xref: /openbmc/linux/drivers/net/wireless/broadcom/brcm80211/brcmfmac/chip.c (revision c9933d494c54f72290831191c09bb8488bfd5905)
1 // SPDX-License-Identifier: ISC
2 /*
3  * Copyright (c) 2014 Broadcom Corporation
4  */
5 #include <linux/kernel.h>
6 #include <linux/delay.h>
7 #include <linux/list.h>
8 #include <linux/ssb/ssb_regs.h>
9 #include <linux/bcma/bcma.h>
10 #include <linux/bcma/bcma_regs.h>
11 
12 #include <defs.h>
13 #include <soc.h>
14 #include <brcm_hw_ids.h>
15 #include <brcmu_utils.h>
16 #include <chipcommon.h>
17 #include "debug.h"
18 #include "chip.h"
19 
20 /* SOC Interconnect types (aka chip types) */
21 #define SOCI_SB		0
22 #define SOCI_AI		1
23 
24 /* PL-368 DMP definitions */
25 #define DMP_DESC_TYPE_MSK	0x0000000F
26 #define  DMP_DESC_EMPTY		0x00000000
27 #define  DMP_DESC_VALID		0x00000001
28 #define  DMP_DESC_COMPONENT	0x00000001
29 #define  DMP_DESC_MASTER_PORT	0x00000003
30 #define  DMP_DESC_ADDRESS	0x00000005
31 #define  DMP_DESC_ADDRSIZE_GT32	0x00000008
32 #define  DMP_DESC_EOT		0x0000000F
33 
34 #define DMP_COMP_DESIGNER	0xFFF00000
35 #define DMP_COMP_DESIGNER_S	20
36 #define DMP_COMP_PARTNUM	0x000FFF00
37 #define DMP_COMP_PARTNUM_S	8
38 #define DMP_COMP_CLASS		0x000000F0
39 #define DMP_COMP_CLASS_S	4
40 #define DMP_COMP_REVISION	0xFF000000
41 #define DMP_COMP_REVISION_S	24
42 #define DMP_COMP_NUM_SWRAP	0x00F80000
43 #define DMP_COMP_NUM_SWRAP_S	19
44 #define DMP_COMP_NUM_MWRAP	0x0007C000
45 #define DMP_COMP_NUM_MWRAP_S	14
46 #define DMP_COMP_NUM_SPORT	0x00003E00
47 #define DMP_COMP_NUM_SPORT_S	9
48 #define DMP_COMP_NUM_MPORT	0x000001F0
49 #define DMP_COMP_NUM_MPORT_S	4
50 
51 #define DMP_MASTER_PORT_UID	0x0000FF00
52 #define DMP_MASTER_PORT_UID_S	8
53 #define DMP_MASTER_PORT_NUM	0x000000F0
54 #define DMP_MASTER_PORT_NUM_S	4
55 
56 #define DMP_SLAVE_ADDR_BASE	0xFFFFF000
57 #define DMP_SLAVE_ADDR_BASE_S	12
58 #define DMP_SLAVE_PORT_NUM	0x00000F00
59 #define DMP_SLAVE_PORT_NUM_S	8
60 #define DMP_SLAVE_TYPE		0x000000C0
61 #define DMP_SLAVE_TYPE_S	6
62 #define  DMP_SLAVE_TYPE_SLAVE	0
63 #define  DMP_SLAVE_TYPE_BRIDGE	1
64 #define  DMP_SLAVE_TYPE_SWRAP	2
65 #define  DMP_SLAVE_TYPE_MWRAP	3
66 #define DMP_SLAVE_SIZE_TYPE	0x00000030
67 #define DMP_SLAVE_SIZE_TYPE_S	4
68 #define  DMP_SLAVE_SIZE_4K	0
69 #define  DMP_SLAVE_SIZE_8K	1
70 #define  DMP_SLAVE_SIZE_16K	2
71 #define  DMP_SLAVE_SIZE_DESC	3
72 
73 /* EROM CompIdentB */
74 #define CIB_REV_MASK		0xff000000
75 #define CIB_REV_SHIFT		24
76 
77 /* ARM CR4 core specific control flag bits */
78 #define ARMCR4_BCMA_IOCTL_CPUHALT	0x0020
79 
80 /* D11 core specific control flag bits */
81 #define D11_BCMA_IOCTL_PHYCLOCKEN	0x0004
82 #define D11_BCMA_IOCTL_PHYRESET		0x0008
83 
84 /* chip core base & ramsize */
85 /* bcm4329 */
86 /* SDIO device core, ID 0x829 */
87 #define BCM4329_CORE_BUS_BASE		0x18011000
88 /* internal memory core, ID 0x80e */
89 #define BCM4329_CORE_SOCRAM_BASE	0x18003000
90 /* ARM Cortex M3 core, ID 0x82a */
91 #define BCM4329_CORE_ARM_BASE		0x18002000
92 
93 /* Max possibly supported memory size (limited by IO mapped memory) */
94 #define BRCMF_CHIP_MAX_MEMSIZE		(4 * 1024 * 1024)
95 
96 #define CORE_SB(base, field) \
97 		(base + SBCONFIGOFF + offsetof(struct sbconfig, field))
98 #define	SBCOREREV(sbidh) \
99 	((((sbidh) & SSB_IDHIGH_RCHI) >> SSB_IDHIGH_RCHI_SHIFT) | \
100 	  ((sbidh) & SSB_IDHIGH_RCLO))
101 
102 struct sbconfig {
103 	u32 PAD[2];
104 	u32 sbipsflag;	/* initiator port ocp slave flag */
105 	u32 PAD[3];
106 	u32 sbtpsflag;	/* target port ocp slave flag */
107 	u32 PAD[11];
108 	u32 sbtmerrloga;	/* (sonics >= 2.3) */
109 	u32 PAD;
110 	u32 sbtmerrlog;	/* (sonics >= 2.3) */
111 	u32 PAD[3];
112 	u32 sbadmatch3;	/* address match3 */
113 	u32 PAD;
114 	u32 sbadmatch2;	/* address match2 */
115 	u32 PAD;
116 	u32 sbadmatch1;	/* address match1 */
117 	u32 PAD[7];
118 	u32 sbimstate;	/* initiator agent state */
119 	u32 sbintvec;	/* interrupt mask */
120 	u32 sbtmstatelow;	/* target state */
121 	u32 sbtmstatehigh;	/* target state */
122 	u32 sbbwa0;		/* bandwidth allocation table0 */
123 	u32 PAD;
124 	u32 sbimconfiglow;	/* initiator configuration */
125 	u32 sbimconfighigh;	/* initiator configuration */
126 	u32 sbadmatch0;	/* address match0 */
127 	u32 PAD;
128 	u32 sbtmconfiglow;	/* target configuration */
129 	u32 sbtmconfighigh;	/* target configuration */
130 	u32 sbbconfig;	/* broadcast configuration */
131 	u32 PAD;
132 	u32 sbbstate;	/* broadcast state */
133 	u32 PAD[3];
134 	u32 sbactcnfg;	/* activate configuration */
135 	u32 PAD[3];
136 	u32 sbflagst;	/* current sbflags */
137 	u32 PAD[3];
138 	u32 sbidlow;		/* identification */
139 	u32 sbidhigh;	/* identification */
140 };
141 
142 #define INVALID_RAMBASE			((u32)(~0))
143 
144 /* bankidx and bankinfo reg defines corerev >= 8 */
145 #define SOCRAM_BANKINFO_RETNTRAM_MASK	0x00010000
146 #define SOCRAM_BANKINFO_SZMASK		0x0000007f
147 #define SOCRAM_BANKIDX_ROM_MASK		0x00000100
148 
149 #define SOCRAM_BANKIDX_MEMTYPE_SHIFT	8
150 /* socram bankinfo memtype */
151 #define SOCRAM_MEMTYPE_RAM		0
152 #define SOCRAM_MEMTYPE_R0M		1
153 #define SOCRAM_MEMTYPE_DEVRAM		2
154 
155 #define SOCRAM_BANKINFO_SZBASE		8192
156 #define SRCI_LSS_MASK		0x00f00000
157 #define SRCI_LSS_SHIFT		20
158 #define	SRCI_SRNB_MASK		0xf0
159 #define	SRCI_SRNB_MASK_EXT	0x100
160 #define	SRCI_SRNB_SHIFT		4
161 #define	SRCI_SRBSZ_MASK		0xf
162 #define	SRCI_SRBSZ_SHIFT	0
163 #define SR_BSZ_BASE		14
164 
165 struct sbsocramregs {
166 	u32 coreinfo;
167 	u32 bwalloc;
168 	u32 extracoreinfo;
169 	u32 biststat;
170 	u32 bankidx;
171 	u32 standbyctrl;
172 
173 	u32 errlogstatus;	/* rev 6 */
174 	u32 errlogaddr;	/* rev 6 */
175 	/* used for patching rev 3 & 5 */
176 	u32 cambankidx;
177 	u32 cambankstandbyctrl;
178 	u32 cambankpatchctrl;
179 	u32 cambankpatchtblbaseaddr;
180 	u32 cambankcmdreg;
181 	u32 cambankdatareg;
182 	u32 cambankmaskreg;
183 	u32 PAD[1];
184 	u32 bankinfo;	/* corev 8 */
185 	u32 bankpda;
186 	u32 PAD[14];
187 	u32 extmemconfig;
188 	u32 extmemparitycsr;
189 	u32 extmemparityerrdata;
190 	u32 extmemparityerrcnt;
191 	u32 extmemwrctrlandsize;
192 	u32 PAD[84];
193 	u32 workaround;
194 	u32 pwrctl;		/* corerev >= 2 */
195 	u32 PAD[133];
196 	u32 sr_control;     /* corerev >= 15 */
197 	u32 sr_status;      /* corerev >= 15 */
198 	u32 sr_address;     /* corerev >= 15 */
199 	u32 sr_data;        /* corerev >= 15 */
200 };
201 
202 #define SOCRAMREGOFFS(_f)	offsetof(struct sbsocramregs, _f)
203 #define SYSMEMREGOFFS(_f)	offsetof(struct sbsocramregs, _f)
204 
205 #define ARMCR4_CAP		(0x04)
206 #define ARMCR4_BANKIDX		(0x40)
207 #define ARMCR4_BANKINFO		(0x44)
208 #define ARMCR4_BANKPDA		(0x4C)
209 
210 #define	ARMCR4_TCBBNB_MASK	0xf0
211 #define	ARMCR4_TCBBNB_SHIFT	4
212 #define	ARMCR4_TCBANB_MASK	0xf
213 #define	ARMCR4_TCBANB_SHIFT	0
214 
215 #define	ARMCR4_BSZ_MASK		0x3f
216 #define	ARMCR4_BSZ_MULT		8192
217 
218 struct brcmf_core_priv {
219 	struct brcmf_core pub;
220 	u32 wrapbase;
221 	struct list_head list;
222 	struct brcmf_chip_priv *chip;
223 };
224 
225 struct brcmf_chip_priv {
226 	struct brcmf_chip pub;
227 	const struct brcmf_buscore_ops *ops;
228 	void *ctx;
229 	/* assured first core is chipcommon, second core is buscore */
230 	struct list_head cores;
231 	u16 num_cores;
232 
233 	bool (*iscoreup)(struct brcmf_core_priv *core);
234 	void (*coredisable)(struct brcmf_core_priv *core, u32 prereset,
235 			    u32 reset);
236 	void (*resetcore)(struct brcmf_core_priv *core, u32 prereset, u32 reset,
237 			  u32 postreset);
238 };
239 
240 static void brcmf_chip_sb_corerev(struct brcmf_chip_priv *ci,
241 				  struct brcmf_core *core)
242 {
243 	u32 regdata;
244 
245 	regdata = ci->ops->read32(ci->ctx, CORE_SB(core->base, sbidhigh));
246 	core->rev = SBCOREREV(regdata);
247 }
248 
249 static bool brcmf_chip_sb_iscoreup(struct brcmf_core_priv *core)
250 {
251 	struct brcmf_chip_priv *ci;
252 	u32 regdata;
253 	u32 address;
254 
255 	ci = core->chip;
256 	address = CORE_SB(core->pub.base, sbtmstatelow);
257 	regdata = ci->ops->read32(ci->ctx, address);
258 	regdata &= (SSB_TMSLOW_RESET | SSB_TMSLOW_REJECT |
259 		    SSB_IMSTATE_REJECT | SSB_TMSLOW_CLOCK);
260 	return SSB_TMSLOW_CLOCK == regdata;
261 }
262 
263 static bool brcmf_chip_ai_iscoreup(struct brcmf_core_priv *core)
264 {
265 	struct brcmf_chip_priv *ci;
266 	u32 regdata;
267 	bool ret;
268 
269 	ci = core->chip;
270 	regdata = ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL);
271 	ret = (regdata & (BCMA_IOCTL_FGC | BCMA_IOCTL_CLK)) == BCMA_IOCTL_CLK;
272 
273 	regdata = ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL);
274 	ret = ret && ((regdata & BCMA_RESET_CTL_RESET) == 0);
275 
276 	return ret;
277 }
278 
279 static void brcmf_chip_sb_coredisable(struct brcmf_core_priv *core,
280 				      u32 prereset, u32 reset)
281 {
282 	struct brcmf_chip_priv *ci;
283 	u32 val, base;
284 
285 	ci = core->chip;
286 	base = core->pub.base;
287 	val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
288 	if (val & SSB_TMSLOW_RESET)
289 		return;
290 
291 	val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
292 	if ((val & SSB_TMSLOW_CLOCK) != 0) {
293 		/*
294 		 * set target reject and spin until busy is clear
295 		 * (preserve core-specific bits)
296 		 */
297 		val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
298 		ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
299 					 val | SSB_TMSLOW_REJECT);
300 
301 		val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
302 		udelay(1);
303 		SPINWAIT((ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatehigh))
304 			  & SSB_TMSHIGH_BUSY), 100000);
305 
306 		val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatehigh));
307 		if (val & SSB_TMSHIGH_BUSY)
308 			brcmf_err("core state still busy\n");
309 
310 		val = ci->ops->read32(ci->ctx, CORE_SB(base, sbidlow));
311 		if (val & SSB_IDLOW_INITIATOR) {
312 			val = ci->ops->read32(ci->ctx,
313 					      CORE_SB(base, sbimstate));
314 			val |= SSB_IMSTATE_REJECT;
315 			ci->ops->write32(ci->ctx,
316 					 CORE_SB(base, sbimstate), val);
317 			val = ci->ops->read32(ci->ctx,
318 					      CORE_SB(base, sbimstate));
319 			udelay(1);
320 			SPINWAIT((ci->ops->read32(ci->ctx,
321 						  CORE_SB(base, sbimstate)) &
322 				  SSB_IMSTATE_BUSY), 100000);
323 		}
324 
325 		/* set reset and reject while enabling the clocks */
326 		val = SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK |
327 		      SSB_TMSLOW_REJECT | SSB_TMSLOW_RESET;
328 		ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow), val);
329 		val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
330 		udelay(10);
331 
332 		/* clear the initiator reject bit */
333 		val = ci->ops->read32(ci->ctx, CORE_SB(base, sbidlow));
334 		if (val & SSB_IDLOW_INITIATOR) {
335 			val = ci->ops->read32(ci->ctx,
336 					      CORE_SB(base, sbimstate));
337 			val &= ~SSB_IMSTATE_REJECT;
338 			ci->ops->write32(ci->ctx,
339 					 CORE_SB(base, sbimstate), val);
340 		}
341 	}
342 
343 	/* leave reset and reject asserted */
344 	ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
345 			 (SSB_TMSLOW_REJECT | SSB_TMSLOW_RESET));
346 	udelay(1);
347 }
348 
349 static void brcmf_chip_ai_coredisable(struct brcmf_core_priv *core,
350 				      u32 prereset, u32 reset)
351 {
352 	struct brcmf_chip_priv *ci;
353 	u32 regdata;
354 
355 	ci = core->chip;
356 
357 	/* if core is already in reset, skip reset */
358 	regdata = ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL);
359 	if ((regdata & BCMA_RESET_CTL_RESET) != 0)
360 		goto in_reset_configure;
361 
362 	/* configure reset */
363 	ci->ops->write32(ci->ctx, core->wrapbase + BCMA_IOCTL,
364 			 prereset | BCMA_IOCTL_FGC | BCMA_IOCTL_CLK);
365 	ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL);
366 
367 	/* put in reset */
368 	ci->ops->write32(ci->ctx, core->wrapbase + BCMA_RESET_CTL,
369 			 BCMA_RESET_CTL_RESET);
370 	usleep_range(10, 20);
371 
372 	/* wait till reset is 1 */
373 	SPINWAIT(ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL) !=
374 		 BCMA_RESET_CTL_RESET, 300);
375 
376 in_reset_configure:
377 	/* in-reset configure */
378 	ci->ops->write32(ci->ctx, core->wrapbase + BCMA_IOCTL,
379 			 reset | BCMA_IOCTL_FGC | BCMA_IOCTL_CLK);
380 	ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL);
381 }
382 
383 static void brcmf_chip_sb_resetcore(struct brcmf_core_priv *core, u32 prereset,
384 				    u32 reset, u32 postreset)
385 {
386 	struct brcmf_chip_priv *ci;
387 	u32 regdata;
388 	u32 base;
389 
390 	ci = core->chip;
391 	base = core->pub.base;
392 	/*
393 	 * Must do the disable sequence first to work for
394 	 * arbitrary current core state.
395 	 */
396 	brcmf_chip_sb_coredisable(core, 0, 0);
397 
398 	/*
399 	 * Now do the initialization sequence.
400 	 * set reset while enabling the clock and
401 	 * forcing them on throughout the core
402 	 */
403 	ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
404 			 SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK |
405 			 SSB_TMSLOW_RESET);
406 	regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
407 	udelay(1);
408 
409 	/* clear any serror */
410 	regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatehigh));
411 	if (regdata & SSB_TMSHIGH_SERR)
412 		ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatehigh), 0);
413 
414 	regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbimstate));
415 	if (regdata & (SSB_IMSTATE_IBE | SSB_IMSTATE_TO)) {
416 		regdata &= ~(SSB_IMSTATE_IBE | SSB_IMSTATE_TO);
417 		ci->ops->write32(ci->ctx, CORE_SB(base, sbimstate), regdata);
418 	}
419 
420 	/* clear reset and allow it to propagate throughout the core */
421 	ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
422 			 SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK);
423 	regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
424 	udelay(1);
425 
426 	/* leave clock enabled */
427 	ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
428 			 SSB_TMSLOW_CLOCK);
429 	regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
430 	udelay(1);
431 }
432 
433 static void brcmf_chip_ai_resetcore(struct brcmf_core_priv *core, u32 prereset,
434 				    u32 reset, u32 postreset)
435 {
436 	struct brcmf_chip_priv *ci;
437 	int count;
438 	struct brcmf_core *d11core2 = NULL;
439 	struct brcmf_core_priv *d11priv2 = NULL;
440 
441 	ci = core->chip;
442 
443 	/* special handle two D11 cores reset */
444 	if (core->pub.id == BCMA_CORE_80211) {
445 		d11core2 = brcmf_chip_get_d11core(&ci->pub, 1);
446 		if (d11core2) {
447 			brcmf_dbg(INFO, "found two d11 cores, reset both\n");
448 			d11priv2 = container_of(d11core2,
449 						struct brcmf_core_priv, pub);
450 		}
451 	}
452 
453 	/* must disable first to work for arbitrary current core state */
454 	brcmf_chip_ai_coredisable(core, prereset, reset);
455 	if (d11priv2)
456 		brcmf_chip_ai_coredisable(d11priv2, prereset, reset);
457 
458 	count = 0;
459 	while (ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL) &
460 	       BCMA_RESET_CTL_RESET) {
461 		ci->ops->write32(ci->ctx, core->wrapbase + BCMA_RESET_CTL, 0);
462 		count++;
463 		if (count > 50)
464 			break;
465 		usleep_range(40, 60);
466 	}
467 
468 	if (d11priv2) {
469 		count = 0;
470 		while (ci->ops->read32(ci->ctx,
471 				       d11priv2->wrapbase + BCMA_RESET_CTL) &
472 				       BCMA_RESET_CTL_RESET) {
473 			ci->ops->write32(ci->ctx,
474 					 d11priv2->wrapbase + BCMA_RESET_CTL,
475 					 0);
476 			count++;
477 			if (count > 50)
478 				break;
479 			usleep_range(40, 60);
480 		}
481 	}
482 
483 	ci->ops->write32(ci->ctx, core->wrapbase + BCMA_IOCTL,
484 			 postreset | BCMA_IOCTL_CLK);
485 	ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL);
486 
487 	if (d11priv2) {
488 		ci->ops->write32(ci->ctx, d11priv2->wrapbase + BCMA_IOCTL,
489 				 postreset | BCMA_IOCTL_CLK);
490 		ci->ops->read32(ci->ctx, d11priv2->wrapbase + BCMA_IOCTL);
491 	}
492 }
493 
494 char *brcmf_chip_name(u32 id, u32 rev, char *buf, uint len)
495 {
496 	const char *fmt;
497 
498 	fmt = ((id > 0xa000) || (id < 0x4000)) ? "BCM%d/%u" : "BCM%x/%u";
499 	snprintf(buf, len, fmt, id, rev);
500 	return buf;
501 }
502 
503 static struct brcmf_core *brcmf_chip_add_core(struct brcmf_chip_priv *ci,
504 					      u16 coreid, u32 base,
505 					      u32 wrapbase)
506 {
507 	struct brcmf_core_priv *core;
508 
509 	core = kzalloc(sizeof(*core), GFP_KERNEL);
510 	if (!core)
511 		return ERR_PTR(-ENOMEM);
512 
513 	core->pub.id = coreid;
514 	core->pub.base = base;
515 	core->chip = ci;
516 	core->wrapbase = wrapbase;
517 
518 	list_add_tail(&core->list, &ci->cores);
519 	return &core->pub;
520 }
521 
522 /* safety check for chipinfo */
523 static int brcmf_chip_cores_check(struct brcmf_chip_priv *ci)
524 {
525 	struct brcmf_core_priv *core;
526 	bool need_socram = false;
527 	bool has_socram = false;
528 	bool cpu_found = false;
529 	int idx = 1;
530 
531 	list_for_each_entry(core, &ci->cores, list) {
532 		brcmf_dbg(INFO, " [%-2d] core 0x%x:%-3d base 0x%08x wrap 0x%08x\n",
533 			  idx++, core->pub.id, core->pub.rev, core->pub.base,
534 			  core->wrapbase);
535 
536 		switch (core->pub.id) {
537 		case BCMA_CORE_ARM_CM3:
538 			cpu_found = true;
539 			need_socram = true;
540 			break;
541 		case BCMA_CORE_INTERNAL_MEM:
542 			has_socram = true;
543 			break;
544 		case BCMA_CORE_ARM_CR4:
545 			cpu_found = true;
546 			break;
547 		case BCMA_CORE_ARM_CA7:
548 			cpu_found = true;
549 			break;
550 		default:
551 			break;
552 		}
553 	}
554 
555 	if (!cpu_found) {
556 		brcmf_err("CPU core not detected\n");
557 		return -ENXIO;
558 	}
559 	/* check RAM core presence for ARM CM3 core */
560 	if (need_socram && !has_socram) {
561 		brcmf_err("RAM core not provided with ARM CM3 core\n");
562 		return -ENODEV;
563 	}
564 	return 0;
565 }
566 
567 static u32 brcmf_chip_core_read32(struct brcmf_core_priv *core, u16 reg)
568 {
569 	return core->chip->ops->read32(core->chip->ctx, core->pub.base + reg);
570 }
571 
572 static void brcmf_chip_core_write32(struct brcmf_core_priv *core,
573 				    u16 reg, u32 val)
574 {
575 	core->chip->ops->write32(core->chip->ctx, core->pub.base + reg, val);
576 }
577 
578 static bool brcmf_chip_socram_banksize(struct brcmf_core_priv *core, u8 idx,
579 				       u32 *banksize)
580 {
581 	u32 bankinfo;
582 	u32 bankidx = (SOCRAM_MEMTYPE_RAM << SOCRAM_BANKIDX_MEMTYPE_SHIFT);
583 
584 	bankidx |= idx;
585 	brcmf_chip_core_write32(core, SOCRAMREGOFFS(bankidx), bankidx);
586 	bankinfo = brcmf_chip_core_read32(core, SOCRAMREGOFFS(bankinfo));
587 	*banksize = (bankinfo & SOCRAM_BANKINFO_SZMASK) + 1;
588 	*banksize *= SOCRAM_BANKINFO_SZBASE;
589 	return !!(bankinfo & SOCRAM_BANKINFO_RETNTRAM_MASK);
590 }
591 
592 static void brcmf_chip_socram_ramsize(struct brcmf_core_priv *sr, u32 *ramsize,
593 				      u32 *srsize)
594 {
595 	u32 coreinfo;
596 	uint nb, banksize, lss;
597 	bool retent;
598 	int i;
599 
600 	*ramsize = 0;
601 	*srsize = 0;
602 
603 	if (WARN_ON(sr->pub.rev < 4))
604 		return;
605 
606 	if (!brcmf_chip_iscoreup(&sr->pub))
607 		brcmf_chip_resetcore(&sr->pub, 0, 0, 0);
608 
609 	/* Get info for determining size */
610 	coreinfo = brcmf_chip_core_read32(sr, SOCRAMREGOFFS(coreinfo));
611 	nb = (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT;
612 
613 	if ((sr->pub.rev <= 7) || (sr->pub.rev == 12)) {
614 		banksize = (coreinfo & SRCI_SRBSZ_MASK);
615 		lss = (coreinfo & SRCI_LSS_MASK) >> SRCI_LSS_SHIFT;
616 		if (lss != 0)
617 			nb--;
618 		*ramsize = nb * (1 << (banksize + SR_BSZ_BASE));
619 		if (lss != 0)
620 			*ramsize += (1 << ((lss - 1) + SR_BSZ_BASE));
621 	} else {
622 		/* length of SRAM Banks increased for corerev greater than 23 */
623 		if (sr->pub.rev >= 23) {
624 			nb = (coreinfo & (SRCI_SRNB_MASK | SRCI_SRNB_MASK_EXT))
625 				>> SRCI_SRNB_SHIFT;
626 		} else {
627 			nb = (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT;
628 		}
629 		for (i = 0; i < nb; i++) {
630 			retent = brcmf_chip_socram_banksize(sr, i, &banksize);
631 			*ramsize += banksize;
632 			if (retent)
633 				*srsize += banksize;
634 		}
635 	}
636 
637 	/* hardcoded save&restore memory sizes */
638 	switch (sr->chip->pub.chip) {
639 	case BRCM_CC_4334_CHIP_ID:
640 		if (sr->chip->pub.chiprev < 2)
641 			*srsize = (32 * 1024);
642 		break;
643 	case BRCM_CC_43430_CHIP_ID:
644 		/* assume sr for now as we can not check
645 		 * firmware sr capability at this point.
646 		 */
647 		*srsize = (64 * 1024);
648 		break;
649 	default:
650 		break;
651 	}
652 }
653 
654 /** Return the SYS MEM size */
655 static u32 brcmf_chip_sysmem_ramsize(struct brcmf_core_priv *sysmem)
656 {
657 	u32 memsize = 0;
658 	u32 coreinfo;
659 	u32 idx;
660 	u32 nb;
661 	u32 banksize;
662 
663 	if (!brcmf_chip_iscoreup(&sysmem->pub))
664 		brcmf_chip_resetcore(&sysmem->pub, 0, 0, 0);
665 
666 	coreinfo = brcmf_chip_core_read32(sysmem, SYSMEMREGOFFS(coreinfo));
667 	nb = (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT;
668 
669 	for (idx = 0; idx < nb; idx++) {
670 		brcmf_chip_socram_banksize(sysmem, idx, &banksize);
671 		memsize += banksize;
672 	}
673 
674 	return memsize;
675 }
676 
677 /** Return the TCM-RAM size of the ARMCR4 core. */
678 static u32 brcmf_chip_tcm_ramsize(struct brcmf_core_priv *cr4)
679 {
680 	u32 corecap;
681 	u32 memsize = 0;
682 	u32 nab;
683 	u32 nbb;
684 	u32 totb;
685 	u32 bxinfo;
686 	u32 idx;
687 
688 	corecap = brcmf_chip_core_read32(cr4, ARMCR4_CAP);
689 
690 	nab = (corecap & ARMCR4_TCBANB_MASK) >> ARMCR4_TCBANB_SHIFT;
691 	nbb = (corecap & ARMCR4_TCBBNB_MASK) >> ARMCR4_TCBBNB_SHIFT;
692 	totb = nab + nbb;
693 
694 	for (idx = 0; idx < totb; idx++) {
695 		brcmf_chip_core_write32(cr4, ARMCR4_BANKIDX, idx);
696 		bxinfo = brcmf_chip_core_read32(cr4, ARMCR4_BANKINFO);
697 		memsize += ((bxinfo & ARMCR4_BSZ_MASK) + 1) * ARMCR4_BSZ_MULT;
698 	}
699 
700 	return memsize;
701 }
702 
703 static u32 brcmf_chip_tcm_rambase(struct brcmf_chip_priv *ci)
704 {
705 	switch (ci->pub.chip) {
706 	case BRCM_CC_4345_CHIP_ID:
707 	case BRCM_CC_43454_CHIP_ID:
708 		return 0x198000;
709 	case BRCM_CC_4335_CHIP_ID:
710 	case BRCM_CC_4339_CHIP_ID:
711 	case BRCM_CC_4350_CHIP_ID:
712 	case BRCM_CC_4354_CHIP_ID:
713 	case BRCM_CC_4356_CHIP_ID:
714 	case BRCM_CC_43567_CHIP_ID:
715 	case BRCM_CC_43569_CHIP_ID:
716 	case BRCM_CC_43570_CHIP_ID:
717 	case BRCM_CC_4358_CHIP_ID:
718 	case BRCM_CC_43602_CHIP_ID:
719 	case BRCM_CC_4371_CHIP_ID:
720 		return 0x180000;
721 	case BRCM_CC_43465_CHIP_ID:
722 	case BRCM_CC_43525_CHIP_ID:
723 	case BRCM_CC_4365_CHIP_ID:
724 	case BRCM_CC_4366_CHIP_ID:
725 	case BRCM_CC_43664_CHIP_ID:
726 	case BRCM_CC_43666_CHIP_ID:
727 		return 0x200000;
728 	case BRCM_CC_4359_CHIP_ID:
729 		return (ci->pub.chiprev < 9) ? 0x180000 : 0x160000;
730 	case BRCM_CC_4364_CHIP_ID:
731 	case CY_CC_4373_CHIP_ID:
732 		return 0x160000;
733 	case CY_CC_43752_CHIP_ID:
734 		return 0x170000;
735 	default:
736 		brcmf_err("unknown chip: %s\n", ci->pub.name);
737 		break;
738 	}
739 	return INVALID_RAMBASE;
740 }
741 
742 int brcmf_chip_get_raminfo(struct brcmf_chip *pub)
743 {
744 	struct brcmf_chip_priv *ci = container_of(pub, struct brcmf_chip_priv,
745 						  pub);
746 	struct brcmf_core_priv *mem_core;
747 	struct brcmf_core *mem;
748 
749 	mem = brcmf_chip_get_core(&ci->pub, BCMA_CORE_ARM_CR4);
750 	if (mem) {
751 		mem_core = container_of(mem, struct brcmf_core_priv, pub);
752 		ci->pub.ramsize = brcmf_chip_tcm_ramsize(mem_core);
753 		ci->pub.rambase = brcmf_chip_tcm_rambase(ci);
754 		if (ci->pub.rambase == INVALID_RAMBASE) {
755 			brcmf_err("RAM base not provided with ARM CR4 core\n");
756 			return -EINVAL;
757 		}
758 	} else {
759 		mem = brcmf_chip_get_core(&ci->pub, BCMA_CORE_SYS_MEM);
760 		if (mem) {
761 			mem_core = container_of(mem, struct brcmf_core_priv,
762 						pub);
763 			ci->pub.ramsize = brcmf_chip_sysmem_ramsize(mem_core);
764 			ci->pub.rambase = brcmf_chip_tcm_rambase(ci);
765 			if (ci->pub.rambase == INVALID_RAMBASE) {
766 				brcmf_err("RAM base not provided with ARM CA7 core\n");
767 				return -EINVAL;
768 			}
769 		} else {
770 			mem = brcmf_chip_get_core(&ci->pub,
771 						  BCMA_CORE_INTERNAL_MEM);
772 			if (!mem) {
773 				brcmf_err("No memory cores found\n");
774 				return -ENOMEM;
775 			}
776 			mem_core = container_of(mem, struct brcmf_core_priv,
777 						pub);
778 			brcmf_chip_socram_ramsize(mem_core, &ci->pub.ramsize,
779 						  &ci->pub.srsize);
780 		}
781 	}
782 	brcmf_dbg(INFO, "RAM: base=0x%x size=%d (0x%x) sr=%d (0x%x)\n",
783 		  ci->pub.rambase, ci->pub.ramsize, ci->pub.ramsize,
784 		  ci->pub.srsize, ci->pub.srsize);
785 
786 	if (!ci->pub.ramsize) {
787 		brcmf_err("RAM size is undetermined\n");
788 		return -ENOMEM;
789 	}
790 
791 	if (ci->pub.ramsize > BRCMF_CHIP_MAX_MEMSIZE) {
792 		brcmf_err("RAM size is incorrect\n");
793 		return -ENOMEM;
794 	}
795 
796 	return 0;
797 }
798 
799 static u32 brcmf_chip_dmp_get_desc(struct brcmf_chip_priv *ci, u32 *eromaddr,
800 				   u8 *type)
801 {
802 	u32 val;
803 
804 	/* read next descriptor */
805 	val = ci->ops->read32(ci->ctx, *eromaddr);
806 	*eromaddr += 4;
807 
808 	if (!type)
809 		return val;
810 
811 	/* determine descriptor type */
812 	*type = (val & DMP_DESC_TYPE_MSK);
813 	if ((*type & ~DMP_DESC_ADDRSIZE_GT32) == DMP_DESC_ADDRESS)
814 		*type = DMP_DESC_ADDRESS;
815 
816 	return val;
817 }
818 
819 static int brcmf_chip_dmp_get_regaddr(struct brcmf_chip_priv *ci, u32 *eromaddr,
820 				      u32 *regbase, u32 *wrapbase)
821 {
822 	u8 desc;
823 	u32 val, szdesc;
824 	u8 stype, sztype, wraptype;
825 
826 	*regbase = 0;
827 	*wrapbase = 0;
828 
829 	val = brcmf_chip_dmp_get_desc(ci, eromaddr, &desc);
830 	if (desc == DMP_DESC_MASTER_PORT) {
831 		wraptype = DMP_SLAVE_TYPE_MWRAP;
832 	} else if (desc == DMP_DESC_ADDRESS) {
833 		/* revert erom address */
834 		*eromaddr -= 4;
835 		wraptype = DMP_SLAVE_TYPE_SWRAP;
836 	} else {
837 		*eromaddr -= 4;
838 		return -EILSEQ;
839 	}
840 
841 	do {
842 		/* locate address descriptor */
843 		do {
844 			val = brcmf_chip_dmp_get_desc(ci, eromaddr, &desc);
845 			/* unexpected table end */
846 			if (desc == DMP_DESC_EOT) {
847 				*eromaddr -= 4;
848 				return -EFAULT;
849 			}
850 		} while (desc != DMP_DESC_ADDRESS &&
851 			 desc != DMP_DESC_COMPONENT);
852 
853 		/* stop if we crossed current component border */
854 		if (desc == DMP_DESC_COMPONENT) {
855 			*eromaddr -= 4;
856 			return 0;
857 		}
858 
859 		/* skip upper 32-bit address descriptor */
860 		if (val & DMP_DESC_ADDRSIZE_GT32)
861 			brcmf_chip_dmp_get_desc(ci, eromaddr, NULL);
862 
863 		sztype = (val & DMP_SLAVE_SIZE_TYPE) >> DMP_SLAVE_SIZE_TYPE_S;
864 
865 		/* next size descriptor can be skipped */
866 		if (sztype == DMP_SLAVE_SIZE_DESC) {
867 			szdesc = brcmf_chip_dmp_get_desc(ci, eromaddr, NULL);
868 			/* skip upper size descriptor if present */
869 			if (szdesc & DMP_DESC_ADDRSIZE_GT32)
870 				brcmf_chip_dmp_get_desc(ci, eromaddr, NULL);
871 		}
872 
873 		/* look for 4K or 8K register regions */
874 		if (sztype != DMP_SLAVE_SIZE_4K &&
875 		    sztype != DMP_SLAVE_SIZE_8K)
876 			continue;
877 
878 		stype = (val & DMP_SLAVE_TYPE) >> DMP_SLAVE_TYPE_S;
879 
880 		/* only regular slave and wrapper */
881 		if (*regbase == 0 && stype == DMP_SLAVE_TYPE_SLAVE)
882 			*regbase = val & DMP_SLAVE_ADDR_BASE;
883 		if (*wrapbase == 0 && stype == wraptype)
884 			*wrapbase = val & DMP_SLAVE_ADDR_BASE;
885 	} while (*regbase == 0 || *wrapbase == 0);
886 
887 	return 0;
888 }
889 
890 static
891 int brcmf_chip_dmp_erom_scan(struct brcmf_chip_priv *ci)
892 {
893 	struct brcmf_core *core;
894 	u32 eromaddr;
895 	u8 desc_type = 0;
896 	u32 val;
897 	u16 id;
898 	u8 nmw, nsw, rev;
899 	u32 base, wrap;
900 	int err;
901 
902 	eromaddr = ci->ops->read32(ci->ctx,
903 				   CORE_CC_REG(ci->pub.enum_base, eromptr));
904 
905 	while (desc_type != DMP_DESC_EOT) {
906 		val = brcmf_chip_dmp_get_desc(ci, &eromaddr, &desc_type);
907 		if (!(val & DMP_DESC_VALID))
908 			continue;
909 
910 		if (desc_type == DMP_DESC_EMPTY)
911 			continue;
912 
913 		/* need a component descriptor */
914 		if (desc_type != DMP_DESC_COMPONENT)
915 			continue;
916 
917 		id = (val & DMP_COMP_PARTNUM) >> DMP_COMP_PARTNUM_S;
918 
919 		/* next descriptor must be component as well */
920 		val = brcmf_chip_dmp_get_desc(ci, &eromaddr, &desc_type);
921 		if (WARN_ON((val & DMP_DESC_TYPE_MSK) != DMP_DESC_COMPONENT))
922 			return -EFAULT;
923 
924 		/* only look at cores with master port(s) */
925 		nmw = (val & DMP_COMP_NUM_MWRAP) >> DMP_COMP_NUM_MWRAP_S;
926 		nsw = (val & DMP_COMP_NUM_SWRAP) >> DMP_COMP_NUM_SWRAP_S;
927 		rev = (val & DMP_COMP_REVISION) >> DMP_COMP_REVISION_S;
928 
929 		/* need core with ports */
930 		if (nmw + nsw == 0 &&
931 		    id != BCMA_CORE_PMU &&
932 		    id != BCMA_CORE_GCI)
933 			continue;
934 
935 		/* try to obtain register address info */
936 		err = brcmf_chip_dmp_get_regaddr(ci, &eromaddr, &base, &wrap);
937 		if (err)
938 			continue;
939 
940 		/* finally a core to be added */
941 		core = brcmf_chip_add_core(ci, id, base, wrap);
942 		if (IS_ERR(core))
943 			return PTR_ERR(core);
944 
945 		core->rev = rev;
946 	}
947 
948 	return 0;
949 }
950 
951 u32 brcmf_chip_enum_base(u16 devid)
952 {
953 	return SI_ENUM_BASE_DEFAULT;
954 }
955 
956 static int brcmf_chip_recognition(struct brcmf_chip_priv *ci)
957 {
958 	struct brcmf_core *core;
959 	u32 regdata;
960 	u32 socitype;
961 	int ret;
962 
963 	/* Get CC core rev
964 	 * Chipid is assume to be at offset 0 from SI_ENUM_BASE
965 	 * For different chiptypes or old sdio hosts w/o chipcommon,
966 	 * other ways of recognition should be added here.
967 	 */
968 	regdata = ci->ops->read32(ci->ctx,
969 				  CORE_CC_REG(ci->pub.enum_base, chipid));
970 	ci->pub.chip = regdata & CID_ID_MASK;
971 	ci->pub.chiprev = (regdata & CID_REV_MASK) >> CID_REV_SHIFT;
972 	socitype = (regdata & CID_TYPE_MASK) >> CID_TYPE_SHIFT;
973 
974 	brcmf_chip_name(ci->pub.chip, ci->pub.chiprev,
975 			ci->pub.name, sizeof(ci->pub.name));
976 	brcmf_dbg(INFO, "found %s chip: %s\n",
977 		  socitype == SOCI_SB ? "SB" : "AXI", ci->pub.name);
978 
979 	if (socitype == SOCI_SB) {
980 		if (ci->pub.chip != BRCM_CC_4329_CHIP_ID) {
981 			brcmf_err("SB chip is not supported\n");
982 			return -ENODEV;
983 		}
984 		ci->iscoreup = brcmf_chip_sb_iscoreup;
985 		ci->coredisable = brcmf_chip_sb_coredisable;
986 		ci->resetcore = brcmf_chip_sb_resetcore;
987 
988 		core = brcmf_chip_add_core(ci, BCMA_CORE_CHIPCOMMON,
989 					   SI_ENUM_BASE_DEFAULT, 0);
990 		brcmf_chip_sb_corerev(ci, core);
991 		core = brcmf_chip_add_core(ci, BCMA_CORE_SDIO_DEV,
992 					   BCM4329_CORE_BUS_BASE, 0);
993 		brcmf_chip_sb_corerev(ci, core);
994 		core = brcmf_chip_add_core(ci, BCMA_CORE_INTERNAL_MEM,
995 					   BCM4329_CORE_SOCRAM_BASE, 0);
996 		brcmf_chip_sb_corerev(ci, core);
997 		core = brcmf_chip_add_core(ci, BCMA_CORE_ARM_CM3,
998 					   BCM4329_CORE_ARM_BASE, 0);
999 		brcmf_chip_sb_corerev(ci, core);
1000 
1001 		core = brcmf_chip_add_core(ci, BCMA_CORE_80211, 0x18001000, 0);
1002 		brcmf_chip_sb_corerev(ci, core);
1003 	} else if (socitype == SOCI_AI) {
1004 		ci->iscoreup = brcmf_chip_ai_iscoreup;
1005 		ci->coredisable = brcmf_chip_ai_coredisable;
1006 		ci->resetcore = brcmf_chip_ai_resetcore;
1007 
1008 		brcmf_chip_dmp_erom_scan(ci);
1009 	} else {
1010 		brcmf_err("chip backplane type %u is not supported\n",
1011 			  socitype);
1012 		return -ENODEV;
1013 	}
1014 
1015 	ret = brcmf_chip_cores_check(ci);
1016 	if (ret)
1017 		return ret;
1018 
1019 	/* assure chip is passive for core access */
1020 	brcmf_chip_set_passive(&ci->pub);
1021 
1022 	/* Call bus specific reset function now. Cores have been determined
1023 	 * but further access may require a chip specific reset at this point.
1024 	 */
1025 	if (ci->ops->reset) {
1026 		ci->ops->reset(ci->ctx, &ci->pub);
1027 		brcmf_chip_set_passive(&ci->pub);
1028 	}
1029 
1030 	return brcmf_chip_get_raminfo(&ci->pub);
1031 }
1032 
1033 static void brcmf_chip_disable_arm(struct brcmf_chip_priv *chip, u16 id)
1034 {
1035 	struct brcmf_core *core;
1036 	struct brcmf_core_priv *cpu;
1037 	u32 val;
1038 
1039 
1040 	core = brcmf_chip_get_core(&chip->pub, id);
1041 	if (!core)
1042 		return;
1043 
1044 	switch (id) {
1045 	case BCMA_CORE_ARM_CM3:
1046 		brcmf_chip_coredisable(core, 0, 0);
1047 		break;
1048 	case BCMA_CORE_ARM_CR4:
1049 	case BCMA_CORE_ARM_CA7:
1050 		cpu = container_of(core, struct brcmf_core_priv, pub);
1051 
1052 		/* clear all IOCTL bits except HALT bit */
1053 		val = chip->ops->read32(chip->ctx, cpu->wrapbase + BCMA_IOCTL);
1054 		val &= ARMCR4_BCMA_IOCTL_CPUHALT;
1055 		brcmf_chip_resetcore(core, val, ARMCR4_BCMA_IOCTL_CPUHALT,
1056 				     ARMCR4_BCMA_IOCTL_CPUHALT);
1057 		break;
1058 	default:
1059 		brcmf_err("unknown id: %u\n", id);
1060 		break;
1061 	}
1062 }
1063 
1064 static int brcmf_chip_setup(struct brcmf_chip_priv *chip)
1065 {
1066 	struct brcmf_chip *pub;
1067 	struct brcmf_core_priv *cc;
1068 	struct brcmf_core *pmu;
1069 	u32 base;
1070 	u32 val;
1071 	int ret = 0;
1072 
1073 	pub = &chip->pub;
1074 	cc = list_first_entry(&chip->cores, struct brcmf_core_priv, list);
1075 	base = cc->pub.base;
1076 
1077 	/* get chipcommon capabilites */
1078 	pub->cc_caps = chip->ops->read32(chip->ctx,
1079 					 CORE_CC_REG(base, capabilities));
1080 	pub->cc_caps_ext = chip->ops->read32(chip->ctx,
1081 					     CORE_CC_REG(base,
1082 							 capabilities_ext));
1083 
1084 	/* get pmu caps & rev */
1085 	pmu = brcmf_chip_get_pmu(pub); /* after reading cc_caps_ext */
1086 	if (pub->cc_caps & CC_CAP_PMU) {
1087 		val = chip->ops->read32(chip->ctx,
1088 					CORE_CC_REG(pmu->base, pmucapabilities));
1089 		pub->pmurev = val & PCAP_REV_MASK;
1090 		pub->pmucaps = val;
1091 	}
1092 
1093 	brcmf_dbg(INFO, "ccrev=%d, pmurev=%d, pmucaps=0x%x\n",
1094 		  cc->pub.rev, pub->pmurev, pub->pmucaps);
1095 
1096 	/* execute bus core specific setup */
1097 	if (chip->ops->setup)
1098 		ret = chip->ops->setup(chip->ctx, pub);
1099 
1100 	return ret;
1101 }
1102 
1103 struct brcmf_chip *brcmf_chip_attach(void *ctx, u16 devid,
1104 				     const struct brcmf_buscore_ops *ops)
1105 {
1106 	struct brcmf_chip_priv *chip;
1107 	int err = 0;
1108 
1109 	if (WARN_ON(!ops->read32))
1110 		err = -EINVAL;
1111 	if (WARN_ON(!ops->write32))
1112 		err = -EINVAL;
1113 	if (WARN_ON(!ops->prepare))
1114 		err = -EINVAL;
1115 	if (WARN_ON(!ops->activate))
1116 		err = -EINVAL;
1117 	if (err < 0)
1118 		return ERR_PTR(-EINVAL);
1119 
1120 	chip = kzalloc(sizeof(*chip), GFP_KERNEL);
1121 	if (!chip)
1122 		return ERR_PTR(-ENOMEM);
1123 
1124 	INIT_LIST_HEAD(&chip->cores);
1125 	chip->num_cores = 0;
1126 	chip->ops = ops;
1127 	chip->ctx = ctx;
1128 	chip->pub.enum_base = brcmf_chip_enum_base(devid);
1129 
1130 	err = ops->prepare(ctx);
1131 	if (err < 0)
1132 		goto fail;
1133 
1134 	err = brcmf_chip_recognition(chip);
1135 	if (err < 0)
1136 		goto fail;
1137 
1138 	err = brcmf_chip_setup(chip);
1139 	if (err < 0)
1140 		goto fail;
1141 
1142 	return &chip->pub;
1143 
1144 fail:
1145 	brcmf_chip_detach(&chip->pub);
1146 	return ERR_PTR(err);
1147 }
1148 
1149 void brcmf_chip_detach(struct brcmf_chip *pub)
1150 {
1151 	struct brcmf_chip_priv *chip;
1152 	struct brcmf_core_priv *core;
1153 	struct brcmf_core_priv *tmp;
1154 
1155 	chip = container_of(pub, struct brcmf_chip_priv, pub);
1156 	list_for_each_entry_safe(core, tmp, &chip->cores, list) {
1157 		list_del(&core->list);
1158 		kfree(core);
1159 	}
1160 	kfree(chip);
1161 }
1162 
1163 struct brcmf_core *brcmf_chip_get_d11core(struct brcmf_chip *pub, u8 unit)
1164 {
1165 	struct brcmf_chip_priv *chip;
1166 	struct brcmf_core_priv *core;
1167 
1168 	chip = container_of(pub, struct brcmf_chip_priv, pub);
1169 	list_for_each_entry(core, &chip->cores, list) {
1170 		if (core->pub.id == BCMA_CORE_80211) {
1171 			if (unit-- == 0)
1172 				return &core->pub;
1173 		}
1174 	}
1175 	return NULL;
1176 }
1177 
1178 struct brcmf_core *brcmf_chip_get_core(struct brcmf_chip *pub, u16 coreid)
1179 {
1180 	struct brcmf_chip_priv *chip;
1181 	struct brcmf_core_priv *core;
1182 
1183 	chip = container_of(pub, struct brcmf_chip_priv, pub);
1184 	list_for_each_entry(core, &chip->cores, list)
1185 		if (core->pub.id == coreid)
1186 			return &core->pub;
1187 
1188 	return NULL;
1189 }
1190 
1191 struct brcmf_core *brcmf_chip_get_chipcommon(struct brcmf_chip *pub)
1192 {
1193 	struct brcmf_chip_priv *chip;
1194 	struct brcmf_core_priv *cc;
1195 
1196 	chip = container_of(pub, struct brcmf_chip_priv, pub);
1197 	cc = list_first_entry(&chip->cores, struct brcmf_core_priv, list);
1198 	if (WARN_ON(!cc || cc->pub.id != BCMA_CORE_CHIPCOMMON))
1199 		return brcmf_chip_get_core(pub, BCMA_CORE_CHIPCOMMON);
1200 	return &cc->pub;
1201 }
1202 
1203 struct brcmf_core *brcmf_chip_get_pmu(struct brcmf_chip *pub)
1204 {
1205 	struct brcmf_core *cc = brcmf_chip_get_chipcommon(pub);
1206 	struct brcmf_core *pmu;
1207 
1208 	/* See if there is separated PMU core available */
1209 	if (cc->rev >= 35 &&
1210 	    pub->cc_caps_ext & BCMA_CC_CAP_EXT_AOB_PRESENT) {
1211 		pmu = brcmf_chip_get_core(pub, BCMA_CORE_PMU);
1212 		if (pmu)
1213 			return pmu;
1214 	}
1215 
1216 	/* Fallback to ChipCommon core for older hardware */
1217 	return cc;
1218 }
1219 
1220 bool brcmf_chip_iscoreup(struct brcmf_core *pub)
1221 {
1222 	struct brcmf_core_priv *core;
1223 
1224 	core = container_of(pub, struct brcmf_core_priv, pub);
1225 	return core->chip->iscoreup(core);
1226 }
1227 
1228 void brcmf_chip_coredisable(struct brcmf_core *pub, u32 prereset, u32 reset)
1229 {
1230 	struct brcmf_core_priv *core;
1231 
1232 	core = container_of(pub, struct brcmf_core_priv, pub);
1233 	core->chip->coredisable(core, prereset, reset);
1234 }
1235 
1236 void brcmf_chip_resetcore(struct brcmf_core *pub, u32 prereset, u32 reset,
1237 			  u32 postreset)
1238 {
1239 	struct brcmf_core_priv *core;
1240 
1241 	core = container_of(pub, struct brcmf_core_priv, pub);
1242 	core->chip->resetcore(core, prereset, reset, postreset);
1243 }
1244 
1245 static void
1246 brcmf_chip_cm3_set_passive(struct brcmf_chip_priv *chip)
1247 {
1248 	struct brcmf_core *core;
1249 	struct brcmf_core_priv *sr;
1250 
1251 	brcmf_chip_disable_arm(chip, BCMA_CORE_ARM_CM3);
1252 	core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_80211);
1253 	brcmf_chip_resetcore(core, D11_BCMA_IOCTL_PHYRESET |
1254 				   D11_BCMA_IOCTL_PHYCLOCKEN,
1255 			     D11_BCMA_IOCTL_PHYCLOCKEN,
1256 			     D11_BCMA_IOCTL_PHYCLOCKEN);
1257 	core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_INTERNAL_MEM);
1258 	brcmf_chip_resetcore(core, 0, 0, 0);
1259 
1260 	/* disable bank #3 remap for this device */
1261 	if (chip->pub.chip == BRCM_CC_43430_CHIP_ID) {
1262 		sr = container_of(core, struct brcmf_core_priv, pub);
1263 		brcmf_chip_core_write32(sr, SOCRAMREGOFFS(bankidx), 3);
1264 		brcmf_chip_core_write32(sr, SOCRAMREGOFFS(bankpda), 0);
1265 	}
1266 }
1267 
1268 static bool brcmf_chip_cm3_set_active(struct brcmf_chip_priv *chip)
1269 {
1270 	struct brcmf_core *core;
1271 
1272 	core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_INTERNAL_MEM);
1273 	if (!brcmf_chip_iscoreup(core)) {
1274 		brcmf_err("SOCRAM core is down after reset?\n");
1275 		return false;
1276 	}
1277 
1278 	chip->ops->activate(chip->ctx, &chip->pub, 0);
1279 
1280 	core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_ARM_CM3);
1281 	brcmf_chip_resetcore(core, 0, 0, 0);
1282 
1283 	return true;
1284 }
1285 
1286 static inline void
1287 brcmf_chip_cr4_set_passive(struct brcmf_chip_priv *chip)
1288 {
1289 	struct brcmf_core *core;
1290 
1291 	brcmf_chip_disable_arm(chip, BCMA_CORE_ARM_CR4);
1292 
1293 	core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_80211);
1294 	brcmf_chip_resetcore(core, D11_BCMA_IOCTL_PHYRESET |
1295 				   D11_BCMA_IOCTL_PHYCLOCKEN,
1296 			     D11_BCMA_IOCTL_PHYCLOCKEN,
1297 			     D11_BCMA_IOCTL_PHYCLOCKEN);
1298 }
1299 
1300 static bool brcmf_chip_cr4_set_active(struct brcmf_chip_priv *chip, u32 rstvec)
1301 {
1302 	struct brcmf_core *core;
1303 
1304 	chip->ops->activate(chip->ctx, &chip->pub, rstvec);
1305 
1306 	/* restore ARM */
1307 	core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_ARM_CR4);
1308 	brcmf_chip_resetcore(core, ARMCR4_BCMA_IOCTL_CPUHALT, 0, 0);
1309 
1310 	return true;
1311 }
1312 
1313 static inline void
1314 brcmf_chip_ca7_set_passive(struct brcmf_chip_priv *chip)
1315 {
1316 	struct brcmf_core *core;
1317 
1318 	brcmf_chip_disable_arm(chip, BCMA_CORE_ARM_CA7);
1319 
1320 	core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_80211);
1321 	brcmf_chip_resetcore(core, D11_BCMA_IOCTL_PHYRESET |
1322 				   D11_BCMA_IOCTL_PHYCLOCKEN,
1323 			     D11_BCMA_IOCTL_PHYCLOCKEN,
1324 			     D11_BCMA_IOCTL_PHYCLOCKEN);
1325 }
1326 
1327 static bool brcmf_chip_ca7_set_active(struct brcmf_chip_priv *chip, u32 rstvec)
1328 {
1329 	struct brcmf_core *core;
1330 
1331 	chip->ops->activate(chip->ctx, &chip->pub, rstvec);
1332 
1333 	/* restore ARM */
1334 	core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_ARM_CA7);
1335 	brcmf_chip_resetcore(core, ARMCR4_BCMA_IOCTL_CPUHALT, 0, 0);
1336 
1337 	return true;
1338 }
1339 
1340 void brcmf_chip_set_passive(struct brcmf_chip *pub)
1341 {
1342 	struct brcmf_chip_priv *chip;
1343 	struct brcmf_core *arm;
1344 
1345 	brcmf_dbg(TRACE, "Enter\n");
1346 
1347 	chip = container_of(pub, struct brcmf_chip_priv, pub);
1348 	arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CR4);
1349 	if (arm) {
1350 		brcmf_chip_cr4_set_passive(chip);
1351 		return;
1352 	}
1353 	arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CA7);
1354 	if (arm) {
1355 		brcmf_chip_ca7_set_passive(chip);
1356 		return;
1357 	}
1358 	arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CM3);
1359 	if (arm) {
1360 		brcmf_chip_cm3_set_passive(chip);
1361 		return;
1362 	}
1363 }
1364 
1365 bool brcmf_chip_set_active(struct brcmf_chip *pub, u32 rstvec)
1366 {
1367 	struct brcmf_chip_priv *chip;
1368 	struct brcmf_core *arm;
1369 
1370 	brcmf_dbg(TRACE, "Enter\n");
1371 
1372 	chip = container_of(pub, struct brcmf_chip_priv, pub);
1373 	arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CR4);
1374 	if (arm)
1375 		return brcmf_chip_cr4_set_active(chip, rstvec);
1376 	arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CA7);
1377 	if (arm)
1378 		return brcmf_chip_ca7_set_active(chip, rstvec);
1379 	arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CM3);
1380 	if (arm)
1381 		return brcmf_chip_cm3_set_active(chip);
1382 
1383 	return false;
1384 }
1385 
1386 bool brcmf_chip_sr_capable(struct brcmf_chip *pub)
1387 {
1388 	u32 base, addr, reg, pmu_cc3_mask = ~0;
1389 	struct brcmf_chip_priv *chip;
1390 	struct brcmf_core *pmu = brcmf_chip_get_pmu(pub);
1391 
1392 	brcmf_dbg(TRACE, "Enter\n");
1393 
1394 	/* old chips with PMU version less than 17 don't support save restore */
1395 	if (pub->pmurev < 17)
1396 		return false;
1397 
1398 	base = brcmf_chip_get_chipcommon(pub)->base;
1399 	chip = container_of(pub, struct brcmf_chip_priv, pub);
1400 
1401 	switch (pub->chip) {
1402 	case BRCM_CC_4354_CHIP_ID:
1403 	case BRCM_CC_4356_CHIP_ID:
1404 	case BRCM_CC_4345_CHIP_ID:
1405 	case BRCM_CC_43454_CHIP_ID:
1406 		/* explicitly check SR engine enable bit */
1407 		pmu_cc3_mask = BIT(2);
1408 		fallthrough;
1409 	case BRCM_CC_43241_CHIP_ID:
1410 	case BRCM_CC_4335_CHIP_ID:
1411 	case BRCM_CC_4339_CHIP_ID:
1412 		/* read PMU chipcontrol register 3 */
1413 		addr = CORE_CC_REG(pmu->base, chipcontrol_addr);
1414 		chip->ops->write32(chip->ctx, addr, 3);
1415 		addr = CORE_CC_REG(pmu->base, chipcontrol_data);
1416 		reg = chip->ops->read32(chip->ctx, addr);
1417 		return (reg & pmu_cc3_mask) != 0;
1418 	case BRCM_CC_43430_CHIP_ID:
1419 		addr = CORE_CC_REG(base, sr_control1);
1420 		reg = chip->ops->read32(chip->ctx, addr);
1421 		return reg != 0;
1422 	case CY_CC_4373_CHIP_ID:
1423 		/* explicitly check SR engine enable bit */
1424 		addr = CORE_CC_REG(base, sr_control0);
1425 		reg = chip->ops->read32(chip->ctx, addr);
1426 		return (reg & CC_SR_CTL0_ENABLE_MASK) != 0;
1427 	case BRCM_CC_4359_CHIP_ID:
1428 	case CY_CC_43752_CHIP_ID:
1429 	case CY_CC_43012_CHIP_ID:
1430 		addr = CORE_CC_REG(pmu->base, retention_ctl);
1431 		reg = chip->ops->read32(chip->ctx, addr);
1432 		return (reg & (PMU_RCTL_MACPHY_DISABLE_MASK |
1433 			       PMU_RCTL_LOGIC_DISABLE_MASK)) == 0;
1434 	default:
1435 		addr = CORE_CC_REG(pmu->base, pmucapabilities_ext);
1436 		reg = chip->ops->read32(chip->ctx, addr);
1437 		if ((reg & PCAPEXT_SR_SUPPORTED_MASK) == 0)
1438 			return false;
1439 
1440 		addr = CORE_CC_REG(pmu->base, retention_ctl);
1441 		reg = chip->ops->read32(chip->ctx, addr);
1442 		return (reg & (PMU_RCTL_MACPHY_DISABLE_MASK |
1443 			       PMU_RCTL_LOGIC_DISABLE_MASK)) == 0;
1444 	}
1445 }
1446