1 // SPDX-License-Identifier: ISC
2 /*
3 * Copyright (c) 2014 Broadcom Corporation
4 */
5 #include <linux/kernel.h>
6 #include <linux/delay.h>
7 #include <linux/list.h>
8 #include <linux/ssb/ssb_regs.h>
9 #include <linux/bcma/bcma.h>
10 #include <linux/bcma/bcma_regs.h>
11
12 #include <defs.h>
13 #include <soc.h>
14 #include <brcm_hw_ids.h>
15 #include <brcmu_utils.h>
16 #include <chipcommon.h>
17 #include "debug.h"
18 #include "chip.h"
19
20 /* SOC Interconnect types (aka chip types) */
21 #define SOCI_SB 0
22 #define SOCI_AI 1
23
24 /* PL-368 DMP definitions */
25 #define DMP_DESC_TYPE_MSK 0x0000000F
26 #define DMP_DESC_EMPTY 0x00000000
27 #define DMP_DESC_VALID 0x00000001
28 #define DMP_DESC_COMPONENT 0x00000001
29 #define DMP_DESC_MASTER_PORT 0x00000003
30 #define DMP_DESC_ADDRESS 0x00000005
31 #define DMP_DESC_ADDRSIZE_GT32 0x00000008
32 #define DMP_DESC_EOT 0x0000000F
33
34 #define DMP_COMP_DESIGNER 0xFFF00000
35 #define DMP_COMP_DESIGNER_S 20
36 #define DMP_COMP_PARTNUM 0x000FFF00
37 #define DMP_COMP_PARTNUM_S 8
38 #define DMP_COMP_CLASS 0x000000F0
39 #define DMP_COMP_CLASS_S 4
40 #define DMP_COMP_REVISION 0xFF000000
41 #define DMP_COMP_REVISION_S 24
42 #define DMP_COMP_NUM_SWRAP 0x00F80000
43 #define DMP_COMP_NUM_SWRAP_S 19
44 #define DMP_COMP_NUM_MWRAP 0x0007C000
45 #define DMP_COMP_NUM_MWRAP_S 14
46 #define DMP_COMP_NUM_SPORT 0x00003E00
47 #define DMP_COMP_NUM_SPORT_S 9
48 #define DMP_COMP_NUM_MPORT 0x000001F0
49 #define DMP_COMP_NUM_MPORT_S 4
50
51 #define DMP_MASTER_PORT_UID 0x0000FF00
52 #define DMP_MASTER_PORT_UID_S 8
53 #define DMP_MASTER_PORT_NUM 0x000000F0
54 #define DMP_MASTER_PORT_NUM_S 4
55
56 #define DMP_SLAVE_ADDR_BASE 0xFFFFF000
57 #define DMP_SLAVE_ADDR_BASE_S 12
58 #define DMP_SLAVE_PORT_NUM 0x00000F00
59 #define DMP_SLAVE_PORT_NUM_S 8
60 #define DMP_SLAVE_TYPE 0x000000C0
61 #define DMP_SLAVE_TYPE_S 6
62 #define DMP_SLAVE_TYPE_SLAVE 0
63 #define DMP_SLAVE_TYPE_BRIDGE 1
64 #define DMP_SLAVE_TYPE_SWRAP 2
65 #define DMP_SLAVE_TYPE_MWRAP 3
66 #define DMP_SLAVE_SIZE_TYPE 0x00000030
67 #define DMP_SLAVE_SIZE_TYPE_S 4
68 #define DMP_SLAVE_SIZE_4K 0
69 #define DMP_SLAVE_SIZE_8K 1
70 #define DMP_SLAVE_SIZE_16K 2
71 #define DMP_SLAVE_SIZE_DESC 3
72
73 /* EROM CompIdentB */
74 #define CIB_REV_MASK 0xff000000
75 #define CIB_REV_SHIFT 24
76
77 /* ARM CR4 core specific control flag bits */
78 #define ARMCR4_BCMA_IOCTL_CPUHALT 0x0020
79
80 /* D11 core specific control flag bits */
81 #define D11_BCMA_IOCTL_PHYCLOCKEN 0x0004
82 #define D11_BCMA_IOCTL_PHYRESET 0x0008
83
84 /* chip core base & ramsize */
85 /* bcm4329 */
86 /* SDIO device core, ID 0x829 */
87 #define BCM4329_CORE_BUS_BASE 0x18011000
88 /* internal memory core, ID 0x80e */
89 #define BCM4329_CORE_SOCRAM_BASE 0x18003000
90 /* ARM Cortex M3 core, ID 0x82a */
91 #define BCM4329_CORE_ARM_BASE 0x18002000
92
93 /* Max possibly supported memory size (limited by IO mapped memory) */
94 #define BRCMF_CHIP_MAX_MEMSIZE (4 * 1024 * 1024)
95
96 #define CORE_SB(base, field) \
97 (base + SBCONFIGOFF + offsetof(struct sbconfig, field))
98 #define SBCOREREV(sbidh) \
99 ((((sbidh) & SSB_IDHIGH_RCHI) >> SSB_IDHIGH_RCHI_SHIFT) | \
100 ((sbidh) & SSB_IDHIGH_RCLO))
101
102 struct sbconfig {
103 u32 PAD[2];
104 u32 sbipsflag; /* initiator port ocp slave flag */
105 u32 PAD[3];
106 u32 sbtpsflag; /* target port ocp slave flag */
107 u32 PAD[11];
108 u32 sbtmerrloga; /* (sonics >= 2.3) */
109 u32 PAD;
110 u32 sbtmerrlog; /* (sonics >= 2.3) */
111 u32 PAD[3];
112 u32 sbadmatch3; /* address match3 */
113 u32 PAD;
114 u32 sbadmatch2; /* address match2 */
115 u32 PAD;
116 u32 sbadmatch1; /* address match1 */
117 u32 PAD[7];
118 u32 sbimstate; /* initiator agent state */
119 u32 sbintvec; /* interrupt mask */
120 u32 sbtmstatelow; /* target state */
121 u32 sbtmstatehigh; /* target state */
122 u32 sbbwa0; /* bandwidth allocation table0 */
123 u32 PAD;
124 u32 sbimconfiglow; /* initiator configuration */
125 u32 sbimconfighigh; /* initiator configuration */
126 u32 sbadmatch0; /* address match0 */
127 u32 PAD;
128 u32 sbtmconfiglow; /* target configuration */
129 u32 sbtmconfighigh; /* target configuration */
130 u32 sbbconfig; /* broadcast configuration */
131 u32 PAD;
132 u32 sbbstate; /* broadcast state */
133 u32 PAD[3];
134 u32 sbactcnfg; /* activate configuration */
135 u32 PAD[3];
136 u32 sbflagst; /* current sbflags */
137 u32 PAD[3];
138 u32 sbidlow; /* identification */
139 u32 sbidhigh; /* identification */
140 };
141
142 #define INVALID_RAMBASE ((u32)(~0))
143
144 /* bankidx and bankinfo reg defines corerev >= 8 */
145 #define SOCRAM_BANKINFO_RETNTRAM_MASK 0x00010000
146 #define SOCRAM_BANKINFO_SZMASK 0x0000007f
147 #define SOCRAM_BANKIDX_ROM_MASK 0x00000100
148
149 #define SOCRAM_BANKIDX_MEMTYPE_SHIFT 8
150 /* socram bankinfo memtype */
151 #define SOCRAM_MEMTYPE_RAM 0
152 #define SOCRAM_MEMTYPE_R0M 1
153 #define SOCRAM_MEMTYPE_DEVRAM 2
154
155 #define SOCRAM_BANKINFO_SZBASE 8192
156 #define SRCI_LSS_MASK 0x00f00000
157 #define SRCI_LSS_SHIFT 20
158 #define SRCI_SRNB_MASK 0xf0
159 #define SRCI_SRNB_MASK_EXT 0x100
160 #define SRCI_SRNB_SHIFT 4
161 #define SRCI_SRBSZ_MASK 0xf
162 #define SRCI_SRBSZ_SHIFT 0
163 #define SR_BSZ_BASE 14
164
165 struct sbsocramregs {
166 u32 coreinfo;
167 u32 bwalloc;
168 u32 extracoreinfo;
169 u32 biststat;
170 u32 bankidx;
171 u32 standbyctrl;
172
173 u32 errlogstatus; /* rev 6 */
174 u32 errlogaddr; /* rev 6 */
175 /* used for patching rev 3 & 5 */
176 u32 cambankidx;
177 u32 cambankstandbyctrl;
178 u32 cambankpatchctrl;
179 u32 cambankpatchtblbaseaddr;
180 u32 cambankcmdreg;
181 u32 cambankdatareg;
182 u32 cambankmaskreg;
183 u32 PAD[1];
184 u32 bankinfo; /* corev 8 */
185 u32 bankpda;
186 u32 PAD[14];
187 u32 extmemconfig;
188 u32 extmemparitycsr;
189 u32 extmemparityerrdata;
190 u32 extmemparityerrcnt;
191 u32 extmemwrctrlandsize;
192 u32 PAD[84];
193 u32 workaround;
194 u32 pwrctl; /* corerev >= 2 */
195 u32 PAD[133];
196 u32 sr_control; /* corerev >= 15 */
197 u32 sr_status; /* corerev >= 15 */
198 u32 sr_address; /* corerev >= 15 */
199 u32 sr_data; /* corerev >= 15 */
200 };
201
202 #define SOCRAMREGOFFS(_f) offsetof(struct sbsocramregs, _f)
203 #define SYSMEMREGOFFS(_f) offsetof(struct sbsocramregs, _f)
204
205 #define ARMCR4_CAP (0x04)
206 #define ARMCR4_BANKIDX (0x40)
207 #define ARMCR4_BANKINFO (0x44)
208 #define ARMCR4_BANKPDA (0x4C)
209
210 #define ARMCR4_TCBBNB_MASK 0xf0
211 #define ARMCR4_TCBBNB_SHIFT 4
212 #define ARMCR4_TCBANB_MASK 0xf
213 #define ARMCR4_TCBANB_SHIFT 0
214
215 #define ARMCR4_BSZ_MASK 0x7f
216 #define ARMCR4_BSZ_MULT 8192
217 #define ARMCR4_BLK_1K_MASK 0x200
218
219 struct brcmf_core_priv {
220 struct brcmf_core pub;
221 u32 wrapbase;
222 struct list_head list;
223 struct brcmf_chip_priv *chip;
224 };
225
226 struct brcmf_chip_priv {
227 struct brcmf_chip pub;
228 const struct brcmf_buscore_ops *ops;
229 void *ctx;
230 /* assured first core is chipcommon, second core is buscore */
231 struct list_head cores;
232 u16 num_cores;
233
234 bool (*iscoreup)(struct brcmf_core_priv *core);
235 void (*coredisable)(struct brcmf_core_priv *core, u32 prereset,
236 u32 reset);
237 void (*resetcore)(struct brcmf_core_priv *core, u32 prereset, u32 reset,
238 u32 postreset);
239 };
240
brcmf_chip_sb_corerev(struct brcmf_chip_priv * ci,struct brcmf_core * core)241 static void brcmf_chip_sb_corerev(struct brcmf_chip_priv *ci,
242 struct brcmf_core *core)
243 {
244 u32 regdata;
245
246 regdata = ci->ops->read32(ci->ctx, CORE_SB(core->base, sbidhigh));
247 core->rev = SBCOREREV(regdata);
248 }
249
brcmf_chip_sb_iscoreup(struct brcmf_core_priv * core)250 static bool brcmf_chip_sb_iscoreup(struct brcmf_core_priv *core)
251 {
252 struct brcmf_chip_priv *ci;
253 u32 regdata;
254 u32 address;
255
256 ci = core->chip;
257 address = CORE_SB(core->pub.base, sbtmstatelow);
258 regdata = ci->ops->read32(ci->ctx, address);
259 regdata &= (SSB_TMSLOW_RESET | SSB_TMSLOW_REJECT |
260 SSB_IMSTATE_REJECT | SSB_TMSLOW_CLOCK);
261 return SSB_TMSLOW_CLOCK == regdata;
262 }
263
brcmf_chip_ai_iscoreup(struct brcmf_core_priv * core)264 static bool brcmf_chip_ai_iscoreup(struct brcmf_core_priv *core)
265 {
266 struct brcmf_chip_priv *ci;
267 u32 regdata;
268 bool ret;
269
270 ci = core->chip;
271 regdata = ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL);
272 ret = (regdata & (BCMA_IOCTL_FGC | BCMA_IOCTL_CLK)) == BCMA_IOCTL_CLK;
273
274 regdata = ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL);
275 ret = ret && ((regdata & BCMA_RESET_CTL_RESET) == 0);
276
277 return ret;
278 }
279
brcmf_chip_sb_coredisable(struct brcmf_core_priv * core,u32 prereset,u32 reset)280 static void brcmf_chip_sb_coredisable(struct brcmf_core_priv *core,
281 u32 prereset, u32 reset)
282 {
283 struct brcmf_chip_priv *ci;
284 u32 val, base;
285
286 ci = core->chip;
287 base = core->pub.base;
288 val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
289 if (val & SSB_TMSLOW_RESET)
290 return;
291
292 val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
293 if ((val & SSB_TMSLOW_CLOCK) != 0) {
294 /*
295 * set target reject and spin until busy is clear
296 * (preserve core-specific bits)
297 */
298 val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
299 ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
300 val | SSB_TMSLOW_REJECT);
301
302 val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
303 udelay(1);
304 SPINWAIT((ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatehigh))
305 & SSB_TMSHIGH_BUSY), 100000);
306
307 val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatehigh));
308 if (val & SSB_TMSHIGH_BUSY)
309 brcmf_err("core state still busy\n");
310
311 val = ci->ops->read32(ci->ctx, CORE_SB(base, sbidlow));
312 if (val & SSB_IDLOW_INITIATOR) {
313 val = ci->ops->read32(ci->ctx,
314 CORE_SB(base, sbimstate));
315 val |= SSB_IMSTATE_REJECT;
316 ci->ops->write32(ci->ctx,
317 CORE_SB(base, sbimstate), val);
318 val = ci->ops->read32(ci->ctx,
319 CORE_SB(base, sbimstate));
320 udelay(1);
321 SPINWAIT((ci->ops->read32(ci->ctx,
322 CORE_SB(base, sbimstate)) &
323 SSB_IMSTATE_BUSY), 100000);
324 }
325
326 /* set reset and reject while enabling the clocks */
327 val = SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK |
328 SSB_TMSLOW_REJECT | SSB_TMSLOW_RESET;
329 ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow), val);
330 val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
331 udelay(10);
332
333 /* clear the initiator reject bit */
334 val = ci->ops->read32(ci->ctx, CORE_SB(base, sbidlow));
335 if (val & SSB_IDLOW_INITIATOR) {
336 val = ci->ops->read32(ci->ctx,
337 CORE_SB(base, sbimstate));
338 val &= ~SSB_IMSTATE_REJECT;
339 ci->ops->write32(ci->ctx,
340 CORE_SB(base, sbimstate), val);
341 }
342 }
343
344 /* leave reset and reject asserted */
345 ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
346 (SSB_TMSLOW_REJECT | SSB_TMSLOW_RESET));
347 udelay(1);
348 }
349
brcmf_chip_ai_coredisable(struct brcmf_core_priv * core,u32 prereset,u32 reset)350 static void brcmf_chip_ai_coredisable(struct brcmf_core_priv *core,
351 u32 prereset, u32 reset)
352 {
353 struct brcmf_chip_priv *ci;
354 u32 regdata;
355
356 ci = core->chip;
357
358 /* if core is already in reset, skip reset */
359 regdata = ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL);
360 if ((regdata & BCMA_RESET_CTL_RESET) != 0)
361 goto in_reset_configure;
362
363 /* configure reset */
364 ci->ops->write32(ci->ctx, core->wrapbase + BCMA_IOCTL,
365 prereset | BCMA_IOCTL_FGC | BCMA_IOCTL_CLK);
366 ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL);
367
368 /* put in reset */
369 ci->ops->write32(ci->ctx, core->wrapbase + BCMA_RESET_CTL,
370 BCMA_RESET_CTL_RESET);
371 usleep_range(10, 20);
372
373 /* wait till reset is 1 */
374 SPINWAIT(ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL) !=
375 BCMA_RESET_CTL_RESET, 300);
376
377 in_reset_configure:
378 /* in-reset configure */
379 ci->ops->write32(ci->ctx, core->wrapbase + BCMA_IOCTL,
380 reset | BCMA_IOCTL_FGC | BCMA_IOCTL_CLK);
381 ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL);
382 }
383
brcmf_chip_sb_resetcore(struct brcmf_core_priv * core,u32 prereset,u32 reset,u32 postreset)384 static void brcmf_chip_sb_resetcore(struct brcmf_core_priv *core, u32 prereset,
385 u32 reset, u32 postreset)
386 {
387 struct brcmf_chip_priv *ci;
388 u32 regdata;
389 u32 base;
390
391 ci = core->chip;
392 base = core->pub.base;
393 /*
394 * Must do the disable sequence first to work for
395 * arbitrary current core state.
396 */
397 brcmf_chip_sb_coredisable(core, 0, 0);
398
399 /*
400 * Now do the initialization sequence.
401 * set reset while enabling the clock and
402 * forcing them on throughout the core
403 */
404 ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
405 SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK |
406 SSB_TMSLOW_RESET);
407 regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
408 udelay(1);
409
410 /* clear any serror */
411 regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatehigh));
412 if (regdata & SSB_TMSHIGH_SERR)
413 ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatehigh), 0);
414
415 regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbimstate));
416 if (regdata & (SSB_IMSTATE_IBE | SSB_IMSTATE_TO)) {
417 regdata &= ~(SSB_IMSTATE_IBE | SSB_IMSTATE_TO);
418 ci->ops->write32(ci->ctx, CORE_SB(base, sbimstate), regdata);
419 }
420
421 /* clear reset and allow it to propagate throughout the core */
422 ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
423 SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK);
424 regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
425 udelay(1);
426
427 /* leave clock enabled */
428 ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
429 SSB_TMSLOW_CLOCK);
430 regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
431 udelay(1);
432 }
433
brcmf_chip_ai_resetcore(struct brcmf_core_priv * core,u32 prereset,u32 reset,u32 postreset)434 static void brcmf_chip_ai_resetcore(struct brcmf_core_priv *core, u32 prereset,
435 u32 reset, u32 postreset)
436 {
437 struct brcmf_chip_priv *ci;
438 int count;
439 struct brcmf_core *d11core2 = NULL;
440 struct brcmf_core_priv *d11priv2 = NULL;
441
442 ci = core->chip;
443
444 /* special handle two D11 cores reset */
445 if (core->pub.id == BCMA_CORE_80211) {
446 d11core2 = brcmf_chip_get_d11core(&ci->pub, 1);
447 if (d11core2) {
448 brcmf_dbg(INFO, "found two d11 cores, reset both\n");
449 d11priv2 = container_of(d11core2,
450 struct brcmf_core_priv, pub);
451 }
452 }
453
454 /* must disable first to work for arbitrary current core state */
455 brcmf_chip_ai_coredisable(core, prereset, reset);
456 if (d11priv2)
457 brcmf_chip_ai_coredisable(d11priv2, prereset, reset);
458
459 count = 0;
460 while (ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL) &
461 BCMA_RESET_CTL_RESET) {
462 ci->ops->write32(ci->ctx, core->wrapbase + BCMA_RESET_CTL, 0);
463 count++;
464 if (count > 50)
465 break;
466 usleep_range(40, 60);
467 }
468
469 if (d11priv2) {
470 count = 0;
471 while (ci->ops->read32(ci->ctx,
472 d11priv2->wrapbase + BCMA_RESET_CTL) &
473 BCMA_RESET_CTL_RESET) {
474 ci->ops->write32(ci->ctx,
475 d11priv2->wrapbase + BCMA_RESET_CTL,
476 0);
477 count++;
478 if (count > 50)
479 break;
480 usleep_range(40, 60);
481 }
482 }
483
484 ci->ops->write32(ci->ctx, core->wrapbase + BCMA_IOCTL,
485 postreset | BCMA_IOCTL_CLK);
486 ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL);
487
488 if (d11priv2) {
489 ci->ops->write32(ci->ctx, d11priv2->wrapbase + BCMA_IOCTL,
490 postreset | BCMA_IOCTL_CLK);
491 ci->ops->read32(ci->ctx, d11priv2->wrapbase + BCMA_IOCTL);
492 }
493 }
494
brcmf_chip_name(u32 id,u32 rev,char * buf,uint len)495 char *brcmf_chip_name(u32 id, u32 rev, char *buf, uint len)
496 {
497 const char *fmt;
498
499 fmt = ((id > 0xa000) || (id < 0x4000)) ? "BCM%d/%u" : "BCM%x/%u";
500 snprintf(buf, len, fmt, id, rev);
501 return buf;
502 }
503
brcmf_chip_add_core(struct brcmf_chip_priv * ci,u16 coreid,u32 base,u32 wrapbase)504 static struct brcmf_core *brcmf_chip_add_core(struct brcmf_chip_priv *ci,
505 u16 coreid, u32 base,
506 u32 wrapbase)
507 {
508 struct brcmf_core_priv *core;
509
510 core = kzalloc(sizeof(*core), GFP_KERNEL);
511 if (!core)
512 return ERR_PTR(-ENOMEM);
513
514 core->pub.id = coreid;
515 core->pub.base = base;
516 core->chip = ci;
517 core->wrapbase = wrapbase;
518
519 list_add_tail(&core->list, &ci->cores);
520 return &core->pub;
521 }
522
523 /* safety check for chipinfo */
brcmf_chip_cores_check(struct brcmf_chip_priv * ci)524 static int brcmf_chip_cores_check(struct brcmf_chip_priv *ci)
525 {
526 struct brcmf_core_priv *core;
527 bool need_socram = false;
528 bool has_socram = false;
529 bool cpu_found = false;
530 int idx = 1;
531
532 list_for_each_entry(core, &ci->cores, list) {
533 brcmf_dbg(INFO, " [%-2d] core 0x%x:%-3d base 0x%08x wrap 0x%08x\n",
534 idx++, core->pub.id, core->pub.rev, core->pub.base,
535 core->wrapbase);
536
537 switch (core->pub.id) {
538 case BCMA_CORE_ARM_CM3:
539 cpu_found = true;
540 need_socram = true;
541 break;
542 case BCMA_CORE_INTERNAL_MEM:
543 has_socram = true;
544 break;
545 case BCMA_CORE_ARM_CR4:
546 cpu_found = true;
547 break;
548 case BCMA_CORE_ARM_CA7:
549 cpu_found = true;
550 break;
551 default:
552 break;
553 }
554 }
555
556 if (!cpu_found) {
557 brcmf_err("CPU core not detected\n");
558 return -ENXIO;
559 }
560 /* check RAM core presence for ARM CM3 core */
561 if (need_socram && !has_socram) {
562 brcmf_err("RAM core not provided with ARM CM3 core\n");
563 return -ENODEV;
564 }
565 return 0;
566 }
567
brcmf_chip_core_read32(struct brcmf_core_priv * core,u16 reg)568 static u32 brcmf_chip_core_read32(struct brcmf_core_priv *core, u16 reg)
569 {
570 return core->chip->ops->read32(core->chip->ctx, core->pub.base + reg);
571 }
572
brcmf_chip_core_write32(struct brcmf_core_priv * core,u16 reg,u32 val)573 static void brcmf_chip_core_write32(struct brcmf_core_priv *core,
574 u16 reg, u32 val)
575 {
576 core->chip->ops->write32(core->chip->ctx, core->pub.base + reg, val);
577 }
578
brcmf_chip_socram_banksize(struct brcmf_core_priv * core,u8 idx,u32 * banksize)579 static bool brcmf_chip_socram_banksize(struct brcmf_core_priv *core, u8 idx,
580 u32 *banksize)
581 {
582 u32 bankinfo;
583 u32 bankidx = (SOCRAM_MEMTYPE_RAM << SOCRAM_BANKIDX_MEMTYPE_SHIFT);
584
585 bankidx |= idx;
586 brcmf_chip_core_write32(core, SOCRAMREGOFFS(bankidx), bankidx);
587 bankinfo = brcmf_chip_core_read32(core, SOCRAMREGOFFS(bankinfo));
588 *banksize = (bankinfo & SOCRAM_BANKINFO_SZMASK) + 1;
589 *banksize *= SOCRAM_BANKINFO_SZBASE;
590 return !!(bankinfo & SOCRAM_BANKINFO_RETNTRAM_MASK);
591 }
592
brcmf_chip_socram_ramsize(struct brcmf_core_priv * sr,u32 * ramsize,u32 * srsize)593 static void brcmf_chip_socram_ramsize(struct brcmf_core_priv *sr, u32 *ramsize,
594 u32 *srsize)
595 {
596 u32 coreinfo;
597 uint nb, banksize, lss;
598 bool retent;
599 int i;
600
601 *ramsize = 0;
602 *srsize = 0;
603
604 if (WARN_ON(sr->pub.rev < 4))
605 return;
606
607 if (!brcmf_chip_iscoreup(&sr->pub))
608 brcmf_chip_resetcore(&sr->pub, 0, 0, 0);
609
610 /* Get info for determining size */
611 coreinfo = brcmf_chip_core_read32(sr, SOCRAMREGOFFS(coreinfo));
612 nb = (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT;
613
614 if ((sr->pub.rev <= 7) || (sr->pub.rev == 12)) {
615 banksize = (coreinfo & SRCI_SRBSZ_MASK);
616 lss = (coreinfo & SRCI_LSS_MASK) >> SRCI_LSS_SHIFT;
617 if (lss != 0)
618 nb--;
619 *ramsize = nb * (1 << (banksize + SR_BSZ_BASE));
620 if (lss != 0)
621 *ramsize += (1 << ((lss - 1) + SR_BSZ_BASE));
622 } else {
623 /* length of SRAM Banks increased for corerev greater than 23 */
624 if (sr->pub.rev >= 23) {
625 nb = (coreinfo & (SRCI_SRNB_MASK | SRCI_SRNB_MASK_EXT))
626 >> SRCI_SRNB_SHIFT;
627 } else {
628 nb = (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT;
629 }
630 for (i = 0; i < nb; i++) {
631 retent = brcmf_chip_socram_banksize(sr, i, &banksize);
632 *ramsize += banksize;
633 if (retent)
634 *srsize += banksize;
635 }
636 }
637
638 /* hardcoded save&restore memory sizes */
639 switch (sr->chip->pub.chip) {
640 case BRCM_CC_4334_CHIP_ID:
641 if (sr->chip->pub.chiprev < 2)
642 *srsize = (32 * 1024);
643 break;
644 case BRCM_CC_43430_CHIP_ID:
645 case CY_CC_43439_CHIP_ID:
646 /* assume sr for now as we can not check
647 * firmware sr capability at this point.
648 */
649 *srsize = (64 * 1024);
650 break;
651 default:
652 break;
653 }
654 }
655
656 /** Return the SYS MEM size */
brcmf_chip_sysmem_ramsize(struct brcmf_core_priv * sysmem)657 static u32 brcmf_chip_sysmem_ramsize(struct brcmf_core_priv *sysmem)
658 {
659 u32 memsize = 0;
660 u32 coreinfo;
661 u32 idx;
662 u32 nb;
663 u32 banksize;
664
665 if (!brcmf_chip_iscoreup(&sysmem->pub))
666 brcmf_chip_resetcore(&sysmem->pub, 0, 0, 0);
667
668 coreinfo = brcmf_chip_core_read32(sysmem, SYSMEMREGOFFS(coreinfo));
669 nb = (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT;
670
671 for (idx = 0; idx < nb; idx++) {
672 brcmf_chip_socram_banksize(sysmem, idx, &banksize);
673 memsize += banksize;
674 }
675
676 return memsize;
677 }
678
679 /** Return the TCM-RAM size of the ARMCR4 core. */
brcmf_chip_tcm_ramsize(struct brcmf_core_priv * cr4)680 static u32 brcmf_chip_tcm_ramsize(struct brcmf_core_priv *cr4)
681 {
682 u32 corecap;
683 u32 memsize = 0;
684 u32 nab;
685 u32 nbb;
686 u32 totb;
687 u32 bxinfo;
688 u32 blksize;
689 u32 idx;
690
691 corecap = brcmf_chip_core_read32(cr4, ARMCR4_CAP);
692
693 nab = (corecap & ARMCR4_TCBANB_MASK) >> ARMCR4_TCBANB_SHIFT;
694 nbb = (corecap & ARMCR4_TCBBNB_MASK) >> ARMCR4_TCBBNB_SHIFT;
695 totb = nab + nbb;
696
697 for (idx = 0; idx < totb; idx++) {
698 brcmf_chip_core_write32(cr4, ARMCR4_BANKIDX, idx);
699 bxinfo = brcmf_chip_core_read32(cr4, ARMCR4_BANKINFO);
700 blksize = ARMCR4_BSZ_MULT;
701 if (bxinfo & ARMCR4_BLK_1K_MASK)
702 blksize >>= 3;
703
704 memsize += ((bxinfo & ARMCR4_BSZ_MASK) + 1) * blksize;
705 }
706
707 return memsize;
708 }
709
brcmf_chip_tcm_rambase(struct brcmf_chip_priv * ci)710 static u32 brcmf_chip_tcm_rambase(struct brcmf_chip_priv *ci)
711 {
712 switch (ci->pub.chip) {
713 case BRCM_CC_4345_CHIP_ID:
714 case BRCM_CC_43454_CHIP_ID:
715 return 0x198000;
716 case BRCM_CC_4335_CHIP_ID:
717 case BRCM_CC_4339_CHIP_ID:
718 case BRCM_CC_4350_CHIP_ID:
719 case BRCM_CC_4354_CHIP_ID:
720 case BRCM_CC_4356_CHIP_ID:
721 case BRCM_CC_43567_CHIP_ID:
722 case BRCM_CC_43569_CHIP_ID:
723 case BRCM_CC_43570_CHIP_ID:
724 case BRCM_CC_4358_CHIP_ID:
725 case BRCM_CC_43602_CHIP_ID:
726 case BRCM_CC_4371_CHIP_ID:
727 return 0x180000;
728 case BRCM_CC_43465_CHIP_ID:
729 case BRCM_CC_43525_CHIP_ID:
730 case BRCM_CC_4365_CHIP_ID:
731 case BRCM_CC_4366_CHIP_ID:
732 case BRCM_CC_43664_CHIP_ID:
733 case BRCM_CC_43666_CHIP_ID:
734 return 0x200000;
735 case BRCM_CC_4355_CHIP_ID:
736 case BRCM_CC_4359_CHIP_ID:
737 return (ci->pub.chiprev < 9) ? 0x180000 : 0x160000;
738 case BRCM_CC_4364_CHIP_ID:
739 case CY_CC_4373_CHIP_ID:
740 return 0x160000;
741 case CY_CC_43752_CHIP_ID:
742 case BRCM_CC_4377_CHIP_ID:
743 return 0x170000;
744 case BRCM_CC_4378_CHIP_ID:
745 return 0x352000;
746 case BRCM_CC_4387_CHIP_ID:
747 return 0x740000;
748 default:
749 brcmf_err("unknown chip: %s\n", ci->pub.name);
750 break;
751 }
752 return INVALID_RAMBASE;
753 }
754
brcmf_chip_get_raminfo(struct brcmf_chip * pub)755 int brcmf_chip_get_raminfo(struct brcmf_chip *pub)
756 {
757 struct brcmf_chip_priv *ci = container_of(pub, struct brcmf_chip_priv,
758 pub);
759 struct brcmf_core_priv *mem_core;
760 struct brcmf_core *mem;
761
762 mem = brcmf_chip_get_core(&ci->pub, BCMA_CORE_ARM_CR4);
763 if (mem) {
764 mem_core = container_of(mem, struct brcmf_core_priv, pub);
765 ci->pub.ramsize = brcmf_chip_tcm_ramsize(mem_core);
766 ci->pub.rambase = brcmf_chip_tcm_rambase(ci);
767 if (ci->pub.rambase == INVALID_RAMBASE) {
768 brcmf_err("RAM base not provided with ARM CR4 core\n");
769 return -EINVAL;
770 }
771 } else {
772 mem = brcmf_chip_get_core(&ci->pub, BCMA_CORE_SYS_MEM);
773 if (mem) {
774 mem_core = container_of(mem, struct brcmf_core_priv,
775 pub);
776 ci->pub.ramsize = brcmf_chip_sysmem_ramsize(mem_core);
777 ci->pub.rambase = brcmf_chip_tcm_rambase(ci);
778 if (ci->pub.rambase == INVALID_RAMBASE) {
779 brcmf_err("RAM base not provided with ARM CA7 core\n");
780 return -EINVAL;
781 }
782 } else {
783 mem = brcmf_chip_get_core(&ci->pub,
784 BCMA_CORE_INTERNAL_MEM);
785 if (!mem) {
786 brcmf_err("No memory cores found\n");
787 return -ENOMEM;
788 }
789 mem_core = container_of(mem, struct brcmf_core_priv,
790 pub);
791 brcmf_chip_socram_ramsize(mem_core, &ci->pub.ramsize,
792 &ci->pub.srsize);
793 }
794 }
795 brcmf_dbg(INFO, "RAM: base=0x%x size=%d (0x%x) sr=%d (0x%x)\n",
796 ci->pub.rambase, ci->pub.ramsize, ci->pub.ramsize,
797 ci->pub.srsize, ci->pub.srsize);
798
799 if (!ci->pub.ramsize) {
800 brcmf_err("RAM size is undetermined\n");
801 return -ENOMEM;
802 }
803
804 if (ci->pub.ramsize > BRCMF_CHIP_MAX_MEMSIZE) {
805 brcmf_err("RAM size is incorrect\n");
806 return -ENOMEM;
807 }
808
809 return 0;
810 }
811
brcmf_chip_dmp_get_desc(struct brcmf_chip_priv * ci,u32 * eromaddr,u8 * type)812 static u32 brcmf_chip_dmp_get_desc(struct brcmf_chip_priv *ci, u32 *eromaddr,
813 u8 *type)
814 {
815 u32 val;
816
817 /* read next descriptor */
818 val = ci->ops->read32(ci->ctx, *eromaddr);
819 *eromaddr += 4;
820
821 if (!type)
822 return val;
823
824 /* determine descriptor type */
825 *type = (val & DMP_DESC_TYPE_MSK);
826 if ((*type & ~DMP_DESC_ADDRSIZE_GT32) == DMP_DESC_ADDRESS)
827 *type = DMP_DESC_ADDRESS;
828
829 return val;
830 }
831
brcmf_chip_dmp_get_regaddr(struct brcmf_chip_priv * ci,u32 * eromaddr,u32 * regbase,u32 * wrapbase)832 static int brcmf_chip_dmp_get_regaddr(struct brcmf_chip_priv *ci, u32 *eromaddr,
833 u32 *regbase, u32 *wrapbase)
834 {
835 u8 desc;
836 u32 val, szdesc;
837 u8 stype, sztype, wraptype;
838
839 *regbase = 0;
840 *wrapbase = 0;
841
842 val = brcmf_chip_dmp_get_desc(ci, eromaddr, &desc);
843 if (desc == DMP_DESC_MASTER_PORT) {
844 wraptype = DMP_SLAVE_TYPE_MWRAP;
845 } else if (desc == DMP_DESC_ADDRESS) {
846 /* revert erom address */
847 *eromaddr -= 4;
848 wraptype = DMP_SLAVE_TYPE_SWRAP;
849 } else {
850 *eromaddr -= 4;
851 return -EILSEQ;
852 }
853
854 do {
855 /* locate address descriptor */
856 do {
857 val = brcmf_chip_dmp_get_desc(ci, eromaddr, &desc);
858 /* unexpected table end */
859 if (desc == DMP_DESC_EOT) {
860 *eromaddr -= 4;
861 return -EFAULT;
862 }
863 } while (desc != DMP_DESC_ADDRESS &&
864 desc != DMP_DESC_COMPONENT);
865
866 /* stop if we crossed current component border */
867 if (desc == DMP_DESC_COMPONENT) {
868 *eromaddr -= 4;
869 return 0;
870 }
871
872 /* skip upper 32-bit address descriptor */
873 if (val & DMP_DESC_ADDRSIZE_GT32)
874 brcmf_chip_dmp_get_desc(ci, eromaddr, NULL);
875
876 sztype = (val & DMP_SLAVE_SIZE_TYPE) >> DMP_SLAVE_SIZE_TYPE_S;
877
878 /* next size descriptor can be skipped */
879 if (sztype == DMP_SLAVE_SIZE_DESC) {
880 szdesc = brcmf_chip_dmp_get_desc(ci, eromaddr, NULL);
881 /* skip upper size descriptor if present */
882 if (szdesc & DMP_DESC_ADDRSIZE_GT32)
883 brcmf_chip_dmp_get_desc(ci, eromaddr, NULL);
884 }
885
886 /* look for 4K or 8K register regions */
887 if (sztype != DMP_SLAVE_SIZE_4K &&
888 sztype != DMP_SLAVE_SIZE_8K)
889 continue;
890
891 stype = (val & DMP_SLAVE_TYPE) >> DMP_SLAVE_TYPE_S;
892
893 /* only regular slave and wrapper */
894 if (*regbase == 0 && stype == DMP_SLAVE_TYPE_SLAVE)
895 *regbase = val & DMP_SLAVE_ADDR_BASE;
896 if (*wrapbase == 0 && stype == wraptype)
897 *wrapbase = val & DMP_SLAVE_ADDR_BASE;
898 } while (*regbase == 0 || *wrapbase == 0);
899
900 return 0;
901 }
902
903 static
brcmf_chip_dmp_erom_scan(struct brcmf_chip_priv * ci)904 int brcmf_chip_dmp_erom_scan(struct brcmf_chip_priv *ci)
905 {
906 struct brcmf_core *core;
907 u32 eromaddr;
908 u8 desc_type = 0;
909 u32 val;
910 u16 id;
911 u8 nmw, nsw, rev;
912 u32 base, wrap;
913 int err;
914
915 eromaddr = ci->ops->read32(ci->ctx,
916 CORE_CC_REG(ci->pub.enum_base, eromptr));
917
918 while (desc_type != DMP_DESC_EOT) {
919 val = brcmf_chip_dmp_get_desc(ci, &eromaddr, &desc_type);
920 if (!(val & DMP_DESC_VALID))
921 continue;
922
923 if (desc_type == DMP_DESC_EMPTY)
924 continue;
925
926 /* need a component descriptor */
927 if (desc_type != DMP_DESC_COMPONENT)
928 continue;
929
930 id = (val & DMP_COMP_PARTNUM) >> DMP_COMP_PARTNUM_S;
931
932 /* next descriptor must be component as well */
933 val = brcmf_chip_dmp_get_desc(ci, &eromaddr, &desc_type);
934 if (WARN_ON((val & DMP_DESC_TYPE_MSK) != DMP_DESC_COMPONENT))
935 return -EFAULT;
936
937 /* only look at cores with master port(s) */
938 nmw = (val & DMP_COMP_NUM_MWRAP) >> DMP_COMP_NUM_MWRAP_S;
939 nsw = (val & DMP_COMP_NUM_SWRAP) >> DMP_COMP_NUM_SWRAP_S;
940 rev = (val & DMP_COMP_REVISION) >> DMP_COMP_REVISION_S;
941
942 /* need core with ports */
943 if (nmw + nsw == 0 &&
944 id != BCMA_CORE_PMU &&
945 id != BCMA_CORE_GCI)
946 continue;
947
948 /* try to obtain register address info */
949 err = brcmf_chip_dmp_get_regaddr(ci, &eromaddr, &base, &wrap);
950 if (err)
951 continue;
952
953 /* finally a core to be added */
954 core = brcmf_chip_add_core(ci, id, base, wrap);
955 if (IS_ERR(core))
956 return PTR_ERR(core);
957
958 core->rev = rev;
959 }
960
961 return 0;
962 }
963
brcmf_chip_enum_base(u16 devid)964 u32 brcmf_chip_enum_base(u16 devid)
965 {
966 return SI_ENUM_BASE_DEFAULT;
967 }
968
brcmf_chip_recognition(struct brcmf_chip_priv * ci)969 static int brcmf_chip_recognition(struct brcmf_chip_priv *ci)
970 {
971 struct brcmf_core *core;
972 u32 regdata;
973 u32 socitype;
974 int ret;
975 const u32 READ_FAILED = 0xFFFFFFFF;
976
977 /* Get CC core rev
978 * Chipid is assume to be at offset 0 from SI_ENUM_BASE
979 * For different chiptypes or old sdio hosts w/o chipcommon,
980 * other ways of recognition should be added here.
981 */
982 regdata = ci->ops->read32(ci->ctx,
983 CORE_CC_REG(ci->pub.enum_base, chipid));
984 if (regdata == READ_FAILED) {
985 brcmf_err("MMIO read failed: 0x%08x\n", regdata);
986 return -ENODEV;
987 }
988
989 ci->pub.chip = regdata & CID_ID_MASK;
990 ci->pub.chiprev = (regdata & CID_REV_MASK) >> CID_REV_SHIFT;
991 socitype = (regdata & CID_TYPE_MASK) >> CID_TYPE_SHIFT;
992
993 brcmf_chip_name(ci->pub.chip, ci->pub.chiprev,
994 ci->pub.name, sizeof(ci->pub.name));
995 brcmf_dbg(INFO, "found %s chip: %s\n",
996 socitype == SOCI_SB ? "SB" : "AXI", ci->pub.name);
997
998 if (socitype == SOCI_SB) {
999 if (ci->pub.chip != BRCM_CC_4329_CHIP_ID) {
1000 brcmf_err("SB chip is not supported\n");
1001 return -ENODEV;
1002 }
1003 ci->iscoreup = brcmf_chip_sb_iscoreup;
1004 ci->coredisable = brcmf_chip_sb_coredisable;
1005 ci->resetcore = brcmf_chip_sb_resetcore;
1006
1007 core = brcmf_chip_add_core(ci, BCMA_CORE_CHIPCOMMON,
1008 SI_ENUM_BASE_DEFAULT, 0);
1009 brcmf_chip_sb_corerev(ci, core);
1010 core = brcmf_chip_add_core(ci, BCMA_CORE_SDIO_DEV,
1011 BCM4329_CORE_BUS_BASE, 0);
1012 brcmf_chip_sb_corerev(ci, core);
1013 core = brcmf_chip_add_core(ci, BCMA_CORE_INTERNAL_MEM,
1014 BCM4329_CORE_SOCRAM_BASE, 0);
1015 brcmf_chip_sb_corerev(ci, core);
1016 core = brcmf_chip_add_core(ci, BCMA_CORE_ARM_CM3,
1017 BCM4329_CORE_ARM_BASE, 0);
1018 brcmf_chip_sb_corerev(ci, core);
1019
1020 core = brcmf_chip_add_core(ci, BCMA_CORE_80211, 0x18001000, 0);
1021 brcmf_chip_sb_corerev(ci, core);
1022 } else if (socitype == SOCI_AI) {
1023 ci->iscoreup = brcmf_chip_ai_iscoreup;
1024 ci->coredisable = brcmf_chip_ai_coredisable;
1025 ci->resetcore = brcmf_chip_ai_resetcore;
1026
1027 brcmf_chip_dmp_erom_scan(ci);
1028 } else {
1029 brcmf_err("chip backplane type %u is not supported\n",
1030 socitype);
1031 return -ENODEV;
1032 }
1033
1034 ret = brcmf_chip_cores_check(ci);
1035 if (ret)
1036 return ret;
1037
1038 /* assure chip is passive for core access */
1039 brcmf_chip_set_passive(&ci->pub);
1040
1041 /* Call bus specific reset function now. Cores have been determined
1042 * but further access may require a chip specific reset at this point.
1043 */
1044 if (ci->ops->reset) {
1045 ci->ops->reset(ci->ctx, &ci->pub);
1046 brcmf_chip_set_passive(&ci->pub);
1047 }
1048
1049 return brcmf_chip_get_raminfo(&ci->pub);
1050 }
1051
brcmf_chip_disable_arm(struct brcmf_chip_priv * chip,u16 id)1052 static void brcmf_chip_disable_arm(struct brcmf_chip_priv *chip, u16 id)
1053 {
1054 struct brcmf_core *core;
1055 struct brcmf_core_priv *cpu;
1056 u32 val;
1057
1058
1059 core = brcmf_chip_get_core(&chip->pub, id);
1060 if (!core)
1061 return;
1062
1063 switch (id) {
1064 case BCMA_CORE_ARM_CM3:
1065 brcmf_chip_coredisable(core, 0, 0);
1066 break;
1067 case BCMA_CORE_ARM_CR4:
1068 case BCMA_CORE_ARM_CA7:
1069 cpu = container_of(core, struct brcmf_core_priv, pub);
1070
1071 /* clear all IOCTL bits except HALT bit */
1072 val = chip->ops->read32(chip->ctx, cpu->wrapbase + BCMA_IOCTL);
1073 val &= ARMCR4_BCMA_IOCTL_CPUHALT;
1074 brcmf_chip_resetcore(core, val, ARMCR4_BCMA_IOCTL_CPUHALT,
1075 ARMCR4_BCMA_IOCTL_CPUHALT);
1076 break;
1077 default:
1078 brcmf_err("unknown id: %u\n", id);
1079 break;
1080 }
1081 }
1082
brcmf_chip_setup(struct brcmf_chip_priv * chip)1083 static int brcmf_chip_setup(struct brcmf_chip_priv *chip)
1084 {
1085 struct brcmf_chip *pub;
1086 struct brcmf_core_priv *cc;
1087 struct brcmf_core *pmu;
1088 u32 base;
1089 u32 val;
1090 int ret = 0;
1091
1092 pub = &chip->pub;
1093 cc = list_first_entry(&chip->cores, struct brcmf_core_priv, list);
1094 base = cc->pub.base;
1095
1096 /* get chipcommon capabilites */
1097 pub->cc_caps = chip->ops->read32(chip->ctx,
1098 CORE_CC_REG(base, capabilities));
1099 pub->cc_caps_ext = chip->ops->read32(chip->ctx,
1100 CORE_CC_REG(base,
1101 capabilities_ext));
1102
1103 /* get pmu caps & rev */
1104 pmu = brcmf_chip_get_pmu(pub); /* after reading cc_caps_ext */
1105 if (pub->cc_caps & CC_CAP_PMU) {
1106 val = chip->ops->read32(chip->ctx,
1107 CORE_CC_REG(pmu->base, pmucapabilities));
1108 pub->pmurev = val & PCAP_REV_MASK;
1109 pub->pmucaps = val;
1110 }
1111
1112 brcmf_dbg(INFO, "ccrev=%d, pmurev=%d, pmucaps=0x%x\n",
1113 cc->pub.rev, pub->pmurev, pub->pmucaps);
1114
1115 /* execute bus core specific setup */
1116 if (chip->ops->setup)
1117 ret = chip->ops->setup(chip->ctx, pub);
1118
1119 return ret;
1120 }
1121
brcmf_chip_attach(void * ctx,u16 devid,const struct brcmf_buscore_ops * ops)1122 struct brcmf_chip *brcmf_chip_attach(void *ctx, u16 devid,
1123 const struct brcmf_buscore_ops *ops)
1124 {
1125 struct brcmf_chip_priv *chip;
1126 int err = 0;
1127
1128 if (WARN_ON(!ops->read32))
1129 err = -EINVAL;
1130 if (WARN_ON(!ops->write32))
1131 err = -EINVAL;
1132 if (WARN_ON(!ops->prepare))
1133 err = -EINVAL;
1134 if (WARN_ON(!ops->activate))
1135 err = -EINVAL;
1136 if (err < 0)
1137 return ERR_PTR(-EINVAL);
1138
1139 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
1140 if (!chip)
1141 return ERR_PTR(-ENOMEM);
1142
1143 INIT_LIST_HEAD(&chip->cores);
1144 chip->num_cores = 0;
1145 chip->ops = ops;
1146 chip->ctx = ctx;
1147 chip->pub.enum_base = brcmf_chip_enum_base(devid);
1148
1149 err = ops->prepare(ctx);
1150 if (err < 0)
1151 goto fail;
1152
1153 err = brcmf_chip_recognition(chip);
1154 if (err < 0)
1155 goto fail;
1156
1157 err = brcmf_chip_setup(chip);
1158 if (err < 0)
1159 goto fail;
1160
1161 return &chip->pub;
1162
1163 fail:
1164 brcmf_chip_detach(&chip->pub);
1165 return ERR_PTR(err);
1166 }
1167
brcmf_chip_detach(struct brcmf_chip * pub)1168 void brcmf_chip_detach(struct brcmf_chip *pub)
1169 {
1170 struct brcmf_chip_priv *chip;
1171 struct brcmf_core_priv *core;
1172 struct brcmf_core_priv *tmp;
1173
1174 chip = container_of(pub, struct brcmf_chip_priv, pub);
1175 list_for_each_entry_safe(core, tmp, &chip->cores, list) {
1176 list_del(&core->list);
1177 kfree(core);
1178 }
1179 kfree(chip);
1180 }
1181
brcmf_chip_get_d11core(struct brcmf_chip * pub,u8 unit)1182 struct brcmf_core *brcmf_chip_get_d11core(struct brcmf_chip *pub, u8 unit)
1183 {
1184 struct brcmf_chip_priv *chip;
1185 struct brcmf_core_priv *core;
1186
1187 chip = container_of(pub, struct brcmf_chip_priv, pub);
1188 list_for_each_entry(core, &chip->cores, list) {
1189 if (core->pub.id == BCMA_CORE_80211) {
1190 if (unit-- == 0)
1191 return &core->pub;
1192 }
1193 }
1194 return NULL;
1195 }
1196
brcmf_chip_get_core(struct brcmf_chip * pub,u16 coreid)1197 struct brcmf_core *brcmf_chip_get_core(struct brcmf_chip *pub, u16 coreid)
1198 {
1199 struct brcmf_chip_priv *chip;
1200 struct brcmf_core_priv *core;
1201
1202 chip = container_of(pub, struct brcmf_chip_priv, pub);
1203 list_for_each_entry(core, &chip->cores, list)
1204 if (core->pub.id == coreid)
1205 return &core->pub;
1206
1207 return NULL;
1208 }
1209
brcmf_chip_get_chipcommon(struct brcmf_chip * pub)1210 struct brcmf_core *brcmf_chip_get_chipcommon(struct brcmf_chip *pub)
1211 {
1212 struct brcmf_chip_priv *chip;
1213 struct brcmf_core_priv *cc;
1214
1215 chip = container_of(pub, struct brcmf_chip_priv, pub);
1216 cc = list_first_entry(&chip->cores, struct brcmf_core_priv, list);
1217 if (WARN_ON(!cc || cc->pub.id != BCMA_CORE_CHIPCOMMON))
1218 return brcmf_chip_get_core(pub, BCMA_CORE_CHIPCOMMON);
1219 return &cc->pub;
1220 }
1221
brcmf_chip_get_pmu(struct brcmf_chip * pub)1222 struct brcmf_core *brcmf_chip_get_pmu(struct brcmf_chip *pub)
1223 {
1224 struct brcmf_core *cc = brcmf_chip_get_chipcommon(pub);
1225 struct brcmf_core *pmu;
1226
1227 /* See if there is separated PMU core available */
1228 if (cc->rev >= 35 &&
1229 pub->cc_caps_ext & BCMA_CC_CAP_EXT_AOB_PRESENT) {
1230 pmu = brcmf_chip_get_core(pub, BCMA_CORE_PMU);
1231 if (pmu)
1232 return pmu;
1233 }
1234
1235 /* Fallback to ChipCommon core for older hardware */
1236 return cc;
1237 }
1238
brcmf_chip_iscoreup(struct brcmf_core * pub)1239 bool brcmf_chip_iscoreup(struct brcmf_core *pub)
1240 {
1241 struct brcmf_core_priv *core;
1242
1243 core = container_of(pub, struct brcmf_core_priv, pub);
1244 return core->chip->iscoreup(core);
1245 }
1246
brcmf_chip_coredisable(struct brcmf_core * pub,u32 prereset,u32 reset)1247 void brcmf_chip_coredisable(struct brcmf_core *pub, u32 prereset, u32 reset)
1248 {
1249 struct brcmf_core_priv *core;
1250
1251 core = container_of(pub, struct brcmf_core_priv, pub);
1252 core->chip->coredisable(core, prereset, reset);
1253 }
1254
brcmf_chip_resetcore(struct brcmf_core * pub,u32 prereset,u32 reset,u32 postreset)1255 void brcmf_chip_resetcore(struct brcmf_core *pub, u32 prereset, u32 reset,
1256 u32 postreset)
1257 {
1258 struct brcmf_core_priv *core;
1259
1260 core = container_of(pub, struct brcmf_core_priv, pub);
1261 core->chip->resetcore(core, prereset, reset, postreset);
1262 }
1263
1264 static void
brcmf_chip_cm3_set_passive(struct brcmf_chip_priv * chip)1265 brcmf_chip_cm3_set_passive(struct brcmf_chip_priv *chip)
1266 {
1267 struct brcmf_core *core;
1268 struct brcmf_core_priv *sr;
1269
1270 brcmf_chip_disable_arm(chip, BCMA_CORE_ARM_CM3);
1271 core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_80211);
1272 brcmf_chip_resetcore(core, D11_BCMA_IOCTL_PHYRESET |
1273 D11_BCMA_IOCTL_PHYCLOCKEN,
1274 D11_BCMA_IOCTL_PHYCLOCKEN,
1275 D11_BCMA_IOCTL_PHYCLOCKEN);
1276 core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_INTERNAL_MEM);
1277 brcmf_chip_resetcore(core, 0, 0, 0);
1278
1279 /* disable bank #3 remap for this device */
1280 if (chip->pub.chip == BRCM_CC_43430_CHIP_ID ||
1281 chip->pub.chip == CY_CC_43439_CHIP_ID) {
1282 sr = container_of(core, struct brcmf_core_priv, pub);
1283 brcmf_chip_core_write32(sr, SOCRAMREGOFFS(bankidx), 3);
1284 brcmf_chip_core_write32(sr, SOCRAMREGOFFS(bankpda), 0);
1285 }
1286 }
1287
brcmf_chip_cm3_set_active(struct brcmf_chip_priv * chip)1288 static bool brcmf_chip_cm3_set_active(struct brcmf_chip_priv *chip)
1289 {
1290 struct brcmf_core *core;
1291
1292 core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_INTERNAL_MEM);
1293 if (!brcmf_chip_iscoreup(core)) {
1294 brcmf_err("SOCRAM core is down after reset?\n");
1295 return false;
1296 }
1297
1298 chip->ops->activate(chip->ctx, &chip->pub, 0);
1299
1300 core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_ARM_CM3);
1301 brcmf_chip_resetcore(core, 0, 0, 0);
1302
1303 return true;
1304 }
1305
1306 static inline void
brcmf_chip_cr4_set_passive(struct brcmf_chip_priv * chip)1307 brcmf_chip_cr4_set_passive(struct brcmf_chip_priv *chip)
1308 {
1309 int i;
1310 struct brcmf_core *core;
1311
1312 brcmf_chip_disable_arm(chip, BCMA_CORE_ARM_CR4);
1313
1314 /* Disable the cores only and let the firmware enable them.
1315 * Releasing reset ourselves breaks BCM4387 in weird ways.
1316 */
1317 for (i = 0; (core = brcmf_chip_get_d11core(&chip->pub, i)); i++)
1318 brcmf_chip_coredisable(core, D11_BCMA_IOCTL_PHYRESET |
1319 D11_BCMA_IOCTL_PHYCLOCKEN,
1320 D11_BCMA_IOCTL_PHYCLOCKEN);
1321 }
1322
brcmf_chip_cr4_set_active(struct brcmf_chip_priv * chip,u32 rstvec)1323 static bool brcmf_chip_cr4_set_active(struct brcmf_chip_priv *chip, u32 rstvec)
1324 {
1325 struct brcmf_core *core;
1326
1327 chip->ops->activate(chip->ctx, &chip->pub, rstvec);
1328
1329 /* restore ARM */
1330 core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_ARM_CR4);
1331 brcmf_chip_resetcore(core, ARMCR4_BCMA_IOCTL_CPUHALT, 0, 0);
1332
1333 return true;
1334 }
1335
1336 static inline void
brcmf_chip_ca7_set_passive(struct brcmf_chip_priv * chip)1337 brcmf_chip_ca7_set_passive(struct brcmf_chip_priv *chip)
1338 {
1339 struct brcmf_core *core;
1340
1341 brcmf_chip_disable_arm(chip, BCMA_CORE_ARM_CA7);
1342
1343 core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_80211);
1344 brcmf_chip_resetcore(core, D11_BCMA_IOCTL_PHYRESET |
1345 D11_BCMA_IOCTL_PHYCLOCKEN,
1346 D11_BCMA_IOCTL_PHYCLOCKEN,
1347 D11_BCMA_IOCTL_PHYCLOCKEN);
1348 }
1349
brcmf_chip_ca7_set_active(struct brcmf_chip_priv * chip,u32 rstvec)1350 static bool brcmf_chip_ca7_set_active(struct brcmf_chip_priv *chip, u32 rstvec)
1351 {
1352 struct brcmf_core *core;
1353
1354 chip->ops->activate(chip->ctx, &chip->pub, rstvec);
1355
1356 /* restore ARM */
1357 core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_ARM_CA7);
1358 brcmf_chip_resetcore(core, ARMCR4_BCMA_IOCTL_CPUHALT, 0, 0);
1359
1360 return true;
1361 }
1362
brcmf_chip_set_passive(struct brcmf_chip * pub)1363 void brcmf_chip_set_passive(struct brcmf_chip *pub)
1364 {
1365 struct brcmf_chip_priv *chip;
1366 struct brcmf_core *arm;
1367
1368 brcmf_dbg(TRACE, "Enter\n");
1369
1370 chip = container_of(pub, struct brcmf_chip_priv, pub);
1371 arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CR4);
1372 if (arm) {
1373 brcmf_chip_cr4_set_passive(chip);
1374 return;
1375 }
1376 arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CA7);
1377 if (arm) {
1378 brcmf_chip_ca7_set_passive(chip);
1379 return;
1380 }
1381 arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CM3);
1382 if (arm) {
1383 brcmf_chip_cm3_set_passive(chip);
1384 return;
1385 }
1386 }
1387
brcmf_chip_set_active(struct brcmf_chip * pub,u32 rstvec)1388 bool brcmf_chip_set_active(struct brcmf_chip *pub, u32 rstvec)
1389 {
1390 struct brcmf_chip_priv *chip;
1391 struct brcmf_core *arm;
1392
1393 brcmf_dbg(TRACE, "Enter\n");
1394
1395 chip = container_of(pub, struct brcmf_chip_priv, pub);
1396 arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CR4);
1397 if (arm)
1398 return brcmf_chip_cr4_set_active(chip, rstvec);
1399 arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CA7);
1400 if (arm)
1401 return brcmf_chip_ca7_set_active(chip, rstvec);
1402 arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CM3);
1403 if (arm)
1404 return brcmf_chip_cm3_set_active(chip);
1405
1406 return false;
1407 }
1408
brcmf_chip_sr_capable(struct brcmf_chip * pub)1409 bool brcmf_chip_sr_capable(struct brcmf_chip *pub)
1410 {
1411 u32 base, addr, reg, pmu_cc3_mask = ~0;
1412 struct brcmf_chip_priv *chip;
1413 struct brcmf_core *pmu = brcmf_chip_get_pmu(pub);
1414
1415 brcmf_dbg(TRACE, "Enter\n");
1416
1417 /* old chips with PMU version less than 17 don't support save restore */
1418 if (pub->pmurev < 17)
1419 return false;
1420
1421 base = brcmf_chip_get_chipcommon(pub)->base;
1422 chip = container_of(pub, struct brcmf_chip_priv, pub);
1423
1424 switch (pub->chip) {
1425 case BRCM_CC_4354_CHIP_ID:
1426 case BRCM_CC_4356_CHIP_ID:
1427 case BRCM_CC_4345_CHIP_ID:
1428 case BRCM_CC_43454_CHIP_ID:
1429 /* explicitly check SR engine enable bit */
1430 pmu_cc3_mask = BIT(2);
1431 fallthrough;
1432 case BRCM_CC_43241_CHIP_ID:
1433 case BRCM_CC_4335_CHIP_ID:
1434 case BRCM_CC_4339_CHIP_ID:
1435 /* read PMU chipcontrol register 3 */
1436 addr = CORE_CC_REG(pmu->base, chipcontrol_addr);
1437 chip->ops->write32(chip->ctx, addr, 3);
1438 addr = CORE_CC_REG(pmu->base, chipcontrol_data);
1439 reg = chip->ops->read32(chip->ctx, addr);
1440 return (reg & pmu_cc3_mask) != 0;
1441 case BRCM_CC_43430_CHIP_ID:
1442 case CY_CC_43439_CHIP_ID:
1443 addr = CORE_CC_REG(base, sr_control1);
1444 reg = chip->ops->read32(chip->ctx, addr);
1445 return reg != 0;
1446 case BRCM_CC_4355_CHIP_ID:
1447 case CY_CC_4373_CHIP_ID:
1448 /* explicitly check SR engine enable bit */
1449 addr = CORE_CC_REG(base, sr_control0);
1450 reg = chip->ops->read32(chip->ctx, addr);
1451 return (reg & CC_SR_CTL0_ENABLE_MASK) != 0;
1452 case BRCM_CC_4359_CHIP_ID:
1453 case CY_CC_43752_CHIP_ID:
1454 case CY_CC_43012_CHIP_ID:
1455 addr = CORE_CC_REG(pmu->base, retention_ctl);
1456 reg = chip->ops->read32(chip->ctx, addr);
1457 return (reg & (PMU_RCTL_MACPHY_DISABLE_MASK |
1458 PMU_RCTL_LOGIC_DISABLE_MASK)) == 0;
1459 default:
1460 addr = CORE_CC_REG(pmu->base, pmucapabilities_ext);
1461 reg = chip->ops->read32(chip->ctx, addr);
1462 if ((reg & PCAPEXT_SR_SUPPORTED_MASK) == 0)
1463 return false;
1464
1465 addr = CORE_CC_REG(pmu->base, retention_ctl);
1466 reg = chip->ops->read32(chip->ctx, addr);
1467 return (reg & (PMU_RCTL_MACPHY_DISABLE_MASK |
1468 PMU_RCTL_LOGIC_DISABLE_MASK)) == 0;
1469 }
1470 }
1471