	default:
729 		brcmf_err("unknown chip: %s\n", ci->pub.name);
730 		break;
731 	}
732 	return 0;
733 }
734 
735 int brcmf_chip_get_raminfo(struct brcmf_chip *pub)
736 {
737 	struct brcmf_chip_priv *ci = container_of(pub, struct brcmf_chip_priv,
738 						  pub);
739 	struct brcmf_core_priv *mem_core;
740 	struct brcmf_core *mem;
741 
742 	mem = brcmf_chip_get_core(&ci->pub, BCMA_CORE_ARM_CR4);
743 	if (mem) {
744 		mem_core = container_of(mem, struct brcmf_core_priv, pub);
745 		ci->pub.ramsize = brcmf_chip_tcm_ramsize(mem_core);
746 		ci->pub.rambase = brcmf_chip_tcm_rambase(ci);
747 		if (!ci->pub.rambase) {
748 			brcmf_err("RAM base not provided with ARM CR4 core\n");
749 			return -EINVAL;
750 		}
751 	} else {
752 		mem = brcmf_chip_get_core(&ci->pub, BCMA_CORE_SYS_MEM);
753 		if (mem) {
754 			mem_core = container_of(mem, struct brcmf_core_priv,
755 						pub);
756 			ci->pub.ramsize = brcmf_chip_sysmem_ramsize(mem_core);
757 			ci->pub.rambase = brcmf_chip_tcm_rambase(ci);
758 			if (!ci->pub.rambase) {
759 				brcmf_err("RAM base not provided with ARM CA7 core\n");
760 				return -EINVAL;
761 			}
762 		} else {
763 			mem = brcmf_chip_get_core(&ci->pub,
764 						  BCMA_CORE_INTERNAL_MEM);
765 			if (!mem) {
766 				brcmf_err("No memory cores found\n");
767 				return -ENOMEM;
768 			}
769 			mem_core = container_of(mem, struct brcmf_core_priv,
770 						pub);
771 			brcmf_chip_socram_ramsize(mem_core, &ci->pub.ramsize,
772 						  &ci->pub.srsize);
773 		}
774 	}
775 	brcmf_dbg(INFO, "RAM: base=0x%x size=%d (0x%x) sr=%d (0x%x)\n",
776 		  ci->pub.rambase, ci->pub.ramsize, ci->pub.ramsize,
777 		  ci->pub.srsize, ci->pub.srsize);
778 
779 	if (!ci->pub.ramsize) {
780 		brcmf_err("RAM size is undetermined\n");
781 		return -ENOMEM;
782 	}
783 
784 	if (ci->pub.ramsize > BRCMF_CHIP_MAX_MEMSIZE) {
785 		brcmf_err("RAM size is incorrect\n");
786 		return -ENOMEM;
787 	}
788 
789 	return 0;
790 }
791 
792 static u32 brcmf_chip_dmp_get_desc(struct brcmf_chip_priv *ci, u32 *eromaddr,
793 				   u8 *type)
794 {
795 	u32 val;
796 
797 	/* read next descriptor */
798 	val = ci->ops->read32(ci->ctx, *eromaddr);
799 	*eromaddr += 4;
800 
801 	if (!type)
802 		return val;
803 
804 	/* determine descriptor type */
805 	*type = (val & DMP_DESC_TYPE_MSK);
806 	if ((*type & ~DMP_DESC_ADDRSIZE_GT32) == DMP_DESC_ADDRESS)
807 		*type = DMP_DESC_ADDRESS;
808 
809 	return val;
810 }
811 
812 static int brcmf_chip_dmp_get_regaddr(struct brcmf_chip_priv *ci, u32 *eromaddr,
813 				      u32 *regbase, u32 *wrapbase)
814 {
815 	u8 desc;
816 	u32 val, szdesc;
817 	u8 stype, sztype, wraptype;
818 
819 	*regbase = 0;
820 	*wrapbase = 0;
821 
822 	val = brcmf_chip_dmp_get_desc(ci, eromaddr, &desc);
823 	if (desc == DMP_DESC_MASTER_PORT) {
824 		wraptype = DMP_SLAVE_TYPE_MWRAP;
825 	} else if (desc == DMP_DESC_ADDRESS) {
826 		/* revert erom address */
827 		*eromaddr -= 4;
828 		wraptype = DMP_SLAVE_TYPE_SWRAP;
829 	} else {
830 		*eromaddr -= 4;
831 		return -EILSEQ;
832 	}
833 
834 	do {
835 		/* locate address descriptor */
836 		do {
837 			val = brcmf_chip_dmp_get_desc(ci, eromaddr, &desc);
838 			/* unexpected table end */
839 			if (desc == DMP_DESC_EOT) {
840 				*eromaddr -= 4;
841 				return -EFAULT;
842 			}
843 		} while (desc != DMP_DESC_ADDRESS &&
844 			 desc != DMP_DESC_COMPONENT);
845 
846 		/* stop if we crossed current component border */
847 		if (desc == DMP_DESC_COMPONENT) {
848 			*eromaddr -= 4;
849 			return 0;
850 		}
851 
852 		/* skip upper 32-bit address descriptor */
853 		if (val & DMP_DESC_ADDRSIZE_GT32)
854 			brcmf_chip_dmp_get_desc(ci, eromaddr, NULL);
855 
856 		sztype = (val & DMP_SLAVE_SIZE_TYPE) >> DMP_SLAVE_SIZE_TYPE_S;
857 
858 		/* next size descriptor can be skipped */
859 		if (sztype == DMP_SLAVE_SIZE_DESC) {
860 			szdesc = brcmf_chip_dmp_get_desc(ci, eromaddr, NULL);
861 			/* skip upper size descriptor if present */
862 			if (szdesc & DMP_DESC_ADDRSIZE_GT32)
863 				brcmf_chip_dmp_get_desc(ci, eromaddr, NULL);
864 		}
865 
866 		/* look for 4K or 8K register regions */
867 		if (sztype != DMP_SLAVE_SIZE_4K &&
868 		    sztype != DMP_SLAVE_SIZE_8K)
869 			continue;
870 
871 		stype = (val & DMP_SLAVE_TYPE) >> DMP_SLAVE_TYPE_S;
872 
873 		/* only regular slave and wrapper */
874 		if (*regbase == 0 && stype == DMP_SLAVE_TYPE_SLAVE)
875 			*regbase = val & DMP_SLAVE_ADDR_BASE;
876 		if (*wrapbase == 0 && stype == wraptype)
877 			*wrapbase = val & DMP_SLAVE_ADDR_BASE;
878 	} while (*regbase == 0 || *wrapbase == 0);
879 
880 	return 0;
881 }
882 
883 static
884 int brcmf_chip_dmp_erom_scan(struct brcmf_chip_priv *ci)
885 {
886 	struct brcmf_core *core;
887 	u32 eromaddr;
888 	u8 desc_type = 0;
889 	u32 val;
890 	u16 id;
891 	u8 nmw, nsw, rev;
892 	u32 base, wrap;
893 	int err;
894 
895 	eromaddr = ci->ops->read32(ci->ctx, CORE_CC_REG(SI_ENUM_BASE, eromptr));
896 
897 	while (desc_type != DMP_DESC_EOT) {
898 		val = brcmf_chip_dmp_get_desc(ci, &eromaddr, &desc_type);
899 		if (!(val & DMP_DESC_VALID))
900 			continue;
901 
902 		if (desc_type == DMP_DESC_EMPTY)
903 			continue;
904 
905 		/* need a component descriptor */
906 		if (desc_type != DMP_DESC_COMPONENT)
907 			continue;
908 
909 		id = (val & DMP_COMP_PARTNUM) >> DMP_COMP_PARTNUM_S;
910 
911 		/* next descriptor must be component as well */
912 		val = brcmf_chip_dmp_get_desc(ci, &eromaddr, &desc_type);
913 		if (WARN_ON((val & DMP_DESC_TYPE_MSK) != DMP_DESC_COMPONENT))
914 			return -EFAULT;
915 
916 		/* only look at cores with master port(s) */
917 		nmw = (val & DMP_COMP_NUM_MWRAP) >> DMP_COMP_NUM_MWRAP_S;
918 		nsw = (val & DMP_COMP_NUM_SWRAP) >> DMP_COMP_NUM_SWRAP_S;
919 		rev = (val & DMP_COMP_REVISION) >> DMP_COMP_REVISION_S;
920 
921 		/* need core with ports */
922 		if (nmw + nsw == 0 &&
923 		    id != BCMA_CORE_PMU &&
924 		    id != BCMA_CORE_GCI)
925 			continue;
926 
927 		/* try to obtain register address info */
928 		err = brcmf_chip_dmp_get_regaddr(ci, &eromaddr, &base, &wrap);
929 		if (err)
930 			continue;
931 
932 		/* finally a core to be added */
933 		core = brcmf_chip_add_core(ci, id, base, wrap);
934 		if (IS_ERR(core))
935 			return PTR_ERR(core);
936 
937 		core->rev = rev;
938 	}
939 
940 	return 0;
941 }
942 
943 static int brcmf_chip_recognition(struct brcmf_chip_priv *ci)
944 {
945 	struct brcmf_core *core;
946 	u32 regdata;
947 	u32 socitype;
948 	int ret;
949 
950 	/* Get CC core rev
951 	 * Chipid is assume to be at offset 0 from SI_ENUM_BASE
952 	 * For different chiptypes or old sdio hosts w/o chipcommon,
953 	 * other ways of recognition should be added here.
954 	 */
955 	regdata = ci->ops->read32(ci->ctx, CORE_CC_REG(SI_ENUM_BASE, chipid));
956 	ci->pub.chip = regdata & CID_ID_MASK;
957 	ci->pub.chiprev = (regdata & CID_REV_MASK) >> CID_REV_SHIFT;
958 	socitype = (regdata & CID_TYPE_MASK) >> CID_TYPE_SHIFT;
959 
960 	brcmf_chip_name(ci->pub.chip, ci->pub.chiprev,
961 			ci->pub.name, sizeof(ci->pub.name));
962 	brcmf_dbg(INFO, "found %s chip: %s\n",
963 		  socitype == SOCI_SB ? "SB" : "AXI", ci->pub.name);
964 
965 	if (socitype == SOCI_SB) {
966 		if (ci->pub.chip != BRCM_CC_4329_CHIP_ID) {
967 			brcmf_err("SB chip is not supported\n");
968 			return -ENODEV;
969 		}
970 		ci->iscoreup = brcmf_chip_sb_iscoreup;
971 		ci->coredisable = brcmf_chip_sb_coredisable;
972 		ci->resetcore = brcmf_chip_sb_resetcore;
973 
974 		core = brcmf_chip_add_core(ci, BCMA_CORE_CHIPCOMMON,
975 					   SI_ENUM_BASE, 0);
976 		brcmf_chip_sb_corerev(ci, core);
977 		core = brcmf_chip_add_core(ci, BCMA_CORE_SDIO_DEV,
978 					   BCM4329_CORE_BUS_BASE, 0);
979 		brcmf_chip_sb_corerev(ci, core);
980 		core = brcmf_chip_add_core(ci, BCMA_CORE_INTERNAL_MEM,
981 					   BCM4329_CORE_SOCRAM_BASE, 0);
982 		brcmf_chip_sb_corerev(ci, core);
983 		core = brcmf_chip_add_core(ci, BCMA_CORE_ARM_CM3,
984 					   BCM4329_CORE_ARM_BASE, 0);
985 		brcmf_chip_sb_corerev(ci, core);
986 
987 		core = brcmf_chip_add_core(ci, BCMA_CORE_80211, 0x18001000, 0);
988 		brcmf_chip_sb_corerev(ci, core);
989 	} else if (socitype == SOCI_AI) {
990 		ci->iscoreup = brcmf_chip_ai_iscoreup;
991 		ci->coredisable = brcmf_chip_ai_coredisable;
992 		ci->resetcore = brcmf_chip_ai_resetcore;
993 
994 		brcmf_chip_dmp_erom_scan(ci);
995 	} else {
996 		brcmf_err("chip backplane type %u is not supported\n",
997 			  socitype);
998 		return -ENODEV;
999 	}
1000 
1001 	ret = brcmf_chip_cores_check(ci);
1002 	if (ret)
1003 		return ret;
1004 
1005 	/* assure chip is passive for core access */
1006 	brcmf_chip_set_passive(&ci->pub);
1007 
1008 	/* Call bus specific reset function now. Cores have been determined
1009 	 * but further access may require a chip specific reset at this point.
1010 	 */
1011 	if (ci->ops->reset) {
1012 		ci->ops->reset(ci->ctx, &ci->pub);
1013 		brcmf_chip_set_passive(&ci->pub);
1014 	}
1015 
1016 	return brcmf_chip_get_raminfo(&ci->pub);
1017 }
1018 
1019 static void brcmf_chip_disable_arm(struct brcmf_chip_priv *chip, u16 id)
1020 {
1021 	struct brcmf_core *core;
1022 	struct brcmf_core_priv *cpu;
1023 	u32 val;
1024 
1025 
1026 	core = brcmf_chip_get_core(&chip->pub, id);
1027 	if (!core)
1028 		return;
1029 
1030 	switch (id) {
1031 	case BCMA_CORE_ARM_CM3:
1032 		brcmf_chip_coredisable(core, 0, 0);
1033 		break;
1034 	case BCMA_CORE_ARM_CR4:
1035 	case BCMA_CORE_ARM_CA7:
1036 		cpu = container_of(core, struct brcmf_core_priv, pub);
1037 
1038 		/* clear all IOCTL bits except HALT bit */
1039 		val = chip->ops->read32(chip->ctx, cpu->wrapbase + BCMA_IOCTL);
1040 		val &= ARMCR4_BCMA_IOCTL_CPUHALT;
1041 		brcmf_chip_resetcore(core, val, ARMCR4_BCMA_IOCTL_CPUHALT,
1042 				     ARMCR4_BCMA_IOCTL_CPUHALT);
1043 		break;
1044 	default:
1045 		brcmf_err("unknown id: %u\n", id);
1046 		break;
1047 	}
1048 }
1049 
1050 static int brcmf_chip_setup(struct brcmf_chip_priv *chip)
1051 {
1052 	struct brcmf_chip *pub;
1053 	struct brcmf_core_priv *cc;
1054 	struct brcmf_core *pmu;
1055 	u32 base;
1056 	u32 val;
1057 	int ret = 0;
1058 
1059 	pub = &chip->pub;
1060 	cc = list_first_entry(&chip->cores, struct brcmf_core_priv, list);
1061 	base = cc->pub.base;
1062 
1063 	/* get chipcommon capabilites */
1064 	pub->cc_caps = chip->ops->read32(chip->ctx,
1065 					 CORE_CC_REG(base, capabilities));
1066 	pub->cc_caps_ext = chip->ops->read32(chip->ctx,
1067 					     CORE_CC_REG(base,
1068 							 capabilities_ext));
1069 
1070 	/* get pmu caps & rev */
1071 	pmu = brcmf_chip_get_pmu(pub); /* after reading cc_caps_ext */
1072 	if (pub->cc_caps & CC_CAP_PMU) {
1073 		val = chip->ops->read32(chip->ctx,
1074 					CORE_CC_REG(pmu->base, pmucapabilities));
1075 		pub->pmurev = val & PCAP_REV_MASK;
1076 		pub->pmucaps = val;
1077 	}
1078 
1079 	brcmf_dbg(INFO, "ccrev=%d, pmurev=%d, pmucaps=0x%x\n",
1080 		  cc->pub.rev, pub->pmurev, pub->pmucaps);
1081 
1082 	/* execute bus core specific setup */
1083 	if (chip->ops->setup)
1084 		ret = chip->ops->setup(chip->ctx, pub);
1085 
1086 	return ret;
1087 }
1088 
1089 struct brcmf_chip *brcmf_chip_attach(void *ctx,
1090 				     const struct brcmf_buscore_ops *ops)
1091 {
1092 	struct brcmf_chip_priv *chip;
1093 	int err = 0;
1094 
1095 	if (WARN_ON(!ops->read32))
1096 		err = -EINVAL;
1097 	if (WARN_ON(!ops->write32))
1098 		err = -EINVAL;
1099 	if (WARN_ON(!ops->prepare))
1100 		err = -EINVAL;
1101 	if (WARN_ON(!ops->activate))
1102 		err = -EINVAL;
1103 	if (err < 0)
1104 		return ERR_PTR(-EINVAL);
1105 
1106 	chip = kzalloc(sizeof(*chip), GFP_KERNEL);
1107 	if (!chip)
1108 		return ERR_PTR(-ENOMEM);
1109 
1110 	INIT_LIST_HEAD(&chip->cores);
1111 	chip->num_cores = 0;
1112 	chip->ops = ops;
1113 	chip->ctx = ctx;
1114 
1115 	err = ops->prepare(ctx);
1116 	if (err < 0)
1117 		goto fail;
1118 
1119 	err = brcmf_chip_recognition(chip);
1120 	if (err < 0)
1121 		goto fail;
1122 
1123 	err = brcmf_chip_setup(chip);
1124 	if (err < 0)
1125 		goto fail;
1126 
1127 	return &chip->pub;
1128 
1129 fail:
1130 	brcmf_chip_detach(&chip->pub);
1131 	return ERR_PTR(err);
1132 }
1133 
1134 void brcmf_chip_detach(struct brcmf_chip *pub)
1135 {
1136 	struct brcmf_chip_priv *chip;
1137 	struct brcmf_core_priv *core;
1138 	struct brcmf_core_priv *tmp;
1139 
1140 	chip = container_of(pub, struct brcmf_chip_priv, pub);
1141 	list_for_each_entry_safe(core, tmp, &chip->cores, list) {
1142 		list_del(&core->list);
1143 		kfree(core);
1144 	}
1145 	kfree(chip);
1146 }
1147 
1148 struct brcmf_core *brcmf_chip_get_d11core(struct brcmf_chip *pub, u8 unit)
1149 {
1150 	struct brcmf_chip_priv *chip;
1151 	struct brcmf_core_priv *core;
1152 
1153 	chip = container_of(pub, struct brcmf_chip_priv, pub);
1154 	list_for_each_entry(core, &chip->cores, list) {
1155 		if (core->pub.id == BCMA_CORE_80211) {
1156 			if (unit-- == 0)
1157 				return &core->pub;
1158 		}
1159 	}
1160 	return NULL;
1161 }
1162 
1163 struct brcmf_core *brcmf_chip_get_core(struct brcmf_chip *pub, u16 coreid)
1164 {
1165 	struct brcmf_chip_priv *chip;
1166 	struct brcmf_core_priv *core;
1167 
1168 	chip = container_of(pub, struct brcmf_chip_priv, pub);
1169 	list_for_each_entry(core, &chip->cores, list)
1170 		if (core->pub.id == coreid)
1171 			return &core->pub;
1172 
1173 	return NULL;
1174 }
1175 
1176 struct brcmf_core *brcmf_chip_get_chipcommon(struct brcmf_chip *pub)
1177 {
1178 	struct brcmf_chip_priv *chip;
1179 	struct brcmf_core_priv *cc;
1180 
1181 	chip = container_of(pub, struct brcmf_chip_priv, pub);
1182 	cc = list_first_entry(&chip->cores, struct brcmf_core_priv, list);
1183 	if (WARN_ON(!cc || cc->pub.id != BCMA_CORE_CHIPCOMMON))
1184 		return brcmf_chip_get_core(pub, BCMA_CORE_CHIPCOMMON);
1185 	return &cc->pub;
1186 }
1187 
1188 struct brcmf_core *brcmf_chip_get_pmu(struct brcmf_chip *pub)
1189 {
1190 	struct brcmf_core *cc = brcmf_chip_get_chipcommon(pub);
1191 	struct brcmf_core *pmu;
1192 
1193 	/* See if there is separated PMU core available */
1194 	if (cc->rev >= 35 &&
1195 	    pub->cc_caps_ext & BCMA_CC_CAP_EXT_AOB_PRESENT) {
1196 		pmu = brcmf_chip_get_core(pub, BCMA_CORE_PMU);
1197 		if (pmu)
1198 			return pmu;
1199 	}
1200 
1201 	/* Fallback to ChipCommon core for older hardware */
1202 	return cc;
1203 }
1204 
1205 bool brcmf_chip_iscoreup(struct brcmf_core *pub)
1206 {
1207 	struct brcmf_core_priv *core;
1208 
1209 	core = container_of(pub, struct brcmf_core_priv, pub);
1210 	return core->chip->iscoreup(core);
1211 }
1212 
1213 void brcmf_chip_coredisable(struct brcmf_core *pub, u32 prereset, u32 reset)
1214 {
1215 	struct brcmf_core_priv *core;
1216 
1217 	core = container_of(pub, struct brcmf_core_priv, pub);
1218 	core->chip->coredisable(core, prereset, reset);
1219 }
1220 
1221 void brcmf_chip_resetcore(struct brcmf_core *pub, u32 prereset, u32 reset,
1222 			  u32 postreset)
1223 {
1224 	struct brcmf_core_priv *core;
1225 
1226 	core = container_of(pub, struct brcmf_core_priv, pub);
1227 	core->chip->resetcore(core, prereset, reset, postreset);
1228 }
1229 
1230 static void
1231 brcmf_chip_cm3_set_passive(struct brcmf_chip_priv *chip)
1232 {
1233 	struct brcmf_core *core;
1234 	struct brcmf_core_priv *sr;
1235 
1236 	brcmf_chip_disable_arm(chip, BCMA_CORE_ARM_CM3);
1237 	core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_80211);
1238 	brcmf_chip_resetcore(core, D11_BCMA_IOCTL_PHYRESET |
1239 				   D11_BCMA_IOCTL_PHYCLOCKEN,
1240 			     D11_BCMA_IOCTL_PHYCLOCKEN,
1241 			     D11_BCMA_IOCTL_PHYCLOCKEN);
1242 	core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_INTERNAL_MEM);
1243 	brcmf_chip_resetcore(core, 0, 0, 0);
1244 
1245 	/* disable bank #3 remap for this device */
1246 	if (chip->pub.chip == BRCM_CC_43430_CHIP_ID) {
1247 		sr = container_of(core, struct brcmf_core_priv, pub);
1248 		brcmf_chip_core_write32(sr, SOCRAMREGOFFS(bankidx), 3);
1249 		brcmf_chip_core_write32(sr, SOCRAMREGOFFS(bankpda), 0);
1250 	}
1251 }
1252 
1253 static bool brcmf_chip_cm3_set_active(struct brcmf_chip_priv *chip)
1254 {
1255 	struct brcmf_core *core;
1256 
1257 	core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_INTERNAL_MEM);
1258 	if (!brcmf_chip_iscoreup(core)) {
1259 		brcmf_err("SOCRAM core is down after reset?\n");
1260 		return false;
1261 	}
1262 
1263 	chip->ops->activate(chip->ctx, &chip->pub, 0);
1264 
1265 	core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_ARM_CM3);
1266 	brcmf_chip_resetcore(core, 0, 0, 0);
1267 
1268 	return true;
1269 }
1270 
1271 static inline void
1272 brcmf_chip_cr4_set_passive(struct brcmf_chip_priv *chip)
1273 {
1274 	struct brcmf_core *core;
1275 
1276 	brcmf_chip_disable_arm(chip, BCMA_CORE_ARM_CR4);
1277 
1278 	core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_80211);
1279 	brcmf_chip_resetcore(core, D11_BCMA_IOCTL_PHYRESET |
1280 				   D11_BCMA_IOCTL_PHYCLOCKEN,
1281 			     D11_BCMA_IOCTL_PHYCLOCKEN,
1282 			     D11_BCMA_IOCTL_PHYCLOCKEN);
1283 }
1284 
1285 static bool brcmf_chip_cr4_set_active(struct brcmf_chip_priv *chip, u32 rstvec)
1286 {
1287 	struct brcmf_core *core;
1288 
1289 	chip->ops->activate(chip->ctx, &chip->pub, rstvec);
1290 
1291 	/* restore ARM */
1292 	core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_ARM_CR4);
1293 	brcmf_chip_resetcore(core, ARMCR4_BCMA_IOCTL_CPUHALT, 0, 0);
1294 
1295 	return true;
1296 }
1297 
1298 static inline void
1299 brcmf_chip_ca7_set_passive(struct brcmf_chip_priv *chip)
1300 {
1301 	struct brcmf_core *core;
1302 
1303 	brcmf_chip_disable_arm(chip, BCMA_CORE_ARM_CA7);
1304 
1305 	core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_80211);
1306 	brcmf_chip_resetcore(core, D11_BCMA_IOCTL_PHYRESET |
1307 				   D11_BCMA_IOCTL_PHYCLOCKEN,
1308 			     D11_BCMA_IOCTL_PHYCLOCKEN,
1309 			     D11_BCMA_IOCTL_PHYCLOCKEN);
1310 }
1311 
1312 static bool brcmf_chip_ca7_set_active(struct brcmf_chip_priv *chip, u32 rstvec)
1313 {
1314 	struct brcmf_core *core;
1315 
1316 	chip->ops->activate(chip->ctx, &chip->pub, rstvec);
1317 
1318 	/* restore ARM */
1319 	core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_ARM_CA7);
1320 	brcmf_chip_resetcore(core, ARMCR4_BCMA_IOCTL_CPUHALT, 0, 0);
1321 
1322 	return true;
1323 }
1324 
1325 void brcmf_chip_set_passive(struct brcmf_chip *pub)
1326 {
1327 	struct brcmf_chip_priv *chip;
1328 	struct brcmf_core *arm;
1329 
1330 	brcmf_dbg(TRACE, "Enter\n");
1331 
1332 	chip = container_of(pub, struct brcmf_chip_priv, pub);
1333 	arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CR4);
1334 	if (arm) {
1335 		brcmf_chip_cr4_set_passive(chip);
1336 		return;
1337 	}
1338 	arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CA7);
1339 	if (arm) {
1340 		brcmf_chip_ca7_set_passive(chip);
1341 		return;
1342 	}
1343 	arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CM3);
1344 	if (arm) {
1345 		brcmf_chip_cm3_set_passive(chip);
1346 		return;
1347 	}
1348 }
1349 
1350 bool brcmf_chip_set_active(struct brcmf_chip *pub, u32 rstvec)
1351 {
1352 	struct brcmf_chip_priv *chip;
1353 	struct brcmf_core *arm;
1354 
1355 	brcmf_dbg(TRACE, "Enter\n");
1356 
1357 	chip = container_of(pub, struct brcmf_chip_priv, pub);
1358 	arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CR4);
1359 	if (arm)
1360 		return brcmf_chip_cr4_set_active(chip, rstvec);
1361 	arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CA7);
1362 	if (arm)
1363 		return brcmf_chip_ca7_set_active(chip, rstvec);
1364 	arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CM3);
1365 	if (arm)
1366 		return brcmf_chip_cm3_set_active(chip);
1367 
1368 	return false;
1369 }
1370 
1371 bool brcmf_chip_sr_capable(struct brcmf_chip *pub)
1372 {
1373 	u32 base, addr, reg, pmu_cc3_mask = ~0;
1374 	struct brcmf_chip_priv *chip;
1375 	struct brcmf_core *pmu = brcmf_chip_get_pmu(pub);
1376 
1377 	brcmf_dbg(TRACE, "Enter\n");
1378 
1379 	/* old chips with PMU version less than 17 don't support save restore */
1380 	if (pub->pmurev < 17)
1381 		return false;
1382 
1383 	base = brcmf_chip_get_chipcommon(pub)->base;
1384 	chip = container_of(pub, struct brcmf_chip_priv, pub);
1385 
1386 	switch (pub->chip) {
1387 	case BRCM_CC_4354_CHIP_ID:
1388 	case BRCM_CC_4356_CHIP_ID:
1389 	case BRCM_CC_4345_CHIP_ID:
1390 		/* explicitly check SR engine enable bit */
1391 		pmu_cc3_mask = BIT(2);
1392 		/* fall-through */
1393 	case BRCM_CC_43241_CHIP_ID:
1394 	case BRCM_CC_4335_CHIP_ID:
1395 	case BRCM_CC_4339_CHIP_ID:
1396 		/* read PMU chipcontrol register 3 */
1397 		addr = CORE_CC_REG(pmu->base, chipcontrol_addr);
1398 		chip->ops->write32(chip->ctx, addr, 3);
1399 		addr = CORE_CC_REG(pmu->base, chipcontrol_data);
1400 		reg = chip->ops->read32(chip->ctx, addr);
1401 		return (reg & pmu_cc3_mask) != 0;
1402 	case BRCM_CC_43430_CHIP_ID:
1403 		addr = CORE_CC_REG(base, sr_control1);
1404 		reg = chip->ops->read32(chip->ctx, addr);
1405 		return reg != 0;
1406 	case CY_CC_4373_CHIP_ID:
1407 		/* explicitly check SR engine enable bit */
1408 		addr = CORE_CC_REG(base, sr_control0);
1409 		reg = chip->ops->read32(chip->ctx, addr);
1410 		return (reg & CC_SR_CTL0_ENABLE_MASK) != 0;
1411 	case BRCM_CC_4359_CHIP_ID:
1412 	case CY_CC_43012_CHIP_ID:
1413 		addr = CORE_CC_REG(pmu->base, retention_ctl);
1414 		reg = chip->ops->read32(chip->ctx, addr);
1415 		return (reg & (PMU_RCTL_MACPHY_DISABLE_MASK |
1416 			       PMU_RCTL_LOGIC_DISABLE_MASK)) == 0;
1417 	default:
1418 		addr = CORE_CC_REG(pmu->base, pmucapabilities_ext);
1419 		reg = chip->ops->read32(chip->ctx, addr);
1420 		if ((reg & PCAPEXT_SR_SUPPORTED_MASK) == 0)
1421 			return false;
1422 
1423 		addr = CORE_CC_REG(pmu->base, retention_ctl);
1424 		reg = chip->ops->read32(chip->ctx, addr);
1425 		return (reg & (PMU_RCTL_MACPHY_DISABLE_MASK |
1426 			       PMU_RCTL_LOGIC_DISABLE_MASK)) == 0;
1427 	}
1428 }
1429