1 // SPDX-License-Identifier: ISC 2 /* 3 * Copyright (c) 2014 Broadcom Corporation 4 */ 5 #include <linux/kernel.h> 6 #include <linux/delay.h> 7 #include <linux/list.h> 8 #include <linux/ssb/ssb_regs.h> 9 #include <linux/bcma/bcma.h> 10 #include <linux/bcma/bcma_regs.h> 11 12 #include <defs.h> 13 #include <soc.h> 14 #include <brcm_hw_ids.h> 15 #include <brcmu_utils.h> 16 #include <chipcommon.h> 17 #include "debug.h" 18 #include "chip.h" 19 20 /* SOC Interconnect types (aka chip types) */ 21 #define SOCI_SB 0 22 #define SOCI_AI 1 23 24 /* PL-368 DMP definitions */ 25 #define DMP_DESC_TYPE_MSK 0x0000000F 26 #define DMP_DESC_EMPTY 0x00000000 27 #define DMP_DESC_VALID 0x00000001 28 #define DMP_DESC_COMPONENT 0x00000001 29 #define DMP_DESC_MASTER_PORT 0x00000003 30 #define DMP_DESC_ADDRESS 0x00000005 31 #define DMP_DESC_ADDRSIZE_GT32 0x00000008 32 #define DMP_DESC_EOT 0x0000000F 33 34 #define DMP_COMP_DESIGNER 0xFFF00000 35 #define DMP_COMP_DESIGNER_S 20 36 #define DMP_COMP_PARTNUM 0x000FFF00 37 #define DMP_COMP_PARTNUM_S 8 38 #define DMP_COMP_CLASS 0x000000F0 39 #define DMP_COMP_CLASS_S 4 40 #define DMP_COMP_REVISION 0xFF000000 41 #define DMP_COMP_REVISION_S 24 42 #define DMP_COMP_NUM_SWRAP 0x00F80000 43 #define DMP_COMP_NUM_SWRAP_S 19 44 #define DMP_COMP_NUM_MWRAP 0x0007C000 45 #define DMP_COMP_NUM_MWRAP_S 14 46 #define DMP_COMP_NUM_SPORT 0x00003E00 47 #define DMP_COMP_NUM_SPORT_S 9 48 #define DMP_COMP_NUM_MPORT 0x000001F0 49 #define DMP_COMP_NUM_MPORT_S 4 50 51 #define DMP_MASTER_PORT_UID 0x0000FF00 52 #define DMP_MASTER_PORT_UID_S 8 53 #define DMP_MASTER_PORT_NUM 0x000000F0 54 #define DMP_MASTER_PORT_NUM_S 4 55 56 #define DMP_SLAVE_ADDR_BASE 0xFFFFF000 57 #define DMP_SLAVE_ADDR_BASE_S 12 58 #define DMP_SLAVE_PORT_NUM 0x00000F00 59 #define DMP_SLAVE_PORT_NUM_S 8 60 #define DMP_SLAVE_TYPE 0x000000C0 61 #define DMP_SLAVE_TYPE_S 6 62 #define DMP_SLAVE_TYPE_SLAVE 0 63 #define DMP_SLAVE_TYPE_BRIDGE 1 64 #define DMP_SLAVE_TYPE_SWRAP 2 65 #define DMP_SLAVE_TYPE_MWRAP 3 66 #define DMP_SLAVE_SIZE_TYPE 0x00000030 67 #define DMP_SLAVE_SIZE_TYPE_S 4 68 #define DMP_SLAVE_SIZE_4K 0 69 #define DMP_SLAVE_SIZE_8K 1 70 #define DMP_SLAVE_SIZE_16K 2 71 #define DMP_SLAVE_SIZE_DESC 3 72 73 /* EROM CompIdentB */ 74 #define CIB_REV_MASK 0xff000000 75 #define CIB_REV_SHIFT 24 76 77 /* ARM CR4 core specific control flag bits */ 78 #define ARMCR4_BCMA_IOCTL_CPUHALT 0x0020 79 80 /* D11 core specific control flag bits */ 81 #define D11_BCMA_IOCTL_PHYCLOCKEN 0x0004 82 #define D11_BCMA_IOCTL_PHYRESET 0x0008 83 84 /* chip core base & ramsize */ 85 /* bcm4329 */ 86 /* SDIO device core, ID 0x829 */ 87 #define BCM4329_CORE_BUS_BASE 0x18011000 88 /* internal memory core, ID 0x80e */ 89 #define BCM4329_CORE_SOCRAM_BASE 0x18003000 90 /* ARM Cortex M3 core, ID 0x82a */ 91 #define BCM4329_CORE_ARM_BASE 0x18002000 92 93 /* Max possibly supported memory size (limited by IO mapped memory) */ 94 #define BRCMF_CHIP_MAX_MEMSIZE (4 * 1024 * 1024) 95 96 #define CORE_SB(base, field) \ 97 (base + SBCONFIGOFF + offsetof(struct sbconfig, field)) 98 #define SBCOREREV(sbidh) \ 99 ((((sbidh) & SSB_IDHIGH_RCHI) >> SSB_IDHIGH_RCHI_SHIFT) | \ 100 ((sbidh) & SSB_IDHIGH_RCLO)) 101 102 struct sbconfig { 103 u32 PAD[2]; 104 u32 sbipsflag; /* initiator port ocp slave flag */ 105 u32 PAD[3]; 106 u32 sbtpsflag; /* target port ocp slave flag */ 107 u32 PAD[11]; 108 u32 sbtmerrloga; /* (sonics >= 2.3) */ 109 u32 PAD; 110 u32 sbtmerrlog; /* (sonics >= 2.3) */ 111 u32 PAD[3]; 112 u32 sbadmatch3; /* address match3 */ 113 u32 PAD; 114 u32 sbadmatch2; /* address match2 */ 115 u32 PAD; 116 u32 sbadmatch1; /* address match1 */ 117 u32 PAD[7]; 118 u32 sbimstate; /* initiator agent state */ 119 u32 sbintvec; /* interrupt mask */ 120 u32 sbtmstatelow; /* target state */ 121 u32 sbtmstatehigh; /* target state */ 122 u32 sbbwa0; /* bandwidth allocation table0 */ 123 u32 PAD; 124 u32 sbimconfiglow; /* initiator configuration */ 125 u32 sbimconfighigh; /* initiator configuration */ 126 u32 sbadmatch0; /* address match0 */ 127 u32 PAD; 128 u32 sbtmconfiglow; /* target configuration */ 129 u32 sbtmconfighigh; /* target configuration */ 130 u32 sbbconfig; /* broadcast configuration */ 131 u32 PAD; 132 u32 sbbstate; /* broadcast state */ 133 u32 PAD[3]; 134 u32 sbactcnfg; /* activate configuration */ 135 u32 PAD[3]; 136 u32 sbflagst; /* current sbflags */ 137 u32 PAD[3]; 138 u32 sbidlow; /* identification */ 139 u32 sbidhigh; /* identification */ 140 }; 141 142 #define INVALID_RAMBASE ((u32)(~0)) 143 144 /* bankidx and bankinfo reg defines corerev >= 8 */ 145 #define SOCRAM_BANKINFO_RETNTRAM_MASK 0x00010000 146 #define SOCRAM_BANKINFO_SZMASK 0x0000007f 147 #define SOCRAM_BANKIDX_ROM_MASK 0x00000100 148 149 #define SOCRAM_BANKIDX_MEMTYPE_SHIFT 8 150 /* socram bankinfo memtype */ 151 #define SOCRAM_MEMTYPE_RAM 0 152 #define SOCRAM_MEMTYPE_R0M 1 153 #define SOCRAM_MEMTYPE_DEVRAM 2 154 155 #define SOCRAM_BANKINFO_SZBASE 8192 156 #define SRCI_LSS_MASK 0x00f00000 157 #define SRCI_LSS_SHIFT 20 158 #define SRCI_SRNB_MASK 0xf0 159 #define SRCI_SRNB_MASK_EXT 0x100 160 #define SRCI_SRNB_SHIFT 4 161 #define SRCI_SRBSZ_MASK 0xf 162 #define SRCI_SRBSZ_SHIFT 0 163 #define SR_BSZ_BASE 14 164 165 struct sbsocramregs { 166 u32 coreinfo; 167 u32 bwalloc; 168 u32 extracoreinfo; 169 u32 biststat; 170 u32 bankidx; 171 u32 standbyctrl; 172 173 u32 errlogstatus; /* rev 6 */ 174 u32 errlogaddr; /* rev 6 */ 175 /* used for patching rev 3 & 5 */ 176 u32 cambankidx; 177 u32 cambankstandbyctrl; 178 u32 cambankpatchctrl; 179 u32 cambankpatchtblbaseaddr; 180 u32 cambankcmdreg; 181 u32 cambankdatareg; 182 u32 cambankmaskreg; 183 u32 PAD[1]; 184 u32 bankinfo; /* corev 8 */ 185 u32 bankpda; 186 u32 PAD[14]; 187 u32 extmemconfig; 188 u32 extmemparitycsr; 189 u32 extmemparityerrdata; 190 u32 extmemparityerrcnt; 191 u32 extmemwrctrlandsize; 192 u32 PAD[84]; 193 u32 workaround; 194 u32 pwrctl; /* corerev >= 2 */ 195 u32 PAD[133]; 196 u32 sr_control; /* corerev >= 15 */ 197 u32 sr_status; /* corerev >= 15 */ 198 u32 sr_address; /* corerev >= 15 */ 199 u32 sr_data; /* corerev >= 15 */ 200 }; 201 202 #define SOCRAMREGOFFS(_f) offsetof(struct sbsocramregs, _f) 203 #define SYSMEMREGOFFS(_f) offsetof(struct sbsocramregs, _f) 204 205 #define ARMCR4_CAP (0x04) 206 #define ARMCR4_BANKIDX (0x40) 207 #define ARMCR4_BANKINFO (0x44) 208 #define ARMCR4_BANKPDA (0x4C) 209 210 #define ARMCR4_TCBBNB_MASK 0xf0 211 #define ARMCR4_TCBBNB_SHIFT 4 212 #define ARMCR4_TCBANB_MASK 0xf 213 #define ARMCR4_TCBANB_SHIFT 0 214 215 #define ARMCR4_BSZ_MASK 0x3f 216 #define ARMCR4_BSZ_MULT 8192 217 218 struct brcmf_core_priv { 219 struct brcmf_core pub; 220 u32 wrapbase; 221 struct list_head list; 222 struct brcmf_chip_priv *chip; 223 }; 224 225 struct brcmf_chip_priv { 226 struct brcmf_chip pub; 227 const struct brcmf_buscore_ops *ops; 228 void *ctx; 229 /* assured first core is chipcommon, second core is buscore */ 230 struct list_head cores; 231 u16 num_cores; 232 233 bool (*iscoreup)(struct brcmf_core_priv *core); 234 void (*coredisable)(struct brcmf_core_priv *core, u32 prereset, 235 u32 reset); 236 void (*resetcore)(struct brcmf_core_priv *core, u32 prereset, u32 reset, 237 u32 postreset); 238 }; 239 240 static void brcmf_chip_sb_corerev(struct brcmf_chip_priv *ci, 241 struct brcmf_core *core) 242 { 243 u32 regdata; 244 245 regdata = ci->ops->read32(ci->ctx, CORE_SB(core->base, sbidhigh)); 246 core->rev = SBCOREREV(regdata); 247 } 248 249 static bool brcmf_chip_sb_iscoreup(struct brcmf_core_priv *core) 250 { 251 struct brcmf_chip_priv *ci; 252 u32 regdata; 253 u32 address; 254 255 ci = core->chip; 256 address = CORE_SB(core->pub.base, sbtmstatelow); 257 regdata = ci->ops->read32(ci->ctx, address); 258 regdata &= (SSB_TMSLOW_RESET | SSB_TMSLOW_REJECT | 259 SSB_IMSTATE_REJECT | SSB_TMSLOW_CLOCK); 260 return SSB_TMSLOW_CLOCK == regdata; 261 } 262 263 static bool brcmf_chip_ai_iscoreup(struct brcmf_core_priv *core) 264 { 265 struct brcmf_chip_priv *ci; 266 u32 regdata; 267 bool ret; 268 269 ci = core->chip; 270 regdata = ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL); 271 ret = (regdata & (BCMA_IOCTL_FGC | BCMA_IOCTL_CLK)) == BCMA_IOCTL_CLK; 272 273 regdata = ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL); 274 ret = ret && ((regdata & BCMA_RESET_CTL_RESET) == 0); 275 276 return ret; 277 } 278 279 static void brcmf_chip_sb_coredisable(struct brcmf_core_priv *core, 280 u32 prereset, u32 reset) 281 { 282 struct brcmf_chip_priv *ci; 283 u32 val, base; 284 285 ci = core->chip; 286 base = core->pub.base; 287 val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow)); 288 if (val & SSB_TMSLOW_RESET) 289 return; 290 291 val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow)); 292 if ((val & SSB_TMSLOW_CLOCK) != 0) { 293 /* 294 * set target reject and spin until busy is clear 295 * (preserve core-specific bits) 296 */ 297 val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow)); 298 ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow), 299 val | SSB_TMSLOW_REJECT); 300 301 val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow)); 302 udelay(1); 303 SPINWAIT((ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatehigh)) 304 & SSB_TMSHIGH_BUSY), 100000); 305 306 val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatehigh)); 307 if (val & SSB_TMSHIGH_BUSY) 308 brcmf_err("core state still busy\n"); 309 310 val = ci->ops->read32(ci->ctx, CORE_SB(base, sbidlow)); 311 if (val & SSB_IDLOW_INITIATOR) { 312 val = ci->ops->read32(ci->ctx, 313 CORE_SB(base, sbimstate)); 314 val |= SSB_IMSTATE_REJECT; 315 ci->ops->write32(ci->ctx, 316 CORE_SB(base, sbimstate), val); 317 val = ci->ops->read32(ci->ctx, 318 CORE_SB(base, sbimstate)); 319 udelay(1); 320 SPINWAIT((ci->ops->read32(ci->ctx, 321 CORE_SB(base, sbimstate)) & 322 SSB_IMSTATE_BUSY), 100000); 323 } 324 325 /* set reset and reject while enabling the clocks */ 326 val = SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK | 327 SSB_TMSLOW_REJECT | SSB_TMSLOW_RESET; 328 ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow), val); 329 val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow)); 330 udelay(10); 331 332 /* clear the initiator reject bit */ 333 val = ci->ops->read32(ci->ctx, CORE_SB(base, sbidlow)); 334 if (val & SSB_IDLOW_INITIATOR) { 335 val = ci->ops->read32(ci->ctx, 336 CORE_SB(base, sbimstate)); 337 val &= ~SSB_IMSTATE_REJECT; 338 ci->ops->write32(ci->ctx, 339 CORE_SB(base, sbimstate), val); 340 } 341 } 342 343 /* leave reset and reject asserted */ 344 ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow), 345 (SSB_TMSLOW_REJECT | SSB_TMSLOW_RESET)); 346 udelay(1); 347 } 348 349 static void brcmf_chip_ai_coredisable(struct brcmf_core_priv *core, 350 u32 prereset, u32 reset) 351 { 352 struct brcmf_chip_priv *ci; 353 u32 regdata; 354 355 ci = core->chip; 356 357 /* if core is already in reset, skip reset */ 358 regdata = ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL); 359 if ((regdata & BCMA_RESET_CTL_RESET) != 0) 360 goto in_reset_configure; 361 362 /* configure reset */ 363 ci->ops->write32(ci->ctx, core->wrapbase + BCMA_IOCTL, 364 prereset | BCMA_IOCTL_FGC | BCMA_IOCTL_CLK); 365 ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL); 366 367 /* put in reset */ 368 ci->ops->write32(ci->ctx, core->wrapbase + BCMA_RESET_CTL, 369 BCMA_RESET_CTL_RESET); 370 usleep_range(10, 20); 371 372 /* wait till reset is 1 */ 373 SPINWAIT(ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL) != 374 BCMA_RESET_CTL_RESET, 300); 375 376 in_reset_configure: 377 /* in-reset configure */ 378 ci->ops->write32(ci->ctx, core->wrapbase + BCMA_IOCTL, 379 reset | BCMA_IOCTL_FGC | BCMA_IOCTL_CLK); 380 ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL); 381 } 382 383 static void brcmf_chip_sb_resetcore(struct brcmf_core_priv *core, u32 prereset, 384 u32 reset, u32 postreset) 385 { 386 struct brcmf_chip_priv *ci; 387 u32 regdata; 388 u32 base; 389 390 ci = core->chip; 391 base = core->pub.base; 392 /* 393 * Must do the disable sequence first to work for 394 * arbitrary current core state. 395 */ 396 brcmf_chip_sb_coredisable(core, 0, 0); 397 398 /* 399 * Now do the initialization sequence. 400 * set reset while enabling the clock and 401 * forcing them on throughout the core 402 */ 403 ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow), 404 SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK | 405 SSB_TMSLOW_RESET); 406 regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow)); 407 udelay(1); 408 409 /* clear any serror */ 410 regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatehigh)); 411 if (regdata & SSB_TMSHIGH_SERR) 412 ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatehigh), 0); 413 414 regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbimstate)); 415 if (regdata & (SSB_IMSTATE_IBE | SSB_IMSTATE_TO)) { 416 regdata &= ~(SSB_IMSTATE_IBE | SSB_IMSTATE_TO); 417 ci->ops->write32(ci->ctx, CORE_SB(base, sbimstate), regdata); 418 } 419 420 /* clear reset and allow it to propagate throughout the core */ 421 ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow), 422 SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK); 423 regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow)); 424 udelay(1); 425 426 /* leave clock enabled */ 427 ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow), 428 SSB_TMSLOW_CLOCK); 429 regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow)); 430 udelay(1); 431 } 432 433 static void brcmf_chip_ai_resetcore(struct brcmf_core_priv *core, u32 prereset, 434 u32 reset, u32 postreset) 435 { 436 struct brcmf_chip_priv *ci; 437 int count; 438 struct brcmf_core *d11core2 = NULL; 439 struct brcmf_core_priv *d11priv2 = NULL; 440 441 ci = core->chip; 442 443 /* special handle two D11 cores reset */ 444 if (core->pub.id == BCMA_CORE_80211) { 445 d11core2 = brcmf_chip_get_d11core(&ci->pub, 1); 446 if (d11core2) { 447 brcmf_dbg(INFO, "found two d11 cores, reset both\n"); 448 d11priv2 = container_of(d11core2, 449 struct brcmf_core_priv, pub); 450 } 451 } 452 453 /* must disable first to work for arbitrary current core state */ 454 brcmf_chip_ai_coredisable(core, prereset, reset); 455 if (d11priv2) 456 brcmf_chip_ai_coredisable(d11priv2, prereset, reset); 457 458 count = 0; 459 while (ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL) & 460 BCMA_RESET_CTL_RESET) { 461 ci->ops->write32(ci->ctx, core->wrapbase + BCMA_RESET_CTL, 0); 462 count++; 463 if (count > 50) 464 break; 465 usleep_range(40, 60); 466 } 467 468 if (d11priv2) { 469 count = 0; 470 while (ci->ops->read32(ci->ctx, 471 d11priv2->wrapbase + BCMA_RESET_CTL) & 472 BCMA_RESET_CTL_RESET) { 473 ci->ops->write32(ci->ctx, 474 d11priv2->wrapbase + BCMA_RESET_CTL, 475 0); 476 count++; 477 if (count > 50) 478 break; 479 usleep_range(40, 60); 480 } 481 } 482 483 ci->ops->write32(ci->ctx, core->wrapbase + BCMA_IOCTL, 484 postreset | BCMA_IOCTL_CLK); 485 ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL); 486 487 if (d11priv2) { 488 ci->ops->write32(ci->ctx, d11priv2->wrapbase + BCMA_IOCTL, 489 postreset | BCMA_IOCTL_CLK); 490 ci->ops->read32(ci->ctx, d11priv2->wrapbase + BCMA_IOCTL); 491 } 492 } 493 494 char *brcmf_chip_name(u32 id, u32 rev, char *buf, uint len) 495 { 496 const char *fmt; 497 498 fmt = ((id > 0xa000) || (id < 0x4000)) ? "BCM%d/%u" : "BCM%x/%u"; 499 snprintf(buf, len, fmt, id, rev); 500 return buf; 501 } 502 503 static struct brcmf_core *brcmf_chip_add_core(struct brcmf_chip_priv *ci, 504 u16 coreid, u32 base, 505 u32 wrapbase) 506 { 507 struct brcmf_core_priv *core; 508 509 core = kzalloc(sizeof(*core), GFP_KERNEL); 510 if (!core) 511 return ERR_PTR(-ENOMEM); 512 513 core->pub.id = coreid; 514 core->pub.base = base; 515 core->chip = ci; 516 core->wrapbase = wrapbase; 517 518 list_add_tail(&core->list, &ci->cores); 519 return &core->pub; 520 } 521 522 /* safety check for chipinfo */ 523 static int brcmf_chip_cores_check(struct brcmf_chip_priv *ci) 524 { 525 struct brcmf_core_priv *core; 526 bool need_socram = false; 527 bool has_socram = false; 528 bool cpu_found = false; 529 int idx = 1; 530 531 list_for_each_entry(core, &ci->cores, list) { 532 brcmf_dbg(INFO, " [%-2d] core 0x%x:%-3d base 0x%08x wrap 0x%08x\n", 533 idx++, core->pub.id, core->pub.rev, core->pub.base, 534 core->wrapbase); 535 536 switch (core->pub.id) { 537 case BCMA_CORE_ARM_CM3: 538 cpu_found = true; 539 need_socram = true; 540 break; 541 case BCMA_CORE_INTERNAL_MEM: 542 has_socram = true; 543 break; 544 case BCMA_CORE_ARM_CR4: 545 cpu_found = true; 546 break; 547 case BCMA_CORE_ARM_CA7: 548 cpu_found = true; 549 break; 550 default: 551 break; 552 } 553 } 554 555 if (!cpu_found) { 556 brcmf_err("CPU core not detected\n"); 557 return -ENXIO; 558 } 559 /* check RAM core presence for ARM CM3 core */ 560 if (need_socram && !has_socram) { 561 brcmf_err("RAM core not provided with ARM CM3 core\n"); 562 return -ENODEV; 563 } 564 return 0; 565 } 566 567 static u32 brcmf_chip_core_read32(struct brcmf_core_priv *core, u16 reg) 568 { 569 return core->chip->ops->read32(core->chip->ctx, core->pub.base + reg); 570 } 571 572 static void brcmf_chip_core_write32(struct brcmf_core_priv *core, 573 u16 reg, u32 val) 574 { 575 core->chip->ops->write32(core->chip->ctx, core->pub.base + reg, val); 576 } 577 578 static bool brcmf_chip_socram_banksize(struct brcmf_core_priv *core, u8 idx, 579 u32 *banksize) 580 { 581 u32 bankinfo; 582 u32 bankidx = (SOCRAM_MEMTYPE_RAM << SOCRAM_BANKIDX_MEMTYPE_SHIFT); 583 584 bankidx |= idx; 585 brcmf_chip_core_write32(core, SOCRAMREGOFFS(bankidx), bankidx); 586 bankinfo = brcmf_chip_core_read32(core, SOCRAMREGOFFS(bankinfo)); 587 *banksize = (bankinfo & SOCRAM_BANKINFO_SZMASK) + 1; 588 *banksize *= SOCRAM_BANKINFO_SZBASE; 589 return !!(bankinfo & SOCRAM_BANKINFO_RETNTRAM_MASK); 590 } 591 592 static void brcmf_chip_socram_ramsize(struct brcmf_core_priv *sr, u32 *ramsize, 593 u32 *srsize) 594 { 595 u32 coreinfo; 596 uint nb, banksize, lss; 597 bool retent; 598 int i; 599 600 *ramsize = 0; 601 *srsize = 0; 602 603 if (WARN_ON(sr->pub.rev < 4)) 604 return; 605 606 if (!brcmf_chip_iscoreup(&sr->pub)) 607 brcmf_chip_resetcore(&sr->pub, 0, 0, 0); 608 609 /* Get info for determining size */ 610 coreinfo = brcmf_chip_core_read32(sr, SOCRAMREGOFFS(coreinfo)); 611 nb = (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT; 612 613 if ((sr->pub.rev <= 7) || (sr->pub.rev == 12)) { 614 banksize = (coreinfo & SRCI_SRBSZ_MASK); 615 lss = (coreinfo & SRCI_LSS_MASK) >> SRCI_LSS_SHIFT; 616 if (lss != 0) 617 nb--; 618 *ramsize = nb * (1 << (banksize + SR_BSZ_BASE)); 619 if (lss != 0) 620 *ramsize += (1 << ((lss - 1) + SR_BSZ_BASE)); 621 } else { 622 /* length of SRAM Banks increased for corerev greater than 23 */ 623 if (sr->pub.rev >= 23) { 624 nb = (coreinfo & (SRCI_SRNB_MASK | SRCI_SRNB_MASK_EXT)) 625 >> SRCI_SRNB_SHIFT; 626 } else { 627 nb = (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT; 628 } 629 for (i = 0; i < nb; i++) { 630 retent = brcmf_chip_socram_banksize(sr, i, &banksize); 631 *ramsize += banksize; 632 if (retent) 633 *srsize += banksize; 634 } 635 } 636 637 /* hardcoded save&restore memory sizes */ 638 switch (sr->chip->pub.chip) { 639 case BRCM_CC_4334_CHIP_ID: 640 if (sr->chip->pub.chiprev < 2) 641 *srsize = (32 * 1024); 642 break; 643 case BRCM_CC_43430_CHIP_ID: 644 /* assume sr for now as we can not check 645 * firmware sr capability at this point. 646 */ 647 *srsize = (64 * 1024); 648 break; 649 default: 650 break; 651 } 652 } 653 654 /** Return the SYS MEM size */ 655 static u32 brcmf_chip_sysmem_ramsize(struct brcmf_core_priv *sysmem) 656 { 657 u32 memsize = 0; 658 u32 coreinfo; 659 u32 idx; 660 u32 nb; 661 u32 banksize; 662 663 if (!brcmf_chip_iscoreup(&sysmem->pub)) 664 brcmf_chip_resetcore(&sysmem->pub, 0, 0, 0); 665 666 coreinfo = brcmf_chip_core_read32(sysmem, SYSMEMREGOFFS(coreinfo)); 667 nb = (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT; 668 669 for (idx = 0; idx < nb; idx++) { 670 brcmf_chip_socram_banksize(sysmem, idx, &banksize); 671 memsize += banksize; 672 } 673 674 return memsize; 675 } 676 677 /** Return the TCM-RAM size of the ARMCR4 core. */ 678 static u32 brcmf_chip_tcm_ramsize(struct brcmf_core_priv *cr4) 679 { 680 u32 corecap; 681 u32 memsize = 0; 682 u32 nab; 683 u32 nbb; 684 u32 totb; 685 u32 bxinfo; 686 u32 idx; 687 688 corecap = brcmf_chip_core_read32(cr4, ARMCR4_CAP); 689 690 nab = (corecap & ARMCR4_TCBANB_MASK) >> ARMCR4_TCBANB_SHIFT; 691 nbb = (corecap & ARMCR4_TCBBNB_MASK) >> ARMCR4_TCBBNB_SHIFT; 692 totb = nab + nbb; 693 694 for (idx = 0; idx < totb; idx++) { 695 brcmf_chip_core_write32(cr4, ARMCR4_BANKIDX, idx); 696 bxinfo = brcmf_chip_core_read32(cr4, ARMCR4_BANKINFO); 697 memsize += ((bxinfo & ARMCR4_BSZ_MASK) + 1) * ARMCR4_BSZ_MULT; 698 } 699 700 return memsize; 701 } 702 703 static u32 brcmf_chip_tcm_rambase(struct brcmf_chip_priv *ci) 704 { 705 switch (ci->pub.chip) { 706 case BRCM_CC_4345_CHIP_ID: 707 return 0x198000; 708 case BRCM_CC_4335_CHIP_ID: 709 case BRCM_CC_4339_CHIP_ID: 710 case BRCM_CC_4350_CHIP_ID: 711 case BRCM_CC_4354_CHIP_ID: 712 case BRCM_CC_4356_CHIP_ID: 713 case BRCM_CC_43567_CHIP_ID: 714 case BRCM_CC_43569_CHIP_ID: 715 case BRCM_CC_43570_CHIP_ID: 716 case BRCM_CC_4358_CHIP_ID: 717 case BRCM_CC_43602_CHIP_ID: 718 case BRCM_CC_4371_CHIP_ID: 719 return 0x180000; 720 case BRCM_CC_43465_CHIP_ID: 721 case BRCM_CC_43525_CHIP_ID: 722 case BRCM_CC_4365_CHIP_ID: 723 case BRCM_CC_4366_CHIP_ID: 724 case BRCM_CC_43664_CHIP_ID: 725 case BRCM_CC_43666_CHIP_ID: 726 return 0x200000; 727 case BRCM_CC_4359_CHIP_ID: 728 return (ci->pub.chiprev < 9) ? 0x180000 : 0x160000; 729 case BRCM_CC_4364_CHIP_ID: 730 case CY_CC_4373_CHIP_ID: 731 return 0x160000; 732 case CY_CC_43752_CHIP_ID: 733 return 0x170000; 734 default: 735 brcmf_err("unknown chip: %s\n", ci->pub.name); 736 break; 737 } 738 return INVALID_RAMBASE; 739 } 740 741 int brcmf_chip_get_raminfo(struct brcmf_chip *pub) 742 { 743 struct brcmf_chip_priv *ci = container_of(pub, struct brcmf_chip_priv, 744 pub); 745 struct brcmf_core_priv *mem_core; 746 struct brcmf_core *mem; 747 748 mem = brcmf_chip_get_core(&ci->pub, BCMA_CORE_ARM_CR4); 749 if (mem) { 750 mem_core = container_of(mem, struct brcmf_core_priv, pub); 751 ci->pub.ramsize = brcmf_chip_tcm_ramsize(mem_core); 752 ci->pub.rambase = brcmf_chip_tcm_rambase(ci); 753 if (ci->pub.rambase == INVALID_RAMBASE) { 754 brcmf_err("RAM base not provided with ARM CR4 core\n"); 755 return -EINVAL; 756 } 757 } else { 758 mem = brcmf_chip_get_core(&ci->pub, BCMA_CORE_SYS_MEM); 759 if (mem) { 760 mem_core = container_of(mem, struct brcmf_core_priv, 761 pub); 762 ci->pub.ramsize = brcmf_chip_sysmem_ramsize(mem_core); 763 ci->pub.rambase = brcmf_chip_tcm_rambase(ci); 764 if (ci->pub.rambase == INVALID_RAMBASE) { 765 brcmf_err("RAM base not provided with ARM CA7 core\n"); 766 return -EINVAL; 767 } 768 } else { 769 mem = brcmf_chip_get_core(&ci->pub, 770 BCMA_CORE_INTERNAL_MEM); 771 if (!mem) { 772 brcmf_err("No memory cores found\n"); 773 return -ENOMEM; 774 } 775 mem_core = container_of(mem, struct brcmf_core_priv, 776 pub); 777 brcmf_chip_socram_ramsize(mem_core, &ci->pub.ramsize, 778 &ci->pub.srsize); 779 } 780 } 781 brcmf_dbg(INFO, "RAM: base=0x%x size=%d (0x%x) sr=%d (0x%x)\n", 782 ci->pub.rambase, ci->pub.ramsize, ci->pub.ramsize, 783 ci->pub.srsize, ci->pub.srsize); 784 785 if (!ci->pub.ramsize) { 786 brcmf_err("RAM size is undetermined\n"); 787 return -ENOMEM; 788 } 789 790 if (ci->pub.ramsize > BRCMF_CHIP_MAX_MEMSIZE) { 791 brcmf_err("RAM size is incorrect\n"); 792 return -ENOMEM; 793 } 794 795 return 0; 796 } 797 798 static u32 brcmf_chip_dmp_get_desc(struct brcmf_chip_priv *ci, u32 *eromaddr, 799 u8 *type) 800 { 801 u32 val; 802 803 /* read next descriptor */ 804 val = ci->ops->read32(ci->ctx, *eromaddr); 805 *eromaddr += 4; 806 807 if (!type) 808 return val; 809 810 /* determine descriptor type */ 811 *type = (val & DMP_DESC_TYPE_MSK); 812 if ((*type & ~DMP_DESC_ADDRSIZE_GT32) == DMP_DESC_ADDRESS) 813 *type = DMP_DESC_ADDRESS; 814 815 return val; 816 } 817 818 static int brcmf_chip_dmp_get_regaddr(struct brcmf_chip_priv *ci, u32 *eromaddr, 819 u32 *regbase, u32 *wrapbase) 820 { 821 u8 desc; 822 u32 val, szdesc; 823 u8 stype, sztype, wraptype; 824 825 *regbase = 0; 826 *wrapbase = 0; 827 828 val = brcmf_chip_dmp_get_desc(ci, eromaddr, &desc); 829 if (desc == DMP_DESC_MASTER_PORT) { 830 wraptype = DMP_SLAVE_TYPE_MWRAP; 831 } else if (desc == DMP_DESC_ADDRESS) { 832 /* revert erom address */ 833 *eromaddr -= 4; 834 wraptype = DMP_SLAVE_TYPE_SWRAP; 835 } else { 836 *eromaddr -= 4; 837 return -EILSEQ; 838 } 839 840 do { 841 /* locate address descriptor */ 842 do { 843 val = brcmf_chip_dmp_get_desc(ci, eromaddr, &desc); 844 /* unexpected table end */ 845 if (desc == DMP_DESC_EOT) { 846 *eromaddr -= 4; 847 return -EFAULT; 848 } 849 } while (desc != DMP_DESC_ADDRESS && 850 desc != DMP_DESC_COMPONENT); 851 852 /* stop if we crossed current component border */ 853 if (desc == DMP_DESC_COMPONENT) { 854 *eromaddr -= 4; 855 return 0; 856 } 857 858 /* skip upper 32-bit address descriptor */ 859 if (val & DMP_DESC_ADDRSIZE_GT32) 860 brcmf_chip_dmp_get_desc(ci, eromaddr, NULL); 861 862 sztype = (val & DMP_SLAVE_SIZE_TYPE) >> DMP_SLAVE_SIZE_TYPE_S; 863 864 /* next size descriptor can be skipped */ 865 if (sztype == DMP_SLAVE_SIZE_DESC) { 866 szdesc = brcmf_chip_dmp_get_desc(ci, eromaddr, NULL); 867 /* skip upper size descriptor if present */ 868 if (szdesc & DMP_DESC_ADDRSIZE_GT32) 869 brcmf_chip_dmp_get_desc(ci, eromaddr, NULL); 870 } 871 872 /* look for 4K or 8K register regions */ 873 if (sztype != DMP_SLAVE_SIZE_4K && 874 sztype != DMP_SLAVE_SIZE_8K) 875 continue; 876 877 stype = (val & DMP_SLAVE_TYPE) >> DMP_SLAVE_TYPE_S; 878 879 /* only regular slave and wrapper */ 880 if (*regbase == 0 && stype == DMP_SLAVE_TYPE_SLAVE) 881 *regbase = val & DMP_SLAVE_ADDR_BASE; 882 if (*wrapbase == 0 && stype == wraptype) 883 *wrapbase = val & DMP_SLAVE_ADDR_BASE; 884 } while (*regbase == 0 || *wrapbase == 0); 885 886 return 0; 887 } 888 889 static 890 int brcmf_chip_dmp_erom_scan(struct brcmf_chip_priv *ci) 891 { 892 struct brcmf_core *core; 893 u32 eromaddr; 894 u8 desc_type = 0; 895 u32 val; 896 u16 id; 897 u8 nmw, nsw, rev; 898 u32 base, wrap; 899 int err; 900 901 eromaddr = ci->ops->read32(ci->ctx, 902 CORE_CC_REG(ci->pub.enum_base, eromptr)); 903 904 while (desc_type != DMP_DESC_EOT) { 905 val = brcmf_chip_dmp_get_desc(ci, &eromaddr, &desc_type); 906 if (!(val & DMP_DESC_VALID)) 907 continue; 908 909 if (desc_type == DMP_DESC_EMPTY) 910 continue; 911 912 /* need a component descriptor */ 913 if (desc_type != DMP_DESC_COMPONENT) 914 continue; 915 916 id = (val & DMP_COMP_PARTNUM) >> DMP_COMP_PARTNUM_S; 917 918 /* next descriptor must be component as well */ 919 val = brcmf_chip_dmp_get_desc(ci, &eromaddr, &desc_type); 920 if (WARN_ON((val & DMP_DESC_TYPE_MSK) != DMP_DESC_COMPONENT)) 921 return -EFAULT; 922 923 /* only look at cores with master port(s) */ 924 nmw = (val & DMP_COMP_NUM_MWRAP) >> DMP_COMP_NUM_MWRAP_S; 925 nsw = (val & DMP_COMP_NUM_SWRAP) >> DMP_COMP_NUM_SWRAP_S; 926 rev = (val & DMP_COMP_REVISION) >> DMP_COMP_REVISION_S; 927 928 /* need core with ports */ 929 if (nmw + nsw == 0 && 930 id != BCMA_CORE_PMU && 931 id != BCMA_CORE_GCI) 932 continue; 933 934 /* try to obtain register address info */ 935 err = brcmf_chip_dmp_get_regaddr(ci, &eromaddr, &base, &wrap); 936 if (err) 937 continue; 938 939 /* finally a core to be added */ 940 core = brcmf_chip_add_core(ci, id, base, wrap); 941 if (IS_ERR(core)) 942 return PTR_ERR(core); 943 944 core->rev = rev; 945 } 946 947 return 0; 948 } 949 950 u32 brcmf_chip_enum_base(u16 devid) 951 { 952 return SI_ENUM_BASE_DEFAULT; 953 } 954 955 static int brcmf_chip_recognition(struct brcmf_chip_priv *ci) 956 { 957 struct brcmf_core *core; 958 u32 regdata; 959 u32 socitype; 960 int ret; 961 962 /* Get CC core rev 963 * Chipid is assume to be at offset 0 from SI_ENUM_BASE 964 * For different chiptypes or old sdio hosts w/o chipcommon, 965 * other ways of recognition should be added here. 966 */ 967 regdata = ci->ops->read32(ci->ctx, 968 CORE_CC_REG(ci->pub.enum_base, chipid)); 969 ci->pub.chip = regdata & CID_ID_MASK; 970 ci->pub.chiprev = (regdata & CID_REV_MASK) >> CID_REV_SHIFT; 971 socitype = (regdata & CID_TYPE_MASK) >> CID_TYPE_SHIFT; 972 973 brcmf_chip_name(ci->pub.chip, ci->pub.chiprev, 974 ci->pub.name, sizeof(ci->pub.name)); 975 brcmf_dbg(INFO, "found %s chip: %s\n", 976 socitype == SOCI_SB ? "SB" : "AXI", ci->pub.name); 977 978 if (socitype == SOCI_SB) { 979 if (ci->pub.chip != BRCM_CC_4329_CHIP_ID) { 980 brcmf_err("SB chip is not supported\n"); 981 return -ENODEV; 982 } 983 ci->iscoreup = brcmf_chip_sb_iscoreup; 984 ci->coredisable = brcmf_chip_sb_coredisable; 985 ci->resetcore = brcmf_chip_sb_resetcore; 986 987 core = brcmf_chip_add_core(ci, BCMA_CORE_CHIPCOMMON, 988 SI_ENUM_BASE_DEFAULT, 0); 989 brcmf_chip_sb_corerev(ci, core); 990 core = brcmf_chip_add_core(ci, BCMA_CORE_SDIO_DEV, 991 BCM4329_CORE_BUS_BASE, 0); 992 brcmf_chip_sb_corerev(ci, core); 993 core = brcmf_chip_add_core(ci, BCMA_CORE_INTERNAL_MEM, 994 BCM4329_CORE_SOCRAM_BASE, 0); 995 brcmf_chip_sb_corerev(ci, core); 996 core = brcmf_chip_add_core(ci, BCMA_CORE_ARM_CM3, 997 BCM4329_CORE_ARM_BASE, 0); 998 brcmf_chip_sb_corerev(ci, core); 999 1000 core = brcmf_chip_add_core(ci, BCMA_CORE_80211, 0x18001000, 0); 1001 brcmf_chip_sb_corerev(ci, core); 1002 } else if (socitype == SOCI_AI) { 1003 ci->iscoreup = brcmf_chip_ai_iscoreup; 1004 ci->coredisable = brcmf_chip_ai_coredisable; 1005 ci->resetcore = brcmf_chip_ai_resetcore; 1006 1007 brcmf_chip_dmp_erom_scan(ci); 1008 } else { 1009 brcmf_err("chip backplane type %u is not supported\n", 1010 socitype); 1011 return -ENODEV; 1012 } 1013 1014 ret = brcmf_chip_cores_check(ci); 1015 if (ret) 1016 return ret; 1017 1018 /* assure chip is passive for core access */ 1019 brcmf_chip_set_passive(&ci->pub); 1020 1021 /* Call bus specific reset function now. Cores have been determined 1022 * but further access may require a chip specific reset at this point. 1023 */ 1024 if (ci->ops->reset) { 1025 ci->ops->reset(ci->ctx, &ci->pub); 1026 brcmf_chip_set_passive(&ci->pub); 1027 } 1028 1029 return brcmf_chip_get_raminfo(&ci->pub); 1030 } 1031 1032 static void brcmf_chip_disable_arm(struct brcmf_chip_priv *chip, u16 id) 1033 { 1034 struct brcmf_core *core; 1035 struct brcmf_core_priv *cpu; 1036 u32 val; 1037 1038 1039 core = brcmf_chip_get_core(&chip->pub, id); 1040 if (!core) 1041 return; 1042 1043 switch (id) { 1044 case BCMA_CORE_ARM_CM3: 1045 brcmf_chip_coredisable(core, 0, 0); 1046 break; 1047 case BCMA_CORE_ARM_CR4: 1048 case BCMA_CORE_ARM_CA7: 1049 cpu = container_of(core, struct brcmf_core_priv, pub); 1050 1051 /* clear all IOCTL bits except HALT bit */ 1052 val = chip->ops->read32(chip->ctx, cpu->wrapbase + BCMA_IOCTL); 1053 val &= ARMCR4_BCMA_IOCTL_CPUHALT; 1054 brcmf_chip_resetcore(core, val, ARMCR4_BCMA_IOCTL_CPUHALT, 1055 ARMCR4_BCMA_IOCTL_CPUHALT); 1056 break; 1057 default: 1058 brcmf_err("unknown id: %u\n", id); 1059 break; 1060 } 1061 } 1062 1063 static int brcmf_chip_setup(struct brcmf_chip_priv *chip) 1064 { 1065 struct brcmf_chip *pub; 1066 struct brcmf_core_priv *cc; 1067 struct brcmf_core *pmu; 1068 u32 base; 1069 u32 val; 1070 int ret = 0; 1071 1072 pub = &chip->pub; 1073 cc = list_first_entry(&chip->cores, struct brcmf_core_priv, list); 1074 base = cc->pub.base; 1075 1076 /* get chipcommon capabilites */ 1077 pub->cc_caps = chip->ops->read32(chip->ctx, 1078 CORE_CC_REG(base, capabilities)); 1079 pub->cc_caps_ext = chip->ops->read32(chip->ctx, 1080 CORE_CC_REG(base, 1081 capabilities_ext)); 1082 1083 /* get pmu caps & rev */ 1084 pmu = brcmf_chip_get_pmu(pub); /* after reading cc_caps_ext */ 1085 if (pub->cc_caps & CC_CAP_PMU) { 1086 val = chip->ops->read32(chip->ctx, 1087 CORE_CC_REG(pmu->base, pmucapabilities)); 1088 pub->pmurev = val & PCAP_REV_MASK; 1089 pub->pmucaps = val; 1090 } 1091 1092 brcmf_dbg(INFO, "ccrev=%d, pmurev=%d, pmucaps=0x%x\n", 1093 cc->pub.rev, pub->pmurev, pub->pmucaps); 1094 1095 /* execute bus core specific setup */ 1096 if (chip->ops->setup) 1097 ret = chip->ops->setup(chip->ctx, pub); 1098 1099 return ret; 1100 } 1101 1102 struct brcmf_chip *brcmf_chip_attach(void *ctx, u16 devid, 1103 const struct brcmf_buscore_ops *ops) 1104 { 1105 struct brcmf_chip_priv *chip; 1106 int err = 0; 1107 1108 if (WARN_ON(!ops->read32)) 1109 err = -EINVAL; 1110 if (WARN_ON(!ops->write32)) 1111 err = -EINVAL; 1112 if (WARN_ON(!ops->prepare)) 1113 err = -EINVAL; 1114 if (WARN_ON(!ops->activate)) 1115 err = -EINVAL; 1116 if (err < 0) 1117 return ERR_PTR(-EINVAL); 1118 1119 chip = kzalloc(sizeof(*chip), GFP_KERNEL); 1120 if (!chip) 1121 return ERR_PTR(-ENOMEM); 1122 1123 INIT_LIST_HEAD(&chip->cores); 1124 chip->num_cores = 0; 1125 chip->ops = ops; 1126 chip->ctx = ctx; 1127 chip->pub.enum_base = brcmf_chip_enum_base(devid); 1128 1129 err = ops->prepare(ctx); 1130 if (err < 0) 1131 goto fail; 1132 1133 err = brcmf_chip_recognition(chip); 1134 if (err < 0) 1135 goto fail; 1136 1137 err = brcmf_chip_setup(chip); 1138 if (err < 0) 1139 goto fail; 1140 1141 return &chip->pub; 1142 1143 fail: 1144 brcmf_chip_detach(&chip->pub); 1145 return ERR_PTR(err); 1146 } 1147 1148 void brcmf_chip_detach(struct brcmf_chip *pub) 1149 { 1150 struct brcmf_chip_priv *chip; 1151 struct brcmf_core_priv *core; 1152 struct brcmf_core_priv *tmp; 1153 1154 chip = container_of(pub, struct brcmf_chip_priv, pub); 1155 list_for_each_entry_safe(core, tmp, &chip->cores, list) { 1156 list_del(&core->list); 1157 kfree(core); 1158 } 1159 kfree(chip); 1160 } 1161 1162 struct brcmf_core *brcmf_chip_get_d11core(struct brcmf_chip *pub, u8 unit) 1163 { 1164 struct brcmf_chip_priv *chip; 1165 struct brcmf_core_priv *core; 1166 1167 chip = container_of(pub, struct brcmf_chip_priv, pub); 1168 list_for_each_entry(core, &chip->cores, list) { 1169 if (core->pub.id == BCMA_CORE_80211) { 1170 if (unit-- == 0) 1171 return &core->pub; 1172 } 1173 } 1174 return NULL; 1175 } 1176 1177 struct brcmf_core *brcmf_chip_get_core(struct brcmf_chip *pub, u16 coreid) 1178 { 1179 struct brcmf_chip_priv *chip; 1180 struct brcmf_core_priv *core; 1181 1182 chip = container_of(pub, struct brcmf_chip_priv, pub); 1183 list_for_each_entry(core, &chip->cores, list) 1184 if (core->pub.id == coreid) 1185 return &core->pub; 1186 1187 return NULL; 1188 } 1189 1190 struct brcmf_core *brcmf_chip_get_chipcommon(struct brcmf_chip *pub) 1191 { 1192 struct brcmf_chip_priv *chip; 1193 struct brcmf_core_priv *cc; 1194 1195 chip = container_of(pub, struct brcmf_chip_priv, pub); 1196 cc = list_first_entry(&chip->cores, struct brcmf_core_priv, list); 1197 if (WARN_ON(!cc || cc->pub.id != BCMA_CORE_CHIPCOMMON)) 1198 return brcmf_chip_get_core(pub, BCMA_CORE_CHIPCOMMON); 1199 return &cc->pub; 1200 } 1201 1202 struct brcmf_core *brcmf_chip_get_pmu(struct brcmf_chip *pub) 1203 { 1204 struct brcmf_core *cc = brcmf_chip_get_chipcommon(pub); 1205 struct brcmf_core *pmu; 1206 1207 /* See if there is separated PMU core available */ 1208 if (cc->rev >= 35 && 1209 pub->cc_caps_ext & BCMA_CC_CAP_EXT_AOB_PRESENT) { 1210 pmu = brcmf_chip_get_core(pub, BCMA_CORE_PMU); 1211 if (pmu) 1212 return pmu; 1213 } 1214 1215 /* Fallback to ChipCommon core for older hardware */ 1216 return cc; 1217 } 1218 1219 bool brcmf_chip_iscoreup(struct brcmf_core *pub) 1220 { 1221 struct brcmf_core_priv *core; 1222 1223 core = container_of(pub, struct brcmf_core_priv, pub); 1224 return core->chip->iscoreup(core); 1225 } 1226 1227 void brcmf_chip_coredisable(struct brcmf_core *pub, u32 prereset, u32 reset) 1228 { 1229 struct brcmf_core_priv *core; 1230 1231 core = container_of(pub, struct brcmf_core_priv, pub); 1232 core->chip->coredisable(core, prereset, reset); 1233 } 1234 1235 void brcmf_chip_resetcore(struct brcmf_core *pub, u32 prereset, u32 reset, 1236 u32 postreset) 1237 { 1238 struct brcmf_core_priv *core; 1239 1240 core = container_of(pub, struct brcmf_core_priv, pub); 1241 core->chip->resetcore(core, prereset, reset, postreset); 1242 } 1243 1244 static void 1245 brcmf_chip_cm3_set_passive(struct brcmf_chip_priv *chip) 1246 { 1247 struct brcmf_core *core; 1248 struct brcmf_core_priv *sr; 1249 1250 brcmf_chip_disable_arm(chip, BCMA_CORE_ARM_CM3); 1251 core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_80211); 1252 brcmf_chip_resetcore(core, D11_BCMA_IOCTL_PHYRESET | 1253 D11_BCMA_IOCTL_PHYCLOCKEN, 1254 D11_BCMA_IOCTL_PHYCLOCKEN, 1255 D11_BCMA_IOCTL_PHYCLOCKEN); 1256 core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_INTERNAL_MEM); 1257 brcmf_chip_resetcore(core, 0, 0, 0); 1258 1259 /* disable bank #3 remap for this device */ 1260 if (chip->pub.chip == BRCM_CC_43430_CHIP_ID) { 1261 sr = container_of(core, struct brcmf_core_priv, pub); 1262 brcmf_chip_core_write32(sr, SOCRAMREGOFFS(bankidx), 3); 1263 brcmf_chip_core_write32(sr, SOCRAMREGOFFS(bankpda), 0); 1264 } 1265 } 1266 1267 static bool brcmf_chip_cm3_set_active(struct brcmf_chip_priv *chip) 1268 { 1269 struct brcmf_core *core; 1270 1271 core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_INTERNAL_MEM); 1272 if (!brcmf_chip_iscoreup(core)) { 1273 brcmf_err("SOCRAM core is down after reset?\n"); 1274 return false; 1275 } 1276 1277 chip->ops->activate(chip->ctx, &chip->pub, 0); 1278 1279 core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_ARM_CM3); 1280 brcmf_chip_resetcore(core, 0, 0, 0); 1281 1282 return true; 1283 } 1284 1285 static inline void 1286 brcmf_chip_cr4_set_passive(struct brcmf_chip_priv *chip) 1287 { 1288 struct brcmf_core *core; 1289 1290 brcmf_chip_disable_arm(chip, BCMA_CORE_ARM_CR4); 1291 1292 core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_80211); 1293 brcmf_chip_resetcore(core, D11_BCMA_IOCTL_PHYRESET | 1294 D11_BCMA_IOCTL_PHYCLOCKEN, 1295 D11_BCMA_IOCTL_PHYCLOCKEN, 1296 D11_BCMA_IOCTL_PHYCLOCKEN); 1297 } 1298 1299 static bool brcmf_chip_cr4_set_active(struct brcmf_chip_priv *chip, u32 rstvec) 1300 { 1301 struct brcmf_core *core; 1302 1303 chip->ops->activate(chip->ctx, &chip->pub, rstvec); 1304 1305 /* restore ARM */ 1306 core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_ARM_CR4); 1307 brcmf_chip_resetcore(core, ARMCR4_BCMA_IOCTL_CPUHALT, 0, 0); 1308 1309 return true; 1310 } 1311 1312 static inline void 1313 brcmf_chip_ca7_set_passive(struct brcmf_chip_priv *chip) 1314 { 1315 struct brcmf_core *core; 1316 1317 brcmf_chip_disable_arm(chip, BCMA_CORE_ARM_CA7); 1318 1319 core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_80211); 1320 brcmf_chip_resetcore(core, D11_BCMA_IOCTL_PHYRESET | 1321 D11_BCMA_IOCTL_PHYCLOCKEN, 1322 D11_BCMA_IOCTL_PHYCLOCKEN, 1323 D11_BCMA_IOCTL_PHYCLOCKEN); 1324 } 1325 1326 static bool brcmf_chip_ca7_set_active(struct brcmf_chip_priv *chip, u32 rstvec) 1327 { 1328 struct brcmf_core *core; 1329 1330 chip->ops->activate(chip->ctx, &chip->pub, rstvec); 1331 1332 /* restore ARM */ 1333 core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_ARM_CA7); 1334 brcmf_chip_resetcore(core, ARMCR4_BCMA_IOCTL_CPUHALT, 0, 0); 1335 1336 return true; 1337 } 1338 1339 void brcmf_chip_set_passive(struct brcmf_chip *pub) 1340 { 1341 struct brcmf_chip_priv *chip; 1342 struct brcmf_core *arm; 1343 1344 brcmf_dbg(TRACE, "Enter\n"); 1345 1346 chip = container_of(pub, struct brcmf_chip_priv, pub); 1347 arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CR4); 1348 if (arm) { 1349 brcmf_chip_cr4_set_passive(chip); 1350 return; 1351 } 1352 arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CA7); 1353 if (arm) { 1354 brcmf_chip_ca7_set_passive(chip); 1355 return; 1356 } 1357 arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CM3); 1358 if (arm) { 1359 brcmf_chip_cm3_set_passive(chip); 1360 return; 1361 } 1362 } 1363 1364 bool brcmf_chip_set_active(struct brcmf_chip *pub, u32 rstvec) 1365 { 1366 struct brcmf_chip_priv *chip; 1367 struct brcmf_core *arm; 1368 1369 brcmf_dbg(TRACE, "Enter\n"); 1370 1371 chip = container_of(pub, struct brcmf_chip_priv, pub); 1372 arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CR4); 1373 if (arm) 1374 return brcmf_chip_cr4_set_active(chip, rstvec); 1375 arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CA7); 1376 if (arm) 1377 return brcmf_chip_ca7_set_active(chip, rstvec); 1378 arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CM3); 1379 if (arm) 1380 return brcmf_chip_cm3_set_active(chip); 1381 1382 return false; 1383 } 1384 1385 bool brcmf_chip_sr_capable(struct brcmf_chip *pub) 1386 { 1387 u32 base, addr, reg, pmu_cc3_mask = ~0; 1388 struct brcmf_chip_priv *chip; 1389 struct brcmf_core *pmu = brcmf_chip_get_pmu(pub); 1390 1391 brcmf_dbg(TRACE, "Enter\n"); 1392 1393 /* old chips with PMU version less than 17 don't support save restore */ 1394 if (pub->pmurev < 17) 1395 return false; 1396 1397 base = brcmf_chip_get_chipcommon(pub)->base; 1398 chip = container_of(pub, struct brcmf_chip_priv, pub); 1399 1400 switch (pub->chip) { 1401 case BRCM_CC_4354_CHIP_ID: 1402 case BRCM_CC_4356_CHIP_ID: 1403 case BRCM_CC_4345_CHIP_ID: 1404 /* explicitly check SR engine enable bit */ 1405 pmu_cc3_mask = BIT(2); 1406 fallthrough; 1407 case BRCM_CC_43241_CHIP_ID: 1408 case BRCM_CC_4335_CHIP_ID: 1409 case BRCM_CC_4339_CHIP_ID: 1410 /* read PMU chipcontrol register 3 */ 1411 addr = CORE_CC_REG(pmu->base, chipcontrol_addr); 1412 chip->ops->write32(chip->ctx, addr, 3); 1413 addr = CORE_CC_REG(pmu->base, chipcontrol_data); 1414 reg = chip->ops->read32(chip->ctx, addr); 1415 return (reg & pmu_cc3_mask) != 0; 1416 case BRCM_CC_43430_CHIP_ID: 1417 addr = CORE_CC_REG(base, sr_control1); 1418 reg = chip->ops->read32(chip->ctx, addr); 1419 return reg != 0; 1420 case CY_CC_4373_CHIP_ID: 1421 /* explicitly check SR engine enable bit */ 1422 addr = CORE_CC_REG(base, sr_control0); 1423 reg = chip->ops->read32(chip->ctx, addr); 1424 return (reg & CC_SR_CTL0_ENABLE_MASK) != 0; 1425 case BRCM_CC_4359_CHIP_ID: 1426 case CY_CC_43752_CHIP_ID: 1427 case CY_CC_43012_CHIP_ID: 1428 addr = CORE_CC_REG(pmu->base, retention_ctl); 1429 reg = chip->ops->read32(chip->ctx, addr); 1430 return (reg & (PMU_RCTL_MACPHY_DISABLE_MASK | 1431 PMU_RCTL_LOGIC_DISABLE_MASK)) == 0; 1432 default: 1433 addr = CORE_CC_REG(pmu->base, pmucapabilities_ext); 1434 reg = chip->ops->read32(chip->ctx, addr); 1435 if ((reg & PCAPEXT_SR_SUPPORTED_MASK) == 0) 1436 return false; 1437 1438 addr = CORE_CC_REG(pmu->base, retention_ctl); 1439 reg = chip->ops->read32(chip->ctx, addr); 1440 return (reg & (PMU_RCTL_MACPHY_DISABLE_MASK | 1441 PMU_RCTL_LOGIC_DISABLE_MASK)) == 0; 1442 } 1443 } 1444