1 /* 2 * Copyright (c) 2014 Broadcom Corporation 3 * 4 * Permission to use, copy, modify, and/or distribute this software for any 5 * purpose with or without fee is hereby granted, provided that the above 6 * copyright notice and this permission notice appear in all copies. 7 * 8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY 11 * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION 13 * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN 14 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 15 */ 16 #include <linux/kernel.h> 17 #include <linux/delay.h> 18 #include <linux/list.h> 19 #include <linux/ssb/ssb_regs.h> 20 #include <linux/bcma/bcma.h> 21 #include <linux/bcma/bcma_regs.h> 22 23 #include <defs.h> 24 #include <soc.h> 25 #include <brcm_hw_ids.h> 26 #include <brcmu_utils.h> 27 #include <chipcommon.h> 28 #include "debug.h" 29 #include "chip.h" 30 31 /* SOC Interconnect types (aka chip types) */ 32 #define SOCI_SB 0 33 #define SOCI_AI 1 34 35 /* PL-368 DMP definitions */ 36 #define DMP_DESC_TYPE_MSK 0x0000000F 37 #define DMP_DESC_EMPTY 0x00000000 38 #define DMP_DESC_VALID 0x00000001 39 #define DMP_DESC_COMPONENT 0x00000001 40 #define DMP_DESC_MASTER_PORT 0x00000003 41 #define DMP_DESC_ADDRESS 0x00000005 42 #define DMP_DESC_ADDRSIZE_GT32 0x00000008 43 #define DMP_DESC_EOT 0x0000000F 44 45 #define DMP_COMP_DESIGNER 0xFFF00000 46 #define DMP_COMP_DESIGNER_S 20 47 #define DMP_COMP_PARTNUM 0x000FFF00 48 #define DMP_COMP_PARTNUM_S 8 49 #define DMP_COMP_CLASS 0x000000F0 50 #define DMP_COMP_CLASS_S 4 51 #define DMP_COMP_REVISION 0xFF000000 52 #define DMP_COMP_REVISION_S 24 53 #define DMP_COMP_NUM_SWRAP 0x00F80000 54 #define DMP_COMP_NUM_SWRAP_S 19 55 #define DMP_COMP_NUM_MWRAP 0x0007C000 56 #define DMP_COMP_NUM_MWRAP_S 14 57 #define DMP_COMP_NUM_SPORT 0x00003E00 58 #define DMP_COMP_NUM_SPORT_S 9 59 #define DMP_COMP_NUM_MPORT 0x000001F0 60 #define DMP_COMP_NUM_MPORT_S 4 61 62 #define DMP_MASTER_PORT_UID 0x0000FF00 63 #define DMP_MASTER_PORT_UID_S 8 64 #define DMP_MASTER_PORT_NUM 0x000000F0 65 #define DMP_MASTER_PORT_NUM_S 4 66 67 #define DMP_SLAVE_ADDR_BASE 0xFFFFF000 68 #define DMP_SLAVE_ADDR_BASE_S 12 69 #define DMP_SLAVE_PORT_NUM 0x00000F00 70 #define DMP_SLAVE_PORT_NUM_S 8 71 #define DMP_SLAVE_TYPE 0x000000C0 72 #define DMP_SLAVE_TYPE_S 6 73 #define DMP_SLAVE_TYPE_SLAVE 0 74 #define DMP_SLAVE_TYPE_BRIDGE 1 75 #define DMP_SLAVE_TYPE_SWRAP 2 76 #define DMP_SLAVE_TYPE_MWRAP 3 77 #define DMP_SLAVE_SIZE_TYPE 0x00000030 78 #define DMP_SLAVE_SIZE_TYPE_S 4 79 #define DMP_SLAVE_SIZE_4K 0 80 #define DMP_SLAVE_SIZE_8K 1 81 #define DMP_SLAVE_SIZE_16K 2 82 #define DMP_SLAVE_SIZE_DESC 3 83 84 /* EROM CompIdentB */ 85 #define CIB_REV_MASK 0xff000000 86 #define CIB_REV_SHIFT 24 87 88 /* ARM CR4 core specific control flag bits */ 89 #define ARMCR4_BCMA_IOCTL_CPUHALT 0x0020 90 91 /* D11 core specific control flag bits */ 92 #define D11_BCMA_IOCTL_PHYCLOCKEN 0x0004 93 #define D11_BCMA_IOCTL_PHYRESET 0x0008 94 95 /* chip core base & ramsize */ 96 /* bcm4329 */ 97 /* SDIO device core, ID 0x829 */ 98 #define BCM4329_CORE_BUS_BASE 0x18011000 99 /* internal memory core, ID 0x80e */ 100 #define BCM4329_CORE_SOCRAM_BASE 0x18003000 101 /* ARM Cortex M3 core, ID 0x82a */ 102 #define BCM4329_CORE_ARM_BASE 0x18002000 103 104 /* Max possibly supported memory size (limited by IO mapped memory) */ 105 #define BRCMF_CHIP_MAX_MEMSIZE (4 * 1024 * 1024) 106 107 #define CORE_SB(base, field) \ 108 (base + SBCONFIGOFF + offsetof(struct sbconfig, field)) 109 #define SBCOREREV(sbidh) \ 110 ((((sbidh) & SSB_IDHIGH_RCHI) >> SSB_IDHIGH_RCHI_SHIFT) | \ 111 ((sbidh) & SSB_IDHIGH_RCLO)) 112 113 struct sbconfig { 114 u32 PAD[2]; 115 u32 sbipsflag; /* initiator port ocp slave flag */ 116 u32 PAD[3]; 117 u32 sbtpsflag; /* target port ocp slave flag */ 118 u32 PAD[11]; 119 u32 sbtmerrloga; /* (sonics >= 2.3) */ 120 u32 PAD; 121 u32 sbtmerrlog; /* (sonics >= 2.3) */ 122 u32 PAD[3]; 123 u32 sbadmatch3; /* address match3 */ 124 u32 PAD; 125 u32 sbadmatch2; /* address match2 */ 126 u32 PAD; 127 u32 sbadmatch1; /* address match1 */ 128 u32 PAD[7]; 129 u32 sbimstate; /* initiator agent state */ 130 u32 sbintvec; /* interrupt mask */ 131 u32 sbtmstatelow; /* target state */ 132 u32 sbtmstatehigh; /* target state */ 133 u32 sbbwa0; /* bandwidth allocation table0 */ 134 u32 PAD; 135 u32 sbimconfiglow; /* initiator configuration */ 136 u32 sbimconfighigh; /* initiator configuration */ 137 u32 sbadmatch0; /* address match0 */ 138 u32 PAD; 139 u32 sbtmconfiglow; /* target configuration */ 140 u32 sbtmconfighigh; /* target configuration */ 141 u32 sbbconfig; /* broadcast configuration */ 142 u32 PAD; 143 u32 sbbstate; /* broadcast state */ 144 u32 PAD[3]; 145 u32 sbactcnfg; /* activate configuration */ 146 u32 PAD[3]; 147 u32 sbflagst; /* current sbflags */ 148 u32 PAD[3]; 149 u32 sbidlow; /* identification */ 150 u32 sbidhigh; /* identification */ 151 }; 152 153 /* bankidx and bankinfo reg defines corerev >= 8 */ 154 #define SOCRAM_BANKINFO_RETNTRAM_MASK 0x00010000 155 #define SOCRAM_BANKINFO_SZMASK 0x0000007f 156 #define SOCRAM_BANKIDX_ROM_MASK 0x00000100 157 158 #define SOCRAM_BANKIDX_MEMTYPE_SHIFT 8 159 /* socram bankinfo memtype */ 160 #define SOCRAM_MEMTYPE_RAM 0 161 #define SOCRAM_MEMTYPE_R0M 1 162 #define SOCRAM_MEMTYPE_DEVRAM 2 163 164 #define SOCRAM_BANKINFO_SZBASE 8192 165 #define SRCI_LSS_MASK 0x00f00000 166 #define SRCI_LSS_SHIFT 20 167 #define SRCI_SRNB_MASK 0xf0 168 #define SRCI_SRNB_SHIFT 4 169 #define SRCI_SRBSZ_MASK 0xf 170 #define SRCI_SRBSZ_SHIFT 0 171 #define SR_BSZ_BASE 14 172 173 struct sbsocramregs { 174 u32 coreinfo; 175 u32 bwalloc; 176 u32 extracoreinfo; 177 u32 biststat; 178 u32 bankidx; 179 u32 standbyctrl; 180 181 u32 errlogstatus; /* rev 6 */ 182 u32 errlogaddr; /* rev 6 */ 183 /* used for patching rev 3 & 5 */ 184 u32 cambankidx; 185 u32 cambankstandbyctrl; 186 u32 cambankpatchctrl; 187 u32 cambankpatchtblbaseaddr; 188 u32 cambankcmdreg; 189 u32 cambankdatareg; 190 u32 cambankmaskreg; 191 u32 PAD[1]; 192 u32 bankinfo; /* corev 8 */ 193 u32 bankpda; 194 u32 PAD[14]; 195 u32 extmemconfig; 196 u32 extmemparitycsr; 197 u32 extmemparityerrdata; 198 u32 extmemparityerrcnt; 199 u32 extmemwrctrlandsize; 200 u32 PAD[84]; 201 u32 workaround; 202 u32 pwrctl; /* corerev >= 2 */ 203 u32 PAD[133]; 204 u32 sr_control; /* corerev >= 15 */ 205 u32 sr_status; /* corerev >= 15 */ 206 u32 sr_address; /* corerev >= 15 */ 207 u32 sr_data; /* corerev >= 15 */ 208 }; 209 210 #define SOCRAMREGOFFS(_f) offsetof(struct sbsocramregs, _f) 211 #define SYSMEMREGOFFS(_f) offsetof(struct sbsocramregs, _f) 212 213 #define ARMCR4_CAP (0x04) 214 #define ARMCR4_BANKIDX (0x40) 215 #define ARMCR4_BANKINFO (0x44) 216 #define ARMCR4_BANKPDA (0x4C) 217 218 #define ARMCR4_TCBBNB_MASK 0xf0 219 #define ARMCR4_TCBBNB_SHIFT 4 220 #define ARMCR4_TCBANB_MASK 0xf 221 #define ARMCR4_TCBANB_SHIFT 0 222 223 #define ARMCR4_BSZ_MASK 0x3f 224 #define ARMCR4_BSZ_MULT 8192 225 226 struct brcmf_core_priv { 227 struct brcmf_core pub; 228 u32 wrapbase; 229 struct list_head list; 230 struct brcmf_chip_priv *chip; 231 }; 232 233 struct brcmf_chip_priv { 234 struct brcmf_chip pub; 235 const struct brcmf_buscore_ops *ops; 236 void *ctx; 237 /* assured first core is chipcommon, second core is buscore */ 238 struct list_head cores; 239 u16 num_cores; 240 241 bool (*iscoreup)(struct brcmf_core_priv *core); 242 void (*coredisable)(struct brcmf_core_priv *core, u32 prereset, 243 u32 reset); 244 void (*resetcore)(struct brcmf_core_priv *core, u32 prereset, u32 reset, 245 u32 postreset); 246 }; 247 248 static void brcmf_chip_sb_corerev(struct brcmf_chip_priv *ci, 249 struct brcmf_core *core) 250 { 251 u32 regdata; 252 253 regdata = ci->ops->read32(ci->ctx, CORE_SB(core->base, sbidhigh)); 254 core->rev = SBCOREREV(regdata); 255 } 256 257 static bool brcmf_chip_sb_iscoreup(struct brcmf_core_priv *core) 258 { 259 struct brcmf_chip_priv *ci; 260 u32 regdata; 261 u32 address; 262 263 ci = core->chip; 264 address = CORE_SB(core->pub.base, sbtmstatelow); 265 regdata = ci->ops->read32(ci->ctx, address); 266 regdata &= (SSB_TMSLOW_RESET | SSB_TMSLOW_REJECT | 267 SSB_IMSTATE_REJECT | SSB_TMSLOW_CLOCK); 268 return SSB_TMSLOW_CLOCK == regdata; 269 } 270 271 static bool brcmf_chip_ai_iscoreup(struct brcmf_core_priv *core) 272 { 273 struct brcmf_chip_priv *ci; 274 u32 regdata; 275 bool ret; 276 277 ci = core->chip; 278 regdata = ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL); 279 ret = (regdata & (BCMA_IOCTL_FGC | BCMA_IOCTL_CLK)) == BCMA_IOCTL_CLK; 280 281 regdata = ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL); 282 ret = ret && ((regdata & BCMA_RESET_CTL_RESET) == 0); 283 284 return ret; 285 } 286 287 static void brcmf_chip_sb_coredisable(struct brcmf_core_priv *core, 288 u32 prereset, u32 reset) 289 { 290 struct brcmf_chip_priv *ci; 291 u32 val, base; 292 293 ci = core->chip; 294 base = core->pub.base; 295 val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow)); 296 if (val & SSB_TMSLOW_RESET) 297 return; 298 299 val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow)); 300 if ((val & SSB_TMSLOW_CLOCK) != 0) { 301 /* 302 * set target reject and spin until busy is clear 303 * (preserve core-specific bits) 304 */ 305 val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow)); 306 ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow), 307 val | SSB_TMSLOW_REJECT); 308 309 val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow)); 310 udelay(1); 311 SPINWAIT((ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatehigh)) 312 & SSB_TMSHIGH_BUSY), 100000); 313 314 val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatehigh)); 315 if (val & SSB_TMSHIGH_BUSY) 316 brcmf_err("core state still busy\n"); 317 318 val = ci->ops->read32(ci->ctx, CORE_SB(base, sbidlow)); 319 if (val & SSB_IDLOW_INITIATOR) { 320 val = ci->ops->read32(ci->ctx, 321 CORE_SB(base, sbimstate)); 322 val |= SSB_IMSTATE_REJECT; 323 ci->ops->write32(ci->ctx, 324 CORE_SB(base, sbimstate), val); 325 val = ci->ops->read32(ci->ctx, 326 CORE_SB(base, sbimstate)); 327 udelay(1); 328 SPINWAIT((ci->ops->read32(ci->ctx, 329 CORE_SB(base, sbimstate)) & 330 SSB_IMSTATE_BUSY), 100000); 331 } 332 333 /* set reset and reject while enabling the clocks */ 334 val = SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK | 335 SSB_TMSLOW_REJECT | SSB_TMSLOW_RESET; 336 ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow), val); 337 val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow)); 338 udelay(10); 339 340 /* clear the initiator reject bit */ 341 val = ci->ops->read32(ci->ctx, CORE_SB(base, sbidlow)); 342 if (val & SSB_IDLOW_INITIATOR) { 343 val = ci->ops->read32(ci->ctx, 344 CORE_SB(base, sbimstate)); 345 val &= ~SSB_IMSTATE_REJECT; 346 ci->ops->write32(ci->ctx, 347 CORE_SB(base, sbimstate), val); 348 } 349 } 350 351 /* leave reset and reject asserted */ 352 ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow), 353 (SSB_TMSLOW_REJECT | SSB_TMSLOW_RESET)); 354 udelay(1); 355 } 356 357 static void brcmf_chip_ai_coredisable(struct brcmf_core_priv *core, 358 u32 prereset, u32 reset) 359 { 360 struct brcmf_chip_priv *ci; 361 u32 regdata; 362 363 ci = core->chip; 364 365 /* if core is already in reset, skip reset */ 366 regdata = ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL); 367 if ((regdata & BCMA_RESET_CTL_RESET) != 0) 368 goto in_reset_configure; 369 370 /* configure reset */ 371 ci->ops->write32(ci->ctx, core->wrapbase + BCMA_IOCTL, 372 prereset | BCMA_IOCTL_FGC | BCMA_IOCTL_CLK); 373 ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL); 374 375 /* put in reset */ 376 ci->ops->write32(ci->ctx, core->wrapbase + BCMA_RESET_CTL, 377 BCMA_RESET_CTL_RESET); 378 usleep_range(10, 20); 379 380 /* wait till reset is 1 */ 381 SPINWAIT(ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL) != 382 BCMA_RESET_CTL_RESET, 300); 383 384 in_reset_configure: 385 /* in-reset configure */ 386 ci->ops->write32(ci->ctx, core->wrapbase + BCMA_IOCTL, 387 reset | BCMA_IOCTL_FGC | BCMA_IOCTL_CLK); 388 ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL); 389 } 390 391 static void brcmf_chip_sb_resetcore(struct brcmf_core_priv *core, u32 prereset, 392 u32 reset, u32 postreset) 393 { 394 struct brcmf_chip_priv *ci; 395 u32 regdata; 396 u32 base; 397 398 ci = core->chip; 399 base = core->pub.base; 400 /* 401 * Must do the disable sequence first to work for 402 * arbitrary current core state. 403 */ 404 brcmf_chip_sb_coredisable(core, 0, 0); 405 406 /* 407 * Now do the initialization sequence. 408 * set reset while enabling the clock and 409 * forcing them on throughout the core 410 */ 411 ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow), 412 SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK | 413 SSB_TMSLOW_RESET); 414 regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow)); 415 udelay(1); 416 417 /* clear any serror */ 418 regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatehigh)); 419 if (regdata & SSB_TMSHIGH_SERR) 420 ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatehigh), 0); 421 422 regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbimstate)); 423 if (regdata & (SSB_IMSTATE_IBE | SSB_IMSTATE_TO)) { 424 regdata &= ~(SSB_IMSTATE_IBE | SSB_IMSTATE_TO); 425 ci->ops->write32(ci->ctx, CORE_SB(base, sbimstate), regdata); 426 } 427 428 /* clear reset and allow it to propagate throughout the core */ 429 ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow), 430 SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK); 431 regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow)); 432 udelay(1); 433 434 /* leave clock enabled */ 435 ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow), 436 SSB_TMSLOW_CLOCK); 437 regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow)); 438 udelay(1); 439 } 440 441 static void brcmf_chip_ai_resetcore(struct brcmf_core_priv *core, u32 prereset, 442 u32 reset, u32 postreset) 443 { 444 struct brcmf_chip_priv *ci; 445 int count; 446 447 ci = core->chip; 448 449 /* must disable first to work for arbitrary current core state */ 450 brcmf_chip_ai_coredisable(core, prereset, reset); 451 452 count = 0; 453 while (ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL) & 454 BCMA_RESET_CTL_RESET) { 455 ci->ops->write32(ci->ctx, core->wrapbase + BCMA_RESET_CTL, 0); 456 count++; 457 if (count > 50) 458 break; 459 usleep_range(40, 60); 460 } 461 462 ci->ops->write32(ci->ctx, core->wrapbase + BCMA_IOCTL, 463 postreset | BCMA_IOCTL_CLK); 464 ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL); 465 } 466 467 static char *brcmf_chip_name(uint chipid, char *buf, uint len) 468 { 469 const char *fmt; 470 471 fmt = ((chipid > 0xa000) || (chipid < 0x4000)) ? "%d" : "%x"; 472 snprintf(buf, len, fmt, chipid); 473 return buf; 474 } 475 476 static struct brcmf_core *brcmf_chip_add_core(struct brcmf_chip_priv *ci, 477 u16 coreid, u32 base, 478 u32 wrapbase) 479 { 480 struct brcmf_core_priv *core; 481 482 core = kzalloc(sizeof(*core), GFP_KERNEL); 483 if (!core) 484 return ERR_PTR(-ENOMEM); 485 486 core->pub.id = coreid; 487 core->pub.base = base; 488 core->chip = ci; 489 core->wrapbase = wrapbase; 490 491 list_add_tail(&core->list, &ci->cores); 492 return &core->pub; 493 } 494 495 /* safety check for chipinfo */ 496 static int brcmf_chip_cores_check(struct brcmf_chip_priv *ci) 497 { 498 struct brcmf_core_priv *core; 499 bool need_socram = false; 500 bool has_socram = false; 501 bool cpu_found = false; 502 int idx = 1; 503 504 list_for_each_entry(core, &ci->cores, list) { 505 brcmf_dbg(INFO, " [%-2d] core 0x%x:%-2d base 0x%08x wrap 0x%08x\n", 506 idx++, core->pub.id, core->pub.rev, core->pub.base, 507 core->wrapbase); 508 509 switch (core->pub.id) { 510 case BCMA_CORE_ARM_CM3: 511 cpu_found = true; 512 need_socram = true; 513 break; 514 case BCMA_CORE_INTERNAL_MEM: 515 has_socram = true; 516 break; 517 case BCMA_CORE_ARM_CR4: 518 cpu_found = true; 519 break; 520 case BCMA_CORE_ARM_CA7: 521 cpu_found = true; 522 break; 523 default: 524 break; 525 } 526 } 527 528 if (!cpu_found) { 529 brcmf_err("CPU core not detected\n"); 530 return -ENXIO; 531 } 532 /* check RAM core presence for ARM CM3 core */ 533 if (need_socram && !has_socram) { 534 brcmf_err("RAM core not provided with ARM CM3 core\n"); 535 return -ENODEV; 536 } 537 return 0; 538 } 539 540 static u32 brcmf_chip_core_read32(struct brcmf_core_priv *core, u16 reg) 541 { 542 return core->chip->ops->read32(core->chip->ctx, core->pub.base + reg); 543 } 544 545 static void brcmf_chip_core_write32(struct brcmf_core_priv *core, 546 u16 reg, u32 val) 547 { 548 core->chip->ops->write32(core->chip->ctx, core->pub.base + reg, val); 549 } 550 551 static bool brcmf_chip_socram_banksize(struct brcmf_core_priv *core, u8 idx, 552 u32 *banksize) 553 { 554 u32 bankinfo; 555 u32 bankidx = (SOCRAM_MEMTYPE_RAM << SOCRAM_BANKIDX_MEMTYPE_SHIFT); 556 557 bankidx |= idx; 558 brcmf_chip_core_write32(core, SOCRAMREGOFFS(bankidx), bankidx); 559 bankinfo = brcmf_chip_core_read32(core, SOCRAMREGOFFS(bankinfo)); 560 *banksize = (bankinfo & SOCRAM_BANKINFO_SZMASK) + 1; 561 *banksize *= SOCRAM_BANKINFO_SZBASE; 562 return !!(bankinfo & SOCRAM_BANKINFO_RETNTRAM_MASK); 563 } 564 565 static void brcmf_chip_socram_ramsize(struct brcmf_core_priv *sr, u32 *ramsize, 566 u32 *srsize) 567 { 568 u32 coreinfo; 569 uint nb, banksize, lss; 570 bool retent; 571 int i; 572 573 *ramsize = 0; 574 *srsize = 0; 575 576 if (WARN_ON(sr->pub.rev < 4)) 577 return; 578 579 if (!brcmf_chip_iscoreup(&sr->pub)) 580 brcmf_chip_resetcore(&sr->pub, 0, 0, 0); 581 582 /* Get info for determining size */ 583 coreinfo = brcmf_chip_core_read32(sr, SOCRAMREGOFFS(coreinfo)); 584 nb = (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT; 585 586 if ((sr->pub.rev <= 7) || (sr->pub.rev == 12)) { 587 banksize = (coreinfo & SRCI_SRBSZ_MASK); 588 lss = (coreinfo & SRCI_LSS_MASK) >> SRCI_LSS_SHIFT; 589 if (lss != 0) 590 nb--; 591 *ramsize = nb * (1 << (banksize + SR_BSZ_BASE)); 592 if (lss != 0) 593 *ramsize += (1 << ((lss - 1) + SR_BSZ_BASE)); 594 } else { 595 nb = (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT; 596 for (i = 0; i < nb; i++) { 597 retent = brcmf_chip_socram_banksize(sr, i, &banksize); 598 *ramsize += banksize; 599 if (retent) 600 *srsize += banksize; 601 } 602 } 603 604 /* hardcoded save&restore memory sizes */ 605 switch (sr->chip->pub.chip) { 606 case BRCM_CC_4334_CHIP_ID: 607 if (sr->chip->pub.chiprev < 2) 608 *srsize = (32 * 1024); 609 break; 610 case BRCM_CC_43430_CHIP_ID: 611 /* assume sr for now as we can not check 612 * firmware sr capability at this point. 613 */ 614 *srsize = (64 * 1024); 615 break; 616 default: 617 break; 618 } 619 } 620 621 /** Return the SYS MEM size */ 622 static u32 brcmf_chip_sysmem_ramsize(struct brcmf_core_priv *sysmem) 623 { 624 u32 memsize = 0; 625 u32 coreinfo; 626 u32 idx; 627 u32 nb; 628 u32 banksize; 629 630 if (!brcmf_chip_iscoreup(&sysmem->pub)) 631 brcmf_chip_resetcore(&sysmem->pub, 0, 0, 0); 632 633 coreinfo = brcmf_chip_core_read32(sysmem, SYSMEMREGOFFS(coreinfo)); 634 nb = (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT; 635 636 for (idx = 0; idx < nb; idx++) { 637 brcmf_chip_socram_banksize(sysmem, idx, &banksize); 638 memsize += banksize; 639 } 640 641 return memsize; 642 } 643 644 /** Return the TCM-RAM size of the ARMCR4 core. */ 645 static u32 brcmf_chip_tcm_ramsize(struct brcmf_core_priv *cr4) 646 { 647 u32 corecap; 648 u32 memsize = 0; 649 u32 nab; 650 u32 nbb; 651 u32 totb; 652 u32 bxinfo; 653 u32 idx; 654 655 corecap = brcmf_chip_core_read32(cr4, ARMCR4_CAP); 656 657 nab = (corecap & ARMCR4_TCBANB_MASK) >> ARMCR4_TCBANB_SHIFT; 658 nbb = (corecap & ARMCR4_TCBBNB_MASK) >> ARMCR4_TCBBNB_SHIFT; 659 totb = nab + nbb; 660 661 for (idx = 0; idx < totb; idx++) { 662 brcmf_chip_core_write32(cr4, ARMCR4_BANKIDX, idx); 663 bxinfo = brcmf_chip_core_read32(cr4, ARMCR4_BANKINFO); 664 memsize += ((bxinfo & ARMCR4_BSZ_MASK) + 1) * ARMCR4_BSZ_MULT; 665 } 666 667 return memsize; 668 } 669 670 static u32 brcmf_chip_tcm_rambase(struct brcmf_chip_priv *ci) 671 { 672 switch (ci->pub.chip) { 673 case BRCM_CC_4345_CHIP_ID: 674 return 0x198000; 675 case BRCM_CC_4335_CHIP_ID: 676 case BRCM_CC_4339_CHIP_ID: 677 case BRCM_CC_4350_CHIP_ID: 678 case BRCM_CC_4354_CHIP_ID: 679 case BRCM_CC_4356_CHIP_ID: 680 case BRCM_CC_43567_CHIP_ID: 681 case BRCM_CC_43569_CHIP_ID: 682 case BRCM_CC_43570_CHIP_ID: 683 case BRCM_CC_4358_CHIP_ID: 684 case BRCM_CC_4359_CHIP_ID: 685 case BRCM_CC_43602_CHIP_ID: 686 case BRCM_CC_4371_CHIP_ID: 687 return 0x180000; 688 case BRCM_CC_43465_CHIP_ID: 689 case BRCM_CC_43525_CHIP_ID: 690 case BRCM_CC_4365_CHIP_ID: 691 case BRCM_CC_4366_CHIP_ID: 692 return 0x200000; 693 case CY_CC_4373_CHIP_ID: 694 return 0x160000; 695 default: 696 brcmf_err("unknown chip: %s\n", ci->pub.name); 697 break; 698 } 699 return 0; 700 } 701 702 static int brcmf_chip_get_raminfo(struct brcmf_chip_priv *ci) 703 { 704 struct brcmf_core_priv *mem_core; 705 struct brcmf_core *mem; 706 707 mem = brcmf_chip_get_core(&ci->pub, BCMA_CORE_ARM_CR4); 708 if (mem) { 709 mem_core = container_of(mem, struct brcmf_core_priv, pub); 710 ci->pub.ramsize = brcmf_chip_tcm_ramsize(mem_core); 711 ci->pub.rambase = brcmf_chip_tcm_rambase(ci); 712 if (!ci->pub.rambase) { 713 brcmf_err("RAM base not provided with ARM CR4 core\n"); 714 return -EINVAL; 715 } 716 } else { 717 mem = brcmf_chip_get_core(&ci->pub, BCMA_CORE_SYS_MEM); 718 if (mem) { 719 mem_core = container_of(mem, struct brcmf_core_priv, 720 pub); 721 ci->pub.ramsize = brcmf_chip_sysmem_ramsize(mem_core); 722 ci->pub.rambase = brcmf_chip_tcm_rambase(ci); 723 if (!ci->pub.rambase) { 724 brcmf_err("RAM base not provided with ARM CA7 core\n"); 725 return -EINVAL; 726 } 727 } else { 728 mem = brcmf_chip_get_core(&ci->pub, 729 BCMA_CORE_INTERNAL_MEM); 730 if (!mem) { 731 brcmf_err("No memory cores found\n"); 732 return -ENOMEM; 733 } 734 mem_core = container_of(mem, struct brcmf_core_priv, 735 pub); 736 brcmf_chip_socram_ramsize(mem_core, &ci->pub.ramsize, 737 &ci->pub.srsize); 738 } 739 } 740 brcmf_dbg(INFO, "RAM: base=0x%x size=%d (0x%x) sr=%d (0x%x)\n", 741 ci->pub.rambase, ci->pub.ramsize, ci->pub.ramsize, 742 ci->pub.srsize, ci->pub.srsize); 743 744 if (!ci->pub.ramsize) { 745 brcmf_err("RAM size is undetermined\n"); 746 return -ENOMEM; 747 } 748 749 if (ci->pub.ramsize > BRCMF_CHIP_MAX_MEMSIZE) { 750 brcmf_err("RAM size is incorrect\n"); 751 return -ENOMEM; 752 } 753 754 return 0; 755 } 756 757 static u32 brcmf_chip_dmp_get_desc(struct brcmf_chip_priv *ci, u32 *eromaddr, 758 u8 *type) 759 { 760 u32 val; 761 762 /* read next descriptor */ 763 val = ci->ops->read32(ci->ctx, *eromaddr); 764 *eromaddr += 4; 765 766 if (!type) 767 return val; 768 769 /* determine descriptor type */ 770 *type = (val & DMP_DESC_TYPE_MSK); 771 if ((*type & ~DMP_DESC_ADDRSIZE_GT32) == DMP_DESC_ADDRESS) 772 *type = DMP_DESC_ADDRESS; 773 774 return val; 775 } 776 777 static int brcmf_chip_dmp_get_regaddr(struct brcmf_chip_priv *ci, u32 *eromaddr, 778 u32 *regbase, u32 *wrapbase) 779 { 780 u8 desc; 781 u32 val; 782 u8 mpnum = 0; 783 u8 stype, sztype, wraptype; 784 785 *regbase = 0; 786 *wrapbase = 0; 787 788 val = brcmf_chip_dmp_get_desc(ci, eromaddr, &desc); 789 if (desc == DMP_DESC_MASTER_PORT) { 790 mpnum = (val & DMP_MASTER_PORT_NUM) >> DMP_MASTER_PORT_NUM_S; 791 wraptype = DMP_SLAVE_TYPE_MWRAP; 792 } else if (desc == DMP_DESC_ADDRESS) { 793 /* revert erom address */ 794 *eromaddr -= 4; 795 wraptype = DMP_SLAVE_TYPE_SWRAP; 796 } else { 797 *eromaddr -= 4; 798 return -EILSEQ; 799 } 800 801 do { 802 /* locate address descriptor */ 803 do { 804 val = brcmf_chip_dmp_get_desc(ci, eromaddr, &desc); 805 /* unexpected table end */ 806 if (desc == DMP_DESC_EOT) { 807 *eromaddr -= 4; 808 return -EFAULT; 809 } 810 } while (desc != DMP_DESC_ADDRESS && 811 desc != DMP_DESC_COMPONENT); 812 813 /* stop if we crossed current component border */ 814 if (desc == DMP_DESC_COMPONENT) { 815 *eromaddr -= 4; 816 return 0; 817 } 818 819 /* skip upper 32-bit address descriptor */ 820 if (val & DMP_DESC_ADDRSIZE_GT32) 821 brcmf_chip_dmp_get_desc(ci, eromaddr, NULL); 822 823 sztype = (val & DMP_SLAVE_SIZE_TYPE) >> DMP_SLAVE_SIZE_TYPE_S; 824 825 /* next size descriptor can be skipped */ 826 if (sztype == DMP_SLAVE_SIZE_DESC) { 827 val = brcmf_chip_dmp_get_desc(ci, eromaddr, NULL); 828 /* skip upper size descriptor if present */ 829 if (val & DMP_DESC_ADDRSIZE_GT32) 830 brcmf_chip_dmp_get_desc(ci, eromaddr, NULL); 831 } 832 833 /* only look for 4K register regions */ 834 if (sztype != DMP_SLAVE_SIZE_4K) 835 continue; 836 837 stype = (val & DMP_SLAVE_TYPE) >> DMP_SLAVE_TYPE_S; 838 839 /* only regular slave and wrapper */ 840 if (*regbase == 0 && stype == DMP_SLAVE_TYPE_SLAVE) 841 *regbase = val & DMP_SLAVE_ADDR_BASE; 842 if (*wrapbase == 0 && stype == wraptype) 843 *wrapbase = val & DMP_SLAVE_ADDR_BASE; 844 } while (*regbase == 0 || *wrapbase == 0); 845 846 return 0; 847 } 848 849 static 850 int brcmf_chip_dmp_erom_scan(struct brcmf_chip_priv *ci) 851 { 852 struct brcmf_core *core; 853 u32 eromaddr; 854 u8 desc_type = 0; 855 u32 val; 856 u16 id; 857 u8 nmp, nsp, nmw, nsw, rev; 858 u32 base, wrap; 859 int err; 860 861 eromaddr = ci->ops->read32(ci->ctx, CORE_CC_REG(SI_ENUM_BASE, eromptr)); 862 863 while (desc_type != DMP_DESC_EOT) { 864 val = brcmf_chip_dmp_get_desc(ci, &eromaddr, &desc_type); 865 if (!(val & DMP_DESC_VALID)) 866 continue; 867 868 if (desc_type == DMP_DESC_EMPTY) 869 continue; 870 871 /* need a component descriptor */ 872 if (desc_type != DMP_DESC_COMPONENT) 873 continue; 874 875 id = (val & DMP_COMP_PARTNUM) >> DMP_COMP_PARTNUM_S; 876 877 /* next descriptor must be component as well */ 878 val = brcmf_chip_dmp_get_desc(ci, &eromaddr, &desc_type); 879 if (WARN_ON((val & DMP_DESC_TYPE_MSK) != DMP_DESC_COMPONENT)) 880 return -EFAULT; 881 882 /* only look at cores with master port(s) */ 883 nmp = (val & DMP_COMP_NUM_MPORT) >> DMP_COMP_NUM_MPORT_S; 884 nsp = (val & DMP_COMP_NUM_SPORT) >> DMP_COMP_NUM_SPORT_S; 885 nmw = (val & DMP_COMP_NUM_MWRAP) >> DMP_COMP_NUM_MWRAP_S; 886 nsw = (val & DMP_COMP_NUM_SWRAP) >> DMP_COMP_NUM_SWRAP_S; 887 rev = (val & DMP_COMP_REVISION) >> DMP_COMP_REVISION_S; 888 889 /* need core with ports */ 890 if (nmw + nsw == 0 && 891 id != BCMA_CORE_PMU) 892 continue; 893 894 /* try to obtain register address info */ 895 err = brcmf_chip_dmp_get_regaddr(ci, &eromaddr, &base, &wrap); 896 if (err) 897 continue; 898 899 /* finally a core to be added */ 900 core = brcmf_chip_add_core(ci, id, base, wrap); 901 if (IS_ERR(core)) 902 return PTR_ERR(core); 903 904 core->rev = rev; 905 } 906 907 return 0; 908 } 909 910 static int brcmf_chip_recognition(struct brcmf_chip_priv *ci) 911 { 912 struct brcmf_core *core; 913 u32 regdata; 914 u32 socitype; 915 int ret; 916 917 /* Get CC core rev 918 * Chipid is assume to be at offset 0 from SI_ENUM_BASE 919 * For different chiptypes or old sdio hosts w/o chipcommon, 920 * other ways of recognition should be added here. 921 */ 922 regdata = ci->ops->read32(ci->ctx, CORE_CC_REG(SI_ENUM_BASE, chipid)); 923 ci->pub.chip = regdata & CID_ID_MASK; 924 ci->pub.chiprev = (regdata & CID_REV_MASK) >> CID_REV_SHIFT; 925 socitype = (regdata & CID_TYPE_MASK) >> CID_TYPE_SHIFT; 926 927 brcmf_chip_name(ci->pub.chip, ci->pub.name, sizeof(ci->pub.name)); 928 brcmf_dbg(INFO, "found %s chip: BCM%s, rev=%d\n", 929 socitype == SOCI_SB ? "SB" : "AXI", ci->pub.name, 930 ci->pub.chiprev); 931 932 if (socitype == SOCI_SB) { 933 if (ci->pub.chip != BRCM_CC_4329_CHIP_ID) { 934 brcmf_err("SB chip is not supported\n"); 935 return -ENODEV; 936 } 937 ci->iscoreup = brcmf_chip_sb_iscoreup; 938 ci->coredisable = brcmf_chip_sb_coredisable; 939 ci->resetcore = brcmf_chip_sb_resetcore; 940 941 core = brcmf_chip_add_core(ci, BCMA_CORE_CHIPCOMMON, 942 SI_ENUM_BASE, 0); 943 brcmf_chip_sb_corerev(ci, core); 944 core = brcmf_chip_add_core(ci, BCMA_CORE_SDIO_DEV, 945 BCM4329_CORE_BUS_BASE, 0); 946 brcmf_chip_sb_corerev(ci, core); 947 core = brcmf_chip_add_core(ci, BCMA_CORE_INTERNAL_MEM, 948 BCM4329_CORE_SOCRAM_BASE, 0); 949 brcmf_chip_sb_corerev(ci, core); 950 core = brcmf_chip_add_core(ci, BCMA_CORE_ARM_CM3, 951 BCM4329_CORE_ARM_BASE, 0); 952 brcmf_chip_sb_corerev(ci, core); 953 954 core = brcmf_chip_add_core(ci, BCMA_CORE_80211, 0x18001000, 0); 955 brcmf_chip_sb_corerev(ci, core); 956 } else if (socitype == SOCI_AI) { 957 ci->iscoreup = brcmf_chip_ai_iscoreup; 958 ci->coredisable = brcmf_chip_ai_coredisable; 959 ci->resetcore = brcmf_chip_ai_resetcore; 960 961 brcmf_chip_dmp_erom_scan(ci); 962 } else { 963 brcmf_err("chip backplane type %u is not supported\n", 964 socitype); 965 return -ENODEV; 966 } 967 968 ret = brcmf_chip_cores_check(ci); 969 if (ret) 970 return ret; 971 972 /* assure chip is passive for core access */ 973 brcmf_chip_set_passive(&ci->pub); 974 975 /* Call bus specific reset function now. Cores have been determined 976 * but further access may require a chip specific reset at this point. 977 */ 978 if (ci->ops->reset) { 979 ci->ops->reset(ci->ctx, &ci->pub); 980 brcmf_chip_set_passive(&ci->pub); 981 } 982 983 return brcmf_chip_get_raminfo(ci); 984 } 985 986 static void brcmf_chip_disable_arm(struct brcmf_chip_priv *chip, u16 id) 987 { 988 struct brcmf_core *core; 989 struct brcmf_core_priv *cpu; 990 u32 val; 991 992 993 core = brcmf_chip_get_core(&chip->pub, id); 994 if (!core) 995 return; 996 997 switch (id) { 998 case BCMA_CORE_ARM_CM3: 999 brcmf_chip_coredisable(core, 0, 0); 1000 break; 1001 case BCMA_CORE_ARM_CR4: 1002 case BCMA_CORE_ARM_CA7: 1003 cpu = container_of(core, struct brcmf_core_priv, pub); 1004 1005 /* clear all IOCTL bits except HALT bit */ 1006 val = chip->ops->read32(chip->ctx, cpu->wrapbase + BCMA_IOCTL); 1007 val &= ARMCR4_BCMA_IOCTL_CPUHALT; 1008 brcmf_chip_resetcore(core, val, ARMCR4_BCMA_IOCTL_CPUHALT, 1009 ARMCR4_BCMA_IOCTL_CPUHALT); 1010 break; 1011 default: 1012 brcmf_err("unknown id: %u\n", id); 1013 break; 1014 } 1015 } 1016 1017 static int brcmf_chip_setup(struct brcmf_chip_priv *chip) 1018 { 1019 struct brcmf_chip *pub; 1020 struct brcmf_core_priv *cc; 1021 struct brcmf_core *pmu; 1022 u32 base; 1023 u32 val; 1024 int ret = 0; 1025 1026 pub = &chip->pub; 1027 cc = list_first_entry(&chip->cores, struct brcmf_core_priv, list); 1028 base = cc->pub.base; 1029 1030 /* get chipcommon capabilites */ 1031 pub->cc_caps = chip->ops->read32(chip->ctx, 1032 CORE_CC_REG(base, capabilities)); 1033 pub->cc_caps_ext = chip->ops->read32(chip->ctx, 1034 CORE_CC_REG(base, 1035 capabilities_ext)); 1036 1037 /* get pmu caps & rev */ 1038 pmu = brcmf_chip_get_pmu(pub); /* after reading cc_caps_ext */ 1039 if (pub->cc_caps & CC_CAP_PMU) { 1040 val = chip->ops->read32(chip->ctx, 1041 CORE_CC_REG(pmu->base, pmucapabilities)); 1042 pub->pmurev = val & PCAP_REV_MASK; 1043 pub->pmucaps = val; 1044 } 1045 1046 brcmf_dbg(INFO, "ccrev=%d, pmurev=%d, pmucaps=0x%x\n", 1047 cc->pub.rev, pub->pmurev, pub->pmucaps); 1048 1049 /* execute bus core specific setup */ 1050 if (chip->ops->setup) 1051 ret = chip->ops->setup(chip->ctx, pub); 1052 1053 return ret; 1054 } 1055 1056 struct brcmf_chip *brcmf_chip_attach(void *ctx, 1057 const struct brcmf_buscore_ops *ops) 1058 { 1059 struct brcmf_chip_priv *chip; 1060 int err = 0; 1061 1062 if (WARN_ON(!ops->read32)) 1063 err = -EINVAL; 1064 if (WARN_ON(!ops->write32)) 1065 err = -EINVAL; 1066 if (WARN_ON(!ops->prepare)) 1067 err = -EINVAL; 1068 if (WARN_ON(!ops->activate)) 1069 err = -EINVAL; 1070 if (err < 0) 1071 return ERR_PTR(-EINVAL); 1072 1073 chip = kzalloc(sizeof(*chip), GFP_KERNEL); 1074 if (!chip) 1075 return ERR_PTR(-ENOMEM); 1076 1077 INIT_LIST_HEAD(&chip->cores); 1078 chip->num_cores = 0; 1079 chip->ops = ops; 1080 chip->ctx = ctx; 1081 1082 err = ops->prepare(ctx); 1083 if (err < 0) 1084 goto fail; 1085 1086 err = brcmf_chip_recognition(chip); 1087 if (err < 0) 1088 goto fail; 1089 1090 err = brcmf_chip_setup(chip); 1091 if (err < 0) 1092 goto fail; 1093 1094 return &chip->pub; 1095 1096 fail: 1097 brcmf_chip_detach(&chip->pub); 1098 return ERR_PTR(err); 1099 } 1100 1101 void brcmf_chip_detach(struct brcmf_chip *pub) 1102 { 1103 struct brcmf_chip_priv *chip; 1104 struct brcmf_core_priv *core; 1105 struct brcmf_core_priv *tmp; 1106 1107 chip = container_of(pub, struct brcmf_chip_priv, pub); 1108 list_for_each_entry_safe(core, tmp, &chip->cores, list) { 1109 list_del(&core->list); 1110 kfree(core); 1111 } 1112 kfree(chip); 1113 } 1114 1115 struct brcmf_core *brcmf_chip_get_core(struct brcmf_chip *pub, u16 coreid) 1116 { 1117 struct brcmf_chip_priv *chip; 1118 struct brcmf_core_priv *core; 1119 1120 chip = container_of(pub, struct brcmf_chip_priv, pub); 1121 list_for_each_entry(core, &chip->cores, list) 1122 if (core->pub.id == coreid) 1123 return &core->pub; 1124 1125 return NULL; 1126 } 1127 1128 struct brcmf_core *brcmf_chip_get_chipcommon(struct brcmf_chip *pub) 1129 { 1130 struct brcmf_chip_priv *chip; 1131 struct brcmf_core_priv *cc; 1132 1133 chip = container_of(pub, struct brcmf_chip_priv, pub); 1134 cc = list_first_entry(&chip->cores, struct brcmf_core_priv, list); 1135 if (WARN_ON(!cc || cc->pub.id != BCMA_CORE_CHIPCOMMON)) 1136 return brcmf_chip_get_core(pub, BCMA_CORE_CHIPCOMMON); 1137 return &cc->pub; 1138 } 1139 1140 struct brcmf_core *brcmf_chip_get_pmu(struct brcmf_chip *pub) 1141 { 1142 struct brcmf_core *cc = brcmf_chip_get_chipcommon(pub); 1143 struct brcmf_core *pmu; 1144 1145 /* See if there is separated PMU core available */ 1146 if (cc->rev >= 35 && 1147 pub->cc_caps_ext & BCMA_CC_CAP_EXT_AOB_PRESENT) { 1148 pmu = brcmf_chip_get_core(pub, BCMA_CORE_PMU); 1149 if (pmu) 1150 return pmu; 1151 } 1152 1153 /* Fallback to ChipCommon core for older hardware */ 1154 return cc; 1155 } 1156 1157 bool brcmf_chip_iscoreup(struct brcmf_core *pub) 1158 { 1159 struct brcmf_core_priv *core; 1160 1161 core = container_of(pub, struct brcmf_core_priv, pub); 1162 return core->chip->iscoreup(core); 1163 } 1164 1165 void brcmf_chip_coredisable(struct brcmf_core *pub, u32 prereset, u32 reset) 1166 { 1167 struct brcmf_core_priv *core; 1168 1169 core = container_of(pub, struct brcmf_core_priv, pub); 1170 core->chip->coredisable(core, prereset, reset); 1171 } 1172 1173 void brcmf_chip_resetcore(struct brcmf_core *pub, u32 prereset, u32 reset, 1174 u32 postreset) 1175 { 1176 struct brcmf_core_priv *core; 1177 1178 core = container_of(pub, struct brcmf_core_priv, pub); 1179 core->chip->resetcore(core, prereset, reset, postreset); 1180 } 1181 1182 static void 1183 brcmf_chip_cm3_set_passive(struct brcmf_chip_priv *chip) 1184 { 1185 struct brcmf_core *core; 1186 struct brcmf_core_priv *sr; 1187 1188 brcmf_chip_disable_arm(chip, BCMA_CORE_ARM_CM3); 1189 core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_80211); 1190 brcmf_chip_resetcore(core, D11_BCMA_IOCTL_PHYRESET | 1191 D11_BCMA_IOCTL_PHYCLOCKEN, 1192 D11_BCMA_IOCTL_PHYCLOCKEN, 1193 D11_BCMA_IOCTL_PHYCLOCKEN); 1194 core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_INTERNAL_MEM); 1195 brcmf_chip_resetcore(core, 0, 0, 0); 1196 1197 /* disable bank #3 remap for this device */ 1198 if (chip->pub.chip == BRCM_CC_43430_CHIP_ID) { 1199 sr = container_of(core, struct brcmf_core_priv, pub); 1200 brcmf_chip_core_write32(sr, SOCRAMREGOFFS(bankidx), 3); 1201 brcmf_chip_core_write32(sr, SOCRAMREGOFFS(bankpda), 0); 1202 } 1203 } 1204 1205 static bool brcmf_chip_cm3_set_active(struct brcmf_chip_priv *chip) 1206 { 1207 struct brcmf_core *core; 1208 1209 core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_INTERNAL_MEM); 1210 if (!brcmf_chip_iscoreup(core)) { 1211 brcmf_err("SOCRAM core is down after reset?\n"); 1212 return false; 1213 } 1214 1215 chip->ops->activate(chip->ctx, &chip->pub, 0); 1216 1217 core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_ARM_CM3); 1218 brcmf_chip_resetcore(core, 0, 0, 0); 1219 1220 return true; 1221 } 1222 1223 static inline void 1224 brcmf_chip_cr4_set_passive(struct brcmf_chip_priv *chip) 1225 { 1226 struct brcmf_core *core; 1227 1228 brcmf_chip_disable_arm(chip, BCMA_CORE_ARM_CR4); 1229 1230 core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_80211); 1231 brcmf_chip_resetcore(core, D11_BCMA_IOCTL_PHYRESET | 1232 D11_BCMA_IOCTL_PHYCLOCKEN, 1233 D11_BCMA_IOCTL_PHYCLOCKEN, 1234 D11_BCMA_IOCTL_PHYCLOCKEN); 1235 } 1236 1237 static bool brcmf_chip_cr4_set_active(struct brcmf_chip_priv *chip, u32 rstvec) 1238 { 1239 struct brcmf_core *core; 1240 1241 chip->ops->activate(chip->ctx, &chip->pub, rstvec); 1242 1243 /* restore ARM */ 1244 core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_ARM_CR4); 1245 brcmf_chip_resetcore(core, ARMCR4_BCMA_IOCTL_CPUHALT, 0, 0); 1246 1247 return true; 1248 } 1249 1250 static inline void 1251 brcmf_chip_ca7_set_passive(struct brcmf_chip_priv *chip) 1252 { 1253 struct brcmf_core *core; 1254 1255 brcmf_chip_disable_arm(chip, BCMA_CORE_ARM_CA7); 1256 1257 core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_80211); 1258 brcmf_chip_resetcore(core, D11_BCMA_IOCTL_PHYRESET | 1259 D11_BCMA_IOCTL_PHYCLOCKEN, 1260 D11_BCMA_IOCTL_PHYCLOCKEN, 1261 D11_BCMA_IOCTL_PHYCLOCKEN); 1262 } 1263 1264 static bool brcmf_chip_ca7_set_active(struct brcmf_chip_priv *chip, u32 rstvec) 1265 { 1266 struct brcmf_core *core; 1267 1268 chip->ops->activate(chip->ctx, &chip->pub, rstvec); 1269 1270 /* restore ARM */ 1271 core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_ARM_CA7); 1272 brcmf_chip_resetcore(core, ARMCR4_BCMA_IOCTL_CPUHALT, 0, 0); 1273 1274 return true; 1275 } 1276 1277 void brcmf_chip_set_passive(struct brcmf_chip *pub) 1278 { 1279 struct brcmf_chip_priv *chip; 1280 struct brcmf_core *arm; 1281 1282 brcmf_dbg(TRACE, "Enter\n"); 1283 1284 chip = container_of(pub, struct brcmf_chip_priv, pub); 1285 arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CR4); 1286 if (arm) { 1287 brcmf_chip_cr4_set_passive(chip); 1288 return; 1289 } 1290 arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CA7); 1291 if (arm) { 1292 brcmf_chip_ca7_set_passive(chip); 1293 return; 1294 } 1295 arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CM3); 1296 if (arm) { 1297 brcmf_chip_cm3_set_passive(chip); 1298 return; 1299 } 1300 } 1301 1302 bool brcmf_chip_set_active(struct brcmf_chip *pub, u32 rstvec) 1303 { 1304 struct brcmf_chip_priv *chip; 1305 struct brcmf_core *arm; 1306 1307 brcmf_dbg(TRACE, "Enter\n"); 1308 1309 chip = container_of(pub, struct brcmf_chip_priv, pub); 1310 arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CR4); 1311 if (arm) 1312 return brcmf_chip_cr4_set_active(chip, rstvec); 1313 arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CA7); 1314 if (arm) 1315 return brcmf_chip_ca7_set_active(chip, rstvec); 1316 arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CM3); 1317 if (arm) 1318 return brcmf_chip_cm3_set_active(chip); 1319 1320 return false; 1321 } 1322 1323 bool brcmf_chip_sr_capable(struct brcmf_chip *pub) 1324 { 1325 u32 base, addr, reg, pmu_cc3_mask = ~0; 1326 struct brcmf_chip_priv *chip; 1327 struct brcmf_core *pmu = brcmf_chip_get_pmu(pub); 1328 1329 brcmf_dbg(TRACE, "Enter\n"); 1330 1331 /* old chips with PMU version less than 17 don't support save restore */ 1332 if (pub->pmurev < 17) 1333 return false; 1334 1335 base = brcmf_chip_get_chipcommon(pub)->base; 1336 chip = container_of(pub, struct brcmf_chip_priv, pub); 1337 1338 switch (pub->chip) { 1339 case BRCM_CC_4354_CHIP_ID: 1340 case BRCM_CC_4356_CHIP_ID: 1341 /* explicitly check SR engine enable bit */ 1342 pmu_cc3_mask = BIT(2); 1343 /* fall-through */ 1344 case BRCM_CC_43241_CHIP_ID: 1345 case BRCM_CC_4335_CHIP_ID: 1346 case BRCM_CC_4339_CHIP_ID: 1347 /* read PMU chipcontrol register 3 */ 1348 addr = CORE_CC_REG(pmu->base, chipcontrol_addr); 1349 chip->ops->write32(chip->ctx, addr, 3); 1350 addr = CORE_CC_REG(pmu->base, chipcontrol_data); 1351 reg = chip->ops->read32(chip->ctx, addr); 1352 return (reg & pmu_cc3_mask) != 0; 1353 case BRCM_CC_43430_CHIP_ID: 1354 addr = CORE_CC_REG(base, sr_control1); 1355 reg = chip->ops->read32(chip->ctx, addr); 1356 return reg != 0; 1357 default: 1358 addr = CORE_CC_REG(pmu->base, pmucapabilities_ext); 1359 reg = chip->ops->read32(chip->ctx, addr); 1360 if ((reg & PCAPEXT_SR_SUPPORTED_MASK) == 0) 1361 return false; 1362 1363 addr = CORE_CC_REG(pmu->base, retention_ctl); 1364 reg = chip->ops->read32(chip->ctx, addr); 1365 return (reg & (PMU_RCTL_MACPHY_DISABLE_MASK | 1366 PMU_RCTL_LOGIC_DISABLE_MASK)) == 0; 1367 } 1368 } 1369